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Abstract

The phase-field method has become in recent years the method of choice to
model microstructural pattern formation during solidification. For monocrys-
tals, quantitative agreement with experiments and analytical solutions has been
obtained. The modeling of polycrystals, which consist of many grains of the
same thermodynamic phase, but different orientations of the crystalline lattice,
is far less advanced. Two types of models have been proposed: multi-phase-field
models use a separate phase field for each grain, and orientation-field models
use a small number of fields, but have non-analytical terms in their free energy
functional.

This work examines various aspects of phase-field modeling of polycrystals
and is divided in three parts. In the first, a new possibility of describing the
local orientation is explored, using a tensorial order parameter which represents
automatically the local symmetry of the system. This approach is tested by de-
veloping a phase-field model for the nematic-isotropic phase transition in liquid
crystals. The model is applied to simulate the directional “solidification” of a
liquid crystal. The effect of the coupling between nematic orientation and the
interface shape is investigated. The simulation results for the stability of a pla-
nar interface agree well with a generalized stability analysis, which takes into
account a new anchoring condition at the interface: the nematic orientation at
the interface is the result of the interplay between bulk deformation and inter-
face anisotropy. The shape and stability of well-developed cells is also influenced
by this effect. Numerically, the use of a tensorial order parameter simplifies the
treatment of the symmetries in the system significantly, while the equations of
motions become considerably more complicated.

In the second part, grain boundaries are investigated on a smaller length
scale, using a phase field crystal model, where elastic properties and disloca-
tions appear naturally. With this model, the local order in interfaces is exam-
ined and the stability of liquid films between two solid grains is studied below
the melting point. This situation can be described by an interaction potential
between the two solid-liquid interfaces, which is extracted numerically. The re-
sults are compared with a phenomenological model which is found to hold for
high-angle grain boundaries, where the dislocations overlap. For low-angle grain
boundaries, premelting around dislocation as well as a symmetry breaking (dis-
locations form pairs) is observed. As a result, the interaction potential becomes
nonmonotonous, and consists of a long-range attraction and a short-range re-
pulsion.

In the third part, a new phase-field model is developed using an angle variable
to describe the crystalline orientation. Contrary to the already existing models,
the free energy is constructed without a term proportional to the modulus of
the gradient of the orientation field. Instead, the standard squared gradient is
used, but it is coupled to the phase field with a singular coupling function. Var-
ious benchmark simulations are carried out to test the model. It is found that it
presents several artifacts such as spurious grain rotation and interface motion;
however, these effects are extremely small, such that the model yields satisfac-
tory results unless the undercooling is very small. Finally, the observed problems
are analyzed and ways of obtaining a better description of the dynamics of the
angle field are discussed.
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Chapter 1

Introduction



2 Introduction

A wide variety of materials is heterogeneous on macroscopic length scales
and consists of grains with different compositions, crystalline structures and/or
orientations. The macroscopic material properties such as elasticity or stress
resistance depend strongly on the size and distribution of the individual grains
and a lot of research has been conducted to improve the understanding of the
microstructural evolution.

A well-developed method to simulate the evolution of complex structures
numerically is the phase-field model. In theoretical descriptions of solidification
processes, as introduced in section 2.2, interfaces between different phases are
often described as sharp lines or surfaces in two or three dimension, respectively.
Even when physical interfaces are not discrete but possess a certain interface
width, this description is reasonable. Usually, the examined structures are orders
of magnitude larger than the interface width, which is of the order of several
atomic layers. In the sharp interface formulation, the equations of motion can
be developed together with boundary conditions, which have to be fulfilled at
the interfaces. In many cases, the interface can move according to some interface
conditions — one is dealing with a so-called moving boundary problem. Math-
ematically, it is in general very difficult to solve the equations of motion with
the boundary condition for arbitrary interface shapes. To solve the equations of
motion numerically, the interface has to be discretized. Since the interface itself
is moving with time, it can happen that two neighboring grid points at the in-
terface start moving apart so that new grid points have to be added to ensure a
good resolution. Similarly, at different places, the grid can become unnecessarily
fine and grid points have to be removed. This process of redefining the interface
grid numerically is very time consuming, especially in three dimensions

This problem can be avoided by using the so-called phase-field model. Instead
of tracking the discrete interfaces between different phases explicitly, a diffuse
interface is assumed. Generally, a phase-field variable is assigned to each phase in
the entire system, indicating whether this specific phase is present at this point
or not. For the solidification of a single phase, only one phase-field variable is
necessary. The solid phase is given by the region where the phase-field variable is
equal to one. Accordingly, the liquid phase is indicated by a phase-field variable
of either minus one or zero, depending on the model used. In an interface, the
phase-field variable varies continuously from one value to the other over a certain
interface width. The interface position can then be obtained by the contour line
where the phase-field variable has an intermediate value.

For the time-evolution of this phase-field, an equation of motion has to be
developed which reduces to the sharp interface equations when the interface
width goes to zero. Unfortunately, the phase-field model becomes very inefficient
when the physical interface width is used, since it is orders of magnitude smaller
than the systems envisaged in the simulations. Instead, formalisms have been
developed to allow the artificial increase of the interface width to numerically
more convenient length scales without changing the underlying physics. This
allows to address problems of micrometer length scales, even in three dimensions.
Further details about phase-field models for solidification of pure substances are
given in section 2.3.1.

Considering the success of the phase-field model, it is only natural to ex-
tend it to the solidification of polycrystals. In this work, solids are assumed to
consist of grains of the same chemical composition and lattice structure, but
which possess different crystalline orientations. A possible mechanism of creat-
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ing such a solid is by starting from an undercooled melt, where at several points
grains with different crystalline orientation nucleate and start to grow. As they
approach each other, they start to interact and grain boundaries are formed.

For this problem, two different kinds of phase-field models have been de-
veloped so far. In the so-called multi-phase-field model, a different phase-field
variable is defined for each grain with a different orientation. An example of
this method is presented in section 2.3.2. Multi-phase-field models have been
applied very successfully to a wide range of problems. The numerical problems
of treating thousands of different grains have been overcome. Even if it is hardly
possible to store thousands of fields for large systems, it is found that only a
limited amount of phase-field variables have a non-vanishing value at the same
space-point. It is therefore sufficient to store only a few fields simultaneously.
Similarly, the equations of motion have to be solved only where the specific
phase is actually present. But the model still has some shortcomings: It is im-
possible to describe effects such as grain rotations and it is difficult to simulate
the nucleation of grains with random orientation.

Both deficits are related to the fact that the numerical description of the
grains is very far from the physical or microscopical point of view. Different
grains are not really of different thermodynamic phases but the same phase
where only the orientations differ. This orientation can be described more nat-
urally with an orientation field, which defines the misorientation of the lattice
with respect to some reference coordinate system.

An alternative approach was introduced by Kobayashi and coworkers and
is presented in section 2.3.3. Instead of using an extra phase-field variable for
each misorientation, only one phase-field variable is used to indicate whether
this space point is solid or liquid. In addition, its value is decreased in the
grain boundaries, indicating a lower crystalline order. To introduce the lattice
orientation, a second variable is used, which gives the orientation of the crystal
with respect to the coordinate system.

In this work, an alternative way of describing the orientation field is pro-
posed and tested. The crystalline orientation can be described very naturally
by a tensorial order parameter. Depending on the rank of the tensor, certain
rotations leave the tensor unchanged. This avoids the special treatment of the
angle differences, where in the model so far all the symmetric configurations
have to be considered when calculating the angle gradients.

1.1 Tensor-field description for local orientation

When describing the crystalline orientation in two dimensions with a scalar ori-
entation field as introduced in section 2.3.3, the local symmetries of the system
have to be treated manually. In the case of a four-fold symmetry of a simple
cubic lattice, the orientations θ = θ ± π

2 = θ ± π = . . . = θ ± nπ2 with in-
teger numbers n are equivalent. The orientation difference between a grain of
orientation θ = 0 and θ = 3π/4 is hence not 3π/4 but only π/4 — the maxi-
mal misorientation possible. This problem becomes even more complex in three
dimensions.

Numerically, one can restrict the orientation angles to an interval of −π/N <
θ ≤ π/N for systems with N -fold symmetry. One has then to take into account
all the symmetrically identical configurations when calculating angle differences.
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Alternatively, the orientation field can be expressed in terms of tensors.

Tensors are generalizations of scalars and vectors. A rank n tensor has n
indices which run over the number of dimensions in the space used. A vector
can be seen as a rank one tensor, a scalar as a rank zero tensor. In general, one
has to distinguish between upper (contravariant) and lower (covariant) indices,
but they are equivalent in three-dimensional Euclidean space. Only these so-
called Cartesian tensors are used in this work and the indices are written as
subscripts to the variable. As sum variables, i, j, k, l are used, which then run
over the dimensions of space x, y and z. Usually, for better clarity, the sums are
given explicitly, else the Einstein sum convention is used and the sum is carried
out over all indices appearing twice or more often.

A tensor of rank n is invariant under a rotation of 2π
n , a property which

will be used in this work. Seeing a vector as a rank one tensor, one can easily
understand that rotating a vector by 360◦ results in the same vector again.
Similar, a rank two tensor is invariant under a rotation of 180◦ , a rank four
tensor under a rotation of 90◦ and so on.

For the phase-field simulations of polycrystals, a cubic crystal structure is
assumed, corresponding to a rotational invariance of 90◦ and therefore to a rank
four tensor. For reasons of simplicity, the formalism of expressing an orientation
in terms of tensors is investigated for liquid crystals in chapter 3. Liquid crystals
are invariant under a rotation of 180◦ and can hence be described by rank two
tensors.

Using a tensorial order parameter, a new phase-field model for the nematic-
isotropic phase transition in liquid crystals is developed. It contains the coupling
of the nematic orientation to the interface and is used to study the stability of
a planar interface in a directional solidification setup. The numerical results are
compared with a generalized linear stability analysis, containing a new anchoring
condition based on an interplay between bulk deformation and interface energy.

1.2 Gaining further insights into grain bound-
aries

To gain further insights into grain boundaries, a model which was developed
by Elder and coworkers is presented in chapter 4. It is capable of dealing with
smaller lengths scales than the phase-field method envisaged in this work. This
so-called phase field crystal model allows to simulate crystalline growth with a
rather similar numerical method as the phase-field model, but leads to a periodic
structure which can be associated with a solid and a uniform structure which
can be associated with a liquid.

The phase field crystal model incorporates elastic effects implicitly and leads
to geometric deformations at a grain boundary. The grain boundary structure
can be investigated since dislocations and defects appear naturally. Therefore,
this approach is a useful tool to examine possible descriptions of grain bound-
aries in models on a larger length scale, such as the phase-field model.

In this work, the phase field crystal model is used to perform simulations of
grain boundaries of different misorientations. A special interest is focused on a
possible measurement of the crystalline order in the grain boundary, which can
be associated with a phase-field parameter. Also, the formation of grain bound-
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aries is investigated, gaining further insight into the grain boundary properties.

1.3 Alternative model for polycrystalline solid-

ification

With this knowledge about grain boundaries, an alternative to the already ex-
isting phase-field models with orientation field is developed in chapter 5. A
common problem of these models is the existence of localized grain boundaries.
It is not possible to include a potential term in the free energy which depends
explicitly on the angle variable, since there are no preferred orientations. One
can only include gradients of the angle field. In the existing models so far, a
term proportional to the modulus of the angle gradient has to be included in
the free energy, which introduces singularities in the equations of motion and
is hard to motivate from a physical point of view. In this work, a different free
energy is developed, which contains as lowest order gradient term the standard
squared gradient, which is, however, coupled with a singular coupling function
to the phase field φ. The exact form of this coupling function is crucial to the
model.

For reasons of simplicity, the model is presented in terms of a scalar orienta-
tion field and with the four-fold symmetry of a single cubic lattice. In addition,
it has been tested in the tensorial description using 180◦ symmetries.

The model is tested in great detail, concentrating on the stability of grain
boundaries. To show the validity of the model, the equilibrium shape is obtained
numerically and compared to the Wulff shape in two dimensions.

During the detailed study of this model with orientation variable, despite a
general good performance, some fundamental problems are discovered which are
mostly rooted in the nature of the model structure. In the equations of motion,
the orientation field variable is treated formally as a nonconserved order param-
eter. Microscopically, grain boundaries can be seen as a line of dislocations, as
shown in chapter 4. In the picture of dislocations, a change of orientation is con-
nected with a change in the dislocation density, which is a conserved quantity.
In chapter 6, it is discussed how the idea of dislocations or elastic deformations
could lead to a new formulation of the equation of motion for an orientation
variable.
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8 Physical Background

This chapter introduces shortly the physics and the models used in this work.
In section 2.1, some basic information about the physics of polycrystals is given,
concentrating on grain boundaries and on what is important for this work. In
section 2.2, three different solidification processes are explained in the so-called
sharp interface description. Finally, an introduction to the phase-field model is
presented in section 2.3.

2.1 Introduction to polycrystals

To understand the problem treated in this work, it is useful to start with some
basic crystalline properties. Generally, a crystal is characterized by its posi-
tional order. The perfect crystal is described by a small group of atoms, which
is repeated, forming a simple pattern, endlessly through the entire macroscopic
body [1]. This approach makes it possible to address problems of huge num-
bers of atoms with underlying equations which are generally impossible to solve
analytically by concentrating on the principles of symmetries.

Even if real materials are hardly ever made of perfect crystals, the description
based on the underlying symmetries is very powerful and still works in structures
being very different from perfect lattices. Still, lattice imperfections and defects
are very important for most naturally occurring substances and technologically
important materials.

In the following, the principles of perfect lattices are introduced, followed by
a short description of possible defects and grain boundaries.

2.1.1 Two-dimensional lattices

In this work, two-dimensional systems are investigated and therefore the focus
is placed on two-dimensional lattices. In addition, they are easier to picture
and to understand. The underlying principles can then be generalized to three
dimensions. Three-dimensional lattices are explained in nearly every textbook
about solid state physics, see for example the one by Kittel [2].

Bravais lattice

The basic principle of a perfect lattice is the infinite repetition of points. One can
then define a translation from one point to another, so that the neighborhood
remains the same. A lattice obeying this definition is called Bravais lattice and
can, in two dimensions, be described as

~R = n1~a1 + n2~a2 , (2.1)

where n1 and n2 are integers and ~a1 and ~a2 are linearly independent vectors,
called primitive vectors. The primitive vectors are not unique and are usually
chosen to be as simple as possible or to have some convincing symmetry prop-
erties.

In two dimensions, there are five Bravais lattices, as shown in figure 2.1. The
square lattice is symmetric under rotations of 90◦ and under reflection about
the x- and y-axes. If the square lattice is deformed along one axis, one obtains
the rectangular lattice, which is invariant under rotations of 180◦ only. In chap-
ter 4, a hexagonal or triangular lattice is investigated, which is invariant under
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a rotation of 120◦ and under reflections about both axes. Deforming the hexag-
onal lattice in one direction destroys the rotational symmetry and leads to the
centered rectangular lattice. A lattice with only inversion symmetry (~r → −~r)
is the oblique lattice, which can be constructed from arbitrary ~ai without any
special symmetry.

Figure 2.1: The Bravais lattices possible in two dimensions. Also shown possible
basis vectors ~ai and the Wigner-Seitz cell in gray. From [1].

Lattices with bases

Replacing the identical particles at the lattice sites of a Bravais lattice by an
identical assembly of particles, a so-called basis, one obtains a more general
lattice description, which can be used to describe most lattices in nature. The
symmetry properties of such a lattice, however, can be reduced depending on
the symmetries of the particular basis. An example of a lattice with a basis is
the honeycomb lattice, where at each lattice site of the hexagonal lattice a pair
of particles is placed.



10 Physical Background

Primitive cells and Wigner-Seitz cell

Since the lattices are created by repeating identical units over the entire crystal,
already a small region of the system contains the full information of the crystal.
The smallest unit containing all the information is called primitive cell and is,
similar to the basis vectors, not uniquely defined. All primitive cells, however,
are of the same area since they contain exactly one particle for the Bravais
lattice or, more generally, the particles of the basis. The volume of the primitive
cell is the inverse of the density of the crystal.

Among all the possible choices for the primitive cell, there is one standard
way of constructing it, leading to the so-called Wigner-Seitz cell. It contains
all the symmetries of the crystal and is constructed by associating to each lat-
tice point all the space which is closer to it than to any other lattice point.
The Wigner-Seitz cells of the different two-dimensional lattices are shown in
figure 2.1.

Further reading

For further information about three-dimensional lattices, the lattice description
in the reciprocal space, experimental methods of obtaining the lattice structure
as well as the different atomic binding types it is referred to textbooks about
solid state physics, for example the one by Charles Kittel [2]. There, one also
learns about lattice vibrations and the thermal properties of crystals, which are
not explicitly treated in this work.

2.1.2 Interfaces and surfaces

Comparing the number of atoms located at an interface with the number of
bulk atoms, one might be tempted to see surface physics as unimportant. But
even if the number of surface atoms relative to those in the bulk is negligible
for macroscopic bodies, surfaces play a very important part in many aspects
of solid state physics. They build the entrance for all the substances entering
or leaving the bulk and often very interesting material properties depend on
internal surfaces or thin layers of different components.

The simplest way of obtaining a surface is when the perfect crystalline struc-
ture comes to an end, being surrounded by empty space. In this work, the
main focus lies in solid-liquid and solid-solid interfaces, where the crystal is sur-
rounded by a liquid or by a second solid with a different crystalline orientation.
Close to the interface, the atoms of the crystal hardly ever remain on their origi-
nally perfect lattice site. Usually, the crystal is deformed at the grain boundary,
leading to an increase or decrease of the volume per atom and therefore to a
change of the local density of the material at the interface. It is also possible that
the formation of an additional phase in the interface is preferable, for example
a solid-solid grain boundary might be covered by a thin liquid film. This effect
is called grain boundary wetting or premelting and is investigated in chapter 4
with a phase field crystal model.

In the following, a short description of solid-liquid and solid-solid interfaces
are given, with an emphasis on the aspects important for this work.
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Solid-liquid interface

So far, it is most generally assumed that the local order breaks down when going
from solid to liquid. In a work by Bernal [3], the structure of the liquid phase
is investigated in greater details. The basic assumptions are that the liquid is a
homogeneous, coherent and essentially irregular assembly of atoms or molecules.
This assembly does not contain any holes large enough to fit in another atom
or molecule. Therefore, the potential determining the liquid form must be given
by the repulsive force between the atoms and can be modeled by a hard-sphere
model.

In a model experiment [3], about 1000 ball-bearings are heaped randomly
into a container and fixed with black paint. The resulting structure is analyzed
for symmetries, the number of neighbors, average distances and much more. It
is found that one of the most characteristic differences between a liquid and a
solid is the variation of coordination. While a regular close-packed arrangement
in a crystalline solid has twelve nearest neighbors, the liquids dense random
packing has five to eleven neighbors, with an average of six.

Experimentally, one can use X-ray diffraction to investigate the atomic struc-
ture of the liquid [4]. For a solid at 0K, the radial density distribution is strongly
peaked at the distance of the nearest neighbors, the next-nearest neighbors and
so forth, with a peak height corresponding to the number of respective neigh-
bors. At larger temperature but still below melting, the density function is still
of the same form but is smeared out, representing the probability of finding an
atom at the corresponding distance. In the liquid, when the temperature is larger
than the melting temperature, the atoms are still rather limited in their motion,
similar to what can be seen in the model with the ball-bearings. The probability
of finding an atom at approximately the neighboring distance is relatively high,
the atoms still prefer to surround as many nearest-neighbors as possible to max-
imize bonding, in average between nine and eleven. The next-nearest neighbors
are still grouped around the nearest neighbors, but with increasing distance the
order decays, contrary to the situation in the solid. One can summarize that at
the melting temperature, the long-range order breaks down even if some local
short-range order remains.

When one investigates solid-liquid interfaces, a similar effect can be seen. In
figure 2.2, a schematic representation of the density of atom centers is shown as
function of the distance to the solid-liquid interface. While the density function
is ordered but smeared out in the solid, it decays with decreasing amplitude into
the liquid. The order is hence extended into the liquid phase.

More generally, the density wave depends on the lattice structure of the
solid. Depending on the direction with respect to the crystalline axes, the den-
sity decays with different decay lengths into the liquid. This dependence on
the crystalline structure reflects the anisotropy of the system and leads to the
anisotropy in macroscopic quantities such as the surface energy, which is pre-
sented later in this section.

To describe the crystal respecting its lattice structure, one can use a Ginzburg-
Landau theory, where order parameters are introduced which correspond to the
amplitudes of the density waves in direction of the principal reciprocal lattice
vectors [5, 6]. In a good approximation, especially for metallic systems, these
amplitudes can be assumed to be proportional to each other, so that it is suffi-
cient to use a single order parameter. Due to this approximation, however, one
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looses all the information about the anisotropy of the system. The picture of
having one decaying amplitude motivates the idea of having a diffuse interfaces
in the phase-field model, which is presented in section 2.3. The dashed envelope
shown in figure 2.2 is a possible physical interpretation of the phase field.
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Figure 2.2: Schematic representation of the density of atom centers as function
of the distance to the solid-liquid interface. The periodic structure decays over
a length of a few atomic layers into the liquid. As envelope, a possible physical
interpretation of the phase field φ is shown with a heavy dashed line, varying
from one to zero.

Solid-liquid interface energy

Associated with the solid-liquid interface is an energy. Experimentally, the solid-
liquid interface energy can be determined as shown by Turnbull and Cech [7, 8].
In their experiment, small liquid metal droplets and their solidification is ob-
served. In small volumes (e.g. a few tens of micrometers in diameter), the impu-
rity concentration can be assumed to be constant and since solidification usually
starts at impurities, a homogeneous solidification can be expected. Measuring
the maximal undercooling and using homogeneous nucleation theory, rather ac-
curate estimates of the solid-liquid interface energy can be obtained. Relating
the solid-liquid interface energy with the enthalpy of melting Hm, it is found
that γSL ≃ (0.32−0.45)∆Hm, where the value of 0.32 is found for semi-metallic
elements and 0.45 for metals [4].

More generally, the empiric relation by Turnbull [8], which relates the surface
tension with the latent heat L and the number density of the solid phase ρ, is
given by

γ = CTLρ
2/3 .

The so-called Turnbull coefficient CT is found to be approximately 0.45 for
metals and 0.32 for many nonmetals. More recently, larger undercoolings have
been achieved, the largest ones by Perepezko [9], and Turnbull coefficients of up
to 0.6 have been found for some FCC and HCP structures. The Turnbull relation
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has been confirmed by many experiments and simulations. For a summary and
a review of proposed modifications, it is referred to Jones [10] or Granasy and
Tegze [11]. Nowadays, the main interest is focused on the anisotropy in the
surface tension, as described in the next subsection.

Anisotropy in the liquid-solid surface energy

In general, the surface energy depends on the direction of the surface with
respect to the crystal lattice. The interface shape itself depends therefore on the
anisotropy. The so-called Wulff construction [12] can be applied to construct the
equilibrium shape knowing the surface anisotropy.

To do so, the surface tension is plotted in the following way. The magnitude
of the surface energy γ(~n) is plotted as length of a vector ~r, whose directions
corresponds to the surface normal ~n. The vector ~r is then given as ~r = γ(~n)~n.
An example is shown in figure 2.3, showing the directions of minimal surface
energy very clearly. Based on this so-called Wulff plot [4], the equilibrium shape
can be constructed by the following steps. Firstly, a radius vector is drawn from
the origin to intersect the Wulff plot. In two dimensions, a line normal to the
radius vector is drawn passing through the point of intersection. Repeating this
procedure for each point of the Wulff plot forms a figure, given by inner envelope
of all the normals, corresponding to the equilibrium shape.

Figure 2.3: Wulff plot of a surface energy with corresponding Wulff construction
to obtain the equilibrium shape. From [12].

Even if it is usually not possible to construct a unique surface anisotropy
from the equilibrium shape, this method can be used to obtain information
about the surface anisotropy from measurements or simulations of the interface
shape. For recent experiments determining interface anisotropies of metal alloys
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see for example the work by Napolitano and coworkers [13–15]. In figure 2.4,
a snapshot of a molecular dynamics simulation is shown, where silicon is in
equilibrium with its undercooled melt. In figure 2.5, a series of TEM images
showing the shape of a lead particle is presented at different temperatures.
In both cases, one can use the obtained shape to draw conclusions about the
anisotropy of the surface energy. Without going into details, one can see that
the symmetry of the crystalline lattice is represented in the surface shape and
therefore in the anisotropy. This basic observation motivates the assumptions
of the anisotropy used in the numerical simulations in this work.

Figure 2.4: Molecular dynamics simulation of a d.c. silicon cluster in equilibrium
with its undercooled melt. From the equilibrium shape, the surface energy and
its anisotropy can be obtained. From [16].

Recently, molecular dynamics simulations have proven to be a very powerful
tool to obtain surface energies and their anisotropies. Especially for metal alloys,
the anisotropies are typically very week (on the order of 1%), which makes
them difficult to obtain. For a summary on how to obtain the anisotropies in
atomistic simulations and how to include them in continuum simulations such
as the phase-field model is referred to an article by Hoyt et al. [18].

Since the anisotropy seems to depend mainly on the crystalline structure
rather than on the intermolecular forces, it is also possible to use continuum
density wave descriptions to obtain the angle dependence of a solid-liquid inter-
face [5, 6].
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Figure 2.5: TEM images of a lead particle in a melt-spun aluminum-5 wt.% lead
alloy for different temperatures: (a) room temperature, (b) 100◦ C, (c) 300◦ C,
(d) 350◦ C, (e) 400◦ C, (f) 450◦ C, (g) 500◦ C, (h) 550◦ C. One can see how
the shape changes. From the shape, the anisotropy in the solid-liquid interface
energy can be obtained. From [17].
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Solid-solid interface

Solid-solid interfaces are more complex than solid-liquid interfaces, since on both
sides long-range atomic order exists. Still, the fundamental principles governing
the interface shape remain basically the same and even the concept of obtaining
the equilibrium shape by the Wulff construction remains valid. The understand-
ing of the physical behavior of these interfaces is therefore quite intuitive. The
interface seeks to minimize its energy, which can often be done by maximizing
the atomic matching and therefore minimizing the broken bonds. Unfortunately,
it is often challenging to describe the interfaces qualitatively and accurately. The
solid-solid interface is accompanied by different types of defects, which posses an
elastic strain field. Also the composition and the order can change dramatically
at the interface [4].

There are two different main types of solid-solid interfaces. Those interfaces,
where both solids are of the same phase and where the interface is caused solely
by a difference in the orientation and/or a translation of the lattices are called
homophase interfaces. If the composition and/or the Bravais lattice differs as
well in the two separated crystals, the interface is called heterophase interface.
Heterophase interfaces are further divided into three subclasses: Fully coherent
interfaces, semi-coherent interfaces and incoherent interfaces. In fully coherent
interfaces, the atomic planes and lines continue uninterrupted through the in-
terface. In semi-coherent interfaces, the crystalline structure is interrupted by
a periodic array of misfit dislocations in the interface. In incoherent interfaces,
there is no correspondence between the atomic planes and lines in the two crys-
tals.

To study solid-solid interfaces in crystalline materials, the concept of disloca-
tions can been used. In a three-dimensional medium, a dislocation is a line with
a tangent vector ~t, which is defined by its Burgers vector ~b and which is orien-
tated. There are two particular cases of dislocations which can be obtained from
a thought experiment called the “Voltena process”, compare figure 2.6. In this
thought experiment, the bonds between the atoms are cut along an arbitrary
plane, ending on a dislocation line, see figure 2.6 a). The two sides of the cut

are given a rigid displacement ~b and the created gap is filled with undeformed
material. In a crystal, ~b has to correspond to a period of the crystalline lattice.
In figure 2.6 b), the crystal is deformed parallel to the interface and the faces
are displaced. This deformation can be described by so-called screw dislocations
but is not of interest to this work. In the case of the interfaces treated here, the
lattices are deformed perpendicular to the interface, see figure 2.6 c), leading to
so-called edge dislocations.

In figure 2.7 b), a simple example for the geometry of a grain boundary as
treated in this work is shown in two dimensions. To account for the imposed
deformation, crystalline planes end at the edge dislocations, which are indicated
with the symbols ⊥. In general, the bonds between the atoms can be cut along
planes in arbitrary directions. To account for this kind of arbitrary deformation,
planes in x-and y-direction have to end at x- and y-dislocations, indicated by
⊢s and ⊥s, respectively. Similarly, there are negative dislocations which point
in the opposite direction.

In general, the concept of dislocations is much more complex and dislocations
can be partly of edge- and partly of screw-dislocation character at the same time.

In this work, attention is restricted to one of the simpler kinds of solid-
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Figure 2.6: Example for possible plastic deformations of a simple cubic crystal.
In a), the atomic bonds are cut along the plane ABCD. In b), the faces are
displaced creating a so-called screw dislocation. In c), an extra half-plane is
inserted, creating an edge dislocation. From [19].

Figure 2.7: The symmetric-tilt grain boundary in a single cubic crystal is ob-
tained by rotating two grains by an angle θ (a) and joining them again (b).
Crystalline lines end at dislocations, whose distance D is inversely proportional
to the misorientation θ. From [20].
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solid grain boundaries. The so-called symmetric-tilt grain boundary belongs to
the group of homophase interfaces. It can be described by edge dislocations as
shown in figure 2.7, with the simplification that both grains on either side of the
interface are tilted with respect to the interface by the same angle but in opposite
direction. The description of a grain boundary as an array of dislocations has
been proven to be valid for small misorientations but becomes difficult as the
dislocations get closer and overlap.

Based on this picture of a line of dislocations, the energy for a low-angle
grain boundary can be calculated, as shown by Read and Shockley [21]. In their
derivation, the alignment of the interface is generalized, using both types of
dislocations as introduced above. To obtain the grain boundary energy, firstly,
the shear stress due to the line of dislocations is calculated, where the shear
stress of one dislocation is taken as τ = x(x2 − y2)/(x2 − y2)2. The stress
is given units of G/[2π(1 − σ)] with rigidity modulus G and Poisson’s ra-
tio σ. The lengths x and y are given in units of the lattice constant a. For
the case of having only y-dislocations, the shear stress can be written as τ =

Re
{
π2/D2x sin [π(y − ıx)/D]

−2
}
, where the distance between the dislocations

D ≈ a/θ.
Based on the stress field, the self- and interaction energies between the dis-

locations are calculated by integrating over the entire system, obtaining the
the work done on the surface of discontinuity or slip plane. Again, for the case
of having solely y-dislocations, there is only one self energy which be written
as −(1/2) [ln(2πr0/D) − 1], where r0 is the radius of a small circle around the
dislocation. The meaning of r0 can be explained as follows. Since close to the
dislocation Hooke’s law breaks down, the dislocation energy really consists of
two terms: a core energy Ecore which has to be calculated on an atomistic basis
plus the self energy Eself(rc) as given above, but starting from the core radius
rc (instead of r0) from which on Hooke’s law is valid. With the knowledge of
the core energy, one can define the radius r0 such that the self energy calculated
with r0 corresponds to the real energy, Eself(r0) = Eself(rc) +Ecore. The radius
r0 then does not correspond exactly to the core radius, but is rather a mathe-
matical construct which allows to define the dislocation energy without having
the core energy explicitly in the equation.

The energy of the dislocations is then the work done on the slip plane divided
by the distance of the slip planes, which is D = a/θ for the cases treated here.
The grain boundary energy can then be written as

γGB =
Ga

4π(1 − σ)
θ [A0 − ln θ] , (2.2)

where A0 = 1 + ln[a/(2πr0)].

2.2 Pattern formation in solidification processes

The spontaneous formation of pattern in the nature has always been of great
interest to science. A wide range of beautiful pattern emerge during the growth
of crystals, where snowflakes are probably the most well-known example. Of
course, pattern formation during solidification is not only of interest from the
aesthetic point of view — the microstructure of materials is very important for
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their macroscopic properties, motivating the scientific and technical interest in
this subject [22]. It turns out that solidifying systems are conceptually simple
examples of self-organizing systems. This makes it interesting to study them to
understand the underlying mechanism, which then might allow to give insights
in more complicated biological systems as well.

In this work, the solidification of different systems is investigated numerically.
For all systems, the solidification is controlled purely by a single diffusion pro-
cess. Other effects, such as convection, are assumed to be small and are ignored.
Even if convection plays an important role in generic solidification processes,
it is possible to create experiments where convective effects are negligible. This
might be in thin samples or in microgravity.

It is also assumed that the molecular binding at the surface is sufficiently
weak, therefore growth is rather fast and the interface is rough on molecular
scale. On the macroscopic scale, the interface is, however, smoothly rounded.
This is the case for most metals and alloys and also for some organic crystals.

The two main mechanism leading to the emergence of complex patterns are
the capillary forces, which tend to minimize the surface area, contrary to the
diffusion kinetics, where a large surface allows for faster dissipation. The mor-
phological instability leading to the pattern formation process is the interplay
between these two effects. The big, mainly unsolved part of the problem is how
these complex shapes are selected by nature.

In this section, firstly the solidification of a pure system is explained. Here,
the solidification is limited by the diffusion of heat in the system. Secondly,
a liquid mixture is examined, where the solidification is mainly controlled by
the chemical diffusion since the thermal diffusion occurs on much shorter time
scales. The system can hence be seen as being in thermal equilibrium. In the
third subsection, a common experimental setup is investigated. In the so-called
directional solidification, an external temperature gradient is imposed, which
allows to control the growth speed of the system.

2.2.1 Solidification of a pure substance

In this subsection, the solidification of a pure substance from its melt is exam-
ined. It is one of the simplest cases where spontaneous pattern formation can
be observed. The reversed process, the melting, can be equally interesting and
can be described analogously. The following description focuses for simplicity
on the solidification process.

If convection in the liquid is neglected, the solidification of a pure substance
is purely governed by the diffusion of heat. As the substance solidifies, latent
heat is released and has to be conducted into the bulk or absorbed by the
boundaries. Therefore, the rate of solidification is controlled by the heat flow in
the system.

Whether the morphology of the interface is stable or unstable depends on the
configuration. As an example, two setups are shown schematically in figure 2.8.
In both cases, the boundary is held at some temperature TW smaller than the
melting temperature TM. In (a), the solid starts to grow from the boundary
into its liquid, which is at a temperature T > TM. The solid is at a temperate
below TM, latent heat is released at the interface and transported through the
bulk solid towards the boundary. During the solidification, the front S moves
uniformly and smoothly towards the center with a speed which depends on
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the flow of heat through the solid. The solidification is totally stable. In (b),
the liquid is undercooled at T < TM and the solidification starts at a seed
in the center of the system. The heat has now to be transported through the
undercooled liquid towards the boundary. In this setup, the solidification is
intrinsically unstable and the interface develops dendrites.

Figure 2.8: Different possibilities of solidification of a system with a boundary
at a fixed temperature TW < TM, where TM is the melting temperature. In (a),
the solidification starts from the boundary and grows into the liquid at T > TM

and is stable. In (b), the solidification starts at a seed in the center and the solid
grows into the undercooled liquid. This case is intrinsically unstable. From [23].

The solidification is controlled by the diffusion of the temperature T , which
can be written as

D′
T∇2T =

∂T

∂t
(solid) (2.3)

DT∇2T =
∂T

∂t
(liquid) (2.4)

where different thermal diffusion constants in the solid (D′
T ) and liquid phase

(DT ) are used. Therefore, Eq. (2.3) is valid in the solid, while Eq. (2.4) is valid
in the liquid phase.

At the interface, the total heat is conserved, so that the condition for a
moving interface is given as [23]

Lvn =
[
D′
T c

′
p(~∇T )solid −DT cp(~∇T )liquid

]
· ~n , (2.5)

where L is the latent heat. c′p and cp are the specific heats per unit volume in
the solid and liquid phase, respectively. The normal interface velocity is given
by vn, ~n is the interface normal pointing towards the liquid, and the gradients
are taken at the indicated sides of the interface. The equation states that the
rate at which the heat is created at the moving interface has to be equal to the
rate at which it flows into the solid or the liquid. Differences in the densities of
the solid and the liquid phase are neglected.

Still missing is a thermodynamic boundary condition at the interface. The
simplest choice, corresponding to the Stefan problem as usually posed by the
mathematicians, is to postulate that the temperature at the interface has to
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be the melting temperature. This neglects, however, the physical effect of the
surface energy γ0 [23], which is the necessary stabilizing force for the pattern
formation process. Including the surface energy, the interface condition can be
written as

T (interface) = TM

[
1 − γ0κ

L

]
. (2.6)

This is a form of the Gibbs-Thomson relation, which predicts among many other
things a reduction of the melting temperature for systems with a large curvature
κ. The ratio surface energy over latent heat γ0/L has the dimension of length,
introducing the dimensional information needed to set the scale of the pattern.

In general, the surface energy is anisotropic and can be written as

γ(Θ) = γ0a(Θ) . (2.7)

Here, γ0 is the mean value of the surface energy and the function a(Θ) defines
its dependence on the interface normal ~n, which can be expressed in terms of the
angle Θ in two dimensions. With anisotropy in the surface energy, the interface
conditions is given as

T (interface) = TM

[
1 − γ + γ′′

L
κ

]
, (2.8)

and is called Gibbs-Thomson-Herring condition.
Still missing in this model is a term taking care of the interface kinetics. Since

the interface is moving, it might be necessary to drive liquid molecules onto the
surface [23]. This effect will be included in the phase-field model introduced in
section 2.3 and usually also exhibits an anisotropy.

2.2.2 Solidification of alloys

Most metallurgical materials are not pure substances but alloys. In alloys, the
diffusion of the chemical components controls the solidification. The thermal
diffusion is much faster than the chemical diffusion, so that the system can be
assumed to be at thermal equilibrium. The interface instabilities leading to the
pattern formation are hence caused by the chemical diffusion. However, both
situations can be described quite similarly.

A schematic phase diagram of a two component alloy is shown in figure 2.9.
The solidification depends on the concentration of the solute c and on the local
temperature T0, which is assumed to be constant over a large region of the sys-
tem. The equilibrium concentrations in the solid and in the liquid are different,
given by c′Eq and cEq, respectively. The equilibrium concentration in the liq-
uid is larger than the one in the solid, so that an advancing solidification front
rejects solute molecules, similar to the way latent heat is rejected in the solidifi-
cation of a pure substance. The transport of the excess solute now controls the
solidification and governs the growth rate.

The analogy between the two cases can be best shown when expressing the
equations of motion in terms of the chemical potential instead of the concen-
tration. Assuming that the partial molar volumes are identically for all species,
one can define µ as the chemical potential of the solute relative to the solvent
and µ̃ = µ− µEq(T0) as the difference between µ and its equilibrium value for
the coexistence at the temperature T0.
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Figure 2.9: Schematic phase diagram of a two-phase solution. From [23].

If the system is close to equilibrium, the relative chemical potentials can be
written as [23]

µ̃(solid) =

(
∂µ

∂c

)′
∣∣∣∣∣
c=c′

Eq

δc′

µ̃(liquid) =

(
∂µ

∂c

)∣∣∣∣
c=cEq

δc

in the solid and the liquid phase. The local concentration differences are given
by δc′ and δc. With chemical diffusivity D′

c and Dc in the solid and the liquid
phase respectively, the diffusion equation is given as

D′
c∇2µ̃ =

∂µ̃

∂t
(solid)

Dc∇2µ̃ =
∂µ̃

∂t
(liquid) .

Writing the diffusivity as [23]Dc = M(∂µ/∂c) for the liquid (and accordingly
primed for the solid), one obtains an equation similar to the heat conservation
equation for the pure case

vn∆c = [M ′(∇µ̃)solid −M(∇µ̃)liquid] · ~n , (2.9)

where the concentration jump ∆c is shown in the phase diagram and curvature
effects are neglected since they turn out to be small under ordinary circum-
stances. Here M and M ′ are the mobilities in the liquid and the solid phase,
respectively.

The local equilibrium condition at the interface is simply that µ̃ has to be
continuous, having the value

µ̃(interface) = −γ + γ′′

∆c
κ , (2.10)

with surface energy γ and curvature κ as in the pure case.
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If one now looks at the setup from figure 2.8 (a), which resembles the quench-
ing of an ingot of molten metal, one finds that it becomes unstable for an alloy.
A system, initially entirely liquid at a temperature T0, has to be of a concen-
tration c0, which is smaller than cEq to allow solidification. The liquid is hence
effectively or constitutionally supercooled [23] and solidification starts from the
walls. The solidification front is unstable, solute-poor dendrites of concentration
c ≃ c′Eq are created, rejecting solute into the liquid in the center. To continue
with the solidification, the temperature T0 has to be reduced, increasing c′Eq(T0).

Evidence of the created dendrites remains in the solute-segregation pattern,
influencing the macroscopic properties of the quenched alloy. Since the dendrites
start from different seeds, the alloy finally consists of grains with different ori-
entations, which are the center of interest of this work, even when the models
used are based on pure substances for simplicity.

2.2.3 Directional solidification

Another setup, which is also important from the application point of view, is the
directional solidification or zone refinement of multicomponent materials [23]. A
schematic picture of the setup is shown in figure 2.10. The sample is placed into
a temperature gradient G, created by a hot and a cold contact. The hot contact
is at a temperature above the melting temperature, while the cold contact is
at a temperature below it. Therefore, the solid-liquid interface is forced to be
between the two contacts. By pulling the sample through the setup with a given
speed v, the interface has to adjust its growth velocity accordingly. Therefore,
the growth speed can be controlled externally, allowing to investigate a wide
range of instabilities.

The dominant diffusion process is again the chemical diffusion, but the tem-
perature now varies according to the applied temperature gradient. For the case
that the thermal diffusion is much faster than the chemical diffusion and if the
latent heat is sufficiently small, one can neglect the heat created during the
solidification. If the thermal conductivities are assumed to be similar in both
phases, the temperature can be written as a linear variation in dependence of
the position x, so that T = T0 +Gx, where G is directed along x.

This linear dependency between temperature and x-axis allows to associate
the temperature axis in the phase diagram directly with the x-axis. The com-
position profile c(x) for a steady-state motion with a given v and G can then be
drawn into the phase diagram, as shown in figure 2.11 with the heavily dashed
line. The line shows the composition profile for a flat interface with tempera-
ture T0, where the interface position is given by x = 0. To obtain a steady-state
solution, all the solute from the liquid has to be absorbed by the solid, so that
the concentration far in the solid has to be the same as far in the liquid, shown
by the vertical dashed line at c = c0. The value of c0 determines the interface
position, T0 and therefore x = 0 is at the intercept between the solidus and this
line, as shown in the phase diagram. This definition of T0 as reference temper-
ature can be generalized and used for unstable interfaces, too. In front of the
interface, a solute excess builds up, leading to a concentration gradient, which
must be large enough to drive the solute into the liquid at the externally given
pulling velocity v. As one increases the velocity, the gradient increases and the
concentration profile enters the two-phase region, experiencing constitutional
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Figure 2.10: Schematic setup of the directional solidification. The sample is
pulled through a hot and a cold oven, building up a temperature gradient G.
The melting temperature is in between the two contacts, so that the interface
speed has to adjust to the pulling velocity v. By varying v/G, the stability of
different interface modes can be investigated. From [23].

supercooling and possible instabilities. The same effect is obtained when de-
creasing the temperature gradient G: the stability depends on the ratio v/G.

The equations of motion for the directional solidification for the two-phase
model can be obtained by extending the isothermal model. From the relative
chemical potential, one has to subtract the variations of µ coming from the
temperature gradient, so that

µ̃(solid) ≃
(
∂µ

∂c

)′
∣∣∣∣∣
c=c′

Eq

δc′ −
(
∂µ

∂T

)′
∣∣∣∣∣
T=T0

Gx (2.11)

µ̃(liquid) ≃
(
∂µ

∂c

)∣∣∣∣
c=cEq

δc−
(
∂µ

∂T

)∣∣∣∣
T=T0

Gx . (2.12)

The diffusion equations in the solid and in the liquid are given in the moving
frame of reference as

D′
c∇2µ̃+ v

∂µ̃

∂x
=
∂µ̃

∂t
(solid)

Dc∇2µ̃+ v
∂µ̃

∂x
=
∂µ̃

∂t
(liquid) ,

where the coordinate system moves with the velocity v in x-direction, following
the material.

The interface condition can be generalized by allowing an z and a y depen-
dence as x(interface) = ξ(y, z, t) and one obtains

(
vn +

∂ξ

∂t

)
(~n · ~ex)∆c = [M ′(∇µ̃)solid −M(∇µ̃)liquid] · ~n , (2.13)
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Figure 2.11: Schematic phase diagram of a two-phase solution. The composition
profile for a flat interface is show with the heavy dashed line for directional
solidification. To be in a stationary state, the concentrations far in the solid and
in the liquid have to be equal, c = c0. The spike shows the solute concentration
which builds up in front of the interface. Here, it passes into the coexistence
region, instabilities are possible. From [23].

where ~ex is the unit vector in x-direction.
In the Gibbs-Thomson-Herring boundary condition, the constant tempera-

ture T0 has to be generalized to T , leading to [23]

µ− µEq(T ) = −γ + γ′′

∆c
κ . (2.14)

Expanding in first-order differential approximation around T0, one obtains as
interface condition [23]

µ̃(solid interface) = −γ + γ′′

∆c
κ−

(
∂µ

∂c

)′
∣∣∣∣∣
c=c′

Eq

∣∣∣∣
dc′Eq

dT

∣∣∣∣Gξ (2.15)

µ̃(liquid interface) = −γ + γ′′

∆c
κ−

(
∂µ

∂c

)∣∣∣∣
c=cEq

∣∣∣∣
dcEq

dT

∣∣∣∣Gξ . (2.16)

The derivatives of c′Eq and cEq with respect to the temperature are the inverse
of the slopes of the solidus and liquidus, respectively.

2.2.4 Mullins-Sekerka instability

In this section, the stability of a planar interface is investigated in greater detail.
Generally, instabilities drive the pattern-forming process in solidification and
their understanding is of great interest. For binary alloys, the stability of a
planar steady-state interface and its dependence on these control parameters is
well understood theoretically [24].
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As it turns out, the thermal and the chemical case as treated in sections 2.2.1
and 2.2.2 are equivalent. This can be seen by rewriting the equations in terms
of the dimensionless diffusion field u, which is defined as u = T−TM

L/cp
in the case

of thermal diffusion and as u = µ̃
∆c(∂µ/∂c) in the case of chemical diffusion [23].

In the definition, the unprimed liquid-phase parameters have been used for
simplicity. To obtain the exact equivalence, the curvature dependence in ∆c has
again been neglected.

In this notation, both diffusion equations reduce to

D′∇2u = ∂tu (solid) (2.17)

D∇2u = ∂tu (liquid) , (2.18)

where the subscripts at the diffusion coefficients have been omitted.
The continuity equation can be written as

vn = D
[
β̃(∇u)solid − (∇u)liquid

]
· ~n, (2.19)

where β̃ ≡ (D′c′p)/(Dcp) in the thermal model and β̃ ≡ M ′/M in the chemical
model.

For the Gibbs-Thomson relation, it follows

u(interface) = −d0κ [a(Θ) + a′′(Θ)] , (2.20)

with capillarity length d0. In the thermal model, the capillarity length is given
by d0 =

γ0TMcp
L2 and in the chemical model as d0 = γ0

(∂µ/∂c)∆c2 , where the

anisotropic surface energy is given in Eq. (2.7) as γ(Θ) = γ0a(Θ).
The steady-state diffusion equation in the moving frame of reference, follow-

ing the sample in the x direction with the interface velocity v, is given by [23]

∇2u+
2

l

∂u

∂x
= 0 . (2.21)

Here, the diffusion length is introduced as l = 2D/v and l′ = 2D′/v in the
liquid and the solid, respectively. The solution of Eq. (2.21) and the continuity
equation as given in Eq. (2.19) is

u =

{
exp

(
− 2x

l

)
− 1 (liquid, x ≥ 0)

0 (solid, x ≤ 0)
, (2.22)

where the flat interface is placed at x = 0. At x = +∞, the undercooling is
required to be u = −1. At different undercoolings, it is impossible for a planar
steady-state solution to exist.

Applying a small sinusoidal perturbation to this planar interface, one can
perform a so-called linear stability analysis to obtain an analytical expression
for the growth rate in dependence of the different perturbation modes [23].
While in chapter 3 the analysis is performed in details for the case of directional
solidification of a liquid crystal mixture, here only the results are presented
shortly. As it turns out, there are two competing terms determining the stability
of a certain perturbation mode. The destabilizing term is proportional to the
velocity and comes from the fact that a forward bulge in the interface leads to
a larger temperature gradient and therefore to faster growth. The stabilizing
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term comes from the surface energy. The interface possess a higher curvature at
the bulge so that the surface energy applies a regularizing force.

The interplay between these two effects depends on the wavelength of the
perturbation and determines their growth velocity. For sufficiently long wave-
lengths, the interface is always stable. This happens at a wavelength of λs ≃
2π
√

(1 + β̃)/2
√
ld0, which sets a length scale for the problem.

In the case of directional solidification, yet another length scale appears in
the system. The thermal gradient G introduces a thermal length

1

lT
≡ G

∆c0

∣∣∣∣
dcEq

dT

∣∣∣∣ (2.23)

and similarly with primed constants. Here, a larger gradient G stabilizes the
system.

Using the introduced lengths to summarize the stability criteria, the larger
the capillary length d0 and the diffusion length l and the smaller the thermal
length lT , the more stable is the system.

2.3 Phase-field model

In the previous section, the equations of motion for various solidification pro-
cesses have been presented. Quite generally, the equations consist of a diffusion
equation, which has to be solved in conjunction with a certain interface condi-
tion. The interface itself can be of a complex shape and evolves with time.

Even if the set of equations is rather simple, the complex shape of the in-
terface makes it very difficult to solve the equations analytically. To solve them
numerically, the interface shape has to be discretized in order to make it possible
to apply the interface condition. Since the interface itself evolves with time, this
discretization has to be adjusted to the changing shape at regular time intervals.
This can become very time consuming, especially in three dimensions.

The phase-field method provides a way to circumvent this problem. Instead
of tracking the interface explicitly, a phase-field variable φ is introduced, which
is a function of position and time [25]. It is defined in the entire volume and
describes for example whether a given space point is liquid or solid. In between
the solid and the liquid phase, the phase field varies smoothly and continuously
between the two values representing solid and liquid. In the models developed
in this work, the solid phase is described by a value of φ = 1, while the liquid
is given by φ = 0. Alternatively, one often finds in the literature φ = −1 for
the liquid phase. The interface position can be obtained from the phase-field
variable as the contour line where φ is of an intermediary value. The actual
definition of the value at which the interface position is taken might depend on
the model used. In this work, it is usually taken at φ = 1

2 .
The idea of having a density function, which varies continuously was already

introduced by van der Waals [26] to model the liquid-gas interface more than a
century ago. The phase-field theory itself is based on the Cahn-Hilliard [27] /
Ginzburg-Landau type of classical field theoretic approaches to phase bound-
aries. Its origin lies in the model C of Halperin, Hohenberg and Ma [28], which
was recast by Langer [29] and simultaneously by Collins and Levine [30]. The
phase-field model has then been continuously been modified and adapted to be
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thermodynamically consistent [31, 32] or extended to binary [33–35] or eutectic
solidification [36–38].

One of the possible modifications is to use more than one scalar order param-
eter for different components in the case of eutectics or for different orientations
of polycrystals. It can also be useful to express the order parameter in the form
of a tensor, as is shown for liquid crystals in chapter 3.

In this section, the phase-field method is introduced. In section 2.3.1, the
phase-field model for the solidification of a pure substance is presented. In sec-
tion 2.3.2, the phase-field formalism is extended to include more than one phase-
field variable to represent different grains with different crystalline orientation.
In section 2.3.3, another concept to treat polycrystals is defined: a phase-field
model with an orientation-field variable.

2.3.1 Phase-field model for solid-liquid phase transition

Besides the possibility of defining the order parameter physically as shown in
section 2.1.2, it is often useful to rather see it as a mathematical indicator
function, which is used to distinguish between the two phases, and write down
the equation of motions purely phenomenologically.

The equations of motion of the phase-field model, corresponding to the so-
lidification of a pure substance, can be obtained from a single Lyapounov func-
tional F as [39]

τ(Θ)
∂φ

∂t
= −δF

δφ
(2.24)

∂U

∂t
=

D

bλ
∇2 δF

δU
, (2.25)

the so-called variational form. Here, δ indicates the functional derivative

δF
δφ

=
∂f

∂φ
−

∑

i=x,y,z

∂i
∂f

∂(∂iφ)
,

with F =
∫
fdV . The independent variables are the nonconserved phase field φ

and the conserved dimensionless enthalpy

U(u, φ) = u− h(φ)

2
. (2.26)

The angle of the interface normal can be obtained from the phase field as

Θ = tan

(
∂φ/∂y

∂φ/∂x

)
(2.27)

and the phenomenological free energy can be written as

F =

∫
dV

[
W (Θ)2

2

∣∣∣~∇φ
∣∣∣
2

+ f(φ) + bλ
u2

2

]
. (2.28)

The equations are expressed in dimensionless units, where the dimensionless
temperature field is given by

u ≡ T − TM
L/cp

. (2.29)
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Here, T is the temperature, TM the melting temperature, L the latent heat of
melting and cp the specific heat at constant pressure. The characteristic time of
attachment is given by τ(Θ), λ is a dimensionless coupling parameter and D is
the thermal diffusivity, which is assumed to be equal in both phases.

As mentioned before, using only one scalar phase-field variable makes it
necessary to include the anisotropy in the surface energy and in the interface
kinetics manually. This can be done by letting the constants W (Θ) and τ(Θ)
depend on the interface direction [40]. Similar to the surface energy, W (Θ) can
be written as W (Θ) = W0a(Θ), where W0 turns out to be the interface width,
which is usually of the order of a few atomic layers. The angle dependence of
the anisotropy is again expressed in terms if the function a(Θ).

The equations of motion ensure that the free energy is minimized during the
time evolution and that the system is driven towards a minimum of the free
energy. The energy density f0 can be obtained from the real free energies of the
solid and the liquid phase. But as it turns out [39], the actual form of f(φ) is
not very important, as long as it is of the shape of a double-well potential with
minima for the two phases. In the following, the solid phase is given by φ = 1
and the liquid phase by φ = −1. Then, the simplest choice for f(φ) is

f(φ) = −φ
2

2
+
φ4

4
. (2.30)

With this choice comes a requirement to the function h(φ). To ensure that a
unit amount of heat is produced at the interface h(φ) needs to satisfy

h(φ = +1) − h(φ = −1)

2
= 1 . (2.31)

Using h(φ) = 15(φ− 2φ3/3+ φ5/5)/8 with b = 16/15 [39] fully defines a proper
set of equations of motion, which in the isotropic case where W (Θ) = W0 and
τ(Θ) = τ0 can be expressed in terms of u and φ as

τ0∂tφ = W 2
0∇2φ− f ′(φ) − λg′(φ)u (2.32)

∂tu = D∇2u+
h′(φ)

2
∂tφ . (2.33)

Here, an additional function

g(φ) =
b

2
h(φ) = φ− 2φ3/3 + φ5/5 (2.34)

has been introduced.
To simplify the calculations, it is possible to replace h(φ) by a much simpler

function, giving up the possibility of obtaining the equations of motion from a
variational functional but without changing the physical properties.

It is useful, to write down a free energy, from which the equations of motion
can be obtained in a variational form in the isothermal case

Fiso =

∫
dV

[
W (Θ)2

2

∣∣∣~∇φ
∣∣∣
2

+ f(φ) + λg(φ)u

]
(2.35)

and write the equations of motion as

τ(Θ)∂tφ = −δFiso

δφ
(2.36)

∂tu = D∇2u+
h′(φ)

2
∂tφ . (2.37)
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Choosing h and g as before leads to exactly the same set of equations of mo-
tion. But now it is possible to use h(φ) = φ as a much simpler and computational
more effective function, keeping the form of g(φ). One can now imagine g(φ) as
a tilting function, which determines which phase is energetically preferred for
a given normalized temperature. It has the properties that the minima of the
free energy stay fixed at values of φ = ±1 independent of u — the first and the
second derivative of g(φ) with respect to φ have to vanish at φ = ±1.

The form of the free energy density including the temperature dependence
f(φ) + uλg(φ) is shown in figure 2.12. The solid line corresponds to an under-
cooled system (the temperature is below the melting temperature, u < 0). The
solid phase φ = 1 is energetically favorable. At the melting temperature u = 0,
both phases are of the same energy, shown with the dashed line. For u > 0,
above the melting temperature, the liquid phase is of lower energy, as shown
with the dotted line.
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Figure 2.12: Bulk free energy density in dependency of the phase-field variable
φ. For temperatures below the melting temperature, (u < 0), the solid phase
(φ = 1) is preferred. At melting (u = 0), the energies of both phases are equal
while at u > 0 the liquid phase (φ = 1) is preferred.

From the formal point of view, it is therefore more consistent to describe the
first-order phase transition with a set of equations which can both be derived
from the same free-energy functional. Writing down the equation of motion for
the temperature field purely phenomenologically is computational more efficient
and reduces to the same free-boundary problem in the limit of small interface
thickness [39].

To be able to perform quantitative simulations with the phase-field model,
the equations of motion have to reduce to the free boundary problem for the
solidification of a pure substance, given in section 2.2.1. The interface condition
for the dimensionless temperature is given in Eq. (2.20) as

u(interface) = −d0κ [a(Θ) + a′′(Θ)] − β(Θ)vn , (2.38)

where the second term is due to the interface kinetics and was neglected in
Eq. (2.20). It is proportional to the kinetic coefficient β(Θ) and the normal
velocity vn. It also exhibits anisotropy and becomes important for fast solidifi-
cation. It arises from the fact that during the solidification process, the atoms in
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the liquid have to find their position in the crystal lattice. The capillary length
is given by d0 = γ0TMcp/L

2 as introduced in section 2.2.4.
In the limit of thin interface width W0, a similar equation can be derived

for the phase-field model as shown in the asymptotic matching, for example by
Karma et al. [39]. One finds that

d0 = a1
W0

λ
(2.39)

and

β(Θ) = a1

[
τ(Θ)

λW (Θ)
− a2

W (Θ)

D

]
. (2.40)

The constants a1 = I/J and a2 = (K + JF )/I depend on the exact form of the
free energy and are obtained from the integrals

I =

∫ ∞

−∞
dx(∂xφ0)

2 , (2.41)

J = −
∫ ∞

−∞
dx∂xφ0g

0 , (2.42)

F =

∫ ∞

0

dxφ0 , (2.43)

K =

∫ ∞

−∞
dx∂xφ0g

0

∫ x′

0

dx′φ0 , (2.44)

where here φ0 = tanh(x/
√

2) and g0 = g(φ0).
It is important to point out that the physics of the simulated system is given

by the capillary length and the kinetic coefficient. In the phase-field simulations,
the interface width W can be artificially increased without changing the physics
of the system. This makes the phase-field method so powerful. Using the real
interface width, which is of the order of angstroms, is computationally very
inefficient if one is interested in microstructure formations which takes place
over length scales of microns, especially in three dimensions. Instead, one can
artificially increase the interface width when changing τ(Θ) and λ accordingly,
and leave d0 and β(Θ) unchanged.

It is also worth noticing that one can choose λ in such a way that the kinetic
constant is always zero and hence the interface kinetic vanishes. This is relevant
at low undercoolings for a large class of materials, especially for metallic systems
with fast kinetics [39, 41–43].

A nickel dendrite, grown with this model in three dimensions and with
anisotropic surface energy is shown in figure 2.13.

2.3.2 Multi-phase-field models

To simulate phase transformations with more than two phases, for example
eutectic solidification, multi-phase-field models have been developed [44–48].
They usually contain one phase-field variables per phase φi, which represents
the local fraction of this phase. Depending on the model, the free energy can
also depend on the corresponding molar fraction [45–48].

The interest of this work is focused on the polycrystalline growth in single-
phase materials, where the different grains possess the same chemical composi-
tion and lattice structure. Only the local crystalline orientation differs. Here,
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Figure 2.13: The result of a three-dimensional phase-field simulation with
anisotropy. From [43].

a model proposed by Chen and Yang [44] is presented, where the different
grains are represented by different nonconserved order parameters ηi. In grain i,
ηi = ±1, while all other fields ηj 6=i = 0. A possible polycrystalline structure and
the corresponding phase-fields are shown in figure 2.14.

The free energy can be seen as a generalization of the free energy of the
phase-field model with only one phase field. In general, it can be written as

F =

∫
dV

[
f0(ηi) +

∑

i

κi
2

(
~∇ηi
)2
]
. (2.45)

One can identify the gradient terms similar to the single-phase model, where
the grain boundary properties for different grains can be adapted individually
by varying the κi. For isotropic grain boundary properties, all κi are equal.

The free energy density f0 consists of a double-well potential for each grain i
and a cross term, which penalizes two order parameters being not equal to zero
at the same space point. It can then be written as [44]

f0(ηi) =
∑

i

(
−α

2
η2
i +

β

4
η4
i

)
+ γ

∑

i

∑

j 6=i
η2
i η

2
j . (2.46)

With this choice for the free energy, the energy is always minimized when one
order parameter is at plus or minus one and all the others are zero. Going from
grain i (ηi = 1, ηj = 0) to grain j (ηj = 1, ηi = 0) is represented by a decrease in
the value of field ηi and by a simultaneous increase in the value of field ηj , which
is shown in figure 2.15. This leads to an increase in the free energy, which can
be associated with the interface or grain boundary energy. The grain boundary
energy depends on the model parameters and can be defined in dependence
on the crystalline orientations associated with the grains. This grain boundary



2.3 Phase-field model 33

Figure 2.14: Schematic representation of a polycrystalline material, consisting
of different grains which are separated by grain boundaries. The grains are of
different orientation and are represented by different phase-field variables ηi.
Inside of grain i, ηi = ±1 and all other ηj 6=i = 0. From [49].

Figure 2.15: The variation of two phase-field variables in a grain boundary. In
the left grain, ηi = 1, shown in squares. As the value of ηi decreases in the grain
boundary, ηj increases (circles). Finally, in the right grain, ηi = 0 and ηj = 1.
From [44].
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energy in dependence of the orientation has, however, to be inserted in the model
manually — the form of the grain boundary energy does not arise naturally.

The equations of motion for the different fields are then again obtained in
the standard way for nonconserved order parameters as

τi∂tηi = −δF
δηi

, (2.47)

for all phase-field variables ηi.

In general, a polycrystalline material consists of thousands of grain with
different orientations. Each grain should be represented with a different order
parameter, which makes it computationally difficult to treat.

2.3.3 Phase-field models with orientation field

The multi-phase-field models work very well, simulations with thousands of
fields are possible and give a relatively realistic picture of the grain growth
in polycrystals. Fundamental problems arise, however, simulating the effect of
grain rotation, and the nucleation of new grains with an arbitrary crystalline
orientation is difficult to simulate with these kind of models.

Beside these practical reasons, it is from the fundamental point of view in-
teresting to develop a different model, which is based on more physical picture
of the degrees of freedom. In two dimensions, a grain boundary between two
crystals has two geometrical degrees of freedom [50], an inclination angle Θ and
a crystallographic misorientation δθ. It is natural to search for a numerical de-
scription based on two parameters in two dimensions as well — and accordingly
in three dimensions.

Methods have been established which include this effect of the crystalline
orientation in the phase-field model [50–57], and which have also been extended
to three dimensions [56–58] recently. The main idea is to introduce two order
parameters, one being the phase-field variable φ and the other a local orientation
variable θ. The phase-field variable can also be seen as representing the local
order. It is chosen to be φ = 1 in the solid or perfect crystal, φ = 0 in the
liquid or without any crystalline order. Near a grain boundary, the local order
will decrease and one can assume values of φ < 1, having a minimum value
of φmin in the grain boundary. To measure the local orientation with respect
to a fixed coordinate system, one single orientation field θ is necessary. The
crystal is assumed to have N -fold symmetry, so that θ should be in the domain
−π/N < θ < π/N [50]. This symmetry has to be taken into account when
calculating angle differences numerically.

The main challenge in developing such a phase-field model for polycrystals
is to find a suitable free energy which includes both the phase field and the
orientation field. The dependence on the phase field is taken similarly to the
pure substance case, consisting of a double-well potential with minima for the
ordered (φ = 1) and the unordered phases (φ = 0) and a gradient term, which
leads to smooth interfaces. The free energy cannot explicitly depend on the angle
since there are no preferred orientations; all that counts are angle differences. It
turns out that to obtain localized grain boundaries, it is not sufficient to use the
usual second order gradient term (∇θ)2, but as lowest order a linear term |∇θ|
has to be included. This leads to cusps in the free energy and to singularities
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in the equation of motion, which have to be treated explicitly in the numerical
simulations.

The free energy can then be written as [50]

F =

∫
dV

[
f(φ, T ) +

α2

2
Γ2(∇φ, θ − Θ) + sg(φ)|∇θ| + ǫ2

2
h(φ)|∇θ|2

]
. (2.48)

The function Γ(∇φ, θ − Θ) defines the anisotropy of the system, where the
interface inclination can be obtained from the phase field as given in Eq. 2.27.
The coupling strengths between φ and ∇θ are given by s and ǫ, and g(φ) and
h(φ) are monotonically increasing functions [50].

The equations of motion for φ and θ are obtained by minimizing the free
energy,

Q(φ,∇θ)τφ∂tφ = −δF
δφ

(2.49)

= α2∇2φ− f ′(φ) − g′(φ)s|∇θ| − h′(φ)
ǫ2

2
|∇θ|2 (2.50)

and

P (φ,∇θ)τθ∂tθ = −δF
δθ

(2.51)

= ∇ ·
[
h(φ)ǫ2∇θ + g(φ)s

∇θ
|∇θ|

]
, (2.52)

where always the explicit form is true for the isotropic case Γ = ∇φ only. The
time constants τφ and τθ are uniform and constant, while the inverse mobility
functions P and Q contain the information about the kinetic coefficients and
the anisotropy.

As for the phase-field model for pure substance solidification presented in
section 2.3.1, the equation of motion for the temperature can generally be de-
rived in a variational way, but is here written down phenomenologically as

∂tT = D∇2T +
L

cp
∂tφ , (2.53)

where L is again the latent heat and cp the specific heat.
A detailed analysis of this phase-field model with orientation field can be

found in [50]. In figure 2.16, one of their results is shown, namely a two dimen-
sional simulation of polycrystalline growth in an undercooled liquid. One can
see how the dendritic microstructure emerges where different colors represent
different local orientations θ. Since the anisotropy leading to the dendritic shape
depends on the local orientation, also the macroscopic shape does. After a while,
the heat is extracted at a fixed rate from the system to cause the entire system
to freeze.

In figure 2.17, a three-dimensional simulation from the group of Gránásy
and Pusztai [56, 58] is shown. In their model, the two-dimensional description
using a scalar angle variable is successfully generalized to three dimensions. The
three degrees of freedom of a possible misorientation are expressed in terms
of quaternions, which allow a very convenient description of angle differences.
However, the symmetries of the crystal have to be treated manually by regarding
all possible invariant configurations of the crystal when calculating the angle
gradients.
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Figure 2.16: Solidification of different grains from their undercooled melt. The
local crystalline orientation is different for the different grains, as shown in
different colors. Also the macroscopic shape depends on this orientations through
the surface anisotropy, therefore the dendritic shapes of the grains are oriented
in different directions. After some time, the heat is extracted at a constant rate
and the entire system solidifies. From [50].

Figure 2.17: Three-dimensional simulation of dendrites with different crystalline
orientations. From [59].
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Phase-Field Model for
Liquid Crystal Solidification
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In this chapter, a model for liquid-crystal solidification is developed using a
tensor order parameter. This is of both, technical as well as of physical interest.
Technically, it is demonstrated how the advantages of a tensor as a description
for an orientation variable can be used in a phase-field model. The standard
phase-field equations are generalized, using a rank two tensor as order parameter
instead of a scalar field. It is shown how physical quantities such as surface
tension or capillary length can be related to the model parameters. Finally,
the stability of the steady-state planar interface is studied and a generalized
dispersion relation for the directional “solidification” of a liquid crystal “alloy”
is presented, taking into account the nematic orientation.

The physical interest in this topic is mainly rooted in experiments that are
performed to investigate the microstructures formed during solidification. In ex-
periments on metallic alloys, it is very difficult to explore completely the range
of possible instabilities, because very high growth speeds are needed. For this
reason, twenty years ago, it was suggested to use the nematic-isotropic phase
transition as an “analog” for the solid-liquid transition. Indeed, directional “so-
lidification” of a mixture of a liquid crystal and an isotropic “impurity” produces
patterns that are very similar to solidification patterns. The characteristics of
the nematic-isotropic phase transition (which is only weakly first order) and of
the involved phase diagrams makes a wide range of length scale ratios acces-
sible; in addition, the mixtures are transparent which simplifies observations.
These experiments have helped to clarify many issues on pattern formation in
parameter regimes that are difficult to access in metallic alloys [60].

However, so far, relatively little work has been done to clarify the role of
the nematic director field in the pattern formation process. In the initial quan-
titative comparison between theory and experiments, a discrepancy was noted
which corresponded to a capillary length that was a factor 100 different from
the expected value. A stability analysis including the director field and using
a relatively crude approximation of strong anchoring at the boundary [61] con-
cluded that the elastic energy in the nematic phase is insufficient to explain this
discrepancy. Later, it was found that a satisfactory explanation can be given
taking into account the coupling of the director field and the sample walls [62].

Here, a completely different question is investigated. The interest lies in the
role of the anisotropy created by the director field for the pattern formation
process. This is motivated by recent experimental and theoretical results show-
ing that the crystalline anisotropy is not only important for the stability of
dendrites, but also for cellular structures similar to those observed in the liquid
crystal experiments. In thin-sample experiments, it was found that stable arrays
of cells form only in crystals which have a sufficiently strong anisotropy in the
sample plane. For weakly anisotropic crystals, cells are not stable, but can split
in two or be overgrown by neighboring cells, such that the front as a whole
exhibits spatiotemporal chaos. It is well known that the surface tension of the
nematic-isotropic interface in liquid crystals depends on the local orientation of
the director with respect to the interface. However, contrary to crystals where
the orientation is fixed, the director field can adapt dynamically to the changing
shape of the growth front. What is the influence of this interplay on the shape
and stability of cellular interfaces?

A privileged tool to investigate this kind of question is the phase-field method,
as introduced in section 2.3. Since it is based on free energy functionals of
Ginzburg-Landau type, it seems quite natural to incorporate a director field
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described by the de Gennes quadrupolar order parameter. An interesting ques-
tion to address is the relevance of such a model for the description of pattern
formation on macroscopic scales. Indeed, in phase-field models, an enormous
efficiency gain can be obtained by “upscaling” the interface thickness. Can this
“trick” still be used for liquid crystals?

This chapter is organized as follows. The physics of liquid crystals is ex-
plained in section 3.1, finishing with a phenomenological free energy for a
nematic-isotropic phase transition. Based on this free energy, in section 3.2,
a model for the dynamics of a nematic-isotropic interface in an alloy of a liquid
crystal and an isotropic impurity is developed. It generalizes the well-known
phase-field models for the directional solidification of alloys, which were devel-
oped to investigate the effect of anisotropy on the cell formation [63, 64].

Next, in section 3.3, the physical parameters are related to the model param-
eters, and an expression for the anisotropic surface tension in dependence of the
nematic orientation is derived. With this surface tension, an anchoring condition
which is satisfied by the director field at the interface is obtained in section 3.4.
This condition is used to generalize the linear stability analysis of Bechhoefer
and Langer [61]. Simulations of a weakly perturbed planar interface are per-
formed and the growth rates of the perturbations are extracted. The results are
in good agreement with the theoretical predictions, as shown in section 3.5. In
addition, simulations of cellular structures are carried out, finding that, indeed,
the director field can have a substantial effect on pattern stability. For instance,
if a lateral bias is introduced, a transition from steady to oscillating and drifting
cells is observed. In the end of this chapter, a short conclusion about this model
is drawn together with an outlook about how it could be further improved.

3.1 Physics of liquid crystals

In this chapter, materials are described whose mechanical and symmetry proper-
ties are, under certain conditions, between those of a liquid and those of a crystal.
They are therefore called “liquid crystals”, even if “mesomorphic phases” would
be more accurate [65].

To define a liquid crystal, it is useful to first recall the distinction between
a crystal and a liquid. The main difference is the average position of the com-
ponent’s center of gravity. The substance components might be molecules or
groups of molecules and are most generally called primitive pattern in the fol-
lowing. In the crystal, they are located on a periodic three-dimensional lattice,
so that the density-density correlation function, describing the probability of
finding one primitive pattern at point ~r and an identical one at ~r ′, remains
finite and can be written as

lim
|~r−~r ′|→∞

〈ρ(~r)ρ(~r ′)〉 = F (~r − ~r ′) , (3.1)

where F is a periodic function characterizing the lattice structure.
For an isotropic liquid, the components are not ordered. The probability of

finding a pattern at ~r and an identical pattern at ~r ′ is given simply by the
average particle density ρ̄, so that

lim
|~r−~r ′|→∞

〈ρ(~r)ρ(~r ′)〉 ≃ ρ̄2 . (3.2)
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Liquid crystals can now be defined as systems, in which a liquid-like order
exists at least in one direction [65] and in which the density-density correlation
function depends on the orientation of ~r−~r ′, hence where anisotropy is present.

Following this definition, one can obtain mesophases by either imposing no
positional order in at least one dimension or by introducing additional degrees
of freedoms not coinciding with the centers of gravity. In this work, the main
interest is focused on nematics, which belong to the first group, having no posi-
tional order at all, but an anisotropic correlation function, which depends on the
local orientation. The simplest case of nematics, the so-called uniaxial nematics,
are usually made of rod-like or disc-like molecules, as shown in figure 3.1. Liquid
crystals with a crystal-like order in one and two dimensions are called smectics
and columnar phases, respectively. For further and more general information
about liquid crystals, the reader is referred to “The Physics of Liquid Crystals”
by de Gennes and Prost [65].

To summarize the properties important for this work, uniaxial nematics pos-
sess no long-range order and the scattering in the X-ray pattern is hence diffuse.
There is, however, an order in the orientation of the rod- or disc-like molecules,
which can be described by a unit vector ~n, around which the molecules are com-
pletely rotationally invariant. The states of the director ~n and −~n as well as left
and right are indistinguishable in the system: the molecules must be identical
to their mirror image.

Figure 3.1: Nematic mesophase, made of rod-like (left) and disc-like (right)
molecules. From [65].

3.1.1 Order parameter

Being interested in the order of the liquid crystal, one can investigate its sym-
metry. The nematic phase is of lower symmetry than the isotropic phase, it is
“more ordered”, as shown in figure 3.2. To describe this order more quantita-
tively, it is useful to define an order parameter, which vanishes for symmetry
reasons in the isotropic phase but is has a finite value in the nematic phase.
This can be done in two ways: microscopically or macroscopically.

Microscopic definition

To define the order parameter microscopically, one needs to distinguish between
the average nematic orientation ~n and the local orientation of one molecule ~a,
which can be expressed with the polar angles θ and ϕ. ~n is chosen to be aligned
in x-directions, ~a will be distributed around ~n with some distribution function
f(θ)dΩ, where the angle θ gives the misorientation with respect to the x-axis.
Due to the complete cylindrical symmetry, the function f does not depend on ϕ.
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nematic isotropic

Figure 3.2: Left: “More ordered” nematic phase. Right: Orderless isotropic
phase. From [65].

Since the directions ~n and −~n are equivalent, f(θ) is also periodic in π, so that
f(θ) = f(π − θ).

To obtain an order parameter, one can investigate the different moments of
the function f . Due to the periodicity in π, the average vanishes identically,
there is no average dipole. The first non-trivial multipole is the quadrupole,
which is defined as

S =
1

2

〈
3 cos2 θ − 1

〉
=

∫
f(θ)

1

2
(3 cos2 θ − 1)dΩ . (3.3)

For parallel alignment, S = 1, for perpendicular S = −1/2 and for an entirely
random orientation, where f does not depend on θ, S = 0. One can therefore
use S as a measure of the alignment.

Macroscopic definition

Another typical difference between the isotropic liquid and the nematic mesophase
is found in the measurement of all macroscopic tensor properties. Here, the mag-
netic response ~M to a field ~H is taken, given by the magnetic susceptibility

Mi = χijHj . (3.4)

For a static field, one has a symmetric tensor χ̂. In isotropic liquids, one finds
that χij = χδij , whereas in uniaxial nematics, choosing the x-axis parallel to ~n,
one has

χ̂ =




χ|| 0 0
0 χ⊥ 0
0 0 χ⊥



 .

To define an order parameter which vanishes in the isotropic phase, one extracts
the anisotropic part Qij of the magnetic susceptibility

Qij = G

(
χij −

1

3
δij
∑

k

χkk

)

= G




2
3 (χ|| − χ⊥) 0 0

0 − 1
3 (χ|| − χ⊥) 0

0 0 − 1
3 (χ|| − χ⊥)



 , (3.5)

where G is a normalization factor and the last equality is valid for the uniaxial
nematics only.
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3.1.2 Angle and absolute value representation

In this subsection, the idea of a tensorial order parameter is generalized and a
second representation in terms of an orientation angle and the absolute value
of the order parameter is presented. For numerical purposes, it is very useful
to express the system in terms of tensors. Then, the symmetry of the system is
automatically taken care of, a tensor of rank two is rotationally invariant under
a rotation of π/2, as are the rod-like liquid crystals. In some cases, however, it is
very useful to express the two degrees of freedom of the tensor in more natural
variables, namely the orientation as an angle θ and the magnitude as a scalar q.

Tensor components in terms of angle and absolute value

In the diagonalized form, the tensor Q̂ for a uniaxial nematic can be written as

Q̂ =




q 0 0
0 −q/2 0
0 0 −q/2



 , (3.6)

where q is proportional to the average magnitude of the orientation of the sys-
tem.

This diagonal form corresponds to a certain liquid crystal orientation, here
described by its angle θ = 0. Allowing arbitrary orientations in the same coor-
dinate system, one can apply a rotation to get a more general form of Q̂. In this
work, the liquid crystal is orientated in the x-y-plane, it has only one rotational
degree of freedom, the rotational axis being in z-direction.

Generally, a rotation around the z-axis by an angle θ can be expressed by
the rotational matrix

â =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 , (3.7)

and rotating a tensor T̂ leads to

T̃µν =
∑

ij

aµiaνjTij . (3.8)

Applying this operation to Q̂ gives the desired relation between the tensor
notation and the corresponding angle and absolute value representation

Qxx =
1

4
q [1 + 3 cos(2θ)] (3.9)

Qxy =
3

4
q sin(2θ) (3.10)

Qyy =
1

4
q [1 − 3 cos(2θ)] (3.11)

Qzz = −1

2
q (3.12)

Qiz = Qzi = 0 with i = x, y . (3.13)

The angle θ only appears with a factor 2, which in due to the rotational invari-
ance under a rotation of π.
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Angle and absolute value in terms of tensor components

To obtain q and θ as functions of the tensor components Qij , it is useful to

investigate the eigenvalues of the tensorial matrix. The eigenvalues of Q̂ are
given by {q,−q/2,−q/2}. This can be seen easily from the diagonal represen-
tation, as given in Eq. (3.6). The corresponding eigenvectors are (cos θ, sin θ, 0),
(− sin θ, cos θ, 0), (0, 0, 1). Therefore, the orientation θ can be obtained from the
eigenvectors and the order parameter q from the eigenvalues of Q̂.

The eigenvalues of

Q̂ =




Qxx Qxy 0
Qxy Qyy 0
0 0 Qzz



 (3.14)

are
1

2

(
Qxx +Qyy +

√
(Qxx −Qyy)2 + 4Q2

xy

)
, (3.15)

1

2

(
Qxx +Qyy −

√
(Qxx −Qyy)2 + 4Q2

xy

)
, (3.16)

and

Qzz . (3.17)

The corresponding eigenvectors are

{
1

2Qxy

(
Qxx −Qyy +

√
(Qxx −Qyy)2 + 4Q2

xy

)
, 1 , 0

}
, (3.18)

{
1

2Qxy

(
Qxx −Qyy −

√
(Qxx −Qyy)2 + 4Q2

xy

)
, 1 , 0

}
, (3.19)

and

{0 , 0 , 1} . (3.20)

The eigenvector, corresponding to the largest eigenvalue, gives the orientation
of the director,

~n =




cos(θ)
sin(θ)

0



 ∝




Qxx−Qyy+
√

(Qxx−Qyy)2+4Q2
xy

2Qxy

1
0


 . (3.21)

With Eqs. (3.9) to (3.13), one can see that q = −2Qzz and that the angle can
be obtained from the eigenvector corresponding to the largest eigenvalue,

θ = arctan



 2Qxy(
Qxx −Qyy +

√
(Qxx −Qyy)2 + 4Q2

xy

)



 . (3.22)

In the case where Q̂ is already in the diagonal form (Qxy = 0), θ = 0 for Qxx = q
and θ = π/2 for Qyy = q.
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3.1.3 Liquid crystal free energy

In this subsection, a phenomenological free energy for a nematic liquid crystal
is developed.

The total free energy f0 can, most generally, be divided into a potential term
fW and an interaction term fD,

f0(Q̂, ~∇Q̂) = fW (Q̂) + fD(~∇Q̂) . (3.23)

The potential term describes the dependence of the free energy on the temper-
ature T for temperatures close to the phase-transition temperature TC and in
the absence of deformations. The energy contributions due to different orienta-
tions ~n of the liquid crystal in different regions of the system are treated in the
distortion term fD.

Potential free energy

For purely geometrical reasons, the nematic-isotropic phase transition must be
of first order [65]. In a Landau-type theory, the potential term can be expanded
in powers of the order parameter, leading to

fW (Q̂) =
A

2
δ̃(Q̂) +

B

3
∆(Q̂) +

C

4
δ̃(Q̂)2 (3.24)

with

δ̃(Q̂) =
∑

i,j

QijQij (3.25)

and

∆(Q̂) =
∑

i,j,k

QijQjkQki , (3.26)

where the possible constant term is set to zero and terms of order Q̂5 are ne-
glected. A, B and C are constants which are temperature-dependent and shift
the potential in such a way that one of the phases is preferred. All terms ap-
pearing are rotationally invariant as they should be.

In the diagonal representation, one can determine δ̃ and ∆ as functions of
q, leading to

δ̃(q) =
3

2
q2 , (3.27)

and

∆(q) =
3

4
q3 . (3.28)

The potential part of the free energy can then be written in terms of q and θ as

fW (q) =
3

4
Aq2 +

1

4
Bq3 +

9

16
Cq4 , (3.29)

where one can see that it is rotationally invariant since it does not depend on θ.

In a pure substance, the constants A, B, and C are functions of the temper-
ature T only. In the case of an liquid crystal alloy, they depend on the chemical
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potential µ(c, T ), which itself is a function of concentration c and temperature
T and are given by

A = 2 + 6(µ− µEq) ,

B = −12 − 12(µ− µEq) ,

C = 8/3 .

At equilibrium (µ = µEq), the minima in the free energy for the nematic (q = 1)
and the isotropic phase (q = 0) have the same energy. For µ < µEq, the energy
for the nematic phase is lowered, whereas for µ > µEq it is raised and therefore
the isotropic phase is preferred.

The equilibrium potential µEq itself depends on the temperature, which is
usually fixed by choosing an impurity concentration c0. The corresponding tem-
perature T0 can then be obtained from the phase diagram as shown in figure 2.9.

Distortion free energy

The ideal, nematic “single crystal” has molecules, which are all (in average)
aligned in the same direction ±~n, where both configurations (“up” and “down”)
are equal. In real systems, however, there are usually external constraints such
as limiting surfaces of the sample or external fields which destroy this ideal
configuration. One has to deal with deformations in the nematic phase, so that
the definition of Q̂ has to be extended to include arbitrary average orientations
~n(~r). The order parameter can then be constructed asQij = Q(T )

(
ninj − 1

3δij
)
,

where the molecules are aligned along a common direction ~n [65], which is
normalized and does not change in length, |~n|2 = 1. In a weakly distorted
system, the magnitude of the anisotropy is unchanged, only the orientation of
the optical axis (~n) has been rotated, and therefore

Qij(~r) ≈ Q(T )

[
ni(~r)nj(~r) −

1

3
δij

]
. (3.30)

The distortion free energy can be constructed from all possible independent
combination of ∇~n and ~n, which leads in second order to [66]

fnD =
1

2
k11(div ~n)2 +

1

2
k22(~n · curl~n− 2π

p0
)2 +

1

2
k33(~n× curl~n)2

−k24div (~n · div ~n+ ~n× curl~n) , (3.31)

with height of the cholesterical helix pitch p0. Terms one to three correspond
to the terms introduced by Frank [67] (k11: splay, k22: twist, k33: bend), see
figure 3.3.

The forth term corresponds to saddle splay and is a pure surface term.
Therefore, in the integral over the entire volume, term four can be transformed
into a surface integral and therefore be neglected when the bulk is much larger
than the surface.

The distortion free energy can also be constructed by using the invariance
theory [66]. The invariant terms can be constructed from polynomials in Qij
and ∂kQij , which leads in second order to

f Q̂D =
1

2
c1 (∂kQij) (∂kQij) +

1

2
c2(∂jQij)(∂kQik) +

1

2
c3(∂kQij)(∂jQik)
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Figure 3.3: Possible deformations in a nematic liquid crystal: splay, twist and
bend, from left to right. From [65].

+
1

2
c6Qij(∂iQk,l)(∂jQkl) −

1

2
c4ǫijkQil(∂jQkl)

=
1

2
c1
∑

i,j,k

(∂kQij)
2

+
1

2
c2
∑

i




∑

j

∂jQij




2

+
1

2
c3
∑

i,j,k

(∂kQij)(∂jQik) +
1

2
c6
∑

ij



Qij
∑

k,l

(∂iQk,l)(∂jQkl)





−1

2
c4
∑

i,j,k

(
ǫijk

∑

l

(Qil)(∂jQkl)

)
.

For Q̂ = Q(T )(ninj − 1
3δij), the elastic constants are related to the phe-

nomenological constants by [66]

c1Q
2 =

1

6
(3k22 − k11 + k33)

c2Q
2 = k11 − 2k24

c3Q
2 = 2k24 − k22

c4Q
2 = 2

2π

p0
k22

c6Q
2 =

1

2
(k33 − k11) .

In the simplest case, where k11 = k22 = k33 = 2k24 = K and p0 → ∞, there
is only one gradient term which is proportional to c1. This corresponds to an
isotropic system. A non-zero value for c2 leads to a preferred orientation perpen-
dicular or normal to the interface, depending on the sign of c2 [68], as discussed
further later in this chapter.

The resulting distortion free energy term can then be written as

fD(∇Q̂) =
1

2
c1 (∂kQij)

2
+

1

2
c2(∂jQij)

2 , (3.32)

and is used in this work.
For completeness, the distortion free energy is also given in terms of q and θ,

so that

fD1 =
1

2
c1
∑

α,β,γ

(∂γQαβ)
2
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=
1

2
c1

3

2

[
3q2

(
(∂xθ)

2 + (∂yθ)
2
)

+
(
(∂xq)

2 + (∂yq)
2
)]

(3.33)

fD2 =
1

2
c2
∑

α



∑

β

∂βQαβ




2

=
1

2
c2

{
9

4
q2(∂xθ)

2 +
9

4
q2(∂yθ)

2

+
1

8
(5 + 3 cos(2θ)) (∂xq)

2 +
1

8
(5 − 3 cos(2θ)) (∂yq)

2

+
3

4
sin(2θ)(∂xq)(∂yq)

−3

4
q sin(2θ)(∂xq)(∂xθ) +

3

4
q sin(2θ)(∂yq)(∂yθ)

+
3

4
q (cos(2θ) + 3) (∂xq)(∂yθ)

+
3

4
q (cos(2θ) − 3) (∂yq)(∂xθ)

}
. (3.34)

3.2 Phase-field model

To describe a system with a complicated geometry, instead of keeping track of
its boundary explicitly, one can introduce a so-called phase-field variable in the
entire system, as explained in section 2.3.

In the case of the liquid crystal, the phase-field variable or order parameter
arises quite naturally as the director Q̂, where its absolute value ∝ q gives its
phase (nematic or isotropic), but contains in addition the information of the
orientation direction. Here, the isotropic phase is given by q = 0, the nematic
phase by q = 1 and the interface position is taken at the contour line where
q = 1/2.

3.2.1 Chemical potential

The directional solidification of a metal alloy has already been introduced in
section 2.2.3. In this work, the interest is focused on liquid crystals and the
metal alloy is replaced by a mixture of a nematic liquid crystal and a pure
isotropic substance, which acts as impurity.

To obtain the equation of motion for the normalized diffusion field, the same
normalization as in section 2.2.4 is used, u = µ̃

∆c(∂µ/∂c) ≡ µ̃
λ with µ̃ = µ−µEq and

coupling parameter λ ≡ ∆c(∂µ/∂c). In this work, ∆c and ∂µ/∂c are assumed to
be constant, which corresponds to linear and parallel solidus and liquidus lines
in the phase diagram in figure 2.9.

The equation of motion in terms of the phase-field formalism is derived in
section 2.3.1 for the thermal model. As shown in section 2.2.4, the thermal model
is, expressed in terms of the normalized diffusion field, in a good approximation
identical to the chemical model. With Eq. (2.33) and the simplest choice of h(φ),
for diffusion equation follows

∂tu = D∇2u+ ∂tq .
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Please note that q varies between 0 and 1 while in the derivation of the phase-
field model, φ is defined between −1 and 1. The diffusion coefficient is given in

section 2.2.2 as D = M ∂µ
∂c

∣∣∣
T0

. Here, for simplicity M and therefore also D are

taken to be equal in the nematic and the isotropic phase.
In addition to the time evolution of the normalized chemical potential u,

the equations of motion for tensor components Qij have to be derived, which
is done in the following subsection. This is the main difference to the already
existing models for the directional solidification of alloys [63, 64].

3.2.2 Tensor components

In this subsection, the equations of motions for an uniaxial nematic liquid crystal
are derived, starting from the total free energy functional

F0(Q̂,∇Q̂) =

∫ [
fW (Q̂) + fD(∇Q̂)

]
dV . (3.35)

At equilibrium, the free energy is at a local minimum. Assuming that the system
approaches its equilibrium configuration by minimizing its free energy continu-
ously with time, the equations of motions can be obtained as

τ∂tQij = − δF
δQij

.

This is the standard way for a nonconserved order parameter, compare sec-
tion 2.3. The derivation is performed in the most general way, using only sym-
metry properties of the system. The actual form of the free energy, e.g. the
potential constants A, B, and C or the gradient constants c1 and c2 do not yet
enter the calculation.

The form of Qij , however, is important. The five tensor components on
which F depends are given by

Q̂ =




Qxx Qxy 0
Qyx Qyy 0
0 0 Qzz



 . (3.36)

From the five variables there are only two independent ones, corresponding for
example to the angle of the orientation vector to the x-axis and its absolute
value, as described in section 3.1.2. In the following derivation, the three addi-
tional variables are eliminated from the free energy using Lagrange multipliers
and the equations of motion for the remaining two variables are presented.

Due to the system symmetries, there are three conditions on the five vari-
ables, which can be written as

g1(Qxy, Qyx) = Qxy −Qyx = 0 (3.37)

g2(Qxx, Qyy, Qzz) = Qxx +Qyy +Qzz = 0 (3.38)

g3(Q̂) = δ̃(Q̂)3 − 6∆(Q̂)2 = 0 . (3.39)

The first condition is due to the fact that Q̂ is symmetric, the second one
states that the trace is zero and the third condition arises from the fact that
the nematic is uniaxial. The third condition in this 2d-case is equivalent to the
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condition that two eigenvalues have to be equal. The eigenvalues are given in
Eqs. (3.15) to (3.17), where the first eigenvalue is the largest one, corresponding
to the direction of the orientation. Hence, the other two have to be equal, so
that

g̃3(Q̂) = 2Qzz −Qxx −Qyy +
√

(Qxx −Qyy)2 + 4QxyQyx = 0 . (3.40)

Using Lagrange multipliers to introduce these three conditions into the free
energy leads to

f = f0 + λ1(Qxy −Qyx) + λ2(Qxx +Qyy +Qzz)

+λ3

(
2Qzz −Qxx −Qyy +

√
(Qxx −Qyy)2 + 4QxyQyx

)
, (3.41)

where f0 is the free energy of the system, given e.g. by Eq. (3.23).
To obatin an expression for the Lagrange multipliers λi, one differentiates

the free energy with respect to the different variables

δF
δQxx

=
δF0

δQxx
+ λ2 − λ3

(
1 − Qxx −Qyy√

(Qxx −Qyy)2 + 4QxyQyx

)
(3.42)

δF
δQxy

=
δF0

δQxy
+ λ1 + λ3

(
2Qyx√

(Qxx −Qyy)2 + 4QxyQyx

)
(3.43)

δF
δQyx

=
δF0

δQyx
− λ1 + λ3

(
2Qxy√

(Qxx −Qyy)2 + 4QxyQyx

)
(3.44)

δF
δQyy

=
δF0

δQyy
+ λ2 − λ3

(
1 +

Qxx −Qyy√
(Qxx −Qyy)2 + 4QxyQyx

)
(3.45)

δF
δQzz

=
δF0

δQzz
+ λ2 + 2λ3 , (3.46)

where Fi =
∫
fidV .

Since the three conditions g1 = 0, g2 = 0 and g̃3 = 0 are valid for all times,
their time derivative has to be zero, so that

0 =
∂g1
∂t

= ∂tQxy − ∂tQyx = − δF
δQxy

+
δF
δQyx

=
δF0

δQyx
− δF0

δQxy
− 2λ1 + λ3

(
2(Qxy −Qyx)√

(Qxx −Qyy)2 + 4QxyQyx

)
.

Solving for λ1 gives

λ1 =
1

2

[
δF0

δQyx
− δF0

δQxy
+ λ3

(
2(Qxy −Qyx)√

(Qxx −Qyy)2 + 4QxyQyx

)]

=︸︷︷︸
Qxy=Qyx

1

2

[
δF0

δQyx
− δF0

δQxy

]
. (3.47)

Similarly, for g2, it follows

λ2 = −1

3

(
δF0

δQxx
+

δF0

δQyy
+

δF0

δQzz

)
. (3.48)
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For g̃3, one obtains

0 =
∂g3
∂t

= −2
δF
δQzz

+
δF
δQxx

+
δF
δQyy

+
(Qxx −Qyy)

(
δF
δQyy

− δF
δQxx

)
− 2

(
Qyx

δF
δQxy

+Qxy
δF
δQyx

)

√
(Qxx −Qyy)2 + 4QxyQyx

.

Using the expressions for the functional derivatives along with the condition
Qxy = Qyx and solving for λ3 leads to

λ3 =
1

8

[
δF0

δQxx
+

δF0

δQyy
− 2

δF0

δQzz

+
(Qxx −Qyy)

(
δF0

δQyy
− δF0

δQxx

)
− 2Qxy

(
δF0

δQxy
+ δF0

δQyx

)

√
(Qxx −Qyy)2 + 4Q2

xy



 . (3.49)

The equations of motion are then given by

τ∂tQxx = −2

3

δF0

δQxx
+

1

3

δF0

δQyy
+

1

3

δF0

δQzz
+ λ3


1 − Qxx −Qyy√

(Qxx −Qyy)2 + 4Q2
xy




(3.50)

τ∂tQxy = −1

2

(
δF0

δQxy
+

δF0

δQyx

)
− λ3

2Qyx√
(Qxx −Qyy)2 + 4QxyQyx

(3.51)

τ∂tQyx = −1

2

(
δF0

δQxy
+

δF0

δQyx

)
− λ3

2Qxy√
(Qxx −Qyy)2 + 4QxyQyx

(3.52)

τ∂tQyy =
1

3

δF0

δQxx
− 2

3

δF0

δQyy
+

1

3

δF0

δQzz
+ λ3


1 +

Qxx −Qyy√
(Qxx −Qyy)2 + 4Q2

xy




(3.53)

τ∂tQzz =
1

3

δF0

δQxx
+

1

3

δF0

δQyy
− 2

3

δF0

δQzz
− 2λ3 . (3.54)

Eliminating Qyx, Qyy and Qzz

Using the three constraints g1 = 0, g2 = 0 and g̃3 = 0, one can eliminate three
of the five variables of Q̂ and end up with two equations of motion. The first
condition leads right away to

Qyx = Qxy , (3.55)

as already used. The second condition can be easily re-arranged to give Qyy =
−Qzz −Qxx. To eliminate Qzz, one solves Eq. (3.40) for Qzz, replaces Qyy and
obtains

Qzz =
1

4
Qxx −

1

4

√
9Q2

xx + 8Q2
xy , (3.56)

where the negative sign is used since Qzz < 0 (as can be seen in the diagonal
representation, where Qzz = −q/2). Using this again to express Qyy as function
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of Qxx and Qxy only, one obtains

Qyy = −5

4
Qxx +

1

4

√
9Q2

xx + 8Q2
xy . (3.57)

Therefore, the equations of motion can be reduced to

τ∂tQxx = −2

3

δF0

δQxx
+

1

3

δF0

δQyy
+

1

3

δF0

δQzz

+ λ3


1 −

9
4Qxx − 1

4

√
9Q2

xx + 8Q2
xy

√(
9
4Qxx − 1

4

√
9Q2

xx + 8Qxy
)
)2 + 4Q2

xy


 (3.58)

τ∂tQxy = −1

2

(
δF0

δQxy
+

δF0

δQyx

)
− λ3

2Qyx√(
9
4Qxx − 1

4

√
9Q2

xx + 8Qxy
)2

+ 4Q2
xy

(3.59)

with

λ3 =
1

8

[
δF0

δQxx
+

δF0

δQyy
− 2

δF0

δQzz

+

3
2 q cos(2θ)

︷ ︸︸ ︷(
9

4
Qxx −

1

4

√
9Q2

xx + 8Q2
xy

)(
δF0

δQyy
− δF0

δQxx

)
−

3
2 q sin(2θ)
︷ ︸︸ ︷
2Qxy

(
δF0

δQxy
+ δF0

δQyx

)

√(
9

4
Qxx −

1

4

√
9Q2

xx + 8Q2
xy

)2

+ 4Q2
xy

︸ ︷︷ ︸
3
2 q




.

(3.60)

Anisotropic systems

A system with anisotropy can be described by a free energy with gradient coef-
ficients c1 and c2

f0(Q̂) =
A

2

∑

i,j

QijQij +
B

3

∑

i,j,k

QijQjkQki +
C

4



∑

i,j

QijQij




2

+
c1
2

∑

i,j,k

(∂iQjk)
2 +

c2
2

∑

j

(
∑

i

∂iQij

)2

.

The functional derivatives of F0 =
∫
f0dV are given by

δF0

δQxx
= AQxx +B(Q2

xx +Q2
xy) + CQxx

(
Q2
xx + 2Q2

xy +Q2
yy +Q2

zz

)

−c1 (∂xxQxx + ∂yyQxx) − c2(∂xxQxx + ∂xyQxy) (3.61)

δF0

δQxy
= AQxy +BQxy(Qxx +Qyy) + CQxy

(
Q2
xx + 2Q2

xy +Q2
yy +Q2

zz

)
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−c1 (∂xxQxy + ∂yyQxy) − c2(∂xxQxy + ∂xyQyy) (3.62)

δF0

δQyx
= AQxy +BQxy(Qxx +Qyy) + CQxy

(
Q2
xx + 2Q2

xy +Q2
yy +Q2

zz

)

−c1 (∂xxQxy + ∂yyQxy) − c2(∂yyQxy + ∂xyQxx) (3.63)

δF0

δQyy
= AQyy +B(Q2

xy +Q2
yy) + CQyy

(
Q2
xx + 2Q2

xy +Q2
yy +Q2

zz

)

−c1 (∂xxQyy + ∂yyQyy) − c2(∂yyQyy + ∂xyQxy) (3.64)

δF0

δQzz
= AQzz +BQ2

zz + CQzz
(
Q2
xx + 2Q2

xy +Q2
yy +Q2

zz

)
.

−c1 (∂xxQzz + ∂yyQzz) . (3.65)

The equations of motion are obtained using Eqs. (3.58), (3.59) and (3.60) and
are not given explicitly here.

Equation of motion in terms of θ and q

A more intuitive way of writing down the equations of motion is in the repre-
sentation of absolute value q and orientation angle θ, related to Q̂ by Eqs. (3.9)
to (3.13). One can write the equations of motion as

τ∂tQxx = −1

4
Aq [1 + 3 cos(2θ)] − 1

8
Bq2 [1 + 3 cos(2θ)] − 3

8
Cq3 [1 + 3 cos(2θ)]

+c1 (∂xx + ∂yy)

[
1

4
q(1 + 3 cos 2θ)

]
+ λ3 [1 − cos(2θ)]

τ∂tQxy = −3

4
Aq sin(2θ) − 3

8
Bq2 sin(2θ) − 9

8
Cq3 sin(2θ)

+c1 (∂xx + ∂yy)

[
3

4
q sin 2θ

]
− λ3 sin(2θ)

with

λ3 = −3

4
c1q
[
(∂xθ)

2 + (∂yθ)
2
]

+
1

8
c2 {− sin(2θ) (∂xyq) − 3 cos(2θ) [(∂xq) (∂yθ) + (∂yq) (∂xθ)]

+ 6q sin(2θ) (∂xθ) (∂yθ) − 3q cos(2θ) (∂xyθ)

+
1

2
[1 − cos(2θ)] (∂xxq) + 3 sin(2θ) (∂xq) (∂xθ) − 3q [1 − cos(2θ)] (∂xθ)

2

+
3

2
q sin(2θ) (∂xxθ)

+
1

2
[1 + cos(2θ)] (∂yyq) − 3 sin(2θ) (∂yq) (∂yθ) − 3q [1 + cos(2θ)] (∂yθ)

2

− 3

2
q sin(2θ) (∂yyθ)

}
.

Using

τ∂tQxx =
1

4
[1 + 3 cos(2θ)] ∂tq −

3

2
q sin(2θ)∂tθ (3.66)

and

τ∂tQxy =
3

4
sin(2θ)∂tq +

3

2
q cos(2θ)∂tθ , (3.67)
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one can express the equations of motion in q and θ, leading to

τ∂tq = −Aq − 1

2
Bq2 − 3

2
Cq3

+ c1

{
(∂xxq) + (∂yyq) − 3q

[
(∂xθ)

2 + (∂yθ)
2
]}

+ c2

{
(∂xxq)

1

4

[
5

3
+ cos(2θ)

]
− (∂xq)(∂xθ)

1

2
sin(2θ)

−(∂xθ)
2 1

2
q [3 + cos(2θ)] − (∂xxθ)

1

4
q sin(2θ)

+(∂yyq)
1

4

[
5

3
− cos(2θ)

]
+ (∂yq)(∂yθ)

1

2
sin(2θ)

−(∂yθ)
2 1

2
q [3 − cos(2θ)] + (∂yyθ)

1

4
q sin(2θ)

+(∂xyq)
1

2
sin(2θ) + [(∂xq)(∂yθ) + (∂yq)(∂xθ)]

1

2
cos(2θ)

−(∂xθ)(∂yθ)q sin(2θ) + (∂xyθ)
1

2
q cos(2θ)

}

τ∂tθ = c1

{
[(∂xxθ) + (∂yyθ)] +

2

q
[(∂xθ)(∂xq) + (∂yθ)(∂yq)]

}

+ c2

{
sin(2θ)

12q
[− (∂xxq) + (∂yyq)] +

1

2
[(∂xxθ) + (∂yyθ)]

+
1

q
[(∂xθ)(∂xq) + (∂yθ)(∂yq)] +

cos(2θ)

6q
(∂xyq)

}
.

3.3 Physical parameters

In this section, the physical parameters are related to the model parameters.
In section 3.3.1, an expression for the interface thickness in terms of gradient
constants is obtained, deriving the equilibrium solution of the phase-field equa-
tions. Then, in section 3.3.2, the surface tension is obtained as a function of the
interface orientation relative to the liquid crystal orientation. Finally, in sec-
tion 3.3.3, the capillary length and the kinetic coefficient are calculated, leading
to a condition on the model parameters to eliminate kinetic effects, a regime
used in all the simulations presented in this work.

y

xx = −xI x = 0

Interface
Θ = 0

N I

Figure 3.4: System with planar interface. The interface is parallel to the y-axes
and located at x = 0.
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3.3.1 Equilibrium solution and interface thickness

In the phase-field model, the interface is extended over a certain width ξ. The
interface width is a physical parameter which arises naturally from the free
energy and depends on the model parameters c1 and c2.

To obtain an expression for the interface thickness of the equilibrium so-
lution, one can investigate a system with a planar interface, leading to an ef-
fectively one-dimensional problem. If the interface is aligned in the y-direction
(corresponding to an interface angle Θ = 0 as shown in figure 3.4), the tensor
Q̂(x) is a function of x only. Assuming further that the orientation is constant in
the entire system (θ = const), one can express the equation of motion in terms
of the absolute value q and the angle θ as the two degrees of freedom as

τ∂tq = −Aq − 1

2
Bq2 − 3

2
Cq3 +

{
c1 + c2

1

4

[
5

3
+ cos(2θ)

]}
(∂xxq) .

Searching for a stationary solutions with u = 0 yield

0 = 2
(
−q + 3q2 − 2q3

)
+W 2(θ)(∂xxq) ,

where W 2(θ) = c1 + c2
1
4

[
5
3 + cos(2θ)

]
. This can be written as

∂xxq(x) =
2

W 2(θ)

[
q(x) − 3q(x)2 + 2q(x)3

]
, (3.68)

which is identical to the standard scalar phase-field equation and has well-known
solution

q(x) =
1

2

[
1 − tanh

(
x

ξ

)]
, (3.69)

with interface thickness

ξ(θ) =
√

2W (θ) =

√

2c1 +
c2
2

[
5

3
+ cos(2θ)

]
. (3.70)

3.3.2 Surface energy

The surface energy γ is given by the difference in energy of a system with
interface and a system without interface, divided by the area (3d) or length
(2d) of the interface S,

γ =
F(with interface) −F(without Interface)

S
. (3.71)

With the free energy as chosen in this chapter, the free energy for a homogeneous
system without interface is identical to zero, F(without Interface) = 0. For a
planar interface, as shown in figure 3.4, with constant nematic orientation θ and
interface orientation in y direction (interface angle Θ = 0) at equilibrium, the
free energy is given by

F =

∫ [
3

2
q2(1 − q)2 +

3

4
W 2(∂xq)

2

]
dV , (3.72)
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as can be seen from Eqs. (3.29), (3.33) and (3.34). With the equilibrium solution
given in Eq. (3.69), this leads to

γ(θ) =

∫ ∞

−∞
3
[
q(x)2 − 2q(x)3 + q(x)4

]
dx

=
3

16

∫ ∞

−∞

[
1 − 2 tanh2(x/ξ(θ)) + tanh4(x/ξ(θ))

]
dx

=
3ξ(θ)

48

[(
2 +

1

cosh2(x/ξ(θ))

)
tanh(x/ξ(θ))

]∞

−∞

=
1

4
ξ(θ) .

Using the interface thickness, given in Eq. (3.70), and generalizing to an arbi-
trary interface, whose normal has an angle Θ to the x-axis, one obtains

γ(θ − Θ) =
1

4

√

2c1 +
c2
2

[
5

3
+ cos[2(θ − Θ)]

]
. (3.73)

The surface energy can be written as γ(θ − Θ) = γ0a(θ − Θ) with the
average surface energy γ0 = 1

2 [γ(0) + γ(π/2)]. The function containing the angle

dependence can be expressed as a(θ) = 1 + ǫã(θ), where ǫ = γ(0)−γ(π/2)
γ(0)+γ(π/2) is a

measure of the anisotropy.

3.3.3 Capillary length and kinetic coefficient

Besides the interface thickness and the surface energy, two other material prop-
erties can be expressed in terms of model parameters, the capillary length and
the kinetic coefficient. In this one-dimensional notation with constant nematic
orientation θ and an interface with Θ = 0, the derivation of section 2.3.1 can be
used, adjusting the coupling functions to the ones used in this chapter.

The capillary lengths for constant θ is given in Eq. (2.39) as

dθ=const
0 = a1

W (θ)

λ
=
W (θ)

3
√

2λ

and the kinetic coefficient in Eq. (2.40)

β = a1

[
τ(θ)

λW (θ)
− a2

W (θ)

D

]
,

where here a1 = I/J = 1
3
√

2
and a2 = (K + JF )/I = 5/2. The integrals

I = 1/(3
√

2), J = 1, F = (ln 2)/
√

2 and K = (5− ln 64)/(6
√

2) are defined in in
Eqs. (2.41) to (2.44), where here φ0 = 1

2 [1 − tanh(x/
√

2)] and g0 = 3φ2
0 − 2φ3

0.

For λ = Dτ0
W 2

0

1
a2

, the kinetic coefficient vanishes in the isotropic case — this

is the configuration chosen for all simulations in this work. In general, there
are two more corrections to the interface kinetics. The first one arises from the
fact that W depends on Θ and θ and therefore is not constant in the entire
system. This can in principle be avoided by having a τ which varies with Θ and
θ accordingly. For the liquid crystals, however, there is a second contribution
which arises from the deformation in the bulk and the resulting strain. These
effects, however, should be rather small for a weakly perturbed planar interface.
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3.4 Sharp interface limit

In this section, an analytical expression for the stability of modes which perturb
the equilibrium solution is obtained. The dispersion relation ωk gives the growth
rate ω as a function of perturbation wave vector k and can be compared with
the numerical results obtained from the model described in section 3.2.

The analytical calculation is made in the so-called sharp interface limit where
the width of the diffuse interface region tends to zero, compare section 2.2.

The dispersion relation is obtained by relating the chemical potential at the
interface to the pressure difference, using the Gibbs-Thomson relation

[µ− µEq]interface =
∆p

∆c
. (3.74)

To obtain an expression for the pressure, the energy in the sharp interface
limit

FSI = Fbulk + Finterface + Felastic (3.75)

is written as the sum of bulk, interface and elastic contribution and expressed
in terms of the interface position ζ. Varying the interface position leads to a
change in pressure, coming from the bulk energy [61]

δFbulk

δζ
= h∆p , (3.76)

where h is the sample thickness. This term has to be canceled out by contribu-
tions from the elastic energy and the interface energy, since the total variation
has to be zero at equilibrium

δFSI

δζ
= 0 . (3.77)

Finterface and Felastic can be obtained from the free energy F0 as given in
Eq. (3.23) but in terms of q and θ, which corresponds to the sum of Eqs. (3.29),
(3.33) and (3.34). For a nematic bulk system with constant q = 1 but varying
orientation angle θ, the elastic energy can be written as

Felastic =

∫
1

2
W 2
B |∇θ|2 dV , (3.78)

with bulk gradient constant W 2
B = 9

2 (c1 + 1
2c2).

The interface energy is given by [61]

Finterface =

∫
γ(θ(I) − Θ)δ(ζ)dV , (3.79)

where δ(ζ) is the Dirac-Delta function and with the surface energy as given in
Eq. (3.73).

Since Finterface and Felastic depend on the orientation of the liquid crystal,
an expression for θ(x, y) has to be obtained first.

For a director orientation which relaxes with a rotational viscosity γ1, the
equation of motion can be written as

γ1∂tθ = −δF
δθ

. (3.80)
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Furthermore, θ(x, y) can be developed in first order perturbation around the
planar interface, allowing a small sinusoidal perturbation.

In zeroth order, to solve the equation of motion, θ0(x) has to depend linearly
on x and is hence of the form

θ0(x) = Ax , (3.81)

for which an explicit expression is obtained in section 3.4.1. This approach is
also taken to obtain a limiting condition at the interface, relating the orientation
to the relation between bulk and interface energy.

In first order perturbation, as ansatz a correction which decays exponentially
in x direction away from the interface with the inverse decay length K is taken.
The perturbation is sinusoidal in y direction, with a wave vector k and grows
or decays exponentially with the time t, depending on the sign of the growth
rate ω. The angle, as function of x and y, can then be written as

θ(x, y) = θ0(x) + εθ1 exp(Kx+ ωt+ ıky) , (3.82)

where ε is a small parameter and where θ1 gives the amplitude of the first order
correction. The unknown coefficients are obtained in section 3.4.2 by inserting
this ansatz in the equation of motion and using the interface condition.

In section 3.4.3, the explicit forms of Finterface and Felastic are obtained,
leading to the Laplace Equation for ∆p, which is used to finish the calculations
of the dispersion relation in section 3.4.4.

3.4.1 Planar interface

Instead of using the crude approximation that the nematic is always orientated
perpendicular to the surface as preferred by the surface energy [61], one can
consider an interplay between surface energy and bulk energies.

Caused by the anisotropy in the surface energy, the liquid crystal prefers
a certain orientation at the interface, minimizing its energy there. Since the
orientation far away in the bulk, however, is fixed at a different orientation, a
reorientation at the interface leads to an increase in the bulk energy caused by
the nematic deformation. There are two limiting cases. If the surface energy is
much larger than the energy cost of the deformation in the bulk, the nematic
aligns in the direction as preferred by the surface energy at the interface, re-
gardless of the bulk deformation. In the opposite case, for a very small surface
energy and a large bulk energy, the nematic does not change its orientation in
the bulk and lives with a higher energy at the interface. In general, a compro-
mise between these two limiting cases is found, for which an analytic expression
is obtained here.

Elastic contribution in the bulk

Searching for a stationary solution of Eq. (3.80) with the elastic energy from
Eq. (3.78), one obtains

γ1∂tθ = W 2
B∂xxθ = 0 ,

which gives with Eq. (3.81) A = θ0(I)−θ0(−xI)
xI

= ∂xθ0, the difference between
the orientation at the interface and at the distance xI from the interface, as
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shown in figure 3.4. For the elastic energy, it then follows

Felastic =

∫
1

2
W 2
B

(
θ0(I) − θ0(−xI)

xI

)2

dV . (3.83)

Contribution of the interface

The total free energy can be calculated by the sum of the elastic energy and the
interface energy, given in Eq. (3.83) and Eq. (3.79) respectively, to

F =
1

2
W 2
B

[θ0(I) − θ0(−xI)]2
xI

+ γ(θ0) .

Being interested in the optimal interface angle θ0(I) which minimizes the
free energy, one takes the derivative of F with respect to θ0(I) and searches for
its root

∂F
∂θ0(I)

= W 2
B

θ0(I) − θ0(−xI)
xI

+ γ′(θ0(I)) = 0 .

The derivative of the interface energy is given by

γ′(θ) =
∂γ

∂θ
= −1

8

c2 sin[2(θ)]√
2c1 + c2

2

[
5
3 + cos[2(θ)]

]

≈ γ′0 sin[2(θ)] ,

where

γ′0 = −1

8

c2√
2c1 + c2

2

[
5
3 + cos[2θ0(I)]

] . (3.84)

The interface angle appears in γ′0, but in the approximation of small angle varia-
tions of the perfect alignment at the interface, θ0(I) ≈ 0 and γ′0 ≈ − 1

8
c2√

2c1+
4
3 c2

.

The condition for an extremum can then be written as

W 2
B

γ′0
∂xθ|I = − sin[2(θ0(I) − Θ)] , (3.85)

which is the desired anchoring condition.
There are two possible solutions, one for θ0(I)−Θ ≈ 0 and one for θ0(I)−Θ ≈

π/2, which belong to a minimum in the free energy for c2 < 0 and c2 > 0,

respectively. For the first case, a nontrivial solution only exists for
W 2
B

xIγ′
0
< 2.

3.4.2 Perturbation of the planar interface

A small sinusoid perturbation of the interface is introduced, using the ansatz
given in Eq. (3.82).

To obtain an expression for the inverse decay length, the equation of motion
for the orientation angle, as given in Eq. (3.80) in the moving frame of reference,
is considered [61]

∂θ

∂t
=
W 2
B

γ1
∇2θ + v

∂θ

∂x
. (3.86)
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Rewriting the zeroth order solution in the moving frame of reference θ0(x) =
θ0(I) + A(x + vt) and inserting the ansatz from Eq. (3.82) in the equation of
motion, Eq. (3.86), one obtains

Av + ωεθ1 exp(ıky + ωt+Kx)

=
W 2
B

γ1
(K2 − k2)εθ1 exp(ıky + ωt+Kx)

+ Av + AKεθ1 exp(ıky + ωt+Kx) .

Solving for K gives

K(k, ω) = − vγ1

2W 2
B

±

√(
vγ1

2W 2
B

)2

+ k2 + ω
γ1

W 2
B

, (3.87)

which relates the decay rate in x direction K to the wavelength k of the pertur-
bation and the growth rate ω. Note that it also depends on the pulling velocity
v.

Amplitude

Having a relation between the inverse decay length K and k and ω, one still
needs an expression for the amplitude θ1. In the following, the ansatz for θ,
given in Eq. (3.82), is developed around the interface position. It is inserted in
the anchoring condition, which was derived in section 3.4.1 for the orientation
at the interface.

The anchoring condition can be written in an approximation for small angle
differences θ|I − Θ ≪ 1 as

∂xθ|I ≃ − 2γ′0
W 2
B

(θ|I − Θ) . (3.88)

To develop the ansatz for θ around the interface position, one firstly intro-
duces the interface position ζ = εζ1 exp(ıky+ωt) as a perturbation of the planar
interface, where ζ = 0. Going to first order in ε, the orientation at the interface
can be written as

θ|I = θ0(ζ) + εθ1 exp(ıky + ωt+Kx)

= θ0(0) + ε

(
∂θ0
∂x

∣∣∣∣
x=0

ζ1 + θ1

)
exp(ıky + ωt) .

The derivative with respect to x is then

∂xθ|I = ∂xθ0|x=0 +Kεθ1 exp(ıky + ωt)

= A +Kεθ1 exp(ıky + ωt)

and the interface angle can be written as

Θ = −∂yζ = −ıkεζ1 exp(ıky + ωt) .

Inserting θ|I and ∂xθ|I in Eq. (3.88), one obtains an equation for θ1

∂xθ|I︸ ︷︷ ︸+Kεθ1 exp(ıky + ωt) = − 2γ′0
W 2
B

[θ0(I)

︸ ︷︷ ︸
+ε(Aζ1 + θ1 + ıkζ1) exp(ıky + ωt)] ,
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where the underbraced terms fulfill the boundary condition for θ0 and drop out.
What remains is

Kθ1 = − 2γ′0
W 2
B

(Aζ1 + θ1 + ıkζ1) ,

and therefore, solving for θ1,

θ1 = −Aζ1 + ıkζ1
KW 2

B

2γ′
0

+ 1
. (3.89)

To eliminate ζ1, one can rewrite the angle in terms of the surface slope ∂yζ, and
obtain an expression for θ(x, y) to first order

θ(x, y) = θ0(x) + εθ1 exp(ıky +Kx+ ωt)

= θ0(x) − ε
Aζ1 + ıkζ1
KW 2

B

2γ′
0

+ 1

1

−ıkεζ1
∂yζ exp(Kx)

= θ0(x) +
1 − ıAk
KW 2

B

2γ′
0

+ 1
∂yζ exp(Kx)

= θ0(x) + θA∂yζ exp(Kx) , (3.90)

with θA =
1−ıAk
KW2

B
2γ′

0

+1
. For small perturbations, the nematic aligns itself in such a

way that the angle is proportional to the interface slope, but the proportionally
constant θA depends on surface and bulk properties and reflects the balance
between the two energies.

3.4.3 Laplace equation

With the expression for the orientation of the liquid θ(x, y) and the interface
position ζ in first order perturbation, one can continue with the calculation
of the Laplace equation. The bulk free energy contribution is already given in
Eq. (3.76), but the contributions of the elastic and the interface energies, given
in Eqs. (3.78) and (3.79), are still missing.

Interface energy

With the anchoring condition θ|I = θA∂yζ and the interface orientation Θ =
−∂yζ, the surface energy can be written as a function of the interface position
ζ(y) as

γ(∂yζ) =
1

4

√

2c1 +
c2
2

[
5

3
+ cos[2(θA − 1)∂yζ]

]
. (3.91)

This leads to a contribution of the interface energy of

δFinterface

δζ
= h

δ

δζ

∫

LI

γ(θ)ds

= h
δ

δζ

∫
dyγ(∂yζ)

√
1 + (∂yζ)2 .
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= h

{
−
√

1 + (∂yζ)2∂y
∂ [γ(∂yζ)]

∂(∂yζ)
− γ∂y

∂
√

1 + (∂yζ)2

∂(∂yζ)

}

= h






−∂y
[

∂γ

∂(∂yζ)

]√
1 + (∂yζ)2 −γ∂y

[
∂(
√

1 + (∂yζ)2)

∂(∂yζ)

]

︸ ︷︷ ︸
=−γ ∂yyζ

(1+(∂yζ)2)3/2
=−γκ






.

The derivative in the first term can be calculated to

∂y

[
∂γ

∂(∂yζ)

]
= ∂y


−1

8

c2(θA − 1) sin[2(θA − 1)∂yζ]√
2c1 + c2

2

[
5
3 + cos[2(θA − 1)∂yζ]

]




= −1

4

c2(θA − 1)2 cos[2(θA − 1)∂yζ]∂yyζ√
2c1 + c2

2

[
5
3 + cos[2(θA − 1)∂yζ]

]

+
1

16

c22(θA − 1)2 sin2[2(θA − 1)∂yζ]∂yy
{
2c1 + c2

2

[
5
3 + cos[2(θA − 1)∂yζ]

]}3/2

= (∂θθγ)(θA − 1)2∂yyζ .

Finally, the interface contribution is given by

δFinterface

δζ
≈ −hκ

[
γ + (θA − 1)2∂θθγ

]
. (3.92)

Without anisotropy (∂θθγ = 0) and without elastic energy, the usual Laplace
equation ∆p = κγ follows with Eq. (3.77). The anisotropy is treated in the
following together with the elastic energy.

Elastic energy

In this work, the nematic orientation is allowed to change in the bulk to align
with the surface. Therefore, the elastic energy caused by this deformation has
to be considered as well, as given in Eq. (3.76) as

Felastic =
W 2
B

2

∫
dy

∫ 0

−xI
dx |∇θ|2

=
W 2
B

2

∫
dy

∫ 0

−xI
dx
∣∣∇
[
θA∂yζ(y)e

Kx
]∣∣2

=
W 2
B

2

∫
dy

∫ 0

−xI
dx |θA|2

[
∂

∂y
∂yζ(y)e

Kx + ∂x(∂yζ(y)e
Kx)

]2

=
W 2
B

2
θ2A

∫
dy

∫ 0

−xI
dx [∂yyζ +K∂yζ]

2
exp(2Kx)

=
W 2
B

2
θ2A
[
1 − e−2KxI

] ∫
dy

{
1

2K
(∂yyζ)

2
+

1

2
K (∂yζ)

2

}

+ boundary terms .
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Neglecting the boundary terms, the functional derivative yields

δFelastic

δζ
=

W 2
B

2

δ

δζ

∫
dxdy|∇θ|2

=
W 2
B

2
θ2A
(
1 − e−2KxI

)( 1

K

∂4ζ

∂y4
−K

∂2ζ

∂y2

)

≡ 1

2
l2E |θA|2

(
1 − e−2KxI

)( 1

K

∂4ζ

∂y4
−K

∂2ζ

∂y2

)
, (3.93)

with
l2E(k, ω) = W 2

B . (3.94)

Laplace Equation

With this additional term for the elastic energy and with the anisotropy, the
Laplace equation can be written as

∆p =
[
γ + (1 − θA)2∂θθγ

]
κ− 1

2
l2E |θA|2

(
1 − e−2KxI

)( 1

K

∂4ζ

∂y4
−Kκ

)
.

3.4.4 Dispersion relation

The dispersion relation for an isotropic system without considering the elastic
energy is derived e.g. by Langer [23] for a solid-liquid system, investigating
the so-called Mullins-Sekerka instability of a planer surface, as explained in
section 2.2.4. In the following, the basic steps of the analysis are performed for
the directional solidification, giving the results for the two systems a) without
and b) with anisotropy and elastic energy, respectively.

The Gibbs-Thomson relation is given as

[µ − µEq](interface) =
∆p

∆c

a) = − γκ

∆c

b) = − 1

∆c

[
(
γ + (1 − θA)2∂θθγ

)
κ− l2E |θA|2

(
1 − e−2KxI

)

2

(
1

K

∂4ζ

∂y4
−Kκ

)]
.

Without elastic energy contributions, θ2A = 0 (perfect anchoring) so that equa-
tion b) reduced to Eq. (2.14). One can see that θ2A represent the relation between
the bulk and the interface contribution. For θ2A = 0, the contribution of the
surface anisotropy is maximal, while the bulk contribution vanishes. For the op-
posite case, θ2A = 1, the surface contribution vanishes and the bulk deformation
contributes maximally.

For the normalized concentration u, the interface condition can be written
as

uN/I(Interface) =
[µ− µEq]Interface

∆c ∂µ
∂c

∣∣∣
c
N/I

Eq

− ζ

l
N/I
T

(3.95)

a) = −d0κ− ζ

l
N/I
T
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b) = −d0

[(
a(θ) + (1 − θA)2a′′(θ)

)
κ

−1

2

l2E |θA|2
(
1 − e−2KxI

)

γ0

(
1

K

∂4ζ

∂y4
−Kκ

)]
− ζ

l
N/I
T

,

compare Eqs. (2.16) and (2.15). The capillary length is given in section 2.2.4 as
d0 = γ0

(∆c)2 ∂µ∂c |cN/I
Eq

.

There are two equations describing the time evolution of the system. The
first one is the continuity equation

vn = D
[
β̃(∇u)N − (∇u)I

]
· ~n , (3.96)

with β̃ = (DNcNp )/(DIcIp) and as given in Eq. (2.19).
The second one is the diffusion equation in the both phases, as already given

in Eqs. (2.17) and (2.18), here in the moving frame of reference

DN/I∇2uN/I + v
∂uN/I

∂x
=
∂uN/I

∂t
. (3.97)

As ansatz, one can consider a small sinusoidal perturbation around a flat
interface [23]

ζ(y, t) ≃ εζ1 exp(ıky + ωkt)

uI ≃ exp

(
−2x

l

)
− 1 + εuI1 exp

(
−αIx+ ıky + ωkt

)

uN ≃ εuN1 exp
(
αNx+ ıky + ωkt

)
,

with ζ interface position and uI/N normalized concentration in isotropic and
nematic phase respectively.

Inserting this ansatz in diffusion equation Eq. (3.97), one obtains

DI

(
−k2 + (αI)2 − 2

lI
αI
)

= ωk

DN

(
−k2 + (αN )2 +

2

lI
αI
)

= ωk ,

where lN/I = 2DN/I

v .

Solving for αN/I leads to the inverse decay lengths αI and αN , given as

αI =
1

lI
+

√
1

(lI)2
+ k2 +

ωk
DI

αN = − 1

lN
+

√
1

(lN )2
+ k2 +

ωk
DN

.

To obtain the amplitudes, one inserts the ansatz in Eq. (3.95). One has
to take care to use the values at the actual boundary ζ(y, t) (see for example
Kassner [69]) u(ζ(y), y, t) = u0(0) + ∂xu0(0)ζ + u1(0), leading to

uI(Interface) = ε

(
uI1 −

2

lI
ζ1

)
exp (ıky + ωkt)

uN (Interface) = εuN1 exp (ıky + ωkt) .
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In the case a), one obtains with the interface condition

uI(Interface) = uN(Interface) = d0∂yyζ −
1

l
N/I
T

ζ ,

where κ = −∂yyζ.
For the amplitudes, it follows − 2

lI ζ1 + uI1 = uN1 =

(
−d0k

2 − 1

l
N/I

T

)
ζ1, or

uI1 =

(
2

lI
− d0k

2 − 1

l
N/I
T

)
ζ1

uN1 =

(
−d0k

2 − 1

l
N/I
T

)
ζ1 .

For b), one obtains

uI1 =

{
2

lI
− d0

[(
a(θ) + (1 − θA)2a′′(θ)

)
k2

+
1

2

l2E |θA|2
(
1 − e−2KxI

)

γ0

(
k4

K
+Kk2

)]
− 1

l
N/I
T

}
ζ1

uN1 =
{
−d0

[(
a(θ) + (1 − θA)2a′′(θ)

)
k2

+
1

2

l2E |θA|2
(
1 − e−2KxI

)

γ0

(
k4

K
+Kk2

)]
− 1

l
N/I
T

}
ζ1 .

In this linear approximation, the continuity equation can be written as
(
v + ζ̇

)
= D

[
β̃ ∂xu

N
∣∣
interface

− ∂xu
I
∣∣
interface

]
,

since ~n ≃ (1, 0, 0). The derivatives at the interface are given by

∂xu
N
∣∣
interface

= εuN1 α
N exp (ıky + ωkt)

∂xu
I
∣∣
interface

= − 2

lI
+ ε

(
4

(lI)2
ζ1 − uI1α

I

)
exp (ıky + ωkt) .

In accordance with the phase-field model, all physical constants are taken to be
equal in the nematic and in the isotropic phase (DN = DI = D, lN = lI = l,
β̃ = 1 and lNT = lIT = lT ). It then follows

v + εζ1ωke
ıky+ωkt = D

[
αNεuN1 e

ıky+ωkt +
2

l

+ε

(
uI1α

I − 4

l2
ζ1

)
eıky+ωkt

]

ζ1ωk = D
(
αNuN1 + αIuI1

)
− 2v

l
ζ1 .

Using the relation between the amplitudes, one obtains for a)

ωk = v

(
αI − 2

l

)
−Dd0k

2
(
αI + αN

)
− D(αI + αN )

lT
,
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and for b)

ωk = v

(
αI − 2

l

)
−Dd0k

2
[
a(θ) + (1 − θA)2a′′(θ)

+
1

2

l2E |θA|2
(
1 − e−2KxI

)

γ0

(
k2

K
+K

)]
(αN + αI) − D

lT
(αN + αI) .

For a), this leads to the dispersion relation when inserting the expressions
for αN/I

ωk = v

(
1

l
+

√
1

l

2

+ k2 +
ωk
D

− 2

l

)

−2D

√
1

l

2

+ k2 +
ωk
D
d0k

2 − 2D

lT

√
1

l

2

+ k2 +
ωk
D

= − v2

2D
+

(
v2

2D
− v

lT
− vd0k

2

)√
1 +

4D2k2

v2
+

4Dωk
v2

,

which is solved by

ωk =
v2

2D
(A− 1) +

√
v4

4D2
A(A − 1) + v2k2A ,

(3.98)

with A(k) =
(
1 − 2Dd0

v k2 − 2D
lT v

)2

.

For the case b) with elasticity and anisotropy, the dispersion relation is given
by

ωk = − v2

2D
+

{
v2

2D
− v

lT
− vd0k

2
[
a(θ) + (1 − θA)2a′′(θ)

+
1

2

l2E |θA|2
(
1 − e−2KxI

)

γ0

(
k2

K
+K

)]}√
1 +

4D2k2

v2
+

4Dωk
v2

,

(3.99)

where K is still a function of k and ω and given by Eq. (3.87) as

K(k, ω) = − vγ1

2W 2
B

±

√(
vγ1

2W 2
B

)2

+ k2 + ω
γ1

W 2
B

.

To obtain the dispersion relation for an anisotropic system, Eq. (3.99) has
to be solved numerically. This is performed using a fail-safe routine that uses a
combination of bisection and Newton-Raphson method [70].

3.5 Numerical results

3.5.1 Physical lengths and model parameters

To see whether the model is capable of describing real systems, it is necessary
to identify the model parameters with physical values. The physical important
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values are lengths, namely the thermal length (lT ), which appears directly in
the model,

the diffusion length l = 2D
v ,

the capillary length d0 = 2
3λγ0

and the elastic length lE =
√

W 2
B
d0

γ0
=
√

2
3λWB .

The model parameters are D diffusion constant, v pulling speed, λ coupling

parameter and γ0 = 1
2 [γ(0) + γ(π/2)] = 1

8

(√
2c1 + 4

3c2 +
√

2c1 + 1
3c2

)
mean

value of the anisotropic surface energy, WB =
√

(9/2)(c1 + c2/2), both a com-
bination of the gradient constants c1 and c2.

One can see that for a given anisotropy (combination of c1 and c2), lE and
d0 cannot be chosen independently of each other. Furthermore, they scale differ-
ently with the coupling constant λ (lE/d0 ∝ λ3/2), which is used to artificially
increase the interface thickness in order to decrease the necessary resolution and
gain calculation time.

To be able to compare the model parameters with a real system, not the
absolute values are important, but the relations between the lengths. For the
values used in the simulations presented in this work (λ = 0.4, v = 0.08, D = 1,
lT = 300, γ0 ≈ 0.5, WB ≈ 2.7), the relative length scales can be calculated to
l/lT ≈ 0.08, d0/lT ≈ 0.003 and lE/lT ≈ 0.015.

As one example for a real system, the values from 8CB are given (taken from
[61], similar in [71]) in Tab. 3.1. It then follows

lT =
∆T

G
= 4.88 × 10−3 cm

l =
2D

v
= 1.34 × 10−3 cm

d0 =
γ

L

T0

∆T
= 8.83 × 10−7 cm

lE =

√
K

L

T0

∆T
= 9.64 × 10−6 cm .

The relative length ratios can then be calculated to l/lT ≈ 0.27, d0/lT ≈ 1.8 ×
10−4 and lE/lT ≈ 0.002.

Comparing the model parameters with this example for a real liquid crystal,
one finds that the relative elastic lengths differs by a factor of 7.5, which is
however not too bad, especially since the elastic lengths are experimentally not
very accurately measured. The relative diffusion lengths is by a factor 3 too
small, at the same time as the capillarity length is by a factor of 15 too large.
The model system does therefore not agree perfectly with a real liquid crystal
system, but is sufficiently close to be able to draw qualitative conclusions from
the results.

3.5.2 Dispersion relation

Using the model developed in section 3.2, the directional solidification of a
liquid crystal alloy can be simulated by solving the evolution equations for the
fields, which are given by the concentration u and the two degrees of freedom



3.5 Numerical results 67

Latent heat L 2.05 × 107 erg/cm3

Undercooling ∆T 0.21 K
Diffusion constant D 6.7 × 10−7 cm2/sec
Surface energy γ 0.95 × 10−2 erg/cm2

Temperature gradient G 43K/cm
Frank elastic constant K ≈ 10−6 dyn
Equilibrium temperature T0 400 K
Pulling velocity v 10−3 cm/sec

Table 3.1: Typical values for an 8CB liquid crystal as given by Bechhoefer and
Langer [61].

of the nematic Q̂, here expressed in the magnitude of order q and the nematic
orientation θ. In figure 3.5, the initial and the final value of the different fields
are shown as a function of their position x and y.

To compare the model with the theory, one can examine the dispersion re-
lation for a fixed pulling velocity. Using the equations of motion obtained for
the directional growth of the nematic phase of the liquid crystal, one can calcu-
late the time evolution of a cell according to the model. To test the stability of
the planar interface, one applies a small sinusoidal perturbation to the interface
and investigates its evolution. As described in section 3.4, the perturbation is
expected to grow or decay exponentially with a growth rate ωk.

Analyzing the interface shape for its Fourier modes, the different growth
rates ωk for different perturbation wave numbers k can be obtained. For a system
with strong anisotropy (c1 = 3 and c2 = −3) and where the first mode is given by
kζ = 0.079, the amplitudes for the modes kζ to 8kζ are shown in figure 3.6. For
small times, the first mode dominates and it grows exponentially, as predicted
by the theory, note the logarithmic scale.

The value of ωk can be obtained by a linear fit of the curve. At larger times,
the other modes become important and the system approaches a stationary
shape, which is shown in figure 3.7. Here, the orientation in the nematic phase
changes in the bulk, tending to align perpendicular to the interface. The actual
nematic orientation at the interface is not perpendicular to the interface, which
would be the case for the strong anchoring condition. This is in good agreement
with the boundary condition assumed in this work.

Repeating the calculation for systems with different cell widths, one excites
different modes k and the growth amplitudes ωk can be obtained as a function
of k. The comparison between this ωk obtained numerically and the theoretical
result, given as dispersion relation in Eq. (3.99), is shown in figure 3.8 for dif-
ferent anisotropies ǫ. The results obtained from the simulation, shown in open
symbols, agree very well with the theory, shown in solid lines.

3.5.3 Cell structure depending on the orientation

To investigate the influence of the nematic orientation, a cell similar to the one in
figure 3.7 is numerically simulated, with the difference that now the liquid crystal
far in the bulk is not orientated perpendicular to the unperturbed interface. This
symmetry breaking prevents a stable cell from forming and leads to a shape



68 Phase-Field Model for Liquid Crystals

 380  385  390  395  400  405  410  415  420  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

x
y

q

 180  190  200  210  220  230  240  250  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

x
y

q

 380  385  390  395  400  405  410  415  420  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

x
y

θ

 180  190  200  210  220  230  240  250  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

x
y

θ

 380  385  390  395  400  405  410  415  420  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

-1

-0.5

 0

 0.5

 1

x
y

u

 180  190  200  210  220  230  240  250  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

x
y

u

Figure 3.5: In this figure, the initial (left) and the final state (right) of a sys-
tem without anisotropy and constant angle (θ = 0.3) is shown. The interface
is initially perturbed which causes the final stationary cell to build up. The
fields shown, from top to bottom: magnitude of order q, orientation angle θ and
normalized chemical potential u.
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Figure 3.6: The time evolution of the interface modes, obtained by a Fourier
analysis of the interface. Shown in a semi-logarithmic plot, so that the growth
rates ωk of the different modes k can be obtained from the slope of the curves
for small times. One can see that the first mode with kζ = 0.079 dominates,
until the system reaches its stationary shape.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 60  80  100  120  140  160

x

y

Figure 3.7: The steady-state cell shape. At the interface (thick solid line), the
interface normal is shown (dashed lines) as well as the actual nematic orientation
(solid lines). In the bulk, the nematic deforms and finds a compromise between
bulk deformation and perpendicular interface orientation.
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Figure 3.8: Dispersion relation for different anisotropies ǫ. The results from the
simulation are shown with open symbols, the lines represent theory as given in
Eq. (3.99). As one can see, the results agree well for all anisotropies investigated.

which varies with time. This is show in a time series in figure 3.9. The nematic
isotropic interface is shown with the thick solid line, the nematic orientation in
the interface and the bulk with solid lines and the colored background indicates
the impurity concentration c, going from 0.2 (white) to −1.0 (black).

3.5.4 Conclusion and outlook

In this chapter, the standard phase-field model has been generalized using a
tensorial order parameter to include the nematic orientation of a liquid crystal.
To validate this model, planar nematic-isotropic interfaces in a directional so-
lidification setup has been perturbed and the stability was tested for systems
with different anisotropies of the surface energy. The numerical results were
compared with the theory obtained by generalizing a stability analysis based
on the sharp interface limit. The results are in very good agreement with the
theoretical description. Finally, the influence of the nematic orientation in the
bulk has been investigated. It was shown that it can affect the symmetry of the
entire system and plays an important role in the pattern forming process.

This model, however, does not allow to artificially increase the interface
width in the same way as in phase-field models with a simple scalar phase field,
since the additional length scale introduced by the elasticity is coupled to the
capillary length. To circumvent this problem, it might be useful to introduce
an additional scalar phase-field variable, which is then coupled to the tensorial
order parameter. With this additional coupling constant, it should be possible
to vary the elastic length and the capillarity length independently and therefore
rescale the interface width to access larger systems with physical parameters.
However, the parameter accessible with this model are similar enough to the



3.5 Numerical results 71

t =  8000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80  100  120  140  160  180  200  220

t =  9200

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80  100  120  140  160  180  200  220

t = 12000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80  100  120  140  160  180  200  220

t = 16000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80  100  120  140  160  180  200  220

Figure 3.9: Time series of a cell of a liquid crystal whose nematic orientation
is asymmetric at the start. One can see that instead of forming an stationary
cell, the shape varies with time. The colored background indicates the impurity
concentration c, going from 0.2 (white) to −1.0 (black).
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ones of real liquid crystals to draw qualitative conclusions from the simulation
results.



Chapter 4

Grain Boundary Structure
in the Phase Field Crystal
Model
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In this chapter, the main interest is focused on the structure of grain bound-
aries. To investigate the role of topological defects and dislocations at the grain
boundary, a phase field crystal model [72, 73] is used. This model has proven to
be a successful extension of the phase-field model approach. Instead of having a
uniform solution, its equilibrium configuration is periodic in space, correspond-
ing to the atomic density field. Effects which are caused by the crystalline struc-
ture and its symmetries are automatically incorporated, including elastic and
anisotropic properties. Also dislocations, vacancies as well as other topological
defects appear naturally. Since the underlying field is a time-average density
field, the phase field crystal method is able to represent the evolution over time
scales which are larger than vibration modes (order of 10−15s) but much shorter
than diffusive processes in the system such as the viscous glide of dislocations,
which are typically of the order of 10−6 seconds. The model is thus able to
capture time scales that govern diffusive processes during phase transitions in
pure materials [73–75] and alloys [76].

This chapter is organized as follows. The phase field crystal model is pre-
sented in section 4.1, while in section 4.2 the details of the numerical implemen-
tation are given. In section 4.3, the results are presented, with an emphasis on
three aspects: on the local order in the interfaces, on the grain boundary prop-
erties and on the stability of liquid films between two solid grains. In section 4.4,
a short conclusion is drawn and an outlook is given.

4.1 Phase field crystal model

To investigate the properties of grain boundaries numerically, in this work a
phase field crystal model [72, 73] is used. To describe the crystalline structure, a
conserved field φ is introduced, which represents the time averaged local atomic
density. In the solid, the atoms vibrate around their fixed positions in the lattice,
which leads to high values of φ at the lattice sites and low values in between.
In the liquid, the atoms are distributed equally, leading to a constant φ in the
time average.

In the phase-field model, the solidification is controlled by the diffusion of
heat, which is released as latent heat at the interface. In the phase field crystal
model, the densities in the two phases are different so that the solidification
is limited by the exchange of mass. Instead of the temperature, the chemical
potential determines which phase is preferred and controls whether the solid
grows or melts.

To use the phase field crystal model for solidification processes, a free energy
is constructed which supports at least a constant and the periodic phase. Most
generally, the free energy contains a potential term and two gradient terms
of different order, which enter with opposite signs. In section 4.1.1, a possible
choice of the free energy is presented.

From the free energy, it is possible to construct the corresponding phase di-
agram, as shown in section 4.1.2. The obtained phase diagram can be compared
with the phase diagram of real physical systems and the region of best agree-
ment can be chosen. In section 4.1.3, it is shown how the grain boundary energy
can be obtained in the phase field crystal model. To be able to compare the
results with theoretical descriptions of the grain boundaries, the elastic prop-
erties of the phase field crystal model are obtained and related to the physical
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parameters.

4.1.1 Free energy and equation of motion

Most generally, the free energy giving rise to a constant and a periodic solution
can be written as [73]

F =

∫
d~r

[
f(φ) +

φ

2
G(∇2)φ

]
.

The exact form of G(∇2) can be determined for any pure material by the liquid-
state structure factor [73], but in the simplest case can be assumed to be of the
form G(∇2) = λ(q20 +∇2)2. To obtain the constants λ and q0, the form of G(∇2)
can be fitted to the first-order peak of the structure factor.

The free energy can then be written as [73]

F =

∫
d~r

{
φ

2

[
a∆T + λ(q20 + ∇2)2

]
φ+ u

φ4

4
)

}
, (4.1)

where the nonlinear term φ4 leads to a hexagonal pattern solution. To obtain a
free energy which favors a different crystalline lattice structure, other non-linear
terms can be used. So far, however, there is not a systematic method of deriving
the nonlinear terms corresponding to a given crystalline structure [73].

The dynamics for the conserved field φ is given as

∂φ

∂τ
= Γ∇2 δF

δφ
,

plus additional noise terms, which are neglected in this work. Γ is a phenomeno-
logical mobility coefficient.

It is convenient to non-dimensionalize the free energy and the equation of

motion by using the dimensionless variables ~x = ~rq0, ψ = φ
√

u
λq40

, r = a∆T
λq40

and

t = Γλq60τ . The free energy then becomes in two dimensions F = F
λ2q60/u

F =

∫
d~x

{
ψ

2

[
r + (1 + ∇2)2

]
ψ +

1

4
ψ4

}

=

∫
dV

{
1

2
ψ
[
(r + 1)ψ + 2∇2ψ + ∇4ψ

]
+

1

4
ψ4

}
(4.2)

and the equation of motion

∂tψ = ∇2
{[
r + (1 + ∇2)2

]
ψ + ψ3

}
. (4.3)

Equations (4.2) and (4.3) are controlled by two dimensionless parameters,
the dimensionless undercooling r and the average density ψ̄ = 〈ψ〉, which is
conserved. To describe a real material, the model parameters have to be adjusted
to the material properties. Some quantities, as the lattice constant q0 or the bulk
modulus, can be adjusted easily, since the lengths are rescaled with q0 and the
free energy additionally with λ and u. The lattice structure, however, results
directly from the form of the free energy and is always triangular for this choice
of the free energy [73].
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4.1.2 Phase diagram

In the following, the free energy is analyzed in greater detail. As mentioned
before, the free energy is constructed in such a way as to allow a periodic phase
with a hexagonal structure in two dimensions and a constant phase. As it turns
out, there is also a striped phase present [73], which is, however, not important
for the situations treated in this work.

In the liquid phase, the constant solution is given by ψL(x, y) = ψ̄. The
energy of the liquid phase can be calculated analytically by inserting ψL(x, y)
in the free energy, Eq. (4.2), and integrating over a unit volume, leading to
FL(ψ̄) = 1

2 (1 + r)ψ̄2 + 1
4 ψ̄

4.
The hexagonal structure can be described by the basis vectors

~a =
2π

√
3

q

(√
3

2
,
1

2

)

and

~b =
2π

√
3

q
(0, 1) ,

compare section 2.1.
The density for the two-dimensional hexagonal structure can be given in

one-mode approximation as [73]

ψH(x, y) = At

[
cos(qx) cos(qy/

√
3) − cos(2qy/

√
3)/2

]
+ ψ̄ . (4.4)

To obtain the free energy in the hexagonal phase, the solution ansatz ψH(x, y)
as given in Eq. (4.4) is inserted into the free energy, Eq. (4.2). Executing the
integration over a unit cell and minimizing the free energy with respect to At
and q gives

At =
4

5

(
ψ̄ ± 1

3

√
−15r − 36ψ̄2

)
, (4.5)

where the ± is for positive/negative ψ̄, respectively, and

q =

√
3

2
.

Reinserting the result into the free energy yields FH(ψ̄, r), the analytical one-
mode approximation for the free energy in the hexagonal phase.

To obtain the phase diagram of this model system, the free energy of the
hexagonal phase is compared with the one of the liquid phase. Since the density
is conserved, the coexistence region is given by the solution of the following
two equations, corresponding to the graphical common tangent construction.
At equilibrium, the chemical potentials in both phases have to be equal, as well
as the grand canonical potentials, so that

∂FH

∂ψ̄

∣∣∣∣
ψ̄H

= µH =
∂FL

∂ψ̄

∣∣∣∣
ψ̄L

= µL ≡ µEq (4.6)

and
ΩH = FH(ψ̄H) − µHψ̄HV = ΩL = FL(ψ̄L) − µLψ̄LV . (4.7)
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Here, µ is the chemical potential and Ω the grand canonical potential.
With the free energies FH and FL, one can solve this set of equations numer-

ically, leading to two functions ψ̄H(r) and ψ̄L(r), shown in the phase diagram
in figure 4.1 as lines limiting the coexistence region.

Between the lines, the liquid and the hexagonal phase can coexist. To be in
equilibrium, the chemical potentials in both phases are equal, µS = µL = µE.
The densities in the two coexisting phases are given by ψ̄H(r) and ψ̄L(r), so that
the total density of a system at a given r can be written as

ψ̄A = ψ̄HAH + ψ̄LAL ,

where A is the total area. AL and AH are the areas filled by the liquid and the
hexagonal phase, respectively.

Solving for the liquid area gives with A = AL +AH

AL =
ψ̄ − ψ̄H

ψ̄L − ψ̄H
A . (4.8)

Varying ψ̄ through the coexistence region from ψ̄L to ψ̄H decreases the area of
liquid phase linearly from the entire system area A to zero, when the entire
system is in the hexagonal phase. This linear dependence is called lever rule.

Since the solution of the hexagonal phase is only a one-mode approximation,
also the obtained phase diagram is only an approximation. The difference be-
tween this approximate free energy FH and the free energy obtained from the
simulations is shown figure 4.2. While the difference in the free energy is hardly
visible, the difference in the chemical potential µS = ∂ψ̄F is rather large close
to the coexistence region, as shown in figure 4.3.

Using the numerically obtained free energy FS and chemical potential µS,
the coexistence lines can be calculated in the same way as described above.
This result is shown in figure 4.1 with circles, while the lines correspond to the
solution for the one-mode approximation. The crosses represent the coexistence
densities as obtained from the simulations. As mentioned before, the free energy
also supports a third phase, where the solution is striped or smectic. It is the
preferred phases for ψ̄ close to zero and does not occur in the simulations in
this work. The full phase diagram in one-mode approximation is given e.g. by
Elder and Grant [73].

4.1.3 Grain boundary energy

Here, the main interest is focused on the properties of grain boundaries, which
are investigated with the phase field crystal model in this chapter. In the fol-
lowing, one has to distinguish between two different integration methods, as
explained in section 4.2. The simulations can be performed by fixing the density
ψ̄ at a certain value and allowing the chemical potential µ to adjust accordingly.
This treatment arises quite naturally from the equations of motion. The second
method is to fix the chemical potential at a certain value and to allow the den-
sity to adjust. This method is more closely related to the thermodynamics of
the system, where at equilibrium the grand potentials are equal.

While most of the simulations are performed at constant ψ̄, firstly the grain
boundary energy is derived generally for a grand canonical ensemble.
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Instead of the excess free energy, the grain boundary energy is then given as
the excess free grand potential

γGBLI = ωexc =

∫
[ω(x, y) − ωS]dV , (4.9)

where LI is the length of the interface and the reference state is the solid state.
For a system with planar interface parallel to the y-axis which is on a meso-

scopic scale translationally invariant in y direction, one can carry out the inte-
gration and use the average values ω and f in the system with interface. Using
ω = f − µψ̄, the excess free energy can be written as,

2γGB = Lx [ω − ωS]

= Lx
{
f − f(ψ̄S) − µ

[
ψ̄ − ψ̄S)

]}
. (4.10)

The factor two takes into account that in the periodic systems treated here
always two interfaces are present, compare figure 4.4 (bottom). It is, however,
assumed that they are well separated and that they do not interact.

In the case of constant ψ̄ and varying µ, one can expand f(ψ̄S) around ψ̄
and one obtains with µ = ∂ψ̄f(ψ̄)

f ≈ 2γGB

Lx
+ f(ψ̄) + µ(ψ̄S − ψ̄) + µ(ψ̄ − ψ̄S)

=
2γGB

Lx
+ f(ψ̄) . (4.11)

The total free energy of a system with grain boundary f can be easily ob-
tained from the simulations. To determine the corresponding free energy f(ψ̄)
turns out to be more difficult, since very small variations lead to a large dif-
ferences in the grain boundary energy. In this work, it is therefore preferred to
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Figure 4.4: Top: Initial condition for the grain boundary simulations. Two solids
with different orientations are separated by liquid layers. Bottom: After a few
time steps, the liquid solidifies and the grain boundaries build up. Due to peri-
odic boundary conditions, there are always two solid-solid interfaces: one in the
middle of the system and the other one at the boundaries.

plot f versus 1/Lx for several system lengths Lx and exploit the linear depen-
dency. A linear fit gives as slope 2γGB and as y-intercept the free energy of a
corresponding solid without interface.

For simulations at constant µ, the grain boundary energy can be obtained
similarly, but then ψ̄ varies with Lx.

To compare the simulations with the theory, the grain boundary energy for
small angles given in Eq. (2.2) is written as

γGB =
Ga

4π(1 − σ)
θ [1 − ln(2πθ) + ln(a/r0)] (4.12)

≡ EMθ

[
1 − ln

θ

θM

]
,

with EM = Ga
4π(1−σ) and θM = a

2πr0
as derived by Elder et al. [72]. As explained

in section 2.1, r0 is a length to be obtained by atomistic calculations and a =
2π/q is the lattice constant.

Please note that σ appearing in the Read-Shockley grain boundary energy
is the three-dimensional Poisson’s ratio, while the σ from Elder et al. [72, 73] is
the two-dimensional Poisson’s ratio.

For the one-mode approximation, the elastic properties of the phase field
crystal model can be derived [72, 73]. The resulting elastic constants are C11/3 =

C12 = C44 =
(
3ψ̄ −

√
−15r − 36ψ̄2

)2

/75. The bulk modulus can then be cal-

culated to B = 2
(
3ψ̄ −

√
−15r − 36ψ̄2

)2

/75 and the shear modulus or rigidity

modulus G = C44. Furthermore, the three-dimensional Poisson’s ratio is given
as σ = 1

2
3B−2G
3B+2G = 1/4.

As one can see, the elastic constants depend on the dimensionless tempera-
ture r and on the density ψ̄. For the grain boundary energy, written as a function
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of r and ψ̄, it then follows

γGB(ψ̄, r) =
4

25
√

3

[
ψ̄ − 1

3

√
−15r − 36ψ̄

]2
θ [1 − ln(2πθ) + ln(a/r0)] .

(4.13)

Please remember that in this work the average density is taken to be negative,
therefore ψ̄S > ψ̄L. In Elder et al. [72, 73], positive densities are chosen. This
explains the different sign in front of the square-root.

The radius r0 is taken as a free parameter, which also might depend on the
density ψ̄ and on the dimensionless temperature r.

4.2 Implementation

The phase field crystal model is based on a differential equation, which contains
a sixth order gradient term. This makes it numerically time-consuming when
using the simplest integration algorithm, as used for the phase-field model in
the rest of this work. In section 4.2.1, an implicit scheme is presented, where
the gradients are calculated in Fourier space.

Numerically, one is restricted to finite systems, where the boundaries have to
be defined. Since the crystal is represented by a periodic function, the simulation
box has to respect this periodicity. This leads to box sizes which depend on the
orientation of the crystal, as shown in section 4.2.2.

4.2.1 Integration of the equation of motion

Conserved order parameter

Treating ψ as conserved order parameter, the equation of motion is given in
Eq. (4.3) as

∂tψ = ∇2

(
δF
δψ

)

= (r + 1)∇2ψ + 2∇4ψ + ∇6ψ + ∇2ψ3 (4.14)

= L̂ψ + f ,

where here the linear operator L̂ = (r + 1)∇2 + 2∇4 + ∇6 and the nonlinear
function f = ∇2ψ3 have been introduced.

To avoid the numerically challenging gradient terms in real space, one can
solve the equation of motion in Fourier space. Multiplying by exp(ıkx) and
integrating both sides over the entire volume leads to
∫
∂tψ(~x) exp(ı~k~x)d~x =

∫
L̂ψ(~x) exp(ı~k~x)d~x

︸ ︷︷ ︸∫
exp(ı~k~x)[L̂ψ]+ψ[L̂ exp(ı~k~x)]d~x

+

∫
f exp(ı~k~x)d~x

∂tψ̃k = L̂kψ̃k + f̃k , (4.15)

where one can identify the Fourier modes of the density ψ̃k =
∫
ψ exp(ı~k~x)dx.

Here, L̂k = −(r+ 1)k2 + 2k4 − k6 is the linear operator in Fourier space and f̃k
is the Fourier transform of the nonlinear function f .
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“Non-local” conserved dynamics

Another way of calculating the time evolution of the system is to formally treat
ψ as nonconserved order parameter in the way of writing the equation of motion,
but ensure that it remains globally conserved by using a Lagrange multiplier.

The advantage of this method is that the equilibrium can be found faster.
Since in the equation of motion the concentration is formally not conserved, the
mass can be transported in a faster way by taking it at some place and placing
it at another, as favored by the free energy. Therefore, the dynamics of this
method is different. In this work, the method can be used without problems
since the main interest is focused on equilibrium situations.

The conservation condition for ψ is given as

1

A

∫
ψ(~x)d~x− ψ̄ = 0 ,

where A is the total volume or, in two dimensions, the total area.
The free energy, including the constraint, can then be written as

F̃ = F + µ

[
1

A

∫
ψ(~x)d~x− ψ̄

]
,

where the Lagrange multiplier is called µ. For the equation of motion one obtains

∂tψ = −δF
δψ

+
µ

A

=
[
−(r + 1) − 2∇2 −∇4

]
ψ − ψ3 +

µ

A
(4.16)

= L̂ψ + f ,

where now L̂ = −(r + 1) − 2∇2 −∇4 and f = −ψ3 + µ
A . In Fourier space, the

operator and the nonlinear function are given as L̂k = −(r + 1) + 2k2 − k4 and
f̃k = −ψ̃3

k + µ̃k
A , where ψ̃3

k is the Fourier transform of ψ3 and µ̃k the one of µ.
Since µ is a constant, µ̃k ∝ δ(k)µ.

The Lagrange multiplier µ can be obtained from the condition

0 = ∂tψ̄ =
1

A

∫
∂tψ(~x)d~x =

1

A

∫ [
−δF
δψ

+
µ

A

]
d~x ,

or

µ =

∫
δF
δψ

d~x =

∫ [
(r + 1)ψ(~x) + ψ3(~x)

]
d~x ,

since the integral over the gradients for a periodic system is zero.
The Lagrange multiplier is called µ for a good reason: it corresponds to

the chemical potential of the system. Therefore, this method also allows to
fix the chemical potential and let the total density adjust accordingly. This
method corresponds more closely to the thermodynamical idea of having a grand
canonical ensemble.

However, a problem with this method arises for simulations with ψ̄ inside
the coexistence region. Here, the density ψ̄ is not a unique function of µ, since
for all ψ̄L < ψ̄ < ψ̄S the chemical potential µ = µEq.
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Proof that the energy is minimized

In the following, it is shown that F is minimized, being subject to the constraint

∫
d~xψ = Aψ̄, (4.17)

in a domain of volume A.
Using the standard method of Lagrange multipliers, one seeks to minimize

F̃ = F − µ

(
1

A

∫
d~xψ − ψ̄

)
, (4.18)

which yields the evolution equation

∂tψ = −δF
δψ

+ µ , (4.19)

where µ needs to be determined by the differential form of Eq. (4.17)

∫
d~x∂tψ = 0. (4.20)

Integrating both sides of Eq. (4.19) and using Eq. (4.20), one obtains

µ =
1

A

∫
d~x
δF
δψ

. (4.21)

Substituting Eq. (4.21) into Eq. (4.19) yields the final evolution equation

∂tψ = −δF
δψ

+
1

A

∫
d~x
δF
δψ

. (4.22)

So one just needs to evolve ψ using Eq. (4.22) and, at the end of the calculation,
gets µ from Eq. (4.21) after ψ has reached a stationary state.

It can be shown that this dynamics leads to a continuous decrease of the
modified free energy F̃ . From the time derivative of Eq. (4.18), one obtains

dF̃
dt

=

∫
d~x

δF̃
δψ(~x)

∂ψ(~x)

∂t
+
dµ

dt

(∫
d~xψ −Aψ̄

)
. (4.23)

However, the last term is zero because the bracket contains just the constraint to
be enforced. For the first term, since δF̃/δψ(~x) = δF/δψ(~x)−µ from Eq. (4.18),
using Eq. (4.19) yields

dF̃
dt

= −
∫
d~x

(
δF
δψ

− µ

)2

. (4.24)

Thus, the time derivative is always negative and becomes zero for δF/δψ(~x) =
µ as desired. Note that µ changes with time and is not determined a priori.
Therefore, as usual with this kind of evolution, one can end up in metastable
states which can be characterized by a different µ than the real equilibrium
state. Hence, it is important to start with an initial guess not too far from the
desired final state.



84 Grain Boundary Structure in the PFC Model

Implicit scheme

To be able to increase the time steps in the integration, it is possible to use an
implicit integration scheme. Instead of solving Eq. (4.15) directly numerically,
one can rewrite it by using the ansatz ψ̃k = u(t) exp(L̂kt). One then obtains

∂tψ̃k = L̂k exp(L̂kt)u(t) + (∂tu) exp(L̂kt) = L̂k exp(L̂kr)u(t) + f̃k ,

so that ∂tu(t) = exp(−L̂kt)f̃k. Integrating over time from t to t+ ∆ gives

u(t+ ∆t) − u(t) =

∫ t+∆t

t

dt′ exp(−L̂kt′)f̃k(t′)

and with u(t) = exp(−L̂kt)ψ(t) in terms of ψ

exp[−L̂k(t+ ∆t)]ψ(t+ ∆t) − exp(−L̂kt)ψ(t) =

∫ t+∆t

t

dt′ exp(−L̂kt′)f̃k(t′) .

Even if f̃k is not known as a function of t, it can be expanded in a good approx-
imation around t′ = t, leading to

ψ̃k(t+ ∆t) = e∆tL̂kψ̃k(t)

+ eL̂k(t+∆t)

∫ t+∆t

t

dt′e−L̂kt
′

[
f̃k(t) +

f̃k(t) − f̃k(t− ∆t)

∆t
(t′ − t)

]

= e∆tL̂kψ̃k(t) +
f̃k(t)

L̂k

(
eL̂k∆t − 1

)

+
f̃k(t) − f̃k(t− ∆t)

∆tL̂2
k

(
eL̂k∆t − 1 − ∆tL̂k

)
. (4.25)

This scheme can be applied independently of the integration mode, whether
the density or the chemical potential is kept fixed. One only has to choose the
appropriate linear operator L̂ and non-linear function f .

Due to the implicit integration scheme, the time-steps can be chosen quite
large, in the simulations in this work ∆t = 0.4. Since the gradients are calculated
in Fourier-space, also the discretization of the space can be chosen rather large,
dx ≈ π/4, depending slightly on the orientations in the system.

4.2.2 Boundary conditions

In numerical simulations, one is restricted to finite systems. It is therefore im-
portant to define proper boundary conditions. Usually, periodic or reflecting
boundary conditions are applied, allowing to extend the system theoretically to
infinity. Due to the use of the Fourier transformation, periodic boundary con-
ditions arise quite naturally, but it is also possible to use reflecting boundary
conditions. In either way, the boundary condition imposes certain constraints
on the crystalline structure inside the simulation box. Or, with other words, it is
important to have the correct size of the simulation box to fit exactly an integer
multiple of the periodicity of the atomic structure.

For the two-dimensional hexagonal structure, the solution is given in Eq. (4.4)
as

ψH(x, y) = At

[
cos(qx) cos(qy/

√
3) − cos(2q/

√
3)/2

]
+ ψ̄ .
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The resulting structure can be described by two basis vectors ~a = 2π
√

3
q

(√
3

2 ,
1
2

)

and ~b = 2π
q

√
3 (0, 1), compare section 4.1.2. Allowing a rotation of the entire

structure by an angle θ (x → x cos θ + y sin θ and y → −x sin θ + y cos θ), the
vectors can be written as

~a′ =
2π

q

√
3

( √
3/2 cos(θ) + 1

2 sin(θ)

−
√

3/2 sin(θ) + 1
2 cos(θ)

)
and

~b′ =
2π

q

√
3

(
sin(θ)
cos(θ)

)
.

To have a periodic structure in the simulation box, there are two restrictions on
the lengths Lx and Ly:

n~a′ −m~b′ =

(
Lx
0

)
and

i~b′ − j~a′ =

(
0
Ly

)
,

where n, m, i and j are integer numbers and θ < π/3.
Solving the two equations where the right hand side is equal to zero for θ

leads to conditions for n, m, i and j, namely

tan θ =
n− 2m√

3n
and

tan θ =

√
3j

2i− j
.

For the lengths of the simulation box, it then follows

Lx =
2π

q

√
3

[
n

√
3

2
cos θ +

(n
2
−m

)
sin θ

]
and

Ly =
2π

q

√
3

[(
i− j

2

)
cos θ +

√
3

2
j sin θ

]
.

One can see that the required system size depends strongly on the orienta-
tion. This limits the orientations which can be simulated in this work. Especially,
going to smaller misorientations requires larger simulation boxes. In the case of
grain boundaries, this can be seen directly from the dislocation picture. The
smaller the misorientation, the larger is the distance between the dislocations
and therefore also the required system size.

4.3 Numerical results

In the following, systems with planar interfaces are investigated. The interface is
aligned parallel to the y-axes, so that the system is macroscopically translation-
ally invariant in this direction, compare figure 4.4 (bottom). Microscopically,
however, it is not invariant under an arbitrary translation. This can best seen
in the case of a grain boundary, which can be described as a line of discrete dis-
locations, whose distance determines the misorientation angle. It becomes clear
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that microscopically the system is only invariant under translations which are
multiplies of this distance. This problem is also discussed in section 4.2.2.

Due to the periodic boundary conditions, one always has at least two inter-
faces in the system. They are, however, far enough away from each other not to
interact.

The grain boundaries are constructed by rotating two solid slabs by an an-
gle θ/2 in opposite directions, forming a symmetric tilt grain boundary of an
angle θ. The solid is created using the density field given by the one-mode ap-
proximation ψH(x, y), as given in Eq. (4.4). In between the solid slabs, a liquid
phase is placed, where ψ̄L = ψ̄, as shown in figure 4.4 (top). The densities are
chosen to be on the negative branch of the phase diagram. Therefore, the den-
sity of the solid phase is larger than the density in the liquid phase. To obtain
grain boundaries, ψ̄ is chosen to be in the coexistence region or within the solid
phase. Within a few time-steps, the liquid hence solidifies and the grain bound-
ary builds up. To find the real grain boundary properties, the system is evolved
for a much longer time, to ensure that the system is in equilibrium and the
chemical potential µ is uniform in the entire system.

If not explicitly stated, the control parameter r is fixed in the following at a
value of r = −0.1 and the average density ψ̄ is varied.

4.3.1 Order in the grain boundary

In this subsection, the main interest is focused on the grain boundary and how
a local order parameter can be defined in it. On both sides of the grain bound-
ary, in the solid bulk, the hexagonal lattice is unperturbed, characterized by a
periodically oscillating density function. Integrating over a full period gives a
local average density, which is constant in the bulk phases. Since the system
is periodic parallel to the interface, integrating along the y-axis corresponds to
integrating over a full period. One can define ψ̄y(x) ≡

∫
ψ(x, y)dy, which is

independent of x in all solids with exception of grains aligned with the y-axis.
Here, this integration gives an oscillating function and one has to integrate over
a period of x, too.

In the liquid, as has been shown in section 4.1, the density function is always
constant with a value smaller than the average value in the solid. Defining a
ψ̄y(x) is therefore possible, too.

To investigate a solid-liquid phase transition with an interface parallel to the
y-axis, one can now plot ψ̄y(x) as function of x, varying x from the solid to the
liquid phase. The result is shown in figure 4.5. One can see how ψ̄y(x) decreases
smoothly when going from solid to liquid, varying over a certain interface width ξ
of a few atomic layers. This is in agreement with theoretical and experimental
findings about solid-liquid interfaces [5].

Similarly, ψ̄y(x) can be plotted as a function of x for a system with two
solids with different orientations. The result is shown in figures 4.6 and 4.7
with the red line for two grain boundaries with different average densities. As
one goes from one grain to the other, passing the grain boundary, the density
decreases. The closer the system is to the coexistence region (smaller ψ̄), the
further down the density goes. For the system with rather low density, far inside
the solid phase, one can see that ψ̄y(x) starts to oscillate in the grain boundary,
increasing exactly in between the two grains.
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Figure 4.5: Solid-liquid interface. The red line shows how the local average den-
sity ψ̄y(x) =

∫
ψ(x, y)dy changes over the interface. It varies continuously from

ψ̄S in the solid to ψ̄L in the liquid. The variation takes place over a certain inter-
face width ξ. In the background, the density field ψ(x, y) is shown in a gray-scale
plot. The light regions correspond to a high density, whereas the darker ones
correspond to a low density. One can clearly see the hexagonal structure in the
solid phase and the transition to the continuous liquid phase. The average den-
sity in the system is ψ̄ = −0.2, a value being far inside the coexistence region.
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Being interested in the local order, one can define a local order parameter
by performing a wavelet transformation [77]. This is shown with the blue line.
One can see that this parameter also decreases in the interface but without
oscillations.
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Figure 4.6: Solid-solid interface of a symmetric tilt grain boundary with a
misorientation angle of 32.2◦ . With the red line, the local average density
ψ̄y(x) =

∫
ψ(x, y)dy is shown. ψ̄y(x) is constant in both solid bulk phases and

decreases in the grain boundary. However, there are oscillations, corresponding
to higher densities with an maximum at the dislocation line in the middle of the
grain boundary. To avoid these oscillations, on can use another measurement
of the order, as shown with the blue line. In the background, ψ̄(x, y) is shown.
The average density ψ̄ = −0.18, a value far inside the solid region.

To summarize, one can state that the local order decreases in the grain
boundary, similar as the order decreases as going from solid to liquid. Regarding
the local orientation of the crystalline phase, it remains constant in the two
phases where the order is high and changes drastically in the grain boundary,
where the order is decreased.

This observation is used in chapter 5 when developing a phase-field model
for polycrystalline solidification.

4.3.2 Grain boundaries

In this subsection, the grain boundaries as obtained in the phase field crystal
model are investigated for different misorientations and densities. Before cal-
culating the grain boundary energy, some snapshots of grain boundaries are
presented. The system size of the simulation box is chosen as small as possible,
it always contains one pair of dislocations. Since the distance between the dislo-
cations increases as the misorientation becomes smaller, the largest simulation
boxes are needed for the smallest misorientations. Inversely, the dislocations
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Figure 4.7: Same solid-solid interface as in figure 4.6 but with an average density
ψ̄ = −0.198, a value still in the coexistence region but close enough to the solid
region to allow the solid-solid interface to build up.

approach each other as the angle becomes larger and, since their core radius
is rather independent of the misorientation, start to overlap for large misorien-
tations. One can therefore see quite clearly when the picture of having a line
of separated dislocations breaks down, and with it the estimation of the grain
boundary energy following Read-Shockley [21].

In figure 4.8 to figure 4.13, the grain boundary is shown for different misori-
entations. The average density is far inside the solid region of the phase diagram,
ψ̄ = −0.1. To make it easier to see the dislocation pairs, the plotted region is
extended using the periodicity and twice the thickness used in the simulation
is plotted, showing two dislocation pairs instead of one. Also, only one of the
simulated grain boundaries is shown. The left and right part of the simulation
box is omitted.

In figure 4.14, a low-angle grain boundary (left) and a high-angle grain
boundary (right) are shown for different values of ψ̄. As ψ̄ is increased from
top to bottom, the liquid layer between the two grains becomes smaller. As the
grain boundaries interact, one can see that the behavior is different for the two
cases. For the high-angle grain boundary, the liquid remains as a film of con-
stant width between the grains. For the low-angle grain boundary, the liquid is
collected around the dislocation cores. The two dislocations attract each other,
sharing a liquid pool around their cores and hence breaking the symmetry of the
system. As ψ̄ is further increased, the distance between the dislocations becomes
relatively equal. Without liquid, this allows to minimize the elastic energy.

Grain boundary energy

In the following, the grain boundary energy is obtained for systems with different
misorientations. As explained in section 4.1.3, one can exploit the linear behavior
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Figure 4.8: Snapshot of a grain boundary with a misorientation θ = 32.2◦ .
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Figure 4.9: Snapshot of a grain boundary with a misorientation θ = 27.8◦ .
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Figure 4.10: Snapshot of a grain boundary with a misorientation θ = 21.8◦ .
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Figure 4.11: Snapshot of a grain boundary with a misorientation θ = 13.2◦ .
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Figure 4.12: Snapshot of a grain boundary with a misorientation θ = 9.4◦ .
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Figure 4.13: Snapshot of a grain boundary with a misorientation θ = 6.0◦ .
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Figure 4.14: Snapshots of a low-angle grain boundary with θ = 9.4◦ (left) and
high-angle grain boundary with θ = 32.2◦ (right) for different values of ψ̄. From
top to bottom, the average density is increased from ψ̄ = −0.198 to ψ̄ = −0.197,
both being inside the coexistence region, to ψ̄ = −0.196 just below coexistence,
further to ψ̄ = −0.190 and finally to ψ̄ = −0.180, quite far inside the solid
region. One can see that the liquid forms a rather homogeneous film for the
high-angle grain boundary, while in the low-angle case the liquid concentrates
around the dislocation cores when the two grains get closer.
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of the free energy with the grain boundary energy when plotting it against
1/Lx, where Lx is the system length perpendicular to the interface, as given in
Eq. (4.11).

This is shown in figure 4.15, for a system with r = −0.1, ψ̄ = −0.1 and a
misorientation of 6◦ . The points are fitted by a straight line, giving the grain
boundary energy as its slope. Using more than two systems of different lengths
allows one to obtain an estimation for the error of γGB from the fit. This method
is repeated for systems with different misorientations and different densities ψ̄.
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Figure 4.15: The grain boundary energy is obtained by plotting the free energy
of systems with the same misorientation and average densities ψ̄ but different
lengths Lx perpendicular to the interface against 1/Lx. The slope gives twice
the grain boundary energy, where the factor of two is due to the fact that in
periodic systems there are always two grain boundaries.

The grain boundary energy is shown in figure 4.16 as a function of the
misorientation θ for different values of ψ̄. On the lower x-axis, the misorientation
angle is given in radians, while on the upper one it is given in degrees. The data
is compared with the theoretical grain boundary energy as given in Eq. (4.13),
where the parameter r0 is obtained by a least square fit. Since this expression is
only valid for small misorientations, for the fit only systems with θ < 15◦ have
been included. One can see that the agreement is very good for small angles,
while it fails for larger misorientations.

In figure 4.17, the obtained radius r0 is shown as a function of the average
density ψ̄. One can see that it is rather constant for large values of ψ̄, which are
far inside the coexistence region. The estimate of r0 = a exp(−0.5) = 4.4 from
Elder and Grant [73] is rather good average value. The lattice constant is given
as a = 7.26 in these simulations.
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Figure 4.16: Grain boundary energy as a function of the misorientation θ, shown
for different densities. The lowest curve, ψ̄ = −0.196, is very close to the coexis-
tence region (ψ̄S ≈ −0.19608), while the upper curve is far inside the solid region.
The lines correspond to the grain boundary energy as obtained from Eq. (4.13),
where r0 is obtained by a least square fit. As predicted in the derivation of the
grain boundary energy, the agreement is very good for small misorientation,
while it fails for high-angle grain boundaries.
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Figure 4.17: The values of r0 as obtained in the fit, shown in figure 4.16 as
a function of the average density ψ̄. Far inside the solid region, r0 is rather
constant, while it increases when approaching the coexistence region. For com-
parison, the lattice constant is a = 7.26 and the value estimated by Elder and
Grant [73] is r0 = 4.4.
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4.3.3 Grain boundary wetting

During the solidification, two grains with different orientations can approach
each other, having a thinner and thinner liquid film between them, as shown
in figure 4.14 for two different misorientations. An interesting question is now
whether the liquid film is stable or unstable, hence whether it is energetically
preferable to keep a liquid film in between a solid-solid grain boundary or not.
This question is of importance since having a liquid film between two solids
affects the elastic properties of the macroscopic body.

In this subsection, a phenomenological model from Rappaz, Jacot and Boet-
tinger [78] for the contact potential between two grain boundaries is presented.
It depends on the grain boundary energy and distinguishes in general between
attractive and repulsive grain boundaries. Grain boundaries, whose grain bound-
ary energy is larger than twice the solid liquid interface energy are expected to be
repulsive or “wet” grain boundaries, whereas grain boundaries with γGB < 2γSL

are expected to be attractive or “dry”.
The model is schematically demonstrated in figure 4.18. As the two solids

are well separated by a liquid of width X , where X is much larger than the
interface width δ, the interfaces do not interact and the energy costs of such a
“grain boundary” corresponds to twice the solid-liquid interface energy. As the
interfaces approach each other, they start to interact and the interaction can
be described by an interaction potential γ(X), which depends on the width of
the liquid layer. As the two solids continue to approach each other, the liquid
interface width X goes to zero and the energy corresponds to the grain boundary
energy γGB.

Figure 4.18: Schematics of two solid grains separated by a liquid film of widthX .
As the two solids approach each other, they start to interact. The interaction
potential can be written as γ(X), with the two limiting values 2γSL for large X
and γGB for X → 0. From [78].

Since the solid order decays exponentially into the liquid, as a first approxi-
mation the interaction potential can be estimated as [78]

γ(X) = 2γSL + (γGB − 2γSL) exp(−X/δ) . (4.26)
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The free energy of a system with two differently orientated solid phases with
a liquid film of width X in between can then be written as

FLx = FS(ψ̄S)(Lx −X) + FL(ψ̄L)X + εe−X/δ ,

where ψ̄L is the value of ψ in the liquid phase and ψ̄S is the average over ψ
in a unit cell of the solid. Here, the constant term has been neglected and
ε = (γGB − 2γSL). The total system is assumed to be translationally invariant
parallel to the interface. Its length perpendicular to the interface is Lx, the
length of the solid phases is therefore Lx −X .

To add the constraint of the lever rule

ψ̄Lx = ψ̄S(Lx −X) + ψ̄LX , (4.27)

one can use a Lagrange multiplier µ and obtain

FLx = FS(ψ̄S)(Lx −X) + FL(ψ̄L)X − µ
[
ψ̄S(Lx −X) + ψ̄LX − ψ̄TLx

]
εe−X/δ .

Minimizing the free energy with respect to the liquid layer width X leads to

Lx
dF
dX

= −FS + FL + µψ̄S − µψ̄L − ε

δ
e−X/δ = 0 ,

which can be written as

FS −FL = µ(ψ̄S − ψ̄L) − ε

δ
e−X/δ . (4.28)

Minimizing the free energy with respect to ψ̄S and ψ̄L gives

Lx
dF
dψ̄S

=
dFS(ψ̄S)

dψ̄S
(Lx −X) − µ(Lx −X) = 0 , and

Lx
dF
dψ̄L

=
dFL(ψ̄L)

dψ̄L
X − µX = 0 ,

so that

µ =
dFS(ψ̄S)

dψ̄S
=
dFL(ψ̄L)

dψ̄L
. (4.29)

With Eqs. (4.27), (4.28), and (4.29) one has four equations for the unknowns
X , ψ̄S, ψ̄L and µ. The system is therefore fully determined and can be solved
numerically. Note that ψ̄S and ψ̄L are now functions of X and µ, while for the
case without interaction they are constants as given in the phase diagram.

One is now in the position to test the model presented above. Simulations
are performed as shown in figure 4.14, where increasing ψ̄ forces two solid grains
to approach each other. The chemical potential µ and the density in the solid
ψ̄S can be obtained directly from the simulation. The average density ψ̄L is not
well defined when the two grains are very close together but can be defined via
the dependence on the chemical potential. In the liquid, ψ̄L is known as function
of ψ̄ as well as the chemical potential µL = ∂ψ̄FL. Defining ψ̄L(µ) then allows

to use the lever rule to define a X(µ) = ψ̄−ψ̄S

ψ̄L(µ)−ψ̄S
Lx.

If the theory and the simulation results agree well, one will be able to fit
the theory to the simulation results and obtain values for ε and δ which are
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independent of the system size. This is done plotting µ−µEq for different system
lengths Lx versus the average density ψ̄. The numerical data is then fitted with
a least square fit, solving the equations above numerically. The numerical data
is shown in open symbols in figure 4.19, as well as the fit which is plotted
with lines. The obtained values for ε and δ are also given. One can see that
the agreement is very good, the fitted values of ε ≈ 0.0045 agree well with
ε = γGB − 2γSL = 0.0043, independent of the system size. The fitted interface
widths δ ≈ 13.3 are comparable with the width of a solid-liquid interface, which
can be obtained from a plot like figure 4.5 and is given as δ ≈ 12.5. The green
vertical line in all figures represents the equilibrium value of ψ̄S, it divides the
coexistence region from the solid one.
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Figure 4.19: µ − µEq for a high-angle grain boundary with a misorientation of
32.2◦ . The fitted values of ε agree well with γGB(saturated) − 2γSL = 0.0043.
The same is true for the values of δ which are in good agreement with the
interface width of δ = 12.5.

In figure 4.20, the liquid layer width X divided by the system length Lx is
shown, also for different system lengths and compared with the theory. One can
see nicely how the liquid layer width follows the lever rule (solid black line) as
the interfaces are well separated and then deviates to larger values, showing the
repulsive behavior.

In figures 4.21 and 4.22, the relative chemical potential and the interface
width are shown as functions of the average density ψ̄ for a low-angle grain
boundary. One can see that µ becomes smaller than µEq for some values of
ψ̄. Also the liquid layer width falls below the lever rule. Both properties are
expected for attractive grain boundaries. For even larger values of ψ̄, X becomes
larger than the lever-rule value and µ > µEq, again a repulsive behavior.

As the misorientation becomes smaller, the dislocations become further sep-
arated and instead of having a liquid film between the two solids, one rather
observes liquid pools around the dislocation cores, as shown in figure 4.14. Here,
the theory starts to fail and the agreement with the simulation gets worse.

To obtain a better understanding of what is happening, it is useful to obtain
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Figure 4.20: The width of the liquid phase X divided by the total length Lx is
shown for a misorientation of 32.2◦ . The simulation results are given with the
symbols while the lines represent the results as obtained by the theory. One can
nicely see how X deviates from the lever rule towards larger values as the two
interfaces interact, showing the repulsive behavior.
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Figure 4.21: µ−µEq for a low-angle grain boundary with a misorientation of 6◦ .
For low-angle grain boundaries, the phenomenological model fails and is there-
fore not shown in this figure. One can see that the chemical potential falls below
its equilibrium value as the two interfaces interact, showing attractive behavior.
For even larger values of ψ̄, it represents the repulsive nature again.
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Figure 4.22: The width of the liquid phase X divided by the total length Lx is
shown for a low-angle grain boundary with a misorientation of 6◦ . The simula-
tion results are given with the symbols for different system lengths. As the two
interfaces interact, X drops below the lever-rule value, showing that the inter-
action potential is attractive here. For larger ψ̄, the behavior changes again, the
interaction potential becomes repulsive.

the contact potential numerically. The contact potential can be obtained by
writing down the grand potential in terms of the interface width X

Ω(X) = ΩS(Lx −X) + ΩLX + 2γSL + V (X)

and minimizing with respect to X gives

0 = ΩL − ΩS + V ′(X)

or

V ′(X) = ΩS − ΩL

= fS(ψ̄S) − µψ̄S − fL + µψ̄L .

Knowing the free energies fS and fL as well as the relations between µ and ψ̄
for solid and liquid, one can invert them to obtain an expression for ψ̄S(µ) and
ψ̄L(µ) respectively. This then leads to an expression for V ′(µ), without using
explicit information of about the system size or the grain boundary.

With the knowledge of X(ψ̄) and µ(ψ̄) as shown in figures 4.20 and 4.19, one
can obtain V ′(X) and integrate it to V (X). This contact potential is shown in
figure 4.23 for two different systems. A high-angle grain boundary is shown in
red, where the liquid is rather homogeneous between the solids and the model by
Rappaz [78] holds, one can see that the agreement between the simulation data
(open points) and γ(X) with the values of ε and δ as obtained from the grain
boundary energy and the interface width (lines) is very good. For a low-angle
grain boundary, the contact potential is shown in blue. One can see that the
agreement is rather poor, even qualitatively there are differences. For intermedi-
ary values of X , the contact potential becomes negative and hence “attractive”.
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Figure 4.23: Contact potential for an high-angle and a low-angle grain boundary
compared to the theory by Rappaz et al. [78]. For high-angle grain boundaries
the simulations agree well with the theory, whereas for low-angle grain bound-
aries it fails.

4.4 Summary and conclusion

In this chapter, grain boundaries have been studied in great detail with a phase
field crystal model. It has been shown that grain boundaries of different mis-
orientations can be created and investigated for different values of the average
density ψ̄. In this work, three aspects are of special interest.

Firstly, it has been investigated how grain boundaries are formed and how
an order parameter can be defined in them. In a solid-liquid system, the order
decays from the solid phase into the liquid phase over the distance of a few
atomic layers, which is in perfect agreement with theory and experiments. In a
solid-solid system, one can also define an order which then is reduced inside the
grain boundary. The orientation is constant where the order is high and varies
in the region where the order is reduced.

In the second part, the structure of the grain boundary has been investigated.
It has been shown that the grain boundary can be seen as a line of dislocations
for small misorientations. Then, the dislocations are well separated. The grain
boundary energy has been obtained and compared with the Read-Shockley the-
ory and a very good agreement was found for low-angle grain boundaries. For
large misorientations, the dislocations overlap and the Read-Shockley theory
fails, as predicted. The grain boundary energy has been calculated for different
values of ψ̄ and radius r0 as appearing in the Read-Shockley theory has been
determined in dependence of ψ̄.

In a third part, the formation of grain boundaries has been investigated fur-
ther. During the solidification process, the liquid film remaining between grains
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of the same or different orientation can affect the elastoplastic properties of the
macroscopic body crucially. It is important to know whether the liquid film is
stable or unstable, hence whether the grain boundary is wet or dry. A phe-
nomenological model by Rappaz, Jacot and Boettinger [78] has been presented,
which divides the grain boundary in attractive and repulsive grain boundaries.
The theory has been tested and was found to hold for high-angle grain bound-
aries, while for low-angle grain boundaries, the description of a homogeneous
liquid film between the two grains fails. It has been shown that there are pools
of liquid around the dislocation cores, which seem to attract each other. The
contact potential has been determined numerically for a high- and a low-angle
grain boundary and it has been shown that the low-angle grain boundaries are
not monotonously repulsive or attractive, but attractive at larger distances while
repulsive on shorter ones.

It is very interesting to continue this work and go to even smaller misorienta-
tions to obtain grain boundaries that are really attractive. For the moment, the
only problem in doing so is the computation time: small misorientations consist
of dislocations which are separated by a large distance and hence large systems
are needed. It is also interesting to investigate the transition between the low-
angle and high-angle regime and how it depends on the interface width δ. This
can be done by varying the normalized temperature r.



Chapter 5

Phase-Field Model for
Polycrystals
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The solidification of an anisotropic alloy from its melt is well understood
and appropriate numerical models exist. In this work, the question is raised
how two or more crystals with different local crystalline orientation interact. The
formation and the evolution of grain boundaries is investigated, generalizing the
phase-field model for single crystals to include the local crystalline orientation.

In section 2.3, the standard phase-field model for the solidification of a pure
substance with only one local crystalline orientation has been presented, as well
as two ways of generalizing the model to polycrystals. In this chapter, a different
model is developed and tested.

This chapter is organized as follows. Based on the properties of polycrystals
as presented in section 2.1, a phenomenological free energy is derived in sec-
tion 5.1, which is then used to obtain the set of equations of motion for the so-
lidification of a polycrystal. In section 5.2, the model is tested for stability and it
is discussed whether the simulation results correspond to the underlying physics.
Some problems are pointed out and their importance is investigated. Finally,
some results of the simulation of polycrystalline solidification are presented. In
section 5.3, the model properties are summarized and some propositions for the
further development are outlined.

5.1 Phase-field model

To develop a model which describes the solidification of crystals with different
crystalline orientations θ, the already existing and well explored model for the
solidification of an anisotropic monocrystal, as introduced in section 2.3.1, is
generalized. The two phases solid and liquid are given by a phase-field variable φ,
here with φ = 1 in the solid and φ = 0 in the liquid phase. For the crystalline
orientation, an extra orientation field θ is introduced. A grain boundary is then
given by a change in the orientation field, while the orientation is constant in
the different grains. As seen in section 4.3.1, the change in the orientation is
accompanied by a lowered crystalline order, which is in this model represented
by a decrease in the phase field φ.

In section 5.1.1, a phenomenological free energy including both fields, φ and
θ, is developed. An important aspect of the model is the anisotropy of the surface
energy due to the crystalline structure, which is introduced in section 5.1.2. It
depends on the orientation field θ and has to be included in the free energy.
In section 5.1.3, it is shown how the equations of motion can be obtained by
minimizing the free energy with time by taking the functional derivative. Finally,
the model parameters are related to physical quantities in section 5.1.4.

5.1.1 Free energy

Since the physics is invariant under a global rotation, the free energy cannot
depend on the crystalline orientation θ explicitly, but on its gradients only. The
lowest order gradient term obtained from a Landau expansion is (∇θ)2. In the
following, the precise form of the free energy is derived.

The first part of the free energy is identical to the standard free energy of
phase-field models for solid-liquid phase transitions, as explained in section 2.3.1.
It consists of a gradient term, a double well potential f(φ) and a coupling
function g(φ), which allows to shift the minima in the double well for the phases
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solid and liquid according to the normalized temperature u, using the coupling
parameter λ. The second part is here given most generally as the lowest order
gradient term (∇θ)2, coupled with a coupling constant ν and a coupling function
g̃(φ). The free energy can then be written as

F =

∫ [
1

2
W 2(∇φ)2 + f(φ) + uλg(φ) + νg̃(φ)(∇θ)2

]
dV . (5.1)

The function g̃(φ) has to take into account the different energy costs in the
solid and the liquid phase. The orientational variable θ is defined in the entire
system, even in the liquid phase where it has no physical meaning. Therefore,
the coupling function g̃(φ) has to ensure that angle variations in the liquid do
not lead to an increase in the free energy and hence g̃(φ = 0) has to vanish.

The explicit form of g̃(φ), especially in the limit φ → 1, is crucial for the
model and is discussed in the following. To point out the problem, a finite
value for g̃(φ = 1) is assumed and two simple limiting cases are discussed.
In both cases, the orientation is fixed at the left and right boundary of the
system to a value θ1 and θ2, respectively. The effect of the phase field is for
the moment neglected, φ can be assumed to be constant. In the first example,
shown in figure 5.1 a), the crystalline orientation varies rapidly in a localized
region of width W and is constant in the rest of the system. The free energy is

given by Fθ ∝ W
(
θ2−θ1
W

)2
. The opposite behavior, shown in figure 5.1 b), is a

continuous variation over the entire system length L, leading to a free energy of

Fθ ∝ L
(
θ2−θ1
L

)2
. In the limit of large systems, L → ∞, for a given value of W

and a finite coupling function g̃(φ), the continuous case is always energetically
favorable.

This remains true if one allows φ to vary in the grain boundary. The most
extreme variation of φ is to put it to zero in the interface. Then, the orientation
can vary without increasing the energy, but a finite energy contribution arises
from the change in φ, basically forming two solid-liquid interfaces. This finite
energy, which is independent of the system size, again becomes larger than the
continuous deformation for systems above a certain critical length.

a) localized variation b) continuous variation

Figure 5.1: Examples for a possible variation of the crystalline orientation θ.
In a), the localized case is shown, where θ is constant in the entire system but
in a small region W , where it varies rapidly. In b), the opposite behavior is
shown. The orientation varies continuously over the entire system length L.

A possible way to circumvent this problem is to introduce a second, non-
analytical gradient term ∝ |∇θ|, as demonstrated in section 2.3.3. Here, another
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approach is developed, namely to use the standard second order gradient term
only but with a singular coupling function g̃(φ), which tends to infinity in the
solid phase.

Form of coupling function

As mentioned before, the explicit form of g̃ turns out to be crucial for the
existence of localized grain boundaries. In the following, it is investigated for
which functions of g̃ grain boundaries remain stable.

Most generally, with the two limits g̃(φ → 0) → 0 and g̃(φ → 1) → ∞, a

form g̃(φ) = g̃1(φ)
(1−φ)α is assumed, where α is some positive real exponent and g̃1 is

a polynomial in φ. At equilibrium (u = 0, δF/δθ = 0, δF/δφ = 0), one obtains
for a one-dimensional system:

0 = ∂x [g̃(φ)∂xθ] , (5.2)

0 = −f ′(φ) +W 2∂xxφ− g̃′(φ)(∂xθ)
2 . (5.3)

From Eq. (5.2), it follows that at equilibrium g̃(φ)∂xθ = A, where A is a constant
to be determined. With this expression, Eq. (5.3) can be written as

W 2∂xxφ = f ′(φ) + g̃′(φ)
A2

g̃(φ)2
= − d

dφ

[
−f(φ) +

A2

g̃(φ)

]
. (5.4)

Replacing x by t and φ by y, one has the equation of a particle moving in a
potential Veff = −f(φ) + A2/g̃(φ). The localized grain boundary solution then
corresponds to the trajectory of a particle that starts with zero velocity at y = 1,
goes to y = y0 in an infinite time and comes back. The infinite duration of the
trajectory leads to the requirement that Veff has a maximum at φ = 1, hence

dVeff

dφ
= −f ′(φ) +A2

[
−α(1 − φ)α−1

(
1

g̃1

)
+ (1 − φ)α

(
1

g̃1

)′]
= 0 (5.5)

d2Veff

dφ2
= −f ′′(φ) +A2

[
α(α − 1)(1 − φ)α−2

(
1

g̃1

)
− 2α(1 − φ)α−1

(
1

g̃1

)′

+(1 − φ)α
(

1

g̃1

)′′]
< 0 , (5.6)

For f(φ) = φ2(φ−1)2 as used in this work, the first and second derivatives of the
double well potential at φ = 1 are given by f ′(φ = 1) = 0 and f ′′(φ = 1) = 2.
From Eq. (5.5), it follows immediately that α > 1. From Eq. (5.6), one can see
that a solution exists for α = 2 only for appropriate values of A, and always for
α > 2. In figure 5.2, the effective potential is shown for different values of α,
where for simplicity A = 1 and g̃1(φ) = 1 are chosen.

Another requirement on the form of g̃ is that the energy of a system with
continuous orientation variation and constant φ tends to a limit value larger
than zero as L goes to infinity.
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Figure 5.2: The effective potential Veff is shown for different values of α, where
for simplicity A = 1 and g̃1(φ) = 1 are chosen. For α = 2, φ = 1 is extremal.

In an homogeneous system, the phase-field variable is constant and close
to 1, φ = φ0 ≡ 1 − φ1 with φ1 ≪ 1. The gradient of θ can be written as
(∇θ)2 = (∆θ/L)2 and the free energy can be expressed in terms of φ1 as

F = L

[
φ4

1 − 2φ3
1 + φ2

1 +

(
∆θ

L

)2
g̃1(φ1)

φα1

]
. (5.7)

The still unknown function g̃1 has to remain at a non-zero value as φ1 → 0 and
can therefore be written in lowest order as g̃1(φ1) = 1 + O(φ1).

For the free energy, it follows, also to lowest order in φ1,

F ≈ L

[
φ2

1 +

(
∆θ

L

)2

φ−α1

]
. (5.8)

Searching for φ1 that minimizes the free energy, ∂F/∂φ1 = 0, leads to

φ1 =
(α

2

) 1
α+2

(
∆θ

L

) 2
α+2

. (5.9)

Not being interested in the proportionality constant, the prefactor is neglected
and the rest is inserted back into the free energy from Eq. (5.8), which gives

F ∝ L

[(
∆θ

L

) 4
α+2

]
.

To obtain a length-independent free energy to the lowest order in φ1, one can
see that α = 2.

With this choice, it is ensured that the free energy for L→ ∞ approaches a
finite value, independent of the form of g̃1(φ). For smaller lengths, however, the
free energy depends on L. To prevent the system from forming spontaneous grain
boundaries, it is necessary that the free energy increases as L is decreased and
hence that the constant value is approached from above, as shown in figure 5.3.
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To investigate the behavior for smaller (but still large) L, the expansion is
extended to the next order. With

φ1 ≈
(

∆θ

L

) 1
2

+ φ̃1 , (5.10)

one has g̃1(φ1) = 1 + bφ1. Minimizing the free energy with respect to φ1 gives

0 = 2φ4
1 − 6φ5

1 +

(
∆θ

L

)2

(2 − bφ1) , (5.11)

taking into account the first two leading orders in φ1. Inserting Eq. (5.10) in
Eq. (5.11) gives

(b+ 6)

(
∆θ

L

)5/2

= φ̃1

[
8

(
∆θ

L

)3/2

− (30 + b)

(
∆θ

L

)2
]
. (5.12)

Since ∆θ/L is small, one can neglect the terms of order (∆θ/L)2 in the square
brackets and solve for φ̃1, leading to φ̃1 = b+6

8

(
∆θ
L

)
. Inserting

φ1 ≈
(

∆θ

L

) 1
2

+
b+ 6

8

(
∆θ

L

)
(5.13)

back into the free energy and neglecting terms of order
(

∆θ
L

)2
and higher, gives

F = 2∆θ + (b − 2)

(
(∆θ)3/2√

L

)
.

Requiring that the energy approaches the limiting value from above gives b > 2.
Please note that the coupling function g̃1(φ1) = 1+ bφ1 is expressed in terms of
φ1 = 1 − φ.

To obtain an expression for g̃1(φ), one should remember that g̃1(φ) has to
vanish for φ = 0. In addition, one can normalize g̃1(φ = 1) = 1, leading to the
form

g̃1(φ) = aφα0 − (a− 1)φα0+1 , (5.14)

with unknown constant a and exponent α0.

Forgetting about the singular behavior of g̃ in φ = 1, the results of Karma-
Kessler-Levine [79] about modeling of crack propagation lead to choose α0 > 2.
Choosing α0 = 2 would lead to singular behavior of θ in the middle of the grain
boundary and to strong pinning of the grain boundary on grid points, so that
α0 = 3 is taken in this work.

To obtain a, one uses Eq. (5.14) to get g̃1(φ = 1−φ1) = 1+(a−4)φ1+O(φ2
1).

One can identify a− 4 = b > 2 and obtain a > 6.

With all these considerations and choosing a = 7, the singular coupling
function can be written as

g̃(φ) =
7φ3 − 6φ4

(1 − φ)2
. (5.15)
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The other coupling functions are given as f(φ) = φ2(φ − 1)2 and g(φ) =
10φ3 − 15φ4 + 6φ5, leading to the free energy

F =

∫ [
1

2
W 2(∇φ)2 + φ2(φ− 1)2 + uλ

(
10φ3 − 15φ4 + 6φ5

)

+ν
7φ3 − 6φ4

(1 − φ)2
(∇θ)2

]
dV , (5.16)

with gradient constant W , dimensionless temperature u and coupling constants
λ and ν.

The free energy for a homogeneous system is shown in figure 5.3 as a function
of the system length. One can see that it approaches a constant value for large
system lengths from above and that it has a maximum at LC . For lengths larger
than LC , the homogeneous solution is stable, while for L < LC the homogeneous
solution is unstable and grain boundaries form spontaneously.
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Figure 5.3: The free energy of a homogeneous system is shown in dependence
of the system length L. The energy approaches a constant value for large L
from above. The maximum at L = LC prevents spontaneous grain boundaries
formation. For small L, however, grain boundaries are not stable anymore.

Even if the idea of having a singular coupling function appears to be unnatu-
ral, it can be motivated by physical considerations. In the liquid, the orientation
is described as more or less random, so that an angle gradient does not lead to
an increase in the free energy. In the solid, however, changing the orientation
corresponds to a deformation of the crystal. The energy of a deformation in a
solid is orders of magnitude larger than in a liquid, which is taken into account
in the model by the coupling function which diverges in the solid phase.

5.1.2 Anisotropy

The surface energy of a crystalline material depends on the interface orientation
with respect to the crystalline orientation θ. While in section 2.3.1 the interface
normal is expressed in terms of an angle Θ, here it is more convenient to express
it in terms of the interface normal ~n. The interface normal can be obtained from
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the gradient of the phase field φ as

~n =
1√

(∂xφ)2 + (∂yφ)2

(
∂xφ
∂yφ

)
. (5.17)

For a single crystal with a cubic lattice, whose crystalline structure is taken to
be aligned parallel to the coordinate system, a fourfold anisotropy W (~n) can be
written as [39]

W (~n) = W0ās
[
1 + ǫ(n4

x + n4
y)
]
. (5.18)

The strength of the anisotropy is characterized by a parameter ǫ4, which deter-
mines ās = 1 − 3ǫ4 and ǫ = 4ǫ4

1−3ǫ4
.

For polycrystals, one cannot align the crystalline lattice parallel to the coor-
dinate system since they consist of several single crystals with different orienta-
tions. To be able to describe polycrystals, one has to generalize the anisotropy
from Eq. (5.18) to include the local orientation θ. This can be performed by al-
lowing a rotation of the crystalline reference axes by the orientation angle θ. The
unit vectors of the interface direction then become nx → nx cos(θ) + ny sin(θ)
and ny → −nx sin(θ) + ny cos(θ). It then follows that

W (~n, θ) = W0ās

{
1 +

ǫ

[(∂xφ)2 + (∂yφ)2]2

[
3

4

(
(∂xφ)4 + (∂yφ)4 + 2(∂xφ)2(∂yφ)2

)

+
1

4

(
(∂xφ)4 + (∂yφ)4 − 6(∂xφ)2(∂yφ)2

)
cos(4θ)

+
(
(∂xφ)3(∂yφ) − (∂xφ)(∂yφ)3

)
sin(4θ)

]}
. (5.19)

5.1.3 Equations of motion

The equations of motion for the different fields are given by the minimization
of the free energy τ∂tφ = − δF

δφ and τθ∂tθ = − δF
δθ , leading to

∂tφ = 1/τ
{
−4φ3 + 6φ2 − 2φ+ λu(−30φ2 + 60φ3 − 30φ4)

+ W (~n, θ)2 [(∂xxφ) + (∂yyφ)]

+ 2W (~n, θ) [(∂xW (~n, θ))(∂xφ) + (∂yW (~n, θ))(∂yφ)]

+ ∂x

[
((∂xφ)2 + (∂yφ)2)W (~n, θ)

∂W (~n, θ)

∂(∂xφ)

]

+ ∂y

[
((∂xφ)2 + (∂yφ)2)W (~n, θ)

∂W (~n, θ)

∂(∂yφ)

]

− νg̃′(φ)
[
(∂xθ)

2 + (∂yθ)
2
]}

(5.20)

and

τθ∂tθ = 2ν {g̃(φ) [(∂xxθ) + (∂yyθ)] + g̃′(φ) [(∂xφ)(∂xθ) + (∂yφ)(∂yθ)]}
− W (~n, θ)(∇φ)2[∂θW (~n, θ)] , (5.21)

where g̃(φ) = 7φ3−6φ4

(1−φ)2 and g̃′(φ) = 21φ2−24φ3

(1−φ)2 + 2(7φ3−6φ4)
(1−φ)3 .

Note that the characteristic time constant τ depends also on the interface

orientation, τ = τ0
W (~n,θ)2

W 2
0

. The time constant τθ in the equation of motion for

the angle variable turns out to be important and is discussed in section 5.2.2.
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The derivatives of W (~n, θ), as given in Eq. (5.19), are needed in the equation
of motion and can be calculated to

∂W (~n, θ)

∂(∂xφ)
=

4W0ǫ4
[(∂xφ)2 + (∂yφ)2]3

{
4 cos(4θ)(∂xφ)(∂yφ)2

[
(∂xφ)2 − (∂yφ)2

]

+ sin(4θ)(∂yφ)
[
−(∂xφ)4 + 6(∂xφ)2(∂yφ)2 − (∂yφ)4

]}
,

∂W (~n, θ)

∂(∂yφ)
=

4W0ǫ4
[(∂xφ)2 + (∂yφ)2]3

{
4 cos(4θ)(∂xφ)2(∂yφ)

[
−(∂xφ)2 + (∂yφ)2

]

+ sin(4θ)(∂xφ)
[
(∂xφ)4 − 6(∂xφ)2(∂yφ)2 + (∂yφ)4

]}
and

∂θW (~n, θ) =
4W0ǫ4

[(∂xφ)2 + (∂yφ)2]2
{
−
[
(∂xφ)4 + (∂yφ)4 − 6(∂xφ)2(∂yφ)2

]
sin(4θ)

+ 4
[
(∂xφ)3(∂yφ) − (∂xφ)(∂yφ)3

]
cos(4θ)

}
.

Finally, an equation of motion for the dimensionless temperature field u is
needed. Assuming that the temperature simply evolves according to the diffusion
law, the equation of motion can be written as

∂tu = D∇2u+ ∂tφ , (5.22)

where h(φ) = 2φ has been chosen, compare section 2.3.1.

5.1.4 Model parameters

In this subsection, a solid-liquid system with constant angle is investigated. As-
suming that the crystalline orientation is constant, one can neglect the equation
of motion for θ.

For the one-dimensional case with interface in y-direction (∂yφ = 0), the
anisotropic gradient constant W (θ) = W0ās

{
1 + ǫ

[
3
4 + 1

4 cos(4θ)
]}

and the

angle-dependent time constant is chosen as τ = τ0
W (θ)2

W 2
0

. For a given anisotropy

(ās, ǫ), crystal orientation θ and diffusion constant D, the remaining model
parameters are W0, τ0 and λ.

As derived in section 2.3.1, the capillary length is given by d0 = a1
W0

λ and

the kinetic coefficient as β(θ) = a1

[
τ(θ)
λW (θ) − a2

W (θ)
D

]
.

The constants a1 and a2 depend on the functions f and g, and are given as
a1 = I/J = 1

3
√

2
and a2 = (K + JF )/I = 2.35. The integrals I = 1

3
√

2
, J = 1,

F = ln 2√
2

and K = 47−30 ln(4)

60
√

2
can be calculated as defined in Eqs. (2.41) to (2.44),

where here φ0 = 1
2 [1− tanh(x/

√
2)] and g0 = g(φ0). For λ = Dτ0

W0

1
a2

, the kinetic
coefficient vanishes. With a fixed capillarity length d0 = a1W0/λ, the relation
between τ0 and W0 is given by

τ0 = a2
W 2

0 λ

D
= a1a2

W 3
0

Dd0
. (5.23)

5.2 Numerical results

With the model derived in section 5.1, one has a set of equations for the phase
field φ, the local crystalline orientation field θ and the dimensionless tempera-
ture u. In this section, the equations of motion as given in Eqs. (5.20), (5.21)
and (5.22) are solved numerically and the results are interpreted.
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Firstly, the grain boundaries are tested for one-dimensional systems. Starting
with an isotropic system, it is shown in section 5.2.1 that localized grain bound-
aries can be obtained which are independent of system size and discretization. As
predicted in the derivation of the free energy, there is a minimal misorientation
angle between two grains below which the grain boundary becomes unstable.
In other words, for a certain misorientation, undercooling and anisotropy, there
is a critical coupling constant νc, below which this grain boundary disappears.
In section 5.2.2, at the example of a tricrystal, the mobility constant in the
equation of motion for the angle field is discussed.

Introducing anisotropy, an artificial interface motion is observed, for solid-
liquid interfaces as well as for solid-solid interfaces. This effect is investigated
in sections 5.2.3 and 5.2.4. In section 5.2.5, the importance of this effect is de-
termined by keeping the volume of a solid surrounded by its liquid constant.
The effect which causes the interface motion leads to a change in the equilib-
rium temperature, which gives an idea of the magnitude of the correction. For
two-dimensional systems with different orientations, the equilibrium shape is
determined and compared with the so-called Wulff shape, as introduced in sec-
tion 2.1. Since the artificial effects are found to be small, in section 5.2.6, the
growth of different grains in their liquid is simulated, showing that the model
is very well capable of treating polycrystalline solidification.

5.2.1 Stability of the obtained grain boundaries

As described in section 5.1.1, the free energy has to be of a very specific form
to allow for stable and localized grain boundaries. In the following, it is tested
whether the obtained free energy leads to grain boundaries which are indepen-
dent of system size and which converge towards the same solution when using
a finer numerical grid.

This is investigated for simple quasi one-dimensional systems of two solids
with different orientations which are growing towards each other. This is shown
in figure 5.4 for isotropic systems with different system lengths. At the left hand
side, the orientation angle is initially at θ1 = π/20 and the phase-field variable at
φ1 = 1, placing the system in the solid phase. On the right hand side, θ2 = π/4
and φ2 = 1, also solid but with a different crystalline orientation. The resulting
interface solutions are stable, localized and independent of the system size. In
figure 5.5, φ and θ in the interface region are enlarged, showing that the grain
boundary solution is identical in all three cases. The dependence of the interface
solution on the discretization is shown in figure 5.6, demonstrating that the
interfaces converge towards a well-defined continuum solution.

As already seen in the derivation of the free energy, the existence of a lo-
calized grain boundary depends on the coupling parameter ν. In figure 5.7, the
same system is shown for different coupling parameters ν. As one can see, there
is a critical coupling parameter νc, below which the stable solution disappears.
For ν < νc, the grain boundary becomes spread out, accompanied by a decrease
of φ in the entire system.

The critical coupling parameter depends on the anisotropy ǫ4, the undercool-
ing ∆ and, most importantly, on the misorientation ∆θ. For a given ν, there is
a smallest possible misorientation below which all grain boundaries disappear.
In the following, the dependence of νc on the model parameters is investigated.
This allows to estimate the smallest misorientations possible in the performed
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Figure 5.4: One-dimensional system of two solids growing towards each other.
For three systems with different system sizes, φ and θ are shown at equilibrium,
demonstrating the localized solid-solid interfaces being independent of the sys-
tem size.
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is initially at θ1 = π/20 and θ2 = π/4. For different values of ν, the interface
solutions are shown. Below a critical value of ν, the localized grain boundary
disappears (red, green and blue curves).



5.2 Numerical results 115

simulation.
In figure 5.8, the dependencies of νc as obtained from numerical simulations

are presented. One can see that νc is approximately proportional to 1
∆θ2 and

that it varies linearly with ǫ4.
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Figure 5.8: The critical value νc is shown as a function of the misorientation ∆θ
for different values of ǫ4 (left) and as a function of the anisotropy ǫ4 for different
misorientations (right). One can see that νc is approximately proportional to

1
∆θ2 and that is varies linearly with ǫ4.

By using a sufficiently large coupling parameter, one can in principle create
grain boundaries with arbitrarily small angle differences. There is, however, a
numerical problem. The larger ν, the more localized the interface region be-
comes, and therefore the smaller is the required discretization. Another way to
obtain small angle differences is to decrease the undercooling, which leads to
slower growth and longer simulation times.

In figure 5.9, the grain boundary energy for symmetric tilt grain boundaries
is shown with open circles in arbitrary units. For comparison, a Read-Shockley
like grain boundary energy is fitted to the data. One can see that the obtained
grain boundary energy agrees qualitatively well with the Read-Shockley law.
However, in this work, no effort is made to relate the grain boundary energy
quantitatively to the model parameters and to obtain the correct elastic proper-
ties. Still, this qualitative agreement appears automatically from the free energy
without manipulating the coupling functions explicitly.

5.2.2 Rotational mobility

Another important question in the models with orientation variable is the time
constant τθ in the equation of motion for the angle field — the rotational mo-
bility. In the equation of motion for the angle field, τθ can be chosen differently
according to the physical system which is to be described. In conceptionally
similar models, it is shown how orientational defects like new grains with dif-
ferent orientation can be frozen into the solid [54] or how grain rotation can be
included into the model [80].

While it has been observed that a grain of one orientation surrounded by a
grain of another orientation can rotate entirely and change its orientation [81–
87], the underlying mechanism is presumably different to the one occurring in
this model. A circular shaped grain surrounded by a differently orientated grain
most likely reorientates by a rigid-body-like rotation.
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Figure 5.9: Interface energy of a symmetric tilt grain boundary in arbitrary
units. As comparison, a Read-Shockley-like grain boundary energy is shown.
The simulation results and the theory agree qualitatively well.

For a tricrystal, as shown in figure 5.10, this kind of rotation is not possible.
Here, a solid of one orientation is sandwiched between two solids of different
orientations. The interfaces are planar and supposed to be infinitely extended.
In figure 5.11, it is shown how a crystal (left) changes its shape when undergoing
a rigid body rotation (middle). This prevents the rotation of the tricrystal.

Figure 5.10: Schematic view of a tricrystal with planar interfaces. With final
rotational mobility in the solid phase, the crystal will rotate until the grain
boundary is disappeared.

In the phase-field model as presented here, such a rotation is possible. The
grain boundary energy depends on the misorientation as shown in figure 5.9.
If the sandwiched crystal changes its orientation at the interface by a small
amount, the grain boundary energy will be reduced. To avoid the deforma-
tion energy, the rest of the crystal will follow and a rotation as shown in fig-
ure 5.11 (right) will occur. This kind of rotation is prohibited in a proper crystal
by the connectivity in the crystal.

Another possible way of expressing the rotation of the sandwiched crystal
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Figure 5.11: The schematic crystal (left) can only rotate by a rigid body motion
(middle). In the case of the tricrystal, this is prevented by the shape of the
crystal. In the model, the rotation proceeds by local rotations of the unit cells in
the crystal (right). In real systems, this behavior is prevented by the connectivity
of the crystal.

is by describing the grain boundaries in terms of dislocations, as introduced
in chapters 2 and 4. The two grain boundaries are made up of dislocations of
different sign which could annihilate when brought together. This would de-
crease the dislocation density in both grain boundaries and therefore decrease
the misorientation angle, hence decrease the grain boundary energy. However,
the arrangement of the dislocations in the grain boundary corresponds to a local
minimum in the dislocation energy. To annihilate two dislocations in the bulk,
a dislocation from each of the grain boundaries would have to be moved out of
the grain boundary and into the bulk, which would be associated with a large
energy penalty. For a large enough distance between the grain boundaries, this
energy barrier cannot be overcome and therefore this kind of rotation does not
occur.

To account for this energy barrier and hence to avoid the artificial grain
rotation in this model, the rotational mobility τθ is chosen to be zero in the
solid. In the liquid, τθ is assumed to be very high. The molecules or atoms are
expected to be orientated in some arbitrary way far in the liquid, but align easily
according to the crystalline structure in the proximity of the solid. This avoids
that defects are frozen in as the interface advances. In this work, τθ is chosen to
depend on the phase field φ as τθ = g̃(φ), which yields the desired behavior.

5.2.3 Anisotropic solid-liquid interface in 1d

In this subsection, different systems are investigated in which a solid is sur-
rounded by its liquid at melting temperature. Independently of the crystalline
orientation in the solid, one expects a stationary interface since both phases
have equal free energies and therefore a motion of the interface should not lead
to a decrease in the energy.

Nevertheless, a different behavior is observed in the simulations. Depending
on the crystalline orientation in the bulk, the interface starts to grow with a
very small speed.

This artificial interface motion is due to the formulation of the equation
of motion for the angle variable. When introducing anisotropy, the free energy
depends explicitly on the orientation variable. When minimizing the free energy,
this leads to a torque term in the equation of motion for the orientation field
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θ: W (~n, θ)(∇φ)2[∂θW (~n, θ)].

In the case of an interface parallel to the y-axis, and for an orientation of
θ = π/4, the torque term ∂θW ∝ sin(4θ) = 0 and no artificial interface motion
is expected. This is shown in figure 5.12.

In figure 5.13, the orientation in the solid is θ = π/6, therefore ∂θW ∝
sin(4θ) 6= 0, causing the angle to vary in the interface. This creates a force that
drives the interface and causes the crystal to grow artificially.
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Figure 5.12: Two one-dimensional liquid-solid-liquid system at melting temper-
ature, where the solid has a crystalline orientation θ = π/4 and the anisotropy
is given by ǫ4 = 0.05. The phase field φ (circles) and the orientation θ (squares)
are shown at different times t. Here, ∂θW = 0, the angle is constant in the entire
system and the interface does not move.

This behavior can be explained as follows. Due to this torque term, the
system can minimize its energy by changing the orientation at the interface. In
the interface, since φ is smaller than one, the energy costs of an angle gradient
become finite and the energy is minimized due to this interplay between surface
energy and bulk deformation, similar to what is shown for the liquid crystals in
chapter 3. By freezing-in this very small angle gradient, the system can minimize
its energy and starts to grow, thus approaching an interface orientation which
is more favorable.

In figure 5.14, an enlargement of the newly grown area of figure 5.13 is shown.
As the crystal grows, it changes its orientation slowly in the solid to decrease
its interface energy. Therefore, it is possible to decrease the systems energy by
crystal growth, even if the temperature does not favor the solid state. Note that
the change in orientation inside the solid is of the order 10−14.
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5.2.4 Anisotropic solid-solid interface in 1d

In this subsection, systems are investigated where two solids with different ori-
entation grow towards each other and impinge. A grain boundary is formed
which then starts to move with a velocity depending on the orientation of the
two solids. In figures 5.15 and 5.16, the results of two systems with different
misorientations are shown for three different times. In both systems, the orien-
tation at the left hand side is fixed at θ1 = π/4, while the one at the right hand
side varies. In figure 5.15, θ2 = π/10 leading to a misorientation of ∆θ = π/5.
In figure 5.16, θ2 = π/20 and the misorientation is given by ∆θ = 3π/20. In fig-
ure 5.17, the interface positions are summarized for these two grain boundaries
as a function of time. The interface velocity is given by the slope of the curves.
One can see that the system with the larger misorientation (red) is moving faster
than the system with the smaller misorientation (blue).
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Figure 5.15: Grain boundary with a misorientation of ∆θ = π/5, where the
angle at the left hand side is fixed to θ1 = π/4 and on the right hand side to
θ2 = π/10. The anisotropy in the system is given by ǫ4 = 0.05. The interface
starts to move artificially, as summarized in figure 5.17.

The effect of the artificial grain boundary motion is similar to the one for the
solid-liquid interface motion and comes from the torque term at the interface.
While in the solid-liquid interface the orientation can adjust freely in the liquid
phase, for solid-solid grain boundaries, the orientation is fixed in both bulk
phases. Still, the orientation varies in the interface and the misorientation can
be reduced if one of the solids changes its orientation to approach the other
orientation. The solid with the less preferred orientation grows by freezing in
a small angle gradient, decreasing the misorientation and approaching a more
favorable interface orientation.
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Figure 5.16: Grain boundary with a misorientation of ∆θ = 3π/20, where the
angle at the left hand side is fixed to θ1 = π/4 and on the right hand side to
θ2 = π/20. The anisotropy in the system is given by ǫ4 = 0.05. The interface
starts to move artificially, as summarized in figure 5.17.
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5.2.5 Importance of the artificial growth

As has been shown in the previous subsections, the model is able to treat local-
ized solid-solid grain boundaries. However, when one introduces anisotropy in
the surface energy, there is a very small force which drives the interfaces, even
if the two adjacent phases have the same thermodynamic energy. The growth
rate is very low, such that its effect is much smaller than the growth usually
introduced by the imposed undercooling.

In this subsection, this artificial driving force is compared with the under-
cooling, as is explained in the following. It is possible to adjust the temperature
numerically such that the volume does not change while the system approaches
its equilibrium state. For a planar interface, there are no surface corrections and
the equilibrium temperature is known to be uEq = 0. Since the anisotropy in the
model leads to an artificial force onto the interface, this force has to be canceled
out by a change in the equilibrium temperature. Therefore, the change in the
equilibrium temperature is a measure of the importance of the artificial effect.

To fix the volume numerically, one can proceed as described in the following.
In the liquid, φ = 0 while in the solid φ = 1. Hence, the integral over the phase
field φ(x, y) over the entire volumes gives a measure of the volume of the solid

Vol =

∫
φ(x, y)dV . (5.24)

The requirement that the volume remains constant is equivalent to saying that
the time-derivative of the volume is zero,

0 = ∂tVol = (∂φVol)(∂tφ) =
∑

ij

(∂tφij) , (5.25)

where the integral over the continuous function φ(x, y) has been replaced by a
sum over all discrete lattice points i, j of the discrete function φij . The expression
for ∂tφ is given in Eq. (5.20) and depends on the normalized temperature u.
It can be brought to the form ∂tφij = Aij + Biju, where A and B are known
functions of the phase field and of the orientation field. Solving

∑
ij(∂tφij) = 0

for u gives

u =
−∑ij Aij∑

ij Bij
, (5.26)

so that u can be adjusted in each time step according to the fields φ and θ until
the equilibrium shape and temperature is found.

Doing so, one can suppress the artificial growth of a solid slab in its liquid. By
construction, the volume remains constant but the equilibrium temperature uEq

now depends on the orientation, which is not physical and caused again by the
torque term.

A system with an orientation in the solid of θ = π
6 is shown in figure 5.18. The

temperature obtained by forcing constant volume is given by uEq = 3.34×10−5

instead of uEq = 0, as would be expected for a planar interface. The undercooling
used for the simulations of solidification processes later on in this work is of the
order of 0.1. The artificial force is hence very small as compared to the driving
force which leads to solidification.
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Figure 5.18: A one-dimensional system of a solid slab is surrounded by its liquid.
For a stationary system with constant volume, u = 3.34×10−5 and an anisotropy
of ǫ4 = 0.05. In squares φ and in circles θ are shown.

A two-dimensional solid disc surrounded by its liquid adjusts its equilibrium
shape according to the surface tension. As explained in section 2.1.2, this so-
called Wulff shape can be obtained from the Wulff construction.

In figure 5.19 (left), the numerically obtained equilibrium shape is shown
in green points, together with the Wulff construction (red lines). The inner
envelope of the red lines gives the Wulff shape, which agrees very well with the
numerical result.

To show that the model is capable of treating crystals with arbitrary crys-
talline orientations, the equilibrium shape of a solid with an orientation angle
of θ = π

6 is shown in figure 5.19 (right) with red circles. Since the anisotropy
in the surface tension depends on the interface direction with respect to the
local crystalline orientation, the resulting equilibrium shape is expected to be
identical to the one for a system with θ = 0, but rotated by an angle of π/6.
This is shown in the same figure with blue crosses. The agreement is very good,
showing that the model reflects the correct anisotropy for arbitrary crystalline
orientations.

To investigate finite size effects, in figure 5.20 (left), a solid with crystalline
orientation θ = π

6 is shown together with an identical system, but where system
size and grain radius are chosen twice as large. Again, the equilibrium shapes
agree very well, whereas the equilibrium temperature in the larger system is half
the one in the smaller system, as expected from the Gibbs-Thomson condition.

Finally, a modification of the phase-field model as introduced so far is tested.
As shown in sections 5.2.4 and 5.2.3, there is a torque term in the equations
of motion for the angle field which causes the artificial interface motion. In
principle, it is interesting to omit this term and hence cure the problem with
the artificial interface motion. In this approach, the equations of motion are not
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Figure 5.19: Left: The equilibrium shape obtained numerically (green circles,
rescaled and shifted) agrees well with the Wulff shape (white area inside the red
lines). Right: The equilibrium shape of a solid with local crystalline orientation
of θ = π

6 is shown with red circles. It corresponds very well to the equilibrium
shape of a crystal with orientation θ = 0, which has been rotated by an angle
of π/6, as shown with blue crosses. This proves that the model can simulate
grains with different local crystalline orientations and still represent the correct
surface energy, which depends on the interface orientation with respect to this
crystalline orientation. In all systems, the anisotropy is given by ǫ4 = 0.05.

obtained from a free energy functional anymore but have to be seen as purely
phenomenological. Then, however, the time evolution does not lead to an exact
minimization of the free energy of the system. To investigate the effects of such
an approach to the equilibrium shape, in figure 5.20 (right) the full model is
compared with the model where the torque term is omitted. The difference in
the equilibrium shapes is hardly visible, but the equilibrium temperatures differ
by a value of the order 10−6, showing once more that the artificial effect is very
small.

To summarize, the effect caused by the anisotropy which leads to artificial
grain growth or, at constant volume, to a change in the equilibrium temperature
is very small. The grain growth is much slower than the usual grain growth
caused by an undercooling in the liquid. The effect corresponds to an artificial
undercooling of the order of 10−5, while the undercoolings used in this work
are usually of the order of 0.1 or larger. Also, the equilibrium shape remains
qualitatively the same and corresponds very well to the theoretical Wulff shape.
It is therefore possible to use the model to simulate the growth of polycrystalline
materials, as long as one keeps in mind that there are small effects which can
influence the results very close to equilibrium.

5.2.6 Formation of polycrystals

Having investigated some simple systems and shown that the model is capable
of creating proper grain boundaries, it is possible to turn to the initial purpose
of simulating the solidification of grains with different crystalline orientations.

Firstly, two grains with different orientations, θ = ±π/10, are placed next
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Figure 5.20: Left: Two-dimensional solid (θ = π
6 ) surrounded by its liquid. The

equilibrium shape is shown with red circles and as a comparison with blue crosses
the equilibrium shape of the same system with all geometrical lengths doubled.
Right: Two-dimensional solid (θ = 0) surrounded by its liquid. The equilibrium
shape is shown with red circles for the full model and as a comparison with blue
crosses for the model artificially suppressing the torque term, as explained in
the text. In all systems, the anisotropy is given by ǫ4 = 0.05.

to each other and are allowed to grow into the same undercooled liquid. In
figure 5.21, the interfaces are shown for different times. One can see that the
dendritic form is rotated according to the crystal orientation, caused by the
anisotropy in the interface energy. As the two grains grow bigger, they start
to approach each other and finally they interact. They form a grain boundary
between them while they keep growing in the other directions. In the simulation,
reflecting boundaries conditions are applied, which explains the behavior of the
light-blue interface-contour at the boundary.

As next example, a situation is studied where four grains start to grow from
the corners with different local crystalline orientation. To speed up the simula-
tions, reflecting boundary conditions are used. To ensure complete solidification,
in the entire system, the temperature u is lowered globally by q(∆ + u), where
∆ is the undercooling and q is a small parameter. Initially, the system is un-
dercooled at u = −∆. As the solid grows, the produced latent heat has to be
transported into the liquid and the solid, heating up the system. Finally, most of
the heat is extracted homogeneously in the entire system. This explains why the
shapes are rather round and only slightly deformed. Still, the small difference in
the shapes as the system is entirely solidified leads to grain boundary motion,
in the end only two grains remain, building a planar and hence stable interface.
The orientations are : 0◦ (yellow), 14.3◦ (blue), 28.6◦ (red) and 43.0◦ (green),
the solid-liquid and the solid-solid interface is shown in black. A time series of
the solidification is shown in figure 5.22. The model parameters are ∆x = 0.4,
∆t = 0.01, w0 = τ0 = λ = D = 1, ν = 0.7 and ǫ4 = 0.05.

Finally, in figure 5.23, four solids with local crystalline orientation 0◦ (yellow),
8.6◦ (blue), 25.8◦ (green) and 34.3◦ (red) start growing side by side into the un-
dercooled liquid. One can see that the growth speed depends on the anisotropy
and therefore on the local crystalline orientation. Again, two of the grains are
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Figure 5.21: Two-dimensional system of two solids of different orientation (θ =
±π/10) growing towards each other. In the system, the anisotropy is given by
ǫ4 = 0.05. The interface is shown at different times.

outgrown and start to disappear.
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Figure 5.22: Four solids with different crystalline orientation, namely 0◦ (yellow),
14.3◦ (blue), 28.6◦ (red) and 43.0◦ (green) are growing towards each other from
the corners. The interface in shown black. To ensure that the system solidifies
entirely, heat is extracted from the initially undercooled system equally every-
where. As the system is totally solidified, the grain boundaries continue to move
according to the curvature. The anisotropy in the system is given by ǫ4 = 0.05.
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Figure 5.23: Four solids with different local crystalline orientation, namely
0◦ (yellow), 8.6◦ (blue), 25.8◦ (green) and 34.4 (red) are growing side by side.
The interface is shown in black. One can nicely see how the growth velocity de-
pends on the orientation and how two grains disappear during the simulation.
The anisotropy in the system is given by ǫ4 = 0.05.
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5.3 Conclusion and outlook

In this chapter, a new model for the simulation of polycrystals has been devel-
oped. It contains a phase-field variable, representing the local order, which is
equal to one in the solid and equal to zero in the liquid, as often used in the stan-
dard phase-field models. In this model, it is additionally used to represent the
reduced order in grain boundaries. As one goes from one grain to another, the
phase-field variable is decreased to a certain non-zero value, having its minimal
value exactly at the grain boundary. As one enters the other grain, it increases
again.

The local crystalline orientation is given by a second field. Its value represent
the crystalline orientation with respect to the coordinate system and is constant
inside the grains. It varies drastically in a localized region between the grains,
in the grain boundary, where the order indicated by the phase field is reduced.

An important part of the model is the free energy, from which the equations
of motion are obtained. The free energy has been discussed in great detail and
the form of the coupling function between phase field and orientation field was
motivated by physical considerations.

The model has been tested, based on the question whether it is capable to
reproduce localized grain boundaries and was found to work well for isotropic
grain boundaries. It was discovered, however, that for a certain set of model
parameters, there is a critical misorientation of two neighboring grains. Grain
boundaries with a lower misorientation disappear. The critical angle can be
varied by changing the model parameters, so that theoretically arbitrarily small
angle differences can be resolved.

The grain boundary energy has been calculated for different misorientations
and compared with the theoretical description from Read-Shockley as derived in
section 2.1. Good qualitative agreement was found, without attempting to relate
the model parameters to the parameters of the Read-Shockley grain boundary
energy.

Introducing anisotropy, a spurious interface motion was observed, for solid-
liquid interfaces as well as for solid-solid interfaces. The importance of this effect
has been tested and it was found to be important only for simulations close to
equilibrium. Applying a typical undercooling, the artificial interface motion is
small against the motion caused by the undercooling or the motion by curvature.

It is therefore possible to use the model to simulate polycrystalline materials
of one chemical component but with grains of different crystalline orientations.
In the future, it would be interesting to simulate larger systems with this model,
which is not a problem conceptually, but from the computational point of view
not reasonable for this work. The problems observed with this model are dis-
cussed in greater detail in the next chapter. It is found that some of them are
generic for this type of model and that it is therefore interesting to search for a
completely different approach.

Comparing this model with the one by Kobayashi and coworkers, as pre-
sented in section 2.3.3, one finds that they are rather similar. They posses simi-
lar advantages and disadvantages, and also the problems found in this work are
suspected to appear in both models. The form of the free energy introduced in
this work is mathematically more convenient and allows for simple integration
schemes, even though the numerical implementation contains some difficulties
due to the singularities, too. Due to the similarity to the standard phase-field
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models, analytical calculations are easier to perform in this model. By investi-
gating the grain boundaries at equilibrium and the Wulff shape, this model has
been tested for its physical behavior, benchmarks which have, to the knowledge
of the author, not been performed in the model by Kobayashi and coworkers.
Nevertheless, there is not reason to believe that similar results cannot be ob-
tained with their model, too. The model developed in this work has therefore
to be seen as an alternative model, with similar strengths and weaknesses.



Chapter 6

Summary, Conclusion and
Discussion
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This work addresses the question of how to model polycrystalline solidifi-
cation with a phase-field model. The model is supposed to be based on the
microscopical description of the crystal, while remaining capable of simulating
length scales of the order of microns. This motivates the development of an al-
ternative model next to the two already existing models. The first one of these
models describes each grain with a different phase-field variable, which is found
to be not the most elegant and intuitive way. The second kind of existing mod-
els for polycristalline solidification is based on a description in terms of two
parameters, one for the order and one for the orientation of the crystal. This
way of describing the polycrystal is the one aimed at in this work, but there are
still two shortcomings in the models. Firstly, the description of the orientation
does not respect the symmetry of the crystal by itself. When calculating angle
differences, special numerical tricks have to be applied to take into account all
the configurations which are identical due to the crystalline symmetries. The
second deficit is of more formal nature. To obtain localized grain boundaries, it
is necessary to include the modulus of the orientation gradient in addition or
instead of the usual squared gradient term in the free energy.

In this work, these two fundamental problems have been addressed and pos-
sible ways to circumvent them were proposed.

6.1 Tensor description for orientation field

Concerning an alternative way of describing the orientation in the crystal, an
idea from the physics of liquid crystals has been taken up. Liquid crystals are
rotationally invariant under rotations of 180◦ and can be described by tensors
of rank two. This tensorial description corresponds to the underlying symmetry.
In this work, this has been used for addressing a so far unsolved question on the
stability in nematic-isotropic liquid crystals.

In chapter 3, a phase-field model for the directional solidification of a nematic
liquid crystal alloy has been developed, using a tensorial order parameter. For
analytical considerations, a transformation back to more intuitive variables has
been presented. In these variables and for isotropic systems without orientation
variations in the nematic phase, the equations of motion reduce to the well
known scalar phase-field equations for the solidification of pure materials. This
permits the use of the already derived relations between model parameters and
physical quantities.

With anisotropic coupling between the nematic orientation and the interface,
however, deformations in the nematic phase appear when the planar interface
becomes unstable, affecting the stability of the interface.

The stability of the planar interface has been investigated numerically and
was compared with a generalized linear stability analysis, which takes into ac-
count the nematic orientation at the interface. Instead of assuming the perfect
alignment of the director normal to the interface, a new anchoring condition
has been derived, considering the interplay between the deformation energy in
the bulk and the surface energy due to unfavorable alignment. The model has
been validated by comparing the theoretical analysis with the simulation re-
sults, which has shown a very good agreement for several different anisotropy
strengths. Having validated the model, the influence of the nematic orientation
in the bulk on the formation of cells has been investigated. It has been shown
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that varying the nematic orientation in the bulk can break the symmetry of the
system, destabilize the cells and lead to cells which are changing their shapes
with time.

A problem still to address is how the interface width can be scaled without
changing the underlying physics. In this formulation, with the elastic length an
additional length scale exists next to the capillary length. Both lengths scale
differently with the interface width, which prevents the upscaling of the inter-
face width so far. More thoughts on this subject are necessary, a possible way
of avoiding this problem might be to introduce an extra field to obtain an addi-
tional degree of freedom in the free energy which might allow to uncouple the
two length scales.

From the numerical point of view, the study in this work has shown that a
tensor can be used very elegantly and efficiently as order parameter to describe
an orientation field. Once the equations of motion are established, the numer-
ical implementation is straightforward. The gradients can be calculated in the
simplest way and all the symmetry considerations are automatically included.
The equations of motion, however, become rather complicated and unintuitive.
A tensor of rank two has nine components, but in two dimensions there are only
two degrees of freedom in the system, the absolute value and the orientation.
Therefore, there are constraints on the tensor components which have to be
considered and introduced into the equations of motion. This has been done by
using Lagrange multipliers. The resulting equations of motion then respect all
the symmetries of the system even though they are not easy to identify. Rewrit-
ing them in a simpler form, coming back to more intuitive variables, is possible
and advisable when performing analytical analyses.

In principle, the extension from two to three dimensions using tensor order
parameters for the orientation is straightforward. It is conceptionally easier than
it is in the description based on a scalar angle field in two dimensions. Still, in
this work, only two-dimensional systems have been investigated, concentrating
on tensors of rank two. Working with tensors of rank four increases the number
and the complexity of the constraints on the tensor components, which would
render the equations of motion even more complicated.

6.2 Grain boundaries on a smaller length scale

One of the main difference between the liquid crystals and the polycrystals
envisaged in this work is the existence of grain boundaries. In liquid crystals,
topological defects or disclinations in two dimensions are point-like and grain
boundaries do not exist. In between two regions of differently aligned nematics,
the orientation varies continuously and linearly, instead of forming grain bound-
aries. Generally, this problem cannot be solved by simply adapting the rank of
the tensor to the symmetry of the crystal.

Grain boundaries are, in the limit of low misorientations, made up of dis-
locations. Also, long range elastic effects are important for crystals, since they
account for the connectivity between the different atoms. Both effects are not
included in the regular phase-field models of solidification, but recently a model
has been developed which includes these effects on smaller length scales au-
tomatically. This so-called phase field crystal model is numerically similar to
the phase-field model and has been investigated in chapter 4 to obtain further
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insights into grain boundaries and their description.

The first topic which has been studied with the phase field crystal model
is the variation of the order parameter inside solid-liquid interfaces and grain
boundaries. Examining solid-liquid interfaces in greater detail, it was found that
the average density over a unit volume is a suitable measure of the state of the
system. The average density is high in the solid phase and decays over the
distance of a few atomic layers into the liquid, again in agreement with the
concept of diffuse interfaces. Similarly, solid-solid interfaces can be explored,
showing that the local crystalline order is reduced in the interface region, a fact
that has been used in the phase-field models with orientation fields.

In a second step, the grain boundaries have been examined further and it
was found that they possess realistic properties. The grain boundary energy has
been obtained numerically and compared with the Read-Shockley theory for
low-angle grain boundaries, where very good agreement was found.

This makes it interesting to use the phase field crystal model to investigate
grain boundary wetting in dependence on the misorientation. A phenomenolog-
ical model for the stability of a liquid film between two solids has been pre-
sented. It describes the contact potential between two solid grains and predicts
monotonous attractive or repulsive behavior of the grain boundaries, in depen-
dency on the grain boundary energies. While for high-angle grain boundaries
the simulations agree well with the model, a different behavior was found for
low-angle grain boundaries. Here, the interaction is not monotonous, the grains
are attractive at larger distances and repulsive for smaller ones.

The main difference between these two regimes seems to be the distance be-
tween the dislocations. For high-angle grain boundaries, the dislocations overlap
and the liquid between two solids can be seen as a rather homogeneous film. For
low-angle grain boundaries, the dislocations are well separated. As long as there
still is a considerable amount of liquid in the grain boundary, the dislocations in
the low-angle grain boundaries seem to pair up and share a liquid pool between
them rather than forming a homogeneous film. This behavior contradicts the
phenomenological model and might explain its failure. As the amount of liquid
decreases further, the distance between the dislocations becomes relatively equal
again, corresponding to the Read-Shockley description of grain boundaries.

To gain further insight in the interaction between the grain boundaries, the
contact potential as it appears in the phase field crystal model has been obtained
numerically. While for the high-angle grain boundaries the agreement with the
phenomenological model is satisfactory, for low-angle grain boundaries the non-
monotonous behavior is reflected in the contact potential.

A practical interest in the wetting properties of grain boundaries is its re-
lation with the so-called hot tearing. During the solidification process of metal
alloys, a possible source of cracks is the mushy zone. Here, the amount of liquid
is already very limited, grains of different orientation grow very close to each
other, separated only by liquid films. These films induce a decrease in the stress
resistance of the material. The stability of these films, as investigated in a sim-
ple setup in this work, is therefore crucial for the better understanding of this
phenomenon.
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6.3 New phase-field model for polycrystals

Coming back to the initial interest of finding a convenient model for polycrys-
talline solidification on a larger length scales, a new phase-field model has been
developed in chapter 5. It avoids the modulus term in the free energy by intro-
ducing a singular coupling function instead, which couples the angle gradient
with the phase field. In the liquid, the coupling function goes to zero, corre-
sponding to the fact that here an angle-gradient does not lead to an increase
in the free energy. The energy costs of a deformation in the solid, however, is
orders of magnitude larger than the ones in the liquid. In the model, this is
represented by a coupling function which tends to infinity in the solid phase.

The specific form of the singular coupling function is very important to
the model. After careful considerations, a suitable coupling function has been
derived and the resulting grain boundary properties have been investigated.
It was found that the grain boundaries are localized and stable, with a lower
critical misorientation depending on the model parameters. The existence of
the minimal misorientation has already been predicted in the derivation of the
coupling function.

The grain boundary energy has been obtained from numerical simulations
of the model and has been compared to the Read-Shockley theory. Qualitative
agreement was found for small misorientations, while no attempt has yet been
made to relate the model parameters to the elastic constants. The agreement
with the Read-Shockley like grain boundary energy appears naturally in the
model, but the reason for this is not yet well understood.

Unfortunately, there are also some problems with the model. The first deficit
is related to the rotational degrees of freedom of the orientation. The phase-field
equation for the angle field is written similarly to the one for liquid crystals
in terms of an nonconserved oder parameter. This allows in principle a local
rotation of each point in the crystal, which is certainly possible for liquid crystals
but not for polycrystals. On the example of a tricrystal, it has been shown how
a grain rotation can occur in the proposed model. This problem can be cured
by choosing the mobility constant in the angle-field equation in a smart way.
In this work, the rotation in the solid has been prevented by using a rotational
mobility which vanishes in the solid. To ensure that the liquid can adjust its
orientation in the proximity of the solid, the rotational mobility is chosen to be
very large in the liquid phase.

A second problem occurs when introducing anisotropy to the model. The
anisotropy term in the free energy depends explicitly on the orientation field,
which leads to an extra term in the equation of motion of the angle field. This
extra term has been identified as a torque term, which tries to align the crystal
at the interface according to the anisotropy. The effect is similar to the interplay
between bulk deformation and interface energy in the liquid crystal case treated
in chapter 3. For the polycrystal model, the energy costs of a deformation in
the solid diverges, therefore the orientation in the bulk does not change. In the
interface, however, a change in angle has been observed, which then leads to a
driving force onto the interface. This effect happens in both, solid-liquid and
solid-solid interfaces for most orientations. Its importance has been investigated
and was found to be orders of magnitude smaller than the usual driving forces
due to undercooling.

To investigate the effect of the anisotropy, the equilibrium shape has been
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obtained for crystals with different crystalline orientations. It has been compared
with the theoretical Wulff shape and very good agreement was found. It has been
shown that by varying the crystalline orientation the preferred growth directions
adapt as expected, which allows the simulation of differently orientated solids
in the same system.

With these successful verifications, the model has been used to simulate the
evolution of polycristals with grains of different orientations.

6.4 Outlook

To proceed in developing a better model for the polycrystal solidification, three
different approaches have been pursued in this work. Each of them is worth
being investigated further.

The first one addresses in the representation of the angle field. From the
conceptual point of view, it is very interesting to extend the tensor-description
to simple cubic symmetries, which implies to formulate the equations of motion
in terms of rank four tensors. This is expected to be quite complicated and
might lead to lengthy equations of motion. Nevertheless, as has been shown for
liquid crystals, the numerical problems when treating angle differences simplify
significantly in the tensorial description. The formulation in terms of rank four
tensors can then be generalized to three dimensions.

The other approach towards phase-field models for polycrystals described
in this work is based on the phase field crystal model. Since the phase field
crystal model has turned out to be very capable of describing grain boundaries
and also cracks, further research on this model is suggested. The main disad-
vantage of the phase field crystal model is its limitation to rather small system
sizes. The periodic structure has to be resolved numerically, which is of the or-
der of the interatomic distance (O(10−10m)). Simulating physical systems with
a characteristic length scale of one micron is therefore very difficult and time
consuming in two dimensions and nearly impossible in 3D, even with advanced
parallelization techniques. There are some approaches [88, 89] to rewrite the
phase field crystal equations in terms of variables with slower spatial variations.
This can lead to an enormous speed up when using adaptive mesh techniques.
The computational effectiveness depends, however, largely on the systems in-
vestigated: only inside of defect-free crystals or in the liquid phase can the mesh
be redefined, whereas in grain boundaries the fine grid spacing has to be used.
Therefore, for the systems investigated in this work, these approaches were not
useful, especially since they include approximations which are not yet well tested
for systems where stresses play a role.

Another possible approach to larger length scales is to coarse-grain the phase
field crystal model. This could result in a phase-field-like model, including terms
which lead to grain boundaries more naturally than the approaches investigated
in this work. Nevertheless, this procedure appears rather cumbersome.

In general, the phase field crystal model could be extended to be able to treat
interactions with particles, investigating how the grain growth can be influenced
by them. Addressing elasticity, the phase field crystal model has automatically
included static elastic effects as has been shown, but since lattice vibrations have
been averaged out. To obtain wave propagations in the model phonons have to
be introduced back into the model [75]. Further research in this direction could
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be interesting, as well as treating different lattices and extending the model
consequently to three dimensions.

To address the problem of simulating polycrystals with phase-field methods
from a different point of view, it is proposed to develop a new approach in the
grain boundary description. In this work, some of the problems appearing in
the existing models have been shown. Especially the nature of the equation of
motion for the orientation field was found to be conceptionally wrong, even if
it is successfully applied to different problems.

It is suggested to concentrate further research onto the incorporation of dis-
locations into phase-field models to describe grain boundaries. The dynamics of
dislocations is of interest for simulations of polycrystals since the grain bound-
aries can be described very conveniently by an array of dislocations [90, 91].
While the equation of motion used in this work to describe the angle variable as
a nonconserved quantity does not respect the physics of the grain boundaries, a
description rooted on dislocations could do so. The evolution of the local dislo-
cation density over time can be related directly to a change in orientation. For a
grain boundary with a given misorientation, the corresponding dislocations can
be constructed and the grain boundary energy can be calculated.

As it turns out, however, the dynamics of grain boundaries is very difficult
to describe by the dynamics of the dislocations. Models which treat single dis-
crete dislocations are generally formulated on atomic length scales, such as the
phase field crystal model [72–74], even if successful attempts have been made
to combine phase-field models with dislocations [92–98]. For the length scales
envisaged in this model, one has to consider rather dislocation densities than
single dislocations. While continuum models for dislocation densities have been
developed [99–101], only few attempts have be made to describe dislocation dy-
namics which leads to grain boundary formation [102]. To extend this theory to
describe grain boundary motion in the sense of polycrystals has so far not been
successful.

Another possible approach is to develop a phase-field model which combines
solidification with elasticity. Even if there are already phase-field models which
include elasticity [103–105] and fractures [79, 106, 107], it seems to be very diffi-
cult to develop a fully consistent model for the evolution of the local crystalline
structure on larger than atomic length scales.

The quest to develop a simple, elegant, efficient and consistent model for
polycrystalline solidification is still open and seems to contain a lot of interesting
research areas.
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Résumé en français
(summary in french)

Lors de la croissance d’une phase solide cristalline, le matériau final n’est en
général pas composé d’un seul cristal, mais de grains d’orientations de maille
différentes, et éventuellement de domaines de phases thermodynamiques dis-
tinctes. Cette structure, dont l’échelle caractéristique est le plus souvent le mi-
cron, est décisive pour les propriétés mécaniques et la résistance la corrosion et
à la rupture du matériau final.

Cette structure du matériau se forme en deux étapes. Dabord, pendant la
solidification, des formes d’une grande complexité géométrique sont créées, telles
que des dendrites, des cellules ou des composites lamellaires ou fibreux. La rai-
son en est une interaction subtile entre des instabilités engendrées par le flux
de matière nécessaire pour la croissance et des effets stabilisant dus aux pro-
priétés de l’interface. Ensuite, après la formation du matériau brut, de nom-
breux processus peuvent modifier cette structure primaire, comme par exemple
le mûrissement, le frittage, des transformations de phase secondaires, et des
déformations mécaniques.

Alors que de nombreux travaux existent sur la croissance de monocristaux,
et sur l’évolution de la structure en grains dans le matériau solide, l’influence
de la structure polycristalline sur le processus de morphogenèse lui-même est
encore mal connue. Sur le plan théorique, ce manque de connaissances tient
en grande partie aux difficultés de la modélisation mathématique et numérique
des phénomènes de croissance. En effet, traiter une interface de géométrie com-
plexe en mouvement est une tâche très ardue d’un point de vue numérique. La
méthode de champ de phase, développée depuis une vingtaine d’années, permet
de s’affranchir de ce problème par l’introduction de champs scalaires auxiliaires
qui indiquent l’état local de la matière (les champs de phase), et qui exhibent
des interfaces diffuses. La dynamique de l’interface est traduite en équations
de mouvement pour ces variables auxiliaires, qui peuvent souvent se déduire du
formalisme phénoménologique de la thermodynamique hors d’équilibre. Puisque
ces équations sont de simples équations aux dérivées partielles, elles peuvent être
traitées par des algorithmes numériques standard.

Deux formulations ont été proposées pour tenir compte de l’orientation
cristalline dans le cadre de modèles de champ de phase. La première consiste
à considérer chaque grain comme une phase distincte et d’y associer un champ
de phase. Ceci constitue une généralisation immédiate des modèles de solidifi-
cation à plusieurs phases, mais le formalisme résultant est lourd, notamment
du fait du grand nombre de champs, et il ne permet pas de représenter un con-
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tinuum d’orientations. La deuxième approche, plus récente, travaille en deux
dimensions avec deux champs, un champ de phase et un “champ d’angle” qui
donne l’orientation locale du cristal. Ce modèle montre de bons résultats, mais
il contient des termes peu conventionnels (non analytiques) dans la formulation
de sa fonctionnelle d’énergie. Finalement, depuis quelques années, une méthode
nouvelle, appelée “cristal de champ de phase” (“phase field crystal” en anglais)
s’est développée pour décrire la structure des polycristaux sur l’échelle atomique.
En effet, un champ de densité est utilisé qui exhibe une périodicité de symétrie
hexagonale en deux dimensions, ce qui fait que ce modèle inclut naturellement
des défauts (dislocations) et des effets élastiques.

Le but de cette thèse est d’élucider quelques aspects de la modélisation des
polycristaux par la méthode du champ de phase. Trois points sont abordés en
détail. Dans la première partie, la possibilité de représenter l’ordre cristallin
local par un paramètre d’ordre tensoriel (au lieu de deux champs scalaires) est
examinée. Pour simplifier le traitement, cette étude est faite pour des cristaux
liquides nématiques, pour lesquels le tenseur nécessaire est de rang 2 (au lieu
de rang 4 pour un matériau de symétrie cubique). Dans la deuxième partie, la
structure des joints de grains est examinée dans le modèle de cristal de champ de
phase. En particulier, la présence d’un film liquide entre deux grains en-dessous
de la température de fusion est mise en évidence, et son épaisseur est déterminée
en fonction de la température et de la désorientation entre les grains. Dans la
troisième partie un nouveau modèle de champ de phase pour la solidification
polycristalline est proposé, qui travaille avec un champ d’orientation, mais utilise
une fonction de couplage singulière au lieu du terme en module du gradient dans
la fonctionnelle d’énergie libre. Ce modèle est analysé en détail, et ses avantages
par rapport aux modèles publiés dans la littérature sont discutés. Finalement,
les résultats de tous les chapitres sont mis en perspective dans la conclusion, et
des possibilités pour de futurs développements sont évoquées.

Modèle de champ de phase pour les cristaux liq-

uides

Dans le chapitre 3, un modèle pour la solidification des cristaux liquides néma-
tiques est développé. Les cristaux liquides présentent une symétrie de rotation
de 180◦ et leur description ne nécessite donc que des tenseurs d’ordre deux. Gé-
néralement, les cristaux liquides sont décrits par l’énergie libre de Landau-de
Gennes dépendant des gradients introduits par Frank: le “twist”, le “bend” et
le “splay”, qui représentent des modes de déformation.

En partant de cette formulation, un modèle tensoriel est développé pour la
“solidification” d’un alliage de cristaux liquides, c’est-à-dire pour la dynamique
de la transition isotrope-nématique en présence d’impuretés. Ce système est
connu pour être un analogue de la solidification d’alliages métalliques. Cepen-
dant, tous les modèles disponibles dans la littérature négligent l’effet de l’ordre
nématique sur la dynamique de l’interface isotrope-nématique. Pour un système
quasi 2D, la croissance d’un échantillon qui est déplacé à vitesse constante
dans un gradient de température est simulée et la stabilité d’une interface
plane est analysée pour différentes valeurs des paramètres. En introduisant
une anisotropie variable, on peut contrler l’orientation de la phase nématique à
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l’interface.

Pour comparer les résultats de la simulation avec la théorie, une description
approchée, mais plus précise que les développements généralement utilisés, pour
la stabilité de l’interface est développée. Pour la condition de bord, on tient
compte du couplage entre le directeur et l’interface résultant de l’équilibre de la
relation entre l’énergie d’ancrage à la surface et l’énergie de la déformation dans
le volume, ce qui est plus exact que de supposer que le directeur est toujours
perpendiculaire à l’interface. L’analyse de Mullins et Sekerka est généralisée en
tenant compte de cette nouvelle condition au bord. Les résultats obtenus par
cette méthode sont en très bon accord avec ceux des simulations.

Avec cette étude, il a été montré qu’un champ d’orientation peut être re-
présenté de manière très satisfaisante à l’aide de tenseurs. Du point de vue
numérique, les problèmes rencontrés pour traiter explicitement les symétries
du système sont évités. Cependant, les équations de mouvement deviennent
rapidement très complexes. Pour étudier les équations analytiquement, il est
donc possible de les réécrire en fonction de variables plus intuitives, comme par
exemple l’orientation et la valeur absolue.

Modèle de “Phase Field Crystal” pour l’étude des

joints de grain

Le chapitre 4 approfondit l’étude des joints de grains à l’aide du modèle de
“cristal de champ de phase”. Dans ce modèle, l’énergie libre contient des termes
de gradients en puissance quatre et les équations de mouvement ont une solu-
tion périodique, o les maxima du champ de densité représentent la position des
atomes de la structure cristalline. L’état d’équilibre peut être déformé, son ori-
entation peut être modifiée, des défauts peuvent être inclus et des joints de grain
peuvent être créés. Mais l’échelle d’espace est de l’ordre de quelques angstroms
et est donc plus petite que celle qui peut être atteinte dans les modèles du champ
de phase habituels.

Avec ce modèle, des joints de grain sont créés et étudiés sous deux as-
pects. Premièrement, l’idée du “champ d’ordre cristallin” est quantifiée : on
peut définir un paramètre d’ordre qui prend une valeur constante dans les deux
cristaux avec des orientations différentes, et dont l’amplitude se réduit dans le
joint de grain. Cette idée est utilisée dans le développement du modèle de champ
de phase du dernier chapitre.

Deuxièmement, la structure des joints de grain est étudiée. Deux cristaux
avec des orientations différentes sont séparés par une couche de liquide. Quand
la température baisse, les deux cristaux s’approchent de plus en plus. La sta-
bilité de la couche de liquide est étudiée, et les résultats des simulations sont
comparés à un modèle phénoménologique basé sur l’interaction de deux surfaces
solide-liquide planes. Il est montré que la validité du modèle dépend de l’angle
entre les deux cristaux. Pour les grands angles, le modèle correspond bien aux
simulations, tandis que pour les petits angles, le modèle n’est plus valide. La
différence entre les deux cas a son origine en la distance entre les dislocations.
Le joint de grain peut être décrit par un ensemble de dislocations, et la dis-
tance entre deux dislocations dépend de l’angle entre les deux cristaux. Pour
les petits angles, les dislocations sont bien séparées, tandis que pour les grands
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angles, elles se chevauchent. Le modèle phénoménologique est seulement valide
pour les joints de grains o les dislocations sont proches et forment un “film” de
liquide d’épaisseur quasi-constante.

Modèle de champ de phase pour les polycristaux

Dans cette partie (chapitre 5), un nouveau modèle de champ de phase est
développé. Le problème principal est d’obtenir une énergie libre qui donne
des joints de grain bien localisés et stables sans utiliser un terme de gradi-
ent non-analytique comme dans les modèles existants. Ce problème est résolu
en introduisant une fonction singulière couplant de champ de phase et le champ
d’orientation. La forme analytique de cette fonction, cruciale pour les propriétés
du modèle, est déterminée par une étude des solutions de joints de grain en une
dimension.

Ce modèle est ensuite testé dans diverses situations pour montrer qu’il est
bien capable de traiter les polycristaux, avec de bons résultats. Cependant,
notre étude met également en évidence que des problèmes liés à l’anisotropie
subsistent. En effet, l’inclusion d’un terme d’anisotropie dans l’énergie libre con-
tenant l’orientation locale du cristal et l’orientation de l’interface crée un terme
supplémentaire dans l’équation de mouvement pour le champ d’orientation.
L’effet de ce terme est étudié et il est montré qu’il engendre une migration arti-
ficielle d’une interface plane solide-liquide à la température de fusion. On peut
bien comprendre l’origine de cet effet: il résulte de la possibilité pour le système
de minimiser son énergie libre, même si cela ne correspond pas à un chemin
cinétique compatible avec la cohésion de la matière cristalline. Un système o
deux phases solides avec différentes orientations sont en contact exhibe un effet
similaire.

Ces effets de mouvements artificiels des interfaces sont étudiés, et il est
montré qu’ils demeurent petits. Ils causent donc des problèmes uniquement si
la dynamique du système est lente, par exemple si l’on étude la physique à
l’équilibre. C’est pourquoi ils restent négligeables dans les études de la solidifi-
cation polycristalline si la surfusion est assez grande.
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