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The major concern of this thesis is the calculation and interpretation of spectral and op-
tical properties of correlated materials within electronic structure techniques using many-
body approaches.

With sizable electron correlations at present, the many-body problem of condensed mat-
ter physics is no longer, even on a qualitative level, describable by standard band-structure
methods that treat the system under consideration on the basis of an effective one-particle
problem. Today’s state-of-the-art approaches therefore combine genuine many-body tech-
niques with established band-structure methods, to treat correlation effects of a subset of
orbitals in a more accurate fashion.

A powerful many-body approach is the dynamical mean-field theory (DMFT), which
has, in particular, enlightened our understanding of the Mott transition. With its realistic
extension, the combination LDA+DMFT with density functional theory (DFT) in the
local density approximation (LDA), the calculation of the electronic excitation spectrum
of previously untreatable systems has become possible. To put our work into context,
the first part of this thesis gives a general introduction to the field of modern electronic
structure calculations.

Though LDA+DMFT has led to considerable insight into correlated materials, the
number of experimental observables that are calculable within the scheme is until now
rather restricted, and most works have limited themselves to the local spectral function,
which is in principle accessed by (inverse) photoemission spectroscopy.

In the second part of the thesis we extend the variety of physcial quantities that can
actually be calculated, by introducing an analytical continuation scheme that will enable
us to derive the real-frequency LDA+DMFT self-energy from imaginary time quantum
Monte Carlo calculations in the most general (cluster) context. As we will see, the self-
energy itself already renders the interpretation of numerical DMFT data more transparent.
Within some approximation, it furthermore allows for the calculation of linear response
functions. In this vein, the second emphasis of the technical development in this thesis is
on optical properties, in particular the calculation of the optical conductivity for realistic
LDA+DMFT calculations. For the latter we have devised a formalism that relies on a
formulation of the solid in terms of a localized basis set. The commonly used Peierls
substitution approach for the coupling of the light field to the solid is generalized to the
case of multi-atomic unit cells. This will result in an approach of great versatility, since
the entire formulation is independent of the underlying electronic structure method.

The third part of the thesis is devoted to applying the newly developed tools to actual
compounds of physical interest.

In the case of vanadium dioxide, VO2, we focus on the nature of the insulating low
temperature phase and its degree of correlation with respect to the metallic phase. Indeed
we find that while the latter is characterized by strong signatures of correlations, the for-
mer is, as concerns its excitation spectrum, close to a description within a one-particle
approach, that we will define. Our picture of the insulating phase emerges as a “many-
body Peierls” scenario, in which correlations are at the origin of the insulating behaviour,
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yet, without causing appreciable lifetime effects in spectral properties. In a full-orbital
setup that goes beyond the downfolded description, we calculate the optical conductivity of
both, the metallic and the insulating phase, and find our theoretical result in satisfactory
agreement with recent experiments. From the conductivity we, in particular, deduce the
colour of the compound.

A compound that has been considered as a textbook example of a Mott-Hubbard tran-
sition is vanadium sesquioxide V2O3. In our analysis, we find a correlation enhanced
crystal-field splitting at the origin of its metal to insulator transition that occurs upon
Cr-doping. Besides making predictions for angle-resolved photoemission experiments, we
further evidence an orbital selectivity in the quasi-particle coherence temperature, which
will in particular allow for an understanding of the temperature dependence of recent opti-
cal measurements. Indeed, all qualitative features of the experimental data are reproduced,
which thus allow for an interpretation from the point of view of our electronic structure
calculation.

Finally, we study the optical properties of the light rare-earth sesquioxide series RE2O3

(RE=Ce, Pr, Nd, Pm). These compounds are wide-gap Mott insulators that are not well
described in density functional theory, due to the localized character of the RE4f orbitals.
In our analysis, we, in particular, track the influence of these localized 4f orbitals as a
function of the filling along the rare-earth series and find quantitative agreement for the
evolution of the optical gap and a reasonable overall shape of the optical conductivity.

Paris, July 2007
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Chapter 1

Correlated Materials

A Physics of strongly correlated materials

Ideal solids are composed of a regular array of charged nuclei or motifs thereof. When
neglecting dynamic lattice deviations, which are an important subject on their own, the
Hamiltonian of the system and the translation operator have common eigenstates, which
leads to the very foundation of solid state physics, namely Bloch’s theorem.

That solids are stable with respect to their isolated constituencies is owing to the fact
that the bonding lowers the free energy of the system. However not all electrons partake
in the bonding. Electrons that are tightly bound to the ionic cores are indeed more
akin to atomic-like orbitals, and only modify the periodic potential seen by all the other
electrons. It is the latter, called valence electrons, that are preponderantly determining
the electronic, magnetic, optical and thermal properties of the system.

Within the independent particle picture, the periodicity of the lattice results into an
excitation spectrum that is discrete and exhibits allowed and forbidden regions. This
eventuates in the formation of a band-structure. According to the Pauli principle, each
“band” can accommodate two electrons with opposite spins. The energy up to which the
bands are filled is called the Fermi level. Herewith one may distinguish very roughly two
different kinds of solids : In insulators, the Fermi level falls into a forbidden region, which
needs to be overcome when exciting the system. In a metal, the density of states at the
Fermi level is finite, accounting for the itinerant behaviour of the charge carriers.

However, nature is considerably more complicated than the independent particle pic-
ture. Yet, in case of only moderate correlations, Landau theory allows for the casting of
interaction effects of low-energy excitation states into particle-like entities called quasi-
particles, which are again independent. These quasi-particles are only accounting for
the coherent part of the spectrum, the incoherent spectral weight is intrinsically beyond
Landau theory of Fermi liquids.

With considerable correlations at present, even the quasi-particle concept breaks down.
All in all, correlations are at the origin of a very rich panoply of phenomena that are
beyond any one-particle theory. This is in particular true for transition metals, their
oxides and rare earth or actinide compounds, since their d and f orbitals are closer to the
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1 PHYSICS OF STRONGLY CORRELATED MATERIALS CHAPTER 1. CORRELATED MATERIALS

nucleus than other orbitals. This is especially verified for the 3d and 4f orbitals, as their
orthogonality to other orbitals can be assured by the angular part of their wavefunctions,
since they are the lowest orbitals for the given angular quantum number. Therewith these
orbitals do not behave like regular bond forming orbitals. Yet, they are not completely
localized either. Indeed they struggle between localization and itineracy.

A signature of this is already found in crystal properties. Indeed when filling a shell
of electrons that do not contribute to the bonding, the unit-cell volume does not change
significantly. This is e.g. the case for the Lanthanide series (see however Chapter 7 for
what is called the lanthanide contraction). When following the transition metal series Lu,
Hf–Au, on the contrary, the volume strongly depends of the filling of the 5d shell, and is
roughly parabolic with a minimum at about half-filling, which can be understood from a
consideration, due to Friedel, in which a flat density of states with low lying bonding and
high lying anti-bonding states gets gradually filled.

A high degree of localization is concomitant with two characteristics. On the one hand,
the hopping elements between different atoms, given by the matrix elements of the kinetic
operator will be small, resulting in narrow bands in the one-particle picture. Moreover,
the localization yields a large Coloumb repulsion for electrons of the same atom. When
integrating out uncorrelated orbitals and limiting the interactions of the correlated ones
to the local contributions, one ends up with a description of the solid in terms of the
Hubbard model, as will be derived in the next section.

This model, though appearing simple at first sight, contains highly non-trivial physics.
The Hubbard model manifestly describes the struggle between itineracy and localization
of the charge carriers : While the kinetic part of the Hubbard model is diagonal in
momentum space, corresponding to the itinerant character of charge carriers, the local
Coulomb interaction term is diagonal in real-space, reminiscent of atomic-like physics.

Herewith, the many-body implications allow for the realization of insulating behaviour
beyond the band-insulator, namely the Mott insulator. The concept of the latter is
actually quite simple and does not require the quantum-mechanical machinery needed
to explain a band-insulator : Beyond a certain ratio of interaction over bandwidth, the
Coulomb repulsion prevails upon the itineracy of the charge carriers and localizes them
on their atomic sites. As a consequence, an insulator can be stabilized for an integer
occupation. This is called the Mott phenomenon. Apart from the completely filled and
empty orbital, band-theory would always predict metallic behaviour in these cases.

As a matter of fact this concept is realized in actual compounds. Prominent examples
can be found among transition metal oxides, rare-earth compounds and actinides. Some
examples of materials that exhibit a behaviour that is beyond standard electronic structure
methods are :

• The d1 systems LaTiO3 or YTiO3 that are metals within band-theory, while pho-
toemission experiments clearly evidence a charge gap. Indeed these systems are
Mott insulators, and are well described in modern many-body theories [Pavarini
et al. (2004)].
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CHAPTER 1. CORRELATED MATERIALS 2 THE HUBBARD MODEL

• Other transition metal oxides that exhibit a metal-insulator transition, such as VO2,
V2O3. See Part III.

• δ-Plutonium, in which the unit-cell volume is underestimated by about 30% in band-
structure methods. Also this can be improved on with the many-body techniques
that we introduce below [Savrasov et al. (2001)].

B The Solid in a localized basis :

The Hubbard model as caricature

The Hamiltonian for the electronic degrees of freedom of a solid can be written as

H = H0 + Hint (1.1)

where we have separated into the one-particle part

H0 =
∑

σ

∫
d3r Ψ†

σ(r)

[
− ~2

2m
∆ + V ion(r)

]
Ψσ(r) (1.2)

that contains the kinetic energy as well as the ionic potential. When denoting the
electron density by nσ(r) = Ψ†

σ(r)Ψσ(r), the interaction part of the Hamiltonian reads

Hint =
1

2

∑

σσ′

∫
d3r

∫
d3r′ nσ(r)V ee(r, r′)nσ′(r

′) (1.3)

which we have restricted to two-body interactions only. As a matter of fact, the influence
of this term on a mean-field level, i.e. by decoupling the two-particle term into AB →
A〈B〉 + 〈A〉B − 〈AB〉, can be cast into a local effective one-particle potential veff [ρ](r),
that can be absorbed into the one-particle part of the Hamiltonian. Therewith, however,
the effective potential is a functional of the ground state density ρ(r) =

∑
σ〈nσ(r)〉H, and

has thus to be determined in a self-consistent manner, as is the usual case for mean-field
type theories. As we shall see below in Section A, Chapter 2, that this is closely related
to the concept of density functional theory (DFT). With this Equation (1.2) becomes

H0 =
∑

σ

∫
d3r Ψ†

σ(r)

[
− ~2

2m
∆ + V ion(r) + veff [ρ](r)

]
Ψσ(r) (1.4)

the residual interactions of Equation (1.3) are (see e.g. [Auerbach(1994)])

nσ(r)Ṽ
ee(r, r′)nσ′(r

′) =

nσ(r)V
ee(r, r′)nσ′(r

′)−
(
veff [ρ](r)ρ(r′) + veff [ρ](r′)ρ(r)

)
/Ne (1.5)

5



2 THE HUBBARD MODEL CHAPTER 1. CORRELATED MATERIALS

This remaining term is a true two-particle interaction. Throughout this manuscript
we shall refer to “correlation effects” as being caused by interaction influences that are
beyond any such mean-field treatment. This thus constitutes a definition of “correlations”.
Band theory methods try to optimize the effective potential veff , but completely ignore
the remaining interaction Ṽ ee.

The above formulas are defined in the continuum. We chose to develop the field
operators into a localized “Wannier”-like basis χRL(r) :

Ψσ(r) =
∑

R,L

χRL(r)cRLσ (1.6)

Here, L= (n, l,m, γ) is a combined index denoting orbital (n, l,m) of atom γ. The real
space positions of the atoms are thus given by the sum of the unit cell coordinate R
and the displacement within the unit cell ργ1. With this, the above Equation (1.2),
Equation (1.3), can equivalently be written :

H0 =
∑

RR′,LL′,σ

tLL
′

RR′ c
†
RLσcR′L′σ (1.7)

Hint =
1

2

∑

RR′,TT′

∑

LL′,MM ′

∑

σσ′

ULL′MM ′

RR′TT′ c
†
RLσcR′L′σc

†
TMσ′cT′M ′σ′ (1.8)

where we have defined the real-space hopping amplitudes

tLL
′

RR′ =

∫
d3r χ∗

RL(r)

[
− ~2

2m
∆ + V ion(r) + veff [ρ](r)

]
χR′L′(r) (1.9)

and the interaction parameters

ULL′MM ′

RR′TT′ =

∫
d3r

∫
d3r′ χ∗

RL(r)χ
∗
TM(r′)V ee(r, r′)χT′M ′(r′)χR′L′(r) (1.10)

In state of the art methods for strongly correlated materials2, the one particle part
of the Hamiltonian is provided by a band-structure calculation, which is assumed to
reasonably take into account longer range interactions. Then the most important residual
interactions, that are to be treated with a true many-body technique, are identified as
the local ones. The above Coulomb interaction is not explicitly spin dependent. Yet the
different possible symmetry combinations of the wavefunctions lead to an effective spin
dependence, resulting in the well-known Hund’s rule coupling. Thus, when constraining

1The choice of basis is of course arbitrary at this point, yet, as we shall see later on in Section C,
Chapter 2, a basis with well-defined momentum is best suited for the dynamical mean-field approach, on
which will rely most of the work in this thesis.

2anno 2007.
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CHAPTER 1. CORRELATED MATERIALS 2 THE HUBBARD MODEL

the interaction further to only density-density terms, the Hamiltonian of the system can
be written as

H =
∑

k,LL′,σ

HLL′

0 (k)c
†
kLσckL′σ +

∑

R,LL′,σσ′

Uσσ′

LL′nRLσnRL′σ′ (1.11)

which is nothing else but the multi-orbital generalization of the famous Hubbard
model [Hubbard(1963),Gutzwiller(1963),Kanamori(1963)]. Derived from the continuum
formulation of a solid, the latter now is a lattice model, in which electrons can hop from
one discrete site to another, and subjected to a purely local Coulomb repulsion that sanc-
tions double occupations. All continuous dependencies have been cast into the matrix
elements that constitute the hopping amplitudes and the interaction parameters.

In the last formula we have further Fourier transformed the kinetic part of the Hamil-
tonian. This clearly shows the dilemma of the model : While the one-particle part is
diagonal in momentum space, the interaction is diagonal in real space. Therewith the
model has so far resisted any attempt of finding an exact solution beyond the special case
of one dimension.
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Chapter 2

Theories for the Many-Body Problem

In (quantum) many-body physics exact results are scarce and limited to very special
cases. While being able to write down the Schrödinger equation of an arbitrary system,
the determination of even its stationary solution is, in general, beyond the scope of any
analytical or computational method. While making statements about small finite systems
might still be possible, the exponential growth of degrees of freedoms with the system size,
quickly makes any computational approach, led alone by-hand calculations, unfeasible.
Thus, while often being capable to conceive a complete set of equations that governs the
system under consideration, modern physics entirely depends on finding intelligent ways
to make controllable approximations to it, such as to be able to extract the essence of
the ongoing processes. It is indeed the spirit of physics to seek simplified models, from
which it is possible to extract selected phenomena that are inherent to the overwhelming
diversity of nature.

A paramount concept in this vein is the introduction of a reference system, which
is both, simple enough to be resolved, yet sufficiently sophisticated to exhibit a close
resemblance with the initial problem under the view point one is interested in. More well
controlled approaches, in the sense that they allow for an assessment of their reliability,
have as a general strategy to find a small parameter in the full problem. Then, the
reference system is identified as the original problem with the parameter being set to
zero. Provided the reference system proves solvable, a perturbative expansion in the small
parameter may be endeavoured.

In this thesis we will employ three approaches to the many-body problem :

Density functional theory (DFT) within the local density approximation
(LDA). The Hohenberg-Kohn theorem of density functional theory (DFT) allows for
the exact mapping of the many-body problem onto an effective one-particle reference
system which includes a specific potential. The latter, called the Kohn-Sham potential, is
constructed such as to reproduce the local density of the true system. Herewith all ground
state observables become accessible. Since however, the Kohn-Sham potential is unknown,
one is obliged to make further approximations. In the local density approximation (LDA),
for example, the potential is taken from a homogeneous electron gas of the same density.
This will be detailed in Section A.
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1 DENSITY FUNCTIONAL THEORY (DFT) CHAPTER 2. THE MANY-BODY PROBLEM

Perturbation theory and the GW approximation. In the case of the Hubbard
model, Equation (1.11), two perturbative approaches are obvious : One can start from
the atomic limit (t = 0) and expand in the hopping amplitude t, which is called a strong
coupling approach. In a weak coupling expansion, on the other hand, the reference system
corresponds to the non-interacting limit (U = 0), and the Coulomb interaction U is treated
as a perturbation. By Dyson’s equation this eventuates in the well-known diagrammatic
expansion of the electron self-energy. The GW approximation that we will use for some of
our calculations, and which we introduce in Section B, is such a weak coupling expansion,
albeit in a slightly modified interaction parameter as will be explained below.

Both perturbative techniques of course have their merits and flaws. Important phe-
nomena in condensed matter physics cannot be elucidated with either of the two precedent
expansions. Outstanding examples are (high Tc) superconductivity and the Kondo effect.
Both require a methodology that is non-perturbative in the interaction parameters.

Dynamical mean field theory (DMFT). As a matter of fact, beyond the obvi-
ous parameters of the kinetic and interaction energies there is another potentially small
parameter : The inverse of the spatial dimension d, or the inverse lattice coordination.
Indeed, zeroth order expansions in 1/d lead to the well-known concept of Mean Field The-
ories (MFT). There, local variables are replaced by their average values (“mean field”).
This average has to be determined in a self-consistent manner, such that it produces the
best local representation of the full problem. Intuitively, this approach becomes better,
with a growing number of interacting particles, since by the central limit theorem, fluc-
tuations around the mean values decrease. In dynamical mean field theory, as discussed
in Section C, the reference system, in the above sense, is an atom that is coupled to a
self-consistently obtained energy-dependent medium. In other words, the reference is an
Anderson impurity model [Anderson(1961)] with an effective hybridization function. The
merit of mean field theories, in general, is that they are non-perturbative in the interac-
tion strength. They can thus be applied within the entire phase diagram of a model with
somewhat equal justification1.

A Density Functional Theory (DFT)

We discussed in Section B, Chapter 1 that some parts of the many-body interactions,
namely their mean-field approximation, can be cast into an effective one-particle potential
veff [ρ](r). The addition “effective” refers to the fact that the potential itself depends on
the ground state density ρgs, and has thus to be determined self-consistently. Yet, beyond
this potential, true many-body interactions persist.

We shall see that within the Kohn-Sham approach to Hohenberg-Kohn density func-
tional theory, as far as the calculation of ground state properties is concerned, there exists

1Yet, we note that in the vicinity of a phase transition, such as the Mott-Hubbard one, non-local
fluctuations become important. In this vein the non-perturbative single site dynamical mean-field theory
is a less good approximation in the transition region than it is deep within the Fermi liquid or the Mott
insulating regime.
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an effective one-particle potential such that the entire many-body problem becomes sepa-
rable, and one ends up with the task of solving one-particle Schrödinger equations subject
to a self-consistency condition for the effective potential.

This enormous simplification of the many-body problem, though being in principle
rigorous for the ground state, requires certain approximations in actual calculations. Still,
for numerous classes of compounds this scheme proved reliable and ever since enjoys a
great popularity. Yet, this thesis would be futile if band-structure methods were perfect.
For reviews on DFT see e.g. [Jones and Gunnarsson(1989),Dreizler and Gross(1990)].

A.a The Hohenberg-Kohn theorem

In a nutshell, the Hohenberg-Kohn theorem [Hohenberg and Kohn(1964)] states

• The existence of a one-to-one mapping between a given external potential vext

and the ground state density ρgs. When considering the ground state energy as
a functional of the external potential, this can be viewed as a Legendre trans-
form [Lieb(1983)].

• The fact that for any observableO, the ground state expectation value is a functional
of the ground state density only : 〈O〉gs = FO[ρgs]
This is quite akin to the Green’s function formalism, in which the ground state and
the excited state expectation value of any one-particle operator can be calculated
from the knowledge of the one-particle Green’s function.

• A variational principle for the ground state energy Egs = E[ρgs], namely that Egs <
E[ρ] for all ρ. This follows from the Rayleigh-Ritz variational principle.

Though no miracles appear in the derivation, the apparent simplifications of the many-
body problem are tremendous : For ground state properties all interactions2 are equivalent
to an effective one-particle potential. Density functional theory within its realm of ground
state properties is exact.

The major catch to the above scheme is the following : First of all, the Hohenberg-Kohn
theorem is non-constructive, since it proofs the existence of an effective potential, yet, gives
no indication on how to calculate it. In practice one is forced to employ approximations.
These approximations, one of which we will briefly mention in the next subsection, are
not completely well-controlled and may lead to even qualitatively wrong results.

The Hohenberg-Kohn effective potential is unknown. A strategy to minimize the
ignorance thereof is to take out parts of it that are known, in the same spirit as was
done with the mean-field terms in Section B, Chapter 1. The hope is that this procedure
renders the actual ignorance “smaller”. In the work of [Hohenberg and Kohn(1964)], the
energy functional of the ground state density was split into :

Egs[ρ] = 〈P 2/2m〉gs +

∫
d3r vext(r)ρ(r) +

1

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′| + Exc[ρ] (2.1)

2Not only the mean field-like ones
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where the first part is the expectation value of the kinetic energy (of the many-body
system), the second terms an external potential, the third the Hartree contribution to
the interaction, and the fourth term, finally, defines the exchange correlation energy Exc
which is the unknown quantity of DFT.

A.b The Kohn-Sham equations

So far, if one was to perform a DFT calculation, once an approximation for the exchange
correlation energy is chosen, one would perform a variational computation of the ground
state energy with respect to the density.

In [Kohn and Sham(1965)] was proposed an approach that leads a different calculation
scheme, which, ever since, has enjoyed a great popularity. The idea to introduce a reference
system of non-interacting nature and to minimize the lack of knowledge of the exchange-
correlation energy. This procedure brings back into play the Schrödinger equation. Indeed,
if we assume the existence of a fictitious non-interacting system that, subjected to an
external potential vKS, has the same ground state density as the interacting system, we
may write the Equation (2.1) as :

Egs[ρ] =
∑

i

〈Φi|P 2/2m|Φi〉+
∫

d3r vext(r)ρ(r) +
1

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′| + Ẽxc[ρ]

(2.2)

where the |Φi〉 is the ground state eigenfunctions of the one-particle reference system of
particle i, and the difference in kinetic energy between the true and the fictitious system,
i.e. the difference to the first term in Equation (2.1), has been cast into a redefined
exchange-correlation energy Ẽxc.

Since, by construction, the above energy functional is stationary with respect to the
true ground state density, one can define the Kohn-Sham potential

vKS[ρ](r) = vext(r) +

∫
d3r′

ρ(r′)

|r− r′| + vxc[ρ](r) (2.3)

with the introduction of the exchange-correlation potential

vxc[ρ](r) =
δẼxc[ρ]

δρ(r)
(2.4)

Herewith, as announced above, the many-body Schrödinger equation becomes separa-
ble and the problem reduces to finding solutions to the independent differential equations :

(
−~2∆

2m
+ vKS[ρ](r)

)
Φi(r) = ǫiΦi(r) (2.5)
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Once a choice on the form of the exchange-correlation potential is made, these have to
be solved self-consistently with the Kohn-Sham potential given by Equation (2.3), where
the density is determined by ρ(r) =

∑
i |Φi(r)|2.

In the end, what is this approach telling us about the many-body problem from the
outset ? In the above sense, a reference system of decreased sophistication was introduced,
tailored to retain the ground state density. Thus, as a matter of fact, the only thing
that the fictitious one-particle problem and the many-body problem have in common is
precisely their ground state density. Neither the spectrum of the operator given by the
kinetic part plus the Kohn-Sham potential, nor the corresponding eigenstates do have any
correspondence to the true problem. They are but auxiliary quantities devoid of physical
meaning. Any procedure that identifies the Kohn-Sham spectrum with the excitations of
the system, or uses the wavefunctions for further calculations, such as for the random-
phase approximation used in the GW, see below, is not well-founded. Still, as we will
mention later, this approach gives surprisingly good results, which is responsible for its
great popularity.

A.c Exchange-correlation potentials and the local density ap-
proximation (LDA)

The exact exchange-correlation potential being unknown, one has to find a reasonable
approximation to it. The most commonly adapted approximation is the one of the local
density :

Exc =

∫
d3r ρ(r)ǫLDAxc (ρ(r)) (2.6)

where ǫLDAxc (ρ(r)) is the exchange-correlation energy density of the homogeneous elec-
tron gas, which thus serves as a reference system, evaluated at the same density as the
true system under consideration, locally evaluated at the position r. Therewith, the en-
ergy density ǫLDAxc [ρ](r), which in general will be a functional of the density becomes a
mere function of it : ǫxc(ρ(r)) . Even though this function is not known analytically, in-
terpolation formulas based on Quantum Monte Carlo studies are available, which makes
this approximation rather handy to use.

Several other approximations to the exchange-correlation potential are in existence,
especially in quantum chemistry. Though some of these might give results slightly closer
to experimental findings, their theoretical foundation is not completely rigorous.

A.d Implementations of DFT – Basis sets

There exist numerous implementations of density functional theory. Beyond the different
exchange-correlation potentials that one might choose from, the approaches differ in par-
ticular in the basis sets that are employed in the calculation. Here we shall only briefly
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mention some aspects, geared to put into perspective the implementations that are suited
for our concerns.

Correlation effects beyond the LDA involve in particular local Coulomb interactions
in the fashion of the Hubbard model. In order to cast the realistic solid into a form like
in Equation (1.11), a description in terms of a localized basis is needed.

A suitable concept is that of Wannier functions [Wannier(1962),Anisimov et al. (2005),
Lechermann et al. (2006)]. Although a transformation between e.g. Wannier functions
and plane wave derived basis sets is in principle possible, there exist electronic structure
techniques that directly work in a minimal and localized basis.

In particular worth mentioning are muffin-tin orbitals (MTO), in the linear version
(LMTO) [Andersen(1975)], and the Nth-order (NMTO) [Andersen and Saha-Dasgupta(2000)]
ones. Here we are not going into details, but only mention merits and weaknesses of these
approaches. With well-chosen muffin-tin radii, L/NMTO codes may reach the same de-
gree of precision, when comparing with plane wave techniques. Yet, there are undeniable
advantages on the side of the muffin tin orbitals. Foremost, the orbitals form an adaptive
minimal set of basis functions, which means that orbital matrices, like the Hamiltonian
have a smaller size, than when using plane waves. This is in particular true for orbitals
with a high degree of localization, for whom a lot of plane waves are needed to describe
them. Moreover, since the L/NMTO functions are atomic like, they have a well-defined
momentum. As we have said in the introduction the size of matrix elements of the lo-
cal Coulomb interaction are expected to depend largely on the orbital character. As to
the localization of the orbitals, NMTO function are about as localized as maximumally
localized Wannier functions [Marzari and Vanderbilt(1997),Lechermann et al. (2006)].

A.e Merits and shortcomings of DFT-LDA

Practical implementations of density functional theory, especially in the local density
approximation, enjoy great popularity in the solid-state community. This is first of all
because of the fact that for wide classes of materials this approach yields astonishingly
good results with respect to experiment for e.g. the crystal structure. A further advantage
of DFT undeniably is that computations are reasonably fast and thus the applicability to
more and more complex systems becomes feasible with growing computer power.

However, DFT is a theory for the ground state, while experiments that probe the
electronic structure, such as photoemission, optics or transport, inevitably measure the
excitation spectrum of the system. In the above we indeed stressed that within the Kohn-
Sham scheme, both eigenvalues and wavefunctions of the effective one-particle problem
are but auxiliary quantities, bare of a well-founded physical meaning. Still, the Kohn-
Sham scheme makes it very tempting to identify the Kohn-Sham energies with the true
excitations. This strictly speaking unjustified procedure often yields reasonable results,
which is why this identification has become a tacit habit.

Yet, since implementations of DFT have to resort to approximations, such as the local
density approximation (LDA), since, even if DFT predicts the existence of an effective one-
particle potential, its precise form is unknown. This leads in many cases to contradictions
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with experiments, even as far as ground-state properties are concerned. Most problematic
are systems with open 3d- or 4f-shells, such as transition metals and their oxides or
rare-earth compounds, whose electrons struggle between itineracy (band-picture) and
localization (Mott insulator [Imada et al. (1998)]). Thus, DFT-LDA e.g. fails in describing
the volume of δ-Pu [Savrasov et al. (2001)], and the phase-diagram of the vanadium
oxides V2O3 and VO2, two famous examples of compounds that undergo metal-insulator
transitions (MIT) as a function of doping, pressure or temperature which will be our
concern in Part III.

For such materials one needs to go well beyond the LDA for capturing correlation
effects. Two common approaches are discussed in the next sections.

B GW

B.a Hedin’s equations

New insights into old problems can often be gained by looking at them from a different
perspective or by reformulating them in another language. Using a Green’s function
formalism, [Hedin(1965)] found a set of coupled equations, whose solutions would yield
the exact answer to the many-body problem. The key quantities are the one-particle
Green’s function G and the screened interaction W , in terms of which will be given the
electron self-energy Σ, whence the name of the scheme.

Here we shall state Hedin’s equation without derivation. For details see the original
work [Hedin(1965)] or the reviews [Aryasetiawan and Gunnarsson(1998), Hedin(1999),
Aryasetiawan(2000),Onida et al. (2002)].

In the following, all space-time dependencies are written in terms of the combined
index 1 = (r1, t1).

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (2.7)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (2.8)

P (1, 2) = −ı
∫

d(3, 4)G(1, 3)Γ(3, 4, 2)G(4, 1+) (2.9)

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P (3, 4)W (4, 2) (2.10)

Σ(1, 2) = ı

∫
d(3, 4)G(1, 3+)W (1, 4)Γ(3, 2, 4) (2.11)

We note again that the above coupled equations are exact. It is so far not completely
clear, whether the above equations allow for a recursive solution, in which one starts with
a guess for the Green’s function G and the self-energy Σ, and obtains a new G and Σ by
going through the GW cycle, that are then used to compute a first correction to the vertex
Equation (2.8). This might be iterated until self-consistency. Yet, the above equations
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prove quite formidable, not only from the point of view of numerical cost, but also due
to the fact that non-causalities may turn up in the course of such an iterative procedure
In this vein, the reformulation of the many-body problem only makes sense at all, when
already a single cycle yields satisfying results.

B.b The GW approximation

The most common and simplest use of the above equations is made by the GW approx-
imation (GWA) [Hedin(1965)]. In this approximation, the Green’s function is initialized
by the non-interacting Green’s function G0, into which one might incorporate the interac-
tions on a mean-field level by a suitable potential, and the starting self-energy by Σ = 0.
Therewith the above equations simplify to

G(1, 2) = G0(1, 2) (2.12)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (2.13)

P (1, 2) = −ıG(1, 2)G(2, 1+) (2.14)

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P (3, 4)W (4, 2) (2.15)

Σ(1, 2) = ıG(1, 2)W (2, 1+) (2.16)

This is also known as G0W0. We see that the self-energy is given by a Hartree-Fock-
like expression, albeit with a dynamically screened interaction W, which, as apparent
from above, is calculated using a random phase approximation (RPA) polarization. On
general grounds nothing justifies rigorously the applicability of this scheme, it is the actual
ability of the GWA to yield results in close agreement with experiment for some classes
of materials, which establish the use of the approach. Intuitively, one might say that an
expansion in the screened interaction W should be more sensible than an expansion in
the bare interaction at a given order, due to the reduction of the interaction by screening
processes. However, the diagrammatic expansion is not well-defined term by term, since
it is not absolutely convergent. A merit is the fact that dynamical effects are partly being
captured by the RPA polarization. For the example of the Hubbard molecule, we e.g.
show in Appendix B that indeed G0W0 is much superior to a Hartree-Fock treatment,
since it captures most of the qualitative features of the exact solution in the low and
intermediate coupling regime.

B.c Further remarks

Several remarks are to be made : The result of the G0W0 approach evidently depends
on the “non-interacting” starting point G0. In realistic calculations some material specific
input has to be chosen. What is normally done is to use a Green’s function obtained from
an LDA calculation and to compute a self-energy correction to the local density exchange
correlation potential. This we will employ for the insulating phase of VO2 in Section C,
Chapter 5. Yet, since band-gaps are notoriously underestimated within LDA, a simple
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loop of the GW equations may prove insufficient to capture the correction that the GWA
might be able to give.

Another point is that the G0W0 is a technique that does not conserve the particle
number [Schindlmayr(1997)] and thus the chemical potential is ill-defined. Though a
“limited degree of self-consistency” [Hedin(1965), Schindlmayr(1997)], namely such as to
align the chemical potential in a way that the one of the non-interacting and the inter-
acting Green’s function coincide yields improved spectral functions, this is seldom done
in realistic calculations, mainly due to the numerical cost.

Nowadays, several paths are pursued towards a self-consistent GWA : While still keep-
ing the order of the perturbation, one tries to get rid of the starting point dependency.
In an application to NiO, a self-consistency scheme was applied in which from the GW
calculation a non-local potential for the d-orbitals was deduced, that was fed back into the
LDA. This procedure was found to considerably improve results with respect to one-shot
calculations [Aryasetiawan and Gunnarsson(1995)]. Promising results were also obtained
from the quasi-particle self-consistent scheme [van Schilfgaarde et al. (2006)], which is
quite akin to the aforementioned work. Here a frequency-independent and hermitian
approximation to the full GWA self-energy is used to compute new starting eigenvalues
and eigenfunctions for a next GWA iteration. Herewith the starting point still remains a
one-particle one, but the result of a GWA iteration becomes independent from the LDA
initialization. A slightly different approach was used in [Bruneval et al. (2006)].

C Dynamical Mean Field Theory (DMFT)

Here we shall briefly review the dynamical mean field theory (DMFT). We will put our
emphasis on conceptual points only, derivations and further details can be found in numer-
ous reviews [Georges et al. (1996),Vollhardt(1991),Georges(2004),Pruschke et al. (1995),
Bulla(2006)].

C.a From the Weiss mean-field to the quantum impurity

Characteristics of a mean field theory. The general spirit of a mean field the-
ory for lattice models is to replace the lattice by a single site, and to cast all non-local
degrees of freedom, i.e. the couplings between the sites, into an effective background, the
“mean field”. The latter is then determined by the request that the single site reference
system reproduces the expectation value of a chosen observable of the initial lattice prob-
lem. Besides possible representability issues3, this procedure is completely general and
involves no approximations; it is but a reformulation of the original problem. However,
the construction so far requires the solution of the initial model in order to fulfill the con-
straint for the effective medium. The mean field approximation now consists in identifying
the above observable of the single-site system with the local component of the respective
lattice quantity.

3whether the expectation value of the chosen observable is obtainable from a local model.
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This procedure becomes in fact exact in the limit of infinite dimensions, which is a
result of the central-limit theorem. Indeed, in the case of the Ising model, one realizes that
when scaling the nearest neighbour interaction J with the inverse spatial dimension 1/d,
the deviation of the mean-field from the true local field becomes of the order of 1/

√
d, and

thus vanishes in the d→∞ limit. For a pedagogic discussion, see e.g. [Georges(2004)].

The Hubbard model in infinite dimensions. Investigations of the Hubbard
model in infinite dimensions also yielded important simplifications : The self-energy be-
comes completely local, i.e. independent of momenta [Müller-Hartmann(1989)], which
greatly simplifies diagrammatic expansions. The scaling of the hopping parameters in the
d→∞ limit was found to be t = t∗/

√
2d [Metzner and Vollhardt(1989)].

Yet, though simplifications occur, the Hubbard model in infinite dimensions remains
a non-trivial model. The reason is that, while in the Ising model, the non-locality of the
interactions results in an effective reference system of non-interacting spins, the d → ∞
reference system of the Hubbard model remains an interacting quantum system.

The quantum impurity model and DMFT. A crucial step in the development
of DMFT was the discovery that this reference system is in fact a quantum impurity
model [Georges and Kotliar(1992)] : The solid is replaced by an atom that dynamically
couples to a bath of free electrons that is determined self-consistently.

The notion of a dynamics accounts for the occurrence of retardation effects for electrons
that hop between the single site and the bath. Indeed, for the Hubbard model, the action
of the impurity model reads :

Simp = −
∫ β

0

dτ
∫ β

0

dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) + U

∫ β

0

dτ n↑(τ)n↓(τ) (2.17)

where c†σ, cσ are the Grassmann variables associated with the impurity creation and
annihilation operators, and nσ = c†σcσ is the corresponding occupation. The impurity
self-energy Σ(ıωn) is related to the impurity Green’s function

Gσ(τ − τ ′) = −〈T cσ(τ)c†σ(τ ′)〉Simp (2.18)

and its non-interacting equivalent G0(ıωn) by Dyson’s equation :

Σ(ıωn) = G−1
0 (ıωn)−G−1(ıωn) (2.19)

The lattice Green’s function, on the other hand is defined by

G−1
lattice(k, ıωn) = ıωn + µ− ǫk − Σlattice(k, ıωn) (2.20)

in which ǫk is the one-particle dispersion, and Σlattice(k, ıωn) the lattice self-energy.

The DMFT approximation now consists, as was described above for a mean-field theory
in general, by identifying the impurity self-energy with the local self-energy of the lattice
model :
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Σlattice(k, ıωn) = Σ(ıωn) (2.21)

The self-consistency condition is then given by the requirement that the local lattice
Green’s function Glattice(ıωn) = 1/N

∑
kGlattice(k, ıωn) coincides with the Green’s func-

tion of the impurity :

G(ıωn) =
1

N

∑

k

[ıωn + µ− ǫk − Σ(ıωn)]
−1 (2.22)

The equations (2.18), (2.17), (2.19) and (2.22) form a closed set, which in practice is
iteratively solved.

The most intricate problem in this scheme is the solution of the impurity problem, i.e.
the computation of the Green’s function from Equation (2.18). However, there is quite a
variety of techniques available, that were mostly developed already for the context of the
Anderson impurity problem. In this work, which is mainly concerning realistic, i.e. multi-
band or cluster calculations, exclusive use is made of a quantum Monte Carlo algorithm
that is due to [Hirsch and Fye(1986)]. Further we will use data from L. V. Pourosvskii
that were obtained from a Hubbard-I solver [Hubbard(1963)]. For a discussion of these
and other techniques we refer to the literature [Georges et al. (1996)].

Limits in which DMFT becomes exact. Besides the case of infinite dimensions,
the dynamical mean field theory becomes exact in two other limits :

In the non-interacting limit (U = 0) the self-energy vanishes and the self-consistency
condition, Equation (2.22), shows that the solution of the model is correctly given by the
non-interacting Green’s function G(ıωn) = 1/N

∑
k [ıωn + µ− ǫk]−1 = G0(ıωn).

Moreover, DMFT is exact in the atomic limit. In that case the model consists of
isolated atoms and thus the bath Green’s function Glattice0 equals the non-interacting lattice
Green’s function G0, and thus the self-energy of the lattice and the impurity are equivalent
by construction.

With its non-perturbative nature, DMFT is thus correctly comprising, both the weak
and the strong coupling regime. Therewith the hope arises that it is also is a reasonable
approximation in between these limiting cases. Its dynamical nature indeed allows for
the capturing of multiple energy scales. We will discuss DMFT results on the Hubbard
model and its characteristics in the next section.

Realistic extensions – “LDA+DMFT”. For electronic structure calculations of
correlated materials, one needs to find a way to introduce material specific informations
into the many-body approach that one employs.

The most successful theory that combines standard band-structure methods with the
DMFT is the so-called LDA+DMFT [Anisimov et al. (1997), Lichtenstein and Katsnel-
son(1998)]. In its most basic version, it is from the LDA that one takes the one-particle
part of the Hamiltonian (corresponding to the band dispersion ǫk in the above), which, af-
ter supplementing it with well-chosen Hubbard-type Coloumb interactions is solved within
DMFT.
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Here, we make only some technical remarks, for further details see the reviews [Held
et al. (2003), Biermann(2006), Kotliar et al. (2006), Lechermann et al. (2006)]. When
producing an LDA Hamiltonian for the DMFT calculation, one has to pursue the same
line of reasoning that led to the lattice formulation of the Hubbard model. This means
that the Hamiltonian matrix elements have to be expressed in terms of a localized basis.
Well-suited electronic structure techniques in this vein are muffin tin orbital methods,
such as LMTO [Andersen(1975)], or NMTO [Andersen and Saha-Dasgupta(2000)]. Of
course, one can also use e.g. plane wave codes and transform the result into a Wannier-
type basis [Wannier(1962)] afterwards. Moreover, as stressed in the introduction, the
strength of on-site interactions depends very much on the orbital character. It is thus
favourable to have a description in terms of matrix elements with well defined angular
momentum.

Notwithstanding its failure to treat correlated systems, the LDA is not a theory of
independent particles. In fact, some correlations are already present in the resulting band-
structure. Therefore one has to correct for not accounting these effects twice. Yet, since
the LDA is not particularly well-controlled, approximative schemes have to be applied for
this “double counting”.

In a full LDA+DMFT implementation, there is not only the DMFT self-consistency,
but also a loop over the charge density. Indeed, the DMFT will alter the local density
of the system. This can be fed back into the band-structure code, which, then produces
a new “one-particle” Hamiltonian corresponding to the changed density. See e.g. [Minar
et al. (2005),Pourovskii et al. (2007a)].

Spectral density-functional theory (SDFT). As a matter of fact, dynamical
mean field theory and density functional theory, as say have been discussed above, have
quite notable conceptual similarities :

In DFT, a non-interacting reference system was introduced, which, together with an
effective Kohn-Sham potential, reproduced the local density of the true system. Therewith
ground state observables became accessible. This construction is exact, yet one is obliged
to approximate the effective potential, for example by using the LDA.

In spectral density-functional theory (SDFT) a local reference system is introduced,
and a self-consistent bath Green’s function assures the reproducing of the true local Green’s
function. From the latter, all one-particle observables are calculable. In practical schemes
one has to apply approximations, and DMFT is one of them.

Indeed, all the introduced theories, DFT-LDA, GW, DMFT, and their combinations
can be formulated in a functional language, as was presented for the DFT. For a review
see [Kotliar et al. (2006)].

Quantum Monte Carlo – an impurity solver. There exist numerous techniques
that have been devised for solving an Anderon impurity problem like Equation (2.17). All
of them have their pros and cons.

Here we just put into perspective the approach that was almost exclusively used
thoughout this work, namely a quantum Monte Carlo (QMC) algorithm, in our case
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the one of [Hirsch and Fye(1986)] (HF). This algorithm is based on a discrete Hubbard-
Stratonovich decoupling [Hirsch(1983)] of the interaction term. Besides the original
work, see [Georges et al. (1996)] for details. For the multiorbital case see [Poteryaev
et al. (2007)].

One advantage of the QMC is that it is a numerically exact technique. It is the
statistic and thus the computer time that one is willig to spend which defines the precision.
Moreover it is about the only really reliable technique that can treat multi-orbital and
cluster impurities, though, of course, the numerical cost increases steadily.

There are some disadvantages of the (HF-)QMC that should be mentioned. First, it
is not possible to reach very low temperatures, since the number of auxiliary spins in
the Hubbard-Stratonovich transformation increases; the cost scales with 1/T3. Moreover,
in the case of more than a single-site impurity, a technical problem, known as the “sign-
problem”, occurs. What is needed in statistical methods is a quantity that can be identified
as a probability that is then used to sample within some parameter space. It is in the
cluster case that the quantity that used in the HF-QMC may acquire a negative sign for
specific configurations of the auxiliary Ising spins. For the absence of the sign problem in
the one-impurity case see [Jaebeom Yoo and Baranger(2005)]. Concerning this thesis we
are affected only in the case of the cluster calculations of [Biermann et al. (2005)]. Another
major concern is the fact that the technique works in imaginary time, or frequency and
requires an analytical continuation to the real-frequency axis. We will devote parts of
Chapter 3 to this issue.

C.b The half-filled one band Hubbard model within DMFT :
phase diagram and real-frequency self-energies

Here we shall review the DMFT phase diagram for the half-filled one band Hubbard model
on the Bethe lattice in infinite dimensions, and the corresponding generic properties of
the real-frequency self-energy Σ(ω)4. We will refer to these properties in later chapters
where we will discuss applications to realistic multi-band systems.

Figure 2.2 shows the schematized phase diagram of the Hubbard model at half-filling
in infinite dimensions. The abscissa corresponds to the ratio of the interaction U and the
bandwidth W, while the y-axis indicates temperature. We will discuss in the following
the four major phases of Hubbard model within DMFT. In the absence of correlations
(U/W = 0), the Hubbard Hamiltonian, Equation (1.11), is diagonal in momentum-space
and, hence, the spectral function of a one-band system at a given momentum is a Dirac
distribution and, in particular, the self-energy is zero. The total local spectral function
thus coincides with the density of states, shown in Figure 2.1 for the Bethe lattice in
d =∞.

4The shown self-energies are obtained from the analytical continuation procedure for Quantum Monte-
Carlo calculations, that we will describe in Chapter 3.
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Figure 2.1 : Density of states of the Bethe lattice with half bandwidth W/2=2t=1.0 eV.

Figure 2.2 : Schematic phase diagram of the one band, half-filled Hubbard model within
DMFT. The x-axis is given by the ratio of the interaction U over the bandwidth W. The
y-axis is temperature. From [Kotliar and Vollhardt(2004)].
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With correlations at present, the spectral function is given by

A(k, ω) = −1

π
ℑ 1

ω + µ−H(k)− ℜΣ(ω)− ıℑΣ(ω)

= −1

π

ℑΣ(ω)

(ω + µ−H(k)− ℜΣ(ω))2 + (ℑΣ(ω))2
(2.23)

which can be interpreted as a Lorentzian-like curve. In this vein, the real-part is respon-
sible for the shifting of the non-interacting excitations encoded in the Hamiltonian H(k),
whereas the imaginary part determines their width, as is familiar from e.g. finite life-
time broadening of atomic line shapes. However, the self-energy in the more interesting
cases is far from being constant, but a rather strongly frequency-dependent quantity, that
will account for non-trivial transfer effects of spectral weight within the entire excitation
spectrum.

From the Fermi liquid to the bad metal. In regions of low temperatures and
only moderate interaction strength, the solution to the DMFT equations corresponds to
a Fermi liquid state5.

The theory of Fermi liquids [Pines and Noziere(1965)] is a concept accounting for low
energy excitations only. It describes the influence of correlation effects on the coherent part
of the excitation spectrum by replacing, in a one-to-one correspondence, the low energy
excitations of the interacting electrons by quasi-particles, that resemble free-particles that
possess a renormalized mass. These particles still have well-defined momentum, however
their lifetime is finite, which manifests itself in a broadening of the quasi-particle peak
with respect to the Dirac distribution of the free electrons. According to Fermi liquid
theory, the imaginary part of the self-energy obeys the low-frequency expansion

ℑΣ (ω) = −B
[
ω2 + (πT )2

]
+O

(
ω4
)

(2.24)

As a consequence, infinite-lifetime excitations exist only exactly on the Fermi surface and
at zero temperature. Upon heating, the lifetime of the quasi-particles shortens and fades
away completely beyond the coherence temperature. This is one way of inducing a finite
scattering rate that results in invalidating the quasi-particle concept. Also upon leaving
the Fermi surface and going to higher energies, quasi-particles become less and less defined
and get incoherent.

The low energy development of the real-part of the self-energy is

ℜΣ (ω) = Σ(0) + (1− 1/Z)ω +O
(
ω3
)

(2.25)

where Σ(0) = 0 in the particle-hole symmetric case, as currently considered.

Z = (1− ∂ωℜΣ(ω) |ω=0)
−1 (2.26)

5In the following we will neglect any possible magnetic orderings, thus regarding a system that is
sufficiently frustrated.
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is the quasi-particle renormalization factor, which, in case of a local self-energy also cor-
responds to the inverse of the effective mass enhancement m/m∗. With this the spectral
function Equation (2.23) becomes at low energies

A(k, ω) = −1

π
ℑ Z

ω − Z(H(k)− µ) + ıZB(ω2 + πT 2)
(2.27)

which for a small scattering amplitude (B ≪ 1) is just again a Dirac distribution.
Compared with the free system (Z = 1) the bandwidth gets renormalized down by a
factor Z < 1, and also the weight reduces to Z, which means that the fraction 1 − Z is
transfered to the incoherent part of the spectrum, to which Fermi liquid theory does not
give access.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-3 -2 -1  0  1  2  3

A
(ω

)

ω [eV]

-2

-1

 0

 1

-3 -2 -1  0  1  2  3

Σ(
ω

)

ω [eV]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-3 -2 -1  0  1  2  3

A
(ω

)

ω [eV]

-2

-1

 0

 1

-3 -2 -1  0  1  2  3

Σ(
ω

)

ω [eV]

Figure 2.3 : Spectral functions (left) and self-energies (right) in the Fermi liquid regime
(top), U = 2.0, β = 50.0 in units of the half bandwidth, and the bad metal regime,
U = 2.0, β = 8.0, (bottom), respectively. The real-parts of the self-energy are the solid,
the imaginary parts the dashed lines.

With DMFT, however, one possesses a theory that gives information on the electronic
excitations at all energy-scales, i.e. it gives in particular information on what happens to
the incoherent weight that is lost in the quasi-particle peak.
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In the two top panels of Figure 2.3 is shown the DMFT spectral function (to the left)
and the corresponding self-energy (to the right) for the Fermi liquid regime. Right at the
Fermi level is seen the quasi-particle peak, that compared with the non-interacting case
is narrower, which corresponds to the band-width narrowing by the Z-factor mentioned
above. Yet, for a momentum independent self-energy, the value A(ω = 0) in the one-
band or degenerate case is pinned to its non-interacting value, which means that the
correlations do not modify the Fermi surface [Müller-Hartmann(1989)]. When looking
at the corresponding self-energy, the characteristics of the Fermi liquid are present. As
indicated by the dotted lines, the real-part is linear in frequency around the Fermi-level
and the imaginary part proportional to ω2.

Still, already at rather low energies, the self-energy deviates substantially from its
low-energy behaviour6. In the spectral function, Figure 2.3 top left, we see the famous
three peak structure7 with the preformed Hubbard bands that remind of the atomic limit
of the Hubbard model. The latter thus accommodate the weight 1−Z that is transferred
from lower energies.

In order to produce this spectral function, the self-energy develops features that are
way beyond any low-frequency expansion. While at low energy, the real-part of the
self-energy is linear, with a negative slope, it has at high energy, the same behaviour
as the atomic limit : Σ(ω → ∞) ∼ U2

4ω
8 and approaches the constant Hartree term9.

The matching of these two very different behaviours results in a pronounced frequency
dependence in the intermediate regime, leading to a prominent peak in the imaginary
part (see also Section A, Chapter 3).

Upon heating, thermal fluctuations induce a finite scattering rate even at the Fermi-
level, thus invalidating the quasi-particle interpretation. This is seen in Figure 2.3, bottom
panels, where the temperature is well above the coherence or Kondo temperature of the
system. This scattering rate is seen as a finite value in the imaginary part of the self-energy
at zero energy. This results into the violation of the above mentioned pinning condition,
i.e. the spectral function at zero energy is no longer bound to its non-interacting value,
but is considerably reduced.

The Mott insulator. Above a critical value of the ratio U/W, the one-band Hubbard
model at half-filling becomes a Mott insulator. Actually the transition is of first order, and
thus shows a coexistence region in the phase diagram, Figure 2.2. At high temperature the
transition line ends in a critical point, above which the transition from a high-conductivity
to the high-resistivity phase is continuous. Indeed the phase diagram closely resembles
the one of the liquid-gas transition, casting the phase transition into the Ising universality
class [Kotliar(1999),Kotliar et al. (2000)], and also [Castellani et al. (1979)].

6In passing we note an interesting observation. Namely the that the change in slope of the real-part of
the self-energy induces kinks in the effective band-structure of the interacting system that are of purely
electronic origin [Byczuk et al. (2007),Cornaglia et al. (2007)].

7Which has become somewhat of a mascot of the field of correlated electrons...
8Using the Kramer-Kronig relations, one herewith obtains the sum rule :

∫∞

−∞
dωℑΣ(ω) = −πU2

4
.

9which at particle-hole symmetry at half-filling is zero.
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Since at half-filling, the real part of the self-energy is an anti-symmetric function, it
has to vanish at zero frequency. As a consequence the elimination of spectral weight at the
Fermi level can only be achieved by a divergence of the imaginary part. This results in a
disappearing of the Z-factor. This is known as the Brinkman-Rice phenomenon [Brinkman
and Rice(1970)].
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Figure 2.4 : Spectral functions (left) and self-energies (right) in the insulating regime,
U = 3.0, β = 20 (top) and the bad insulator (semi-conducting) regime, U = 4.0, β = 1.0,
(bottom), respectively. The real-parts of the self-energy are the solid, the imaginary parts
the dashed lines. All parameters in units of the half-bandwidth. The imaginary part of
the Mott-insulating self-energy is a Delta distribution at the origin, while in the bad metal
phase the ℑΣ reaches a finite value at zero frequency.

The top of Figure 2.4 shows an example : The imaginary part of the self-energy is
indeed a Dirac distribution at the origin, and vanishes in the gap otherwise.

An increase in temperature leads to thermic filling of the gap, which is concomitant
with a curing of the divergence in the imaginary part of the self-energy, which, as can be
seen in the bottom of Figure 2.4, reaches a finite value at zero frequency.

In a realistic multi-band setup, the situation becomes more involved. In particular, a
modification of the Fermi surface becomes possible through a local self-energy that causes
charge transfers between different orbitals. Moreover the necessity of a divergent mass for
a Mott transition gets relaxed. Indeed a correlation enhancement of crystal field splittings

26



CHAPTER 2. THE MANY-BODY PROBLEM 3 D YNAMICAL MEAN FIELD THEORY (DMFT)

may cause a shifting of spectral weight and thus lead to the separation of former bands
at the Fermi level. Responsible for this will be the orbital dependence in the real-parts
in the self-energy, which need no longer vanish at zero energy, as was the case for the
half-filled one-band model. We will see actual realizations in Part III.
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Part II

Technical Advances
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This second part presents the technical developments that have been devised and im-
plemented within this thesis. In the first chapter we describe an analytical continuation
scheme, which allows for the deducing of the real-frequency self-energies from general
multi-orbital and cluster Quantum Monte Carlo computations that are performed within
the Matsubara formalism, i.e. in imaginary time or frequency. With this quantity at hand,
the possibilities of numerical LDA+DMFT results will become considerably enriched.

On the one hand, the self-energy itself is much more versatile and also more conducive
to interpretation than the local spectral function. In this vein it becomes for instance pos-
sible to distinguish more accurately between spectral weight that stems from a band-like
excitation from those originating from incoherent satellite features. Sounding rather aca-
demical, this will for instance lead to a modified analysis of the excitation spectrum of the
insulating phase of vanadium dioxide. Thus light can be shed on physical phenomena that
might otherwise remain obscured. This is indeed very important since the understanding
of underlying physical effects is far beyond, and more important, than a mere reproduction
of selected experimental results.

In the same regard, we will introduce some notions of effective band-structures for
interacting systems and discuss which prerequisites have to be met in order to allow for
the latter to make sense. Indeed the artificial notion of a band-structure breaks down in
the presence of correlations10. Yet the intuitive nature of the latter may still, as we will
see in Part III, be helpful in the allocation of spectral weight to distinct characters.

Having the real-frequency self-energy at one’s disposition, it becomes possible, within
some approximations, to calculate response functions. The second chapter is devoted to the
development of a formalism for the optical conductivity within a framework of a realistic
setup for correlated materials, having in particular in mind the LDA+DMFT approach.

Starting from a continuum formulation we seek to devise a practicable working scheme
within a localized description of the system under consideration. We will, first on the
level of a lattice model, derive a generalized Peierls substitution approach for realistic
calculations. In the case of systems with only one atom per unit cell the latter reduces to
the usual Peierls term, namely to a Fermi velocity that is given by a momentum derivative
of the Hamiltonian. The impact of the additional terms in the case of multi-atomic unit
cell is shown to be significant. Further, by re-deriving the Peierls terms starting from
the continuum description, we analyze the appearing correction terms that are beyond the
Peierls approach.

The generalized Peierls approximation will give a handy way to calculate Fermi ve-
locities without the need to compute wavefunction matrix elements other than the Hamil-
tonian. This is a valuable advantage, since the full matrix elements are cumbersome to
compute within a band-structure method that uses localized basis functions. Therewith,
the method is, moreover, independent of the electronic structure approach.

The achievements of this chapter will then be applied to several compounds in Part III,
namely to vanadium di-, and sesquioxide, as well as rare-earth sesquioxides.

10as defined in Section B, Chapter 1



Chapter 3

Spectral Properties of Correlated

Materials

A Technical development and general points

In the first part of this chapter, we will describe a scheme for the analytical continuation
procedure of quantum Monte Carlo data, that will result in self-energies of real frequencies.

Not only do allow the latter a much better starting point for the interpretation of
numerical LDA+DMFT data, but also this makes it possible to calculate physical quan-
tities far more interesting than the local spectral function. Among these are momentum-
resolved spectral functions, and linear response quantities such as transport, the optical
conductivity, and certain Raman modes, provided one neglects vertex corrections. As
a consequence the interface with experimentalists becomes vastly enhanced, facilitating
both the understanding of actual measurements and the assessment whether the theory
captures the physics at work.

The second part of this chapter is devoted to a discussion of interacting excitation spec-
tra and the question to which extent these might be interpreted in terms of an effective
band-structure. Electronic structure calculations are still dominated by the band-picture,
in which excitations are given by eigenvalues of effective one-particle systems, leading to
the familiar spaghetti graphics in the respective publications. As discussed in the intro-
duction, band-theory breaks down when pertinent correlations are at present. Still, this
picture, with its intuitive interpretation, can, in a way, carry over into the realm of strongly
correlated materials, where the spectral function is the appropriate quantity to discuss.
Here we will present how the eigenvalue problem generalizes with a frequency-dependent
self-energy, a procedure that will help the interpretation of numerical LDA+DMFT data
for realistic systems as will be shown in Part III.
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A.a Calculation of real frequency self-energies from quantum Monte
Carlo data

Though there exists a variety of numerical solvers for the impurity problem in the DMFT
cycle, the most popular in the context of realistic calculations is the Quantum Monte
Carlo (QMC) approach. This owes to the fact, that other solvers, like the numerical
renormalization group (NRG), for instance, are impracticable in the case of multi-band or
cluster calculations, or imply additional approximations, as is the case for the non-crossing
approximation (NCA) [Keiter and Kimball(1970),Pruschke et al. (1993a)], or the iterated
perturbation theory (IPT) [Georges and Kotliar(1992)]. Yet, the QMC works within the
finite temperature Matsubara formalism, i.e. either in imaginary time or frequency. For
the computation of experimental observables are, of course, real-frequency results needed.

Provided an analytical form of a function of Matsubara frequencies is known, the
continuation is easily performed by the substitution ıωn −→ ω + ı0+. When it comes
however to the analytical continuation of numerical data, things are much more compli-
cated. If we take, e.g. the one-particle Green’s function, we can write it using the spectral
decomposition :

G(ıωn) =

∫
dω

A(ω)

ıωn − ω
(3.1)

which says that the Green’s function on the Matsubara axis is obtained from the spectral
function A(ω) = −1/πℑG(ω + ı0+) by a Hilbert transform. The inversion of the latter
is rather cumbersome, yet for numerical data without statistical noise, the Padé approx-
imation (see e.g. [Beach et al. (2000)]) can be employed, in which the spectral function
is expanded into a rational polynomial, whose coefficients are then determined by a least
square fit. In the presence of statistical noise, however, any least square fit of this problem
becomes unreliable. Fourier transforming, G(τ) = 1/β

∑
nG(ıωn)e

ıωnτ , yields

G(τ) =

∫
dωA(ω)

e−τω

1 + e−βω
(3.2)

which is a two-sided Laplace transform. The problem of inverting this equation is com-
plicated due to the integration kernel K(τ, ω) = e−τω/

(
1 + e−βω

)
which becomes expo-

nentially small for large frequencies |ω|.
As a consequence, two quite discernible spectral functions A(ω) may still yield Green’s

functions G(τ) that are indistinguishable. Given the intrinsic noise effects in the Quantum
Monte Carlo approach, standard means for analytic continuation yield poor results1.

The most commonly used technique for the analytical continuation of QMC data
is the maximum entropy algorithm (MaxEnt), see [Jarrell and Gubernatis(1996)] for a
review. The technique is based on Bayesian probability theory, which, allows for the

1It seems however that when applying e.g. the Padé approximation not to the Green’s function but
to the self-energy, reasonable results may be obtained from high precision QMC data.
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treating of problems that have a non-unique solution, due to incomplete information.
It incorporates prior knowledge of the desired quantity, such as e.g. positivity and sum
rules. The principle of the method, in a nutshell, is to introduce an entropy term in
the minimization procedure that shifts the minima such as to yield the most un-biased
solution that is compatible with the given constraints. See e.g. [Beach(2004)] for a concise
discussion.

For the continuation of the Green’s function from the Matsubara formalism to real fre-
quency the maximum entropy algorithm has become a standard approach. Yet, it would
be desirable to have also the self-energy on the real-frequency axis. In the DMFT con-
text, this was first envisioned by [Jarrell et al. (1995)] in the model case. In the context of
realistic multi-band calculations, this has however only recently been endeavoured [Bier-
mann(2001), Blümer(2002),Anisimov et al. (2005),Nekrasov et al. (2006)]. In the same
context, the analytical continuation of momentum-resolved spectral functions was first
performed by [Biermann et al. (2004)]2. The calculation scheme that we present here is
still based on the idea of [Jarrell et al. (1995)]. In this work , however, we have extended
the approach to include also off-diagonal elements in the self-energy. Our implementation
thus is sufficiently general to work in the multi orbital cluster DMFT case.

The following sketch outlines the most general form of the continuation procedure :

Gll′(τ)
↓

All′(ω) = −1/πℑGll′(ω + ı0+)
↓

Gll′(ω) =
∑

k

[w + µ−H(k)−Σ(ω + i0+)]−1
ll′ (3.3)

↓
Σll′(ω)

1
MaxEnt

1
Kramers-Kronig transform

1
1
1

root-finding

Starting from the local Green’s function in imaginary time G(τ), one performs the
aforementioned MaxEnt algorithm, yielding the spectral function, which is proportional
to the imaginary part of the real-frequency Green’s function. The real part of this quantity
is related to the former by a Kramers-Kronig transformation. The by far most difficult
step in this scheme is the last one. Whereas in the one-band Hubbard model on the
Bethe-lattice an exact expression for the self-energy in terms of the local Green’s function
exists [Georges et al. (1996)]

Σ(ω) = ω + µ− t2G(ω)− 1/G(ω) (3.4)

2To our experience, an application of the MaxEnt algorithm on momentum-resolved Matsubara
Green’s functions, G(k, τ), yields spectra that are broader, with respect to momentum-resolved spec-
tral functions that are derived from the self-energy on the real-frequency axis.
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a multi-dimensional root-finding procedure [Jarrell et al. (1995)] has to be employed to
solve (3.3) in the general multi-band case.

In the degenerate, diagonal case, the k-sum in (3.3) can be replaced by an integral
over the density of states and one ends up with the simpler task of inverting the Hilbert
transform

Gll(ω) =

∫
dǫ

D(ǫ)

ω + µ− ǫ− Σll(ω + i0+)
(3.5)

as has been considered e.g. in [Blümer(2002)].
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Figure 3.1 : Example for an analytical continuation of the one-band Hubbard model on
the Bethe lattice at half-filling, U = 2.0 and β = 50 (in units of the half-bandwidth).
From the top left to the right bottom : (a) Green’s function in imaginary time G(τ), (b)
spectral function A(ω) = −1/πℑG(ω+ ı0+), (c) the Green’s function on the real frequency
axis G(ω), (d) the real-frequency self-energy Σ(ω). Solid lines indicate the real-parts,
dashed lines the corresponding imaginary parts. The inset shows a comparison between
the original QMC Matsubara self-energy ℑΣ(ıωn) (crosses) with the Hilbert transform,
Equation (3.6), of the analytically continued one shown in the large graph (solid line).

The inverting of Equation (3.3) in the general context is not always easy. In the
non-degenerate case, where one has to work in the matrix formulation, the self-energy
elements are, in particular, coupled. Practically one scans through frequency, starting
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at high energies, where the solution is known and given by the Hartree self-energy, and
consecutively uses the solutions as initial guesses for the root-finder at lower energies.
Indeed, for well converged data, the predominant source of uncertainty of the current
scheme is the MaxEnt procedure that leads to local spectral function.

By a Hilbert transform, the self-energy on the Matsubara axis can be recovered, al-
lowing an assessment of the overall continuation quality :

Σ(ıωn) = Σ(∞)− 1

π

∫
dω
ℑΣ(ω)

ıωn − ω
(3.6)

Moreover, as for the Green’s function, the real and the imaginary part of the self-energy
are connected by the Kramers-Kronig relations

ℜΣ(ω) = Σ(∞)− 1

π

∫
dω′ ℑΣ(ω′)

ω − ω′ (3.7)

ℑΣ(ω) =
1

π

∫
dω′ ℜΣ(ω′)

ω − ω′ (3.8)

allowing for an internal consistency check. Figure 3.1 shows the individual steps for
the analytical continuation of an example calculation for the one-band Hubbard model.

To our knowledge, the inclusion of off-diagonal elements in orbital space is new. This
will in particular allow for the analytical continuation of cluster DMFT calculations, see
the case of VO2 in Part III. Still, this extensions is straight-forward, the only complication
appears in the beginning, when continuing the off-diagonal Green’s function. Appendix A
details our procedure for these cases.

A.b Effective band-structures

A.b.i Poles of the Green’s function

Band structure methods rely on effective one-particle theories : The Schrödinger equation
is separable, and the Hilbert space therewith sufficiently small to render the eigenvalue
problem of the Hamiltonian solvable. The excitation energies are then given by the
resulting eigenvalues3. Within many-body approaches, the impact of correlation effects
is encoded in the electron self-energy Σ(ω), which is a complex non-Hermitian quantity
that is furthermore frequency-dependent4 : As described above, the real part of the self-
energy, or in the realistic multi-band case the Hermitian part of it, is responsible for the
shifting of spectral weight with respect to the non-interacting problem. Supposing that
the anti-Hermitian part of the self-energy is reasonably small, quasi-particle excitations
are given by the poles ωk of the momentum-resolved Green’s function, i.e. ωk verifies
det(G[ℜΣ]−1) = 0, or

3Note, again, that this is an uncontrolled approximation in the LDA, as the Kohn-Sham energies of
the effective system do not correspond to the excitations of the true N-particle system.

4but momentum independent in the d =∞ case that we consider
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det
[
HLDA(k) + ℜΣ(ωk + i0+)− µ− ωk

]
= 0 (3.9)

This is closest in spirit to the band-picture, and simplifies to an eigenvalue problem in
the limit of a static self-energy. Yet, in general, this equation in not an eigenvalue problem,
which makes it difficult to solve numerically. We will discuss physical implications, by
graphical means, in the paragraph after the next.

Another view point was taken in [Pruschke et al. (1996)], in which an effective band-
structure was identified by the maxima of the one-particle spectral function. Therewith
the influence of the frequency dependence of the anti-hermitian parts of the self-energy are
incorporated into the finding of the positions of prominent spectral features. Moreover,
experiments are measuring spectral weight and not pole positions. Yet, from a conceptual
point, we prefer the notion of one-particle poles, which, especially in the multi-orbital case,
are better suited to resolve individual excitations.

We shall shortly comment on our numerical procedure. In principle one might scan
through frequency and search for sign changes of the determinant. This is however only
possible for solutions of odd degeneracy. In case of e.g. a double degenerate solution,
the determinant is zero, but does not change sign as a function of frequency. Then one
would have to introduce a threshold value, and identify solutions by yielding a value
below it. However, this may produce spurious solutions, even when working on a fine
frequency grid. By our reckoning, an iterative procedure is to be preferred over a mere
scan in frequency. When a frequency point is classified as a solution for a given threshold,
the self-energy is polynomially interpolated around it on a finer grid and the scanning is
repeated. Therewith different numerical solutions of the initial step collapse on each other.
This procedure was tested against the sign-change method for non-degenerate solutions
and was found to be reliable.

A.b.ii Renormalized band-structure : “Z-bands”

Before commenting on the impact of the above generalization of the one-particle band-
structure eigenvalue problem, we describe an even simpler way on how to assess the effects
of correlations on the former (LDA) band-structure.

Indeed, besides neglecting any life-time influences by dropping the anti-hermitian parts
of the self-energy, one could think of using the frequency expansion, Equation (2.25), such
as to incorporate leading low-energy contributions, while remaining within a Hamiltonian,
i.e. frequency independent formulation. Moreover, the procedure does not necessitate the
analytical continuation to the real-frequency axis, since only the zero energy limit of the
self-energy intervenes.

The, in this sense, “renormalized band-structure” is then given by the solutions ωk of

det
(
ωk − Z

[
HLDA(k) + ℜΣ(iω → 0)− µ

])
= 0 (3.10)
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i.e. by the eigenvalues of the matrix

Z
[
HLDA(k) + ℜΣ(iω → 0)− µ

]
(3.11)

where Z−1 = 1 − ∂ωℑΣ(iω)|iω→0, or Z−1 = 1 − ∂ωℜΣ(ω)|ω=0 is the renormalization
(matrix) factor as obtained from the Matsubara or the real-frequency self-energy, respec-
tively. [iℑΣ] ℜΣ denotes the [anti- ] hermitian part of the self-energy, as usual. According
to the validity of the low energy expansion of the self-energy, the resulting band-structure
will be exact at the Fermi-level5. That means in particular that the correlation induced
changes in the Fermi surface are correctly captured by this approach. Naturally, the renor-
malized band-structure will deviate from the exact pole solutions, once the self-energy is
no longer in its linear regime.

In the case of a half-filled one-band case, ℜΣ(0), is zero, and the only effect of
correlations within this linearized scheme is a band-width narrowing, the dispersion
ǫk = HLDA(k) evolving to ǫ̃k = Zǫk with Z < 1. Therewith the emerging “band” no
longer carries the weight one, but incoherent features, on which this scheme however
gives no further information, pick up the spectral weight 1− Z. Thus, the “counting” of
bands such as to determine the occupation is no longer a sensible procedure.

In the multi-band case, the different values of ℜΣ(0) for the individual orbitals will
induce relative shifts, corresponding to correlation induced crystal field splittings. As
a matter of fact, the current linearization can, mathematically, still be undertaken for
an insulating phase that is realized by such an alternation of crystal fields. Yet, when
using the above construction one should no longer interpret the Z values as quasi-particle
weights, since the latter have no meaning in an insulator. In the case of a divergent
self-energy as is the case for the insulating phase of the one-band Hubbard model, the
linearization is obviously senseless.

A.b.iii Graphical construction

In the one-band case Equation (3.9) reduces to the scalar equation

ωk + µ− ǫk − ℜΣ(ωk) = 0 (3.12)

i.e. solutions are given by the intersections of the real-part of the self-energy (minus µ)
with a frequency stripe of slope one and a vertical width corresponding to the dispersion
of ǫk.

The frequency dependence of the self-energy leads to interesting phenomena that are
beyond the eigenvalue problem of the non-interacting problem. In particular the number
of poles for a given momentum k is no longer restricted to the number of bands in the
one-particle Hamiltonian. On the contrary, in a correlated system one expects to find

5We recall that we assumed the anti-hermitian part of the self-energy at low energy to be negligible.
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in certain cases more poles in the Green’s function, representing spectral weight in the
Hubbard bands. Indeed, while in the band limit, Σ(ω) = 0, only one possible pole per
orbital arises, in the atomic limit, Σ(ω) = U2

4ω
, both, the upper and the lower Hubbard

band, in the half-filled one-band Hubbard model (see above), are zeros of the denominator
of the Green’s function, given by ωk = ǫk/2± 1/2

√
ǫ2k + U2.
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Figure 3.2 : Graphical construction for finding one-particle poles. From top to bottom :
Local spectral function A(ω), real parts of the self-energy ℜΣ(ω), where the frequency
stripes delimits the non-interacting bandwidths, imaginary parts of the self-energy. Bethe
lattice calculation with U = 5.0 and β = 12 for the indicated particle number.

In between these two limits several scenarios, depending on doping and interactions,
can be realized. The famous three-peak structure may in particular correspond to three
solutions of the above quasi-particle equation. As we shall see for V2O3 and VO2, it is
possible to have an asymmetric case in which only the lower or the upper Hubbard band
results from poles.

Figure 3.2 shows an example calculation : Indeed the upper Hubbard band becomes
a pole of the one-particle Green’s function (when assuming ℑΣ = 0) above a certain
doping. Then the real-part of the self-energy crosses the indicated frequency stripe. Still,
the spectral weight of the poles upon entering the stripe from low energies, is suppressed
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by the enormous imaginary part, which is responsible for the depletion between the quasi-
particle peak and the upper Hubbard band. The poles at higher energies, where ℑΣ has
decreased, are responsible for the spectral weight of the Hubbard band. As a matter of
fact, from only the local spectral function, it is not visible whether a Hubbard band arises
due to a pole like behaviour, or only because of a pole proximity. Yet, the dispersion of
the two types of Hubbard bands is different.

In the non-degenerate multi-orbital case this graphical construction is no longer exact,
since due to non-vanishing hybridization elements in the Hamiltonian, the determinant
does no longer factorize into individual band contributions. Yet, the procedure might still
give qualitative insights, as we shall see in the material specific chapters.

At this point we mention a small technicality concerning the width of the frequency
stripe that intersects the self-energy. When working out the quasi-particle Equation (3.9),

say with a constant and diagonal self-energy Σ =

(
Σ1 0
0 Σ2

)
, and a Hamiltonian H(k) =

(
ǫ1k Vk

V ∗
k ǫ2k

)
, one realizes that in the low hybridization limit Vk ≪ ǫk, the width of the fre-

quency stripe is actually not quite given by the dispersion of the one-particle eigenvalues

Ek = 1
2
(ǫ1k + ǫ2k)± 1

2

√
(ǫ1k − ǫk)

2
+ 4 |Vk|2, but more correctly by the “un-hybridized” dis-

persions ǫ1,2k . We will come back to this when discussing the oxides VO2, and V2O3.
Indeed, while using the concept of “un-hybridized” bands in the latter, we will find an or-
bital basis for the M1 phase of the former in which the self-energy and, approximately, also
the Hamiltonian is diagonal, therewith rendering this graphical construction applicable.
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Chapter 4

Optical Properties of Correlated

Materials

A Introduction

A.a Putting optical spectroscopy into perspective

Unraveling the electronic structure of matter is at the heart of condensed matter physics.
Various spectroscopic techniques have been designed to experimentally probe the elec-
tronic properties and to deepen our understanding thereof : (Angle Resolved) Photoemis-
sion spectroscopy ((AR)PES), X-ray, Raman, Electron Energy Loss Spectroscopy (EELS)
and optics, to name only a few.

Optical spectroscopy is, in a way, the most natural spectroscopic technique among
them. Optical detectors are sampling the response to incident light, as do our eyes, albeit
accessing frequencies, and thus phenomena, that are beyond our vision.

Due to the low energy of the incident light, the optical response probes electron tran-
sitions at constant particle number, between occupied and unoccupied states of the solid.
This effect of the interaction of light with matter can be cast into various response func-
tions, that are, however, equivalent, in the sense that they contain the same information.
For example, the dielectric tensor ǫαβ gives the relation between the total electric field E
in the solid and the displacement field D

Dα(r, t) =

∫
d3r′ dt ǫαβ(r, r′, t− t′)Eβ(r′, t′) (4.1)

In this chapter we shall concentrate on the optical conductivity σαβ that gives the
response relation between the electric field and the current J

Jα(r, t) =

∫
d3r′ dt σαβ(r, r′, t− t′)Eβ(r′, t′) (4.2)

When assuming a local relationship between the perturbation and the response,

σαβ = Jα(r)/Eβ(r) (4.3)
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the response function σ does not have any Fourier component other than the one for
q = 0. This can be further justified (see below) by saying that the momentum transfer
by the incident photon is negligible, leading to the dipole approximation. Furthermore,
since any response function obeys causality, its real and imaginary parts are connected
by a Kramers-Kronig transform, see e.g. Equation (3.7).

From Maxwell’s equations it follows that the two quantities from above are simply
related by1

ǫαβ(ω) = ǫ0 +
ı

ω
σαβ(ω) (4.4)

with the permittivity of the vacuum, ǫ0 = 8.8542 · 10−12 s
Ωm. Other optical response

functions are readily computed, once one of them is known, examples are the complex
refraction index

ncgs(ω) =
√
ǫcgs(ω) (4.5)

and the reflectivity R = |R| eıθ. Its absolute value for incident light along the normal of
the sample surface is given by

|R(ω)| =

∣∣∣∣
ncgs(ω)− 1

ncgs(ω) + 1

∣∣∣∣
2

(4.6)

The latter quantity is what is normally measured experimentally. From its knowledge,
one computes the optical conductivity or the dielectric function, which are more trans-
parent in their physical interpretation. Experimentally accessible is the absolute value of
the complex reflectivity over a finite frequency range [ωmin > 0, ωmax < ∞]2. However,
according to the above formulas, the determination of the optical conductivity, or any
other response function, necessitates the knowledge of the complex reflectivity, i.e. also
of the above mentioned phase θ. In order to make use of the Kramers-Kronig relation
one thus has to extrapolate the experimental data to zero and infinite frequency. Then,
any other transformation is local in frequency and the desired quantities are calculable.
Another way is to make an ansatz for the dielectric function and to fit the measured
reflectivity. This is in particular useful when performing experiments on thin films, where
one has to account for multiple reflections due to the substrate. Details can be found in
experimental works, see e.g. [Zimmers(2004),Tomczak(2004)].

1The following, unless stated otherwise, all formulas are expressed in SI units. In the commonly used
cgs system the current relation reads ǫ = 1 + 4πı

ω
σ.

2There exists a technique called ellipsometry which measures both the absolute value and the phase
factor by changing the incident angle of the light. The setup is however rather complicated to implement
into a cryostat, which is why it has so far not become a common technique beyond room-temperature
measurements.
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Response functions, like the optical conductivity, are genuine two-particle quantities.
Yet when neglecting vertex corrections (see also Section B), which we will (have to) do
throughout this thesis, the final expression for the optical conductivity is rather handy
and allows for a direct interpretation of the underlying excitations.

Here, a word on methodology is in order. While it is of course desirable to calculate
quantities as conceptually accurate as possible, one has to make a tradeoff between stern-
ness and applicability. In this thesis our interest is on realistic systems. Here we therefore
opt for pursuing the route of realism in favour of conceptual pureness.

We think it useful to state our end formula, Equation (4.49), of the optical conductivity,
before making introductory comments :

ℜσαβ(ω) =
2πe2~

V

∑

k

∫
dω′ f(ω′)− f(ω′ + ω)

ω
tr
{
vα(k)A(k, ω′)vβ(k)A(k, ω′ + ω)

}

(4.7)

In the above, the vα(k) are transition matrices, or Fermi velocities, and A(k, ω) are the
momentum resolved spectral functions. Both quantities are matrices in orbital space, over
which is taken the trace. The Fermi function is denoted by f(ω). Thus the conductivity is
given by a simple convolution of spectral functions at the same momentum. This states
nothing else than that (in the dipole approximation), transitions are vertical, in the sense
that the photon does not transfer any momentum to the system. Therewith it is clear
that, for an insulator, the optical gap, i.e. the energy at which absorptions sets in, may
differ considerably from the gap of the band-structure or excitation spectrum, which can
indeed be indirect.

E
ne

rg
y

k

EF

∆

Figure 4.1 : Schema of an optical transition in the band picture. Transitions are “verti-
cal”, since no momentum transfer occurs. Therewith the optical gap might differ consid-
erably from the charge gap in the excitation spectrum.
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Further, the weight of a transition at a particular point in the Brillouin zone is con-
trolled by the Fermi velocities. Contrary to photoemission experiments that can be per-
formed angle resolved, optical spectroscopy always measures a response that is averaged
over the entire Brillouin zone. However, the intervening transition matrix elements de-
pend on the light polarization, and, hence, one can influence the weighting of different
regions in momentum space by either using polarized light, or by changing the orientation
of the sample.

Moreover, as compared to (AR)PES experiments, optical transition matrix elements
are less involved and, as we will see below, they are given by the elements of the momentum
operator, evaluated for the non-interacting system3.

A further advantage of optical spectroscopy is that, contrary to photoemission, it is
a true bulk probe, since the skin penetration depth (for metals) is typically of the order
of several nm in the infrared, whereas the relevant length scale in photoemission, the
electron escape depth, is only of the order of ∼3-30Å, depending mostly on the energy of
the incident beam.

A.b Introductory examples and phenomenology

A.b.i The optical response of a one-particle band-structure

When using a band-structure method for the calculation of the excitation spectrum of
a solid, the spectral functions A(k, ω) of the system become Dirac distributions and the
trace in Equation (4.7) is4

∑

m,n

δ(ω′ + ν + µ− ǫmk )v(k)mnδ(ω
′ + µ− ǫnk)v(k)nm (4.8)

We see that at zero frequency ν = 0, only inter-band transitions, m 6= n, make a con-
tribution. Thus, in the one band case, the optical conductivity is a delta function at zero
frequency. This is just the result of the fact that without interactions (electron-electron
or a coupling to a bosonic mode) or disorder, the lattice momentum k is a constant of
motion and the current thus does not decay.

A.c The Drude model for metals

In the non-interacting case from above, the response of a metal to an electric field is
infinite. It was P. Drude in 1900 who derived an expression that takes into account
the finite lifetime of the electron excitations, by introducing a relaxation time τ for the
charge current j(t) = j(0)e−t/τ . His expression for the conductivity can be recovered from

3Linear response quantities only involve expectation values of the non-perturbed system. Here, how-
ever, we mean by non-interacting, that the electron-electron interactions do not appear in the calculations
of the transition matrix elements. A thorough derivation will be given below.

4for simplicity we assume to work in the Kohn-Sham basis, i.e. A is diagonal.
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our linear response result, Equation (4.7), by assuming free particles, ǫk = ~
2kk

2m
, and a

constant self-energy Σ = − ı
2τ

. The resulting optical conductivity is then given by

ℜσ(ω) =
ne

m

τ

1 + ω2τ 2
(4.9)

with n being the average charge carrier density. Hence, the response at zero frequency
is finite and non-zero at finite energies. Moreover, it obeys the f-sum rule, see Section C.

A.d Phenomenology of the optical response of the one band Hub-

bard model

While accounting well for the response of band-like metals, the Drude formula is insuffi-
cient, even in the one-band case, in the presence of correlation effects.

Figure 4.2 : Schema for optical transitions in the one-band Hubbard model. The top row
shows a metallic and insulating local spectral function, the bottom displays the correspond-
ing optical conductivities. From [Rozenberg et al. (1995)].

Indeed, the influence of correlation effects is beyond a mere broadening of bands. For
the case of the one-band Hubbard model within DMFT, the paramount characteristic is
the appearance of Hubbard satellites. Therewith, not only transitions within a broadened
quasi-particle peak are possible, but also transitions from and to these Hubbard bands
arise. Figure 4.2 shows a schematic picture. In the metal (to the left) two additional
contributions arise, stemming on the one hand from transition between the quasi-particle
peak and the individual Hubbard bands. This is often referred to as the mid-infrared
peak, due to its location in energy in some compounds. At higher energy, transitions
between the two Hubbard bands appear. In the insulating phase, only the latter survive,
as shown to the right. Therewith the possible richness of optical spectra is considerably
enhanced.
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A.e Prior DMFT related work – a brief review

Within the field of strongly correlated electrons, calculations of the optical conductivity
within the DMFT framework were first performed by [Pruschke et al. (1993b), Jarrell
et al. (1995)] for the case of the Hubbard model. In an important work, [Rozenberg
et al. (1995),Rozenberg et al. (1996)] studied the phenomenology of the different opti-
cal responses of the Hubbard model throughout its phase diagram in conjunction with
experiments on V2O3. In the realistic LDA+DMFT context, optical conductivity cal-
culations were first performed by [Blümer(2002),Blümer and van Dongen(2003)] for the
case of degenerate orbitals. A more general approach, was developed in [Pálsson(2001)]
for the study of thermo-electricity. Our work goes along the lines of the mentioned ap-
proaches. We will however use a full Hamiltonian formulation, therewith allowing for the
general case of non-degenerate orbitals, and we extent the intervening Fermi velocities to
multi-atomic unit cells, which becomes crucial in calculations for realistic compounds.

An alternative technique was presented by [Oudovenko et al. (2004)]. Their idea is
to diagonalize the interacting system, which allows for the analytical performing of some
occuring integrals due to the "non-interacting" form of the Green’s function. Owing
to the frequency-dependence of the self-energy, however, the diagonalization has to be
performed for each momentum and frequency separately, and involves, because of the non-
hermitian nature of the problem, left and right eigenvectors, and so the procedure may
become numerically expensive. So far this technique was only applied to LDA+DMFT
calculations that employed approximate impurity solvers. Relying on our scheme for the
analytical continuation of Matsubara self-energies, see Section , Chapter 3, we are, in our
application, able to make use of numerically exact quantum Monte Carlo data.

B Optical Conductivity –

a formalism for realistic calculations

In this section, we will present a formalism for the optical conductivity with focus on
realistic correlated materials. We generalize the approach used for simple lattice systems
to the case of realistic multi-orbital solids. As we shall see, the Peierls substitution, a
simple way to couple the light field to a lattice model, can be extended to both, multi-
band and multi-atomic systems. Yet, even in the lattice model case, this approach is not
complete, since it is neglecting intra-atomic transitions.

Starting from a formulation in the continuum and developing relevant quantities in a
localized basis set, we will show that the Peierls term is recovered as an approximation
to the full current matrix element. In our formulation, additional contributions turn up.
On the one hand we can account for intra-atomic transitions. On the other, the spatial
extensions of the wavefunctions of the system generate corrections to the pure lattice
model approach.

In this work, we shall entirely neglect vertex corrections. In the limit of infinite
coordination the latter do vanish for a model with one atom per unit cell. In finite
dimensions and in the multi-orbital context, this is however an approximation. Yet, this
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allows us to compute the conductivity from the knowledge of the (momentum-resolved)
one-particle Green’s function. By this decoupling of the two-particle response function,
particle-hole interactions are neglected.

B.a Physical quantities

Applying an external time-dependent electric field to a solid, induces currents and changes
the actual electric field in the solid. The conductivity tensor σ is defined as the response
function relating the total electric field E5 in the solid with the current density J.

J(r, t) =

∫
d3r′

∫ t

−∞
dt′σ(r, r′, t− t′)E(r′, t′) (4.10)

with the electric field

E(r, t) = E0 exp [ı(q · r− ωt)] (4.11)

that we assume to consist of a single (q, ω) mode. Supposing that the response at the
position r to the field at r′ only depends on the vectorial distance r−r′, i.e. σ(r, r′, t−t′) =
σ(r− r′, t− t′) we can write

J(r, t) = σ(q, ω)E(r, t) (4.12)

This is true for homogeneous systems. For solids, this is however not quite justified :
Looking e.g. at atomic-like core states and the symmetry of their wave-functions, it is
clearly not admissible to neglect the actual positions of the perturbation and its effects.
Nonetheless, we will proceed with this simplification, because of the following (see e.g.
[Mahan(1990)]) :

On the one hand, optical spectroscopy is not strictly a local probe of the system. This
allows us to consider a charge current that has been averaged over many unit cells. On
the other hand, the wavelength of the external source is large compared to the typical
relevant length scale of the solid, i.e. the penetration depth, thus, in the end, we shall
neglect spatial variations of the field and take interest in the limit of long wavelengths
only, i.e. in the limit of zero momentum transfer, q→ 0.

In this spirit, the term “optical conductivity” refers to the real part of the conductivity
tensor, after taking the above limit, i.e. ℜσ(q = 0, ω). Its zero frequency limit is the usual
dc conductivity.

The capital J above denotes the expectation value of the quantum mechanical operator
for the charge current density j.

J(r, t) = 〈j(r, t)〉 (4.13)

whose determination now follows.
5i.e. the external plus the induced one : E = Eext + Eind
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B.b The charge current density

There are different routes to derive the charge current density stated above. The starting
point is the Hamiltonian of the system, defined in the continuum, which we write

H = HA
0 + Hint (4.14)

where

HA
0 =

∑

σ

∫
d3r Ψ†

σ(r, t)

[
1

2m

(
−ı~∇− e

c
A(r, t)

)2

+ V (r)

]
Ψσ(r, t) (4.15)

is the one-particle part of the Hamiltonian with the coupling to the (classical) light
field via its vector potential A(r, t). The form of the Hamiltonian is guided by the demand
of gauge invariance and the request to yield the usual Lorentz equations of motion. This
is often called the minimal coupling.

Here and in the following the Coulomb gauge divA = 0 is assumed. Moreover we
only consider electric fields that are transverse : rotE = 0. The relation with the vector
potential then reads E = −1

c
∂tA, or

A(q, ω) =
c

ıω
E(q, ω) (4.16)

Hint contains electron interactions and, in principle, couplings to bosonic modes, such
as phonons that we will however not consider. Furthermore we assume the electron
interactions to be of a two-body form6.

B.b.i Continuity equation

By Noether’s theorem, each symmetry of the system corresponds to a conserved quantity.
The above Hamiltonian, Equation (4.14), is clearly invariant under

Ψ(r, t) → Ψ(r, t) eıϕ(r)

A(r, t) → A(r, t)− c~

e
∇ϕ(r) (4.17)

for any scalar field ϕ(r). This gauge invariance leads to charge conservation, thus to the
continuity equation :

e
.
ρ (r, t) = −divj(r, t) (4.18)

from which we will determine the current density j(r, t). Here

ρ(r, t) =
∑

σ

ρσ(r, t) =
∑

σ

Ψ†
σ(r, t)Ψσ(r, t) (4.19)

6Thereby the interaction term commutes with the charge density, which will simplify the following.
Analogous, when starting with a lattice formulation, one has to restrict the interaction vertex to terms
that are of density-density type in the lattice creation and annihilation operators, which, from a conceptual
point of view, is a much more limiting assumption.
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is the electron density. Its equation of motion reads

ı~
.
ρ (r, t) = [H, ρ(r, t)] (4.20)

ρ being the electron density, it commutes with an interaction part Hint of the Hamil-
tonian, that involves two-body terms only, as assumed above. Thus, only the one-particle
part enters the calculation at this stage. Evaluating the commutator yields

[ρ(r, t),H] =
∑

σ

~2

2m
div
{
Ψ†
σ(r, t)∇Ψσ(r, t)−

(
∇Ψ†

σ(r, t)
)
Ψσ(r, t)

}
(4.21)

+ı
~e

mc
A(r, t)divρ(r, t) (4.22)

from which we identify

j(r, t) = −ı e~
2m

∑

σ

{
Ψ†
σ(r, t)∇Ψσ(r, t)−

(
∇Ψ†

σ(r, t)
)
Ψσ(r, t)

}
+

e2

mc
A(r, t)ρ(r, t)

= −H
{
ı
e~

m

∑

σ

Ψ†
σ(r, t)∇Ψσ(r, t)

}
+

e2

mc
A(r, t)ρ(r, t) (4.23)

where H denotes the hermitian part.

B.b.ii Conjugated variables

Indeed, we notice that with the above we can write

HA
0 = −1

c

∫
d3r j(r, t) ·A(r, t) +

∫
d3r ρ(r, t)V (r, t) (4.24)

Hence the current density is the conjugated variable of the vector potential and, thus, the
former may be defined as

j(r, t) = −c δHA
0

δA(r, t)
(4.25)

B.b.iii The paramagnetic and the diamagnetic current

The two terms of the current density (4.23) do not, on general grounds, acquire a clear
physical meaning each on their own, as they are linked by the condition of gauge invariance
(4.17). In the Coulomb gauge, however, they do have a clear interpretation : We can
separate

j(r, t) = jP (r, t) + jD(r, t) (4.26)
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into the “paramagnetic” term

jP (r, t) = −H
∑

σ

{
ı
e~

m
Ψ†
σ(r, t)∇Ψσ(r, t)

}
(4.27)

and the “diamagnetic” term

jD(r, t) =
e2

mc
A(r, t)ρ(r, t) (4.28)

Then the expectation value of the current density (4.13) reads :

J(r, t) = 〈jP (r, t)〉+ ne2

mc
A(r, t) (4.29)

with n = 1/V
∫

d3r 〈ρ(r, t)〉, where, again, we have neglected spatial variations of the
vector potential (see above). With Equation (4.16) and Equation (4.12) we find for the
diamagnetic contribution to the conductivity tensor :

σxx(ω) =
ı

ω

ne2

m
(4.30)

where we have assumed a vector potential along the x-axis, A ∼ (1 0 0)T. The dia-
magnetic response thus has no contribution to the optical conductivity ℜσ(ω). However,
we will see later that the above term is crucial for the optical conductivity sum rule.

B.b.iv Interpretation

In order to elucidate the labeling of the two currents, consider an electric field pulse
E(t) = E0δ(t). Then we have, with Equation (4.16), A = −E0θ(t) + const and

J(r, t) = 〈jP (r, t)〉 − ne2

m
E0θ(t) (4.31)

Thus the diamagnetic current sets in immediately when the pulse is applied and stays
forever. It is the paramagnetic current, and hence the time evolution of the wavefunction
of the system that compensates for the diamagnetic part, as the total current must decay
on the time scale of some inverse scattering rate [Coleman(2004)], as e.g. in the Drude
model, see Section A.

B.c Kubo formula

In order to allow for a coherent discussion of the Fermi velocity matrix elements, we
shall at this point only state that the paramagnetic current, when developing it into a
localized basis set, and within the dipole approximation (q = 0), can be written as,
Equation (4.67) :
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jα(q = 0, τ) = e
∑

k,LL′,σ

vL
′L

k,α c
†
kL′σ(τ)ckLσ(τ) (4.32)

with the usual fermionic creation and annihilation operators ckLσ, where L=(n,l,m,γ)
is a multi-band index (n,l,m) of atom γ in the unit cell. α denotes the cartesian coordinate
of the current vector7. The derivation is postponed to Section B.

We then resort to the Kubo Formula of linear response theory. Given the coupling of
the vector potential to the current, Equation (4.24), when assuming a vector potential
along the β–direction, the response is given by [Mahan(1990),Coleman(2004)]

〈jαP (r, t)〉 =
ı

~c

∫ t

−∞
dt′
∫

d3r ′
〈[
jαP (r, t), jβP (r′, t′)

]〉
Aβ(r

′, t′)

=
1

~ω

∫ t

−∞
dt′
〈[
jαP (r, t), jβP (q, t′)

]〉
E0βe

−ıωt′

=
1

~ω

∫ t

−∞
dt′
〈[
jαP (r, t), jβP (q, t′)

]〉
eıω(t−t′)e−ıqrEβ(r, t)

=
1

~ω

∫ ∞

0

dt′
〈[
jαP (r, t′), jβP (q, 0)

]〉
eıωt

′

e−ıqrEβ(r, t) (4.33)

where use has been made of Equation (4.16), Equation (4.11) and of homogeneity of
time. With Equation (4.12) it thus follows

σαβP (q, ω) =
1

~ω

∫ ∞

0

dt
〈[
jαP (r, t), jβP (q, 0)

]〉
eıωte−ıqr (4.34)

As mentioned before the response should be averaged over many unit cells. Hence we
integrate over r and divide by the total volume V of the sample :

σαβP (q, ω) =
1

~ωV

∫ ∞

0

dt
∫

d3r
〈[
jαP (r, t), jβP (q, 0)

]〉
e−ı(qr−ωt) (4.35)

=
1

~ωV

∫ ∞

0

dteıωt
〈[
jαP (−q, t), jβP (q, 0)

]〉

=
ı

ω

∫ ∞

0

dtχαβP (q, t)eıωt (4.36)

with the current-current correlation function

χαβ(q, t) = − ı
~

1

V

〈[
jα(−q, t), jβ(q, 0)

]〉
(4.37)

7In the entire chapter, k-sums run over the Brillouin zone, and our normalization convention is
∑

k
=

N , with N being the number of unit-cell or the number of k-points in the Brillouin zone.
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where we have dropped the index for the paramagnetic component. Then the optical
conductivity becomes

ℜσαβ(q, ω) = −ℑχ
αβ(q, ω)

ω
(4.38)

which is a fluctuation-dissipation type theorem. In the following we will evaluate the
current-current correlation function within the Matsubara formalism. In imaginary time,
Equation (4.38) reads :

χαβ(q, τ) = − 1

~V

〈
T jα(−q, τ), jβ(q, 0)

〉
(4.39)

If we were to know the exact eigenstates |n〉 and eigen-energies En, with the ground
state |0〉 and E0, the correlation function in frequency domain becomes
(see e.g. [Maldague(1977)])

χαα(q, ω) =
1

V

∑

n 6=0

|〈0|jα(q)|n〉|2
(

1

~ω + En −E0 + ı0+
− 1

~ω − En + E0 + ı0+

)

(4.40)

where we have written the zero temperature expression, and thus

ℜσαα(q, ω) =
π~

V

∑

n 6=0

|〈0|jα(q)|n〉|2 δ (~ |ω| −En + E0)

En − E0

(4.41)

This formula is e.g. handy for finite systems, where the eigenvalue problem can actually
be solved. We, on the other hand, will have to resort to a different approach. Yet the
above will be used to derive the f-sum rule, see below.

B.d Evaluation of the current-current correlation function

Within the dipole approximation we are only interested in the limit of i.e. q = 0 (see
Equation (4.65) and Equation (4.66)). Then it follows

χαβ(q = 0, τ) = − 1

~V

〈
T jα(−q = 0, τ)jβ(q = 0, 0)

〉
(4.42)

= − e2

~V

∑

kk′,LL′,PP ′,σσ′

vL
′L,σ

k,α vP
′P,σ′

k′,β

〈
T c

†
kL′σ(τ)ckLσ(τ)c

†
k′P ′σ′(0)ck′Pσ′(0)

〉

Noting that we treat the paramagnetic case only, i.e. our Green’s function is diagonal
in the spin-indices, we end up, when neglecting vertex corrections :

χαβ(q = 0, τ) = −~e2

V

∑

k,LL′,PP ′,σ

vL
′L,σ

k,α GLP ′σ
k (τ)vP

′P,σ
k,β GPL′σ

k (−τ) (4.43)
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Where we have introduced the one-particle Green’s function Gab(τ) = −1/~〈ca(τ)c
†
b(0)〉8.

Indeed the expectation value in Equation (4.42) involves four fermionic operators and
hence is a genuine two-particle quantity. When introducing the two-particle vertex Γ,
irreducible in the particle-hole channel, we have in the frequency domain the following
latter series

χ(ıωn) = −
∑

kνσ

vσkG
σ(k, ıν)Gσ(k, ıν + ıω)vσk

+
∑

kνσ

∑

k′ν′σ′

vσkG
σ(k, ıν)Gσ(k, ıν + ıω)Γσσ

′

kk′(ıν, ıν′, ıω)Gσ′(k′, ıν′)Gσ′(k′, ıν′ + ıω)vσ
′

k′

+ · · · (4.44)

where, for sake of clarity we have implied the one-orbital case, and have dropped all
constants. In the limit of infinite dimensions (d→ ∞), though the vertex function itself
does have a momentum dependence, it can, in the latter sum, be replaced by a purely local
quantity [Zlatic and Horvatic(1990),Georges et al. (1996)]. Then the above momentum
sums can be performed individually for the terms of the form

∑

kνσ

vσkG
σ(k, ıν)Gσ(k, ıν + ıω) (4.45)

We will see later, Section B, that the Fermi velocity, vk, is given by the matrix elements
of the momentum operator. In the one-band case, it follows from Bloch’s theorem, that
ǫ−k = ǫk and ψ−k(r) = ψ∗

k(r) and thus 〈k|P |k〉 = ~

ı

∫
d3r ψ∗

k(r)∇ψk = −〈−k|P | − k〉,
from which it follows that the Fermi velocity is odd with respect to momentum : v−k =
−vk, while the Green’s function is even : G(−k, ω) = G(k, ω). As a consequence the above
quantity, Equation (4.45), is zero [Khurana(1990)], and all vertex corrections vanish in
infinite dimensions. Since this is true for any q = 0 correlation function in the d → ∞
limit, one further realizes [Georges et al. (1996)] that

∑
k vk = 0.

In the multi-orbital case, one finds vLL
′

−k = −vL′L
k , which in general does not yield a

well-defined parity. Also the Green’s function G(k, ıω) = [ıω+µ+H(k)−Σ(ıω)]−1 is even
with respect to the momentum only for systems with inversion symmetry, H(−k) = H(k).
Thus, even in infinite dimensions, vertex corrections do not drop out in the multi-orbital
case.

Only in the case of a constant, real self-energy Σ(ıω), the one-band reasoning holds,
since then one can use an energy-independent unitary transformation U(k) that diagonal-
izes both Green’s functions in Equation (4.45) at the same time, and the only intervening
Fermi velocity matrix elements are diagonal ones, for which, as seen above, odd parity is
assured.

Though this thus is an approximation, out of simple necessity we shall neglect vertex
corrections also in the multi-orbital context throughout this work. The vertex function

8With this definition, the Green’s function has the unit of an inverse energy. For the diagonal elements
of the spectral function, Aaa(ω) = −1/πℑGaa(ω), we then have the normalization

∫∞

−∞
dω Aaa(ω) = 1/~.
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is in principle obtainable from a quantum Monte Carlo calculation, but this is rather
cumbersome, let alone the fact that it needed to be continued to the real-frequency axis.

Continuing from Equation (4.43), we then have, when using an (orbital-)matrix nota-
tion :

χαβ(τ) = −2~e2

V

∑

k

tr
{
vα(k)G(k, τ)vβ(k)G(k,−τ)

}
(4.46)

The two stems from the spin summation and the matrices are now for spin up (or
down) components only. Fourier-transforming leads to

χαβ(ıνn) =

∫ β

0

dτχαβ(τ)eıνnτ

= −2~e2

V β2

∑

m,p

∑

k

∫
dτeı(νn+ωm−ωp)τ tr

{
vα(k)G(k, ıωp)vβ(k)G(k, ıωm)

}

= −2~e2

V β

∑

k

∑

p

∫
dω′

∫
dω

1

ω′ − ıωp
1

ω + ıνn − ıωp
tr
{
vα(k)A(k, ω′)vβ(k)A(k, ω)

}

= −2~e2

V

∑

k

∫
dω′

∫
dω

f(ω′)− f(ω)
ω − ω′ + ıνn

tr
{
vα(k)A(k, ω′)vβ(k)A(k, ω)

}
(4.47)

which finally yields the optical conductivity

ℜσαβ(ν) = −ℑχ
αβ(ıνn → ν + ı0+)

ν
(4.48)

ℜσαβ(ν) =
2πe2~

V

∑

k

∫
dω′ f(ω

′)− f(ω′ + ν)
ν

tr
{
vα(k)A(k, ω′)vβ(k)A(k, ω′ + ν)

}

(4.49)

Hence, the interaction part of the Hamiltonian only intervenes in the evaluation of the
thermal and quantum average, leading to the spectral functions A(k, ω) of the interacting
system. The Fermi velocity v(k) is independent of the interactions.

We summarize the approximations that have led to this expression :

• assumption of a homogeneous response : σ(r, r′) = σ(r− r′)

• linear response theory, Kubo formalism

• dipole approximation, long wave length limit q = 0

• neglect of vertex corrections
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B.e Fermi velocities : Peierls substitution and beyond

We now turn in detail to the Fermi velocity matrices vα(k) that determine the weight of
an absorption process that enters the conductivity as a function of the position within
the Brillouin zone. In the particle-hole bubble, which is our approximation for the optical
conductivity, it is the velocities that connect the two Green’s functions and thus mediate
the transitions between different orbital components. Above, Equation (4.32), we already
assumed a form of the velocities that depends only a single wave-vector k. This will be
derived in the following.

First we will review the so-called Peierls substitution approach, where one couples
the vector potential of the light field directly to a Hamiltonian defined on a lattice9. In
the case of one atom per unit cell this leads to the familiar Fermi velocities that are the
momentum derivatives of the band dispersion. We will generalize this approach to the
general case of multi-atomic unit cells.

Then we will come back to our approach which originated from a Hamiltonian defined
in the continuum. In order to make contact with the Greens’ function formalism used
in the derivation for the optical conductivity above, we will expand the fermionic field
operators in a localized basis set. We then show that one recovers the generalized Peierls
Fermi velocity as the main contribution to the full matrix element. Yet, our approach
yields terms beyond the Peierls approximation. Contrary to the latter, we fully account
in particular for intra-atomic transitions. Moreover, the spatial extensions of the wave-
functions of the real solid lead to additional terms, that are absent in the Peierls lattice
approach.

B.e.i Starting from the lattice : The Peierls substitution

The idea of the Peierls substitution is to couple the vector potential of the light field
directly to the lattice model in a gauge invariant way. That means that the transition to
a localized description that is necessary for the application of the above Green’s function
formalism is made already on the level of the Hamiltonian.

When denoting unit cells (=lattice sites in the one atomic case) by i,j, and the orbitals
by the multi indices L = (n, l,m, γ), with the orbital (n,l,m) of atom γ, we can write the
following lattice Hamiltonian :

H = −
∑

ij,LL′,σ

tL
′L

ij c
†
iL′σcjLσ + Hint (4.50)

where the second term contains electron-electron interactions. For the calculation of
the response to an external field, one has to couple the latter to the lattice Hamiltonian
in a gauge invariant way, analogue to the case in the continuum, Equation (4.17), when
considering instead of the continuous field operator Ψ(r, t), the lattice operators ciLσ. The
substitution c

†
iLσ → c

†
iLσe

ı e
c~

R

RiL drA(r,t) verifies this requirement. When now assuming the

9For references see [Peierls(1933), Wannier(1962), Maldague(1977), Shastry and Sutherland(1990),
Scalapino et al. (1992),Dagotto(1994),Millis(2004)]
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interactions in Equation (4.50) to be of density-density type, then the above phases appear
only in the kinetic part of the Hamiltonian. When additionally assuming a slowly varying
vector potential such as to approximate the integral in the exponent, the Peierls approach
can be seen as a substitution for the hopping amplitudes :

tL
′L

ij → tL
′L

ij eı
e

~c
A(t) (RiL′−RjL) (4.51)

It is important to note that the position RiL depends not only on the unit cell Ri, but
also on the position ργ of the atom γ within the cell. We further remark that evidently
the vector potential only couples to non-local hopping elements, i.e. within this approach
intra-atomic transitions

(
i, L = (n, l,m, γ)

)
→
(
i, L̃ = (n′, l′, m′, γ)

)
are absent.

When developing the Hamiltonian up to first order in the vector potential (linear
response), the paramagnetic current could then be calculated as its functional derivative
with respect to the vector potential, as given by Equation (4.25). Yet, as above it can also
be deduced from the usual charge continuity equation using the Hamiltonian without the
coupling to the light field. Since some formulas that appear on the way will prove useful
later on, we shall again pursue this path (see Equation (4.18), Equation (4.20)) :

divj =
ıe

~
[H, ρ] (4.52)

Here, and in the following, we omit all time indices, since all quantities are local in
time. On the lattice we define the position operator R as follows

Rα =
∑

iLσ

Rα
iLc

†
iLσciLσ (4.53)

with, as introduced above, Rα
iL = Rα

i + ραγ . Then we note that ∇α [H,Rα] = [H, ρ]
and hence

jα =
ıe

~
[H,Rα] (4.54)

up to an additive constant in Rα
iL, which again excludes intra-atomic hoppings. Herewith

we get :

jα =
ıe

~

∑

LL′,ij,σ

tL
′L

ij (Rα
iL′ −Rα

jL)c
†
iL′σcjLσ (4.55)

As mentioned above, this is of course the same as can be obtained from Equation (4.25)
with a vector potential along the α–direction.

Since the periodicity of the system refers to the unit cells, in the Fourier transformation
of the fermionic operators, c

†
iLσ =

∑
k e

−ıkRic
†
kLσ, only the unit cell positions Ri and not
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the displacements within the unit cell appear. When further using the translational
invariance with respect to the unit cell indices i, j, i.e. tij = t(Ri −Rj), we see that one
ends up with only those elements that are diagonal in momentum (k = k′). We can thus
write

jα = e
∑

LL′,k,σ

vL
′L

kα c
†
kL′σckLσ (4.56)

with the velocity

vL
′L

kα =
ı

~

∑

ij

tL
′L

ij (Rα
iL′ − Rα

jL)e
−ık(Ri−Rj) (4.57)

In the one atomic case, L = (n, l,m, γ) = (n, l,m), the positions RiL do not depend
on the orbital index L, i.e. RiL = Ri, and one obtains the familiar Fermi velocity

vL
′L

kα =
1

~
∂kα

HL′L
k (4.58)

which is the multi-orbital generalization of the momentum derivative of the one-
particle dispersion. The Hamiltonian is defined by HL′L

k = −
∑

ij t
L′L
ij e−ık(Ri−Rj). The

generalization to multi-atomic unit-cells is straight forward. Yet, to our knowledge, this
extension is new. The atomic positions can be separated into RiL = Ri + ρL, where the
former indexes the unit cell i and the latter the atom γ within the cell. Then Equa-
tion (4.57) becomes :

vL
′L

kα =
ı

~

∑

ij

tL
′L

ij

[
(Rα

i −Rα
j ) + (ραL′ − ραL)

]
e−ık(Ri−Rj) (4.59)

Clearly, the first term is again the momentum derivative of the Hamiltonian, as above,
Equation (4.58). It contains hopping processes that take place between different unit cells
i, j. While absent in the one-atomic case, the second term is crucial, once calculations of
realistic materials are performed. It accounts for hopping amplitudes between different
atoms γ′, γ within the same unit cell. Again, we remark that inter-orbital intra-atomic
transitions are not captured within this approach. We can write the above in the compact
form

vL
′L

kα =
1

~

(
∂kα

HL′L
k − ı(ραL′ − ραL)HL′L

k

)
(4.60)

i.e. as compared to the one-atomic case, the Hamiltonian derivative is supplemented by
a term that depends on the atomic positions within the unit cell. This generalization, of
course, reduces to the one-atomic result in absence of a γ–dependence in the Hamiltonian.
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Further, we note that the above expression is hermitian. Yet, in general, it has no well
defined parity with respect to the momentum k, even if assuming inversion symmetry
of the Hamiltonian. Only the elements that are diagonal in the atomic γ-indices have
the required odd parity that leads to the cancellation of vertex corrections in the limit of
infinite coordination, according to Equation (4.44). This stresses again, that our formula
for the optical conductivity is an approximation, even in the DMFT context.

B.e.ii Starting from the continuum : Introducing a localized basis

DMFT originated from the study of lattice models. In the realistic context the notion
of “sites” and locality generalizes naturally when working in a localized (Wannier type)
basis. In this section we will derive expressions for the Fermi velocities when starting
from the continuum formulation.

First, we develop the field operators Ψσ(r, t) in a Bloch-like basis χkLσ(r).

Ψσ(r, t) =
∑

k,L

χkLσ(r)ckLσ(t) (4.61)

Here, again, L= (n, l,m, γ) is a multi index denoting orbital (n,l,m) of atom γ. This
means the conjugated position R of the Brillouin zone wavevector k is indexing the unit
cell and not the atoms, thus the notion of local processes will require R = R′ and γ = γ′,
just like in the discussion on the Peierls term10. Later on we will Fourier transform and
discuss the importance of the different contributions in terms of Wannier-like functions
χRLσ(r).
The paramagnetic current Equation (4.27) in imaginary time then reads

jαP (q, τ) =

∫
d3r jα(r, τ)eıqr = e

∑

k′k,LL′,σ

vL
′L,σ

k′k,α (q)c
†
k′L′σ(τ)ckLσ(τ) (4.62)

with the Fermi velocity matrix

vL
′L,σ

k′k,α (q) = −H
{
ı
~

m

∫
d3r χ∗

k′L′σ(r)e
ıqr∇αχkLσ(r)

}
(4.63)

For optical transitions we limit ourselves to the usual dipole approximation, i.e. eıqR ≈ 1,
which leads to

vL
′L,σ

k′k,α (q = 0) =
1

m
H〈k′L′|Pα|kL〉 (4.64)

where we have assumed that the wavefunctions are independent of the spin index and have
introduced the momentum operator P = −ı~∇. Since we have translational invariance,
i.e. vL

′L,σ
R′R,α = vL

′L,σ
R′+T,R+T,α, for any lattice-vector T, and

10N is the number of k-points in the discretized basis, or, equivalently, the number of cells in the solid.
We recall our convention

∑
k

= N .
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vL
′L,σ

R′R,α = 1/N
∑

kk′ exp (−ık′R′) exp (ıkR)vL
′L,σ

k′k,α , the element is diagonal in momentum,

i.e. vL
′L,σ

k′k,α ∼ δk′k. Hence, in total it follows

vL
′L,σ

k′k,α (q) = vL
′L,σ

k,α δk′,kδq,0 (4.65)

with

vL
′L,σ

k,α =
1

m
H〈kL′|Pα|kL〉 (4.66)

And the current is thus given by

jαP (q, τ) = e
∑

k,LL′,σ

vL
′L,σ

k,α (q)c
†
kL′σ(τ)ckLσ(τ) (4.67)

as was beforehand assumed.

Momentum operator matrix elements : Practicable approximations. In the
case of a plane wave calculation, the dipole matrix elements, Equation (4.66), are easily
calculated. In the case of LDA+DMFT calculations, however, one needs to work within
a localized description, such as L/NMTO functions or localized Wannier functions in
general. Then the computation of the above matrix elements become rather tedious. This
is why we shall here proceed an alternative path. Indeed we will show in the following
that for a localized basis set the most important contributions to the matrix element can
be calculated from the Hamiltonian alone, i.e. we need not perform any other integrals
involving the LDA wavefunctions, in a first approximation.

The element of Equation (4.66) can be rewritten (we drop the spin index)

1

m
〈kL′|Pα|kL〉 = − ı

~

1

N

∑

R,R′

〈R′L′|e−ıkR′

[Rα,H0] e
ıkR|RL〉

= − ı
~

1

N

∑

R,R′

eık(R−R′)

∫
d3r

[〈R′L′|Rα|r〉〈r|H0|RL〉 − 〈R′L′|H0|r〉〈r|Rα|RL〉] (4.68)

It is important to note, that here the position operatorRα is defined in the continuum,
i.e. instead of Equation (4.53), its effect in the position representation is 〈r|Rα|RL〉 =
rαχRL(r). One has to make a clear distinction between the continuous space variable
r and the discrete unit cell label R. In the (unphysical) limit of completely localized
wavefunctions, 〈r|RL〉 = χRL(r) ∼ δ(r−RL), this distinction is relaxed, and we recover
the expression Equation (4.60) of the Peierls approach, as we shall see.

As before we separate the positions into the site-vector and the atomic displacement
within the unit cell : Rα

L = Rα + ραL. By shifting in the first term r → r + R′ + ρL′ and

59



2 A FORMALISM FOR REALISTIC CALCULATIONS CHAPTER 4. OPTICAL PROPERTIES

r→ r + R + ρL in the second we find

1

m
〈kL′|Pα|kL〉 = − ı

~

1

N

∑

R,R′

eık(R−R′)

∫
d3r

[
(rα +R′

α + ραL′)〈R′L′|r + R′ + ρL′〉〈r + R′ + ρL′ |H0|RL〉

−(rα +Rα + ραL)〈R′L′|H0|r + R + ρL〉〈r + R + ρL|RL〉
]

= − ı
~

1

N

∑

R,R′

eık(R−R′)(R′
α − Rα + ραL′ − ραL)〈R′L′|H0|RL〉

− ı
~

1

N

∑

R,R′

eık(R−R′)

∫
d3r rα

[
〈R′L′|r + R′ + ρL′〉〈r + R′ + ρL′|H0|RL〉

−〈R′L′|H0|r + R + ρL〉〈r + R + ρL|RL〉
]

(4.69)

This shift is indeed inspired by the lattice considerations of the preceding section. As
we shall see, this splitting is rather natural : The first term obviously is

1

~

(
∂

∂kα
〈kL′|H0|kL〉 − ı(ραL′ − ραL)〈kL′|H0|kL〉

)
(4.70)

which is exactly the Peierls term, Equation (4.60). The merit of the Peierls approx-
imation in a realistic calculation is its simplicity. Indeed no matrix elements other than
the Hamiltonian need to be calculated. The latter is a quantity that is anyhow required
for a many-body calculation, and one thus has only to perform the directional momen-
tum derivative11. For an example of the impact of the intra-cell term see Section F.
From the discussion of the Peierls substitution above, it is clear that the second term in
Equation (4.69)

− ı
~

1

N

∑

R,R′

eık(R−R′)

∫
d3r rα

∑

Λ,L′′

[
χ∗

R′L′(r + R′ + ρL′)χΛL′′(r + R′ + ρL′)〈ΛL′′|H0|RL〉

−χ∗
ΛL′′(r + R + ρL)χRL(r + R + ρL)〈R′L′|H0|ΛL′′〉

]
(4.71)

accounts on the one hand for all atomic transitions (R = R′ and γ′ = γ), yet it also
contains contributions that arise from the fact that we started from a continuum formu-
lation, i.e. the spatial extensions of the wavefunctions lead to inter-atomic corrections,

11We perform this derivative by using the four-point formula :
f ′(xi)dx ≈ 1

12
(f(xi−2)− 8f(xi−1) + f(xi+1)− f(xi+2))
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owing to their finite overlap. Yet, a direct evaluation of the preceding formula is an intri-
cate undertaking, since it involves the calculation of countless integrals. This is why, in
the following, we will make consecutive approximations that lead, step by step, to more
simplified correction terms, that one might endeavour to take into account in an actual
computation. These approximative steps will further rationalize the spatial shiftings that
we have performed to split off the Peierls term as the leading contribution.

Since it is the spatial extensions of the wavefunctions that lead to the above term, the
latter will decrease in relative importance with increasing localization of the orbitals. By
assuming a well localized set of orbitals, we thus proceed to cut down the expression in
question to the predominant terms, which will be given by the integrals that involve wave
functions that have a large overlap. In the most coarse approximation, the only surviving
transition elements will be given by the intra-atomic contributions, that were missing in
the Peierls formulation.

Using χRL(r + R) = χ0L(r) the above can be written as

− ı
~

1

N

∑

R,R′

eık(R−R′)

∫
d3r rα

∑

Λ,L′′

[
χ∗

0L′(r + ρL′)χ0L′′(r + R′ −Λ + ρL′)〈ΛL′′|H0|RL〉

−χ∗
0L′′(r + R−Λ + ρL)χ0L(r + ρL)〈R′L′|H0|ΛL′′〉

]
(4.72)

Now, the origins of all intervening wavefunctions lie within the same unit cell, labeled
“0”. In a first step, the assumed localization of the involved orbitals makes it reasonable
to identify the most important terms in the sum as those, where the arguments of the
wavefunctions also lie within the same unit cell. This means that the overlap will be
largest when Λ = R′ in the first term and Λ = R in the second term. We note that
within this approximation, only the Hamiltonian element depends on the labels R and
R′, and we can thus directly perform the Fourier transformation which then yields

same11
unit cell11

− ı
~

∫
d3r rα

∑

L′′

[
χ∗

0L′(r + ρL′)χ0L′′(r + ρL′)〈kL′′|H0|kL〉

−χ∗
0L′′(r + ρL)χ0L(r + ρL)〈kL′|H0|kL′′〉

]
(4.73)

This means that the entire momentum dependence of the matrix element, in this
approximation, is carried by the Hamiltonian. The complexity of the occurring matrix
elements of the position operator has been considerably reduced. In the one-atomic case,
i.e. γ = γ′ = γ′′, and when using the short-hand notation RLL′

α,0 = 〈0L|Rα|0L′〉, HLL′

0 (k) =
〈kL|H0|kL′〉 we simply have

one-11
atomic11

case11

− ı
~

[
RLL′

α,0 ,H0(k)
]
L′L

(4.74)

This is reminiscent of the relation 1/mP = −ı/~ [R,H0], which we used in the be-
ginning. Here however intervene on-site matrix elements rather than the full position
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operator. Indeed these elements, RLL′

α,0 , are well known in atomic physics. They simply
give the amplitudes for dipolar atomic transitions. Thus the angular part of the inte-
gral will produce the corresponding dipole selection rules (∆l = ±1,∆m = 0,±1) via
Clebsch-Gordon coefficients (see e.g. [Cohen-Tannoudji et al. (1992)]), when, as we have
assumed, the wavefunctions have a well-defined angular momentum (l,m). Contrary to
the atomic case, however, the Hamiltonian is momentum dependent, owing to the fact
that, though regarding atomic transitions, the “atom” here is embedded in the solid from
which arises the energy dispersion. Equation (4.74) thus defines an effective momentum
operator, p̃α,0. However, as will be explained below, it is not possible to use this operator
in the quest for a generalization of the Peierls substitution factors to take into account
local atomic transitions in a lattice formulation.

Also, the above term reminds the form of the multi-atomic correction term in Equa-
tion (4.70), only that there occurred fixed atomic positions ργ, which commute with the
Hamiltonian, which is why in Equation (4.70) only the non-local terms γ 6= γ′ survive.

Coming back to the multi-atomic case, we have to make a further approximation in
order to obtain an expression containing atomic transitions only. Yet, the shifts in the
wavefunctions of Equation (4.73) can be treated analogous to the unit cell coordinates :
Indeed χ0L(r + ρL) is centered around the position of atom γ. When, for the sake of
clarity, we simply rename χ̃0L(r) = χ0L(r + ρL) we have

− ı
~

∫
d3r rα

∑

L′′

[
χ̃∗

0L′(r)χ̃0L′′(r + ρL′ − ρL′′)〈kL′′|H0|kL〉

−χ̃∗
0L′′(r + ρL − ρL′′)χ̃0L(r)〈kL′|H0|kL′′〉

]
(4.75)

From this expression it is clear, that atomic transitions (γ′′ = γ′ and γ′′ = γ, respec-
tively) are in fact predominant. When restraining ourselves to these cases, we thus drop
entirely the corrections to hopping processes that stem from the finite extensions of the
wave-functions and end up with the intra-atomic transitions only, that were completely
missing in the Peierls approach :

intra-
atomic

overlaps
only

− ı
~

∫
d3r rα

[
γ′′=γ′∑

L′′

χ̃∗
0L′(r)χ̃0L′′(r)〈kL′′|H0|kL〉 −

γ′′=γ∑

L′′

χ̃∗
0L′′(r)χ̃0L(r)〈kL′|H0|kL′′〉

]

= − ı
~

[
γ′′=γ′∑

L′′

〈0̃L′|Rα|0̃L′′〉〈kL′′|H0|kL〉 −
γ′′=γ∑

L′′

〈0̃L′′|Rα|0̃L〉〈kL′|H0|kL′′〉
]

(4.76)

The above Equation (4.76) can sketchily be written as :

multi-
atomic

case

− ı
~

∑

L ′′

[
γ′RL ′L ′′

α,0
γ′γHL ′′L

0 (k)− γ′γHL ′L ′′

0 (k) γRL ′′L

α,0

]
(4.77)
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where we have split the multi-index L = (nlmγ) = (L γ), and have defined γRL L
′

α,0 =

〈̃0L γ|Rα
˜|0L ′γ〉, γγ′HL L

′

0 (k) = 〈̃kL γ|H0
˜|kL ′γ′〉. Thus only the elements diagonal in

the γ index can be written in the form of a commutator, as was the case for the one-atomic
case above.

Improvements to the above approximations are obvious: One could e.g. take into
account elements containing nearest-neighbour wavefunctions within the unit cell, or even
account for transitions between different unit cells. In that case however, the matrix
elements that one needs to evaluate are numerous and more complex since they explicitly
involve the various wavefunctions. We stress again, that these terms are inter-atomic
corrections to the Peierls term, while the intra-atomic contributions are completely absent
in the Peierls formalism.

B.e.iii Additional remarks on the Peierls phases

Connection to the lattice formulation. The principle difference between the two
approaches that we elaborated on above is given by the different notion of the spatial
variables and operators. While in the lattice formalism we defined the position operator
by Equation (4.53), yielding a discrete spectrum, the usual quantum mechanical position
operator has a continuous spectrum. Herewith necessarily arises the distinction between
labels, or quantum numbers and coordinates : When developing the field operators of
the continuum in a localized basis set, one introduces a unit cell quantum number R
which becomes the site label i in the lattice formulation. Yet, while in the former a
continuous variable r exists, it cannot occur in the latter. Indeed all former dependencies
of the continuum have to be cast into matrix elements when a pure lattice description is
desired, as was the case in the derivation of the Hubbard Hamiltonian from the continuous
formulation of a solid, Section B, Chapter 1.

Starting from our initial Hamiltonian, Equation (4.15), we recover the Peierls sub-
stitution in the following approximation : Developing again the field operators in the
“Wannier”-like basis, |RL〉, we find that, when dropping for the sake of simplicity the
term that is quadratic in the vector potential, and which leads to the diamagnetic cur-
rent, the coupling to the vector potential can be seen as the substitution :

tL
′L

R′R → tL
′L

R′R +
ıe

~c
A(t) 〈R′L′| [R,H0] |RL〉 (4.78)

Where, again, 1/mP = − ı
~

[R,H0] has been used. With increasing localization of the
orbitals |RL〉, the distinction between coordinates and quantum numbers becomes less
important. Indeed, if the labels R,R′ were coordinates and not quantum numbers, and
thus the position operator would act on them, rather than on the states |r〉 of the position
representation, we would have

tL
′L

R′R → tL
′L

R′R ·
(
1 +

ıe

~c
A(t) (R′ −R)

)
(4.79)

which is just Equation (4.51) to linear order in A.
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One is now tempted to proceed analogously with the atomic transitions, i.e. to use e.g.
the matrix element of Equation (4.74) and to ask which would be the additional Peierls
phase needed to reproduce the correct current element when performing a functional
derivative of the Hamiltonian with respect to the vector potential. A closer examination
however shows that this is not possible. Indeed the requirement of gauge invariance,
Equation (4.17), can only be met by non-local hopping processes12. As a matter of fact,
the whole concept of a current is not meaningful for local processes on a lattice. In the
continuum formulation an atomic transition is characterized by constant position labels,
while it still involves the continuous variable r via the wave functions. Thereby the
corresponding contribution to the current does appear in the continuity Equation (4.18),
since the divergence in the latter refers to the continuous space variable. In the lattice
formulation, however, all continuous spatial dependencies had to be cast into transition
matrix elements and the derivative of the current in the continuity Equation (4.52) is
with respect to the lattice sites. Though evidently conserving the charge, an on-site
current does not turn up in a continuity equation that intrinsically describes the balance
of spatial charge flows. This is why in atomic physics, optical transitions are calculated
à la Fermi’s golden rule, i.e. by initial to final state transition probabilities, rather than
current elements.

Basis dependency. An important issue in the calculation of optical properties when
using the Peierls substitution is the fact that, within this approximation, it makes a
difference in which basis the Fermi velocities are calculated. Indeed the derivative term
in the Peierls velocities manifestly does not transform as does the Hamiltonian :

H(k) → H̃(k) = U †(k)H(k)U(k)

v(k) → U †(k)

(
∂kH(k)

)

︸ ︷︷ ︸
U(k) +

(
∂kU

†(k)

)
H(k)U(k) + U †(k)H(k)

(
∂kU(k)

)

ṽ(k)

i.e. the momentum dependence of the unitary transformation results in additional
terms beyond the transformed derivative of the Hamiltonian. In other words, when using
the Peierls substitution, the optical conductivity itself will be basis-dependent, which is
obviously unphysical. Yet, from the above discussion we can say in which basis the Peierls
substitution is possibly best evaluated. Indeed, in the beginning our Fermi velocities were
completely general. As a consequence, the additional terms from above, that involve the
derivative of the unitary transformations will be “compensated” by the correctional terms
given by Equation (4.71). The latter however, when leaving apart purely atomic transi-
tions, become smaller with an increasing degree of localization of the involved wavefunc-
tions. Thus, the Peierls substitution is most justified when working in a strongly localized

12Apart from the fact, that gauge invariance is trivially granted when adding to the Hamiltonian any
function of rotA, i.e. a coupling to the magnetic field.
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basis, e.g. L/NMTO wavefunctions or Wannier functions à la [Gibson(1958),Marzari and
Vanderbilt(1997)].

Comparisons of the Peierls and the exact velocities have so far only been performed
for a Kronig-Penney model [Ahn and Millis(2000)]. A trivial example, however, is the free
particle : The eigenfunctions are plane waves 〈r|k〉 = eıkr, whose Wannier homologues
are completely localized Dirac distributions 〈r|R〉 = δ(R − r). With the free particle
dispersion ǫk = ~

2k2

2m
, it follows the equality of the exact and the Peierls matrix-elements :

1
m
〈k|Pα|k〉 = 1

~
∂kα

ǫk = ~kα

m
. Thus any complication in the case of a solid arises from

the periodic function uk(r) in Bloch’s theorem, whose influence on the localization thus
determines the accuracy of the Peierls approximation.

B.e.iv The Fermi velocity of the Bethe lattice

DMFT calculations are often performed using the Bethe lattice, since the corresponding
self-consistency is particularly convenient. However, this lattice does not possess transla-
tional invariance, and, therefore, the above formalism can not be applied to compute the
corresponding Fermi velocity.

As we shall see in the next section, the optical conductivity of a lattice model obeys a
restricted sum rule. From this knowledge, one may define the Fermi velocity for the one-
band Bethe lattice from the requirement of the validity of this sum rule, Equation (4.85).
Then one finds [Chung and Freericks(1998),Chattopadhyay et al. (2000)]

v2(ǫ) =
4t2 − ǫ2

3
(4.80)

when working in an energy formulation, i.e. when replacing the momentum sum by
an integral over the density of states13.

C Sum rules

Sum rules are a powerful tool, that allow to study, on a quantitative level, the tracking
of spectral weight shifts upon the change of external parameters. Whereas in various
techniques, such as photoemission, intensities are collected in arbitrary units, the knowl-
edge of the normalization of the optical conductivity makes it possible to monitor small
differences in the measured spectra.

C.a The unrestricted sum rule

Using the Kramers-Kronig relation for the imaginary part of the conductivity, in the limit
of large frequencies, we find

∫ ∞

0

dω′ℜσ(ω′) =
π

2
lim
ω→∞

ωℑσ(ω) (4.81)

131/N
∑

k
f(k) −→

∫
dǫ D(ǫ)f(ǫ)
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Since the imaginary part of the paramagnetic contribution, Equation (4.36), Equation (4.47),
are going to zero with 1/ω2 in the ω →∞ limit, the only surviving term stems from the
diamagnetic response, Equation (4.30), whence we get

∫ ∞

0

dω′ℜσ(ω′) =
π

2

ne2

m
(4.82)

This equation is known as the f-sum rule. The presented derivation is due to [Kohn(1964)].
This means that, for a given system, the optical conductivity integrates up to a constant,
independent of temperature, interaction strengths etc. When looking at finite frequency
integrals over the conductivity, the above sum rule thus allows for keeping track of spec-
tral weight transfers in distinct energy regions as a function of the mentioned parameters
and hence opens the possibility of identifying the mechanisms underlying the evolution
of the system. With the knowledge of the transformations between the different optical
functions, analogous sum rules exist, e.g. for the dielectric function ǫ(ω).

C.b Restricted sum rules

In theory one often works with effective models which do not contain all electronic degrees
of freedom of a realistic system. In particular the number of orbitals is restricted, and
hence only a finite energy window is spanned by the model. Hereby high energy transi-
tions, present in the real solid, are neglected. This leads, as we shall see to a modification
of the above f-sum rule. Indeed, the frequency integral is found to yield not a constant
but is, under certain assumptions, proportional to the kinetic energy of the model.

When working in the lattice formalism and neglecting on-site transitions, we can sub-
stitute Equation (4.54) into one of the current operators in Equation (4.41). Integrating
over frequency then yields, when using the definition Equation (4.53) :

∫ ∞

−∞
dωℜσ(ω) =

πe2

~2V
〈[[H,Rα] ,Rα]〉 (4.83)

=
πe2

~2V

∑

LL′,ij,σ

tL
′L

ij

(
aL

′L
ij,α

)2

〈c†iL′σcjLσ〉 (4.84)

with aL
′L

ij,α = RL′

i,α − RL
j,α being the distance between the orbital sites L,L′ of the unit

cells i, j. If we now further assume a one band model with only isotropic nearest-neighbour
hoppings on a hyper-cubic lattice, this can be written as

∫ ∞

−∞
dωℜσ(ω) = − πe

2

~2V
a2〈Tα〉 (4.85)
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with the kinetic energy Tα in α–direction. In the isotropic case, one thus finds 〈T 〉 = 3〈Tα〉.

This restricted sum rule can of course also be derived from our end formula of the
optical conductivity Equation (4.49), when making the same assumptions. In the one-
band case, we have, with σ0 = 2πe2~

V

∫ ∞

−∞
dωℜσ(ω) = σ0

∫
dω
∫

dω′
∑

k

f(ω′)− f(ω′ + ω)
ω

A(k, ω′)A(k, ω′ + ω)v2(k)

= 2σ0

∫
dω
∫

dω′
∑

k

f(ω′)
A(k, ω′)A(k, ω)

ω − ω′ v2(k) (4.86)

Noticing that

A(k, ω′)

∫
dω

A(k, ω)

ω − ω′ =
1

π
G′(k, ω′)G′′(k, ω′)

=
1

2π
ℑ
(
G2(k, ω′)

)
(4.87)

and

ℑ
(
G2(k, ω)

)
= −π∂ǫkA(k, ω) (4.88)

it follows
∫ ∞

−∞
dωℜσ(ω) = −σ0

∫
dω
∑

k

f(ω) (∂ǫkA(k, ω)) v2(k)

= −σ0

∫
dω
∑

k

f(ω) (∂kA(k, ω)) v2(k)

(
∂ǫk
∂k

)−1

= σ0

∫
dω
∑

k

f(ω)A(k, ω)∂k

(
v2(k)

∂ǫk/∂k

)
(4.89)

In the last step we have specialized to the one dimensional case, in which the Fermi
velocity vanishes at the Brillouin zone boundaries, and hence the partial integration only
yields the term that is shown. Further, in the one-band lattice case, the Fermi velocity is
just the momentum derivative of the one-particle dispersion in the direction ǫ specified by
the vector potential, Equation (4.60) : v(k) = 1/~(ǫ ·∇k)ǫk. Here, in the one-dimensional
case, we have v(k) = 1/~∂kǫk, from which follows:

∫ ∞

−∞
dωℜσ(ω) =

σ0

~2

∑

k

∫
dω f(ω)A(k, ω)∂2

kǫk (4.90)

Further, when limiting ourselves to the case of nearest-neighbour hopping only, i.e.
ǫk = −2t cos(ka) we have ∂kǫk = −a2ǫk and thus
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∫ ∞

−∞
dωℜσ(ω) = −a

2σ0

2~3
〈T 〉 (4.91)

with the kinetic energy

〈T 〉 = 2
∑

k

ǫk~

∫
dω f(ω)A(k, ω) (4.92)

That is to say, we recover the result of Equation (4.85).

D Downfolding of Fermi velocity matrix elements

Upfolding of the downfolded response

Many-body calculation for realistic systems mostly work in a downfolded setup. In other
words, after a band-structure has been obtained from e.g. an LDA computation, orbitals
that are supposed to be subject to only minor correlation effects are integrated out and
linearized. These are typically high energy excitations, and thus the downfolding proce-
dure is used to construct an effective low-energy problem, which is simpler to be tackled
with a many-body approach. The linearization step preserves the Hamiltonian form of the
one-particle part of the problem. Thereby the influence of correlation effects beyond the
one-particle band-structure of these orbitals, and also the possible feedback on the others,
are entirely neglected, and the high energy excitation spectrum fixed to the Kohn-Sham
eigenvalues within LDA. The many-body calculation thus lives in an orbital subspace
only, and all other orbital degrees of freedom remain unaffected. The introduction of a
double-counting term, which corrects for correlation effects already taken into account by
the LDA, may only adjust the center of gravity of the many-body spectrum with respect
to the higher energy parts.

Although in the computation of the Fermi velocities, Equation (4.66), only the “non-
interacting” band-structure results enter, several complications occur, when it comes to
the deducing of optical properties from downfolded many-body calculations : Not only are
transitions from and to high energy orbitals truncated, but also the optical transitions
within the block of low-energy orbitals acquire wrong amplitudes, since, evidently, the
computation of transition matrix elements and the downfolding procedure do not com-
mute. Here one has to distinguish between the effect on the full matrix element from
that on the Peierls velocity. As a matter of fact, when using the Peierls approach, the
impact of the downfolding procedure is much worse. This is related to the aforementioned
basis dependency of the Peierls conductivity. While the full velocity matrix element is
only compromised by the linearization step inherent to the downfolding, the Peierls term,
with its momentum derivative, suffers beyond this from the block-diagonalization as such.
Indeed, the orbitals of the downfolded system are in general less localized than the ones of
the original problem. For an instructive discussion on this subject see also [Millis(2004)].

Here we explain a simple strategy for the computation of the optical conductivity,
applicable to many-body electronic structure calculations that were performed using a
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downfolded one-particle, e.g. LDA, Hamiltonian. This procedure, though of course not
rigorous, yields more sensible results than when computing the Fermi velocities directly
from the downfolded system and is, in principle, not limited to the use of the Peierls
approach.

The central quantity to look at in this respect is the orbital trace of the matrix product
of Fermi velocities and momentum-resolved spectral functions in Equation (4.49) :

tr
{
vkAk(ω

′)vkAk(ω
′ + ω)

}
(4.93)

Since the trace is invariant under unitary transformations, the above can certainly be
written

tr
{
U †

kvkUkÃk(ω
′)U †

kvkUkÃk(ω
′ + ω)

}
(4.94)

for arbitrary unitary matrices Uk. In the case of a band-structure calculation (i.e. a vanish-
ing self-energy, Σ = 0), we can chose these matrices such as that they perform the desired
downfolding, i.e. both, the spectral functions Ãk = U †

kAkUk and the transformed Hamil-
tonian will acquire a block-diagonal form. In the following we shall distinguish between
the low energy block “L” and the high energy block “H”. An LDA+DMFT calculation will
normally add local Coulomb interactions only to the former after the blockdiagonaliza-
tion, which will result in a self-energy that lives in this sub-block, while the orbitals of the
latter will remain unchanged from the many-body (DMFT) calculation. In other words,
since both sub systems are disconnected, the block-diagonality is retained throughout the
calculation.

Clearly the downfolding procedure is not exact, since it linearizes the impact of the high
energy orbitals. When solving the system with the full, non-downfolded, Hamiltonian 14,
the matrices that block-diagonalize the full system would not be the same. They would
even depend on the frequency ω due to the dynamical nature of the self-energy. Yet, when
granting the approximative validity of the downfolding as such, and assuming the Uk to
remain unchanged with respect to the initial band-structure, we can proceed further, and
by specifying

ṽk = U †
kvkUk =

(
V1 W
W † V2

)
, Ãk(ω′) =

(
L 0
0 H

)
,

and Ãk(ω
′ + ω) =

(
L̄ 0
0 H̄

)
(4.95)

the above trace becomes

LV1L̄V1 + LWH̄W † +HV2H̄V2 +HW †L̄W (4.96)

For transitions within the block of only correlated orbitals, L , intervenes the Fermi
velocity matrix V1, which is evaluated as the low-energy block of the unitary transformed
matrix element of the full, i.e. non-downfolded system. The resulting velocity ṽk is thus

14We neglect (e.g. screening related) issues concerning the interaction terms
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different from the matrix element that is computed from the downfolded system. When
using in particular the Peierls expression the momentum derivative of the unitary matrices
Uk lead to additional terms in the latter case.

Moreover, with the above, a restriction to the low-energy block is not imperative.
We can indeed calculate the complete optical response, including transitions from, to and
within the high energy block15. The latter is entirely determined by the band-structure cal-
culation. When comparing to experiments, this shortcoming/fact allows to assess whether
it is only the relative position with respect to the low energy orbitals that needs an "ad-
justment", which is connected to the double counting term, correcting for correlation
effects already taken into account by the LDA, or whether correlation effects modify sub-
stantially the overall spectrum of downfolded orbitals. The latter can be brought about
e.g. by non-negligible life-times, or shifts that depend on the individual orbital.

We will refer to the above described scheme as "upfolding", since the downfolded
orbitals are reintroduced for the sake of accounting for optical transitions from, into, and
between them.

E Colour Calculations

Among the optical functions, the reflectivity is the most natural one. Indeed, it is this
quantity, that, in the region of visible light, is measured by our eyes. In order to calculate
from the knowledge of the reflectivity the colours that our human detectors evidence,
several parameters have to be considered. Besides the spectral response of the material,
it is the spectral distribution of the light source and the colour sensitivity of our eyes that
enter the calculation.

With this motivation, several colour schemes have been developed to describe the
standard observer, i.e. the colour perception of the average human eye. This subject
being a scientific branch on its own, with impact, in particular, on computer graphics, we
shall not go into details, but refer to the literature : See [Nassau(2001)] and references
therein.

The space of subtractive colours normally has three coordinates, referring to the three
base colours, red, green, blue (RGB). The sensitivity of the response of the eye at different
wavelengths is given by the colour matching functions (x̄, ȳ, z̄). Figure 4.3 shows the CIE
1964 XYZ standard functions16. With the colour matching functions one may calculate
the CIE XYZ colour coordinates by

15We can thus make a distinction between different origins of spectral weight. Yet, we cannot tell
apart the different contributions within the L block. While one has the possibility to suppress selected
transitions by setting to zero the respective Fermi-velocity matrix elements, the different contributions
are in that case not additive.

16The XYZ colour space is different from the standard RGB one. The advantage is that the colour
matching functions are positive at all wavelength and can thus be interpreted as weighting function. This
is not the case in the RGB formulation.
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Figure 4.3 : CIE 1964 colour matching functions (x̄, ȳ, z̄) as a function of wavelength,
and the spectral distribution S(λ) of the CIE day light illuminator D65 (6674 K) (illumi-
nator values divided by 200). Data from [CVRL(2006)]. The bar on the top shows the
colours corresponding to the indicated wavelengths.
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X = k

∫
dλS(λ)R(λ)x̄(λ)

Y = k

∫
dλS(λ)R(λ)ȳ(λ) (4.97)

Z = k

∫
dλS(λ)R(λ)z̄(λ)

Figure 4.4 : The colour bar shows the visible spectrum in both, units of wavelength and
eV.

Here, S(λ) is the spectral distribution of the light source. When performing actual
calculations, we shall use the CIE illuminant D65, which is appropriate for usual day
light. The corresponding distribution is also shown in Figure 4.3. Finally, R(λ) is the
reflectivity as calculated from the optical response functions that we introduced in the
introduction to this chapter. k is a constant, that normally is chosen such that Y=100.

Then, the chromaticity values are defined by

x =
X

X + Y + Z

y =
Y

X + Y + Z
(4.98)

z =
Z

X + Y + Z

evidently the latter sum up to one, and they can be transformed into the usual RGB
coordinates by a matrix transformation (which we take from [Hoffmann(2000)]).
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F Technicalities : Examples

Simple cubic vanadium. Above we have extended the Peierls substitution to the
case of multi-atomic systems. Here we shall illustrate the impact of the additional term
by calculating the LDA optical response of fictitiously simple cubic vanadium in both, its
primitive and a non-primitive, unit cell. Figure 4.5 shows the optical conductivity of

• cubic vanadium for the [100] polarization with one atom per unit cell. In this case
the Fermi velocity is given by the momentum derivate of the Hamiltonian (red solid
line)

• the same but using a non-primitive unit-cell, that with respect to the primitive one
has been doubled along the x-direction, and using the generalized Peierls substitu-
tion (green dashed curve)

• the same as the latter but limiting the Fermi velocities to the momentum derivative
of the Hamiltonian (blue curve).
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Figure 4.5 : Optical conductivity of cubic vanadium for [100] polarization.

We clearly see that the generalized Peierls substitution reproduces17 the result of the
primitive unit cell, while the neglecting of the additional term in the Fermi velocities
induces errors up to 100%.

17Within the precision of our k-sampling.
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The techniques developed in the preceding Part II are now applied to several examples
of correlated materials : First we investigate two of the most well-known, but still not
well-understood, compounds, namely the vanadium oxides VO2 and V2O3.

• In the case of VO2, a detailed analysis of the excitation spectrum as calculated from
LDA+(C)DMFT will lead to a deepened understanding of correlation effects in both,
the metallic and the insulating phase. While for the former dynamical correlations
and lifetime effects prevent a description in terms of quasi-particles, the excitation
spectrum of the latter is found to allow for an effective band-structure. In this vein,
we will construct an orbital-dependent, but energy-independent one-particle poten-
tial that reproduces the LDA+CDMFT excitation energies. Yet, though exhibiting a
spectrum that is obtainable by a scissors operator, the true many-body ground state
is well beyond a static one-particle description. The picture that emerges from this
analysis we shall characterize as a “many-body Peierls” scenario. The seemingly
contradictory result of a correlation driven metal to insulator transition in which
the insulator exhibits less (spectral) signatures of correlations will thus be resolved.
Moreover, we calculate the optical conductivity of both phases in a full-orbital setup,
using the LDA+CDMFT self-energy. The results are in good agreement with exper-
iment, corroborating further our picture of the electronic structure.

• In the case of V2O3, the mechanism of the doping-driven metal–insulator transition
is investigated and identified to originate from a correlation enhancement of the eπg–
a1g crystal field splitting. This results in an effective de-hybridization between these
orbitals. Both, the metallic and the insulating phases are found to exhibit strong
satellite features in their spectral function, the dispersion of which reflects those
of the renormalized one-particle excitations. Furthermore we evidence an orbital-
selectivity in the coherence scale in the metallic phase : While a1g excitations are
found to be close to the Fermi liquid regime, eπg excitations remain incoherent down
to the lowest temperatures of the calculation. This selectivity is confirmed by recent
optical experiments. By identifying the orbital origins of different optical transitions,
we explain the temperature dependence of the measured optical conductivity.

• The last chapter presents a study of the optical conductivity of rare-earth sesquiox-
ides. In the series RE2O3, with RE=Ce, Pr, Nd, Pm, we track the behaviour of
the localized f-states and their influence on the optical absorption. While the over-
all spectrum is dominated by O2p to RE5d orbitals, the low frequency onset of the
absorption spectrum is determined by the position of the rare earth 4f states. The
occupation of the latter increases along the series from one (Ce) to four (Pm) elec-
trons. This change in filling results in a moving of the 4f Hubbard bands. In Ce2O3

the lower Hubbard band sits between the Fermi level and the uppermost oxygen bands
and thus is fully responsible for the low-lying optical excitations, whereas already in
Nd2O3 the Hubbard band has moved sufficiently downwards to merge with the oxygen
bands, resulting in an oxygen dominated absorption edge that varies only little along
the remaining rare earth series.



Chapter 5

Vanadium Dioxide – VO2

Since its discovery [Morin(1959)], almost five decades ago, the metal-insulator transition
in VO2 has fascinated condensed matter physicists and has been studied extensively,
both, by diverse experimental techniques and numerous theoretical approaches. While
a consensus even on the nature of the insulating phase is still lacking, VO2 is on the
verge of industrial applications, where use is made of its transition properties in ultra-fast
switching devices [Rini et al. (2005)] and intelligent window coatings [Granqvist(1990)].

In the following will be given a short review on experimental and theoretical studies
of VO2, such as to explain the open questions and to put into context the findings of our
work, whose description will follow in Section B. The starting point of our analysis are
previous Cluster DMFT calculations by [Biermann et al. (2005)]. For a more extensive
review on VO2 see e.g. [Eyert(2002)] and references therein.

A Experimental findings and theoretical understand-

ing - a brief review

It was found long ago [Morin(1959)], that VO2 undergoes a first order metal-insulator
transition as a function of temperature, as evidenced by the resistivity shown in Figure 5.1.
The transition at 340 K is accompanied by a change in the crystal structure : The high
temperature phase is of rutile (TiO2) structure (P42/mnm) [Marezio et al. (1972)] : The
oxygen ions form a hexagonal close packing. One half of the octahedral holes are filled
by vanadium ions, such as to form two parallel chains of filled octahedra along the rutile
c-axis, as indicated in Figure 5.2 (a). The unit cell comprises two formula units.

The monoclinic structure of the M1 phase (P21/c), Figure 5.2 (b), is characterized by
the pairing up of vanadium ions that form dimers along the crystallographic c-axis, that
moreover tilt, to eventuate in anisotropic zig-zag chains. This leads to a unit-cell doubling,
hence a total of four formula units appear per primitive unit-cell. It is this particularity
that has provoked the proposal of a simple Peierls mechanism for the insulating character
of this phase, as will be detailed further below.
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Figure 5.1 : Resistivity of several transition metal oxides, as a function of inverse tem-
perature. From [Morin(1959)].

Figure 5.2 : Crystal structure of VO2 in (a) the rutile, (b) the M1 phase. The rutile
c-axis is parallel to the x, x′ axis of the indicated local coordinate system in (a). From
[Eyert(2002)].
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A.a The metallic rutile phase

There is considerable experimental evidence that already the metallic phase of VO2 is a
compound that exhibits strong correlation effects :

• The dc conductivity is found to violate [Allen et al. (1993),Qazilbash et al. (2006)]
the Ioffe-Regel-Mott limit [Gunnarsson et al. (2003)] for resistivity saturation, i.e.
the electron mean free path is comparable to, or smaller than the lattice spacing
and Boltzmann transport theory breaks down.

• Further, the quasi-particle-renormalization factor Z was experimentally determined
by photoemission spectroscopy [Okazaki et al. (2004)] and found to be rather small :
Z ∼ 0.31. This is consistent with an effective mass enhancement, as evidenced by
optical spectroscopy [Barker et al. (1966),Okazaki et al. (2006)], that finds m∗/m =
4.32.

• Also, photoemission experiments witness a vanadium 3d correlation satellite at bind-
ing energies higher than the lowest 3d band in LDA, see Figure 5.6 and Figure 5.9.
This will be mentioned in more detail below when discussing the scenarios for the
metal-insulator transition.

• Doping VO2 with Niobium, V1−xNbxO2, which is thought to increase the lattice pa-
rameters and thus decrease hopping amplitudes, results in a Mott-Hubbard insulator
having the rutile crystal structure [Villeneuve et al. (1972),Pouget et al. (1972),Led-
erer et al. (1972)].

A.b The insulating M1 phase and the metal-insulator transition

A.b.i Goodenough versus Mott

The formation of vanadium dimers and the resulting unit-cell doubling, led [Goode-
nough(1960),Goodenough(1971)] to propose a scenario in which it is the changes in the
crystallography that are responsible for the metal-insulator transition. Here we shall
summarize his line of reasoning.

VO2 has a 3d1 configuration and hence the key focus lies on the d-orbitals. The cubic
component of the crystal field resulting from the octahedral coordination of the vanadium
ions in the rutile phase splits the d-orbitals into an eσg and a t2g manifold, with the latter
lying lower in energy. The tetragonal contribution to the crystal field further splits the t2g
into two eπg and a single a1g orbital. The former are made of d-orbitals that point towards
the oxygen atoms and thus hybridize with the O2p orbitals. Due to their anti-bonding
character, the eπg (often, as in Figure 5.3, denoted as π∗) lie higher in energy than the
a1g orbitals. These, on the other hand, are directed along the rutile c-axis, and are also

1When comparing the photoemission of [Okazaki et al. (2004)] and [Koethe et al. (2006)], we remark
that in the former, the quasi-particle peak is less prominent, owing perhaps to more important surface
effects. This however means that in particular the extracted Z factor has to be interpreted with caution.

2Only when supposing the electron self-energy to be local the identity Z−1 = m∗/m holds.
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called d‖ as in the level scheme shown in Figure 5.3. In rutile VO2, both these types of
orbitals overlap, accounting for the metallic character of this phase. When passing to the
monoclinic phase, two main effects are to be distinguished [Goodenough(1971)] :

• Due to the dimerization along the c-axis, the unit-cell doubles and the a1g orbitals
split into bonding / antibonding components (Peierls mechanism).

• The tilting of the dimers further leads to an increased hybridization of the eπg with
some oxygen 2p orbitals, and thus they are shifted to higher energies with respect
to the bonding a1g component, whose occupation thus increases.

Both these effects favour a depletion of spectral weight at the Fermi level. Yet, the question
is whether they are sufficient in magnitude to fully explain the insulating behaviour of
the M1 phase : The optical gap was determined to be of the order ∼ 0.6 eV, e.g. [Okazaki
et al. (2006)].

Figure 5.3 : Schematic energy diagram for the vanadium 3d bands around the Fermi
level. The energy differences are experimental estimates. From [Shin et al. (1990)].

The second major viewpoint, initially put forward by [Zylbersztejn and Mott(1975)],
emphasizes the role of electron correlations. By their reckoning, the pairing up of vana-
dium atoms only preempts an anti-ferromagnetic ordering, while the main reason for the
insulating behaviour is the localization of carriers due to the Mott phenomenon, as de-
scribed in the introduction. Thus, put simply, the opposing pictures for the insulating
behaviour of the M1 phase of VO2 are that of a Peierls insulator versus a Mott-Hubbard
one.

In the following, we will collect experimental and theoretical evidence that has been
worked out over the years, but which, however, did not yet lead to a globally accepted
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consensus. Afterwards, we will show in our analysis how the two seemingly opposing
pictures that have just been described, can somewhat be reconciled in a scenario in which
correlations are essential for the nature of the insulating phase, but, still, they do not
provoke a genuine Mott-Hubbard transition.

A.b.ii Collecting evidence

Nuclear Magnetic Resonance and the V1−xCrxO2-phase diagram. Besides the
rutile and the M1 phase, other configuration can be realized by applying uni-axial pres-
sure along the [110] rutile axis or by chemical substitution. The linkage between these
other phases and the rutile or M1 one can give valuable information towards a better
understanding of the un-doped compound at ambient pressure and was used to advocate
the Mott-Hubbard scenario as will now be explained.

Figure 5.4 : Phase diagram of V1−xCrxO2 after [Pouget and Launois(1976)]. Indicated
are also the orientations and distortions of the vanadium chains. (open circles in the T
phase refer to the positions of the M2 phase.) From [Eyert(2002)].

Indeed, slightly different phase diagrams appear upon doping with small amounts
of Cr, Fe, Al, or Ga [Marezio et al. (1972), Pouget et al. (1974)]. Figure 5.4 shows
the phase diagram of Cr-doped VO2 [Marezio et al. (1972),Pouget et al. (1975),Pouget
et al. (1974)]. While at constant temperature the rutile phase persists upon doping, two
new low temperature phases appear : In the insulating M2 phase, as indicated schemati-
cally in Figure 5.4, two inequivalent vanadium chains exist, in one of which only appears
the dimerization while in the other only the tilting occurs. Nuclear magnetic resonance
measurements [Pouget et al. (1974)] concluded that the tilted pairs have the magnetic re-
sponse of spin 1/2 Heisenberg chains, while the dimerized chains are non-magnetic, S=0,
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as is globally the case in the M1 phase. The T phase is an intermediate, or “transitional”
phase between M1 and M2 at lower temperature.

[Pouget et al. (1975),Pouget et al. (1974),Pouget et al. (1974)] argued that the spin
1/2 chains are magnetic or Mott-Hubbard insulators. Further, since the M1 and M2
phases must be very close in their free energy and because they are linked continuously
via the T phase, it was concluded that all the insulating phases of VO2 are of the same
type, namely the Mott-Hubbard one. In our analysis, we will put forward a slightly
different scenario3.

Also, when doping with Nb, a metal-insulator transition is induced in V1−xNbxO2 at
concentrations x ∼ 0.14, without provoking a change in the crystal symmetry, while
finding a Curie-Weiss susceptibility in the insulator [Villeneuve et al. (1972), Pouget
et al. (1972),Lederer et al. (1972)], which shows that rutile VO2, as such, is indeed close
to a Mott-Hubbard transition, which was thought to further corroborate the above Mott
scenario for the rutile to M1 phase transition.

Band-structure methods and beyond. Arguments promoting a strong correlation
scenario came from ab initio molecular cluster calculations. Indeed a gap of correct
magnitude was opened in such an approach [Sommers and Doniach(1978)]. Furthermore,
from the resulting level scheme an on-site Coulomb repulsion of U ∼ 1.22 eV was extracted
and a Heitler-London ground state, i.e. a state in which double occupancies have been
projected out, was favoured over a linear combination of atomic orbitals (LCAO). The
latter point will turn out to be crucial to our analysis. This will be detailed below.

Due to the considerable complexity of the compound, true band-structure calculations
only became feasible decades after the discovery of the metal-insulator transition. A first
attempt to describe the insulating behaviour of M1 VO2 in terms of a one-particle theory
was made by [Caruthers and Kleinman(1973)]. In their tight-binding linear-combination-
of-atomic-orbitals (LCAO) calculation they monitored which tight-binding parameters
change when going through the transition and then made the same parameters adjustable
such as to reproduce, as well as possible, experimental results like the optical gap and the
shape of the imaginary part of the dielectric function ǫ2. Though in particular the opening
of a gap was achieved, a reliable ab initio treatment of VO2 remained to be awaited.
Early results on the electronic structure of rutile VO2 had suggested the validity of a
band-like description. It was argued that the bandwidth obtained from optical and x-ray
spectroscopy was too large to be subject of sizable correlations4. Owing to improvements
both, in experiment and theory, this was however soon queried as stated already above.
Indeed, e.g. modern photoemission data clearly evidences important correlation effects.

With the advent of density functional theory within the local density approximation
(LDA), and increasing computer power, band-structure calculations of the monoclinic
phase eventually became feasible, [Wentzcovitch et al. (1994)]. Although the LDA was

3In a Mott-Hubbard phase, Coulomb correlations prevail upon the itineracy of electrons, such as to
localize the charge carriers on the atomic sites. This is naturally concomitant with the appearance of
local moments. This is not found in M1 VO2.

4Indeed, as we shall see, the quasi-particle part of the LDA+DMFT spectral function extents down
in energy as much as the LDA density of states, as far as only the occupied spectrum is concerned.
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not capable of opening a charge gap at the Fermi level, the basic tendencies of the Good-
enough scenario were indeed found to take place. The formation of a pseudo gap was
explained by a bond enhancement of the vanadium ions, as described by the Peierls
mechanism. Also the calculation of total energies suggested that the energy gain owing
to the change in crystal-symmetry was sufficient to account for the rutile to M1 transi-
tion. The failure of capturing truly insulating behaviour was ascribed to the commonly
accepted gap underestimation of the local density approximation. It was thus concluded
that “VO2 may be more band-like than correlated” [Wentzcovitch et al. (1994)]. Figure 5.5
shows the LDA band-structure of M1 VO2 from [Eyert(2002)]. The vertical bars indicate
the contributions stemming from the a1g orbitals (“fat band” representation). When com-
paring to the rutile structure (for an equivalent graphic for the rutile phase, see Fig. 29
in [Eyert(2002)]), an enhanced splitting of the a1g is observed along with a general up-shift
of the eπg orbitals.

Figure 5.5 : LDA band-structure of M1 VO2. The width of the bars corresponds to the
degree of a1g contributions. From [Eyert(2002)].

To further elucidate this band-like interpretation, electronic structure calculations
beyond the LDA were performed. [Continenza et al. (1999)] used a model GW [Gygi
and Baldereschi(1989)] approach, in which the screened interaction W was approximated
by an inhomogeneous electron gas short-range component plus a residual interaction that
was parametrized using the dielectric constant of the material5. This procedure opened

5Though only mentioned in the references, they apparently employed a self-consistency scheme with
a full update of the wavefunctions.
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a gap at the Fermi energy in good agreement with experiment. Indeed we will see below
that by different means, we will arrive at a somewhat similar density of states.

Moreover, LDA+U [Anisimov et al. (1991)] calculations on VO2 [Huang et al. (1998),
Korotin et al. (2002), Liebsch et al. (2005)] succeeded in producing an insulating M1
phase. [Liebsch et al. (2005)] concluded that the important correlations are of static but
non-local, or inter-orbital nature. In fact, though the Coulomb interaction U is site-
diagonal, both, inter-site and momentum-dependent components are generated in the
LDA+U self-energy by means of static screening processes. Further, it was shown that a
gap is still opened when in the self-consistency all non-diagonal elements of the occupation
matrix nαβ are neglected. “Non-diagonal coupling among t2g orbitals” were thus argued
to be unimportant for the gap opening. We will comment on this later.

Figure 5.6 : Photoemission spectra of VO2 with 700 eV photons. From [Koethe
et al. (2006)].

Photoemission spectroscopy. Figure 5.6 shows results from a recent photoemis-
sion spectroscopy experiment [Koethe et al. (2006)]. Prior experiments were performed by
[Sawatzky and Post(1979),Goering et al. (1997a),Kurmaev et al. (1998),Shin et al. (1990),
Okazaki et al. (2004),Eguchi et al. (2006)]. In the rutile phase (red) a quasi-particle peak
appears at the Fermi energy. At binding energies higher than 1 eV, there still is vanadium
3d weight, that reminds of a lower Hubbard band. This is clearly not captured by LDA
calculations, see the density of states in Figure 5.9, and a further indication for strong
correlations. Below the transition temperature (blue curve) a well defined feature appears
at energies intermediate to the rutile lower Hubbard band and the rutile quasi-particle
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peak. This is rather interesting : In a realistic transition, it is mostly the kinetic energy
that is controlled by external parameters such as pressure or temperature, that thus are
the driving force of the metal-insulator transition. Of course, due to possible changes in
the crystal symmetry and thus the screening effects, also the Coulomb interaction is sus-
ceptible to variations. Yet naively, one would rather not think that the on-site interaction
U is larger in the insulator than in the metal. Hence, when comparing the position of the
preformed lower Hubbard band in the metal and in the insulator, it appears conceivable
that it could move to higher binding energies in the latter. Here, however, the inverse
seems to be the case. This is why [Koethe et al. (2006)], in agreement with [Biermann
et al. (2005)] whose calculations our work is based on, and in the spirit of Goodenough,
interpreted the prominent feature in the insulator as a bonding-orbital rather than a lower
Hubbard band.

As concerns oxygen 2p weight in the photoemission spectra, one observes slight changes,
both, in position and relative amplitudes. This is likely to be due to the modifications in
the crystal symmetry and the resulting changes in the hybridizations.

An angle resolved photoemission spectroscopy experiment was performed in [Goering
et al. (1997b)]. It was evidenced that in both, the metallic and the insulating phase, the
measured bandwidth is somewhat narrower than in band-structure calculations. However,
the limited experimental resolutions impeded more quantitative statements.

X-ray spectroscopy. As regards the unoccupied part of the spectrum, insights can
be gained by x-ray absorption spectroscopy. Here use is made of the mixed character of
spectral weight at energies of the d-manifold. In the two experiments whose results we
will mention below, the spectroscopic intensity is arising from transitions of O1s into O2p
admixtures of the vanadium 3d orbitals. As for photoemission, the history of experiments
for VO2 is extensive : [Sawatzky and Post(1979), Bianconi(1982), Abbate et al. (1991),
Kurmaev et al. (1998),Hérbert et al. (2002),Haverkort et al. (2005),Koethe et al. (2006),
Eguchi et al. (2006)]. Figure 5.7 shows results for the O1s absorption edge for both, the
rutile and the M1 phase from [Abbate et al. (1991)]. While the peaks corresponding to
transitions into eπg (here again denoted π∗) and eσg orbitals (σ∗) remain rather unaffected
by the transition, clearly visible is the appearance of a third peak, at ∼ 1 eV above the eπg ,
that has been attributed to transitions into the a1g anti-bonding component (d‖) following
the Goodenough picture, as schematized Figure 5.3.

Due to the anisotropy of the monoclinic insulating phase, valuable information can
be obtained from experiments that use polarized radiation. In the bonding / antibonding
picture, the dependence of transition matrix elements on the orientation of the crystal with
respect to the electric field is expected to be particularly pronounced for the a1g orbitals
when comparing the rutile with the M1 phase. Figure 5.8 shows recent results by [Koethe
et al. (2006)]. Indeed the aforesaid d‖ peak is discernible only in the spectrum where the
electric field is parallel to the c-axis, along which the a1g orbitals are oriented. In fact, the
transitions in question are into oxygen 2p admixtures of the same symmetry, since these
hybridize most with the a1g orbitals. Though there is a tiny fraction of transitions of
d‖–character at lower energies, see [Koethe et al. (2006)], the authors identified the large
main structure described above as the a1g anti-bonding component, by resorting to the

85



1 EXPERIMENTS AND THEORY CHAPTER 5. VANADIUM DIOXIDE – VO 2

Figure 5.7 : O1s absorption spectra at room temperature (RT) and at T = 120◦C.
From [Abbate et al. (1991)].

Hubbard molecule. As a matter of fact, in our analysis we will rationalize the relevance
of this model to the M1 phase also from the theoretical point of view. See in particular
Section B and Appendix B.

Optical spectroscopy. Another experimental probe suited for the investigation of
the electronic structure of correlated materials is optical spectroscopy. Chapter 4 of this
thesis was devoted to developing a theoretical formalism for the calculation of optical
properties for correlated systems. Above, we have already mentioned several results ob-
tained from optical spectroscopy such as the optical gap, an estimate for the effective mass
and the evidence for bad metal behaviour in the rutile phase. Although less open to in-
terpretation, optical experiments give valuable information on low energy excitations. By
appealing to sum rules, the redistribution of spectral weight as a function of temperature
can be studied carefully.

Optical measurements on VO2 were first performed by [Barker et al. (1966)], and [Ver-
leur et al. (1968)]. By probing different orientations of single crystal samples, they evi-
denced an anisotropy in the optical response of the M1 insulator. More precisely, the con-
ductivity depends on whether the electric field is parallel or perpendicular to the crystallo-
graphic rutile c-axis going going below the transition temperature. This is to be expected
from the described changes in the crystal-structure with the unit-cell doubling along
the c-axis. This anisotropy was confirmed by ultraviolet reflectance measurements [Shin
et al. (1990)] and x-ray experiments [Abbate et al. (1991),Koethe et al. (2006)]. [Ladd
and Paul(1969)] performed experiments under pressure, and noticed that c-axis stress
reduces the transition temperature considerably more than is the case for hydrostatic
pressure. More recently, [Okazaki et al. (2006)] studied reflectance spectra of thin films

86



CHAPTER 5. VANADIUM DIOXIDE – VO 2 1 EXPERIMENTS AND THEORY

Figure 5.8 : Polarization dependent O1s x-ray absorption spectra (XAS) of VO2 above
and below the transition temperature (Tc ∼340 K) and for polarizations parallel and or-
thogonal to the crystallographic c-axis. The inset shows the temperature dependence of the
d‖ peak intensity across the metal-insulator transition. From [Koethe et al. (2006)].
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with an orientation such that the electric field is perpendicular to the rutile c-axis as
a function of temperature, and found indications for electron-phonon couplings. New
studies by [Qazilbash et al. (2006)] on polycrystalline films with preferential [010] ori-
entation [Chae et al. (2006)] confirmed the bad metal behavior of rutile VO2 evidenced
already in earlier transport experiments [Ladd and Paul(1969)]. As mentioned already
above, rutile VO2 is found to violate [Allen et al. (1993), Qazilbash et al. (2006)] the
Ioffe-Regel-Mott limit for resistivity saturation [Gunnarsson et al. (2003)]. As we shall
see, pronounced differences in the optical response are found between the individual ex-
periments. We will detail and comment on this in Section D, where we will also review
prior theoretical work on optical properties of VO2, before presenting our results on the
optical conductivity using the formalism of Chapter 4.

A.c LDA+(Cluster)DMFT

The undeniable presence of correlation effects in VO2 called for a description beyond the
LDA by incorporating in particular local Coulomb interactions. LDA+DMFT calculations
for the rutile phase were first performed by [Liebsch et al. (2005),Laad et al. (2005),Laad
et al. (2006a)]. Both works used a density of states implementation of LDA+DMFT6

While Laad et al. used an iterated perturbation theory (IPT) solver, Liebsch et al. re-
sorted to a quantum Monte Carlo algorithm to solve the DMFT impurity model. Though
agreeing on the fact that rutile VO2 is a strongly correlated metal, the spectral functions
differ considerably in the works cited above and different conclusions are drawn as to the
metal-insulator transition mechanism. Laad et al. stress their findings of a non-Fermi liq-
uid in the rutile phase and conclude that already in the metal a1g spectral weight is gapped
out, and thus the metal-insulator transition in VO2 to be “orbital-selective”. Liebsch et
al., on the contrary, emphasized the small degree of orbital polarization in the metal,
leading to small static, but considerable dynamical correlations, while the insulator was
said to be mainly governed by static correlations, since LDA+U (see above) does open
a gap [Huang et al. (1998),Korotin et al. (2002), Liebsch et al. (2005)]. Indeed, we will
substantiate the viewpoint of static correlations in our analysis7.

Cluster DMFT calculations were eventually performed by [Biermann et al. (2005)].
A two-site cluster was chosen as the basic unit, which is the natural choice, given the
vanadium dimerization. Moreover, the calculation used a full Hamiltonian implementation
instead of a partial density of states approach. In the Hamiltonian all orbitals other than
the vanadium t2g were downfolded.

Given the additional cluster degrees of freedom, the system was found to develop a non-
local, intra-dimer a1g–a1g coupling in the self-energy. The physical picture that emerged
from the analysis of [Biermann et al. (2005)] was that the a1g electrons populate a bonding
orbital and thus form singlets that live on the vanadium dimers and are “dynamical” due
to the coupling to the CDMFT bath degrees of freedom. These singlets were found to be

6See Section B, Chapter 6 for a discussion of the implications. A small orbital anisotropy, and,
correspondingly, only small charge transfers with respect to the LDA, make this approximation reasonable
in the current case of rutile VO2.

7However, as we shall see, LDA+U is not sufficient to fully account for them.
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close to their Heitler-London limit, in accordance with [Sommers and Doniach(1978)].
Our work is based on these quantum Monte Carlo LDA+CDMFT calculations [Bier-

mann et al. (2005)]. More details will be given below.

89



2 LDA+(C)DMFT – I NSIGHTS BY ANALYTICAL CONTINUATION CHAPTER 5. VANADIUM DIOXIDE – VO 2

B LDA+(C)DMFT –

Insights by analytical continuation8

Summarizing the above history of experimental and theoretical results, it can be said
that correlation effects must play a role in both phases of VO2, yet no consensus has
been reached so far, as to whether the nature of the insulating phase is dominated by
the structural (Peierls) or the correlation (Mott) aspect. As a matter of fact, in our
analysis we will reconcile these two viewpoints, by explaining how and why the strong
correlations lead to an insulating behaviour, yet not in the fashion of a Mott-Hubbard
transition. Indeed, our analysis reveals the striking tendency that the insulating phase
exhibits a much higher degree of coherence than the metal. This appears counter-intuitive
at first, since, as a rule of thumb, insulating behaviour of open d, or f-shell compounds
is thought to be correlation driven. Actually this is also true for VO2, however the
correlation effects are highly non-generic : Despite their undeniable strength, they do not
eventuate in important life-time effects, i.e. one-particle excitations retain their coherence
to a surprising extent. Still, the position in energy of the excitations is tremendously
modified with respect to band-structure calculations9. Below, it is shown that these
modifications can even be cast into a non-local, yet static one-particle potential, that,
when added to the LDA Hamiltonian, reproduces the interacting excitation spectrum, and
moreover results in an optical conductivity that compares reasonably with experiment.
However, as will be explained in the following, the system is in principle far from a
pure one-particle description. This caused us to introduce the notion of a “many-body
Peierls phase”, where the referring to the Peierls mechanism emphasizes the one-particle
like effects on the excitation spectrum, while the addition “many-body” indicates that for
instance the ground state is quite far from a description in terms of Slater determinants
of one-particle states, as will be detailed and rationalized in the following.

In the metallic rutile phase, on the other hand, correlation effects lead to strong
life-time effects and incoherent satellite features. The low energy physics is dominated
by strong renormalization effects, rather than static displacements. At higher energies,
prominent Hubbard bands arise, further invalidating a description in terms of band-like
excitations.

Usually, the analysis of realistic LDA+DMFT calculations is rather difficult, since
quantities calculated by Monte Carlo techniques are derived on the Matsubara axis, which
often are not obvious in their interpretation. As will become evident in the succeeding
sections, our analytical continuation scheme proves especially valuable in the current case
of vanadium dioxide, where it allowed for a deeper understanding of the physical mech-
anisms at work. Still, the case in point is also quite challenging due to its complexity :

8This work appears in two papers : [Tomczak and Biermann(2007a),Tomczak et al. (2007)]
9The Hubbard bands in f-electron materials are also coherent, due to their atomic nature. However,

they are not band-like, in the sense that there are two Hubbard “bands” per former one-particle band. The
correlations eventuate in splitting the excitation. Within the concept presented in Section A, Chapter 3,
one realizes that the number of poles is not conserved when applying the local interactions. The case for
M1 VO2 is thus genuinely different.
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Contrary to vanadium sesquioxide V2O3 (see next section), the self-energy in both phases
is non-diagonal in orbital-space. Hence, as described in Appendix A, we perform maxi-
mum entropy algorithm calculations on unitarily-transformed orbital components. While
in the rutile phase the off-diagonality arises from the choice of the local coordinate system,
it is inter-site, i.e. non-local or cluster-, elements that turn up in the M1 phase. The latter
will play a significant role in our picture of the nature of the insulating phase.

B.a The metallic rutile phase

B.a.i The local spectral function

Figure 5.9 shows the local spectral function of the rutile phase of VO2, as obtained from a
maximum entropy algorithm continuation of the LDA+DMFT Green’s function in imag-
inary time by [Biermann et al. (2005)]. Their calculation used the value U=4.0 eV for the
on-site interaction, and a Hund’s coupling J=0.68 eV10. The temperature of the calculation
was rather elevated with T=770 K (β = 15).

Figure 5.9 : Rutile VO2 : Comparison of the LDA density of states with the LDA+DMFT
local spectral function, for the indicated orbitals, from [Biermann et al. (2005)].

As compared to the LDA density of states, corresponding to the dashed lines in the
same figure, the LDA+DMFT spectral function extends over a much wider frequency
range, namely from -2 eV to more than 4 eV. This is congruent with the above shown
photoemission spectrum, Figure 5.6, and an indication that the correlation induced renor-
malizations are indeed considerable and lead to sizable satellite features, that are intrin-
sically beyond the LDA.

As will be seen in the following, our analytical continuation scheme for the LDA+DMFT
self-energy, will allow for a more detailed analysis of the excitation spectrum, by consid-
ering the real-frequency self-energy as such and the momentum-resolved spectral function
that it entails.

10It was used the usual parametrization Umm=U, Umm′=U-2J (m6=m′), and Jmm′=J (m6=m′).
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B.a.ii The real-frequency self-energy

For the sake of a better comparison, the LDA+DMFT calculation of the rutile phase was
performed in a non-primitive unit cell [Biermann et al. (2005)], containing four formula
units, as is the case for the primitive unit-cell of the M1 phase. In the metallic phase,
a single-site DMFT setup was adopted. The self-energy then has the following orbital
structure :

Σunitcell =




ΣV O2
0 0 0

0 ΣV O2
0 0

0 0 ΣV O2
0

0 0 0 ΣV O2


 (5.1)

where the blocks ΣV O2
are each 3x3 matrices that correspond to the t2g self-energy matrices

for a given VO2 formula unit, which in turn look

ΣV O2
=




Σa1g
0 0

0 Σeπ
g

Σeπ
g −eπ

g

0 Σeπ
g−eπ

g
Σeπ

g


 (5.2)

i.e. besides the diagonal a1g and eπg components there is an on-site inter-eπg element.
Alternatively, one could have worked in a basis, in which the self-energy is diagonal,
with two inequivalent eπg elements. Indeed, in this special case of degenerate eπg diagonal
elements, this is the way how we perform the analytical continuation of the off-diagonal
component : As explained in Appendix A, a unitary orbital transformation is used to
rotate the self-energy. Contrary to the general case, the rotation here yields a diagonal
self-energy.

Figure 5.10 shows (a) the real and (b) the imaginary parts of the LDA+DMFT self-
energy on the real frequency axis, after our analytical continuation treatment. Figure 5.11
shows a comparison between the Matsubara self-energy as obtained from the QMC and the
Hilbert transformed real-frequency one. The low energy agreement is very good, while
at higher energies the QMC self-energy is noisy and the processed self-energy deviates
perceptibly.

Coming back to Figure 5.10, we see that the off-diagonal element, which is important
to be taken into account during the continuation process, is non-negligible, yet smaller
than the diagonal ones. Notwithstanding minor details in position and shape, the a1g and
eπg elements exhibit a comparable, though quite dynamical behaviour. The real-parts of
the diagonal elements at zero frequency, ℜΣ(0), that are responsible for relative shifts in
the a1g and eπg quasi-particle bands near the Fermi level are almost the same, which is in
line with the quite modest change in the relative a1g and eπg occupations as compared to
the LDA [Biermann et al. (2005)], and with the measured rather isotropic character of
rutile VO2 [Haverkort et al. (2005)].

In an energy window of about 1 eV around the Fermi level, the diagonal real-parts are
rather linear, with slopes that lead to eigenvalues of the Z-matrix, Equation (2.26), of 0.48
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Figure 5.10 : LDA+DMFT self-energy (Σ−µ) of rutile VO2 on the real frequency axis:
(a) real parts (b) imaginary parts for the indicated orbital components.
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Figure 5.11 : Comparison of the Quantum Monte Carlo self-energy on the Matsubara
axis (solid lines) with the one obtained from the analytically continued one by a Hilbert
transform, Equation (3.6), (dashed lines). Shown are only the imaginary parts. The
insets shows the low energy regime and here the crosses indicate the discrete Matsubara
self-energy from the QMC.
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for the a1g, and 0.59, 0.53 for the eπg respectively, indicating strong renormalization effects.
In comparison, photoemission experiments found indications for a Z-factor of ∼ 0.3.

However, in the current case, our numerical precision for the imaginary parts around
the Fermi level is not sufficient for quantitative statements about the coherence at low
energy. Whether or not, the electrons are in their Fermi liquid regime, can, unfortunately,
not be answered from the current analysis. Hence, we cannot assess the experimentally
found bad metal behaviour, manifesting itself, as mentioned above, in the exceeding of the
Ioffe-Regel-Mott limit for resistivity saturation [Qazilbash et al. (2006)]. Still, we realize
that already below -0.5 eV and above +0.2 eV, the imaginary parts, corresponding to
the inverse life-time, of both orbital components become considerable. As a result, sharp
one-particle-like excitations are not to be expected beyond a quite narrow energy window
around the Fermi level.

At still higher energies, prominent features develop in both real and imaginary parts
of the self-energy, typical harbingers of Hubbard satellite formation.

B.a.iii Linearized band-structure

A first attempt to improve on the LDA band-structure by incorporating correlations,
yet while keeping a Hamiltonian form, is to take self-energy renormalization effects into
account up to linear order in frequency, as described in Section A, Chapter 3. For this
procedure to make conceptual sense, we are supposing the system to be in the Fermi
liquid regime, i.e. the imaginary parts of the self-energy are assumed to be sufficiently low
at the Fermi level, although this cannot be fully warranted from our numerical data, as
mentioned above. Herewith, the linearization is exact at the Fermi level. Figure 5.12 shows
the renormalized band-structure corresponding to the Z values given in the preceding
section.

As compared to the LDA, the bands get obviously renormalized towards the Fermi
level, whence the overall band-narrowing. The slightly different real parts at zero fre-
quency, ℜΣ(0)11 lead to some modifications of the Fermi surface : The crossings with the
Fermi level are changed with respect to the LDA, although only slightly12. Again, one
has to keep in mind that the linearized bands no longer carry weight one, but Zeff < 1
that depends on the orbital character, which in turn is momentum-dependent. It is thus
not a good idea to start counting electrons in this picture.

B.a.iv Momentum-resolved spectral functions and quasi-particle poles

While the above procedure gives an accurate picture of the many-body excitation spec-
trum around the Fermi level, with the fully frequency-dependent LDA+DMFT self-energy
we are in the position to compute the momentum-resolved spectral function. Figure 5.13
shows the result in a colour-coded representation. Also indicated are the quasi-particle
poles of the Green’s function when entirely neglecting life-time effects, as described in

11and in principle also the fact that in the current case the Z-matrix is non-diagonal in orbital space.
12In the case of degenerate bands, such as for SrVO3 when downfolded onto the t2g subset, the Fermi

surface is not affected by correlation effects stemming from a local, i.e. momentum-independent self-
energy, as mentioned in the introduction.
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Figure 5.12 : Comparison between LDA bands and the renormalized band-structure,
constructed from a linearized self-energy, according to Section A, Chapter 3.
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Figure 5.13 : Momentum-resolved LDA+DMFT spectral function of rutile VO2 along
selected symmetry lines with colour-coded intensity, as indicated by the colour-legend to
the right. The (blue) dots are solutions of the quasi-particle Equation (3.9). See text for
a discussion.
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Figure 5.14 : Comparison of the linearized band-structure, Figure 5.12, and the solutions
of the quasi-particle Equation (3.9).

Section A, Chapter 3. At low energy, the almost completely filled band of mainly a1g

character is discerned as quite sharply defined. As expected from the above discussion of
the self-energy, the solutions of the quasi-particle Equation (3.9) follow closely the spec-
tral intensity in this energy region. Also, as seen in Figure 5.14, the numerical solution
of the quasi-particle equation coincides with the renormalized bands at the Fermi level,
and at energies around it, as they should by construction. Slight deviations at higher
energies, are accounting for the self-energy which is not strictly linear over the entire
relevant frequency range. Still, up to the point where the upper Hubbard band emerges,
the agreement between the pole structure and the linear renormalized band-structure is
quite satisfactory. It is thus the linearity of the dynamical behaviour of the real part of
the self-energy that accounts for the reshaping of the excitation energies. Yet, the at-
tempt of constructing a global effective band-structure fails : Already above 0.2 eV, while
there are regions of high intensity in the spectral function, the larger imaginary parts
of the self-energy broaden the excitations, and no coherent features emerge, though the
positions of some excitations of dominant eπg character are discernible when comparing
with the pole-structure. As seen above, at high, positive and negative, energies distinc-
tive features appear in the imaginary parts of the self-energy, that are responsible for
the formation of lower and upper Hubbard bands, seen in the spectral function, both the
momentum-resolved, Figure 5.13, and the local one, Figure 5.9, at around -1.7 eV and
2.5 eV, respectively.

In the range of the upper Hubbard band, a pole-structure appears whose shape is rem-
iniscent of the low-energy quasi-particle band-structure, which is congruent with observa-
tions that quasi-particle dispersions are generally reflected in the Hubbard bands [Hub-
bard(1963)]. This will also be observed for V2O3 in the next chapter. The fact that
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these poles are numerous can be rationalized from the graphical construction, Section A,
Chapter 3. Indeed when the slope of the self-energy within the band-width stripe is one,
or close to it, then several solutions ωk appear per given momentum.

B.a.v Conclusions

In rutile VO2, the excitation energies stemming from former LDA bands are strongly
renormalized by the correlations. Linearizing the real-parts of the self-energy around
the Fermi energy is sufficient for accounting for the full dynamical behaviour of the self-
energy within the former LDA bandwidth. Yet, while giving some information on the
position of spectral weight, this cannot explain, by construction, for the full physics of
rutile VO2, in which life-time effects are found to be non-negligible already at low energy.
Moreover, important incoherent features appear in the spectral function, turning down
further the quest for a global description in terms of an effective band-structure of one-
particle excitations.

B.b The insulator

B.b.i The local spectral function

Figure 5.15 : M1 VO2 : Comparison of the LDA density of states with the LDA + Cluster
DMFT spectral function for the indicated orbitals. The two inequivalent eπg components
have been averaged for better visibility. From [Biermann et al. (2005)].

While in the metallic rutile phase, the local spectral function could still be said to lead,
yet in a less detailed way, to the above conclusions, this, we shall see, is not the case for
insulating VO2. Indeed, in the current phase the analytical continuation procedure allowed
for the emerging of a modified interpretation of the calculation in remarkable agreement
with experiment. Figure 5.15 displays the local LDA+CDMFT spectral function for the
indicated orbital components13. Biermann et al. used the same parameters as for the

13For the analytical continuation we use slightly different maximum entropy parameters, which essen-
tially modifies the lower a1g “Hubbard band”, that only appears as a shoulder to the sharp feature below
the Fermi level, see the orbitally traced spectral function in Figure 5.20 (c).
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metallic phase : U=4.0 eV for the on-site interaction, a Hund’s coupling J=0.68 eV, and
T=770 K (β = 15)14.

Given the above described interpretation of [Biermann et al. (2005)], the spectral
weight seen in photoemission of the M1 phase was ascribed to the a1g bonding orbital,
rather than a lower Hubbard band. Yet, the local spectral function disguised important
parts of the physics of the M1 phase. Indeed, it was presumed that the correlations
renormalize downwards the bonding / antibonding-splitting, analogous to what happens in
the linearized band-structure described above for the metal, which led to the identification
of the a1g spectral weight at 0.5 eV as stemming from the a1g anti-bonding orbital and
the hump at ∼ 2.0 eV to be an upper Hubbard band. In the following, it will be detailed
that this is not quite the case. Actually, the M1 phase is even more dominated by the
vanadium dimers than anticipated, which allows for a model discussion in terms of the
Hubbard molecule, which is an isolated two-site cluster with on-site interactions only.
It will be rationalized that the correlations indeed enhance the bonding / antibonding-
splitting and that thus it is the a1g anti-bonding component that emerges at ∼ 2 eV
and that actually only a lower a1g satellite appears at ∼ −1.75 eV, which corresponds to
N = 1→ N = 2 transitions into the low lying singlet state with little double occupancies.
In this sense, one might call this satellite a molecular Hubbard band15.

B.b.ii The real-frequency self-energy

With four formula units in the unit cell, the M1 VO2 self-energy matrix acquires the
following form in orbital space :

Σunitcell =

(
Σdimer 0

0 Σdimer

)
(5.3)

where the blocks Σdimer are 6x6 matrices that correspond to the cluster self-energies for
a given vanadium dimer. They may contain non-local inter-site intra-dimer components
between the vanadium ions of a dimer. We note again, that in the CDMFT calculation,
instead of a single site, the unit that is coupled to the self-consistent bath is a vanadium
dimer, as schematized in the graphic below.

x

x
'

&

$

%
G−1(τ)

14Due to the cluster nature of the calculation the Hirsch-Fye algorithm suffered from sign problems
(see introduction), yet the average sign being ∼0.8, the impact of this is thought to be small.

15We will come back to this later, in particular in the Appendix B
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Still, when given this additional (cluster) freedom, the system is found to have in
total only four non-equivalent self-energy elements. All others are zero within numerical
precision. The self-energy for one dimer is found to have the structure

Σdimer =




Σa1g
0 0 Σa1g−a1g

0 0
0 Σeπ

g 1 0 0 0 0

0 0 Σeπ
g 2 0 0 0

Σa1g−a1g
0 0 Σa1g

0 0
0 0 0 0 Σeπ

g 1 0

0 0 0 0 0 Σeπ
g 2




(5.4)

i.e. the intra-dimer coupling is entirely due to the a1g channel, as could be expected from
the discussed symmetry of the system.
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Figure 5.16 : LDA+CDMFT self-energy (Σ − µ) of monoclinic VO2 for the indicated
orbital components. (a) real parts, (b) imaginary parts. Note in particular the frequency
dependence of the a1g on-site and a1g–a1g intra-dimer elements. Note the qualitative
similarities of the a1g components with those of the Hubbard molecule, see Figure B.3.
See text for a discussion.

Figure 5.16 displays the real-frequency elements of the M1 self-energy. Figure 5.17
shows a comparison between the Matsubara self-energy from the QMC and the Hilbert
transformed real-frequency result. As for the rutile phase, the low energy agreement
proves the reliability of our approach.

In an insulator, the suppression of spectral weight at the Fermi energy can be achieved
by two distinct behaviours of the imaginary parts of the self-energy within the charge gap :
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Either they diverge, as is the case for the insulating phase of the one-band Hubbard model,
or they have to vanish within the gap. In the present case of M1 VO2 we see, Figure 5.16,
that the self-energies are all regular and their imaginary parts vanish within the gap.
Hence it is not a divergence of the effective mass that is responsible for the metal-insulator
transition. Indeed, when it comes to realistic materials, the realization of a divergent self-
energy is rather uncommon. Also in the paramagnetic insulating phase of (V1−xMx)2O3,
the self-energy is regular at zero frequency, see Figure 6.15. It thus appears that due to
crystal-field effects, polarization driven transitions find a much wider realization in real
compounds. Yet see the examples LaTiO3 and YTiO3 [Pavarini et al. (2004)].
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Figure 5.17 : Comparison of the Quantum Monte Carlo self-energy on the Matsubara
axis (solid lines) with the one obtained from the analytically continued one by a Hilbert
transform, Equation (3.6), (dashed lines). Shown are only the imaginary parts. The
insets shows the low energy regime and here the crosses indicate the discrete Matsubara
self-energy from the QMC.

Coming back to the self-energy of M1 VO2, we see that concerning the eπg elements,
both the real and the imaginary part, depend only weakly on frequency. Moreover the
imaginary part is globally low in magnitude, signaling only minor life-time effects. This
is a consequence of the low occupation of these orbitals which drops to merely 0.11 per
vanadium ion, as compared to 0.28 in LDA. The nearly constant positive value of ℜΣeπ

g 1,2

corresponds to this depopulation, both seen in experiments [Haverkort et al. (2005)] and
theoretical studies [Tanaka(2003),Biermann et al. (2005)]. These almost empty eπg orbitals
only feel weak correlations, and sharply defined bands are expected in the whole energy
range. Correspondingly, the transfer of eπg spectral weight to incoherent features will be
low in magnitude as well.
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The interesting physics is carried by the a1g components, on which lies our key focus.
Indeed, correlation effects seem to be more prominent than for the respective rutile phase
components, Figure 5.10 : The imaginary part of the on-site a1g self-energy becomes twice
as large as its rutile counterpart, and is important already at much lower energies. Usually
this is an unmistakable hallmark of an increased importance of correlation effects.

However, we argue in the following that a closer examination leads to the conclusion
that the effect of the correlations is in fact much weaker than in the metallic phase.
Indeed, the dimerization in the M1 phase leads to strong inter-site fluctuations, indicated
by the significant a1g–a1g intra-dimer self-energy element. When examining the on-site
and intra-dimer a1g element, Figure 5.16, one remarks that they exhibit a rather selective
dependence on frequency : In the occupied part, at negative energies, the frequency
dependence is rather opposite in both, the real and the imaginary part, while in the
unoccupied part the behaviour of the two elements is quite comparable in shape and
form. Later on, we will refer to the Hubbard molecule, whose self-energy exhibits a
similar behaviour as shown in Figure B.3.

The self-energy in the bonding / antibonding basis. This, and the molecular
bonding picture in general, motivates to perform a basis transformation and to display
the self-energy in the a1g bonding / antibonding-basis, i.e.

Σb/ab = Σa1g
± Σa1g−a1g

(5.5)

in which the self-energy is diagonal in orbital space16. Figure 5.18 shows the result :
The a1g (anti)bonding imaginary part, see Figure 5.18 (b), is low and varies little with

frequency in the (un)occupied part of the spectrum, thus allowing for coherent spectral
weight in the respective energy range. In the opposite regions (dotted lines) the self-energy
elements have huge amplitudes. However, as far as the excitation spectrum is concerned,
this has no relevance at all, as we shall see. Still, the energy dependence has important
implications for the nature of the system. We will come back to this, in Section B.

Owing to its d1-configuration, with the nearly filled a1g bonding bands, and empty
anti-bonding bands, this leads as for the eπg orbitals – but this time in a non-trivial way –
to only small life-time effects. Despite the considerable on-site interactions, the complex
structure of the self-energy suggests the existence of well-defined one-particle excitations.
As we shall see below, this effective band-structure is however strongly rearranged as
compared to the former LDA energies, due to the differences in the regions of constant
real-parts :

B.b.iii One-particle excitations and momentum-resolved spectral functions

As regards one-particle excitations we can get a first, yet instructive, idea for the a1g

bonding / antibonding ones from the intersections

ω + µ− ǫb/ab(k) = ℜΣb/ab(ω) (5.6)

16We stress that this non-local basis transformation can only be done after the CDMFT calculation
since the Hubbard-Hund Coulomb interaction terms would acquire an untreatable form.
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Figure 5.18 : LDA+CDMFT self-energy (Σ − µ) of monoclinic VO2 in the a1g

bonding / antibonding basis, see Equation (5.5). (a) real parts, (b) imaginary parts. Self-
energy elements are dotted in region where they are irrelevant. Note that in all other re-
gions the real-parts are only weakly dependent on frequency, and, moreover, the imaginary-
parts are low in magnitude. See text for a discussion.
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as obtained graphically in Figure 5.18 (a), where the black stripes delimit the bandwidth
of the LDA a1g bonding and anti-bonding components, as can be inferred from Figure 5.5.
This construction is exact for a one-band model and was described in Section A, Chapter 3.
In the general Hamiltonian case it is no longer exact, but might still give qualitative
insights. In the present case we expect this procedure to give a rather good description,
when working in the bonding / antibonding basis and limiting ourselves to a discussion of
the a1g orbitals only. The reason for this was discussed in Section A, Chapter 3, where
it was explained that in the Hamiltonian case, it is more appropriate to work with one-
particle bands, in which the hybridizations were turned off. We called these “un-hybridized
bands”. In the current case, the mentioned basis transformation, which diagonalizes the
self-energy, is expected to also reduce off-diagonal elements in the Hamiltonian, owing to
the bonding / antibonding characteristics that are preformed within the LDA (see e.g. the
density of states in Figure 5.15). Indeed, if the eπg orbitals were empty, i.e. for isolated
a1g orbitals that do not hybridize with other bands, this construction would be exact.

According to Figure 5.18, the (anti)bonding band appears as the crossing of the (blue)
red solid line with the frequency stripe at (positive) negative frequency. Hence, the
(anti)bonding band emerges at around (2.5 eV) -0.75 eV. Still, the anti-bonding one is
broadened by the anti-bonding imaginary part, ℑΣab, that reaches a value of -1 eV in
the respective energy range. To confirm this simple analysis, we have solved the quasi-
particle Equation (3.9) and indicate its solutions along with the momentum resolved
spectral function in Figure 5.19 (a).

As expected from the discussion of the self-energy, there are reasonably coherent fea-
tures over nearly the entire energy range of the spectral function, from -1 to +2 eV,
the positions of which coincide with the one-particle poles : The filled doubly degenerate
bands are identified as the bonding bands of dominantly a1g character. Above the gap, the
white region in the colour-coded figure, the eπg bands give rise to quite sharp structures.
The anti-bonding a1g band, whose poles appear, as anticipated from our simple graphical
construction, at around 2.5 eV, is not clearly distinguished in the momentum-resolved
spectral function, since in this range, eπg spectral weight is dominant. Yet, it corresponds
to the weight seen in the orbitally resolved local spectral function, Figure 5.15. The lower
and upper “Hubbard bands” have lost most of their weight with respect to the metallic
phase : a mere shoulder at -1.5 eV suggests to be the remnant of the lower Hubbard band,
see Figure 5.15. Finally, contrary to rutile VO2, the number of poles equals the orbital
dimension. We will come back to this in the next section.

Before, we comment more on the somewhat astounding coherence of the system and
the physical mechanisms that lead to the opening of the charge gap. At first sight, it may
seem indeed surprising that despite strong local correlations – the imaginary parts of the
on-site self-energies reach values of the order of -3 eV – well-defined one-particle excitations
do survive. Mathematically spoken, this is the consequence of a cancellation of local and
inter-site self-energies resulting in nearly negligible life-time effects for the (anti-)bonding
bands at (positive) negative energies, respectively. Physically, it is enhanced inter-site
hoppings that allow the electrons to avoid the strong on-site repulsion by delocalizing over
the dimer. The resulting intra-dimer fluctuations reduce the net effects of the interactions.
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Indeed as compared to isolated atoms, the probability of finding an electron on one of
the sites is reduced. By this construction the electrons effectively circumvent parts of the
on-site Coulomb interaction.

B.b.iv The Hubbard molecule and the “many-body Peierls” scenario

The above can be rationalized by resorting to simple model considerations. As a matter of
fact, most of the physics of the a1g electrons can be understood by invoking the Hubbard
molecule, which is a two-site cluster, coupled by an inter-site hopping t and subjected to
an on-site Coulomb interaction U . This model can of course be solved exactly. This is
done in Appendix B. In the following, we will stress the similarities between M1 VO2 and
the model, and conclude on the nature of the insulating phase of VO2.

The dimerization of the vanadium ion in the M1 phase of VO2 is mediated by the a1g

orbitals that are oriented along the crystallographic rutile c-axis. We have further seen,
in the LDA+CDMFT calculation, that the completely filled orbitals below the Fermi
level have almost pure a1g character. Thus, in correspondence, the above introduced one-
orbital Hubbard molecule is half-filled. Further, it is controlled by only two parameters,
the inter-site, intra-molecular hopping, t, which is taken as the intra-dimer a1g–a1g hopping
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t = 0.7 eV, as obtained from the LDA, and the on-site Coulomb repulsion, U = 4.0 eV. For
the Hamiltonian of the model and details to the following statements see the Appendix B.

The ground state of the defined model is given (at zero temperature) by a non-
degenerate singlet state :

|ψN=2
0 〉 = 1 /

√
2

(
16t2

(
√

16t2 + U2 − U)2
+ 1

)
× (5.7)

{
4t√

16t2 + U2 − U

(
| ↓ ↑〉 − | ↑ ↓〉

)
+
(
| ↑↓ 0〉+ |0 ↑↓〉

)}

which is an intermediate state between the ground state in the non-interacting limit
(U = 0) that is a Slater determinant of one-particle states

|1 2〉SD = 1/
√

4
{
| ↓ ↑〉 − | ↑ ↓〉+ | ↑↓ 0〉+ |0 ↑↓〉

}
(5.8)

and the strong-correlation Heitler-London limit [Sommers and Doniach(1978)]

|1 2〉HL = 1/
√

2
{
| ↓ ↑〉 − | ↑ ↓〉

}
(5.9)

in which all double-occupancies are projected out. Still, at all interaction strengths, the
ground state is a singlet state for t 6= 0. For the above given parameters that correspond
to the VO2 case, the double occupations are already strongly suppressed. Their weight
in the eigenstate, i.e. its projection on the double occupancy states, is merely ∼ 9%, i.e.
4.5% per site. In the LDA+CDMFT calculation one finds an a1g double occupancy of
6.42%. This larger value is owing to that fact that calculations were performed at finite
temperature17, and the embedding of the molecule into the solid. Therewith we realize
that, both, the N-particle ground state of the model and of M1 VO2 are clearly not given
by a Slater determinant of single-particle states18.

The physical reason for the enhanced bonding-formation resides in the fact that in
this state, the electrons are exposed to a reduced Coulomb interaction. Indeed, while the
expectations value of the Hamiltonian Equation (B.1) is 〈H〉SD = SD〈1 2|H|1 2〉SD = U/2 =
2.0 eV in the Slater determinant limit, it is reduced to merely 〈H〉ψ0

= 〈ψN=2
0 |H|ψN=2

0 〉 =

U/ 16t2

(
√

16t2+U2−U)2+1
= 0.23U = 0.91 eV in the true ground state.

The spectral function of the Hubbard molecule exhibits four peaks, see Figure B.2. In
the parameter regime that we are interested in, the two main features are the renormalized
bonding / antibonding excitations of the non-interacting model. As a matter of fact, the
bonding / antibonding splitting is then given by

17Indeed, the double occupation decreases when going from β = 12 to β = 15.
18As a matter of fact, the good agreement of the Kohn-Sham spectrum and experimental findings for

weakly correlated materials does not necessarily entail that the N-particle ground state is given by a
Slater determinant.
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∆bab = −2t+ 4t

√

1 +

(
U

4t

)2

= 3.48 eV (5.10)

In the case of M1 VO2, however, the coupling of the vanadium dimers to the bath,
i.e. the embedding into the solid on a mean-field level, the hybridization with the eπg
orbitals and the a1g dispersion reduce the splitting to ∼3 eV, as can be inferred from
the one-particle poles, Figure 5.19, in remarkable agreement with experiment [Koethe
et al. (2006)].

Further, the two other excitation energies seen in the model, Figure B.2, do not appear
as poles of the LDA+DMFT Green’s function. This is again likely to be a consequence
of the hybridizations and the embedding of the dimers, because these couplings work to
broaden the imaginary parts of the a1g self-energies that have a δ-peak structure in the
model of the isolated molecule. Thereby the divergence in the corresponding real-part is
suppressed, as can be seen in the graphical construction for VO2, Figure 5.18 (a), where
neither the a1g bonding nor the anti-bonding element cross the corresponding former LDA
bandwidth19, in contrast to the case of the isolated Hubbard molecule, where the same
construction is shown in Figure B.4. Yet, incoherent satellite weight does appear, since
the deviation from a pole-energy is not too large. In the model case, these excitations
would be expected 2t = 1.4 eV [above] below the [anti-]bonding energies, which is also
what is roughly found in M1 VO2, as far as the bonding component is concerned, see
Figure 5.1520. The two main excitation however, both in the Hubbard molecule and the
realistic case, are sharply defined. In other words, the correlations, though inducing strong
renormalizations, see Equation (5.10), do not eventuate in important life-time effects. As
a matter of consequence, the excitation spectrum is rather band-like21. We can rationalize
this further. First, we note that the Hubbard molecule has two evident limits : First,
the non-interacting one (U = 0) which is a Peierls insulator at half-filling, second, the
atomic limit (t → 0) in which the system evolves towards a degenerate Mott insulator.
In the present parameter regime, U = 4.0 eV and t = 0.7 eV, the band-derived features
account for 79% and the satellites thus for only 21% of the weight in the spectral function,
signaling, again, a rather coherent picture of the model. However, when computing the
overlaps of the ground state wavefunction with the ground state corresponding to the two
above limits22, one finds : |HL〈1 2|ψ0〉|2 = 92% and |SD〈1 2|ψ0〉|2 = 21%. In other words,
despite the coherence of the system, its ground state is far from being an uncorrelated
state. As concerns spectral properties, the correlations only enhance the one-particle

19which is why the two stripes that indicate the LDA a1g bandwidths were limited to the frequency
range (ω >

<
0).

20As said in Footnote 13, with our parameters, the lower Hubbard band is at slightly lower binding
energies, see Figure 5.20, which can however be justified, as for the bonding / antibonding splitting by
the couplings to other orbitals and dimers.

21In the atomic limit, a one-band Mott-Hubbard insulator could also be called band-like, since the
Hubbard bands correspond to sharp atomic excitations. Yet, in that case the number of poles of the
Green’s function doubles with respect to the non-interacting limit.

22which are not orthogonal
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Peierls mechanism. On the eigenstate level, however, they completely invalidate a one-
particle description of the system. This is why we would like to call M1 VO2 to be in
a “many-body Peierls state”, stressing both the one-particle-like effects on the excitation
spectrum on the one hand, and the non-Slater-determinant nature of the ground state,
on the other.

A concomitant effect is the difference between the charge and the spin gap. While in
a generic band-insulator, both are equal, ∆spin = ∆charge, this is not true for the ground
state of the Hubbard molecule (∆spin = 0.44 eV for our parameters, see Appendix B), and
also in M1 VO2, one finds ∆spin < ∆charge

23, even though the charge gap is determined
not by the a1g bonding / antibonding splitting but by the a1g–eπg gap.

B.b.v Implications for the gap opening

In the realistic compound, the charge gap is not determined by the bonding / antibonding
splitting, since the eπg orbitals lie lower in energy than the a1g anti-bonding orbitals. Still,
the above considerations prove useful to the following discussion.
As regards the gap-opening in M1 VO2, we can thus identify two effects :

• First, as seen in both, the model considerations and the realistic system, the self-
energy tremendously enhances the a1g bonding / antibonding-splitting as compared
to the LDA.

• Secondly, as explained above, the charge in this a1g state is less exposed to local
Coulomb interactions than in the eπg orbitals. This further contributes to the charge
transfer into the a1g bonding bands. Thus depleted, the eπg orbitals also feel only
very weak Coulomb correlations. This shift, seen in the calculation as the difference
in ℜΣ, eventuates in the separation of the a1g and eπg at the Fermi level.

In conclusion, it is the local interactions that amplify the Goodenough scenario, de-
scribed in Section A. Thus, for once correlations, though being at the origin of the in-
sulating behaviour, do not invalidate the band-picture on the level of spectral properties
but just reshape them.

B.b.vi A scissors construction

A static approximation of the self-energy. Above we have seen that the fre-
quency dependence of the real parts of the self-energy, though shifting the excitation
energies with respect to the LDA, is sufficiently low such as not to introduce new solu-
tions to the quasi-particle Equation (3.9). Indeed, the number of poles is conserved and
thus limited to the number of LDA bands. This is already a harbinger for the possibil-
ity of obtaining the excitation spectrum from a one-particle approach. Yet, even though
not resulting in additional solutions, the frequency dependence might still not be fully
discardable. However, when looking again at the graphical construction, Figure 5.18 (a),
we note that the variation of the a1g self-energy is somewhat unimportant in the rel-
evant bandwidth windows indicated by the (black) stripes, and the eπg components do

23J. P. Pouget, private communication.
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not vary much either, even on a global scale. This explains why the LDA+U approach,
whose self-energy is purely static, succeeds in opening a gap [Huang et al. (1998), Ko-
rotin et al. (2002), Liebsch et al. (2005)]. Yet, being a Hartree-Fock like calculation it
misses the correct bonding / antibonding splitting. This is detailed in Appendix B, where
we compare the exact solution of the Hubbard molecule with approximate techniques,
such as the GW and Hartree-Fock. Furthermore the imaginary parts of the self-energy
in the relevant energy ranges is not too significant. Having said this, we endeavour to
construct a scissors operator, ∆, as a static approximation to the dynamical self-energy
in the bonding / antibonding basis, by evaluating the real parts of the latter at the former
LDA band centers and at the pole energies for the eπg and a1g respectively, i.e.

∆eπ
g 1

= ℜΣeπ
g 1

(0.5 eV)− µ = 0.48 eV
∆eπ

g 2
= ℜΣeπ

g 2
(0.5 eV)− µ = 0.54 eV

∆b = ℜΣb(−0.75 eV)− µ = −0.32 eV
∆ab = ℜΣab(2.5 eV)− µ = 1.20 eV

as indicated by the dashed (grey) horizontal lines in Figure 5.18 (a).

The density of states of the scissored Hamiltonian. Given the overall behaviour
of the self-energy this might look as a tremendous oversimplification. Yet, the band-
structure corresponding to the eigenvalue problem of the scissored LDA Hamiltonian,
H0(k) + ∆, is shown in Figure 5.19 (b) : The agreement with the LDA+CDMFT-poles
is excellent. The excitation energies are thus entirely reproducible with a one-particle
potential. However, though being static in energy, the latter is orbital-dependent. This
is why it cannot be viewed as an “improved exchange - correlation potential” in the sense
of DFT. Further differences with potentials from standard band-theory are discussed at
the end of this paragraph.

Figure 5.20 shows a collection of comparisons between the LDA density of states
(DOS), the DOS of the scissored Hamiltonian, the LDA+CDMFT spectral function and
photoemission experiments that we will discuss individually :

(a) shows the original LDA DOS and the DOS of H0(k) + ∆. The changes are in line
with the already discussed band-structure. Clearly seen is the opening of a gap at the
Fermi level. Moreover the anti-bonding a1g peak is shifted beyond all eπg weight and thus
delimits the DOS at high energies. Indeed a density of stated that qualitatively agrees
with ours was calculated by [Continenza et al. (1999)] using a model GW approach24.

(b) shows a comparison of the scissored t2g Hamiltonian with a full (non-downfolded)
Hamiltonian (comprising in particular the oxygen 2p and the eπg orbitals) which also
includes the scissors shiftings. This is done by replacing, in the respective Kohn-Sham
basis, the eigenvalues in the t2g energy window by those of the scissored, downfolded t2g
Hamiltonian :

24According to earlier work, [Massidda et al. (1995)], the model GW calculation was performed self-
consistently.
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Figure 5.20 : Density of states (DOS), spectral function and photoemission results– a
comparison, from top left to bottom right : (a) DOS of the t2g LDA Hamiltonian with
and without the scissors operator, (b) DOS of the t2g LDA Hamiltonian vs. the full LDA
spd-Hamiltonian, both scissored, (c) scissored t2g LDA DOS vs. LDA+CDMFT spec-
tral function, (d) Comparison of the scissored t2g LDA DOS, the LDA+CDMFT spectral
function with results from photoemission [Koethe et al. (2006)], in arbitrary units.

diag(ǫsci1 , · · · , ǫsci12 ) = U †
sci(k)Hsci(k)Usci(k)

diag(ǫa, · · · , ǫ1, · · · , ǫ12, · · · , ǫz) = U †(k)HLDA(k)U(k) (5.11)

−→ H̃(k) = U(k)diag(ǫa, · · · , ǫsci1 , · · · , ǫsci12 , · · · , ǫz)U †(k)

Since in the LDA+CDMFT calculation, the oxygen O2p and also the 3d eσg orbitals
were not included, they do not evolve from their LDA shape and position25. Thus t2g
spectral weight that was shifted upwards in energy by the correlation effects now partly
overlaps with the eσg density of states, starting at ∼ 2.5 eV. This observation will become
important in the interpretation of our optical spectra, see below.

25Herewith, one can say, that we have chosen a specific type of double counting (see Section C, Chap-
ter 2), which is responsible for the position of oxygen 2p and eσ

g weight with respect to the t2g. As we
shall see later, in the optics section, a different double counting, which might be tuned to reproduce
experimental findings, such as the found positions in photoemission or x-ray absorption, is conceivable.
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(c) compares the scissored t2g DOS with the LDA+CDMFT spectral function. Here we
can see, that, though the scissors operator reproduces the interacting excitation energies,
there are finite lifetime effects that broaden the spectrum considerably. Indeed the spectral
function extents over almost twice the energy range than the shown DOS. We note in
particular that both the bonding and the anti-bonding peaks are strongly suppressed in
the spectral function. Moreover the transfer of spectral weight to the lower satellite at
∼ 1.5 eV26 that appears in the spectral function is clearly a dynamical effect, which is
beyond the static potential ∆ that led to the shown DOS.

(d) compares both the non-downfolded, but scissored Hamiltonian of Figure (b),
and the LDA+CDMFT spectral function with recent photoemission experiments [Koethe
et al. (2006)]. Three major observations can be made. First, the bonding a1g peak in
the calculations appears at slightly lower binding energies than in the experiment, which
could be a fine-tuning problem concerning the choice of interaction parameters. Second,
contrary to the density of states, both the experiment and the spectral function exhibit
spectral weight at binding energies greater than ∼ 1 eV, yet before oxygen contributions
set in. This strengthens the LDA+CDMFT calculation which predicts a lower a1g satellite,
by the mechanism, discussed in Appendix B. Thirdly, when comparing oxygen spectral
weight, we see that the centre of gravity of the latter is at somewhat higher binding ener-
gies in the experiment than in the LDA calculation. Indeed, model calculations27 suggest
that in full orbital setups, i.e. when renouncing from using a downfolding procedure, the
spectral weight of occupied uncorrelated orbitals can be considerably shifted with respect
to the LDA, which might improve also the optical spectra. The latter is the subject of
Section D, in which we calculate the optical conductivity of the scissored Hamiltonian,
and the full LDA+CDMFT calculation.

Conceptual differences of the scissors operator and DFT one-particle po-
tentials. Finally, we find it instructive to discuss conceptual differences between our
scissors operator and potentials from standard band-theories :

Density functional theory guarantees the existence of an effective one-particle problem
that has the same ground state density as the true system. Both, the Kohn-Sham energies
and the eigenstates are however auxiliary quantities. The latter are, in particular, Slater
determinants by construction, which needs by no means to be the case for the real system.
The interpretation of the Kohn-Sham spectrum as true excitation energies is theoretically
unjustified. Still, in systems devoid of sizable correlations, this yields reasonable results,
which is why this correspondence is often tacitly assumed.

Our one-particle potential, on the contrary, was created such as to reproduce the inter-
acting excitation spectrum as obtained from LDA+CDMFT. The eigenvalues of H0(k)+∆
are thus not artificial. Still, the eigenstates, as in density functional theory, are auxiliary
Slater determinants, since the effective problem is a one-particle one. The crucial point for
the monoclinic M1 phase of VO2 is that spectral properties are indeed capturable within
this one-particle description, despite strong local Coulomb interactions and a ground
state that is truly far from a Slater determinant, as rationalized above by alluding to the

26See the above section on the Hubbard molecule and Appendix B for a discussion on its nature.
27J.M.T., work in progress.
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Hubbard molecule. It is in this “spectral” sense that M1 VO2 is exhibiting only weak
correlation effects. Our scissors operator is a construction that only permits the repro-
duction of the excitation spectrum, while it cannot account for other properties. Yet, our
LDA+CDMFT calculation yields a true many-body result. It is the frequency dependence
in the self-energy that we could neglect for the spectral properties, which takes effect in
the full description of the system, which as such is well beyond an effective one-particle
problem.

B.b.vii The M2 phase

Finally, we comment on the insulating M2 phase of VO2, which, as mentioned in the begin-
ning, is realized under uni-axial pressure or upon Cr-doping [Pouget and Launois(1976)].
In this phase, every second vanadium chain along the c-axis consists of untilted dimers,
whereas in the other only the tilting occurs. From the above analysis we are led to the
following speculation as to the underlying mechanisms of the insulating behaviour of this
phase.

In M2 VO2, the dimerized chains are likely to already form a1g Peierls singlets as in
M1 VO2. The additional tilting that occurs when going towards the M1 phase will slightly
change the hybridizations between the eπg and the oxygen 2p, such as to reduce the a1g–eπg
splitting, while a further anisotropy in the hoppings along the c-axis works in the opposite
direction, namely to favour further the population of the a1g bonding orbital.

The transition in the other type of chains seems more interesting. While also here the
hybridizations with the oxygens change when evolving towards the M1 phase, the main
effect will be the increasing anisotropy in the a1g hoppings along the chains.

Indeed band-structure calculations by [Eyert(2002)] suggest that the electronic struc-
ture of the tilted chains is somewhat akin to the chains in the rutile phase, albeit with
smaller hopping amplitudes along the chain, owing to the increased vanadium–vanadium
distances caused by the zigzag geometry. Thus, one might even evoke a comparison with
the Nb-doped compound, V1−xNbxO2 which, as mentioned above, is found to become a
Mott insulator at large enough x.

Taking for granted that a1g and eπg spectral weights do not overlap neither in the M2
phase, nor in the M1 phase and in between, such as to guarantee an insulating phase, it
is quite instructive to study the evolution of only the a1g channel. The following graphic
schematizes a simple model for the a1g orbitals. In the M2 phase the latter form an
isotropic chain : The one dimensional Hubbard model. When going to the M1 phase, the
hopping becomes anisotropic and, as indicated in the scheme, t′/t decreases. The Hubbard
molecule corresponds to the limit t′/t → 0. In all the cases the system is assumed to be
half-filled.
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rrr x xx xx xrr r

Ut t M2. The tilted chains have an isotropic
hopping amplitude t. Insulating be-
haviour at half-filling is realized by the
Mott phenomenon.

rrr x x x xr r r

Ut t′ M1. The dimerization results in an
anisotropic hopping t > t′. The system
is in a many-body Peierls phase at half-
filling.

x x

Ut Hubbard molecule. Isolated dimer
corresponding to the limit t′/t→ 0.

In the M2 regime, insulating behaviour necessitates Mott-Hubbard physics, the self-
energy Σ(k, ω) needs to diverge at zero frequency. Indeed for any finite U value the
1d Hubbard model is insulating. In the Hubbard molecule, that we already discussed
previously and whose exact solution is given in Appendix B, the self-energy diverges
outside the bonding / antibonding gap, at ±3t. The interactions lead to what we called a
“many-body Peierls state”.

It would be quite interesting to study the behaviour in between, i.e. for t′/t < 1. This
could e.g. be accomplished with the chain-DMFT technique [Biermann et al. (2001)]28.

In the light of the above, we interpret the seminal work of [Pouget and Launois(1976)]
as the observation of the transition from a Mott phase to a many-body Peierls one (with
the above definition), taking place on the tilted chains when going from the M2 to the
M1 phase. The above is in particular consistent with the finding of (S=0) S=1/2 for the
(dimerized) tilted pairs.

B.b.viii Conclusion

In conclusion, this section presented a detailed analysis of the excitation spectrum of the
M1 phase of VO2, with special emphasis on an effective band-structure description. In-
deed, we found life-time effects to be rather negligible and the correlation effects to mainly
shift and reshape the Kohn-Sham energies with respect to the starting LDA calculation.
In total, the nature of the insulating phase of VO2 is shown to be rather “band-like” in
the sense that one-particle excitations keep their coherence. Our analytical continuation
scheme for LDA+CDMFT allowed us to explicitly calculate this band-structure : The
effective band scenario can be derived from a static one-particle potential. However, this
does not imply a one-particle picture for quantities other than the excitation spectrum. In
particular, the true ground state is not a Slater determinant. Correspondingly, we qualify
M1 VO2 as a “many-body Peierls” phase.

28A study of a slightly different model was performed in [Fabrizio et al. (1999)].
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We argued that the surprising weakness of lifetime effects is the result of strong inter-
site fluctuations that circumvent correlation effects in an otherwise strongly correlated
solid. This is in striking contrast to the strong dynamical correlations in the metallic
phase which is dominated by important life-time effects and the appearance of incoherent
features in the spectral function.

The intra-dimer fluctuations account for the excitation spectrum, to an extent that
the physics of the compound is indeed dominated by a modified Goodenough-Peierls
picture and not by Mott behaviour. As regards spectral properties, the role of correlations
consists in (i) pushing the a1g anti-bonding band beyond the top of the eπg , consistent
with the experimental findings, and, more importantly, in (ii) enhancing the a1g bonding
– eπg splitting due to an effectively reduced Coulomb repulsion in the a1g bonding band,
that favours the depopulation of the eπg bands. The latter results in the opening of the
gap. Thus, as a matter of consequence it is the correlations that are responsible for the
insulating state, albeit they cause it in a rather specific fashion. Indeed, the Coulomb
repulsion causes a localization of charges, however, contrary to a genuine Mott-Hubbard
insulator, they are not confined to the lattice sites, but form a bonding superposition
near the Heitler-London limit. This might sounds like a mere question of definition, yet,
we stress that the magnetic response in genuinely different : While the local moments of
a Mott insulator result in an S=1/2 response, the nature of the insulating phase of M1
VO2 causes a S=0 response. In this vein, we have further pointed out the relevance of the
Hubbard molecule as a basic model for the M1 phase of VO2, by indicating the striking
similarities of the a1g channel with the physics of a correlated molecule.

Further advances might by made by including the eσg and oxygen 2p orbitals in the
many-body setup, with the aim of correcting their positions relative to the t2g spectral
weight.

As an outlook, it might by enlightening to perform realistic calculations on the M2
phase, in order to assess our picture of the nature of this insulating phase, however the
numerical cost is tremendous. On the experimental side, it would be most interesting to
check our predictions experimentally by modern angle-resolved photoemission.
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C GW – Model and First Principles Calculations

In the electronic structure community, ab initio calculations enjoy great popularity. This
is why the first argument against the LDA+DMFT approach often refers to the ex-
istence of adjustable parameters, namely the on-site Coulomb repulsion, whose values
may be guided by techniques such as constrained LDA or GW calculations, yet indeed
they are parameters of the technique. GW, on the other hand (see Section B, Chap-
ter 2, [Hedin(1965), Aryasetiawan and Gunnarsson(1998)]), is genuine ab initio, which
is an undeniable merit of the approach. Still, there is always a tradeoff, since as men-
tioned in the introduction, the perturbative nature of the GW approach does not allow
for capturing the excitation spectrum of strongly correlated materials.

The fact that the insulating behaviour of the M1 phase is not caused by a divergence
of the effective mass and that moreover its excitation spectrum can be obtained from
acting with a scissors operator on the LDA Hamiltonian, reminds of the way in which
GW calculations improve on the gap values of semiconductors. That the GW approach
might yield reasonable results for M1 VO2 was already pointed out when reviewing the
model GW calculations of [Continenza et al. (1999)] which succeeded in describing the
insulating character of the compound.

C.a The GW approximation for the Hubbard molecule

Here, still on the model level, we will first explain, that, contrary to Hartree-Fock, the
GW approximation is qualitatively yielding the correct physics for the Hubbard molecule,
that we invoked in the preceding section for the discussion of the dimerization in M1
VO2. At this point, we only state the major outcome of this investigation, the full
calculation can be found in Appendix 2. Just like in the exact solution, which is presented
in the same appendix, the self-energy in the GW approximation exhibits the typical
bonding / antibonding combinations. Albeit, the poles of the self-energy are at the wrong
energies and have different weights. This leads to a bonding / antibonding splitting that is
way too small with respect to the exact solution for large on-site repulsions, but captures
well the correlation induced enhancement at small interaction strengths (see Figure B.6).
This might be said to sound trivial, since GW is a weak-coupling expansion in the screened
interaction W. Yet, it is precisely the latter emphasis that is important. In fact the
bonding / antibonding splitting enhancement is entirely due to the fact that the random
phase approximation (RPA) screening leads to a screened interaction that is non-diagonal
in two-particle orbital space. On the Hartree-Fock level, which could be named Gv, with v
being the bare interaction, which in turn is diagonal when considering only density-density
terms, the splitting remains unchanged from its non-interacting value.

However, it must be said that the Hubbard molecule, where the on-site interaction is a
fixed parameter also for the GW approximation, is a much more simplistic model with ref-
erence to a realistic GW calculation for M1 VO2, than was the case for the LDA+CDMFT.
The reason is the following. Though being in principle capable to cope with a full-orbital
setup in the realistic case, LDA+DMFT is often used as a low-energy approach that works

114



CHAPTER 5. VANADIUM DIOXIDE – VO 2 3 GW – MODEL AND FIRST PRINCIPLES CALCULATIONS

e.g. with a downfolded Hamiltonian comprising only the t2g orbitals. Then the local inter-
actions are added as parameters. In the GW the interaction is calculated in an ab initio
fashion using the RPA. For this procedure to yield reasonable results, the screening that is
due to high energy orbitals is indispensable. Moreover, the resulting screened interactions
are far from being local. Thus the complex interplay of orbital degrees of freedom and
also non-local corrections to the LDA might play a major role. As a consequence this
model is far less appropriate in the GW context than it was in the LDA+CDMFT one.
Still, already on the model level, an assessment of the GW approximation might prove
useful.

C.b The GW approximation for M1 VO2

Technicalities. The above motivated us to perform, in the realistic setup, fully ab
initio calculations for the insulating M1 phase of VO2 using the GW approximation, i.e.
a one shot G0W0 computation on top of an LDA calculation29.

The GW code we use takes as a starting point the Hamiltonian and the wavefunc-
tions from an LMTO calculation within the atomic sphere approximation (ASA) [Ander-
sen(1975)]. Then the GW equations, see Section B, Chapter 2, are followed in the Kohn-
Sham basis, to yield the GW self-energy. For details of the implementation see [Aryase-
tiawan(2000)].

Due to the large unit cell and thus numbers of orbitals, this is computationally very
demanding for the material in question, and has become feasible only in recent years.
Still, for time and memory reasons, we had to content ourselves with calculating the
diagonal self-energy corrections for the t2g states only. Further, we used 26 k-points in
the irreducible Brillouin zone and computed the polarization up to frequencies of 10 eV.

The linearized band-structure. In a first step, we then calculated the shifts with
respect to the starting Kohn-Sham energies, by linearizing the self-energy [Aryaseti-
awan(2000)] : When denoting the Kohn-Sham energies and wave functions by ǫqn, and
ψqn, respectively, and introducing the self-energy correction to the LDA exchange-cor-
relation potential Vxc, ∆Σqn(ω) = 〈ψqn|ℜΣ(ω)− Vxc|ψqn〉, we can write

Eqn = ǫqn + ∆Σqn(Eqn)

≈ ǫqn + Zqn∆Σqn(ǫqn) (5.12)

with

Zqn =

[
1− ∂∆Σqn(ǫqn)

∂ω

]−1

(5.13)

Contrary to what is done for obtaining a low-energy renormalized band-structure, see
Section A, Chapter 3, here the derivative of the self-energy is evaluated at the former
LDA energies. Hence, the above factor is not subject to the restriction Z < 1.

29For VO2 this had not been done before. See however parallel work by Gatti et al. and forthcoming
footnotes.
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Figure 5.21 shows a comparison between the thus obtained GW excitation energies
and the LDA+CDMFT poles from the preceding section. We note that the G0W0 approx-
imation is non-conserving [Schindlmayr(1997)] and that we have in this picture shifted
the chemical potential arbitrarily such that the center of gravity of the occupied bands
roughly coincides with the LDA+CDMFT ones.

Several remarks are to be made. First of all, the current GW implementation suc-
ceeds in opening a gap in the excitation spectrum between the a1g bonding and some eπg
bands30,31.

Compared with LDA+CDMFT, the magnitude of the gap is quite comparable and
some of the band dispersions come out similar. Yet, the dispersion of the bonding a1g

bands and the unoccupied bands below 1 eV are somewhat narrower in the GW. The
second major observation is that the anti-bonding a1g bands are not pushed upwards
such as to form the top of the t2g conduction band, as is the case in LDA+CDMFT. To
further illustrate this, we plot in Figure 5.22 the evolution of the Kohn-Sham energies
at the Γ-point when applying the GW. We have indicated the preponderant LDA orbital
character by different line styles and colours : The blue solid lines represent the a1g and
the dashed red lines the eπg energies.

We see that, while the bonding a1g to eπg splitting, responsible for the gap opening,
grows tremendously, the a1g bonding / antibonding splitting actually decreases. This is to
be contrasted to our model GW analysis on the Hubbard molecule, given in Appendix B,
where, as stated above, an on-site Coulomb repulsion leads to a too small, yet increased
bonding / antibonding splitting.

The self-energy. Figure 5.23 shows the GW t2g self-energy at the Γ-point, ∆ΣΓn,
as defined above. Again, we have marked the components according to their LDA orbital
character. It would be interesting to see, whether in the a1g channel a frequency depen-
dence similar to the one of the Hubbard molecule within GW, Figure B.5, is found. Un-
fortunately, we note that since we have calculated the polarization and thus the screened
interaction only up to 10 eV, the frequency convolution in the equation to obtain the
self-energy (given by the Fourier transform of Equation (2.16), which was written in time

30This is to be contrasted to one-shot GW calculations of Gatti et al. who used a pseudo-potential plane
wave code. Indeed Gatti et al. find insulating behaviour only when performing self-consistent calculations,
during which the wavefunctions considerably adjust. There are two possible explanations for the different
findings. First it could be a question of which orbitals are taken into account for the calculation of the
screened interaction. A too restricted choice might result in the missing of important contributions to
the polarization, thus working in favour of a smaller gap value. A further possibility is the difference
in wavefunctions. In our calculation the atomic sphere approximation (ASA) might have severe impacts
on the wavefunctions (yet see below), while in the plane wave approach the pseudization might yield
considerably different wavefunctions, too. Yet, as we have noted previously, the LDA wavefunctions have
no physical meaning. Similarities between our electron energy loss spectra (EELS) ℑ (ǫ(q, ω))−1 of our
one shot calculation (not shown) and the one of Gatti et al. who used self-consistent wavefunctions, might
suggest that the LMTO-ASA wavefunctions are closer to the self-consistent solution than the starting
pseudized plane waves. This issue remains to be clarified.

31Preliminary full-potential GW calculations of Sakuma et al. show the opening of a gap on first shot,
supporting our ASA result.
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Figure 5.21 : Comparison of the G0W0 renormalized Kohn-Sham energies with the poles
of the LDA+CDMFT Green’s function along various symmetry lines. Note that the GW
chemical potential has arbitrarily shifted up such as to align the occupied bands with the
respective LDA+CDMFT poles.

117



3 GW – MODEL AND FIRST PRINCIPLES CALCULATIONS CHAPTER 5. VANADIUM DIOXIDE – VO 2

-1

 0

 1

 2

 3

ε n
(Γ

) 
[e

V
]

LDA GW

a1g

eg
π

Figure 5.22 : Comparison of the Kohn-Sham energies and the GW corrected excitation
energies at the Γ-point. Here we have arbitrarily shifted the GW energies such as to
freeze the lowest energy to the LDA value. The elements corresponding to Kohn-Sham
energies of predominant a1g (eπg ) character are marked by solid blue (dashed red) lines, cf.
Figure 5.5.
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space), suffers from finite range artifacts. Computations for a simpler material, Cu, re-
vealed that the resulting self-energy is reliable up to about 1/3 of the cutoff frequency
only. This is why we do not show the GW VO2 t2g self-energy beyond 3 eV. Calculations
with an increased cutoff frequency were technically not feasible.

Hence we cannot conclude as to whether also in the ab initio GW approach the physics
is (correctly) dominated by the vanadium dimers or not.
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Figure 5.23 : GW t2g self-energy correction at the Γ-point. Solid lines are real parts,
dashed lines imaginary parts. Also, as before we have indicated the different (LDA) orbital
character.

Coming back to Figure 5.23, we see that the shift between the bonding a1g and the
other components is clearly distinguishable. Yet, as expected from the above discussion
of the linearized band-structure, the anti-bonding a1g elements show a behaviour that is
rather generic for the eπg elements, too. As a consequence, the gap-opening within the
current approach is rather Hartree-Fock like, i.e. the different occupations of a1g and eπg
orbitals lead to different real-parts of the self-energy.

As far as the coherence of the excitations is concerned, we may compare the imaginary
parts of the GW self-energy in the Kohn-Sham basis, with the LDA+CDMFT self-energy
in the bonding / antibonding basis, Figure 5.18. The occupied a1g orbitals thus have a
quite comparable coherence, the imaginary parts reaching about -0.25 eV in the relevant
energy range. The eπg excitations are actually slightly less coherent in GW than they are
in the LDA+CDMFT, which is also seen in the spectral function, which extents over a
wider frequency range in the case of GW.

The spectral function. Finally, we plot the spectral function at the Γ-point in
Figure 5.24 and compare the position of spectral weight with the self-energy corrected
band-structure from above. The spectral function exhibits weight roughly at the per-
turbatively calculated positions. Deviations are due to two effects. First, the described
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Figure 5.24 : GW t2g spectral function A(Γ, ω) at the Γ-point. Indicated are also the
self-energy corrected Kohn-Sham energies (perturb GW) according to Equation (5.12),
and the poles of the GW Green’s function (GW QP poles). Here we show all quantities
as they emerge from the calculation, no shift in the chemical potential was applied.

procedure is a linearization of the quasi-particle equation. This is done for the sake of less
numerical cost, since then the self-energy needs only be computed for the former LDA
energies32. When however disposing of the frequency dependent self-energy on a fine fre-
quency grid, we can solve the quasi-particle equation, as we have done in the context of
LDA+DMFT calculations, see e.g. Section A, Chapter 3. We note that a correct treat-
ment slightly moves the excitation energies, in particular the a1g bonding and the upper
eπg bands. Moreover the frequency dependence of the self-energy may lead to additional
solutions indicating the formation of satellite features in the spectral function, as seen
in Figure 5.24. As mentioned above, however, we do not trust the self-energy beyond
±3 eV which is why we renounce from attributing a physical meaning to the features seen
at around +4 eV in the spectral function. This, and the non-conserving nature of the
GW in general, detains us from calculating the chemical potential from the constraint
N =

∫ µ dωA(k, ω), since there is considerable weight in satellite features (also at larger
negative energies, not shown).

The considerable numerical cost prevented us from showing a series of momentum-
resolved spectral functions, as we did for the LDA+CDMFT calculation.

Conclusions. Within the used implementation of the GW approximation, the correct
insulating behaviour is reproduced33. Yet, the expected bonding / antibonding physics in

32and some energies around them in order to compute the derivative of the self-energy.
33The fact that two different GW implementations, the one we used [Aryasetiawan(2000)] and the one

of Gatti et al., are yielding a qualitatively different result is rather worrisome. Above, we stated our
opinion on the origin of this discrepancy. Hopefully this issue will be resolved and understood. One has
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the a1g channel was not clearly evidenced. In particular our one-shot GW calculation did
not succeed in increasing the bonding / antibonding splitting.

Still, we dare say that the GW approach seems to reach its limits for systems like
VO2, since the number of calculable quantities is rather limited, which makes a thorough
physical discussion cumbersome. It would be quite desirable to find ways to speed up
these calculations. After all, the success of density functional theory can in large parts be
ascribed to the fact that calculations are reasonably quick even for large systems.

to say that GW apparently still suffers from teething troubles. While DFT-LDA results are usually stable
with respect of the choice of basis sets, potentials and codes, GW may not yet have reached this point.
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D The Optical Conductivity of VO2
34

Prior theoretical work. Theoretically, the optical response of M1 VO2 was inves-
tigated by means of a self-consistent model GW calculation [Continenza et al. (1999)],
mentioned already earlier. This was found to improve on LDA results for the dielectric
function, when comparing with experiments [Gavini and Kwan(1972)]. Also, a clear po-
larization dependence was evidenced. Yet, in these calculations, a model parametrization
for the dielectric function was assumed that, moreover, used some experimental input.

Further, the dielectric response of both the metallic and the insulating phase were
calculated within LDA [Mossanek and Abbate(2007)]. In the metallic phase, peak po-
sitions and the polarization dependence were qualitatively captured. The issue of the
bad metallic behavior was not adressed, which is natural since a capturing of this lies
way beyond band theory. As to the insulating M1 phase a rigid shift was introduced to
the LDA band-structure, such as to artificially produce a gap. This procedure, again,
resulted in qualitative agreement with experiment. However, we explain that by our reck-
oning the electronic structure is characterized by an enhanced a1g bonding/anti-bonding
splitting, which is, of course, not reproduced by an orbital-independent shift. Yet, on the
other hand, we have shown, Section B, that an orbital-dependent one-particle potential
actually does capture spectral properties to a surprising degree.

Experimental details and prelude to the calculation. We now turn to the first
real application of the formalism described in Chapter 4 to an actual compound. In the
following we present results for the optical conductivity of VO2 in the metallic rutile, and
the insulating M1 phase.

In order to compute the optical conductivity also for high energies, we employ the
upfolding scheme detailed in Section D, Chapter 4. In the many-body Cluster-DMFT
calculation of [Biermann et al. (2005)] that stood at the beginning of our work, all orbitals
other than the vanadium t2g were downfolded. The latter thus constitute the low energy
sector, L according to Equation (4.95). For the calculation of the Fermi velocities we use a
larger Hamiltonian that comprises for the high energy part, H, in particular the vanadium
eσg and the oxygen 2p orbitals, and, moreover, the oxygen 2s35. We sketchily write s,p,eσg
in the graphics. When indicating, in the graphics, that transitions are from s,p,eσg into
the t2g orbitals, this mainly accounts for transitions from the occupied O2p into empty
t2g orbitals, since, e.g., the eσg to t2g transitions are derived only from the little occupied
weight of eσg character that stems from hybridizations with occupied orbitals.

When referring to the orientation of the electric field, or the light polarization, we
use the simple monoclinic lattice as reference36. Since for the Peierls Fermi velocity,
Equation (4.70), we perform the numerical derivative of the Hamiltonian on a discrete
momentum mesh, not all directions are accessible in a straight forward manner. Yet, the
important polarizations, E ‖ [001] and E ⊥ [001], are capturable. In an experiment,
the polarization is varied by choosing different orientations of the sample, or different

34This work appears in : [Tomczak and Biermann(2007b)]
35In the M1 phase, though not necessary, we further include the vanadium 4s and 4p orbitals.
36See e.g. Fig.10 in [Eyert(2002)] for the first Brillouin zone
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substrates, which, in the case of thin films, favor different growth directions. Herewith,
all orientations that lie within the plane of the surface are probed, when using unpolarized
light. In our calculations, however, we evaluate the response of a single given polarization
only, without averaging over an ensemble of in-plane directions.

As a comparison to our theoretical curves, we include results from three experiments
that we already mentioned in the beginning. We will display measurements on single
crystals by [Verleur et al. (1968)], performed for different orientations of the sample.
Moreover, recently, experiments were carried out on different types of thin films. The
work of [Okazaki et al. (2006)] used thin films (Tc ≈ 290 K) with [001] orientation, i.e. for
the electric field E ⊥ [001]. [Qazilbash et al. (2006)] on the other hand used polycrystalline
films with preferential [010] orientation (Tc ≈ 340 K).

D.a Rutile VO2 – The metal

In Figure 5.25 we show, along with the mentioned experimental data, the theoretical
optical conductivity of rutile VO2, which we obtain for the different light polarizations as
indicated.
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Figure 5.25 : LDA+CDMFT optical conductivity of the rutile phase of VO2 for the indi-
cated polarizations ([aab]=[0.85 0.85 0.53]). The velocity matrix elements were calculated
using the scheme of Section D, Chapter 4. Beyond the t2g orbitals this calculation includes
in particular the Veσg and O2p orbitals. Experimental curves from [Verleur et al. (1968)]
(single crystals, orientation as indicated), [Qazilbash et al. (2006)] (polycristalline film
(Tc ≈ 340 K), preferential orientation E ⊥ [010], T=360 K), and [Okazaki et al. (2006)]
(thin film (Tc ≈ 290 K), E ⊥ [001], T=300 K).

As one can see, already the three experiments yield quite distinguishable spectra.
The differences may point to a polarization dependence, but one cannot rule out an
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influence of the sample type and the means by which multiple reflections at the sample
substrate were treated in case of the thin films. Indeed, in the case of rutile VO2, x-ray
experiments [Haverkort et al. (2005)] witness a rather isotropic response. The different
measurements on single crystals [Verleur et al. (1968)] also evidence a quite uniform
conductivity up to 4 eV.
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Figure 5.26 : LDA+CDMFT optical conductivity of rutile VO2 for the [001] polariza-
tion. Shown are the different orbital transitions according to their energy sector, see
Equation (4.96). The contributions are additive and sum up to the total conductivity.
For details see Section D, Chapter 4. Experimental curves, as above from [Okazaki
et al. (2006),Qazilbash et al. (2006)].

The polarization dependence of the theoretical conductivity is found to be rather small,
too, which is of course in line with our previous statement [Tomczak et al. (2007)] that
the t2g self-energy shows no particular orbital dependence. Thus, in theory, the metallic
Drude-like response is made up from a1g and eπg density near the Fermi surface37.

At higher energies, beyond the Drude-like tail, further inter-“band” intra-t2g transitions
occur. Yet, the optical response is rather structureless up to 2 eV. At this energy, how-
ever, we already expect the onset of oxygen 2p derived transitions. In order to elucidate
the origin of the spectral weight of this region in greater detail, we plot in Figure 5.26
the optical conductivity resolved into the different energy sectors, according to Equa-
tion (4.96). Since the O2p and the eσg orbitals were part of the downfolded high energy

37As concerns the very low frequency response, we remark that the theoretical result might overestimate
the spectral weight, since we (so far) do not employ the tetrahedron method for momentum summations,
and thus a very fine k-mesh was needed to get the current data. Therewith also the spectral weight of
transitions from density near the Fermi level to higher energies will be slightly too large. This is an issue
for metallic phases only.
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sector, their position, within our scheme, is frozen to the LDA result (see e.g. the band-
structure in [Eyert(2002)]). Therefore transitions from the O2p orbitals into the t2g ones
start, as expected, at around 2 eV. We remark that the polarization dependence for the
oxygen derived transitions agrees very well with the single crystal experiments [Verleur
et al. (1968)] up to 4.5 eV. Transitions from the t2g orbitals into the eσg set in later, at
around 2.5 eV, and are rather small in magnitude. The O2p to eσg transitions appear at
the expected energies, but they are too low to be seen in Figure 5.26.

Overall, the LDA eigenvalues seem to give a rather good description of the eσg and O2p
orbitals, since the agreement with experiment is reasonably accurate, as was qualitatively
noticed already in previous LDA optics calculations [Mossanek and Abbate(2007)]. When
looking at photoemission results [Abbate et al. (1991),Koethe et al. (2006)], one remarks
that the on-set of the oxygen 2p is compatible with the LDA, yet, their center of their
gravity is shifted to slightly higher binding energies in the experiment. As to the eσg
orbitals, it is conceivable, when resorting to x-ray experiments [Abbate et al. (1991),
Koethe et al. (2006)] as a reference, that they appear at a little larger energies and with
a smaller bandwidth than within the LDA. Of course both comparisons are somewhat
indirect, due to the occurrence of matrix element effects in the experiments. Yet, we
emphasize that the rather incoherent nature of the t2g weight in the t2g spectral function
is far beyond any band-structure technique, which is why the optical conductivity in
the 2.5 to 4.0 eV region, derived from O2p to t2g transitions, comes out too large in
LDA [Mossanek and Abbate(2007)] when comparing to the experiment of Ref. [Verleur
et al. (1968)], while we find a good agreement for the LDA+CDMFT conductivity.

At this point, we can only speculate on the origin of the shoulder and peak struc-
ture seen in one of the experiments [Qazilbash et al. (2006)] at 2.5 eV, and 3.0 eV, see
Figure 5.25. It seems conceivable that it stems from t2g to O2p transitions, rather than
from eσg contributions. Attributing the humps to distinct O2p to a1g or eπg transitions is
cumbersome, mostly due to the structure of the numerous oxygen bands. When looking
at the momentum-resolved optical conductivity (not shown), one realizes that O2p to eπg
transitions start for most of the k-regions at lower energies than transitions into the a1g.

D.b Monoclinic VO2 – The insulator

The optical conductivity of the scissors construction. At first, in order to
further corroborate the validity of our effective band picture of M1 VO2 of Section B, we
calculate the optical conductivity ℜσ(ω) that corresponds to the scissored Hamiltonian
from above. In order to go beyond the transitions within the t2g manifold, we compute a
full LMTO [Andersen(1975)] Hamiltonian that in particular comprises the vanadium eσg
and the oxygen 2p orbitals. This Hamiltonian is used to compute the Fermi-velocities in
the Peierls approximation, according to Equation (4.70). We emphasize that the d-orbital
wavefunctions of this non-downfolded LMTO Hamiltonian are more localized than those
of the t2g Hamiltonian, a fact that renders the Peierls substitution closer to the exact
result. Yet, oxygen wavefuntions are much less localized, which is why the corresponding
transition amplitudes within the Peierls approximation might be less reliable.

For the spectral function of the system, we employ the up-folded scissored Hamilto-
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Figure 5.27 : Optical conductivity of the effective band-structure for indicated polariza-
tions ([aab]=[0.84 0.84 0.54]). Experimental curves from [Okazaki et al. (2006)] (thin
film, E ⊥ [001], T=280 K), and [Qazilbash et al. (2006)] (polycristalline film, preferential
orientation E ⊥ [010], T=295 K).

nian, i.e. a spd-Hamiltonian to which the scissors operator has been applied as described
above in Equation (5.11). The reason for not computing the Fermi velocities from this
“scissored” Hamiltonian is the following. In the introduction we have noted that interac-
tions on a mean-field level can be incorporated into the kinetic part of the Hamiltonian,
see Equation (1.4) and Equation (1.5). Yet the effect of the scissors operator is different,
since it explicitly depends on the orbital and, in this context, thus has to be treated as a
correlation effect beyond mean-field, i.e. like a self-energy, that hence does not enter the
calculation of the Fermi velocities, see Chapter 4.

With the scissors procedure, all correlation induced energy shifts are captured, whereas
the coherence of the excitations remains infinite, i.e. band-like. Also, in this case, we do
not have to invoke the upfolding scheme of Section D, Chapter 4. However, this also
means that we cannot easily distinguish the origin of the different orbital contributions
to the total spectral weight in the conductivity.

In Figure 5.27 we show our theoretical results, again, in conjunction with the three
experiments [Verleur et al. (1968),Okazaki et al. (2006),Qazilbash et al. (2006)].

As was the case for the metallic phase, the latter yield varying results. While the
optical gap is roughly 0.5 eV in all cases, the higher energy response is markedly different.
Not only the amplitudes, but also the peak positions differ considerably. Yet, as a matter
of fact, in the current case of M1 VO2, a sizable polarization dependence is expected
from the structural considerations mentioned above. Indeed our calculation suggests a
noticeable anisotropy in the optical response, which is congruent with the experimental
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findings.
When looking first at the optical conductivity that results from the effective band-

structure, “LDA+scissors”, we find all polarization tendencies reproduced : Consistent
with Verleur et al. [Verleur et al. (1968)], the E ‖ [001] conductivity is lower than the
E ⊥ [001] one at energies up to 1.5 eV, after which the c-axis response develops a little
maximum of spectral weight in both, experiment and theory. At energies of 2.35 eV [Qazil-
bash et al. (2006)] or 3.0 eV [Verleur et al. (1968)] the experimental conductivity with
E ‖ [001] components evidences a narrow peak. In the calculation this is prominently seen
at 2.75 eV. When looking at our effective band-structure, Figure 5.19, it seems plausible
that these transitions stem from a1g bonding to anti-bonding orbitals. The peak is indeed
very narrow for an inter-band transition, but in our picture this is simply owing to the fact
that the a1g anti-bonding excitation does exhibit an almost dispersionless behavior (see
e.g. Figure 5.19). However, already at these frequencies we expect transitions that involve
the oxygen 2p orbitals, as will be detailed below for the LDA+CDMFT conductivity.

At still higher energies the E ‖ [001] response is again lower than for the perpendicu-
lar direction in both, experiment and theory. This surprising congruity with experiments
further corroborates the validity of our effective band-structure picture for spectral prop-
erties and therewith strengthens our interpretation of the nature of the insulating phase
of VO2 as a “many-body Peierls” realization.

The optical conductivity of the LDA+CDMFT calculation. What the above
theoretical conductivity is missing are the life-time effects encoded in the imaginary part of
the LDA+CDMFT self-energy. These were found to be small, yet not entirely negligible
(see above). When incorporating the latter, we thus have to resort to the upfolding
scheme of Section D, Chapter 4 in order to compute the full-orbital LDA+CDMFT optical
conductivity using the dynamical t2g self-energy. Figure 5.28 displays our result, again
along with the experimental curves.

When comparing with the conductivity of the effective one-particle approach (see also
Figure 5.29), we realize that the LDA+CDMFT response for the t2g orbitals is damped
and therewith less structured, which was clearly expected. The small underestimation of
the optical gap is probably owing to the elevated temperature at which the LDA+CDMFT
quantum Monte Carlo calculation was performed [Biermann et al. (2005)].

To shed further light on the structure of the response, we resolve in Figure 5.30 the
contributions to the [001] LDA+CDMFT conductivity into their respective energy sectors,
according to Section D, Chapter 4. From this we first infer that the slight upturn, seen
for this polarization beyond 1.5 eV in the LDA+CDMFT conductivity is indeed derived
from transitions within the t2g manifold, for oxygen contributions only set in at around
2.0 eV.

Besides, the prominent peak in both, the experimental and LDA+Scissors conductivity
with E ‖ [001] polarization that we attributed above to a1g–a1g transitions, is largely
suppressed and only faintly discernible as a weak shoulder, when comparing with the
other polarizations.

We can think of two explanations for this discrepancy between experiment and the
scissors approach on the one hand, and the LDA+CDMFT result on the other. A first
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Figure 5.28 : LDA+CDMFT optical conductivity of the M1 phase of VO2 for the in-
dicated polarizations ([aab]=[0.84 0.84 0.54]). The velocity matrix elements were cal-
culated using the scheme of Section D, Chapter 4. Experimental curves from [Verleur
et al. (1968)] (single crystals, orientation as indicated), [Okazaki et al. (2006)] (thin film,
E ⊥ [001], T=280 K), and [Qazilbash et al. (2006)] (polycristalline film, preferential
orientation E ⊥ [010], T=295 K)
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optical conductivity, Figure 5.28, for E ‖ [001] polarization, along with experimental data
from [Verleur et al. (1968),Qazilbash et al. (2006)], as above.
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issue are the Fermi velocities. As mentioned above, only the LDA+CDMFT scheme makes
use of the downfolding procedure of the matrix elements, whereas the other calculation
uses the untransformed Peierls Fermi velocity of the large Hamiltonian.
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Figure 5.30 : LDA+CDMFT optical conductivity of M1 VO2 for the [001] polarization.
Shown are the different orbital transitions according to their energy sector, see Equa-
tion (4.96). The contributions are additive and sum up to the total conductivity. For
details see in particular Equation (4.96). Experimental curve, as above from [Okazaki
et al. (2006),Qazilbash et al. (2006)].

The second, and from our viewpoint predominant, effect is the occurrence of sizable
life-time effects in the LDA+CDMFT electronic structure calculation. Indeed the a1g

spectral weight in the corresponding t2g LDA+CDMFT spectral function is not sharply
defined and extends over more than 2 eV, and is only barely discernible in the total,
orbitally traced, spectrum [Biermann et al. (2005)]. When thinking of the conductivity
in simple terms of density-density transitions, it is perfectly conceivable that the a1g–
a1g response eventuates only in a tail of spectral weight (as seen in the energy sector
resolved conductivity in Figure 5.30) and not in a well defined peak. Having said this,
and referring to the experiments, one may thus conclude that these life-time effects are
actually still overestimated in the LDA+CDMFT calculation 38. We are hence led to the
(speculative) conclusion that the narrow peak in the experiments indeed is a hallmark of
the bonding/anti-bonding splitting, consistent with our theoretical interpretation.

Finally, we remark that despite all differences in the experimental data, they reveal
(maybe apart from the single crystal for [001] polarization) a common global tendency,

38This might point to problems in the use of the maximum entropy method [Jarrell and Guber-
natis(1996)] that we employed for the analytical continuation, which has problems in finding sharp
structures at higher energies.
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namely that, when going from the metal to the insulator, low frequency spectral weight
is transfered to higher energies. Indeed, for a given polarization, the Drude-like weight
that the insulator is lacking at low energies must be recovered, as requires the f-sum
rule. This condition is met at 5.5 eV in one experiment [Qazilbash et al. (2007)], while
in the other [Okazaki et al. (2006)] an overcompensation appears already at energies
beyond 3.5 eV. Theoretically, when using the LDA+CDMFT conductivity, we find values
of 3.73 eV and 4.35 eV, for the [11̄0] and [001] direction, respectively.

Motiviating the upfolding procedure. In Chapter 4 we already pointed out that
the calculation of Fermi-velocity matrix elements from downfolded Hamiltonians is prob-
lematic, which is why in Section D, Chapter 4 we devised a “downfolding procedure” for
the Fermi velocities, which are calculated using a full Hamiltonian that comprised in the
current case (see above) in particular the eσg and the oxygen 2p orbitals.
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Figure 5.31 : LDA+CDMFT optical conductivity for indicated polarizations ([aab]=[0.84
0.84 0.54]). The matrix elements were calculated from the downfolded t2g Hamiltonian.
Experimental curve (E ⊥ [010]) from [Qazilbash et al. (2006)].

For the sake of the argument we plot in Figure 5.31 the optical conductivity, resulting
from the Fermi-velocities of the downfolded t2g Hamiltonian. We clearly see that not
only the absolute values of the conductivity are worse than in the preceding calculation,
but also the impact of the light polarizations is somewhat different, with now the [001]
conductivity having less spectral weight at all energies.
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theory E ‖ [001] theory E ‖ [11̄0] exper. E ⊥ [001] exper. E ⊥ [010]

Figure 5.32 : Comparison of colours : (from left to right) as calculated from
LDA+CDMFT for [001] polarization [rgb] = [0.263 0.321 0.372], [11̄0] polarization
[rgb] = [0.245 0.314 0.390], and as extracted from the experiment [Okazaki et al. (2006)]
[rgb] = [0.259 0.313 0.382], [Qazilbash et al. (2006)] [rgb] = [0.229 0.352 0.360].

The colour of M1 VO2. From the knowledge of the optical conductivity, we can
in particular calculate the reflectivity using the equations of Section A, Chapter 4, and,
furthermore, the colour of the sample by the procedure described in Section E, Chapter 4.

Figure 5.32 shows the resulting RGB colours, obtained, from both, the theoretical and
from the experimental conductivities [Okazaki et al. (2006), Qazilbash et al. (2006)]39.
The RGB values are indicated in the caption. Again, we remark that in the LDA+DMFT
reflectivity we assume the light to be polarized along the indicated direction, whereas the
experiment samples over all polarizations of a given plane.

In the current case, the optical gap does not influence the appearance in the visible
range. Indeed, the energy region that is probed extends roughly from 1.75 to 3 eV. As
seen in Figure 4.4, where also the corresponding colours are displayed.

We see that the theoretical colour is rather isotropic, since the different polarizations
barely have any impact on the appearance of the material considerably. Hence, theoreti-
cally M1 VO2 is more or less grey, with a light touch of blue40.

The experimental conductivity yields a comparable colour, especially for the one of
[Okazaki et al. (2006)]. For [Qazilbash et al. (2006)] a slightly higher green component is
discernable.

We stress that the colours are computed for bulk VO2. The multiple reflections of
the film substrate were substracted in the deducing of the optical conductivity [Okazaki
et al. (2006), Qazilbash et al. (2006)]. For instance, [Qazilbash et al. (2006)] used the
substrate, Al2O3, which itself is white, and the VO2 film on it appears rather yellow41. We
have not endeavoured to reintroduce the influence of the substrate, such as to reproduce

39We note that the procedure requires the calculation of the imaginary part of the conductivity via a
Kramer-Kronig transformation. Since neither the experiment nor the theoretical results reach very high
energies, there is small, yet non-negligible influence by the choice of a high frequency extrapolation. For
the current results, we used no extrapolation.

40This is consistent with the colour “blue-black” given e.g. in www.webelements.com :
http://www.webelements.com/webelements/compounds/text/V/O2V1-12036214.html

41M.M. Qazilbash, private communication
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the colour of the film.

D.c Conclusions

As a first application of our optics scheme for strongly correlated materials, we evaluated
the optical conductivity of VO2 for both, the metallic and the insulating phase. By using
our upfolding procedure we were able to include high energy orbitals that were downfolded
in the LDA+CDMFT calculation of the electronic structure.

While the metal is characterized by a rather isotropic response, the insulator reveals
a noticeable polarization dependence, related to the changes in the crystal-structure.
The agreement with experiments is overall satisfying. The high energy conductivity is
reasonably described when using the LDA band-structure. The LDA+CDMFT many-
body calculation for the t2g orbitals correctly describes the low-energy behaviour. In the
rutile phase it accounts especially for the damping of oxygen to t2g transitions. In the
insulator, it allowed in particular for the reproduction of the experimental t2g response,
along with its polarization dependence. For the insulating phase, we moreover computed
the optical conductivity corresponding to the effective band-structure of Section B. This
allowed for the identifying of a prominent feature in the experiments to a1g bonding to
anti-bonding transitions. We interpreted this as corroborating our proposed “many-body
Peierls” scenario for monoclinic VO2. In the LDA+CDMFT calculation these transitions
are highly damped, and we were led to the speculation that, indeed, correlation effects
might still be overestimated in the insulating phase within LDA+CDMFT.
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Chapter 6

Vanadium Sesquioxide – V2O3

Vanadium sesquioxide, V2O3, has been the subject of, both, extensive theoretical and
experimental studies for now more than three decades. It is considered as the prototype
of a compound that (besides other transitions) undergoes upon chemical substitution a
Mott-Hubbard metal-insulator transition in its purest form, i.e. iso-structural and with-
out acquiring any magnetic ordering. This is why early theoretical approaches almost
exclusively resorted to the Hubbard model to explain the electronic properties of V2O3.
However, over the years, mostly experimental evidence was build up, that shows that
the physics of this material is indeed more involved and a realistic multi-orbital setup is
needed to account for the full complexity of the correlation effects taking place.

In the following we shall briefly review experimental findings and the history of the-
oretical advances to V2O3 as far as is needed to put our work into perspective. More
extensive reviews can be found e.g. in [Imada et al. (1998), Mott(1990)]. The current
work is the result of a collaboration with the authors of [Poteryaev et al. (2007)]. My
main contribution concerns the calculation of the real-frequency self-energy, its interpre-
tation and related discussions, as well as the calculation of derived quantities, such as the
momentum-resolved spectral functions.

Beyond this, we will show calculations of the optical conductivity of metallic V2O3

that were motivated by recent experiments.

After the short review, we proceed with our LDA+DMFT analysis of quasi-particle
properties and questions related to the effects of the self-energy on the excitation spectra
in the two paramagnetic phases, using the techniques described in the preceding section.
This will allow in particular for a deeper understanding of the behaviour of the electronic
degrees of freedom in the paramagnetic metal to paramagnetic insulator transition.
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Figure 6.1 : Temperature versus pressure or Cr-doping : Phase diagram of (V1−xMx)2O3.
From [McWhan et al. (1971)].

A Experimental findings and theoretical understand-

ing - a brief review

A.a Phase diagram and crystal structure

Figure 6.1 [McWhan et al. (1971)] shows the phase diagram of V2O3 as a function of
temperature versus pressure. At ambient conditions V2O3 is a metal and it has the
corundum crystal structure. The latter, see Figure 6.2, is formed by a hexagonal close
packing of oxygen atoms, with 2/3 of its octahedral sites occupied by vanadium atoms,
which are arranged such as to form V-V pairs along the hexagonal/rhombohedral c-axis
and a honeycomb lattice in the ab plane. The space group is R3̄c. Upon cooling below
150 K, a peculiar antiferromagnetic order sets in and the system becomes insulating
[Föex(1946), Moon(1970)]. The transition is of first order and it is accompanied by a
monoclinic structural distortion (the space group becomes I2/a). Alternatively, the system
can be tuned by chemical substitution (V1−xMx)2O3 and external pressure. Doping with
chromium (M=Cr) amounts to applying negative hydrostatic pressure, which effectively
decreases the c/a lattice constant ratio, while doping with titanium (M=Ti) is equivalent
to positive pressure. Indeed, there exists an empirical relation between the chemical
substitution and external pressure [McWhan et al. (1973)], which is +(−)0.4GPa per 1%
substitution with Ti3+ (Cr3+), thus allowing to cover the entire pressure range of the
shown phase diagram.

At least for the Cr-doped compound series it is reasonable to assume that the global
electron density is not severely changed by the additional one electron per Cr-impurity
[Imada et al. (1998)], and that changes in the electronic structure are solely due to the
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Figure 6.2 : The corundum crystal structure of paramagnetic (V1−xMx)2O3. From
[Tanaka(2004)].

changes in the lattice parameters, i.e. one disposes of a handle to tune the bandwidth at
constant filling.

This might not be true for the Ti-doped side of the phase diagram. As a matter of
fact at a doping above 6 % the phase diagram differs qualitatively from the one obtained
by applying external pressure [Ueda et al. (1979)]. It appears that the filling effect is non-
negligible and that the properties actually are rather similar to the vanadium-deficient
compound V2−yO3 [Ueda et al. (1980)].

Above the Néel temperature the crystal structure does not change from its corun-
dum configuration as a function of pressure or doping. Still, as a function of Cr-doping,
(V1−xMx)2O3 undergoes a first order paramagnetic metal (PM) to paramagnetic insu-
lator (PI) transition [McWhan et al. (1969)]. It is this PM-PI transition that evoked
the proposing of several distinct scenario in close connection with genuine Mott-Hubbard
physics, as described below.

As indicated in Figure 6.1, the transition line terminates at a critical end point at about
400 K [McWhan et al. (1969)]. Indeed similarities with the liquid gas transition1 can be
evoked [Jayaraman et al. (1970),Limelette et al. (2003)], see also [Castellani et al. (1979)].

As our key interest is in the paramagnetic phases of (V1−xMx)2O3 and the transition
between them, we shall limit the further discussion to precisely these two phases.

1Indeed, we mentioned already such a similarity for the metal-insulator transition of the one-band
Hubbard model, see Section C, Chapter 2.
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Figure 6.3 : Resistivity of (V1−xCrx)2O3 (upon cooling). The curves follow vertical lines
in the phase diagram, Figure 6.1. From [Kuwamoto et al. (1980)].
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A.b Experimental facts on the PM-PI transition

Experimentally the transition is signaled by a sizable discontinuity in the resistivity, which
jumps by several orders of magnitude [McWhan et al. (1969),Kuwamoto et al. (1980)],
as can be seen in Figure 6.3 which shows the resistivity as a function of temperature for
various doping levels, thus corresponding to vertical lines in the phase diagram Figure 6.1.
Unfortunately, no optical conductivity data is available for (V1−xMx)2O3 for x6= 0. Only
the metal-insulator transition in vanadium deficient V2−yO3 has been studied in detail both
experimentally and theoretical [Thomas et al. (1994a),Thomas et al. (1994b),Rozenberg
et al. (1995)]. It was concluded that the phenomenology of the temperature dependence in
the conductivity can be understood by appealing to the physics of the one-band Hubbard
model. However, as in the Ti-doped case, it is not completely ruled out that filling effects
play a role in the V2−yO3 series [Imada et al. (1998)].

Already the paramagnetic metallic phase exhibits signatures of strong correlations.
Indeed, photoemission experiments, [Schramme(2000),Mo et al. (2003),Mo et al. (2006)],
show, besides a quasi-particle peak at the Fermi edge, a lower Hubbard at around 1.25 eV
binding energy (see Figure 6.7), long before oxygen contributions set in.

Also x-ray absorption spectroscopy (XAS) reveals structures broader than calculated
from band-theory [Müller et al. (1997),Keller et al. (2004)], pointing to the importance
of electronic correlations.

As mentioned above, the transition to the paramagnetic insulator is iso-symmetric and
in particular no magnetic long-range order appears [McWhan et al. (1969)]. The crystal
structure thus is of corundum-type in both phases. However, at ambient conditions, the
volume expands by 1% at 0.9% Cr-doping and beyond this point the c/a lattice parameter
ratio displays an important reduction upon further doping [McWhan et al. (1969)]. Such a
volume expansion is a common feature of Mott-Hubbard metal-insulator transitions, since
the charges that are localized in the insulating phase no longer participate in the bonding.
Moreover, susceptibility measurements and entropy considerations [McWhan et al. (1969),
McWhan et al. (1973)] show the presence of local moments in the insulating phase of
(V1−xMx)2O3. Hence the metal-insulator transition exhibits all qualitative features that
are expected for a Mott-Hubbard type transition.

A.c Electronic configuration and early theoretical work

Atomic vanadium has the electronic configuration [Ar]3d34s2. In the present case vana-
dium is in its V 3+ oxidation state, thus leading to a nominal 3d2 configuration. Owing to
its octahedral oxygen surrounding, the vanadium 3d-manifold splits into two higher lying
eσg orbitals and the lower lying t2g manifold, which are isolated in energy both from each
other and from other orbitals. The trigonal part of the crystal field further splits the t2g
into a non-degenerate a1g and lower lying doubly degenerate eπg orbitals.

The crucial question that arises is which are the positions in energy and thus the oc-
cupations of the respective eπg and the a1g orbitals in the corundum structured solid.
In an early series of papers by Castellani et al. [Castellani et al. (1978b), Castellani
et al. (1978a),Castellani et al. (1978c)], it was assumed that the occurrence of vanadium-
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pairs, oriented parallel to the hexagonal/rhombohedral c-axis, would lead, via V-V cova-
lent bonding, to a strong bonding / antibonding splitting of the a1g orbitals such as to push
the resulting bonding orbital below, and the anti-bonding well above the eπg . The bonding
band thus filled, the remaining two electrons of a vanadium pair would partially populate
the eπg orbitals, forming an S=1/2 state per vanadium atom. Therefore it was assumed
that the quarter-filled degenerate Hubbard model might yield an adequate description of
the physics of V2O3 [Castellani et al. (1978a)].

A.d The S=1 reality

Combining neutron measurements of the magnetic moment [Moon(1970)] with non-re-
sonant magnetic X-ray scattering [Paolasini et al. (1999)] was found to result in 〈S〉 =
0.85µB [Di Matteo et al. (2002)], already querying the S=1/2 state of the vanadium atoms.
Eventually, polarization dependent X-ray-absorption experiments [Park et al. (2000)] re-
vealed that the vanadium atoms have actually Hund’s rule S=1 character in all the phases,
since it was shown that the low lying excitation states are not of pure eπg character but
comprise sizable a1g admixtures.

Hence the a1g-bonding / antibonding scenario is not the exclusive mechanism for the
understanding of electronic structure of (V1−xMx)2O3

2. On the theory side this evoked
new model approaches for the PM-AFI transition in pure V2O3 [Di Matteo et al. (2002),
Mila et al. (2000),Tanaka(2004)] which mainly dealt with the peculiar magnetic ordering
below the Néel temperature. Also, the suggestion to investigate the electronic structure
of (V1−xMx)2O3 with a degenerate Hubbard model is thus overcome, calling for a more
sophisticated setup allowing for the full orbital complexity of the compound.

A.e An LDA reminder

Electronic structure calculations using density functional theory within LDA were first
performed by [Mattheiss(1994)]. As expected, neither the insulating nature of the PI
phase, nor the signatures of strong correlations in the metallic phase, are captured within
this approach. For instance no V 3d spectral weight appears below -0.5 eV, in contradiction
to photoemission, as will be seen below. Indeed, at first sight, the band-structure of
(V1−xMx)2O3 reveals only minor changes when going from the PM lattice parameters to
the PI ones. However, as we shall see below in our LDA+DMFT analysis, only minor
changes are needed to describe a metal-insulator transition in the series (V1−xMx)2O3 as
a function of Cr-doping. Nonetheless the LDA can give valuable insights and a qualitative
picture of the chemical interactions, which also provides the starting point for techniques
that go beyond LDA in their description of local Coulomb interactions, such as LDA+U
or LDA+DMFT.

Figure 6.4 shows the band-structure of pure V2O3 within the LDA [Saha-Dasgupta
et al. (2007)]. Displayed is the energy-range of the V 3d-orbitals, that are well separated
from all other bands. Shown is the “fat band” representation for the a1g (a) and eπg (b)

2As we have seen before, this is to be contrasted with the case of vanadium dioxide VO2.
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Figure 6.4 : Bandstructure of pure V2O3 in the rhombohedral representation of the unit
cell. The width of the lines corresponds to the magnitude of a1g and eπg admixtures, re-
spectively. From [Saha-Dasgupta et al. (2007)].

Figure 6.5 : First rhombohedral Brillouin zone of corundum V2O3, indicating high sym-
metry points. From [Saha-Dasgupta et al. (2007)].

139



1 EXPERIMENTS AND THEORY CHAPTER 6. VANADIUM SESQUIOXIDE – V 2O3

orbitals, i.e. the width of the lines indicates the amount of V 3d a1g and eπg contributions,
respectively. The upper block of bands corresponds to the aforementioned eσg orbitals, and
the lower lying one to the t2g orbitals. Clearly seen is a pronounced bonding / antibonding
structure in the dispersion of the a1g bands along various symmetry directions. Only in
the Γ − Z direction, along which the a1g-orbitals are oriented, a sizable dispersion of
the a1g bands is seen, compatible with a quasi-dimensional behaviour of these orbitals.
However it was demonstrated [Elfimov et al. (2003)] that in the corundum structure the
shape of the a1g orbital is not solely determined by the intra-pair hopping along the c-axis
but that the hoppings in the ab basal plane are non-negligible. Moreover, for symmetry
reasons the bonding part of the a1g band hybridizes with the eπg bands to a considerable
extent, leading to a sizable asymmetry of the a1g density of states of pure V2O3 [Eyert
et al. (2005)], with an anti-bonding peak that has less weight than expected from a pure
molecular picture. As a consequence, the eπg manifold is more than quarter-filled.

In the antiferromagnetic low-temperature phase the insulating behaviour was correctly
described within LDA+U [Ezhov et al. (1999)] calculations that proved also to be con-
sistent rather with a S=1 picture of the ground state, since it was found to have two eπg
electrons and the a1g band empty.

In consequence, also from the band-structure side, the S=1 picture of V2O3 with
almost two eπg electrons and nearly empty a1g orbitals seemed to be favored over the
S=1/2 scenario.

A.f Previous LDA+DMFT calculations

LDA+DMFT calculations were first performed by [Held et al. (2001),Keller et al. (2004)].
They used the numerically exact Hirsch-Fye quantum Monte Carlo algorithm to solve
the effective DMFT impurity problem. However, instead of using a downfolded LDA
Hamiltonian in the DMFT self-consistency, they employed the LDA local density of states
(DOS) projected onto a1g and eπg components3 and then used the Hilbert-transform to
compute the local Green’s function. This approach is mathematically correct only in
the case of degenerate bands, a prerequisite clearly not verified in the case of V2O3.
Indeed, as detailed below, in this approximation inter-orbital effects such as the correlation
enhancement of crystal field splittings are completely neglected.

Yet, the calculations captured the correlated metal state, with the formation of an
upper and lower Hubbard band, as seen in photoemission and x-ray absorption. However
the quasi-particle peak appears much too narrow with respect to experiment. As we will
argue below, this is possibly due to the fact that within DOS-type calculations a too large
value of the Coulomb interaction (U=5.0 eV) is needed to reproduce the overall shape of
the spectrum. Using the same approach, though with an increased value of the Coulomb
interaction (U=5.5 eV), the insulating character of the PI phase was captured. It is argued,
that the gap is opened by a divergence of the effective mass of the eπg electrons, while the
a1g Z-factor remains finite, and a1g spectral weight is shifted away, or gapped-out, from

3Within the LMTO formalism [Andersen(1975)] this means: Projection on partial waves, with trun-
cation outside the vanadium atomic sphere.
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the Fermi level by the real-part of the self-energy.

Performing Hamiltonian-based calculations, using t2g Wannier functions, [Anisimov
et al. (2005)] improved their previous work [Held et al. (2001),Keller et al. (2004)] but
contented themselves to show comparisons with photoemission and x-ray experiments,
without analyzing their results in depth.

[Laad et al. (2003), Laad et al. (2006b)], using a multi-band generalization of the
iterative perturbation theory (IPT) for solving the DMFT equations, and also the DOS
approximation, even found an “orbital selectivity” in the metallic phase : In their calcu-
lation the metallic character stemmed only from the a1g orbitals, while the eπg ones were
already insulating. Further they found important differences in the orbital occupations
in the two phases, with a transfer into the eπg in the insulating phase.
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B LDA+DMFT results and discussion

B.a Technicalities

Poteryaev et al. performed LDA+DMFT calculation using in the DMFT self-consistency
an NMTO t2g Hamiltonian, where all other orbitals have been downfolded [Poteryaev
et al. (2007),Saha-Dasgupta et al. (2007)]. As interaction parameters were used U=4.2 eV
and J=0.7 eV.

As can be seen in the (V1−xMx)2O3 phase-diagram, pure V2O3 at zero pressure is
metallic down to ∼150 K, the Néel temperature, below which antiferromagnetic order sets
in. Due to the considerable cost of the quantum Monte Carlo (QMC), the calculations
were performed at a rather elevated temperature of T=390 K. We note that this is however
lower in temperature than the critical end-point of the pressure induced metal-insulator
transition.

B.a.i Full Hamiltonian vs. density of states calculation

As mentioned above, most of the previous LDA+DMFT calculations for V2O3 employed
a density of states approach, whereas we [Poteryaev et al. (2007)] used the correct full
Hamiltonian implementation. In the following we shall rationalize what are the particular
short-comings of the DOS approach, which from here on we shall refer to as the “fixed
hybridization approximation” as will become clear below. To this end, we compare both
approaches within a simple two-band model. We assume that the symmetries are such
that the local Green’s function, G(ω) =

∑
kG(k, ω), is a purely diagonal in orbital space,

which leads to a diagonal self-energy Σ. Further, for the sake of simplicity, we shall
assume the self-energy to be independent of frequency, taking e.g. only Σ(0) into account.
The argument is of course more general but staying within a Hamiltonian form allows
for a discussion in terms of an eigenvalue problem, where the effects are is more readily
explained. The momentum-resolved Green’s function within DMFT then reads

G(k, ω) = [ω + µ−H(k)−Σ]−1

=

[
ω + µ−

(
ǫ1k V ∗

k

Vk ǫ2k

)
−
(

Σ1 0
0 Σ2

)]−1

(6.1)

=
1

(ω + µ− ǫ1k − Σ1)(ω + µ− ǫ2k − Σ2)− |Vk|2
(
ω + µ− ǫ2k − Σ2 Vk

V ∗
k ω + µ− ǫ1k − Σ1

)

Clearly, the self-energy enters not only in the diagonal part of the Green’s function, but,
via the denominator, also affects the off-diagonal elements. Naturally this has important
consequences for the poles of the Green’s function, i.e. in this case for the eigenvalues
of H(k) + Σ and the corresponding eigenvectors, that determine the orbital character.
During the DMFT convergence process these will adjust according to the self-consistency,
in particular they may change considerably with respect to the free problem. The fixed
hybridization approximation consists in replacing the Hamiltonian matrix by its diago-
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nalized version while keeping the self-energy in the form above, i.e.

G(k, ω) =

[
ω + µ−

(
E

(+)
k 0

0 E
(−)
k

)
−
(

Σ+ 0
0 Σ−

)]−1

(6.2)

where

E
(±)
k =

1

2

(
ǫ1k + ǫ2k

)
± 1

2

√
(ǫ1k − ǫ2k)

2
+ 4|Vk|2 (6.3)

are the eigenvalues of the free (or LDA) Hamiltonian. Technically, this form is easier to
handle because in the inversion the orbital components decouple and thus the k-sum can
be replaced by an integral over the partial densities of states of the Hamiltonian. Then
however, the eigenvectors do not evolve via the self-consistency and the orbital character
is not influenced by the correlation effects but is fixed once and for all. In fact, assuming
the two bands split by a crystal-field ∆ but otherwise degenerate (i.e. ǫ1k = ǫ2k + ∆), the
eigenvectors of the full matrix problem, Equation (6.1), are

sin(θ1,2) |
(

1

0

)
〉 + cos(θ1,2) |

(
0

1

)
〉 (6.4)

with

tan(θ1,2) =
∆eff

2Vk

±

√(
∆eff

2Vk

)2

+ 1 (6.5)

They depend on the self-energy via the re-normalized crystal-field splitting ∆eff = ∆ +
Σ1 − Σ2. The orbital character is controlled by ∆eff/Vk, the ratio of the re-normalized
crystal-field splitting and the hybridization. In the fixed hybridization approximation, the
re-normalized crystal field splitting ∆eff in the above decomposition of the eigenvectors
onto the basis of the non-interacting non-hybridized single-particle states |

(
1
0

)
〉, |
(
0
1

)
〉 is

replaced by the bare crystal field splitting ∆. Hence, an adjustment away from the starting
point cannot take place.

In practice, it often looks as if the error induced by using the fixed hybridization ap-
proximation could be partially compensated by a slightly bigger choice of the Coulomb in-
teraction parameter U , see e.g. [Mo et al. (2003)] in comparison with [Pavarini et al. (2004),
Pavarini et al. (2005)] or the discussion in [Anisimov et al. (2005)]. However, in case of
strong correlation induced shifts in the orbital occupation and positions, the effect of the
hybridization approximation is particularly severe: as will be discussed below, one of the
key effects of the correlations in V2O3 indeed is the suppression of hybridization of the a1g

and eπg bands by the correlation enhanced crystal field splitting, analogue to the current
model case. Thus it is not surprising that within the fixed hybridization approximation,
that neglects any correlation-driven changes in the hybridization, one arrives at quite dif-
ferent results, which, as a matter of fact, mask the genuine physics at work in the current
compound of interest.
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B.b The paramagnetic metal (PM) phase

B.b.i Comparison with photoemission

Figure 6.6 shows the LDA+DMFT spectral function, and Figure 6.7 displays a compar-
ison of recent photoemission experiments [Mo et al. (2006)], and our theoretical result,
i.e. the spectral function multiplied with the Fermi function at the experimental tem-
perature (T=175 K) and broadened with the experimental resolution (90 meV). Despite
the difference in temperature, the overall agreement is excellent. Both, the width of
the quasi-particle peak, and the position and size of the lower Hubbard band are satis-
factory reproduced. This is to be contrasted with the above cited earlier LDA+DMFT
results [Held et al. (2001),Keller et al. (2004)] that in order to correctly describe the lower
Hubbard band, had to use a higher value for the Coulomb interaction (U = 5.0 eV), which
resulted in a quasi-particle peak twice as narrow as the experimental data.
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Figure 6.6 : Indicated are the total and the orbitally resolved LDA+DMFT spectral
function at T = 390 K for U = 4.2 eV, and J = 0.7 eV.

Compared with the calculations of [Laad et al. (2003), Laad et al. (2006b)] we find
the quasi-particle peak of mixed a1g and eπg character, which is more compatible with the
results from polarization dependent x-ray experiments [Park et al. (2000)], which find a
eπg : a1g ratio of 3 : 1.

B.b.ii The real-frequency self-energies

However interesting it is, the local spectral function shown above does not allow for a
detailed analysis of the implications of the strong Coulomb correlations present in V2O3.
In order to see more thoroughly how and to what extent the interactions modify the (LDA)
band-picture, we shall compute the DMFT self-energy on the real-frequency axis. As
described in Chapter 3, we thus analytically continue the local Green’s function in orbital
space to the real axis and extract from it the self-energy by a root-finding algorithm. This
brings us not only into the position to calculate momentum-resolved spectral functions
for comparison with future ARPES measurements (see below), and the calculation of the
optical conductivity according to Chapter 4, but, on a yet more basic level, it allows us to
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Figure 6.7 : Photoemission spectrum [Mo et al. (2006)] of pure V2O3 at T=175 K (dots).
The theoretical spectral function (solid line) is for T=390 K, but convoluted with the Fermi
function at the experimental temperature and broadened with a Gaussian mimicking the
experimental resolution of 90 meV. From [Poteryaev et al. (2007)].

understand in greater detail the impacts on the excitation spectrum and the disentangling
of the mechanisms at work.

Figure 6.8 shows the result of our analytical continuation procedure. Before discussing
the real-frequency self-energy in detail, we assess in Figure 6.9 the quality of the contin-
uation process by showing a comparison between the Matsubara self-energy as obtained
from the QMC with the Hilbert transform of the continued self-energy. We see that at low
energy, the agreement between the original and the processed data is excellent. Only at
higher energies slight discrepancies are discernible. Our procedure thus yields satisfactory
results, and the real-frequency self-energy is reliable.

Effects of the imaginary parts of the self-energy: orbital selective coherence.
First, we shall examine the imaginary parts of the individual orbital components, which
encode the correlation induced lifetime effects and thus the coherence of the spectrum,
as discussed for the example of the half-filled one-band Hubbard model in Section C,
Chapter 2.

Figure 6.8 b shows the imaginary parts of the LDA+DMFT real-frequency self-energy
for the a1g and eπg orbitals. As far as the a1g orbitals are concerned, one observes a dip
in the imaginary part of the self-energy at the Fermi level, leading to a small value of
ℑΣa1g

(0) in accordance with the low frequency expansion Equation (2.24), telling us that
the a1g electrons are in (or least very close to) their Fermi-liquid regime.

For the eπg orbitals, on the contrary, one finds ℑΣeπ
g
≈ −0.45 eV – a considerably large

value – indicating that at T=390 K the eπg orbitals are still well above their coherence
regime. This can also be inferred from the temperature dependence of the Matsubara self-
energy (not shown, for details see [Poteryaev et al. (2007)]). Indeed the zero frequency
limit of ℑ(ıωn) of the a1g orbitals decreases drastically between the two temperatures
1160 K and 580 K, and stays rather unchanged upon a further lowering of temperature,
indicating that the coherence temperature of the a1g orbitals lies between the two tem-
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Figure 6.8 : LDA+DMFT self-energy (Σ − µ) of V2O3 on the real frequency axis: (a)
real parts (b) imaginary parts. In the left panel are moreover indicated the bandwidth of
the un-hybridized LDA bands, that is used for the graphical construction, see text for a
discussion.
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Figure 6.9 : Assessment of the quality of the analytical continuation. Shown are the
original QMC self-energy on the Matsubara axis (crosses) in comparison with the self-
energy obtained from a Hilbert transform of the real-frequency self-energy of Figure 6.8.
Solid lines indicate real-parts, dashed lines corresponding imaginary parts. The inset
shows the low energy region.

peratures first mentioned. The eπg component, on the other hand, displays changes down
to the lowest temperature at which calculations were performed.

With this orbital selective coherence we will venture to explain the temperature de-
pendence seen in recent measurements of the optical conductivity, see Section B.

At higher energies the imaginary parts grow, and, especially for the eπg , display large
features that will, like in the one-band model, see Section C, Chapter 2, suppress spectral
weight in between the remainders of the former one-particle bands and the upper and
lower Hubbard band.

Effects of the real parts of the self-energy in the band-picture. From a band-
picture perspective, the real-parts of the self-energy are the more interesting quantities.
While the imaginary parts tell us about the coherence of excitations, the real-parts de-
scribe the shifting of one-particle poles with respect to the non-interacting or LDA case
and the possible formation of correlation satellites.

Before resorting to numerically solving the quasi-particle Equation (3.9) for the case
in point, we shall, on a more basic, yet insight-full level, examine the real-parts of the
self-energy as displayed in Figure 6.8.

Clearly, both the frequency dependence and the magnitudes of the self-energy are very
different for the a1g and eπg components. In particular, the zero-frequency values differ
considerably, they even have the opposite sign, ℜΣa1g

(0)−µ > 0, ℜΣeπ
g
(0)−µ < 0, which
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results in an upward (downward) shift of a1g (eπg ) spectral weight at the Fermi level. In
other words, the correlations effectively enhance the crystal-field splitting:

∆eff = ∆bare + ℜΣa1g
(0)−ℜΣeπ

g
(0) , (6.6)

where ∆bare is the crystal-field splitting of the bands that result from the LDA Hamil-
tonian when (artificially) setting to zero the a1g–eπg hybridizations. The reason for working
with these “un-hybridized” bands is the same as was discussed for the graphical construc-
tion, Section A, Chapter 3, which we will also apply to the current case, below. With
∆bare ≈ 0.27 eV, we find ∆eff ≈ 1.9 eV, i.e. an enhancement by almost an order of mag-
nitude. In return, this consequently leads to a charge-transfer into the eπg orbitals, thus
increasing the overall orbital polarization. As a result of the low occupancy of the a1g

orbital, the corresponding self-energy does not vary enormously with frequency and it is
much lower in absolute magnitude than its eπg counterpart.
Despite the appealing picture of shifting the former LDA bands according to the “new”
crystal-field splitting, we emphasize that due to both, the frequency dependence of the
self-energy and the momentum dependent hybridization between a1g and eπg orbitals, the
effects on the band-structure and the Fermi surface are highly non-uniform.

As a next step, we shall incorporate the renormalization effects of the real-parts of
the self-energy up to linear order in frequency, as described in Section C, Chapter 2
(Equation (2.25)), a development formally only valid in the Fermi-liquid regime.

As stressed above, the eπg orbitals are beyond their coherence regime, and thus, the
interpretation of Z = (1 − ∂ωℜΣ(ω) |ω=0)

−1 as quasi-particle weight is not admissible.
Formally, we find 1/Zeπ

g
≈ 5. The a1g orbitals, that are much more coherent, are subject

to a sizable mass enhancement 1/Za1g
≈ 2.5, in other words 60% of a1g spectral weight is

transferred to incoherent satellite features.
Using these values, we can compute the corresponding renormalized quasi-particle

band-structure that emerges if one takes into account only this low energy-behaviour of
the self-energy. This procedure was explain in Section A, Chapter 3. The resulting quasi-
particle band-structure will not capture the incoherent features containing the missing
weight, but it will give an accurate picture of what happens at the Fermi energy, which still
is interesting inasmuch as it reveals how much more correlations, bandwidth-narrowing
or crystal-field splitting are needed to drive the system insulating. The left panel of
Figure 6.10 shows the result. Compared to the LDA band-structure (Figure 6.4), the
energies are renormalized towards the Fermi energy, as expected.

Due to the crystal field enhancement, mentioned above, and also the different renor-
malizations by the Z-factors, the a1g and eπg bands get reshuffled and almost move apart
at the Fermi level. We stress again, that these “bands” carry the reduced weight Z < 1,
which is why having more than four “bands” below the Fermi level is not in contradiction
with the particle occupation. It simply shows that the band-picture, resulting from an ef-
fective one-particle Hamiltonian, is too artificial a notion to account for the richness of the
true system. Concomitant with the enhancement of the crystal-field splitting, the a1g–eπg
hybridizations are expected to decrease, as was discussed in Section B. Since the orbital
character of the bands is controlled by the ratio Vk/∆eff, see Section B, one expects a
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Figure 6.10 : LDA+DMFT quasi-particle bands obtained by truncating the self-energies
after linear order in ω. The left-hand panel gives the eigenvalues of the re-normalized
Hamiltonian, Equation (3.11), and the right-hand side gives the un-hybridized eπg (black)
and a1g (dashed green) band structure, scaled individually according to the scalar ex-
pression, Equation (6.7). The self-energy parameters are Za1g

= 1/2.5, Zeπ
g

= 1/5.0,
Σa1g

(0) = 0.59 eV, and Σeπ
g
(0) = −1.01 eV, for U=4.2 eV, J=0.7 eV and T ∼390 K.

See text for a discussion. From [Poteryaev et al. (2007)].
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decreasing importance of the former LDA hybridization Vk. This is clearly demonstrated
in the right panel of Figure 6.10, where are shown the quantities

Zm [ǫmj(k)− µ+ ℜΣm(0)] ∼ ωmj(k), (6.7)

where ǫmj(k) are the eigenvalues of the LDA Hamiltonian when the a1g–eπg hybridizations
are set to zero, and Zm, as above, is the renormalization factor obtained from the self-
energy up to linear order. The close resemblance to the renormalized bands (left panel) is
quite remarkable and proves the statement that the hybridizations of the starting point
are made less relevant, once the correlations are in place.

The above procedure being based on a low-frequency expansion, while shedding light
on the situation at the Fermi level and hence indicating how the insulating gap is finally
opened at the transition, it will not give a reasonable description at high or even interme-
diate energies, where the real-parts of the self-energy are far from linear and the imaginary
parts considerable. If we still neglect the latter, excitations are given by the poles of the
Greeen’s function with ℑΣ = 0, as described in Section A, Chapter 3.

Before solving numerically the quasi-particle Equation (3.9), we shall appeal to the
graphical construction mentioned in section A.b.iii, even if this is of course an oversim-
plified approach in the current case of a non-degenerate multi-orbital calculation, Even
though, as we have seen, the correlations effectively renormalize downwards the hybridiza-
tions.

In Figure 6.8 b we have thus indicated the position and the width of the un-hybridized
LDA dispersion4, individually for the a1g and the eπg components by the stripes of slope
one in frequency. Solutions are expected over a wide range of frequency, extending roughly
from -2 eV to 4 eV. However, only in regions where the imaginary parts of the self-energies
are small, these will give rise to coherent quasi-particles, which is basically true within
±0.5 eV around the Fermi level, at least for the a1g orbital. The eπg solutions at around
1.5 eV will not appear as spectral weight in the spectral function since the corresponding
imaginary part is most prominent in this frequency range. The intersections between 2.5
and 4 eV correspond to the upper Hubbard band, as seen in the local spectral function
above, Figure 6.6. The lower Hubbard band, see Figure 6.6, Figure 6.7, on the contrary
is not due to poles in the one-particle Green’s function, as will be confirmed below by
numerically solving the full quasi-particle equation. It manifests itself in the self-energy
rather by a low magnitude of the imaginary-part and an almost pole-like behaviour in the
Green’s function.

B.b.iii Momentum-resolved spectra and quasi-particle poles

Figure 6.11 shows the colour-coded momentum resolved spectral function A(k, ω) =
− 1
π

trℑG(k, ω) of V2O3 for our usual parameters. The first observation is that, as
expected from the self-energy considerations above, only within a quite narrow region
around the Fermi level, sharp features appear and the spectral intensity is otherwise
rather broadly distributed. The dots indicate the solutions ωk of the quasi-particle Equa-
tion (3.9). To further analyze the spectrum, it is useful to combine information from

4See Section A, Chapter 3
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Figure 6.11 : Momentum resolved spectral function A(k, ω) of V2O3 along various sym-
metry lines. The Fermi level corresponds to zero frequency. The (blue) dots indicate the
quasi-particle solutions of Equation (3.9).
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the different figures, Figure 6.6, Figure 6.8, Figure 6.11, in order to attribute the spectral
intensities to originating from a specific orbital character and whether the appearing poles
represent shifted LDA bands or stem from Hubbard satellites. In the occupied part of
the spectrum the poles follow closely the Z-renormalized bands from above, Figure 6.10,
which is not very surprising, since the real parts of the self-energy are linear within the
stripe in the Figure 6.8. In the unoccupied part, however, this is not true for the a1g com-
ponent. Apart from the sharp a1g band that is crossing the Fermi-level near the Γ-point,
the dots deviate considerably from the linearized band-structure. In particular the upper
a1g bands at around 1 eV in the LDA, Figure 6.4, are pushed up to around 2 eV, as inferred
from the self-energy, an effect clearly lost in the linearization procedure. At intermediate
energies, around 1.5 eV poles do appear, e.g. around the Γ-point, also seen in the graphical
construction, however, as anticipated, the spectral weight is efficiently damped away by
the large structure in the corresponding imaginary part. Beyond 2 eV the poles mirror the
former eπg bands as poles of the upper Hubbard band, as we have already seen to be the
case for rutile VO2. The fact that the dispersion of the poles reflect the band-dispersions
can be seen e.g. in the atomic limit and related approximations [Hubbard(1963)].

Thus, in total, the LDA+DMFT excitation spectrum evolves from the LDA band-
structure by the following effects :

• a considerable enhancement of the a1g– eπg crystal-field splitting, combined with a
decrease of hybridizations leading to a depletion of spectral weight at the Fermi
level and a charge transfer into the eπg orbitals,

• a bandwidth-narrowing à la Brinkman-Rice [Brinkman and Rice(1970)], particularly
noticeable in the occupied part of the spectrum,

• a considerable transfer of spectral weight into the upper Hubbard bands beyond
2 eV, that mirror the dispersion of their renormalized bands.

As a matter of consequence, the Fermi surface is strongly modified with respect to the
LDA. As seen in the local spectral function, Figure 6.6, the Fermi level already resides in
a sort of pseudo gap and only minor changes in e.g. the crystal-structure may drive the
system insulating.
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B.b.iv The optical conductivity of V2O3

In this paragraph we shall present theoretical results on the optical conductivity of the
metallic phase of V2O3 in comparison with recent experimental results [Qazilbash(2007)].
In particular, we shall endeavour to identify the appearing spectral weight by referring
to the underlying LDA+DMFT electronic structure calculation that has been presented
before.
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Figure 6.12 : Optical conductivity for metallic V2O3. Shown is a comparison between
our theoretical curve for [x0z]=[0.133 0 0.041] polarization with experimental results for
T = 400 K on polycrystalline films [Qazilbash(2007)].

Figure 6.12 shows our theoretical results, that were computed along the full-orbital
scheme that we introduced in Section D, Chapter 4. The individual orbital contributions
are indicated in the legend. The experimental data [Qazilbash(2007)] were obtained from
a polycrystalline sample at 400 K5.

Above, in Section B, we remarked on the orbital selective coherence, i.e. the different
coherence temperatures of the a1g and eπg quasi-particles. We found that while the a1g

orbitals are reasonably, yet not fully, coherent at the temperature of the calculation, the
eπg ones are actually far above their coherence. The fact that the a1g excitations are in the
vicinity of their coherence regime makes them quite sensitive to changes in temperature.
This is why spectral weight transfers as a function of temperature are mainly to be
expected for transitions that involve a1g orbitals.

Together with the local, Figure 6.6, and momentum-resolved spectral function, Fig-
ure 6.11, we shall try to identify the origin of spectral weight from the viewpoint of the

5As a matter of fact, a careful study as a function of temperature was performed. We state that only
the “Drude” peak and the first feature at ∼ 0.5 eV shows an appreciable temperature dependence. We
thank M. M. Qazilbash for making his data available prior to publication.
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LDA+DMFT results. Helpful in this vein will be Figure 6.13 in which we plot contribu-
tions to the optical conductivity at two different points in the Brillouin zone.

However, two remarks are to be made before doing so. First of all, we note that the
experiment used polycrystalline samples, i.e. the optical response will be a complicated
average over all possible light polarizations. Our calculations were performed for one
polarization only. One has to keep in mind that the optical response in V2O3 might
depend strongly on the polarization.

Furthermore, as we will see, the overall intensity of the optical conductivity is overes-
timated with respect to experiment. In fact, this problem is purely technical, and related
to our simple k-summation, which does not use the tetrahedron method. As a result, a
large number k points is needed in order to yield converged results. Our implementation,
therewith, has problems with the correct accounting for transitions that involve spectral
weight in the vicinity of the Fermi level, which is why it is much better suited for insu-
lating systems than for metals. Improvement in this respect is possible but numerically
expensive. Still, though the weights of the transitions will change, we expect no shiftings
in energy of the appearing peaks, i.e. the physical analysis that follows should remain
correct.

• The metallic response at low energy is due to the a1g band that crossed the Fermi
level, as can be seen in the momentum resolved spectral function, Figure 6.11, where
the crossings are between the Z and the Γ, and between the Γ and the F-point.
Indeed this could be further corroborated by calculating the conductivity for a mo-
mentum where a crossing occurs (not shown). The temperature dependence of this
feature in the experimental data (not shown, [Qazilbash(2007)] unpublished) can
be understood from the above considerations, namely that the metallic behaviour
increases upon cooling, since the a1g excitations evolve towards their quasi-particle
regime.

• The contributions to the hump at roughly 0.5 eV in the optical conductivity is
twofold : At lower energies the occurring spectral weight is mainly due to transi-
tions from the a1g into low lying eπg orbitals, that are restricted to a small region in
the Brillouin zone, whereas at slightly higher energies, 0.6 eV and above, contribu-
tions are in majority deriving from eπg to eπg transitions, which are possible in a wide
region of the Brillouin zone, yet should be largely suppressed at the Γ-point. This
is clearly confirmed from the momentum-resolved spectral function, Figure 6.11, in
conjunction with the momentum selective conductivity of Figure 6.13. The temper-
ature dependence is thus expected to be more pronounced in the lower energy part
of the peak, which is actually evidenced by the experiment.

• At 1.5 eV the experiment displays a small peak in the conductivity, which gets
slightly more pronounced upon lowering the temperature. In the theoretical curve,
on the contrary, the conductivity rather decreases. We are led to the speculation
that these correspond to transitions from the a1g orbitals into incoherent a1g and
eπg weight, in particular around the Γ-point. Indeed in the calculation, there appear
both a1g and eπg poles in the corresponding energy range ∼ 1.5 eV, yet the spectral
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weight of the latter is largely suppressed by the imaginary part of the self-energy,
and also the former is subject to considerable life-time effects, as can be seen in the
self-energy, Figure 6.8, as well as in the spectral function, Figure 6.11.

• At around 2 eV transitions into the eσg orbitals set in, and are responsible for two
features in the calculation. The first appears at 2.5 eV and may thus be identified
with the peak that emerges at the same energy in the experiment. We however
stress that in our formalism, the eσg orbitals (as well as the oxygen 2p ones) are
frozen with respect to their LDA position and shape. An inclusion of correlation
effects is expected to alter, both, their position and sharpness.

• Transitions into the oxygen 2p orbitals set in at about 4 eV in the calculation which
is congruent with experiment. Analyzing transition amplitudes is cumbersome. Our
technique overestimates transitions involving states at the Fermi level, furthermore
the oxygen weight is frozen to its LDA result, and also the way in which we calculate
our Fermi velocity is less suited for the oxygens due to their larger spatial extensions.
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Figure 6.13 : Optical conductivity for metallic V2O3. Shown is a comparison between
our theoretical curve for [x0z]=[0.133 0 0.041] polarization with experimental results for
T = 400 K [Qazilbash(2007)]. In particular shown are two contributions to the total
conductivity at different points in the Brillouin zone, as indicated. Note that here the
theoretical curves were rescaled such that the total conductivity matches the experimental
one at 0.5 eV.

In conclusion, most of the qualitative features of the experimental optical conductivity
were reproduced by our calculation. The temperature dependence and the spectral weight
transfer found in the experiment could be rationalized by evoking the orbital selective
coherence that we evidenced in our calculation of the electronic excitation spectrum. The
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fact that the positions in energy of the identified transitions compare favourably with our
theoretical approach, further corroborates the validity of our LDA+DMFT results. The
discrepancy in the transition amplitudes is mainly technically derived and improvements
are possible and under way.

B.c The paramagnetic insulating (PI) phase

Figure 6.14 shows the local spectral function of (V0.962Cr0.038)2O3 as obtained from a
maximum entropy treatment of the LDA+DMFT local Green’s function. The inset shows
a comparison with photoemission experiments [Mo et al. (2006)]. The agreement is fairly
good. Compared to the PM phase, a strong depletion of spectral weight at the Fermi
level is seen in the calculation. Still, the weight at zero frequency is finite. We note, that
the value for the Coulomb interaction was taken to be the same as for the metallic phase
(U=4.2 eV). However, less efficient screening in the insulator might be responsible for
a slightly increased value, which would open the gap further. Also, the calculation was
performed at a rather elevated temperature (T=580 K) due to the high numerical cost. For
this phase a continuous time quantum Monte Carlo algorithm (for details see [Poteryaev
et al. (2007)]) was used.
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Figure 6.14 : Spectral function of (V0.962Cr0.038)2O3 at T=580 K. The inset shows a
comparison with recent PES experiments [Mo et al. (2006)]. The theoretical curve is
obtained by multiplying the spectral function with the Fermi function at the experimental
temperature T=175K and a broadening with the experimental resolution of 90 meV. From
[Poteryaev et al. (2007)].

Comparing the self-energy of the Cr-doped compound, Figure 6.15 , with the self-
energy of pure V2O3, see Figure 6.8, we first notice that the scales are very different. The
insulating phase indeed exhibits stronger signs of correlations than the metallic phase.
The a1g element, however, which anyway is rather flat, due to the low occupation, does
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not change tremendously. Still, ℜΣa1g
(0) is larger in the insulator, further pushing up

the a1g band at the Fermi level. However, the coherence of the a1g bands, especially for
the one seen near the Γ-point does slightly increase. The occupied eπg , on the contrary,
become more incoherent and go further down in energy, thus again, working in favour
of an insulating state. In the unoccupied part, the differences in the real parts of the
self-energy subside at 2 eV and higher, which will lead to a similar spectrum as for the
metal in this energy range.
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Figure 6.16 : Momentum resolved spectral function of (V0.962Cr0.038)2O3 along various
symmetry lines. The Fermi level corresponds to zero frequency. The (blue) dots indicate
the quasi-particle solutions of Equation (3.9).

Figure 6.16 shows the momentum resolved spectral function, along with the quasi-
particle poles as obtained from Equation (3.9). As mentioned above, the spectrum looks
like the metallic one for energies of 2 eV or higher. The a1g band around the Γ-point
is sharper than in the metallic phase and got shifted up in energy. A close inspection
however shows, that it still crosses the Fermi level by about 0.08 eV.

The potential reasons for this discrepancy were given above. Still, the basic mechanism
of the metal-insulator transition in the (V1−xMx)2O3 series has been identified as the
crystal-field enhancement induced by the correlations. Indeed, it seems that in the case
of V2O3 correlations favour the polarization of orbitals. The opposite trend is found in
the d1 compound BaVS3 [Lechermann et al. (2005)].
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B.d Conclusions

In conclusion, we have presented a detailed analysis of the excitation spectrum of the para-
magnetic metal and paramagnetic insulator phases of (V1−xMx)2O3 within LDA+DMFT.
The main result is the identification of a correlation induced crystal-field enhancement
that is responsible for the insulating behaviour upon Cr-doping6.

The analytical continuation scheme that was developed in this thesis allowed not only
for a refined understanding of the physical phenomena at work, but also allowed for the
calculation of momentum-resolved spectral functions, that constitute our prediction for
future angle resolved photoemission experiments.

Moreover an orbital selective coherence was evidenced, which led to an understanding
of recent temperature-dependent optical measurements. The theoretical optical conduc-
tivity was found to exhibit the same qualitative features as the experimental one.

6For a detailed investigation on the interplay of correlations and crystal-field splittings see subsequent
work by Poteryaev et al.
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Chapter 7

Optical properties of rare-earth

sesquioxides

This chapter is devoted to the investigation of optical properties of the early rare-earth
sesquioxide series, RE2O3, with RE=La, Ce, Pr, Nd, and Pm. This part of the series is
iso-structural, their members crystallize in a hexagonal structure with space group P 3̄m1,
as shown in Figure 7.1. In order to avoid impacts of the crystal structure to our reasoning
on the electronic structure, we shall limit ourselves in this work to this early sequence of
the oxide series. All the mentioned compounds are wide gap (Mott) insulators, and the
determination of the gap evolution along the series from the theoretical point of view will
be one of our major concerns.

The challenge in the calculation of the electronic structure in these compounds is the
presence of a partially filled RE4f shell, that gets consecutively filled with the increasing
of the atomic number. Indeed, the rare-earth ions are in their 3+ oxidation state, leading
to a nominal f-shell occupation of 0, 1, 2, 3, 4 electrons, for La-, Ce-, Pr-, Nd- and
Pm-sesquioxide, respectively.

As we will review below, standard band-structure methods do not capture the insu-
lating behaviour, due to the partial filling of the f-shell. Yet, from the many-body point
of view, the situation is simpler than in the case of e.g. the 3d orbitals of transition metal
oxides or the 5f shell of actinide systems, in the sense that the correlated orbitals, here
the RE4f, do not struggle between itinerant and localized behaviour, but are strongly
localized. It is this fact that allows for the application of simplified techniques, namely
the Hubbard-I approximation, to treat these large systems within LDA+DMFT.

The present work relies on LDA+DMFT electronic structure calculations of the early
rare-earth sesquioxide series that were performed by L. V. Pourovskii (see also prior
work [Pourovskii et al. (2007a)]). Our contribution to this collaboration is the calculation
of optical properties of the compounds in question, in particular their optical conductivity.
This work will appear in [Pourovskii et al. (2007b)].
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Figure 7.1 : Hexagonal lattice of RE2O3. The atoms are black (RE) and grey (O),
respectively. From [Skorodumova et al. (2001)].

A Experimental work – a brief review

An interesting question is whether the localized RE4f states have any impact on the
physics of the compounds.

In the pure lanthanide series one observes that the Wigner-Seitz radius decreases only
slightly, from La to Pm, with the increased filling of the f-orbitals. Contrary to early
transition metals or the early actinide series, the additional electrons in the open shell do
not contribute to the bonding of the solid, due to the atomic-like nature of their states.
Thus, more important than the filling of the f-shell is the increase in the atomic number
along the series, leading to the lanthanide contraction, namely to a diminution of the
atomic/ionic radius.

Therefore, from a purely crystallographic point of view, one would expect a monotonic
behaviour of the charge gap along the sesquioxide series, from La2O3 to Pm2O3, namely
a slight increase due to band narrowing. However, experimentally one finds the (optical)
gap dependence shown in Figure 7.2 [Golubkov et al. (1995)], and also in Figure 7.6. As
one can see, when going from the 4f0 compound La2O3 to Ce2O3, which has a nominal
4f1 configuration, the optical gap decreases tremendously, and recovers higher values in
the continuation of the series.

A similar dependence is found in the sulfide and selenide series, RE2S3 and RE2Se3.
From this the authors [Golubkov et al. (1995)] concluded that the f-electrons play a
fundamental role in the electronic excitation spectrum. It was thus suggested that in the
case of Ce2O3, the gap in the excitation spectrum is determined by Ce4f-Ce5d transitions,
while for the remainder of the series the lower Ce4f Hubbard band merges with the O2p
orbitals, thus resulting in a O2p-RE5d character of the gap [Golubkov et al. (1995),
Prokofiev et al. (1995)]. In other words, it is the shifting of the lower RE4f Hubbard band
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Figure 7.2 : Optical gaps of (1) the sesquioxide (RE2O3), (2) the sesquisulfide (RE2S3),
and (3) the sesquiselenide (RE2Se3) series. From [Golubkov et al. (1995)].

as a function of its filling which is supposed to be responsible for the interesting changes
in the low energy region of the electronic structure.

Evidence for the merging of the 4f lower Hubbard band with the O2p states came
from resonant photoemission studies, which for the particular cases of Pr2O3, and Nd2O3

found a large degree of RE4f-O2p mixing [Arai et al. (1998)].

The fact, that in the case of Ce2O3 the valence part of the gap is determined by
the lower 4f Hubbard band was evidenced in valence band photoemission (XPS) exper-
iments [Mullins et al. (1998)]. Figure 7.5 shows their results in comparison with the
occupied part of the LDA+DMFT spectral function, whose calculation we will discuss
later on. However, the measured sample was obtained by exposing a metallic Ce foil to
oxygen. Though indications for a Ce3+ oxidation state were found, no structural charac-
terization was done.

The susceptibility of Ce2O3, shown in Figure 7.3, exhibit an antiferromagnetic be-
haviour χ(T ) ∼ (T + θ)−1, with a Weiss constant θ = 27.7 [Pinto et al. (1982)]. However,
no indications for the magnetic transition are visible down to 9 K. The gap size being of
the order of 2.5 eV, the magnetic ordering cannot be the origin of the insulating behaviour.
On the contrary, the local moment behaviour above the Néel temperature, is a hallmark
of a Mott insulating state.
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Figure 7.3 : The inverse susceptibility of Ce2O3. From [Pinto et al. (1982)].

B Theoretical work – a brief review

On the theoretical side, several computational methods were applied to the compounds
of the rare-earth oxide series.

DFT-LDA. Conventional DFT-LDA calculations are not capable of producing the
correct insulating behaviour of any of the compounds having 4f electrons [Skorodu-
mova et al. (2001),Naoto Hirosaki and Kocer(2003),Mikami and Nakamura(2006),Fabris
et al. (2005)], which, once more, shows the incapacity of DFT-LDA to deal with Mott
insulators. In the same vein, especially in the case of Ce2O3, the unit-cell volume is
considerably underestimated [Skorodumova et al. (2001)]. This is owing to the fact that
the f-electrons, that are necessarily itinerant within DFT-LDA, contribute to the bonding
which is unphysical.

As already indicated in experiments, the influence of the f-states on structural prop-
erties might, in reality, be not so important. Indeed DFT calculations in which the f
electrons are treated as core states, lead to rather satisfactory estimates of the lattice
parameter [Skorodumova et al. (2001),Naoto Hirosaki and Kocer(2003)].

These evidently insufficient theoretical capabilities of DFT-LDA have triggered the
application of more involved electronic structure techniques to the compounds in question.

SIC. Self-interaction-corrected calculations yield good agreement in structural prop-
erties, without the need of treating the f-electrons as core states [Petit et al. (2005)].
However, the optical gaps are much too large as compared to experiment, and the above
mentioned trend along the series is not reproduced.
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Hybrid functionals. Ce2O3 was further investigated using hybrid density function-
als [Hay et al. (2006)]. In this approach, the DFT exchange correlation potential is made
to include some Hartree-Fock type exchange. In this spirit it might be said to be some-
what akin to the LDA+U scheme, albeit without an adjustable parameter. In the above
work, insulating behaviour was found for an antiferromagnetic ground state of Ce2O3, us-
ing the HSE functional. The gap size is in reasonable agreement with experiments. Yet,
the other members of the zoology of hybrid functions lead to quite different results [Hay
et al. (2006)]1,2.

LDA/GGA+U. A very popular technique for insulators is the LDA+U approach.
However, due to its Hartree-Fock-like nature, any insulating solution necessitates some
kind of ordering. However, as shown experimentally, the rare-earth sesquioxides are para-
magnetic at least down to 9 K [Pinto et al. (1982)], which is why, as said already above,
the antiferromagnetism cannot be at the origin of the charge gap. As a matter of fact,
in LDA+U calculations, an antiferromagnetic ground state was found for Ce2O3 [Fabris
et al. (2005), Loschen et al. (2007),Andersson et al. (2007)]. Both, structural and elec-
tronic properties are in reasonable agreement with experiment, albeit with the caveat that
the nature of the insulating state within LDA+U arises from the magnetic ordering. Best
results were obtained with an effective Coulomb interaction Ueff = U − J = 6 eV, with
U being the on-site interaction, and J the Hund’s rule coupling.

Further, in an LSDA+U setup, [Singh et al. (2006)] calculated the band-structure for
ferromagnetic RE2O3 (RE=La, Pr, Nd). The trend in the optical gap along the series was
not reproduced. However, they also computed the optical conductivity for the compounds
in question. The large overall features in the conductivity are not severely affected by the
f-electrons, as we shall see below. Of course this not not true for the onset of transitions,
and the optical gap. A comparison with our calculation illustrates this point in the
following.

LDA+DMFT. Very recently, the LDA+DMFT scheme was applied to one of the
compounds, namely Ce2O3 [Pourovskii et al. (2007a)]. As a matter of fact, among all
the approaches mentioned so far, the realistic extension of dynamical mean-field theory
is most suited to deal with the electronic structure of the materials in question, since it is
capable of describing correctly the Mott insulating state, namely without the assumption
of an ordering that is unphysical at room temperature.

It is these calculations that our optics calculations in the next section are based on.
Due to the atomic nature of the f-states, the DMFT impurity model was solved, using
the Hubbard-I approximation [Hubbard(1963)], in which the self-energy of the correlated

1In this sense the adjustable parameter U in the LDA+U scheme is replaced by the choice of the
exchange correlation potential. Calling this approach ab initio is problematic.

2Another point is that the derivative of the true exchange correlation potential is discontinuous [Perdew
et al. (1982)], while all potentials applied in practice are not. Thus, one might even say that the finding
of a correct gap value indicates that the used potential is actually wrong. The undeniable merit of good
results is thus diminished by the loss of control in the theory.
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orbitals, RE4f, is calculated from the atomic limit of the Hubbard model, which consists of
discrete levels exposed to the usual Coulomb repulsion. In other words, the hybridization
with other orbitals is neglected and the correlated subset of orbitals is treated in the
narrow band limit, leading to an atomic self-energy.

The interaction parameters were chosen as U=6.46 eV, and J=0.46 eV. Constrained
LDA calculations [Anisimov and Gunnarsson(1991)] for Ce2O3 yield U values between 5.5
and 8 eV [Pourovskii et al. (2007a)].

The relative position of the f-states with respect to the O2p and RE5d states is largely
determined by the double counting correction, which is meant to remove correlation effects
in the f-states already taken into account by the LDA. Pourovskii et al. use the so-called
fully-localized limit of the LDA+U as double counting correction : Σdc = U(N − 1/2)−
J(N − 1)/2, with N being the atomic occupancy3.

Further, we note that Pourovskii et al. employed the fully self-consistent LDA+DMFT
scheme, i.e. after convergence of the DMFT, the charge density was updated and fed back
into the LDA, such as to yield a new Hamiltonian for the next LDA+DMFT iteration.
For details see [Pourovskii et al. (2007a)]. The effect of this charge consistency is shown
to be important for the systems in question.

C Optical properties of RE2O3 within LDA+DMFT

C.a Spectral properties

Recently, L. V. Pourovskii extended prior electronic structure work on Ce2O3 [Pourovskii
et al. (2007a)] to cover the entire series of early rare-earth sesquioxides, RE2O3, with
RE=Ce, Pr, Nd, Pm. The interaction parameters were chosen the same as for Ce2O3,
namely U=6.46 eV, and J=0.46 eV.

Figure 7.4 shows the spectral functions as obtained from the above described charge-
self-consistent LDA+DMFT scheme. Clearly seen is the evolution of the lower 4f Hubbard
band : While in Ce2O3 it lies between the O2p and RE5d bands, and thus determines
the charge gap, it moves downwards in energy along the series, and already in the case of
Pr2O3 it merges with the O2p excitations. Therefore a sharp increase of the absorption
edge is expected in the optical spectra when going from Ce2O3 to Pr2O3, whereas the gap
evolution in the remainder of the series is characterized by the changes of the oxygen bands
with respect to the lowest conduction band. The shifting of the lower Hubbard band finds
its origin in the consecutive lowering of the f energy levels in rare-earth atoms/ions with
increasing filling of the f states.

Figure 7.5 shows a comparison of the LDA+DMFT spectral function with the photo-
emission results [Mullins et al. (1998)], mentioned above. In both, theory and experiment,
the 4f lower Hubbard band is well distinguished above the O2p bands. However, the
relative positions are different, the experimentally determined oxygen weight occurring
at sizable higher binding energy than in the theory. This might well be related to the

3Since the Hubbard-I solver neglects hybridizations of the f-orbitals with all others, also the double
counting correction should do so, which is why the atomic and not the total f-occupation is used.
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common underestimation of p-d gaps within the LDA. We remember that the DMFT
treatment, though affecting all other bands through the self-consistency, improves only
on the correlation effects of the 4f states.

Coming back to the discussion of the evolution of the charge gap along the series, we
show in Figure 7.6 the results of the LDA+DMFT along with the experimental results
from above. The overall experimental tendencies are well reproduced. In the case of
La2O3, which has no f electrons, the underestimation of the p-d gap within LDA, as
already mentioned above, explains the discrepancy with the experiment. In the remainder
of the series, the agreement is much better. The gap value approaches that of La2O3

with increasing atomic number, as the influence of the f-states becomes more and more
negligible for the determination of the gap size.

Yet, not only the upper valence states, but also the conduction band changes in char-
acter. While in Ce2O3 it is mostly formed by RE5d contributions, the multiplet structure
of the upper 4f Hubbard band evolves towards lower energy, corresponding to the over-
all lowering of the f levels along the rare-earth series, mentioned above, and becomes
responsible for the lowest unoccupied excitation in Pm2O3.

The occupation of the f-states are found to be close to their nominal atomic configu-
ration, namely 1.16, 2.10, 3.10 and 4.08 for Ce, Pr, Nd, and Pm, respectively.

C.b Optical properties

In this section we present results on the optical conductivity using the formalism described
in Part II. Contrary to our earlier examples no analytical continuation is required, since
results of the Hubbard-I solver are directly obtained on the real-frequency axis.

Figure 7.7 shows our results along with experimental data [Kimura et al. (2000)] and
LDA+U conductivities [Singh et al. (2006)]. Unfortunately, no experimental data is, to
the best of our knowledge, available for the most interesting case, namely Ce2O3

4. Our
theoretical curves were obtained for [100] light polarization. No appreciable polarization
dependence was evidenced. Figure 7.8 shows a zoom into the low energy region of the
spectrum.

As anticipated, the influence of the f-orbitals in the case of Ce2O3 is clearly evidenced :
Optical transitions from the lower RE4f Hubbard band into the conduction band, RE5d,
lead to an absorption feature in the optical conductivity, which also determines the onset
of the conductivity at ∼ 2.25 eV.

For comparison we show for the case of Ce2O3 the optical conductivity resulting from
an LDA calculation in which the f electrons were treated as core electrons, and thus
are absent from the spectrum. Apart from the f-d transitions at low energy, the overall
behaviour is roughly the same as for Ce2O3 within LDA+DMFT. However, we remark a
perceptible downshift in energy of the features in the conductivity. This is in line with the

4Electron energy loss spectroscopy results on Ce2O3 foils did not show any features associated to the
4f lower Hubbard band [Mullins et al. (1998)]

167



3 RE2O3 WITHIN LDA+DMFT CHAPTER 7. RARE EARTH SESQUIOXIDES – RE 2O3

20

40
Ce

2
O

3

20

40
Pr

2
O

3

20

40

   
   

   
   

   
   

   
   

   
   

D
en

si
ty

 o
f 

st
at

es
 (

eV
)

Nd
2
O

3

-5 0 5
Energy (eV)

0

20

40
Pm

2
O

3
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Figure 7.6 : Experimental optical, and theoretical (LDA+DMFT) direct band gap of the
early RE2O3 series. From [Pourovskii et al. (2007b)].
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above observation that while yielding acceptable lattice parameters, spectral properties
deteriorate when the f electrons are ignored. Indeed the hybridizations with the other
orbitals5 lead to considerable changes in the band-structure, in particular the O2p-RE5d
gap is increased when taking the f-orbitals properly into account, i.e. as correlated valence
electrons.

In all RE2O3 other than Ce2O3, the onset of transitions is determined by O2p-RE5d
(in the conduction band mixed with RE4f) transitions, and, though being crucial for the
calculation of the correct excitation spectrum, their role in the optical spectrum is only a
minor one. The optical gap, Figure 7.8, is of course congruent with the evolution of the
direct band gap shown in Figure 7.6. The high energy behaviour is very similar in all the
compounds.

Finally a word on the absolute value of the optical conductivities. Indeed, our theo-
retical findings differ from the experimental data by roughly a factor of 2.5. This is so
far an unresolved issue. We did benchmark our method for pure LDA optical conductiv-
ities and found good agreement6. Indeed also other LDA+DMFT, and LDA+U optics
approaches seem to suffer from a tendency to overestimate the absolute magnitude of
optical transitions, see e.g. [Haule et al. (2005)]. Further investigations are needed.

Yet, it might also be quite enlightening to perform more experimental measurements,
in particular for Ce2O3, for which our calculation constitutes a prediction.

D Conclusions

In conclusion, we have investigated the optical properties of the early rare-earth oxide
series, RE2O3. We studied in particular the evolution of the influence of the RE4f electrons
along the series. While it was known from early on that structural properties do not
considerably depend on the f electrons, their effect on spectral properties is immense.
The finite hybridizations of the quasi-localized 4f states with other bands is crucial to
account for a correct band-structure. While LDA+U calculations also succeed in capturing
this effect, they violate the paramagnetic nature of the compound at room temperature
and imply a magnetic ordering to be at the origin of the insulating behaviour, which
contradicts experimental findings, as described. In the optical properties, the f electrons
only play an important role in Ce2O3, in which they determine the absorption edge, while
their impact in all other compounds is smaller on a qualitative level.

5which were only neglected in the calculation of the self-energy (Hubbard-I solver), but not in the
DMFT self-consistency

6We also note that, apart from the maximum values, the magnitude of our RE2O3 conductivity
compares well with LDA+U results [Singh et al. (2006)]. The discrepancy in the region of maximum
intensity might by due to our approximation to the Fermi velocities, see Section , Chapter 4, which is
less well suited for wider extending orbitals, such as the O2p ones.
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Chapter 8

Conclusions and Outlook

In conclusion, this thesis has dealt with the electronic structure of correlated materials.
Special emphasize has been laid on spectral and optical properties.

Using a generalized analytical continuation scheme that allowed for the calculation of
the real-frequency self-energy from quantum Monte Carlo data, we were in the position
to analyze in detail the outcome of dynamical mean field calculations in the realistic
context. Furthermore, we explored which prerequisites have to met in order to to allow
for an excitation spectrum to be cast into an effective band-structure.

A second focus was geared on optical properties of correlated materials. In this vein,
we developed a versatile formalism that is well suited for calculations that use a localized
basis, as is in particular verified for dynamical mean field computations. In our deriva-
tion we extended the Peierls substitution approach to the case of multi-atomic unit cell,
and gave expressions for the correction terms that are missing with respect to the full
Fermi velocity. It was shown, in the actual calculations, that in the case of well-localized
orbitals, this generalized Peierls scheme resulted in optical conductivities in reasonable
agreement with experiment. The approach is, moreover, method independent, since the
only intervening matrix elements is the Hamiltonian.

Specifically, for the case of VO2, a detailed analysis of the excitation spectrum as
calculated from LDA+(C)DMFT, revealed important dynamical correlations and lifetime
effects in the metallic phase, while for the low temperature phase, we described in detail
a new scenario for the nature of the insulating behaviour. In particular, we have shown
that spectral properties are well reproducible from a static, yet orbital-dependent, one-
particle potential. Yet, the true many-body ground state was explained to be well beyond
a static one-particle description, which induced us to introduce the notion of a “many-
body Peierls” picture. The seemingly contradictory result of a correlation driven metal to
insulator transition in which the insulator exhibits less (spectral) signatures of correlations
was thus resolved. Moreover, we calculated the optical conductivity of the M1 phase in a
full-orbital setup, using the LDA+CDMFT self-energy. The results are in good agreement
with experiment.

In the case of V2O3, the mechanism of the doping-driven metal–insulator transition
was investigated and identified to originate from a correlation enhancement of the eπg–a1g
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crystal field splitting. This resulted in an effective de-hybridization between these or-
bitals. Both, the metallic and the insulating phases were found to exhibit strong satellite
features in their spectral function, the dispersion of which reflects those of the renor-
malized one-particle excitations. Furthermore we evidenced an orbital-selectivity in the
coherence scale in the metallic phase : While a1g excitations were found to be close to the
Fermi liquid regime, eπg excitations remained incoherent down to the lowest temperatures
of the calculation. This selectivity was confirmed by recent optical experiments. By iden-
tifying the orbital origins of different optical transitions, we explained the temperature
dependence of the measured optical conductivity.

As a last example, we presented a study of the optical conductivity of rare-earth
sesquioxides. In the series RE2O3, with RE=Ce, Pr, Nd, Pm, we tracked the behaviour
of the localized f-states and their influence on the optical absorption. While the overall
spectrum was shown to be dominated by O2p to RE5d orbitals, the low frequency onset
of the absorption spectrum is determined by the position of the rare earth 4f states. The
occupation of the latter increases along the series from one (Ce) to four (Pm) electrons.
This change in filling resulted in a moving of the 4f Hubbard bands. In Ce2O3 the lower
Hubbard band was evidenced to sit between the Fermi level and the uppermost oxygen
bands and thus it is fully responsible for the low-lying optical excitations, whereas already
in Nd2O3 the Hubbard band had moved sufficiently downwards to merge with the oxygen
bands, resulting in an oxygen dominated absorption edge that varied only little along the
remaining rare earth series.

In the future one might address some extensions of the presented work. In the cases of
VO2 and V2O3 the electronic structure calculations used Hamiltonians that were down-
folded on a small subset of correlated orbitals. However, as we have seen in the optical
spectra, the influence of the other orbitals becomes important already at quite low ener-
gies. In this work, we fixed their shape and position to the LDA results, which proved
insufficient under quantitative considerations. This calls for a setup, in which these or-
bitals are fully taken into account. In the LDA+DMFT framework this means to include
the uncorrelated orbitals into the DMFT self-consistency.

This has been done in the case of the rare-earth sesquioxides. Here we realized that
the energy difference between the oxygen and the rare-earth orbitals was too small, owing
to the gap underestimation common to the LDA. This will trigger new investigations with
techniques that go beyond the LDA+DMFT. Particular promising in this respect seems
the GW+DMFT scheme.

Finally, we hope that our approach for the calculation of optical properties, using
the generalized Peierls substitution, will prove valuable in future investigations of optical
properties of strongly correlated materials.

174



CHAPTER 8. CONCLUSIONS AND OUTLOOK

175



CHAPTER 8. CONCLUSIONS AND OUTLOOK

176



Part IV

Appendices

177





Appendix A

Analytical Continuation of off-diagonal

Self-Energies

The starting point for the analytical continuation scheme for the self-energy, that we
described in Section , Chapter 3, is the Green’s function in imaginary time. In the most
general case, the latter will have off-diagonal elements in orbital space. As the standard
implementation of the maximum entropy (MaxEnt) algorithm in this context has, to our
knowledge, so far been used for diagonal elements only, some comments are in order.

In contrast to the diagonal elements of the spectral function, which are normalized
to one and are positive at all frequencies, off-diagonal elements have vanishing zeroth
moment and hence change sign as a function of energy.

For mending this difference, the idea is simply to add a function f(ω) of zeroth moment
one to const·A(ω), and to calculate the corresponding shift in G(τ). However the function
f has to be chosen such, that the resulting fictitious spectral function is non-negative for
all frequencies. To this end, we construct it in the following way. Given the orthogonal
orbital transformation Ã = U †AU with

Ull′ = 1√
2

↓ l′


1 −1
. . .

1 1
. . .

1




← l
(A.1)

the ll-element (l<
>
l′) of the spectral function in the new basis reads

Ãll =
All + Al′l′

2
± All′ (A.2)

and is thus per construction a proper diagonal element of the spectral function in the
rotated basis, i.e. in particular it is positive for all ω. Therefore f = 1/2(Al′l′ + All) is a
suitable shift for ±All′ in the original basis.
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Hence, after having continued the original diagonal elements, one constructs as input
the function

G̃ll(τ) =
(
U †G(τ)U

)
ll

=

∫
dωÃll(ω)Kβ(τ, ω) (A.3)

from which, using Equation (A.2), the off-diagonal spectral function All′(ω) is then de-
duced.

As to the robustness of this approach, we remark that since already maxent-continued
diagonal elements enter the calculation, there is an increased incertainty for the off-
diagonal elements. This calls for high precision Monte Carlo data.

We have assessed the quality of this approach by performing two-band calculations and
(a) continuing the Green’s functions in the standard way, and (b) by artificially producing
off-diagonal elements by performing a unitary transformation, then applying the above
scheme, and transforming back into the original basis. The results were in more than
qualitative agreement, yet differences were discernable.

We note that the above rotation has the same geometrical interpretation as the trans-
formation into the a1g bonding / antibonding basis, that we used in the case of M1 VO2,
but the construction is more general and does not require special symmetry properties of
the system. Indeed, in the cluster case, the above unitary transformation diagonalizes the
self-energy since the original diagonal elements are equivalent. This is however not true
in the presence of general inter-orbital off-diagonal elements. In that case the presented
scheme is still working, inasmuch as it provides a suitable transformation that allows the
analytical continuation, yet it is no longer equivalent to a diagonalization of the Green’s
function. Indeed the latter will in general require energy dependent transformation ma-
trices.
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The Hubbard Molecule

1 The exact solution at zero temperature and half-

filling

By the Hubbard molecule, we understand a simple one-orbital, two-site cluster with on-
site interactions.

x x
t

U U

Its Hamiltonian, at half-filling, reads in the particle-hole symmetric form :

H = −t
∑

σ

(
c
†
1σc2σ + c

†
2σc1σ

)
+ U

∑

l=1,2

nl↓nl↑ −
U

2

(
∑

σ,l=1,2

nlσ − 2

)
(B.1)

The motivation for studying this rather simple model is the fact that in our LDA
+ CDMFT study on M1 VO2 we evidenced a characteristic behaviour related to the
vanadium dimers. Indeed, as will be clear below, the a1g orbitals exhibited a typical
molecular physics. The following model investigation will give insights into the nature of
the ground state and its spectrum.

Moreover, since we have performed GW calculations for the same compound, a com-
parison of the cluster DMFT solution and the GW one in the model context will prove
valuable. As a matter of fact, the CDMFT solution of the model corresponds to the
exact solution, since the molecule is not coupled to a bath, and thus no self-consistency
condition appears.

Here, we consider only the half-filled case of the Hubbard molecule, which corresponds
to the situation of the a1g orbitals in M1 VO2.

Since the total particle number is a good quantum number, [H,N] = 0, the Hamil-
tonian is block-diagonal in the corresponding number representation, which allows for a
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diagonalization of the individual N-sectors. We denote the states of the system by the
kets |1 2〉 and indicate the occupations of the sites 1, 2 by 0, ↑, ↓, ↑↓ 1.

One-particle sector (N=1).

Eigenvalue decomposition of the |χN=1〉 Eigenvector
Eχ | ↑ 0〉 | ↓ 0〉 |0 ↑〉 |0 ↓〉

U/2− t 0 1/
√

2 0 1/
√

2

U/2− t 1/
√

2 0 1/
√

2 0
U/2 + t 0 −1/

√
2 0 1/

√
2

U/2 + t −1/
√

2 0 1/
√

2 0

Two-particle sector (N=2).

Eigenvalue Eigenvector |ψN=2〉
E | ↑ ↓〉 | ↓ ↑〉 | ↑ ↑〉 | ↓ ↓〉 | ↑↓ 0〉 |0 ↑↓〉

singlet subspace
U/2− 1/2

√
16t2 + U2 4t

a(c−U)
− 4t
a(c−U)

0 0 1/a 1/a
U/2 + 1/2

√
16t2 + U2 − 4t

b(c+U)
4t

b(c+U)
0 0 1/b 1/b

triplet subspace
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 1/

√
2 1/

√
2 0 0 0 0

U 0 0 0 0 −1/
√

2 1/
√

2

with a =

√
2
(

16t2

(c−U)2
+ 1
)
, b =

√
2
(

16t2

(c+U)2
+ 1
)
, and c =

√
16t2 + U2.

Three-particle sector (N=3).

Eigenvalue Eigenvector |φN=3〉
Eφ | ↑ ↑↓〉 | ↓ ↑↓〉 | ↑↓ ↑〉 | ↑↓ ↓〉

U/2− t 0 −1/
√

2 0 1/
√

2

U/2− t −1/
√

2 0 1/
√

2 0
U/2 + t 0 1/

√
2 0 1/

√
2

U/2 + t 1/
√

2 0 1/
√

2 0

The subspaces of one and three particles are symmetric for the given Hamiltonian,
i.e. at half-filling, the spectral function will be symmetric. Yet, in the particle-hole trans-
formed Hamiltonian, see Equation (B.1), the hopping amplitude changes sign (−t → t),
which is why the eigenvectors in the three particle sector are interchanged with respect
to their eigenvalue when compared with the one-particle ones.

1We use the following convention as to the fermionic ordering : | ↑↓ ↑〉 = c†
2↑c†

1↓c†
1↑|01 02〉.
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Since [H,P12] = 0 with the site-permutation operator P12, one could have further
distinguished the singlet and triplet subspaces in the two-particle sector, that are also
evident from the simple decomposition given in the box above2.

The ground state at half-filling. For finite t, one has a non-degenerate ground
state at half-filling (N=2), that is given by the first eigenvector in the list above. Since,
this is the case we are interested in for the discussion of VO2, we thus put

E0 = U/2− 1/2
√

16t2 + U2 (B.2)

|ψN=2
0 〉 =

1

a

{
4t

c− U
(
| ↓ ↑〉 − | ↑ ↓〉

)
+
(
| ↑↓ 0〉+ |0 ↑↓〉

)}
(B.3)

In this state the probability for double-occupations is 2/a2. For t = 0.7 eV, U = 4.0 eV,
the relevant parameters for M1 VO2, it amounts to ∼ 9% per dimer. Figure B.1 shows
the double occupation D as a function of the on-site interaction U . In the non-interacting
ground state, which is a Slater-determinant

|1 2〉SD = 1/
√

4
{
| ↓ ↑〉 − | ↑ ↓〉+ | ↑↓ 0〉+ |0 ↑↓〉

}
(B.4)

of one-particle states, the weight of double occupations is 1/2. For U > 0 their
contribution decreases, and the ground state evolves towards the Heitler-London limit,

|1 2〉HL = 1/
√

2
{
| ↓ ↑〉 − | ↑ ↓〉

}
(B.5)

in which all double-occupancies are projected out.

 0

 0.1
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 0.3

 0.4
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<
n 

n 
>

Ψ
0

U [eV]

t=0.7 eV

Figure B.1 : Double occupation D =
∑

i=1,2 < ni↑ni↓ >ψ0
of the ground state |ψN=2

0 〉 for
t = 0.7 eV, as a function of the Coloumb repulsion U .

2Note that P12| ↑ ↓〉 = −| ↓ ↑〉.
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The Green’s function at half-filling. From the definition

Gijσ(ω) =
∑

φ

〈φN=3|c†iσ|ψN=2
0 〉〈ψN=2

0 |cjσ|φN=3〉
ω − (Eφ −E0) + ı0+

+
∑

χ

〈χN=1|ciσ|ψN=2
0 〉〈ψN=2

0 |c†jσ|χN=1〉
ω + (Eχ −E0) + ı0+

(B.6)

one obtains

G11↑(ω) =
1

2a2

( (
1− 4t

c−U
)2

w − (U/2− t− E0) + ı0+
+

(
1 + 4t

c−U
)2

w − (U/2 + t−E0) + ı0+

)

+
1

2a2

( (
1− 4t

c−U
)2

w + (U/2− t− E0) + ı0+
+

(
1 + 4t

c−U
)2

w + (U/2 + t−E0) + ı0+

)
(B.7)

G12↑(ω) =
1

2a2

( (
1− 4t

c−U
)2

w − (U/2− t− E0) + ı0+
−

(
1 + 4t

c−U
)2

w − (U/2 + t− E0) + ı0+

)

− 1

2a2

( (
1− 4t

c−U
)2

w + (U/2− t− E0) + ı0+
−

(
1 + 4t

c−U
)2

w + (U/2 + t− E0) + ı0+

)
(B.8)

or in a more compact notation (with ω + ı0+ → z)

G11↑(z) = − 4w (36t2 + U2 − 4w2)

144t4 + 8 (3U2 − 20w2) t2 + (U2 − 4w2)2 (B.9)

G12↑(z) = − 4t (36t2 + 3U2 − 4w2)

16w4 − 8 (20t2 + U2)w2 + (12t2 + U2)2
(B.10)

with the constants a, c as given before. The above are the only independent elements in
the present case. By symmetry we have G11↑ = G22↑ = G11↓ = G22↓ and G12↑ = G21↑ =
G12↓ = G21↓.
The excitation energies are given by the poles, and thus are

± (U/2− t− E0) = ± (c/2− t) = ±
(√

16t2 + U2/2− t
)

± (U/2 + t− E0) = ± (c/2 + t) = ±
(√

16t2 + U2/2 + t
)

(B.11)

i.e.

±t±
√

16t2 + U2/2 (B.12)
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from which we easily deduce the bonding / antibonding-splitting (for t>0) :

∆bab = −2t+
√

16t2 + U2 (B.13)

Figure B.2 shows the spectral function of the Hubbard molecule in a colour-coded
representation at constant hopping amplitude (t = 0.7 eV) as a function of the Coulomb
repulsion U and frequency. At U = 0 there are two two-fold degenerate excitation energies
(±t), since this is the non-interacting case. At finite U , the Green’s function has four poles,
yet the weight of the two center ones is predominant in our regime of interest. Thus, here
one would call the two outer excitations correlation satellites or “Hubbard bands”. We
will come back to this later.

U [eV]

ω
 [e

V
]

In
te

ns
ity

 0  1  2  3  4

-4

-2

 0

 2

 4

Figure B.2 : Colour-coded local spectral function for t = 0.7 eV, as a function of the
Coloumb repulsion U .

The self-energy. From the Green’s function, we can compute the self-energy of the
Hubbard molecule by Dyson’s equation :

Σ(ω) = G−1
U=0(ω)−G−1(ω) (B.14)

One finds

Σ11(ω) =
U2

8

(
1

ω − 3t+ ı0+
+

1

ω + 3t+ ı0+

)

185



1 THE EXACT SOLUTION AT ZERO TEMPERATURE AND HALF -FILLING APPENDICES
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Figure B.3 : (a) real parts, (b) imaginary parts of the self-energy of the half-filled Hubbard
molecule at T = 0 for the parameters t = 0.7 eV, U = 4.0 eV.

Σ12(ω) =
U2

8

(
1

ω − 3t+ ı0+
− 1

ω + 3t+ ı0+

)
(B.15)

Figure B.3 shows the resulting self-energy for t = 0.7 eV and U=4.0 eV, the relevant
parameters for the monoclinic phase of VO2.

The symmetry of the self-energy is such that it yields the characteristic bonding / antibonding
self-energies

Σ b

ab

(ω) = Σ11(ω)± Σ12(ω)

=
U2

4

1

ω ∓ 3t+ ı0+
(B.16)

where thus in the [anti]bonding combination the imaginary part in the [un]occupied
part of the spectrum is canceled, allowing for coherent weight at the respective energies.
The enhancement of the bonding / antibonding splitting comes entirely from the 1/(ω ±
3t)–tails in the real parts of the self-energy, seen in Figure B.3.

Figure B.4 shows the real parts of the bonding / antibonding self-energies for our
favourite parameters. As usual, the excitation energies of the system are given by the
intersections ω ± t − ℜΣb,ab, = 0, which are marked by the circles in the figure. Per
bonding / antibonding component there appear two solutions. The two inner ones corre-
spond to the renormalized bonding / antibonding excitations, i.e. to an N − 1 −→ N + 1
transition with an energy difference ∆bab as stated above. The two others occur due to
the fact that the N = 2 singlet subspace is two dimensional and non-degenerate. Indeed
the [upper] lower satellite in the [un]occupied part of the spectrum belongs to transitions
into the [high] low energy singlet with a double occupancy [D > 1/2] D < 1/2. Thus, the
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Figure B.4 : Graphical construction for the poles of the one-particle Green’s function.
t = 0.7 eV, U = 4.0 eV.

energy difference between the [anti]bonding peak and the [lower] upper satellite is just
the energy splitting within the N = 2 singlet subspace. In this sense, the satellites are
the molecular equivalent of atomic-like Hubbard bands.

The distinction between renormalized bands and those Hubbard bands becomes, how-
ever, irrelevant in the limit of t → 0, in which the four pole solutions collapse and yield
two pairs of solutions with equal weight, separated by the energy U. This corresponds to
the limit of two isolated atoms that are Mott-Hubbard insulating. Then, all poles are to
be called Hubbard bands. Hence, in the molecular context, where insulating behaviour at
half-filling is realized already by a hybridization gap, the distinction and thus the notion
of renormalized levels and correlation satellites is continuous.

Yet, we note the subtlety that though the spectrum of the two cases t = 0, and t→ 0
are the same, the ground state wave functions are genuinely different, the latter being
the singlet state (S=0) from above, Equation (B.3), and the former corresponding to a
four-fold degenerate eigenenergy, i.e. the wavefunction encompasses both the singlet and
the triplet subspace, leading to the usual Mott-Hubbard (S=1/2) local moment response.

Coming back to the parameter regime of VO2, it is clear that, when taking into
account the imaginary parts of the bonding / antibonding self-energies, only the solutions
near the Fermi level are fully coherent. Indeed, the outer excitations only exist due to
the δ–peak nature of the self-energy. In the presence of broadening mechanisms, such as
hybridizations to other orbitals and, moreover, couplings to other dimers, the divergence
of the real-part of the self-energies might by removed, to an extent such that the second
crossing is avoided. Yet, there might still appear satellite spectral weight at the energies
in point, as evidenced in M1 VO2.
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We note that in the U → ∞ limit, all four solutions acquire the same weight in the
spectral function and also have the same degree of coherence.

As to the U → 0 limit, we remark that only two of the four poles of the Green’s
function do collapse on the non-interacting solutions. Indeed it is the disappearance of
the self-energy (Σ ∼ U2) which leads to the suppression of spectral weight for the two
satellite structures.

Finally we note that within the N = 2 sector, the singlet-triplet spin excitation has an
energy ∆spin = −U/2 + 1/2

√
16t2 + U2 = 0.44 eV, that is much smaller than the lowest

charge excitation, ∆charge = ∆bab = 3.48 eV, that determines the gap in the spectral
function. In M1 VO2 the spin gap is of about the same magnitude as given for the model
above 3. In a generic band-insulator one has ∆spin = ∆charge

3J. P. Pouget, private communication.
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2 GW for the Hubbard molecule

In this section we will apply the GW approximation (see Section B, Chapter 2) to the
above defined Hubbard molecule. This is motivated by the apparent similarities between
LDA+CDMFT calculations for M1 VO2 and the Cluster DMFT solution which corre-
sponds to the exact solution of this model. Thus it is interesting to assess from a simple
model perspective, whether an ab initio GW calculation might lead to the same physical
picture.

Such a comparison between exact and GW solutions has been previously performed for
Hubbard clusters [Schindlmayr(1997)] and Hubbard chains [Pollehn et al. (1998)]. This
was done mostly for assessing different levels of self-consistency in the GW scheme and
to study, on a model level, the implications and possible mendings of the non-conserving
nature of the GW approximation.

In the following we will present the calculation in the finite temperature Matsubara
formalism at half-filling and specialize later on to zero temperature. Also, since we inves-
tigate a finite system, we work in real space, and thus, matrices are written in an orbital
or site basis.

The non-interacting system. In particular, we chose to work not in the eigenbasis
of the system but in the site-basis of the Hamiltonian given in Equation (B.1). Then the
non-interacting Green’s function reads

G0(ıωn) =

{
ıωn + µ−

(
0 −t
−t 0

)}−1

(B.17)

We will assume t > 0 and it follows

G0
11(ıωn) =

1

2

(
1

ıωn + µ− t +
1

ıωn + µ+ t

)
(B.18)

G0
12(ıωn) = −1

2

(
1

ıωn + µ− t −
1

ıωn + µ+ t

)
(B.19)

In the spectral representation, the Green’s function reads G0
ij(ω) =

∑
n

〈i|ψn〉〈ψn|j〉
ω−En+ı0+ ,

where the En and ψn are the eigenvalues and eigenvectors, respectively. As can be inferred
from the above, the Green’s function in this eigenbasis is of course diagonal and has only
one pole per orbital component. This is why, contrary to more complicated cases, the
weight of the poles is one and no wavefunction matrix elements 〈ψn|j〉 appear.

The polarization P. Within the random phase approximation (RPA), i.e. when
neglecting vertex corrections, the polarization is given by

Pij(ıνm) =
2

β

∑

n

G0
ij(ıωn)G

0
ji(ıωn + ıνm) (B.20)
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from which we find

P11(ıνm) = −a
(

1

ıνm − 2t
− 1

ıνm + 2t

)
(B.21)

P12(ıνm) = a

(
1

ıνm − 2t
− 1

ıνm + 2t

)
(B.22)

(B.23)

with

a =
1

2

(
f(−µ+ t)− f(−µ− t)

)
(B.24)

f(z) =
1

1 + exp (βz)
(B.25)

The screened interaction W.

W(ıνm) = (1−U ·P(ıνm))−1 ·U (B.26)

Here the interaction vertex is written in the two-particle orbital space, and assumed
to be purely local :

U =

(
U 0
0 U

)
(B.27)

this leads to

W11(z) =
(1− UP22)U

(1− UP11)(1− UP22)− U2P12P21

= U − 4aU2t

z2 + 8aUt− 4t2
(B.28)

W12(z) =
U2P21

(1− UP11)(1− UP22)− U2P12P21

=
4aU2t

z2 + 8aUt− 4t2
(B.29)
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The self-energy Σ.

Σij(ıωn) = − 1

β

∑

m

G0
ij(ıωn − ıνm)Wij(ıνm) (B.30)

performing the bosonic Matsubara sum yields

Σ11(ıωn) =
1

2

{
U (f(µ− t) + f(µ+ t))

−f(µ− t) 4aU2t

(ıωn + µ− t+ c)(ıωn + µ− t− c) − n(c)
2aU2t/c

ıωn + µ− t− c

+n(−c) 2aU2t/c

ıωn + µ− t+ c

+ last three terms with (µ− t)→ (µ+ t)

}
(B.31)

Σ12(ıωn) =
1

2

{
−f(µ− t) 4aU2t

(ıωn + µ− t+ c)(ıωn + µ− t− c) − n(c)
2aU2t/c

ıωn + µ− t− c

+n(−c) 2aU2t/c

ıωn + µ− t+ c

− last three terms with (µ− t)→ (µ+ t)

}
(B.32)

with

n(z) =
1

exp βz − 1
(B.33)

n(x± ıωn) = −f(x) (B.34)

c2 = 4t2 − 8aUt (B.35)

Now we will specialize for zero temperature and half-filling (µ = 0)4, this means

4indeed µ = 0 corresponds to half-filling of the non-interacting model. For U > 0, however, the
particle-hole symmetry is restored by putting the Hartree term into the chemical potential. Then the
chemical potential of the interacting Green’s function, Equation (B.42), and the non-interacting one
coincide (µ = 0). Away from half-filling, the latter procedure would have to be performed self-consistently.
It has been shown that this alignment of the chemical potential, proposed already in [Hedin(1965)], in
general improves on spectral properties [Pollehn et al. (1998)], here it just assures the conservation of
particles. More basically, and in the spirit of Equation (1.5) this can alternatively be seen as incorporating
the interactions on the mean-field, or Hartree-Fock level into the non-interacting part of the Hamiltonian
by introducing an effective one-particle potential. In the current case the latter is not effective, but
constant for a given particle number.
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f(x) = Θ(x) (B.36)

n(x) = −Θ(x) (B.37)

a = −1

2
(B.38)

c2 = 4t2 + 4Ut (B.39)

From which is deduced

Σ11(ıωn) =
1

2

{
U +

2U2t

(ıωn − t+ c)(ıωn − t− c)
+

U2t/c

ıωn − t+ c
+

U2t/c

ıωn + t+ c

}

=
1

2

{
U +

U2t

c

(
1

ıωn − t− c
+

1

ıωn + t+ c

)}

Σ12(ıωn) =
1

2

{
2U2t

(ıωn − t+ c)(ıωn − t− c)
+

U2t/c

ıωn − t+ c
− U2t/c

ıωn + t+ c

}

=
1

2

U2t

c

(
1

ıωn − t− c
− 1

ıωn + t+ c

)
(B.40)

The term U/2 in the diagonal element Σ11, Equation (B.40), is the aforementioned
Hartree contribution, that we will drop from hereon. Figure B.5 shows the thus obtained
obtained self-energy, Equation (B.40), for the parameters t = 0.7 eV and U = 4.0 eV.

When comparing the GW self-energy, Equation (B.40) and Figure B.5, with the exact
one, Equation (B.15) and Figure B.3, there are several remarks to be made. First of all,
the symmetries of the self-energy elements are the same, i.e. also the GW self-energy yields
the characteristic bonding / antibonding combinations. The self-energy has two poles at
energies Ω 1

2

= ±(t+
√

4t2 + 4Ut). Still, the GW deviates in two respects from the exact
solution :

(i) the poles of the self-energy Ωi are not at the correct energies. Indeed the pole
energies dependent on the interaction, while the exact ones are solely determined by the
one-particle Hamiltonian. Still, both collapse on each other in the non-interacting limit.
The deviation is given by

∣∣ΩGW
i − Ωexact

i

∣∣ = U − U2/4t+O(U3).
(ii) the weights of the δ–distributions in the imaginary parts are wrong as well. More-

over, the weak-coupling expansions differ. While the exact weight is U2π/8 for each of
the two poles, as dictated by the sum rule

∫ ∞

−∞
dω′ℑΣ(ω′) = −π lim

ω→∞
ωℜΣ(ω)

half-filling

= −πU2/4 (B.41)

GW yields πU2t/(2
√

4t2 + 4Ut) = π(U2/4 − U3/8t + O(U4)) per pole. Though both
vanish quadratically for U → 0, the prefactor is twice as large in GW. As a consequence
the bonding / antibonding–splitting within GW is wrong, since the 1/(ω−Ωi) tails in the
real-parts of the self-energy differ considerably.
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Figure B.5 : (a) real parts, (b) imaginary parts of the GW self-energy of the half-filled
Hubbard molecule at T = 0 for the parameters t = 0.7 eV, U = 4.0 eV according to
Equation (B.40).

Interacting Green’s function G : Spectral function and one-particle excita-
tions.

G(ıωn) =

{
ıωn + µ−

(
0 −t
−t 0

)
−Σ(ıωn)

}−1

(B.42)

The excitation energies are as usual given by the pole-equation Equation (3.9)

det(G[ℜΣ]−1) = 0 (B.43)

After continuation to the real frequency axis, the latter yields

(ω − Σ11)
2 − (t− Σ12)

2 = 0 (B.44)

i.e.

ω = ±t+ Σab

b

(B.45)

where we have defined the bonding / antibonding–combinations

Σb = Σ11 + Σ12 =
U2t

c

1

ıωn − t− c

Σab = Σ11 − Σ12 =
U2t

c

1

ıωn + t+ c
(B.46)
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The two Equations (B.45) together have the four solutions

ω =

{
+

−

}
1

2c

(
−c2

{±
±

}√
c4 + 4c3t+ 4c2t2 + 4tU2

)
(B.47)

which are indicated in Figure B.6, along with the exact ones from Equation (B.12).
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Figure B.6 : Comparison of the GW excitation energies, Equation (B.44), with the exact
ones, Equation (B.12), for t = 0.7 eV and as a function of U.

As already discussed in terms of the self-energy, the excitation energies are reasonable
in the weak coupling regime. Yet for U > 0 the positions of the satellite structures deviate
considerably from the exact ones. Given the short-comings of the self-energy shown above,
the weights of the respective features in the spectral function are in variance with the exact
solution, as well.

Another difference concerns the t → 0 limit. The exact excitations collapse on two
pairs, corresponding to isolated atoms in a Mott-Hubbard insulating state. In GW the
bonding / antibonding excitations merge at the Fermi level, while the satellites go towards
±U . This just states that, while producing correlation satellites, GW is not able to capture
Mott physics, with a self-energy that necessarily diverges at the Fermi level. This was
already seen above, where we noted that the pole positions in the GW self-energy are
wrong and actually interaction dependent.

The bonding / antibonding–splitting within the GW approximation is deduced as

∆GW
bab = −c +

√
c2 + 4ct+ 4t2 + 4tU2/c

= −2
√
t(t+ U) +

√
2

2t+ U

t+ U

(√
t(t+ U)(2t+ U) + 2t(t+ U)

)
(B.48)

However, in realistic calculation one usually does not solve the quasi-particle Equa-
tion (B.43), but rather computes the shifts relative to the Kohn-Sham energies in some
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approximation. In this vein, we, alternatively, calculate the bab-splitting ∆GW
bab by approx-

imating the selfenergies in Equation (B.45) at the non-interacting bonding / antibonding-
energies ±t 5. Using Equation (B.46), this leads to

∆GWshift
bab = 2t+ ℜΣab(t)− ℜΣb(−t) = 2t+

2U2t

c

1

2t+ c

= 2t+
U2

2
(
U + t+

√
t(t+ U)

) (B.49)

Figure B.7 compares the different bonding / antibonding–splittings. Indeed, the approxi-
mative splitting is much closer to the exact solution than the correct GW.
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Figure B.7 : Comparison of the bonding / antibonding–splitting: The exact −2t +√
U2 + 16t2 expression, and the GW one, from the quasi-particle equation and from the

approach leading to Equation (B.49). The inset shows a blow-up of the weak-coupling
region.

Finally, in view of LDA+U calculations for the monoclinic phase of VO2, see Sec-
tion A, Chapter 5, we comment on the applicability of Hartree-Fock theory to the current
problem.
In the Hubbard molecule, as we have defined it (only local Coulomb interactions), the
static part of the self-energy is given by the Hartree term. This amounts to simply setting
Wij(ıνm) = Uδij in Equation (B.30). Then the bonding / antibonding–splitting remains
constant as a function of U, unchanged from its non-interacting value : ∆bab = 2t. Indeed,
the Hartree term was canceled with the shift in the chemical potential that enforced the
particle-hole symmetry. The reason for this is that a purely local interaction (Wij ∼ δij)
cannot produce an off-diagonal element in the self-energy. Since both sites are equivalent
(Σ11 = Σ22), no relative shifts can be induced. This is no longer true, if the model is
extended to non-local Coulomb interactions, i.e. non-vanishing off-diagonal elements in
Equation (B.27).

5Of course one could have linearized the self-energy around the non-interacting energies.
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LDA+U is in spirit a Hartree-Fock calculation. Due to the static nature of its self-
energy, it cannot account for the Mott phenomenon. Further, the yielding of an insulating
character for a system prerequisites the appearance of some kind of spin or orbital or-
der6. In the current case, an ordering is induced by the dimerization. Nonetheless, since
within LDA+U any correlation enhancement of a bonding / antibonding–splitting must
come from the non-locality in the interaction, while in strongly correlated materials local
interactions are likely to be predominant, we thus have to conclude that LDA+U is not
suited for systems that exhibit both, correlation and dimerization effects. However, in the
realistic case of M1 VO2, though the gap-opening is largely dominated by dimer physics,
a Hartree-Fock like calculation is of course able to result in an insulating band-structure,
since the charge gap appears between the anti-bonding a1g and low lying eπg orbitals.

6Often an order is forced upon the system, in order to make use of LDA+U; however this is unphysical.
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