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"Naturally, the four mathematical operations -
adding, subtracting, multiplying, and dividing -
were impossible. The stones resisted arithmetic
as they did the calculation of probability. Forty
disks, divided, might become nine; those nine
in turn divided might yield three hundred."

Jorge Luis Borges � Blue Tigers
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Résumé

Les moteurs de recherche de nouvelle génération permettront de formuler des requêtes
autrement qu'avec du texte, notamment à partir d'informations visuelles représentées sous
forme d'images ou de modèles 3D. En particulier, ces technologies appliquées à la recherche
3D permettront d'ouvrir de nouveaux domaines d'applications [1]. L'objectif de la recherche
par le contenu est de développer des moteurs de recherche permettant aux utilisateurs
d'e�ectuer des requêtes par la similarité du contenu. Cette thèse aborde deux problèmes
fondamentaux de la recherche d'objets 3D par le contenu :

(1) Comment décrire une forme 3D pour en obtenir une représentation �able qui facilite
ensuite la recherche par similarité ?

(2) Comment superviser le processus de recherche a�n d'e�ectuer un apprentissage des
similarités inter-objets pour une recherche plus e�cace et sémantique ?

Concernant le premier problème, nous développons un nouveau système de description
de formes 3D basé sur la densité de probabilité d'attributs surfaciques locaux multivariés.
De manière constructive, nous relevons des caractéristiques locales d'un ensemble de points
3D sur une surface 3D et résumons l'information locale ainsi obtenue sous forme d'un des-
cripteur global. Pour l'estimation de la densité de probabilité, nous utilisons la méthode
d'estimation de densité à noyaux [2, 3], associée avec un algorithme d'approximation ra-
pide : la transformée de Gauss rapide [4, 5]. Le mécanisme de conversion des attributs
locaux en la description globale évite le problème de mise en correspondance entre deux
formes et se révèle robuste et e�cace. Les expériences que nous avons menées sur diverses
bases d'objets 3D montrent que les descripteurs basés sur la densité sont très rapides à
calculer et très e�caces pour la recherche 3D par similarité.

Concernant le deuxième problème, nous proposons un système d'apprentissage des si-
milarités incorporant une certaine quantité de supervision au processus de requête pour
rendre la recherche plus e�cace et sémantique. Notre approche est basée sur la combi-
naison de scores de similarité multiples en optimisant une version convexe régularisée du
critère de risque de mauvais classement empirique [6, 7]. Cette approche de fusion de scores
à l'apprentissage des similarités peut être appliquée à divers problèmes de moteur de re-
cherche utilisant tout type de modalités de données. Dans ces travaux, nous démontrons
son e�cacité pour la recherche d'objets 3D.

Ce manuscrit est organisé en cinq chapitres. Le premier est consacré à un état de
l'art sur la problématique de la recherche d'objets 3D par le contenu. Dans le second, nous
présentons notre approche pour la description d'objets 3D par densité de probabilité a�n de
répondre à la première question précédemment posée : comment décrire la forme 3D ? Dans
le troisième chapitre, nous traitons la deuxième question sur l'apprentissage supervisée des
similarités. Le Chapitre 4 contient de nombreux résultats expérimentaux sur les propriétés
et l'e�cacité de la description par densité de probabilité ainsi que sur notre algorithme de
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fusion de scores pour l'apprentissage des similarités. Dans le Chapitre 5, nous concluons la
thèse en discutant les principaux résultats et en proposant plusieurs pistes pour de futurs
travaux de recherche dans le domaine.

Dans le Chapitre 1, nous faisons tout d'abord un état de l'art sur la problématique
de la recherche d'objets 3D par le contenu et nous formulons les problèmes associés en
suivant les travaux exposés dans [8, 9, 10]. Ensuite, nous présentons les bases d'objets 3D
utilisées dans nos expériences, notamment :

1. Princeton Shape Benchmark (PSB) [11],

2. Base de Données Sculpteur (SCU) [12, 13],

3. Base de Données SHREC-Watertight (SHREC-W) [14],

4. Purdue Engineering Shape Benchmark (ESB) [15].

Dans ce chapitre, nous fournissons également une taxonomie des descripteurs de forme
3D déjà présentés dans la littérature et nous récapitulons les notions de base sur le calcul
des distances entre les descripteurs. Nous terminons ce chapitre par les dé�nitions des
mesures de performance couramment utilisées dans la recherche par le contenu [11].

Pour la recherche 3D par descripteurs globaux, chaque objet de la base de données
est stocké par le système informatique sous la forme d'une représentation contenant le
résumé numérique de sa forme. Nous appelons descripteurs de forme ces représentations
qui correspondent à des vecteurs dans un espace vectoriel de haute dimension. Quand une
requête est présentée, le système calcule le(s) descripteur(s) correspondant à la requête et
le(s) compare à ceux des objets de la base de données en utilisant une fonction de distance.
Celle-ci mesure la similarité entre deux objets 3D. Ensuite, le système renvoie la liste des
objets de la base de données à l'utilisateur dans l'ordre croissant des valeurs de similarité.
L'objectif est d'obtenir les objets les plus similaires à la requête au début de la liste. Pour
atteindre cet objectif, un algorithme de description de forme doit satisfaire les critères
suivants [8] :

� E�cacité. L'algorithme de description doit permettre de bien discriminer les objets
de di�érentes classes. Inversement, pour les objets d'une même classe il doit révéler
les aspects communs de ces objets pour leur donner une grande valeur de similarité.
Ces deux objectifs, quand ils sont atteints, conduisent à une bonne performance de
la recherche d'objets 3D par le contenu.

� E�cience. L'algorithme doit permettre un calcul rapide des descripteurs et la taille
des descripteurs ne doit pas dépasser une certaine limite en pratique pour les appli-
cations.

� Flexibilité. On doit pouvoir appliquer l'algorithme à di�érents types de représen-
tations de forme, notamment les surfaces paramétriques, les surfaces voxelisées, les
surfaces implicites, les nuages de points, etc.

� Robustesse. L'algorithme doit être relativement insensible aux déformations légères
de la forme, au bruit et aux dégénérescences du maillage.

� Invariance. L'algorithme doit être invariant à la translation, au changement de pose
3D et au changement d'échelle isotropique.

Dans notre travail, ces critères nous ont guidés pour obtenir un algorithme de des-
cription performant sur diverses bases d'objets 3D. Notre approche peut être considé-
rée comme une extension et une généralisation des méthodes basées sur l'histogramme
[16, 17, 18, 19, 20, 21, 22]. Ces dernières sont en général assez faciles à mettre en ÷uvre
mais on leur reproche aussi de ne pas être su�samment discriminantes. Notre cadre basé
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Résumé

sur la densité vainc les limitations des approches basées sur l'histogramme, notamment
grâce à sa capacité de discrimination.

Dans le Chapitre 2, nous présentons notre approche pour la description de forme
3D par la densité de probabilité (DBF). DBF est un modèle génératif dont l'objectif est
de coder les propriétés géométriques de la forme contenues dans une classe d'objets 3D.
Ce modèle est basé sur l'idée suivante : associé à chacun des concepts de forme, il existe
un processus aléatoire sous-jacent qui induit une mesure de probabilité sur un certain
attribut surfacique local. Nous supposons que cette mesure admet une fonction de densité
de probabilité (fdp). Celle-ci, à son tour, contient de l'information liée aux propriétés
intrinsèques de la forme captées par la mesure de l'attribut choisi. Par conséquent, nous
pouvons mesurer la similarité entre deux formes en quanti�ant la variation entre les fdps. Le
descripteur d'une forme 3D basé sur la densité est dé�ni comme une version échantillonnée
de la fdp d'un certain attribut scalaire ou multivarié. L'attribut est local à la surface
et traité comme un variable aléatoire S. A chaque point de la surface, nous avons une
observation de S. Par exemple, si la surface est donnée sous forme de maillage triangulaire,
l'ensemble des observations peut être obtenu à partir des triangles ou des sommets du
maillage. En utilisant ces observations, nous pouvons estimer la fdp de l'attribut S à un
ensemble de points du domaine de dé�nition de la fdp pour obtenir un ensemble de valeurs
estimées de la fdp, qui deviendra le descripteur de l'objet. DBF est constitué de trois
étapes :

1. Le choix et le calcul de l'attribut surfacique. Dans cette étape, nous choisissons
des attributs surfaciques pour caractériser la surface 3D de manière locale. L'attribut
doit être discriminant et simple à calculer. Dans la Section 2.1, nous présentons une
gamme d'attributs locaux en fonction des propriétés di�érentielles de la surface sous-
jacente. L'usage de ces attributs dans un cadre multivarié mène à trois types de
caractérisations principales :

� Ordre-0. La distance radiale d'un point sur la surface considérée et sa direction
radiale normée (celle du rayon tracé à partir de l'origine de la surface vers le point
3D) paramétrisent le point a�n d'obtenir une caractérisation à l'Ordre-0.

� Ordre-1. La distance du plan tangent à la surface considérée et la direction de la
normale paramétrisent le plan tangent à ce point a�n d'obtenir une caractérisation
à l'Ordre-1.

� Ordre-2. L'indice de forme proposée dans [23] donne une caractérisation locale de
la surface en termes de formes primitives. Comme cet attribut est une fonction
des courbures principales, il est considéré à l'Ordre-2. Nous utilisons cet attribut
conjointement avec la distance radiale et le produit scalaire entre les directions
radiale et normale a�n d'obtenir une caractérisation riche dite à l'Ordre-2.

Dans la Section 2.1.2, nous discutons des di�érentes possibilités pour le calcul des
attributs a�n d'obtenir un ensemble d'observations. Cet ensemble peut être très fa-
cilement obtenu en évaluant l'attribut aux barycentres des triangles du maillage ou
bien aux sommets du maillage. Par contre, la résolution du maillage peut ne pas être
assez �ne et les triangles peuvent être de forme et de taille arbitraires. En consé-
quence, pour obtenir une caractérisation locale plus �able, nous devons tenir compte
de ces aspects. Nous pensons que l'espérance de l'attribut sur un triangle est plus
�able qu'une seule valeur au barycentre ou bien au sommet. Notre approche pour le
calcul des attributs est de discrétiser l'intégrale de l'espérance par l'approximation
de Simpson. Cette approche se réduit à prendre neuf points sur un triangle dont la
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position géométrique est spéci�ée par l'approximation, ensuite calculer l'attribut en
ces points, et �nalement en prendre une moyenne pondérée.

2. La sélection des points où est évaluée la fdp. Dans cette étape, nous déter-
minons les points, nommés cibles, où est évaluée la fdp. Nous devons exploiter la
structure du domaine de dé�nition de la fdp pour être e�cace dans le choix des
cibles. Notamment, quand un attribut prend ses valeurs sur la sphère unité (comme
la direction radiale et la normale), il faut invoquer des méthodes pour échantillonner
la sphère unité. Dans la Section 2.1.3, nous présentons deux de ces méthodes : la
subdivision successive de l'octaèdre et l'échantillonnage des paramètres sphériques.

3. Le calcul du descripteur �nal. Dans cette étape, en utilisant l'ensemble des
observations, nous estimons les valeurs de la fdp sur l'ensemble des cibles. L'outil
que nous utilisons pour cette estimation est la méthodologie à noyaux (KDE) [2, 3],
rendue e�cace par la transformée de Gauss rapide (FGT) [4, 5]. Dans la Section 2.2,
nous mettons KDE dans le contexte de la description de forme 3D. Nous analysons
l'aspect discriminatif de notre représentation en montrant une borne supérieure pour
la variation entre deux descripteurs dont les formes correspondantes sont des versions
perturbées d'une même forme initiale. Cette borne est inversement proportionnelle au
paramètre largeur de bande, le plus important paramètre de la méthodologie KDE [2,
3]. En particulier, nous mettons en évidence que ce paramètre a�ecte la discrimination
de notre représentation ainsi que sa robustesse. Une grande valeur de largeur de bande
conduit à une faible variation entre les descripteurs, alors qu'une petite valeur donne
une variation plus importante. Nous consacrons une grande partie de cette section à
la problématique de sélectionner le paramètre largeur de bande inconnu au préalable.

Le fait d'avoir un schéma de description basé sur la fdp nous permet d'exploiter cette
structure spéciale pour di�érents buts. Dans la Section 2.3, nous présentons deux outils
pour manipuler les descripteurs : la marginalisation et l'élagage de densité de probabilité.
La marginalisation élimine toute l'information contenue dans un sous-ensemble d'attributs.
Cet outil est utilisé pour explorer la redondance éventuelle de certains composants dans
un attribut multivarié. Par ailleurs, l'élagage de densité de probabilité élimine les valeurs
de fdp négligeables par seuillage. Ces deux outils peuvent être utilisés pour réduire la taille
du descripteur sans trop réduire pour autant sa propriété de discrimination.

Un autre avantage o�ert par la structure de la fdp est que l'on peut garantir l'in-
variance contre certains types de transformations 3D, notamment ceux qui changent la
nomenclature et la polarité des trois axes principaux, au moment du calcul de la similarité.
Dans la Section 2.4, en partant de la formule de changement de variables pour les fdps,
nous développons un schéma qui permet d'e�ectuer la transformation directement sur le
descripteur par une simple permutation de ses composants. Dans la Section 2.5, nous �-
nalisons ce chapitre en donnant un algorithme pour la mise-en-÷uvre de notre algorithme
de description.

Les travaux scienti�ques dans le domaine de la recherche d'objets 3D par le contenu
montrent qu'un seul type de descripteur n'est pas capable de fournir une performance
satisfaisante pour toutes les classes de formes 3D [8, 11]. Par conséquent, pour une perfor-
mance stable et robuste, une machine de recherche 3D doit compter sur un ensemble de
descripteurs variés. Cette observation nous motive pour considérer des schémas de fusion
de scores pour l'apprentissage des similarités inter-objets.

Dans le Chapitre 3, nous abordons le problème d'apprentissage des similarités avec
une approche statistique en minimisant une version convexe régularisée du risque de mau-
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Résumé

vais classement empirique. Nous suivons le cadre d'apprentissage statistique récemment
développé dans [7] et nous proposons une application pour la recherche d'objets 3D en
fusionnant les scores de similarités provenant de di�érents types de descripteurs. Notre
préférence pour travailler sur les scores au lieu de travailler directement sur les descrip-
teurs est due aux raisons suivantes :

� Alors que la plupart des descripteurs proposés dans la littérature de la recherche d'ob-
jets 3D sont vectoriels, le calcul des mesures de similarités non-classiques demande
une minimisation sur un ensemble de transformations 3D possibles pour assurer l'in-
variance. Comme cela est montré dans la Section 2.4, ce type de procédures peut
nécessiter des permutations successives des entrées des descripteurs. Dans ce cas-
là, travailler avec les descripteurs au lieu des scores peut être di�cile, voire même
impossible.

� Plus généralement, les descripteurs peuvent être des graphes avec des métriques spé-
cialisées pour la mise en correspondance de deux objets. Par conséquent, fusionner les
scores peut être considéré comme une solution plus généraliste pour l'apprentissage
des similarités.

� Dans le domaine de la recherche d'objets 3D, la taille des descripteurs peut atteindre
l'ordre de plusieurs milliers très facilement. Fusionner les scores a aussi cet avantage
de réduire la dimensionnalité des données d'une manière informatrice.

Dans la Section 3.1 de ce chapitre, nous formulons le problème de fusion de scores en
suivant un modèle de similarité linéaire d'après lequel la similarité �nale ϕ n'est qu'une
somme pondérée des scores individuels s = [sk]Kk=1 provenant de K di�érents descripteurs.
Etant donnés une requête q et deux objets de la base de données x et x′, la fonction de
similarité linéaire ϕ(x, q) = 〈w, s〉 doit satisfaire la simple relation suivante :

ϕ(x, q) > ϕ(x′, q) si x est plus pertinent à q que x′,
ϕ(x, q) < ϕ(x′, q) sinon.

Dans la Section 3.2, nous introduisons le risque de mauvais classement et sa version
empirique. Par le terme mauvais classement, nous entendons le fait que la valeur de la
similarité �nale entre un objet x et une requête q est inférieure à celle entre un autre objet
x′ et la requête q alors qu'elle devait être supérieure. Ce critère comptabilise le nombre
de pairs d'objets mal classés par rapport à une requête. En principe, en minimisant ce
critère par rapport aux paramètres w de la fonction de similarité �nale, nous pouvons
apprendre la similarité optimale dans le sens mesuré par le minimum du risque de mauvais
classement. Dans la Section 3.3, d'abord, nous montrons qu'en recodant le critère, le pro-
blème de minimiser le risque de mauvais classement est équivalent à minimiser l'erreur de
classi�cation binaire dans le domaine de vecteurs de di�érence de scores. Ensuite, comme
il est classique dans l'apprentissage statistique, nous convéxi�ons et régularisons ce critère
a�n de lui donner une formulation basée sur les machines à vecteurs de support [24]. Dans
cette section, nous donnons une description étape par étape de l'algorithme d'apprentissage
des similarités pour sa mise-en-÷uvre. Dans la Section 3.4, nous illustrons l'usage de cet
algorithme dans le contexte de di�érents protocoles de recherche d'objets 3D, notamment :

1. Recherche Bimodale. Dans ce protocole, l'utilisateur fournit une requête ainsi
que le nom de sa classe d'équivalence C. Le système stocke un vecteur de poids
wC correspondant à chaque classe C. La similarité �nale est calculée comme suit :
ϕ(x, q) = 〈wC , s〉.

2. Recherche en Deux étapes. Ce protocole a deux variantes : en ligne et hors ligne.
Dans la version en ligne, dans un premier temps, la machine retourne un certain
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nombre d'objets en additionnant les scores de similarités individuels. Parmi ces ob-
jets, l'utilisateur choisit ceux qu'il trouve pertinent et non-pertinent. En utilisant ces
objets, le système apprend les poids optimaux w par rapport à la requête actuelle.
La similarité �nale est calculée comme suit : ϕ(x, q) = 〈w, s〉. La version hors ligne
di�ère de la version en ligne par la quantité de l'information que l'utilisateur doit
retourner. Ce dernier ne marque qu'un seul objet, celui qu'il trouve le plus pertinent
à première vue. Le système stocke un vecteur de poids w di�érent pour chaque objet,
la similarité �nale se calculant de façon classique.

Dans le Chapitre 4, nous présentons les résultats expérimentaux obtenus avec les
algorithmes que nous avons développés dans les chapitres précédents. Les expériences sont
regroupées en cinq parties :

1. Expériences sur le choix des paramètres et sur la robustesse. La sélection du
paramètre largeur de bande constitue un problème majeur dans toutes les applications
utilisant KDE. Pour commencer, nous testons dans la Section 4.1 les trois options
suivantes pour sélectionner la largeur de bande :

(i) au niveau des triangles,
(ii) au niveau du maillage,
(iii) au niveau de la base de données.

Il s'avère que le choix le plus simple au niveau de la base de données donne les
meilleures performances de recherche d'objets 3D pour di�érents attributs locaux.
Dans un second temps, nous établissons la robustesse de notre méthode de descrip-
tion dans la Section 4.2. Premièrement, nous montrons que, pour les maillages de
faible résolution comme dans PSB, le schéma du calcul d'attribut par l'approxima-
tion de Simpson sur un triangle est plus e�cace que par les seules observations aux
barycentres ou aux sommets. Deuxièmement, nous quanti�ons la variation entre les
descripteurs en fonctions des e�ets extrinsèques subis par les maillages, notamment :

(i) un changement de résolution,
(ii) une contamination par le bruit Gaussien,
(iii) les erreurs de normalisations de pose.

Nous retrouvons que la variation peut être rendue négligeable quand la largeur de
bande admet une grande valeur.

2. Expériences sur l'e�cience. Le calcul de nos descripteurs étant facilité considéra-
blement par FGT, nous traitons le problème d'e�cience comme celui de la parcimonie
de descripteurs. Dans la Section 4.5, nous utilisons nos outils de marginalisation et
d'élagage de la densité de probabilité pour réduire la taille de nos descripteurs et
nous comparons les résultats avec une méthode classique : l'analyse en composantes
principales (PCA). Nous montrons qu'il est possible de réduire considérablement la
taille de nos descripteurs sans réduire la performance alors qu'avec PCA, une perte
est inévitable.

3. Expériences sur l'e�cacité et sur l'invariance. Dans la Section 4.4, nous testons
di�érentes de mesures de similarités classiques pour comparer deux histogrammes.
La mesure L1 se révèle satisfaisante vu son simplicité par rapport aux autres mesures
Lp, Bhattacharyya, Kullback-Leibler et la divergence du χ2. Dans cette section, nous
montrons également l'e�cacité de rendre les descripteurs invariants aux changements
des axes principaux au moment du calcul de similarité. Nous retrouvons que ces
améliorations sont indépendantes du type de l'attribut et de la base de données
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Résumé

choisie. Dans les Sections 4.6 et 4.7, nous explorons l'e�et de la fusion d'information
au niveau des attributs et au niveau des descripteurs. Notre cadre qui est multivarié
par construction permet tout naturellement une fusion d'information au niveau des
attributs. En particulier, nous montrons que jusqu'à quatre composants, prendre les
attributs conjointement se révèle plus e�cace que les considérer individuellement. En
revanche, au de-là de quatre composants, à cause des problèmes liés à l'estimation
précise de la densité et des problémes concernant la taille des descripteurs, nous
retrouvons qu'il est plus pratique et e�cace de combiner di�érents descripteurs en
additionnant les valeurs de similarités associés.

4. Expériences comparatives avec les autres méthodes de l'état de l'art. Plu-
sieurs descripteurs proposés dans la littérature ont leurs équivalents dans notre cadre
de description basé sur la densité. Notre approche di�ère de ces méthodes, quali�ées
généralement de basées sur l'histogramme [16, 17, 18, 19, 20, 21, 22], en l'usage de la
méthode d'estimation à noyaux et des attributs multivariés. Dans la Section 4.8.1,
nous montrons que nos descripteurs sont soit plus e�caces que leurs analogues, soit
au moins équivalents. Dans la Section 4.8.2, nous comparons notre cadre également
aux autres méthodes de l'état de l'art. La principale conclusion de cette section est
que notre algorithme o�re les meilleures performances de recherche d'objets 3D sur
PSB, et cela parmi toutes les méthodes de descriptions proposées jusqu'aujourd'hui.
Nos dernières expériences de comparaison ont pour but de montrer que la perfor-
mance de notre algorithme de description se généralise bien sur di�érentes bases de
données. Les résultats des expériences extensives de la Section 4.9 sur les quatre
bases de données citées précédemment montrent que la bonne performance de notre
algorithme reste stable dans tous les cas testés.

5. Expériences de fusion de scores. Ce dernier groupe d'expériences a pour but
d'établir l'e�cacité de notre algorithme de fusion de scores développé dans la Sec-
tion 4.10. En particulier, les expériences que nous avons menées sur PSB montrent
que notre algorithme de fusion de score a toujours un e�et positif global sur la per-
formance dans tous les protocoles testés.

Dans le Chapitre 5, nous concluons en discutant les propriétés de nos algorithmes et
nous proposons de nouvelles perspectives de recherche. Nos principales contributions sur
le problème de la description de formes 3D sont récapitulées ci-dessous :

� Le cadre de description basé sur la densité de probabilité ne produit pas un seul des-
cripteur mais toute une riche famille de descripteurs dont les membres ont di�érents
niveaux de discrimination.

� Notre cadre uni�e les approches basées sur l'histogramme et permet d'établir le
passage d'une caractérisation locale multivariée à une description globale. En termes
de performance, nos descripteurs sont meilleurs que leurs équivalents dans la catégorie
des méthodes basées sur l'histogramme.

� Notre cadre de description est plus performant que les autres approches proposées
dans la littérature. En plus, sa performance reste stable sur di�érentes bases de
données provenant de domaines d'application 3D variés.

� Notre cadre permet d'exploiter la structure du fdp, notamment pour réduire la taille
des descripteurs par la marginalisation et par l'élagage de la densité de probabilité,
et aussi pour garantir l'invariance au moment du calcul de similarité par le schéma
invariant.

� Nous avons dérivé une borne supérieure sur la variation entre deux descripteurs, ce
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qui nous permet de faire une analyse qualitative sur l'e�et du paramètre largeur de
bande dans notre contexte.

� Nous avons proposé un nouveau schéma de calcul d'attribut pour les maillages tri-
angulaires.

� Notre algorithme, qui est une première application de la méthode FGT dans le
contexte de la description de forme 3D, donne des descripteurs très rapides à calculer.

Nos perspectives sur le problème de la description de formes 3D sont les suivantes :
� Etendre le schéma invariant aux changements de pose 3D (rotations),
� Appliquer des méthodes paramétriques pour l'estimation de la densité,
� Analyser les attributs locaux d'un point de vue de la théorie de l'information pour
expliquer l'e�et de l'entropie locale à la complexité globale.

Nos principales contributions sur le problème d'apprentissage des similarités sont réca-
pitulées ci-dessous :

� A notre connaissance, dans le domaine de recherche d'objets 3D, notre algorithme
de fusion constitue la première tentative pour apprendre les similarités avec des
méthodes statistiques.

� L'approche par fusion de scores développée dans cette thèse est une application d'un
cadre statistique rigoureux. Les propriétés de consistance et de taux de convergence
rapide des approches par minimisation du risque de mauvais classement ont pu être
établies dans des travaux récemment publiés [7]. Ces résultats théoriques renforcent
la solidité de notre approche.

� Notre approche est indépendante de la modalité de la description puisqu'on utilise
les scores au lieu des descripteurs. De ce point de vue, notre algorithme peut être
utilisé dans la plupart des problématiques de moteurs de recherche.

� Les gains de performances apportés par notre algorithme dans divers protocoles sont
importants. Cela montre que la supervision peut permettre des recherches plus sé-
mantiques quand elle est utilisée avec des méthodes statistiques rigoureuses. Notre
travail en est un bon exemple.

Nos perspectives sur le problème d'apprentissage des similarités sont les suivantes :
� Appliquer l'algorithme de fusion à d'autres modalités de description,
� Imposer un modèle de similarité non-linéaire a�n d'obtenir des gains de performance
plus importants,

� Minimiser d'autres critères que celui du risque de mauvais classement.
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Abstract

Next generation search engines will enable query formulations, other than text, relying
on visual information encoded in terms of images and shapes. The 3D search technology,
in particular, targets specialized application domains ranging from computer aided-design
and manufacturing to cultural heritage archival and presentation. Content-based retrieval
research aims at developing search engines that would allow users to perform a query by
similarity of content.

This thesis deals with two fundamentals problems in content-based 3D object retrieval:

(1) How to describe a 3D shape to obtain a reliable representative for the subsequent
task of similarity search?

(2) How to supervise the search process to learn inter-shape similarities for more e�ective
and semantic retrieval?

Concerning the �rst problem, we develop a novel 3D shape description scheme based
on probability density of multivariate local surface features. We constructively obtain
local characterizations of 3D points on a 3D surface and then summarize the resulting
local shape information into a global shape descriptor. For probability density estimation,
we use the general purpose kernel density estimation methodology, coupled with a fast
approximation algorithm: the fast Gauss transform. The conversion mechanism from local
features to global description circumvents the correspondence problem between two shapes
and proves to be robust and e�ective. Experiments that we have conducted on several 3D
object databases show that density-based descriptors are very fast to compute and very
e�ective for 3D similarity search.

Concerning the second problem, we propose a similarity learning scheme that incor-
porates a certain amount of supervision into the querying process to allow more e�ective
and semantic retrieval. Our approach relies on combining multiple similarity scores by
optimizing a convex regularized version of the empirical ranking risk criterion. This score
fusion approach to similarity learning is applicable to a variety of search engine problems
using arbitrary data modalities. In this work, we demonstrate its e�ectiveness in 3D object
retrieval.

15



16



Contents

Introduction 21

1 3D Object Retrieval 25

1.1 Research Challenges in 3D Object Retrieval . . . . . . . . . . . . . . . . . . 25
1.2 3D Object Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Background on 3D Shape Descriptors . . . . . . . . . . . . . . . . . . . . . . 32

1.3.1 Histogram-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.2 Transform-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.3 Graph-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5 Evaluation Tools for Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Density-Based 3D Shape Description 41

2.1 Local Characterization of a 3D Surface . . . . . . . . . . . . . . . . . . . . . 42
2.1.1 Local Surface Features . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Feature Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.3 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.1 KDE in Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.2 Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.3 Computational Considerations . . . . . . . . . . . . . . . . . . . . . 59

2.3 Descriptor Manipulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.1 Marginalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.2 Probability Density Pruning . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 An Invariant Similarity Measure for Pdfs . . . . . . . . . . . . . . . . . . . . 62
2.5 Summary of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Statistical Similarity Learning 67

3.1 The Score Fusion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Ranking Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 SVM Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Bimodal Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Two-round Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

17



CONTENTS

4 Experiments 75

4.1 Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.1 Levels of Analysis for Bandwidth Selection . . . . . . . . . . . . . . . 77
4.1.2 Sensitivity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Robustness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 E�ect of Feature Calculation . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Robustness against Low Mesh Resolution . . . . . . . . . . . . . . . 80
4.2.3 Robustness against Noise . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.4 Robustness against Pose Normalization Errors . . . . . . . . . . . . . 83

4.3 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 E�ect of Sampling Schemes . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 E�ect of Descriptor Size . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Marginalization Results . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.2 Probability Density Pruning Results . . . . . . . . . . . . . . . . . . 87
4.5.3 PCA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Feature-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.1 A Few Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.2 Marginalization Revisited . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Basic Score Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8 Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8.1 Comparison with Histogram-Based Peers . . . . . . . . . . . . . . . . 96
4.8.2 General Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.9 Performance Variation across Databases . . . . . . . . . . . . . . . . . . . . 105
4.10 Statistical Learning-Based Score Fusion . . . . . . . . . . . . . . . . . . . . 112

4.10.1 Performance in the Bimodal Search . . . . . . . . . . . . . . . . . . . 114
4.10.2 Performance in the Two-round Search . . . . . . . . . . . . . . . . . 115

5 Conclusion and Perspectives 121

5.1 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Notations 127

A 3D Object Databases 129

B Standard Dissimilarity Measures 133

B.1 Lp-Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Symmetric Kullback-Leibler Distance . . . . . . . . . . . . . . . . . . . . . . 134
B.3 χ2-Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.4 Bhattacharyya Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.5 Histogram Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.6 Earth Mover's Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C KDE and Related Issues 137

C.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
C.2 Derivation of the Upper Bound on MIAE . . . . . . . . . . . . . . . . . . . 138
C.3 AMISE and the Scott Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 140

18



CONTENTS

D Marginalization Results 143

E Sample Two-round Searches 147

F Publications 153

F.1 Publications Related to the Thesis . . . . . . . . . . . . . . . . . . . . . . . 153
F.2 Other Publications in 2004-2007 . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography 155

19



20



Introduction

Communication media have appeared in many guises during the never ending Information
Age. The passage from textual exchange of ideas to audiovisual communication had been
one of the major breakthroughs in the last century. Visual information in the form of image
and video has now become so common that we cannot even imagine a world without photos,
television and motion pictures. The advent of high-speed graphics hardware now o�ers a
new dress to visual information: the digital 3D object.

3D objects arise in a number of disciplines ranging from computer aided-design and
manufacturing (CAD/CAM) to cultural heritage archival and presentation. Other shades
of the application spectrum include architecture, medicine, molecular biology, military,
virtual reality and entertainment. Access to large 3D object databases occurring in these
�elds demands e�ective and e�cient tools for indexing, categorization, classi�cation and
representation of the 3D data. Content-based retrieval addresses this challenging task
using compact shape representations and intelligent search paradigms.

The next generation search engines will enable query formulations, other than text,
relying on visual information encoded in terms of images and shapes. The 3D search
technology, in particular, targets specialized application domains like the ones mentioned
above [1]. In a typical 3D search scenario, the user picks a query from a 3D model catalogue
and requests from the retrieval machine to return a set of �similar" database models in
decreasing relevance. Content-based retrieval research aims at developing search engines
that would allow users to perform a query by similarity of content. A request can be made
for a number of objects, which are the most similar to a given query or to a manually
entered query speci�cation [8].

3D object retrieval hinges on shape matching, that is, determining the extent to which
two shapes resemble each other [9]. The approaches to shape matching fall into two main
categories: matching by feature correspondences and matching by global descriptors. The
general strategy in the former approach is to compute multiple local shape features for
every object and then, to assess the similarity of any pair of objects as the value of a
distance function determined by the optimal set of feature correspondences at the optimal
relative transformation [25]. The global descriptor-based paradigm (or feature vector-
based in a di�erent terminology [8]), on the other hand, reduces the shape characteristics
to vectors or graph-like data structures, called shape descriptors [8, 9, 10], and then,
evaluates the similarity degree between the descriptor pairs. We call this similarity degree
as the matching score between the two shapes. In the retrieval mode, the matching scores
between a query and each of the database models are sorted out. The retrieval machine
then displays database models in descending scores. E�ective retrieval means that the
shapes displayed at the top of the list better match the query shape than the rest of the
list.

In this thesis, we focus exclusively on the descriptor-based matching paradigm. A
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global shape descriptor is considered as a mapping from the space of 3D objects to some
�nite-dimensional vector space. Accordingly, for each 3D object in the database, the
retrieval system stores a vector of numerical attributes as a representative. This vector is
expected to encode the information about the object's shape in such a way to allow fast
and reliable similarity searches. The global descriptor-based paradigm is more suitable to
machine learning tasks other than retrieval, such as object recognition and unsupervised
classi�cation. In fact, a 3D shape descriptor, which is e�ective in retrieval, is also expected
to be e�ective in classi�cation.

We address two research challenges concerning content-based 3D object retrieval:

• Shape Descriptors. We develop a novel 3D shape description scheme based on
probability density of multivariate local surface features. We constructively obtain
local characterizations of 3D points on a 3D surface and then summarize the result-
ing local shape information into a global shape descriptor. For probability density
estimation, we use the general purpose kernel density estimation (KDE) methodol-
ogy [2, 3], coupled with a fast approximation algorithm: the fast Gauss transform
(FGT) [4, 5]. The conversion mechanism from local features to global description
circumvents the correspondence problem between two shapes and proves to be robust
and e�ective. Experiments that we have conducted on several 3D object databases
show that density-based descriptors are very fast to compute and very e�ective for
3D similarity search.

• Similarity. We propose a similarity learning scheme that incorporates a certain
amount of supervision into the querying process to allow more semantic and e�ective
retrieval. Our approach relies on combining multiple similarity scores by optimizing
a convex regularized version of the empirical ranking risk criterion [6, 7]. This score
fusion approach to similarity learning is applicable to a variety of search engine prob-
lems using arbitrary data modalities. In this work, we demonstrate its e�ectiveness
in 3D object retrieval.

In Chapter 1, we introduce the descriptor-based 3D object retrieval paradigm along
with the associated research challenges. In Section 1.1, we �x ideas on issues such as
descriptor requirements and similarity matching. In Section 1.2, we present the 3D object
databases on which we have experimented during the thesis work. In Section 1.3, we
review state-of-the-art 3D shape description techniques. In Section 1.4, we recapitulate
the notion of computational similarity and introduce the problem of securing invariance
at the matching stage. In Section 1.5, we de�ne some of the performance assessment tools
employed in information retrieval.

In Chapter 2, we develop the density-based shape description framework. Section 2.1
of this chapter is devoted to local characterization of a 3D surface and also addresses the
associated computational issues such as feature calculation and feature domain sampling.
In Section 2.2, after providing a brief overview of KDE in general terms, we explain how
this powerful statistical tool can be used in the context of 3D shape description. Density-
based shape description comes also with a set of dedicated tools, exploiting the probability
density structure as we present in Section 2.3: marginalization and probability density
pruning. Section 2.4 demonstrates that pdf-based descriptors are suitable for guaranteeing
invariance to extrinsic e�ects, such as the object pose in the 3D space, at the matching
stage. In this section, starting from the change of variables formula, we develop a similarity
measure, which is invariant to coordinate axis relabelings and mirror re�ections.
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Introduction

In Chapter 3, we describe our score fusion approach to the similarity learning problem
in the context of content-based retrieval. In Sections 3.1 and 3.2, we lay down the problem
of learning a scoring function by ranking risk minimization. In Section 3.3, we provide a
support vector machines (SVM) based solution and present a score fusion algorithm. In
Section 3.4, we design two speci�c applications, bimodal and two-round search protocols,
where the algorithm can be employed.

In Chapter 4, we provide extensive experimental results. In Sections 4.1 and 4.2, we
address the problem of setting the bandwidth parameter involved in KDE and illustrate the
regularization behavior and the robustness properties of our descriptors. In Section 4.3, we
deal with the target selection problem, coined as determining the pdf evaluation points in
the feature domain. In Section 4.4, we assess the performance of standard similarity mea-
sures on density-based descriptors and demonstrate the superiority of the invariant scheme
developed in Section 2.4 in experimental terms. In Section 4.5, we invoke dedicated descrip-
tor manipulation tools of Section 2.3 to render our descriptors storage-wise e�cient. In
Sections 4.6 and 4.7, we experiment with two information fusion options, feature-level and
score-level fusions, to bring the retrieval performance of the density-based framework at its
best. In Section 4.6, we also illustrate the use of marginalization for non-heuristic feature
space exploration to discover the most discriminative feature subsets. In Section 4.8, we
contrast our descriptors to their counterparts in the literature and provide a performance
landscape of the state-of-the-art shape descriptors. In Section 4.9, we analyze the perfor-
mance of our framework across four semantically di�erent 3D object databases of varying
mesh quality. Finally, Section 4.10 is devoted to statistical learning-based score fusion
and shows how more e�ective retrieval can be achieved using the algorithm developed in
Chapter 3.

In Chapter 5, we conclude and discuss future research directions.

23



24



Chapter 1

3D Object Retrieval

In this chapter, we formulate the 3D object retrieval problem and describe how a typical re-
trieval system proceeds to access 3D objects by content. We focus exclusively on descriptor-
based systems and the associated research challenges. In the paradigm of descriptor-based
retrieval, for each database object, the system stores a representation containing a numeri-
cal summary of the object's shape. Such representations are called shape descriptors, which
usually are vectors in some high-dimensional vector space. When a query is presented, the
system calculates its descriptor(s) and compares it to those of the stored objects using a
distance function, which measures dissimilarity. The system sorts the database objects in
terms of increasing distance values. The items at the top of the ranked list are expected
to resemble the query more than those at the end. The number of retrieved objects can be
determined, either implicitly, by a range query in which case the system returns all objects
within a user-de�ned distance, or explicitly, by �xing the number of objects to return.

In the following section, we provide an overview of the research challenges that we
address in this thesis, in view of the comprehensive surveys [8, 9, 10]. In parallel, we
state our approaches to deal with speci�c problems associated with these challenges. In
Section 1.2, we present the 3D object databases on which we have experimented during the
thesis work. In Section 1.3, we provide a general taxonomy on the state-of-the-art 3D shape
descriptors. In Section 1.4, we brie�y describe the notion of computational similarity and
introduce the problem of securing invariance at the matching stage. Finally in Section 1.5,
we conclude the chapter with the most commonly used performance measures adopted in
information retrieval.

1.1 Research Challenges in 3D Object Retrieval

Descriptor-based 3D object retrieval is open to many research challenges. Along the same
line as in [8, 9, 10], we classify them under the following headings:

• Description Modalities for 3D Similarity Search. So far, 3D descriptor re-
search has concentrated generally on shape, as given by the object's surface or its
interior, rather than other attributes like color and texture. This tendency is not
only due to the fact that most of the similarity information is born within the shape
but also because color and texture attributes are not always guaranteed to be present
[8]. Our focus has also been on designing 3D descriptors based on shape, especially
on surface shape information.
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There is a multitude of formats to represent the 3D shape [26]. In CAD/CAM appli-
cations, a 3D object is usually represented by a collection of parameterized surface
patches or using constructive solid geometry techniques. In medical imaging, scan-
ning devices output voxel data or point clouds. Implicit surfaces, superquadrics,
NURBS (non-uniform rational B-splines) and point-based surfaces constitute alter-
native forms of the state-of-the-art surface representations. The most popular for-
mat, on the other hand, is the polygonal -usually triangular- mesh, which arises
in CAD/CAM and �nite element analysis as well as in virtual reality, entertain-
ment, and web applications. Furthermore, 3D scanning devices usually come with
built-in triangulation software, thus favoring the use of this particular representation.
Although a certain application usually demands a speci�c representation, which is
more suitable for its tasks, one can always switch from one format to another. As
will be explained in more detail in Section 1.2, we will work with 3D triangular mesh
databases. Consequently, the descriptors designed in this thesis largely exploit this
particular representation, yet preserve general applicability, especially to 3D point
cloud data.

• Descriptor Requirements. There are two criteria that matter the most in de-
signing a 3D shape descriptor: e�ectiveness and e�ciency, [8, 9]. In general, a
shape descriptor can be viewed as a mapping from the 3D object space to some
high-dimensional vector space. The common objective in 3D descriptor research is
to design such mappings in a way to preserve the maximum shape information with
as low-dimensional a vector as possible. The informativeness requirement is called
e�ectiveness, and the parsimony requirement as e�ciency. On one hand, a shape
descriptor is required to be e�ective in the sense of containing necessary discrimina-
tion information for retrieval and classi�cation on a large 3D database. On the other
hand, the descriptor should be su�cient and moderate in size to allow fast extraction
and search for practical systems. These two criteria are in general competing, but
also in some way complementary. To preserve all the shape information contained by
the representation form provided, the description methodology should be exhaustive
enough for reconstruction. As a result, the descriptor might be very high-dimensional.
However, an approach producing a very high dimensional vector hampers the fast
extraction and search requirements, reducing the e�ciency of the overall system. Fur-
thermore, the curse of dimensionality appearing in many disguises as far as learning
in a large database is of concern, such an approach might lack generalization ability
[27, 24], which is fundamental to classi�cation. From this perspective, the objectives
of e�ectiveness and e�ciency may not be completely orthogonal to each other. For
the time being, since there is no universal theory for designing such mappings, the
e�ectiveness and e�ciency of a descriptor (or the system using that particular de-
scriptor) are evaluated on experimental terms. Regarding these issues, we would like
to emphasize that, for retrieval and classi�cation, not every shape detail is necessary
and should even be discarded in the most principled way possible. Our thesis work
has been guided by this token.

Robustness constitutes another requirement: a descriptor should be insensitive to
small shape variations [8, 9] and topological degeneracies. Accordingly, a descriptor
should be more or less invariant to such defects and/or variations. A key point
to consider is that the similarity degree between two descriptors corresponding to
two objects of the same semantics should always be greater than the similarity degree
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between two descriptors coming from di�erent semantics. Along this line of argument,
we postulate that a good shape descriptor should smooth out or eliminate individual
shape details and enhance shared global properties. We believe that these global
properties are induced by the semantic concept class that the 3D object belongs to.
What would be nice, but is also di�cult, is to have a certain amount of control over
elimination of individual details and enhancement of global properties.

• Invariance. Along with e�ectiveness, e�ciency and robustness, there exist other
descriptor requirements relying on well-founded mathematical bases. According to a
widely accepted de�nition, the shape of an object is the geometrical information that
remains after the e�ects of translation, rotation, and isotropic rescaling have been
removed [28]. Such e�ects are denominated collectively as similarity transformations.
A shape descriptor or the associated matching scheme should be invariant against
these e�ects. Invariance can be secured in two di�erent ways:

� Invariance by description. Either the descriptor is invariant by design, or the 3D
object undergoes a preprocessing step where it is normalized to have a centered
canonical reference frame and scale. It is hard to advocate for one or the other in
terms of retrieval e�ectiveness. Several research groups favor their own choices,
supporting their claims with experiments [29, 30]. Our opinion is that descrip-
tors, which are invariant by design, come usually with a certain loss of shape
information that might be valuable for a speci�c application. On the other hand,
�nding a canonical 3D reference frame on a per object basis is still an open prob-
lem. Principal component analysis (PCA) and its variants [31, 30] constitute a
monopolistic tool for 3D pose normalization although they are not always very
stable to variations of the object's shape even in a semantically well-de�ned
class and might result in counter-intuitive alignments. Recently, Podolak et
al. proposed a per-object alignment method based on �nding symmetry axes
[32]. Whenever such symmetries exist within the object, this approach may
be promising and useful for obtaining semantically more meaningful reference
frames. Nevertheless, the computational simplicity of PCA makes it still an
attractive and widely used pose normalization tool. Regarding this issue, our
standpoint is rather operational: we think that one should not refrain from the
use of pose normalization schemes when the descriptor fails to be invariant by
design.

� Invariance by matching. Invariance can also be secured by minimizing a certain
notion of distance between two descriptors, by holding one descriptor �xed and
altering the other under the e�ect of the transformations that the 3D object
might undergo. The invariance achieved in this way comes with no loss of
shape information, but the matching becomes computationally more involved
than merely taking, say, a Minkowski distance between descriptor vectors. In
this approach, it is essential that the description algorithm is able to re�ect
the e�ect of the transformation directly to the descriptor, without recomputing
it at every possible transformation of the object. In Section 1.4, we formalize
this idea, and in Section 2.4, we show that the density-based shape description
framework has this ability.

• Similarity. Whatever descriptor one obtains, there is always the ambiguity about
the similarity criterion to be associated. Generally, it is not known in advance which
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distance or norm would be the most suitable for retrieval and classi�cation. The usual
practice is to experiment with a set of distance functions and report their retrieval
performances. The distance function yielding the best retrieval score is considered
as the most suitable for the particular descriptor and database tested. On the other
hand, for content-based retrieval applications, statistical learning theory provides
a mathematical framework to learn the appropriate distance function, or similarity
in general, under the heading of statistical ranking [7, 33, 34, 35]. In the present
work, we tackle the similarity learning problem using a statistical learning-based
score fusion scheme as described in Chapter 3.

Additional challenges concern the design of index structures associated with the similar-
ity function used in the retrieval system, the notion of partial similarity and the availability
of ground truth data [8]. The former two problems are not in the scope of the present work.
The latter ground truth problem constitutes a side interest for the thesis, as we explain in
the next section. We refer the reader to references [8, 9, 10] for more information on these
issues.

1.2 3D Object Databases

A Google search for �3D Model" keyword returns 1,840,000 entries as of August 2007.
Furthermore, research groups from all around the world have initiatives on developing and
maintaining experimental search engines using 3D objects. It can be conjectured that the
advent of fully operational 3D engines on the web is now a matter of time. In Appendix A,
we provide a list of some private and publicly available 3D object databases used for
research purposes. We note that there also exist many commercial repositories on the web
from where 3D models can be purchased.

In the thesis, we have experimented with four di�erent databases. All of them consist of
3D models given by triangular meshes, though they di�er substantially in terms of content
and mesh quality. These are:

• Princeton Shape Benchmark (PSB) [11],

• Sculpteur Database (SCU) [12, 13],

• SHREC'07 Watertight Database (SHREC-W) [14],

• Purdue Engineering Shape Benchmark (ESB) [15].

PSB is a publicly available database containing 1814 models, categorized into general
classes such as animals, humans, plants, household objects, tools, vehicles, buildings, etc.
[11] (see Figure 1.1). An important feature of the database is the availability of two equally
sized sets. One of them is a training set (90 classes) reserved for tuning the parameters
involved in the computation of a particular shape descriptor, and the other for testing
purposes (92 classes), with the parameters adjusted using the training set.

SCU is a private database containing over 800 models corresponding to mostly archae-
ological objects residing in museums [12, 13]. So far, 513 of the models have been classi�ed
into 53 categories of comparable set sizes, including utensils of ancient times such as am-
phorae, vases, bottles, etc.; pavements; and artistic objects such as human statues (part
and whole), �gurines, and moulds. An example set of SCU objects is shown in Figure 1.2.
The database is augmented by arti�cially generated 3D objects such as spheres, tori, cubes,
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cones, etc., collected from the web. The meshes in SCU are highly detailed and reliable
in terms of connectivity and orientation of triangles. The following �gures illustrate the
signi�cant distinction between PSB and SCU in terms of mesh resolution. The average
number of triangles in SCU and in PSB is 175250 and 7460 respectively leading to a ratio
of 23. SCU meshes contain 87670 vertices on the average while for PSB this number is
4220. Furthermore, the average triangular area relative to the total mesh area is 33 times
smaller in SCU than in PSB.

SHREC-W has been released for the Watertight track of the Shape Retrieval Contest
(SHREC) in 2007 [36, 14]. It consists of 400 watertight meshes of high resolution, classi�ed
into 20 equally sized classes such as human, cup, glasses, octopus, ant, four-legged animal,
etc. Classi�cation semantics in SHREC-W are largely induced by topological equivalences
as shown in Figure 1.3. Accordingly, SHREC-W constitutes a challenging test environment
for geometry-based shape description methods.

ESB is another database that has been used in the SHREC'07 event and consists of 865
closed triangulated meshes, which represent engineering parts (Figure 1.4) [36, 37]. This
dataset is classi�ed into a ground truth classi�cation with two levels of hierarchy. Overall
there are three super-classes, namely, �at-thin object, rectangular-cubic prism, and solid of
revolution, which are further categorized into 45 classes. It is particularly interesting to see
the performance of 3D shape descriptors on such a database, as CAD o�ers an important
application domain for content-based 3D shape retrieval.

The existence of widely accepted ground truth is a crucial aspect for objective and
reproducible e�ectiveness evaluation [8]. Accordingly, obtaining ground truth data consti-
tutes a fundamental problem, which should be addressed by researchers working in the �eld
of content-based retrieval. The most rigorous attempt to determine 3D object semantics
has been made by the Princeton group [11] and PSB has been a standard test environment
since 2004. The approach to generate ground truth data for PSB has been to associate,
to each semantically homogeneous group of objects, a class name representing an atomic
concept (e.g., a noun in the dictionary) (see [11] for details). The process has been car-
ried out by computer science students that were not expected to be experts in semantics.
Sculpteur, on the other hand, is a more specialized database containing cultural heritage
objects that ideally require expert intervention for ground truth classi�cation. Manufac-
turing styles, periods, places and artists constitute basic entities of an ontology that would
explicitly specify the domain of cultural heritage information. However, is it possible to
derive such entities from the shape information contained in an object alone? The answer
is not clear for the time being. Furthermore, the priorities of �eld experts, such as archae-
ologists, art historians, museum scientists, can be somewhat orthogonal to what is aimed
at in machine learning. For instance, to an archaeologist, even a scratch on the surface
of an ancient amphora may contain valuable information to determine its manufacturing
period. On the other hand, a retrieval or classi�cation algorithm would most probably
consider this scratch as noise or small shape variation that should be discarded in the �rst
place. Nevertheless, these conceptual di�culties have not prevented us from creating our
own ground truth for SCU. Together with Helin Duta§ac�1, we have created a hierarchical
classi�cation for SCU objects. In determining the categories, we have been driven by form
and functionality. The �rst two levels of hierarchy in our classi�cation are given in the
sequel.

1Helin Duta§ac� is with the Bo§aziçi University Signal and Image Processing Laboratory:
http://busim.ee.boun.edu.tr/∼helin/.
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Figure 1.1: An example set of objects from the Princeton Shape Benchmark

Figure 1.2: An example set of objects from the Sculpteur Database
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Figure 1.3: The SHREC-W Database and the associated classi�cation

Figure 1.4: An example set of objects from the Purdue Engineering Shape Benchmark
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• Utensil

� Jar/Jag/Vase

� Sugar caster

� Amphora

� Pilgrim bottle

� Bowl

� Carafe

� Lamp

• Computer-Generated Arti�cial Object

� Humanoid

� Chess piece

� Sphere

� Torus

� Eight

� Cone

� Cube

• Pavement

• Artistic Object

� Statue

� Mould

� Relievo

� Diverse

1.3 Background on 3D Shape Descriptors

Although the research on 3D shape descriptors for retrieval and classi�cation has started
just a decade ago or so, there is a considerable amount of work reported so far. The
most up-to-date and complete reviews in this rapidly evolving �eld are given in [8, 10, 9].
In addition, the reference [11] is useful for a quick scan of practical schemes. Due to
the variety and abundance of the methods, there is no universally accepted taxonomy
of 3D shape descriptors. In our review, we preferred to provide a general classi�cation,
emphasizing the speci�c way to exploit the geometrical or topological shape information
contained in the 3D object. More detailed accounts can be found in [8, 9, 10]. According
to our generality criterion, we ended up with the categories shown in Table 1.1.

In the following, we describe the �rst three categories of our taxonomy, i.e., histogram-
based, transform-based, and graph-based descriptors. Regarding 2D Image-based methods,
the work in [55] provides a comprehensive overview. For the remainder, we invite the
reader to consult the references given in Table 1.1, or for a quicker scan, the surveys in
[8, 9, 10, 55].
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Table 1.1: A Taxonomy of 3D Shape Descriptors
Category Examples

Histogram-Based Cord and Angle Histograms [31, 16, 38]
Shape Distributions [18]
Generalized Shape Distributions [19]
Shape Histograms [17]
Extended Gaussian Images [20, 21]
3D Hough Transform [22, 39]
Shape Spectrum [22]

Transform-Based Voxel-3D Fourier Transform (3DFT) [40]
Distance Transform-3DFT and Radial Cosine Transform [41]
Angular Radial Transform [42]
PCA-Spherical Harmonics [43, 44, 45]
Rotation Invariant Spherical Harmonics [46, 29]
Spherical Wavelet Transform [47]

Graph-Based Multiresolution Reeb Graphs [48, 49]
Skeletal Graphs [50]

2D Image-Based Silhouette Descriptor [30]
Depth Bu�er Descriptor [30]
Light�eld Descriptor [51]

Other Methods Spin Images [52]
3D Zernike Moments [53]
Re�ective Symmetry Descriptor [54, 32]

1.3.1 Histogram-Based Methods

A vast majority of 3D shape descriptors can be classi�ed under the heading of histogram-
based methods. The term histogram is referred to as an accumulator that collects numerical
values of certain attributes of the 3D object. In this respect, not all the methods presented
in the sequel are true histograms in the rigorous statistical sense of the term, but they all
share the philosophy of accumulating a geometric feature in bins de�ned over the feature
domain.

In [31, 16], Paquet et al. have presented cord and angle histograms (CAH ) for matching
3D objects. A cord, which is actually a ray segment, joins the barycenter of the mesh with a
triangle center. The histograms of the length and the angles of these rays (with respect to a
reference frame) are used as 3D shape descriptors. One shortcoming of all such approaches
that simplify triangles to their centers is that they do not take into consideration the
variability of the size and shape of the mesh triangles. First, because triangles of all
sizes have equal weight in the �nal distribution; second, because the triangle orientations
can be arbitrary, so that the centers may not represent adequately the impact of the
triangle on the shape distribution. In [38], following similar ideas as in [31, 16], Paquet
and Rioux have considered the angles between surface normals and the coordinate axes. In
these approaches [31, 16, 38], the histograms are constructed always in univariate manner
although it is also possible to consider multivariate histograms. Paquet and Rioux have
argued that the bivariate histogram of the angles between the surface normal direction and
the �rst two axes of the reference frame is sensitive to the level of detail at which the object
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is represented. They have supported their claim by the example of two pyramids: one with
the sides formed by inclined planes and the other with the sides formed by a stairway-
like makeup. However, our experience shows that considering multivariate information
proves to be more e�ective than merely concatenating univariate histograms for a retrieval
application, as explained and supported by experiments in Sections 4.6.2 and 4.8.1.

In the shape distributions approach [18], Osada et al. have used a collection of shape
functions, i.e., geometrical quantities computed by randomly sampling the 3D surface.
Their shape functions list as the distance of a surface point to the origin, the distance
between two surface points (D2 ), the area of the triangle de�ned by three surface points,
the volume of the tetrahedron de�ned by four surface points and the angle formed by three
random surface points. The descriptors become then the histograms of a set of these shape
functions. The randomization of the surface sampling process improves the estimation over
Paquet et al.'s [31] approach, since in this way, one can obtain a more representative and
dense set of the surface points. The histogram accuracy can be controlled by changing the
sample size. This quite appealing method su�ers from the fact that the shape functions
mentioned above are not speci�c enough to describe the 3D shape e�ectively. The poor
retrieval performance of these approaches has been usually attributed to their global nature.
The more recent generalized shape distributions (GSD) [19] partly overcome this di�culty
by a �3D" histogram where two dimensions account for local and global shape signatures
and one for distances between local shape pairs. However, the improvement provided by
GSD is not su�cient to raise this methodology to the discrimination level of its competitors.

Ankerst et al. have used shape histograms for the purpose of molecular surface analysis
[17]. A shape histogram is de�ned by partitioning the 3D space into concentric shells
and sectors around the center of mass of a 3D model. The histogram is constructed by
accumulating the surface points in the bins (in the form of shells, sectors, or both) based
on a nearest-neighbor rule. Ankerst et al. illustrate the shortcomings of Euclidean distance
to compare two shape histograms and make use of a Mahalanobis-like quadratic distance
measure taking into account the distances between histogram bins. Since the approach
proceeds with voxel data, 3D objects represented by polygonal meshes need to be voxelized
prior to descriptor extraction.

Extended Gaussian image (EGI ), introduced by Horn [20], and its variants [21, 56, 57]
can be viewed as another class of histogram-based 3D shape descriptors. An EGI consists
of a spherical histogram with bins indexed by (θj , φk), where each bin corresponds to some
quantum of the spherical azimuth and elevation angles (θ, φ) in the range 0 ≤ θ < 2π
and 0 ≤ φ < π. The histogram bins accumulate the count of the spherical angles of the
surface normal per triangle, usually weighted by triangle area. An important extension has
been proposed by Kang and Ikeuchi who considered the normal distances of the triangles
to the origin [21]. Accordingly, each histogram bin accumulates a complex number whose
magnitude and phase are the area of the triangle and its signed distance to the origin
respectively. The resulting 3D shape descriptor is called complex extended Gaussian image
[21].

In [22, 39], Zaharia and Prêteux have introduced the 3D Hough transform descriptor
(3DHT ) as a histogram constructed by the accumulation of points over planes in 3D space.
A plane is uniquely de�ned by the triple (d, θ, φ), where d is its normal distance to the
origin, and the pair (θ, φ) is the azimuth and elevation angles of its normal, respectively.
A �nite family of planes can be obtained by the uniform discretization of the parameters
(d, θ, φ) over the domain 0 ≤ d ≤ dmax,0 ≤ θ < 2π, and 0 ≤ φ < π. This family
of planes corresponds to a series of spherical histograms where each bin is indexed by
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(di, θj , φk). To construct the Hough array, one creates planes at orientation (θj , φk) passing
through the center g of a mesh triangle, and then calculates its quantized normal distance
di to the origin. If the resulting value is positive, then the bin corresponding to the
threesome (di, θj , φk) is augmented by a weight wg

jk. Zaharia and Prêteux have used as
the corresponding weight factor, the area-weighted and thresholded absolute dot product
between the normal of the triangle and the normal of the plane (θj , φk). 3DHT can be
considered as a generalized version of EGI. In fact, for a given di, (θj , φk)-bins correspond
to an EGI at distance di, except for the way the contributions of the triangles are assessed.
It can be conjectured that the 3DHT -descriptor captures the shape information better than
the EGI -descriptor.

In [22], Zaharia and Prêteux have presented the shape spectrum descriptor for 3D re-
trieval proposed within the MPEG-7 framework for multimedia content description. This
descriptor consists of the distribution of the shape index feature, which is introduced
by Koenderink and van Doorn [23]. The shape index is a function of the two principal
curvatures. Its invariance with respect to rotation, translation and scale is appealing. Nev-
ertheless, the unreliability of curvature estimation leads to a lack of robustness. Zaharia
and Prêteux have tried to alleviate this shortcoming by augmenting the shape index his-
togram by two additional attributes named planar surface and singular surface. Although
experiments conducted by the authors with this descriptor on several 3D databases have
shown good retrieval results; in other instances reported in [8, 13], the shape spectrum
descriptor has failed to provide adequate discrimination.

1.3.2 Transform-Based Methods

Two research groups have had considerable impact in 3D shape descriptors research to date:
the Princeton group2 and the Konstanz group3. Interestingly, transform methodologies
from classical signal processing, such as 3D Fourier transform and spherical harmonics
transform to a larger extent, have been the main tool used in a great deal of descriptors
developed by these two groups.

Vrani¢ and Saupe from the Konstanz group have used 3D Fourier transform (3DFT)
to map the rasterized version of a 3D triangular mesh from the voxel grid to the frequency
domain [40]. As 3DFT is not rotation-invariant, the voxelization operation is performed
after pose normalization via PCA. In fact, the voxel data can also be used as a 3D shape
descriptor on its own [40]. By switching from the spatial domain to the frequency domain
via 3DFT, one can obtain a descriptor with a reduced size by discarding high frequency
components. This truncation has the additional bene�t of �ltering out individual shape
details that are irrelevant for retrieval and classi�cation. The idea of using 3DFT on a
voxelized grid has also been pursued by Duta§ac� et al. [41]. The authors have explored
possible voxelization options as well as radial cosine transform as an alternative to 3DFT.
Furthermore, by considering the sum of magnitudes of 3DFT coe�cients at the same
frequency shell, they have obtained a rotation-invariant descriptor, bypassing PCA step at
the expense of lost shape information.

The spherical harmonics transform (SHT) [58] have become a very popular tool in
the �eld of 3D shape descriptors. The Konstanz group uses SHT to transform spherical
functions densely sampled over the surface of a PCA-normalized object [43, 44, 45]. Again,
the array of spherical function values may serve as a descriptor on its own albeit with very

2http://www.cs.princeton.edu/gfx/proj/shape/
3http://infovis.uni-konstanz.de/research/projects/SimSearch3D/
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high dimensionality. SHT is suitable to reduce the descriptor size considerably, yet without
losing too much shape information. The so called ray-based or extent (EXT ) descriptor
gives the SH-transformed version of the maximal distance from the center of mass as
a function of the spherical angle [43]. In [44], Vrani¢ has improved this descriptor by
considering a collection of extent functions evaluated at concentric spheres with di�erent
radii, again with SHT-mapping. This latter descriptor, called as radialized extent descriptor
(REXT ), proves to be highly discriminating on di�erent databases [11, 8].

Funkhouser et al. [46] from the Princeton group have developed a rotation-invariant
descriptor using SHT. The method requires the 3D object to be voxelized in a binary
fashion. 3D voxel data can be interpreted as a collection of spherical functions fr(θ, φ),
where r corresponds to the distance from the origin of the voxel grid and (θ, φ) to spherical
coordinates. The binary function is sampled for a su�cient number of radii r = 1, . . . , R
and angles (θ, φ). Each function at a speci�c radius is SH-transformed and the energies
contained in low frequency-bands are stored in the �nal descriptor. In [29], Kazhdan et al.
have provided mathematical support for rotation invariance of the descriptor. Basically,
this mathematical justi�cation relies on the fact that the energy in a certain frequency band
of the ST does not change when the object is rotated around its center of mass. In the same
work [29], they have also demonstrated that many existing descriptors can be rendered
rotation-invariant by this approach. The rotation invariance of this class of descriptors
should be understood with caution as it comes with a certain loss of shape information
[29, 59]. In fact, the use of SHT for 3D shape description has been a matter of debate
between the Princeton and Konstanz groups. The latter argues that PCA normalization
should be applied prior to SHT and the magnitude of transform coe�cients should be used
as the descriptor, while the former claims that PCA is unstable and rotation invariance
should be secured by considering the energies in di�erent bands of the transform domain.
Both groups support their claims with retrieval experiments in large databases and favor
their individual standpoints. This discrepancy might be due to database di�erences and/or
speci�c implementation details.

1.3.3 Graph-Based Methods

Graph-based approaches are fundamentally di�erent from other vector-based descriptors.
They are more elaborate and complex, in general harder to obtain; but they have the
potential of encoding geometrical and topological shape properties in a more faithful and
intuitive manner than vector-based descriptors. However, they do not generalize easily to
all representation formats and they require dedicated dissimilarity measures and matching
schemes. Due to their complexity in extraction and matching stages, they are not very
e�cient for general-purpose retrieval applications. We note that, using tools from spectral
graph theory, some part of the information contained in a graph can be encoded in the form
of numerical descriptions. Nevertheless, the lack of a vector representation by construction
prevents the use of a great deal of learning algorithms for classi�cation. Although the
emphasis in the present work is on vector-based descriptors, we include two representative
studies for the completeness of the account: multiresolution Reeb graphs [48, 49] and skeletal
graphs [50]. The works in [60, 61, 62] and references therein include a comprehensive list
of other graph-based representations and matching methods.

Hilaga et al. [48] have introduced the concept of topology matching for 3D object
retrieval. The algorithm relies on constructing Reeb graphs at multiple levels of resolution of
a function µ de�ned over the object's surface. The function µ can be the height of a point on
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the surface, the curvature value or the integrated geodesic distance at that point. According
to the function chosen, the resulting descriptor enjoys certain invariance properties. Each
node in each such graph corresponds to a connected component of the object in the sense
that µ-values in that component fall within the same interval determined by the resolution
at which the graph is constructed. Parent-child relationships between nodes represent
adjacent intervals of these µ-values for the contained object parts. Furthermore, a graph
at a coarser level is encoded as the ancestor of a graph at a �ner level. Obviously, at
the coarsest level, the graph consists of a single node accounting for the whole object.
The theoretical support of this multiresolution approach is that, for a given object, as the
resolution gets �ner, the nodes of the resulting graph corresponds to the singular points
of the µ-function. It has been demonstrated that such critical point locations are valuable
in studying the topology of the underlying object [63]. Sophisticated heuristics have been
proposed to match two graphs for similarity assessment in [48] and in [13, 49]. Moreover,
in the latter two works, the graph has been augmented with other vector-based descriptors
to improve the discrimination ability.

In [50], the authors have described a method for searching and comparing 3D objects
via skeletal graph matching. The objective is to build an interactive system that allows
part matching. The visualization of the results is facilitated by skeletal graphs, which
also help the user to re�ne and interactively change his/her query. The skeletal graph is
obtained from object voxel data as a directed acyclic graph (DAG). Each node of the DAG
is associated with a set of geometric features and a signature vector that encodes topological
information. The latter is called a topological signature vector (TSV), which is derived
from the eigendecomposition of the graph's adjacency matrix. The matching procedure
consists of two stages where �rst a topology matching between the query database graphs is
performed on a per node basis. The second (optional) stage consists of geometry matching.
It can be used to re�ne the possible set of retrieved database objects. However, the authors
have not elaborated on this issue further.

1.4 Similarity Measures

The assessment of similarity between two objects is usually performed by computing a
dissimilarity measure between their corresponding descriptors. Accordingly, throughout
the thesis, we will use the terms similarity and dissimilarity (or distance) interchangeably.
The context will clarify the distinction. A similarity function sim : F × F → R can be
viewed as the abstract inverse to a dissimilarity function dist : F × F → R, where F is
the space of generic descriptors f . Ideally, we expect that dist(f, f ′) decreases (sim(f, f ′)
increases), as the level of semantic similarity between the corresponding objects gets higher.
The dissimilarity measure dist may enjoy the following properties [9]:

(1) Identity : ∀f ∈ F , dist(f, f ′) = 0.

(2) Positivity : ∀f 6= f ′ ∈ F , dist(f, f ′) > 0.

(3) Symmetry : ∀f, f ′ ∈ F , dist(f, f ′) = dist(f ′, f).

(4) Triangle inequality : ∀f, f ′, f ′′ ∈ F , dist(f, f ′′) ≤ dist(f, f ′) + dist(f ′, f ′′).

A dissimilarity measure satisfying all of the four properties listed above is said to be a
metric. A pseudo-metric satis�es all metric properties but positivity, and a semi-metric
satis�es only the �rst three properties. A function satisfying the triangle inequality is often
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desirable, since it can make retrieval more e�cient [64]. These properties are abstract in the
sense that the dissimilarity function can be de�ned on arbitrary descriptor spaces (e.g.,
for graphs, or even directly for 3D objects). In the present work, we restrict ourselves
to the case of vector-based descriptors, that is, when the descriptor space F is a �nite
vector space. Classical dissimilarity measures for vector-based descriptors are Lp-distances
(p > 0), Bhattacharyya distance, χ2-divergence [65], symmetricized versions of Kullback-
Leibler divergence [65], earth mover's distance [66] and histogram intersection distance [67]
(see Appendix B for de�nitions).

Regarding similarity measures, we would like to underline two points:

• A distance function dist on a �nite-dimensional vector space F usually arises as a
discretized version of a continuous functional dist on an in�nite space of continuous
functions F . Suppose that f is a function describing a certain object by mapping
multidimensional attributes t ∈ Rm to reals. A functional dist, quantifying the
amount of variation between f and another descriptor function f ′ can be generically
written as

dist(f, f ′) =
∫

t∈Rm

η
(
f(t), f ′(t)

)
dt,

where η is a point-wise dissimilarity function, e.g., for L1, η(·, ·) = | ·−· |. In practice,
an object is described by a �nite vector of f(t)-values, i.e., f = [f(t1), . . . , f(tN )], in
which case the above integral should be discretized as

dist(f , f ′) =
∑

n

η
(
f(tn), f ′(tn)

)
∆tn, (1.1)

where ∆tn is the discretization step size. If the space of multidimensional attributes
is uniformly partitioned, ∆tn becomes constant, hence a�ects the value of the inte-
gral by a constant amount for all descriptors, and consequently, it can be dropped.
Otherwise, it must be taken into account in distance calculation.

• The dissimilarity between two objects can be made invariant against certain types
of transformations Γ by the following formula:

distΓ-invariant(f , f ′) = min
Γ∈GΓ

dist(f ,Γ(f ′)),

where GΓ is the group of transformations that the objects might have been undergone
prior to descriptor extraction. Since we want that the distance function captures only
intrinsic shape di�erences and commonalities, GΓ should consist of extrinsic e�ects
such as translation, rotation, isotropic rescaling or a combination of these. The
above formula is practical only when the transformation can be directly e�ected on
the descriptor, without recomputing it for every possible transformed version of the
object. In Section 2.4, we concretize this idea of securing invariance at matching stage
and develop such a measure, easily applicable for density-based shape descriptors.

1.5 Evaluation Tools for Retrieval

In this section, we summarize the most commonly used statistics for measuring the per-
formance of a shape descriptor in a content-based retrieval application [11].
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• Precision-Recall curve. For a query q that is a member of a certain class C of size
|C|, Precision (vertical axis) is the ratio of the relevant matches Kq (matches that
are within the same class as the query) to the number of retrieved models Kret, and
Recall (horizontal axis) is the ratio of relevant matches Kq to the size of the query
class |C|:

Precision =
Kq

Kret
,

Recall =
Kq

|C|
.

Ideally, this curve should be a horizontal line at unit precision.

• Nearest Neighbor (NN). The percentage of the �rst-closest matches that belong
to the query class. A high NN score indicates the potential of the algorithm in a
classi�cation application.

• First-tier (FT) and Second-tier (ST). First-tier is the recall when the number
of retrieved models is the same as the size of the query class and second-tier is the
recall when the number of retrieved models is two times the size of the query class.

• E-measure. This is a composite measure of the precision and recall for a �xed
number of retrieved models, e.g., 32, based on the intuition that a user of a search
engine is more interested in the �rst page of query results than in later pages. E-
measure is given by

E =
2

1
Precision + 1

Recall

.

• Discounted Cumulative Gain (DCG). A statistic that weights correct results
near the front of the list more than those appearing later, under the assumption
that the user is interested more with the very �rst items displayed. To calculate this
measure, the ranked list of retrieved objects is converted to a list L, where an element
Lk has value 1 if the kth object is in the same class as the query and otherwise has
value 0. Discounted cumulative gain at the kth rank is then de�ned as

DCGk =

{
Lk, k = 1,

DCGk−1 + Lk
log2(k) , otherwise.

The �nal DCG score for a query q ∈ C is the ratio of DCGKmax to the maximum
possible DCG that would be achieved if the �rst |C| retrieved elements were in the
class C, where Kmax is the total number of objects in the database. Thus DCG reads
as

DCG =
DCGKmax

1 +
∑Cq

k=2
1

log2(k)

.

• Normalized DCG (NDCG). This is a very useful statistic based on averaging
DCG values of a set of algorithms on a particular database. NDCG gives the rel-
ative performance of an algorithm with respect to the others tested under similar
circumstances. A negative value means that the performance is below the average;
similarly a positive value indicates an above-the-average performance. Let DCG(A)
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be the DCG of a certain algorithm A and DCG(avg) be the average DCG values of a
series of algorithms on the same database, then NDCG for the algorithm A is de�ned
as

NDCG(A) =
DCG(A)

DCG(avg)
− 1.

All these quantities are normalized within the range [0, 1] (except NDCG) and higher values
re�ect better performance. In order to give the overall performance of a shape descriptor
on a database, the values of a statistic for each query are averaged over all available queries
to yield a single average performance �gure. The retrieval statistics presented in this work
are obtained using the utility software included in PSB [11].
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Chapter 2

Density-Based

3D Shape Description

Density-based shape description is a generative model, aiming to encode geometrical shape
properties contained within a class of 3D objects. This generative model relies on the
idea that, associated with each shape concept, there is an underlying random process,
which induces a probability law on some local surface feature of choice. We assume that
this probability law admits a probability density function (pdf), which, in turn, encodes
intrinsic shape properties to the extent achieved by the chosen feature. Shared or individual
aspects of two shape concepts can be quanti�ed by measuring the variation between their
associated feature pdfs. The surface feature can be general, such as the distance from
a prede�ned origin, or speci�c, for instance, involving local di�erential structure on the
surface. As one moves from general to speci�c, discrimination power of a local feature and
its pdf increase. General features can be joined together in order to obtain more speci�c
multivariate features. With its ability to process multivariate local feature information, the
density-based framework generates a family of 3D shape descriptors on which we elaborate
in this chapter.

A density-based descriptor of a 3D shape is de�ned as the sampled pdf of some surface
feature, such as radial distance or direction. The feature is local to the surface patch and
treated as a random variable. At each surface point, one has a realization (observation) of
this random variable. For instance, if the surface is given in terms of a triangular mesh as
it is generally assumed in this work, the set of observations can be obtained from vertices
and/or triangles. To set the notation, let S be a random variable de�ned on the surface of
a generic 3D object O and taking values within a subspace RS of Rm. Let fS|O , fS(·|O)
be the pdf of S for the object O. This pdf can be estimated using the set of observations
{sk ∈ RS}K

k=1 computed on the object's surface. In the sequel, random variables appear as
uppercase letters while their speci�c instances as lowercase. Suppose furthermore that we
have speci�ed a �nite set of points within RS , denoted as RS = {tn ∈ RS}N

n=1, called the
target set. The density-based descriptor fS|O for the object O (with respect to the feature
S) is then simply an N -dimensional vector whose entries consist of the pdf samples at the
target set, that is, fS|O = [fS(t1|O), . . . , fS(tN |O)].

Density-based shape description consists of three main stages:

(1) First, in the design stage, we choose good local features that accumulate to global
shape descriptors. Good features are computationally feasible and discriminative
(Sections 2.1.1 and 2.1.2).
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2.1 Local Characterization of a 3D Surface

Figure 2.1: Density-based shape description

(2) Second, in the target selection stage, we focus on determining the pdf evaluation
points sampled in RS , i.e., determining the target set RS (Section 2.1.3).

(3) Finally, we address the computational stage, in search of an e�cient computational
scheme to estimate fS(t|O) at designated targets t ∈ RS . In the present work, we
use the kernel density estimation (KDE) approach coupled with a fast algorithm, the
fast Gauss Transform (FGT) [5] (Section 2.2).

The �nal output of these stages is the shape descriptor vector fS|O, whose components
fS(tn|O) are the pdf values evaluated at the target set RS . Figure 2.1 illustrates this
descriptor extraction process.

The fact that the description scheme is based on pdfs allows one to use this special
structure for several ends. For instance, in Section 2.3, we present two descriptor manip-
ulation tools: marginalization and probability density pruning. Marginalization integrates
out the information contained in a subset of feature components from a multivariate pdf.
This can help us to explore eventual redundancies of certain components in a multivariate
local feature. Probability density pruning, on the other hand, eliminates negligible pdf
values from the descriptor by thresholding the prior feature density fS , which is calculated
by averaging conditional pdfs fS|Ou

over a representative set of objects O = {Ou}. Both
of these tools can be employed to reduce descriptor dimensionality without loss of per-
formance. Another advantage that the pdf structure o�ers is to secure invariance against
certain types of object transformations at the matching stage, without the need of recom-
puting the descriptor for every possible transformation. In Section 2.4, we develop such
a similarity measure and show its invariance under speci�c conditions. In Section 2.5, we
�nalize the chapter by providing an implementation summary of the density-based shape
description algorithm.

2.1 Local Characterization of a 3D Surface

2.1.1 Local Surface Features

In this section, we describe the local geometric features that we use to characterize 3D
surfaces (see Figure 2.2). Our approach is inductive in the sense that we start by simple
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Density-Based 3D Shape Description

Figure 2.2: Illustration of local surface features

features with minimal requirements about the underlying surface and continue with more
sophisticated ones in order to arrive to an extensive pointwise characterization.

Zero-Order Features

The most basic type of local information about a point lying on a 3D surface are its coordi-
nates. Zero-order features require solely that the underlying surface be continuous without
any further higher-order di�erential structure: a condition, which is usually ful�lled for 3D
meshes.

• Radial distance R measures the distance of a surface point Q to the origin (centroid)
and has taken place in many di�erent shape descriptors [18, 16]. Although it is not
an e�ective shape feature all by itself, when used jointly with other local surface
features, it helps us to decouple the feature distribution at varying distances from
the object's center of mass.

• Radial direction R̂ is a unit length vector (R̂x, R̂y, R̂z) collinear with the ray traced
from the origin to the surface point Q. This unit-norm vector is obviously scale-
invariant. When we augment the R̂-vector with the radial distance R, the resulting 4-
tuple (R, R̂x, R̂y, R̂z) can serve as an alternative to the standard Cartesian coordinate
representation of the surface point. However in this parameterization, distance and
direction information are decoupled. We say that the feature R radializes the density
of the feature R̂. Note also that the range of these features can be determined
independently. In fact, the vector R̂ lies on the unit 2-sphere, and the scalar R lies
on the interval ]0, rmax], where rmax depends on the size of the surface.
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2.1 Local Characterization of a 3D Surface

First-Order Features

First-order features require �rst-order di�erentiability, hence the existence of a tangent
plane at each surface point. For 3D meshes, each interior point on a mesh triangle has
obviously a tangent plane, which is basically the plane supporting the mesh triangle to
which the point belongs. At vertices, even though the situation is more complex, one can
compute a tangent plane by using the 1-ring of the vertex point [68].

• Normal direction N̂ is simply the unit normal vector at a surface point and repre-
sented as a 3-tuple (N̂x, N̂y, N̂z). Similar to the radial direction R̂, the normal N̂ is
scale-invariant.

• Radial-normal alignment A is the absolute cosine of the angle between the radial and
normal directions and is computed as A = |〈R̂, N̂〉| ∈ [0, 1]. This feature measures
crudely how the surface deviates locally from sphericity. For example, if the local
surface approximates a spherical cap, then the radial and normal directions align,
and the alignment A approaches unity.

• Tangent plane distance D stands for the absolute value of the distance between the
tangent plane at a surface point and the origin. This scalar feature D is related to the
radial distance R by D = RA. The joining of D with the normal direction N̂ provides
a four-component vector (D, N̂x, N̂y, N̂z) that corresponds to the representation of
the local tangent plane. As in the radial case, this representation also separates the
distance and direction information associated with the tangent plane.

• In addition to the radial-normal alignment A, the interaction between the surface
normal vector and the radial direction can be quanti�ed by taking the cross product
between R̂ and N̂. The torque feature C = R̂ × N̂ can be considered as a local
rotational force when R̂ is viewed as the position of a particle, which is under the
in�uence of an external force N̂.

Second-Order Features

The second fundamental form IIQ contains useful di�erential geometrical information
about a surface point Q. This form is de�ned as IIQ(u) = 〈dNQ(u),u〉, where u is a
3-vector lying on the tangent plane and dNQ is the di�erential of the normal �eld at the
point Q [69]. The di�erential dNQ is a linear map, measuring how the normals pull away
within a neighborhood of Q, along a direction pointed by an arbitrary vector u on the
tangent plane. Minimum and maximum eigenvalues of dNQ, called principal curvatures
κ1 and κ2, are also the minimum and maximum of the second fundamental form IIQ.
They measure the minimum and maximum rates of change at which the normal deviates
from its original direction at Q. Given the principal curvatures, one can obtain a unique
local characterization up to a scale [69]. By de�nition, IIQ requires second-order di�eren-
tiability. This condition is never ful�lled for a 3D mesh, which is just piece-wise planar
(hence at most �rst-order di�erentiable). Nevertheless, IIQ can be computed by �tting a
twice-di�erentiable surface patch to the vertex point and invoking standard formulae from
di�erential geometry [69], or by discrete approximation using the mesh triangles within
the 1-ring of the vertex point [68, 70].

• Shape index SI, �rst proposed by Koenderink and van Doorn [23], provides a local
categorization of the shape into primitive forms such as spherical cap and cup, dome,
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rut, ridge, trough, or saddle (see Figure 2.3). In the present work, we consider the
parameterization proposed in [71] given by

SI =
1
2
−
(

2
π

)
arctan

(
κ1 + κ2

κ1 − κ2

)
.

SI is con�ned within the range [0, 1] and not de�ned when κ1 = κ1 = 0 (planar
patch). Since the shape index SI is a function of the principal curvatures, it is
considered as a second-order feature. It not only inherits the translation and rotation
invariance of the principal curvatures, but also is a unitless quantity hence scale-
invariant.

Figure 2.3: Shape index characterizes the local surface into a set of representatives.

Construction of a Multivariate Feature

Each of the above features re�ects a certain incomplete aspect of the local shape. We
can obtain a more thorough characterization of the surface point Q by constructing the
multivariate feature (R, R̂, N̂, SI) as explained below:

(1) The radial distance R restricts the point to the surface of a sphere around the object's
center of mass.

(2) The radial direction R̂ spots the location of the point on the sphere.

(3) The normal direction N̂ associates a �rst-order di�erential structure, i.e., a tangent
plane with the point.

(4) The shape index SI adds the more re�ned categorical surface information in terms
of shape primitives.

The construction process is illustrated in Figure 2.4. In the density-based shape description
framework, the pdf of these features, taken together in the form of a higher dimensional
joint feature, would become a global descriptor, summarizing every single piece of local
shape information up to second-order. However, this multivariate feature construction
followed by pdf estimation is not without a caveat. Observe that the (R, R̂, N̂, SI) is an 8-
component feature with an intrinsic dimensionality of 6 as it takes values within ]0, rmax]×
S2×S2× [0, 1], where S2 denotes the unit 2-sphere. This fairly high dimensionality brings
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Figure 2.4: Construction of a multivariate feature

in concomitant problems of pdf estimation accuracy, high computation time and huge
storage size as will be clari�ed in the upcoming sections.

Based on the above discussion, the features presented in this section can also be clas-
si�ed into two types: primary and auxiliary. The features involved in the full character-
ization up to second order as described above, namely, R, R̂, N̂ and SI are denominated
as primary. We call the remaining tangent plane distance D, the radial-normal alignment
A and the radial-normal torque C features as auxiliary, in the sense that they encode in-
teractions between primary features. From a computational viewpoint, auxiliary features
can be derived from primary ones. In Table 2.1, we summarize the properties of our local
surface features.

Table 2.1: Classi�cation and Invariance of Local Surface Features
Classi�cation Invariance

Feature Order Type Translation Rotation Scale

Radial Distance Zero Primary No Yes No
Radial Direction Zero Primary No No Yes
Normal Direction First Primary Yes No Yes
T-plane Distance First Auxiliary No Yes No

Alignment First Auxiliary No Yes Yes
Torque First Auxiliary No No Yes

Shape Index Second Primary Yes Yes Yes
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From a practical viewpoint, by joining primary and auxiliary features, we can design
the following multivariate pdf-based descriptors with manageable dimension in terms of
pdf estimation accuracy, descriptor computation time and storage size:

• Radial -descriptor is the pdf of the Cartesian coordinate representation (R, R̂) of the
surface point.

• T-plane-descriptor is the pdf of the (D, N̂)-feature and aggregates the local tangent
plane information.

• Torque-descriptor is the pdf of a radialized version of the torque feature, given by
(R,C).

• Sec-Order -descriptor is the pdf of the (R,A, SI)-feature, which radializes the auxil-
iary alignment information A together with the second-order feature SI.

In the experiments, we explore the discrimination ability of these designed features and
their variants.

2.1.2 Feature Calculation

A triangular meshM is given in terms of a union of K trianglesM =
⋃K

k=1 Tk, where each
triangle Tk is associated with a triplet of 3D points (Ak, Bk, Ck), represented by a triplet of
3-vectors (ak,bk, ck). Regarding an m-dimensional local feature S = (S1, . . . , Sm), we can
obtain the observations by evaluating the value of S at the barycenter of each triangle or
at each vertex. However, the mesh resolution might not be very �ne and/or the triangles
might have arbitrary shapes and sizes. Accordingly, the feature value at the barycenter or
at the vertex may not be the most representative one. The shape of the triangle should
be in some way taken into account in order to re�ect the local feature characteristics more
faithfully. The expected value of the local feature E {S|T} over a generic triangle T is
thought to be more reliable than the feature value sampled only at a single point, e.g, the
barycenter or the vertex.

Consider T as an arbitrary triangle in 3D space with vertices A, B, and C represented
by the vectors a, b, and c respectively (see Figure 2.5). By noting e1 = b−a and e2 = c−a,
we can obtain a parametric representation for an arbitrary point Q inside the triangle T as
p = a+ xe1 + ye2, where the two parameters x and y satisfy the constraints: x, y ≥ 0 and
x + y ≤ 1. Assuming that the point Q is locally uniformly distributed inside the triangle
T , the expected value of the ith component of S, denoted by E {Si|T}, is given by

E {Si|T} =
∫∫

Ω
Si(x, y)f(x, y)dxdy, i = 1, . . . ,m. (2.1)

where Si (x, y) is the feature value at (x, y) and f (x, y) is the uniform probability density
function of the pair (x, y) over the domain Ω = {(x, y) : x, y ≥ 0, x + y ≤ 1}. Accordingly,
f (x, y) = 2 when (x, y) ∈ Ω or zero otherwise1. The integration is performed over the
domain Ω. To approximate Eq. 2.1, we can apply Simpson's one-third numerical integra-
tion formula [72]. Avoiding the arbitrariness in vertex labeling by considering the three
permutations of the labels A, B, and C, we get three approximations, which are in turn
averaged to yield:

1Note that the area of the domain Ω is 1/2, thus f (x, y) = 2 whenever (x, y) ∈ Ω.
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Figure 2.5: Parameterization of a point on a 3D triangle

E {Si|T}≈ (1/27)(Si(a) + Si(b) + Si(c)))
+(4/27)(Si((a + b)/2) + Si((a + c)/2) + Si((b + c)/2))
+(4/27)(Si((2a + b + c)/4) + Si((a + 2b + c)/4) + Si((a + b + 2c)/2)).

(2.2)

Notice that Eq. 2.2 boils down to taking a weighted average of the feature values
calculated at nine adequately chosen points on the triangle. For meshes with low resolution,
this averaging has the e�ect of smoothing the observations so that the subsequent pdf
estimation can be performed more accurately, thus resulting in more reliable descriptors.
In Section 4.2.1, we support this claim by experimentation. As a side remark, we also
point out the above averaging scheme can be applied to higher-order moments and cross-
correlations of feature components.

It is also worth noting that the Simpson averaging scheme does not apply to the shape
index SI. The computation of the latter feature involves curvature estimation, which
can be carried on a per vertex basis as in [70]. In order to obtain realizations of SI per
triangle, we take the average of the values at the three vertex points forming the triangle.
In a similar way to Simpson averaging, this adds an implicit smoothing e�ect to the shape
index calculation.

2.1.3 Target Selection

We de�ne the target selection problem as sampling the range of the feature at which
the pdf is evaluated. Since a density-based descriptor is merely a sampled version of
a continuous pdf, we need to be e�cient in choosing density evaluation points. First,
we should not include very low density points and second, we should exploit any special
structure associated with the feature range. The features presented in the previous section
are either scalar or vector by construction. Sampling the real interval I of a scalar feature
is relatively simple. For certain vector features, such as R̂ and N̂, on the other hand,
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the unit-norm condition implies that the feature lies on the unit 2-sphere S2 and that the
corresponding target points should satisfy this property. In the following, we discuss the
sampling of I and S2 separately, providing two di�erent methods for each.

Sampling for Scalar Features

The support I = (smin, smax) of a scalar feature S is determined by the lower and upper
percentiles (αmin, αmax) of the distribution of S, de�ned as

αmin , Pr{S ≤ smin} =
∫ smin

−∞
fS(s)ds,

αmax , Pr{S ≥ smax} =
∫ ∞

smax

fS(s)ds,

where fS(s) is the prior density of the feature S. We set both lower and upper percentiles
to a unique value α. The prior density does not contain any object-speci�c information and
is calculated by averaging over a set of representative objects O = {Ou : u = 1, . . . , |O|}.
Concretely, we have

fS(s) =
∑

u

fS(s,Ou) =
∑

u

fS(s|Ou)Pr{Ou} =
1
|O|

∑
u

fS(s|Ou), (2.3)

assuming that all objects are equiprobable, i.e., Pr{Ou} = 1/|O|. Once the domain of the
pdf is set, the NI targets points remain to be determined. The two methods we consider
are given below.

• In uniform sampling, we partition the interval into NI equally spaced (uniform)
sub-intervals and take the midpoints as targets.

• In equal probability sampling, we partition the interval into NI equal probability
regions and take the midpoints as targets. Similar to Max-Lloyd quantization [73],
this scheme yields non-uniformly spaced sub-intervals and places more targets to
regions of high prior density.

Note that clipping the tails of the distribution is meaningful only if the scalar feature has
a magnitude interpretation (see Figure 2.6), according to which too small and/or too large
values can be considered as outliers. In fact, for the alignment A and the shape index SI,
which both lie on the unit-interval [0, 1], the values near the boundaries are quite indicative
of the local shape. For these, we simply take NI equally spaced points within the unit
interval.

Sampling for Unit-Norm Vector Features

For the radial direction R̂ and the normal direction N̂ , we sample the unit 2-sphere S2 to
obtain the targets. We propose again two di�erent sampling methods:

• In octahedron subdivision, we consider an octahedron circumscribed by the unit
sphere, subdivide into four each of its eight triangles, radially project the new tri-
angles on the unit sphere, and iterate a factor of a times the subdivision process.
The barycenters of the resulting triangles (after projecting back to the unit sphere)
become the target set for direction components. This leads to an approximately
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Figure 2.6: Probability density function of R displayed with the lower and upper 1% tails
clipped

uniform partitioning of the sphere as shown in Figure 2.7. The recursion factor a de-
termines the number of resulting points NS2 ; e.g., for a = 1, we get NS2 = 8×4 = 32
points; for a = 2, we get NS2 = 8× 16 = 128, and in general NS2 = 22a+3.

• In spherical coordinate sampling, we parameterize the unit sphere in terms of spherical
coordinates (θ, φ). Recall that any point on the sphere can be expressed as a 3-tuple
given by (cosθsinφ, sinθsinφ, cosφ) where 0 ≤ θ < 2π and 0 ≤ φ < π. Uniformly
sampling the θ- and φ-coordinates at Nθ and Nφ points, respectively, results in NS2 =
Nθ ×Nφ points. This method, however, does not provide a uniform partitioning of
the sphere (see Figure 2.7).

Sampling for Arbitrary Vector Features

As pointed out earlier, we can design new features by joining the features presented in
Section 2.1.1. In such cases, the target selection range occurs as the Cartesian product of
the individual ranges of the features involved. (R, R̂) and (D, N̂) constitute two cases in
point: their ranges both consist of the Cartesian product of an interval I on the real line
with the unit 2-sphere S2. This decoupling allows us to sample I and S2 independently
into NI and NS2 points respectively, and to take the Cartesian product of the two resulting
sets to yield the target set RS of size N = NI ×NS2 . This idea extends naturally to the
joining of L di�erent features Sl, l = 1, . . . , L with individual target sets RSl

, l = 1, . . . , L,
in which case the �nal target set is obtained as the L-fold Cartesian product of RSl

's.
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Figure 2.7: NS2 = 128 points on the unit-sphere obtained by the two methods mentioned
in the text: (a) by subdividing an octahedron a = 2 times, (b) by uniformly sampling the
spherical coordinates, Nθ = 16 and Nφ = 8

2.2 Kernel Density Estimation

Given a set of independent observations {sk ∈ Rm}K
k=1 of a random variable (scalar or

vector) S ∈ Rm, the kernel approach to estimate the probability density value of S at a
target t ∈ Rm is formulated in its most general form as

fS(t) =
K∑

k=1

wk |Hk|−1K
(
H−1

k (t− sk)
)
. (2.4)

where K : Rm → R is a kernel function, Hk is an m × m matrix composed of a set of
design parameters called bandwidth parameters (smoothing parameters or scale parame-
ters) for the kth observation, and wk is the positive scalar weight associated with the kth
observation. The weights satisfy the constraint

∑
k wk = 1 and, if all the observations

are considered as equally likely, we have wk = 1/K,∀k. The contribution of each data
point sk to the density function fS at a target point t is computed through the kernel
function K rescaled by the matrix Hk and weighted by wk. Thus KDE involves a data set
{sk}K

k=1 with the associated set of weights {wk}K
k=1, the choice of a kernel function K and

the setting of bandwidth parameters {Hk}K
k=1.

Historically, the kernel estimate for a univariate pdf f(s), s ∈ R has been �rst intro-
duced by Rosenblatt [74] as a numerical approximation to the derivative of the distribution
function F (s) =

∫ s
−∞ f(u)du. The method is also known as Parzen window after Parzen

who has generalized the approach and proved consistency and asymptotic normality of the
univariate kernel density estimator [75]. The multivariate generalization is due to Cacoul-
los [76]. Scott [77, 78, 3] and Silverman [79, 80, 81] have greatly contributed to the domain
by dealing with issues such as the choice of the kernel function and the bandwidth para-
meters. Since then, the KDE approach has been a powerful non-parametric data analysis
methodology �nding several application niches in pattern recognition and computer vision
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[27, 82, 83].
KDE can be viewed as a data smoothing technique overcoming certain limitations of

the classical histogram method [3, 2]. In the histogram, one places a set of equal sized bins
on the input domain and basically counts the number of observations falling inside each
of them. This approach might become overly restrictive due to two reasons: (i) depending
on the choice of origin, the appearance of the histogram di�ers signi�cantly, (ii) all of the
samples falling inside a bin contribute to pdf value equally, no matter how far they are
from the bin center, leading to non-smooth estimates especially in high dimensions and
when the number of observations is small. The KDE addresses both of these limitations
[2]. First, by construction, there is no need to �x an origin in the input domain. Second
and more importantly, the kernel K acts as a convolution �lter weighting the observations
sk as a function of their distance to the density evaluation point t. In a nutshell, closer
observations contribute more to the pdf estimate and far-away ones less. The smoothing
behavior of the kernel estimator is controlled by the bandwidth parameter(s).

In Section 2.2.1, we put KDE in context and illustrate its discriminativeness for shape
description. Note that in Appendix C.1, we derive the kernel estimator of a multivariate
pdf following [27], paving the way for our discussion in Section 2.2.2 on the crucial issue
of bandwidth selection. In Section 2.2.3, we discuss fast computational schemes to make
e�cient use of KDE for the 3D shape description problem.

2.2.1 KDE in Context

As pointed out in the previous paragraphs, KDE is a general purpose data smoothing
technique. In the present section, we place this powerful tool in the context of 3D shape
description and illustrate its discriminativeness using a constructed example. We need �rst
to instantiate Eq. 2.4 with a particular choice of the kernel function. In the present work,
we prefer the Gaussian kernel, in which case Eq. 2.4 becomes

fS(t|O) = (2π)−m/2
K∑

k=1

wk|Hk|−1exp
(
− 1

2
(t− sk)T H−2

k (t− sk)
)
. (2.5)

The reason for our choice on the Gaussian kernel is mainly computational. Direct evalu-
ation of Eq. 2.5 on a target set {tn}N

n=1 using a set of observations {sk}K
k=1 has O(KN)-

complexity, which might become infeasible or impractical for real-time tasks. The fast
Gauss transform algorithm [4, 5] alleviates the computational burden by reducing the
complexity down to O(K + N) (see Section 2.2.3).

To put Eq. 2.5 in context, we make the following points for 3D shape description:

• Observations or sources {sk}K
k=1 are the feature values (or vectors) computed on the

surface of an object O. They can be obtained from each of the mesh triangles, vertex
points or by the averaging scheme described in Section 2.1.2.

• Targets {tn}N
n=1 are the pdf evaluation points so that fS(tn|O)-values constitute the

descriptor vector fS|O = [fS(t1|O), . . . , fS(tN |O)].

• Weights {wk}K
k=1 stand for the strength or the intensity of each of the sources. For

a 3D mesh, a weight wk can be set to the relative area of the mesh triangle (with
respect to the total surface area) over which the feature observation sk is computed.
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• Bandwidth parameters {Hk}K
k=1 model the degree of uncertainty about the obser-

vations and control the smoothing bevahiour of the KDE. Appropriate bandwidth
selection is a critical issue for all applications using the KDE scheme [84]. Multiple
hypotheses can be made prior to the choice of the bandwidth parameters. Eq. 2.5
embodies the most general situation in which case the degree of uncertainty about
each observation varies. It is also possible to impose a unique degree of uncertainty
by assigning a �xed bandwidth matrix H to each of the observations in which case
we have Hk = H,∀k.

Discriminativeness of the KDE-based framework

We can analyze the discriminativeness of the KDE-based framework in two closely related
but di�erent contexts:

• In recognition, we are given a shape O′ and wish to decide whether it is just a perturbed
version of or is completely di�erent from a certain shape O. In the former case, a
good descriptor should not vary too much from shape O to O′, in an appropriate
sense of variation between descriptors. In the latter case, the descriptor must react
more to di�erences. Put in other words, the amount of perturbation is one of the
determining factors for the shape O′ to be recognized as O or not.

• In the more complicated cases of classi�cation and retrieval, we are faced with the
problem of �nding an equivalence relation on a given set of shapes. Depending on
the application, we should assign geometrically, topologically and/or semantically
similar shapes into the same equivalence class. All the shapes O′ belonging to a
certain equivalence class can be considered as random realizations of an ideal shape
O, which may or may not exist physically but should ful�ll the idea of the shape class
under question. This platonic view of the a�airs subsumes there exists a non-physical
�pencil" and all the real physical �pencils" are just random realizations of it. In this
setting, the variation among the descriptors of the shapes from the same equivalence
class should always be uniformly lower than the variation among the descriptors of
the shapes from di�erent equivalence classes.

We will make use of the following simple example to illustrate the discriminativeness
of the KDE-based scheme. Let S = {sk ∈ R}K

k=1 be a set of measurements about a scalar
feature S and S ′ = {s′k ∈ R : s′k = sk + εk}K

k=1 be a perturbed version of S. We assume
that the set S is non-random and constitutes an ideal set obtained from the surface of a
generic shape O. The set S ′, on the other hand, is non-ideal and random. Randomness
is incorporated through zero-mean independent identically distributed (i.i.d.) random
variables εk's with variance σ2. This additive perturbation model accounts for random
geometrical variations of unconstrained amount, e.g., for the radial distance feature R.
A small perturbation indicates small shape di�erences, while a larger one corresponds to
more fundamental departures from the original shape. Regarding the set S ′, depending on
the type of the context chosen for analysis, we can state the following:

• In recognition, S ′ arises from a �noisy" shape O′. The amount of noise, for which σ2

is one possible measure, constitutes a determining factor for the shape O′ to be O or
not.
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• In retrieval or classi�cation, S ′ arises from a shape O′, which is similar to the original
shape O. Here, the amount of noise can be viewed as a decreasing function of
similarity.

The shape information contained within the set S is described by the function fS|O:

fS|O , fS(t|O) =
1√

2πKh

K∑
k=1

exp

(
−1

2

(
t− sk

h

)2
)

.

The descriptor function fS|O′ , fS(·|O′) for the shape O′ can be de�ned likewise. Note
that, while fS|O is non-random as it is a deterministic function of the deterministic set S,
fS|O′ is random due to perturbation variables εk's. Here, to simplify the analysis, we have
assumed that the number of observations K is the same for both sets, all the observations
are equally weighted by 1/K and the scalar bandwidth parameter is �xed, i.e., hk = h,∀k.
To quantify the amount of variation between fS|O and fS|O′ , we use the mean integrated
absolute error (MIAE ) de�ned as

MIAE(fS|O, fS|O′) , E

{∫
t∈R

∣∣fS(t|O)− fS(t|O′)
∣∣ dt

}
,

=
∫

t∈R
E
∣∣fS(t|O)− fS(t|O′)

∣∣ dt,

where E{·} is the expectation operator. It can be shown that, under the above assump-
tions and making use of the Hermite identity exp(2ab − b2) =

∑∞
n=0

1
n!b

nHn(a) (see Ap-
pendix C.2), an upper bound for MIAE is given by

MIAE(fS|O, fS|O′) ≤ C
∞∑

n=1

1√
n!

E|ε|n

hn
, (2.6)

where E|ε|n = E|εk|n,∀k, n by i.i.d. assumption and C is a numerical constant. We can
make the following comments based on Eq. 2.6:

• MIAE increases as E|ε|n-terms increase. Recall that E|ε|n quanti�es the amount
of geometrical variations exhibited by the random set S ′ with respect to the ideal
deterministic set S.

• MIAE decreases as hn-terms increase. This is a manifestation of the smoothing
behavior of the KDE in our context. Eq. 2.5 tells that a large h �attens the descriptors
so that variation among them gets small. The bound in Eq. 2.6 corroborates this
fact.

• One can make MIAE arbitrarily small or large by choosing the design parameter h
accordingly. For instance, consider the hypothesis that �O′ is O" (recognition) or �O′

is in the same equivalence as O" (classi�cation). If we have to retain the hypothesis,
we should choose a large h so that the distance between descriptors becomes smaller
than the rejection level. Or at the other extreme if the hypothesis is to be rejected,
we should choose a small h so that the descriptor variation is large enough to reject
the hypothesis.
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The third point above is an important one as it elucidates the e�ect of the bandwidth
parameter on the discriminativeness of the KDE-based scheme a posteriori, that is, based
on whether the hypothesis is to be accepted or rejected. However, this a posteriori knowl-
edge is the very purpose of recognition and classi�cation: it cannot be used in advance.
Nevertheless, the above analysis provides us with conceptual guidelines about the discrim-
inativeness of the KDE-based scheme. To recapitulate, the bandwidth is a parameter of
choice a�ecting the discriminativeness of the descriptors:

• Large bandwidths lead to smooth feature pdfs eliminating some shape details and
favor the acceptance hypothesis by reducing descriptor variation.

• Small bandwidths preserve shape details more faithfully, lead to more discriminant
descriptors and favor the rejection hypothesis.

How large the bandwidth parameter should be set is a matter of compromise between
descriptor smoothness vs. discriminativeness, which is a hard question to answer a priori.
One can view the bandwidth as a complex function of the feature dimension, the number
of available observations, and in our context, how �nely the shape database is categorized,
making the analytical approaches to bandwidth selection very di�cult. In the following
section, we present several bandwidth parameter models and put the selection problem in
context.

2.2.2 Bandwidth Selection

Looking at Eq. 2.5, we can see that the KDE scheme places a neighborhood in the form of a
con�dence ellipsoid of varying size and shape around each source sk. As a target t is nearer
to the center of this ellipsoid, the source sk contributes more to the pdf value at t. The size
and shape of the con�dence ellipsoid is determined by the kernel function parameterized by
the bandwidth Hk. As stated previously, the structure imposed on the bandwidth matrix
models the uncertainty about the observations (both in kind and in degree) as well as the
smoothness of the resulting descriptors. In the sequel, we �rst present the classical account
on bandwidth parameter selection [84], and then proceed to discuss the selection problem
in the context of density-based 3D shape descriptors.

Bandwidth Models and Standard Selectors

The KDE equation in Eq. 2.4 and its version with the Gaussian kernel in Eq. 2.5 embody
the most general situation for the following reasons:

• The fact that Hk is a full matrix (i.e., every element can be non-zero) allows taking
into account variances (diagonal entries) along each axis and covariances (o�-diagonal
entries) between di�erent axes of the feature distribution. If the variance along an
axis is large, the bandwidth along this axis should be large. A similar remark can
be made for a strong pairwise correlation, which would lead to a higher entry at the
corresponding o�-diagonal. Non-zero o�-diagonals lead to con�dence ellipsoids, of
general form, that need not to be aligned with feature axes.

• The fact that Hk varies for every source sk takes into account variations regarding
the sampling density. If the sampling density is low around a neighborhood of sk (of
a certain orientation), the corresponding bandwidth matrix Hk should admit higher
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values as its entries in order to smooth the estimate at t. The shape and the size of
the con�dence ellipsoid vary for each observation.

In practice, Hk's are not known in advance and the accuracy of the KDE relies on how
to choose the bandwidth matrix. We can make di�erent assumptions about its structure:

(A1) Hk = H = hI,∀k = 1, . . . ,K (I is the m × m identity matrix). The bandwidth
matrix does not depend on the source location, it is diagonal and controlled by a
single parameter h. In this case, Eq. 2.4 gets the simplest form:

fS(t) =
1

hm

K∑
k=1

wkK
(

t− sk

h

)
.

(A2) Hk = H = diag(h1, . . . , hm),∀k = 1, . . . ,K. The bandwidth matrix does not depend
on the source location and has a diagonal form, determined by m parameters.

(A3) Hk = H,∀k = 1, . . . ,K. The bandwidth matrix does not depend on the source
location and is a full matrix determined by m(m − 1)/2 parameters, since H is
m×m symmetric.

(A4) Hk = hkI, k = 1, . . . ,K. The bandwidth matrix depends on the source location, it is
diagonal and proportional to a single parameter hk. Since there are K sources, we
are faced with the problem of choosing K parameters.

(A5) Hk = diag(hk1, . . . , hkm), k = 1, . . . ,K. The bandwidth matrix depends on the
source location and is a diagonal matrix, determined by m parameters for each source
sk. Since there are K sources, we have to choose Km parameters.

(A6) Hk, k = 1, . . . ,K. The bandwidth matrix depends on the source location and is a
full matrix, determined by m(m − 1)/2 parameters. Since there are K sources, we
have to choose Km(m− 1)/2 parameters.

Each assumption above requires a data-driven bandwidth estimation procedure with vary-
ing complexity. Assumptions (A1) to (A3) lead to �xed bandwidth models and di�er from
the variable ones (A4) to (A6) in the sense that the bandwidth matrix is unique for a given
set of observations, i.e., it does not depend on the source location. Variable bandwidth
models have recently gained interest [83, 84]. They are more �exible since they make no
assumptions about the shapes of the con�dence ellipsoids (centered at observations). How-
ever, they are computationally very expensive to obtain and then to use; �rst because one
should estimate as many bandwidth matrices as the number of observations, and second
because, even if they are available in one way or another, there is no alternative, as e�cient
as the fast Gauss Transform (cf. Section 2.2.3), to the direct method for evaluating the
pdf estimate at multiple target points. Computational requirements oblige us to focus on
�xed bandwidth models.

Fixed bandwidth selectors split into three classes [2, 3]):

• Rule-of-thumb selectors,

• Plug-in selectors,

• Cross-validation selectors.
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Rule-of-thumb and plug-in selectors both rely on minimizing the asymptotic mean
integrated squared error (AMISE ) [2, 3]) (cf. Appendix C.3). Under (A3) and when
the observations are equally weighted, i.e., wk = 1/K,∀k, AMISE is given by

AMISE(H) =
1
4
C1

∫ (
tr
(
HTHfH

))2
ds + C2 (K|H|)−1 , (2.7)

where C1 and C2 are kernel dependent constants, Hf is the Hessian matrix of second
partial derivatives of the unknown pdf fS . In theory, it is possible to minimize Eq. 2.7
with respect to H to obtain a bandwidth matrix, which is optimal in the AMISE sense.
However, the expression one obtains depends on the unknown pdf. Rule-of-thumb selectors
assume a reference density of known analytic form (such as the multivariate Gaussian),
then calculate an analytical expression for the Hessian to obtain the optimal bandwidth for
the reference density. In [3], it is demonstrated that in the case of multivariate Gaussian
kernel and multivariate Gaussian reference pdf, under (A2), AMISE -optimal bandwidths
are given by

hj =
(

4
(m + 2)K

)1/(m+4)

σj , j = 1, . . . ,m, (2.8)

where σj is the standard deviation of the reference density along the jth axis. In practice,
one replaces σj with the sample standard deviation of the feature observations. Although
not rigorously demonstrated elsewhere, an analogous expression for (A3) would be (as
suggested in [2]):

H =
(

4
(m + 2)K

)1/(m+4)

Σ1/2, (2.9)

where Σ is the covariance matrix of the multivariate Gaussian reference. The expressions
in Eqs. 2.8 and 2.9 are called Scott bandwidths. Rule-of-thumb selectors provide us with
explicit, easily applicable formulae, which prove to be useful in practical real-time applica-
tions, where we cannot a�ord the computational cost of data-driven parameter estimation.
Furthermore, when the true unknown pdf is not that much far from the multivariate
Gaussian, say for instance, if it is unimodal, fairly symmetric and does not have tails that
are too fat, Scott bandwidths are also statistically plausible [2]. A more complicated option
is to employ a pilot estimate for the unknown pdf (or properly to say, for its Hessian) and
to plug this in the minimizer of Eq. 2.7 to obtain an estimate more adapted to data than
in Eqs. 2.8 and 2.9 [2]. Such approaches are called plug-in selectors, which can be viewed
as data-driven generalizations of the rule-of-thumb selectors.

Cross-validation (CV ) is a fairly general statistical learning method. In the KDE
context, CV selectors are used in conjunction with the integrated squared error (ISE ) to
obtain a criterion, which does not involve the unknown density [78, 2]. Under (A1) and
for equally weighted observations, the ISE criterion using CV can be written as

CV (h) =
1

K2h

∑
k

∑
k′

K ∗ K
(

sk − sk′

h

)
− 2

K(K − 1)

∑
k

∑
k′ 6=k

K
(

sk − sk′

h

)
,

(2.10)

where ∗ stands for the convolution operation. The CV method ful�lls also an optimality
property: it can be shown that ISE(ĥCV ) −−−−→

K→∞
min

h
ISE(h) [2].
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Plug-in and cross-validation methods are applicable in the multivariate case too. How-
ever, estimation of multiple bandwidth parameters is mathematically and computationally
much more involved as compared to the scalar case. Except for some special cases as in
the rule-of-thumb type of plug-in selectors, the multivariate problem has no direct uni-
variate analogue. Furthermore, one should also keep in mind that there is no application-
independent way of �nding the optimal bandwidth parameter. The schemes mentioned
above try to minimize AMISE (plug-in methods) or ISE (CV methods) to estimate op-
timal bandwidths. However optimality here depends on the criterion chosen and not on
the closeness to a true underlying parameter. For instance, even asymptotically optimal
criteria may show bad behavior in simulations [2]. There is no guarantee that these criteria
would yield the best performance for the given application. To us, the best answer to this
challenging question can be obtained via performance-driven experimentation.

Bandwidth Selection in Context

After a classical account of bandwidth selection, we now focus on strategies suitable for
our application. Note that the above discussion dealt with setting the bandwidth for just
one set of observations. In the context of density-based shape description for retrieval, on
the other hand, since each shape induces a set of observations, we have to select as many
bandwidth parameters as the number of shapes in the application database. We consider
three levels of analysis at which the parameters in the bandwidth matrix Hk can be chosen.
We show the experimental results of these options in Section 4.1.

(1) Triangle-level : This option allows a distinct bandwidth matrix for each triangle in
the mesh (each inducing an observation sk), hence it is a variable bandwidth model.
As discussed above, this choice is very general since it does not make any assumptions
about the shape of the kernel function and hence about the shape of the kth triangle.
In general, �nding a KDE bandwidth matrix speci�c to each observation is a di�cult
problem [85]. For the Gaussian kernel, however, the estimation of the bandwidth
matrix Hk can be considered as the estimation of the feature covariance matrix over
a given triangle. The moment formula in Eq. 2.1 and its numerical approximation
in Eq. 2.2 can be easily adapted for moments of any order. For example, the (i, j)th
component hij of H can be computed by

h2
ij =

∫∫
Ω
Si(x, y)Sj(x, y)f(x, y)dxdy

−
∫∫

Ω
Si(x, y)f(x, y)dxdy

∫∫
Ω
Sj(x, y)f(x, y)dxdy,

i, j = 1, . . . ,m.

Note however, the generality of this variable bandwidth model might become overly
restrictive as the approach relies too much on the triangulation of the mesh. The
shapes of the con�dence ellipsoids, hence the uncertainty about the observations are
determined solely by the available triangulation. Consequently, the descriptors might
over�t the observations and become too much discriminating.

(2) Mesh-level : The second option is to use a �xed bandwidth matrix for all triangles
in a given mesh, but di�erent bandwidths for di�erent meshes. This choice im-
plicitly assumes that all con�dence ellipsoids have the same shape for a given set
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of observations obtained from a mesh. In this case, the bandwidth matrix for a
given feature can be obtained from its observations using Scott's rule-of-thumb [2]:

HScott =
(∑

k w2
k

)1/(m+4) Σ̂1/2, where m is the dimension of the feature, Σ̂ is the
estimate of the feature covariance matrix and wk is the weight associated to each
observation. Notice that this expression is a generalization of Eq. 2.9 for arbitrarily
weighted observations, i.e., wk's do not need to be 1/K (see Appendix C.3 for our
derivation). Recall that Scott's rule-of-thumb is proven to provide the optimal band-
width in terms of estimation error when the kernel function and the unknown density
are both Gaussian. Although, there is no guarantee that feature distributions to be
Gaussian, Scott's rule-of-thumb provides us with a simple working alternative.

(3) Database-level : In the last option, the bandwidth parameter is �xed for all triangles
and meshes. Setting the bandwidth at database-level has the implicit e�ect of reg-
ularizing the resulting descriptors by the same amount. A pilot set of parameters
is estimated from a representative subset of the database by averaging the Scott
bandwidth matrices over the selected meshes. The bandwidth is then optimized
based on its retrieval performance on a given training database, that is, by experi-
menting with a range of bandwidth values centered at the average Scott bandwidth
(see Section 4.1). Notice, however, that this option might not be the best choice
from a shape modeling perspective. The resulting descriptor might be inaccurate in
representing the true feature pdf conditioned on the given shape. In this case, the
bandwidth should be viewed as an application-driven hyperparameter of the algo-
rithm. Imposing a �xed bandwidth for the whole database corresponds to a great
simpli�cation. Such simpli�cations are common in machine learning and are both
experimentally and theoretically shown to increase the generalization performance
of a pattern recognition algorithm [27]. In the present case, a di�erent bandwidth
for each mesh risks of overly adapting the descriptor to its corresponding mesh, thus
unnecessarily emphasizing individual shape details. However, for discrimination in
a relatively large database consisting of various inhomogeneous classes, we have to
smooth out (or eliminate) the individual aspects and emphasize the shared ones.

2.2.3 Computational Considerations

The computational complexity of KDE using directly Eq. 2.4 is O (KN) where K is the
number of observations (the number of triangles in our case) and N is the number of
density evaluation points, i.e., targets. For applications like content-based retrieval, the
O (KN)-complexity is prohibitive. However, when the kernel function in Eq. 2.4 is chosen
as Gaussian, we can use the fast Gauss transform (FGT) [4, 5] to reduce the computational
complexity signi�cantly. To give an example, on a Pentium 4 PC (2.4GHz CPU, 2 GB
RAM) and for a mesh of 130,000 triangles, the direct evaluation of the (R, R̂)-descriptor
(1024-point pdf) takes 125 seconds. With FGT, on the other hand, the (R, R̂)-descriptor
computation takes only 2.5 secs. FGT is an approximation scheme enabling the calculation
of large sums of Gaussians within reasonable accuracy and reducing the complexity down
to O (K + N). In our 3D shape description system, we have used an improved version of
FGT implemented by C. Yang [5].

For the sake of completeness, here, we only provide the conceptual guidelines of the FGT
algorithm (see [4, 5] for mathematical and implementation details). FGT is a special case of
the more general fast multi-pole method [4], which trades o� computational simplicity for
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acceptable loss of accuracy. The basic idea is to cluster the source points and target points
using appropriate data structures and to replace the large sums with smaller ones that
are equivalent up to a given precision. The gain in complexity is achieved by avoiding the
computation of every Gaussian at every evaluation point unlike the direct approach, which
has O (KN)-complexity. Instead, truncated Hermite series (each of which is equivalent to
an exponential in the sum) are constructed about a small number of source cluster-centers
in O (K) operations. The accuracy can be controlled by the truncation order. These
series are then shifted to target cluster-centers, and evaluated at the K targets in O (N)
operations. Basically, since the two sets of operations are disjoint, the total complexity of
FGT becomes O (K + N).

2.3 Descriptor Manipulation Tools

2.3.1 Marginalization

Features can be selectively removed from the multivariate pdf-based descriptor by mar-
ginalization, that is, by integrating out feature variables. Speci�cally, to remove the com-
ponent Si from the pdf of some m-dimensional feature S = (S1, . . . , Si, . . . , Sm), we use
the following equation:

fS 6i|O , fS 6i (s1, . . . , si−1, si+1, . . . , sm|O) , (2.11)

=
∫

Si

fS (s1, . . . , si, . . . , sm|O) dsi, (2.12)

which gives the pdf of a �reduced� feature S 6i , (S1, . . . , Si−1, Si+1, . . . , Sm). Reducing
the descriptor fS|O to fS 6i|O saves us one dimension at the cost of losing any information
brought by the component Si. For instance, marginalizing the magnitude component R
from the pdf of (R, R̂)-feature vector, the size of the descriptor f( 6R,R̂)|O is NR times smaller

than that of f(R,R̂)|O since the target set for (R, R̂) contains NR×NR̂ points. We can then
hope to identify features that can be marginalized for the sake of dimensionality reduction,
while monitoring the descriptor's discrimination ability. An obvious instance is the case
of a redundant component in the directional parts R̂ and N̂ of the local features (R, R̂)
and (D, N̂) respectively. For example, R̂ is unit norm with R̂2

x + R̂2
y + R̂2

z = 1, hence given
any two components, say R̂x and R̂y, the third one R̂z is completely determined up to the
sign. Thus, it can be conjectured that R̂z can be marginalized out without deteriorating
performance. We show this experimentally in Section 4.5.1.

Marginalization is an appealing tool, which can be used for more interesting tasks than
dimensionality reduction. In the introduction of this chapter and in Section 2.1.1, we have
pointed out that our framework can produce a family of descriptors using di�erent sets of
multivariate features. The speci�city of a feature increases as a function of the included
components, hence, in principle, the corresponding pdf-based descriptor should become
more discriminating as more components are added. The critical issue is to determine how
much the feature is to be speci�c, or equivalently, which components are to be included in
the �nal multivariate feature to obtain the best performance for a particular classi�cation
and/or retrieval task. This problem can be viewed as a particular instance of feature
selection, for which many suboptimal heuristics have been developed [86]. Given L di�erent
features and |O| objects, a naive solution is to construct all 2L − 1 feature combinations
and then to calculate 2L − 1 sets of |O| pdf-based descriptors for subsequent performance
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Figure 2.8: Illustration of probability density pruning on a univariate example

evaluation. Using marginalization, we can avoid this laborious descriptor computation
phase by computing just one set of descriptors, without resorting to any heuristics. This
one set of descriptors corresponds to the case in which all of the L features are included.
We can then invoke the marginalization equation (Eq. 2.12) to obtain the descriptors
corresponding to all subsets of the L features. Evidently, this procedure is exact (within
pdf estimation accuracy) and way more e�cient than the naive solution. We employ this
particular facet of marginalization in Section 4.6.2.

2.3.2 Probability Density Pruning

Another approach to reduce a descriptor's dimensionality involves identifying insigni�cant
targets (density evaluation points) by pruning the prior feature density, de�ned in Eq. 2.3.
This idea is e�ected as follows. For a selected threshold λ, we de�ne a new target set
Rλ

S = {tn ∈ RS : fS(tn) > λ} (see Figure 2.8). The reduced descriptor for some object O
becomes then fλ

S|O = [fS(tn|O)]
tn∈R

λ
S
. In other words, we eliminate the targets at which

prior density values are below the threshold λ. We conjecture that these targets are not
signi�cant in describing the shapes as they do not induce large pdf values on average,
hence they can be pruned from the descriptors. Notice that heuristic selection methods
are not practical when the descriptor vector size is in the order of thousands. Pruning by
suppressing small pdf values, albeit not tantamount to feature selection, still serves the
goal by reducing the descriptor size. Note also that once insigni�cant target points are
eliminated by pruning, we can use the new target set Rλ

S for KDE. Rλ
S having smaller

cardinality than the original RS , we can also save from descriptor computation time.
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2.4 An Invariant Similarity Measure for Pdfs

In this section, we deliver an important result on recovering invariance against certain types
of object transformations at the matching stage. We start by recalling the rule relating
two pdfs under transformations of random variables. Consider a generic random variable
S ∈ RS with pdf fS . Let Γ be a bijection on RS . The pdf of S is related to the pdf of its
transformed version Γ(S) by

fS(s) = fΓ(S)(Γ(s))|JΓ(s)|, (2.13)

where JΓ is the Jacobian of Γ. Recall that the Jacobian of a transformation Γ is the
determinant of the matrix of its �rst partial derivatives.

The above identity may have several applications in our context. For instance, consider
the situation where we have a 3D object O embedded in a certain reference frame F and
we dispose of the pdf fS|O , fS(·|O) of a pose-dependent feature S evaluated on the

surface of this object. The radial direction feature R̂ and the normal feature N̂ can be
two such features. Suppose furthermore that we observe the same object O but in a
di�erent reference frame F′. Let the transformation Γ be the mapping from F and F′,
that is, applying Γ on O in F, we can obtain O in F′. In this speci�c case, Γ is an
orthogonal transformation, accounting for rotations, relabelings, and mirror re�ections of
the coordinate axes. Clearly, applying Γ on the object O does not change its intrinsic
shape properties neither the shape information contained in the feature S. The sole e�ect
of this transformation is to map S, evaluated in F, to Γ(S) evaluated in F′. By Eq. 2.13
and the fact that |JΓ(s)| = |Γ| = 1,∀s ∈ RS , in this speci�c case, we can relate the pdfs
fS|O and fΓ(S)|O of the feature S, evaluated when the object O is in F and F′ respectively,
by the following identity

fS(s|O) = fΓ(S)(Γ(s)|O),∀s ∈ RS . (2.14)

The problem of recovering the pose of an object O in F′ with respect to F boils down to
�nding Γ that satis�es the identity in Eq. 2.14. In principle, we can solve this problem by
invoking a distance measure between fS|O and fΓ(S)|O such as the L1-distance and setting
it to zero: ∫

s∈RS

∣∣fS(s|O)− fΓ(S)(Γ(s)|O)
∣∣ds = 0. (2.15)

Whenever the pdfs fS|O and fΓ(S)|O are available, Eq. 2.15 can be solved with respect to
Γ, either numerically or analytically.

Guided by the above discussion, we can de�ne a similarity2 measure between two
di�erent objects O and O′ as follows:

dist(O,O′) = min
Γ∈O(3)

∫
s∈RS

∣∣fS(s|O)− fΓ(S)(Γ(s)|O′)
∣∣ds, (2.16)

where O(3) is the group of orthogonal transformations in R3. This measure is invariant
against the extrinsic e�ects of rotations, relabelings and mirror re�ections of the coordinate
axes and captures solely intrinsic shape variations to the extent encoded by the feature
pdfs.

Let us now explain how and in which situations we can implement this measure for
density-based descriptors. Observe that Eq. 2.16 is quite implicit and assumes that the pdfs

2Actually a dissimilarity measure.
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are analytically available and continuous. Recall, however, that a density-based descriptor
is just a discretized version of the continuous pdf, i.e., it is a �nite vector given by fS|O =
[fS(t1|O), . . . , fS(tN |O)] for the object O and fS|O′ = [fS(t1|O′), . . . , fS(tN |O′)] for the

object O′. Recall also that the set RS = {tn ∈ RS}N
n=1 is the target set at which the pdf

is evaluated. With this notation, the discretized version of the measure in Eq. 2.16 would
be

dist(O,O′) = min
Γ∈O(3)

∥∥fS|O − fΓ(S)|O′
∥∥

L1 (2.17)

= min
Γ∈O(3)

N∑
n=1

∣∣fS(tn|O)− fΓ(S)(Γ(tn)|O′)
∣∣, (2.18)

provided that RS is a uniform partitioning of RS (cf. Section 2.1.3). There remains
one important problem regarding the calculation of this measure. To perform the min-
imization in ( 2.17) with respect to Γ, we need the pdf values fΓ(S)(Γ(tn)|O′) but we
only have fS(tn|O′). Hopefully, whenever RS is closed under the action of Γ (i.e., when
∀t ∈ RS ,Γ(t) = t′ ∈ RS), Γ maps the target t to t′, which is also in the target set. By
Eq. 2.14, we have fS(t|O′) = fΓ(S)(t′|O′). Thus, given the descriptor fS|O′ and a certain
Γ, we can recover fΓ(S)|O′ by just permuting the vector entries, without re-evaluating the
descriptor for every admissible Γ. Evaluation of Eq. 2.17 becomes a matter of testing
admissible transformations Γ (under the action of which the target set RS is closed) and
picking the minimum value.

The set of admissible transformations Γ needs further attention as it determines the
type of invariances we want to achieve at the matching stage. In Eqs. 2.16 and 2.17, this
set is speci�ed as the group of orthogonal transformations O(3), which includes rotations,
relabelings and mirror re�ections of the coordinate axes. From a practical viewpoint,
the minimization involved in the discrete case of Eq. 2.17 can only be performed by an
exhaustive search on the set of admissible Γ. Thus, the cardinality of the search space
matters a lot in order to obtain a measure that can be computed within reasonable time.
Accordingly, we focus on developing a similarity measure invariant to relabelings and mirror
re�ections (but not to rotations) due to following reasons:

• Rotations form a subgroup of O(3), and are called as special orthogonal transfor-
mations SO(3), which contains in�nitely many Γ. Thus in the continuous case of
Eq. 2.16, the minimization is to be performed within an in�nite set. In the discrete
case that we are particularly concerned with, the cardinality of the search space de-
pends on the granularity of the target set, that is, how �ne RS is partitioned into
RS . The larger the target set is, the larger the set of admissible rotations becomes.
On the other hand, the set of admissible axis relabelings and mirror re�ections in R3,
denoted by PS(3), has �nite cardinality both in the continuous and discrete cases.
A labeling means which one of the three coordinate axes is the x-axis, which one is
the y-axis and which one is the z-axis. A mirror re�ection changes their polarity.
The three axes of the 3D coordinate system can be labeled in 3! = 6 possible ways.
Given a certain labeling, there are 23 = 8 possible polarity assignments. Thus, there
are 6× 8 = 48 possible xyz-con�gurations. The passage from one axis con�guration
to another can be e�ected with a matrix Γ, which consists of the product of a per-
mutation matrix (for relabelings) and a sign matrix (for re�ections), as illustrated in
Figure 2.9.
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Figure 2.9: A permutation P followed by a polarity reversal S changes the axis con�gura-
tion form F to F′.

• In descriptor-based 3D retrieval, rotation errors constitute a lesser problem than
mislabelings or wrong polarity assignments of the coordinate axes. In general, PCA-
based object normalization methods correctly �nd the major axes of the 3D object
but fail to unambiguously resolve the labels and/or the polarities of these axes (see
Figure 2.10) [87]. After normalization, rotation errors remain in small amount so
that the variation between descriptors becomes unimportant, or not that much sig-
ni�cant as a mislabeling or a wrong polarity assignment would produce. Furthermore,
smoothness reinforced by the KDE-based scheme can gloss over small rotation errors,
as discussed in Section 2.2.1.

Figure 2.10: Three airplane models after pose normalization: major axes are correctly
found but the front of the fuselage of the rightmost model is in the opposite direction.

The importance of target selection reappears since the target set RS should be closed
under the action of Γ ∈ PS(3). Our working example can be pose-dependent features such
as R̂ or N̂, taking values within the unit 2-sphere S2. In this case, the target set RR̂
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Figure 2.11: Flow diagram of density-based shape description algorithm

is a set of 3D points lying on S2. Recall that, in Section 2.1.3, we have presented two
di�erent schemes for sampling S2: (i) octahedron subdivision and (ii) spherical coordinate
sampling. The target points in RR̂ produced by spherical sampling are symmetric with
respect to each of the xy-, xz- and yz-planes, thusRR̂ is closed when Γ is solely a re�ection.
However, it is not closed under the action of a permutation since the con�guration of the
parallels and the meridians depends on the speci�c choice of the xyz-labels. When RR̂ is
obtained by octahedron subdivision, on the other hand, the closedness under permutations
and re�ections is ensured. Consider the regular octahedron with its center placed at the
origin and its 6 vertices at {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. First, the appearance of the
octahedron does not depend on the axis labels: after a permutation, we recover the same
vertex coordinates. Second, the octahedron is symmetric with respect to each of the xy-,
xz- and yz-planes: after a re�ection, we recover again the same coordinates. This nice
property of the octahedron holds for its successive subdivisions of any order, making the
resulting target set RR̂ closed under the action of coupled permutations and re�ections.

2.5 Summary of the Algorithm

We summarize below the proposed algorithm to obtain a density-based 3D shape descriptor:

1. For a chosen local feature S, specify a set of targets tn, n = 1, . . . , N .

2. Normalize the object O represented in terms of a 3D triangular mesh M =
⋃K

k=1 Tk

according to the invariance requirements of S.

3. For each mesh triangle Tk, calculate its feature value sk using Eq. 2.2 and its weight
wk.
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4. Set the bandwidth parameters Hk according to the strategy chosen among the three
options described in Section 2.2.2.

5. For each target tn, n = 1, . . . , N , evaluate the feature pdf fS (tn|O), using Eq. 2.5.

6. Store the resulting density values fS (tn|O) in the shape descriptor
fS|O = [fS (t1|O) , . . . , fS (tN |O)].

7. If necessary, marginalize and/or prune the descriptor to reduce dimensionality, as
described in Section 2.3.

Figure 2.11 depicts the �ow diagram of the algorithm when the bandwidth parameters
are set at database-level. Alternatively, in the triangle or mesh-level setting, a bandwidth
matrix is to be computed for each triangle or for the entire mesh, respectively. Note that
in Figure 2.11, we assume that the mesh M has already undergone a pose and/or scale
normalization step depending on the missing invariance properties of the local feature S
chosen.
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Chapter 3

Statistical Similarity Learning

Ongoing research in 3D shape retrieval shows that no single descriptor is capable of pro-
viding satisfactory retrieval performance for a broad class of shape databases, regardless
of the associated semantics [8, 11, 9]. Figure 3.1 displays the response of two di�erent
descriptors A and B to two di�erent queries from the Princeton Shape Benchmark [11].
The �rst query is a biplane model and the second one is a chair model. In response to
the biplane model, descriptor A returns correctly four biplanes in the �rst three and in
the sixth matches, while the fourth and the �fth retrieved models are not biplanes, but
still �ying objects that can be considered as relevant. Descriptor B, on the other hand,
returns models that are completely irrelevant to the biplane query (three shelf models,
two coarse human models and a microscope!). For the chair query, the situation reverts
to the advantage of Descriptor B, which can retrieve six chair models; while descriptor
A, after �rst three correct matches, returns two tree models and a monument! Thus, the
adequacy of the descriptors A and B depends on the nature of the query. Furthermore,
these examples can be multiplied; for instance, there are cases where the sets of relevant
matches for di�erent descriptors are disjoint (see Figure 3.2). This suggests that a good
retrieval machine should rely on a diverse set of descriptors for robust performance.

As the example in Figure 3.1 illustrates, experimental evidence motivates us to consider
fusion schemes to learn similarities between pairs of objects on statistical grounds. In
the present chapter, we tackle the similarity learning problem by a score fusion scheme,
which minimizes a convex regularized version of the empirical risk associated with ranking
instances. We follow the statistical learning framework developed in [6, 7] and provide an
application to 3D shape retrieval. We observe that learning a linear scoring function can be
cast into binary classi�cation in the score di�erence domain, that is, �nding a separating
hyperplane. Given a query, the hyperplane parameters can be considered as optimal with
respect to the empirical risk associated with ranking instances.

Our approach can be contrasted to the one in [88] where the ranking problem is for-
mulated as classi�cation of pairwise instances using di�erence vectors (between descriptors
in our setting) inputted to an SVM-type algorithm. Our solution di�ers from that of [88]
in that it operates on scores rather than on the speci�c representations associated with
training instances. We prefer to work with scores due to following reasons:

• Even though most of the 3D shape descriptors proposed in the literature [8, 9] are
vector-based, the computation of non-classical similarity measures involves a mini-
mization over a set of plausible transformations in order to secure invariance against
certain types of transformations (cf. Section 2.4). As exempli�ed in Section 2.4,
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Figure 3.1: Response of two di�erent descriptors A and B to two di�erent queries biplane
and chair

such procedures may require permutations of descriptor vector entries, in which case,
working with descriptors rather than with scores would become very hard, if not im-
possible.

• On a more general vein, descriptors might not be vectors but graphs with specialized
metrics for matching. Consequently, working with scores makes our approach a more
general solution to statistical similarity learning.

• In the 3D shape retrieval domain, descriptor dimensionality can easily reach the
order of thousands. Combining scores has this additional bene�t of reducing data
dimensionality in an informed way.

There is a considerable body of work concerning statistical ranking, which �nd appli-
cation niches in other than the 3D shape retrieval, such as text-based information retrieval
and collaborative �ltering. Large margin approaches as in [88, 89] considered the problem
as one of ordinal regression, in which case relevance labels are treated as categorical vari-
ables at ordinal scale. In these approaches, the aim is to �nd a set of rank boundaries in
the feature domain. In [90], the authors adapted the on-line perceptron learning scheme
to the ranking problem to cope with situations where training examples are not readily
available prior to learning. On a di�erent spirit, the works in [91, 92] treated the problem
as combining preference judgments based on a variation of the AdaBoost algorithm for
binary classi�cation. Recently in [93], the authors proposed a computationally e�cient
approximation for learning a ranking function from structured order constraints on sets of
training samples.

This chapter is organized as follows. In Section 3.1, we introduce the score fusion
problem as well as the notation that we will use subsequently. In Section 3.2, following
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Figure 3.2: Response of two di�erent descriptors A and B to the same query: both de-
scriptors retrieve di�erent plausible matches.

[7], we recapitulate the ranking risk minimization framework. In Section 3.3, we give
an SVM-based solution to the score fusion problem. Finally, in Section 3.4, we propose
di�erent search protocols for the retrieval machine combining multiple sources of similarity
information.

3.1 The Score Fusion Problem

In this section, we introduce the score fusion problem for 3D shape retrieval following the
statistical ranking framework developed in [6, 7]. Consider the problem of ranking two
generic database shapes x and x′ based on their relevance to a query shape q. Suppose
that we have access to K similarity values simk(x, q) , sk and simk(x′, q) , s′k for each
of the pairs (x, q) and (x′, q) respectively, where k = 1, . . . ,K. In our context, each simi-
larity value sk arises from a di�erent shape descriptor and re�ects some, possibly di�erent,
geometrical and/or topological commonality of shape pairs (x, q) and (x, q′). For simi-
lar shape pairs, an ideal similarity value should be higher than it is for less similar ones.
In retrieval problems, a shape x in the database that is more similar to the query q is
expected to be ranked higher than another intrinsically less similar shape x′. These simi-
larity values/scores can be written more compactly in the vector form as s = [s1, . . . , sK ]
and s′ = [s′1, . . . , s

′
K ] where s, s′ ∈ RK . Our objective is to build a scalar-valued scoring

function ϕ of the form ϕ(x, q) = 〈w, s〉, where w = [w1, . . . , wK ] ∈ RK is a vector, whose
components are associated with the individual scores sk. The scoring function ϕ should
assign a higher score to the shape, which is more relevant to the query q, i.e., it should
satisfy the following property:

ϕ(x, q) > ϕ(x′, q) if x is more relevant to q than x′,
ϕ(x, q) < ϕ(x′, q) otherwise,

where ties are arbitrarily broken. The relevance of the shapes x and x′ to the query q
can be encoded by indicator variables y and y′ respectively. In this work, we assume crisp
relevances y = 1 (relevant) and y = −1 (not relevant), in which case, the above property
reads as:

ϕ(x, q) > ϕ(x′, q) if y − y′ > 0,
ϕ(x, q) < ϕ(x′, q) if y − y′ < 0.
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3.2 Ranking Risk Minimization

The function ϕ must subsume the similarity information residing in the individual
scores sk in order to emulate the ideal similarity notion between shapes, hence to achieve
a better retrieval performance. Given the linear form ϕ(x, q) = 〈w, s〉, score fusion can
be formulated as the problem of �nding an optimal weight vector w, according to some
criterion, as we explain in the following section.

3.2 Ranking Risk Minimization

The criterion of interest is the so-called ranking risk de�ned as

R(ϕ; q) = P
(
(ϕ(x, q)− ϕ(x′, q)) · (y − y′) < 0

)
.

In other words, the ranking risk with respect to the query q is the probability that ϕ gives
a score for x higher than it gives to x′ while x′ is relevant to q but x is not. Naturally, we
want this probability to be as small as possible. Rewriting the misranking probability in
terms of an expectation, we have

P
(
(ϕ(x, q)− ϕ(x′, q)) · (y − y′) < 0

)
= E

{
I
{
(ϕ(x, q)− ϕ(x′, q)) · (y − y′) < 0

}}
,

where I{·} is one if the predicate inside the braces is true and zero otherwise. Since we
do not have access to the probability measure P on (x, y), we have to �nd an empirical
estimate of the ranking risk based on a training set X = {(xn, yn)}N

n=1. A natural estimate
for this expectation can be obtained by averaging over the pairwise instances of the training
set X [6, 7], i.e.,

R̂(ϕ; q) =
2

N(N − 1)

∑
m<n

I {(ϕ(xm, q)− ϕ(xn, q)) · (ym − yn) < 0} . (3.1)

The properties of this empirical quantity, known as a U -statistic in the statistics lit-
erature, has been investigated in the context of statistical ranking [6, 7]. This particular
type of risk functional uses the 0-1 loss to assess the cost of a misranked pair of objects,
i.e., if ϕ(xm, q) < ϕ(xn, q) and ym > yn, the scoring function ϕ(·, q) (wrongly) assigns a
higher score to xn than to xm while xm is relevant to the query q but xn is not. Thus
the scoring function has made an error in ranking xn and xm with respect to the query q.
Such misrankings are naturally undesirable and our task is to �nd a scoring function (or
more appropriately its parameters w) so that the number of misranked pairs is as small as
possible.

3.3 SVM Formulation

We can identify the empirical ranking risk in Eq. 3.1 as an empirical classi�cation error.
Let z , (y − y′)/2, taking values within {−1, 0, 1}. We observe then the following:

z =
{

1 x should be ranked higher than x′,
−1 x should be ranked lower than x′.

When z = 0, i.e., if shapes x and x′ are both relevant (y = y′ = 1) or both not relevant
(y = y′ = −1), we have no particular preference in ranking them with respect to each
other (we can decide arbitrarily). Corresponding to each non-zero z, we can de�ne a score
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di�erence vector v, which is given simply by v , s − s′, the di�erence between the score
vectors s and s′ of the shapes x and x′ respectively. With this new notation and writing
the scoring function ϕ explicitly in terms of its parameters w, Eq. 3.1 now reads as

R̂(w; q) =
1
T

T∑
t=1

I {zt 〈w,vt〉 < 0} , (3.2)

where (vt, zt) corresponds to pairs of shapes xm and xn whose respective relevance labels
ym and yn are di�erent (zt is either 1 or −1), and T is the total number of such pairs.
Thus, we have converted the empirical ranking risk written in terms of score vectors s
and relevance indicators y (Eq. 3.1) into an empirical classi�cation error in terms of score
di�erence vectors v and rank indicators z (Eq. 3.2). In both cases, the sought after
parameter vector w is the same. Replacing the 0-1 loss in Eq. 3.2 with a convex loss
function and adding a regularization term on some norm of w, one obtains a tractable
convex optimization problem in w [24, 94]. In particular, using the hinge loss as the
convex loss and the L2-norm as the regularization term leads to the well-known C-SVM
problem, formulated as

minimize
w∈RK

1
2
‖w‖2 + C

T∑
t=1

ξt, (3.3)

subject to zt 〈w,vt〉 ≥ 1− ξt,∀t = 1, . . . , T (3.4)

ξt ≥ 0,∀t = 1, . . . , T. (3.5)

where ξt, t = 1, . . . , T are the slack variables and C is a constant trading o� the classi�er
complexity vs. the training error [94]. In summary, the problem of �nding the parameter
vector w of the linear scoring function ϕ is the same as the C-SVM problem in the domain
of score di�erence vectors. For a suitably chosen C, the solution of the above convex
minimization is

ŵ =
1
T ′

T ′∑
t′=1

αt′zt′vt′ , (3.6)

where αt′ are the non-zero Lagrange multipliers (corresponding to the constraints (3.4))
[24, 94]. The index t′ runs over such non-zero multipliers and the corresponding score
di�erence vectors vt′ are the so-called support vectors. The key point here is that the weight
vector learned by SVM in the score di�erence domain can directly be used to evaluate the
scoring function at the matching stage.

We can now summarize the training algorithm to learn the parameter w of the scoring
function ϕ:

Given Database shapes xn, n = 1, . . . , N
A query q
Relevance labels yn

K di�erent shape description schemes

Calculate Calculate a score vector sn ∈ RK for each (xn, q)-pair.

Identify The pairs of labels (ym, yn) such that ym − yn 6= 0,∀m,n = 1, . . . , N .
Let t run over such (m,n).

Construct The score di�erence vectors vt and their rank indicators zt.
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Run The C-SVM algorithm to learn the weight vector w ∈ RK ,
using the set {(vt, zt)}T

t=1 ⊂ RK × {−1, 1}.

3.4 Applications

In this section, we illustrate our score fusion scheme for similarity learning in two di�erent
retrieval protocols: (i) bimodal search and (ii) two-round search.

3.4.1 Bimodal Search

In this scenario, the user provides a textual description associated with the query shape.
The keyword can be selected from one of the prede�ned class concepts. We call this
protocol as bimodal since the query is formulated in terms of two information modalities, a
3D shape and a concept keyword. This protocol necessitates an o�-line stage during which
the weight vectors associated with each class concept are learned. Note that the criterion
that we have elaborated on in the previous sections is per-query and should be extended
to a per-concept risk R̂(w, C), where C stands for the working concept. This can be done
straight-forwardly by averaging per-query risks associated with a given concept, that is,

R̂(w; C) =
1
|C|
∑
q∈C

R̂(w; q), (3.7)

where |C| is the number of training shapes belonging to C. However, since the minimization
should be performed in the score di�erence domain, the problem turns out to be a very
large-scale one even for moderately sized classes. Given a training database D of size |D|,
the number of score di�erence instances per concept is |C| × (|C| − 1) × (|D| − |C|), e.g.,
for |D| = 1000 and for |C| = 10, the number of training instances becomes ∼ 90000, in
which case we incur to memory problems using standard SVM packages [95]. In order to
maintain the generality and practical usability of our approach in this protocol, we develop
two heuristics:

(1) Average per-query weight vector. The weight vector ŵC for a given concept
class is computed as the average of the per-query weight vectors corresponding to
the training models within that class, that is,

ŵC =
1
|C|
∑
q∈C

ŵq (3.8)

where ŵq is the weight vector for query q, obtained by minimizing the convex regu-
larized version of Eq. 3.2. We denote this heuristic by AVE-W.

(2) Per-class risk minimization using per-query support vectors. In this second
heuristic, we exploit the sparsity of the SVM solution, which means that the per-
query weight vector given in Eq. 3.6 is the weighted sum of usually a much smaller
number of training instances than the size of the whole training set. It is a well
known fact that, for a given problem, the SVM solution remains the same when only
the support vectors are provided for minimization [24, 94]. By this token, support
vectors can also be called as �di�cult instances" of the training problem. They re�ect
the distribution of training data in an economical way, as they are fewer in number
than the whole training instances. Accordingly, the learning of a per-concept weight
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vector can be carried in two stages. First, we identify the support vectors of per-
query problems by per-query minimization. Then, we pool all the support vectors
corresponding to a given concept and perform the minimization using this newly
formed set to learn the per-concept weight vector. We repeat this procedure as
many times as the number of prede�ned shape concepts. We denote this heuristic
by PCMIN-W.

3.4.2 Two-round Search

This protocol requires user intervention during the querying process. In the �rst round,
the retrieval machine returns a ranked list of shapes using a simple scoring scheme, e.g.,
the sum of the available raw scores. After the �rst found, we can invoke the score fusion
scheme in two di�erent ways:

(1) On-line. The user marks M models among the returned ones, as either relevant
(y = 1) or non-relevant (y = −1) with respect to his/her query. In the second
round, the retrieval machine returns a re�ned ranked list using the scoring function
ϕw(x, q) = 〈w, s〉. The weight vector w is learned on-line using the M marked
shapes as training instances. In order not to demand too much from the user, M
should not be large and is typically limited to a few �rst instances. For example,
when M = 8 and the number of positive M+ and negative instances M− are equal
(M+ = M− = 4), the total number of training score di�erence vectors is just 16.
Consequently, on-line learning is computationally feasible.

(2) O�-line. In this variant of the two-round search, all the shapes in the database have
their individual weight vectors stored, which have already been learned o�-line. The
individual weight vectors can be obtained as in the bimodal protocol. At querying
time, the user is asked to mark just the �rst relevant item in the displayed page of
the results. The second round evaluates the scoring function ϕw(x, q) = 〈w, s〉 using
the weight vector corresponding to the marked shape. Clearly, this protocol does
not perform any on-line learning and constitutes a less demanding option than the
former in terms of user interaction needed, as the user is asked to mark just one item.

The two variants of the two-round protocol presented here constitute particular forms
of relevance feedback and prove to be more suitable applications for our similarity learning
scheme than bimodal search, as the experiments in Section 4.10 demonstrate.
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Chapter 4

Experiments

In this chapter, we concretize the density-based shape description framework and the score
fusion based similarity learning approach in experimental terms. Our analysis extends over
ten di�erent sections clustered into the following groups:

• Parameter Selection and Robustness Experiments. Bandwidth parameter
selection constitutes the major issue in all applications based on KDE. As a starting
point, in Section 4.1, we experiment with possible bandwidth selection strategies
introduced for 3D shape description (cf. Section 2.2.2), since the results of all the
subsequent analyses rely upon the bandwidth parameter. In Section 4.2, we illustrate
the robustness properties of the density-based framework with an emphasis on the
e�ect of the bandwidth in conjunction with the discussion in Section 2.2.1 on KDE
in context.

• E�ciency Experiments. We treat the e�ciency problem as a matter of descriptor
parsimony. Target selection experiments in Section 4.3 deal with feature domain
sampling, as well as with descriptor size. In Section 4.5, we experiment with our
marginalization and probability density pruning tools for descriptor dimensionality
reduction. We also compare our �ndings with those of the classical PCA approach.

• E�ectiveness Experiments. E�ectiveness refers to the discrimination ability of
the descriptors in a retrieval application. In Section 4.4, we show how the invariant
matching scheme introduced in Section 2.4 outperforms standard similarity measures.
Sections 4.6 and 4.7 invoke feature-level and score-level information fusion to further
improve the retrieval performance of the density-based framework.

• Comparison Experiments. Quite many shape descriptors in the literature have
analogies to cases of the density-based framework in the local surface features they
use. Our approach di�ers from these, which we denominate collectively as histogram-
based, in the use of KDE, in which case multivariate extensions come naturally and
prove to be more descriptive for the retrieval task as shown in Section 4.8. We also
compare our scheme against its state-of-the-art competitors. In another comparison
study in Section 4.9, we analyze the performance variation of our descriptors across
databases di�ering in classi�cation properties, class cardinalities and mesh qualities.
These databases are (see also Section 1.2):

� Princeton Shape Benchmark (PSB) [11]. 1814 general-purpose low-quality 3D
models split into two subsets: Training (907 models in 90 classes) and Test
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(907 models in 92 classes). Classi�cation is induced by functionality as well
as by form. In general, the meshes in PSB have low resolution, they are non-
regular, non-smooth and disturbed with degeneracies such as non-manifold, non-
connected triangles of varying size and shape. These models are usually called
as �triangular soups".

� Sculpteur (SCU) [12, 13]. 513 high-quality 3D models in 53 classes consisting
largely of archaeological models. The meshes in SCU are regular, smooth and
highly detailed in terms of resolution.

� SHREC Watertight (SHREC-W) [14]. 400 high-quality 3D models in 20 classes.
The specialty of this database is that the classi�cation assumes topological
equivalences in addition to geometrical, constituting a challenging test envi-
ronment for geometry-induced description methods. The meshes in SHREC-W
are regular and smooth.

� Purdue Engineering Shape Benchmark (ESB) [15]. 865 3D models of engineering
parts in 45 classes. The meshes in ESB are regular but in general non-smooth
due to the general platonic solid form of the engineering parts.

• Statistical Score Fusion Experiments. This last cluster addresses the similarity
learning algorithm for retrieval (Section 4.10). We test the bimodal and two-round
search protocols introduced in Chapter 3 and show that more e�ective 3D retrieval
is possible when a moderate amount of supervision is incorporated into the querying
process.

We mostly experiment with PSB and to a lesser extent with SCU. Nevertheless, the
extensive Section 4.9 re�ects the virtues of our approach on SHREC-W and ESB. Before
proceeding with the forthcoming sections, we need to make a clari�cation on object nor-
malization. The local surface features presented in Section 2.1.1 have di�erent invariance
properties. Consequently, whenever a certain feature is invariant to one of the so-called
extrinsic e�ects such as translation, rotation, mirror re�ection and isotropic rescaling, the
3D object should be normalized prior to descriptor extraction. In our experiments, we had
to carry out the following normalization steps:

• Translation. The object's center of mass is considered as the origin of the 3D
coordinate system. We calculate the center of mass as the area-weighted average of
the triangle barycenters.

• Rotation. To �nd the three axes of the coordinate system, we use Vranic's �contin-
uous" PCA approach, where the covariance matrix of the surface points is evaluated
by integrating over triangles instead of mere area-weighted averaging [30]. The ma-
jor axes are then found, as is the standard practice, by an eigendecomposition of
the estimated covariance matrix. The x, y, z labels of the axes are assigned in the
decreasing order of the eigenvalues, while the polarities are estimated by Vranic's
moments-based approach [30]. Note that, with our invariant matching scheme (cf.
Section 2.4), we do not need the last two types of normalization, concerning coordi-
nate axes relabelings and mirror re�ections.

• Isotropic Rescaling. We calculate a scale factor as the area-weighted average of
the surface point-to-origin distances. Dividing the surface point coordinates by this
factor yields scale normalization.

We hope the reader will enjoy this experimental journey.
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Table 4.1: DCG (%) for Possible Bandwidth Selection Strategies on PSB Training Set
Descriptor

Bandwidth Setting Radial T-plane Torque
Triangle-level 35.2 - -
Mesh-level 51.1 51.4 49.9

Database-level 57.0 59.8 55.6

4.1 Bandwidth Selection

Discrimination ability of the density-based approach critically depends upon the judicious
setting of the bandwidth parameters. In this �rst experimental section, we explore the
impact of the bandwidth selection strategy on the retrieval performance for the follow-
ing multi-dimensional local features: Radial (R, R̂x, R̂y, R̂z), T-plane (D, N̂x, N̂y, N̂z) and
Torque (R,Cx, Cy, Cz).

4.1.1 Levels of Analysis for Bandwidth Selection

Recall that in Section 2.2.2, we have introduced three levels of analysis for bandwidth
selection:

(1) Triangle-level: The bandwidth parameters are set using the Simpson averaging
scheme described in Section 2.1.2. This computationally expensive setting is only
tested for the Radial descriptor, and is implemented using the KDE toolbox de-
veloped by A. Ihler [96] since the available FGT implementation does not allow a
di�erent bandwidth per triangle [5]. The KDE toolbox makes use of kd-trees and
reduces the computational burden considerably, though not to the extent achieved
by FGT.

(2) Mesh-level: The bandwidth matrix is distinct for each mesh and is computed using
the Scott's rule-of-thumb.

(3) Database-level: The bandwidth matrix is the same for all meshes and is computed
as the average Scott bandwidth over the meshes.

We have used only diagonal bandwidth matrices H = diag (h1, . . . , hm), after observing
that, in general, o�-diagonal terms are negligible (close to zero) as compared to the diagonal
ones: they have no considerable e�ect on KDE, thus on descriptor entries. The following
retrieval results have all been obtained using the L1-measure. Table 4.1 compares the
DCG scores obtained with Radial, T-plane, and Torque descriptors on PSB Training Set.
Figure 4.1 shows the precision-recall curves corresponding to mesh and database-level
settings for Radial and T-plane-descriptors. From Table 4.1 and Figure 4.1, we clearly
observe that setting the bandwidth H at database-level is a better option than triangle
and mesh-level settings.

4.1.2 Sensitivity Results

In Table 4.2, we provide the average Scott bandwidth values obtained from PSB Train-
ing meshes for Radial, T-plane, and Torque features. We have also analyzed the DCG
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4.1 Bandwidth Selection

Figure 4.1: Precision-Recall curves with a bandwidth selection made at mesh-level vs.
database-level for the Radial (top) and T-plane (bottom) descriptors on PSB Training Set

performance sensitivity as a function of the database-level bandwidth parameters. Given
a database-level Scott bandwidth matrix H, we have carried this analysis by testing the
performance of the descriptors obtained using perturbed bandwidth matrices of the form
cH where c is a scalar multiplicative perturbation factor. In Figure 4.2, we provide the
DCG pro�le as a function of c ∈ [0.1, 2.0] with steps of 0.1 for the Radial descriptor. From
this pro�le, we can infer the following:

• Within the c ∈ [0.9, 1.3] interval, the pro�le remains �at at around DCG=57%. This
shows that, under the database-level assumption, averaging Scott bandwidths is a
sensible option.
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Table 4.2: Average Scott Bandwidths Obtained from the PSB Training Set: hi, i = 1, . . . , 4
corresponds to the ith component of the feature.

Bandwidth Parameters

Descriptor h1 h2 h3 h4

Radial 0.199 0.338 0.226 0.141
T-plane 0.202 0.239 0.270 0.285
Torque 0.199 0.153 0.236 0.236

Figure 4.2: DCG Performance Sensitivity of the Radial descriptor to bandwidth parameters
(see text)

• The performance degrades for small (c ∈ [0.1, 0.9]) and large (c ∈ [1.3, 2.0]) band-
width values. Small bandwidth values correspond to under-smoothed pdf estimates
while large values correspond to over-smoothed estimates (cf. Section 2.2.1).

• The performance degradation for under-smoothed estimates is much steeper than
the over-smoothed ones. We interpret this as an experimental evidence for the reg-
ularization behavior of the KDE-based approach. Under-smoothed estimates re�ect
speci�c details about the features, hence descriptors become too much object-speci�c.
Over-smoothed estimates, on the other hand, eliminate such details and emphasize
commonalities between features/shapes. We deduce that the performance is less
sensitive to large bandwidth values than to smaller ones.

The above analysis changes the bandwidth parameters only along a line in the para-
meter space. One might wonder about the situation when each average Scott bandwidth
value is perturbed by its own factor. For each of the four bandwidth values of the Radial
descriptor, we have sampled 100 uniformly distributed values within the �at performance
interval [0.9hi, 1.3hi]. Using the obtained 100 bandwidth four-tuples, we have recomputed
100 descriptor sets and tested their performance. The average DCG statistic over these 100
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descriptor sets has been 56.8 ± 0.1%, the maximum and the minimum values being 57%
and 56.5%. We deduce that, since the DCG performance persists with very low variation,
the Scott bandwidth averaged at database-level constitutes a viable bandwidth selection
option.

4.2 Robustness Results

4.2.1 E�ect of Feature Calculation

The feature observations can be obtained from each mesh triangle, vertex or using the
Simpson averaging scheme as presented in Section 2.1.2. In this section, we experiment
with these feature calculation options. For this analysis, we have evaluated the retrieval
performance of the Radial feature on PSB Training Set and SCU. As mentioned in Sec-
tion 1.2, PSB meshes contain, in general, a smaller number of triangles of arbitrary size
and shape, in contrast to highly detailed and regular SCU meshes. In Table 4.3, we provide
the DCG performance of the Radial descriptor for each of the feature calculation schemes.
These results show that Simpson averaging is more e�ective than the remaining vertex or
centroid-based options for PSB, while for SCU, all schemes lead to similar performance.
Consequently, we recommend Simpson averaging especially for coarse meshes.

Table 4.3: DCG (%) of Radial descriptor using Di�erent Feature Calculation Schemes on
PSB Training Set and SCU

Databases

Feature Calculation PSB Training SCU
Vertex 56.0 71.3
Centroid 55.6 71.2
Simpson 57.0 71.3

4.2.2 Robustness against Low Mesh Resolution

3D models of a certain shape may occur in di�erent levels of detail, as in Figure 4.3,
where we display meshes representing a unit sphere at various resolutions, from �ne to
coarse. Although after a certain level, the mesh might become semantically di�erent from
its original version, mesh resolution should not be taken as an intrinsic shape property.
Accordingly, we expect that a shape descriptor exhibits small variations against changes
in the level of detail. To analyze the behavior of the density-based descriptors under
such circumstances, we have taken the highest resolution sphere (with 65024 faces) shown
in Figure 4.3 and simpli�ed it successively using the quadric edge collapse decimation
procedure built in the MeshLab software [97]. Each decimation halves the number of faces.
After simplifying the meshes successively, we have calculated the pdf-based descriptors
corresponding to Radial Distance and Normal Direction features. Figure 4.4 shows the
L1 descriptor variation (with respect to the original mesh) as a function of decreasing
resolution for both of the features. For the Radial Distance, we have considered three
di�erent choices for the scalar bandwidth parameter h = 0.01, h = 0.1 and h = 0.5.
For the Normal feature, we have taken bandwidth matrices determined by a single scalar
parameter of the form H = hI again with the above choices for h (I is the 3× 3 identity
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Figure 4.3: A 3D sphere at decreasing levels of mesh resolution

Figure 4.4: L1 descriptor variation as a function of decreasing mesh resolution for three
di�erent smoothing options

matrix). Note that the exact values of h are designated arbitrarily, as what matters
here is rather their relative magnitudes, which correspond to di�erent levels of descriptor
regularization: a small amount of smoothing (h = 0.01), a moderate amount of smoothing
(h = 0.1) and a large amount of smoothing (h = 0.5). We interpret the descriptor variation
curves in Figure 4.4 as follows:

• h = 0.01: We see that Radial Distance descriptors exhibit noticeable variations after
only 4 levels of mesh simpli�cation. A small h yields under-smoothed pdf estimates,
which rely too much on the available feature observations. Thus, descriptors become
too speci�c to the mesh upon which they are estimated and are a�ected by spurious
resolution information as if it were an intrinsic shape property. Normal -descriptors
are even more sensitive to the change in level of detail. Clearly, a small of amount
of smoothing is not su�cient to discard spurious variations between descriptors.
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Figure 4.5: Sphere and cone models contaminated with various amounts of isotropic
Gaussian noise

Figure 4.6: L1 descriptor variation as a function of increasing noise level for three di�erent
smoothing options (the bar at each data point indicates standard deviation across di�erent
realizations of the additive noise)

• h = 0.1: Descriptors start to exhibit variations after 9 levels for the Radial Distance
and after 7 levels for the Normal. Interestingly, these are also the �rst levels at which
we can visually notice that the sphere is slightly altered.

• h = 0.5: Descriptor variation persists at negligible values until 11 levels, after which
the object looks more like a polyhedron, which is less plausible to be in the same shape
class as the sphere. In conclusion, this over-smoothing option is suitable whenever
objects are represented by low resolution meshes.

4.2.3 Robustness against Noise

Figure 4.5 displays sphere and cone models contaminated with various amounts of isotropic
Gaussian noise (σ = 0.01, 0.05, and 0.1). Observe that even σ = 0.05 has a destructive
e�ect on the visual appearance of the shape. In Figure 4.6, we provide variation pro�les
as a function of the noise standard deviation for Radial Distance and Normal descriptors,
again with the same choices for the bandwidth parameter value h. In much the same way
as in the previous section, descriptor variations can be rendered negligible by increasing
the smoothing level.
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Figure 4.7: A cylinder model and its slightly rotated versions

Figure 4.8: L1 descriptor variation as a function of increasing angular deviation level for
three di�erent smoothing options (the bar at each data point indicates standard deviation
across di�erent realizations of the angular deviation)

We note that the smoothing e�ect illustrated by these descriptor variation curves should
be interpreted with caution. In the present analysis, we know, in advance, that all mesh
occurrences are either a low resolution or a noisy version of an original ideal shape. Conse-
quently, the aim has been to show that the KDE-based scheme is able to make descriptor
variations arbitrarily small by increasing the bandwidth parameter. However, when we are
concerned with a discrimination task in a large database, arbitrarily large smoothing is not a
good option as, on one hand, we want small variations between descriptors belonging to the
same class, and on the other hand, we want large variations between descriptors belonging
to di�erent classes. The issue is to �nd the proper amount of smoothing for a satisfactory
performance, as in the bandwidth selection experiments reported in Section 4.1.

4.2.4 Robustness against Pose Normalization Errors

The smoothing behavior of KDE may become pro�table also for small pose deviations,
arising due to the imperfections of the PCA-based normalization. We desire that descrip-
tors based on pose-variant features, such as the Normal, be robust against perturbations
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as in Figure 4.7, which illustrates the case of an up-right cylinder and its slightly deviated
versions. To make our point, we have generated randomly rotated versions of a cylinder
at increasing levels of angular deviation and evaluated the descriptor variation as in the
previous two sections. We have again used h = 0.01, 0.1, and 0.5 values for the bandwidth
parameter. Variation pro�les for the Normal descriptor are displayed in Figure 4.8. We
see that, even for deviations as large as 30◦, it is possible to maintain a small descriptor
variation when h = 0.5.

4.3 Target Selection

4.3.1 E�ect of Sampling Schemes

In Table 4.4, we provide the DCG and NN scores corresponding to all combinations of the
sampling schemes presented in Section 2.1.3. The running examples are the Radial and
the T-plane descriptors. First, we would like to remind a subtle issue in target selection,
which is closely related to the discretization of the continuous similarity measure as we
have mentioned in Section 1.4. For the uniform sampling of the feature domain, the step
size factor ∆tn in Eq. 1.1 becomes constant and then irrelevant. When sampling a scalar
component, say R, with equal probability intervals (same area under the pdf curve) and/or
when sampling a unit-norm vector component, say R̂, with equal spherical coordinate steps,
the discretization step size ∆tn should be taken into account in order not to incur into
any performance degradation. If this is the case, the performances of equal probability
and uniform samplings of the scalar components become virtually equal (within 1%). The
same observation also holds for sampling the unit sphere by octahedron subdivision and
by spherical coordinates. Table 4.4 shows that all sampling schemes result in equivalent
performances. We have also investigated the e�ect of changing the clipping level α (cf.
Section 2.1.3) to determine the range of the scalar components. Our experiments with
clipping levels 0.5%, 1%, 2%, and 5% yielded comparable results.

4.3.2 E�ect of Descriptor Size

We have also analyzed the e�ect of changing the descriptor size N = Ns×Nv between 128
and 8192 under uniform sampling (i.e., uniform scalar set and octahedron subdivision for
unit-norm vector set) using the L1-metric. Ns stands for the size of the scalar set and Nv for
the size of the unit-norm vector set. We have tested the combinations of Ns ∈ {4, 8, 16} and
Nv ∈ {32, 128, 512} values. Table 4.5 reveals that to maintain adequate DCG performance,
Ns should not be less than 8 and that Nv should be at least 128. We also remark that,
for the combination (Ns, Nv) = (8, 128), on PSB, preprocessing, feature calculation and
density estimation stages take 0.4 second CPU time on the average using a Pentium M
1.86 GHz processor, 1 GB RAM.

4.4 Similarity Measures

The choice of the similarity measure associated with a certain descriptor drastically a�ects
the retrieval performance. In Table 4.6, we provide the DCG scores on various databases
using standard metrics de�ned in the Appendix B, namely, Lp, Kullback-Leibler (KL), Chi-
Square (χ2), and Bhattacharyya (B) distances. Note that, for Lp-distances, descriptors
are rescaled to have unit Lp-norm. For KL, χ2, and B, on the other hand, we have
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Table 4.4: DCG (%) and NN (%) Performances using Di�erent Sampling Schemes for
Target Selection, scalar set size Ns = 8 and unit-norm vector set size Nv = 128, 1: scalar
set: uniform, unit-norm vector set: by subdivision, 2: scalar set: uniform, unit-norm vector
set: by spherical coordinates, 3: scalar set: equal probability, unit-norm vector set: by
subdivision, 4: scalar set: equal probability, unit-norm vector set: by spherical coordinates

Radial T-plane
1 2 3 4 1 2 3 4

DCG 57.0 56.8 56.0 56.3 59.8 60.5 59.5 60.1
NN 57.3 55.9 55.7 55.1 58.7 60.8 59.8 60.5

Table 4.5: DCG (%) for Various Target Set Sizes
Radial T-plane

Nv = 512 Nv = 128 Nv = 32 Nv = 512 Nv = 128 Nv = 32
Ns = 16 57.2 56.6 52.2 60.7 60.6 58.3
Ns = 8 57.0 57.0 52.0 60.5 59.8 58.1
Ns = 4 55.8 55.4 49.9 57.3 57.1 53.4

Table 4.6: DCG (%) Values on PSB and SCU using Standard Similarity Measures
Database Descriptor L0.6 L1 L2 L∞ KL χ2 B

PSB Training Radial 57.0 57.0 54.7 44.4 54.4 57.0 56.7
T-plane 62.0 59.8 55.3 47.1 58.2 61.1 59.4

PSB Test Radial 55.0 54.9 52.0 43.6 53.4 54.7 54.9
T-plane 58.9 57.8 54.5 47.0 55.8 58.9 58.6

SCU Radial 70.9 71.3 70.7 62.8 70.1 71.3 71.0
T-plane 72.8 72.0 69.5 63.1 70.1 71.6 71.3

rescaled the descriptors to unit L1-norm because these measures are de�ned originally for
histograms and/or pdfs. We have observed that for all metrics, appropriate normalization
invariably improves the performance. For both the Radial and the T-plane descriptors,
the measures L1, χ2, and B yield the best results while L∞ has the poorest performance.
Intrigued by the lower performance of L2 with respect to L1, we have also explored the
variability of DCG as a function of the p parameter of the Lp-metric within the interval
p ∈]0, 2]. As illustrated in Figure 4.9, the performance degrades signi�cantly for p > 1,
and for 0 < p ≤ 1, DCG peaks around p = 0.6, even outperforming χ2 and B, the best
measures of the previous experiment (see Table 4.7). However, the performance di�erential
is minute. We advocate the use of the L1-metric due to its computational simplicity and
its satisfactory retrieval performance. We remark also that the performance ordering of
the considered metrics remains more or less the same for all databases tested as can be
seen in Table 4.6.

Another interesting result is the performance improvement gained by using the invariant
version of the L1-metric, introduced in Section 2.4 (see Table 4.7). Recall that this invariant
metric can be implemented by taking the minimum distance after holding one descriptor
�xed and permuting the entries of the other over a set of possible con�gurations. The set
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Figure 4.9: DCG Performance vs. the p parameter in the Lp-metric

Table 4.7: DCG (%) of L1 vs. Invariant-L1 on Di�erent Databases
Database Descriptor L1 Invariant-L1

PSB Training Radial 57.0 61.2
T-plane 59.8 64.9

PSB Test Radial 54.9 57.9
T-plane 57.8 61.4

SCU Radial 71.3 74.4
T-plane 72.0 76.2

SHREC-W Radial 74.4 78.0
T-plane 80.3 82.6

ESB Radial 68.8 70.1
T-plane 73.7 75.4

of 48 possible permutations are given by coordinate axis relabelings and mirror re�ections.
Taking the minimum renders the measure invariant to pose normalization de�ciencies.
From Table 4.7, we observe that, invariably for all databases, this invariant scheme provides
signi�cant improvements over the standard L1-measure at the expense of increased yet
a�ordable computational cost.

4.5 Dimensionality Reduction

We now report the outcome of the dimensionality reduction experiments via dedicated
marginalization and probability density pruning tools presented in Section 2.3 as well as
the more classical principal component analysis (PCA). In order to quantify our �ndings,
we de�ne a DCG-e�ciency measure ε as the ratio of DCG after reducing dimensionality
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Table 4.8: Retrieval Performance After Marginalization
Databases

PSB Training PSB Test SCU

Desc. Size NN DCG NN DCG NN DCG

(R, R̂x, R̂y, R̂z) 1024 57.8 57.0 54.6 54.9 75.0 71.3
(R, R̂x, R̂y) 512 56.6 57.1 53.5 54.5 74.7 70.5
(R, R̂x, R̂z) 512 58.4 57.0 52.7 54.3 76.0 71.4
(R, R̂y, R̂z) 512 55.6 56.2 53.7 54.2 73.9 70.8

(D, N̂x, N̂y, N̂z) 1024 59.9 59.8 59.1 57.8 74.5 72.0
(D, N̂x, N̂y) 512 59.2 60.0 55.7 57.3 71.7 69.6
(D, N̂x, N̂z) 512 60.9 60.5 57.0 58.0 74.3 72.7
(D, N̂y, N̂z) 512 59.3 59.7 56.7 57.7 73.1 72.0

to the baseline DCG (i.e., the DCG of the �non-reduced" descriptor), concretely, ε =
DCGreduced/DCGfull.

4.5.1 Marginalization Results

Table 4.8 summarizes the e�ect of marginalizing one component from the Radial and T-
plane descriptors. We see that, one of the unit-norm vector components, i.e., R̂x, R̂y or R̂z

for the Radial descriptor, and N̂x, N̂y or N̂z for the T-plane descriptor, can be sacri�ced.
We do not incur into any signi�cant loss in marginalizing one of these components (in some
cases, we even observe an increase in performance) and the descriptor size is halved. This
should not be a surprise: as we have pointed out in Section 2.3.1, a directional component
is completely determined up to a sign given the other two. It is also worth noting that,
with these results at our disposal, we can directly estimate the pdf of the most informative
components and reduce the computational overhead beforehand. Note also that the above
observations hold invariably for both PSB and SCU.

4.5.2 Probability Density Pruning Results

We experiment with the probability density pruning technique by varying the threshold
parameter λ (cf. Section 2.3.2). Clearly, as we increase λ, we can obtain more reduction
in descriptor size. The task here is to achieve this at no or little performance loss. From
the DCG pro�les in Figure 4.10, we observe that, for Radial and Sec-Order descriptors, a
reduction rate at around 35% can be obtained with nearly 100% DCG e�ciency. The per-
formance of the T-plane descriptor, on the other hand, is much more sensitive to pruning.
We want to point out that for density pruning, the reduction in size changes monoton-
ically as a function of the performance loss incurred. Furthermore, insigni�cant targets
can be eliminated o� from density estimation stage, reducing the computational overhead
beforehand.

4.5.3 PCA Results

A more traditional approach to reduce dimensionality is to project the descriptor vec-
tor onto a linear subspace using standard methods such as principal components analysis
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Figure 4.10: DCG pro�le as a function of the pruning threshold parameter λ on PSB
Training Set

Figure 4.11: DCG e�ciency pro�le of the Radial descriptor after PCA-based dimension-
ality reduction on PSB Training Set

(PCA) or independent component analysis (ICA) [27]. The PCA of our Radial descriptor
on PSB Training Set reveals that the total variance in the �rst 270 components reaches
99%, suggesting that signi�cant dimensionality reduction can be achieved. We have exper-
imented by changing the projection dimension from 200 down to 10 (with increments of 10)
and performed retrieval experiments using L1 and L2-distances. In Figure 4.11, DCG e�-

88



Experiments

ciency pro�les for both L1 and L2-distances are shown. Note that L1 and L2 performances
of the full descriptor (size = 1024) are 57% and 54.8% respectively in terms of DCG. In
Figure 4.11, we see that, for the L1-distance, although dimensionality reduction at the
maximum possible DCG e�ciency (≈ 96%) is signi�cant (reduced descriptor size is 50),
we can never achieve 100% DCG e�ciency . This contrasts the cases of marginalization
and probability density pruning where lossless dimensionality reduction is possible. On the
other hand in the same �gure, we observe that, when the L2-metric is used, we can improve
the DCG with respect to the full descriptor even after dimensionality reduction (e�ciency
above 100%). This should not be a big surprise as PCA is basically an L2 method. Un-
fortunately, the L2-metric is not our preferred one as it is always inferior to L1 in terms
of DCG performance (cf. Section 4.4). Nevertheless, reduction rates achieved by PCA are
quite impressive. In applications where a DCG loss at the order of 2-5% is a�ordable, PCA
may become interesting. We have also experimented with the ICA method but we have
not observed any improvement in comparison to PCA.

In conclusion, we recommend the following procedure to reduce the dimensionality of
a density-based descriptor:

(i) Use marginalization to discover redundant feature components whose removal do not
lead to a performance loss.

(ii) Apply then probability density pruning to the marginalized pdf to reduce the de-
scriptor size further, by adjusting the λ parameter at a rate where no performance
loss is incurred.

4.6 Feature-Level Fusion

Feature-level fusion refers to joining simple scalar features to obtain more speci�c multivari-
ate ones for subsequent density-based descriptor extraction. In principle, as we add more
components, the discriminativeness of the multivariate feature increases. Accordingly, it
is essential to discover which subset(s) of the whole feature set gives the best performance
for a given data set with a certain classi�cation semantics. Recall that, in Section 2.1.1,
we have introduced several scalar and multivariate features to locally characterize a 3D
surface. In this section, we take the individual components of the multivariate features
introduced in Section 2.1.1 as scalars. Afterwards, we pool them with the remaining scalar
features to obtain an exhaustive set given by

FS =
{

R, R̂x, R̂y, R̂z, D, N̂x, N̂y, N̂z, Cx, Cy, Cz, A, SI
}

.

In the following section, we �rst test the impact of feature-level combinations by synthesiz-
ing a few example subsets from FS. Then, in Section 4.6.2, we invoke the marginalization
tool to explore a non-redundant subset of FS in a complete manner.

4.6.1 A Few Examples

Obviously, the KDE scheme can be applied to any joining of the 13 features in FS. The
whole space of combinations contains

∑13
i=1

(
13
i

)
= 8191 possibilities. However, estimation

accuracy and computational/memory constraints limit the maximum number of features
that can be joined. In fact, for dimensions exceeding �ve, even with a sparse sampling of
the multidimensional feature range, we obtain an impractical descriptor size of the order
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of 104. Hence, we should limit ourselves to three-, four-, or �ve-tuple feature combinations
in which case the cardinality of the combination space reduces to

(
13
3

)
+
(
13
4

)
+
(
13
5

)
= 2288.

Even without an exhaustive search, a small subset of judiciously chosen combinations can
indicate the e�ect of feature-level fusion in retrieval performance.

In Table 4.9, we give the results of a small subset of 13 combinations, where the shaded
cells in any row show the features taking role in that speci�c combination. Consider, for
example, row 1: the shaded cells pick the Radial Distance R and the Radial Direction
R̂ so that this row corresponds to the (R, R̂x, R̂y, R̂z)-combination. On the rightmost
columns, we provide the size of the multivariate density descriptor, the NN and DCG
scores respectively for the three data sets (PSB Training, PSB Test and SCU). Recall that
the size of a descriptor equals the number of density evaluation points, i.e., the targets
(see Section 2.1.3). In the experiments, as a general rule, for each scalar feature we have
chosen 8 equally spaced points within its domain (9 for the shape index SI, in order
to cover the shape primitives such as spherical cap and cup, ridge, trough, saddle, etc.,
see [71, 23] for details). For unit-norm directional features such as Radial Direction R̂
or Normal N̂, we have sampled 128 points on the unit sphere (by subdividing twice the
triangles of an octahedron into four triangles). When a directional feature occurs without
its third coordinate, as for example (R̂x, R̂y), we choose 64 points. An exception to this
case is (R, R̂x, R̂y, N̂x, N̂y) where we have chosen 16 points for both (R̂x, R̂y) and (N̂x, N̂y)
pairs to maintain a reasonable descriptor size. Finally, for the Torque feature C, we have
sampled 320 points within the unit sphere.

We can infer the following based on Table 4.9:

• For the three datasets, the (R, R̂x, R̂y, N̂x, N̂y) (row 4 in Table 4.9) and (R̂z, D, N̂x, N̂y)
(row 10) con�gurations, of sizes 2048 and 4096 respectively, are the two descriptors
with top performance.

• The better performance of (R̂z, D, N̂x, N̂y) against other 4-tuple combinations sug-
gests that mixing pieces of radial and normal information results in a better descrip-
tor than any other using solely the radial information (R, R̂x, R̂y, R̂z) or the tangent
plane information (D, N̂x, N̂y, N̂z).

• Adding the alignment information A into a con�guration signi�cantly increases the
discrimination performance, at the cost of increased descriptor size. For instance on
PSB Training Set, the (R, R̂x, R̂y, R̂z)-con�guration has a DCG performance of 57%
(row 1), while its augmented version (row 2) has a DCG of 61.7%.

• The (R, A, SI)-descriptor, which radializes the alignment information coupled with
the shape index, has the poorest performance with respect to the remainder. How-
ever, the performance di�erential is less important for SCU than for PSB. We can
explain this fact by the high resolution of SCU meshes in comparison to PSB, which
makes SI computation more reliable for SCU meshes.
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4.6 Feature-Level Fusion

Table 4.10: Performance of the Three Starting Feature Candidates for Marginalization
Experiments on PSB Training Set

Descriptor Size NN DCG

(R, R̂x, R̂y, R̂z, N̂x, N̂y, N̂z, SI) 73728 53.4 54.4
(R, R̂x, R̂y, N̂x, N̂y, SI) 10240 57.3 58.4
(R, R̂x, R̂y, N̂x, N̂y, A) 10240 63.1 62.1

4.6.2 Marginalization Revisited

The aim of the previous section has been to explore performance variation among moder-
ately sized descriptors, which can be computed fast enough for a real-time application. In
the present section, putting such computational and memory constraints aside, we carry
out a performance-driven combinatorial analysis of the feature set FS. We make use of
marginalization to explore a non-redundant subset of FS.

In Section 2.3.1, marginalization has been introduced as a tool to obtain a family of
nested descriptors, starting from the discretized pdf of an exhaustive feature combination.
An obvious candidate for this multivariate feature is obtained by joining all the members of
the set FS into a 13-dimensional vector. However, we will not start with this huge feature
vector due to two reasons: (i) KDE in 13-dimensional space is just infeasible, (ii) the set
FS contains redundant members in the sense that some of them can be computationally
derived from the others. Consequently, in a �rst attempt, we will evaluate the performance
of the following multivariate features:

• (R, R̂, N̂, SI) = (R, R̂x, R̂y, R̂z, N̂x, N̂y, N̂z, SI). Recall that our construction in Sec-
tion 2.1.1 synthesized this feature, which combines all the available local surface
information up to second-order. It makes use of solely primary features (cf. Ta-
ble 2.1), so it is non-redundant. One important problem associated with this feature
is its dimensionality: beyond six dimensions, we can no longer be sure about the
accuracy of KDE due to the curse of dimensionality [3, 27]. Another problem is the
associated descriptor size.

• (R, R̂x, R̂y, N̂x, N̂y, SI). This feature is a subset of the above one, in which case we
have removed one component from each of the Radial Direction R̂ = (R̂x, R̂y, R̂z)
and the Normal N̂ = (N̂x, N̂y, N̂z) features. Marginalization results in Section 4.5.1
have demonstrated that one such component can be safely removed, without risking
a performance loss in practice, due to unit-norm condition on R̂ and N̂. Here, we
have arbitrarily chosen to delete the z-component.

• (R, R̂x, R̂y, N̂x, N̂y, A). This feature is similar to the previous one except the SI
feature, which has been replaced by the alignment A. We have decided to consider
this third candidate to start the marginalization analysis by observing the poor per-
formance of the primary second-order SI feature against the auxiliary �rst-order
radial-normal alignment A. Furthermore, the alignment A has the additional e�ect
of restoring the information lost due to the removal of R̂z and N̂z components.

In Table 4.10, we display the DCG performance of the above descriptors on PSB Train-
ing Set and their associated descriptor sizes. We can make the following comments:
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• We see that the exhaustive feature (R, R̂, N̂, SI) exhibits the poorest performance
among the three options tested. This a priori unexpected result can be explained
mainly by the potential inaccuracy of KDE in dimensions beyond six [3].

• Another possible reason of the poor performance of (R, R̂, N̂, SI) might be the fact
that such a speci�c feature induces an overly speci�c descriptor so that very individual
shape details are preserved, preventing common shapes to cluster in the descriptor
space.

• Comparing the performances of the two remaining two features, we uncover a fact
that we could have intuitively anticipated: (R, R̂x, R̂y, N̂x, N̂y, A) performs better
than (R, R̂x, R̂y, N̂x, N̂y, SI), as the alignment A has proved to be very successful in
boosting the performance of a lower-dimensional combination (cf. previous section).

Once we have determined a good starting point for subsequent feature space ex-
ploration, we can proceed with combinatorial performance assessment using marginal-
ization. We emphasize that this analysis is exact within pdf estimation accuracy and
does not involve any heuristics such as sequential �oating search [98, 86]. As the full
(R, R̂x, R̂y, N̂x, N̂y, A)-descriptor is available by the above analysis, we can remove one
component at a time to evaluate the performance of all 26 − 2 = 62 remaining subsets of
this 6-component feature, without explicit descriptor computation. The DCG values of all
the 62 sets of descriptors are tabulated in the Appendix D. The best performing descriptors
at each stage of marginalization are tabulated in Table 4.11. In this table, we also display
the performance of concatenated marginal pdfs to further illustrate the bene�ts of feature
fusion. A few comments follow:

• The components are removed in the following order (from left to right):

N̂y, R̂y, R,A, R̂x.

• If we interpret these results as an indication about the informativeness and/or dis-
criminativeness of individual components, we have the following order relation:

N̂x � R̂x � A � R � R̂y � N̂y.

• A thorough investigation of the tables in Appendix D reveals the following interesting
fact: if we were to resort to a heuristic telling us to remove the component whose
exclusion gives the greatest performance loss at each stage, we would have obtained
the same sets of best descriptors depicted in Table 4.11. That is, after a feature is
removed at a certain stage, no descriptor instance using that feature reappears as the
best performing one at later stages. This suggests that the above discriminativeness
ordering is reliable.

• At each stage, the performance of joined features is superior to their concatenated
marginal pdfs, putting again into evidence the e�ectiveness of feature-level fusion.

4.7 Basic Score Fusion

There is a limit for feature-level combinations with a dimension greater than �ve: (i) the
quality of density estimation degrades due to the curse of dimensionality [27], and (ii)
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Table 4.11: Best Performing Descriptors at Each Stage of Marginalization
Components Joint-PDF Concat. Marginals

Retained Removed DCG Size DCG Size

R, R̂x, R̂y, N̂x, N̂y, A - 62.1 10240 57.7 45
R, R̂x, R̂y, N̂x, A N̂y 62.6 5120 57.1 37
R, R̂x, N̂x, A R̂y 63.4 2560 57.1 29
R̂x, N̂x, A R 61.5 320 54.8 21
R̂x, N̂x A 58.1 64 51.7 16
N̂x R̂x 44.8 8 44.8 8

descriptors become prohibitively large and cannot be computed fast enough for on-line
applications. Score fusion at descriptor-level provides a working alternative to extract
most of the information brought by di�erent features. However, in its basic form, it cannot
make use of feature correlations. Accordingly, it constitutes a �suboptimal� heuristic way
to fuse shape similarity information.

In basic score fusion, we simply sum the L1-distances between descriptors computed
using various feature combinations considered in Section 4.6.1. Note that summing the L1-
distances coming from several descriptors can be e�ected by concatenating the involved
descriptors to obtain a larger one and then calculating a single distance. In this view, basic
L1 score fusion is the same as descriptor-level information fusion.

In the following experiments, we consider pairwise and triple concatenations of the 13
descriptors (each indicated by its boldface number) presented in Section 4.6.1. The perfor-
mances of various descriptor combinations are visualized in Figure 4.12 (pairwise) and Fig-
ure 4.13 (triple). In Figure 4.12, the horizontal axis stands for descriptors 1, 2, 3, and 5 of
Table 4.9. Each bar series illustrates DCG performance improvements after pairwise com-
bination with descriptors 6, 7, 8, 9, 10, 11, and 13 (displayed on the top of the bar) one at
a time. For instance, at descriptor 1, the bar with the index 6 on the top corresponds to the
pairwise combination 1+6, i.e., the concatenation of the (R, R̂x, R̂y, R̂z)-descriptor with
(D, N̂x, N̂y, N̂z)-descriptor. The gray bars indicate the maximum of DCG performances of
the individual descriptors involved in that speci�c combination, e.g., max(DCG1,DCG6).
The white portion of the bar on top of the gray one shows the DCG improvement due to the
combination. Figure 4.13 illustrates these gains for triple combinations, that is, descriptor
vectors resulting from three concatenated descriptors. Accordingly, in Figure 4.13, the
horizontal axis has labels of pairwise combinations, such as 1+6, 1+7,..., 5+9, 5+10.
The darker portion of the bar again indicates the maximum individual performances of
descriptors before combination, and the light portion indicates the corresponding DCG
improvement after triple combination. In these experiments, the third descriptor is always
either the (R,Cx, Cy, Cz)-descriptor (11) or (R,A, SI)-descriptor (13), as they bring in
di�erent shape information than the pairwise combinations displayed at the horizontal axis
of Figure 4.13.

We have intuitively chosen the combinations so that their corresponding feature sets
are as disjoint as possible. For instance, we did not consider concatenating the pdf of
(R, R̂x, R̂y, R̂z) (descriptor 1) with that of (R, R̂x, R̂y, R̂z, A) (descriptor 2) as the latter
already contains the information brought by the former. We would like to underline the
following points regarding the results of basic score fusion experiments:
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Figure 4.12: DCG improvements with pairwise descriptor combinations. Gray portion of
the bar: maximum DCG before combination; white portion of the bar: DCG increase after
combination.

Figure 4.13: DCG improvements with triple descriptor combinations. Gray portion of the
bar: maximum DCG before combination; white portion of the bar: DCG increase after
combination.
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• As expected, descriptor combinations become e�ective only when the involved fea-
tures bring in a di�erent kind of shape information. A case in point involves (R, R̂x, R̂y, R̂z)
(descriptor 1 in Table 4.9) and (D, N̂x, N̂y, N̂z) (descriptor 6 in Table 4.9). For PSB
Training Set, individual DCGs of these descriptors are 57% and 59.8% respectively
(see Table 4.9). After the combination, the DCG performance boosts to 64% achiev-
ing a DCG improvement of 7% for PSB Training Set (6.7% for PSB Test Set and
2.5% for SCU), as shown in Figure 4.12. Furthermore, in this case, the descriptor
size is 2048 (2× 1024) and quite reasonable in comparison to other options.

• When we consider the triple combinations, in the case where (R,A, SI)-descriptor
(descriptor 13 in Table 4.9) is concatenated to the previous descriptor combination
1+6, DCG score has a further but smaller jump to 65.2% for PSB Training Set,
to 62.3% for PSB Test Set, and to 75.7% for SCU (Figure 4.13). Presently, this
combination constitutes the most interesting option as it has the smallest size among
other triple combinations tested (1024 + 1024 + 576 = 2624 in total).

• These experiments demonstrate the potential of score fusion to improve retrieval
performance, even in its basic form where no statistical learning is involved. This
fact provides further motivation for statistical similarity learning. We deliver the
results of statistical learning-based score fusion in the forthcoming Section 4.10.

4.8 Comparison to Other Methods

In this section, we illustrate the e�ectiveness of our shape description scheme in comparison
to other state-of-the-art methods. First in Section 4.8.1, we compare certain instances
of the density-based framework to their histogram-based peers. Then in Section 4.8.2, we
provide a more general comparison.

4.8.1 Comparison with Histogram-Based Peers

One of the motivations of the present work is to show that a considerable improvement in
the retrieval performance can be obtained by more rigorous and accurate computation of lo-
cal feature distributions as compared to more practical ad-hoc histogram approaches. The
term �histogram-based descriptor" stands for any count-and-accumulate type of procedure.
Accordingly, in terms of the local surface features employed, many shape descriptors in the
literature [20, 21, 18, 16, 87] correspond to an instance of the density-based framework.
Our descriptors di�er from their peers in one or more of the following aspects:

• Feature Calculation. Features are evaluated using the Simpson averaging scheme
presented in Section 2.1.2. This provides smoother, hence more reliable observations
for subsequent density or histogram estimation.

• Multivariate Features. By joining scalar features to obtain multivariate ones, we
render the resulting descriptor more e�ective. This fact has already been demon-
strated in Section 4.6.2. Here, we provide additional evidence for this claim.

• KDE. The most important distinction between KDE and histogram approach is
that the former leads to smoother estimates of the pdf by judiciously chosen band-
width parameters. KDE-based descriptors emphasize common intrinsic aspects of
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the shapes in a better way than histogram-based ones, and eliminate extrinsic e�ects
such as di�ering mesh resolutions and small pose deviations (cf. Section 4.2).

Radial vs. Cord and Angle Histograms

An interesting case in point is cord and angle histograms (CAH ) [16]. The features in CAH
are identical to the individual scalar components R, R̂x, R̂y, and R̂z of our Radial feature up
to a parameterization. In [16], the authors consider the length of a cord (corresponding to
R) and the two angles between a cord and the �rst two principal directions (corresponding
to R̂x and R̂y). Notice that in our parameterization of R̂, we consider the Cartesian
coordinates rather than the angles. In order to compare CAH with our Radial descriptor,
we have implemented it by also including the histogram of the angle with the third principal
direction. The resulting CAH descriptor is thus the concatenation of one cord length and
three angle histograms. Each histogram consisting of 64 bins leads to a descriptor of
size N = 4 × 64 = 256. We have compared our approach to CAH in two levels. First,
likewise to CAH, we have estimated only scalar pdfs of the individual components of our
Radial feature and concatenated them. In Table 4.12, we denote this particular form of the
descriptor by Radial -CM to remind that it consists of concatenated marginal pdfs. Then,
to illustrate the true power of our scheme, we have used the joint pdf of the multivariate
Radial feature (R, R̂x, R̂y, R̂z). We denote this instance of the descriptor by Radial -J.

Radial -CM di�ers from CAH in three aspects: �rst, it uses a di�erent parameterization
of the angle (direction) components; second, the local feature values are calculated by
Eq. 2.2 instead of using mere barycentric sampling; third, it employs KDE instead of
histogram. In Table 4.12, we provide the retrieval statistics of CAH, Radial -CM and
Radial -J descriptors on PSB and SCU. In Figures 4.14, 4.15 and 4.16 we display the
corresponding precision-recall curves. Observe that for all databases, the performance of
Radial -CM is clearly superior to its histogram-based equivalent CAH. Radial -J improves
the results even further.

Note that the performance improvement using our scheme is less impressive over SCU
than over PSB. This can be explained by the fact that SCU meshes are much denser
than PSB meshes in the number of triangles. As the number of observations K increases,
the accuracies of the histogram method and KDE become comparable and both methods
result in similar descriptors. This also indicates that the KDE methodology is especially
appropriate for coarser mesh resolutions as in PSB.

Normal vs. Extended Gaussian Image

A second instance of our framework outperforming its competitor is the case of the EGI
descriptor [20, 11, 9], which can be obtained by binning the surface normals. The density
of the Normal feature N̂ is similar to EGI. There can be di�erent implementation choices
for binning surface normals, e.g., by mapping the normal of a certain mesh triangle to
the closest bin over the unit sphere and augmenting that bin by the relative area of the
triangle. In the present work, similar to [87], we preferred the following implementation
for the EGI descriptor. First, 128 unit norm vectors n̂bin,j , j = 1, . . . , 128 are obtained
as histogram bin centers by octahedron subdivision, as described in Section 2.1.3. Then,
the contribution of each triangle Tk, k = 1, . . . ,K with normal vector n̂k to the nth bin
center is computed as wk |〈n̂k, n̂bin,j〉| if |〈n̂k, n̂bin,j〉| ≥ 0.7 or otherwise as zero (recall that
wk is the relative area of the kth triangle). The Normal descriptor of the same size, i.e.,
128, achieves a superior DCG of 51% as compared to the DCG score of 43.8% for EGI
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Figure 4.14: Precision-recall curve: Radial vs. CAH on PSB Training Set

Figure 4.15: Precision-recall curve: Radial vs. CAH on PSB Test Set

Figure 4.16: Precision-recall curve: Radial vs. CAH on SCU
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Table 4.12: Retrieval Statistics (%): Density-Based Descriptors vs. Their Histogram-Based
Peers

Database Descriptor NN FT ST E DCG

Radial -J 57.8 28.8 37.8 21.5 57.0
Radial -CM 48.5 24.7 34.7 20.1 53.4

CAH 36.4 15.7 22.5 13.0 43.8
PSB Training Normal 50.3 24.7 33.9 19.1 53.1

EGI 33.8 16.1 23.8 14.2 44.3
T-plane 59.9 31.9 42.8 24.3 59.8
3DHT 60.0 31.4 40.6 23.2 58.7

Radial -J 54.6 26.9 35.2 20.7 54.9
Radial -M 45.6 22.5 31.9 18.9 51
CAH 33.2 15.9 22.9 13.7 43.3

PSB Test Normal 45.1 23.4 31.9 18.7 51
EGI 31.1 16.5 24.5 14.5 43.8

T-plane 59.1 30.3 39.9 22.9 57.8
3DHT 58.8 31.1 39.6 23.0 57.7

Radial -J 75.0 45.8 57.2 32.3 71.3
Radial -M 73.1 42.7 55.6 31.6 70.0
CAH 67.8 42.7 53.6 30.9 68.1

SCU Normal 64.1 37.2 47.4 26.5 63.4
EGI 48.9 25.2 34.9 20.3 53.5

T-plane 74.5 48.4 58.5 33.0 72.0
3DHT 77.8 48.5 60.3 33.6 72.7

on PSB Test Set (see Table 4.12). For SCU, the DCG performance di�erential is even
more pronounced (DCG = 63.4% for the Normal, DCG = 53.5% for EGI ). Precision-recall
curves in Figures 4.17, 4.18 and 4.19 corroborate these facts.

T-plane vs. 3D Hough Transform

A third instance of comparison can be considered between our T-plane descriptor and
the 3DHT descriptor [87] since both of them use local tangent plane parameterization.
The procedure to obtain the 3DHT descriptor is carried out as follows. We �rst recall
that 3DHT is a histogram constructed by accumulating mesh surface points over planes
in 3D space. Each histogram bin corresponds to a plane Pij parameterized by its normal
distance di, i = 1, . . . , NI to the origin and its normal direction n̂bin,j , j = 1, . . . , NS2 .
Clearly, there can be NI × NS2 such planes and the resulting descriptor is of size N =
NI ×NS2 . We can obtain such a family of planes exactly as described in Section 2.1.3. In
our experiments, we have used NI = 8 distance bins sampled within the range [0, 2] and
NS2 = 128 uniformly sampled normal directions. This results in a 3DHT descriptor of size
N = 1024. To construct the Hough array, one �rst takes a plane with normal direction
n̂bin,j , j = 1, . . . , NS2 at each triangle barycenter mk, k = 1, . . . ,K and then calculates
the normal distance of the plane to the origin by |〈mk, n̂bin,j〉|. The resulting value is
quantized to the closest di, i = 1, . . . , NI and then the bin corresponding to the plane Pij

is augmented by wk |〈n̂k, n̂bin,j〉| if |〈n̂k, n̂bin,j〉| ≥ 0.7 (the value of 0.7 is suggested by
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Figure 4.17: Precision-recall curve: Normal vs. EGI on PSB Training Set

Figure 4.18: Precision-recall curve: Normal vs. EGI on PSB Test Set

Figure 4.19: Precision-recall curve: Normal vs. EGI on SCU
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Figure 4.20: Precision-recall curve: T-plane vs. 3DHT on PSB Training Set

Figure 4.21: Precision-recall curve: T-plane vs. 3DHT on PSB Test Set

Figure 4.22: Precision-recall curve: T-plane vs. 3DHT on SCU
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Zaharia and Preteux [87] and we have also veri�ed its performance-wise optimality). In
Figures 4.20, 4.21 and 4.22, we compare the T-plane and the 3DHT descriptors in terms of
precision-recall curves. In Table 4.12, we provide the retrieval statistics. On PSB Training
Set, the T-plane descriptor is better than 3DHT by 1.1% DCG; on PSB Test, by just
one tenth DCG percent point. On SCU, on the other hand, the 3DHT has a DCG of
72.7% against 72.0% of the T-plane. Since there is no convincing evidence (as compared
to the previous cases) that one method outperforms the other uniformly on the available
databases, we can state that the T-plane descriptor and its histogram-based peer 3DHT
are performance-wise equivalent.

4.8.2 General Comparison

The results in Sections 4.6 and 4.7 established that our scheme is most e�ective when we
consider the score fusion of the Radial, T-plane and Sec-Order descriptors. Accordingly,
we compare the retrieval performance obtained by the fusion of these descriptors against
other well-known 3D shape descriptors on PSB Test Set. Apart from 3DHT and CAH
descriptors that we have implemented, we have taken the performance scores either from
their original works or other comparison studies on PSB Test Set [11, 25].

• Depth-Bu�er Images (DBI). This descriptor takes its roots from 2D image analysis
and describes the object by six depth bu�er images captured from orthogonal parallel
projections [30, 8]. These binary images are then represented as concatenated vectors
of Fourier coe�cients of the lowest frequencies. DBI have been the best performing
descriptor on the Konstanz database (cf. Appendix A) [8]. Here, we have taken the
performance scores reported in [25].

• Light Field Descriptor (LFD). Like DBI, LFD is considered as a 2D method as it
represents an object as a collection of 2D images rendered from the 20 vertices of a
dodecahedron inscribed in a sphere enclosing the object [51]. The images can then
be represented as Fourier coe�cients or 2D Zernike moments as the authors suggest.
In order to evaluate the dissimilarity between two objects, the corresponding LFDs,
which consist of 20 light �eld images each, are aligned over all possible rotations and
pairings of vertices, then the minimum distance value is taken. The performance
scores reported here are from [11].

• Radialized Extent Function (REXT). This descriptor consists of a collection of spher-
ical harmonics-transformed version of shape functions giving the maximal distance
from the center of mass as a function of spherical coordinates (θ, φ) and radius. See
Section 1.3.2 and [44, 30] for more details.

• Global Spherical Harmonics Descriptor (GSHD). Similar to REXT, GSHD results
from the decomposition of a sphere into concentric shells of di�erent radii [46]. The
intersection of the shape with each of the concentric shells de�nes a spherical image,
which is subsequently transformed to spherical harmonics coe�cients. GSHD is
rendered rotation-invariant by summing the magnitude of the harmonics coe�cients
within a given frequency shell [29]. See Section 1.3.2 and [46, 29] for further details.

• Spherical Wavelet Descriptor (SWD). This is a very recently introduced descriptor
[47], overcoming the limitations of representing a spherical function in terms of spheri-
cal azimuth and elevation angles (θ, φ). The spherical functions are of general type, as
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in REXT and GHSD. Parameterization in terms of (θ, φ) leads to over-accumulation
of features near the poles and to sparsity near the equators. Notice that this is the
same type of irregular (or non-uniform) sampling problem that we have dealt with
in target selection (see Section 2.1.3). In [47], Laga et al. map the spherical domain
of the function to a (unfolded) �at octahedron, which has regular 2D support. This
sphere-to-octahedron mapping overcomes the irregular sampling problem and trans-
forms the function de�ned on the sphere into an image de�ned on a regular 2D grid.
Afterwards, the descriptor is obtained by applying classical 2D wavelet transform
to the 2D image and then collecting a few �rst level's transform coe�cients into a
vector. Although the term �spherical wavelet" is slightly misleading as there is no
genuinely spherical wavelets (e.g., second-generation wavelets [99]) involved in this
procedure, SWD constitutes the �rst instance where the wavelet transform is used
to describe a 3D shape.

• Shape Distributions (D2). This descriptor is simply a histogram of the Euclidean
distance between two 3D points on the object's surface [18]. See Section 1.3.1 and
[18] for details.

• Generalized Shape Distributions (GSD). This descriptor is introduced as a general-
ization to D2 -shape distribution [19]. Accordingly, GSD is a 3D histogram counting
the number of speci�c local shape pairs at certain distances: two dimensions of the
histogram account for pairs of shape signatures, which are simply k-means quantized
versions of spin images computed on the mesh, while the third dimension records the
Euclidean distances of the local shape pairs (at which the signatures are calculated).

• Shape Histograms (SECSHELL). A shape histogram is de�ned by partitioning the
3D space into concentric shells and sectors around the center of mass of a 3D model
[17]. The histogram is constructed by accumulating the surface points in the bins (in
the form of shells, sectors, or both) based on a nearest-neighbor rule.

• Voxel Descriptor (VOXEL). This descriptor consists of merely a binary rasterization
of the object boundary into a voxel grid [11].

• 3D Hough Transform Descriptor (3DHT). See Section 1.3.1 and [39, 22] for details.

• Extended Gaussian Image (EGI). See Section 1.3.1 and [20, 21] for details.

• Cord and Angle Histograms (CAH). See Section 1.3.1 and [38] for details.

The speci�c instances where we compare our framework against the above descriptors
are:

• Radial+T-plane using the Invariant-L1-metric. This instance uses the sum of the
invariant-L1 distance values corresponding to the pdfs of (R, R̂) and (D, N̂)-features.
Recall that the mentioned invariance is against coordinate axis relabelings and mirror
re�ections, as described in Section 2.4 and experimented with in Section 4.4.

• Radial+T-plane+Sec-Order using the L1-metric. This instance uses the sum of the
plain L1-distance values corresponding to the pdfs of (R, R̂), (D, N̂) and (R,A, SI)-
features.
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Table 4.13: Retrieval Statistics (%): State-of-the-Art 3D Shape Descriptors on PSB Test
Set

Descriptor NN FT ST DCG NDCG

DBI 66.5 40.3 51.2 66.3 17.1
Radial+T-plane (Inv-L1) 68.6 39.3 50.0 65.9 16.4
SW 46.9 31.4 39.7 65.4 15.5
LFD 65.7 38.0 48.7 64.3 13.6
Radial+T-plane+Sec-Order (L1) 65.3 35.2 45.2 62.5 10.4
REXT 60.2 32.7 43.2 60.1 6.2
GSHD 55.6 30.9 41.1 58.4 3.2
3DHT 58.8 31.1 39.6 57.7 1.9
SECSHELL 54.6 26.7 35 54.5 -3.7
VOXEL 54.0 26.7 35.3 54.3 -4.1
GSD 43.4 21.5 29.5 49.3 -12.9
EGI 37.7 19.7 27.7 47.2 -16.6
D2 31.1 15.8 23.5 43.4 -23.3
CAH 33.2 15.9 22.9 43.3 -23.5

In Table 4.13, we tabulate the full retrieval statistics corresponding to all of the descrip-
tors in decreasing NDCG values. In Figure 4.23, we depict a visual performance landscape
in terms of a DCG vs. NN scatter plot. A few comments are in order regarding these
results:

• The best two descriptors are DBI and Radial+T-plane (Inv-L1). While DCG of our
descriptor is slightly worse than DBI by 0.4%, its NN score is better by 2.1%.

• The instances of the density-based framework are placed in the top league together
with DBI, LFD and SWD.

• DBI and LFD take their roots from 2D ideas as they describe the shape in terms of 2D
projections of the 3D shape. SWD also employs the wavelet transform in 2D although
it starts from 3D shape information. Interestingly, except than our descriptors, 2D
methods perform better than those using directly 3D shape information.

• Figure 4.23 reveals that performance DCG and NN scores are generally correlated,
that is, if DCG is high, then NN is also high, and vice versa. The sole exception is
SWD whose NN performance is relatively poor as compared to its DCG score.

• Radial+T-plane+Sec-Order marks the performance boundary between 2D methods
and the remaining 3D descriptors.

• The clear performance gap between our descriptors and others such as REXT, GSHD
and 3DHT indicates that the density-based framework is currently the most success-
ful way to process the 3D shape information for retrieval.

Finally, we note that the density-based framework coupled with FGT is computationally
very e�cient. On a standard laptop PC (1.86 GHz CPU and 1 GB RAM), the Radial,
T-plane and Sec-Order descriptors can be computed under one second on average (over 907
PSB meshes). Furthermore, even without any dimensionality reduction and compression,
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Figure 4.23: Performance landscape of 3D shape descriptors: DCG vs. NN on PSB Test
Set

the storage of these descriptors coded with 16-bit double precision costs only 12 KB on
average per object.

We close this section by noting that a more impressive retrieval performance on this
data set has been reported using Funkhouser and Shilane's priority-driven search (PDS )
method [25], which belongs to the paradigm of matching by feature correspondences. Given
a query object and a database of target objects, all represented by sets of local 3D shape
features, the PDS algorithm evaluates how well any subset of query features match target
features. However, as the authors report in [25], this algorithm takes considerably more
computation time to preprocess the database (4-5 minutes per object), more memory
per object (100 KB per target object), and more time to �nd matches than 3D shape
descriptors. In this computationally and memory-wise demanding scheme, there is no
underlying global and compact shape description. DCG of PDS is 75.9%, 10% better than
DBI and Radial+T-plane (Inv-L1), indicating that, performance-wise, there is more way
to go for descriptor-based 3D shape retrieval systems.

4.9 Performance Variation across Databases

In this section, we address the following types of questions concerning the retrieval perfor-
mance of the density-based framework over di�erent 3D object databases:

• Given a database, which local feature is the most e�ective?

• Given a feature, which database is the most challenging for the retrieval task?

• In which database, the bene�ts of score fusion become more important?
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• Does the invariant version of the L1-metric lead to signi�cant improvements regard-
less of the nature of the database?

We illustrate the e�ectiveness of each feature on each database, as well as the improve-
ments due to score fusion and to the use of the invariant metric, using �DCG-eye diagrams".
These plots will help us make useful inferences at a glance. For instance in Figures 4.24
and 4.25, at each (Database, Feature)-pair, we have placed a �lled blue circle (hence, the
name �eye"), whose radius is proportional to the DCG of the feature pdf on that database.
We have also put the exact DCG score at the center. The outer circle stands for the ideal
unit DCG. Clearly, a small white space between the �lled circle and the outer one indicates
a good performance.

As in the previous section, we consider the Radial, Tplane and Sec-Order features,
whose pdfs summarize respectively zero, �rst and second-order local surface information.
Figures 4.24 and 4.25 tell us the following:

• For all databases, the T-plane feature performs better than the Radial feature, indi-
cating that �rst-order surface information is more descriptive than the zero-order.

• The behavior of the Sec-Order feature is interesting: it performs the worst in PSB
and the best in SHREC-W, when the L1-distance is used. On a more general basis,
the performance of this feature is somewhat correlated with the shape characteristics
of the databases. PSB and SHREC-W represent two extremes in terms of mesh
regularity and smoothness. SCU and SHREC-W have smooth and manifold meshes
with second-order di�erential structure locally present at every mesh point. On the
other hand, the meshes in PSB (referred to as triangular soups) are low resolution,
non-manifold and cannot always be given a natural orientation; ESB consists of
engineering parts, which contain many joints and �at patches. Consequently, for
meshes belonging to these two databases, the shape index feature is either not de�ned
everywhere or unreliable. The curvature estimation being reliable only when there is
second order di�erential structure and data is smooth, we observe that the Sec-Order
feature has unstable performance across di�erent databases.

• Figure 4.25, which depicts the results of the Invariant-L1-distance for the Radial
and T-plane features, is compatible with Figure 4.24, except that, in SHREC-W,
the performance of the Sec-Order -feature is no longer better than the T-plane. As
we have already demonstrated in Section 4.4 (see Table 4.6), the invariant scheme
always improves the performance for all databases and features1.

Regarding the e�ectiveness of score fusion, we have tested two possible combinations:
Radial+T-plane and Radial+T-plane+Sec-Order, using �rst the plain L1-metric (Fig-
ure 4.26) and then its invariant version (Figure 4.27). Note that, in these �gures, these
combinations are denoted using the initials of the involved features as R+T and R+T +S
to avoid clutter. On the e�ect of score fusion over di�erent databases, we can state the
following:

• In any event, the combination of the Radial and T-plane scores improves the results
with respect to using solely the Radial score or the T-plane score, as established in
Section 4.7.

1Observe that the invariant scheme does not apply to Sec-Order as this feature is pose-invariant by
de�nition.
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Figure 4.24: DCG-eye diagram for Features vs. Databases (L1-metric)

Figure 4.25: DCG-eye diagram for Features vs. Databases (Invariant-L1-metric). Note
that the Invariant-L1-metric improves the average DCG performance over databases by at
least 1.7 points for the T-plane and by 3 points for the Radial features.
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Figure 4.26: DCG-eye diagram for Score Combinations vs. Databases (L1-metric)

Figure 4.27: DCG-eye diagram for Score Combinations vs. Databases (Invariant-L1-
metric)
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Table 4.14: Retrieval Statistics of the Density-Based Framework (%)
Database NN FT ST E DCG

PSB 68.6 39.3 50.0 28.6 65.9
SCU 80.3 55.9 67.0 37.5 78.3

SHREC-W 94.5 62.7 73.5 53.1 86.7
ESB 83.9 45.9 58.6 38.2 75.7

Figure 4.28: Precision-recall curves for the best the density-based descriptors on di�erent
databases

• Adding the Sec-Order score is signi�cantly e�ective only for SHREC-W. For other
databases, under the plain L1-metric, we obtain a just noticeable improvement by
including the Sec-Order score. Under the Invariant-L1-metric, it actually worsens
the performance for PSB and does not change anything for ESB. This last fact is
compatible again with our comment above on mesh characteristics.

• Finally, we restate the most e�ective feature combinations and metrics for a given
database below:

� PSB: Radial+T-plane scores using Invariant-L1,

� SCU: Radial+T-plane+Sec-Order scores using Invariant-L1,

� SHREC-W: Radial+T-plane+Sec-Order scores using Invariant-L1,

� ESB: Radial+T-plane scores using Invariant-L1.

The full retrieval statistics of these combinations are tabulated in Table 4.14. The
corresponding precision-recall curves are shown in Figure 4.28. We underline the following
points:
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Figure 4.29: Histograms of class-wise DCGs for di�erent databases

Figure 4.30: Distributions of within and between-class distances for di�erent databases
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• DCG-wise, the performance order of the density-based framework over these data-
bases is SHREC-W � SCU � ESB � PSB. This order is also evidenced in Figure 4.29
where we display the histogram of per-class DCGs for all databases: the variation
in per-class DCGs follows the same order. Furthermore, as depicted in Figure 4.30,
within-class distances in SHREC-W and SCU are lower on the average and more
localized than in PSB and SCU.

• PSB is the most challenging database among the ones tested. The number of objects
(907) and classes (92) are higher than the remainder. More importantly, in this
database, classi�cation is induced mainly by functionality-driven semantics. Since
the form does not always follow the functionality, for discrimination, relying solely on
global shape description has its limitations. For more intuitive and useful retrieval,
we need user intervention to incorporate functionality-driven semantics to the search
process, as will be explored in the �nal experimental Section 4.10. Nevertheless,
on PSB, the density-based framework is at the top of the state-of-the-art 3D shape
descriptors.

Figure 4.31: MDS map for PSB Test Set classes

In Figure 4.31, we depict the repartition of PSB classes obtained by multidimensional
scaling (MDS) [27], applied on the average between-class distances given by our
descriptors. MDS is a method to map pairwise dissimilarities to a lower dimensional
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display where the distance order between pairs of entities is preserved as much as
possible. The MDS mapping of PSB classes is open to many interesting observations
showing that the density-based descriptors capture functionality-driven semantics to
some extent. We itemize below some of the visible regroupments:

� In the south-west part of the map, we see a clustering of sharp object classes,
such as axe, knife, shovel and sword, used for cutting.

� In the north part, we observe a super-class of furniture objects such as table,
desk and bench.

� In the south part towards the middle, classes such as bush, plant, conical-tree,
barren-tree and �owers are clustered.

� In the middle part towards the west, although within a clutter of irrelevant
classes, we can detect a regroupment of �ying objects such as airplane, biplane,
�ghter-jet, enterprise-spaceship, stealth-bomber and �ying-bird.

• We are satis�ed by the performance on SCU (DCG=78.3%), which consists of 513
objects in 53 classes. The best DCG performance reported on an earlier release of
this database, containing 266 objects in 27 classes, was 88% due to the augmented
Reeb graph approach [49].

• The least challenging database seems to be SHREC-W. Although it contains a small
number of shape classes relative to the remainder, the fact that its classi�cation
is induced by topological equivalences makes it, a priori, a di�cult database to be
described by geometry-based methods like ours. It is interesting to observe that a
geometry-based method performs so well on SHREC-W, especially on the type of
classes shown in Figure 4.32. We also note that, in the Watertight track of the
SHREC'07 event, our shape description scheme outperformed other geometry-based
methods and had overall the second rank [14].

• The performance on ESB as measured by precision-recall is less impressive than
the performance re�ected by the DCG score (75.7%). In fact, the performance for
Recall < 0.4 is worse than the more di�cult PSB where our method has a DCG
of 65.9%. It seems that, on ESB, the density-based framework does not always �nd
the correct matches in the very beginning of the list but is eventually capable of
retrieving them, thus lifting the DCG to a satisfactory value.

The main conclusion that we draw from this analysis is that the performance of the
density-based framework generalizes well for databases with di�erent application domains,
semantics and shape properties.

4.10 Statistical Learning-Based Score Fusion

In the previous sections, we have investigated the discriminative power of the density-based
3D shape description in an unsupervised mode. Now we want to explore the contribution
of a certain amount of supervision to the search process. The schemes tested in this section
were described in Chapter 3.

In the following two sections, we will quantify the performance of the statistical learning-
based score fusion that we interpret as an instance of supervised similarity learning. We
consider the two applications introduced in Section 3.4, bimodal and two-round searches,
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Figure 4.32: A few challenging SHREC-W classes where the density-based framework
performs particularly well

to supervise the querying process and then to fuse the similarity scores resulting from dif-
ferent descriptors. Naturally, we employ instances of the density-based framework, namely
Radial (R, R̂), T-plane (D, N̂) and Sec-Order (R,A, SI)-descriptors, but in a way di�er-
ent than the previous sections. Note �rst that all of these descriptors are radialized in the
sense that, at a �xed distance from the origin rk (or dk for the T-plane), they capture
the distribution of the remaining features at concentric shells. These remaining features
are the radial direction R̂ for the Radial, the normal N̂ for the T-plane and the (A,SI)-
pair for the Sec-Order. We refer to these distributions as cross-section descriptors. For
instance, let us take the NR × NR̂ = 8 × 128 = 1024-target pdf of the (R, R̂)-feature.
Recall that NR = 8 is the number of points sampled within the R-domain and NR̂ = 128
is the number of points sampled on the unit-sphere, in order to form the target set for
this descriptor. The 1024-point (R, R̂) descriptor is then considered as NR = 8 chunks of
NR̂ = 128-point cross section descriptors, each of which can be used to evaluate a similarity
score simk , sk between two objects at a given concentric shell, say at a distance rk from
the origin. Of course, these individual scores do not capture the shape similarity to the full
extent. However, this decoupling adds more degrees of freedom to the subsequent score
fusion stage, where we learn a distinct weight wk for each of the individual scores sk by
ranking risk minimization (cf. Section 3.2). Accordingly, for each of the Radial, T-plane
and Sec-Order descriptors, we obtain NR = 8 per-chunk similarity scores. Notice that
under the L1-metric or its invariant version, summing these scores is the same as taking
the distance directly using the original full descriptors. The idea of fusing per-chunk scores
subsumes a linear similarity model. More precisely, given a query q and a database object
x, we seek an optimal similarity or scoring function of the form ϕ(x, q) =

∑
k wksk as

in Section 3.3. In the following experiments, we use the Invariant-L1-metric to quantify
per-chunk similarities and compare the results against the basic SUM rule of the form
ϕ0(x, q) =

∑
k sk.
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The following performance results have been obtained on a modi�ed version of PSB.
Originally, PSB Training and Test Sets do not share the same shape classes. Accordingly,
we have merged these two sets into a single one, consisting of 1814 models in 161 classes2.
We have then split them into two subsets A and B of sizes 946 and 868, sharing the same
161 classes. We will clarify the use of these two sets in the context of the application chosen.
This modi�cation lets us treat the problem in an even more challenging complexity than
in the original PSB Test Set, since the number of classes is now increased from 92 to 161.

4.10.1 Performance in the Bimodal Search

Recall that the bimodal search protocol assumes the existence of a training set categorized
into a �xed set of concepts. Learning is done o�-line. From the training set, we take one
shape at a time as a query and the remaining ones as database shapes, then feed the pair-
wise scores to the algorithm in Section 3.3 to learn a shape-speci�c SVM. In Section 3.4.1,
we had to introduce two di�erent heuristics to obtain a weight vector corresponding to each
class concept, since minimizing directly a per-concept risk functional using all the available
instances was computationally too complex. We remind that, in the AVE-W heuristic, the
weight vector for a given concept class is computed as the average of the per query weight
vectors corresponding to the training shapes within that class. In the second PCMIN-W
heuristic, on the other hand, we minimize a per-concept risk by using only support vectors
learned during the prior per-query learning.

In the bimodal experiments, we have taken the PSB Set A as the training set, which
we have used to learn per-concept weight vectors. PSB Set B has been reserved for testing
purposes. In Table 4.15, we provide the results of fusing 8 Radial -scores and 8 T-plane
scores, making 16 scores in total. In Table 4.16, we report the performance after including
8 more scores corresponding to Sec-Order chunks in addition to Radial and T-plane scores.
We also display the results of the basic SUM rule for reference.

Although, the learning-based score fusion does improve the average DCG performance
signi�cantly on the training set, it does not lead to a signi�cant gain in the test set (only
1% using the AVE-W heuristic). That is, learning-based score fusion does not work well
for certain concepts. This might be due to heuristics-based learning of per-concept weight
vectors, but, we think that the following arguments better explain the situation.

• For some concepts, the linear similarity model might not be �exible enough to main-
tain good classi�cation accuracy in the score di�erence domain. When instances
from queries belonging to a certain concept are pooled together, the discrimination
problem in the score di�erence domain might become more complex than what can
be solved using a simple linear decision boundary.

• If the linear similarity model were totally unacceptable, we would not expect a good
performance on the training set either, as in Tables 4.15 and 4.16. In fact, in only
4 out of 161 concepts in PSB Set A, the AVE-W fusion of the Radial and T-plane
scores has worsened the performance by at most 2.3% DCG points with respect to
the baseline SUM rule. In PSB Set B, on the other hand, 61 concepts (again out of
161) have su�ered an average performance loss of 8.5% DCG points.

2The number of classes shared by training and test sets is 21, hence the merged PSB contains 90+92−
21 = 161 classes.
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Table 4.15: DCG Performance of Score Fusion on Bimodal Protocol using 8 Radial and 8
T-plane-Scores

Rule PSB Set A PSB Set B

SUM 61.9±28.4 61.8±27.9
AVE-W 69.4±27.0 62.8±28.1

PCMIN-W 71.1±26.3 62.1±27.6

Table 4.16: DCG Performance of Score Fusion on Bimodal Protocol using 8 Radial, 8
T-plane and 8 Sec-Order -Scores

Rule PSB Set A PSB Set B

SUM 61.6±28.1 60.6±28.1
AVE-W 71.8±26.5 62.6±28.4

PCMIN-W 74.9±25.2 62.5±27.7

• In Tables 4.17 and 4.18, we provide the DCG scores when we use the basic SUM rule
instead of learning-based score fusion (AVE-W or PCMIN-W ) for negatively a�ected
concepts (i.e., those concepts for which learning-based score fusion has worsened the
DCG performance). The right most columns give the number of positively a�ected
concepts, indicating in which proportion the learning-based score fusion generalizes
satisfactorily. We deduce that the linear similarity model is adequate for the training
set and generalizes well on the previously unseen instances of ∼100 concepts in the
test set.

• A plausible reason for the lack of generalization for certain concepts is that the score
di�erences between training shapes might not be representative enough for those
between test shapes. In such cases, the parameters of the linear decision boundary
might over�t the training instances.

4.10.2 Performance in the Two-round Search

In the two-round query formulation, the bene�ts of the proposed score fusion scheme
become much more evident. In Section 3.4.2, we have introduced two variants of this
protocol, with varying amount of user interaction needed. In the on-line variant, the
system learns a per-query weight vector at query time after having been provided with
M marked shapes (either as relevant or not relevant) of the �rst round. In the o�-line
variant, the user is asked to mark just one single shape among the M displayed ones after
the �rst round. The second round proceeds with the weight vector associated with the
marked shape, which has been learned o�-line. To evaluate the performance in this search
protocol, we have reserved the PSB Set A as the database shapes and PSB Set B as the
query shapes. The �rst round results have been obtained by the basic SUM rule.

In Figures 4.33 and 4.34, we display the DCG performance of the on-line sub-protocol
as a function of the number of marked items M from 4 to 32. Figure 4.33 illustrates the
results for 16 Radial and T-plane scores, while in Figure 4.34, we have also included 8 Sec-
Order scores. In these �gures, the line at the bottom stands for the DCG of the �rst round
(i.e., the performance of the SUM rule, DCG = ∼62% for all score combinations). The line
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Table 4.17: DCG Performance of Score Fusion on Bimodal Protocol using 8 Radial and 8
T-plane-Scores when the basic SUM rule instead of learning-based score fusion has been
used for negatively a�ected concepts

Rule PSB Set B # Positively A�ected Concepts

SUM 61.8±27.9 -
AVE-W 64.6±24.2 100

PCMIN-W 64.8±23.8 88

Table 4.18: DCG Performance of Score Fusion on Bimodal Protocol using 8 Radial, 8
T-plane and 8 Sec-Order -Scores when the basic SUM rule instead of learning-based score
fusion has been used for negatively a�ected concepts

Rule PSB Set B # Positively A�ected Concepts

SUM 61.8±27.9 -
AVE-W 64.0±24.1 106

PCMIN-W 64.4±23.9 100

at the top stands for the DCG when all database models are marked as either relevant or
non-relevant, serving as an empirical ideal, i.e., the maximum achievable DCG on this data
set using the presented score fusion algorithm and the running set of description schemes
(DCG = ∼75% for Radial and T-plane scores, DCG = ∼79% when Sec-Order scores are
also included). Based on these results, we make the following comments:

• As the number of marked items M increases, we observe a steep increase in the DCG
performance, compatible with theoretical fast rates of convergence proven in [7, 6].

• The DCG pro�le converges smoothly to the empirical ideal as the user marks more
and more items in the �rst round.

• To give certain performance �gures, for M = 8, DCG obtained after fusing Radial and
T-plane scores becomes ∼67%, giving a 5% improvement compared to the baseline.
When the Sec-Order scores are included, the DCG gets ∼68%.

• The 70% DCG barrier is reached after M = 16 marked items for Radial and T-plane
scores. Adding Sec-Order scores reduces this number down to M = 12, showing in
fact the Sec-Order scores can indeed be useful in contrast to the case of the basic
SUM rule.

In Figures 4.35 and 4.36, we display the DCG performance of the o�-line sub-protocol
as a function of the number of displayed items M again 4 to 32. We emphasize that, in
this mode, M refers to the number of displayed items and the user interaction needed is
limited to mark just one shape, the �rst relevant one after the �rst round. Accordingly,
here, M is not related to the convergence of the algorithm, but just an application-speci�c
parameter determining how far the user is allowed to look for relevant items. Increasing
M does not cost anything in terms of user interaction. After this clari�cation, we deduce
the following:

• At M = 1, combining Radial and T-plane scores boosts the retrieval performance by
2.5%, adding the Sec-Order scores by 3.5%.
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• The DCG pro�le keeps a slow but constant increase as the number of displayed items
M in the �rst round is increased.

• In a typical retrieval scenario, displaying M = 32 items has no cost. These results
tell us that we can obtain DCG improvements by ∼4% with respect to the baseline.
Recalling from Section 4.8.2 that the performance of top 3D shape descriptors di�er
only by a couple of percentage points, this 4% gain can be considered as signi�cant
and comes virtually at no cost at the querying process. The only bottleneck is the
o�-line processing of the database shapes to learn the weight vectors, which may
eventually be used in the second round.

When we contrast the on-line and o�-line versions of the two-round search protocols, we
arrive at a compromise. With on-line score fusion, we can obtain signi�cant improvements
as the user is asked to mark more and more items. In special applications where the
user voluntarily marks the demanded number of items, the on-line scheme is preferable.
The o�-line scheme, on the other hand, comes at no cost at query time and still yields
satisfactory improvements. Sample two-round searches using these two variants are shown
in the Appendix E.
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Figure 4.33: DCG performance of the two-round search with on-line learning as a function
of the number of marked items M in the �rst round for Radial and T-plane scores

Figure 4.34: DCG performance of the two-round search with on-line learning as a function
of the number of marked items M in the �rst round for Radial, T-plane and Sec-Order
scores
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Figure 4.35: DCG performance of the two-round search with o�-line learning as a function
of the number of displayed items M in the �rst round for Radial and T-plane scores

Figure 4.36: DCG performance of the two-round search with o�-line learning as a function
of the number of displayed items M in the �rst round for Radial, T-plane and Sec-Order
scores
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Chapter 5

Conclusion and Perspectives

5.1 Discussion and Conclusion

This thesis has dealt with two fundamentals problems in content-based 3D object retrieval:

(1) How to describe a 3D shape to obtain a reliable representative for the subsequent
task of similarity search?

(2) How to supervise the search process to render it more e�ective and semantic?

Our contributions concerning the �rst problem are as follows:

• We have developed the density-based framework, which produces not only a single
but a family of shape descriptors at various levels of discrimination.

• Our framework uni�es histogram-based approaches and enables the passage from
multivariate local surface characterization to global shape description with consider-
able ease. Performance-wise, density-based descriptors are signi�cantly better than
their histogram-based counterparts1.

• We have shown that the density-based framework proves to be very e�ective in com-
parison to state-of-the-art descriptors. In fact, one of its instances performs better
than all purely 3D methods and equally well as DBI [8], which is the best 2D method
to date.

• We have tested our framework on four di�erent 3D databases, which are selected
from distinct domains, in order to show the potential of density-based descriptors in
a wide range of applications targeted by the 3D object retrieval research. We have
shown that their performance generalize well on these databases with varying mesh
quality, semantic content and classi�cation granularity.

• We have developed dedicated dimensionality reduction tools, marginalization and
probability density pruning, which exploit the pdf structure. Furthermore, we have
shown that marginalization can be employed for non-heuristic feature subspace ex-
ploration in terms of retrieval performance.

• We have demonstrated that the pdf structure can also be used to guarantee invariance
to certain 3D transformations at matching stage.

1Meanwhile, we note that the T-plane descriptor is just equally well as 3DHT.
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• We have derived an upper bound on the mean integrated absolute error (MIAE ) of
the univariate KDE and illustrated the smoothing e�ect of the bandwidth parame-
ter(s) in the context of shape discrimination.

• We have proposed a robust feature calculation scheme in order to obtain more reliable
feature observations from low-resolution meshes.

• Finally, the present work constitutes a �rst application of FGT in the 3D domain.
This fast approximation scheme turns the KDE method, which is computationally
practical only in a few dimensions, into a computationally very e�cient tool for 3D
shape description.

We summarize and discuss the key aspects of the density-based framework below:

• Local Characterization by Joint Features. The features used in the density-
based framework are the most basic and direct di�erential geometric quantities that
can be associated with a 3D point lying on a surface. They are intuitive from a shape
modeling perspective and computationally cheap to obtain. Furthermore, the fact
that they have mathematically well-de�ned ranges helps us in the subsequent target
selection.

A joint consideration of these features characterize the surface point completely up
to second-order. As we add more dimensions to a multivariate feature, we increase
its speci�city. When coupled with the KDE, this family of local features leads to a
family of descriptors, each of which has a di�erent level of discrimination.

We have not particularly refrained ourselves from the use of non-invariant features,
since invariance at feature-level comes usually at a certain loss of shape information,
which cannot be restored back afterwards. We have employed PCA-based normal-
ization to discover the major axes of the object to secure rotation invariance without
loss of information, but at the cost of small errors for which we have relied on the
robustness of the KDE. More destructive de�ciencies such as mislabelings and wrong
polarity assignments have been handled in an exact manner at the matching stage.

• Robust Feature Calculation. Although a triangular mesh leads to a plausible
visualization of the 3D object at changing levels of resolution, it is somewhat arti�cial
and approximates the continuous surface only in the limit, i.e., when the triangles
are su�ciently small and regular. The Simpson averaging scheme provides a robust
feature calculation option by smoothing the feature values over a mesh triangle so
that mesh irregularities become a lesser problem.

• Global Description via Pdfs. If the pairwise correspondences between two sets of
feature observations are known in advance, two shapes can be matched much more
e�ectively than by using any known 3D shape descriptor. The superior performance
of the PDS method [25] is a manifestation of this fact. This correspondence problem
is the main bottleneck for global 3D shape descriptors, which all try to circumvent
it in one way or another, by registering the shape information on some adequately
chosen grid. The KDE-based framework too e�ects a kind of registration but, unlike
other approaches, adopts a soft assignment strategy so that a feature observation
does not only contribute to the closest grid point but also to the nearby ones as a
function of its closeness. This strategy makes the resulting descriptors less sensitive
to small shape variations and extrinsic e�ects.
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Closely related to this robustness property is the smoothing behavior of the KDE. In
fact, the idea of variability reduction by smoothing has been our main motive in using
KDE. Adapting the example given by Edelman in [100], the method of comparing
two feature sets must allow for some location uncertainty; otherwise, any small per-
turbation would render an object unrecognizable. Testing all possible perturbations
within a small neighborhood around each feature observation raises combinatorial
problems and hence is unfeasible. One simple way to achieve relative insensitivity
to feature location uncertainty is to blur at least one of the feature sets before com-
parison, e.g., by convolving it with a bell-shaped kernel such as the Gaussian. The
bandwidth parameter of the kernel accounts for this very uncertainty as discussed
in Section 2.2.2. Furthermore, by judiciously adjusting the bandwidth parameter,
the descriptors can be rendered smoother or more speci�c. Large bandwidths en-
hance shape commonalities, discard very �ne maybe irrelevant details and favor the
matching hypothesis by reducing descriptor variation, while small bandwidths pro-
duce more faithful descriptors and impose more stringent requirements for a positive
match to occur.

Finally, along with the pragmatic bene�ts mentioned above, describing a 3D shape
by the pdf of its local features is also philosophically appealing. The density-based
framework is a generative method in the sense that it models the conditional density
of a local feature S ∈ RS given a certain shape X. Accordingly, let S be a set
of feature observations regarding X. Given two shapes O1 and O2 modeled by the
conditional pdfs fS|O1

and fS|O2
respectively, we consider the following question:

apart from X, which one of O1 and O2 could have also generated S? If the problem
is treated as the one of binary classi�cation, the optimal solution is given by the
Bayesian decision rule of the form �assign S to O1 if fS(S|O1) ≥ fS(S|O2), and to
O2 otherwise". The error of this rule can be expressed as [27]

Pr(error) =
1
2

∫
RS

min
(
fS|O1

, fS|O2

)
,

which can be viewed as a measure of confusion between fS|O1
and fS|O2

, as well as a
measure of similarity. In the context of matching via pdfs, to determine which one
of fS|O1

or fS|O2
better match fS|X , we have to pick the model O∗, i = 1, 2, which

maximizes the confusion with fS|X , that is,

O∗ = argmax
i=1,2

∫
RS

min
(
fS|X , fS|Oi

)
.

As shown in Appendix B.1, the above maximization is equivalent to minimizing
the L1-distance between fS|X and fS|Oi

, i = 1, 2. Observe that this equivalence is
distribution-free and independent of feature dimension. This result does not only
explain the superior performance of the L1-metric notably against other Minkowski
metrics (cf. Section 4.4), but also provides a rigorous justi�cation for the adequacy
of our approach. We conclude that, from the perspective delineated above, the
density-based framework is the right way to process local surface information for
shape matching.

• Marginalization. This fairly general concept of probability theory has found an
interesting application in our framework. Using marginalization, we can switch from
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one descriptor to a less speci�c one, by discarding one or more feature components.
Accordingly, we have avoided descriptor computation for every possible feature con-
�guration and have been able to explore the whole feature space in terms of retrieval
performance very e�ciently and without resorting to any suboptimal heuristic-based
feature selection method.

• Invariance at Matching. Another advantage that the pdf structure o�ers is to se-
cure invariance against certain types of object transformations at the matching stage,
without the need of recomputing the descriptor for every possible transformation.
Starting from the change of variables formula, we have developed a minimization-
based similarity measure, completely invariant to coordinate axis relabelings and
mirror re�ections, without sacri�cing any intrinsic shape information. This measure
has provided signi�cant performance improvements in all databases.

Concerning the second problem, we have adapted the theoretically well-founded ranking
risk minimization framework [6, 7] to the learning of inter-shape similarities for more e�ec-
tive and semantic retrieval as shown in Section 4.10 and illustrated in Appendix E. We have
cast the problem into one of linearly combining similarity scores, which arise from di�erent
shape descriptors, and have shown that learning can be carried straightforwardly by the
well-known SVM algorithm. This rigorous score fusion approach allows us to bene�t from
powerful aspects of individual descriptors by incorporating di�erent levels of supervision
into the search process. Our contributions on similarity learning are as follows:

• To the best of our knowledge, there is no prior work in the 3D domain using statis-
tical learning techniques to combine multiple shape descriptors. The present work
constitutes a �rst successful attempt to this challenging problem.

• The approach presented in this thesis is a direct application of a recently introduced
rigorous statistical framework [6, 7], where consistency and fast rate of convergence
of empirical ranking risk minimizers have been established. These theoretical results
place our approach on well-founded grounds.

• Our algorithm operates on scores, and not on descriptors themselves, unlike other
risk minimization-based approaches [88, 89]. In this sense, it is a general scheme,
which does not depend on the type of description and can be used for arbitrary data
modalities as long as one provides similarity scores between entities.

• We have illustrated the use of our scheme in two di�erent search protocols. Exper-
iments have shown that the two-round protocol bene�ts more from our score fusion
framework than the bimodal protocol. The approach is able to boost the retrieval
performance for as many as 100 shape concepts under bimodal query formulations.
In the two-round search, on the other hand, we can obtain DCG improvements by
as large as ∼10% even with a fairly modest amount of user interaction.

5.2 Perspectives

An immediate research direction to pursue is the extension of invariances, which can be
achieved using the scheme presented in Section 2.4, to arbitrary 3D rotations. Such an
extension would render the matching completely invariant to rotations as well, and would
further improve the retrieval performance of the density-based descriptors. Apart from 3D
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object retrieval, recovering the pose of a 3D object with respect to a given reference frame
is still an open problem and constitutes the preliminary step in applications such as 3D
model reconstruction from existing parts, texture and surface detail mapping, etc. [101].
In order to provide a solution to this problem within the density-based framework, we need
to �nd unit-sphere partitionings that would remain closed under the action of an arbitrary
3D rotation as discussed in Section 2.4. Alternatively, we can relax the strict closedness
requirement and rely on nearest-neighbor mapping to establish target correspondences
after a certain 3D rotation.

Another possible direction of research is towards parametric density estimation. While
the KDE approach coupled with FGT proved to be very useful; beyond four dimensions,
descriptors get impractically large and the statistical accuracy is no longer guaranteed due
to the curse of dimensionality. In our context, the virtues of parametric mixture models
are as follows.

• Accuracy problems related to high dimensionality can be more e�ectively managed.

• They lead to more parsimonious descriptions. If a local feature pdf were available in
terms of a parameterized analytical form, we would not need to sample it to obtain
the descriptor vector but just store its parameters as the descriptor.

However, we should think of alternative matching schemes since the computational cost of
parametric pdf estimation cannot be a�orded at the matching stage. Given a set of i.i.d.
feature observations S = {sk}K

k=1 regarding the query and a set of database objects O,
each represented by its own parametric pdf, the matching problem would then be to select
the pdf that best explains the set S by invoking a Bayesian classi�er of the form �assign S
to O∗ such that O∗ = argmax

O∈O

∑
k logfS(sk|O)". This maximum likelihood procedure can

be carried e�ciently since the pdfs are analytically given. Furthermore, using a parametric
pdf, we could more conveniently extend the type of invariances that can be secured at the
matching stage. The research problems in this direction are:

• Finding a mixture model that would be �exible for a wide range of local features,

• Determining the number of parameters involved in the mixture,

• E�cient estimation of the mixture parameters.

Motivated by the fact that our framework is based on pdfs, a natural research direction
would be an information-theoretic analysis of the local surface features. In the present
work, we have quanti�ed the descriptive power of the local features by their retrieval
performance. Information theory provides us with universal measures for the same end
and raises the following interesting issues:

• Let, for instance, Y be the discrete class label of a random 3D object O on which
the feature S is evaluated. The mutual information value I(S, Y ) stands then for
the amount of information that the feature S contains about the class label Y . It is
the reduction in the uncertainty of the unknown class label due to the knowledge of
the feature. Consequently, I(S, Y ) arises as a natural measure, which can be used
to order di�erent local features in terms of their descriptive power. It would also be
interesting to compare such an ordering, once found, to the one given by an empirical
performance evaluation.
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• If we consider a 3D object as a communication channel, the entropy of the local
feature can be viewed as the average number of bits transmitted to pass its true value
to a recipient. This observation may have implications in 3D mesh compression.

• Along the same line with the above items but on an even more theoretical vein, it
is tempting to investigate the relationship between local feature entropy and global
shape complexity.

Finally, the score fusion scheme presented in this thesis leaves the door open for two
important research issues:

• Scoring functions can be extended to non-linear forms to cope with situations where
a linear decision boundary is not �exible enough to discriminate between score di�er-
ence vectors. The linear scoring function ϕ(w) = 〈w, s〉 induces a linear discrimina-
tion problem in the score di�erence domain where the optimization variable is again
the weight vector w. As a consequence, once the weight vector is learned in the score
di�erence domain, it can directly be used in the score domain too. In principle, the
discrimination problem can be non-linearized by the kernel trick, in which case the
sought-after weight vector no longer lives in the score di�erence domain, but in a
higher dimensional space: it is only implicitly given except for some special choices
of the kernel such as the polynomial [94]. In a standard classi�cation problem, this
poses no problem as the decision function can be e�ciently evaluated in terms of
kernel values. In the retrieval problem as considered in this thesis on the other hand,
decision values can only be used to �nd the relative rank of an item with respect to
another. The main questions here are:

� How can we resolve the �nal ordering from relative pairwise ranks in a way fast
enough for a real-time application?

� Does this resolution phase lead to a consistent �nal ordering?

• Although the pairwise ranking risk model has proved to be successful in the score
fusion problem, it has two limitations [33]:

� It is not the best metric used in practical retrieval systems.

� Only the top few positions of the ranked list are of importance.

The DCG criterion addresses these limitations naturally as �rst, by de�nition, it
weights correct results at the top more than those at the bottom and second, it
constitutes the most widely used measure to evaluate the performance of a retrieval
algorithm. Accordingly, one can consider a formulation of the score fusion problem
in terms of the DCG criterion.
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Notations

Density-Based 3D Shape Description

O 3D object (surface)

S Local surface feature

RS Range space of the feature S

{sk}K
k=1 Set of observations (sources) for S

RS Discretized version of RS

{tn}N
n=1 Target set (note that RS = {tn}N

n=1)

fS|O , fS(·|O) Probability density function of S given O

fS(tn|O) Value of the probability density function of S at tn given O

fS|O , [fS(tn|O)]Nn=1 Descriptor vector of the object O w.r.t. S

Statistical Similarity Learning

x, x′ Generic database objects

q Query object

sim(·, ·) Generic similarity function

sk , simk(x, q) kth similarity value between x and q

s , [sk]Kk=1 K-vector of similarities

wk Weight for the kth similarity value

w , [wk]Kk=1 K-vector of weights

ϕ(x, q) , 〈w, s〉 Final similarity (or scoring) function
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Appendix A

3D Object Databases

In this appendix, we list the main features of 3D mesh databases used for research purposes.

• Princeton Shape Benchmark (PSB)

� 1814 models in 161 classes

� Split into two sets: Training (907 models in 90 classes) and Test (907 models in
92 classes)

� 3-level classi�cation hierarchy also available

� Example classes: animal, building, furniture, household object, human, musical
instrument, plant, vehicle

� Low resolution, non-regular meshes

� Public

� http://shape.cs.princeton.edu/benchmark/

• Sculpteur Database (SCU)

� 858 archaeologically valuable object models: 513 of them categorized in 53
classes

� 2-level classi�cation hierarchy also available

� Example classes: amphora, vase, pavement, statue, relievo, mould

� High resolution, watertight meshes

� Private

� http://www.sculpteurweb.org/

http://www.tsi.enst.fr/3dmodels/

• SHREC Watertight Database

� 400 models in 20 classes

� Example classes: ant, chair, glasses, hand, human, octopus, spring

� Topology-driven equivalence classes

� High resolution, watertight meshes

� Open to SHREC'07 participants

129



� http://watertight.ge.imati.cnr.it/

• Purdue Engineering Shape Benchmark (ESB)

� 865 CAD models in 45 classes

� 2-level classi�cation hierarchy also available

� Example classes: bearing, contact switch, elbow, gear, handle, housing, thin
plate, T-shaped part, U-shaped part

� Middle resolution, watertight meshes

� Open to SHREC'07 participants

� https://engineering.purdue.edu/PRECISE/shrec/

http://shapelab.ecn.purdue.edu/Benchmark.aspx

• Konstanz Database

� 1839 models: 473 classi�ed

� Public

� http://merkur01.inf.uni-konstanz.de/CCCC/

• MPEG-7 Database

� 227 models: all classi�ed

� Private

� http://merkur01.inf.uni-konstanz.de/CCCC/

• National Taiwan University Database (NTU)

� 10911 models

� Public

� http://3d.csie.ntu.edu.tw/ dynamic/database/index.html

• Informatics-Telematics Institute Database (ITI)

� 544 models in 13 classes

� Example classes: animal, airplane, helicopter, car, couch, human

� Public

� http://3d-search.iti.gr/3DSearch/index.html

http://shrec.iti.gr/download.html

• McGill Database

� Articulated object models

� Public

� http://www.cim.mcgill.ca/ shape/benchMark/

• Carnegie Mellon Database

� ∼2000 models
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� Private

� http://amp.ece.cmu.edu/projects/3DModelRetrieval/

• SHREC 3D Face Database

� 1000 3D face models

� Open to SHREC'07 participants

� http://give-lab.cs.uu.nl/SHREC/shrec2007/
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Appendix B

Standard Dissimilarity Measures

In this appendix, we provide de�nitions for some of the standard measures to evaluate the

dissimilarity between two histogram-based descriptors f = [fi]
N
i=1 and f ′ =

[
f ′j

]N ′

j=1
. Except

for the earth mover's distance, we assume that descriptors have the same dimension, i.e.,
N = N ′, their entries fi and f ′j are real numbers and they sum to one, i.e.,

∑
i fi =

∑
j f ′j =

1. In the following de�nitions, the index i runs from 1 to N and j from 1 to N ′.

B.1 Lp-Distances

For p ≥ 1, these measures are also known as Minkowski distances, L1, L2 and L∞ being
the most commonly used ones, especially because they are computationally very cheap.
For p < 1, Lp-measures are called as sublinear norms. They emphasize small point-
wise absolute di�erences |fi − f ′i | more than Minkowski norms. On a general basis, as p
decreases, small di�erences, typically in the tails of distributions become more and more
important. Lp-distances for vectors are given by

Lp(f , f ′) =

(∑
i

∣∣fi − f ′i
∣∣p)(1/p)

.

L1-distance, in particular, has an interesting connection with binary classi�cation [3]. Sup-
pose that an observation s (regarding a random variable S ∈ RS) comes from one of the
two equally likely classes C and C′ represented by densities f and f ′ respectively. The
misclassi�cation probability Pr(error) of a Bayesian decision rule of the form: assign s to
C if f(s) ≥ f ′(s), and to C′ otherwise, is given by

Pr(error) =
1
2

∫
RS

min(f, f ′).

Using the identity min(a, b) = |a+b|
2 − |a−b|

2 , it can be shown that

Pr(error) =
1
2
− 1

4

∫
RS

|f − f ′|,

=
1
2
− 1

4
L1(f, f ′).

Thus, the maximum Bayesian probability of misclassi�cation occurs at the minimum L1-
distance between class-conditional densities f and f ′.
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B.2 Symmetric Kullback-Leibler Distance

B.2 Symmetric Kullback-Leibler Distance

In probability theory, the Kullback-Leibler divergence KLdiv is a non-symmetric measure
of di�erence between two probability distributions. A symmetric version of this measure
can be obtained as follows

KL(f , f ′) = KLdiv(f ||f ′) + KLdiv(f ′||f),

=
∑

i

filog
fi

f ′i
+
∑

i

f ′i log
f ′i
fi

,

=
∑

i

(fi − f ′i)log
fi

f ′i
.

Note that KLdiv is a special case of the more general α-divergence given by (in the con-
tinuous case)

αdiv(f ||f ′) =
1

α− 1
log

∫
f ′
(

f

f ′

)α

,

where α ∈ [0, 1]. KLdiv can be obtained in the limit as α → 1.

B.3 χ2-Divergence

In statistics, χ2-test is a generic method to decide whether two data sets are drawn from the
same distribution or not. The acceptance hypothesis is retained based on the signi�cance
of the χ2-divergence value given below

χ2(f , f ′) =
∑

i

(fi − f ′i)
2

fi + f ′i
.

In matching two descriptors, the above value is taken directly as a measure of dissimilarity
without performing any signi�cance test.

B.4 Bhattacharyya Distance

Bhattacharyya Distance is an alternative measure that can be used to decide whether two
statistical distributions di�er or not:.

B(f , f ′) = 1−
∑

i

√
fif ′i .

In view of the discussion for the L1-distance, Bhattacharyya distance can be related to the
Bayesian probability of misclassi�cation. Consider the binary classi�cation setup as in the
above. Accordingly, from (B.1) and the fact that min(a, b) ≤

√
ab, we have

Pr(error) ≤
∫
RS

√
ff ′.

Thus, an upper bound on the Bayesian probability of misclassi�cation is maximized at the
minimum Bhattacharyya distance between class-conditional densities f and f ′.
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B.5 Histogram Intersection

Histogram intersection is originally proposed for matching color histograms [67]. The
associated distance function is expressed as

HI(f , f ′) = 1−
∑

i

min(fi, f
′
i).

By invoking min(a, b) = |a+b|
2 − |a−b|

2 , we can see that HI is equivalent to L1-distance.

B.6 Earth Mover's Distance

A descriptor entry fi can be a two-tuple (mi, wi), where mi ∈ Rm is interpreted as a bin
center in a multidimensional histogram and wi ∈ R as the amount of mass concentrated

around mi. In such a case, descriptors f = [(mi, wi)]
N
i=1 and f ′ =

[
(m′

j , w
′
j)
]N ′

j=1
are called

as signatures. Let W be the total amount of mass contained in the descriptor f , that is,
W =

∑
i wi (likewise for W ′), and let η be a ground distance between bin centers such as

L2. The earth mover's distance is then de�ned as the minimum value of an optimization
problem [102]:

EMD(f , f ′) = min
cij

∑
i,j η(mi,m

′
j)cij

min (W,W ′)
,

such that

cij ≥ 0,∀i, j,∑
j

cij ≤ wi,∀i,∑
i

cij ≤ w′
j ,∀j,∑

i,j

cij = min
(
W,W ′) ,

where the optimization variables cij stand for the amount of mass to be carried from the
bin mi to the bin m′

j . The use of EMD is motivated by the fact that the bin centers in
two di�erent descriptors might not be aligned. The computational complexity of the above
program is above O(N3) and limits its practical usability for large signatures. A recently
introduced algorithm reduces this complexity down to an empirically shown O(N2) when
the ground distance η is chosen as L1 [103].
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Appendix C

KDE and Related Issues

In this appendix, we provide some derivations related to kernel density estimation (KDE).
First, in C.1, we derive the univariate KDE using a �xed scalar bandwidth as in [27].
In C.2, we derive the upper bound on the mean integrated absolute error (MIAE ) in
the univariate shape description context, which were used to illustrate the smoothing
e�ect of the KDE in Section 2.2.1. This derivation is our original contribution. In C.3,
following [3], we recapitulate the asymptotic mean integrated squared error (AMISE ) and
extend the expression for the univariate Scott bandwidth to the case of arbitrarily weighted
observations.

C.1 Derivation

Suppose we want to estimate the pdf fS of some random variate S ∈ Rm at some target
t ∈ Rm. Let N (t) be some neighborhood around the target t, with volume V ol[N(t)]. The
probability that S falls inside N (t) is

Pr{S ∈ Nt} =
∫
N (t)

fS(u)du.

For su�ciently small N (t) and continuous fS , a reasonable approximation to fS(t) would
then be

fS(t) ' Pr{S ∈ N (t)}
V ol[N (t)]

. (C.1)

Given a set of independent observations {sk}K
k=1, a natural estimate for Pr{S ∈ Nt} can

be obtained by counting the number of sk's falling inside N (t) in which case we can write

Pr{S ∈ Nt} '
#{sk's inside N (t)}

K
=

1
K

K∑
k=1

I{sk ∈ N (t)}, (C.2)

where I{·} is one when the predicate inside the curly brackets is true, and zero otherwise.
Now suppose momentarily that the neighborhood N (t) is an m-dimensional hypercube
with edge length h so that V ol[N(t)] = hm. Accordingly, combining Eqs. C.1 and C.2, we
can write

fS(t) ' 1
Khm

K∑
k=1

I{sk ∈ N (t)}. (C.3)
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C.2 Derivation of the Upper Bound on MIAE

The kernel family of density estimators arises in a quest to generalize Eq. C.3. Observe
that, when the neighborhood is chosen to be a hypercube, we can analytically express the
0-1 counting function I{·} as

I{sk ∈ N (t)} = K
(I(t− sk)

h

)
,

where K is interpreted as a kernel function and I is the m×m identity matrix. Thus, the
0-1 counting function occurs as just a special case of a generic kernel K, corresponding to
a hypercube neighborhood of �xed volume. One can also identify h−1I as the bandwidth
parameter matrix H, which remains the same for all the observations, i.e., Hk = H,∀k.

Allowing kernels that are smoother than the 0-1 counting function lies at the heart of
KDE methodology. The speci�c form of the kernel paramaterized by the bandwidth H
determines implicitly the shape and the size of the neighborhood chosen. In fact, one does
not need to de�ne a crisp neighborhood such as a hypercube. When a smooth function of
the observation-target distance is chosen as a kernel, all the observations contribute to the
density estimate. In a nutshell, closer observations contribute more, far-away ones less. As
a result, KDE can also be viewed as a data interpolation method. Thus, the KDE equation
for arbitrary kernels reads as

fS(t) =
1

K |H|

K∑
k=1

K
(
H−1

k (t− sk)
)
. (C.4)

For the Gaussian kernel given by

KGaussian(u) = (2π)−m/2exp
(
− 1

2
‖u‖2

)
,

we have

fS(t) =
1

(2π)−m/2K |H|

K∑
k=1

exp
(
− 1

2
(t− sk)T H−2(t− sk)

)
. (C.5)

Eqs. 2.4 and 2.5 in Section 2.2 are more general forms of Eqs. C.4 and C.5, where each
observation induces a di�erently sized of neighborhood around the target t through the
variable bandwidth parameter Hk. Another distinction is the scalar importance weight wk

associated with each observation, which is set to 1/K above, in the abscense of any prior
information regarding the sampling density.

C.2 Derivation of the Upper Bound on MIAE

Let f and f ′ be two real-valued functions with scalar domains, given by

f(t) =
1√

2πhK

K∑
k=1

exp

{
−1

2

(
t− sk

h

)2
}

,

f ′(t) =
1√

2πhK

K∑
k=1

exp

{
−1

2

(
t− s′k

h

)2
}

,

where sk's are known deterministic scalars, s′k's are their randomly perturbed versions so
that s′k = sk + εk. The additive perturbations εk's are zero-mean i.i.d. random variables.
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KDE and Related Issues

Both f and f ′ are positive and integrate to one. In the following, we derive an upper
bound on the expected variation between f and f ′ in the integrated absolute sense. We
call this measure of variation as mean integrated absolute error (MIAE ). Concretely,

MIAE(f, f ′) , E

{∫
R

∣∣f − f ′
∣∣} ,

=
∫

R
E
∣∣f − f ′

∣∣,
where E{·} is the expectation operator. We can write the point-wise di�erence f(t)−f ′(t)
as

f(t)− f ′(t) =
1√

2πhK

K∑
k=1

exp

{
−1

2

(
t− sk

h

)2
}[

1− exp

{
(t− sk)εk

h2
− 1

2

(εk

h

)2
}]

.

Let us now use the Hermite identity exp(2ab − b2) =
∑∞

n=0
1
n!b

nHn(a), where Hn are the
Hermite polynomials. Identifying that a = (t− sk)/

√
2h and b = εk/

√
2h, we get

f(t)− f ′(t) =
1√

2πhK

K∑
k=1

∞∑
n=1

exp

{
−1

2

(
t− sk

h

)2
}

1
n!

(
εk√
2h

)n

Hn

(
t− sk√

2h

)
.

Taking the expected absolute value of the above expression and using the triangle inequal-
ity, we obtain

E
∣∣f(t)− f ′(t)

∣∣ ≤ 1√
2πhK

∞∑
n=1

1
2n/2n!

E |ε|n

hn

K∑
k=1

exp

{
−1

2

(
t− sk

h

)2
}∣∣∣∣Hn

(
t− sk√

2h

)∣∣∣∣ ,
where we have used the fact that E |εk| = E |ε| ,∀k by the i.i.d. assumption. Now, inte-
grating both sides of the above expression with respect to t, we obtain an upper bound on
MIAE,

MIAE(f, f ′) ≤
∞∑

n=1

Cn(h)
2n/2n!

E |ε|n

hn
, (C.6)

where Cn(h) , 1√
2πh

∫
e−u2/2h2 |Hn( u√

2h
)|du. Furthermore, Cramer's inequality for Her-

mite polynomials tells that |Hn(u)| ≤ C2n/2
√

n! eu2/2, where C is a numerical constant
less than 1.09 in value [4]. Thus,

Cn(h) ≤
(
C2n/2

√
n!
) 1√

2πh

∫
exp

(
− u2

2h2

)
exp

(
u2

4h2

)
du,

=
(
C2n/2

√
n!
) √

2√
2π
√

2h

∫
exp

(
−1

2
u2

2h2

)
du,

= C2(n+1)/2
√

n! .

Finally, combining the above result with the bound in (C.6), we get

MIAE(f, f ′) ≤ C

∞∑
n=1

1√
n!

E |ε|n

hn
, (C.7)

where we have lumped the
√

2 factor into the constant C.
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C.3 AMISE and the Scott Bandwidth

C.3 AMISE and the Scott Bandwidth

The asymptotic mean integrated squared error (AMISE ) of a univariate kernel estimator
is given by the sum of the asymptotic integrated squared bias (AISB) and the asymptotic
integrated variance (AIV ):

AMISE(h) = AISB(h) + AIV (h).

When the observations are equally weighted by 1/K, we have [3]:

AISB(h) =
1
4
‖µ2(K)‖2 R(f ′′)h4,

AIV (h) =
R(K)
Kh

,

where R(φ) ,
∫

φ2 and ‖µ2(K)‖ ,
∫

u2K(u)du. Observe that AISB does not depend
on the number of observations K neither on how they are weighted. Thus, to derive an
expression for the AMISE -optimal bandwidth for arbitrarily weighted observations by wk,
where

∑
k wk = 1, we need to work with the variance term as follows. The univariate

kernel estimator f̂ of a density f is given by

f̂(s) =
1
h

K∑
k=1

wkKh (s, sk),

where Kh(s, sk) , 1
hK
(

s−sk
h

)
and {sk}K

k=1 are i.i.d. realizations of a random variable S.
The variance of the estimate f̂(s) is given by

V ar
{

f̂(s)
}

= W V ar {Kh(s, S)} ,

= W E {Kh(s, S)}2 −W [E {Kh(s, S)}]2 ,

where W ,
∑K

k=1 w2
k. Expanding the �rst and the second terms above in Taylor series

and then integrating the result, the integrated variance IV can be shown to be [3]:

IV (h) = W
R(K)

h
−W R(f) + . . . .

Finally, based on Theorem 6.1, page 131 in [3], we get

AMISEw(h) = W
R(K)

h
+

1
4
‖µ2(K)‖2 R(f ′′)h4,

h∗ =
[
W

R(K)
‖µ2(K)‖2 R(f ′′)

]1/5

,

for the univariate kernel estimator using arbitrarily weighted observations.
To �nd the Normal reference rule or the Scott bandwidth, we proceed by assuming a

Gaussian reference density f with variance σ2 and a Gaussian kernel K. Plugging in the
corresponding expressions for R(f ′′), R(K), and ‖µ2(K)‖2, we obtain the Scott bandwidth:

hScott =
(

4
3
W

)1/5

σ.
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KDE and Related Issues

The m-dimensional multivariate generalization of this result for a diagonal bandwidth
matrix H = diag(h1, . . . , hm) can be obtained by working with multidimensional Taylor
expansions [3]. Here, we simply state the result:

HScott =
(

4
m + 2

W

)1/(m+4)

diag(σ1, . . . , σm).
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Appendix D

Marginalization Results

Starting from the pdf of an m-dimensional feature S = (S1, . . . , Sm), the marginalization
analysis is carried in m−1 stages. At a certain stage t = 1, . . . ,m−1, we integrate t-tuple
of components out from the pdf of the original m-dimensional feature. At a given stage t,
there are

(
m
t

)
such operations, yielding 2m − 2 possible marginalizations in total.

The following tables present the DCG results of the exhaustive marginalization analysis
applied on the pdf-based descriptor of the 6-dimensional feature (R, R̂x, R̂y, N̂x, N̂y, A),
as presented in Section 4.6.2. The analysis involves 5 stages, thus the total number of
marginalizations is 2m − 2 = 62. In these tables, a given row corresponds to a speci�c
marginalization where the retained components are indicated by gray-shaded cells and the
removed one(s) by white cell(s). The black cell at the right-most column stands for the
feature con�guration, which yields the maximum DCG of the corresponding stage.
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Table D.1: DCG (%) Results of One-Component Marginalization (the white cell in a given
row indicates the component removed)

Table D.2: DCG (%) Results of Two-Component Marginalization (the white cells in a
given row indicate the two components removed)
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Marginalization Results

Table D.3: DCG (%) Results of Three-Component Marginalization (the white cells in a
given row indicate the three components removed)
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Table D.4: DCG (%) Results of Four-Component Marginalization (the white cells in a
given row indicate the four components removed)

Table D.5: DCG (%) Results of Five-Component Marginalization (the white cells in a
given row indicate the �ve components removed)
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Appendix E

Sample Two-round Searches

In this appendix, we illustrate the two-round application of learning-based score fusion.
We remind the on-line and o�-line versions of this protocol below:

• On-line.

� The user enters a query shape.

� In the �rst round, the system returns M ranked databases shapes using the
basic SUM rule and asks the user to label all of them as either relevant or
non-relevant.

� The system learns a weight vector using the score di�erence vectors correspond-
ing to these marked shapes on-line.

� In the second round, the system uses the learned weight vector to evaluate a
weighted similarity score and returns a new set of database shapes.

• O�-line.

� The user enters a query shape.

� In the �rst round, the system returns M ranked databases shapes using the
basic SUM rule and asks the user to label just one shape, the very �rst one that
he/she �nds relevant.

� In the second round, the system uses the weight vector corresponding to the
marked shape, which has already been learned o�-line, to evaluate a weighted
similarity score and returns a new set of database shapes.

Figures E.1 and E.2 illustrate two applications of the on-line mode using a �couch" and a
�human" 3D model as queries respectively. Figures E.3 and E.4 illustrate two applications
of the o�-line mode using a �plant" and a �bench" 3D model as queries respectively.
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Figure E.1: Two-round search with on-line learning on a �couch" query. In the �rst round,
only the �rst-ranked item is relevant (marked as green, the remainder as red); the secound
round retrieves four more �couch" models. Notice also that the fourth-ranked �bench"
model is plausible to human intuition but not used as a positive result in performance
evaluation.
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Sample Two-round Searches

Figure E.2: Two-round search with on-line learning on a �human" query. In the �rst round,
the system returns non-relevant �car", �bird" and �helicopter" models (marked as red) in
addition to other �human" models (marked as green); the secound round eliminates the
non-relevant ones and returns only �human" models.
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Figure E.3: Two-round search with o�-line learning on a �plant" query. In the �rst round,
the very-�rst relevant item occurs only at the fourth position (marked as green); the second
round retrieves two more crisply correct matches along with three �tree" models (positions:
3, 6 and 8) and one �potted-plant", which are also plausible (but not used as positive results
for performance evaluation). The only totally non-relevant item of the second round is the
seventh-ranked �human" model.
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Sample Two-round Searches

Figure E.4: Two-round search with o�-line learning on a �bench" query. In the �rst round,
the �rst item is marked as relevant (in green); the second round returns four more �bench"
models at positions 2, 3 and 7 respectively. The eight-ranked �desk" is semantically similar
to the query as well.
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Appendix F

Publications

F.1 Publications Related to the Thesis

1. C. B. Akgül, B. Sankur, Y. Yemez, F. Schmitt. Density-Based 3D Shape Descrip-
tors. EURASIP Journal on Advances in Signal Processing, vol. 2007, Article ID
32503, 2007.

2. C. B. Akgül, B. Sankur, F. Schmitt, Y. Yemez. Multivariate Density-Based 3D
Shape Descriptors. Proceedings of the Shape Modeling International 2007 (SMI'07),
Lyon, France, June 13-15, 2007.

3. C. B. Akgül, F. Schmitt, B. Sankur, Y. Yemez. Multivariate Density-Based 3D
Shape Descriptors. Proceedings of the Shape Retrieval Context 2007 (SHREC'07),
Lyon, France, June 15, 2007.

4. C. B. Akgül, B. Sankur, Y. Yemez, F. Schmitt. Improving E�ciency of Density-
Based Shape Descriptors for 3D Object Retrieval. Computer Vision / Computer
Graphics Collaboration Techniques (MIRAGE�07), Springer LNCS Series, vol. 4418,
pp. 330-340, INRIA Rocquencourt, France, March 28-30, 2007.

5. C. B. Akgül, B. Sankur, F. Schmitt, Y. Yemez. Density-based Shape Descriptors
for 3D Object Retrieval. International Workshop on Multimedia Content Represen-
tation, Classi�cation and Security (MRCS'06), Springer LNCS Series, vol. 4105, pp.
322-329, Istanbul, Turkey, September 11-13, 2006.

6. C. B. Akgül, B. Sankur, Y. Yemez, F. Schmitt. A Framework for Histogram-
Induced 3D Descriptors. Proceedings of the 14th European Signal Processing Confer-
ence (EUSIPCO'06), Florence, Italy, September 4-8, 2006.

7. C. B. Akgül, B. Sankur, F. Schmitt, Y. Yemez. Feature-Level and Descriptor-
Level Information Fusion for Density-Based 3D Shape Descriptors. IEEE 15th Signal
Processing and Communications Applications (SIU), Eskisehir, Turkey, June 2007.

8. C. B. Akgül, B. Sankur, F. Schmitt, Y. Yemez. A New Framework for 3D Shape
Descriptors. IEEE 14th Signal Processing and Communications Applications (SIU),
Antalya, Turkey, April 2006.
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F.2 Other Publications in 2004-2007

9. C. B. Akgül, B. Sankur, F. Schmitt, Y. Yemez. 3D Object Matching via Mul-
tivariate Shape Distributions. IEEE 13th Signal Processing and Communications
Applications (SIU), Kayseri, Turkey, May 2005.

In Preparation

1. Score Fusion by Ranking Risk Minimization for 3D Object Retrieval, 2007.

2. 3D Pose Normalization using Density-Based Shape Descriptors, 2007.

F.2 Other Publications in 2004-2007

1. C. B. Akgül, B. Sankur, A. Akin. Extraction of cognitive activity related wave-
forms from functional near infrared spectroscopy signals. Medical and Biological
Engineering and Computing, vol. 44, pp. 945-958, November 2006.

2. C. B. Akgül, B. Sankur, A. Akin. Spectral analysis of event-related hemodynamic
responses in functional near infrared spectroscopy. Journal of Computational Neu-
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3. C. B. Akgül, B. Sankur, A. Akin. Extraction of cognitive activity related wave-
forms from functional near infrared signals. Proceedings of the 14th European Signal
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4. C. B. Akgül, B. Sankur, A. Akin. Evidence of cognitive activity in functional
near infrared spectroscopy signal. OSA Optical Techniques in Neuroscience Topical
Meeting, Miami Beach, Florida, USA, April 2004.

5. D. Lesage, J. Darbon, C. B. Akgül. An E�cient Algorithm for Connected At-
tribute Thinnings and Thickenings. International Symposium on Visual Computing
(ISVC'06), Springer LNCS Series, vol. 4292, pp. 393-404, Lake Tahoe, Nevada,
USA, November 6-8, 2006.

6. J. Darbon, C. B. Akgül. An E�cient Algorithm for Attribute Openings and Clos-
ings. Proceedings of the 13th European Signal Processing Conference (EUSIPCO'05),
Antalya, Turkey, September 2005.

7. C. B. Akgül, B. Sankur, A. Akin. Evidence of cognitive activity in functional op-
tical signals. IEEE 12th Signal Processing and Communications Applications (SIU),
Cesme, Turkey, April 2004.

8. C. B. Akgül, B. Sankur, A. Akin. Extraction of cognitive activity related waveforms
from functional optical signals. IEEE 12th Signal Processing and Communications
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9. E. Yörük, C. B. Akgül. Color image segmentation using fast watersheds and PDE-
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