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Résumé de la thèse

Ma thèse se déroule suivant deux principales lignes de recherche. Les deux arguments traités con-
stituent une relation entre la théorie des cordes et les aspects phénoménologiques/cosmologiques.
D’une part, la géométrie noncommutative (NC) est une conséquence naturelle de la présence de branes
et flux dans la théorie des cordes. La noncommutativité déforme certaines propriétés fondamentales
des théories ordinaires décrivant par exemple les interactions électro–faibles et fortes ou les modèles
statistiques. C’est dans ce sens que la géométrie NC représente une application à la phénoménologie
des cordes. D’autre part, les branes sont l’ingrédient clé des modèles d’univers branaires. Le modèle
de Randall–Sundrum (RS) en particulier offre de nouvelles perspectives tant du point de vue de la
cosmologie, ouvrant des scénarios d’évolution cosmologique non conventionnelle, que du point de vue
de l’holographie.

La première partie de la thèse est dédiée à la géométrie NC et, en particulier, aux théories de
champs NC intégrables. Le but principal du travail a été d’étudier les conséquences de la noncom-
mutativité par rapport à l’intégrabilité. Plus précisément, on a voulu vérifier ou réfuter dans un
contexte NC le théorème qui lie, en deux dimensions, l’intégrabilité à la factorisation de la matrice
S. Avec intégrabilité on parle de l’existence d’un nombre infini de courants locaux conservés, associés
aux symétries de la théorie de champs. Le point de départ a donc été de garantir la présence de tels
courants, au moyen du formalisme du bicomplexe. Cette méthode permet d’obtenir les équations du
mouvement en tant que conditions d’intégrabilité d’un système d’équations différentielles linéaires. à
partir des solutions du même système linéaire suivent les courants conservés. En exploitant le for-
malisme de Weyl, la procédure est immédiatement généralisable à la géométrie NC. Une algèbre de
fonctions (opérateurs de Weyl) définie sur un espace NC est associée à une algèbre NC de fonctions
où la multiplication est exécutée au moyen d’un produit NC de Moyal: le produit �. En introduisant
le produit � au niveau du système linéaire et en en déduisant les équations du mouvement NC, on
obtient la généralisation NC du bicomplexe. On a inféré le premier modèle en généralisant le bi-
complexe du modèle de sine–Gordon (SG) à la géométrie NC. Nous avons déduit (en collaboration
avec Grisaru, Penati, Tamassia) l’action correspondante aux équations du mouvement précédemment
établies par Grisaru et Penati. Le calcul des amplitudes de diffusion et production a déterminé les
caractéristiques de la matrice S du modèle. Des comportements acausaux ont été relevés pour les
processus de diffusion. En outre, les processus de production possèdent une amplitudes non nulle:
d’où la non validité du théorème d’intégrabilité vs. factorisation pour cette version NC du modèle
de SG. D’autres propriétés ont été mises en évidence, comme la relation avec la théorie des cordes
et la bosonisation. Le deuxième modèle de SG NC a été proposé en collaboration avec Lechtenfeld,
Penati, Popov, Tamassia. Les équations du mouvement ont été tirées de la réduction dimensionnelle
du modèle sigma NC en 2+1 dimensions, qui à son tour est la réduction de la théorie de self–dual
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Yang–Mills NC en 2+2 dimensions (décrivant les supercordes N = 2 avec champs B). L’action a été
calculée de même que les amplitudes. Les processus de production possédant des amplitudes nulles et
ceux de diffusion ne dépendant pas du paramètre de NC, entrâınent ainsi un comportement causal.
Le deuxième modèle de SG NC semble donc obéir à l’équivalence entre intégrabilité et factorisation
de la matrice S. La réduction de la théorie des cordes garde sa validité même au niveau de l’action,
contrairement au modèle précédent.

La deuxième partie de ma thèse traite des modèles d’univers branaires, ou plus précisément des
modèles de RS. Le modèle proposé par Randall et Sundrum se situe dans un bulk 5–dimensionnel, car-
actérisé per une symétrie d’orbifold Z2 par rapport à la position de la brane 4–dimensionnelle. Grâce
au facteur de warp qui multiplie le sous–espace 4–dimensionnel parallèle à la brane, on obtient la local-
isation des modes du graviton. Par conséquent, le potentiel gravitationnel efficace est newtonien aux
énergies inférieures à la masse de Planck. En introduisant en outre un terme de matière dans le bulk et
en considérant l’échange d’énergie entre brane et bulk, une variété de nouvelles cosmologies en dérive.
Dans la première partie de mon travail sur RS nous avons proposé un modèle analogue situé dans un
bulk 7–dimensionnel. La brane 6–dimensionnelle — ayant compactifié deux dimensions — est placée
au point fixe de l’orbifold Z2. Afin d’étudier l’évolution cosmologique en nous mettant en relation avec
les observations, nous avons introduit l’échange d’énergie entre brane et bulk. Les scénarios possibles
sont nombreux et dépendent de la forme explicite du paramètre d’échange d’énergie. Entre autres, les
points fixes possèdent une accélération positive, pouvant ainsi représenter la récente accélération de
l’univers. Il sont également stables pour un large ensemble des valeurs des paramètres. Finalement,
on peut tracer des scénarios qui partent d’une phase initiale accélérée, en passant successivement à
une ère de décélération, pour terminer sur un point fixe stable d’inflation. Les modèles d’univers
branaires à la RS possèdent un dual holographique via AdS/CFT. La correspondance AdS/CFT
établit qu’une théorie de supergravité (ou, plus généralement, de cordes) dans un champ de fond
d’anti de Sitter (AdS) en d + 1 dimensions est duale à une théorie de champs conforme (CFT) en
d dimensions. Tenant compte des divergences présentes dans les deux descriptions, cette correspon-
dance à été rendue plus précise par la formulation de la renormalisation holographique. Si l’espace
de AdS est régularisé au moyen d’un cutoff infrarouge, la correspondante CFT résulte régularisée par
un cutoff ultraviolet et couplée à la gravité d–dimensionnelle. En analogie à l’analyse effectuée en
cinq dimensions par Kiritsis, nous avons construit la théorie duale au modèle cosmologique de RS en
sept dimensions. Pour capturer les dynamiques dictées par l’échange d’énergie entre brane et bulk,
la théorie holographique en six dimensions a été généralisée au cas interagissant (entre matière et
CFT) et non conforme. Le résultat sont les relations entre les paramètres de masse appartenant aux
deux descriptions et entre l’échange d’énergie, d’un côté, et le paramètre d’interaction, de l’autre. De
plus, le paramètre de rupture conforme est associé au paramètre d’auto–interaction du bulk dans la
description de supergravité 7–dimensionnelle.

Le travail de recherche inclut donc des résultats pouvant trouver leur application dans la phéno-
ménologie et cosmologie des cordes. D’une part on a enquêter sur l’influence de la noncommutativité
liée à l’intégrabilité du modèle de SG. D’autre part, les conséquences cosmologiques de l’emplacement
du modèle de RS en sept dimensions ont été étudiées et la correspondance AdS/CFT a été appliquée
afin d’en tirer des informations sur la théorie duale, couplée à la gravité.
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Il mio lavoro di tesi si sviluppa seguendo due principali linee di ricerca. Entrambi gli argomenti
affrontati costituiscono una relazione tra la teoria delle stringhe e aspetti fenomenologici/cosmologici.
Da un lato, la geometria noncommutativa (NC) è una naturale conseguenza della presenza di brane e
flussi nella teoria di stringa. La noncommutatività deforma alcune proprietà fondamentali delle teorie
ordinarie che ad esempio descrivono le interazioni elettro–debole e forte o modelli statistici. In tal
senso, la geometria NC rappresenta un’applicazione alla fenomenologia di stringa. D’altro canto, le
brane rappresentano un ingrediente chiave nei modelli di brane–world. Il modello di Randall–Sundrum
(RS), in particolare, offre nuove prospettive sia dal punto di vista della cosmologia, aprendo scenari
di evoluzione cosmologica non convenzionale, sia dell’olografia.

La prima parte della tesi è dedicata alla geometria NC ed, in particolare, a teorie di campo NC
integrabili. Il principale scopo del lavoro di ricerca è stato studiare le conseguenze della noncommu-
tatività sull’integrabilità. Più esplicitamente, si è voluto verificare o confutare in un contesto non-
commutativo il teorema che lega, in due dimensioni, l’integrabilità alla fattorizzazione della matrice
S. Per integrabilità si intende l’esistenza di un infinito numero di correnti locali conservate, associate
alle simmetrie della teoria di campo. Il punto di partenza è stato dunque garantire la presenza di tali
correnti attraverso il formalismo del bicomplex. Questo metodo consente di ottenere le equazioni del
moto come condizioni di integrabilità di un sistema di equazioni differenziali lineari. Dalle soluzioni
dello stesso sistema lineare è possibile ricavare le infinite correnti conservate. Sfruttando il formalismo
di Weyl, il procedimento è immediatamente generalizzabile alla geometria NC. Un algebra di funzioni
(operatori di Weyl) definite sullo spazio NC viene associata ad un algebra NC di funzioni in cui la
moltiplicazione è implementata attraverso un prodotto NC di Moyal: il prodotto �. Introducendo
nel sistema differenziale lineare il prodotto � e deducendone le equazioni del moto NC, si ottiene la
generalizzazione NC del metodo del bicomplex. Il primo modello considerato è stato ricavato gen-
eralizzando il bicomplex per il modello di sine–Gordon (SG) alla geometria NC. Dalle equazioni del
moto ottenute in precedenza da Grisaru e Penati abbiamo dedotto l’azione corrispondente (in col-
laborazione con Grisaru, Penati, Tamassia). Il calcolo delle ampiezze di scattering e produzione ha
determinato le caratteristiche della matrice S del modello. Sono risultati comportamenti acausali per
i processi di scattering. Inoltre, poiché i processi di produzione di particelle non possiedono ampiezza
nulla, il teorema integrabilità vs. fattorizzazione non rimane valido per tale generalizzazione NC del
modello di SG. Altre proprietà sono state evidenziate, come la relazione con la teoria di stringa e con
la bosonizzazione. Il secondo modello di SG NC è stato proposto in collaborazione con Lechtenfeld,
Penati, Popov, Tamassia. Le equazioni del moto sono state derivate dalla riduzione dimensionale
del modello sigma NC in 2+1 dimensioni, che a sua volta è la riduzione dimensionale della teoria
di self–dual Yang–Mills NC in 2+2 dimensioni (che descrive le superstringhe N = 2 con campo B).



Riassunto della tesi

Anche in questo caso è stata dedotta l’azione ed è stato effettuato il calcolo delle ampiezze ad albero.
I processi di produzione risultano possedere ampiezza nulla e le ampiezze di scattering non dipendono
dal parametro di NC, implicando un comportamento causale. Perciò questo secondo modello di SG
NC sembra obbedire all’equivalenza tra integrabilità e fattorizzazione della matrice S. La riduzione
dalla teoria di stringa è valida anche a livello dell’azione, al contrario di quanto accade per il primo
modello analizzato.

La seconda parte della tesi tratta di modelli di brane–world, o più specificatamente di modelli di
RS. Il modello proposto da Randall e Sundrum è ambientato in un bulk 5–dimensionale, caratterizzato
da una simmetria di orbifold Z2 rispetto alla collocazione della brana 4–dimensionale. Grazie al fattore
di warp che moltiplica il sottospazio 4–dimensionale parallelo alla brana, si ottiene la localizzazione
dei modi gravitonici. Conseguentemente, il potenziale gravitazionale efficace è newtoniano per energie
inferiori alla massa di Planck. Introducendo un termine di materia nel bulk e considerando lo scambio
di energia tra brana e bulk, si ottiene una varietà di nuove possibili cosmologie. Nella prima parte
del mio lavoro su RS è stato proposto un modello analogo, ambientato in un bulk 7–dimensionale.
La brana 6–dimensionale — di cui due dimensioni sono compattificate — è posta nel punto fisso
dell’orbifold Z2. Al fine di studiare l’evoluzione cosmologica ponendoci in relazione con le osservazioni
abbiamo introdotto lo scambio di energia tra brana e bulk. I possibili scenari sono numerosi e
dipendono dalla forma esplicita del parametro di scambio di energia. In particolare, tutti i punti
fissi possiedono accelerazione positiva, sono stabili per appropriati valori dei parametri e potrebbero
dunque rappresentare la presente era accelerata. È possibile inoltre ipotizzare scenari in cui, partendo
da una fase iniziale con grande accelerazione positiva, si passi da una era decelerata, per terminare sul
punto fisso inflazionario e stabile. Modelli di brane–world à la RS possiedono un duale olografico via
AdS/CFT. La corrispondenza AdS/CFT stabilisce che una teoria di supergravità (o, più in generale,
di stringa) in un background di anti de Sitter (AdS) in d + 1 dimensioni è duale ad una teoria di
campo conforme (CFT) in d dimensioni. Tale corrispondenza è stata resa più precisa mediante la
formulazione della rinormalizzazione olografica, tenendo conto delle divergenze presenti in entrambe
le descrizioni. Se lo spazio di AdS viene regolarizzato tramite un cutoff infrarosso, la corrispondente
CFT risulta regolarizzata da un cutoff ultravioletto e accoppiata alla gravità d–dimensionale. In
analogia all’analisi effettuata in cinque dimensioni da Kiritsis, abbiamo costruito la teoria duale al
modello cosmologico di RS in sette dimensioni. Per catturare le dinamiche dettate dallo scambio
di energia tra brana e bulk, la teoria olografica in sei dimensioni è stata generalizzata al caso in
cui materia e settore nascosto (appartenente alla CFT) interagiscano e l’invarianza conforme sia
rotta. Come risultato sono state trovate le relazioni tra i parametri di massa nelle due descrizioni
e tra scambio di energia, da una parte, e parametro di interazione, dall’altra. Inoltre, il parametro
di rottura conforme risulta associato al parametro di auto–interazione del bulk nella descrizione di
supergravità 7–dimensionale.

Il lavoro di tesi comprende dunque risultati che possono trovare applicazione nella fenomenologia o
cosmologia di stringa. Da un lato si è investigata l’influenza della noncommutatività sull’integrabilità
del modello di SG. Dall’altro, sono state studiate le conseguenze cosmologiche dell’ambientazione
del modello di RS in sette dimensioni ed è stata applicata la corrispondenza AdS/CFT per ricavare
informazioni sulla teoria duale, accoppiata alla gravità.
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Introduction and outline

String theory is a wide web of interlacing theories which encloses gauge theories and gravity in
some low energy limits. By now, string theory in its supersymmetric version, provides a consistent
description of quantum gravity. However, it is still not completely clear how to merge real (hence
non supersymmetric) fundamental interactions in the strings framework, despite the fact that much
work has been recently devoted to this purpose. The unifying theories of strings (which in turn
may be argued to be incorporated in the larger M theory) contain degrees of freedom which cannot
be described by ordinary gauge theories. This is why new features arise in this context and new
mathematical techniques as well as new objects must be studied. My thesis essentially tackles two of
these stringy issues: noncommutative geometry and brane–worlds.

Both topics deal with stringy effects on some aspects of (hopefully) realistic description of known
physics. On the one hand, noncommutative (NC) geometry emerges in relation to particular string
configurations involving branes and fluxes. Gauge theories arise in the low energy limit of open string
dynamics, with string ends attached on the branes. When non trivial fluxes are turned on, ordinary
field theories get deformed by noncommutativity. On the other hand, brane–worlds originated from
the intuition that matter fields can be localized on branes, while gravity propagates in the whole
string target space. Brane–worlds can thus yield effectively four dimensional gauge theories with
obvious phenomenological implications, despite the existence of extra dimensions. Furthermore, non
staticity of the brane worldvolume produces cosmological evolution, opening the issue of the brane–
world cosmology. Branes turn out to be key ingredients for both topics. They indeed represent at
present the main motivation to study noncommutative geometry and create a link between string
theory and phenomenology/cosmology.

Noncommutative geometry

Independently of string theory successes, NC geometry was initially formulated with the hope that
it could milden ultraviolet divergences in quantum field theories [1]. However, noncommutativity
usually does not qualitatively modify renormalization properties, except for the mixing of infrared
and ultraviolet divergences — IR/UV mixing —, which on the contrary generally spoils renormaliza-
tion. Noncommutative relation among space–time coordinates may also be interpreted as a possible
deformation of geometry beyond the Planck scale. In fact, we can imagine that space–time can be no
more endowed with a point–like structure. Indeed, this is a consequence of noncommutativity. Points
would be subtituted by space cells with Planck length dimension, so that ordinary geometry is recov-
ered at energies lower than the Planck scale. It is also true that noncommutativity arises in the large
magnetic field limit of quantum Hall effect [2, 3]. There, space coordinates are forced not to commute
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Introduction and outline

due to the very large magnetic field, or equivalently to the very small particle mass. However, the
strongest motivation is string theory, since it naturally describes noncommutative embeddings.

Field theories in NC geometry represent the low energy limit of dynamics of open strings ending
on branes with appropriate non zero fluxes. A paradigmatic configuration is that of D3–branes in IIB
string theory with constant Neveu–Schwarz–Neveu–Schwarz (NS-NS) form Bμν , yielding noncom-
mutative four dimensional super Yang–Mills theory (SYM), with instanton solutions described by
self–dual Yang–Mills (SDYM) equations [47]. Noncommutative versions of well known field theories
have been studied over the last ten years [58]–[62], which single out the interesting results ensuing
from noncommutativity. For instance, noncommutative relation among space–time coordinates imply
a correlation between infrared and ultraviolet divergences in the field theory [33, 34]. This follows
intuitively from the uncertainty principle involving the coordinates, which connects small distances to
large distances dynamics, just as quantum mechanic uncertainty principle connects large momenta to
small distances and viceversa. Hence, field theory renormalization also depends on the IR behavior.
Although in most cases renormalizability doesn’t change going to NC geometry — except for UV/IR
mixing —, it can be explicitly destroyed in some particular models by noncommutativity, as I will
show.

Besides renormalization, there has been much interest in studying integrability properties of non-
commutative generalizations. Integrable theories share very nice features, in particular restricting to
two dimensions [10]. Their S–matrix has to be factorized in simple two particle processes and can be
explicitly calculated in some cases. Furthermore, no particle production or annihilation occurs. Mo-
menta of initial states must be mapped in the final states, precisely. Solitons, i.e. localized classical
solutions preserving their shape and velocity in scattering processes, are usually present. The origin
of these nice properties is the presence of an infinite number of conserved currents, which are indeed
responsible for the integrability of the theory. It is interesting to note that most of the known inte-
grable bidimensional models come from dimensional reduction of four dimensional SDYM. In turn,
(2 + 2)–dimensional SDYM is the effective field theory for N = 2 open superstrings on D3–branes,
whose noncommutative version is obtained by turning on a constant NS-NS two form [9, 48]. We
may now wonder if noncommutativity influences integrability of known models. This is basically the
question I tried to answer with my collaborators, restricting to a special integrable model, namely
the two dimensional sine–Gordon theory.

Sine–Gordon equations of motion are related to the integrability of a system with an infinite
number of degrees of freedom, giving the infinite number of conserved currents. The gauged bicomplex
approach guarantees the existence of the local currents as solutions to an infinite chain of conservation
equations, for any integrable theory. These come from solving a matrix valued equation, order by
order in an expansion parameter — a Lax pair of differential operators (guaranteeing integrability)
can also be found in some cases related to the bicomplex formulation. Furthermore, the compatibility
condition of the matrix equation yields the equations of motion, from which an action can in some
cases be derived — for sine–Gordon, for instance. Soliton solutions can also be constructed via the
dressing method [72] in integrable theories, exploiting the solutions to the integrable linear system of
equations.

Using the gauged bicomplex formalism, S. Penati and M.T. Grisaru wrote the equations of motion
for a noncommutative version of sine–Gordon, introducing noncommutativity in the two dimensional
matrix equation [68]. Successively, we found the corresponding noncommutative action and studied
properties of the S–matrix at tree level [63]. Noncommutativity entailed acausal behaviors and non
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factorization of the S–matrix. Acausality is actually a typical problem in NC field theories when
noncommutativity involves the time coordinate. It has been shown that also unitarity is broken by
time/space noncommutativity. Indeed, in two dimensions, a noncommuting time is unavoidable.

However, NC generalizations are not unique, since different deformations can yield the same
ordinary theory in the commutative limit. Indeed, a second noncommutative sine–Gordon model
was proposed in my publication [46] in collaboration with O. Lechtenfeld, S. Penati, A. D. Popov,
L. Tamassia, where noncommutativity has been implemented at an intermediate step in the dimen-
sional reduction from SDYM. The action and tree level S–matrix were computed. Scattering processes
displayed the nice properties expected in integrable models and causality was not violated. More-
over, we also provided a general method to calculate multi–soliton solutions in this integrable NC
sine–Gordon model.

As I anticipated, string theory suggests a deformation of space–time, leading to noncommutative
field theories. The relation to specific string configurations pass through dimensional reduction of
higher dimensional integrable theories — namely 4– or (2 + 2)–dimensional SDYM — describing the
open string dynamics. Phenomenological consequences other that integrability in two dimensions
can be investigated. Most of related literature focuses on Lorentz violation in Standard Model
noncommutative generalizations [4]. In fact, in other than two dimensions, Lorentz invariance is
broken, due to the non tensorial nature of noncommutativity parameter (which I assume to be
constant — non constant generalizations have been considered, though [6]). Cosmological issues,
such as noncommutative inflation, have also been subjects of research [8, 5]. Thorough studies have
been devoted to non(anti)commutative generalizations of supersymmetric theories, which imply a non
trivial extension of noncommutative relations to fermionic variables [7]. Summarizing, NC geometry
has its modern origin in string theory and its implications can be analyzed in the perspective of
finding phenomenological indications of strings.

Brane–worlds

Conversely, taking as an input the low energy physics as we know it — Standard Model, General
Relativity — we may wish to find its description inside the string theory framework. A very successful
intuition going in this direction is the brane–world idea. As I mentioned, the low energy effective field
theories living on the brane worldvolume are gauge theories. Thus, we may hope to describe elec-
troweak interactions and QCD in a brane–world picture, allowing large and eventually non compact
extra dimensions. However, going towards realistic theories implies for instance that supersymmetry
and conformal invariance, as they appear in string theory, have to be broken. Some literature is
devoted to the search of branes configurations [86, 115, 117] (intersecting branes, for example) which
realize Standard Model features in string theory.

A great improvement in the subject of brane–world models is represented by the AdS/CFT cor-
respondence. In early times, it was already pointed out that large N gauge theories — N is the rank
of the gauge group — displayed stringy characteristics. The large N expansion can indeed be related
to the closed string loop expansion if the string coupling is identified with 1/N [84]. Furthermore,
gauge theories naturally arise in string theory in the presence of branes, more precisely D–branes. On
the other hand, so called black brane solutions in supergravity were argued to describe D–branes in
the classical limit [91]. This was a hint going towards the formulation of a duality connecting gauge
theories on the D–branes to supergravity in the black brane backgrounds. Stronger indications came
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from the counting of BPS states and absorption cross sections calculations in D–branes configura-
tions compared to entropy and absorption processes in the supergravity description. In particular,
the (1 + 1)–dimensional CFT living in the intersection of the D1-D5 system was suggested to be
dual to a charged black hole supergravity solution, whose near horizon geometry yields AdS3 × S3

[94, 92, 177]. Analogously, the D3 configuration in type IIB string theory, giving an effective SU(N)
N = 4 SYM theory (N is the number of coincident D–branes), was compared to the black 3–brane
supergravity solution where the near horizon geometry is AdS5 × S5 (N units of five form flux are
present and N also determines the AdS5 and S5 radii) [95, 177].

Finally, Maldacena formulated his conjecture [174], stating that the large N field theory describing
the dynamics of opens strings on D–branes (or M–branes, if we consider M theory) is dual to the full
string theory in the corresponding AdS background. Such a duality is holographic in the sense that
the dynamics in the supergravity bulk is determined only in terms of boundary degrees of freedom.
Furthermore, the boundary conditions are exactly identified with the sources of the CFT operators. In
this spirit, the gauge theory can be thought to live on the boundary of the AdS space. It is particularly
interesting to note that the Bekenstein–Hawking formula for entropy already suggested the existence
of an holographic principle, relating gravity solutions to the dynamics of the background boundary.
The matching of global symmetries also supported Maldacena’s idea. The highly non trivial content
of AdS/CFT correspondence is that perturbative approximations in the two descriptions hold in
opposite regimes for the effective string coupling constant gsN . The correspondence instead relates
the two full theories.

From the time the conjecture was formulated, many checks (mainly on protected quantities) and
improvements have been worked out. A rigorous treatment of the divergences that plague the two sides
of the duality is provided by holographic renormalization [189, 190, 193]. It has hence been used to
perform correlation functions calculations on the gravity side, using a covariant regularization, and to
compare them with the CFT results. An important consequence of holographic renormalization is its
application to AdS/CFT duals of supergravity solutions with cutoff space–times. Such backgrounds
appear in Randall–Sundrum models (RS) [113], where space–time is a slice of AdS with a brane placed
at the fixed point of a Z2 orbifold, playing the role of a IR cutoff. It has been argued [178, 179, 180, 181]
that the holographic dual theory is a cutoff CFT living on the boundary of AdS, coupled to gravity and
higher order corrections. Indeed, it can be shown that Einstein–Hilbert action and the higher order
corrections are the boundary covariant counterterms appearing in the regularization procedure. The
presence of gravity is intriguing since we expect the brane–world to display gravitational interaction
if it has to describe real universe (using General Relativity as a theoretical instrument).

Brane–world cosmology is a rather broad subject, including applications of stringy models to
different issues of cosmology. Among the mostly investigated scenarios, brane induced gravity —
proposed by Dvali, Gabadadze and Porrati, also called the DGP model [129] — and Randall–Sundrum
model [113] are two alternative ways to obtain 4D gravity in a background with an infinite extra
dimension. DGP and RS models display Newtonian gravity in opposite regimes. Namely, gravity
induced on the brane yields effective 4D behaviors at high energies, while in this same regime 5D effects
appear in RS. If the two models are merged, getting induced gravity on a RS brane [114], Newton’s
potential can be recovered at all energies if the brane induced gravity term is strong compared to the
RS scale. On the other hand, we may modify gravity to get non conventional cosmological features —
primordial inflation, late time acceleration — including higher order corrections such as Gauss–Bonnet
terms. Gauss–Bonnet brane–worlds [138]–[140] admit a 4D gravity description in the low energy
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regime, as RS models. Moreover, the issue of primordial inflation has been addressed in further string
theory contexts. Brane/antibrane inflation [143, 144, 145, 135, 136, 137], for instance, is a thoroughly
investigated subject embodying the initial inflationary era in string compactification. Related topics
include brane inflation [129], further works on brane induced gravity [130]–[134], particular examples
with varying speed of light [141], cosmological evolution induced by the rolling tachyon [142] and
recent brane–world models [146]–[152]. Brane–world cosmology [119]–[125] can also be analyzed, in a
rather general way, following the mirage cosmology approach [127, 128], where evolution is driven by
a mirage energy density, which encodes bulk effects — no matter term is there from the beginning.

Non conventional cosmology [126] at late times can be obtained in RS brane–worlds by considering
the interaction between brane and bulk. Indeed, models with brane–bulk energy exchange have been
discussed in literature [159]–[173]. It has been shown that a rich variety of cosmologies are produced
in the original 5D RS model with the presence of energy exchange. The brane motion is driven both
by the matter energy density and by a mirage radiation, which takes account of the bulk dynamics.
Some of the features that these models exhibit can fit into the cosmological observational data.
For instance, eternally accelerating solutions can be found. Furthermore, an holographic cosmology
analysis has been performed in [125], exploiting gauge/gravity duality specified to 5D RS model.
Non conventional cosmology results are found in the 4D picture and compared to the 5D description,
yielding the matching of dimensionful parameters on the two sides.

My work is inspired to the cosmological analysis in RS brane–worlds, both from the bulk grav-
itational point of view and in the holographic description. A RS model in seven dimensions was
considered in [154], tracing it back to the M5-M2 configuration in M theory. Bao and Lykken con-
centrated on the graviton mode spectrum analysis. They found new features with respect to the 5D
picture. New Kaluza–Klein (KK) and winding modes appear due to the additional compactification
on the internal two dimensional compact manifold. Whether the two additional extra dimensions also
lead to new properties for the cosmological evolution is the question I address in the second part of
my thesis.

I proposed a 7D RS set–up, with a codimension–one 5–brane and matter on the brane, as well as
in the bulk [96]. In order to make contact with our four dimensional universe, I further compactify
space–time on a two dimensional internal manifold, without necessarily impose homogeneity — in
the sense that evolution in the 3D and 2D spaces may in general be different. The detailed study
of the brane cosmological evolution from the 7D gravity viewpoint is carried, yielding accelerating
solutions at late times, among the other possibilities. New features with respect to the 5D set–up
appear. I moreover constructed the holographic dual theory and compared it to the 7D description,
generalizing the 6D set–up to the non conformal and interacting case, in analogy to the 4D model.

The structure of this thesis is composed by two parts. The first part is devoted to noncommutative
integrable field theories and to my results on noncommutative integrable sine–Gordon. The second
part is dedicated to brane–world holographic cosmology and 7D RS results.

An introduction to integrable systems is given in the first chapter. In chapter 2, I review the
Weyl–Moyal formalism for noncommutative geometry, its application to noncommutative quantum
field theories and the relation to string theory. The third and fourth chapters contain the two gener-
alizations to noncommutative geometry of sine–Gordon model that I proposed with my collaborators.
The first theory exhibits acausality and non factorization of the S–matrix, which is calculated at tree
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level, as shown in chapter 3. As a result, the connection to NC 4–dimensional self–dual Yang–Mills
and to NC Thirring model are also illustrated. The second theory, examined in chapter 4 displays in-
tegrability properties of the S–matrix. It is shown how this model comes from dimensional reduction
from NC (2+2)–dimensional self–dual Yang–Mills, via the intermediate (2+1)–dimensional modified
sigma model. I give the procedure allowing to construct the noncommutative multi–soliton solutions
and calculate tree level amplitudes.

Chapter 5 is a review of AdS/CFT correspondence, particularly focusing on holographic renor-
malization and RS dual. It is followed by a summary of conventional cosmology issues and by an
introduction on brane–worlds in chapter 6. Cosmological evolution in the 5D RS brane–world and the
comparison to the holographic dual scenario is also reviewed in chapter 6. The new results on 7D RS
brane–world cosmology and holography are illustrated in the two following chapters. In particular,
chapter 7 is devoted to the critical point analysis and brane cosmological evolution on the 7D gravity
side. I construct the 6D dual theory in chapter 8, deriving the Friedmann–like equations and the
matching with the 7D description. A summary on results concludes the thesis.
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Noncommutative integrable theories
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Chapter 1

Integrable systems and the
sine-Gordon model

It is well known that integrable theories can be related to statistical models in their continuous limit.
Statistical systems are of high interest in physics literature, for the study of correlation functions,
critical exponents, and other physical measurable quantities. Integrable models are of interest on
their own since they are by definition endowed with a number of conserved currents equal to the
number of degrees of freedom. In the case of integrable field theories this number is infinite. Due
to this property, integrable models are exactly solvable and in many cases the exact mass spectrum
and S–matrix are calculable. The presence of an infinite number of local conserved currents is a
consequence of the equations of motions of the theory and do not need to be generated by a specific
action for the fields. Nevertheless, in some cases of particular interest the action leading to the
equations of motion is known and classical and quantum characteristics of the theory may be derived.
One of these models is the sine–Gordon model that I will briefly review in section 1.2. The first part
of my thesis is based on the sine–Gordon generalization to noncommutative geometry. Before facing
the sine–Gordon quantum theory, I will clarify its relation to the statistical XY model in subsection
1.1.1 and to the fermionic Thirring theory in subsection 1.1.2. I will then sketch some properties of
the soliton solutions and their construction in the last section of this chapter.

I will focus on the properties possessed by the S–matrix for a two dimensional integrable the-
ory. This issue has been studied in the noncommutative generalizations of the sine–Gordon models
constructed in my first two publications [63, 46]. Also noncommutative solitons solutions have been
systematically produced, being another important aspect of integrable systems.

1.1 Sine–Gordon and relations to other models

I will sketch in this section a couple of interesting links between the sine–Gordon theory on one hand
and apparently different models on the other hand. The first topic shows how sine–Gordon field can
describe a 2D Coulomb gas via XY model in the continuous limit. The second correspondence is
bosonizations, which relates sine–Gordon to massive Thirring fermionic theory.
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1. Integrable systems and the sine-Gordon model

1.1.1 The XY model as the sine–Gordon theory

The XY model describes two dimensional spin variables S on a N site lattice of dimension L and
step a. The components of S are (Sx, Sy) = (cos θ, sin θ), since S is normalized to be |S|2 = 1. The
system partition function is given by

Z =

∫ ∏
i

dθi

2π
eK

P
<i,j> cos(θi−θj) (1.1.1)

where K = J
kBT (J is the spin coupling, kB is the Boltzman constant) and < i, j > indicates first

neighbors.
This two dimensional spin variable model gives a nice description of a 2D classical Coulomb gas

(but also has applications for thin films and fluctuating surfaces). It is thus interesting to note that,
due to the equivalence (in the continuous limit) to the sine–Gordon theory, renormalization group
(RG) equation of the quantum field theory describes the dynamics of such statistical systems.

The spin lattice displays two different behaviors — and hence a phase transition — in the high and
low temperature regimes. At high temperatures, the correlation function for two spins located at two
different sites of the lattice is exponentially decreasing with the distance between the two sites, while
at low temperatures one gets a power dependence. In terms of the Coulomb gas this is interpreted
as a transition between a plasma phase at high temperatures and a neutral gas with coupled charges
at low temperatures, where the effect of vortices can be neglected. The critical temperature can
be evaluated as the temperature for which vortices are no more negligible. This gives 2kBTc = πJ
(renormalization group analysis have also been performed and gives as a result the RG flow of the
sine–Gordon model, that I will shortly sketch in section 1.2).

The equivalence with the sine–Gordon theory is derived by rewriting the partition function (1.1.1)
on the dual lattice in the continuous limit a→ 0 (integrating over the angular spin variables)

ZV =
∑
n

f2n

(2n)!

∫
Dφ exp

{
−
∫

d2x

[
1

2
∂μφ(x)∂μφ(x)

]}
∫

d2x
[
e2iπ

√
Kφ(x) + e−2iπ

√
Kφ(x)

]2n
(1.1.2)

Here φ(x) is the continuous limit of the dual lattice variables and f ≡ e
−πK log a

r0 represents the
fugacity of vortices in the Coulomb gas language (r0 regulates the UV). Identifying the sine–Gordon
coupling constants by

β = 2π
√
K , γ = 2f = 2e

−πK log a
r0 (1.1.3)

one obtains the exact (euclidean) sine–Gordon partition function once summed over n in (1.1.2)

ZSG =

∫
Dφ exp

{
−
∫

d2x

[
1

2
∂μφ(x)∂μφ(x)− γ cos βφ(x)

]}
(1.1.4)

The critical point for the temperature phase transition is thus translated for the sine–Gordon
parameters to β2 = 8π. In the short overview of the renormalization results of section 1.2 it will be
clear indeed why this phase transition occurs in the quantum field theory.
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1.1. Sine–Gordon and relations to other models

1.1.2 Massive Thirring model and bosonization

A second interesting duality relates the massive Thirring model to sine–Gordon via bosonization.
Bosonization acts by means of an integration over the fermionic fields in the Thirring partition
function, leaving as a result a path integral over a scalar field, which becomes the sine–Gordon field
[30, 78, 79]. Explicitly, the partition function for the massive Thirring lagrangian

LMT = ψ̄ (iγμ∂μ −m)ψ − gMT

2
ψ̄γμψψ̄γμψ (1.1.5)

cab be put in the following form (up to an overall normalization coefficient and gauge fixing)

Z =

∫
DφDAμDφΔ [∂A] exp

{
LMT + iψ̄γμψAμ +

1

2
φεμνFμν

}
(1.1.6)

The Lagrange multiplier φ has been introduced imposing a null gauge for the U(1) field strength Fμν

associated to the gauge field Aμ coupled to the fermions. The Faddeev–Popov determinant is given
by Δ [∂A] =

∏
x,t δ [∂μAμ(x, t)]. Fixing the residue gauge to be Aμ = 0, (1.1.6) becomes the partition

function for the Thirring model.
Roughly1 performing in the first place the integration over the fermions, then over the gauge

fields, one obtains — disregarding for the moment the mass term — that the partition function
(1.1.6) corresponds the the bosonic theory governed by the lagrangian

L =
1

2
∂μφ∂μφ (1.1.7)

(φ has been rescaled to φ/
√
π + g2

MT ).

The mass term contribution to the bosonic theory is computed exploiting the properties of chiral
symmetry breaking. In order to cancel the chiral anomaly when no mass is present one has to impose
that the scalar field φ transforms under infinitesimal chiral transformations ψL → eiαψL, ψR →
e−iαψR, parametrized by α as φ → φ + α

π . Obviously, the mass term mψ̄ψ = m
(
ψ̄RψL + ψ̄LψR

) ≡
m
(M[φ] +M†[φ]

)
breaks chiral symmetry explicitly. Its transformation rules give a direct evaluation

of the term appearing in the bosonic lagrangian M[φ] and M†[φ] once integrated over fermions. In
fact, one gets the following equations

M
[
φ+

α

π

]
= e−2iαM [φ] , M†

[
φ+

α

π

]
= e2iαM† [φ] (1.1.8)

yielding M[φ] ∝ e−2iπφ and M†[φ] ∝ e2iπφ. The mass term thus gives a cosine potential for the
rescaled field φ.

Putting all together, the bosonic theory is a sine–Gordon

LSG =
1

2
∂μφ∂μφ− γ cosβφ (1.1.9)

where γ = Cm (C is a constant) and β = 2π√
π+g2

MT

. From the expression for β it is clear that

bosonization is a strong/weak coupling duality.

1The complete calculation needs the introduction of an additional vector field hμ that appears quadratically in the
action coupled to the U(1) current, whose integration immediately gives (1.1.6). To be more precise the Thirring
lagrangian without mass term is rewritten as LT = iψ̄γμ∂μψ − 1

2
hμhμ + igMTh

μψ̄γμψ.
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1. Integrable systems and the sine-Gordon model

1.2 Sine–Gordon at classical and quantum level

I will briefly mention some important characteristics of the sine–Gordon model. In particular, in
the next subsection I will derive the classical action from the equations of motion that one obtains
using the bicomplex formalism. Following [59], this ensures the integrability of the theory. It will be
the starting point for the noncommutative generalizations constructed and studied in [63, 46]. The
reduction from self–dual Yang–Mills is also outlined in subsection 1.2.1, while quantum properties
are described in subsection 1.2.2. Finally, subsection 1.2.3 contains some general remarks on the
S–matrix.

1.2.1 Gauging the bicomplex

The bicomplex technique guarantees to supply the theory, whose equations of motion can be derived
from a matrix valued equation, with an infinite number of local conserved currents. Hence it offers
a systematic method to build integrable field theories. Since this procedure acts at the level of the
equations of motion it is not assured that an action can be found.

In two euclidean dimensions the bicomplex technique is illustrated as follows. Space is spanned
by complex coordinates

z =
1√
2
(x0 + ix1) , z̄ =

1√
2
(x0 − ix1) (1.2.1)

The bicomplex is a triple (M,d, δ) where M = ⊗r≥0Mr is an N0–graded associative (not necessarily
commutative) algebra, M0 is the algebra of functions on R

2 and d, δ : Mr → Mr+1 are two linear
maps satisfying the conditions d2 = δ2 = {d, δ} = 0. Mr is therefore a space of r–forms. The linear
equation characterizing the bicomplex is

δξ = λdξ (1.2.2)

where λ is a real parameter and ξ ∈ Ms for a given s. If a non trivial solution ξ̃ exists, we wish to
expand it in powers of the parameter λ as

ξ̃ =

∞∑
i=0

λiξ(i) (1.2.3)

The components ξ(i) ∈Ms are then related by an infinite set of linear equations

δξ(0) = 0

δξ(i) = dξ(i−1) , i ≥ 1 (1.2.4)

which give us the desired chain of δ–closed and δ–exact forms

Ξ(i+1) ≡ dξ(i) = δξ(i+1) , i ≥ 0 (1.2.5)

We remark that for the chain not to be trivial ξ(0) must not be δ–exact. Now, the equations of motion
of the theory should come from the conditions d2 = δ2 = {d, δ} = 0. When the two differential maps
d and δ are defined in terms of ordinary derivatives in R

2, these conditions are trivial and the chain
of conserved currents (1.2.4) is not associated to any second order differential equation.
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1.2. Sine–Gordon at classical and quantum level

To have non trivial equations the bicomplex must be gauged. The procedure gets modified by
introducing a connection such that

Dd = d +A , Dδ = δ +B (1.2.6)

The flatness conditions now amount to D2
d = D2

δ = {Dd,Dδ} = 0 and are non trivial. In fact, the
gauged bicomplex provides the differential equations

F(A) ≡ dA+A2 = 0
F(B) ≡ δB +B2 = 0
G(A,B) ≡ dB + δA + {A,B} = 0 (1.2.7)

In analogy to the trivial set–up, the theory is equipped with an infinite number of conserved currents
originating from the solution to the linear differential equation

Dξ ≡ (Dδ − λDd)ξ = 0 (1.2.8)

The nonlinear equations (1.2.7) play the role of the compatibility conditions for (1.2.8)

0 = D2ξ =
[F(B) + λ2F(A)− λG(A,B)

]
ξ (1.2.9)

A solution ξ̃ ∈Ms to (1.2.8) can be expanded as ξ̃ =
∑∞

i=0 λ
iξ(i), giving as a consequence the possibly

infinite chain of relations

Dδξ
(0) = 0

Dδξ
(i) = Ddξ

(i−1) , i ≥ 1 (1.2.10)

In analogy to (1.2.5), the Dδ–closed and Dδ–exact forms Ξ(i) can be constructed when ξ(0) is not
Dδ–exact.

For suitable connections A and B we obtain an infinite number of local2

Sine–Gordon from gauged bicomplex

We define the elements of the bicomplex to be M = M0⊗Λ, where M0 is the space of 2×2 matrices
with entries in the algebra of smooth functions on ordinary R

2 and Λ = ⊗2
i=0Λ

i is a two dimensional
graded vector space. We call the Λ1 basis (τ, σ) and impose τ2 = σ2 = {τ, σ} = 0. Finally, we define
the non gauged differential maps

δξ = ∂̄ξτ −Rξσ , dξ = −Sfτ + ∂ξσ (1.2.11)

in terms of the commuting constant matrices R and S. The flatness conditions d2 = δ2 = {d, δ} = 0
are trivially satisfied in this case. But when gauging the bicomplex — dressing the d map —

Dξ ≡ G−1d(Gξ) (1.2.12)

2The ξ(i) currents may in general not be local functions of the coordinates. However it is possible to define local
conserved currents in terms of the ξ(i) which will have physical meaning.

7



1. Integrable systems and the sine-Gordon model

by means of a generic invertible matrix G ∈ M0, the condition D2 = 0 is trivially satisfied, while
{δ,D} = 0 yields the nontrivial second order differential equation

∂̄
(
G−1∂G

)
=
[
R,G−1SG

]
(1.2.13)

In order to specify to the sine–Gordon equation, we choose R,S to be

R = S =
√
γ
(0 0
0 1

)
(1.2.14)

and G ∈ SU(2) as

G = e
ı
2
σ2φ =

(
cos φ

2 sin φ
2

− sin φ
2 cos φ

2

)
(1.2.15)

The sine-Gordon equation then follows from the off–diagonal part of the matrix equation (1.2.13)

∂̄∂φ = γ sinφ (1.2.16)

while the diagonal part gives a trivially satisfied identity.

The bicomplex approach is straightforward generalizable to noncommutative geometry, inducing
noncommutative equations of motion for the theory under exam — sine–Gordon for our purposes.
We note that deriving the action is a non trivial calculation. In [63] we constructed such an action
starting from the deformed equations of motion obtained by generalizing the bicomplex with the
introduction of the noncommutative �–product Dd = d+A� and Dδ = δ+B�. This will be explained
in chapter 3. Moreover, noncommutativity implies an extension of the SU(2) symmetry group, which
is no longer closed. It will be necessary to consider U(2), rather that SU(2), leading to an extra U(1)
factor. The extension of the symmetry group must be carried carefully, as we have shown in [46] (see
chapter 4).

From self–dual Yang–Mills to sine–Gordon

Self–dual Yang–Mills was conjectured by Ward to give origin to all integrable equations in two di-
mensions via dimensional reduction. The conjecture has been tested over the last years for the most
important known integrable systems. Indeed, sine–Gordon can be obtained both from euclidean (R4)
and kleinian (R(2,2)) signature for the four dimensional Yang–Mills equations. In the first case the
dimensional reduction leads to euclidean sine–Gordon, while in the second one gets minkowskian
signature for the two dimensional metric.

Self–dual Yang–Mills in short Let me summarize the relation between the Yang–Mills self–
duality equations and the associated matrix valued equation. Four dimensional Yang–Mills theory
with signature (+ + −−) has a stringy origin since it describes N = 2 strings, which indeed live
in a real (2 + 2)–dimensional target space [9]. Self-duality of Yang–Mills models in R

4 or R
(2,2) is

expressed by the following equation [70]

1

2
εμνρσF

ρσ = Fμν (1.2.17)
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1.2. Sine–Gordon at classical and quantum level

where Fμν is the field strength of the Aμ gauge field Fμν = ∂μAν−∂νAμ +[Aμ, Aν ]. Equation (1.2.17)
is integrable. In fact, taking for instance the gauge group to be SU(N), the self–duality equation can
be rewritten in terms of complex coordinates y, ȳ, z, z̄ in four dimensions performing an analytical
continuation on Aμ

Fyz = Fȳz̄ = 0 , Fyȳ ± Fzz̄ = 0 (1.2.18)

The sign in the second equation depends on the signature of the metric, being + is the euclidean case
and − in the kleinian case. The zero value for the mixed yz and ȳz̄ components of the field strength
makes the fields Ay, Az (for fixed ȳ and z̄) and Aȳ, Az̄ (for fixed y and z) pure gauges. Gauge fields
may thus be expressed in terms of two N ×N complex matrices B and B̄

Ay = B−1∂yB , Az = B−1∂zB
Aȳ = B̄−1∂ȳB̄ , Az̄ = B̄−1∂z̄B̄ (1.2.19)

Finally, the Yang formulation of Yang–Mills theory in light–cone gauge is obtained defining a complex
N ×N matrix J = BB̄−1. In terms of J the self–duality equations read

∂ȳ(J
−1∂yJ)± ∂z̄(J

−1∂zJ) = 0 (1.2.20)

The action whose variation leads to such equations of motion is

S =

∫
d2yd2z tr(∂yJ∂ȳJ

−1)−
∫

d2yd2z

∫ 1

0
dρ tr

(
Ĵ−1∂ρĴ [Ĵ−1∂ȳĴ , Ĵ

−1∂yĴ ]
)

+

∫
d2yd2z tr(∂zJ∂z̄J

−1)−
∫

d2yd2z

∫ 1

0
dρ tr

(
Ĵ−1∂ρĴ [Ĵ−1∂z̄Ĵ , Ĵ

−1∂zĴ ]
)

(1.2.21)

where Ĵ(y, ȳ, z, z̄, ρ) is a homotopy path satisfying Ĵ(ρ = 0) = 1 and Ĵ(ρ = 1) = J .

A Leznov formulation [71] of the same equations (1.2.18) has also been derived. It corresponds
to a different choice of light–cone gauge and is ruled by a cubic action in terms of an algebra valued
field. I will tell more about this formulation in its noncommutative version in the reduction procedure
through the three dimensional modified non linear sigma model in chapter 4. It is interesting to note
that Yang–Mills in the Leznov gauge completely describes N = 2 strings at tree level, while Yang
formulation is related to the zero instanton sector of the same theory [48].

Through dimensional reduction The dimensional reduction from four dimensional self–dual
Yang–Mills in order to get two dimensional integrable theories must satisfy a requirement about group
invariance. More precisely, the theory must be invariant under any arbitrary subgroup of the group
of conformal transformations in four dimensional space–time. The dependence on the disregarded
coordinates is eliminated through an algebraic constraint on the arbitrary matrices involved in the
reduction.

As I anticipated, sine–Gordon equations of motion, both in their euclidean and lorentzian version,
can arise from the self–duality equations of Yang–Mills theory in four dimensions. It is not trivial
that the action of the bidimensional models in general can be obtained from the Yang–Mills action
via the dimensional reduction operated at the level of the equations of motion (as an example we will
discuss two different cases in the noncommutative generalizations, in chapters 3 and 4).
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1. Integrable systems and the sine-Gordon model

Euclidean sine–Gordon comes from the euclidean version of Yang equation (1.2.20) when the B
and B̄ matrices are chosen to be

B = e
z
2
σ1ei φ

2
σ3 , B̄ = e

z̄
2
σ1 (1.2.22)

where φ = φ(y, ȳ). In fact, it immediately turns out that the field φ satisfies (1.2.16) with 4γ = −1.

Kleinian self–dual Yang-Mills equations instead lead to lorentzian sine–Gordon through a two–
step reduction procedure. Yang equation (1.2.20) is required to have no dependence on one of the
real coordinates xi, i = 1, 2, 3, 4, let’s say x4. This first step brings to the (2 + 1)–dimensional sigma
model equations

(ημν + Vαε
αμν)∂μ(J−1∂νJ) = 0 (1.2.23)

with Vα defined to be a constant vector in space–time. Non zero Vα implies the breaking of Lorentz
invariance but guarantees integrability if it is chosen to be a space–like vector with unit length
(nonlinear sigma models in (2 + 1) dimensions can be either Lorentz invariant or integrable but
cannot share both these properties [69]). Once we fix the value for Vα as Vα = (0, 1, 0), the second
step consists in performing a reduction on the matrix J [18] factorizing the dependence on the third
coordinate x ≡ x3

J =

(
cos φ

2 e−
i
2
x sin φ

2

−e
i
2
x sin φ

2 cos φ
2

)
∈ SU(2) (1.2.24)

Here φ is a function of two coordinates only φ = φ(t, y), t ≡ x1, y ≡ x2 (not to be confused with the
complex coordinates y, ȳ) with different signature. The field φ satisfies the sine–Gordon equations of
motion in (1 + 1) dimensions.

1.2.2 Quantum properties of ordinary sine–Gordon

We already expect from the discussion about the XY model and its relation to sine–Gordon to get
a phase transition for the critical value of the β coupling constant β2 = 8π. However, this estimate
is naive, since it doesn’t take account of the running of the β coupling. The sine–Gordon theory
undergoes a change of regime from super–renormalizability, for β < 8π, to non–renormalizability, for
β ≥ 8π. In the non–renormalizable regime, the theory may still be finite pertubatively in δ ≡ β2−8π,
but the renormalization of δ (or β equivalently) is needed in addition to γ renormalization (the
lagrangian of the theory is precisely given by (1.1.9)).

Super–renormalizability regime: renormalizing γ Renormalization in the β2 < 8π regime
has to cure divergences which only come from tadpoles with multiple legs (multitadpoles). The value
of such Feynmann diagrams is the same for any arbitrary number of external legs (more precisely,
the coefficient depending on the number M of external propagators factors out for every M). The
implication of this feature is that all correlation functions can be renormalized at the same time.
Moreover, the series over N of (IR and UV) regulated multitadpoles with N internal propagators

(N tadpoles) sums to an exponential (up to overall factors) ∝ exp
{

β2

8π log m2

Λ2

}
, where m and Λ are

respectively the IR and UV cutoff. Renormalization of γ alone is thus needed and amounts to define
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1.2. Sine–Gordon at classical and quantum level

the renormalized coupling constant at a scale μ according to

γR = μ−2γ

(
μ2

Λ2

)β2

8π

(1.2.25)

at all orders in β.

The renormalization group flow driven from the beta–function βγ = 2γR

(
β2

8π − 1
)

displays UV

fixed points for β2 < 8π and would have IR fixed points in the β2 > 8π regime (this will hold in the
β2 � 8π analysis). Trajectories in the γR/β

2 phase space are straight lines parallel to the γR axe,
since β doesn’t get renormalized in this regime.

Non–renormalizability regime: renormalizing β New divergences appear in the non–renor-
malizability regime. They emerge in the two vertices correlation functions, i.e. in the γ second
order contribution to the effective action. Individual Feynmann diagrams are convergent, but their
sum over all orders in the β (or field) expansion diverges. The divergence has a different nature
distinguishing the two super– or non–renormalizable phases: it is IR for β2 < 8π and turns to
UV for larger values of β2, β2 > 8π (the critical value β2 = 8π gives logarithmical UV divergences).
Renormalization of the β coupling constant is needed. We consider to be in the proximity of the naive
critical point δ ≡ β2 − 8π 	 0. The renormalized coupling constants (and renormalized field — since
β renormalization also implies field φ renormalization not to get the cosine potential renormalized)
read

γR = Z−1
γ μ−2γ ⇒ Zγ =

(
Λ2

μ2

)β2

8π

φR = Z
−1/2
φ φ , βR = Z

1/2
φ β ⇒ Zφ = 1− π

2
β2γ2 log

Λ2

μ2
(1.2.26)

The renormalization group flow equations are obtained from the beta–functions βγ = 2γδ and
βδ = 8π2γ2. Noting that κ2 ≡ δ2 − γ2 is a RG invariant, we can divide the RG phase space 2πγR/δR
according to the sing of κ. For κ > 0 (κ < 0) one gets IR (UV) fixed points where the theory
becomes asymptotically free, but in opposition to the super–renormalizability analysis trajectories
are hyperboloids with axes κ2 = 0. For imaginary κ, κ2 < 0, the hyperbolic trajectories intersect the
γ axe and flow to large negative δ in the IR.

The transition from dipole to plasma phase happens at γ = δ (intersected with the equation
giving δ in terms of γ in the XY model of section 1.1.1). For γ < δ (dielectric) the trajectories go
towards the region of validity of our small δ approximation, while for γ > δ (conductor) they rapidly
flow away.

1.2.3 The S–matrix and its features for 2D integrable theories

Here I make some comments on the S–matrix of integrable two dimensional theories and in particular
of the sine–Gordon model.
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1. Integrable systems and the sine-Gordon model

The theorem: integrability vs. factorization It is important to note that the property of
integrability for a system in two dimensions is equivalent to the property of factorization of the
S–matrix. More in detail, if a theory possesses an infinite number of local conserved currents —
and hence an infinite number of conserved charges that must be components of Lorentz tensors of
increasing rank — it follows that the S–matrix is constrained to be elastic and factorized in two
particle scattering [11, 10]. The number of particles involved in a process with given mass and
momentum is thus always conserved and all processes can be described only by some number of two
particle scattering, i.e. no production or annihilation occurs. Moreover the two particle S–matrix is
associated to a cubic equation. the solution to this cubic equation can give in most cases the exact
form of the S–matrix. For example this is the case for the sine–Gordon theory.

It is worthwhile to note some unavoidable restrictions that must be applied to the integrable theory
in order to prove the integrability vs. factorization theorem just stated. This restrictions play an
important role in the generalization to noncommutative geometry, since they fail in noncommutative
theories. Precisely, we must have locality and unitarity in the theory. Both these two properties are
typically absent in noncommutative generalizations of quantum field theories, as I will point out in
subsection 2.3.4. So, we don’t expect the theorem on integrable two dimensional models to be valid
in general. Indeed, I will show two noncommutative examples: the first [63] gives a non factorized S–
matrix at tree level, non vanishing production processes and acausality while the second [46] displays
nice properties such as factorization, absence of production, causality.

1.3 Generalities on solitons

I now move to illustrate a very peculiar and useful characteristic of integrable models: the solitonic
solutions. Solitons are widely studied in literature (see [11] for a review). They are defined as
localized solutions of the non linear equations of motion carrying a finite amount of energy. They
were originally thought of as a kind of solitonic wave that doesn’t change shape and velocity in time
or after scattering processes with other such waves. Since at infinity they have to approach a constant
value labeled by an integer φsol

x→±∞∼ 2πn±, they come along with an associated (integer) topological
charge defined by

Qsol =
1

2π

∫ +∞

−∞
dx

∂φsol

∂x
= n+ − n− (1.3.1)

Topological charges Qsol of ±1 are associated the the simplest solutions: one–(anti)soliton.
For the ordinary euclidean sine–Gordon system such a classical solutions of the equations of motion

is known to be

φsol(x
0, x1) = 4 arctan e

√
2γ

x1−x1
0−ivx0

√
1−v2 = −φantisol(x

0, x1) (1.3.2)

where v is the velocity parameter of the soliton and γ is the sine–Gordon coupling constant.

Dressing the solitons Multi–soliton solutions can be constructed using a recursive procedure that
I will refer to as the dressing method [72], inspired by the original work by Belavin and Zakharov [13].
Babelon and Bernard worked out multi–soliton solutions recursively from the one–soliton [12]. In our
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1.3. Generalities on solitons

paper [46] sine–Gordon noncommutative solitons are obtained by reduction from self–dual Yang–
Mills and (2 + 1)–dimensional sigma model. Since most of the known integrable theories descend
from self–dual Yang–Mills, as I already pointed out, I will briefly mention the procedure for deriving
its multi–soliton solutions.

The key observation is that self–duality equations (1.2.17) can be interpreted as the integrability
conditions of a linear system containing the spectral parameter ζ ∈ CP

1 (in complex coordinates)(
D̄1 − ζD2

)
ψ = 0 ,

(
D̄2 − ζD1

)
ψ = 0 , ∂̄ζψ = 0 (1.3.3)

Covariant derivatives are defined as Di = ∂i +Ai (and analogously for D̄i) where Ai are the complex
gauge fields A1 = 1

2 (Ax1 − iAx2), A2 = 1
2 (Ax3 − iAx4) and their complex conjugate Ā1, Ā2, follows

from the definition. Equations (1.3.3) must be solved for the arbitrary field ψ. Gauge fields are then
deduced by reverting (1.3.3) as

Ā1 − ζA2 = ψ
(
∂̄1 − ζ∂2

)
ψ−1 , Ā2 − ζA1 = ψ

(
∂̄2 − ζ∂1

)
ψ−1 (1.3.4)

and imposing the reality condition on ψ

ψ−1(x, ζ) =
[
ψ
(
x,−ζ̄−1

)]†
(1.3.5)

This comes from noticing that
{[
ψ
(
x,−ζ̄−1

)]†}−1
also solves equations (1.3.3). The field ψ is

assumed to be meromorphic in the spectral parameter ζ, so that it solves (1.3.4) only if the residues
vanish. In fact, the l.h.s. of (1.3.4) is linear in ζ since the gauge fields are ζ–independent. Hence no
poles exist. The requirement of vanishing residues allows to calculate simple soliton solutions for Ai

and Āi [13] such as the BPST one–instanton [14].
The dressing procedure generates new solutions ψ to (1.3.3) from a known solution ψ̃, multiplying

it by a dressing factor χ on the left ψ(x, ζ) = χ(x, ζ)ψ̃(x, ζ). The factor χ is a function of the complex
coordinates. Being meromorphic in ζ, it can be expanded as 3

χ = ζR−1 +R0 +

r∑
i=1

Ri

μiζ + νi
(1.3.6)

where Rn are some ζ–independent complex matrices. Equations (1.3.4) written in terms of the
dressing factor read

χ
(

˜̄
1D − ζD̃2

)
χ† = Ā1 − ζA2 , χ

(
˜̄
2D − ζD̃1

)
χ† = Ā2 − ζA1 (1.3.7)

where covariant derivatives are though in terms of the old Ãi,
˜̄

iA gauge fields. Again, since Ai, Āi are
ζ–independent, the solutions to (1.3.7) are found imposing zero value for all the residues associated
to the poles appearing in χ (1.3.6). This yields a set of differential equations for the ζ–independent
coefficients R−1, R0 and Ri for i = 1, . . . , r. In turn, using (1.3.7) and substituting the derived
expression for χ, we get a set of differential equations for the new solutions Ai and Āi.

Specific multi–soliton solutions for self–dual Yang–Mills were constructed in [13], while solutions
by dressing method for noncommutative self–dual Yang–Mills are described in (1 + 1)–dimensional
NC sine–Gordon multi–solitons from (2 + 1)–dimensional NC sigma model solutions, which is itself
derived by dimensional reduction from (2 + 2)–dimensional self–dual Yang–Mills.

3Here I use the notations of [15].
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Chapter 2

Basics and origins of noncommutative
field theories

The aim of this chapter is to motivate and introduce the study of noncommutative geometry and
noncommutative field theories. The interest in noncommutativity has grown over the years thanks
to the important improvements in understanding string theories and the consequent emergence of
noncommutative backgrounds in its context. Some examples of space–time coordinate noncommu-
tativity originating from string theory will be mentioned in subsection 2.2.2. Nonetheless, there
exists a famous example of quantum mechanics which already introduces noncommutativity relations
among coordinates: the quantum Hall effect, which I will sketch in subsection 2.2.1. Even earlier,
motivations to noncommutative geometry applied to quantum field theories were adopted, such as
the novelty of an intrinsic UV cutoff furnished to the theory, due to the noncommutation relations
among space coordinates. However, the intrinsic cutoff doesn’t seem to give better renormalization
results in comparison to the usual regularization schemes. In addition it shows a typical feature in
noncommutative theories mixing UV with IR divergences, in such a way that the two high and low
energy limits don’t commute (more about this will be discussed together with the main common
problems and properties of NC field theories in subsection 2.3.4).

Noncommutative geometry formalism has hence been developed for more than twenty years [19, 2]
and has been recently understood in terms of strings and branes [47]. Extensive studies have since
then been performed on noncommutative generalization of quantum field theories. The fundamental
relation characterizing noncommutative geometry is the non vanishing commutator

[xμ, xν ] = iθμν

which is determined by the noncommutativity (antisymmetric) parameter θμν (the constant value
of θμν will be justified in the next section). How an algebra of functions (fields) can be defined in
noncommutative geometry is the subject of the next section, while concrete construction of NC FT
are discussed in section 2.3 and, in particular, integrable NC deformations are described in the last
section.
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2. Basics and origins of noncommutative field theories

2.1 Weyl formalism and Moyal product

Non vanishing commutation relation among coordinates remind of the quantum phase space for
particles, which is described by a non trivial commutator between momenta and positions[

x̂i, p̂j

]
= i�δi

j[
x̂i, x̂j

]
= [p̂i, p̂j ] = 0 (2.1.1)

In the same way as the quantum mechanics commutators imply the well–known uncertainty principle
Δx̂iΔp̂j ≥ �

2 δ
i
j , the noncommutative geometry coordinate algebra

[x̂μ, x̂ν ] = iθμν (2.1.2)

— generally time/space noncommutativity θ0i �= 0 can be considered and related problems will be
illustrated in section 2.3.4 — gives rise to the space–time uncertainty relations

Δx̂μΔx̂ν ≥ 1

2
|θμν | (2.1.3)

Hence, at distances lower that the order of the noncommutativity parameter
√|θμν |, ordinary geom-

etry can no longer be used to describe space–time. In fact there are reasons to believe that at very
short distances (i.e. shorter than the Planck length) known geometry should be replaced by some
new physics, since quantum effects of gravity could arise. When the NC parameter vanishes, ordinary
geometry is recovered.

The parallel between quantum mechanics phase space and noncommutative geometry can be
pushed further. Analogously to the correspondence between functions of the phase space variables
xi, pj and the associated operators expressed in terms of the quantum momentum and position oper-
ators x̂i, p̂j , one can construct a map going from the commutative algebra of functions over R

d (where
a noncommutative product is implemented) to the noncommutative algebra of operators generated
by the coordinate operators obeying to (2.1.2). This is formally achieved by the Weyl transform.

2.1.1 Moyal product arising from Weyl transform

The case of my interest is two dimensional space with variables x1, x2 associated to noncommuting
operators x̂1, x̂2 that satisfy

[
x̂1, x̂2

]
= iθ12 with constant θ12 ≡ θ. The Weyl transform associates an

operator Ŵf (x̂1, x̂2) to a function f(x1, x2) of the coordinates — provided with the usual pointwise

product. The Weyl operator Ŵf (x̂1, x̂2) is defined via the Fourier transform of the function f

Ŵf (x̂1, x̂2) =

∫
d2x

(2π)2
f̃(k1, k2) eikix̂

i
=

∫
d2xf(x1, x2)Δ̂(x1, x2) (2.1.4)

where the Fourier transform is as usual

f̃(k1, k2) =

∫
d2x eikix

i
f(x1, x2) (2.1.5)

The map Δ̂ is hermitian and equal to

Δ̂(x1, x2) =

∫
d2k

(2π)2
eikix̂i

e−ikixi
(2.1.6)
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2.1. Weyl formalism and Moyal product

It is interpreted as a mixed basis for operators and fields on the two dimensional space. Moreover, it
reduces to Δ̂0(x) = δ2(x̂−x) when commutativity is restored θ → 0. The trace of the Weyl operator
gives an integral of the associated function over the space

tr
[
Ŵf (x̂1, x̂2)

]
=

∫
d2x f(x1, x2) (2.1.7)

if we normalize tr Δ̂(x) = 1. From the trace normalization

tr
[
Δ̂(x1, x2)Δ̂(y1, y2)

]
= δ(2)(x− y) (2.1.8)

and the product of two maps Δ̂ (the Baker–Campbell–Hausdorff formula should be used) we can
deduce that the map between functions f(x1, x2) and operators Ŵf (x̂1, x̂2) via Δ̂(x1, x2) is invert-
ible and represents a one–to–one correspondence between Weyl operators and Wigner distribution
functions. Indeed, these functions are obtained by means of the following inverted relation

f(x1, x2) = tr
[
Ŵf (x̂1, x̂2)Δ̂(x1, x2)

]
(2.1.9)

A noncommutative product among functions belonging to the commutative algebra is introduced
as the image via the inverse Δ̂ map of the product of Weyl operators. In fact, using the expression
for the product of two Δ̂ operators

Δ̂(x1, x2)Δ̂(y1, y2) =
1

π2|det θ|
∫

d2zΔ̂(z1, z2) e
−2i(θ−1)

ij
(x−z)i(y−z)j

(2.1.10)

it follows that

tr
[
Ŵf (x̂)Ŵg(x̂)Δ̂(x)

]
=

1

π2|det θ|
∫

d2yd2z f(y)g(z)e
−2i(θ−1)

ij
(x−y)i(y−z)j

(2.1.11)

The product between two Weyl operators is thus mapped to a noncommutative product between
functions

Ŵf (x̂1, x̂2)Ŵg(x̂
1, x̂2) = Ŵfg(x̂

1, x̂2) (2.1.12)

where the noncommutative �–product is defined by

(f � g) (x) = e
i
2
θij∂i∂′j f(x)g(x′)

∣∣∣∣
x=x′

= f(x)e
i
2

←−
∂ iθ

ij−→∂ jg(x) (2.1.13)

Obviously, the usual product is recovered in (2.1.13) when θ → 0. For n functions the �–product
formula is straightforward generalized to

f1(x1) � · · · � fn(xn) =
∏
a<b

e
i
2
θij∂

xi
a
∂

xj−bf1(x1) · · · fn(xn) (2.1.14)

We note that the commutator of the commutative algebra, evaluated substituting the �–product to
the usual one, reproduces the quantum commutation relation of the noncommutative operator algebra

[xi, xj ] = iθij (2.1.15)

The Weyl transform is extendible to any number of space–time dimensions and may also be generalized
to more complicated quantized algebras where the x̂i’s commutators are not only c–numbers [6].
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2. Basics and origins of noncommutative field theories

Properties �–product There are three main properties of �–product, which are fundamental for
perturbative calculations in noncommutative field theories.

(i) Associativity remains a property of this noncommutative product. In fact, the �–product de-
fined in (2.1.13) is a special example of the associative products that arise in the deformation
quantization [20]. The deformation of an algebra is defined by a formal power series expan-
sion in the deformation parameter λ, such that the λ0 order restores the algebra itself. The
multiplication rule between elements of the algebra f, g is defined as

f �λ g = fg +
∞∑

n=1

λnCn(f, g) (2.1.16)

Equality (2.1.13) hence defines a unique deformation of the algebra of function to a noncom-
mutative associative algebra (up to local redefinitions of the elements of the algebra), since it
can be rewritten in the following form

f � g = fg +

∞∑
n=1

(
i

2

)n 1

n!
θi1j1 · · · θinjn∂i1 · · · ∂inf(x) ∂j1 · · · ∂jng(x) (2.1.17)

I will further discuss algebra deformations in the next subsection.

(ii) The �–product is closed under complex conjugation. For complex valued functions we get
(f � g)∗ = g∗ � f∗.

(iii) Ciclic invariance under integration is a very important property of �–product, which directly
comes from the ciclicity of trace of Weyl operators∫

d2xf1 � · · · � fn = tr
[
Ŵf1 · · · Ŵfn

]
(2.1.18)

In particular, the �–product of two functions is equivalent to the usual product when integrated.

2.1.2 Moyal product defined by translation covariance and associativity

As I mentioned above, the �–product appearing in the Weyl formalism can be interpreted as coming
from a special algebra deformation where the product (2.1.16) is defined by the Poisson bracket of
functions. I will now formulate in a more rigorous way how the �–product we chose can be uniquely
derived by imposing the properties of associativity and translation invariance to a Poisson structure
product over a generic manifold M.

The manifold M is endowed with a Poisson structure P if for any two functions f, g ∈ A in the
algebra A (in general a C∗–algebra) defined over M we specify the Poisson bracket

P (f, g) = {f, g}P = Pμν∇μ∇′νf(x)g(x′)
∣∣∣∣
x=x′

= f
←−∇μP

μν−→∇νg (2.1.19)

A generic product on M is then defined through the derivatives ∇μ defined on the manifold itself
(with vanishing torsion and curvature) by

f �λ g =

∞∑
n=0

λr an

n!
Pn(f, g) (2.1.20)
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2.1. Weyl formalism and Moyal product

where the coefficients a0 and a1 must be chosen to be a0 = a1 = 1 and

Pn(f, g) = Pμ1ν1 · · ·Pμnνn∇μ1 . . .∇μnf∇ν1 . . .∇νng (2.1.21)

Comparing (2.1.20) to (2.1.16) we can immediately relate the deformation coefficients Cn(f, g) to the
Poisson structure P (f, g) by Cn(f, g) = an

n! P
n(f, g). A necessary hypothesis on P in order to have

associativity for the Moyal product (2.1.20) is ∇μP = 0, i.e. the Poisson structure must be constant.
However this is not the only constraint that associativity implies. The property

(f � g) � h = f � (g � h) (2.1.22)

gives order by order equations for the coefficients an. As a result, we get that all the an must be
equal to an = 1. It is essential for the Poisson structure to be constant and for the derivatives to
be curvature and torsion free. If any of these assumptions on P and ∇μ is dropped, the Moyal
product defined by (2.1.20) is no longer associative and (2.1.22) doesn’t hold anymore. We can see
the complete analogy with the �–product of (2.1.13) by rewriting (2.1.20). Substituing the results
from associativity constraints, we obtain

f �λ g = feλ
←−∇μP μν−→∇νg (2.1.23)

Moreover, if M is flat with coordinates xμ and ∇μ are ordinary derivatives, the Moyal commutator
between coordinates exactly gives

[xμ, xν ]λ
= 2λPμν . (2.1.24)

Renaming 2λPμν = iθμν we obtain our �–product (2.1.13) and the Moyal brackets (2.1.15).

Poicaré invariance A constant value for the Poisson structure is not only necessary for Moyal
product to be associative but also for translations to be symmetries of the theory defined by the
Moyal deformation (i.e. substituing usual product with the Moyal deformation rule). Let’s impose
Poincaré invariance for a theory of fields over the noncommutative algebra [xμ, xν ] = iθμν(x) including
coordinate dependence (I drop the hat operator symbol to simplify notation). Supposing that the
θμν matrix doesn’t transform, we get that x→ x′ implies

[xμ, xν ] = iθμν(x) −→ [x′μ, x′ν ] = iθμν(x′) (2.1.25)

and not θ′μν(x′). For translations xμ → (xμ + aμ), the commutation relation becomes

[x′μ, x′ν ] = [xμ + aμ, xν + aν ] = [xμ, xν ] (2.1.26)

As a consequence θ must satisfy the constraint

θμν(x+ a) = θμν(x) (2.1.27)

It has to be constant as a local function of the coordinates. I now turn to Lorentz transformations
xμ → Λμ

νxν 1. The commutator changes according to

[x′μ, x′ν ] = [Λμ
ρx

ρ,Λν
σx

σ] = Λμ
ρ [xρ, xσ]Λν

σ (2.1.28)

1This are the particle Lorentz transformation. Observer Lorentz transformations (i.e. static particle in moving
frame) would imply only covariance for the θμν tensor.
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2. Basics and origins of noncommutative field theories

Since generally

Λμ
ρθ

ρσΛν
σ

d>2
�= θμν (2.1.29)

we conclude that Lorentz invariance is not preserved in theories deformed with the noncommutative
�–product (2.1.2). Nevertheless, two dimensional space plays a particular role, since two dimensional
Lorentz transformations represented by the Λμν matrices commute with the antisymmetric θμν and
are both multiples of the Ricci tensor εμν .

2.2 From quantum Hall to strings and branes

As I remarked at the beginning of last section, the main motivation to study field theories in non-
commutative geometry is the natural appearance of noncommutative backgrounds in string theory.
Noncommutative Yang–Mills theory arises in type IIB string theory when a constant NS–NS two form
Bμν is turned on. The commutator of stringy coordinates is analogue to (2.1.2) and the effective ac-
tion constructed from vertex operators contains a �–product with the form (2.1.13) as multiplication
among fields. In the small energy limit, the noncommutative parameter is inversely proportional to
the NS–NS two form θ ∝ B−1. This same relation arises in the analysis of the quantum Hall effect,
where a strong magnetic field B is considered. I will show in the following subsection how noncom-
mutativity emerges in this simple case. The superstring context will be then illustrated in subsection
2.2.2.

2.2.1 Noncommutativity in strong magnetic field

The dynamics of particles of mass m moving on a two dimensional surface in a magnetic field B with
potential Ai = −B

2 εijx
j is governed by the Hamiltonian

H =
1

2m
p
2 (2.2.1)

where p is the physical gauge invariant momentum p = mẋ = p + A (p is the conjugate momentum
to x). The commutation relation for pi’s is immediately derived

[pi,pj ] = iBεij (2.2.2)

Noncommutativity of the coordinates xi’s emerges when the spectrum of the quantum system is
projected over the lowest of Landau levels, which are separated by an energy ΔE ∝ B

m . In the strong
magnetic field limit, p → 0 and the Lagrangian is

L = −B
2
ẋiεijx

j (2.2.3)

From canonical quantum commutation rules [xi, pj ] = iδi
j and using pi = −B

2 εijx
j , we finally obtain

[xi, xj ] =
i

B
εij (2.2.4)

20



2.2. From quantum Hall to strings and branes

which is precisely (2.1.2) in two dimensions with θ = B−1. Since the Hamiltonian vanishes in
the strong magnetic field limit, the theory becomes topological. Moreover, every function of space
coordinates x1, x2 is a function of momenta p1, p2. This dependence is encoded in a phase factor of
the form exp

{
2i
Bkiε

ijpj

}
appearing in the Fourier (anti)transform

f(x) =

∫
d2kf̃(k) e

2i
B

kiε
ijpj (2.2.5)

The analogy with open strings in a constant NS–NS two form field will become clear in the next
subsection.

2.2.2 String backgrounds and noncommutative geometry

Different string theories can lead to different non(anti)commutative deformations of space–time. It is
known that turning on the Neveu–Schwarz B–field in a background with D–branes generally amounts
to a noncommutative deformation of the space–time geometry seen by the open strings ending on the
coincident D–branes. The resulting effective small energy gauge theories living on the branes (N = 4
four dimensional SYM for D3 in IIB strings, for instance) acquire a noncommutative �–product. I will
illustrate a couple of examples of my interest (for applying subsequent dimensional reductions and
obtaining the two dimensional integrable theories examined in my papers) on how the deformation
works. The discussion will mainly follow [47] for bosonic and type IIB strings and [48] for N = 2
superstring theory.

Another non(anti)commutative model arising in string theories is worth being mentioned. In pure
spinor formalism it has been shown that Ramond–Ramond field backgrounds are related to non trivial
anticommutator of fermionic coordinates [7], in analogy to the Neveu–Schwarz–Neveu–Schwarz field,
which is connected to noncommutativity of bosonic coordinates.

A constant B field and noncommutative (S)YM

A famous example of noncommutative field theory emerging in string theory is described in [47]. The
set–up is the bosonic sector of string theory, in ten dimensional flat background given by the metric
gμν , the constant NS–NS two form Bμν and some Dp–branes. The electric B0i �= 0 and magnetic
B0i = 0 cases must be analyzed separately, since an electric B field displays some essential differences
with respect to magnetic backgrounds, in particular in the small energy decoupling limit.

Let us start with a magnetic Bμν . If its rank is equal to r we assume that Bij �= 0 only for
i, j = 1, . . . , r and that the Dp–branes have dimensions p + 1 ≥ r. The metric gij has vanishing
components for i = 1, . . . , r and j �= 1, . . . , r. The string worldsheet action is separated in two
contributions from the worldsheet bulk Σ and boundary ∂Σ

S =
1

4πα′

∫
Σ

(
gμν∂ax

μ∂axν − 2πiα′Bijε
ab∂ax

i∂bx
j
)

=

=
1

4πα′

∫
Σ
gμν∂ax

μ∂axν − i

2

∫
∂Σ
Bijx

i∂tx
j (2.2.6)

Here α′ is as usual related to the string length, ∂t is the tangent derivative w.r.t. the boundary
∂Σ. The boundary term is a consequence of the presence of the Dp–branes and thus modifies the
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2. Basics and origins of noncommutative field theories

boundary conditions for the open strings along the branes

gij∂nx
j + 2πiα′Bij∂tx

j
∣∣
∂Σ

= 0 (2.2.7)

The derivative transverse to the boundary is ∂n and i, j run over directions along the brane. Boundary
conditions (2.2.7) interpolate between the Neumann and Dirichlet ones, for B = 0 and B →∞ with
maximal rank, respectively. In the classical approximation of string theory, we can parametrize Σ by
the complex coordinates z, z̄ as a disc conformally mapped into the upper half plane, with �(z) ≥ 0
and the boundary located at z = z̄. Equation (2.2.7) reads

gij(∂ − ∂̄)xj + 2πα′Bij(∂ + ∂̄)xj
∣∣
z=z̄

= 0 (2.2.8)

In order to write the commutator for the space–time coordinates xi’s, we first have to calculate the
corresponding correlator. The OPE from the action (2.2.6) yields

〈xi(z)xj(z′)〉 = −α′
[
gij log |z − z′| − gij log |z − z̄′|+

+Gij log |z − z̄′|2 +
1

2πα′
θij log

z − z̄′

z̄ − z′
+Dij

]
(2.2.9)

Here

Gij =

(
1

g + 2πα′B

)ij

S

=

(
1

g + 2πα′B
g

1

g − 2πα′B

)ij

Gij = gij −
(
2πα′

)2 (
Bg−1B

)
ij

θij = 2πα′
(

1

g + 2πα′B

)ij

A

= − (2πα′)2( 1

g + 2πα′B
B

1

g − 2πα′B

)ij

(2.2.10)

where ( )S , ( )A denote the symmetric and antisymmetric part of the matrix in brackets, respectively.
The last term in the propagator (2.2.9), Dij, is a constant. It is independent of z, z̄, but may in general
depend on Bij. It can thus be fixed to some specific value given the arbitrariness of Bij . We can
restrict to the real axe z → τ ∈ R since open string vertex operators are always inserted on the
boundary of the string worldsheet. The propagator evaluated as a function of the real variables τ, τ ′

yields

〈xi(τ)xj(τ ′)〉 = −α′Gij log(τ − τ ′)2 +
i

2
θijε(τ − τ ′) (2.2.11)

where ε(τ) denotes the sign of τ . From (2.2.11) we deduce that Gij is the metric seen by the open
strings, just as gij is the closed string one. Moreover, Gij reduces to gij in the θij → 0 limit. We can
already interpret θij as a noncommutativity parameter for the coordinates along the brane, since the
commutator can be derived as time–ordered product. As a result we indeed obtain[

xi(τ), xj(τ)
]

= T
(
xi(τ) xj(τ−)− xi(τ) xj(τ+)

)
= iθij (2.2.12)

The known relation (2.1.2) has been explicitly obtained for the space–time directions parallel to the
Dp–branes in the B field background of critical bosonic strings.
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2.2. From quantum Hall to strings and branes

Correlation functions exhibit a phase factor that corresponds to the introduction of �–product in
the (p+1)–dimensional space–time string effective action on the brane, in the α′ → 0 limit. If we start
by evaluating for instance the product O(τ)O(τ ′) of two tachyon operator vertices O(τ) = eip·x(τ) we
expect that the leading short distance behavior of the operator product is independent of (τ − τ ′) in
the limit α′ → 0. The product would also have to be associative, to preserve translation invariance.
It furthermore has to be given by (2.2.12). These conditions uniquely determine the �–product, as I
observed in section 2.1. In formulae, the two–tachyon OPE reads

eip·x(τ) · eiq·x(τ ′) ∼ (τ − τ ′)2α′Gijpiqje−
i
2
θijpiqjei(p+q)·x(τ ′) + ... (2.2.13)

which reduces to the �–product multiplication

eip·x(τ)eiq·x(τ ′) ∼ eip·x � eiq·x(τ ′) (2.2.14)

in the zero slope limit α′ → 0, i.e. when the term (τ − τ ′)2α′Gijpiqj can be ignored. It is possible
to write all correlation functions evaluated for a non vanishing noncommutativity parameter θij in
terms of the correlation functions themselves evaluated at zero θij. Moreover, the factor relating one
to the other is a phase factor that can be traced back to the �–product phase factor (that appears in
the quantum Hall analysis as well). It is understood that we here use a description of the open string
theory on branes in terms of the open string parameters Gij and θij, which represent the effective
metric seen by the open strings and the noncommutativity parameter. We instead started with a
dependence on the closed string metric and two form, gij and Bij. Noncommutativity is explicit when
θij enters in the description. Generalizing the formula for product of two tachyon vertex operators,
we obtain the expression for the expectation value of products of k polynomial operators of the form
P (∂x, ∂x2, . . . )eip·x (x’s are directions along the brane)〈

k∏
n=1

Pn

(
∂x(τn), ∂2x(τn), . . .

)
eip

n·x(τn)

〉
G,θ

= e−
i
2

P
n>m pn

i θijpm
j ε(τn−τm)

〈
k∏

n=1

Pn

(
∂x(τn), ∂2x(τn), . . .

)
eip

n·x(τn)

〉
G,θ=0

(2.2.15)

The path integrals of vertex operators associated to the massless spectrum of strings allow to write
the effective action of the theory, order by order in α′. The effective action for a k–point function is
expressed in terms of N × N matrix–valued fields Φi (N ×N is the number of Chan–Paton factors
and hence N is the rank of the gauge group living on the brane). In the Bij = 0 case (i.e. θij = 0)
we get ∫

dp+1x
√

detG tr (∂n1Φ1∂
n2Φ2 . . . ∂

nkΦk) (2.2.16)

where dp+1x is a measure along the brane directions. When the B–field is turned on, we can encode
the dependence on this NS field simply by implementing the �–product in the effective action∫

dp+1x
√

detG tr (∂n1Φ1 � ∂
n2Φ2 � · · · � ∂nkΦk) (2.2.17)
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2. Basics and origins of noncommutative field theories

This modification in the fields product leads to the correlation functions of the form (2.2.15). To
see how noncommutative effective gauge theory describing string theory with constant B–field are
generated, we have to take the α′ → 0 limit. To consistently keep Gij and θij finite while α′ vanishes
we choose

α′ ∼ ε
1
2 −→ 0

gij ∼ ε −→ 0 i, j = 1, ..., r (2.2.18)

In this regime the effective metric and noncommutativity parameter become

Gij =

{
− 1

(2πα′)2

(
1
B g

1
B

)ij
for i, j = 1, ..., r

gij otherwise

Gij =

{−(2πα′)2(Bg−1B)ij for i, j = 1, ..., r
gij otherwise

θij =

{(
1
B

)ij
for i, j = 1, ..., r

0 otherwise
(2.2.19)

The propagator simplifies to

〈xi(τ)xj(0)〉 =
i

2
θijε(τ) (2.2.20)

From the most singular behavior of the OPE of two generic functions

lim
τ→0+

: f(x(τ)) : : g(x(0)) := : f(x(0)) � g(x(0)) : (2.2.21)

we obtain the correlation functions of k generic operators on the worldsheet boundary〈∏
n

fn(x(τn))

〉
=

∫
dxf1(x) � · · · � fk(x) (2.2.22)

This shows that the effective theory correlation functions turn out to contain �–products just as in
the noncommutative natural field theory, in the sense of the definition of chapter 2.

(Non)commutative Yang–Mills from gauge fields in the α′ → 0 limit The effective YM
description of the open string theory is obtained when gauge field are added on the brane, leading to
an additional boundary contribution to the worldsheet action (2.2.6)

−i
∫
dτAi(x)∂τx

i (2.2.23)

This is an example of rank one gauge fields, which I will assume for simplicity to be the case. The
dependence on the constant B field in the string action (2.2.6) may be written in terms of a gauge
field Ai = −1

2Bijx
j with field strength Fij = Bij. In the B field description we get an invariance of

the bosonic string theory under the following gauge symmetry

δBμν = ∂[μΛν] (2.2.24)
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2.2. From quantum Hall to strings and branes

combined with a transformation changing the boundary term

δAμ = Λμ (2.2.25)

This tells us that the gauge invariant, physically meaningful, combination of NS two form and one
form gauge field is (Fij + Bij). On the other hand, the gauge field contribution (2.2.23) to the
worldsheet action is naively invariant under gauge transformations

δAi = ∂iλ (2.2.26)

However, this invariance may be modified by the necessary regularization prescription. Indeed, non-
commutativity pops out when we use point splitting regularization, where the product of operators
at the same point never appears. The variation of the exponential of the action (2.2.23) under the
transformations (2.2.26), evaluated eliminating the region |τ − τ ′| < δ, yields

−
∫

dτAi(x)∂τx
i ·
∫

dτ ′∂τ ′λ (2.2.27)

at first order in Ai. Integrating and taking then the δ → 0 limit one finds that non vanishing boundary
contributions survive and break invariance for naive gauge transformations if we use (2.2.21). These
terms can be written as a �–product commutator

−
∫

dτ : Ai(x(τ))∂τx
i(τ) : :

[
λ(x(τ−))− λ(x(τ+))

]
:

= −
∫

dτ : (Ai(x) � λ− λ � Ai(x)) ∂τx
i : (2.2.28)

The true gauge symmetry in the point splitting regularization scheme is thus given by

δÂi = ∂iλ̂+ iλ̂ � Âi − iÂi � λ̂ (2.2.29)

This result is valid at each order in the Ai expansion of the action exponential. However, point
splitting is not the only regularization that one may choose. Pauli–Villars regulated action remains
invariant under ordinary transformations (2.2.26). The existence of two descriptions depending on
the choice of regularization means that the two different theories associated to the gauge symme-
tries (2.2.26) and (2.2.29) has to be related by some duality. More precisely, Seiberg and Witten
argued that, on the one hand, point splitting regularization gives noncommutative YM. In fact the
expectation value of gauge vertex operators can be traced back to the noncommutative effective action

Seff ∝
∫ √

detG Gii′Gjj′Tr
(
F̂ij ∗ F̂i′j′

)
(2.2.30)

On the other hand, Pauli–Villars procedure leads instead to ordinary YM. The duality relating the
two descriptions involves the change of variables Â = Â(A) and λ̂ = λ̂(λ,A), if we denote with hatted
notation the fields belonging to the noncommutative theory. The precise form of the duality has been
worked out in [47].

At the beginning of this paragraph, I assumed that the gauge field to be a rank one field. Never-
theless, taking N coincident Dp–branes rather than only one, immediately changes the gauge group
into U(N). Noncommutative U(N) YM can thus emerge. SU(N) YM cannot be described in a
NC context, since the U(1) degree of freedom doesn’t decouple in noncommutative embedding — in
other words, SU(N) is not closed under NC product. Other gauge groups can also be obtained by
orientifolding, such as SO(N) and Sp(N) [82].
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2. Basics and origins of noncommutative field theories

A note on electric B field I here draw some crucial conclusions about the electric B–field case,
i.e. when we drop the assumption B0i = 0. The main point that I will discuss is that field theories
with time/space noncommutativity do not consistently emerge from string theory, in the effective
field theory description.

First of all, stability problems arise. An electric field E ≡ B01 extending along a spatial direction
i — for instance we choose i = 1 — and along the time direction, should be bounded by an upper
critical value Ec

E ≤ Ec where Ec =
g

2πα′
(2.2.31)

Moreover, the open string parameters G ≡ G01 and θ ≡ θ01 satisfy the relation [21]

α′
(
G−1

)
=

1

2π

E

Ec
θ (2.2.32)

This equation shows that the zero slope limit α′ → 0 together with the request of finite effective
open string metric G01 must also entail the commutative limit represented by the vanishing of the
noncommutative parameter θ → 0. Hence, the effective field theory description in the decoupling
limit is necessarily commutative, while if we want to keep the noncommutativity parameter turned
on, the full string theory with finite α′ must be considered.

On the other hand, a consistent limit can be taken [21] where

E

Ec
−→ 1 , g ∼ 1

1−
(

E
Ec

)2 , θ −→ 2πα′G−1 (2.2.33)

The noncommutative parameter is finite and we get an open string theory on noncommutative space–
time where open strings decouple from closed strings. It can be argued that this open string theory
on time/space noncommutative background is dual — via S–duality — to strongly coupled N = 4
YM with space noncommutativity [22]. More details about string time/space noncommutative string
theory can be found in [23]. The absence of a decoupled field theory limit of string theory with
constant electric field reflects the problems of quantum field theories where time/space components of
the noncommutativity parameter are assumed not to vanish. All stringy massive modes are necessary
to get a consistent theory. On the other hand, these problems involve causality and unitarity that I
will discuss in subsection 2.3.4.

Susy Ramond–Neveu–Schwarz and Green–Schwarz strings I quickly mention how a con-
stant NS–NS field modifies the superstring effective field theory description with respect to the zero
B field background set–up. Noncommutativity still appears among the bosonic coordinates alone,
while fermionic ones are not involved.

Including the fermionic sector in the context of string theories with manifest N = 1 worldsheet
supersymmetry and turning on the Neveu–Schwarz–Neuveu–Schwarz two formBij, gives the following
action

S =
1

4πα′

∫
d2z

[
∂̄xμ∂xμ + iψμ∂̄ψμ + iψ̄μ∂ψ̄μ+

−2πiα′Bij

(
εab∂ax

i∂bx
j + ψ̄iρa∂aψ

j
)]

(2.2.34)

26



2.2. From quantum Hall to strings and branes

Again i, j denote the directions along the Dp–brane. Boundary conditions take the form

gij(∂ − ∂̄)xj + 2πα′Bij(∂ + ∂̄)xj
∣∣
z=z̄

= 0

gij(ψ
j − ψ̄j) + 2πα′Bij(ψ

j + ψ̄j)
∣∣
z=z̄

= 0 (2.2.35)

The last term in the action (2.2.34) is to be added so that (2.2.35) are true supersymmetric invariant
boundary contributions to the field equations of motion. As a consequence, the action and boundary
conditions are invariant under the following supersymmetry transformations, written in terms of the
supersymmetry parameter η

δxi = −iη(ψi + ψ̄i)
δψi = η∂xi

δψ̄i = η∂̄xi (2.2.36)

Here η is a worldsheet spinor and space–time scalar. The YM description can be obtained in analogy
to the bosonic string case, coupling the string to a gauge field Ai — a U(1) gauge field for simplicity.
The full action has to be modified with the addition of an extra boundary term

−i

∫
dτ
[
Ai(x)∂τx

i − iFijΨ
iΨj
]

(2.2.37)

where the ordinary field strength Fij is coupled to the fermionic combination

Ψi =
1

2

(
ψi + ψ̄i

)
(2.2.38)

Under supersymmetry (2.2.36) the gauge field action (2.2.37) transforms by a total derivative, as in
the bosonic string theory. However, using point splitting regularization, surface terms don’t cancel.
Instead, the variation of the exponential of the action, expanded at first order in Ai, gives

i

∫
dτ

∫
dτ ′
[
Ai∂τx

i(τ)− iFijΨ
iΨj(τ)

] [−2iη∂τ ′AkΨ
k(τ ′)

]
(2.2.39)

So, when τ ′ approaches τ we need some extra boundary term in the action in order to compensate
for the contribution coming from (2.2.39). Extending the analysis to all orders in Ai, Seiberg and
Witten came to the conclusion that the correct gauge field action that accounts for point splitting
regularization is (2.2.37) where usual product gets replaced by noncommutative �–product, i.e.

Fij −→ F̂ij = ∂iÂj − ∂jÂi − iÂi � Âj + iÂj � Âi (2.2.40)

Hatted fields denotes noncommutative functions of space–time coordinates. The gauge theory that
can be derived in the zero slope limit of RNS open strings ending on a Dp–brane with constant B
field through point splitting regularization is a noncommutative YM theory, where noncommutativity
is introduced among bosonic coordinates spanning the directions along the Dp–brane. On the other
hand, Pauli–Villars regularization leads to an ordinary commutative gauge theory. The two theories
are related by the Seiberg–Witten duality.

Supersymmetry in target space is realized by the Green–Schwarz (GS) string. Fermionic coor-
dinates θαi, i = 1, 2 are included in the set of coordinates (xμ, θαi) for N = 2 supersymmetric ten
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2. Basics and origins of noncommutative field theories

dimensional space–time. The authors of [24] showed that for GS string with Dp–branes and con-
stant NS–NS two form the fermionic coordinates are not involved in the typical noncommutativity
emerging from the appropriate constant B field background. Constant non trivial Ramond–Ramond
backgrounds are instead necessary in order to get noncommuting θαi’s [7] (I’m not going to discuss
this kind of non(anti)commutativity, though). The analysis for the NS–NS background is performed
in [47]. Boundary conditions for the bosonic coordinates are equal to those in the bosonic string
theory (2.2.7), while also the fermionic coordinates must obey to some B–dependent relation on the
boundary. These boundary conditions are constraints on the phase space and imply a noncommuta-
tive algebra for the xi’s, while the θαi’s surviving to the gauge fixing exhibit the usual commutation
rules.

Noncommutative self–dual Yang–Mills from N = 2 strings Extended N = 2 supersymmetry
in the open string worldsheet leads to ordinary self–dual YM (SDYM) when no NS–NS two form is
present in the background. It was shown in [47] that a constant B field, just as in the bosonic
case, causes noncommutativity among the space coordinates along the N D3–branes, which are
space–filling. In fact, the target space for such a supersymmetric string theory has to be (2 + 2)–
dimensional. It is spanned by the real coordinates xμ, μ = 1, . . . , 4. The RNS Majorana spinors
ψμ, arising as superpartners of bosonic coordinates, as well as the xμ are coupled to the N = 2
supergravity multiplet.

By gauging away all the gravity degrees of freedom and remaining with a residual N = 2 super-
symmetry out of the full superconformal group, the space–time action for open N = 2 string theory
in the superconformal gauge reads

S = − 1

4πα′

∫
Σ

d2ξ ηαβ
(
∂αx

μ∂βx
ν + iψ̄μρα∂βψ

ν
)
gμν (2.2.41)

The N = 2 supersymmetry transformations under which the action is invariant are

δxμ = ε̄1ψ
μ + Jμ

ν ε̄2ψ
ν

δψμ = −iρα∂αx
με1 + iJμ

ν ρ
α∂αx

νε2 (2.2.42)

where Jν
μ is a complex structure compatible with the metric

gμνJ
ν
λ + Jν

μgλν = 0 (2.2.43)

(in flat metric J1
2 = −J2

1 = J3
4 = −J4

3 = 1). The spectrum of this open string theory only includes one
massless scalar (just as in the N = 2 closed string theory) and the tree level string amplitudes beyond
three point functions vanish. Zero value for an infinite number of tree level amplitudes should imply
conservation for an infinite number of currents, i.e. an infinite number of symmetries. This suggests
that the theory is integrable. In fact, an alternative definition for integrability in four dimensions was
argued to be the vanishing of all amplitudes beyond the three point functions. Moreover, the three
point function is shown [48] to come from the self–dual Yang–Mills action in (2 + 2) dimensions. A
stack of N D3–branes is hence described by an SU(N) SDYM theory.

Coupling the N = 2 superstrings with the NS–NS two form field Bμν yields additional boundary
terms in the space–time action

S = − 1

4πα′

∫
Σ

d2ξ
[(
ηαβgμν + εαβ2πα′Bμν

)
∂αx

μ∂βx
ν
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+
(
gμν + 2πα′Bμν

)
iψ̄μρα∂αψ

ν
]

(2.2.44)

A boundary B–dependent term has been added just as in the N = 1 string theory, in order to get
boundary conditions consistent with supersymmetry transformations. Thus, we obtain[(

gνμ + 2πα′Bμν

)
Jν

λ∂+x
λ − (gμν + 2πα′Bμν

)
Jν

λ∂−x
λ
]∣∣∣

∂Σ
= 0 (2.2.45)

where ∂± = ∂0 ± ∂1. The Bμν ∧ dxμ ∧ dxν background two form field is Kähler on R
2,2, closed and

constrained by the compatibility condition with respect to the complex structure Jν
μ

BμνJ
ν
λ − Jν

μBλν = 0 (2.2.46)

where Jν
ν still satisfies (2.2.43).

Noncommutativity arises first through the evaluation of the open string correlators, in analogy to
the bosonic and ten dimensional N = 1 theory,〈

xμ(τ)xν(τ ′)
〉

= −α′Gμν log(τ − τ ′)2 +
i

2
θμν ε(τ − τ ′) (2.2.47)〈

ψμ(τ)ψν(τ ′)
〉

=
Gμν

τ − τ ′
(2.2.48)

with τ, τ ′ ∈ ∂Σ and [(g+2πα′B)−1]μν = Gμν + 1
2πα′ θ

μν. The effective metric seen by the open string is
as usual referred to as Gμν , while the noncommutative parameter is θμν . Choosing specific generators
of the SO(2, 2) symmetry group, we can write J and B in the basis of U(1) × U(1) ⊂ SO(2, 2)
generators

J12 = −J21 = J34 = −J43 ≡ 1 , B12 = −B21 ≡ B1 , B34 = −B43 ≡ B2 (2.2.49)

Hence

G11 = G22 ≡ ζ

ζ2 + (2πα′B1)2
, G33 = G44 ≡ − ζ

ζ2 + (2πα′B2)2

θ12 = −θ21 = − (2πα′)2B1

ζ2 + (2πα′B1)2
, θ34 = −θ43 = − (2πα′)2B2

ζ2 + (2πα′B2)2
(2.2.50)

In the zero slope limit α′ → 0 (and ζ ∼ (α′)2 → 0, gμν → 0), keeping the open string parameters
finite, it is shown that the three string amplitudes at tree level lead to noncommutative self–dual
Yang–Mills in the Leznov gauge (also Yang gauge can be obtained) [9]. The effective theory yields a
cubic lagrangian

L =
1

2
Gμνtr (∂μΦ � ∂νΦ) +

1

3
εα̇β̇tr

(
Φ � ∂̂0α̇Φ � ∂̂0β̇Φ

)
(2.2.51)

where ∂̂00̇ ≡ ∂̂2̂+∂̂4̂ and ∂̂01̇ ≡ ∂̂1̂−∂̂3̂, having defined ∂̂μ̂ ≡ eνμ̂∂ν by means of the tetrad Gμν ≡ eμσ̂e
ν
λ̂
ησ̂λ̂.

Both in the Leznov and in the Yang formulation of noncommutative SDYM all tree level amplitudes
beyond the three point functions vanish, as it should be for integrable theories. Indeed, this is in
agreement with the string amplitudes computations for four dimensional N = 2 theory.

I will use these results to discuss the dimensional reduction from (2 + 2)–dimensional SDYM in
order to get integrable noncommutative sine–Gordon generalization studied in the paper in collabo-
ration with O. Lechtenfeld, S. Penati, A. Popov and L. Tamassia [46].
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2. Basics and origins of noncommutative field theories

2.3 How to deform quantum field theories

The most natural generalization of field theories to noncommutative geometry is obtained by substi-
tuing the usual product with the noncommutative �–product in the action. Other generalizations are
of course achievable, provided that in the θ → 0 limit they reduce to the original commutative theory.
In particular, I will explain in subsection 2.3.3 how to consistently deform integrable quantum field
theories. However, many typical features of noncommutative field theories can be deduced from the
natural generalization. I am going to illustrate this simple deformation and apply it to some specific
and meaningful examples.

2.3.1 The free theory, interactions and Feynmann rules

I now consider the action of an arbitrary field theory modified by the introduction of �–product,
replacing ordinary multiplication among fields.

Free and commutative Since �–product is invariant under cyclic permutations of functions under
integration and, in particular, �–product of two generic functions is equivalent to usual commutative
multiplication between the two functions, all quadratic terms in the field theory action are not affected
by noncommutativity. Hence, natural deformations of conventional free theories imply no differences
with respect to the ordinary theories.

An important consequence of the invariance of quadratic terms under noncommutative deforma-
tions is that free propagators in any noncommutative theory are equal to those evaluated when θ → 0,
i.e. in the ordinary field theory.

Noncommutative interactions When an n–field interaction term is present in the field theory
naturally generalized to NC geometry, the relevant action for this term gets modified by the phase
factor coming from the �–product. In momentum space φ(x) =

∫
ddk

(2π)d eik·xφ(k), NC interactions are

given by ∫ n∏
i=1

ddki

(2π)2
V (k1, . . . , kn)φ(k1) · · · φ(kn) (2.3.1)

with

V (k1, . . . , kn) = δ(d)

(
n∑

i=1

)
e−

i
2

P
i<j ki×kj (2.3.2)

I defined the antisymmetric product

a× b ≡ θμνaμbν (2.3.3)

As a consequence of the cyclicity of �–product, the phase factor V is invariant under cyclic permu-
tations of momenta. Feynmann rules get modified by the introduction of this phase factor, which is
sensible to the ordering of momenta entering in each vertex.
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2.3. How to deform quantum field theories

The form of the phase factor distinguishes two different situations. In the simplest case, the phase
is an overall factor depending only on the external momenta and hence do not modify the evaluation
of the internal loops. This means that the degree of divergence of the corresponding graph doesn’t
change. The planar diagrams describe this situation. On the other hand, when the internal momenta
dependence is non trivial in V , the UV behavior of Feynmann diagrams may not be left unchanged
with respect to the ordinary theory. This are referred to as the nonplanar diagrams.

2.3.2 Examples

A couple of typical and illustrative examples of field theories generalized to noncommutative geometry
are sketched below, following the rules of natural deformation.

The deformed φ4

The action for the scalar φ4 noncommutative theory, following the rules just described, is given by

S [φ] =

∫
d4x

[
1

2
∂μφ∂

μφ− m2

2
φ2 − λ

4!
φ � φ � φ � φ

]
(2.3.4)

The interaction term written in the momentum space reads

λ

4!

∫
d4xφ � φ � φ � φ =

=
1

(2π)16
λ

4!

∫
d4k1 d4k2 d4k3 d4k4 V (k1, k2, k3, k4)φ(k1)φ(k2)φ(k3)φ(k4) (2.3.5)

with the phase factor yielding

V (k1, k2, k3, k4) = (2π)4δ(4)

(
4∑

i=1

ki

)(
cos

k1θk2

2
cos

k3θk4

2
+

+ cos
k1θk3

2
cos

k2θk4

2
+ cos

k1θk4

2
cos

k2θk3

2

)
(2.3.6)

An interesting calculation is the 2–point function evaluation at one loop. We know that it diverges
in ordinary field theory and it determines the mass renormalization (at first order) in the ordinary
case. At zeroth order there is no change with respect to commutative 2–point function, since as I
previously remarked the free propagator isn’t involved in the noncommutative deformation. At one
loop order, however, we get a nonplanar contribution to the Feynmann diagrams, which amounts to∫

d4k

(2π)4
eik×p

k2 +m2
(2.3.7)

(up to the symmetry coefficient). The difference with respect to the planar contribution resides in the
phase factor eik×p which is indeed absent in the planar graph — the antisymmetric product is defined
in (2.3.3). In addition, we define a product that is quadratic in the noncommutative parameter

a ◦ b ≡ −aμθ
μρθν

ρbν (2.3.8)
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2. Basics and origins of noncommutative field theories

Then, an effective UV cutoff Λ2
eff = 1

p◦p+1/Λ2 , expressed in terms of the usual UV cutoff Λ and of the

external momentum p flowing in the two point function can be introduced. Renormalization turns
out to be formulated in terms of this effective cutoff. Non planar Feynmann diagrams depend on the
UV cutoff Λ only through Λeff(p). This is crucial, since it shows the typical mixing of ultraviolet and
infrared divergences occurring in noncommutative field theories. In fact, the effective cutoff remains
finite when Λ2 →∞ if the external momentum is non zero. However, if p→ 0 (or in the commutative
limit θ → 0) then Λeff →∞ when the ordinary UV cutoff is taken to diverge, since Λeff → Λ. In other
words, in the IR limit we recover the usual UV divergence. The renormalized two point function at
one loop yields

Γ
(2)
R = p2 +m2

R +
g

96π2

1

p ◦ p+ 1
Λ2

+

+
g

96π2
m2

R log

[
m2

R

(
p ◦ p+

1

Λ2

)]
(2.3.9)

with the renormalized mass equal to m2
R = m2 + g

48π2 Λ2 + g
48π2m

2 log m2

Λ2 . We can take the two
opposite limits p ◦ p � 1

Λ2 and p ◦ p � 1
Λ2 . In the first case the effective two point action reduces

to the ordinary Γ
(2)
R = p2 + m′2R where the renormalized mass of the ordinary theory m′R is related

to mR by m′2R = m2
R + g

96π2 Λ2 + g
96π2m

2 log m2

Λ2 . This agrees with the fact that IR limit captures
the commutative UV divergence. In the UV limit instead, p ◦ p � 1

Λ2 , the 2–point function suffers
from IR divergences for p ◦ p → 0. We get a first order pole and a logarithmic divergence. These
behaviors could be traced back to an effective action including an extra (scalar) degree of freedom χ
that suitably interacts with the scalar field φ, yielding the correct two point amplitudes.

It is clear that in the θ → 0 limit, the ordinary commutative theory is restored.

Noncommutative gauge symmetries and Yang–Mills

Ordinary gauge theories can be invariant under the action of gauge groups such as for instance U(N),
SU(N), SO(N) and Sp(N). Noncommutative generalizations have a restricted gauge group choice,
since some of symmetry groups are not closed with respect to the Moyal product: SU(N), SO(N)
and Sp(N) for instance are not. Hence U(N) gauge theories will be considered in the following.

Gauge transformations for the N ×N gauge field Aμ in commutative set–up read

δλAμ = ∂μλ+ i[λ,Aμ] (2.3.10)

where the gauge transformation parameter λ is also a N ×N matrix. The gauge invariant action is
written in terms of the field strength

S =

∫
ddx tr (FμνFμν) (2.3.11)

(up to the coupling constant and topological terms). The field strength for the gauge field is as usual
equal to

Fμν = ∂μAν − ∂νAμ − i[Aμ, Aν ] (2.3.12)
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The gauge transformation for Fμν reads

δλFμν = i[λ, Fμν ] (2.3.13)

Cyclicity of traces implies that (2.3.11) is invariant under (2.3.13).

Now, consider the natural generalization to noncommutative geometry. The gauge invariant action
gets changed into

S =

∫
ddx tr (Fμν � Fμν) (2.3.14)

One can guess that gauge transformations are still a symmetry for the deformed action once the
�–product is introduced

δλAμ = ∂μλ+ iλ � Aμ − iAμ � λ
Fμν = ∂μAν − ∂νAμ − iAμ � Aν + iAν � Aμ

δλFμν = iλ � Fμν − iFμν � λ (2.3.15)

Here, the multiplication rules among matrix valued fields is understood to be a tensor product between
the � and matrix products. The invariance of the action (2.3.14) under (2.3.15) is again ensured by
the cyclicity of the trace, together with the ciclicity property of �–product. Due to Moyal product,
even the abelian case with the U(1) gauge symmetry has non trivial transformation rules, although
the gauge transformation parameter λ is a scalar function of coordinates. Indeed, from (2.3.15) one
can see that δλFμν �= 0 and δλAμ − ∂μλ �= 0.

In the θ → 0 limit, as usual, the commutative theory is recovered.

The naturally deformed sine–Gordon

I showed that noncommutative φ4 theory would still be renormalizable (at one loop), if mixing of
UV and IR divergences were not corrupting the correct behavior. Ordinary sine–Gordon (SG) is a
super–renormalizable theory (in the regime β2 < 8π for the coupling constant β) and it would be
interesting to see how natural noncommutative generalization could either spoil this property or not,
successively eventually considering the non–renormalizability regime (β2 ≥ 8π).

Indeed, it’s easy to guess that even in the super–renormalizability regime noncommutativity will
destroy usual renormalization, independently of IR/UV mixing. Let me write the deformed action

S [φ] =

∫
d2x

(
1

2
∂μφ∂μφ− γ cos βφ

)
(2.3.16)

where I indicate with starred functions those whose power expansions are defined through the Moyal
product. The key point in ordinary SG renormalization, as explained in subsection 1.2.2, is that
exactly the same coefficient appears in all diverging correlation functions, at each order in the β
expansion, independently of the external propagators (which appear as an overall factor). This
very nice property allows to renormalize all correlation functions by defining the renormalized γR

alone. Unfortunately, due to �–product, this feature is spoiled in the noncommutative generalization.
Coefficients get a non trivial and non factorized dependence on the number of external propagators.
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Moreover, the typical effective cutoff that usually arises in noncommutative theories 1
Λ2

eff
= 1

Λ2 + 1
p◦p

— where p is the external momentum or combinations of external momenta involved in the particular
graph — has to be introduced.

In other words, the divergences coming from ordinary graphs in the commutative theory are those
of the planar diagrams in the noncommutative generalization. However, the symmetry coefficients
are different, since a single diagram in the ordinary model splits into planar and nonplanar parts.
Nonplanar diagrams can be shown to be finite and destroy renormalizability. Furthermore, the phase
factor coming from �–product gives origin to the effective cutoff, which is responsible of the IR/UV
mixing.

The main issue is that renormalization is impossible even in the super–renormalizability regime.
This situation can only get worse in the non–renormalizability regime. Thus, natural deformation
doesn’t seem to be a consistent noncommutative generalization of sine–Gordon theory, both with
respect of quantum properties and for integrability. It has indeed been argued that integrability at
classical level is not preserved in this deformation, since there is no known method able to construct
an infinite number of conserved currents for the theory [67]. Furthermore, scattering amplitudes for
such a theory have been computed and it has been found that particle production occurs due to the
non vanishing of 2 → 4 amplitude. The purpose of my two papers, written in collaboration with
M. T. Grisaru, S. Penati, L. Tamassia, O. Lechtenfeld and A. Popov [63, 46], is to guarantee integra-
bility in the noncommutative sine–Gordon and study S–matrix properties in order to be consistent
with integrability definition in two dimensions.

Wess–Zumino–Witten model as a non natural deformation

Natural generalizations of field theories to noncommutative geometry are just one of many possible
deformations that can be applied reducing to ordinary theories in the commutative limit. I already
remarked that there exists another procedure — using the gauged bicomplex formulation — which
can be used to deform integrable field theories. It is interesting, and this is what I will show in the
following of this paragraph, to consider group valued fields and get nonablelian like features (coming
from the noncommutativity of Moyal product) even from ordinarily abelian group U(1). In other
words, I exploit the fact that NC U(1) displays nonabelian–like properties, but reduces to ordinary
abelian group in the commutative limit.

For instance, the free scalar action in two dimensions can be restated as a principal chiral action
for a field g ∈ U(1). While introducing �–product in the free field theory is armless, if we consider
the principal chiral action noncommutativity brings to a deformed (noncommutative) theory

SPC =

∫
d2x ∂μg

−1 � ∂μg (2.3.17)

In the noncommutative U(1) theory the field g can be written as g(x) = e
iαφ(x)
 . The equations of

motion are of the form

∂μ

(
g−1 � ∂μg

)
= 0 (2.3.18)

Both action and equations of motion reduce to trivial free theory action and equations for the free
(massless) scalar φ in the θ → 0 limit. Hence, (2.3.17) represents a non natural deformation of free
scalar field theory.
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Another well known theory with a U(1) symmetry can play the role of a noncommutative gen-
eralization of the free field theory, when formulated by means of Moyal product. This is the Wess–
Zumino–Witten (WZW) model, defined by the action

SWZW =
1

2

∫
d2x ∂μg

−1∂μg − 1

3

∫
d2xdλ εμνσ ĝ−1∂μĝ � ĝ

−1∂ν ĝ � ĝ
−1∂σ ĝ (2.3.19)

The second term in the action, i.e. the Wess–Zumino (WZ) term, is a function of the homotopy path
ĝ(λ, x) satisfying ĝ(0, x) ≡ 1 and ĝ(1, x) ≡ g(x). As a consequence of the fact that the variation of
the WZ term is a total derivative in ρ, the equations of motion are two dimensional

∂̄
(
g−1 � ∂g

)
= 0 (2.3.20)

where the derivatives with respect to the complex coordinates are as usual ∂ ≡ ∂0+∂1 and ∂̄ ≡ ∂0−∂1.
The commutative and abelian WZW action reduces to free field theory for φ, since the WZ term
vanishes in this limit. Noncommutativity acts as if the symmetry group were nonabelian and hence
yields a non trivial deformation.

These simple examples are nice since they show different interesting non trivial ways to generalize
the free scalar field theory to noncommutative geometry. WZW model will play an important role
later on, in the noncommutative sine–Gordon theories that I will examine in chapters 3 and 4. It will
come out to be indeed the noncommutative generalization of the kinetic part of the theory, as in the
example I just illustrated.

2.3.3 Infinite conserved currents and noncommutative deformations

As I noted in the previous subsection, the natural deformation of sine–Gordon theory is not suitable
for a quantum well–defined theory. The bicomplex approach guarantees in principle integrability
also for the noncommutative model. In fact, it preserves by construction the existence of an infinite
number of local (in the sense on non integral functions) conserved currents. In ordinary geometry,
this implies the factorization of the S–matrix, as I explained in subsection 1.2.3. It is thus worthwhile
to study the deformed bicomplex formulation of noncommutative generalizations and to test if the
integrability vs. factorization theorem is still valid in noncommutative geometry.

Some examples of integrable field theories generalization to noncommutative geometry by means of
the deformed gauged bicomplex procedure have been considered in literature. Non linear Schrödinger
equations and the associated infinite symmetries have been considered in [59]. The deformation
through bicomplex is in this particular case equivalent to the deformation one would have obtained
by direct substitution of Moyal product in the equations of motion themselves. Other examples
sharing the same property are the noncommutative Toda equations and noncommutative Kortweg–
de–Vries equations, studied in [29, 60]. See also [58, 61, 62].

Sine–Gordon model, on the contrary, gives different results depending on whether the deformation
is operated in the gauged bicomplex equations or in the equations of motion for the scalar field. Direct
substitution at the level of the equations of motion yields

∂∂̄φ = γ sin φ (2.3.21)

(in complex z, z̄ coordinates in two dimensional space). This equation ensues from the noncommu-
tative action of the natural deformation (2.3.16) (setting β = 1). Hence, the theory is the previously
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discussed natural noncommutative version of sine–Gordon. Generalization to noncommutative geom-
etry via bicomplex brings to the following equations of motion [68]

∂̄

(
e
− i

2
φ

 � ∂e
i
2
φ

 − e
i
2
φ

 � ∂e
− i

2
φ



)
= iγ sin φ (2.3.22)

where the �–product have been introduced in the bicomplex definitions. The equation above (toghether
with another constraint that reduces to free field equation in the commutative limit) is the integra-
bility condition associated to the Lax pair. Equation (2.3.22), as (2.3.21), relaxes to the usual
sine–Gordon equation in the θ → 0 limit. However, it is by construction associated to an infinite
number of conserved currents, so that integrability is ensured. As an equation of motion (2.3.22)
looks more complicated than (2.3.21). The action that produces this equation has been worked out
in my publication with M. Grisaru, S. Penati and L. Tamassia [63]. I will discuss it and its S–matrix
in the next chapter.

I note that (2.3.22) is not the only possible deformation for the sine–Gordon theory that can be
obtained through the gauged bicomplex. Thinking of the sine–Gordon model as coming from dimen-
sional reduction of SDYM in four dimensions, having as an intermediate step the three dimensional
modified sigma model with a WZW–like interaction term, a different set of equations are derived.
This has been done in collaboration with O. Lechtenfeld, S. Penati, A. Popov and L. Tamassia [46].
In this case, the Moyal product is introduced in the sigma model linear system. Then, dimensional
reduction to two dimensions is applied. The resulting deformed equations can no longer be written in
terms of a single scalar field playing the role of the sine–Gordon field φ. Indeed, a new scalar is non
trivially interacting with φ and thus the equations of motion are no longer decoupled. In chapter 4 I
will explain how noncommutative conserved currents, solitons, action, and tree level S–matrix have
been constructed and analyzed.

2.3.4 Phenomenological and field theoretical consequences of noncommutativity

Since noncommutativity can be traced back to string theory in specific backgrounds and, in particular,
noncommutative field theories arise as the low energy effective description of string theory in such
backgrounds, we would like to know something about phenomenological consequences or eventual
quantum field theory inconsistencies of Moyal product. I already mentioned that �–product provides
an affective cutoff that causes the mixing of infrared and ultraviolet divergences for noncommuta-
tive renormalized actions of quantum field theories. This and other characteristics are worth being
discussed.

Lorentz invariance: the two dimensions In a space–time of dimensions lager that two, Lorentz
invariance is not preserved by noncommutative generalization, due to the non tensorial nature of the
noncommutativity parameter θμν , Λμ

ρΛν
σθ

ρσ �= θμν . I recall that Lorentz invariance is not spoiled in-
stead in two dimensions because of the specific form of Lorentz representation and noncommutativity
parameter matrices.

The failure of Lorentz invariance for four dimensional theories has been widely considered in
literature as an important phenomenological issue [25]. The scale for Lorentz symmetry breaking is
set by the noncommutativity parameter. Hence, eventual predictions on observations can be made.
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Alternative solutions to the Lorentz violation problem have been proposed [26]. The main idea
is to change the nature of the noncommutativity parameter into tensor θ̂μν . As a consequence, Weyl
formalism must be modified. The variable θ and its conjugate variable η must be included in the
Fourier transform definition and in the Weyl map Δ̂ that defines Weyl operators — as functions of
noncommutative operators x̂μ and of the tensor θ̂μν . The �–product definition is left unchanged.
This modified formalism allows to get Λμ

ρΛν
σ θ̂

ρσ = θ̂μν , i.e. it preserves Lorentz invariance.

Noncommutative violation of causality and unitarity Causality and unitarity are a funda-
mental concerns in quantum field theory. Violation of these two properties generally occurs when
noncommutativity involves the time coordinate.

Acausality is a typical feature of time non locality, which comes from the infinite number of
derivatives involved in the �–product and from θ0i being non zero for some i’s. An illustrative and
simple example displaying acausal behavior is the noncommutative φ4 theory [21, 27]. In the previous
subsection I wrote the expression for the φ4 vertex with �–product (eq. (2.3.5)). The four point
amplitude can be written in terms of a wedge product defined through the time/space component of
the noncommutativity parameter — let me choose for instance θ01 ≡ θ —

iM∼ g[cos(p1 ∧ p2) cos(p3 ∧ p4) + (2 ↔ 3) + (2 ↔ 4)] (2.3.23)

where

a ∧ b = θ
(
a0b1 − a1b0

)
(2.3.24)

Momentum conservation rule yelds p1 +p2 +p3 +p4 = 0. The expression (2.3.23) in the commutative
limit θ → 0 gives iM = −ig. In the center of mass frame (characterized by the momentum p) the
amplitude (2.3.23) takes the simple form

iM∼ g[cos(4p2θ) + 2] (2.3.25)

A sinusoidal behavior of the scattering amplitude is somehow usual in noncommutative field theories,
even though the specific form depends on the matter content of the theory. From the amplitude
(2.3.23) one can deduce the wave function for the outgoing particles by computing the inverse Fourier
transform of the wave packets. All in one, from an initial wave function concentrated in p = ±p0

φin(p) ∼
(
e−

1
λ

(p−p0)2 + e−
1
λ

(p+p0)2
)

(2.3.26)

we obtain three outgoing packets described by

Φout(x) ∼ g

[
F (x;−θ, λ, p0) + 4

√
λe−λ x2

4 eip0x + F (x; θ, λ, p0)

]
+ (p0 → −p0)

(2.3.27)

This expression is worked out in the approximation p0 �
√
λ � 1

θp0
and λθ � 1. The function

F (x; θ, λ, p0) gives a wave packet of width 8
√
λθ concentrated in x = −8θp0

F (x; θ, λ, p0) =
1√−4iθ

e−
(x+8θp0)2

64θ2λ e−i
(x−

p0
2λ2θ

)
16θ ei

p2
0

4λ2θ (2.3.28)
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From (2.3.27) we conclude that the outgoing wave function is indeed made of three wave packets. Two
contributions are centered respectively in x = ±8θp0, have the same width 8

√
λθ and oscillate with

frequency exp
{
±i (x±p0/2λ2θ)2

16θ

}
, which approaches p0 near the maxima. The remaining contribution

is the wave packet arising in the ordinary commutative theory, when θ = 0. It is centered at the origin
and oscillates with frequency p0. The two shifted wave packets represent respectively an advanced and
delayed packet with respect to the ordinary one. The acausal behavior is ascribed to the advanced
packet, since it appears at x = 0 before the incoming wave function hits the origin. The delayed
packet doesn’t affect causality, in principle.

It is worth noticing that in string theory with an electric B–field, the acausal behavior, reflected
by the advanced wave packet in the scattering process, is cancelled by a phase factor coming from
particular strings oscillations. Thus, string scattering (on the circle) is a causal process even with
time/space components of the two form background field turned on, due to stringy modes.

Further works have considered noncommutativity implications about causality in field theories
[45]. Some suggestions are related to a different definition for correlation functions in noncommu-
tative field theories. Causality should be preserved by a specific time ordering prescription in the
computation of Green functions.

Another main problem in noncommutative field theories is unitarity of the S–matrix. One can see
breaking of unitarity in a similar way as acausality. The authors of [65] showed that noncommutative
φ3 and φ4 theories do not obey to the cutting rule, which states

2�Mab =
∑
n

ManMnb (2.3.29)

I indicate with Mab the amplitude matrix between an initial state a and a final state b (on–shell).
This rule is implied by unitarity, so unitarity is violated if it fails. The argument that leads to non
unitarity requires that ◦–product (defined in (2.3.8)) must be negative among external leg momenta
— p ◦ p < 0 for a two point function, for instance. This in turn implies that non unitarity appears
only for time/space noncommutativity, θ0i �= 0, and for space–like momenta. It is easy to see that
cutting rule (2.3.29) can’t be satisfied when these conditions apply, by directly computing amplitudes
in NC φ4 theory, for instance.

The issue of unitarity violation can be related to the impossibility of consistently formulating
a low energy effective (time/space) noncommutative field theory description of string theory with
electric field backgrounds. I already remarked how electric backgrounds make impossible to take a
decoupling limit of string theory without making the noncommutativity parameter vanish. This could
suggest that time/space noncommutative field theories are lacking of the degrees of freedom (namely
massive string modes) that are instead present in noncommutative opens sting theory (with electric
components of B field turned on). The lack of massive modes eventually implies the loss of unitarity
in field theory, as well as of causality.

As for causality, unitarity can be restored in the noncommutative field theories even with time/space
noncommutativity, if a particular time–ordering is defined.

The issue of causality, together with the concern about integrability, has been considered in the
two noncommutative generalizations of sine–Gordon model that we have studied. The first of the
two generalizations has been found to suffer from acausality behaviors, while the second model we
constructed is perfectly causal at tree level. Since the second model has the advantage of being
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derived by dimensional reduction from four dimensional SDYM, which in turn describes N = 2 RNS
superstrings, one may think that the relation to string theory prevents causality to be violated in this
case.

UV/IR mixing Let me make a brief summary about the mixing of UV and IR dynamics. In
performing quantum calculations for naturally deformed field theories, we found out new features of
UV divergences. In particular, nothing changes with respect to the ordinary theory for the planar
contribution to the effective action. Instead, nonplanar graphs yield an effective cutoff which lowers
the divergence degree of the diagram, provided that we do not take the IR limit for small momenta.
This is clear looking at the expression for the effective cutoff

Λ2
eff =

1
1

Λ2 + 1√
p◦p

(2.3.30)

So, there is a stringent and unavoidable relation between UV and IR divergences, which prevents the
theories to be conventionally renormalizable.

The same situation happens in string theory. T–duality for instance relates high energy dynamics
to small energy regions. In particular, the modular transformation τ → 1/τ allows to interpret the
UV region of open string theory to the IR behavior of closed strings. If the closed string metric is
identified by means of the noncommutativity parameter gij ∼ (θ2)ij and the open string metric is
instead Gij ∼ δij , we precisely obtain the same correlation between UV and IR phenomena that is
described by the noncommutative UV/IR mixing.
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Chapter 3

Noncommutative sine–Gordon with
non factorized S–matrix

The model we consider in this chapter is derived from a NC generalization of sine–Gordon, operated
at the level of the gauged bicomplex formulation. As we have explained, natural generalization
of sine–Gordon is not satisfactory nor from the quantum nor classical point of view, since both
renormalizability and integrability are spoiled. The bicomplex approach seems more promising, since
it guarantees the existence of an infinite number of conserved currents.

The equations of motion by means of this method were derived by M. T. Grisaru and S. Penati
in [68]. The authors also showed how to construct solitons perturbatively in the noncommutativity
parameter θ. We will review in the next section how to obtain the deformed equations of motion.
Then, the corresponding action was calculated in my paper [63], in collaboration with M. T. Grisaru,
S. Penati and L. Tamassia. This is explained in subsection 3.1.2. Section 3.2 illustrates the connections
to SDYM and Thirring model. Finally, the relevant properties of S–matrix are discussed in the
following section.

3.1 Noncommutative sine–Gordon from the bicomplex

Here we follow the procedure we used in subsection 1.2.1, generalizing it to noncommutative geometry,
in order to obtain an integrable noncommutative sine–Gordon — in the sense of preserving the infinite
number of conserved currents. This method yields the equations of motion of the theory. It is not
generally trivial to deduce the action generating these equations.

3.1.1 The equations of motion

The paper by M. T. Grisaru and S. Penati [68] tackles the problem of classical integrability. The
equations of motion they obtained, using the method of the bicomplex implemented in NC geometry,
do not resemble the ones of the natural generalization that I previously discussed.

We consider the same linear space M = M0⊗Λ as for the ordinary theory described in subsection
1.2.1, where M0 is the space of 2×2 matrices with entries in C, and Λ = ⊗2

r=0Λ
r is a two dimensional

graded vector space with the Λ1 basis (τ, σ) satisfying τ2 = σ2 = τσ+στ = 0. For any matrix function
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3. Noncommutative sine–Gordon with non factorized S–matrix

f ∈M0 the two linear maps are defined in analogy to the ordinary case

δξ = ∂̄ξτ −Rξσ , dξ = −Sξτ + ∂ξσ (3.1.1)

where R,S are constant matrices with [R,S] = 0. The bicomplex conditions δ2 = d2 = (dδ+ δd) = 0
are trivially satisfied as we already know from commutative sine–Gordon.

The NC gauged bicomplex is obtained as in the ordinary theory by dressing one of the two
differential operators

Df ≡ G−1 � d(G � ξ) = −L � ξτ + (∂ +M�)ξσ (3.1.2)

where G is a generic invertible (G � G−1 = G−1 � G = I) matrix in M0 and

L = G−1 � SG , M = G−1 � ∂G (3.1.3)

However, we introduced the NC �–product in the above expressions, since we want to get a NC model.
The condition D2 = 0 implies ∂L = [L,M ] which one can check to be still identically satisfied (and
represents the equation associated to the Lax pair of operators determining integrability of the sine–
Gordon system in ordinary geometry, in the θ → 0 limit). The last condition {D, δ} = 0 gives instead
the nontrivial equation

∂̄M = [R,L] (3.1.4)

We note that this equation is non trivial even in the commutative limit.

In order to obtain a noncommutative version of the sine–Gordon equation we choose the U(2)
group valued fields

R = S =
√
γ

(
0 0
0 1

)
G = e

i
2
σ2φ

 =

(
cos

φ
2 sin

φ
2

− sin
φ
2 cos

φ
2

)
(3.1.5)

which are the straightforward generalizations of the ordinary SU(2) fields for commutative sine–
Gordon. As a consequence, we get
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⎞⎟⎠

L =
√
γ

(
sin2


φ
2 − sin

φ
2 � cos

φ
2

− cos
φ
2 � sin

φ
2 cos2


φ
2

)
(3.1.6)

Computing [R,L] we obtain

[R,L] = γ

(
0 sin

φ
2 � cos

φ
2

− cos
φ
2 � sin

φ
2 0

)
(3.1.7)
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Then, equation (3.1.4) is a matrix equation in U(2). In particular, the matrix M develops a nontrivial
trace part, as a consequence of the noncommutative nature of the U(1) subgroup. Therefore, writing
eq. (3.1.4) in components, leads to two nontrivial equations for the field φ

∂̄

(
e

i
2
φ

 � ∂e
− i

2
φ

 + e
− i

2
φ

 � ∂e
i
2
φ



)
= 0

∂̄

(
e
− i

2
φ

 � ∂e
i
2
φ

 − e
i
2
φ

 � ∂e
− i

2
φ



)
= iγ sin φ (3.1.8)

The first equation becomes trivial in the limit θ → 0, whereas the second reduces to the ordinary
sine–Gordon equation (2.3.22)

∂∂̄φ = γ sinφ (3.1.9)

In the noncommutative case both equations are meaningful and describe the dynamics of the field
φ(z, z̄, θ). In particular, the first equation contains the potential term which is the natural general-
ization of the ordinary sine potential, whereas the other has the structure of a conservation law and
can be interpreted as imposing an extra condition on the system. Both the equations are in general
complex and possess the Z2 symmetry of the ordinary sine–Gordon (invariance under φ→ −φ).

The reason why integrability seems to require two equations of motions can be traced back to
the general structure of unitary groups in NC geometry. In the bicomplex approach the ordinary
equations are obtained as zero curvature conditions for covariant derivatives defined in terms of
SU(2) gauge connections. If the same procedure is to be implemented in the noncommutative case,
the group SU(2), which is known to be not closed in noncommutative geometry, has to be extended to
a noncommutative U(2) group and a NC U(1) factor enters necessarily into the game. The appearance
of the second equation in (3.1.8) for our NC integrable version of sine–Gordon is then a consequence
of the fact that the fields develop a nontrivial trace part. We note that the pattern of equations we
have found seems to be quite general and unavoidable if integrability is of concern. In fact, the same
has been found in [67] where a different but equivalent set of equations was proposed.

The presence of two equations of motion is in principle very restrictive and one may wonder
whether the class of solutions is empty. To show that this is not the case, in [68] solitonic solutions
were constructed perturbatively which reduce to the ordinary solitons when we take the commutative
limit. More generally, we observe that the second equation in (3.1.8) is automatically satisfied by
any chiral or antichiral function. Therefore, we expect the class of solitonic solutions to be at least
as large as the ordinary one. In the general case, instead, we expect the class of dynamical solutions
to be smaller than the ordinary one because of the presence of the nontrivial constraint. However,
since the constraint equation is one order higher with respect to the dynamical equation, order by
order in the θ–expansion a solution always exists. This means that a Seiberg–Witten map between
the NC and the ordinary model does not exist as a mapping between physical configurations, but it
might be constructed as a mapping between equations of motion or conserved currents.

The question which was left open in [68] was the existence of an action for the set of equations
(3.1.8). Here, we give an action and discuss the relation of our model with the NC selfdual Yang–
Mills theory and the NC Thirring model. Moreover, we discuss some properties of the corresponding
S–matrix which, in spite of integrability, turns out to be acausal and not factorized.
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3.1.2 The action

We are now interested in the possibility of determining an action for the scalar field φ satisfying
the system of eqs. (3.1.8). We are primarily motivated by the possibility to move on to a quantum
description of the system.

In general, it is not easy to find an action for the dynamical equation (the first eq. in (3.1.8))
since φ is constrained by the second one. One possibility could be to implement the constraint by
the use of a Lagrange multiplier.

We consider instead the equivalent set of equations (3.2.19). We rewrite them in the form

∂̄(g−1 � ∂g) =
1

4
γ
(
g2 − g−2

)
∂̄(g � ∂g−1) = −1

4
γ
(
g2 − g−2

)
(3.1.10)

where we have defined g ≡ e
i
2
φ

 . Since φ is in general complex g can be seen as an element of a

noncommutative complexified U(1). The gauge group valued function ḡ ≡ (g†)−1 = e
i
2
φ†

 is subject
to the equations

∂̄(ḡ � ∂ḡ−1) = −1

4
γ
(
ḡ2 − ḡ−2

)
∂̄(ḡ−1 � ∂ḡ) =

1

4
γ
(
ḡ2 − ḡ−2

)
(3.1.11)

obtained by taking the h.c. of (3.1.10).

In order to determine the action it is convenient to concentrate on the first equation in (3.1.10)
and the second one in (3.1.11) as the two independent complex equations of motion which describe
the dynamics of our system.

We first note that the left–hand sides of equations (3.1.10) and (3.1.11) have the chiral structure
which is well known to correspond to a NC version of the WZNW action [40]. Therefore we are led
to consider the action

S[g, ḡ] = S[g] + S[ḡ] (3.1.12)

where, introducing the homotopy path ĝ(t) such that ĝ(0) = 1, ĝ(1) = g (t is a commuting parameter)
we have defined

S[g] =

∫
d2z

[
∂g � ∂̄g−1 +

∫ 1

0
dt ĝ−1 � ∂tĝ � [ĝ−1 � ∂ĝ, ĝ−1 � ∂̄ĝ] − γ

4
(g2 + g−2 − 2)

]
(3.1.13)

and similarly for S[ḡ]. The first part of the action can be recognized as the NC generalization of a
complexified U(1) WZNW action [41].

To prove that this generates the correct equations, we should take the variation with respect to

the φ field (g = e
i
2
φ

 ) and deal with complications which follow from the fact that in the NC case the
variation of an exponential is not proportional to the exponential itself. However, since the variation
δφ is arbitrary, we can forget about its θ dependence and write i

2δφ = g−1δg, trading the variation
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with respect to φ with the variation with respect to g. Analogously, the variation with respect to φ†

can be traded with the variation with respect to ḡ.

It is then a simple calculation to show that

δS[g] =

∫
d2z 2g−1δg

[
∂̄
(
g−1 � ∂g

) − i

2
γ sin φ

]
(3.1.14)

from which we obtain the first equation in (3.1.10). Treating ḡ as an independent variable an analogous
derivation gives the second equation in (3.1.11) from S[ḡ].

We note that, when φ is real, g = ḡ and the action (3.1.12) reduces to Sreal[g] = 2SWZW[g] −
γ(cos φ − 1). In general, since the two equations (3.1.8) are complex it would be inconsistent to
restrict ourselves to real solutions. However, it is a matter of fact that the equations of motion
become real when the field is real. Perturbatively in θ this can be proved order by order by direct
inspection of the equations in [68]. In particular, at a given order one can show that the imaginary
part of the equations vanishes when the constraint and the equations of motion at lower orders are
satisfied.

It would be interesting to obtain the action (3.1.12) from the dimensional reduction of the 4d
SDYM action by generalizing to the NC case the procedure used in [38].

3.2 Connections to strings and dualities

The NC sine–Gordon model we here propose can be related to string theory, via dimensional re-
duction from four dimensional NC SDYM. This is a NC of the ordinary dimensional reduction that
gives sine–Gordon in ordinary geometry from SDYM. However, we point out that the reduction in
noncommutative geometry works only at the level of the equations of motion, but not for the action.
On the other hand, bosonization of NC massive and abelian Thirring model yields the action of our
NC version of sine–Gordon, as we will show in subsection 3.2.2.

3.2.1 Equations of motion from noncommutative selfdual Yang–Mills

The (anti–)selfdual Yang–Mills equation is well–known to describe a completely integrable classical
system in four dimensions [70]. In the ordinary case the equations of motion for many two dimensional
integrable systems, including sine–Gordon, can be obtained through dimensional reduction of the
(A)SDYM equations [37].

A convenient description of the (A)SDYM system is the so called J–formulation, given in terms
of a SL(N,C) matrix–valued J field satisfying

∂ȳ

(
J−1∂yJ

)
+ ∂z̄

(
J−1∂zJ

)
= 0 (3.2.15)

where y, ȳ, z, z̄ are complex variables treated as formally independent.

In the ordinary case, the sine–Gordon equation can be obtained from (3.2.15) by taking J in
SL(2, C) to be [38]

J = J(u, z, z̄) = e
z
2
σie

i
2
uσje−

z̄
2
σi (3.2.16)

where u = u(y, ȳ) depends on y and ȳ only and σi are the Pauli matrices.

45



3. Noncommutative sine–Gordon with non factorized S–matrix

A noncommutative version of the (anti–)selfdual Yang–Mills system can be naturally obtained
[49] by promoting the variables y, ȳ, z and z̄ to be noncommutative thus extending the ordinary
products in (3.2.15) to �–products. In this case the J field lives in GL(N,C).

It has been shown [48] that NC SDYM naturally emerges from open N = 2 strings in a B–field
background. Moreover, in [49, 52, 62] examples of reductions to two dimensional NC systems were
given. It was also argued that the NC deformation should preserve the integrability of the systems
[39].

We now show that our NC version of the sine–Gordon equations can be derived through dimen-
sional reduction from the NC SDYM equations. For this purpose we consider the NC version of
equations (3.2.15) and choose J in GL(2, C) as

J = J(u, z, z̄) = e
z
2
σi

 � e
i
2
uσj

 � e
− z̄

2
σi

 (3.2.17)

This leads to the matrix equation

∂ȳa I + i

(
∂ȳb+

1

2
sin u

)
σj = 0 (3.2.18)

where a and b have been defined in (3.1.8). Now, taking the trace we obtain ∂ȳa = 0 which is
the constraint equation in (3.1.8). As a consequence, the term proportional to σj gives rise to the
dynamical equation in (3.1.8) for the particular choice γ = −1. Therefore we have shown that the
equations of motion of the NC version of sine–Gordon proposed in [68] can be obtained from a suitable
reduction of the NC SDYM system as in the ordinary case. From this derivation the origin of the
constraint appears even more clearly: it arises from setting to zero the trace part which the matrices
in GL(2, C) naturally develop under �–multiplication.

Solving (3.2.18) for the particular choice σj = σ3 we obtain the alternative set of equations

∂̄
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e
− i

2
φ

 � ∂e
i
2
φ



)
=

i

2
γ sin φ (3.2.19)

∂̄

(
e
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φ

 � ∂e
− i

2
φ



)
= − i

2
γ sin φ

Order by order in the θ–expansion the set of equations (3.1.8) and (3.2.19) are equivalent. Therefore,
the set (3.2.19) is equally suitable for the description of an integrable noncommutative generalization
of sine–Gordon.

Since our NC generalization of sine–Gordon is integrable, the present result gives support to the
arguments in favor of the integrability of NC SDYM system.

We note that our equations of motion, Wick rotated to Minkowski, can also be obtained by
suitable reduction of the (2 + 1) integrable noncommutative model studied in [53, 54].

3.2.2 Noncommutative Thirring model and bosonization

In the ordinary case the equivalence between Thirring and sine–Gordon models [30] can be proven
at the level of functional integrals by implementing the bosonization prescription [78, 79] on the
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3.3. Properties of S–matrix and integrability

fermions. The same procedure has been worked out in NC geometry [81, 42]. Starting from the NC
version of Thirring described by

ST =

∫
d2x

[
ψ̄iγμ∂μψ +mψ̄ψ − λ

2
(ψ̄ � γμψ)(ψ̄ � γμψ)

]
(3.2.20)

the bosonization prescription gives rise to the action for the bosonized NC massive Thirring model
which turns out to be a NC WZNW action supplemented by a cosine potential term for the NC U(1)
group valued field which enters the bosonization of the fermionic currents. In particular, in the most
recent paper in [81] it has been shown that working in Euclidean space the massless Thirring action
corresponds to the sum of two WZNW actions once a suitable choice for the regularization parameter
is made. Moreover, in [42] it was proven that the bosonization of the mass term in (3.2.20) gives rise
to a cosine potential for the scalar field with coupling constant proportional to m.

The main observation is that our action (3.1.12) is the sum of two NC WZNW actions plus
cosine potential terms for the pair of U(1)C group valued fields g and ḡ, considered as independent.
Therefore, our action can be interpreted as coming from the bosonization of the massive NC Thirring
model, in agreement with the results in [81, 42].

We have shown that even in the NC case the sine–Gordon field can be interpreted as the scalar
field which enters the bosonization of the Thirring model, so proving that the equivalence between
Thirring and sine–Gordon can be maintained in NC generalizations of these models. Moreover, the
classical integrability of our NC version of sine–Gordon proven in [68] should automatically guarantee
the integrability of the NC Thirring model.

In the particular case of zero coupling (γ = 0), the equations (3.1.12) and (3.2.19) correspond
to the action and the equations of motion for a NC U(1) WZNW model [40], respectively. Again,
we can use the results of [68] to prove the classical integrability of the NC U(1) WZNW model and
construct explicitly its conserved currents.

3.3 Properties of S–matrix and integrability

It is well known that in integrable commutative field theories there is no particle production and the
S–matrix factorizes. In the noncommutative case properties of the S–matrix have been investigated
for two specific models: The λΦ4 theory in two dimensions [64] and the non integrable “natural”
NC generalization the the sine–Gordon model [67]. In the first reference a very pathological acausal
behavior was observed due to the space and time noncommutativity. For an incoming wave packet
the scattering produces an advanced wave which arrives at the origin before the incoming wave. In
the second model investigated it was found that particle production occurs. The tree level 2 → 4
amplitude does not vanish.

It might be hoped that classical integrability would alleviate these pathologies. In the NC in-
tegrable sine–Gordon case, since we have an action, it is possible to investigate these issues. As
described below we have computed the scattering amplitude for the 2 → 2 process and found that
the acausality of [64] is not cured by integrability. We have also computed the production amplitudes
for the processes 2 → 3 and 2 → 4 and found that they don’t vanish.

We started from our action (3.1.13) rewritten in terms of Minkowski space coordinates x0, x1 and
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3. Noncommutative sine–Gordon with non factorized S–matrix

real fields (g = e
i
2
φ

 , ĝ(t) = e
i
2
tφ

 with φ real)

S[g] = −1

2

∫
d2x g−1 � ∂μg � g−1 � ∂μg − 1

3

∫
d3x εμνρĝ−1 � ∂μĝ � ĝ

−1 � ∂ν ĝ � ĝ
−1 � ∂ρĝ

+
γ

4

∫
d2x(g2 + g−2 − 2) (3.3.21)

where f � g = fe
i
2
θεμν←−∂ μ

−→
∂ νg, and we derived the following Feynman’s rules

• The propagator

G(q) =
4i

q2 − 2γ
(3.3.22)

• The vertices

v3(k1, . . . , k3) =
2

23 · 3!ε
μνk1μk2νF (k1, . . . , k3)

v4(k1, . . . , k4) = i

(
− 1

24 · 4!
(
k2

1 + 3k1 · k3

)
+

γ

2 · 4!
)
F (k1, . . . , k4)

v5(k1, . . . , k5) = − 2εμν

25 · 5! (k1μk2ν − k1μk3ν + 2k1μk4ν)F (k1, . . . , k5)

v6(k1, . . . , k6) = i

[
1

26 · 6!
(
k2

1 + 5k1 · k3 − 5k1 · k4 + 5k1 · k5

)− γ

2 · 6!
]
F (k1, . . . , k6)

(3.3.23)

where

F (k1, . . . , kn) = exp

⎛⎝− i

2

∑
i<j

ki × kj

⎞⎠ (3.3.24)

is the phase factor coming from the �–products in the action (we have indicated a × b =
θεμνaμbν), ki are all incoming momenta and we used momentum conservation.

At tree level the 2 → 2 process is described by the diagrams with the topologies in Fig. 1.

Figure 1: Tree level 2 → 2 amplitude

Including contributions from the various channels and using the three point and four point vertices
of eqs. (3.3.23) we obtained for the scattering amplitude the expression

− i

2
E2p2

(
1

2E2 − γ
− 1

2p2 + γ

)
sin2 (pEθ) +

iγ

2
cos2 (pEθ) (3.3.25)
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3.3. Properties of S–matrix and integrability

where p is the center of mass momentum and E =
√
p2 + 2γ.

For comparison with [64] this should be multiplied by an incoming wave packet

Φin(p) ∼
(

e−
(p−p0)2

λ + e−
(p+p0)2

λ

)
(3.3.26)

and Fourier transformed with eipx. We have not attempted to carry out the Fourier transform
integration. However, we note that for p0 very large E and p are concentrated around large values
and the scattering amplitude assumes the form

i
γ

4
sin2 (pEθ) + i

γ

2
cos2 (pEθ) (3.3.27)

which is equivalent to the result in [64], leading to the same acausal pathology 1.

We describe now the computation of the production amplitudes 2 → 3 and 2 → 4. At tree level
the contributions are drawn in Figures 2 and 3, respectively.

Figure 2: Tree level 2 → 3 amplitude

1It is somewhat tantalizing that a change in the relative coefficient between the two terms would lead to a removal
of the trigonometric factors which are responsible for the acausal behavior.
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3. Noncommutative sine–Gordon with non factorized S–matrix

Figure 3: Tree level 2 → 4 amplitude

For any topology the different possible channels must be taken into account. This, as well as
the complicated expressions for the vertices, has led us to use an algebraic manipulation program
computer. We used Mathematica c© to symmetrize completely the vertices (3.3.23). This allows to
take automatically into account the different diagrams obtained by exchanging momenta entering a
given vertex. The contribution from each diagram was obtained as a product of the combinatorial
factor, the relevant vertices and propagators. Due to the length of the program it was impossible to
handle the calculation in a complete analytic way. Instead, the program was run with assigned values
of the momenta and arbitrary θ and γ. For both the 2 → 3 and 2 → 4 processes the result is non
vanishing. As a check of our calculation we mention that the production amplitudes vanish when we
set θ = 0, for any value of the coupling and the momenta.

This investigation has been carried on in the particular case φ = φ†. However, it can be eas-
ily proved that turning on a nontrivial imaginary part for the φ field does not cure the previous
pathologies.

3.4 Remarks on the (non)integrable noncommutative sine–Gordon

We have investigated some properties of the integrable NC sine–Gordon system proposed in [68] and
further analyzed in my publication [63]. We succeeded in constructing an action which turned out
to be a WZNW action for a noncommutative, complexified U(1) augmented by a cosine potential.
We have shown that even in the NC case there is a duality relation between our integrable NC
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3.4. Remarks on the (non)integrable noncommutative sine–Gordon

sine–Gordon model and the NC Thirring.

NC WZNW models have been shown to be one–loop renormalizable [43]. This suggests that the
NC sine–Gordon model proposed in [68] is not only integrable but it might lead to a well–defined
quantized model, giving support to the existence of a possible relation between integrability and
renormalizability.

Armed with our action we investigated some properties of the S–matrix for elementary excitations.
However, in contradistinction to the commutative case, the S–matrix turned out to be acausal and
non factorizable 2. The reason for the acausal behavior has been discussed in [64] where it was
pointed out that noncommutativity induces a backward–in–time effect because of the presence of
certain phase factors. It appears that in our case this effect is still present in spite of integrability.

It is not clear why the presence of an infinite number of local conserved currents (local in the
sense that they are not expressed as integrals of certain densities) does not guarantee factorization
and absence of production in the S–matrix as it does in the commutative case. The standard proofs of
factorization use, among other assumptions, the mutual commutativity of the charges — a property
we have not been able to check so far because of the complicated nature of the currents. But even
if the charges were to commute the possibility of defining them as powers of momenta, as required
in the proofs, could be spoiled by acausal effects which prevent a clear distinction between incoming
and outgoing particles. Indeed, this may indicate some fundamental inconsistency of the model as a
field theory describing scattering in (1 + 1)–dimensional Minkowski space (simply going to Euclidean
signature does not change the factorizability properties of the S–matrix). However, it is conceivable
that in Euclidean space the model could be used to describe some statistical mechanics system and
this possibility might be worth investigating.

In a series of papers [45] a different approach to quantum NC theories has been proposed when the
time variable is not commuting. In particular, the way one computes Green’s functions is different
there, leading to a modified definition of the S–matrix. It would be interesting to redo our calculations
in that approach to see whether a well–defined factorized S–matrix for our model can be constructed.
In this context it would be also interesting to investigate the scattering of solitons present in our
model [68]. To this end, since our model is a reduction of the (2 + 1) integrable model studied in
[54, 55, 56], it might be possible to exploit the results of those papers concerning multi–solitons and
their scattering to investigate the same issues in our case.

The model we have proposed here describes the propagation of two interacting scalar fields �φ,
�φ . The particular form of the interaction follows from the choice of the U(2) matrices made in [68]
for the bicomplex formulation or, equivalently, from the particular ansatz (3.2.17) in the reduction
from NC SDYM (in the commutative limit and for �φ = 0 we are back to the ordinary sine–Gordon).
In the commutative case the ansatz (3.2.16) depends on a single real field and, independently of the
choice of the Pauli matrices in the exponentials, we obtain the same equations of motion. In the
NC case the lack of decoupling of the U(1) subgroup requires the introduction of two fields. This

implies that in general we can make an ansatz J = e
z
2
σi

 g(y, ȳ)e
− z̄

2
σi

 where g is a group valued
field which depends on two scalar fields in such a way as to reduce to the ordinary ansatz (3.2.16)
in the commutative limit and for a suitable identification of the two fields. In principle there are
different choices for g as a function of the two fields satisfying this requirement. Different choices
may be inequivalent and describe different but still integrable dynamics for the two fields. Therefore,

2Other problems of the S–matrix have been discussed in [44, 65].
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3. Noncommutative sine–Gordon with non factorized S–matrix

an interesting question is whether an ansatz slightly different from (3.2.17) exists which would give
rise to an integrable system described by a consistent, factorized S–matrix. We might expect that
if such an ansatz exists it should introduce a different interaction between the two fields and this
might cure the pathological behavior of the present scattering matrix. If such a possibility exists
it would be interesting to compare the two different reductions to understand in the NC case what
really drives the system to be integrable in the sense of having a well–defined, factorized S–matrix
since the existence of an infinite number of local conservation laws does not appear to be sufficient.
These issues are discussed in the next chapter, following the construction of the integral sine–Gordon
model of my paper [46].
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Chapter 4

Integrable noncommutative
sine–Gordon

In the previous NC sine–Gordon model we proposed, the dimensional reduction from SDYM does not
work at the level of the action, which turns out to be the sum of two WZW models augmented by a
cosine potential. Evaluating tree–level scattering amplitudes we discovered that the S–matrix suffers
from acausal behavior and is non factorized, meaning that particle production occurs. Integrability
seems not to translate in the nice properties of S–matrix, as one expects in two dimensions.

At this point it is important to note that the noncommutative deformation of an integrable
equation is a priori not unique, because one may always add terms which vanish in the commutative
limit. For the case at hand, for example, different inequivalent ansätze for the U(2) matrices entering
the bicomplex construction [59] are possible as long as they all reproduce the ordinary sine–Gordon
equation in the commutative limit. It is therefore conceivable that among these possibilities there
exists an ansatz (different from the one in [68, 63]) which guarantees the classical integrability of the
corresponding noncommutative model. What is already certain is the necessity to introduce two real
scalar fields instead of one, since in the noncommutative realm the U(1) subgroup of U(2) fails to
decouple. What has been missing is a guiding principle towards the “correct” field parametrization.

Since the sine–Gordon model can be obtained by dimensional reduction from (2+2)–dimensional
SDYM theory via a (2+1)–dimensional integrable sigma model [69], and because the latter’s noncom-
mutative extension was shown to be integrable in [54], it seems a good idea to construct an integrable
generalization of the sine–Gordon equation by starting from the linear system of this integrable sigma
model endowed with a time–space noncommutativity. This is the key strategy of my paper [46], writ-
ten in collaboration with O. Lechtenfeld, A. D. Popov, S. Penati and L. Tamassia. The reduction
is performed on the equations of motion first, but it also works at the level of the action, so giving
directly the (1 + 1)–dimensional action we are looking for. We interpret this success as an indication
that the new field parametrization proposed here is the proper one.

To be more precise, we propose three different parametrizations, by pairs of fields (φ+, φ−),
(ρ, ϕ) and (h1, h2), all related by nonlocal field redefinitions but all deriving from the compatibility
conditions of the underlying linear system [54]. The first two appear in a Yang gauge [70], while
the third one arises in a Leznov gauge [71]. For either field pair in the Yang gauge, the nontrivial
compatibility condition reduces to a pair of noncommutative sine–Gordon equations which in the

53



4. Integrable noncommutative sine–Gordon

commutative limit degenerates to the standard sine–Gordon equation for 1
2 (φ++φ−) or ϕ, respectively,

while 1
2 (φ+−φ−) or ρ decouple as free bosons. The alternative Leznov formulation has the advantage

of producing two polynomial (actually, quadratic) equations of motion for (h1, h2) but retains their
coupling even in the commutative limit.

With the linear system comes a well–developed technology for generating solitonic solutions to
the equations of motion. Here, we shall employ the dressing method [72, 73] to explicitly outline
the construction of noncommutative sine–Gordon multi–solitons, directly in (1 + 1) dimensions as
well as by reducing plane–wave solutions of the (2 + 1)–dimensional integrable sigma model [55], as I
explained in section 1.3. We completely analyze the one–soliton sector where we recover the standard
soliton solution as undeformed; noncommutativity becomes palpable only at the multi–soliton level.

It was shown in [48] that the tree–level n–point amplitudes of noncommutative (2+2)–dimensional
SDYM vanish for n > 3, consistent with the vanishing theorems for the N=2 string. Therefore, we
may expect nice properties of the S–matrix to be inherited by our noncommutative sine–Gordon
theory. In fact, a direct evaluation of tree–level amplitudes reveals that, in the Yang as well as the
Leznov formulation, the S–matrix is causal and no particle production occurs.

In section 4.1 we review the basic construction of the (2+ 1)–dimensional integrable sigma model
of [54] through a linear system, for the case of a noncommuting time coordinate. In section 4.2 we
describe its dimensional reduction to the noncommutative integrable sine–Gordon model, both in the
Yang and the Leznov formulation, mentioning the relation to the previously investigated NC version
of sine–Gordon. Section 4.3 is devoted to the construction of solitonic solutions for our model, by
way of the iterative dressing approach. The computation of scattering amplitudes is finally described
in section 4.4, showing the nice results that we were expecting.

4.1 Noncommutative integrable sigma model and the bicomplex

As has been known for some time, nonlinear sigma models in (2 + 1) dimensions may be Lorentz–
invariant or integrable but not both [69]. Since the integrable variant serves as our starting point for
the derivation of the sine–Gordon model and its soliton solutions, we shall present its noncommutative
extension [54] in some detail in the present section.

Noncommutative R
2,1 Classical field theory on noncommutative spaces may be realized by de-

forming the ordinary product of classical fields (or their components) to the noncommutative star
product

(f � g)(x) = f(x) exp
{ i

2

←

∂ a θ
ab

→

∂ b

}
g(x) , (4.1.1)

with a constant antisymmetric tensor θab, where a, b, . . . = 0, 1, 2. Specializing to R
2,1, we shall use

(real) coordinates (xa) = (t, x, y) in which the Minkowskian metric reads (ηab) = diag(−1,+1,+1).
For later use we introduce the light–cone coordinates

u := 1
2(t+ y) , v := 1

2 (t− y) , ∂u = ∂t + ∂y , ∂v = ∂t − ∂y . (4.1.2)

In view of the future reduction to (1 + 1) dimensions, we choose the coordinate x to remain commu-
tative, so that the only non–vanishing component of the noncommutativity tensor is

θty = −θyt =: θ > 0 . (4.1.3)
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Linear system Consider on noncommutative R
2,1 the following pair of linear differential equa-

tions [54],

(ζ∂x − ∂u)Ψ = A �Ψ and (ζ∂v − ∂x)Ψ = B �Ψ , (4.1.4)

where a spectral parameter ζ ∈ CP 1 ∼= S2 has been introduced. The auxiliary field Ψ takes values
in U(n) and depends on (t, x, y, ζ) or, equivalently, on (x, u, v, ζ). The u(n) matrices A and B, in
contrast, do not depend on ζ but only on (x, u, v). Given a solution Ψ, they can be reconstructed
via1

A = Ψ � (∂u − ζ∂x)Ψ−1 and B = Ψ � (∂x − ζ∂v)Ψ
−1 . (4.1.5)

It should be noted that the equations (4.1.4) are not of first order but actually of infinite order in
derivatives, due to the star products involved. In addition, the matrix Ψ is subject to the following
reality condition [69]:

1 = Ψ(t, x, y, ζ) � [Ψ(t, x, y, ζ̄)]† , (4.1.6)

where ‘†’ is hermitian conjugation. The compatibility conditions for the linear system (4.1.4) read

∂xB − ∂vA = 0 , (4.1.7)

∂xA− ∂uB −A � B +B � A = 0 . (4.1.8)

By detailing the behavior of Ψ at small ζ and at large ζ we shall now “solve” these equations in two
different ways, each one leading to a single equation of motion for a particular field theory.

Yang–type solution We require that Ψ is regular at ζ=0 [74],

Ψ(t, x, y, ζ → 0) = Φ−1(t, x, y) + O(ζ) , (4.1.9)

which defines a U(n)–valued field Φ(t, x, y), i.e. Φ† = Φ−1. Therewith, A and B are quickly recon-
structed via

A = Ψ � ∂uΨ−1
∣∣
ζ=0

= Φ−1 � ∂uΦ and B = Ψ � ∂xΨ−1
∣∣
ζ=0

= Φ−1 � ∂xΦ . (4.1.10)

It is easy to see that compatibility equation (4.1.8) is then automatic while the remaining equa-
tion (4.1.7) turns into [54]

∂x (Φ−1 � ∂xΦ)− ∂v (Φ−1 � ∂uΦ) = 0 . (4.1.11)

This Yang–type equation [70] can be rewritten as

(ηab + vc ε
cab) ∂a(Φ

−1 � ∂bΦ) = 0 , (4.1.12)

where εabc is the alternating tensor with ε012=1 and (vc) = (0, 1, 0) is a fixed space–like vector.
Clearly, this equation is not Lorentz–invariant but (deriving from a Lax pair) it is integrable.

1Inverses are understood with respect to the star product, i.e. Ψ−1 �Ψ = 1.
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One can recognize (4.1.12) as the field equation for (a noncommutative generalization of) a WZW–
like modified U(n) sigma model [69, 75] with the action2

SY = −1
2

∫
dt dxdy ηab tr

(
∂aΦ

−1 � ∂bΦ
)

− 1
3

∫
dt dxdy

∫ 1

0
dλ ṽρ ε

ρμνσ tr
(
Φ̃−1 � ∂μΦ̃ � Φ̃−1 � ∂νΦ̃ � Φ̃−1 � ∂σΦ̃

)
,

(4.1.13)

where Greek indices include the extra coordinate λ, and ερμνσ denotes the totally antisymmetric
tensor in R

4. The field Φ̃(t, x, y, λ) is an extension of Φ(t, x, y), interpolating between

Φ̃(t, x, y, 0) = const and Φ̃(t, x, y, 1) = Φ(t, x, y) , (4.1.14)

and ‘tr’ implies the trace over the U(n) group space. Finally, (ṽρ) = (vc, 0) is a constant vector in
(extended) space–time.

Leznov–type solution Finally, we also impose the asymptotic condition that limζ→∞Ψ = Ψ0

with some constant unitary (normalization) matrix Ψ0. The large ζ behavior [74]

Ψ(t, x, y, ζ →∞) =
(
1 + ζ−1Υ(t, x, y) + O(ζ−2)

)
Ψ0 (4.1.15)

then defines a u(n)–valued field Υ(t, x, y). Again this allows one to reconstruct A and B through

A = − lim
ζ→∞

(
ζ Ψ � ∂xΨ−1

)
= ∂xΥ and B = − lim

ζ→∞
(
ζ Ψ � ∂vΨ

−1
)

= ∂vΥ . (4.1.16)

In this parametrization, compatibility equation (4.1.7) becomes an identity but the second equa-
tion (4.1.8) turns into [54]

∂2
xΥ− ∂u∂vΥ− ∂xΥ � ∂vΥ + ∂vΥ � ∂xΥ = 0 . (4.1.17)

This Leznov–type equation [71] can also be obtained by extremizing the action

SL =

∫
dt dxdy tr

{
1
2 η

ab ∂aΥ � ∂bΥ + 1
3 Υ �

(
∂xΥ � ∂vΥ− ∂vΥ � ∂xΥ

)}
, (4.1.18)

which is merely cubic.

Obviously, the Leznov field Υ is related to the Yang field Φ through the non–local field redefinition

∂xΥ = Φ−1 � ∂uΦ and ∂vΥ = Φ−1 � ∂xΦ . (4.1.19)

For each of the two fields Φ and Υ, one equation from the pair (4.1.7, 4.1.8) represents the equation
of motion, while the other one is a direct consequence of the parametrization (4.1.10) or (4.1.16).

2which is obtainable by dimensional reduction from the Nair–Schiff action [76, 77] for SDYM in (2 + 2) dimensions
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4.2. The noncommutative sine–Gordon action from dimensional reduction

4.2 The noncommutative sine–Gordon action from dimensional re-

duction

Algebraic reduction ansatz It is well known that the (commutative) sine–Gordon equation can
be obtained from the self–duality equations for SU(2) Yang–Mills upon appropriate reduction from
2+2 to (1+1) dimensions. In this process the integrable sigma model of the previous section appears
as an intermediate step in (2 + 1) dimensions, and so we may take its noncommutative extension as
our departure point, after enlarging the group to U(2). In order to avoid cluttering the formulae we
suppress the ‘�’ notation for noncommutative multiplication from now on: all products are assumed

to be star products, and all functions are built on them, i.e. ef(x) stands for ε
f(x)
 and so on.

The dimensional reduction proceeds in two steps, firstly, a factorization of the coordinate de-
pendence and, secondly, an algebraic restriction of the form of the U(2) matrices involved. In the
language of the linear system (4.1.4) the adequate ansatz for the auxiliary field Ψ reads

Ψ(t, x, y, ζ) = V (x)ψ(u, v, ζ)V †(x) with V (x) = E eiα x σ1 , (4.2.20)

where σ1 = ( 0 1
1 0 ), E denotes some constant unitary matrix (to be specified later) and α is a constant

parameter. Under this factorization, the linear system (4.1.4) simplifies to3

(∂u − iα ζ adσ1)ψ = −aψ and (ζ∂v − iα adσ1)ψ = b ψ (4.2.21)

with a = V †AV and b = V †B V . Taking into account the asymptotic behavior (4.1.9, 4.1.15), the
ansatz (4.2.20) translates to the decompositions

Φ(t, x, y) = V (x) g(u, v)V †(x) with g(u, v) ∈ U(2) , (4.2.22)

Υ(t, x, y) = V (x)χ(u, v)V †(x) with χ(u, v) ∈ u(2) . (4.2.23)

To aim for the sine–Gordon equation, one imposes certain algebraic constraints on a and b (and
therefore on ψ). Their precise form, however, is not needed, as we are ultimately interested only in
g or χ. Therefore, we instead directly restrict g(u, v) to the form

g =
(g+ 0

0 g−

)
= g+P+ + g−P− with g+ ∈ U(1)+ and g− ∈ U(1)− (4.2.24)

and with projectors P+ = ( 1 0
0 0 ) and P− = ( 0 0

0 1 ). This imbeds g into a U(1) × U(1) subgroup
of U(2). Note that g+ and g− do not commute, due to the implicit star product. Invoking the field
redefinition (4.1.19) we infer that the corresponding reduction for χ(u, v) should be4

χ = i
(0 h†

h 0

)
with h ∈ C , (4.2.25)

with the “bridge relations”

α (h− h†) = −g†+∂ug+ = g†−∂ug− ,

1
α ∂vh = g†−g+ − 1 and h.c. .

(4.2.26)

3The adjoint action means adσ1 (ψ) = [σ1, ψ].
4Complex conjugates of scalar functions are denoted with a dagger to remind the reader of their noncommutativity.
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In this way, the u(2)–matrix χ is restricted to be off–diagonal.
We now investigate in turn the consequences of the ansätze (4.2.22, 4.2.24) and (4.2.23, 4.2.25)

for the equations of motion (4.1.11) and (4.1.17), respectively.

Reduction of Yang–type equation Let us insert the ansatz (4.2.22) into the Yang–type equation
of motion (4.1.11). After stripping off the V factors one obtains

∂v(g
†∂ug) + α2(σ1g

†σ1g − g†σ1gσ1) = 0 . (4.2.27)

Specializing with (4.2.24) and employing the identities σ1P±σ1 = P∓ we arrive at Y+P++Y−P− = 0,
with

Y+ ≡ ∂v(g
†
+∂ug+) + α2(g†−g+ − g†+g−) = 0 ,

Y− ≡ ∂v(g
†
−∂ug−) + α2(g†+g− − g†−g+) = 0 .

(4.2.28)

Since the brackets multiplying α2 are equal and opposite, it is worthwhile to present the sum and the
difference of the two equations:

∂v

(
g†+∂ug+ + g†−∂ug−

)
= 0 ,

∂v

(
g†+∂ug+ − g†−∂ug−

)
= 2α2

(
g†+g− − g†−g+

)
.

(4.2.29)

It is natural to introduce the angle fields π±(u, v) via

g = e
i
2
φ+P+ e−

i
2
φ−P− ⇔ g+ = e

i
2
φ+ and g− = e−

i
2
φ− . (4.2.30)

In terms of these, the equations (4.2.29) read

∂v

(
e−

i
2
φ+ ∂ue

i
2
φ+ + e

i
2
φ− ∂ue−

i
2
φ−
)

= 0 ,

∂v

(
e−

i
2
φ+ ∂ue

i
2
φ+ − e

i
2
φ− ∂ue−

i
2
φ−
)

= 2α2
(
e−

i
2
φ+e−

i
2
φ− − e

i
2
φ−e

i
2
φ+
)

.

(4.2.31)

We propose to call these two equations “the noncommutative sine–Gordon equations”. Besides their
integrability (see later sections for consequences) their form is quite convenient for studying the
commutative limit. When θ → 0, (4.2.31) simplifies to

∂u∂v(φ+−φ−) = 0 and ∂u∂v(φ++φ−) = −8α2 sin 1
2(φ++φ−) . (4.2.32)

Because the equations have decoupled we may choose

φ+ = φ− =: π ⇔ g+ = g†− ⇔ g ∈ U(1)A (4.2.33)

and reproduce the familiar sine–Gordon equation

(∂2
t − ∂2

y)π = −4α2 sinπ . (4.2.34)

One learns that in the commutative case the reduction is SU(2) → U(1)A since the U(1)V degree of
freedom φ+−φ− is not needed. The deformed situation, however, requires extending SU(2) to U(2),
and so it is imperative here to keep both U(1)s and work with two scalar fields.
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4.2. The noncommutative sine–Gordon action from dimensional reduction

Inspired by the commutative decoupling, one may choose another distinguished parametrization
of g, namely

g+ = e
i
2
ρ e

i
2
ϕ and g− = e

i
2
ρ e−

i
2
ϕ , (4.2.35)

which defines angles ρ(u, v) and ϕ(u, v) for the linear combinations U(1)V and U(1)A, respectively.
Inserting this into (4.2.28) one finds

∂v

(
e−

i
2
ϕ ∂ue

i
2
ϕ
)

+ 2iα2 sinϕ = −∂v

[
e−

i
2
ϕe−

i
2
ρ (∂ue

i
2
ρ)e

i
2
ϕ
]

,

∂v

(
e

i
2
ϕ ∂ue−

i
2
ϕ
)− 2iα2 sinϕ = −∂v

[
e

i
2
ϕe−

i
2
ρ (∂ue

i
2
ρ)e−

i
2
ϕ
]

.

(4.2.36)

In the commutative limit, this system is easily decoupled to

∂u∂vρ = 0 and ∂u∂vϕ+ 4α2 sinϕ = 0 , (4.2.37)

revealing that ρ→ 1
2 (φ+−φ−) and ϕ→ 1

2(φ++φ−) = π in this limit.
It is not difficult to write down an action for (4.2.28) (and hence for (4.2.31) or (4.2.36)). The

relevant action may be computed by reducing (4.1.13) with the help of (4.2.22) and (4.2.24). The
result takes the form

S[g+, g−] = SWZW[g+] + SWZW[g−] + α2

∫
dt dy

(
g†+g− + g†−g+ − 2

)
, (4.2.38)

where SW is the abelian WZW action

SWZW[f ] ≡ −1
2

∫
dt dy ∂vf

−1 ∂uf − 1
3

∫
dt dy

∫ 1

0
dλ εμνσ f̂−1∂μf̂ f̂

−1∂ν f̂ f̂
−1∂σ f̂ . (4.2.39)

Here f̂(λ) is a homotopy path satisfying the conditions f̂(0) = 1 and f̂(1) = f . Parametrizing g± as
in (4.2.35) and using the Polyakov–Wiegmann identity, the action for ρ and ϕ reads

S[ρ, ϕ] = 2SPC

[
e

i
2
ϕ
]

+ 2α2

∫
dt dy

(
cosϕ− 1

)
+ 2SWZW

[
e

i
2
ρ
]

−
∫

dt dy e−
i
2
ρ ∂ve

i
2
ρ
(
e−

i
2
ϕ ∂ue

i
2
ϕ + e

i
2
ϕ ∂ue−

i
2
ϕ
)

,

(4.2.40)

where

SPC[f ] ≡ −1
2

∫
dt dy ∂vf

−1 ∂uf . (4.2.41)

In this parametrization the WZ term has apparently been shifted entirely to the ρ field while the
cosine–type self–interaction remains for the ϕ field only. This fact has important consequences for
the scattering amplitudes.

It is well known [78, 79, 80] that in ordinary commutative geometry the bosonization of N free
massless fermions in the fundamental representation of SU(N) gives rise to a WZW model for a
scalar field in SU(N) plus a free scalar field associated with the U(1) invariance of the fermionic
system. In the noncommutative case the bosonization of a single massless Dirac fermion produces a
noncommutative U(1) WZW model [81], which becomes free only in the commutative limit. Moreover,
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4. Integrable noncommutative sine–Gordon

the U(1) subgroup of U(N) does no longer decouple [82], so that N noncommuting free massless
fermions are related to a noncommutative WZW model for a scalar in U(N). On the other hand,
giving a mass to the single Dirac fermion leads to a noncommutative cosine potential on the bosonized
side [83].

In contrast, the noncommutative sine–Gordon model we propose here is of a more general form.
The action (4.2.38) describes the propagation of a scalar field g taking its value in U(1)×U(1) ⊂ U(2).
Therefore, we expect it to be a bosonized version of two fermions in some representation of U(1)×U(1).
The absence of a WZ term for ϕ and the lack of a cosine–type self–interaction for ρ as well as the
non–standard interaction term make the precise identification non–trivial however.

Reduction of Leznov–type equation Alternatively, if we insert the ansatz (4.2.23) into the
Leznov–type equation of motion (4.1.17) we get

∂u∂vχ+ 2α2(χ− σ1χσ1) + iα
[
[σ1, χ], ∂vχ

]
= 0 . (4.2.42)

Specializing with (4.2.25) this takes the form Zσ− + Z†σ+ = 0 with σ− = ( 0 0
1 0 ) and σ+ = ( 0 1

0 0 ),
where

Z ≡ ∂u∂vh+ 2α2 (h− h†) + α
{
∂vh , h− h†

}
= 0 . (4.2.43)

The decomposition

χ = i(h1σ1 + h2σ2) ⇔ h = h1 + ih2 (4.2.44)

then yields
∂u∂vh1 − 2α

{
∂vh2 , h2

}
= 0 ,

∂u∂vh2 + 4α2h2 + 2α
{
∂vh1 , h2

}
= 0 .

(4.2.45)

These two equations constitute an alternative description of the noncommutative sine–Gordon model;
they are classically equivalent to the pair of (4.2.29) or, to be more specific, to the pair of (4.2.36).
For the real fields the “bridge relations” (4.2.26) read

2iα h2 = −e−
i
2
ϕe−

i
2
ρ ∂u(e

i
2
ρe

i
2
ϕ) = e

i
2
ϕe−

i
2
ρ ∂u(e

i
2
ρe−

i
2
ϕ) ,

1
α∂vh1 = cosϕ− 1 and 1

α∂vh2 = sinϕ .
(4.2.46)

One may “solve” one equation of (4.2.36) by an appropriate field redefinition from (4.2.46), which
implies already one member of (4.2.45). The second equation from (4.2.36) then yields the remaining
“bridge relations” in (4.2.46) as well as the other member of (4.2.45). This procedure works as well
in the opposite direction, from (4.2.45) to (4.2.36). The nonlocal duality between (ϕ, ρ) and (h1, h2)
is simply a consequence of the equivalence between (4.1.11) and (4.1.17) which in turn follows from
our linear system (4.1.4).

The “h description” has the advantage of being polynomial. It is instructive to expose the action
for the system (4.2.45). Either by inspection or by reducing the Leznov action (4.1.18) one obtains

S[h1, h2] =

∫
dt dy

{
∂uh1∂vh1 + ∂uh2∂vh2 − 4α2h2

2 − 4αh2
2 ∂vh1

}
. (4.2.47)
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4.2. The noncommutative sine–Gordon action from dimensional reduction

4.2.1 Connection to previous noncommutative sine–Gordon generalizations

The noncommutative generalizations of the sine–Gordon model presented above are expected to
possess an infinite number of conservation laws, as they originate from the reduction of an integrable
model [53]. It is worthwhile to point out their relation to previously proposed noncommutative
sine–Gordon models which also feature an infinite number of local conserved currents.

In [68] an alternative noncommutative version of the sine–Gordon model was proposed. Using the
bicomplex approach the equations of motion were obtained as flatness conditions of a bidifferential
calculus,5

∂̄(G−1 � ∂G) = [R , G−1 � S G] , (4.2.48)

where

R = S = 2α
(0 0
0 1

)
(4.2.49)

and G is a suitable matrix in U(2) or, more generally, in complexified U(2). In [68] the G matrix was
chosen as

G = ε
i
2
σ2φ

 =

(
cos

φ
2 sin

φ
2

− sin
φ
2 cos

φ
2

)
(4.2.50)

with φ being a complex scalar field. This choice produces the noncommutative equations (all the
products are �–products)

∂̄
(
e

i
2
φ∂e−

i
2
φ + e−

i
2
φ∂e

i
2
φ
)

= 0 ,

∂̄
(
e−

i
2
φ∂e

i
2
φ − e

i
2
φ∂e−

i
2
φ
)

= 4iα2 sinφ . (4.2.51)

As shown in [63] these equations (or a linear combination of them) can be obtained as a dimensional
reduction of the equations of motion for noncommutative U(2) SDYM in (2 + 2) dimensions.

The equations (4.2.51) can also be derived from an action which consists of the sum of two WZW
actions augmented by a cosine potential,

S[f, f̄ ] = S[f ] + S[f̄ ] with S[f ] ≡ SW [f ]− α2

∫
dt dy

(
f2 + f−2 − 2

)
, (4.2.52)

with SW [f ] given in (4.2.39) for f ≡ e
i
2
φ in complexified U(1). However, this action cannot be

obtained from the SDYM action in (2 + 2) dimensions by performing the same field parametrization
which led to (4.2.51).

Comparing the actions (4.2.38) and (4.2.52) and considering f and f̄ as independent U(1) group
valued fields we are tempted to formally identify f ≡ g+ and f̄ ≡ g−. Doing this, we immediately
realize that the two models differ in their interaction term which generalizes the cosine potential.
While in (4.2.52) the fields f and f̄ show only self–interaction, the fields g+ and g− in (4.2.38)
interact with each other. As we will see in section 4.4 this makes a big difference when evaluating
the S–matrix elements.

5This subsection switches to Euclidean space R
2, where ∂ and ∂̄ are derivatives with respect to complex coordinates.
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4. Integrable noncommutative sine–Gordon

We close this section by observing that the equations of motion (4.2.31) can also be obtained
directly in two dimensions by using the bicomplex approach described in [68]. In fact, if instead of
(4.2.50) we choose

G =

(
e

i
2
φ+ + e−

i
2
φ− −ie

i
2
φ+ + ie−

i
2
φ−

ie
i
2
φ+ − ie−

i
2
φ− e

i
2
φ+ + e−

i
2
φ−

)
(4.2.53)

it is easy to prove that (4.2.48) yields exactly the set of equations (4.2.31). Therefore, by exploiting
the results in [68] it should be straightforward to construct the first nontrivial conserved currents for
the present model.

4.3 Noncommutative solitons

4.3.1 Dressing approach in (2 + 1) dimensions

The existence of the linear system allows for powerful methods to systematically construct explicit
solutions for Ψ and hence for Φ† = Ψ|ζ=0 or Υ. For our purposes the so–called dressing method
[72, 73] proves to be most practical, and so we shall first present it here for our linear system (4.1.4),
before reducing the results to solitonic solutions of the noncommutative sine–Gordon equations.

The central idea is to demand analyticity in the spectral parameter ζ for the linear system (4.1.4),
which strongly restricts the possible form of Ψ. The most elegant way to exploit this constraint starts
from the observation that the left hand sides of the differential relations (D):=(4.1.5) as well as the
reality condition (R):=(4.1.6) do not depend on ζ while their right hand sides are expected to be
nontrivial functions of ζ (except for the trivial case Ψ = Ψ0). More specifically, CP 1 being compact,
the matrix function Ψ(ζ) cannot be holomorphic everywhere but must possess some poles, and hence
the right hand sides of (D) and (R) should display these (and complex conjugate) poles as well. The
resolution of this conundrum demands that the residues of the right hand sides at any would–be pole
in ζ have to vanish. We are now going to evaluate these conditions.

The dressing method builds a solution ΨN (t, x, y, ζ) featuring N simple poles at positions μ1,
μ2, . . . , μN by left–multiplying an (N−1)–pole solution ΨN−1(t, x, y, ζ) with a single–pole factor of
the form

(
1 + μN−μ̄N

ζ−μN
PN (t, x, y)

)
, where the n×n matrix function PN is yet to be determined.

In addition, we are free to right–multiply ΨN−1(t, x, y, ζ) with some constant unitary matrix Ψ̂0
N .

Starting from Ψ0 = 1, the iteration Ψ0 �→ Ψ1 �→ . . . �→ ΨN yields a multiplicative ansatz for ΨN

which, via partial fraction decomposition, may be rewritten in an additive form (as a sum of simple
pole terms). Let us trace this iterative procedure constructively.

In accord with the outline above, the one–pole ansatz must read (Ψ̂0
1 =: Ψ0

1)

Ψ1 =
(
1 +

μ1 − μ̄1

ζ − μ1
P1

)
Ψ0

1 =
(
1 +

Λ11S
†
1

ζ − μ1

)
Ψ0

1 (4.3.54)

with some n×r1 matrix functions Λ11 and S1 for some 1≤r1<n. The normalization matrix Ψ0
1 is

constant and unitary. It is quickly checked that

resζ=μ̄1(R) = 0 =⇒ P †1 = P1 = P 2
1 =⇒ P1 = T1 (T †1T1)

−1T †1 , (4.3.55)
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meaning that P1 is a rank r1 projector built from an n×r1 matrix function T1. The columns of T1

span the image of P1 and obey P1T1 = T1. When using the second parametrization of Ψ1 in (4.3.54)
one finds that

resζ=μ̄1(R) = 0 =⇒ (1− P1)S1Λ
†
11 = 0 =⇒ T1 = S1 (4.3.56)

modulo a freedom of normalization. Finally, the differential relations yield

resζ=μ̄1(D) = 0 =⇒ (1− P1) L̄
A,B
1 (S1Λ

†
11) = 0 =⇒ L̄A,B

1 S1 = S1 ΓA,B
1 (4.3.57)

for some r1×r1 matrices ΓA
1 and ΓB

1 , after having defined

L̄A
i := ∂u − μ̄i∂x and L̄B

i := μi(∂x − μ̄i∂v) for i = 1, 2, . . . , N . (4.3.58)

Because the L̄A,B
i are linear differential operators it is easy to write down the general solution

for (4.3.57): Introduce “co–moving coordinates”

wi := x+ μ̄iu+ μ̄−1
i v =⇒ w̄i = x+ μiu+ μ−1

i v for i = 1, 2, . . . , N (4.3.59)

so that on functions of (wi, w̄i) alone the L̄A,B
i act as

L̄A
i = L̄B

i = (μi−μ̄i)
∂

∂w̄i
. (4.3.60)

Hence, (4.3.57) is solved by

S1(t, x, y) = Ŝ1(w1) ew̄1Γ1/(μ1−μ̄1) for any w1-holomorphic n×r1 matrix function Ŝ1 (4.3.61)

and ΓA
1 = ΓB

1 =: Γ1. Appearing to the right of Ŝ1, the exponential factor is seen to drop out in the
formation of P1 via (4.3.55) and (4.3.56). Thus, no generality is lost by taking Γ1 = 0. We learn
that any w1–holomorphic n×r1 matrix T1 is admissible to build a projector P1 which then yields a
solution Ψ1 (and thus Φ) via (4.3.54). Note that Λ11 need not be determined separately but follows
from our above result. It is not necessary to also consider the residues at ζ=μ1 since their vanishing
leads merely to the hermitian conjugated conditions.

Let us proceed to the two–pole situation. The dressing ansatz takes the form (Ψ0
1Ψ̂

0
2 =: Ψ0

2)

Ψ2 =
(
1 +

μ2 − μ̄2

ζ − μ2
P2

)(
1 +

μ1 − μ̄1

ζ − μ1
P1

)
Ψ0

2 =
(
1 +

Λ21S
†
1

ζ − μ1
+

Λ22S
†
2

ζ − μ2

)
Ψ0

2 , (4.3.62)

where P2 and S2 are to be determined but P1 and S1 can be copied from above. Indeed, inspecting
the residues of (R) and (D) at ζ = μ̄1 simply confirms that

P1 = T1 (T †1T1)
−1T †1 and T1 = S1 with S1 = Ŝ1(w1) (4.3.63)

is just carried over from the one–pole solution. Relations for P2 and S2 arise from

resζ=μ̄2(R) = 0 =⇒ (1−P2)P2 = 0 =⇒ P2 = T2 (T †2T2)
−1T †2 , (4.3.64)

resζ=μ̄2(R) = 0 =⇒ Ψ2(μ̄2)S2Λ
†
22 = (1−P2)(1− μ1−μ̄1

μ1−μ̄2
P1)S2Λ

†
22 = 0 , (4.3.65)
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where the first equation makes use of the multiplicative form of the ansatz (4.3.62) while the second
one exploits the additive version. We conclude that P2 is again a hermitian projector (of some rank r2)
and thus built from an n×r2 matrix function T2. Furthermore, (4.3.65) reveals that T2 cannot be
identified with S2 this time, but we rather have

T2 =
(
1− μ1−μ̄1

μ1−μ̄2
P1

)
S2 (4.3.66)

instead. Finally, we consider

resζ=μ̄2(D) = 0 =⇒ Ψ2(μ̄2) L̄
A,B
2 (S2Λ

†
22) = 0 =⇒ L̄A,B

2 S2 = S2 ΓA,B
2 (4.3.67)

which is solved by

S2(t, x, y) = Ŝ2(w2) ew̄2Γ2/(μ2−μ̄2) for any w2-holomorphic n×r2 matrix function Ŝ2 (4.3.68)

and ΓA
2 = ΓB

2 =: Γ2. Once more, we are entitled to put Γ2 = 0. Hence, the second pole factor in
(4.3.62) is constructed in the same way as the first one, except for the small complication (4.3.66).
Again, Λ21 and Λ22 can be read off the result if needed.

It is now clear how the iteration continues. After N steps the final result reads

ΨN =

{N−1∏
�=0

(
1 +

μN−� − μ̄N−�

ζ − μN−�
PN−�

)}
Ψ0

N =

{
1 +

N∑
i=1

ΛNiS
†
i

ζ − μi

}
Ψ0

N , (4.3.69)

featuring hermitian rank ri projectors Pi at i = 1, 2, . . . , N , via

Pi = Ti (T
†
i Ti)

−1T †i with Ti =

{i−1∏
�=1

(
1 − μi−� − μ̄i−�

μi−� − μ̄i
Pi−�

)}
Si , (4.3.70)

where
Si(t, x, y) = Ŝi(wi) (4.3.71)

for arbitrary wi–holomorphic n×ri matrix functions Ŝi(wi). The corresponding classical Yang and
Leznov fields are

ΦN = Ψ†N (ζ=0) = Ψ0
N
†

N∏
i=1

(
1− ρi Pi

)
with ρi = 1− μi

μ̄i
, (4.3.72)

ΥN = lim
ζ→∞

ζ
(
ΨN (ζ)Ψ0

N
† − 1

)
=

N∑
i=1

(μi−μ̄i)Pi . (4.3.73)

The solution space constructed here is parametrized (slightly redundantly) by the set {Ŝi}N
1 of matrix–

valued holomorphic functions and the pole positions μi. The so–constructed classical configurations
have solitonic character (meaning finite energy) when all these functions are algebraic.

The dressing technique as presented above is well known in the commutative theory; novel is only
the realization that it carries over verbatim to the noncommutative situation by simply understand-
ing all products as star products (and likewise inverses, exponentials, etc.). Of course, it may be
technically difficult to �–invert some matrix, but one may always fall back on an expansion in powers
of θ.
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4.3.2 Solitons in noncommutative integrable sine–Gordon

We should now be able to generateN–soliton solutions to the noncommutative sine–Gordon equations,
say (4.2.36), by applying the reduction from (2 + 1) to (1 + 1) dimensions (see section 4.2) to the
above strategy for the group U(2), i.e. putting n=2. In order to find nontrivial solutions, we specify
the constant matrix E in the ansatz (4.2.20) for Ψ as

E = e−i π
4
σ2 = 1√

2

(1 −1
1 1

)
(4.3.74)

which obeys the relations Eσ3 = σ1 E and Eσ1 = −σ3 E . Pushing E beyond V we can write

Φ(t, x, y) = W (x) g̃(u, v)W †(x) with W (x) = e−iα x σ3 (4.3.75)

and

g̃(u, v) = E g(u, v) E† = E
(
g+ 0

0 g−

)
E† = 1

2

(
g++g− g+−g−
g+−g− g++g−

)
. (4.3.76)

With hindsight from the commutative case [73] we choose

Ψ̂0
i = σ3 ∀i ⇐⇒ Ψ0

N = σN
3 (4.3.77)

(which commutes with W ) and restrict the poles of Ψ to the imaginary axis, μi = ipi with pi ∈ R.
Therewith, the co–moving coordinates (4.3.59) become

wi = x− i(pi u− p−1
i v) =: x− iηi(u, v) , (4.3.78)

defining ηi as real linear functions of the light–cone coordinates. Consequentially, from (4.3.72) we
get ρi = 2 and find that

g̃N (u, v) = σN
3

N∏
i=1

(
1− 2 P̃i(u, v)

)
with Pi = W P̃iW

† . (4.3.79)

Repeating the analysis of the previous subsection, one is again led to construct hermitian projectors

P̃i = T̃i (T̃ †i T̃i)
−1T̃ †i with T̃i =

i−1∏
�=1

(
1 − 2 pi−�

pi−� + pi
P̃i−�

)
S̃i , (4.3.80)

where 2×1 matrix functions S̃i(u, v) are subject to

˜̄LA,B

i S̃i = S̃i Γ̃i for i = 1, 2, . . . , N (4.3.81)

and some numbers Γ̃i (note that now rank ri=1) which again we can put to zero. On functions of
the reduced co–moving coordinates ηi alone,

˜̄LA,B

i = W †L̄A,B
i W = (μi−μ̄i)W

† ∂

∂w̄i
W = pi

( ∂

∂ηi
+ ασ3

)
(4.3.82)
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so that (4.3.81) is solved by

S̃i(u, v) =
̂̃
Si(ηi) =

(
γi1e

−α ηi

iγi2e
+α ηi

)
= e−α ηiσ3

(
γi1

iγi2

)
with γi1, γi2 ∈ C . (4.3.83)

Furthermore, it is useful to rewrite

γi1γi2 =: λ2
i and γi2/γi1 =: γ2

i ⇐⇒
(
γi1

iγi2

)
= λi

(
γ−1

i

iγi

)
(4.3.84)

because then |γi| may be absorbed into ηi by shifting αηi �→ αηi +ln |γi|. The multipliers λi drop out
in the computation of P̃i. Finally, to make contact with the form (4.3.76) we restrict the constants
γi to be real.

Let us check the one–soliton solution, i.e. put N=1. Suppressing the indices momentarily, ab-
sorbing γ into η and dropping λ, we infer that

T̃ =

(
e−αη

ieαη

)
=⇒ P̃ =

1

2 ch2αη

(
e−2αη −i

i e+2αη

)
=⇒ g̃ =

(
tanh 2αη i

ch2αη

i
ch2αη tanh 2αη

)
(4.3.85)

which has det g̃ = 1. Since here the entire coordinate dependence comes in the single combina-
tion η(u, v), all star products trivialize and the one–soliton configuration coincides with the commu-
tative one. Hence, the field ρ drops out, g̃ ∈ SU(2), and we find, comparing (4.3.85) with (4.3.76),
that

1
2(g++g−) = cos ϕ

2 = tanh 2αη and 1
2i(g+−g−) = sin ϕ

2 = 1
ch2αη (4.3.86)

which implies

tan ϕ
4 = e−2αη =⇒ ϕ = 4 arctan e−2αη = −2 arcsin(tanh 2αη) , (4.3.87)

reproducing the well known sine–Gordon soliton with mass m = 2α. Its moduli parameters are the

velocity ν = 1−p2

1+p2 and the center of inertia y0 = 1
α

√
1−ν2 ln |γ| at zero time [73]. In passing we

note that in the “h description” the soliton solution takes the form

h1 = p tanh 2αη and h2 = p
ch2αη =⇒ h = p tanh(αη+ iπ

4 ) = p e
i
2
ϕ . (4.3.88)

Noncommutativity becomes relevant for multi–solitons. At N=2, for instance, one has

g̃2 = (1− 2P̃1) (1 − 2P̃2) with P̃1 = P̃ from (4.3.85) and P̃2 = T̃2 (T̃ †2 T̃2)
−1T̃ †2

where T̃2 =
(
1− 2p1

p1+p2
P̃1

) ̂̃
S2 and

̂̃
S2 = e−α η2σ3

(
γ−1
2
iγ2

)
with γ2 ∈ R .

(4.3.89)

We refrain from writing down the lengthy explicit expression for g̃2 in terms of the noncommuting
coordinates η1 and η2, but one cannot expect to find a unit (star–)determinant for g̃2 except in the
commutative limit. This underscores the necessity of extending the matrices to U(2) and the inclusion
of a nontrivial ρ at the multi–soliton level.
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4.4. Properties of S–matrix leading to integrability

It is not surprising that the just–constructed noncommutative sine–Gordon solitons themselves
descend directly from BPS solutions of the (2 + 1)–dimensional integrable sigma model. Indeed,
putting back the x dependence via (4.3.75), the (2+ 1)–dimensional projectors Pi are built from 2×1
matrices

Si = W (x) Ŝi(ηi) = e−iα wiσ3

(
γ−1

i

iγi

)
=

(
1

iγ2
i e2iα wi

)
γ−1

i e−iα wi . (4.3.90)

In the last expression the right factor drops out on the computation of projectors; the remaining
column vector agrees with the standard conventions [69, 54, 73, 55]. Reassuringly, the coordinate
dependence has combined into wi. The ensueing (2 + 1)–dimensional configurations ΦN are nothing
but noncommutative multi–plane–waves the simplest examples of which were already investigated
in [55].

4.4 Properties of S–matrix leading to integrability

In this section we compute tree–level amplitudes for the noncommutative generalization of the sine–
Gordon model proposed in section 4.2, both in the Yang and the Leznov formulation. In commutative
geometry the sine–Gordon S–matrix factorizes in two–particle processes and no particle production
occurs, as a consequence of the existence of an infinite number of conservation laws. In the noncom-
mutative case it is interesting to investigate whether the presence of an infinite number of conserved
currents is still sufficient to guarantee the integrability of the system in the sense of having a factorized
S–matrix.

A previous noncommutative version of the sine–Gordon model with an infinite set of conserved
currents was proposed in [68], and its S–matrix was studied in [63]. Despite the existence of an infinite
chain of conservation laws, it turned out that particle production occurs in this model and that the
S–matrix is neither factorized nor causal.6 As already stressed in section 4.2, the noncommutative
generalization of the sine–Gordon model we propose in this chapter differs from the one studied in
[68] in the generalization of the cosine potential. Therefore, both theories describe the dynamics of
two real scalar fields, but the structure of the interaction terms between the two fields is different. We
then expect the scattering amplitudes of the present theory to behave differently from those of the
previous one. To this end we will compute the amplitudes corresponding to 2 → 2 processes for the
fields ρ and ϕ in the g–model (Yang formulation) as well as for the fields h1 and h2 in the h–model
(Leznov formulation). In the g–model we will also compute 2 → 4 and 3 → 3 amplitudes for the
massive field ϕ. In both models the S–matrix will turn out to be factorized and causal in spite of
their time–space noncommutativity.

Amplitudes in the “g–model”. Feynman rules We parametrize the g–model with (ρ, ϕ) as in
(4.2.40) since in this parametrization the mass matrix turns out to be diagonal, with zero mass for ρ
and m=2α for ϕ. Expanding the action (4.2.40) up to the fourth order in the fields, we read off the
following Feynman rules:

6Acausal behavior in noncommutative field theory was first observed in [64] and shown to be related to time–space
noncommutativity.
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• The propagators

≡ 〈ϕϕ〉 =
2i

k2 − 4α2
, (4.4.91)

≡ 〈ρ ρ〉 =
2i

k2
. (4.4.92)

• The vertices (including a factor of “i” from the expansion of eiS)

3

1 2

= − 1

23
(k2

2 − k2
1 − 2k1 ∧ k2)F (k1, k2, k3) , (4.4.93)

1

3

2

=
1

2 · 3! k1 ∧ k2 F (k1, k2, k3) , (4.4.94)

2

4

1

3

=
[
− i

23 · 4! (k2
1 + 3k1 · k3) +

2iα2

4!

]
F (k1, k2, k3, k4) , (4.4.95)

1
2

3
4

= − i

23 · 4! (k2
1 + 3k1 · k3)F (k1, k2, k3, k4) , (4.4.96)

1
2

3
4

= − i

25
(k2

1 − k2
2 + 2k1 · k3 − 2k2 · k3

+ 2k1 ∧ k2 + 2k1 ∧ k3 + 2k3 ∧ k2)F (k1, k2, k3, k4) , (4.4.97)

where we used the conventions of section 4.1 with the definitions

u · v = −ηab uavb = utvt − uyvy and u ∧ v = utvy − uyvt . (4.4.98)

Moreover, we have defined

F (k1, . . . , kn) = exp
{− i

2

∑n
i<jki ∧ kj

}
. (4.4.99)

and use the convention that all momentum lines are entering the vertex and energy–momentum
conservation has been taken into account.

We now compute the scattering amplitudes ϕϕ→ ϕϕ, ρρ→ ρρ and ϕρ→ ϕρ and the production
amplitude ϕϕ → ρρ. We perform the calculations in the center–of–mass frame. We assign the
convention that particles with momenta k1 and k2 are incoming, while those with momenta k3 and
k4 are outgoing.
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4.4. Properties of S–matrix leading to integrability

Amplitude ϕϕ→ ϕϕ The four momenta are explicitly written as

k1 = (E, p) , k2 = (E,−p) , k3 = (−E, p) , k4 = (−E,−p) , (4.4.100)

with the on–shell condition E2 − p2 = 4α2. There are two topologies of diagrams contributing to
this process. Taking into account the leg permutations corresponding to the same particle at a single
vertex, the contributions read

2

4

1

3

= 2iα2 cos2(θEp) ,

1 2

4 3

= 0 ,

1 2

34

= − i
2p

2 sin2(θEp) ,

1 2

43

= i
2E

2 sin2(θEp) .

The second diagram is actually affected by a collinear divergence since the total momentum k1 + k4

for the internal massless particle is on–shell vanishing. We regularize this divergence by temporarily
giving a small mass to the ρ particle. It is easy to see that the amplitude is zero for any value of the
small mass since the wedge products k1 ∧ k4 and k2 ∧ k3 from the two vertices always vanish. As an
alternative procedure we can put one of the external particles slightly off–shell, so obtaining a finite
result which vanishes in the on–shell limit.

Summing all the contributions, for the ϕϕ→ ϕϕ amplitude we arrive at

Aϕϕ→ϕϕ = 2iα2 , (4.4.101)

which perfectly describes a causal amplitude.

A non vanishing ϕϕ→ ϕϕ amplitude appears also in the noncommutative sine–Gordon proposal
of [68, 63]. However, there the amplitude has a nontrivial θ–dependence which is responsible for
acausal behavior. Comparing the present result with the result in [63], we observe that the same kind
of diagrams contribute. The main difference is that the exchanged particle is now massless instead of
massive. This crucial difference leads to the cancellation of the θ–dependent trigonometric behavior
which in the previous case gave rise to acausality.

Amplitude ρρ→ ρρ In this case the center–of–mass momenta are given by

k1 = (E,E) , k2 = (E,−E) , k3 = (−E,E) , k4 = (−E,−E) , (4.4.102)

where the on–shell condition E2 − p2 = 0 has already been taken into account. For this amplitude
we have the following contributions
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1
2

3
4

= 0 ,

1 2

4 3

= 0 ,

1 2

34

= − i
2E

2 sin2(θE2) ,

1 2

3 4

= i
2E

2 sin2(θE2) .

Again, a collinear divergence appears in the second diagram. In order to regularize the divergence we
can proceed as before by assigning a small mass to the ρ particle. The main difference with respect to
the previous case is that now the ρ particle also appears as an external particle, with the consequence
that the on–shell momenta in (4.4.102) will get modified by the introduction of a regulator mass. A
careful calculation shows that the amplitude is zero for any value of the regulator mass, due to the
vanishing of the factors k1 ∧ k4 and k2 ∧ k3 from the vertices.

Therefore, the two non vanishing contributions add to

Aρρ→ρρ = 0 . (4.4.103)

Amplitude ϕρ → ϕρ There are two possible configurations of momenta in the center–of–mass
frame, describing the scattering of the massive particle with either a left–moving or a right–moving
massless one. In the left–moving case the momenta are

k1 = (E, p) , k2 = (p,−p) , k3 = (−E, p) , k4 = (−p,−p) , (4.4.104)

while in the right–moving case we have

k1 = (E,−p) , k2 = (p, p) , k3 = (−E, p) , k4 = (−p,−p) . (4.4.105)

For the left–moving case (4.4.104) the results are

1

2
4

3
= − i

2Ep sin(θEp) sin(θp2) ,

1 3

2 4

= i
2Ep sin(θEp) sin(θp2) ,

1 3

2 4

= 0 ,

1 3

24

= 0 .
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4.4. Properties of S–matrix leading to integrability

For the right–moving choice (4.4.105), we obtain instead

1

2
4

3
= 0 ,

1 3

2 4

= 0 ,

1 3

2 4

= 0 ,

1 3

24

= 0 .

In this second case an infrared divergence is present due to the massless propagator, but again it can
be cured as described before. In both cases the scattering amplitude vanishes,

Aϕρ→ϕρ = 0 . (4.4.106)

Amplitude ϕϕ→ ρρ The momenta in the center–of–mass frame are given by

k1 = (E, p) , k2 = (E,−p) , k3 = (−E,E) , k4 = (−E,−E) . (4.4.107)

In this case we have three kinds of diagrams contributing. The corresponding results are

1
2

3
4

= i
2Ep sin(θEp) sin(θE2) ,

1 2

34

= − i
2Ep sin(θEp) sin(θE2) ,

1 2

34

= 0 ,

1 2

3 4

= 0 .

Summing the four contributions, we obtain

Aϕϕ→ρρ = 0 (4.4.108)

as it should be expected for a production amplitude in an integrable model. The same is true for the
time–reversed production,

Aρρ→ϕϕ = 0 . (4.4.109)
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Summarizing, we have found that the only nonzero amplitude for tree–level 2 → 2 processes is the
one describing the scattering among two of the massive excitations. The result is constant, indepen-
dent of the momenta and so describes a perfectly causal process. Since the result is independent of the
noncommutation parameter θ it agrees with the four–point amplitude for the ordinary sine–Gordon
model. Finally, we have found that the production amplitudes ϕϕ → ρρ and ρρ → ϕϕ vanish, as
required for ordinary integrable theories.

As a further check of our calculation and an additional test of our model we have computed the
production amplitude ϕϕ → ϕϕϕϕ and the scattering amplitude ϕϕϕ → ϕϕϕ. In both cases the
topologies we have to consider are

.

Due to the growing number of channels and ordering of vertices, it is no longer practical to perform the
calculations by hand. We have used Mathematica c© to symmetrize the vertices and take automatically
into account the different diagrams obtained by exchanging momenta entering a given vertex. The
computation has been performed with assigned values of the external momenta but arbitrary values
for α2 and θ. We have found a vanishing result for both the scattering and the production amplitude.
This is in agreement with the commutative sine–Gordon model results.

Amplitudes in the “h–model” We now discuss the 2 → 2 amplitudes in the Leznov formulation.
The theory is again described by two interacting fields, h1 massless and h2 massive. Referring to the
action (4.2.47) we extract the following Feynman rules,

• The propagators

≡ 〈h1h1〉 =
i

2k2
, (4.4.110)

≡ 〈h2h2〉 =
i/2

k2 − 4α2
. (4.4.111)

• The vertex

3

1 2

= −4α (k3t − k3y)F (k1, k2, k3) . (4.4.112)
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Again, we compute scattering amplitudes in the center–of–mass frame. Given the particular structure
of the vertex, at tree level there is no h1h1 → h1h1 scattering. To find the h2h2 → h2h2 amplitude
we assign the momenta (4.4.100) to the external particles. The contributions are

1 2

43

= −16iα2 cos2(θEp) ,

1 2

34

= 16iα2 cos2(θEp) ,

1 2

4 3

= 0 .

We note that a collinear divergence appears in the last diagram which can be regularized as described
before. Summing the two non vanishing contributions we obtain complete cancellation.

For the h2h2 → h1h1 amplitude the center–of–mass momenta are given in (4.4.107). The only
topology contributing to this production amplitude has two channels, yielding

1 2

34

= 0 ,

1 2

3 4

= 0 ,

which are both zero, so giving a vanishing result once more. The same is true for the h1h1 → h2h2

production process.
Finally, for the h1h2 → h1h2 amplitude, we refer to the center–of–mass momenta defined in

(4.4.104) and (4.4.105). In both cases the contributions are

1 3

2 4

= 0 ,

1 3

24

= 0 ,

and so we find that the sum of the two channels is always equal to zero.
Since all the 2 → 2 amplitudes vanish, the S–matrix is trivially causal and factorized.
Both in the ordinary and noncommutative cases the “h–model” is dual to the “g–model”. In

the commutative limit the “g–model” gives rise to a sine–Gordon model plus a free field which can
be set to zero. In this limit our amplitudes exactly reproduce the sine–Gordon amplitudes. On the
other hand, the amplitudes for the “h–model” all vanish. Therefore, in the commutative limit they
do not reproduce anything immediately recognizable as an ordinary sine–Gordon amplitude. This
can be understood by observing that, both in the ordinary and in the noncommutative case, the
Leznov formulation is an alternative description of the sine–Gordon dynamics and obtained from
the standard Yang formulation by the nonlocal field redefinition given in (4.2.46). Therefore, it is
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4. Integrable noncommutative sine–Gordon

expected that the scattering amplitudes for the elementary excitations, which are different in the two
formulations, do not resemble each other.

4.5 Remarks on the noncommutative integrable sine–Gordon model

We have proposed a novel noncommutative sine–Gordon system based on two scalar fields, which
seems to retain all advantages of (1+1)–dimensional integrable models known from the commutative
limit. The rationale for introducing a second scalar field was provided by deriving the sine–Gordon
equations and action through dimensional and algebraic reduction of an integrable (2+1)–dimensional
sigma model: In the noncommutative extension of this scheme it is natural to generalize the algebraic
reduction of SU(2) → U(1) to one of U(2) → U(1) × U(1). We gave two Yang–type and one
Leznov–type parametrizations of the coupled system in (4.2.31), (4.2.36) and (4.2.45) and provided
the actions for them, including a comparison with previous proposals. It was then outlined how to
explicitly construct noncommutative sine–Gordon multi–solitons via the dressing method based on the
underlying linear system. We found that the one–soliton configuration agrees with the commutative
one but already the two–soliton solutions gets Moyal deformed.

What is the gain of doubling the field content as compared to the standard sine–Gordon system
or its straightforward star deformation? Usually, time–space noncommutativity adversely affects the
causality and unitarity of the S–matrix (see, e.g. [67, 68, 63]), even in the presence of an infinite
number of local conservation laws. In contrast, the model described here seems to possess an S–
matrix which is causal and factorized , as we checked for all tree–level 2 → 2 processes both in the
Yang and Leznov formulations. Furthermore, we verified the vanishing of some 3 → 3 scattering
amplitudes and 2 → 4 production amplitudes thus proving the absence of particle production.

It would be nice to understand what actually drives a system to be integrable in the noncommu-
tative case. A hint in this direction might be that the model proposed in [68] has been constructed
directly in two dimensions even if its equations of motion (but not the action) can be obtained by a
suitable reduction of a four dimensional system (noncommutative self–dual Yang–Mills). The model
proposed here, instead, originates directly, already at the level of the action, from the reduction of
noncommutative self–dual Yang–Mills theory which is known to be integrable and related to the N=2
string [48].

Several directions of future research are suggested by our results. First, one might hope that our
noncommutative two–field sine–Gordon model is equivalent to some two–fermion model via noncom-
mutative bosonization. Second, it would be illuminating to derive the exact two–soliton solution and
extract its scattering properties, either directly in our model or by reducing wave–like solutions of the
(2 + 1)–dimensional sigma model [55, 56]. Third, there is no obstruction against applying the ideas
and techniques presented in [46] to other (1 + 1)–dimensional noncommutative integrable systems in
order to cure their pathologies as well.
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Holography and cosmology
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Chapter 5

AdS/CFT correspondence and branes

Strings emerged in the first part of my thesis because of their relation to noncommutative field
theories. However, string theory is a much wider framework at the present stage in theoretical
physics, including the issue of noncommutativity that we previously analyzed. We found out that
strings in the low energy limit can describe (either noncommutative or ordinary) gauge theories,
which are the fundamental theories that constitute physics detected by present experiments. Realistic
gauge theories, though — Standard Model, QCD — are still quite far to be consistently embedded
in the string framework. On the other hand, one of the main successes of string theory is the
feature of representing a theory of quantum gravity, since gravitons are automatically included in the
spectrum of strings excitations. Quantization of (super)string theories is thoroughly studied, in order
to investigate its various perturbative and non perturbative aspects.

Making contact with the observable world implies the need of finding a suitable description for
gauge theories and gravity in the string theory context. An early indication going in the direction of
seeing gauge theories as strings was proposed by ’t Hooft in the 70s [84]. Stringy features arise in the
large N limit of SU(N) gauge theories. The 1/N expansion, for N →∞, is a natural expansion in the
four dimensional SU(N) Yang–Mills theories. In fact, there is no other free dimensionless parameter,
since the gauge group coupling constant gYM is to be related to the QCD scale ΛQCD. More precisely,
demanding ΛQCD to remain constant in the large N limit, we have to keep the ’t Hooft parameter
λT ≡ g2

YMN fixed. This ’t Hooft limit is consistent also if matter in the adjoint representation is added
in the theory lagrangian, provided that asymptotic freedom is preserved. Thus, in general, one can
compute correlation functions in the large N limit with adjoint fields, by drawing Feynman diagrams
in a double line notation, associating a single oriented line to the (anti)fundamental index in which
the adjoint representation can bi–decompose. The factors N in a particular diagram comes from the
N/λT corresponding to each vertex, the λT /N of propagators and the N for loops. Interestingly,
Feynman graphs can be classified by the genus of the surface they can be drawn on, just as string
worldsheets in the perturbative expansion of string theories. I now illustrate this sentence in more
detail.

Each Feynman diagram contains powers of N and λT according to the following expression

NV−E−Fλ− TE−V = NχλE−V
T (5.0.1)

E denotes the propagator, or the number of edges in the surface triangulation representation, V
are the vertices, F are the loops, or the number of faces if we put diagrams on surfaces of genus
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5. AdS/CFT correspondence and branes

g = 1 − (V − E + F )/2 and Euler character χ = V − E + F . Hence, the perturbative expansion in
1/N with fixed λT resembles to the closed oriented strings perturbation theory loop expansion if one
identifies the string coupling constant with 1/N

∞∑
g=0

N2−2g
∞∑

n=0

cg,nλ
n
T =

∞∑
g=0

fg(λT ) (5.0.2)

The dominating contribution comes from N2 terms which are associated to Feynman diagrams that
can be drawn on a surface with the topology of a sphere (a genus zero surface, indeed). This is just
like in string theory. The analogy can be pushed forward for every gauge invariant field correlation
function. Moreover, when matter in the fundamental representation is included, the corresponding
propagators in the Feynman diagrams are drawn as single lines, giving rise to boundaries in the surface
language. This indeed corresponds to counting for surfaces with boundaries in the 1/N expansion,
as it happens when open oriented strings are considered in addition to closed strings. Changing the
gauge group would also imply a change in the string theory that should be dual to the large N gauge
theory. In fact, in SO(N) or USp(N) theories the adjoint representation is no longer identified with
the product of fundamental times anti–fundamental, but just of two fundamentals, making the arrow
disappear for the propagators in the diagram picture. For the surfaces on which diagrams are drawn,
this imply that they are no longer orientable. Consequently, the string theory underlying should
contain unoriented strings.

The original conjecture by ’t Hooft was based on four dimensional QCD on the gauge theory side,
but it didn’t give a precise form to the string theory dual. Even before the large N evidence and
before the formulation of QCD, strings stemmed from the effort to explain the properties of strong
interactions arising from experiments. Thinking hadrons as formed by string flux tubes yields results
in agreement with hadron spectrum and scattering processes, as well as with linear confinement and
Regge trajectories. Perturbative hadronic features are now well known to be consistently contained
in (perturbative) QCD, while non perturbative calculations are up to now best evaluated putting
QCD on a lattice. On the other hand, as I mentioned, there are strong reasons to look for a possible
string description of QCD (or, more generally, gauge theories), which could hopefully give a useful
insight at the non perturbative level, for instance.

It was suggested by Polyakov that a four dimensional gauge theory could be connected to a non
critical string theory in (at least) five dimensions. The fifth direction is necessary in order to take
account of the extra field (Liouville field) appearing in the non critical part of the string worldsheet
action, proportional to (D − 10) for the superstring (or (D − 26) for bosonic strings). The Liouville
field emerges because of the quantum breaking of conformal invariance for the worldsheet theory.
Quantizing this theory may lead to a non consistent perturbative expansion, plagued by corrections
larger than the leading terms. However, non critical string theories are also widely considered in the
context of the gauge/string duality [85].

A big step in the direction of finding the stringy origin of gauge theories was performed by
Maldacena ten years ago. The Maldacena conjecture [174], which has been now thoroughly checked
at least for the best known examples [177], gives the desired correspondence between specific gauge
theories and critical string theory (or M theory). This duality can also be interpreted as an avatar of
the holographic principle, stating that the number of quantum gravity degrees of freedom in a region
should not exceed the boundary area measured in Planck units. In other words, a theory of quantum
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gravity should be described by the physics at the boundary, instead than in the whole space–time.
Indeed, the gauge/string correspondence formulated by Maldacena illustrates the duality between a
string theory in some background and the lower dimensional gauge theory, that can be thought as
living on the boundary of the string background — more precisely, its degrees of freedom are sources
localized on the boundary for the supergravity theory. Holography in its original formulation was
motivated by the Bekenstein bound on the maximal value that entropy can assume referring to some
region in space–time. This value should be determined by the area of the region boundary surface
and not by its volume, in order not to violate the second law of thermodynamics. It is interesting
to note that Bekenstein–Hawking formula computation for entropy has represented one of the first
concrete indications of the duality relating a specific D–brane (near horizon) solution in string theory
(or supergravity in the low energy limit) to the field theory living on the branes. Since the near
horizon geometry of the string background turns out to be some AdS space (times compact spaces)
when the field theory on the branes is conformal, the correspondence is usually called the AdS/CFT.

The early calculations, preceding the full AdS/CFT correspondence formulation, were performed
in the background of the D1-D5 system. On the IIB supergravity side, compactified over a five
dimensional space, the near horizon solution corresponding to this brane configuration yields an
AdS3 × S3 (times a four dimensional internal manifold M4). The full background is a generalization
of the Reissner–Nordstrom black holes, charged under two U(1) groups. The field theory generated by
the IIB open superstrings ending on the intersecting D1-D5 branes is a (1+1)–dimensional conformal
field theory, living on the branes intersection. Explicit calculations on the CFT side, corresponding
to the entropy of extremal and near extremal black hole — i.e. counting BPS states — were indeed
shown to be in agreement with the Bekenstein–Hawking formula. There is an apparent contradiction
related to the validity of the calculations in the two descriptions. In fact, supergravity and CFT are
valid approximations in opposite regimes of the string coupling constant. However, the microstate
counting in the field theory does not change even when we go to the CFT strong coupling regime,
due to supersymmetry.

Another set–up has then been considered, which has been proven to be very useful for testing
AdS/CFT duality, and has already appeared in my discussion related to noncommutative gauge theo-
ries. This is the IIB string theory with N D3–branes, which yields a superconformal four dimensional
Yang–Mills theory on the D3’s, with SU(N) gauge group. From the gravity solution viewpoint, the
3–branes infer an AdS5 × S5 near horizon geometry — where the radii of the AdS space and of the
sphere are determined by N —, so that the (strongest version of) correspondence states in this case
that SU(N) N = 4 SYM in four dimensions is equivalent to open string theory in an AdS5 × S5

background. This is maybe the best celebrated example of the duality, due to the fact that much is
known about N = 4 SYM, allowing to directly test the Maldacena conjecture.

Before going into the details of the concrete formulation of AdS/CFT correspondence in the next
section, I would like to make a couple of remarks. First, I would like to stress the fundamental role
that branes play in the correspondence. In fact, gauge fields are the massless excitations of the open
strings ending on the branes. This represents in general the main motivation to the brane–world idea,
i.e. the expectation that the observed universe is built out of branes, where the gauge theories that
we experience are localized (I will discuss more on brane–worlds in chapter 6). Black branes are also
important since they represent the other side of the duality. They are classical extended solutions
of supergravity and hence sources for the supergravity fields. Their near horizon geometry is the
background for the string theory that constitutes the stringy side of the duality. As a consequence,
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the idea that black branes and D–branes should be two faces of the same object is an issue of the
AdS/CFT correspondence, already advocated by Polchinski [91].

5.1 The duality paradigm

The general formulation of the Maldacena conjecture in its strongest version is that the full string
theory (M theory) on AdS, with specific boundary conditions, is dual to the CFT associated to open
strings ending on the branes.

A powerful argument in favor of the AdS/CFT correspondence comes from the symmetries on
the two sides. The isometries of AdS turn out to amount exactly to the superconformal group
of the field theory. Moreover, isometries of the internal space correspond to the R–symmetries in
the supersymmetric theory living on the branes. The evaluation of absorption processes have also
represented a great hint in the direction of a proof for the duality. The absorption of particles
from infinity translates into excitations in the gauge theory, in the D–branes (or M–branes) picture.
Conversely, the tunneling of waves into the near horizon region of the supergravity solution leads to
excitations of the AdS geometry. The exact match of the absorption cross section of massless particles
on both sides (in the small energy limit) thus confirms that states in the conformal theory may be
described by the supergravity geometry fluctuations.

The two famous examples of D3 and D1-D5 branes are examined in the first paper where the
AdS/CFT duality is explicitly evinced [174]. The near horizon geometries are respectively AdS5×S5

and AdS3 × S3, corresponding to 4D N = 4 SYM and (1+1)-dimensional (4,4) SCFT in the Higgs
branch, respectively. Intuitively, the duality, let’s say in the more immediate D3–branes case, is clear
when we take the decoupling limit. On the D–brane side, the open string modes described by the
gauge theory on the D–branes are decoupled from closed string modes yielding gravity in the bulk.
The same kind of decoupling happens from the supergravity classical solution viewpoint. Namely,
in the black brane geometry, there will be massless modes in the bulk and arbitrary modes near
to the horizon, since their energy gets redshifted due to the warped geometry. In the low energy
limit, the two sets of modes decouple and bulk massless states describe gravity while it is indeed
natural to argue that near horizon excitations correspond to gauge theory states. This reasoning can
be equivalently applied to other string theory configurations of D–branes or to M theory. I didn’t
make yet any precise statement on what the low energy limit and the validity range for the two
sides of the duality are. The small energy limit is taken sending α′ → 0. Then, the effective open
string coupling, due to the N coincident D–branes configuration becomes gsN ∼ g2

YMN . In order to
trust the perturbative gauge theory we then require gsN � 1. On the other hand, the supergravity
approximation giving AdS geometry is valid as long as the curvature radius is very large. Given that
the radius of AdS is determined by gsN , the right range to trust the supergravity solution is gsN � 1,
which is opposite to the gauge theory validity region. I will be more precise in discussing the specific
examples in section 5.1.2.

M theory configurations were also analyzed in [174], exemplifying the correspondence between
the SCFT on the (eventually wrapped) M–branes and the AdS near horizon geometries arising as
11-dimensional supergravity solutions. It is particularly of my interest to cite the M5 case, which
yields the duality between a (0,2) SCFT in six dimensions and the AdS7 × S4 supergravity back-
ground and which will be shortly reviewed in subsection 5.1.2. My work [96] is indeed focused on
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a seven dimensional gravity set–up and its holographic dual in six dimensions. The other M theory
dualities proposed in [174] refer to M2–branes and M5–branes wrapped on four cycles of the six
dimensional compactification manifold. The field theories are respectively (2+1)–dimensional SCFT
and 2–dimensional (0,4) SCFT, corresponding to M theory on AdS4 × S7 and AdS3 × S2 (times the
compactification manifold M6), respectively. A very large class of new examples were consequently
studied in the literature, including deformations of conformal field theories corresponding to changes
in the internal manifold, RG flows which can be described as perturbations of the AdS backgrounds
(non–CFT’s on the branes field theory side imply non–AdS gravity solutions), finite temperature
theories. Furthermore, the interest in going towards a QCD gravity dual has produced much work in
more recent times.

5.1.1 String theory fields vs. field theory operators

We now need a general and precise prescription expressing the duality for physical quantities on the
two sides. This has been formulated in [175, 176] providing the identification of the generating func-
tional of correlation functions in the field theory to the string partition function with fixed boundary
conditions on the supergravity (string) side. The field/operator identification can be conceptually
explained in the following way. Concerning the gravity description, waves tunneling in the throat
region with AdS metric look like the effects of insertions at the boundary of AdS. Hence, correlation
functions in the gauge theory living on the boundary of AdS can be viewed as measuring the classical
supergravity action as a function of the boundary conditions determined by the value of the gauge
field operator source. From a different point of view, adding source coupling terms in the field theory
lagrangian amounts to setting the expectation value of the source field, which is in turn determined
by the boundary condition in the supergravity geometry. In formulae, this is expressed by

e−WCFT = 〈e
R

ddxφ0(x)O(x)〉CFT = Zstring

[
Φ(x, r)|∂(AdS) = φ0(x)

]
(5.1.1)

The l.h.s. of (5.1.1) is the generating functional of correlation functions in the gauge theory on the
boundary. The r.h.s. represents the string partition function with appropriate boundary conditions,
which reduces to the extremum of the supergravity action e−Isugra in the classical limit, where no
stringy excitations are considered.

The metric of AdSd+1 can be easily written in a u–frame or r–frame as 1

ds2 =
�2

u2

(
ημνdxμdxν + du2

)
(5.1.2)

ds2 =
r2

�2
ημνdx

μdxν + dr2 (5.1.3)

where u = �2/r. The boundary is located at u = 0 or r = ∞, respectively, and we get an horizon
at u = ∞ or r = 0. The boundary conditions in (5.1.1) can be naively thought to be determined at
the true boundary. However, it will be in some cases necessary to impose an IR (large r) cutoff on
the AdS space at u = ε, which thus plays the role of a UV cutoff for the CFT, due the the redshift

1This actually does not give the full AdS metric, but only the Poincaré patch. Indeed, it displays an horizon and
analytically continuing beside the horizon recovers the entire AdS.
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ECFT = E�/u = Er/� felt by a field theory observer placed at large r 2.This expresses the UV/IR
relation inside the correspondence.

In a very general and sketchy way, one can use the correspondence (5.1.1) to infer the duality
between supergravity fields of mass m and field theory operators of conformal dimension Δ. On the
supergravity side, one can solve the wave equation for the massive scalar field (analytically continuing
to Euclidean space). The resulting solution near the boundary u→ 0, is a linear combination of two
contributions

φ(x, u) ∼ ud−Δ
[
φ0(x) +O(u2)

]
+ uΔ

[
A(x) +O(u2)

]
(5.1.4)

where 3

Δ =
d

2
+

√
d2

4
+ �2m2 (5.1.5)

The boundary condition at the cutoff u = ε that we can substitute in (5.1.1) as ε→ 0 is thus

φ(x, ε) = εd−Δφ0(x) (5.1.6)

We can now deduce the conformal dimension of the associated operator O in (5.1.1), by concluding
from (5.1.6) that φ0 has dimension d − Δ, so that O gets dimension Δ. This evaluation can be
derived with a more rigorous calculation by computing the two point function 〈O(x1)O(x2)〉 on the
supergravity side, which should then give the typical CFT result 〈O(x1)O(x2)〉 ∼ |x1 − x2|−2Δ.

The instructive two point correlation function example Let me consider the supergravity
action for a massive scalar field of mass m (Wick rotated to Euclidean space)

Isugra =
1

2

∫
ddxduu−d+1

[
(∂uφ)2 + (∂iφ)2 +

m2

u2
φ2

]
(5.1.7)

We should then evaluate this action on the classical solution to the wave equation, with boundary
condition given by (5.1.6). First of all, the scalar field φ can be determined as a function of its
boundary value φ0, by means of the bulk–to–boundary Green function solution to the wave equation,
that behaves as a delta function on the boundary(

−ud+1∂uu
−d+1∂u + u2∂i∂

i +m2
)
K(u, x, y) = 0 (5.1.8)

with

uΔ−dK(u, x, y)
u→0−→ δ(d)(x− y) (5.1.9)

2A rigorous approach to the regularization of supergravity action on asymptotically AdS spaces will be reviewed in
5.2

3The - root Δ = d
2
−

q
d2

4
+ 	2m2 can also be considered [97], where roughly the role of the d−Δ and Δ solutions

to the wave equation are inverted in the following argument.
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The Green function solution (for Δ > d/2 4) reads

K(u, x, y) =
Γ(Δ)

π
d
2 Γ
(
Δ− d

2

) ( u

u2 + |x− y|2
)Δ

(5.1.10)

It can be used to determine the scalar field solution with boundary condition (5.1.6), which indeed
yields

φ(u, x) =
Γ(Δ)

π
d
2 Γ
(
Δ− d

2

) ∫ ddy

(
u

u2 + |x− y|2
)Δ

φ0(y) (5.1.11)

Integrating by parts the action (5.1.7) imposing the IR cutoff at u = ε, one gets a boundary action
for the scalar field, since the bulk part vanishes once we substitute the classical equation of motion.
Besides, using the expression for the derivative of φ w.r.t. u at leading order in the small u expansion
from (5.1.11), one finally finds

Isugra =
ΔΓ(Δ)

2π
d
2 Γ
(
Δ− d

2

) ∫ ddxddy
φ0(x)φ0(y)

|x− y|2Δ (5.1.12)

Differentiating this expression twice w.r.t. the source φ0 yields the two point function, which has the
expected dependence ∼ |x − y|−2Δ of a two point correlation function for an operator of conformal
dimension Δ. Hence we roughly verified that the operator O associated via (5.1.1) to a scalar field
of mass m, bears conformal dimension Δ determined by (5.1.5).

However, there are some subtleties about how to deal with IR divergences in the supergravity
action Isugra, corresponding to the UV region in the dual CFT. A systematic approach that takes
care of regularization in the AdS/CFT context is holographic renormalization [189, 190, 193] which
I will shortly review in section 5.2.

5.1.2 The duality in practice

It is interesting to explore in a more systematic way the most studied example of AdS/CFT correspon-
dence: the N = 4 SYM and AdS5 × S5 background. Since the (0,2) SCFT on M5, dual to M theory
on AdS7×S4 will be the basis of the main topic coming next in chapter 8, i.e. 7D Randall–Sundrum
holography, I will also briefly discuss it in the present subsection.

The celebrated 4D N = 4 SYM example

Since D3–branes configurations in type IIB string theory infer a four dimensional field theory, it
represents one of the possibilities that allows to go towards a description of realistic gauge theories.
Moreover, the N = 4 SYM theory associated to the low energy dynamics of the open strings states
is thoroughly studied in literature. For this reason, the D3 set–up is one of the clearest example of
the gauge/string duality.

4The lower bound on Δ can be taken to be Δ > d
2
− 1 [97] by carefully considering the divergences of the action

(5.1.7).
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5. AdS/CFT correspondence and branes

We start from a stack of N coincident D3–branes in type IIB string theory. At low energy, we must
consider the dynamics of massless modes of both closed and open strings. Closed strings massless
states are described by the IIB supergravity in the ten dimensional bulk, since they give a gravity
supermultiplet in ten dimensions. Open strings with ends attached on the D3’s yield the N = 4
vector supermultiplet in (3 + 1) dimensions and the associated theory is indeed the four dimensional
SU(N) N = 4 SYM. Higher derivative corrections to the actions both on the branes and in the bulk,
as well as interaction terms between brane and bulk fields, are suppressed in the α′ → 0 decoupling
limit. Hence, we get on the one hand ten dimensional supergravity and on the other hand N = 4
SYM, decoupled from each other.

The supergravity dual, as conjectured by Maldacena, is represented by black 3–brane solution in
classical supergravity. This is explicitly given by

ds2 =
1

f
1
2

ημνdx
μdxν + f

1
2

(
dρ2 + ρ2dΩ2

5

)
F5 = (1 + ∗)dtdx1dx2dx3df

−1 (5.1.13)

f = 1 +
4πgsα

′2N
ρ4

(5.1.14)

It represents a solution for a three dimensional source of the supergravity four form, carrying N units
of electric charge. The metric expression shows that energies get redshifted by the warp factor of the
geometry. If we compare the energy EYM measured by an observer at infinity to the energy E seen
at a finite distance ρ, we obtain

EYM =
1

f
1
4

E (5.1.15)

Hence, states in the near horizon region have vanishing energy as they approach the horizon ρ = 0.
The modes surviving in the low energy limit will thus be massless modes propagating in the bulk and
arbitrary states living close to the horizon. The low energy limit implies a decoupling of bulk and
horizon modes, since the absorption cross section relative to the bulk modes becomes very small and
near horizon excitations have as well small probability to fall into the bulk region. In the α′ → 0 we
thus get supergravity in the bulk and decoupled supergravity in the near horizon geometry determined
by the ρ→ 0 limit in (5.1.13)

ds2 =
ρ2

�2
ημνdxμdxν +

�2

ρ2
dρ2 + �2dΩ2

5 (5.1.16)

�4 = 4πgsα
′2N (5.1.17)

This singles out an AdS5 × S5 near horizon geometry, namely a throat, with the radii of AdS5 and
S5 both equal to � (5.1.17). In the exact low energy limit we have to keep ρ/α′ fixed, while α′ → 0,
in order to have fixed energies E measured in string units

√
α′E and fixed energies measured from

infinity, which are the energies EYM ∼
(√

α′E
)

(ρ/α′) seen by the dual gauge theory. Defining a new

variable U ≡ ρ/α′, the string parameter α′ disappears from the background solution (5.1.16) except
for an overall factor.
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The dynamics in the two low energy descriptions lead to the conjecture that SU(N) N = 4
SYM is equivalent to string theory on AdS5 × S5, since we can identify the two ten dimensional free
supergravity theories. Now, as I already said, this is the strongest version of the duality. It is an
extrapolation of what we can deduce from the above discussion. Indeed, the two descriptions we used
holds in different regimes for the effective string coupling gsN , supposing that gs < 1 — gs > 1 can
be considered by performing an S–duality gs → 1/gs. Perturbative calculations in N = 4 SYM can
be performed only if the gauge coupling is small. We get that

4πi

g2
YM

+
θ

2π
=

i

gs
+

χ

2π
(5.1.18)

where θ is the angle associated to the topological part of the SYM action and χ is the expectation
value of the RR scalar field. However, the effective gauge coupling that enters into the loop expansion
of the conformal field theory gets an additional factor N , so that perturbation theory is valid if

g2
mY MN ∼ gsN � 1 (5.1.19)

On the contrary, we know that supergravity approximation of string theory can be trusted when the
curvature of the geometry is much bigger than the string length. Hence, the radius of AdS5 in units
of �s ∼

√
α′ must satisfy

�

�s
∼ gsN � 1 (5.1.20)

and N � 1, since gs < 1. The correspondence between the two sides of the AdS/CFT duality
relates theories being in opposite coupling regimes. When one side is weakly coupled, the other is
strongly coupled and viceversa. It is a common feature in gauge/string dualities and this makes the
full correspondence highly non trivial.

I recall that an intuitive piece of evidence in favor of the correspondence is illustrated by the
symmetries on the two sides. The superconformal algebra with 32 supercharges yields an SO(4, 2)
conformal group for the bosonic generators, which is exactly the same as the group of isometries in an
AdS5 background. Furthermore, N = 4 SYM fields carry R charges under the SU(4) R–symmetry.
This corresponds to the isometries in the internal S5, which is invariant under SO(6) ∼ SU(4)
rotations.

The AdS/CFT tested Some of the most powerful tests of the AdS/CFT correspondence, relative
to the case that I am here considering, are related to the matching of the supergravity and susy field
theory spectra, as well as to the CFT correlation functions calculated by means of the string partition
function, and to the various possible deformations of N = 4 SYM corresponding to backgrounds
different from AdS5 × S5.

I showed above that two point functions derived using the field/operator correspondence agree with
the conformal field theory results. The matching provides a test of the full AdS/CFT for those fields
that don’t get a renormalization of the conformal dimension Δ, namely chiral primaries, proving that
supergravity calculations indeed reproduce these specific properties of the dual field theory. Three
and four point function computations have also been achieved in some cases, supporting the duality
(see [98, 177] and references therein).
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The matching of chiral primary operators with the fields of IIB supergravity compactified on
AdS5×S5 nicely fits into the correspondence. It represents quite a strong test, since chiral primaries
are protected from quantum corrections. The field/theory correspondence is realized via the relation
between masses and conformal dimensions, that for scalar fields in AdS5 yields �2m2 = Δ(Δ − 4).
Short chiral primaries are given by operators of the form On = tr

(
φi1 · · ·φin

)
, where the indices of

scalars are in the symmetric traceless products of the 6 representations of the SU(4) R–symmetry of
the theory. Each lowest dimension operator has conformal dimension n. One can then build the full
chiral primary spectrum of higher dimension operators by acting on the On’s with the supercharge
operators Q and momentum operators P of the N = 4 superconformal algebra. On the other hand,
one can also work out the spectrum of IIB supergravity on AdS5×S5 expanding supergravity fields in
spherical harmonics, which correspond to the symmetric traceless products of 6’s. Moreover, states
arising from the dimensional reduction of ten dimensional supergravity have helicities ranging from−2
to 2, indicating that they correspond to operators in small representation of the CFT superconformal
algebra. Indeed, we find that the graviton and four form spherical harmonics (their S5 components)
are associated to the lowest dimension scalar in the representations of weight n. Scalars of dimensions
n + 1 come from the two form fields with indices in the S5, while the symmetric tensor corresponds
to the graviton components along the AdS5. The complex scalar of weight n+2 is traced back to the
dilaton scalar harmonics. The matching of the spectra holds only for large N , due to the supergravity
approximation.

Other interesting non trivial calculations include the Wilson loops, seen as strings stretching
between a quark–antiquark pair, and anomalies — I will devote subsection 5.2.1 to the discussion on
holographic conformal anomalies and consequent checks of AdS/CFT.

About the (0,2) SCFT in six dimensions

The AdS7/SCFT6 is an example of the AdS/CFT duality in M theory. In this case, the AdS space
is seven dimensional. Hence the dual conformal theory lives in six dimensions and further compact-
ifications are required to define an effective four dimensional gauge theory, going in a more realistic
direction.

The low energy limit of M theory with N coincident M5–branes yields a (0,2) SCFT on the world-
volume of the branes. We should also have M2–branes in the bulk, since they are electrically charged
under the three form for which M5–branes are magnetic sources. The N = (0, 2) superconformal al-
gebra in six dimensions has 32 supercharges, as the N = 4 four dimensional algebra. The irreducible
massless representations form a tensor multiplet, including five real scalars, a two form with self–dual
field strength and fermions. The SCFT6 can be wrapped on two dimensional manifolds providing an
effective low energies SU(N) (supersymmetric) gauge theory description, at energy lower that the
inverse dimension of the internal space.

On the classical supergravity side, the background solution reads

ds2 =
1

f
1
3

ημνdxμdxν + f
2
3
(
dρ+ ρ2dΩ2

4

)
f = 1 +

π�3P lN

ρ3
(5.1.21)

where the xμ are the six directions along the 5–brane and the four form flux through the S4 is
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quantized in units of N ∫
S4

F4 = N (5.1.22)

As for the black 3–branes, the modes near the horizon ρ → 0 decouples from the bulk fields, in the
low energy limit. In the near horizon region, the geometry (5.1.21) becomes AdS7 × S4

ds2 =
2ρ2

�
ημνdxμdxν +

�2

ρ2
dρ2 +

�2

4
dΩ2

4 (5.1.23)

� = 2�P l (πN)
1
3 (5.1.24)

Since the radius � of AdS7 (5.1.24) is different from the radius �/2 of the four sphere, (5.1.23) doesn’t
give an asymptotically flat space–time.

The Maldacena conjecture in this case states that the N = (0, 2) SCFT in six dimensions is
holographically dual to M theory on AdS7×S4 with N units of four form flux on S4. The supergravity
calculations can be trusted as usual when the curvature radius of the geometry is large with respect
to the eleven dimensional Planck length �P l

�

�P l
∼ N

1
3 � 1 (5.1.25)

A Lorentz invariant lagrangian formulation for the (0,2) SCFT is not as simple as for the N = 4 SYM
theory. There are no dimensionless nor dimensionful parameter for this theory, since it represents
non trivial fixed points of the renormalization group in six dimensions. We expect a 1/N expansion,
due to the �3P l/� ∼ 1/N M theory corrections.

As in the general AdS case, we can identify the AdS7 isometries with the conformal symmetries
of the field theory. In fact, these two symmetries are described by the same SO(6, 2) group. The
(0,2) SCFT scalar fields also carry R–symmetry charges and transform as the 5 representation of
Sp(2) ∼ SO(5). The SO(5) group, on the other hand, is the isometry group of the four sphere in the
supergravity classical solution (5.1.23).

Checks and predictions The (0,2) SCFT is not well understood. However, a light–cone quan-
tization procedure has been performed in [99] and it has been shown that the form of correlation
functions of chiral operators are constrained by the superconformal algebra. These results are in
agreement with the calculations on the supergravity side, using the field/operator correspondence
(5.1.1) and evaluating the supergravity action on the classical solution to the equations of motion.

Moreover, the spectrum of protected chiral primaries in the N = (0, 2) CFT is known. The lowest
components are given by scalars in the symmetric traceless representations of SO(5). It has been
compared to the spectrum of 11–dimensional supergravity compactified on AdS7 × S4, making use
of the mass/dimension relation �2m2 = Δ(Δ− 6). The matching between spherical harmonics on S4

yielding a tower of KK massive modes with m2 = 4k(k−3)/�2 and the scalar chiral primary operators
of conformal dimensions Δ = 2k, k = 2, 3, . . . — obtained by the light cone quantization — is exact
and protected from quantum corrections on both sides of the duality. Higher dimension operators
correspond to higher spin KK modes.
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As in the N = 4 conformal theory in four dimensions, some other checks have be performed,
such as the generalization of Wilson loops — which are gauge invariant Wilson surfaces operators in
the (0,2) SCFT, related to a membrane bounded by the contour surface in the CFT description —,
or deformations of the field theory amounting to orbifolding the internal space. In particular, I will
discuss the conformal anomaly, which has not been evaluated in the (0,2) SCFT, and its computation
by means of the AdS/CFT picture, in subsection 5.2.1.

5.2 Holographic renormalization: space–times with boundaries

In section 5.1.1 I illustrated the prescription that allows to perform calculations of physical quantities,
as for instance CFT operators correlation functions, by means of the field/operator correspondence
(5.1.1). To this scope, it is necessary to evaluate the on–shell supergravity action, in the supergravity
approximated description of strings on AdS spaces. The dual objects are correlation functions for the
CFT operators. I showed that for instance supergravity results for two point function are in perfect
agreement with the constraints implied by conformal invariance, on the CFT side. Nevertheless, both
descriptions suffer from divergences. The on–shell supergravity action gets infinite contributions from
the large distances region, i.e. IR divergences arise. On the other hand, the corresponding gauge
theory UV divergences must be subtracted in the CFT renormalization procedure. Hence we need to
consistently obtain finite quantities to be compared via the field/operator holographic correspondence.

In order to renormalize the supergravity action we have to introduce an IR cutoff ε on the space–
time background, corresponding to an UV cutoff for the boundary field theory. The divergences will
be cured by adding suitable counterterms to the supergravity action, in order to keep it finite in the
limit ε → 0. The solutions to the equations of motion determining the value of the on–shell action
are set by the CFT data — the boundary conditions —, as it is established by the AdS/CFT duality.
Viceversa, given a supergravity background, one can derive expectation values, correlation functions
and other relevant quantities in the gauge theory, from the renormalized supergravity action.

In this section, I will explain how to construct this renormalized supergravity action following the
holographic renormalization procedure [189, 190, 193]. I will mainly focus on the pure gravity case,
which is a very illustrative application allowing to calculate the stress–energy tensor of the dual CFT.
In particular, I will derive the trace anomaly for conformal field theories in the AdS/CFT context
[189]. Conformal anomaly will be fundamental for the analysis of holographic Randall–Sundrum
cosmologies (see section 6.4 for the 4D case and chapter 8 four the seven dimensional set–up).

5.2.1 Renormalized gravity action and boundary counterterms in AAdS spaces

The most useful result for the holographic analysis of the 7D RS model that I achieved (and I am
going to discuss next) is conformal anomaly in an arbitrary number of dimensions for a CFT on a
curved asymptotically flat space. To this purpose, we shall disregard all supergravity fields except the
metric and a negative cosmological constant Λ, for the moment. We consider the Einstein–Hilbert
action of a (d + 1)–dimensional manifold M and the necessary Gibbons–Hawking term arising as a
consequence of the presence of the boundary ∂M

Sgr =
1

16πG
(d+1)
N

[∫
M

dd+1x
√−g (R [g]− 2Λ) +

∫
∂M

ddx
√−γ 2K

]
, (5.2.1)
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Here G
(d+1)
N is the (d+1)–dimensional Newton constant, Λ is the bulk cosmological constant, and K is

the trace of the boundary extrinsic curvature. The on–shell effective action is obtained by evaluating
(5.2.1) on the solutions to the equations of motion, i.e. the Einstein equations. In this notation they
read

GMN = ΛgMN (5.2.2)

Boundary conditions are associated to CFT data. However, the solutions to (5.2.2) don’t induce a
metric on the boundary, but they despite induce a conformal class, which defines the metric on the
boundary up to conformal transformations. The reason for this is that gMN satisfying (5.2.2) has
a second order pole singularity at infinity r → ∞ — the asymptotics of the metric is given in the
expression (5.1.2) for the u–frame and (5.1.3) for the r–frame. Thus, the metric at the boundary
ĝ(0)μν can be defined by means of a function u, that has a single pole and non zero derivative at ∂M,
ĝ(0) = u2g|∂M. This choice is not unique, since ĝ′(0) = u′2g|∂M, with u′ = ueω is still in the same

conformal class as g(0)μν , determined by the classical solutions to (5.2.2). Clearly, the existence of an
entire conformal class of solutions is related to the conformal invariance of the gauge theory on the
boundary.

Now, the aim is to evaluate the on–shell gravity action, given a conformal structure
[
ĝ(0)
]

at the
boundary, in order to compute the stress–energy tensor of the holographically dual CFT. We can use
the variable ρ = u2 to expand the metric in powers of ρ, adopting the Fefferman and Graham [208]
coordinate system

ds2 = gMN dxMdxN = �2
[
dρ2

4ρ2
+

1

ρ
ĝμν(x, ρ)dxμdxν

]
ĝ(x, ρ) = ĝ(0) + · · · + ρd/2ĝ(d) + h(d)ρ

d/2 log ρ+ . . . (5.2.3)

Here the subscripts (i) denote the number of derivatives contained in the relative term in the expan-
sion. We remark that this metric parametrization reduces to exactly AdS when g(0)μν = ημν and all
higher order terms vanish. Furthermore, the expansion (5.2.3) defines an asymptotically AdS (AAdS)
space since

RMNRS [g] = (gMR gNS − gMS gNR) +O(ρ) (5.2.4)

The logarithmic term in the expansion (5.2.3) has to be introduced only when d is even to find an order
by order solution to the Einstein equations (5.2.2). For odd d’s h(d) is null. This property reflects
the fact that conformal anomaly is absent in an odd number of dimensions. Indeed, h(d) will be later
related to the trace anomaly. Let’s proceed to the order by order solution to (5.2.2), plugging the
Fefferman–Graham parametrization (5.2.3). The equations of motion for the d–dimensional metric
ĝμν read

ρ
[
2ĝ′′ − 2ĝ′ĝ−1ĝ′ + tr(ĝ−1ĝ′)ĝ′

]
+ Ric [ĝ]− (d− 2)ĝ′ − tr

(
ĝ−1ĝ′

)
ĝ = 0

∇μtr
(
ĝ−1ĝ′

)−∇ν ĝ′μν = 0

tr
(
ĝ−1ĝ′′

)− 1

2
tr
(
ĝ−1ĝ′ĝ−1ĝ′

)
= 0 (5.2.5)

where the prime denotes differentiation w.r.t. ρ. The coefficient h(d)μν of the logarithmic term in

(5.2.3) must be traceless, in the sense that tr
(
ĝ−1
(0)h(d)

)
= 0, and covariantly conserved ∇μh(d)μν = 0,
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where the covariant derivative is built from ĝμν . One can then derive the form of ĝ(i) in terms of ĝ(0),
for i �= d, from the first of equations (5.2.5). The trace of each ĝ(i) with odd i vanishes, while for even
i can be calculated in terms of lowest order ĝ(j)’s by means of the third equation in (5.2.5). One can
also get the expressions for the divergences of the ĝ(i)’s, which is null for i odd and non trivial for
even i. In particular, for d = 2, 4 it gives a conservation equation of the form

∇μĝ(d)μν = ∇μA(d)μν (5.2.6)

where A(d)μν is antisymmetric and determined by the g(i), i < d. As a result, we can obtain ĝ(d)μν up
to an integration constant tμν , which remains undetermined (the trace and divergence are known from
the solution to the Einstein equations). The constant tμν is strictly related to the stress–energy tensor
expectation value of the dual field theory on the boundary. The coefficient h(d) is also determined as
a function of ĝ(0), . . . , ĝ(d), for an even number of dimensions d. The explicit results, which can be
extracted from (5.2.5) by differentiating w.r.t. ρ i times and then putting ρ to zero, can be found in
[193]. However, g(d) is not completely determined by the conformal structure on the boundary and
the boundary stress–energy tensor evaluation is necessary to give a full description of the bulk metric
expansion.

We now proceed to the computation of the on–shell gravity action. Since the action suffers from
divergences, we regularize it imposing the IR cutoff at ρ = ε

Sgr,reg =
1

16πG
(d+1)
N

[∫
ρ≥ε

dd+1x
√−g (R [g]− 2Λ) +

∫
ρ=ε

ddx
√−γ2K

]
= (5.2.7)

=
�d

16πG
(d+1)
N

∫
ddx

[∫
ε
dρ

d

ρd/2+1

√
−ĝ +

1

ρd/2

(
−2d

√
−ĝ + 4ρ∂ρ

√
−ĝ
)∣∣∣∣

ρ=ε

]

When we substitute the Fefferman–Graham expansion in (5.2.7) we can isolate the divergent part of
the gravity action in the ε → 0 limit. They arise as n–th order poles 1/εn whose coefficients can be
determined by the coefficients of the metric expansion. In addition, for an even number of dimensions
d, a logarithmic divergence, inherited from the metric expansion, appears in the regularized action.
The infinities then precisely read

Sgr,reg =
�d−1

16πG
(d+1)
N

∫
ddx
√
ĝ(0)

(
ε−d/2a(0) + · · ·+ ε−1a(d−2) − log ε a(d)

)
+ Sgr,fin

(5.2.8)

All the coefficients a(n) are covariant, meaning that the pure gravity action can be renormalized in
this framework by the subtraction of covariant counterterms

Sgr,count = − �d−1

16πG
(d+1)
N

∫
ddx
√
ĝ(0)

(
ε−d/2a(0) + ε−d/2+1a(2) + · · ·+

+ε−1a(d−2) − log ε a(d)

)
(5.2.9)

The renormalized action can be written as

Sgr,ren = lim
ε→0

(Sgr,reg − Sgr,count) (5.2.10)
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The gravity action evaluated on a classical metric solution to the Einstein equation corresponds,
via the field/operator duality, to the CFT stress–energy tensor expectation value 〈T μν〉 and to its
correlation functions, upon differentiation w.r.t. the boundary metric g(0)μν (coupled to T μν). Hence,
this can be used both as a check of the conformal anomalies calculated in known gauge theories and as
a prediction for not yet worked out results — I refer for instance to the (0,2) SCFT in six dimensions
arising in the coincident M5 configuration dual to supergravity on AdS7.

Conformal anomaly via holography

It is interesting to remark that there is a straightforward argument leading to the evaluation of the
anomaly, in terms of the d–th order counterterm. It can directly be shown that the last counterterm
in (5.2.9) is responsible for the anomaly just by using conformal symmetry arguments. In fact, the
finite part of the gravity action Sgr,fin variation under conformal transformations is associated to the
trace anomaly

δSgr,fin = −
∫

∂M
ddx
√−g(0)δσA(d) (5.2.11)

Here δσ is the parameter for infinitesimal conformal transformations

δĝ(0)μν = 2δσĝ(0)μν (5.2.12)

and A(d) is the CFT conformal anomaly. On the other hand, from expressions (5.2.7) and (5.2.8)
one can deduce that the regulated action is invariant under infinitesimal conformal transformations
combined with a rescaling of the IR cutoff

δε = 2δσ ε (5.2.13)

Now, since all negative power terms in the ε expansion of the regularized action are individually
invariant, the variation of the logarithmic contribution must be equal to (5.2.11). In fact, the covariant
coefficients a(n) transform according to

δa(n) = −nδσa(n) (5.2.14)

Hence the variation of terms of the form
√−ĝ(0)ε−(d+n)/2a(n) is null, while the logarithmic piece

appearing for even d yields a shift δ (log ε) = 2δσ — note that
√
ĝ(0)a(d) is invariant by itself. This

discussion demonstrates that

δSgr,count =
d�d−1

16πG
(d+1)
N

∫
∂M

ddx
√−g(0)δσ a(d) (5.2.15)

Finally, by comparing the two results (5.2.11) and (5.2.15) and keeping in mind that Sgr,reg = Sgr,fin−
Sgr,count, we conclude that

A(d) = − 1

16πG
(d+1)
N

d�d−1a(d) (5.2.16)
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This is the main result that I will use in the following, in order to study the holographic cosmology
evolution in Randall–Sundrum brane–worlds in four [125] and six [96] dimensions (see section 6.4 and
chapter 8).

Moreover, the full stress–energy tensor can be evaluated with some more involved computations.
If γμν is the induced metric on the boundary of the regularized manifold, we get that the stress–energy
tensor expectation value in the boundary CFT must be given by

〈Tμν〉 =
2√−ĝ(0) ∂Sgr,ren

∂ĝμν
(0)

= lim
ε→0

2√−ĝ(ε) ∂Sgr,ren

∂ĝμν(ε)
= lim

ε→0

(
1

εd/2−1
Tμν [γ]

)
(5.2.17)

The last equality comes from the expression for the induced metric γμν = ĝ(ε)/ε. Hence, we only
need to know Tμν [γ] up to order εd/2−1. Plugging in

Tμν [γ] = Treg,μν + Tcount,μν (5.2.18)

all the results determining g(i) i �= d and a(n) in terms of the boundary condition, i.e. the conformal
class represented by ĝ(0)μν , one can derive the explicit expression for the anomaly corresponding to
any bulk solution gMN satisfying to the aforementioned boundary data. The general expressions for
the two contributions are given by

Treg,μν =
1

8πG
(d+1)
N

(Kμν −Kγμν)

= − 1

8πG
(d+1)
N

{
−∂εĝμν(ε) + ĝμν(ε)tr

[
ĝ−1(ε)∂εĝ(ε)

]
+

1− d

ε
ĝμν(ε)

}
(5.2.19)

and

Tcount,μν = − �−1

8πG
(d+1)
N

{
(d− 1)γμν +

1

(d− 2)

(
Rμν − 1

2
Rγμν

)
− 1

(d− 4)(d − 2)2

[
−∇2Rμν + 2RμρνσR

ρσ +
(d− 2)

2(d− 1)
∇μ∇νR

− d

2(d− 1)
RRμν − 1

2
γμν

(
RρσR

ρσ − d

4(d− 1)
R2 − 1

(d− 1)
∇2R

)]
−T(d)μν log ε

}
(5.2.20)

with

T(d)μν =
1√−γ

∂

∂γμν

∫
ddx

√−γa(d) (5.2.21)

Note that the total stress–energy tensor Tμν is covariantly conserved w.r.t. ĝ(0), because Treg,μν and
Tcount,μν are both conserved w.r.t. γμν at the regulated boundary. Furthermore, the expectation
value of the total stress–energy tensor is given in terms of the undetermined integration constant tμν .
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5.2. Holographic renormalization: space–times with boundaries

Since tr tμν is given as a function of the boundary metric, the trace of stress–energy tensor is known
too.

Making use of this formalism we can hence elegantly find the stress–energy tensor expressions for
arbitrary AAdS spaces (with given boundary conformal class) using the AdS/CFT correspondence.
The results can be compared to known quantities, such as conformal anomalies in two and four
dimensions. Namely, following [189, 190, 193] one comes to the traces

A(2) =
�

16πG
(3)
N

R (5.2.22)

A(4) =
�3

2πG
(5)
N

(
E(4) + I(4)

)
(5.2.23)

with

E(4) =
1

64

(
RμνρσRμνρσ − 4rμνRμν +R2

)
I(4) = − 1

64

(
RμνρσRμνρσ − 2RμνRμν +

1

3
R3

)
(5.2.24)

being the Euler density and the local conformal invariant in four dimensions. The agreement with
known CFT results is perfect. I will instead use the newly found expression for 6D conformal anomaly
in subsequent calculations (the form of the anomaly is explicitly written in appendix A.1).

A further note. The equality (5.2.16) uniquely relates the trace anomaly of CFT on curved
AAdS spaces to the coefficient a(d) that can be computed following the holographic renormalization
procedure and the results given in [193]. In turn, a(d) can be related to the coefficient of the logarithmic
contribution to the metric expansion, written in terms of the Fefferman–Graham parametrization
(5.2.3). More precisely, the stress–energy tensor contribution T(d)μν to Tcount,μν (5.2.21), associated

to the action
∫

ddx
√−γa(d), is indeed proportional to h(d). The correct expression is found comparing

the logarithmic divergences that appear in the regularized stress–energy tensor computed on one hand
from the result (5.2.19) and, on the other hand, using (5.2.20). The relation reads

h(d)μν = −2

d
T(d)μν (5.2.25)

Thus, the counterterm coefficient a(d), which determines the anomaly, is associated to a stress–energy
tensor proportional to the coefficient h(d) of the logarithmic contribution in the metric expansion.

5.2.2 Renormalized scalar action

Introducing matter fields leads to a generalization of the previous procedure. One can consider,
for instance, a scalar field φ(x, ρ) of mass m. For φ an analogous expansion in powers of ρ plus
the eventual logarithmic contribution will hold, as in the pure gravity case. Then, the scope is to
evaluate the on–shell scalar field action, provided that we previously regularized the theory imposing
the IR cutoff. We will consequently derive the expectation value for the dual operator, which will get
conformal dimension Δ = d/2 ±√d2/4 + �2m2.
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Now, the scalar field action is given by

Smat =
1

2

∫
dd+1x

√−g (gMN∂Mφ∂Nφ+m2φ2
)

(5.2.26)

Then, the field φ satisfies the following equations of motion order by order in ρ(−� +m2
)
φ(x, ρ) =[

−(d−Δ)∂ρ log ĝ φ̂+ 2(2Δ− d− 2)∂ρφ̂− �̂φ̂
]

+ ρ
[
−2∂ρ log ĝ ∂ρφ̂− 4∂2

ρ φ̂
]

= 0 (5.2.27)

The scalar field can be expanded as

φ = ρ(d−Δ)/2(φ̂(0) + ρφ̂(2) + . . . ) + ρΔ/2(φ(2Δ−d) + log ρψ(2Δ−d) + . . . ) (5.2.28)

As in the gravity case, regularizing the action means imposing a cutoff at ρ = ε on the background,
in order to compute the correct covariant counterterms. The regularized action reads

Smat,reg = −
∫

ρ=ε
ddx

√
−ĝ(ε)ε−Δ+d/2

[
1

2
(d−Δ)φ̂2(x, ε) + ε φ̂(x, ε)∂εφ̂(x, ε)

]
=

∫
ddx

√
ĝ(0)

[
ε−Δ+d/2b(0) + ε−Δ+d/2+1b(2) + · · ·+

+ε b(2Δ−d+2) − log ε a(2Δ−d)

]
+ Smat,fin (5.2.29)

One can proceed subtracting the counterterm action Smat,count = Smat,reg−Smat,fin, to the regularized
action, achieving the holographic renormalization for the scalar field

Smat,ren = lim
ε→0

{
Smat,reg −

∫
ddx

√
ĝ(0)

[
ε−Δ+d/2b(0) + ε−Δ+d/2+1b(2) + · · · +

+ε b(2Δ−d+2) − log ε a(2Δ−d)

]}
(5.2.30)

Solving the equations of motion, leaves φ̂(2Δ−d) undetermined, in analogy to the gravity case, where
ĝ(d) is not completely determined neither. Indeed, this coefficient is related to the one point function
of the dual operator O of conformal dimension Δ

〈O〉 = (2Δ − d)φ̂(2Δ−d) + F
(
φ̂(i), ψ(2Δ−d), ĝ(j)

)
, i < 2Δ − d (5.2.31)

Furthermore, coupling the scalar field to gravity, allows to calculate the Ward identities that modify
the conservation equation for the stress–energy tensor. The main result is that

∇ν〈Tμν〉 = 〈O〉∂μφ̂(′) (5.2.32)

where φ̂(0) is the boundary condition CFT data for the scalar field. Explicit computations have been
performed [189, 190, 193, 195, 204, 205], both for gravity and matter. The results comparable to
known quantities, such as matter conformal anomalies, agree with the CFT calculations.
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An alternative — equivalent and more geometric — formalism for holographic renormalization
has been illustrated in [204]. It is an hamiltonian approach, which makes use of Gauss–Codacci
equations and ADM (Arnowitz–Deser–Misner) formalism to determine the (d+ 1)–dimensional Rie-
mann tensor in terms of the intrinsic and extrinsic curvatures of the boundary hypersurface. This
allows to write the regularized action in such a way that expectation values of CFT operators are
conceptually straightforward obtained as conjugated momenta w.r.t. the supergravity corresponding
fields. When renormalization takes place and divergences are covariantly subtracted, the only term
in the conjugated momenta expansions that contributes to the one point functions is the one carrying
conformal dimension Δ — where Δ is exactly the conformal dimension of the dual operator (Δ = d
for the stress–energy tensor, for instance). The summarizing formula has the following form

〈O〉 =
1√−γ π(Δ) (5.2.33)

(where π = ∂Sren/∂φ is the conjugated momenta w.r.t. the field φ associated to the operator O). This
is the paradigm from which one can get all the results previously reviewed, both for stress–energy
tensor and scalar fields.

5.3 Randall–Sundrum and its holographic interpretation

Holographic renormalization is fundamental in the derivation of the AdS/CFT dual to the back-
ground identified with a cutoff slice of AdS. I have barely deeply investigated the correspondence
relating string theory (or M theory) on AdS(d+1) to d–dimensional CFT, where operator sources are
boundary conditions for string theory. The cases I discussed deal with the full AdS(d+1) space (or
its Poincaré patch). Cutting the AdS is equivalent to introducing a UV regulator in the dual CFT,
since AdS/CFT is a IR/UV correspondence, as I previously observed. Furthermore, regularized su-
pergravity analysis in the holographic duality context can be performed following the holographic
renormalization prescription of the previous section.

Randall and Sundrum proposed a bulk gravity model in five dimensions that localizes the graviton
modes on the four dimensional hypersurface cutting the warped space, i.e. on the 3–brane. I will
explain the features of Randall–Sundrum (RS) model in detail in section 6.2.2. The informations
relevant to the AdS/CFT analysis, generalized to an arbitrary number of dimensions (d+ 1), are the
action and the Z2 symmetry with fixed point defined by the location of the d–brane. The action is
pure gravity in the bulk plus the localized energy source contribution from the brane

SRS = SEH + SGH + Sb (5.3.1)

where

SEH =
1

16πG
(d+1)
N

∫
d5x

√−g (R [g]− 2Λ) (5.3.2)

SGH =
1

8πG
(d+1)
N

∫
ddx

√−gK (5.3.3)

Sb ≡ SV + Sb,m =

∫
d4x

√−γ (−V + Lb) (5.3.4)
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Here V denotes the tension of the d–brane and Lb is a generic matter lagrangian on the brane. The
classical solution of the Einstein equations associated to the SRS action variation leads to a slice of
AdS(d+1) with radius �, assuming the Z2 orbifold static ansatz for the metric. The static line element
reads

ds2 = e−|y|/�dxμdxμ + dy2 (5.3.5)

where � is related to the bulk cosmological constant by Λ = d(d − 1)/2�2. The solution also implies
that the brane tension has to be fine–tuned in order to give zero effective cosmological constant on
the brane.

Now, AdS/CFT tells us that the partition function for gravity on a background with conformal
structure

[
ĝ(0)
]

at the boundary is equivalent to the generating functional of correlation functions for
a CFT on a space–time with metric ĝ(0)

Zgr

[
ĝ(0)
] ≡ ∫ Dg e−Sgr[g] =

∫
Dφ e−SCFT[φ,ĝ(0)] ≡ ZCFT

[
ĝ(0)
]

(5.3.6)

This is a straightforward application of the field/operator correspondence (5.1.1), in the case of pure
gravity. However, due to the divergences appearing in (5.3.6), we must carefully define the gravity
action, adding the appropriate counterterms. Obviously, this is done by exploiting the holographic
renormalization formalism illustrated in the previous subsection, yielding

Sgr = SEH + SGH − S0 − S1 + · · · − Sd/2 (5.3.7)

Here we explicitly write the first two counterterms Si, i = 0, 1 (in chapter 8 the third will also be
necessary and its explicit expression will be given there) which are of order i in the curvature R = R [γ]
(γμν is as usual the induced metric on the boundary ρ = ε)

S0 =
(d− 1)

8πG
(d+1)
N �

∫
ρ=ε

ddx
√−γ (5.3.8)

S1 = − �

16πG
(d+1)
N (d− 2)

∫
ρ=ε

ddx
√−γR (5.3.9)

I note that in any dimension, the brane tension action is precisely equal to twice the zeroth order
counterterm with opposite sign SV = −2S0 — it will be clear that this is due to the RS fine–tuning
of the brane tension to the bulk cosmological constant.

Provided that (5.3.6) holds, we wish to deduce the field/operator correspondence for a RS model

ZRS [γ] =

∫
R1∪R2

DgDφ e−SRS[φ,g] =

= e−2S1[γ]

∫
R1∪R2

DgDφ e−SEH[g]−SGH[g]−Smb,m[φ,γ] (5.3.10)

where R1 and R2 are the two regions separated by the brane and are symmetric with respect to the
Z2 orbifold. Using the expression for the pure gravity action and its dual derivation, provided that
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the integral over R1 ∪ R2 can be decomposed into two independent integrals over R ≡ R1 and R2

(which gives equal contributions), we get

ZRS [γ] = e−2WCFT[γ]−2S2[γ]+···−2Sd/2[γ]

∫
R
Dφ e−Smb,m[φ,g] (5.3.11)

Therefore, the dual theory on the boundary corresponding the the RS background reads

SfRS
= SCFT + SR + SR2 + · · ·+ SRd/2 + Smb,m (5.3.12)

where we have defined

SCFT ≡ 2WCFT , SRi ≡ 2Si (5.3.13)

Since SR is precisely the Einstein–Hilbert action in d dimensions describing pure gravity on the bound-

ary (with induced metric γμν and Newton’s constant G
(d)
N = G

(d+1)
N /�), the AdS/CFT correspondence

in the RS context takes the following form: gravity in a (d + 1)–dimensional RS background is dual
to a renormalized d–dimensional CFT plus d–dimensional gravity, plus higher order corrections (and
eventually the same matter on the brane).

The duality for RS backgrounds follows the discussions in [178, 180, 179, 181] and references
therein. Further computations ensue from this application of AdS/CFT, relating gravity quantities
in RS set–up to the CFT coupled to gravity description. Since the holographic dual theory also
includes gravity, cosmologies arise on both sides of the correspondence and can be compared. I will
give a review and new results on the subject in section 6.4 and chapter 8.
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Chapter 6

Cosmology fundamentals and
brane–worlds

I am going to give an introduction about brane–world models, after an overview of the most salient
features in (non)conventional cosmology. Brane–worlds are an attempt to incorporate the description
of conventional cosmology into stringy set–up. Most relevant questions in cosmology are of course
the origin of and exit from primordial inflation and reheating. Problems related to current universe
description are above all finding an explanation for the evolution toward the present accelerated era
and the cosmological constant problem (eventually associated to dark energy). The composition of
the universe is also a puzzle, since a consistent answer to the origin of dark matter and dark energy
is still lacking. Some of these issues may be solved in the brane–worlds models I will consider.

6.1 The conventional scenario of cosmological evolution

The basic ingredients in the description of an expanding universe are the Friedmann–Robertson–
Walker (FRW) metric and the Friedmann equations, coming indeed from Einstein equations in a
FRW background. Nice introductory lectures on Big Bang, inflation, dark energy — among other
issues — and observations are [156]–[158].

Homogeneous and isotropic universe: FRW metric

Homogeneity and isotropy are the two standard assumptions on the nature of our universe. Tests
can be made: isotropy is confirmed by the measurements on the temperature of cosmic microwave
background, which is smooth in all directions. Invoking then the copernican principle which states
that our location can’t be distinguished as a special place in the universe, one comes to the conclusion
that an everywhere isotropic universe is homogeneous.

A metric for three homogeneous and isotropic (visible) spatial dimensions plus one time direction
for an expanding (or, in principle, contracting) universe is described by the most general ansatz

ds2 = −dt2 + a2(t)
[
dρ2 + f2(ρ)

(
dθ2 + sin2 θ dφ2

)]
(6.1.1)
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where f(ρ) labels the three possibilities for flat, hyperbolic and spherical space

f(ρ) =

⎧⎨⎩
sin(ρ) sphere
ρ plane
sinh(ρ) hyperboloid

(6.1.2)

The scale factor a(t) can be used to define the Hubble parameter

H(t) ≡ ȧ(t)

a(t)
(6.1.3)

and the acceleration factor

q(t) ≡ ä(t)

a(t)
(6.1.4)

Furthermore, the time t is a coordinate measured in the comoving frame. We define the conformal
time τ through the change of variables a(τ)dτ = dt as

τ(t) ≡
∫ t

t0

dt′

a(t′)
(6.1.5)

The metric (6.1.1) can be rewritten explicitly parametrizing the spatial curvature by a constant
k = −1, 0,+1 (of mass dimension 2), which is positive, null or negative for locally spherical, hyperbolic
or flat spaces, respectively

ds2 = −dt2 + a2(t)

[
dρ2

1− kρ2
+ ρ2

(
dθ2 + sin2 θ dφ2

)]
(6.1.6)

This is the form of FRW metric that I will mostly use in the following. Changing to conformal time
we get

ds2 = a2(τ)

[
−dτ2 +

dρ2

1− kρ2
+ ρ2

(
dθ2 + sin2 θ dφ2

)]
(6.1.7)

For flat spaces, k = 0, the metric differs from Minkowski only by the conformal factor a(τ) = a(t(τ)).
This is the reason why τ is called the conformal time. In fact, the metric tensor can be written as
gμν = a2(τ)ημν . Another useful parameter is the redshift z, defined as

λ0

λe
≡ 1 + z =

a0

a(te)
(6.1.8)

where 0 and e subscripts denote respectively present and photon emission time. We are supposing
that a photon was emitted at a time te with wavelength λe and is observed today at the time t to
have wavelength λ0. The relation between the two wavelengths is easily derived plugging the metric
(6.1.7) for flat space into the pure YM action describing photons. From (6.1.8) one can consequently
find the Hubble law in the form

z = H0r (6.1.9)

which is strictly valid for small redshifts, i.e. for photons emitted short time ago, (t0 − te) � 1. In
the small redshift approximation the difference between the emission and present time is equal to the
distance r from the source of emission.
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The horizon

Another useful element in cosmology is the maximum distance at which an observer can see signals
(emitted at the initial time t = 0). In other words, suppose that a light signal is emitted at zero time
(or, more generally, at whatever lower bound for the time variable) and propagates until a time t.
At any time t the observer receives signals from sources placed at a distance rPH = rPH(t), in the
conformal frame. Hence, rPH is the maximal distance of the observer from the source, such as at a
given time t he can probe signals emitted in the asymptotic past. This particle horizon is precisely
the conformal time

rPH = τ =

∫ t

0

dt′

a(t′)
(6.1.10)

However, the physical distance (in the comoving frame) is given by

lPH = a(t)rPH = a(t)

∫ t

0

dt′

a(t′)
(6.1.11)

Inversely, one can define an event horizon as the maximal distance rEH = rEH(t) from the source at
which an observer at the asymptotic future can be located in order to receive signals emitted at time
t that propagate at the speed of light. The region of space–time lying outside the event horizon rEH

do not receive any signal from the source. The expression for the event horizon is

rEH =

∫ ∞

t

dt′

a(t′)
(6.1.12)

where we have supposed the time not to be bounded in the future. More generally one can replace
the upper extremum of integration in (6.1.12) with a finite time determining when the space closes.
A singularity a(ts) = 0 can for instance play this role. Similarly, the physical event horizon distance
reads

lEH = a(t)rEH = a(t)

∫ ∞

t

dt′

a(t′)
(6.1.13)

We note that knowing the scale factor a(t) one could establish the age of the universe by evaluating
lPH(t0) at the present time t0.

Einstein equations in the expanding universe: the Friedmann equations

The gravitational dynamics in an expanding (homogeneous and isotropic) universe is governed by the
Einstein equations evaluated on a FRW background. We have to plug the metric (6.1.6) in the well
known equations

Rμν − 1

2
Rgμν = 8πGNTμν (6.1.14)

Furthermore, one usually parametrizes the stress–energy tensor Tμν with perfect fluid energy density
ρ and pressure p in the following way

Tμν = (ρ+ p)UμUν + pgμν (6.1.15)

101



6. Cosmology fundamentals and brane–worlds

Here Uμ is the velocity of the perfect fluid which is normalized to Uμ = (1, 0, 0, 0) in the comoving
frame. The general expression for the stress–energy tensor components is thus

T 0
0 = −ρ , T i

j = pgi
j (6.1.16)

The relation between ρ and p = p(ρ) is the equation of state for the specific contribution to the
Einstein equations. It is often approximated to a constant equation of state p(t) = wρ(t), with
constant parameter w.

Now, plugging the expression of the metric (6.1.6) and the parametrization of the stress–energy
tensor (6.1.16), Einstein equations (6.1.14) become

ȧ2

a2
=

8πGN

3
ρ− k

a2
(6.1.17)

2
ä

a
+
ȧ2

a2
= −8πGNp− k

a2
(6.1.18)

The first (6.1.17) is the Friedmann equation and gives an algebraic relation between H = ȧ/a and
ρ (and k/a2 for non flat spaces). The second (6.1.18) tells us how the Hubble parameter evolves in
the FRW universe, since the l.h.s. is a function of Ḣ and H2, while the r.h.s. in a function of p (and
again k/a2 for non flat spaces). Putting the two (6.1.17) and (6.1.18) together we end up with an
equation for the acceleration factor q = ä/a

ä

a
= −4πGN

3
(ρ+ 3p) (6.1.19)

Of course we can generalize all the equations to the case of more than one contribution to the stress–
energy tensor by substituting ρ with

∑
i ρi and p with

∑
i pi, with i running over all the different

components. A critical energy density ρc can be defined as

8πGN

3
ρc = H2 (6.1.20)

One can determine whether the space is positively or negatively curved, or flat, by means of the
energy density evaluation. In fact (6.1.20) defines an energy density for a spatially flat background.
The ratio of the measured density ρ to the critical density ρc, Ωtot = ρtot/ρc, is then related to the
spatial local geometry of the universe:

Ωtot > 1 ⇔ k = +1

Ωtot = 1 ⇔ k = 0 (6.1.21)

Ωtot < 1 ⇔ k = −1

Since at present Ωtot is measured to be Ωtot 	 1, we can deduce that our universe is approximately
flat at the present stage of evolution.

It is well known that requiring energy conservation in General Relativity amounts to asking for a
(covariantly) constant stress–energy tensor

∇μTμν = 0 (6.1.22)
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(this equation can also be seen, in a more geometrical way, as the Bianchi identity for the Ein-
stein tensor). In turn, this implies the following conservation equation for the stress–energy tensor
parameters

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (6.1.23)

Using the constant equation of state p = wρ, equation (6.1.23) further simplifies to

ρ̇

ρ
+ 3(1 +w)

ȧ

a
= 0 ⇒ ρ(t) = ρ0

(
a0

a(t)

)3(1+w)

(6.1.24)

where ρ0 and a0 are the present values for the energy density and the scale factor, respectively.
For flat universes, Friedmann equation (6.1.17) is easily solved using (6.1.24), yielding

a(t) = a0

[
3(1 + w)

2
H0t

] 2
3(1+w)

(6.1.25)

provided that w > −1. We furthermore supposed that ρ0 = ρc which must be true for flat universes.
In the last equality we have used the fact that in a flat universe, dominated by matter species
characterized by fixed w > −1, the age of the universe, i.e. t0, can be simply evaluated by integration

t0 =

∫ 1

0

da

aH(a)
=

2

3(1 + w)

1

H0
(6.1.26)

So that H−1
0 ∼ t0 is the Hubble time estimating the life–time of the universe. The initial value for

the scale factor (6.1.25) turns out to be a → 0, when t → 0. This means that the space–time hits a
singularity at the initial time t = 0: the Big Bang.

When w = −1 we instead get an exponential solution for the scale factor

a(t) = a0e
H0(t−t0) (6.1.27)

The universe exponentially expands in this case.
An important remark is the dependence of the positive or negative acceleration on the equation

of state parameter w. Differentiating the solution (6.1.25) twice with respect to time, or equivalently
from equation (6.1.24), one deduces that

w > −1/3 ⇒ q < 0
w < −1/3 ⇒ q > 0

(6.1.28)

Thus, the pressure of the perfect fluid must be negative in order to have a positive accelerated
expansion of the universe.

Survey on observations

Observational data give quite a few pieces of information about what the universe used to look like
at early times or at more recent ones. Main experiments are based on the observations of luminous
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matter distribution, on measurements of star luminosity and supernovae and of cosmic microwave
background (CMB) anisotropies.

First of all, isotropy and homogeneity at large scales can be tested by measuring distances and
angular positions of galaxies and quasars. The distribution of luminous matter also shows the obvious
inhomogeneities at short scale: galaxies, stars, etc. Comparing the distribution at short scale with
the structure formation simulations gives information about primordial density perturbations and
about the composition of the universe (namely dark matter, baryons, dark energy...).

A big piece of information comes from CMB anisotropy measurements (recent data are from
WMAP). Temperature anisotropies of the microwave background are evaluated. One can estimate
as a consequence that the curvature contribution to the Friedmann equation (6.1.17) is very small
and that our universe can be considered spatially flat to rather high precision. In other words, today
total energy density ρtot is equal to ρc in good approximation — or equivalently Ωtot 	 1.

Both from CMB and from observation of abundance of light elements, where neutrons and protons
combine, the important ratio η = nB/nγ relating baryon density number to photons can be computed.
The primordial abundance of light atoms (from supernovae observations) can be traced back to the
value of η by considering the density number of neutrons at the time when their concentration freezed
out. CMB anisotropy can be connected to the number density of electrons which in turn must be
equal to the number density of protons, by neutrality. Further insights on the composition of the
universe might come from the measurement of non baryonic dark matter — i.e. non–relativistic
matter that cannot be seen by direct observations — in CMB experiments. On the other hand, one
can evaluate the energy density of dark matter from cluster formation simulations, comparing them
with the observed distribution of luminous matter.

As a final point of this recapitulation, I would like to mention the feature of cosmological evolution
represented by the observed alternating phases of acceleration and deceleration in our universe. From
type 1a supernovae we get that today’s universe is accelerating, q > 0. Supernovae observations give
informations about large redshift z (relatively small z describes the late time evolution), when the
linear Hubble law (6.1.9) is no more valid. For higher redshifts, earlier in time, data imply that the
universe underwent decelerated expansion. Late time acceleration has to be related to present dark
energy dominance, as I will explain next.

Absolute luminosity measurements at short distances and very small redshifts z � 1 instead yield
the present value for the Hubble constant H0 = (71 ± 3)km/secMpc, using the Hubble law (6.1.9).

6.1.1 Big Bang! The early Universe

Hot Big Bang theory describes the evolution of our universe at early times, extrapolating cosmological
dynamics from known Standard Model and General Relativity physics. General Relativity tells us that
an homogeneous and isotropic universe should live in a FRW metric (6.1.6) and obey to Friedmann
equations (6.1.17)–(6.1.18) (plus the conservation equation for the energy density (6.1.23)). The point
is now to understand what is the universe made of and how we shall describe its different components
— i.e. what are the relevant equations of state for each species.

We start by considering particles at equilibrium as well as “non matter” sources for the stress–
energy tensor (vacuum, curvature).
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Equilibrium

The equation of state can be written as a very simple expression for non–relativistic matter as p(t) ≡ 0
and for ultra–relativistic matter as p(t) = ρ(t)/3. We can thus more generally put the equation of state
in the form p(t) = wρ(t), where w is a constant equal to wurm = 1/3 for ultra–relativistic particles
and wnr = 0 for non–relativistic particles. This comes from the distribution functions describing
particles at equilibrium, i.e. particles whose interaction rate Γ is larger than the expansion rate,
which is set by H. A species freezes, or decouples from the background plasma, when Γ � H. In
words, before the decoupling time, the number density, energy density and pressure of a species at
equilibrium is determined by the statistical distribution functions (with Bose–Einstein or Fermi–Dirac
statistics if we consider bosons or fermions, respectively). For ultra–relativistic and non–relativistic
approximations the result is the aforementioned relation between p and ρ.

It is important to note that ultra–relativistic matter, namely photons for instance, are still de-
scribed by the same distribution function even when they decouple from the plasma. An effective
temperature scaling as

Tur = Tur,f

(af

a

)
∼ 1

a
(6.1.29)

must be introduced after photon freeze out. Therefore, the temperature of the background radiation
T ∼ 1/a labels epochs of our universe, from recombination. Indeed, recombination epoch denotes the
time at which protons and electrons formed hydrogen atoms. Soon after, the gas became neutral to
photons (this roughly happened at T 	 10 eV). In other words, photons freezed out.

An analogous property, i.e. preserving the same statistic behavior in or out of equilibrium, also
holds for non–relativistic matter. In this case, the distribution is redshifted such as

Tnr = Tnr,f

(af

a

)2 ∼ 1

a2
(6.1.30)

Using (6.1.29), we know from quantum statistics that photons in equilibrium or free photons are
characterized by a number density

nγ ∼ T 3 ∼ 1

a3
(6.1.31)

On the other hand, baryonic matter, which is non–relativistic, behaves as

nB ∼ 1

a3
(6.1.32)

As a consequence, the ratio η = nB/nγ is constant and is a very important parameter characterizing
Big Bang nucleosynthesis — this indicates the epoch starting after the decoupling of neutrons, when
light nuclei formed (at about T 	 100KeV) — in agreement with experimental data.

What does the evolution for ultra– and non–relativistic particles looks like in a FRW universe?
Straightforward application of equations (6.1.24) and (6.1.25) gives

w=0 ⇒ a(t)∼ t2/3 , ρ(t)∼ a(t)−3 ∼ t−2

w=1
3 ⇒ a(t)∼ t1/3 , ρ(t)∼ a(t)−4 ∼ t−4/3 (6.1.33)
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Hence radiation was dominating early in time. A transition occurred afterwards, from radiation to
dust dominated universe, due to the densities scaling as a−4 and a−3, respectively. However, even
later in time dark energy gave a larger contribution to the total energy density, since, as we are going
to see, it doesn’t scale but stays constant.

The vacuum or cosmological equation of state directly follows from the stress–energy tensor as-
sociated to such a contribution

Tμν = − Λ

8πGN
gμν (6.1.34)

This shows that

ρΛ =
Λ

8πGN
, pΛ = − Λ

8πGN
(6.1.35)

Hence wΛ = −1. Besides, since ρΛ is constant in time, this represents a vacuum energy. This is
why I will interchange language between cosmological constant and vacuum energy in the context of
equations of state. The equation of state for vacuum energy implies the following evolution in a FRW
universe

w = −1 ⇒ a(t) ∼ eHΛt , ρ(t) = ρΛ = const (6.1.36)

The energy density and Hubble parameter are thus constant in time, meaning that at late times,
when dust and radiation scale as some inverse power of a, it becomes the most relevant contribution.

There is another important contribution that we can usefully put in the constant equation of state
form p = wρ, with w = −1/3. This is the curvature k for any non spatially flat background. In fact,
the curvature term can be isolated in the Einstein equations (6.1.14). It gives a contribution to the
stress–energy tensor such that one can define

ρcurv = − 3k

8πGNa2
, pcurv =

k

8πGNa2
(6.1.37)

As a consequence wcurv = −1/3. If our universe was to be curved, we could however deduce that the
corresponding contribution to energy density would have been less and less important back in time.
In fact, the curvature term scales as

w = −1

3
⇒ a(t) ∼ t , ρ(t) ∼ a(t)−2 ∼ t−2 (6.1.38)

Curvature should then be important at times later that the matter dominated eras, but before dark
energy dominance. Nonetheless, since today data reveal to good approximation a zero contribution
from spatial curvature, one gets that earlier in time this contribution has been more and more
negligible. Hence, flatness of our universe is an expected property in Big Bang nucleosynthesis and
earlier epochs.

Early epochs

Equilibrium thermodynamics can be applied to early epochs in the universe. Going backwards in time
from recombination epoch shows the different phases that the universe underwent according to the big
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bang model, which gains considerable evidences from observations. At recombination (T 	 10 eV),
the plasma of photons and electrons transformed into a neutral gas, where electrons combined with
protons to form hydrogen atoms transparent to electric radiation. Before recombination (T 	 1MeV),
neutrons decoupled and stopped being produced by electroweak reactions. Short after (T 	 100KeV),
light elements started to form — while heavy elements could only be produced in other contexts, such
as supernovae explosions. This is the nucleosynthesis epoch. From the primordial abundance of light
elements, one can thus determine η in agreement with the results independently derived by CMB
observations, as I previously mentioned. At some time before nucleosynthesis (T 	 1MeV) another
species freezed out, i.e. neutrino decoupling occurred. Since neutrinos are involved in the proton–to–
neutron reactions, the temperature at which the decoupling happened is relevant for determining the
neutron–proton ratio before nucleosynthesis and, consequently, the light elements abundance. Further
back in time, protons annihilated with electrons with the plasma. Earlier, also heavier particles such
as muons and pions were in equilibrium in the plasma, before decoupling. However, at least two
fundamental phase transitions occurred, which are predicted by the Standard Model theory. These
are the QCD and electroweak transitions. Hadrons were formed from quarks and gluon during the
QCD phase transition (above T 	 100MeV). Electroweak symmetry breaking, instead, represents
the electroweak phase transition (above T 	 100GeV). Theoretical expectations depend on the
particular Standard Model extension one considers. At much earlier times (T 	 1016 GeV), we may
expect Grand Unification to be recovered. Such high energies are hard to extrapolate, though.

Following the FRW evolution, we can moreover argue what was roughly the time corresponding
to the transition from the matter dominated decelerated era to acceleration. This is simply achieved
by applying the Friedmann equation to a universe composed by dust and dark energy

ȧ2

a2
=

8πGN

3ρc

(
Ωnr

a3
0

a3
+ ΩΛ

)
(6.1.39)

Hence, we get that the transition occurred when ä = 0, i.e. when

a3
0

a3
≡ (1 + z)3 =

2ΩΛ

Ωnr
(6.1.40)

Substituting the experimental values for ΩΛ 	 0.7 and Ωnr 	 0.3 (I will discuss later in more detail the
present composition of the universe, see subsection 6.1.3), one obtains z 	 0.7, or else T 	 5 ·10−4 eV.
Early universe could thus have been matter or radiation dominated. However, we can deduce from
a similar sketchy calculation that primordial nucleosynthesis took place in a radiation dominated
universe. In fact, we know from equilibrium thermodynamics that

ρnr

ρur
=
ρnr,0

ρur,0

a

a0
(6.1.41)

Since phase transition from radiation to matter domination occurred approximately when ρnr 	 ρur,
we find as a result the the corresponding redshift is

a0

a
≡ (1 + z) 	 Ωnr

Ωur
(6.1.42)

Once again, if we plug the experimental data Ωnr 	 0.3 and Ωur 	 10−4, we get z 	 3 · 103, which
means T 	 1 eV. Since nucleosynthesis and earlier epochs were contained in a radiation dominated
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era, the temperature can be quantitatively related to the age of the universe at the various steps of
primordial evolution. Namely, Big Bang nucleosynthesis lasted from the age of t 	 1 sec to t 	 3min,
while QCD and electroweak transitions occurred approximately at t 	 3 · 10−5 sec and t 	 10−10 sec.
This calculations also need species to be in thermal equilibrium with the plasma, which is a correct
assumption at the early times associated with the different epochs.

6.1.2 The importance of inflation

The Big Bang theory is very successful in predicting the physics that lead to the observed present
universe, although initial conditions represent an unsolved issue in this framework. Indeed, there are
some main problems that seem to need further explanations. The presence of an inflationary era
before Big Bang is able to give satisfactory answers to the initial condition open questions.

Horizon From CMB data we know that the universe is isotropic at large scales. The problem
then stems from the computation of the maximal causally connected areas determined at the time
of recombination. As I already pointed out, photons freezed out at recombinations. Thus, causally
connected regions today are derived from recombination horizon, expanded until actual time. The
size of horizon at recombination epoch measured today is indeed

lH,rec,0 = λH,rec(1 + zrec) 	 300Mps (6.1.43)

Meanwhile, the present size of today horizon is given by lH0 	 104 Mpc. CMB observations then
imply isotropy over a much larger scale than the recombination horizon, meaning that non causally
connected patches of today horizon were subject to isotropic initial conditions, if we restrict to the
Big Bang picture alone. These wouldn’t be natural initial conditions.

Flatness The flatness measured in today universe implies an enormous fine–tuning of initial data.
More precisely, we now observe an energy density from curvature contribution bounded by the small
value |Ωcurv| < 0.02. Tracking this limiting value backwards to early epochs — given that the
curvature energy density scales as 1/a2 — we get at nucleosynthesis |Ωcurv| < 10−16 and at electroweak
epoch |Ωcurv| < 10−26. The question is then why the universe had a such very large radius with respect
to the inverse Hubble scale. This initial condition again is not a natural one, indeed.

There are other issues that lead to search for a new picture of the early universe, to be combined
with the Big Bang theory. Entropy, for instance, should be given as an unnaturally large initial
condition. Also primordial perturbations must find an explanation, giving the initial conditions that
yield the today measured anisotropies and structures.

Inflation is a useful mechanism that accomplishes to solve the initial value problems, since during
this era the universe expands at large rate. A suitably large acceleration implies that small patches
expand to big sizes, so that the eventual initial curvature is smoothed, the horizon size increases
putting in causal contact even distant regions of the CMB. To be more explicit, inflation is usually
assimilated with exponential acceleration

a(t) ∼ e
R

dt H (6.1.44)

108



6.1. The conventional scenario of cosmological evolution

A long inflation thus allows to solve Big Bang initial condition problems. The number of e–folds

Nefolds(t) = log
aend

a
=

∫ tend

t
dtH (6.1.45)

is a basic parameter of inflation. Its value must be determined in order to give consistent data for
the Big Bang theory. Precisely, a number of Nefolds 	 60 is necessary for a scenario of primordial
inflation to be consistent.

Slow roll

A very simple and illustrative model of inflation is described by a single field subject to slow rolling
potential. Slow rolling inflation can be summarized as follows. Suppose that we have a scalar field
with action

S =

∫
d4x

√−g
(

1

2
gμν∂μφ∂νφ− V (φ)

)
(6.1.46)

subject to a power law potential V (φ). We assume that initially the scalar field is homogeneous over
a large patch of the universe. Hence, we use FRW metric and a field φ = φ(t) that doesn’t depend
on space coordinates. The scalar field equation is

φ̈+ 3
ȧ

a
φ̇ = −V ′(φ) (6.1.47)

The energy density and pressure associated to the scalar field are given by

ρ =
1

2
φ̇2 + V (φ) , p =

1

2
φ̇2 − V (φ) (6.1.48)

and the Friedmann equation reads

ȧ2

a2
=

8π

3M2
P l

(
1

2
φ̇2 + V (φ)

)
(6.1.49)

The slow roll inflation takes place when we can discard the kinetic term for the scalar field with
respect to its potential, in order to get a vacuum behavior p = −ρ. The potential is almost constant,
yielding approximately constant energy density. Usually, two parameters are defined and supposed
to be very small

ε ≡ M2
P l

2

V ′2

V
� 1 (6.1.50)

|η| ≡
∣∣∣∣M2

P l

V ′′

V

∣∣∣∣� 1 (6.1.51)

In the slow roll approximation, the equations for the inflaton scalar field become

φ̇ = −V
′(φ)

3H
(6.1.52)

H2 =
8π

3M2
P l

V (φ) (6.1.53)
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In this particular model of inflation — multi–field inflation can be obtained as a generalization of this
set–up — the number of e–folds is determined by the specific potential. It can be calculated using
the following expression

Nefolds =
1

M2
P l

∫ φend

φ
dφ

V

V ′
(6.1.54)

The great success of inflation is due to the fact that homogeneity initial condition is required
only over a patch of the order of Planck scale or less, in order to solve the horizon problem. Many
other issues are related to inflation. One among the others is represented by density fluctuations,
which can find their origin in the inflationary era. In fact, roughly speaking, small perturbations
get extremely enhanced during inflation and finally yield the observable structure formation (for a
review, see [158]).

I would still have to give some arguments about the transition from the end of inflation to the
beginning of Big Bang. Indeed, during inflation everything gets diluted and redshifted, so that one has
to find a mechanism which recovers hot matter to get the Big Bang started. This mechanism is usually
called reheating. Reheating has been ascribed to inflaton decaying into other species. Oscillations
due to this decay processes in some sense produce hot radiation which reaches an equilibrium at
some reheating temperature. In more complex scenarios, however, reheating can be achieved with
different mechanisms. For instance, the potential may have some directions other than the almost
flat direction followed by the inflaton during inflation. At the end of inflation, the other direction —
let’s assume for simplicity that there is only one extra direction — may take the form of an unstable
potential, letting the inflaton flowing towards a (meta)stable minimum of the theory.

Conformal anomaly and inflation: Starobinsky model

Starobinsky proposed a new model of inflation driven by quantum corrections to Einstein equation,
and related to conformal anomaly. I here briefly summarize the mechanism leading to the inflationary
phase and to the graceful exit, without giving the details (the model is introduced in [197] and
thoroughly discussed in [198]).

Einstein equations with some matter conformal field theory take the form

Gμν = −8πGN 〈Tμν〉 (6.1.55)

They get quantum corrections from the evaluation of stress–energy tensor on curved manifolds. For
free massless conformally invariant fields we obtain

8πGN 〈Tμν〉 =
H(3)μν

H2
0

+
1

6

H(1)μν

M2
(6.1.56)

where

H(1)μν = 2∇μ∇νR− 2gμν∇σ∇σR+ 2RRμν − 1

2
gμνR

2 (6.1.57)

H(3)μν = Rσ
μRνσ − 2

3
rrμν − 1

2
gμνR

σλRσλ +
1

4
gμνR

2 (6.1.58)
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The coefficient H0 is determined by the matter content of the conformal theory(
8πGNH

2
0

)−1
=

1

1440π2

(
N0 +

11

2
N1/2 + 31N1

)
(6.1.59)

where we denote with N0, N1/2, N1 the number of spin 0, 1/2, 1 fields, respectively. The second
coefficient, M , can be made arbitrary by adding a covariant counterterm to the action, which is
necessary to regulate the gravity action. Its arbitrary finite part changes the 1/M2 coefficient in the
stress–energy tensor. Trace anomaly stems from (6.1.56) plugging in (6.1.57)–(6.1.58)

8πGN 〈T μ
μ 〉 =

1

H2
0

(
1

3
R2 −RμνR

μν

)
− 1

M2
�R (6.1.60)

Solving the Einstein equation (6.1.55) yields a de Sitter geometry fixed point for the FRW metric
ansatz

a(t) =

⎧⎨⎩
1

H0
cosh(H0t) , k = +1

a0 eH0t , k = 0
1

H0
sinh(H0t) , k = −1

(6.1.61)

Thus, this represents an inflationary era with exponential expansion. One first important point,
relative to this de Sitter solution, is its instability. The linearized equation around the fixed point
solution can be analyzed and gives at least one negative root for the stability matrix eigenvalues, as
expected for unstable points.

Successively, we can look at the slowly varying approximation Ḣ � H2, Ḧ � Ḣ for a spatially
flat universe k = 0 and (H(t = 0)−H0) � 1 but still finite. The full evolution equation can be
written in terms of the Hubble parameter H ≡ ȧ/a as

H2
(
H2 −H2

0

)
=
H2

0

M2

(
2HḦ + 6H2Ḣ − Ḣ2

)
(6.1.62)

For slowly varying Hubble constant this reduces to the following solution

H(t) = H0 tanh

[
γ − M2t

6H0

]
(6.1.63)

with γ = log
(

2H0
|H(0)−H0|

)
/2. The slowly varying approximation holds until t 	 t∗ = 6γH0/M

2,

when the Hubble parameter approaches the value H 	M . Besides, to obtain long inflation we must
require M2 � 6H2

0 , as we deduce from (6.1.63). Hence, the accelerated era terminates with a value
for H which is H � H0. Let us investigate the fate of evolution is this approximation. The Einstein
equation now reads

2HḦ + 6H2Ḣ − Ḣ2 +M2H2 = 0 (6.1.64)

This equation implies the presence of damped oscillations that typically yield reheating. In fact,
approximate solutions come first from ignoring the friction term 6H2Ḣ, which is small. This simply
gives H ∝ cos2 (Mt/2). Introducing friction we get the damping

H =
4

3t
cos2

(
1

2
Mt

)(
1− sinMt

Mt

)
+O(t−3) (6.1.65)
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The average scale factor over the period of oscillations is equal to a(t) ∝ t2/3, describing non–
relativistic matter. Furthermore, considering deviations from conformal invariance, one can determine
the temperature at which the oscillations are damped and thermalization occurs, leaving a radiation
dominated universe.

Gravitational waves and quantum cosmology can also be considered in the Starobinsky model
[198]. However, the feature I want to stress here is the role of conformal anomaly in driving an
inflationary era as well as reheating and thermalization. Indeed, conformal anomaly cosmologies, in
the context of holographic duality, will be further analyzed in section 6.4 and chapter 8.

6.1.3 Present era: dark energy and open questions

The universe at early stages is well described by Big Bang theory, combined with inflation. However,
observations also tell us how the universe looks like today. In particular, I will briefly focus on the
matter composition of our universe, which is related to equilibrium thermodynamics, and present
acceleration. Open issues in cosmology will also be discussed.

The composition

The composition of current universe is due to relics left at the time of freeze out by the various species
contributing to the energy density. Ultra–relativistic matter is characterized by the same distribution
function, both at equilibrium and after decoupling, provided that we define an effective temperature
after freeze out, Tur ∼ 1/a. Its number density at the time it leaves equilibrium is

nur,f ∼ T 3
f (6.1.66)

This number gets then diluted by the factor 1/a3 until present epoch. The number density of relic
photons, after recombination epoch, is nγ 	 410 cm−1 and any ultra–relativistic relic abundance
should thus roughly be of the same order

nur ∼ nγ (6.1.67)

Neutrinos for instance have number density nν 	 115 cm−1 per species.
Non–relativistic particles involve a less trivial analysis. Number density of cold relics depend on

their annihilation cross section σ0 and on their mass mnr

nnr ∼ nγ

σ0mnrMP l
(6.1.68)

From the number density, one can easily compute the energy density and the density parameter Ωi,
relative to each species.

I already mentioned that our space is detected to be flat to good approximation. This means that∑
i

Ωi 	 1 (6.1.69)

From the number density for photons, we deduce their density parameter

Ωγ 	 6 · 10−4 (6.1.70)
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6.1. The conventional scenario of cosmological evolution

Admitting a mass mνe < 2.6eV for neutrinos, we can calculate the upper bound for the associated
density parameter, supposing that neutrinos are non–relativistic today. which is true. Since ρν =∑

αmναnνα we obtain Ων < 0.16. Nevertheless, cosmological data measuring structures at small
scales, which in turn are related to ultra–relativistic neutrino density, give

Ων < 10−2 (6.1.71)

yielding a stricter bound on the masses
∑

αmνα < 0.42eV.
Baryonic matter certainly contributes to density. Experiments teach us that

ΩB 	 5 · 10−2 (6.1.72)

Electrons contributes on the same footing as baryons to the total number density, because of neu-
trality. Nonetheless, since their mass is much smaller, their energy density is negligible with respect
to the baryon contribution, Ωe � ΩB.

I summarized until now the stable visible particles that compose the universe. However, there
is also some dark matter (cold dark matter) whose abundance can be estimated through indirect
experiments — as I mentioned in the subsection dedicated to observations data — and gives an
important contribution to the total density parameter

ΩCDM 	 0.25 (6.1.73)

Finally, as we can deduce by summing all the contributions we summarized, Ωγ + Ων + ΩB + Ωe +
ΩCDM 	 0.3, there should be another dark species that dominates the composition of our universe.
This is in agreement with observations revealing today acceleration, since nor usual matter nor
radiation can lead to the present accelerated expansion. We instead need a negative pressure species,
with w < −1/3. Dark energy contribution thus reads

ΩΛ 	 0.7 (6.1.74)

This value is obtained assuming a constant equation of state where the parameter w is constrained
by supernovae observations to lay in the range −1.2 < w < 0.8.

Dark sector

Finding a good candidate for dark energy is still an open problem. A cosmological constant would
do the job, of course, but it is not in satisfactory agreement with data. One of the alternatives is
dynamical dark energy, which consists of some slowly varying field. I will not discuss this issue here,
but the interested reader can find the topic reviewed in [158] and references therein. As for inflaton,
a slowly varying field causes a slowly varying equation of state parameter, approximately equal to
w 	 −1, implying acceleration. However, non standard FRW cosmology may develop future eternal
acceleration without the need of such a constraint on the equation of state parameter, as I will show
in the context of brane–world cosmology, next in this chapter and in the following.

Cold dark matter, instead, must have been non–relativistic at freeze out, otherwise it would have
influenced structure formation suppressing it (as neutrinos did). On the other hand it is obvious that
interactions of CDM with the other particles must be very weak, not to be detected by experiments.
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The energy density of CDM relics can be derived by (6.1.68). Assuming that CDM is composed
by some (anti)particles Y, Ȳ , their density parameter is independent of the mass mY , given that
ρY = mY nY . Thus, we obtain

ΩY ∼ nγ

σ0MP lρc
(6.1.75)

This expression ignores some negligible logarithmic factor log (σ0MP lmY ) and the effective number of
massless degrees of freedom g∗ (which can however be easily included by defining an effective Planck
mass MP l∗ = MP l/1.66

√
g∗). The condition required for some particle Y to be a consistent candidate

for CDM is ΩY 	 1/σ0(10
9GeV2) 	 1. We deduce from (6.1.75) that a weakly interacting massive

particle (WIMP) with cross section σ0 	 αWGF 	 10−9GeV−2 nicely fits into the picture. The
lightest supersymmetric particle (LSP) in Standard Model extensions is a good example of particle
with such an annihilation cross section, indeed. LSP must be stable and furthermore supersymmetry
must be broken at weak scale, in this scenario.

There are other fundamental issues in cosmology, that I will not discuss in detail. One is baryon
asymmetry. This subject has to do with initial conditions. We need to find an explanation to the non
equal number of particles and antiparticles, namely quarks and antiquarks. This should not simply
be an asymmetric initial condition that moreover doesn’t fit into the inflation picture. Sakharov
stated that three conditions are necessary in oder to get the observed baryon–antibaryon number
discrepancy: (i) violation of the baryon number, (ii) C and CP violation, (iii) deviation from thermal
equilibrium. These three conditions may be achieved independently of the specific particle model
one considers. Many possibilities have been studied in literature — Grand Unification mechanism,
electroweak baryogenesis, leptogenesis, for example. However, their description is beyond the scope
of this work.

Another issue that I have not mentioned up to now, is the cosmological constant problem. It
deals with the unnaturally small value of the cosmological constant, which is equivalent to fine–
tuning vacuum energy to a very small value. There are still no fully satisfactory answers to this
problem. Most investigated attempts going in the direction of solving the cosmological constant
problem are related to supersymmetry. The landscape approach is also a possibility. Indeed, string
compactification leads to a very large number of vacua, some of which may have the right vacuum
energy property (in addition to the other (Susy) Standard Model characteristics). However, the
landscape still needs further investigations.

The main topic I focus on, in my work, is late time acceleration, driven by a brane–bulk energy
exchange, and the possibility of finding a realistic evolution, including primordial inflation, in the
context of brane–world cosmology.

6.2 Embedding cosmology in strings via brane–worlds

String theory entails a certain number n of extra dimensions with respect to the space–time that we
experience through observations (see [124] for interesting lectures on extra dimensions). The number
of extra dimensions is six for any critical superstring theory, since superstrings live in a 10–dimensional
target space. In a large part of literature, the set–up involves exactly six extra dimensions. However,
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6.2. Embedding cosmology in strings via brane–worlds

there are other possibilities such as M theory, which yields an eleven dimensional target space, so
that seven dimensions must be hidden. Non critical strings are not constrained by the vanishing of
the central charge — c ∝ (D − 10) — to live in ten dimensions. Thus one can in principle consider
both supercritical, D > 10, or subcritical, D < 10, string theories. The number n of extra dimensions
in non critical backgrounds is as a consequence n < 6 or n > 6, respectively.

The question should be now why extra dimensions can be non visible to experimental observations.
We can answer this question at different levels. The first aspect to consider is how to conveniently
realize a string theory with extra dimensions that are consistent with observations. We may have
either tiny or large extra dimensions, either compact or warped or even flat, depending on the specific
string theory background. In what follows, I am going to review some of the possible set–up leading
to an effective four dimensional world, namely brane–worlds. String theory indeed naturally provides
such brane objects. Dp–branes are non perturbative membrane–like string configurations extended in
p spatial dimensions and in the time direction, which carry RR charges. U(N) gauge fields typically
live on a stack of N Dp–brane. Therefore, the idea of the Standard Model living on some (intersection
of) stacks of Dp–branes thrived. Other kinds of extended objects are present in string theory or M
theory, such as NS–branes (carrying NS–NS charges), M–branes (in eleven dimensional M theory),
black p–branes (classical supergravity solutions with black hole–like thermodynamics), which can in
some cases be related among each other by string dualities.

On the other hand, there should be a profound reason why we live in a string theory vacuum with
only four visible dimensions, where the dynamics of fields is described by Standard Model gauge theory
and General Relativity. There is much work going on addressing this question. The landscape of
string vacua is studied in this context, in order to determine whether there are for instance statistical
and/or anthropic reasons that have driven the evolution of our universe towards the “right” vacuum.
Although this is a fundamental issue that should be solved in the string theory picture, I am not
going to cover this topic here (see, for instance [87, 89]).

Instead, how the four dimensional world we observe is compatible with superstring theory and
extra dimensions?

6.2.1 Compatification of extra dimensions

A first hypothesis on the structure of space–time embedding the known four dimensional world consists
in assuming that all known fields (gauge and gravity) propagate in all dimensions. If the total number
of dimensions is D = 4 + n, we would like the D–dimensional gravity theory to contain the observed
4–dimensional one. In formulae, we must have the following form for the D–dimensional metric and
curvature √

g(D) = �n
√
g(4) , R(D)[h] = R(4)[h] (6.2.1)

where the ansatz for the full metric is given by

ds2 ≡ g
(D)
MNdxMdxN = (ημν + hμν) dxμdxν − �ndΩ2

(n) (6.2.2)

Here hμν is the metric fluctuation around four dimensional Minkowski, � is the radius of the extra
dimensions and dΩ(n) represents the line element of compact and locally flat extra dimensions. The
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usual 4D Einstein–Hilbert action is thus contained in the higher dimensional theory

S(D) = −Mn+2
(D)

∫
dDx

√
g(D)R(D) = −Mn+2

(D) V(n)

∫
d4x

√
g(4)R(4) (6.2.3)

The volume V(n) of the internal space is given by the integral
∫

dΩ(n)�
n. The relation between the

four dimensional Planck mass MP l and the D–dimensional scale M(D) is then

M2
P l = Mn+2

(D) V(n) (6.2.4)

The analogous comparison can be carried for the gauge couplings in four and D dimensions — gYM

and g(D), respectively. The result in this case gives

g2
YM =

g2
(D)

V(n)
(6.2.5)

Putting all together, and assuming that the volume of the n–dimensional compact space scales as
V(n) 	 �n (take as an example the n–torus: V(n) = (2π�)n), the relation between four dimensional
Planck mass, four dimensional gauge coupling and radius of extra dimensions is straightforward
obtained

� ∼ (gYM)1+
2
n

MP l
(6.2.6)

Such tiny extra dimensions, scaling as the Planck length � ∼ M−1
P l , are expected not to be observed

in the relatively near future.
Large extra dimensions [153] can arise when the D–dimensional gravity scale is taken to be of the

order of M(D) � 1TeV. This is in fact a lower bound determined by experiments, since gravitational
quantum effects haven’t been observed yet. We can put the relation (6.2.4) in the form

� ∼ 1

M(D)

(
MP l

M(D)

) 2
n

	 10
32
n TeV−1 (6.2.7)

(with MP l = 1019GeV). The bound for the radius of extra dimensions is in turn determined by the
distance that gravitational experiments on Newton law validity can probe. At the present state of
experiments, we must require � to satisfy � � 0.1mm. The larger the number n of extra dimensions
is, the smaller extra dimensions are in this set–up. For n = 1 equation (6.2.7) gives � 	 2 · 1015 cm,
which is much bigger than the experimental bound. If we instead admit the existence of two extra
directions, the radius has a more reasonable value � 	 2mm. Investigating the two extra dimension
hypothesis, we also find that � � 0.2mm changes the plausible bound for the D–dimensional gravity
scale to M(D) � 3TeV. More than two extra dimensions would imply such a tiny radius that they
wouldn’t be detected by any foreseeable future experiment.

This kind of model with large compact extra dimensions was proposed in order to solve the
hierarchy problem, since it allows to define a fundamental gravity scale M(D) of the same order of the
electroweak interaction scale. Nevertheless, the hierarchy problem in this set–up doesn’t disappear
but rather translates in the problem of the unnatural large radius for the extra dimensions.
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6.2.2 The Randall–Sundrum alternative

Another possibility, which is the one exploited in recent brane–worlds models, is to relax the as-
sumption of having all fields free to propagate in the whole space–time. Indeed, this can be done
by introducing a four dimensional defect, a brane, on which (some of the) Standard Model fields are
constrained to live 1.

The goal of this introduction is mainly to discuss gravity/cosmology issues in the brane–world
context. I won’t generally go deeply into brane–world phenomenology, like Standard Model or QCD
relevant aspects. However, the search for a solution to the hierarchy problem has been the basic
motivation for the Randall–Sundrum proposal, as an alternative to the large extra dimension models.
Hierarchy gets exponentially suppressed thanks to the fact that the extra dimension is a warped
direction (which is essentially compact in the Randall–Sundrum model with two branes, RSI, and has
infinite volume in the one brane RSII). The feature of Randall–Sundrum model which is fundamental
for cosmology is the localization of gravity on the four dimensional brane. Hence, even with an infinite
extra dimension, gravitational forces are effectively four dimensional (in the IR).

In the past, earlier warped extra dimension brane–worlds have been proposed [100], with the idea
of solving the cosmological constant problem [101]. Indeed, balancing of the brane tension with bulk
cosmological constant gives, upon fine–tuning though, a zero effective cosmological constant on the
brane representing the visible world. Hence, the problem of explaining such a small observed vacuum
energy in our universe is translated into a question about the fine–tuned value of the bulk vacuum
energy which exactly cancels the Standard Model vacuum.

Let me now introduce the two Randall–Sundrum (RS) models [113] and the cosmologies that
develop specially in the one brane RS set–up.

RSI: the hierarchy solved

The theory for this model is gravity in a five dimensional bulk, with five dimensional cosmological
constant Λ5. The extra dimension is then compactified over a S1/Z2 orbifold at whose fixed points
two sources of energy density, i.e. two co–dimension one branes, are located, in order to compensate
for the bulk cosmological constant. The extra direction y has hence a finite volume and the boundaries
of space–time are somehow replaced by the two 3–branes. Einstein–Hilbert action, plus the branes
tension contributions, plus arbitrary matter lagrangians localized on the branes (the specific form is
irrelevant to the Einstein equation results) take the form

S = SEH + SbUV
+ SbIR (6.2.8)

with

SEH =

∫
d5x

√−g (M3R− Λ5

)
(6.2.9)

Sb =

∫
d4x

√−γ (−V + Lb) (6.2.10)

1The simplest example is to assume that all Standard Model fields live on the same (stack of, intersection of) brane(s).
However, more complicated and less naive configurations are possible and have been widely investigated [90, 86, 89],
where the gravitational sector is free to propagate in the bulk and matter fields are localized at specific distances from
the IR brane. The only necessary requirement is that the Higgs boson must be placed on the IR brane hypersurface.
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Here, the five dimensional gravitational scale is set by M (M3 ≡ 1/16πG
(5)
N , Λ5 ≡ Λ/8πG

(5)
N to

recover the notations of the previous chapter), γUV and γIR are the induced metrics on the IR and
UV branes, respectively — IR and UV indicate that energy scales are suppressed on the IR brane,
as we will shortly deduce.

The warp ansatz for the background metric is essential in order to obtain the desired solution to
the hierarchy problem. Indeed, we will see how energy scales are lowered by the warp factor e−2A(y)

which enters in the metric as

ds2 = e−2A(y)ημνdxμdxν + dy2 (6.2.11)

The orbifold fixed points are y∗ = 0, where the UV brane sits and y∗ = yIR. Standard Model (or
at least the Higgs field) are thought as located on the IR brane (also called the TeV brane), while
gravity will show to be localized on the UV brane (or Planck brane). If the function A(y) is linear
A(y) = y/�, then the metric (6.2.11) describes a slice of AdS5 geometry with radius � in the region
between the two 3–branes. In these coordinates the Einstein tensor reads

Gμν = −3
(
A′′ − 2A′2

)
G55 = 6A′2 (6.2.12)

The 55 component of the Einstein equations

GMN =
1

2M3
TMN (6.2.13)

immediately gives — keeping in mind the Z2 orbifold —

A =

√
− Λ5

24M3
|y| ≡ k|y| (6.2.14)

where k represents the scale of the AdS5 geometry, k = 1/�, and Λ5 is the negative cosmological
constant of AdS space–time. The solution (6.2.14) tells us that the second derivative of A has
delta functions, and thus deltas are also appearing in the Einstein tensor. The contributions to the
stress–energy tensor that compensate for these deltas are exactly the localized energy density sources
corresponding to the branes, provided that the brane tensions are respectively given by

VbUV
= −VbIR = 24M3k (6.2.15)

In fact, the μν components of the Einstein equations yield

A′′ = 2k [δ(y)− δ(y − yIR)] =
1

12M3
[VbUV

δ(y) + VbIRδ(y − yIR)] (6.2.16)

which is to be compared to the brane tension contributions (6.2.15). The RS metric can now be put
in the simple form

ds2 = e−2k|y|ημνdxμdxν + dy2 (6.2.17)

I now want to go towards the solution to the hierarchy problem. We need to analyze gravity in
the RSI model and to find out which is the graviton zero mode and the associate KK tower. General
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fluctuations of the metric should involve graviton, vector and scalar modes, as a consequence of the
decomposition of 5D massless graviton in 4D. However, since the vector mode appears in the metric
as Yμdxμdy it must vanish due to the Z2 symmetry y ↔ −y. The scalar mode has been carefully
treated in [102, 103, 104], but doesn’t bring relevant changes to the analysis I am reviewing. Hence,
let me consider the following fluctuation around the RS solution

ds2 =
[
e−2k|y|ημν + hμν(x, z)

]
dxμdxν − dz2 (6.2.18)

The linearized Einstein equations for hμν are derived by calculating the perturbed Einstein tensor
and stress–energy tensor in the RS gauge ∂νhμν = hμ

μ = 0. The following equation holds{
e2k|y|� + ∂2

y + 4k [δ(y) + δ(y − yIR)]− 4k2
}
hμν = 0 (6.2.19)

where � is the four dimensional Minkowski d’Alambertian operator. I will always suppose all ex-
pressions to be even under the Z2 symmetry. Now, this can be put in the form of a Schrödinger
equation by redefining the fluctuations as ĥμν = hμνek|y|/2 and performing a change of variables only
involving the extra direction ku = sgn(y)

(
ek|y| − 1

)
. Defining in addition the KK modes of mass m

by factorizing the fluctuation wave function as ĥμν(x, u) = ψμν(u)e
ip·x, we get the wave equation[

−1

2
∂2

u + V (u)

]
ψ(u) = m2ψ(u) (6.2.20)

The mass of the KK modes must satisfy the relation to the KK momenta p2 = m2 for each KK mode.
The potential for this one dimensional quantum mechanical system is by construction given by

V (u) =
15

8

k2

(k|u|+ 1)2
− 3

2

k

(k|u|+ 1)
[δ(u) + δ(u− uIR)] (6.2.21)

In the u–frame, the orbifold fixed points are respectively u∗ = 0 and u∗ = uIR =
(
ekyIR − 1

)
/k. The

normalizable zero mode is then given by

ψ0(u) =
N̂0

(k|u|+ 1)
3
2

(6.2.22)

which is finite upon integration. The normalization constant N̂0 is set imposing
∫ uIR

−uIR
ψ2

0 = 1. As
one can deduce from the explicit form of the ψ0 wave function (6.2.22), the massless mode for the
graviton is characterized by a peak at the location of the UV brane and it falls off away from it. The
normalizability of the zero graviton mode is an important point in the localization of gravity on the
brane, also in the infinite volume extra dimension set–up. In fact, if the zero mode were not to be
normalizable, we would not get effective 4D gravitational interactions. The higher modes are linear
combination of Bessel functions

ψm(u) =

√
k|u|+ 1

k

[
N̂JmJ2

(m
k

(k|u|+ 1)
)

+ N̂Y mY2

(m
k

(k|u|+ 1)
)]

(6.2.23)
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As usual, the wave functions can be normalized by requiring the unit integral, as for the zero mode.
The boundary conditions determined by the delta functions in the potential — ∂yhμν = 0 on the
branes — can be written as a solution to the determinant equation∣∣∣∣ J1 (u = 0) Y1 (u = 0)

J1 (u = uIR) Y1 (u = uIR)

∣∣∣∣ = 0 (6.2.24)

They give a discrete spectrum for the KK states, labeled by

mn = ξnke
−kyIR (6.2.25)

Here the ξn denote the n–th root of J1.

As a consequence of gravity localization on the UV brane and of the requirement for gauge fields
to live on the IR brane, we can derive how matter field masses get suppressed by the warp factor with
respect to Planck mass. This would indeed solve the hierarchy between electroweak and Planck scales.
The four dimensional Planck mass is obtained by writing the relevant effective action containing the
four dimensional Einstein–Hilbert term

M3

∫
d4x

∫ yIR

−yIR

dy

√
−g(4)R(4)e−2k|y| (6.2.26)

This result comes from calculating the action that takes account of the massless graviton fluctuations
of the metric, which we just computed. After integration over the y variable, we get the value for the
effective four dimensional Planck mass

M2
P l =

M3

k

(
1− e−2kyIR

)
(6.2.27)

Until now I showed that fore reasonably large values of yIR the Planck scale is barely unaffected by
the warped geometry and remains of the order of the five dimensional Planck mass. On the contrary,
the Higgs vev gets lowered by an exponential factor. This can be seen by considering the scalar field
action on the IR brane with Higgs potential

SH =

∫
d4x

√
γIR

[
γμν

IRDμH
†DνH − λ

(|H|2 − v2
)2]

(6.2.28)

where the induced metric on the IR brane is given by γIRμν = e−2kyIRg
(4)
μν . Hence the Higgs action

becomes the action for a non canonically normalized scalar

SH =

∫
d4x

√
g(4)e−4kyIR

[
e2kyIRg

(4)μν
IR DμH

†DνH − λ
(|H|2 − v2

)2]
(6.2.29)

The scalar fields must be then rescaled to H → HekyIR , yielding the following contribution to the
effective action on the IR brane

SH =

∫
d4x

√
g(4)

[
g
(4)μν
IR DμH

†DνH − λ
(
|H|2 − e−2kyIRv2

)2
]

(6.2.30)
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As a result, the vev of the Higgs field localized on the negative tension brane gets exponentially
suppressed

vIR = e−kyIRv (6.2.31)

Since the Higgs vev determines all matter field masses, one obtains that its exponential suppression
with respect to the barely unchanged Planck mass cancels the hierarchy between the electroweak and
Planck scales for sufficiently but reasonably large kyIR. Now the motivation of calling the UV brane
Planck brane and the IR brane TeV brane becomes clear. On the Planck brane we indeed have
scales of the order of the Planck mass. This is also the reason why solving the hierarchy implies that
at least the Higgs field of Standard Model should live on the IR brane. The main point is that far
away from the Planck brane the gravitational interaction is suppressed to the TeV scale, due to the
localization of the graviton zero mode on the brane itself, while the other interactions have a strength
of the same order of the lowered Planck scale, i.e. of the Tev scale.

The problem of localizing all matter fields on the IR brane (which is addressed for instance in
lectures [90]) is the suppression of higher dimensional operators (of dimension greater than four) that
are associates to proton decay, neutrino masses and flavor changing neutral currents. If fermions are
also confined on the TeV brane, then these operators will conflict with experimental bounds on the
effects they are associates to. Moreover, Yukawa hierarchy cancellation is achieved only if Standard
Model fermions are located at different distances from the TeV brane in the bulk, with the lightest
(the electron zero mode) being the furthest away from the negative tension brane (where the Higgs
scalar sits), while the heaviest (the top zero mode) being the closest to the Higgs. Spreading fermions
in the bulk at degrees giving the correct Yukawa couplings allows as well to suppress the proton mass
by a scale of an order larger than a TeV. Also flavor changing neutral currents are consistent with
experimental data in this scenario. Reasonable tiny neutrino masses, together with lepton number
violation on the Planck branes, can in turn be obtained by placing the (left) right handed neutrino
near to the (UV) IR brane. What about gauge bosons? They equally couple to the TeV and Planck
brane, i.e. their profile is flat, and they should be living in the bulk, since also fermions are.

Supersymmetric realization of Standard Models may also be implemented in the RSI scenario.
Since supersymmetry automatically solves the hierarchy problem, translating it into the SUSY break-
ing scale problem (which should be of the order of TeV to avoid fine–tuning), warped geometry has
to provide the suppression of the scale of supersymmetry breaking, instead than of the electroweak
scale. For a review on the subject, I suggest [90].

RSII: gravity localization

I should now make a remark on gravity localization. In the finite volume extra dimension case, the
KK tower has a discrete spectrum and zero mode is peaked on the Planck brane. The continuum of
KK modes that appears in the yIR → ∞ could instead spoil gravity localization. However we can
see that this is not the case and the effective 4D gravitational potential acquires correction from the
KK tower which are not relevant on a large distance scale — where here large means bigger than the
inverse Planck mass.

Calculations are analogous to those in the RSI case, when the boundary at yIR is sent to infinity.
Only one energy density source is left: the UV brane with positive tension, located at the origin (in
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the y–frame). The action should be

S = SEH + SbUV
(6.2.32)

The ansatz for the five dimensional metric is still given by the warped geometry (6.2.11), with the Z2

orbifold. The S1 has degenerated, since its radius is taken to be infinite and hence the coordinate y
spans from −∞ to +∞, preserving the symmetry y ↔ −y. The solutions to the Einstein equations
are slightly modified by the absence of the delta contribution from the missing IR brane

A = k|y| , A′′ = 2kδ(y) (6.2.33)

where k is defined as before k =
√−Λ5/24M3 and the brane tension VbUV

must be fine–tuned in
order to compensate for the bulk cosmological constant

VbUV
= 24M3k = −Λ5

k
(6.2.34)

All together, this leads to a slice of AdS5, cut by a 3–brane at the y = 0 boundary. The positive y
part is reflected with respect to the position of the brane such that the metric reads

ds2 = e−2k|y|ημνdxμdxν − dy2 (6.2.35)

It is now fundamental to find whether a normalizable graviton zero mode exists in this set–
up, despite the infinite volume of extra direction. Following the calculations that brought to the
KK spectrum and zero mode in the compact extra dimension case, we come to the Schrödinger
equation for the fluctuations modes hμν(u)ek|y|/2 = ψμν(u)eip·x (the change of variables is again
ku = sgn(y)

(
ek|y|−1

)
)[
−1

2
∂2

u +
15

8

k2

(k|u|+ 1)2
− 3

2

k

(k|u|+ 1)
δ(u)

]
ψ(u) = m2ψ(u) (6.2.36)

This equation is still solved by the zero mode

ψ0(u) =
N̂0

(k|u|+ 1)
3
2

(6.2.37)

which is still normalizable, since its integral over the infinite u direction is finite. We can thus demand
the normalization constant to be defined through∫ ∞

−∞
du ψ2

0(u) = 1 (6.2.38)

So, the massless mode wave function (6.2.37) is large on the brane and rapidly drops as the distance
from the brane increases. Gravity is still suppressed far away from the positive tension brane. By
noting that the 4D massless graviton gives the usual newtonian gravitational interaction, we could
expect gravity to be effectively 4D even in the infinite volume extra dimension background. However,
the higher KK modes form a continuum without mass gap that could in principle recover the full 5D
gravity. It is then necessary to explicitly consider those higher KK states in order to show that this
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is not the case. The solutions to (6.2.36), for positive masses are again given by linear combinations
of Bessel functions

ψm(u) =

√
k|u|+ 1

k

[
N̂J,mJ2

(m
k

(k|u|+ 1)
)

+ N̂Y,mY2

(m
k

(k|u| + 1)
)]

(6.2.39)

which are now normalized by requiring
∫∞
−∞ duψmψm′ = δ(m,m′). Moreover, imposing the boundary

conditions at the origin (due to the delta function in the potential) enforces a relation between the
two normalization parameters, leaving just N̂m to be determined by the normalizability condition.
If these modes are strongly suppressed by the potential in (6.2.36) they will not affect Newton’s
gravitational law at large distances.

The computation of the corrections to the gravitational potential is given by evaluating the KK
wave function at the location of the brane y = 0 (or equivalently u = 0). Two massive particles, with
masses m1 and m2, placed at a distance r on the Planck brane, are subject to a potential describing
the exchange of the massless graviton mode plus the higher KK modes

Vgr(r) ∼ GN
m1m2

r
+

1

M3

∫ ∞

0
dm

m1m2

r
e−mrψm(0) (6.2.40)

Imposing the right boundary conditions on the KK wave functions, one obtains ψm(0) ∼ √
m/k.

Plugging this expression into the gravitational potential (6.2.40) and integrating yields the following
result

Vgr(r) ∼ GN
m1m2

r

(
1 +

1

k2r2

)
(6.2.41)

I should mention that here GN ∼ k/M3 from the relation between the effective 4D Planck scale MP l

and the higher dimensional Planck mass M

M2
P l =

M3

k
(6.2.42)

This directly comes from the evaluation of the relevant part of the effective 4D action when we
consider the massless graviton fluctuations for the metric. The result is (6.2.26) in the infinite extra
direction limit yIR →∞.

The corrections to the Newton potential in the RS model with a non compact extra dimension
are thus negligible at distances above the Planck length, since they are of order 1/k2r2 with k equal
to the scale of the AdS5 (which is naturally of the order of the Planck mass M). So, gravity is
effectively four dimensional in the RSII model, because of the localization of the graviton modes
on the brane. The model proposed by Randall and Sundrum hence represents a very interesting
alternative to compactification, since it leads to 4D gravity in a higher dimensional bulk with warped
but not necessarily compact extra dimension.

A note on the RS relation to string theory is in order. The AdS5 geometry is known to come from
the near horizon type IIB string solution, in the supergravity decoupling limit, when the backreaction
of a (stack of N coincident) D3–brane is taken into account. More precisely, the background metric
is AdS5 × S5 and the background self–dual 5–form has quantized flux through the S5 (in terms of
N). The theory supported by the D3–branes, which are indeed charged under the RR 5–form, is a
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superconformal N = 4 SU(N) SYM gauge theory living in four dimensions. It is now established (on
the footing of various checks, mainly on non–renormalized operators) that 4D conformal field theory
in the large N approximation is dual to the string theory living on the background inferred by the
D3–branes. This constitute the AdS/CFT correspondence in the most well known case of AdS5×S5.
The rigorous results about gauge/gravity duality have been reviewed in section 5.1, while the relation
to RS models has been discussed in section 5.3.

The calculations I have summarized for RSI and RSII may be extended to any number of dimen-
sions with codimension–one branes. Higher codimensions have also been considered — especially six
dimensional bulks with codimension–two 3–branes [105]. These set–up are more complicated since
bulk curvature singularities enforced by the higher codimension branes are stronger than delta func-
tions and hence need to be regularized. Regularization can be achieved by the introduction of a finite
thickness of the brane [106]. Alternatively, one can add corrections to the gravitational action which
keep the singularities under control. Corrections may be gravity induced on the brane, or higher
derivative terms such as string motivated Gauss–Bonnet corrections (which would give a RS model
lus higher order corrections [107, 138, 139]).

7D RS: more KK and winding modes

A case of codimension–one brane in a higher dimensional bulk has been analyzed in [154]. The set–
up is seven dimensional RSI model with two branes. With the AdS warp ansatz for the metric, the
geometry is described by a slice of AdS7. Now, AdS7×S4 is a classical solution to eleven dimensional
M theory in the supergravity limit, if we admit N units of 4–form flux through the 4–sphere (where
N is the number of M5 branes that infer this geometry). The dual theory to this background — via
AdS/CFT — is a (0, 2) SCFT in six dimensions (for more details, see section 5.1.2).

The warped geometry à la RS is obtained by solving Einstein equations imposing the presence of
the 5–brane and the S1 × Z2 orbifold. The RS bulk action plus the brane term take the form

S = SEH + SbUV
+ SbIR (6.2.43)

where the Einstein–Hilbert contribution is seven dimensional and the energy density source is six
dimensional

SEH =

∫
d7x

√−g (M5R− Λ7

)
(6.2.44)

Sb =

∫
d6x

√−γ (−V + Lb) (6.2.45)

M is now the seven dimensional Planck mass, Λ7 is the bulk cosmological constant. The seven
dimensional generalization of the RS metric ansatz is simply

ds2 = e−2A(y)ηmndxmdxn + dy2 (6.2.46)

with m,n, . . . belonging to the 6–dimensional subspace and y is as usual the coordinate transverse
to the branes. Branes are located at y∗ = 0 and y∗ = yIR. The solution to the Einstein equations is
analogous to the 5D case

A =

√
− Λ7

30M5
|y| ≡ k|y| (6.2.47)
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where now k becomes the scale of the AdS7 geometry and Λ7 has to be negative as in the 5D case.
The (IR) UV 5–brane tension is (negative) positive and must satisfy the fine–tuning relation

VbUV
= −VbIR = 20M3k =

√
−40M5Λ7

3
(6.2.48)

However, our interest is now to get a four dimensional graviton zero mode and the relative KK tower,
in analogy to the 5D RS model. We then compactify over a two dimensional internal space, taking
the following ansatz for the metric

ds = a2(y)
[
ημνdx

μdxν +R2
(
dθ2

1 + dθ2
2

)]
+ dy2 (6.2.49)

This identifies the internal space with a two torus of equal radii R (a two sphere can also be con-
sidered). We used for simplicity the notation a(y) ≡ e−2A(y). The metric restricted to the two
dimensional compact space is defined as ξabdθ

adθb, where a, b, . . . run over the two compact direc-
tions.

A complete analysis of the spectrum has been performed in [154], I am not giving here a detailed
derivation. I will study the solutions for scalar fields, since indeed graviton mode solutions are
obtained as a particular case of the scalar mode wave functions. In addition to the RS KK tower we
have to consider the KK modes coming from the torus compactification and the winding modes
associated to the 5–branes wrapping around the torus. The former spectrum is labeled by the
momenta

ξabkakb =
n2

1 + n2
2

a2R2
=

�n2

a2R2
(6.2.50)

with integers na, a = 1, 2. The winding modes arise as particle like states only if the branes are
completely wrapped, with two directions around the torus and the remaining around some compact
cycle in the factored S4. We can label them by the winding numbers

R2ξabw
awb = R2a2 �w2 (6.2.51)

I have neglected the factors of eleven dimensional Planck length �P l that enters into the contributions
to the string world–sheet hamiltonian from the torus KK and winding modes. Winding mode masses
come with an extra 1/�2P l factor, since the world–sheet action has an �P l factor in front, while winding
masses squared are quantized in terms of the compactification radius (in units of the string length)
R2/�P l. Putting all together, we can immediately write the equations of motion for a scalar field
φ(x, θ, y) expanded in RS KK, toroidal compactification KK and winding modes

φm,�n,�w(x, θ, y) = ψm,�n,�w(y)eip·xeikaθa
(6.2.52)

The four dimensional momenta are on–shell, p2 = m2. The massive scalar field equation then reads[
1

a4
∂y

(
a6∂y

)
+m2 − �n2

R2
− a2m2

B − a4R
2 �w2

�4P l

]
φm,�n,�w = 0 (6.2.53)

where mB is the 7D bulk mass of the scalar field. Equation (6.2.53) takes the following form in the
conformal frame, changing variables from y to z = 1/ka(y)

ψ′′m,�n,�w −
5

z
ψ′m,�n�w +

[
m2 − �n2

R2

m2
B

z2
− R2 �w2

k4�4P lz
4

]
ψm,�n,�w (6.2.54)
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We can notice in (6.2.53) that the warp factor contributes with different powers to the different higher
modes. The original bulk squared mass gets an a2 factor w.r.t. the four dimensional RS mass m2.
The torus KK modes don’t carry any additional warping, while winding modes are multiplied by an
a4 compared to m2.

A fundamental remark is in order. Our main interest is to relate the graviton modes appearing
in the 7D set–up with the ones we know from the original 5D RS model. The 7D spectrum will have
toroidal KK states and winding states on top of the RS like KK modes. The important result is that
graviton states can be deduced from the scalar modes just by setting mB = 0 in (6.2.53). It can be
shown that choosing for instance the harmonic gauge for gravitons, each of its components satisfies
to the massless scalar field equation, due to the specific boundary conditions. Thus, all the results
that are found for massless scalar fields also apply to gravitons.

From equation (6.2.54) with �n = �w = 0 one can deduce that higher RS KK modes are differently
spaced with respect to the 5D model. In fact, rewriting (6.2.54) with the appropriate rescaling
ψ(z) = k3z3ψ̃(z), zero winding and torus KK quantum numbers, we get

z2ψ̃′′m,0,0 + zψ̃m,0,0 +
(
m2z2 − μ2

)
ψ̃m,0,0 = 0 (6.2.55)

It is clear from the form of the equation that solutions will be linear combinations of Bessel functions
Jμ(mz) and Yμ(mz), where we defined μ2 ≡ m2

B + 9. Hence, graviton RS KK wave functions will be
determined by J3(mz) and Y3(mz), while in the 5D case we had J2 and Y2. The boundary conditions
ψ̃(z) = 0 on the branes then imply that the KK masses are quantized in terms of the roots of J2 = 0
rather than J1 = 0.

KK modes from the torus We should put �w = 0 in (6.2.54) and solve it depending on the sign

of the quantity σ2 ≡
(
m2 − �n2

R2

)
.

For σ > 0, the modes represent the tower of toroidal KK states on top of the massive RS KK
modes. Solutions are given in terms of the modified Bessel functions Jμ and Yμ

ψm,�n,0(z) =
k3z3

N

[
jμ (z|σ|) + N̂m,�nYμ (z|σ|)

]
(6.2.56)

where the constant N̂m,�n is determined by the boundary conditions, which also give the mass spec-
trum. More precisely, the roots of 3Jμ(zIR|σ|) + (zIR|σ|J ′μ(zIR|σ|) = 0 label toroidal KK masses.
When the toroidal compactification radius is comparable to the S1/Z2 orbifold radius, R � yIR, the
separation among KK modes (6.2.56) is comparable to the one of RS KK solutions.

If σ = 0, there is no solution, unless μ = 3, i.e. mB = 0, due to boundary conditions. In this
specific case, higher modes take the form

ψm,mR,0 =
k3

N

(
1 + N̂mz

6
)

(6.2.57)

We then get the KK tower of massive modes over the zero mode. For negative σ2 there is no solution
at all. The excitations would be combinations of the Iμ and Kμ Bessel functions, but boundary
conditions yield an impossible equation.
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Winding modes The excitations of the scalar field corresponding to the branes wrapping the two
torus are found by putting �n = 0 in (6.2.54). Moreover, the comments will be restricted to massless
scalar modes mB = 0 — which is the relevant case to study graviton excitations. The higher wave
functions can be calculated numerically. However, the zero mode equation is analytically solvable and
gives a linear combinations of Iμ and Kμ Bessel functions which are not compatible with boundary
conditions. This means that for pure winding states there is no zero mode, i.e. no solution exists for
m = 0. As for the toroidal KK modes, winding modes are new states with respect to the RS KK
excitations. We can find a tower of winding modes sitting on each of the higher RS states, except for
the zero RS mode. We moreover remark that in spite of the fact that we should expect very heavy
winding excitations when R ∼ yIR, the double warping factor appearing in (6.2.53) in front of the
winding mode term suppresses the value of masses of these modes such that they really are of the
order of 1/yIR.

The 7D RS model that I just analyzed has been studied in my paper [96] from the cosmological
point of view (see chapter 7) and also in the spirit of the AdS/CFT correspondence (in chapter 8).
The set–up considered in [96] is is analogous to the 7D RS proposed in [154], except for the scale
factors relative to the 2D internal and 3D extended space (the compact space is generic), which will
be left different in general, and for the time dependence of the metric, due to the cosmological issue.
Also, I will focus on the one brane RSII model, taking the limit yIR →∞.

6.3 Cosmologies in Randall–Sundrum

Keeping in mind that gravity localization is a success of RS models, I wish to review here what kind
of cosmologies arise in this context. The general bulk solution involves the bulk components of the
stress–energy tensor T 5

5 and T 0
5 . However, a complete solution has been derived in [126] in the case

of vanishing energy exchange between the brane and the bulk, i.e. T 0
5 = 0. If we wish to study

the implications of brane–bulk energy exchange, it’s interesting to look at the cosmological evolution
on the brane, i.e. solving the Einstein equations (or Friedmann–like equations) evaluated on the
boundary of the AdS space–time slice [159]–[173]. Both of these procedures are summarized in what
follows (for brane–world cosmology reviews, see for instance [118, 119, 134, 121, 124]).

6.3.1 Non conventional vs. conventional cosmology

Let me first mention some results precedent to RSII cosmology, which display non conventional
features of brane–world evolution, with respect to the known General Relativity standard cosmology.

Flat extra dimensions

In the model inspired by the Horawa–Witten M theory solution [108] and proposed by Binétruy,
Deffayet and Langlois [126] the fifth dimension is compactified on a circle which is then orbifolded
as in RSI model. The Horawa–Witten solution corresponds to the S1/Z2 orbifolding of the eleventh
dimension in M theory at whose fixed points two 9–branes are located (with all matter fields confined
on these ten dimensional defects). The background in [126] is analogous but in five dimensions rather
than eleven. Therefore, it is a RSI configuration with no cosmological constant in the bulk and with
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matter placed on the UV brane. The relevant action is given by the five dimensional Einstein–Hilbert
term and the four dimensional brane matter action

S = −M3

∫
d5x

√−gR+

∫
d4x

√−γLb (6.3.58)

where gMN is the full 5D metric and γμν is the induced metric on the brane. For a global solution,
valid in the whole space–time, the presence of the IR brane carrying a non trivial stress–energy
tensor contribution will be explicitly considered, while for the purpose of finding the Friedmann
type equation on the brane where matter is assumed to be localized only the action (6.3.58) is
needed. Contrarily to RSI static set–up, the metric must exhibit a time dependence since the aim
of the analysis is to compare the cosmological evolution arising in the Horawa–Witten–like model to
conventional cosmology. Thus, we can make the ansatz

ds2 = gμνdxμdxν + f2dy2 = −n2(t, y)dt2 + a2(t, y)δijdx
idxj + f2(t, y)dy2 (6.3.59)

This is a simple ansatz with flat 3D space. A straightforward generalization would be assuming
isotropy and homogeneity for the 3D space, but eventually locally curved space. Since all matter
fields are confined on the 3–brane, the relevant part of the metric in order to compute physical
quantities to be compared to observations is the induced metric on the brane, i.e. γμν = gμν(t, 0).
Matter can be assimilated to a perfect fluid and its contribution to the total stress–energy tensor

TM
N |tot = TM

N |B + TM
N |b (6.3.60)

(subscript B and b respectively stand for bulk and brane contributions) is given in terms of the matter
energy density ρ and pressure p

TM
N |b =

δ(y)

f
diag(−ρ, p, p, p, 0) (6.3.61)

The bulk stress–energy tensor is generic TM
N |B = TM

N . We would like to find the solutions to the five
dimensional Einstein equations

GMN =
1

2M3
TMN |tot (6.3.62)

where the five dimensional Einstein tensor with the ansatz (6.3.59) takes the form

G00 = 3

{
ȧ

a

(
ȧ

a
+
ḟ

f

)
− n2

f2

(
a′′

a
+
a′

a

(
a′

a
− f ′

f

))}
(6.3.63)

Gij =
a2

f2
δij

{
a′

a

(
a′

a
+ 2

n′

n

)
− f ′

f

(
n′

n
+ 2

a′

a

)
+ 2

a′′

a
+
n′′

n

}
+
a2

n2
δij

{
ȧ

a

(
− ȧ
a

+ 2
ṅ

n

)
− 2

ä

a
+
ḟ

f

(
−2

ȧ

a
+
ṅ

n

)
− f̈

f

}
(6.3.64)

G05 = 3

(
n′

n

ȧ

a
+
a′

a

ḟ

f
− ȧ′

a

)
(6.3.65)

G55 = 3

{
a′

a

(
a′

a
+
n′

n

)
− f2

n2

(
ȧ

a

(
ȧ

a
− ṅ

n

)
+
ä

a

)}
(6.3.66)
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The conservation equation coming from the Bianchi identity for the Einstein tensor ∇MG
M
N = 0,

when using the Einstein equation (6.3.62), reads ∇MT
M
N = 0. Therefore we get

ρ̇+ 3 (ρ+ p)
ȧo

ao
= 0 (6.3.67)

where have used the parametrization (6.3.61). The obtained equation is the usual four dimensional
perfect fluid conservation equation in a FRW universe (the subscript o is put on quantities evaluated
at the brane position y = 0). From (6.3.62), plugging (6.3.63)–(6.3.66), we get the jump equations
from the 00 and ij components

a′o+ = −a′o− = − fo

12M3
aoρ (6.3.68)

n′o+ = −n′o− =
fo

12M3
no (2ρ+ 3p) (6.3.69)

Using these results, the 05 component of the Einstein equations yields the conservation equation
(6.3.67), while the 55 component leads to the Friedmann–like equation on the brane

äo

ao
+
ȧ2

o

a2
o

= − 1

6(12M3)2
ρ (ρ+ 3p)− 1

6M3f2
o

T 5
5 (6.3.70)

Here we chose the temporal gauge no = 1. Equation (6.3.70) clearly doesn’t look like the Friedmann
equation that governs conventional cosmology. In particular, we get a quadratic dependence on the
energy density which doesn’t agree with the predictions of standard cosmology. We can say more
about the scale factor assuming that p = wρ and neglecting the bulk term T 5

5 in (6.3.70) — this is
achieved in the approximation where the bulk energy density ρB satisfies M3ρB � ρ2. Hence, one
can easily derive from the conservation equation that the matter energy density behaves as in the
usual case

ρ ∝ a−3(1+w)
o (6.3.71)

Nevertheless, the scale factor on the brane gets a different power dependence on time

ao(t) ∝ t
1

3(1+w) (6.3.72)

in comparison to standard cosmology, which yields ao ∝ t2/3(1+w). The modified Friedmann equation
(6.3.70) can be written in a form which is more akin to Friedmann equation, by using the conservation
equation. As a result, we get

H2 =
1

6(12M3)2
ρ2 +

C
a4

(6.3.73)

It thus produces a slower expansion of the universe with respect to what standard cosmology predicts,
as we deduced from the comparison of scale factor power dependence.

As I anticipated, the search for a global solution implies that we must impose the presence of
a second energy density source in the bulk, which we can assume to be the IR brane placed at the
second orbifold fixed point (the action (6.3.58) is then modified with the addition of the second brane
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term, associated with a delta function δ(y − yIR)) 2.The stress–energy tensor contribution from this
additional source is parametrized as in (6.3.61), with energy density and pressure respectively ρIR

and pIR

TM
N |b =

δ(y − yIR)

f
diag(−ρIR, pIR, pIR, pIR, 0) (6.3.74)

If we find a global solution to the Einstein equation everywhere in the bulk, we can learn how density
and pressure on the IR brane are related to matter on the UV brane. Indeed, we make the simplest
ansatz for the scale factor, with static extra dimension and linear functions in y, compatible with the
S1/Z2 orbifold and jump equations,

a(t, y) = ao(t)

[
1− fo

12M3
ρ(t)|y|

]
(6.3.75)

n(t, y) = no(t)

[
1− fo

12M3
(2 + 3w) ρ(t)|y|

]
(6.3.76)

f(t, y) = fo (6.3.77)

One finds a specific relation between ρIR and ρ, and between wIR ≡ ρIR/pIR and w ≡ ρ/p. First
of all, solving the remaining Einstein equations, one determines Ho(t) (while no(t) is arbitrary and
corresponds to some arbitrary temporal gauge choice), as well as the conservation equation associated
to the UV brane

ȧ2
o

a2
o

=
1

6(12M3)2
ρ2 (6.3.78)

ρ̇+ 3(1 + w)
ȧo

ao
ρ = 0 (6.3.79)

The 00 component of Einstein equations yields a “topological constraint” on the matter content of
the second brane, once we plug the jump equation solutions. This is due to the compactness of the
extra dimension. The topological constraint reads

ρIR = − ρ

1− fo

24M3 ρ
(6.3.80)

(2 + 3wIR) =
1− fo

24M3 ρ

1 + fo

24M3 (2 + 3w)ρ
(2 + 3w) (6.3.81)

Substituting these equations into the conservation equation (6.3.79), the IR conservation equation
automatically holds

ρ̇IR + 3(1 + wIR)
ȧIR

aIR
ρIR = 0 (6.3.82)

2It isn’t necessary to locate the second brane at the orbifold point y = yIR. It could in principle be placed at an
arbitrary point in the extra dimension, in order to have a consistent solution to the Einstein equation. This point is here
set to be the orbifold fixed point for simplicity. Furthermore, in the infinite volume extra dimension case, i.e. without
the S1 compactification, there is no need to add a second energy source.
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More generally, admitting f(t, y) to be linear in y by making the ansatz f = fo + 2|y|(fIR − fo)
assuming fo still to be constant and leaving a, n undetermined, one gets to the following constraints

ρao = −ρIRaIR (6.3.83)

(2ρ+ 3p)no = −(2ρIR + 3pIR)nIR (6.3.84)

This reduces to (6.3.82) in the static extra dimension limit f = fo. The interesting aspect of the global
solution (6.3.75)–(6.3.77) is that it shows how global behaviors of the bulk dynamics are determined
by boundary conditions, i.e. by the metric and matter contents evaluated on the branes. This could
be interpreted as a manifestation of the holographic principle, which is illustrated in more detail in the
context of the AdS/CFT correspondence. In particular, 5D RSII and 7D RSII are analyzed in section
5.3 and 8, referring to my publication [96]. However, the computation suffers from instabilities, which
I will point out later on.

A more generic covariant approach can be applied, allowing to split equations along the brane and
transverse to the brane, for an arbitrary hypersurface. For a detailed derivation and specific examples
one can read [121, 134]. The solution I just described can be derived specifying the covariant approach
to the Binétruy–Deffayet–Langlois (BDL) model. The basis of this geometrical approach are Gauss–
Codazzi equations. They relate the four dimensional curvature Riemann tensor to the five dimensional
one and the extrinsic curvature, and determine the variation of the extrinsic curvature itself along the
direction transverse to the brane. Namely one has to define the induced metric on the hypersurface.
The extrinsic curvature is a function of the five dimensional metric gMN and of the unit normal
vector nM as ĝMN = gMN − nMnN , KMN = ĝR

M∇RnN (where ∇M is the five dimensional covariant
derivative and a hat denotes objects constructed from the induced metric). The Gauss and Codazzi
equations then read

R̂MNRS = RABCD ĝ
A
M ĝ

B
N ĝ

C
R ĝ

D
S + 2KM [RKS]N (6.3.85)

∇̂NK
N
M − ∇̂MK = RAB ĝ

A
Mn

B (6.3.86)

For arbitrary hypersurfaces they imply that the four dimensional Einstein tensor has the following
expression

ĜMN =
2

3

[
GAB ĝ

A
M ĝB

N +

(
GAB n

AnB − 1

4
G

)
ĝMN

]
+ (6.3.87)

KKMN −KA
MKNB − 1

2

(
K2 −KABKAB

)
ĝMN − EMN (6.3.88)

where EMN ≡ CMANB n
SnB is the Weyl tensor projection orthogonal to nM . Moreover, since the

brane stress–energy tensor is proportional to a delta function TMN |b = T̂MNδ(y), the jump of the
extrinsic curvature is determined by its value, according to

[KMN ] = − 1

2M3

(
T̂MN − 1

3
T̂ ĝMN

)
(6.3.89)

with the jump function defined as [f ] ≡ limε→0 [f(y + ε)− f(y − ε)]. Furthermore, if there is no
energy exchange between the bulk and the brane, the usual four dimensional conservation equation
holds ∇̂N T̂MN = 0. All the informations to get the 4D Einstein equation on the brane are contained
in (6.3.87). We have to plug the jump equation (6.3.89) and the 5D Einstein equations, which gives
GMN in terms of the bulk and brane stress–energy tensors.
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Bulk cosmological constant and brane tension: RSI/RSII

The geometric approach just described may be straightforward applied to a bulk with non null
cosmological constant and branes with non zero tension. Introducing these cosmological terms opens
the possibility to restore conventional cosmology at late times, contrarily of the unavoidable non
conventional behavior of the previously analyzed BDL model. We assume that the 5D Einstein
equation contains a 5D cosmological constant Λ5 and that the brane stress–energy tensor can be
decomposed into a tension contribution and a matter stress tensor T̂MN = τMN −V ĝMN . Hence, the
four dimensional Einstein equation takes the simple form

ĜMN =
1

2M2
P l

τMN − Λ4ĝMN +
1

(2M3)2
πMN − EMN (6.3.90)

Here we defined

πMN =
1

12
ττMN − 1

4
τMAτ

A
N +

1

8
τABτ

AB ĝMN − 1

24
τ2ĝMN (6.3.91)

Λ4 =
1

12M3

(
Λ5 +

V 2

12M3

)
(6.3.92)

M2
P l =

24M6

V
(6.3.93)

To be more specific, I will consider the scenario studied in [126]. The set–up is analogous to the
BDL model, with the addition of a bulk contribution to the total stress–energy tensor (namely a
cosmological constant) and a brane tension contribution to the brane stress–energy tensor. In other
words, I am going to describe the cosmology of RSI. The background metric is still given by the ansatz
(6.3.59), the stress–energy tensor is parametrized as in (6.3.61) but now ρ→ V + ρ and p→ −V + p
to account for the brane tension V . Indeed, TM

N |b = TM
N |b,m + TM

N |b,v with

TM
N |b,m =

δ(y)

f
diag(−ρ, p, p, p, 0) (6.3.94)

TM
N |b,v =

δ(y)

f
diag(−V,−V,−V,−V, 0) (6.3.95)

The bulk stress–energy tensor for a pure cosmological constant contribution is parametrized as

TM
N |B = diag(−Λ5, . . . ,−Λ5) (6.3.96)

The 05 component of the bulk stress–energy tensor, representing the brane–bulk energy exchange,
is assumed to vanish. The Einstein tensor solving the five dimensional Einstein equation (6.3.62)
has components (6.3.63)–(6.3.66). A further assumption, which should however be considered more
carefully 3, is the staticity of the extra direction y, i.e. f(t, y) = fo and with a gauge choice fo = 1.

The Friedmann–like equation that solves the Einstein equation can be obtained in analogy to
the BDL solution [126]. We get the same junction equations (6.3.68)–(6.3.69) and the following four

3We will make some explicit remarks on the consequences of the staticity (or radion stabilization) assumption at the
end of the derivation — based on [109].
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dimensional expression for the Hubble parameter on the brane

H2
o ≡

ȧ2
o

a2
o

=
1

144M6
ρ (ρ+ 2V ) +

C
a4

o

+ λRS (6.3.97)

Here λRS is the effective 4D cosmological constant on the brane and is in fact exactly defined as
λRS = Λ4, see (6.3.92). The fine–tuning required by consistency of RS model makes λRS vanish.
The constant C is an integration constant since the Friedmann equation comes from integrating a
second order equation. We can easily implement the curvature term −k/a2

o on the r.h.s. of (6.3.97)
whenever the spatial curvature on the brane doesn’t vanish. We now have to notice that conventional
cosmology is restored in this scenario when matter energy density is small compared to brane tension
ρ � V . In fact, we get that the non standard quadratic term in (6.3.97) can be neglected in this
limit and linear dependence of H2 on ρ alone is recovered.

An explicit solution was found in [126], putting C = 0 and using the usual conservation equation
(6.3.67) with constant equation of state p = wρ. Integrating (6.3.97) with λRS = 0 then yields

ao(t) = ai

{
ρi

2M3

[
(1 + w)2

16M3
V t2 +

(1 + w)

2
t

]} 1
3(1+w)

(6.3.98)

At early times, such a solution describes a non conventional evolution of the universe characterized
by a ∼ t1/3(1+w). Late time evolution follows the standard cosmology behavior, i.e. a ∼ t2/3(1+w), as
we expected. If we demand λRS not to satisfy the RS fine–tuning, the solution displays three phases
— if λRS is small enough —, since

ao(t) = ai

{
ρi

Λ̃

[
V

Λ̃
[cosh (HΛ)− 1] + sinh (HΛ)

]} 1
3(1+w)

(6.3.99)

After the phase transition from non conventional to conventional cosmological evolution we get an
exponential behavior weighted by HΛ ≡ 3(1 + w)Λ̃/2M3 with Λ̃ ≡√(12M3)3λRS. Thus the present
acceleration of the universe is obtained at the expenses of a small violation of the fine–tuning for RS
solution.

Radion stabilization and RSII In the procedure just described there is however an issue that
cannot be ignored. As I anticipated, the hypothesis of static extra dimension has to be considered
more carefully. Assuming f to be constant means that we are fixing the size of the extra dimension.
There is nevertheless a problem in imposing staticity without a true mechanism to stabilize the radius
of extra dimension. Of course, this problem arises only when the extra dimension is compactified.
In [109] the authors show that independently of the radion stabilization mechanism that one uses,
standard cosmology is restored (see also [110, 111, 112] for previous and subsequent discussions).
The requirement of stabilizing the radion (i.e. the scalar field f(t, xμ, y)), without having a suitable
potential (the details are not crucial — Goldberg–Wise mechanism has been used as an example),
forces the matter contents of the two branes to be related by some constraint (for instance, we derived
the relations (6.3.82)). Indeed, the branes would tend to get infinitely separated, falling into the RSII
configuration, if the size of the extra dimension was not fixed. Fixing the energy densities artificially
avoids this instability. However, when we introduce a potential for the radion there is no need to
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constrain the matter contents of the two branes and conventional cosmological evolution is restored.
As I mentioned, the RSII model avoids the radion stabilization problem and cosmology is given by
the Friedmann equation obtained in the RSI set–up (6.3.97), which is now fully justified because we
take the limit of infinite size for the extra dimension yIR →∞.

6.3.2 Brane–bulk energy exchange and late time acceleration

The analysis of RSII cosmology with the introduction of a non zero value for brane–bulk energy
exchange is generally achieved by trading the possibility of studying the global solution to the Einstein
equation in the bulk in a rather simple way. Here I will proceed in studying the cosmological evolution
of a RSII universe from the brane point of view with brane–bulk energy exchange — mainly following
[159, 125].

The set–up is RSII, with a bulk lagrangian Lm,B inserted

S =

∫
d5x

√−g (M3R− Λ5 + Lm,B

)
+

∫
d4x
√
−ĝ (−V + Lm,b) (6.3.100)

Following my notation, γμν is as usual the induced metric on the brane, V is the positive brane
tension (referring to the RS UV brane), Lm,b is the brane matter lagrangian which will contribute to
the matter perfect fluid stress–energy tensor. The bulk cosmological constant is Λ5 and M is the five
dimensional Planck mass. The metric is given by the time dependent ansatz

ds2 = −n2(t, y)dt2 + a2(t, y)ζijdx
idxj + f2(t, y)dy2 (6.3.101)

generalized to the case of an eventually non spatially flat brane. The three dimensional metric ζij
is maximally symmetric with spatial curvature k = −1, 0, 1, respectively denoting locally spherical,
flat or hyperbolic spaces. The brane is still placed at y = 0 and the Z2 symmetry y ↔ −y must be
taken into account throughout the calculations. We wish to solve five dimensional Einstein equations
GMN = 1

2M3TMN |tot. The l.h.s. is given in terms of the metric by

G00 = 3

{
ȧ

a

(
ȧ

a
+
ḟ

f

)
− n2

f2

(
a′′

a
+
a′

a

(
a′

a
− f ′

f

))
+ k

n2

a2

}
(6.3.102)

Gij =
a2

f2
ζij

{
a′

a

(
a′

a
+ 2

n′

n

)
− f ′

f

(
n′

n
+ 2

a′

a

)
+ 2

a′′

a
+
n′′

n

}
+
a2

n2
ζij

{
ȧ

a

(
− ȧ
a

+ 2
ṅ

n

)
− 2

ä

a
+
ḟ

f

(
−2

ȧ

a
+
ṅ

n

)
− f̈

f

}
− kζij (6.3.103)

G05 = 3

(
n′

n

ȧ

a
+
a′

a

ḟ

f
− ȧ′

a

)
, (6.3.104)

G55 = 3

{
a′

a

(
a′

a
+
n′

n

)
− f2

n2

(
ȧ

a

(
ȧ

a
− ṅ

n

)
+
ä

a

)
− k

f2

a2

}
(6.3.105)

The r.h.s. of Einstein equations is decomposed into the bulk B and brane b, matter m and vacuum
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v, contributions. We parametrize it as

TM
N |tot = TM

N |v,b + TM
N |v,B + TM

N |m,b + TM
N |m,B

TM
N |v,b =

δ(y)

f
diag (−V,−V,−V,−V, 0)

TM
N |v,B = diag (−Λ5,−Λ5,−Λ5,−Λ5,−Λ5)

TM
N |m,b =

δ(y)

f
diag (−ρ, p, p, p, 0)

TM
N |m,B = TM

N (6.3.106)

Plugging all these pieces of information into the 00 and ij components of Einstein equations and
integrating, we get the jump equations depending on bulk cosmological constant and brane tension

a′+ = −a′− = − f

12M3
(V + ρ)

n′+ = −n′− = − f

12M3
(−V + 2ρ+ 3p) (6.3.107)

where all the quantities are evaluated at the position of the brane y = 0, but the o subindices have
been dropped to simplify notation (from now on all expressions will be on the brane). Then, the 05
and 55 components of Einstein equations, once we substitute the junction equations (6.3.107), give

ρ̇+ 3
ȧ

a
(ρ+ p) =

2n2

f
T05 (6.3.108)

ä

a
+
ȧ2

a2
− ȧ

a

ṅ

n
+

k

a2
= − n2

144M6
[ρ (ρ+ 3p)− V (ρ− 3p)] +

+
n2

6M3

(
Λ5 +

V 2

12M3

)
− n2

6M3
T 5

5 (6.3.109)

Now we can go in a temporal gauge where n = 1, simplifying the above equations. Moreover, since
the model has an infinite volume extra dimension, there is no radion stabilization problem. We can
thus set f = 1 to further simplify equations. The effective cosmological constant on the brane

λRS ≡ 1

12M3

(
Λ5 +

V 2

12M3

)
(6.3.110)

that appears in (6.3.109) must be fine–tuned to zero in a pure RS context, where also T 0
5 = T 5

5 = 0.
With these conditions, the RS vacuum is recovered since matter is absent in the bulk.

The scope of the analysis of this section is to describe the brane dynamics in the presence of
energy exchange with the bulk. Hence, T 0

5 must be non zero. However, with a reasonable assumption
on the bulk matter contents, we can ignore the bulk “self–interaction”, term T 5

5 . If the ratio of
bulk matter to bulk vacuum contribution is negligible with respect to brane matter relative to brane
vacuum energy, the bulk diagonal component T 5

5 is much smaller than the other terms in the r.h.s.
of (6.3.109). The assumption can be expressed in formulae by∣∣∣∣T (diag)

m,B

T
(diag)
v,B

∣∣∣∣� ∣∣∣∣T (diag)
m,b

T
(diag)
v,b

∣∣∣∣ (6.3.111)
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At this point, the authors of [159] introduce a mirage energy density χ determined by the bulk
dynamics encoded in the parameter T ≡ 2T 0

5 . Integrating equation (6.3.109) using the conservation
equation (6.3.108) and suitably defining the mirage density one comes to the following set of equations

H2 ≡ ȧ

a
=

1

144M6
ρ2 +

V

72M6
(ρ+ χ)− k

a2
+ λRS (6.3.112)

χ̇+ 4Hχ =
( ρ
V

+ 1
)
T (6.3.113)

ρ̇+ 3H (ρ+ p) = −T (6.3.114)

The first equation, eq. (6.3.112) exactly reduces to the modified Friedmann equation derived in the
RSI model (6.3.97) in the limit of zero energy exchange, when T → 0. In this same limit, in fact, the
mirage density obeys to a four dimensional free radiation conservation equation yielding χ = χi/a

4.
If we rename the constant χi as C, we then precisely get (6.3.97). Conservation equation for the
matter energy density ρ immediately gives the usual conservation equation in a FRW universe for
T = 0. The conventional cosmology regime is restored at late times, if no energy exchange is present
and χi = 0. The remaining of this section is devoted to the analysis of the consequences of non trivial
brane–bulk energy exchange in the brane cosmological evolution.

I mention here that a physical desirable behavior of brane–bulk energy exchange parameter would
imply a change of regime, from energy influx to energy inflow. We could eventually sketch a scenario
where energy is initially directed from the bulk onto the brane, if the brane comes with a low energy
density initial condition. After a phase of influx, equilibrium should be reached for a specific value of
the matter energy density on the brane and energy should start to reverse its flow direction. Thus,
energy outflow should start, causing a decrease in the brane matter energy density. However, in most
of the future discussions, the energy exchange parameter will be assumed of the form T = Aρν , where
A is constant. Therefore, it won’t be possible to directly detect any change of regime, from negative
to positive brane–bulk energy exchange. the analysis will be focused instead on the study of evolution
phases where either influx or outflow takes place.

Small densities

When matter energy density is much smaller that the brane tension ρ � V the set of equations
(6.3.112)–(6.3.114) can be rewritten as

H2 ≡ ȧ

a
=

V

72M6
(ρ+ χ)− k

a2
+ λRS (6.3.115)

χ̇+ 4Hχ = T (6.3.116)

ρ̇+ 3(1 +w)Hρ = −T (6.3.117)

where we also used the constant equation of state for the matter perfect fluid p = wρ.

Radiation dominated universe: explicit solutions An exact solution for H2 can be found for
radiation dominated matter on the brane, w = 1/3. In fact, the Hubble parameter can be written
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independently of T

H2 =
V

72M6
(ρi + χi)

a4
i

a4
− k

a2
(6.3.118)

(ρ+ χ) = (ρi + χi)
a4

i

a4
(6.3.119)

We note that we need three initial conditions in order to solve the system, differently from conventional
cosmology scenario, since the additional condition is enforced by the presence of energy exchange.
We will consider RS fine–tuning to be valid λRS = 0, unless we explicitly specify it differently.

Although Friedmann equation (6.3.118) follows the radiation dominated universe conventional
evolution matter energy density evolution is modified, putting the initial condition χi = 0. If we
consider the case of energy outflow, T > 0, and parametrize energy exchange linearly in ρ by T = Aρ,
with A > 0, it is easy to find

ρ = ρi
a4

i

a4
e−At (6.3.120)

χ = ρi
a4

i

a4

(
1− e−At

)
(6.3.121)

This solution indeed shows that the energy density ρ decays more rapidly than a−4 and that at late
times the evolution is dominated by the mirage contribution χ

t→∞∼ a−4. So, the radiation dominated
behavior of the Hubble parameter comes from the balancing of matter and mirage energy densities,
in which matter density prevails at early times (remind that we imposed the initial condition χi = 0)
while mirage density becomes important at late times. The acceleration factor for solution (6.3.118)
is simply given by

q ≡ ä

a
= − V

72M6
(ρi + χi)

a4
i

a4
(6.3.122)

Friedmann equation (6.3.118) constraints q to be negative when space is locally spherical or flat, k ≥ 0
so that we would only get decelerated expansion. However, if we consider a locally hyperbolic space,
we obtain (ρi + χi) < 0. Hence, positive acceleration and loitering universe, which is nevertheless a
non realistic prediction for the eternal acceleration evolution phase, is possibly achieved.

The effects of mirage energy, though, are present even in the zero energy exchange limit. These
are manifest in equation (6.3.97), where T = 0 and C can be taken to be different from zero, i.e.
χi �= 0. Then the Hubble parameter gets an additional radiation term C/a4, without brane–bulk
energy exchange. Analogous considerations on the consequences of the mirage evolution can be made
in the case of dust dominated universe, w = 0. With zero initial condition for χ, χi = 0, we obtain
the following integral expressions

ρ = ρi
a3

i

a3
e−At (6.3.123)

χ = ρi
a4

i

a4

[
A

∫
dt
a(t)

ai
e−At

]
(6.3.124)

We still have that at late times mirage density radiation evolution dominates, since χ
t→∞∼ a−4.

Initially only matter density is present, instead.
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The Friedmann equation (6.3.118) holds also in the case of energy influx, as it is independent on
the form of T . Moreover, conservation equation (6.3.114) takes the form

ρ̇+
2

t
ρ = −T (ρ) (6.3.125)

when we use the solution for H in a spatially flat universe. This immediately shows that, if we can
neglect the linear term, matter energy density would grow unbounded for a negative energy exchange
parameter, until the small density approximation breaks up at ρ ∼ V . The solution becomes unreliable
and we should refer to the generic ρ analysis. The general solution to (6.3.125) depends on the specific
form of the energy exchange parameter. If we suppose a power dependence, T = Aρν , with A < 0,
we find the exact solution for ν �= 1, 3/2

ρ1−ν =

(
ρi
t2i
t2

)1−ν

+
1− ν

3− 2ν

(
1− t3−2ν

i

t3−2ν

)
|A|t (6.3.126)

while for ν = 1 we get

ρ = ρi
t2i
t2

e|A|(t−ti) (6.3.127)

and for ν = 3/2

ρ−
1
2 = ρ

− 1
2

i

t
− 1

2
i

t−
1
2

−
√
|A|1

2
t

1
2 log

t

ti
(6.3.128)

We can thus conclude that ρ diverges at infinity for 0 ≤ ν < 1 as ρ ∼ t1/(1−ν), while it exponentially
diverges when ν = 1. A divergence at finite time must occur for 1 < ν < 3/2 at

t3−2ν
∞ = t3−2ν

i +
3− 2ν

1− ν

1

|A|
(
ρit

2
i

)1−ν
(6.3.129)

as well as for ν = 3/2 and for ν > 3/2 if(
ρit

2
i

)1−ν − 2ν − 3

ν − 1
|A|t3−2ν

i < 0 (6.3.130)

Otherwise, in the range ν > 3/2 with no divergence at finite time, the energy density is found to
decrease at infinity, since ρ ∼ t−2 when t→∞.

Accelerated expansion as an attractor An insightful issue in the small density regime is the
possibility of finding inflationary fixed point solutions to the system of equations (6.3.112)–(6.3.114)
which governs the cosmological evolution. Variables at the fixed point H, ρ, χ must solve

H2
 =

V

72M6
(ρ + χ) (6.3.131)

4Hχ = T (6.3.132)

3(1 + w)Hρ = −T (6.3.133)
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where T = T (ρ). The solution to this system carries a T → −T , H → −H symmetry, implying
that influx fixed point solution gives expansion, while outflow yields contraction. We obtain the two
roots

H = η
√

1− 3w
V 1/2

6M3
ρ

1/2


χ = −3

4
(1 + w)ρ (6.3.134)

T = −η(1 + w)
√

1− 3w
V 1/2

2M3
ρ

3/2


with η = ±1. A real solution to these equations exists for −1 < w < 1/3. The η = +1 root
describes an exponentially expanding universe, where the brane energy density dilution by expansion
is compensated by the energy influx onto the brane. In the cosmological model determined by the
η = −1 root the situation is inverted, since the contraction of the universe is compensated by the
energy outflow and energy density on the brane remains constant. Of course, the trivial fixed point
H = T = 0, ρ = −χ is a solution to (6.3.131), which reduces to H = ρ = χ = 0 when we
assume T = Aρν .

The stability of the critical point solutions (6.3.134) is determined by only one parameter

ν̃ =
d log |T |
d log ρ

∣∣∣∣


(6.3.135)

other than the equation of state parameter w. The linearized system for the perturbations δρ, δχ has
eigenvalues

λ1,2 =
1

6(1 + w)

T

ρ

[
7− 3ν̃ + 3(1− ν̃)

√
(7− 3ν̃ + 3(1− ν̃))2 − 24(3 − 2ν̃)(1 + w)

]
(6.3.136)

Clearly, in the case on energy influx at the critical point, both the eigenvalues have negative real part
when 0 ≤ ν̃ < 3/2 in the region −1 < w < 1/3, implying that the solution is stable for those values
of ν̃. We can also have spiral fixed points if the imaginary part of λ1,2 doesn’t vanish, within the
range −1/2 < w < 1/3. Energy outflow always gives unstable or saddle points, as one can deduce
by plugging T > 0 in (6.3.136). Moreover, the w = −1 fixed point is characterized by zero energy
exchange and zero mirage density. It represents in fact the usual inflationary critical point for a
matter energy density being a root of T (ρ) = 0. We note that supposing T = Aρν implies ν̃ = ν in
the formulae above.

Generic densities

We now consider the full set of equations (6.3.112)–(6.3.114), with λRS = 0 and p = wρ

H2 ≡ ȧ2

a2
= αρ2 + 2αV (ρ+ χ)− k

a2
(6.3.137)

χ̇+ 4Hχ =
( ρ
V

+ 1
)
T (6.3.138)

ρ̇+ 3 (1 + w)Hρ = −T (6.3.139)
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with α = 1/144M6. Some analytical comments can be made keeping T generic, without specifying any
dependence on the matter energy density. Since we eventually wish to find an realistic cosmological
evolution description, we have to look for acceleration, describing the present evolution of the universe
detected by observations.

I already observed that the system of equations (6.3.112)–(6.3.114) reduces to the modified Fried-
mann equation (6.3.97) plus standard conservation equation arising in the model proposed and studied
by Binétruy, Deffayet, Ellwanger and Langlois [126], in the zero energy exchange limit. This could
lead to a late time accelerated era for some negative C, while at earlier times, however, the decelerated
evolution is dominated by a ρ2 dependence of the Hubble parameter H2.

As a consequence of positive definiteness of r.h.s. of equation (6.3.137) we get that the acceleration
factor q is constrained to be limited by a parabola, as a function of ρ. The quantity q is independent
of the actual form of energy exchange and can be written as

q = Ḣ +H2 = −α(2 + 3w)ρ2 − α(1 + 3w)V ρ− 2αV χ− k

2a2
(6.3.140)

Using that α (ρ+ 2V ) ρ+ 2αV χ− (k/a2
)
> 0 we get that q must lay below the curve

q < −α(1 + 3w)ρ2 + α(1 − 3w)V ρ− 3k

2a2
(6.3.141)

Hence, if k ≥ 0, w > −1/3 the universe is decelerating when ρ/V > (1 − 3w)/(1 + 3w). Besides, if
w > 1/3 and the universe is spatially locally flat or spherical, we get deceleration at all times. In
order to get acceleration for a positively curved (or flat) space, supposing w ≥ −1/3, we have to
require negative mirage energy density χ < 0. For k = 0 there is no other source of compensation
for this negative energy density than matter, so that we would remain left with a larger amount of
dark matter than the one revealed by experimental data. In other words, dark plus visible matter
density would be much greater than the measured one. Indeed, since Ωχ < −1, we would have to get
ΩCDM +ΩB > 2. Only a locally hyperbolic space could eventually suppress the disagreement between
these predictions and observations, as negative curvature can play the role of an extra energy density
source.

For a generic outflow configuration we immediately infer from the (non)conservation equation
(6.3.139) that ρ is a monotonically decreasing function in an expanding universe. This agrees with
the small energy density explicit solution previously described.

An accurate analysis is performed in [159]. I won’t discuss all the details here but give the main
results and physical conclusions. As in the small energy density approximation, one can find all
critical points of the differential system of equations (6.3.137)–(6.3.139).

Accelerating fixed point solutions There are non trivial critical points that solve the following
algebraic set of equations in a spatially flat universe k = 0

H2
 = αρ2

 + αV (ρ + χ) (6.3.142)

4Hχ = T (6.3.143)

3(1 + w)Hρ = −T (6.3.144)
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The symmetry relating expansion to influx and, viceversa, contraction to outflow, survives in the
generic density case. Hence, inflationary solutions would necessarily imply energy flowing from the
bulk onto the brane. More precisely, static solutions are given in terms of ρ as

α(1 + 3w)ρ2
 − α(1− 3w)V ρ +

2|T|2
9(1 + w)2ρ2



= 0 (6.3.145)

H = − T

3(1 + w)ρ
⇒ q =

|T|2
9(1 +w)2ρ2



(6.3.146)

χ = −3(1 + w)

4
ρ (6.3.147)

The number of roots of equation (6.3.145) depends on the specific form of the energy exchange. If
we admit the validity of the ansatz T = Aρν , we have a minimum number of roots for ν = 2, i.e.
one non trivial root only, corresponding to a single non trivial critical point. For ν = 1, meaning
that T depends linearly on ρ — two fixed points with interesting cosmologies can arise. We see that
for ν = 1 the Hubble parameter evaluated at the fixed points is independent of the energy density
H = |A|/w (for energy influx). Thus, all critical points in the phase portrait q/ρ lay on a q = const
line and have the same positive acceleration.

The stability matrix associated to the linearized system of equations can be computed in the
general case too. The significant ν = 1 case is characterized by two fixed points with positive ρ and
q given by

ρ± =

(
1±

√
1− 2

9V 2
|A|
)
V (6.3.148)

q =
|A|2

9(1 + w)2
(6.3.149)

for |A| ≤ 3V
√

2. The eigenvalues associated to the + root have real part one opposite to the other.
Therefore ρ+ is always a saddle. The − root gives instead a stable critical point, which is in particular
a stable node when 27V 2/8 < |A|2 < 9V 2/2 and a stable counterclockwise spiral if |A|2 < 27V 2/8.
The small density limit critical point analysis with ν = 1 is restored when we take |A|2 � 4V 2,
implying indeed ρ− � V . Hence ρ− represents the (6.3.134) fixed point, while ρ+ ∼ V lays
outside the range of validity of the small density approximation ρ � V and thus isn’t captured by
the approximate analysis. The numerical phase portrait shows that three families of solutions exist.
The ρ− critical point attracts a wide range of trajectories, both starting with very small or very
large energy density. There are however two families of solutions which are attracted to the saddle
point ρ+, which represents new features with respect to a single critical point scenario. The first
starts from very small energy density and travels very near to the limiting parabola which marks the
upper bound for the acceleration factor. Those trajectories then eventually flow towards a large ρ
and negative acceleration phase. The second family of solutions attracted by ρ− starts from large
densities and may or not reach a positive acceleration phase, to eventually end in eternal deceleration.

We can have some further analytical insight in the region of small ρ manipulating the set of
differential equations (6.3.137)–(6.3.139). As it is explained in [159], one finds that for ν = 1 and
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influx with w > −1/3 the trivial critical point ρ = q = 0 can never be attractive, as it is confirmed
by the numerical calculations that illustrate the phase portrait just described. In the case of outflow,
on the contrary, the Hubble parameter goes to zero when the energy density vanishes, in agreement
with our general analytical considerations. In this case all trajectories flow to the trivial fixed point
but they can be distinguished into two families, one of which is decelerating at all times, while the
other pass through an accelerated phase to decelerate again before reaching ρ = q = 0. Furthermore,
it is worthwhile to note that the scale factor with the linear ν = 1 assumption for energy exchange,
behaves as in a radiation dominated universe at late times.

In our analysis we mainly focused on flat 3D space. However, some remarks can also be made for
locally hyperbolic or spherical spaces. If space can be considered to be locally a 3–sphere, the universe
eternally decelerates whenever energy flow from the brane into the bulk and w ≥ −1/3. There may
be an accelerated phase before turning to negative q. Interesting features appear for k = −1 and
outflow. Considering non–relativistic matter w = 0 and ν = 1 one can obtain eternal acceleration,
after an initial decelerated era, while energy density goes monotonically to zero, as predicted by its
(non) conservation equation. Influx with the same conditions may imply an initially accelerating
universe, which however decelerates at late times, with ρ approaching a constant value.

This model shows a large range of possible cosmologies, displaying interesting features which may
eventually lead to some realistic description. However, a full analytic treatment with generic energy
exchange is lacking. Still, we may get some intuition of how the cosmological evolution predicted
in this context can agree with the known characteristics of inflation, Big Bang and data on present
acceleration. An analogous scenario has been the subject of my publication [96], where even a richer
variety of cosmologies can be found, due to the additional degrees of freedom coming from the two
more compactified extra dimensions (see chapter 7).

6.4 Randall–Sundrum cosmology from the holographic point of view

The 5D RS model just described has been investigated from the holographic point of view by Kiritsis
in [125], relating the non conventional behavior of cosmological evolution in the gravity set–up to
non trivial dynamics in the dual theory, namely conformal anomaly. The aim here is to show how to
explicitly construct the holographic dual, via AdS/CFT correspondence following the prescription of
section 5.3. Successively, I will discuss the cosmological feature on the CFT side and the generalization
to non conformal and interacting case.

6.4.1 The dual theory

I briefly recall the holographic renormalization procedure, specializing to the 5D/4D case. From the
AdS/CFT correspondence we learned that string theory on AdS5 × S5 with N units of five form
flux and radii given in terms of N is dual to the four dimensional SU(N) N = 4 SYM theory. The
correspondence is mathematically expressed by the equality

Zstring

[
Φ|∂(AdS5) = φ

]
= e−WCFT(φ) (6.4.150)

Here we consider the classical limit on the supergravity side, when N � 1 and λT ≡ g2
YMN ∼ gsN �

1. The bulk action on AdS5, once regulated following holographic renormalization, is given by

Sgr = SEH + SGH − S0 − S1 − S2 (6.4.151)
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where, in five dimensions, the different contributions read 4

SEH = M3

∫
ρ≥ε

d5x
√−g

(
R [g] +

12

�2

)
(6.4.152)

SGH = 2M3

∫
ρ=ε

d4x
√−gK (6.4.153)

S0 = 6
M3

�

∫
ρ=ε

d4x
√−γ (6.4.154)

S1 = −1

2
M3�

∫
ρ=ε

d4x
√−γR (6.4.155)

S2 =
log ε

4
M3�3

∫
ρ=ε

d4x
√−γ

(
RμνR

μν − 1

3
R2

)
(6.4.156)

As usual, we denote with γμν the induced metric on the boundary, R and Rμν are the scalar and
Ricci curvatures made out of γμν , K is the trace of the extrinsic curvature on the boundary ρ = ε
and Λ5 is the negative cosmological constant Λ5 = −12M3/�2. The radius � of AdS5 is determined
by the supergravity classical solution to be (4π)2M3�3 = 2N2.

The RS action in the five dimensional background takes the form

SRS = SEH + SGH − 2S0 + Sm,b (6.4.157)

I now apply the duality ∫
Dg e−SEH−SGH+S0+S1+S2 =

∫
Dφ e−SCFT[φ,γ] (6.4.158)

and the holographic renormalization calculations illustrated in section 5.3. Feffermann–Gaham
parametrization of the metric (5.2.3) must be used. We obtain as a result

SfRS
= SCFT + SR + SR2 + Sm,b (6.4.159)

with

SCFT ≡ 2WCFT , SR ≡ 2S1 , SR2 ≡ 2S2 (6.4.160)

This is the dual action that we expected for regularized 5D gravity on a slice of AdS5 with Z2 orbifold:
a renormalized CFT, SCFT, coupled to 4D gravity, SR, plus higher order corrections, SR2 , in addition
to the original matter action on the brane, Sb,m. The four dimensional Planck mass MP l is given in
terms of the five dimensional gravity mass scale M as M2

P l = M3�. The dual theory result is derived
in a pure RS vacuum, i.e. with RS fine–tuning λRS = 0 (see eq. (6.3.110) for the definition of λRS).
This implies that the effective cosmological constant on the brane vanishes. However, if we wish to
take account of a non zero cosmological constant on the dual theory, we may consider the following
generalization

SfRS
= SCFT + SR + SR2 + Sm,b + Sλ (6.4.161)

4There is a subtlety here about the presence of the scheme dependent counterterm. However, we will note next that
it will not contribute to the RS dual action derivation.

143



6. Cosmology fundamentals and brane–worlds

with

Sλ = −2λ

∫
d4x

√−γ (6.4.162)

More precisely, the RS background yields the following relations among dimensionful parameters

� = 24
M3

V
, Λ5 = − V 2

12M3
(6.4.163)

The 4D boundary parameters are related to the 5D bulk ones by

MP l = 24
M6

V
, c ≡

(
N

8π

)2

=

(
12
M4

V

)3

=

(
1

2
M�

)3

(6.4.164)

(c will be related to the conformal anomaly coefficient).
We now have all the elements to study the holographic dual theory dynamics. In particular, it

is interesting to derive the cosmological evolution in the dual theory, by making a time dependent
ansatz for the metric.

6.4.2 Holographic cosmology in four dimensions

Our set–up is now the four dimensional theory with action (6.4.161) and the four dimensional metric

γμνdxμdxν = −dt2 + a2(t)ζijdx
idj (6.4.165)

Here ζij is a maximally symmetric three dimensional metric with spatial curvature k and a(t) is the
scale factor associated to the Hubble parameter H ≡ ȧ/a. The Einstein equations get contributions
to the stress–energy tensors from the different terms in the action, yielding

M2
P lGμν + λγμν = Tμν +Wμν + Zμν (6.4.166)

where we define

Tμν =
1√−γ

δSm,b

δγμν
, Wμν =

1√−γ
δSCFT

δγμν
, Zμν =

1√−γ
δSR2

δγμν
(6.4.167)

All the contributions to the total stress–energy tensor are separately conserved

∇μTμν = ∇μWμν = ∇μZμν = 0 (6.4.168)

Instead, they are not all traceless because of the conformal anomaly associated to the four dimensional
CFT

W μ
μ = −128

(
cE(4) + aI(4)

)
(6.4.169)

The type A and B anomalies are given by the four dimensional Euler density E(4) and by the con-
traction of the Weyl tensor I(4), i.e. the unique conformal invariant with four derivatives (up to an
overall factor)

E(4) =
1

64

(
RμνρσRμνρσ − 4RμνRμν +R2

)
(6.4.170)

I(4) = − 1

64

(
RμνρσRμνρσ − 2RμνRμν +

1

3
R2

)
(6.4.171)
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The coefficients a and c are determined as functions of the number of scalar, fermion and vector fields
contained in the theory (see for example [125] for the definition). Actually, we ignored the scheme

dependent contribution to anomaly, which takes the form ∇μJ
(4)
μ = 2b�R and is called divergence or

D–type anomaly. Carrying on carefully the calculations shows that this contribution gets cancelled,
indeed, by the equal term appearing in the trace of Zμν . This can be more clearly explained by saying
that the scheme dependent counterterm that we ignored, which should have been added in SR2 , is
exactly Sb = − b

3

∫
d4x

√−γR2. The stress–energy tensor associated to Sb is characterized by a non

vanishing trace, precisely given by Zμ
μ = Zb = −2b�R, thus canceling ∇μJ

(4)
μ . We can argue that

this happens in general for any number of (even) dimensions.
Since the second order counterterm stress–energy tensor is somehow related to the CFT, it is

convenient to define the sum

Vμν = Wμν + Zμν (6.4.172)

which satisfies the following conservation and trace equations

∇μVμν = 0 , V μ
μ = −128

(
cE(4) + aI(4)

)
(6.4.173)

The matter tensor is traceless and conserved. We parametrized the two contributions form matter
and CFT as perfect fluids

T00 = ρ , Tij = p a2ζij (6.4.174)

V00 = σ , Vij = σp a
2ζij (6.4.175)

The Einstein equations evaluated on the metric (6.4.165) yield the Friedmann equations

M2
P l

ȧ2

a2
=

1

3
(ρ+ σ + λ)− k

a2
(6.4.176)

M2
P l

(
2
ä

a
+
ȧ2

a2

)
= −p− σp − k

a2
+ λ (6.4.177)

If we plug (6.4.176) into (6.4.177) we get the expression for acceleration

M2
P l

ä

a
= −1

6
(ρ+ 3p+ σ + 3σp) +

λ

3
(6.4.178)

The conservation equations in terms of the perfect fluid energy densities and pressures read

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (6.4.179)

σ̇ + 3
ȧ

a
(σ + σp) = 0 (6.4.180)

Finally, the conformal anomaly equation can be written in the form

σ − 3σp = 48c
ä

a

(
ȧ2

a2
+

k

a2

)
(6.4.181)
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where c = N2/(8π)2 � 1 — for the holographic derivation of the anomaly and, in particular, of its
coefficients, see for example [189]. The solution to the Einstein equations can be easily found in terms
of the matter energy density ρ. In fact, we can solve the anomaly equation (6.4.201) for σp and plug
the result into the conservation equation (6.4.180), obtaining

σ̇ + 4Hσ − 48cH

(
H2 +

k

a2

)(
Ḣ +H2

)
= 0 (6.4.182)

This can be integrated, giving as a result

σ = χ+ 12c

(
H2 +

k

a2

)2

(6.4.183)

χ̇+ 4Hχ = 0 ⇒ χ =
χ0

a4
(6.4.184)

Hence the mirage density χ is a free radiation energy density and it is introduced as the solution to
the homogeneous equation associated to χ. Using the expression for σ to solve equation (6.4.176) for
H2 one gets

H2 =
M2

P l

8c

[
1 + ε

√
1− 16c

3M4
P l

(ρ+ χ+ λ)

]
− k

a2
(6.4.185)

Depending on the value for ε = ±1 we get to distinguished roots for the Hubble parameter. Putting
ε = 1 and (ρ+ χ+ λ) = 0 we recover the Starobinsky solution described in subsection 6.1.2, with

H = H0 ≡ MP l

2
√
c

(6.4.186)

However, inflation cannot generate damped oscillations as in the real Starobinsky model. These
oscillations are due to the higher derivative scheme dependent contribution to the anomaly, which
is absent in the RS dual derivation — since it is cancelled by the equal and opposite term in SR2 .
We can nevertheless think of other higher derivative terms that could eventually play the same role
as conformal anomaly, such as Gauss–Bonnet corrections (see the appendix in [125] for the Gauss–
Bonnet analysis in this context). We can now use dimensionless variables

ρ̃ = E0ρ , χ̃ = E0χ , λ̃ = E0λ , E0 =
3M4

P l

16c

H̃ =
H

H0
, k̃ = H0k , t̃ =

t

H0

to expand the solution for small densities. Expression (6.4.185) becomes

H̃2 +
k̃

a2
=

1

2

[
1 + ε

√
1−

(
ρ̃+ χ̃+ λ̃

)]
(6.4.187)

Its expansion for ρ̃, χ̃, λ̃� 1 immediately gives

H̃2 =
1 + ε

2
− ε

4

(
ρ̃+ χ̃+ λ̃

)
− ε

16

(
ρ̃+ χ̃+ λ̃

)2
− k̃

a2
+ . . . (6.4.188)
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The constant term vanishes in the smooth branch ε = −1, while the coefficients for the linear and
quadratic terms are positive. This matches with the 5D bulk description of cosmological evolution
on the brane, derived in the previous section. We can in particular match the 5D RS parameters to
the 4D holographic theory description parameters

V = 2E0 , M3 =
E0

3H0
, Λ5 = −E0H0 (6.4.189)

A discrepancy between the two descriptions arises when the densities are of order one. The 4D theory
predicts an upper bound determined by E0, while in the 5D set–up there is no visible constraint.
In the small density regime, however, the two sides of the duality yield the same evolution (at late
times).

On the gravity side, I have shown the effects of the presence of brane–bulk energy exchange. So,
I now wish to establish the correspondence between this energy exchange and its dual object in the
generalization of the holographic theory, following [125].

6.4.3 Generalization in the holographic description

Intuitively, introducing an interaction term between matter and CFT fields corresponds to turning on
the energy exchange parameter T 0

5 in the 5D description. All the same, deviations from conformality
correspond to the bulk self–interaction contributions to the 5D stress–energy tensor, T 5

5 . Let’s see
this in more detail.

We both include interactions and remove conformal invariance, defining the interaction term Sint

and substituing SCFT with a strongly coupled gauge theory action SSCGT

SR̃S∗ = SSCGT + SR + SR2 + Sm,b + Sint (6.4.190)

The strongly coupled fields can be integrated out allowing to replace the sum SSCGT + Sint with a
non local functional of the metric and of the matter fields WSCGT. The action thus reads

SR̃S∗ = WSCGT + SR + SR2 + Sb,m (6.4.191)

The Einstein equations can still be written as

M2
P lGμν = Tμν + Vμν (6.4.192)

where

Tμν =
1√−γ

δSm,b

δγμν
, Vμν =

1√−γ
δ (WSCGT + SR2)

δγμν
(6.4.193)

The conservation equations get modified by a term associated to the interactions, so that Tμν and
Vμν are no longer separately conserved

∇μTμν = −∇μVμν = T (6.4.194)

Trace anomaly may get an extra contribution from non conformally coupled scalar fields or from
gravitons and gravitinos

V μ
μ = −128

(
cE(4) + aI(4)

)
+DR2 (6.4.195)
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However, D � c and we will consider in particular the case of vanishing D (the interested reader
can find the generalization to D �= 0 in the appendix of [125]). The stress–energy perfect fluid
parametrizations (6.4.174) still hold. As a consequence, for zero effective cosmological constant on
the brane λ = 0, we obtain the Friedmann equations in the form

M2
P l

ȧ2

a2
=

1

3
(ρ+ σ)− k

a2
(6.4.196)

M2
P l

(
2
ä

a
+
ȧ2

a2

)
= −p− σp − k

a2
+ λ (6.4.197)

implying

M2
P l

ä

a
= −1

6
(ρ+ 3p + σ + 3σp) (6.4.198)

Besides, the conservation equations are modified by the introduction of the non homogenous term T ,
depending on the form of the interactions,

ρ̇+ 3
ȧ

a
(ρ+ p) = −T (6.4.199)

σ̇ + 3
ȧ

a
(σ + σp) = T (6.4.200)

and the trace anomaly receives the extra contribution X from conformal breaking

σ − 3σp = 48c
ä

a

(
ȧ2

a2
+

k

a2

)
+X (6.4.201)

The function X contains β–functions and masses that classically or quantum break conformal invari-
ance. To be more specific, X can be put in the following form before integrating out the strongly
coupled fields

X =
∑
ij

(
β

(1)
ij +Rβ

(2)
ij

)
OiΩj +

(
Rμνβ

(3)
ij + gμνβ

(4)
ij

)
Oμ

i Ων
j (6.4.202)

Here we have denoted with Oi the operators of the SCGT and with Ωj the matter theory operators.
After integration, the above expression becomes

X =
∑

j

(
B

(1)
j +B

(2)
j R

)
Ωj +

(
B

(3)
j R00 +B

(4)
j

)
Ω0

j (6.4.203)

where B
(I)
j contains the sum over strongly coupled fields expectation values B

(I)
j =

∑
i β

(I)
ij 〈Oi〉. We

can now proceed integrating the equation for σ, as in the conformal non interacting case

σ = χ+ 12c

(
H2 +

k

a2

)2

(6.4.204)

χ̇+ 4Hχ = T +HX (6.4.205)
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The system of Friedmann plus conservation equations can’t be solved in general, without specifying
the form for X and T

3M2
P

(
H2 +

k

a2

)
− 12c

(
H2 +

k

a2

)2

= ρ+ χ (6.4.206)

χ̇+ 4Hχ = T +HX (6.4.207)

ρ̇+ 3
ȧ

a
(ρ+ p) = −T (6.4.208)

The solution for H2 is still given by (6.4.185). From this solution we can also deduce the acceleration
factor q = Ḣ +H2

q = −ε
−(ρ+ 3p) +X − 2

(
χ+ 12c

[
H2 + k

a2

]2)
6M2

P

√
1− 16c

3M4
P

(ρ+ χ)
(6.4.209)

Looking at this expression we observe that we get acceleration in the smooth branch ε = −1 if

X > (ρ+ 3p) + 2

(
χ+ 12c

[
H2 +

k

a2

]2
)

(6.4.210)

In the Starobinsky branch, on the other hand, q is positive when

X < (ρ+ 3p) + 2

(
χ+ 12c

[
H2 +

k

a2

]2
)

(6.4.211)

i.e. in the complementary region. This means that for each particular value of X we can always
choose a branch such that acceleration is positive.

We finally come to the issue of comparing the two descriptions in the generalized case. I recall
the set of equations derived in the 5D gravity set–up

H2 =
1

144M6
ρ2 +

V

72M6
(ρ+ χ) + λ (6.4.212)

χ̇+ 4Hχ =
( ρ
V

+ 1
)

2T 0
5 − 24

M3

V
HT 5

5 (6.4.213)

ρ̇+ 3H (ρ+ p) = −2T 0
5 (6.4.214)

It matches with the smooth branch solution to the holographic Einstein equations as long as the
parameters are related by (6.4.189) and

T 	 2T 0
5 , X 	 24

M3

V
T 5

5 (6.4.215)

The non exactness of equalities comes from the difference in the two descriptions arising when the ρ2

and ρT 0
5 terms are not negligible, i.e. when ρ 	 V (actually, one can redefine the 5D mirage density

in such a way that it is possible to find an exact match for X, but it includes matter energy density
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and pressure and the Hubble parameter). Nevertheless, this are the relations we expected, asserting
the correspondence between the hidden/visible interactions and the brane–bulk energy exchange, on
the one hand, and, on the other hand, between non conformality and bulk self–interaction.

Further studies can be performed on this holographic model, including some specific deformations
of the dual theory. Those can be analyzed following the prescription given in this section and com-
bining it with the known results of holographic renormalization. The scalar field example is analyzed
in [125]. I have here and in the previous section reviewed the basics of the 5D RS cosmology, of the
4D RS holographic theory and its generalization, in the perspective of giving an illustrative picture
for the more complicated 7D RS model. This indeed will be the subject of the next two chapters.
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Chapter 7

Randall–Sundrum cosmology in seven
dimensions

As I reviewed in the previous chapter, RS model [113] is an alternative way of localizing gravity in
four dimensions without compactifying the extra dimensions. This was achieved in RSII model by
assuming a warped extra direction, instead of a compact one (compact extra dimensions has been used
[153] as an attempt of giving an explanation to the hierarchy problem, to which RSI [113] represents
an alternative way out). The metric solving the equations of motion for the five dimensional action
can be viewed as coming from the Type IIB string theory background for a stack of N D3–branes,
in the low energy effective field theory approximation, which gives indeed an AdS5×S5 near horizon
geometry for a 3–brane supergravity solution. In RS analysis only gravity on AdS5 is considered,
since the S5 is factored out from the anti de Sitter space, giving KK modes. The truncation of AdS5

with the 3–brane cuts out its boundary.

In a recent work [154], a different string background related to RS set–up has been considered. I
illustrated in subsection 6.2.2 the analysis performed by Bao and Lykken [154] in a seven dimensional
RS anti de Sitter background rather than in the five dimensional original model. The background
may come from the near horizon geometry of M5–branes in the eleven dimensional M theory, which
gives AdS7 × S4. As for the five dimensional model, the sphere is factored out and only the physics
of gravity in AdS7 plus KK modes are considered. A further step performed in [154] is to reduce
AdS7 → AdS5 ×Σ2, where Σ2 is a two dimensional internal space (namely a two–sphere or a torus).
In [154] the RS spectrum of KK modes gets modified and supplemental KK and winding modes
appear, because of the Σ2 compactification. In [155] the 7D supergravity orbifold compactification
on S1/Z2 is considered in the context of anomaly cancellation on the boundary on the background,
showing that the matter contents of the theory cannot be completely generic.

On the cosmological side, RS models can give new descriptions of the cosmological evolution of
our universe. A realistic model should be able to explain the existence of dark energy and the nature
of dark matter, early time inflation and eventually the exit from this phase, as well as late time
acceleration coming from the present observations — additional issues are related to the cosmological
constant, temperature anisotropies, etc. (see [156]–[158] for recent reviews on the observed cosmol-
ogy). I reviewed in the previous chapter the RS cosmologies that have been studied and found them
to exhibit some of these features. Generally, brane–world cosmological models should take account of
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7. Randall–Sundrum cosmology in seven dimensions

the energy exchange between brane and bulk that naturally arises because of the non factorized extra
direction. The implications of this energy exchange has been analyzed in subsection 6.3.2, following
[159]. The authors propose some scenarios describing the cosmological evolution of a universe with
two accelerating phases, as we expect from experimental data. Moreover, most of the fixed points
were shown to be stable. Earlier attempts include [160]. Subsequent papers [161]–[173] have been
written on the subject, also finding new solutions, some of which exact.

We now want to investigate the 7D RS cosmology with brane–bulk energy exchange and to
explore (in the next chapter) the model from the holographic point of view, making an explicit
comparison between the two descriptions. Our starting point is gravity in the 7D bulk cut by a
five–brane, with the usual RS Z2 reflection and generic matter term on the brane. In order to study
the cosmological evolution of the brane–world, the ansatz for the metric is time dependent. Besides,
the direction transverse to the 5–brane is the warped direction characterizing RS models. Unlike in
[154], we have different warp factors for the 3D extended space and for the two dimensional compact
internal space. It is worth noticing that the gravitational coupling constant of the 4D space–time is
dynamically related to the 7D Newton constant, since the compact space volume is generally time
dependent. Indeed, the 4D energy density and pressures are also dynamical functions of the density
and the pressures defined on the brane. I analyze the generic Friedmann and conservation equations,
including the energy exchange terms, in order to get the expressions for the Hubble parameter of
the 4D space–time as a function of the density with the aim of describing realistic cosmologies. It
will be interesting to study both analytically and numerically the system of Einstein equations. The
analogous critical point analysis in the 5D bulk was performed in [159]. Some explicit solutions,
derived with simplifying assumptions on the parameter of the internal space and on its geometry, are
also illustrated in my work [96].

Interesting results for cosmologies with compactification emerge in the context of dynamical com-
pactification [199, 200]. The compact space is treated with a different scale factor (as in the approach
that will be used in this paper). In particular, in the context of dynamical compactification, the
scale factor for the internal space has an inverse power dependence on the scale factor for the vis-
ible directions. The extra dimensions thus contract as the extended space expand. I also include
some remarks on dynamical compactification applications in our set–up. Other attempts to reduce
to conventional cosmology and investigate issues such as the cosmological constant from models with
arbitrary number of extra dimensions are given in [201, 202]. In particular, cosmologies in six dimen-
sions are analyzed in [203], which could be related to the holographic description of my model —
analyzed in the next chapter.

Next section will describe the set–up of the seven dimensional RS model. Section 7.2 will be
focused on the cosmological evolution from the 7D point of view, admitting brane–bulk energy ex-
change and particularly investigating the form of Einstein equations with some specific ansatz, while
in section 7.3 the critical point analysis will be illustrated, including numerical phase space portrait
and explicit solutions.

7.1 7D RS set–up

As I announced in the introduction, we will work in a seven dimensional bulk with a 5–brane located
at the origin of the direction z transverse to the brane itself and with a z → −z Z2 identification.
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7.1. 7D RS set–up

In analogy to the 5D RS model, the action in this seven dimensional set–up is given by the sum of
the Einstein–Hilbert action with 7D cosmological constant plus a contribution localized on the brane
that represents the brane tension. Besides, we also put a matter term both in the bulk and on the
brane. In formula we thus have

S = SEH + Sm,B + Stens + Sm,b =

=

∫
d7x

√−g (M5R− Λ7 + Lm,B

)
+

∫
d6x

√−γ (−V + Lm,b) (7.1.1)

Here V is the brane tension and we will call the associated contribution to the action Stens. SEH

is the usual Einstein–Hilbert action with the seven dimensional bulk cosmological constant Λ7 and
Lm,B,Lm,b are, respectively, the bulk and brane matter lagrangians. The action for matter fields in
the bulk Sm,B is an additional term with respect to the usual RS set–up, whereas the matter on the
brane contribution will be referred to as Sm,b. The metric γμν is the induced metric on the brane.
The brane tension is necessary in the RS models in order to compensate for the presence of the
cosmological constant in the bulk.

The classical solution of the equations of motion for the theory above, neglecting all the matter
terms and with a static warped geometry of the kind ds2 = e−W dx2 + dz2 (W = W (z) is the warp
factor and the 6D x–directions are flat), is the analogue of the solution described by Randall and

Sundrum [113] for the 5D RSII model. The 7D solution gives as a result W (z) = 2|z|
√
− Λ7

30M5 , so

that the space–time is a slice of AdS7 with the typical Z2 reflection, where there has to exist a relation
between the brane tension and the bulk cosmological constant 3V 2 = −40M5Λ7.

The aim of this section and of the next one is to generalize the RS ansatz to a time dependent
background and to wrap the 5–brane over a two dimensional internal space, ending up with an effective
4D cosmology. Taking account of the seventh warped extra dimension and of the compactification
over the other two extra dimensions, giving two different warp factors to the 3D space and the internal
2D space, the time dependent ansatz for the metric is of the form

ds2 = −n2(t, z)dt2 + a2(t, z)ζijdx
idxj + b2(t, z)ξabdy

adyb + f2(t, z)dz2 (7.1.2)

with the maximally symmetric ζij background in three spatial dimensions (with spatial curvature k)
and ξab for the 2D internal space (with spatial curvature κ). We use capital indices A,B, . . . to run
over the seven dimensions, i, j, . . . for the three spatial dimensions of the 4D space–time, a, b, . . . for
the two internal dimensions. In our notations z represents the seventh warped extra direction, the
y coordinates belong to the 2D internal space, while the {xμ} = {t, xi, ya} run over the 6D space–
time on the brane. Summarizing, the structure of the bulk is thus made of a time coordinate, three
extended maximally symmetric spatial dimensions (that gives, together with the time, the visible
4D space–time), two compact dimensions and a warped direction. The 3D and 2D spaces have two
different scale factors a(t, z) and b(t, z) respectively, while a gauge choice will be made for the values
of the n(t, z) and f(t, z) factors on the brane, i.e. when z = 0.

A less physically meaningful background, but better understood, would be to have a five dimen-
sional maximally symmetric space with some 5D metric ζ̃ij and just one scale factor ã(t, z), without
compactifying on any two dimensional internal space. The solution to the equations of motion in this
case is much simpler. The results related to this background will be briefly mentioned along with the
more realistic analysis with brane wrapping over the two dimensional internal space.
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7. Randall–Sundrum cosmology in seven dimensions

7.2 Cosmological evolution in the bulk

In this section we will analyze some aspects of the cosmological evolution from the 7D bulk point of
view. We write the equations of motion for the bulk action and solve them by making assumptions
to simplify their form and get explicit results evaluated on the brane.

Given the set–up described in the previous section, we parametrize all the contributions to the
stress–energy tensor as

TA
C |v,b =

δ(z)

f
diag (−V,−V,−V,−V,−V,−V, 0)

TA
C |v,B = diag (−Λ7,−Λ7,−Λ7,−Λ7,−Λ7,−Λ7,−Λ7)

TA
C |m,b =

δ(z)

f
diag (−ρ, p, p, p, π, π, 0)

TA
C |m,B = TA

C (7.2.3)

with the subindices v and m indicating the vacuum and matter stress–energy tensors, while b and
B stand for the brane and bulk contributions respectively. A difference between this (4+2+1)D
background and the simpler (6+1)D analysis without the 2D compactification cited at the end of the
previous section, is having in (7.2.3) two different pressures in the 3D space and in the 2D compact
dimensions for the matter on the brane, while for the (6+1)D background we would put π = p. This
generalization is due to the fact that we don’t assume homogeneity for the matter fluid in the whole
(3+2)–dimensional space, but only in the 3D and 2D spaces separately.

Having calculated the Einstein tensor, we can put the explicit expression in the equation

GAC =
1

2M5
TAC (7.2.4)

evaluated on the brane (from now on all the functions are evaluated on the brane, i.e. at z → 0), in
the specific background (7.1.2). As a consequence, for the 00, ij and ab components we obtain the
jump equations

a′+ = −a′− = − fa

20M5
(V + ρ+ 2p − 2π)

b′+ = −b′− = − fb

20M5
(V + ρ− 3p + 3π) (7.2.5)

n′+ = −n′− =
fn

20M5
(−V + 4ρ+ 3p+ 2π)

These are the values of the warp factors in the limit z → 0, where the subscripts + and − distinguish
the limit taken from below from the limit taken from above. The prime denotes the partial derivative
with respect to the z coordinate, while the dot indicates the time derivative. For the 07 and 77
components, substituting the expressions (7.2.5) and choosing a gauge with f(t, 0) = 1 and n(t, 0) = 1,
we get the (non)conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) + 2

ḃ

b
(ρ+ π) = 2T07 (7.2.6)
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and the Friedmann equation

3
ä

a
+ 2

b̈

b
+ 3

ȧ2

a2
+
ḃ2

b2
+ 6

ȧ

a

ḃ

b
+ 3

k

a2
+
κ

b2
=

= − 5

(20M5)2

[
V (6p− π − ρ) + ρ (6p − π + ρ) + ρ2 +

+
1

5
(p− π) (V − 19ρ− 3p− 7π)

]
+ 15λRS − 1

2M5
T 7

7 (7.2.7)

We have defined the constant

λRS =
1

30M5

(
Λ7 +

3

40M5
V 2

)
(7.2.8)

which plays the role of an effective cosmological constant on the brane. These (7.2.6)–(7.2.7) are two
equations in five variables {H,F, ρ, p, π}. We will thus have to make an ansatz for some of those
variables.

The pure RS system correspond to setting T 0
7 = T 7

7 = 0, that means putting to zero the brane–bulk
energy exchange and no cosmological term on the brane, i.e. λRS = 0, to restore RS fine–tuning.

We can now write a simplified version of the differential equations (7.2.6)–(7.2.7), using the usual
ansatz for the equation of state of the matter fluid on the brane, i.e.

p = wρ, π = wπρ (7.2.9)

The set of equations (7.2.6)–(7.2.7), in terms of the Hubble parameters H ≡ ȧ
a , F ≡ ḃ

b , becomes

3Ḣ + 2Ḟ + 6H2 + 6HF + 3F 2 + 3
k

a2
+
κ

b2
= − 1

M10
(cV V + cρρ) ρ+ 15λRS − T 7

7

2M5

(7.2.10)

ρ̇+ [3(1 + w)H + 2(1 + wπ)F ] ρ = 2T07 (7.2.11)

with

cV =
31w − 6wπ − 5

400
, cρ =

11w + 14wπ + 10− (w − wπ)(3w − 7wπ)

400
(7.2.12)

Looking at the definition of the two coefficients cV , cρ, we can note that equation (7.2.10) gets
further simplified when the two pressures p and π are equal. This can be seen also from the previous
equation (7.2.7), where the “non–standard” term on the r.h.s. (standard with respect to the homo-
geneous background analysis) is proportional to (p − π). We will first examine some cosmological
solutions assuming p = π and then we will drop this equal pressure condition to find an expression
for H, in terms of the energy density, in the particular limits of static compact extra dimensions and
equal scale factors.
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7. Randall–Sundrum cosmology in seven dimensions

7.2.1 Equal pressures in 3D and 2D compact space

We first try to find a solution by simplifying the computation assuming π = p. In this case, equation
(7.2.7) written in terms of the Hubble parameters of the 3D space and 2D extra dimensions, defined
as H = ȧ/a, F = ḃ/b respectively, together with the (non)conservation equation (7.2.6), becomes

3Ḣ + 2Ḟ + 6H2 + 6HF + 3F 2 + 3
k

a2
+
κ

b2
=

= − 1

80M10
[V (5p − ρ) + ρ (5p+ 2ρ)] + 15λRS − T 7

7

2M5
(7.2.13)

ρ̇+ (3H + 2F ) (ρ+ p) = 2T07 (7.2.14)

We note that the system of equations written above still contains three variables H(t), F (t), ρ(t) but
only two equations. So we are able to just determine the value of the 3D Hubble parameter H(t)
as a function of the 2D one F (t). Moreover, given the complicated form of this set of equations, we
will make some assumptions on the internal space, such as flat compact extra dimensions (κ = 0) or
static extra dimensions (F (t) ≡ 0) in the following subsections.

Manipulating the system above, equation (7.2.13) takes the form

5
d

dt
(3H + 2F )2 + 6 (3H + 2F )3 + 6 (3H + 2F ) (H − F )2 =

=
1

8M10

[
5V ρ̇+ 6 (3H + 2F )V ρ+ 5ρρ̇+ 3 (3H + 2F ) ρ2

]
+ 150 (3H + 2F )λRS+

+
5

8M10
(V + ρ) 2T 0

7 −
5

M5
(3H + 2F )T 7

7 − 10 (3H + 2F )

(
3
k

a2
+
κ

b2

)
(7.2.15)

It is interesting to derive the first order ODEs from the second order one (7.2.15), in order to find the
expression for H2 as a function of the localized matter energy density ρ and to perform the critical
point analysis.

Flat compact extra dimensions with equal pressures

In flat compact extra dimensions (κ = 0) and flat 3D space (k = 0), equation (7.2.15) shows that
we can deduce the solution for (3H + 2F ) in terms of the localized energy density ρ and of a mirage
density χ (that we will define below through a differential equation) in the limit in which the two
Hubble parameters are almost equal. In fact, in this case the third term on the l.h.s. of (7.2.15) is
negligible, leaving a solvable differential equation.

The solution for (H − F ) � (3H + 2F ) and k = κ = 0 is given by

(3H + 2F )2 =
1

16M10
ρ2 +

V

8M10
(ρ+ χ) + 25λRS (7.2.16)

It is written in terms of the mirage density χ and the localized energy density ρ. The mirage density
must satisfy

χ̇+
6

5
(3H + 2F )χ =

( ρ
V

+ 1
)

2T 0
7 −

8M5

V
(3H + 2F )T 7

7 (7.2.17)
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and the equation for ρ is the (non)conservation equation

ρ̇+ (3H + 2F ) (ρ+ p) = 2T07 (7.2.18)

Here we get a linear and quadratic dependence of the Hubble parameter H2 on ρ, as well as a
dependence on the mirage density χ and on the hidden sector Hubble parameter F . The quadratic
and linear terms in ρ are analogous to those in the 5D analysis [125], implying that for ρ � V the
cosmological evolution looks four dimensional, while it moves away from the 4D behavior for ρ� V .
The term in χ also already appears in the 5D model, as well as the λRS constant term. Besides, the
mirage energy density dynamics are controlled by the bulk parameters T 0

7 and T 7
7 , that represent the

brane–bulk energy exchange and bulk pressure, as in [125]. However, a new variable F , the internal
dimension Hubble parameter, arises and remains undetermined, unless we make an ansatz for the
evolution of the two compact extra dimensions. We can argue that the solution (7.2.16)–(7.2.17) is
written in terms of a “total” Hubble parameter 1

5 (3H + 2F ), that carries the same characteristics
as the Hubble parameter H in the 5D model, but also includes the dynamics of the evolution of the
extra dimensions. For equal scale factors, F = H, this “total” Hubble parameter reduces precisely
to H, giving the exact analogue to the 5D RS cosmology in 7D.

Equal scale factors with equal pressures

A special case in which the (H − F ) � (3H + 2F ) limit is valid is the equal scale factor case F = H.
The results can directly be obtained from the previous subsection, yielding

H2 =
1

400M10
ρ2 +

V

200M10
(ρ+ χ) + λRS − 1

10

(
3
k

a2
+

κ

a2

)
(7.2.19)

χ̇+ 6Hχ =
( ρ
V

+ 1
)

2T 0
7 −

40M5

V
HT 7

7 (7.2.20)

ρ̇+ 5H (ρ+ p) = 2T07 (7.2.21)

We added the curvature contributions that can be computed exactly in this limit. This solution
is particularly simple thanks to the simultaneous vanishing of the (H − F ) and (p − π) terms. It
shows the quadratic dependence of H2 on ρ and the linear term in (ρ+ χ). The mirage density
reduces to free radiation in 6D space–time when we restrict to pure RS configuration, with no energy
exchange and bulk pressure. In this same limit, the localized matter energy density obeys to standard
conservation equation in 6D.

We will now drop the equal pressure ansatz and derive the expression for the Hubble parameter
of the 3D space making particular assumptions on the internal space scale factor. We suppose from
now on to live in a spatially flat universe (k = 0), where nevertheless the extra dimensions may be
curved (κ �= 0 generally).

7.2.2 Equal scale factors (generic pressures)

For generic pressures, we use the generalization of the equation of state for a fluid with energy
density ρ and parametrize the pressures of both the non compact and internal dimensions p, π that
we introduced in (7.2.9) by means of w,wπ.
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7. Randall–Sundrum cosmology in seven dimensions

We evaluate the Friedmann and (non)conservation differential equations (7.2.10)–(7.2.11) F = H.
The system (7.2.10)–(7.2.11) takes the form

5

2

(
Ḣ2 + 6H3

)
= − 1

M10
(cV V + cρρ)Hρ− T 7

7

2M5
+ 15HλRS − κ

a2
H (7.2.22)

ρ̇+ (3(1 +w) + 2(1 + wπ))Hρ = 2T07 (7.2.23)

with the coefficients cV , cρ still given by (7.2.12). With the help of (7.2.23), (7.2.22) can be brought
in a form from which we can explicitly deduce H as a function of ρ and χ

5

2

(
Ḣ2 + 6H3

)
=

1

M10

[
c̃V (eq)V (ρ̇+ 6Hρ) + c̃ρ(eq)

(
˙(ρ2) + 6Hρ2

)]
+

+
2T 0

7

M10
(c̃V (eq)V + c̃ρ(eq)ρ)−H

T 7
7

2M5
+ 15HλRS − κ

a2
H (7.2.24)

yielding

H2 =
c̃ρ(eq)

5M10
ρ2 +

2c̃V (eq)V

5M10
(ρ+ χ) + λRS − 1

10

κ

a2
(7.2.25)

χ̇+ 6Hχ = 2T 0
7

(
1 +

c̃ρ(eq)

c̃V (eq)

ρ

V

)
− M5

2c̃V (eq)V
HT 7

7 (7.2.26)

ρ̇+ (3(1 + w) + 2(1 + wπ))Hρ = 2T07 (7.2.27)

The two constants c̃V (eq), c̃ρ(eq) must be defined as

c̃V (eq) =
cV

3(1 + w) + 2(1 + wπ)− 6
, c̃ρ(eq) =

cρ
3(1 + w) + 2(1 + wπ)− 3

(7.2.28)

in order to have the right coefficients in equation (7.2.24). For some values of w,wπ the denominator
of c̃V (eq) or c̃ρ(eq) may vanish. However we can fix wπ such that cV (or cρ) is proportional to 3(1 +
w) + 2(1 +wπ)− 6 (or 3(1 + w) + 2(1 +wπ)− 3 for cρ) and c̃V (eq) (or c̃ρ(eq)) is finite. As an example
consider wπ = w (equal pressure in the internal space and 3D space, π = p) and check that both
c̃V (eq) and c̃ρ(eq) remains finite and equal to 1/80. Clearly, when c̃V (eq) (or c̃ρ(eq)) diverges we cannot
write the Friedmann equation (7.2.22) in the form (7.2.25).

7.2.3 Static compact extra dimensions (generic pressures)

We can follow the same procedure as in the equal scale factor limit for the case of static compact
extra dimensions F = 0. While in the previous subsection the two internal and observed spaces were
evolving according to the same dynamics, in this limit the extra dimensions do not evolve and remain
static.

The two differential equations for this set–up become

3

2

(
Ḣ2 + 4H3

)
= − 1

M10
(cV V + cρρ)Hρ− T 7

7

2M5
+ 15HλRS − κ

b20
H (7.2.29)

ρ̇+ 3(w + 1)Hρ = 2T07 (7.2.30)
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where cV , cρ are as before (7.2.12). We introduce the new coefficients c̃V (st), c̃ρ(st) defined by

c̃V (st) =
cV

3w − 1
, c̃ρ(st) =

cρ
3w + 1

(7.2.31)

After plugging (7.2.30) into the Friedmann equation (7.2.29) we come to the expressions for H and χ

H2 =
c̃ρ(st)

3M10
ρ2 +

2c̃V (st)V

3M10
(ρ+ χ) +

5λRS

2
− 1

6

κ

b20
(7.2.32)

χ̇+ 4Hχ =

(
1 +

c̃ρ(st)

c̃V (st)

ρ

V

)
2T 0

7 −
M5

2c̃V (st)V
HT 7

7 (7.2.33)

ρ̇+ 3(w + 1)Hρ = 2T07 (7.2.34)

In analogy to the equal scale factor case, these expressions are valid as long as we don’t have w = 1/3
(w = −1/3) with cV �= 0 (cρ �= 0).

7.2.4 Proportional Hubble parameters

We are going to combine the two limits of a(t) = b(t) and F = 0 in the same description, implying
an equal cosmological evolution for the internal space and the 3D visible spatial dimensions, in the
first case, and, in the second case, the absence of evolution for the compact space.

Both the two systems of differential equations (7.2.25)–(7.2.27) and (7.2.32)–(7.2.34) can be writ-
ten in a unified formulation that encloses them, defining some appropriate constant parameters. We
introduce an “effective” number of dimensions d that takes the values d = 6 in the equal scale factor
limit and d = 4 in the static compact extra dimensions. If we look at the equations (7.2.26) and
(7.2.33), we see that d appears as the number of dimensions for which the energy density χ satisfies
the free radiation conservation equation in the limit of pure RS (T 7

7 = T 0
7 = 0). In fact, the Friedmann

equation plus the two (non)conservation equations can be rewritten as

H2 =
c̃ρ,d

(d− 1)M10
ρ2 +

2c̃V,dV

(d− 1)M10
(ρ+ χ)− 1

2(d− 1)

κ

b2
+

30

d(d− 1)
λRS (7.2.35)

χ̇+ dHχ = 2T 0
7

(
1 +

c̃ρ,d

c̃V,d

ρ

V

)
− M5

2c̃V,dV
HT 7

7 (7.2.36)

ρ̇+ wdHρ = 2T07 (7.2.37)

We have in addition defined wd = 3(1+w)+(d−4)(1+wπ) and c̃V,d = cV /(wd−d), c̃ρ,d = cρ/(wd−d/2)
where cV and cρ are given in (7.2.12). We remind that in order to get an algebraic equation for H2

as a function of the energy densities ρ and χ (7.2.35), we have to keep c̃V,d, c̃ρ,d finite, i.e. respectively
wd �= d,wd �= d/2 unless cV = 0, cρ = 0. For example we cannot write H in the form (7.2.35) if
w = 1/3, wπ = 0 in both the equal scale factor and the static compact extra dimension limit, since
the linear term in ρ has a diverging coefficient.

Moreover, we can further generalize this analysis introducing a parameter ξ such that F = ξH.
This description contains all the above studied limits. The analogous of the previous relations
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7. Randall–Sundrum cosmology in seven dimensions

(7.2.35)–(7.2.37) can be written as

H2 =
c̃ρ,ξ

(3 + 2ξ)M10
ρ2 +

2c̃V,ξV

(3 + 2ξ)M10
(ρ+ χ)− 1

ξ2 + 3ξ + 6

κ

a2ξ
+

5

ξ2 + 2ξ + 2
λRS

(7.2.38)

χ̇+ dξHχ = 2T 0
7

(
1 +

c̃ρ,ξ

c̃V,ξ

ρ

V

)
− M5

2c̃V,ξV
HT 7

7 (7.2.39)

ρ̇+ wξHρ = 2T07 (7.2.40)

where now dξ is a more complicated function of the proportionality constant ξ between the two Hubble

parameters dξ ≡ 6 ξ2+2ξ+2
3+2ξ and it reduces to dξ = 6, dξ = 4 in the two previously examined limits of

equal scale factors and static compact extra dimensions (ξ = 1, ξ = 0). The constant wξ reduces to
wd for ξ = 0, ξ = 1 and is defined by wξ ≡ 3(1 + w) + 2ξ(1 + wπ). The two coefficients c̃V,ξ, c̃ρ,ξ are
defined as c̃V,d, c̃ρ,d, with wd → wξ, d→ dξ. The result (7.2.38) is valid unless ξ = −3/2. In that case
the equation for H becomes algebraic — though we still have the curvature term explicitly depending
on the scale factor —, thus

H2 = −
c̃ρ,− 3

2

33M10
ρ2 −

c̃V,− 3
2
V

33M10
ρ− κa3

33
+ 4λRS (7.2.41)

ρ̇+ 3(w − wπ)Hρ = 2T07

No mirage density appears and the Hubble parameter is a quadratic polynomial in the localized
energy density ρ alone. Besides, if the pressures are equal wπ = w in the pure RS set–up T 0

7 = 0, the

energy density is constant in time and so is H2 + κa3

33 , for ξ = −3/2. The set of equations (7.2.41)
also doesn’t depend on T 7

7 at all.
Again we have to restrict to wξ �= dξ, dξ/2 to keep c̃V,ξ, c̃ρ,ξ finite (unless cV ∝ wξ − dξ, cρ ∝

wξ − dξ/2).
We remark that for the scale factors satisfying b(t) = 1/a(t), i.e. dynamical compactification with

ξ = −1, the equation for the mirage energy density χ in the pure RS set–up is still an effective 6D free
radiation conservation equation, as for b(t) = a(t). In fact, the only solutions to dξ = 6 are ξ = ±1.
To obtain a 4D free radiation equation for χ we have to require ξ = 0, since the second solution to
dξ = 4 is ξ = −3/2, for which we don’t define a mirage density (7.2.41).

However, this is not the end of the story. Introducing the effective 4D densities � = V(2)ρ and

x = V(2)χ (where V(2) = v b2(t) = v a2ξ(t) is the volume of the 2D internal space), we have to replace
the l.h.s. of equations (7.2.39)–(7.2.40) respectively by ẋ + (dξ − 2ξ)Hx and �̇ + (wξ − 2ξ)H� (the
r.h.s. are also modified and we will explicitly write them at the end of subsection 7.3.2). This tells
us that the 4D mirage density is a free radiation energy density for pure RS in four dimensions for
dξ − 2ξ = 4, which has solutions ξ = 0, ξ = 1 — i.e. static internal space or equal scale factors,
justifying the study of these two limits, in particular.

7.2.5 Comments

We here summarize some considerations about the bulk evolution equations derived in the previous
subsections and, in particular, about the explicit expressions we have found for the Hubble parameters
in the discussed limits.
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7.3. Bulk critical point analysis with energy exchange

(a) With the assumption of having the same pressure for the matter fluid in the two dimensional
internal space and in the 3D visible space (i.e. π = p), we found a form of the Friedmann
equation that has the advantage of keeping both the Hubble parameters not constrained by any
particular ansatz. The Friedmann equation (7.2.15) provides an expression for (3H + 2F ) in
terms of ρ and χ (for spatially flat spaces). This solution, though, is satisfactory only in the
limit of small (H − F ). When (H − F ) is not negligible w.r.t. (3H + 2F ), the mirage density
equation may be written introducing an extra term independent of the bulk parameters T 0

7 , T
7
7 .

This prevents χ to obey to a free radiation equation in the pure RS set–up (T 0
7 = T 7

7 = 0),
as it should instead be in the context of the AdS/CFT correspondence (we will discuss the
comparison between the bulk and the dual brane analysis in section 8.4).

(b) In the simple limits of equal scale factors (7.2.25) and static compact extra dimensions (7.2.32)
we recovered an expression for H2 containing a quadratic term in ρ and a linear term in (ρ+χ),
where ρ is the localized energy density and χ is an artificially introduced mirage density that
accounts for the bulk dynamics. In fact it depends on the bulk parameters T 0

7 , T
7
7 . When

T 0
7 = T 7

7 = 0, the mirage density obeys to 4D free radiation equation for the static compact
extra dimension case and to 6D free radiation equation for the equal scale factor case. This is
in complete analogy to the 5D analysis [159], where the same dependence on ρ and χ occurs
and the mirage energy satisfies 4D free radiation for pure RS (i.e. T 0

5 = T 5
5 = 0).

(c) When wπ = w (or equivalently π = p) in the equal scale factor limit (7.2.25), we find the results
given by the equal pressures subsection in the case F = H (7.2.19). The two limits of equal
pressures and equal scale factors then commute and the results are consistent.

(d) The description of section 7.2.4 encloses in a unifying way the results in the limits of static
compact extra dimensions and equal scale factors. It moreover generalizes these results to the
case of evolutions governed by proportional Hubble parameters F (t) = ξH(t). We will use the
set of equations written in terms of the effective number of dimensions d (that describes the
two limits of static internal space, with d = 4, and equal scaling for the compactification space
and the 3D space, with d = 6) to study the corresponding cosmological evolution in the next
section.

We are now going to proceed to the analysis of the critical points for this seven dimensional
universe in a 7D Randall–Sundrum set–up, including the energy exchange term.

7.3 Bulk critical point analysis with energy exchange

We have until now transformed the second order differential equation (7.2.7) plus the (non)conservation
equation (7.2.6) in a set of three linear differential equations (7.2.35)–(7.2.37) for combined equal scale
factor and static compact extra dimension limits, or more generally (7.2.38)–(7.2.40) for proportional
Hubble parameters. We have introduced the mirage density χ defined by its differential equation.
In this section we will use the system of equations (7.2.35)–(7.2.37), obtained to describe both the
limit of equal scale factors and static compact extra dimensions, to find its fixed points and the
corresponding stability. The critical point analysis will allow us to study the cosmological evolution
in the bulk description for F = 0 or F = H.
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7. Randall–Sundrum cosmology in seven dimensions

We make an assumption on the bulk components of the stress–energy tensor that appears in the
differential equations for the energy densities ρ and χ. As in [159], we will take the diagonal elements
of the stress energy tensor to satisfy the relation

∣∣∣∣T (diag)
m,B

T
(diag)
v,B

∣∣∣∣� ∣∣∣∣T (diag)
m,b

T
(diag)
v,b

∣∣∣∣ (7.3.42)

This enforces the solution to the Friedmann equation to be reasonably independent of the bulk
dynamics, since the T 7

7 term in (7.2.7) becomes negligible with respect to the first term on the r.h.s.
of the same equation. Imposing such a relation, T 7

7 disappears from the sets of linear differential
equations, while we remain left with the T 0

7 component. For the future bulk calculations we will
define T ≡ 2T 0

7 to simplify the notation.

Before starting the critical point analysis we note that when T = 0 the system of equations
(7.2.35)–(7.2.37) have only trivial critical points characterized by zero visible Hubble parameter when
the internal space is flat. There are two of these critical points. One is given by H2

 = −κ/2(d− 1)b2,
ρ = χ = 0 (which is valid only if we are compactifying on hyperbolic or flat spaces) and the other
is H = 0, c̃ρ,dρ

2
 + 2c̃V,dV (ρ + χ) = M10κ/b.

We will first restrict to small density1ρ � V and flat internal space κ = 0 (remind that the 3D
space is already supposed to be flat, having put k = 0) and then go through the generic density
analysis. De Sitter stable solutions (for the 4D visible space–time) would represent the present
accelerated era, while inflationary phases at early times may be associated to primordial inflation.

7.3.1 Small energy density and flat compact extra dimensions

When the localized energy density is small and the internal space curvature vanishes, ρ� V, κ = 0,
the bulk Einstein equations (7.2.35)–(7.2.37) in terms of H, χ and ρ become

H2 =
2c̃V,dV

(d− 1)M10
(ρ+ χ) (7.3.43)

χ̇+ dHχ = T (7.3.44)

ρ̇+ wdHρ = −T (7.3.45)

We note that in this approximation expression (7.3.43) isn’t valid for wd = d, unless cV ∝ (wd − d)
(this would for example determine a specific value for wπ as a function of w). Nevertheless we will
find in the rest of the section that c̃V,d always appears with the coefficient (wd − d) in the critical
point analysis. We thus have to keep in mind that (wd − d)c̃V,d = cV = (31w − 6wπ − 5)/400 always
remains finite.

1We are referring to the energy density localized on the 5–brane. The effective 4D density is 
 = V(2)ρ, where V(2)

is the volume of the internal compactification pace. Similar relations are established for the mirage density and the
pressures. We note that the volume of the 2D compact space varies in time, unless extra dimensions are static, since
it is proportional to b2(t): it contracts as the 4D visible space expands in the dynamical compactification approach
[199, 200]
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7.3. Bulk critical point analysis with energy exchange

Fixed point solutions In the small density approximation, the fixed points in terms of the critical
energy density can immediately be found (to have a full solution we have to make an ansatz on the
form of the energy exchange parameter).

The first solution is given by

H = −B

wd
ρ

1/2


χ = −wd

d
ρ (7.3.46)

T = Bρ
3/2


where B ≡ −wd

(
(d−wd)2c̃V,dV

d(d−1)M10

)1/2
. This represents an inflationary critical point for the cosmological

evolution, for (wd − d)c̃V,d = cV > 0, i.e. both c̃V,d > 0 and d > wd or c̃V,d < 0 and d < wd
2. The

acceleration factor at the fixed point is simply given by q = H2
 . Since we assume wd to be positive,

B is negative and H in (7.3.46) is positive. At this fixed point the universe is thus expanding.

Another fixed point leaves χ unchanged, while T and H have switched signs with respect to
(7.3.46), meaning that H is negative and the universe in contracting (there is a symmetry T →
−T,H → −H in the whole system of equations)

H =
B

wd
ρ

1/2


χ = −wd

d
ρ (7.3.47)

T = −Bρ
3/2


The trivial critical point is characterized by mirage density equal and opposite to ρ, but zero
Hubble parameter and energy exchange (in the case we admit for the energy exchange the form
T = Aρν all the variables are zero at the trivial fixed point).

For positive critical energy densities ρ, we obtain a negative brane–bulk energy exchange param-
eter at the critical point if H > 0 and, viceversa, we have positive critical energy exchange for a
contracting universe at the critical point. During the evolution, we can expect a change of regime
going from negative to positive T as the energy density localized on the brane grows, as for the 5D RS
critical point analysis with energy exchange carried in [159]. Even though most of the analysis in this
section will be performed supposing that the energy exchange parameter has fixed sign determined
by the sign of A (since we will mainly assume T = Aρν), we can argue that for small energy density ρ
the generic energy exchange is presumably negative, meaning that energy would be transferred from
the bulk onto the brane. In this hypothesis, an equilibrium can be reached, such that the energy
density would have a large limiting value for which energy starts to flow back into the bulk (with
positive energy exchange).

2As examples of negative c̃V,d and (d − wd), both negativeness conditions can be satisfied if w = 1/3 for wπ > 8/9
when H = F , but never when F = 0. If w = 0 we must have wπ > 1/2 in the equal scale factors limit, while no
solution can be found with static compact extra dimensions. We instead get positive c̃V and (d − wd) if w = 0 for
−5/6 < wπ < 1/2 with H = F and for wπ > 1/2 with F = 0. No value of wπ satisfies the positiveness conditions if
w = 1/3.
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7. Randall–Sundrum cosmology in seven dimensions

Stability analysis The real parts of the eigenvalues of the stability matrix for the (δχ, δρ) linear
perturbations corresponding to the critical point (7.3.46) can have opposite signs or be both negative.
This depends on the value of T as a function of the energy density ρ at the fixed point (7.3.46)
describing an expanding universe with energy influx. The explicit form of the eigenvalues is

λ± =
B

2wd
ρ

1/2


[
d+ (1− ν̃)wd ±

√
(d+ (1− ν̃)wd)2 − 2(3− 2ν̃)dwd

]
(7.3.48)

where we have defined

ν̃ ≡ ∂ log |T |
∂ log ρ

∣∣∣∣


(7.3.49)

Expression (7.3.48) then shows that the two eigenvalues have negative real part when ν̃ < 3/2.
There is a second upper bound on ν̃ derived from requiring negative real part for the eigenvalues.
Nonetheless, for the range of values −1 ≤ w,wπ ≤ 1 and d = 4, 6 in which we are interested, this
bound is always equal or greater than 3/2. If |T | is a decreasing or constant function of ρ near T,
the non trivial inflationary critical point always is an attractor. Also for growing |T | we can have
stable inflationary fixed points, as long as ν̃ < 3/2. In particular, the linear case ν̃ = 1 is included in
the stable inflationary fixed point window and will be analyzed both solving the Einstein equations
numerically, in the next subsection, and deriving an explicit solution, in subsection 7.3.3.

Besides, when

1−
√

2d

wd
− d

wd
< ν̃ < 1 +

√
2d

wd
− d

wd
(7.3.50)

the eigenvalues have non zero imaginary part and the critical point is a stable spiral if in addition
ν̃ < 3/2. For values of ν̃ out of the range (7.3.50), we get a node. As an example, let’s assume the
value ν̃ = 1 in the equal scale factor background. This gives a stable spiral for wπ > 1/2 or wπ < 1/2
and w > −2(1 +wπ) (considering w,wπ > −1). This means that in the case w 	 1/3 and wπ = 0 the
critical point is a stable spiral, while for both w and wπ null we instead have a stable node.

For energy outflow T > 0 (which goes along with contraction H < 0), we get a minus sign overall
modifying the eigenvalues (7.3.48) referring to the linearized system around the critical point (7.3.47)
(characterized indeed by energy outflow). The eigenvalues cannot be both negative in this case. In
fact we should demand wd > d/(ν̃ − 1) with ν̃ > 1 but also ν̃ < 3/2 to get a stable fixed point. Only
the trivial point, as we will discuss later, can be attractive for energy outflow dynamics.

Assumption T = Aρν and numerical solutions Assuming the brane–bulk energy exchange
parameter to take the form T = Aρν (so that ν̃ = ν referring to (7.3.49)), we can rewrite the
system of differential equations in term of dimensionless quantities ρ̌ = γ6ρ, χ̌ = γ6σ, Ȟ = γH,
Ť = γ7T , where we called γ4 ≡ 2V

(d−1)M10 . The dimensionless variable ρ/V used to perform the small

energy density expansion at the beginning of this section is related to the dimensionless variable ρ̌ by

ρ̌ = (2c̃V,d/(d− 1))3/2 (V/M6
)5/2

(ρ/V ). So, considering the small ρ/V approximation is equivalent
to considering small ρ̌ approximation if the brane tension V satisfies V � M6 with respect to the 7D
Planck mass and c̃V,d is reasonably of the order c̃V,d � 1. The complete set of fixed point solutions
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7.3. Bulk critical point analysis with energy exchange

(discarding the trivial ones) can be calculated in terms of the parameters A, ν characterizing the
energy exchange and wd, d denoting the background (static extra dimensions or equal scale factors)
and the equations of state for both the 3D and internal spaces.

The Einstein equations become

Ȟ2 = c̃V,d (ρ̌+ χ̌)

˙̌χ+ dȞχ̌ = Ǎρ̌ν (7.3.51)

˙̌ρ+ wdȞρ̌ = −Ǎρ̌ν

where Ǎ = γ1+6(1−ν)A.
The acceleration q̌ can be evaluated independently of ν and Ǎ

q̌ =
(
1− wd

2

)
c̃V,d ρ̌+

(
1− d

2

)
c̃V,d χ̌ (7.3.52)

as a function of the localized matter density and of the mirage density. Due to the positiveness
constraint on c̃V,d (ρ̌+ χ̌) coming from the first equation in (7.3.51), the trajectories in the phase
space must satisfy

q̌ ≤ (d− wd)c̃V,d ρ (7.3.53)

as it is indeed showed in the numerical plots of figure 7.1. For wd > 2 and c̃V,d > 0 we have positive
acceleration only if the mirage density χ̌ is negative and smaller than −ρ̌(2 − wd)/(2 − d). On the
other hand, χ̌ gets positive (suppose c̃V,d > 0) only if q̌ < (2− wd)ρ̌/2.

The fixed points are given by

Ȟ
3−2ν

= (−)3−2ν

(
c̃V,d(d− wd)

d

)1−ν Ǎ

wd
(7.3.54)

χ̌
3−2ν = (−)3−2ν d2(ν−1)Ǎ2

c̃V,d(d− wd)w
2ν−1
d

(7.3.55)

ρ̌
3−2ν =

dǍ2

w2
dc̃V,d(d− wd)

(7.3.56)

For ν < 3/2, when the non trivial fixed point is stable, we have two roots of (7.3.56) with opposite
signs if ν = 1/2+m,m ∈ Z. Only one real root exists for integer ν and it carries the sign of the r.h.s.
in (7.3.56). Finally, for ν = (2m + 1)/4, we have a positive root if the r.h.s. in (7.3.56) is negative.
The two eigenvalues corresponding to a negative ρ̌ always have opposite real part, implying that
this fixed point isn’t be stable at linear order, it is a saddle. We further note that for wd > d and
positive c̃V,d (or alternatively d > wd and negative c̃V,d) we can only have real and positive ρ fixed
point if ν = (2m + 1)/4,m ∈ Z. This implies that for ν = 1 there is no non trivial fixed point with
positive ρ, when (d−wd) and c̃V,d have opposite signs. Moreover, these negative ρ points are always
characterized by negative H, so that they wouldn’t be inflationary.

We can check the stability of the critical points by means of a numerical analysis of the differential
system of equations (7.3.51). In the case of energy influx Ǎ < 0, putting ν = 1 and different
values for the d,wd parameters, we get the phase spaces in figure 7.1, plotting the acceleration
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Figure 7.1: Phase spaces q̌/ρ̌ for different initial conditions ρ̌0 and q̌0, with Ǎ = −1, ν = 1, d = 6
(equal scale factors — analogous pictures come from the static extra dimension case) and: (a) wd = 4
(for instance w = 0, wπ = −1/2 or w = −1/5, wπ = 0) leading to a spiral–like stable critical point,
(b) wd = 3 (for instance w = 0, wπ = 1/2) determining a stable node. The extra blue grid lines
intersection represents the fixed point.

factor q̌(t) ≡ ¨̌a(t)/ǎ(t) as a function of the energy density ρ̌(t). We thus check that, solving the
system of differential equations for variable initial conditions for χ̌ and ρ̌, including both positive and
negative initial q̌, all the different trajectories converge to the non trivial fixed point, designated by
the intersection of the two perpendicular lines in the picture. Besides, as we should expect from the
values of the parameters, in part 7.1(a) they have a spiral behavior, while in the 7.1(b) case they
denote a node.

In the limit wd → d we numerically recover the analytical solution discussed in subsection 7.3.3,
neglecting the large density behavior.

For ν > 3/2, i.e. when the non trivial fixed point is no more an attractor, we find that some
of the trajectories go to the trivial critical point, while another branch of solutions to the Einstein
equations (7.3.51) are characterized by diverging energy density ρ̌ (they become unreliable when
ρ̌2 � (2c̃V,d/(d − 1))3(V/M6)5). This happens because, as it is suggested by the integration of the

third equation in (7.3.51) with energy influx hypothesis, for ρ̌ big enough — precisely for ρ̌ν− 3
2 �

(wd/A) c̃
1
2
V,d (1 + χ̌/ρ̌)

1
2 — the function ρ̌(t) starts growing, while it eventually goes to zero for small

ρ̌. Depending on the initial conditions we will have solutions ending in the trivial fixed point or
diverging.

The behavior of the system with energy outflow can be deduced analytically. Given the hypothesis

T > 0 it is clear that the trajectories can’t be attracted by the fixed point solution T = Bρ
3/2
 . They

also can’t flow to the critical point characterized by negative Hubble parameter and T = −Bρ
3/2
 .

We already determined the non attractive nature of both these fixed points. Indeed, from the form
of the Einstein equations (7.3.45) we can conclude that all the trajectories in the phase space q̌/ρ̌ go
toward the trivial point, since for positive T the density ρ is suppressed at late time. The way in
which the trajectories go to the critical point depends on the positiveness of the function under the

166



7.3. Bulk critical point analysis with energy exchange

square root in (7.3.48). We numerically checked that for istance for ν = 1 and d = 6, wd = 4 the null
fixed point is an attractor and, in particular, a stable node.

7.3.2 Critical points with general energy density

Allowing κ to be different from zero, not restricting the localized energy density to be small and with
the assumptions (7.3.42) on the bulk matter stress–energy tensor, we have to solve the following set
of equations

H2 =
c̃ρ,d

(d− 1)M10
ρ2 +

2c̃V,dV

(d− 1)M10
(ρ+ χ)− 1

2(d − 1)

κ

b2
(7.3.57)

χ̇+ dHχ = T

(
1 +

c̃ρ,d

c̃V,d

ρ

V

)
(7.3.58)

ρ̇+ wdHρ = −T (7.3.59)

As in the small energy density regime, we can immediately notice that the analytical behavior
for energy outflow is characterized by decreasing ρ in time. The trajectories will thus be attracted to
the trivial fixed point characterized by vanishing ρ.

We will now carry the general critical point analysis. Equation (7.3.57) exhibits divergences if
wd = d or wd = d/2, unless cV ∝ (wd − d) or cρ ∝ (wd − d/2). When the divergence arises, the right
system of equations is (7.2.10). Terms like (wd−d)c̃V,d = cV and (wd−d/2)c̃ρ,d = cρ are always finite
though (where we recall cV = 31w − 6wπ − 5 and cρ = 11w + 14wπ + 10− (w − wπ)(3w − 7wπ)).

Fixed point solutions If we demand H to be positive, i.e. expanding universe, the solution for
H and T is given by

H = −B

wd
ρ

1/2


χ = −wd

d

(
1 +

c̃ρ,dρ

c̃V,dV

)
ρ (7.3.60)

T = Bρ
3/2


where B = B (ρ) depends also on κ and ρ and is defined by

B (ρ) = −wd

[
(d− 2w)c̃ρ,dρ + 2(d − w)c̃V,dV

d(d− 1)M10
− κ

2(d− 1)b2ρ

]1/2

(7.3.61)

We have a negative energy exchange parameter, as in the small density limit, corresponding to the
positive Hubble parameter.

The second fixed point solution is equal to the first except for the H and T signs switched (keep
in mind the H → −H, T → −T symmetry). H is negative and we have energy outflow at the critical
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point

H =
B

wd
ρ

1/2


χ = −wd

d

(
1 +

c̃ρ,dρ

c̃V,dV

)
ρ (7.3.62)

T = −Bρ
3/2


The trivial critical point is characterized by vanishingH and T, while the mirage density becomes

χ =
M10κ

4b2c̃V,dV
−
(

1 +
c̃ρ,dρ

2c̃V,dV

)
ρ (7.3.63)

If the energy exchange is supposed to be of the form T = Aρν , the trivial fixed point is characterized
by zero value for all the variables except for the mirage density χ which becomes χ = M10κ/4b2c̃V,dV
and is zero for flat compact spaces.

As in the limit of small energy density considered in the previous section, the constant B is
negative whenever the argument of the square root in (7.3.61) is positive, i.e. when

κ

2(d − 1)b2
<

(d− 2wd)c̃ρ,dρ + 2(d− w)c̃V,dV

d(d− 1)M10
ρ (7.3.64)

If the square root gives an immaginary number, we don’t have any real valued fixed point except for
the trivial one.

Stability analysis The positiveness of the eigenvalues of the stability matrix depends now on all
the parameters and constants of the theory and not only on ν̃, as for the small density, flat compact
extra dimension simple case. We consider the situation in which the variation of κ/b2 vanishes (this
happens in the static compact extra dimension limit or for κ = 0 in the equal scale factor background.
Otherwise we would have a linearized system of two differential equations plus one algebraic equation
in the four variables δκ, δρ, δχ, δH .

There are two conditions that must be satisfied, in order to get two negative eigenvalues and
hence a stable fixed point. These conditions give two upper bounds for ν̃ in terms of the constants
wd, d and V, ρ, κ/b

2
,M

(ν̃ − 1) <
wd

d

wd

(d− 1)B2
M

10
[(d− 2wd)c̃ρ,dρ + (d− wd)c̃V,dV ] (7.3.65)

(ν̃ − 1) <
d

wd

The second bound in (7.3.65) satisfies d/wd + 1 > 3/2 in the range −1 ≤ w,wπ ≤ 1. Besides, the
first bound reduces to ν < 3/2 when we take the limit ρ/V � 1 and put κ = 0. The results are in
agreement with the previous small density analysis.

The bounds (7.3.65) depend on the fixed point value of ρ, which can’t be determined without
making any assumption on the form of T . However, we can make some remarks on the nature of the
fixed points. For values of ν̃ in the range

1− d

wd
−R < ν̃ < 1− d

wd
+R (7.3.66)
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where we defined

R ≡ 2

√
wd

(d− 1)B2
M

10
[(d− 2wd)c̃ρ,dρ + (d− wd)c̃V,dV ]

the stability matrix eigenvalues have non null immaginary part and the trajectories near to the critical
point have a spiral–like behavior. When R2

 < 0 we always have node–like fixed points. In agreement
with the small density case (7.3.50), when ρ/V � 1 and κ = 0 we get R →

√
2d/wd.

As an example, we assign the value ν̃ = 1. Since the first bound (7.3.65) can be rewritten as

(ν̃ − 1) <
wd

d

R2


4
(7.3.67)

this means that we should have R2
 > 0 to get stability. We also find that the fixed points have spiral

shape when R > d/wd or R < −d/wd, they will be nodes otherwise.

Assumption T = Aρν and numerical solutions To do a more quantitative analysis we have to
make an ansatz on the form of the energy exchange parameter T . As in the previous section, we
suppose a power dependence on the energy density ρ such that T = Aρν . The equations for generic
energy densities and internal space curvature can be rewritten introducing dimensionless variables as
in (7.3.51)

Ȟ2 = c̃ρ,d αρ̌
2 + c̃V,d (ρ̌+ χ̌)− κ̌

˙̌χ+ dȞχ̌ = Ǎρν

(
1 + 2

c̃ρ,d

c̃V,d
αρ̌

)
(7.3.68)

˙̌ρ+wdȞρ̌ = −Ǎρ̌ν

where α is a dimensionless constant defined by α2 ≡ (d−1)3

64

(
M6

V

)5
, κ̌ is the dimensionless variable

κ̌ = γ2κ
2(d−1)b2

— we remind that we restrict to constant κ̌ approximation.

To obtain real observables, we have to restrict the possible values for ρ̌ and χ̌ such that c̃ρ,d αρ̌
2 +

c̃V,d (ρ̌+ χ̌) − κ̌ ≥ 0. In fact, the plots show the presence of a prohibited zone in the phase space —
in particular, in figure 7.2(a) it is clear that the region of the possible trajectories is delimited by a
parabola. The relation that must be satisfied, in terms of the acceleration parameter and the energy
density, is

q̌ ≤ (d− 2wd)c̃ρ,d αρ̌
2 + (d− wd)c̃V,d ρ̌− dκ (7.3.69)

In fact, the analytical expression for the acceleration q̌ = ˙̌H + Ȟ2 can be written using (7.3.68) in
terms of the visible energy density and the mirage density. For any ν

q̌ = (1− wd)c̃ρ,d αρ̌
2 +

(
1− wd

2

)
c̃V,d ρ̌+

(
1− d

2

)
c̃V,d χ̌− κ̌ (7.3.70)

So, taking a specific value for ρ̌, we can have positive acceleration for our universe only if

− (c̃ρ,d αρ̌
2 + c̃V,d ρ̌− κ̌

) ≤ c̃V,d χ̌ < −2(wd − 1)c̃ρ,d αρ̌
2 + (wd − 2)c̃V,d ρ̌+ 2κ̌

d− 2
(7.3.71)
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and a necessary condition for this to be possible is a bound on the energy density (d− 2wd)c̃V,dαρ̌
2 +

(d − wd)c̃V,dρ̌ > dκ̌, as we can deduce from (7.3.69). The mirage density χ̌ has to be negative to get
positive acceleration for wd ≥ 2, κ ≥ 0. If instead wd ≤ 1, κ ≤ 0, the mirage density is positive for
negative q̌.

Manipulating the set of equations (7.3.68), we write the following differential equations in terms
of the generic energy exchange parameter T

a
dχ̌

da
= −dχ̌+ ηŤ

(
1 + 2

c̃ρ,d

c̃V,d
αρ̌

)[
c̃ρ,d αρ̌

2 + c̃V,d (ρ̌+ χ̌)− κ̌
]− 1

2 (7.3.72)

a
dρ̌

da
= −wdρ̌− ηŤ

[
c̃ρ,d αρ̌

2 + c̃V,d (ρ̌+ χ̌)− κ̌
]− 1

2 (7.3.73)

We thus come to the differential equation for the acceleration factor(
wdρ̌+

ηŤ

Ȟ

)
dq̌

dρ̌
= − ηŤ

2Ȟ
(2αcρρ̌+ cV ) + (7.3.74)

+

[
2α(1 − wd)cρρ̌+

1

2
(2− wd)cV

]
ρ̌+ dq̌ (7.3.75)

where Ȟ =
√

(2αcρρ̌2 + cV ρ̌+ dκ̌) /2 + q̌ and η = ±1 denotes the two possible roots for Ȟ. Again we
note the presence of the symmetry Ȟ → −Ȟ, Ť → −Ť . We have used the definitions (wd−d)c̃V,d = cV
and (wd − d/2)c̃ρ,d = cρ. From this equation we can infer that positive q̌ implies growing q̌ in an

expanding universe (η = +1) with energy outflow (Ť > 0) if cV < 0, cρ > 0 and ρ̌ < wd−2
wd−1

|cV |
4αcρ

≡ ρ̌lim.

For c̃V,d, c̃ρ,d > 0, cV < 0, cρ > 0 this is realized if d/2 < wd < d. In the case of energy influx (Ť < 0),
we get increasing positive acceleration if cV , cρ > 0 and wd < 1 for all positive energy densities
(c̃V,d, c̃ρ,d has to be negative). Or else, q̌ grows as ρ̌ grows if cV > 0, cρ < 0 and wd < 1, until the
energy density reaches the bound ρ̌lim.

The non trivial fixed points for energy influx are determined by the roots of the equation for ρ̌

1

d
(d− 2wd) c̃ρ,dαρ̌

2
 +

1

d
c̃V,d (d−wd) ρ̌ − Ǎ2

w2
d

ρ̌
2(ν−1)
 − κ̌ = 0 (7.3.76)

while for χ̌ and Ȟ we get the two functions of ρ̌

χ̌ = −wd

d

(
1 + 2

c̃ρ,d

c̃V,d
αρ̌

)
ρ̌, Ȟ = − Ǎ

wd
ρ̌ν−1

 (7.3.77)

We thus have to fix a particular value for ν in order to establish the precise number of roots and the
explicit solution for the critical points. For integer and semi–integer ν the number of roots we can
obtain, keeping d �= 2wd, is

ν ≥ 2 =⇒ # roots = 2(ν − 1) ≥ 2

1 ≤ ν < 2 =⇒ # roots = 2

ν < 1 =⇒ # roots = 2(2− ν) > 2
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These are all the roots of (7.3.76), including trivial and complex roots. When d = 2wd the critical
value for the mirage energy density diverges due to the divergence of c̃ρ,d, unless we fix wπ to keep it
finite. In this case, the number of roots changes to

ν > 1 =⇒ # roots = 2(ν − 1) ≥ 1

ν = 1 =⇒ # roots = 1

ν < 1 =⇒ # roots = 3− 2ν > 1

For ν > 1, one of the roots of equation (7.3.76) is null if κ = 0.
There are moreover two trivial fixed point solutions given by ρ̌ = Ȟ = 0, χ̌ = c̃V,d κ̌ and

ρ̌ = χ̌ = 0, Ȟ =
√−κ̌, that reduce to a unique point with all vanishing variables when the internal

space is flat.
Let’s study in more detail the case ν = 1, since solutions can be written explicitly being the case

with the minimum number of roots for (7.3.76), together with the ν = 2 case. As a result we get
a trivial fixed point solution with Ȟ = ρ̌ = 0, χ̌ = c̃V,d κ̌ and the trivial solution, acceptable only
for negative and zero curvature, Ȟ =

√−κ̌, ρ̌ = χ̌ = 0. Finally, the two non trivial solutions (for
d �= 2wd) are given by

Ȟ = − Ǎ

wd

χ̌ =
−c̃V,d(d− wd)− 4(d− 2wd)c̃ρ,d αK

2 ±
√

(d− wd)2c̃
2
V,d − 4d(d− 2wd)c̃ρ,d αK2

2(d− 2wd)c̃ρ,d α
(7.3.78)

ρ̌ =
−c̃V,d(d− wd)±

√
(d− wd)2c̃

2
V,d − 4d(d− 2wd)c̃ρ,d αK2

2(d− 2wd)c̃ρ,d α

where K corresponds to a shift and rescaling of Ǎ2 due to the non vanishing value of κ and is defined
by K2 ≡ Ǎ2/w2

d + κ̌. The two roots are both real only if the argument of the square root in (7.3.78)

is positive, i.e. when wd lies outside the two roots −α̃d
(
1±√(α̃+ 1)/α̃

)
, with α̃ ≡ 4c̃ρ,d αK − 1.

If α̃ is in the range bounded by −1 and 0 the square root is always real, whatever d,wd we choose.
If two or all among c̃V,d, c̃ρ,d, (d − wd), (d − 2wd) have equal sign, one of the two solutions (7.3.78)
always is characterized by a negative ρ̌. We note that we can have at list a non trivial fixed point
with positive energy density if (d − 2wd)c̃ρ,d α > 0, (d − wd)c̃V,d < 0 — exactly two positive ρ̌ fixed
points —, or for (d− 2wd)c̃ρ,d α < 0 — only one critical point with positive energy density.

The non trivial solution for d = 2wd is

Ȟ = − Ǎ

wd
, ρ̌ = 2c̃V,dK

2, χ̌ = −c̃V,dK
2
(
4c̃ρ,dK

2α+ 1
)

(7.3.79)

For this unique fixed point solution to be characterized by positive ρ̌ we have to demand a positive
c̃V,dK

2. Moreover, we can derive from (7.3.67) that for κ̌ > c̃V,dwdρ̌/4d the fixed point is a spiral,
so that for instance, in a flat internal space, we always obtain a node since c̃V,d must be positive in
order to have a positive ρ̌ fixed point (K = A in this case).

The numerical analysis can now show some of the features that we commented for the cosmolog-
ical evolution with generic density. The differential system of equations (7.3.68) (substituting some
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precise values for ν) can be solved numerically in order to check the existence of stable inflationary
critical points. In figure 7.2 we plot the dimensionless acceleration factor q̌(t) as a function of the
dimensionless energy density ρ̌(t), as we did in the previous section for small densities. In the plots,
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Figure 7.2: Trajectories in the phase spaces q̌/ρ̌ with varying ρ̌0 and χ̌0, d = 6, Ǎ = −1 (analogous
pictures come from the static extra dimension case) and: (a) wd = 4 > d/2, α = 1, ν = 1 leading to
stable node in ρ̌ = 1/4 plus a second repulsive node in ρ̌ = 3/4, (b) wd = 2.5 < d/2, α = 1, ν = 1
determining a stable node, (c) wd = 2.5 < d/2, α = 1, ν = −1 an example of a stable spiral, (d)
wd = 2 < d/2, α = 103, ν = 1 a spiral behavior for large α (large M6/V ).

we consider for simplicity positive c̃V,d, c̃ρ,d and flat compact extra dimensions κ = 0 (κ �= 0 results
in a shift for Ǎ2/w2

d in the critical point evaluation and in some scaling of the suitable value of ν in
order to have stability).

All the critical points we get are characterized by positive q̌, i.e. they represent an inflationary
point. This follows from q̌star = Ȟ2

 > 0. In the phase space portrait 7.2(a) trajectories starting
with positive acceleration factor and energy density lower than the critical one pass through an era
of larger acceleration and then slow down to the fixed point, where inflation occurs. There are then
solutions starting with negative acceleration and going to the positive q̌ critical point, eventually
passing through a larger acceleration phase or through a smaller density phase. The families of

172



7.3. Bulk critical point analysis with energy exchange

solutions that distinguish the diagram 7.2(a) from the others are characterized by both initial and
final very high energy density, since they are repelled by the second non attractive fixed point. Some
start with high energy density and negative acceleration at late time, go through an era of larger
acceleration (eventually positive) and then, while ρ̌ becomes very large, they go to a region of large
and negative q̌. Other go from positive acceleration to large negative q̌ and large ρ̌. The mirage
density χ̌ can start from an initial condition smaller or bigger than the critical value, has to be
positive for q̌ < − (3ρ̌+ 1) ρ̌ — as we deduce from (7.3.70) plugging in the values for the parameters
— and approaches a negative constant value.

In diagram 7.2(b), trajectories starting with negative acceleration go to the positive q̌ fixed point,
eventually reaching a maximum q̌ before ending into the critical point. Positive acceleration initial
condition lead to growing acceleration at very early times, when usually the energy density grows as
well, then both q̌ and ρ̌ decrease to reach the fixed point, passing through a minimum for acceleration.
The mirage density goes to the negative critical value being initially positive for the trajectories that
come from negative acceleration conditions, with q̌ < − (4ρ̌+ 1) ρ̌/2. With the choice of parameters
we used, we get wd < d/2. We could also have used the fixed point solution (7.3.79) if wd = d/2 = 3
and the diagram for the phase space would have been analogous to that in plot 7.2(c).

In the phase space 7.2(c) all solutions converge to the fixed point with a spiral behavior. Energy
density and acceleration parameter thus oscillate around the critical values. Here ν = −1 and
d < 2wd. The number of roots corresponding to the critical point solutions are six, but four of them
are complex roots and one is characterized by negative energy density. Only one real critical point
with positive energy density exists in this case and it has Hubble parameter. Since q̌ can be negative
at some time of the evolution, even if starting with a positive value, χ̌ can pass through a positive
phase, crossing zero before reaching the negative critical value, if q̌ < − (4ρ̌+ 1) ρ̌/2. A similar plot
can be drawn also if wd = d/2. There would be only five roots for ρ̌, four of which would be complex
conjugated and the last would have positive energy density, representing the stable spiral.

Another stable spiral is represented in figure 7.2(d). Here, the dimensionless parameter α, which
is proportional to M6/V , is large and ν = 1. We find only one non trivial fixed point with positive
energy density and spiral behavior, so that trajectories has a shape analogous to the ones in 7.2(c).

For values of ν different from ν = 1 the number of fixed point roots may vary according to the
previous discussion. Nonetheless, (as it is shown as an example in figure 7.2(c) for ν = −1) some of
the roots may be complex conjugated and thus not acceptable. Another simple case is ν = 2, where
we get two solutions to (7.3.76), as with the ν = 1 assumption. We will not discuss this situation in
detail since the phase spaces we can find are analogous to the ν = 1 ones.

The case of energy outflow is analogous to the small energy density analysis. In fact, the fixed
point solution (7.3.62) can’t be characterized by positive energy exchange parameter T . We can
nevertheless have a critical point with energy outflowing from the brane into the bulk and negative
Hubble parameter (as we can deduce from the expansion → contraction, influx→ outflow symmetry).
As the differential equation for ρ (7.3.59) shows, the energy density decreases and go to the trivial
fixed point, meaning that the negative H critical point isn’t an attractor.

4D densities The 4D energy density in the static compact extra dimension case is just given by a
constant rescaling of the 6D density. Thus, the phase portraits are given by the plots in figure 7.1
for small energy density, and figure 7.2 for generic density (up to constant rescaling). However, for
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equal scale factors d = 6, the 4D effective energy density � is dynamically determined by the energy
density localized on the 5–brane ρ and the volume of the compact space V(2): � = V(2)ρ. The 4D
mirage density can be similarly defined as x = V(2)χ. We can single out the volume time dependence
defining the dimensionful constant v such that V(2) ≡ vb2(t), where b(t) is as usual the compact space
scale factor — in this particular case b(t) = a(t). The generic set of equations for the dimensionless
variables Ȟ, �̌, x̌ is

Ȟ2 =
c̃ρ,d=6 α

v2

�̌2

a4
+
c̃V,d=6

v

(�̌+ x̌ )

a2
− κ̌ (7.3.80)

˙̌x + 4Ȟ x̌ = Ǎ
�ν

a2(ν−1)

(
1 + 2

c̃ρ,d=6

c̃V,d=6

α

v
�̌

)
˙̌�+ (3(1 + w) + 2wπ)Ȟ�̌ = −Ǎ

�̌ν

a2(ν−1)
(7.3.81)

where A ≡ A/vν−1. We first note that in the case of zero energy exchange T = 0 (Ǎ = 0) the 4D
mirage density satisfies the 4D free radiation equation, as in the static internal space hypothesis.
The 4D energy density � does not have a definite behavior in the case of energy outflow. While
in the static 2D compact space background it is clear that �, just as ρ, is suppressed in time since
wd=4 > 0, here we may have a negative coefficient wd=6 < 0 for the linear term in �̌ in (7.3.81). If
wπ < −3(1 + w)/2 — which is possible only for w < −1/3 if wπ > −1 — we could have non trivial
stable critical points, as in the energy influx context. This scenario would need further investigations.

Dynamical compactification We can make some considerations regarding the more generic as-
sumption on the relation between the Hubble parameters H and F , F = ξH, of subsection 7.2.4.
For positive ξ the qualitative behavior is analogous to what we deduced in the case of static compact
extra dimensions and equal scale factors. When ξ is negative, meaning that we are using a dynamical
compactification approach [199], we could instead have some differences. In particular, it is worth
noticing that wξ (appearing in the conservation equation for ρ) can become negative, implying a
diverging behavior for the localized energy density at late time in the case of energy influx. Thus,
there won’t be stable critical point in the dynamical compactification scenario with energy flowing
from the bulk onto the brane.

7.3.3 Small density and free radiation equation of state: an explicit solution

We can write an explicit solution to the set of equations (7.2.35)–(7.2.37) in the special limit of small
localized energy density ρ � V and when wd = d. This last condition is realized if w = 1/3 with
static compact extra dimensions and if wπ = (1− 3w)/2 with equal scale factors. We must be careful
though, because in this limit c̃V,d generally diverges. It is thus important to keep it finite by imposing
a priori a specific value for w and wπ. With these assumptions, H2 only depends on the sum (ρ+ χ)
and the equation for this sum can be easily integrated independently of the explicit form of T . To be
more specific, we get the following solution

H2 =
2c̃V,dV

(d− 1)M10
(ρ0 + χ0)

ad
0

ad
− 1

2(d− 1)

κ

b2
(7.3.82)

ρ+ χ = (ρ0 + χ0)
ad

0

ad
(7.3.83)
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As in the five dimensional RS model with energy exchange analyzed in [159], the evolution is
determined by the initial value of the energy density (if we put, for example, χ0 = 0) weighted by
the expansion in a (effective six or four dimensional) radiation dominated era.

We deduce from (7.3.82) that |a(t)| must have an upper limiting value for κ > 0. For small
positive a(t) the rate ȧ(t) is a positive function and the universe expands until it reaches the limiting
value. If the compactification is over an hyperbolic space, the scale factor grows without bound. In
particular, in a universe with extra dimensions evolving according to the same Hubble parameter as
for the observed space–time, the expansion rate goes to a constant positive value as the scale factor
grows. In a static extra dimension set–up instead, a(t) exponentially grows at infinity. When κ = 0
the explicit solutions for a(t) reduce to a(t) ∼ t1/2 for static internal space, and a(t) ∼ t1/3 for equal
scale factors. These represent exactly a radiation dominated flat universe in four or six effective
dimensions respectively. The evolution a(t) ∼ t1/3 can also be associated in 4D to the Friedmann
equation for scalar field subject to a null potential.

If we further assume the energy exchange to be linear in the localized energy density T = Aρ,
also imposing the initial condition χ0 = 0 and wd = d, the integration of the χ and ρ equations yields

χ = ρ0
ad

0

ad

(
1− e−At

)
, ρ = ρ0

ad
0

ad
e−At (7.3.84)

This solution shows that the initial amount of radiation energy density decays in favor of the mirage
energy density, for energy outflow A > 0. The late time evolution is thus governed by the mirage
density for outflow.

For equal scale factors it is interesting to write the explicit solution (remember wd=6 = 6 in this
case) in terms of the 4D densities �, x (� = vb2(t)ρ, x = vb2(t)χ). The ansatz implying static internal
directions results in a constant rescaling of the 6D quantities only. The equal scale factor solution is
given by

H2 =
2c̃V,d=6 V

5M10 v
(�0 + x0)

a4
0

a6
− 1

10

κ

a2
(7.3.85)

�+ x = (�0 + x0)
a4

0

a4
(7.3.86)

The evolution is still weighted by the characteristic effective 6D radiation dominated era 1/a6. But we
can see, exploring the solutions for � and x in the case of energy exchange parameter determined by
T = Aρ (with positive A), that the 4D localized energy density evolves as 4D radiation, exponentially
suppressed in time (as for the static internal space background). In fact, assuming as beforex0 = 0,
we get

x = �0
a4

0

a4

(
1− e−At

)
, � = �0

a4
0

a4
e−At (7.3.87)

(in this case A = A).
The scenario with energy influx is also analogous to the analysis in [159]. For both static compact

extra dimensions and equal scale factors we rewrite the conservation equation for ρ (for flat internal
space) as

ρ̇+
2

t
ρ = −T (7.3.88)
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where we have used the equation determining H (7.3.82). This shows that for negative T , ρ should
increase without bounds at late time. Since we are in the low density approximation, we can only
rely on the generic ρ analysis of the previous section for large ρ. However, assuming T = Aρν , we can
deduce that for ν > 3/2 the energy density can flow to zero (for certain values of the parameters).
Indeed, ν > 3/2 corresponds to non stable critical point in the small density analysis.

We remark that introducing the 4D density � for a universe with equal scale factors brings to

�̇+
4

3t
� = −T (7.3.89)

Equation (7.3.89) tells us that the 4D localized energy density still grows unlimited at late time, if T
is linear in � — more general considerations are analogous to the 6D density case. Again, we would
need the full treatment for generic density.

The acceleration parameter q ≡ ä/a in this context is equal to

q = −(d− 2)c̃V,dV

(d− 1)M10
(ρ0 + χ0)

ad
0

ad
(7.3.90)

For non zero κ, the value of the acceleration can be either positive or negative. It has to be negative
when κ ≥ 0, but may be positive for compactification on hyperbolic spaces (κ < 0), giving as a result
a loitering universe.

7.4 Remarks on 7D RS cosmology

In the context of the 7D RS proposal I studied the Friedmann–like equation that comes along with
the introduction of a mirage energy density satisfying to the non homogeneous radiation equation in
some effective number of dimensions (which is six for equal scale factors in both 3D and 2D spaces
and is four when the internal space is static). The bulk cosmological evolution is then determined
by the Friedmann equation and by the (non)conservation equations for the mirage density and the
localized matter density on the 5–brane. Making use of some simple ansatz for the evolution of
the 2D compactification space (such as putting the corresponding Hubble parameter F equal to
the Hubble parameter of the visible space H or to make it vanish) we found a wide spectrum of
possible cosmologies that reduce to the RS vacuum in the absence of matter (i.e. we imposed the RS
fine–tuning λRS = 0).

Assuming small density approximation, I have described the explicit analytical solution in case
of radiation dominated universe. The Hubble parameter evolves as in an effective 6D (4D) radiation
dominated era for equal scale factors (static compact extra dimensions), independently of the form
of the brane–bulk energy exchange. The effective 4D mirage and matter energy densities obey to the
4D free radiation equation in the absence of energy exchange. If energy flows from the brane into the
bulk, the localized 4D energy density is suppressed in time, in favor of the mirage density, even with
zero mirage initial condition. For influx, the 4D matter energy density apparently grows unbounded
(if T is linear in ρ, otherwise energy density may go to zero for suitable power–like parametrizations),
eventually diverging at a finite time. The small density approximation must break down and the
full analysis is needed. On the other hand, still for small densities but generic perfect fluid equation
of state (non necessarily pure vacuum energy) and energy influx, I found inflationary fixed point
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7.4. Remarks on 7D RS cosmology

solutions that are stable for a large class of energy exchange parametrizations T = Aρν . These
thus represent stable de Sitter solutions for our universe. I moreover argued that, differently than
in the 5D RS approach [159], we may have stable de Sitter critical point solutions even for energy
outflowing to the bulk, in the case of equal scale factors with w < −1/3 (and ν = 1). For dynamical
compactification (i.e. F = ξH, ξ < 0) [199] I could in principle also get an outflow stable inflationary
fixed point. I note that the 4D mirage energy density evolution without energy exchange is governed
by the effective 4D free radiation equation only in the two limits of equal scale factors F = H and
static compact extra dimensions F = 0.

Having dropped the small density approximation, more elaborate models of cosmologies developed.
The number of possible inflationary critical point solutions can be larger than one, depending on the
parametrization for the brane–bulk energy exchange. For energy influx I showed the 6D picture of a
scenario with two fixed points, where trajectories in the phase space can either always be characterized
by positive acceleration, either remain at all time with negative acceleration, or alternate acceleration
and deceleration phases. The portraits are rigorously valid for the effective 4D energy density in the
case of static internal space (up to a constant rescaling). If we have equal scale factors, the evolution
equations become much more complicated functions of the 4D densities and the computation is beyond
the scope of the paper. For ν �= 1 there seems to exist only the trivial critical point characterized by
vanishing Hubble parameter, so that either the energy density grows without bounds as predicted by
the small density approximation, either it flows to zero. For energy outflow, the 6D energy density
localized on the 5–brane decreases and the trajectories in the phase space go toward the trivial fixed
point, eventually passing through an accelerated era. The effective 4D picture may differ from this
description in the equal scale factor case, since it would be possible in principle not to have decreasing
density at all times.

In the analysis of [96], there could be space to fit the cosmological evolution of the universe in this
model, despite the fact that I didn’t give a full cosmological description. Indeed, one of the stable de
Sitter critical point solutions I found could represent the actual accelerated era. Besides, trajectories
can end into the stable point first passing through a decelerated phase representing the matter or
radiation dominated universe. Another accelerated era may be present at early times, eventually
corresponding primordial inflation. Still, there is no rigorous construction of such a precise evolution.
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Chapter 8

Holography in the seven dimensional
Randall–Sundrum background

I now derive the holographic dual theory of the 7D RS model proposed in my paper [96] and illustrated
in the previous chapter. This is done in analogy to the 5D/4D case, reviewed in section 6.4. Indeed,
investigations on the 5D RS cosmology with brane–bulk energy exchange have been made from the
holographic point of view [125], studying the dual theory in one lower dimension. The gauge/gravity
duality [174, 175] that I reviewed in chapter 5 (see [177] for a complete review) has undergone great
improvements over the last ten years and provides a new approach to the analysis of brane–world
models. As it is explained in section 5.3 [178]–[180], the truncation of the AdSd+1 space is equivalent
to introducing in the dual picture a UV cutoff for the d–dimensional gauge theory (conformal field
theory). Earlier suggestions about this idea are present in [181]. The presence of brane–bulk exchange
corresponds to interactions between the gauge theory and the matter fields, while the bulk “self–
interaction” is shown to be related to the perturbation of the CFT (that becomes a strongly coupled
gauge theory). In section 6.4 [125] explicit examples of cosmological evolutions in the holographic
5D/4D picture as well as comparison between the two dual theories have been discussed. Other
cosmological models have been analyzed in the context of the holographic correspondence [182]–[188].

Exploiting the AdS/CFT results, we build the holographic theory corresponding to the 7D RS
background. The 7D RS dual theory is then a renormalized 6D CFT (the theory corresponding to
the M5 system is an anomalous [189]–[193] (0,2) SCFT, but any other six dimensional large–N CFT
can be chosen) coupled to 6D gravity. See also [195] for other examples of holographic Weyl anomaly
derivations. The action also contains higher order corrections to gravity and the six dimensional
matter fields. Higher derivative terms driven by conformal four dimensional anomaly [196] were
proved to lead to an inflationary critical point in the 4D Starobinsky model [197] and to a successive
graceful exit from the long primordial inflation. As illustrated in [198] and reviewed in subsection
6.1.2 higher derivative contributions to the Einstein equations cause the universe to enter a matter
dominated era where the scale factor oscillates after inflation and to proceed through thermalization
to a radiation dominated era. In our 6D holographic cosmological model we specially look for de Sitter
fixed point solutions of the equations of motion describing late time acceleration of our universe or
critical points suitable for early time inflation, studying the associated stability matrix. A comparison
with the 7D bulk analysis results shows some peculiar features of the 7D/6D set–up.
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8. Holography in the seven dimensional Randall–Sundrum background

In section 8.1 and the following I will derive the 6D holographic dual to the 7D RS and the
associated equations of motion. Section 8.3 summarizes the fixed points in the holographic description
and their stability. Some examples of the correspondence between the brane and bulk points of view
will be given in section 8.4. The generalization to non conformal and interacting theory, corresponding
to non vanishing brane–bulk energy exchange and bulk self interaction in the 7D approach, will be
exposed in section 8.5.

8.1 Construction of the holographic dual

The dual theory of the 7D RS model, via the AdS/CFT correspondence [174], will be derived in
complete analogy to the 5D set–up considered in [125]. The RS model, with a time independent
warped geometry, gives AdS7 metric as a solution to the equations of motion for the gravity action
in the bulk. It will be useful to parametrize it according to Fefferman and Graham [208]

gMNdxMdxN =
�2

4
ρ−2dρ2 + �2ρ−1ĝμνdxμdxν (8.1.1)

where the indices M,N. . . . run over the 7D bulk space–time, μ, ν, . . . span the 6D space–time on
the 5–brane and ρ is a reparametrization of the z coordinate transverse to the brane. The location
of the brane, translated to this new set of coordinates, is ρ = 0 which represents the boundary of
the background (8.1.1). Generally, for all seven dimensional asymptotically AdS space–times the 6D
metric gμν can be expanded as [208]

ĝ = ĝ(0) + ρĝ(2) + ρ2ĝ(4) + ρ3ĝ(6) + ρ3 log ρ h(6) +O(ρ4) (8.1.2)

The logarithmic piece appears only for space–times with an odd number of dimensions and is re-
sponsible for the cutoff dependent counterterm in the renormalized action. As a consequence, it is
also responsible for the conformal anomaly of the holographic dual CFT living in an even number of
dimensions [189, 193] — in fact we don’t have conformal anomaly in odd dimensional CFT’s. The
subindices in the coefficients of the metric expansion stand for the number of derivatives contained
in each term.

More precisely, RS background is a slice of AdS7, where the boundary gets replaced by the 5–
brane and the IR part is reflected, eliminating the UV slice. To describe seven dimensional gravity
we will take the usual Einstein–Hilbert action in the bulk, adding as usual a Gibbons–Hawking term
[207] to take account of the boundary extrinsic curvature. Since the gravitational theory exhibits
divergences in a space–time with boundaries, we also have to regularize the Einstein–Hilbert plus
Gibbons–Hawking action, cutting off the boundary of the space–time. I am now going to illustrate
the regularization and renormalization procedures.

8.1.1 Renormalization on the gravitational side

The renormalization for a gravitational theory in a background with boundaries has been explained
in [189, 190, 193] for a generic number of dimensions. I will apply those computations to the case of
a seven dimensional bulk space–time.
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8.1. Construction of the holographic dual

In general (see section 5.2), the bulk action for gravity gets modified by the Gibbons–Hawking
boundary term [207] and by some counterterms also localized on the boundary

Sgr = SEH + SGH − Scount (8.1.3)

Using the Fefferman and Graham parametrization of the metric (8.1.1) and cutting off the boundary
at ρ = ε, we have

SEH = M5

∫
ρ≥ε

d7x
√−g

(
R[g] +

30

�2

)
, SGH = 2M5

∫
ρ=ε

d6x
√−γK (8.1.4)

where R[g] is the bulk Ricci scalar, K is the trace of the extrinsic curvature and γμν is the induced
metric on the boundary. Putting the brane at ρ = ε corresponds to regularize the gravity action. The
counterterm contributions necessary to make it finite in the limit ε→ 0 are given by

Scount = S0 + S1 + S2 + S3 (8.1.5)

Si are terms of order i in the brane curvature R ≡ R[γ] (the curvature of the induced metric γμν

on the boundary). In fact they can be written in terms of the induced metric γμν and its Riemann
tensor Rμνρσ , using the perturbative expansion relating γμν to ĝ(0)μν (see for instance [193])

S0 = 10
M5

�

∫
ρ=ε

d6x
√−γ (8.1.6)

S1 = −1

4
M5�

∫
ρ=ε

d6x
√−γR (8.1.7)

S2 =
1

32
M5�3

∫
ρ=ε

d6x
√−γ

(
RμνR

μν − 3

10
R2

)
(8.1.8)

S3 =
log ε

64
M5�5

∫
ρ=ε

d6x
√−γ

(
1

2
RRμνR

μν +
3

50
R3 +RμνRρσRμρνσ

+
1

5
Rμν∇μ∇νR− 1

2
Rμν�Rμν

)
(8.1.9)

The third order term, S3, depends on the cutoff ε and is thus responsible for the breaking of the
scale invariance, i.e. it gives rise to the conformal anomaly for the dual 6D CFT in the context
of the AdS/CFT correspondence. We also note that the zeroth order term is related to the brane
tension term of the RS model Stens in (7.1.1) by Stens = −2S0, if we fine–tune λRS = 0. In fact,
in the pure RS set–up, where the effective cosmological constant is null λRS = 0, the brane tension
is V = 20M5/�, since the bulk cosmological constant is given by Λ7 = −30M5/�2 as a function of
the background length scale � and the bulk Planck mass M , parametrizing the background metric by
(8.1.1). We will now use the AdS/CFT correspondence to compute the dual theory.

8.1.2 Gauge/gravity duality

The AdS/CFT duality [174] is realized between gravity (string theory or M theory decoupling limit)
in a background with one or more stacks of some kind of branes and the gauge theory that lives on
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8. Holography in the seven dimensional Randall–Sundrum background

the boundary of the near horizon geometry inferred by the branes [174, 175]. In our particular case,
AdS7 × S4 is the near horizon geometry of a system of N parallel M5–branes in eleven–dimensional
M theory. The radius of the AdS space is given in terms of the eleven dimensional Planck length �P l

and of the number N of M5–branes

� = 2(πN)1/3�P l (8.1.10)

The radius of the four sphere is half the radius of AdS7. The supergravity approximation for M
theory is valid if N � 1 and �P l ∼ N−1/3 → 0, keeping the radius of the AdS large and finite in
units of �P l. The six dimensional theory that Maldacena [174] conjectured to be dual to M theory in
the background described above is a (0,2) SCFT. This theory is realized as the open string theory
in the world–volume of the M5–branes, in the low energy decoupling limit, and it does not contain
dimensionless nor dimensionful parameters. The AdS7×S4 supergravity background is characterized
by a 4–form flux quantized in terms of the number of M5–branes and is not conformally flat, since
the radii of the four–sphere and the AdS space are not coincident.

The AdS/CFT correspondence relates the gravity (M theory) partition function for the bulk
fields Φi (which is a function of the value of the fields on the boundary of AdS7, φi) to the generating
functional of correlation functions of the dual CFT operators with sources φi

Zgr [φi] ≡
∫
DΦi e

−Sgr = e−WCF T (φi) (8.1.11)

Knowing that gravity on AdS7 (the S4 geometry can be factored out) corresponds to the specific
CFT suggested by Maldacena [174], we can now obtain as a consequence the dual theory of the 7D
RS model, in analogy to [125]. In fact, the action of the gravitational theory that I want to analyze
via holography is

SRS = SEH + SGH + Stens + Sm (8.1.12)

We just add the Gibbons–Hawking term to (7.1.1). We expect the hidden sector of the holographic
theory to reflect the bulk dynamics when we go to the non conformal interacting generalization.

We now have to keep in mind that the duality for gravity on AdS7 can be stated as

Zgr [φi] ≡
∫

ρ>ε
DΦi e

−SEH−SGH+S0+S1+S2+S3 = e−WCF T (φi) (8.1.13)

Secondly, we have to remember that Stens = −2S0. Furthermore, we note that the integration in
(8.1.13) is over one half of the space–time appearing in the RS model, because of the Z2 reflection
along the z direction. Since the integrals over the two specular regions are independent and equal we
can write

ZRS [φi, χi] ≡
∫

allρ
DΦiDχie

−SEH−SGH+2S0−Sm

=

∫
ρ>ε

DΦiDχi e
−2SEH−2SGH+2S0−Sm (8.1.14)
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where χi are the matter fields on the brane. Finally, putting all together, using equation (8.1.13), we
obtain

ZRS [φi, χi] =

∫
ρ>ε

DΦiDχi e
−2WCF T−2S1−2S2−2S3−Sm (8.1.15)

The RS dual theory is

SfRS
= SCFT + SR + SR2 + SR3 + Sm (8.1.16)

having defined

SCFT = 2WCFT , SR = 2S1, SR2 = 2S2, SR3 = 2S3 (8.1.17)

The 6D Planck mass is thus given by M4
P l = M5�

2 (the four dimensional Planck mass is therefore
M2

(4) = V(2)M
4
P l, where V(2) is the volume of the two dimensional internal manifold).

We are now ready to calculate the equations of motion for the holographic 6D RS cosmology.

8.2 Holographic cosmological evolution

As we know, the RS classical solution in a 7D bulk with a warped geometry is AdS7. Since our
purpose is to study the cosmology associated to the 7D RS set–up, we have generalized the ansatz
for the metric to be time dependent in section 7.1 and 7.2. I have successively reviewed the notion of
holographic dual theory in the previous section. What I want to do now is to describe the cosmology
of the seven dimensional RS model from the six dimensional holographic point of view, using the
correspondence relation obtained in the previous section and generalizing the ansatz for the 6D
induced metric on the 5–brane to a time dependent geometry, as it has been done for the 7D bulk
analysis.

We consider a 6D space–time, compactified on a 2D internal space, with a FRW metric for the
four large dimensions. The induced metric tensor can be expressed as

γμνdx
μdxν = −dt2 +

a2(t)

1− kr2
dr2 + a2(t) r2dth2 + a2(t) r2 sin2 thdφ2 +

+
b2(t)

1− κρ2
dρ2 + b2(t) ρ2dψ2 (8.2.1)

where k and κ, a(t) and b(t), H(t) and F (t) are, respectively, the curvatures, the scale factors, the
Hubble parameters for the 3D and 2D spaces.

The action we are considering is

SfRS
= SCFT + Sm,b + Sλ + SR + SR2 + SR3 (8.2.2)

SR, SR2 , SR3 being respectively twice the first, second and third order terms in the curvature con-
tributing to the counterterm action, as defined in (8.1.6)–(8.1.9). Sλ is an effective cosmological
term on the brane — that represents a generalization to the case of a non exact RS fine–tuning with
respect to the action (8.1.16). Sm and SCFT are the matter and (twice) the CFT action of the 6D
description.
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8. Holography in the seven dimensional Randall–Sundrum background

We want to solve the Friedmann equations, imposing the conservation and anomaly equations,
defining the stress–energy tensor contributions as

Tμν =
1√−γ

δSm,b

δγμν
Wμν =

1√−γ
δSCFT

δγμν
(8.2.3)

Yμν =
1√−γ

δSR2

δγμν
Zμν =

1√−γ
δSR3

δγμν

(8.2.4)

and Vμν = Wμν + Zμν . The equations of motion take the form

M4
P lGμν + λγμν = Tμν +Wμν + Yμν + Zμν (8.2.5)

∇νTμν = 0

∇νVμν = 0

V μ
μ = A(6) + Y

Here A(6) is the general anomaly for a 6D conformal theory [196, 192] that is related to the S3

contribution to the renormalized action [189]–[193]1, while Y is the trace Y μ
μ of the variation of

(twice) the second order counterterm action SR2 . The trace of Zμν is null2. The trace of Yμν is
quadratic in the curvature of the metric (8.2.1)

Y =
1

32
M5�

(
RμνRμν − 3

10
R2

)
(8.2.6)

The explicit form for the anomaly is a complicated expression of dimensions 6, cubic in the curvature,
and is discussed in appendix A.1. The effective cosmological constant on the brane is λ. The stress–
energy tensors are parametrized as

T00 = ρ(t), Tij = p(t) γij , Tab = π(t) γab

V00 = σ(t), Vij = σp(t) γij , Vab = σπ(t) γab
(8.2.7)

where the indices ij . . . parametrize the space part of the 4D FRW space–time and run from 1 to 3,
while ab . . . belong to the 2D internal space and take values in (4, 5). 3

Equations (8.2.5) take the following form when we choose the metric (8.2.1) and the stress–energy

1The scheme dependent contribution to the anomaly — the type D anomaly — gets cancelled by the equal and
opposite scheme dependent contribution to S3 — which are local covariant counterterms and can be derived from
appendix C of [192]. For an explicit example of how this happens, see [125] in the four dimensional case. See also
appendix A.1 for further discussions

2It is indeed proportional to the traceless tensor h(6) that appears in the Fefferman and Graham metric parametriza-
tion (8.2.1) [193]. I thank K. Skenderis for helpful discussion on this subject.

3The energy density ρ(t) should not be confused with the 2D coordinate ρ, since the radius of the extra dimensions
does not appear in the calculations.
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tensors written in (8.2.7). The Friedmann equations become

M4
P l

(
3H2 + 6H F + F 2 + 3

k

a2
+
κ

b2

)
= ρ+ σ + λ

M4
P l

(
2Ḣ + 3H2 + 4H F + 2Ḟ + 3F 2 +

k

a2
+
κ

b2

)
= −p− σp + λ

M4
P l

(
3Ḣ + 6H2 + 3H F + Ḟ + F 2 +

k

a2

)
= −π − σπ + λ (8.2.8)

then the conservation equations

σ̇ + 3(σ + σp)H + 2(σ + σπ)F = 0

ρ̇+ 3(ρ+ p)H + 2(ρ+ π)F = 0 (8.2.9)

and finally the anomaly equation

σ − 3σp − 2σπ = A(6) + Y (8.2.10)

As I said, the anomaly comes from the cubic counterterm, so that it is cubic in the curvature. There
are more precise statements about its form in appendix A.1, where I also explicitely give Y .

8.2.1 Simplifications and ansatz

The set of equations (8.2.8)–(8.2.10) does not contains six independent equations. Plugging the
conservation in the first Friedmann equation derived w.r.t. time, we get a linear combination of the
other two Friedmann equations. So we will discard the last of (8.2.8) from now on. We further note
that that system contains only one algebraic equation: the Friedmann equation. I will start by solving
the anomaly equation in terms of one of the pressures coming from the hidden theory.

Plugging the expression for σp obtained evaluating (8.2.10) into the first of the conservation
equations (8.2.9), we get a differential equation for σ depending on σπ

σ̇ + 2 (2H + F ) σ + 2 (H − F ) σπ = A(6) + Y (8.2.11)

To obtain a solvable decoupled equation for σ we can consider the limit in which the internal space
has the same CFT pressure as the three large dimensions σπ = σp

4. Else, we can also consider the
limit of zero pressure — for the CFT — in the internal space. Putting these two limits together, we
can try to solve the Friedmann equations imposing a more general ansatz

σπ = Ωσp (8.2.12)

So that

σ − 1

ω
σp = A(6) + Y (8.2.13)

4This limit comes from classical evaluation of stress–energy tensor derived from the action S ∝ R
d6x

√−γ HμνρH
μνρ
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8. Holography in the seven dimensional Randall–Sundrum background

where ω ≡ 1/(3 + 2Ω) (ω is equal to 1/5, 1/3 in the two limits considered above). The differential
equation for σ becomes

σ̇ + 3 [(1 + ω)H + (1 − ω)F ] σ − [3ωH + (1− 3ω)F ]
(A(6) + Y

)
= 0 (8.2.14)

We could now evaluate σ solving the following integral

σ = χ+
1

a3(1+ω)b3(1−ω)

∫
dt a3(1+ω)b3(1−ω)

[
3ω
ȧ

a
+ (1− 3ω)

ḃ

b

]
·

· [cAE(6) + cB I(6) + Y
]

(8.2.15)

where χ is a solution for the homogeneous equation

χ̇+ 3 [(1 + ω)H + (1− ω)F ]χ = 0 ⇒ χ =
χ0

a3(1+ω)b3(1−ω)
(8.2.16)

We observe that generally (8.2.15) is not explicitely integrable. In (8.2.15) we have written the
anomaly in terms of its contributions that are the Euler density in six dimensions E(6) and the local
covariants included in I(6) (see appendix A.1 for further details).

The set of independent equations we finally have to solve, once we use (8.2.13) to eliminate σp by
means of

σp = ωσ − ω
(A(6) + Y

)
(8.2.17)

is then

M4
P l

(
3H2 + 6HF + F 2 + 3

k

a2
+
κ

b2

)
= ρ+ σ + λ (8.2.18)

M4
P l

(
2Ḣ + 2Ḟ + 3H2 + 4HF + 3F 2 +

k

a2
+
κ

b2

)
= −wρ− ωσ + ω

(A(6) + Y
)

+ λ (8.2.19)

σ̇ + 3 [(1 + ω)H + (1− ω)F ]σ = [3ωH + (1− 3ω)F ]
(A(6) + Y

)
(8.2.20)

ρ̇+ [3(1 + w)H + 2(1 +wπ)F ] ρ = 0 (8.2.21)

(the anomaly A(6) will be written explicitely — in terms of H and F — in the particular cases that
I will take under examination in the following). We also use the three following ansatz relating the
pressures and the energy densities

p = wρ

π = W p = wπρ

σπ = Ωσp (3 + 2Ω = 1/ω) (8.2.22)

Now we are left with a system of four equations (8.2.18) in four variables (H,F, ρ, σ). The other
variables (σp, σπ, p, π) are determined by the ansatz (8.2.22) and by the equation (8.2.17). In the
next section, this system of differential equations will be studied restricting to some special limits,
such as flat or static internal space, or equal scale factors. We will find the critical point solutions
and analyze the associated stability matrix.
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8.3. Holographic critical point analysis

8.3 Holographic critical point analysis

The fixed points of the cosmological evolution of the universe we are considering may represent its
inflationary eras — for instance the early time or the late time acceleration —, since the Hubble
parameters, just as the energy densities, are constant. If the constant value for the Hubble parameter
is positive we have inflation. In this section, I am going to look for the existence of such inflationary
points for our specific holographic model and to find what kind of dependence they have on the
parameters of the theory.

I will describe the fixed point solutions in the special limits of flat extra dimensions, curved static
extra dimensions and equal scale factors for the internal and extended spaces. I will then study the
stability matrix associated with the critical points. Since the fixed points represents inflationary eras
in the universe evolution, they could offer an explanation to the early inflation or to the late time
acceleration. In the first case they will have to be unstable or saddle points to allow the trajectory
describing the cosmological evolution to flow away from inflation and exit from this phase. In the
second case the fixed points must be stable and act as attractors for the near trajectories.

In what follows we will always suppose that the effective cosmological constant on the brane λ is
zero, unless I specify it differently.

8.3.1 Flat compact extra dimensions

In the limit of zero spatial curvature for the extra dimensions and for the extended space, the Fried-
mann plus conservation equations (8.2.18) take the form

M4
P l

(
3H2 + 6HF + F 2

)
= ρ+ σ + λ (8.3.1)

M4
P l

(
2Ḣ + 2Ḟ + 3H2 + 4HF + 3F 2

)
= −wρ− ωσ + ω

(A(6) + Y
)

+ λ (8.3.2)

σ̇ + 3 [(1 + ω)H + (1− ω)F ] σ = [3ωH + (1− 3ω)F ]
(A(6) + Y

)
(8.3.3)

ρ̇+ [3(1 + w)H + 2(1 + wπ)F ] ρ = 0 (8.3.4)

The fixed points of this system of differential equations and their stability are found with some further
restrictions (see appendix A.2 in the flat extra dimension subsections for the explicit calculations).
As I point out in appendix A.1, the anomaly A(6) generally depends on the Hubble parameters of the
model, on their time derivatives up to the third order and on the spatial curvatures. This remains
true also for the flat extra dimension limit examined in this subsection.

Fixed point solutions With the assumption of flat internal space and zero curvature for the 3D
space as well, we can find different fixed points depending on the value of the extra dimension Hubble
parameter. They can be summarized as follows.

(i) As I illustrate in appendix A.2, there are two non trivial time independent solution with F non
vanishing at the fixed point, F �= 0, one for ω �= 1/5 and one for ω = 1/5. The values of the
3D Hubble parameter (the measurable Hubble parameter) are given in terms of the constants
ω, cA, cB , cY and the mass scale MP l. We note that the anomaly parameters cA, cB are given
by the CFT, while ω relates the hidden sector pressure of the internal space to the hidden
pressure of the 3D space (8.2.22). In particular, the two Hubble parameters are related by the
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8. Holography in the seven dimensional Randall–Sundrum background

equality H = (Cε + 1)F (where Cε is a rather complicated function of ω, cA, cB , cY M
2
P l) when

ω �= 1/5, while for ω = 1/5 we have H = F. For ω = 1/5, F �= 0 and we can choose it to be
positive or negative, implying that the extra dimension scale exponentially at those points, with
respectively either positive or negative velocity. Consequently H would also describe either a
contracting or expanding universe.

(ii) I also found a fixed point solution for which the extra dimensions are static, i.e. F = 0
(ω �= 0,−1 and cB �= 0), meaning that, while our visible universe is exponentially growing or
decreasing, the internal space isn’t expanding nor collapsing. The corresponding solution is
given by

H2
 = − 20

3cB

ω

ω + 1
M2

P l

[
48cY ±

√
6

(
384c2Y − cB

ω

ω + 1

)]
(8.3.5)

σ = −σπ =
2ω

3ω − 1
σπ = − 20

cB

ω

ω + 1
M6

P l

[
48cY ±

√
6

(
384c2Y − cB

ω

ω + 1

)]
(8.3.6)

ρ = 0

The roots are real if 384c2Y − cBω/(ω + 1) > 0 and cannot be both positive. We never have a
couple of fixed points in the phase space diagram.

(iii) A third fixed point is characterized by zero extra dimension Hubble parameter and ω = −1. In
this case the critical point exists only if the conformal field theory is characterized by a positive
coefficient for the type B anomaly. The solution is

H2
 =

640cY
cB

M2
P l, σ = −σp =

1

2
σπ =

640cY
3cB

M6
P l, ρ = 0 (8.3.7)

If cB is zero (i.e. the anomaly vanishes at the fixed point) we are left with the trivial fixed point
alone.

(iv) For vanishing ω, λ should be non zero to get the inflationary fixed point H2
 = λ

3M4
Pl

.

(v) There also exists a trivial fixed point with H = F = 0, where the anomaly and the trace Y μ
μ

become zero, and ρ = σ = 0 if ω �= w or ρ = −σ if ω = w.

In any case — i.e. for every ω and λ — the solution does not depend on w,wπ (in fact, the system
of equations (A.2.1)–(A.2.5) doesn’t contain w,wπ). So, if a solution exists for some ω and cA, cB , cY ,
that solution always exists whatever values the two parameters relating matter pressures to energy
density take. This marks a difference with the bulk analysis of section 7.3, since here we don’t have
any bulk dynamics perturbing the conservation equations, being the matter theory conformal and
non interacting.

All the critical points have zero localized energy density ρ (except for the trivial point with
ω = w). Also, when the Hubble parameter is non vanishing, we don’t get a positive valued ρ.
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Stability analysis In appendix A.2 I analyze the stability of the F = 0 critical points linearizing
the system of differential equations around the fixed point. I conclude that the studied fixed point
(8.3.5)–(8.3.7), characterized by vanishing F and ω = −1 or ω �= −1 can both be saddles or attractors,
depending on the value of the anomaly parameter cB , of cY and of ω (relating the two CFT pressures).
The trivial fixed point cannot be analyzed at linear order, since its stability matrix is null. It is obvious
from (8.3.4) that for positive Hubble parameters the energy density goes to zero at late time.

We can thus observe that, starting the cosmological evolution with a hidden energy density σ
different from zero and with a suitable value of the anomaly coefficient cB , choosing ω to be such
that the F = 0 stability matrix has negative eigenvalues, the corresponding F = 0 fixed point is a
global attractor for the flat extra dimension universe. This critical point could eventually represent
the present accelerated era. However, it’s a zero energy density critical point.

8.3.2 Static compact extra dimensions

The Einstein equations of motion (8.2.18) get simplified when we take the b = const ansatz for the
internal space scale factor

M4
P l

(
3H2 +

κ

b20

)
= ρ+ σ + λ (8.3.8)

M4
P l

(
2Ḣ +

κ

b20

)
= −wρ− ωσ + ω

(A(6) + Y
)

+ λ (8.3.9)

σ̇ + 3(1 + ω)Hσ = 3ωH
(A(6) + Y

)
(8.3.10)

ρ̇+ 3(1 + w)Hρ = 0 (8.3.11)

From these equations we can deduce the corresponding fixed points and their criticality, following the
calculations in appendix A.2.

Fixed point solutions We find the inflationary fixed point for a universe with non evolving internal
dimensions, i.e. with constant scale factor b(t) ≡ b0. Besides the trivial fixed point H = 0 there are
other solutions.

(i) The existence of non trivial fixed points is determined by the values of the parameter of the
specific conformal theory cA, cB , cY and ω, but also by the mass scales MP l and κ/b0. An easy
critical point solution can be derived in the case of zero type B contribution to the anomaly
and ω = −1

H2
 =

κ

b20

[
9±

√
90 +

5cA
192cY

1

M2
P l

κ

b20

]−1

(8.3.12)

σ = −σp = 2σπ = M4
P l

⎛⎝3

[
9±

√
90 +

5cA
192cY

1

M2
P l

κ

b20

]−1

+ 1

⎞⎠ κ

b20
(8.3.13)

ρ = 0

For κ = 0 it reduces to the trivial fixed point. We have real roots for H if 192c2Y M
2
P l >

−cAκ/45b20 and they will be both positive when κ > 0 and −192c2Y M
2
P l < cAκ/45b

2
0 <

−192c2Y M
2
P l/252, so that cA must be negative.
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(ii) We also have a trivial critical point with H = 0. In particular both ρ and σ can be different
from zero, they are functions of κ/b20 as we can see from the equation ρ + σ = M4

P lκ/b
2
0, and

are also related by

(1 + w)ρ + (1 + ω)σ = ω

(
− cB

800

κ

b20
+

4cY
5
M2

P l

)
κ2

b40
(8.3.14)

(iii) Other fixed points can be found, for example for ω = 0. The internal space curvature κ would
have to be negative in those cases, since H2

 = −κ/3b20 and we would have to compactify on an
hyperbolic space.

Stability analysis For the static extra dimension fixed points I found that we can get an attractor
or a saddle, depending on the values of cA, cB , cY M

2
P l and ω.

We can thus choose the hidden sector parameters such that we can get a stable fixed point. There
exists however another critical point, i.e. the trivial one characterized by H = 0 but generally non
zero ρ and σ, which always is a saddle. So, trajectories may either be attracted by the non trivial
critical point or flow away from the saddle point.

8.3.3 Equal scale factors

Another limit that simplifies some of the calculations is the equal scale factor assumption. In this
case the Hubble parameters of the internal space and the 3D space are equal, F = H, and we are left
with the following set of equations for the variables H, ρ, σ

M4
P l

(
10H2 +

κ

b2

)
= ρ+ σ + λ (8.3.15)

M4
P l

(
4Ḣ + 10H2 +

κ

b2

)
= −wρ− ωσ + ω

(A(6) + Y
)

+ λ (8.3.16)

σ̇ + 6Hσ = H
(A(6) + Y

)
(8.3.17)

ρ̇+ (5 + 3w + 2wπ)Hρ = 0 (8.3.18)

Fixed point solutions We find an inflationary fixed point where the internal space is also staying
in an inflationary era, since the two Hubble parameters are equal (see appendix A.2 for calculations).
The existence of such fixed point depends on the values of cA, cB , κ and ω.

Is is necessary to impose ω = 1/5, implying that the two pressures characterizing the CFT stress–
energy tensor must be equal σπ = σp, in order to obtain the following fixed point solutions.

(i) We write the explicit solution for a flat internal space κ = 0, where the critical value for the
Hubble parameter is given in terms of the anomaly coefficients and of the only dimensionful
parameter which is the 6D Planck mass. This solution puts restrictions the possible values of
cA and cB , coming from the conformal field theory anomaly

H2
 = − 24

cA + 2cB
M2

P l

[
24cY ±

√
576c2Y + (cA + 2cB)

]
(8.3.19)

σ = −σp = −σπ = − 240

cA + 2cB
M6

P l

[
24cY ±

√
576c2Y + (cA + 2cB)

]
, ρ = 0
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8.3. Holographic critical point analysis

For (24cY )2 > −(cA +2cB) the two roots are real. We must satisfy the condition (cA +2cB) < 0
on the anomaly parameters in order to have two positive H critical points (both denoted by
zero energy density ρ).

(ii) For κ �= 0 there exists no fixed points, since
(A(6) + Y

)
and

(
10H2

 + κ
a2

)
cannot be both

constant unless we enforce the staticity condition on the Hubble parameter H = 0 and κ = 0.

Stability analysis The stability analysis in this last case of equal scale factors is carried in appendix
A.2. As a result, I found that the equal scale factor critical point with flat internal space is an attractor.
It could thus represent the eternal acceleration of the universe.

8.3.4 Comments

I want to summarize the interesting features of the critical analysis of sections 8.3.1–8.3.3, in the
perspective of the comparison with the 7D bulk gravitational dual description that I illustrated in
sections 7.2 and 7.3.

(a) All the critical point we can find in the brane description are characterized by exactly zero value
for the localized matter energy density ρ (except for some H = 0 trivial points). To have a non
vanishing energy density it is necessary to introduce an interaction term between the matter
fields and the hidden sector fields. The reason for this is that it modifies the conservation
equation for ρ, allowing for a non zero time–independent solution. This intuitively corresponds
to turning on the brane–bulk energy exchange on the bulk gravity side.

(b) In most of the simple critical point solutions, the hidden sector pressure σp is related to the
energy density σ by σp = −σ. This indicates a vacuum behavior for the equation of state of
the hidden sector of the holographic dual theory at the inflationary fixed points.

(c) There also appears to exist more than one critical point solution in some of the explicitely
examined limits. Since the stability matrix analysis reveals that we can have either stable or
saddle points (depending on the CFT and counterterm parameters cA, cB , cY and on the Planck
mass), we can expect two kinds of behavior (if the number of critical point solution is two).
Whenever one of the fixed points is attractive and the other one is a saddle, we can generally
depict a phase portrait such that some of the trajectories are attracted by the stable point,
while others can be repulsed by the saddle and go toward the large density region. If, on the
other hand, we get two saddle points, trajectories bend near to the saddles and flow away. I
note that the trivial critical point has undefined stability at linear order in the perturbations,
so that it may either attract or repel trajectories in its neighborhood. However, if H > 0 and
w,wπ > −1, late time evolution is always described by ρ→ 0.

(d) Comparing these results with the bulk cosmology in the case of zero energy exchange (recall
for instance (7.2.35)–(7.2.37) with T 7

7 = T 0
7 = 0) the main difference is that we have non trivial

fixed points in the CFT description, while the gravity cosmology is characterized only by critical
points with zero Hubble parameter and zero acceleration. The origin of the discrepancy has
to be ascribed to the trace term coming from the CFT anomaly and to the counterterm trace
that give a non trivial contribution to the conservation equation for the hidden sector energy
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8. Holography in the seven dimensional Randall–Sundrum background

density σ. The holographic renormalization procedure, and in particular the quantum breaking
of conformal invariance, is responsible for the presence of such terms.

(e) In the bulk description we could only find positive acceleration critical points since q = H2.
With the holographic approach, we could in principle also get non constant H critical point
solutions. In fact we could solve the system of Einstein equations on the brane asking time–
independence for q = Ḣ +H2, ρ and σ. We would get a new system of first order (non linear)
differential equations in H, which in principle could have non trivial solutions.

8.4 Brane/bulk correspondence at work

Some solutions are now derived illustrating interesting aspects of the cosmological model we con-
sidered and in particular of the duality that relates the two descriptions. We will be able to find
explicit expressions by making special simplifying assumptions on the parameters of the holographic
theory and on the space–time background. These examples allow us to make a comparison between
the results we will find in the holographic set–up and the expressions we derived in the bulk gravity
theory.

Since I am interested in comparing the two dual approaches, in the sense of AdS/CFT correspon-
dence, I have to derive some expressions for H in terms of the localized matter energy density ρ and of
a mirage density χ. In section 7.2, I performed the cosmological analysis in the 7D bulk description,
expressing the 3D Hubble parameter H in terms of the localized energy density ρ, reducing the first
order ODE in H to an algebraic equation for H2 plus a first order ODE for the mirage density χ. In
the holographic dual theory, the mirage density is identified with the solution to the homogeneous
equation associated to the conservation equation for the hidden sector density σ. It will thus have
the property of obeying to the free radiation conservation equation in d effective dimensions (where d
is the effective number of dimensions equal to 4 in a static compact space background and to 6 when
a(t) and b(t) are equal).

To obtain the explicit result for H2 in the brane dual description, however, it is necessary to
integrate the differential equation (8.2.15) for the energy density σ. It is established that the anomaly
and the trace of the quadratic contribution to the variation of the dual theory action are highly non
trivial functions of the Hubble parameters and the spatial curvatures and contain derivatives of
H,F up to order three. So, an analytical integration of the σ conservation equation is apparently
unachievable in general. However, it is possible to neglect the A(6) and Y contributions if we are
in the slowly scaling approximation, which corresponds to a small curvature approximation. This is
what I am going to discuss in the following.

8.4.1 Slowly scaling approximation

I give a rough idea on how the correspondence between the brane and the bulk dual theories works. In
fact, I will neglect all the higher order terms in the holographic description, which is equivalent to ask
that the Hubble parameter is negligible with respect to the Planck mass H2 �M2

P l (i.e. ȧ�MP l a).
In this approximation, all the higher order curvature terms — including the anomaly and the trace
Y μ

μ — can be neglected in favor of contributions proportional to the Einstein tensor. The integration
of the σ equation would give terms of the order of M2

P lH
4 (from Y ) and H6 (from A(6)). Once we
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plug the result for σ in the Einstein equation (8.2.18) these terms are suppressed, since the l.h.s. of
(8.2.18) is of order M4

P lH
2.

I anticipate that, as a consequence of the small Hubble parameter approximation on the brane, we
get a linear dependence of H2 on the mirage plus visible matter energy densities (the hidden sector
density σ is identified with the mirage density χ). Higher order contributions due to the anomaly
and to Y would give rise to higher power dependence in a small density expansion for H2. Since in
the holographic description we truncate to linear order in density, we also keep only linear terms in
ρ for the bulk gravity results. The bulk equations for H and χ (7.2.35)–(7.2.37), can be formulated
independently of w if we ignore higher (quadratic) order terms in ρ and assign a specific value to
wπ. Neglecting the second order term in ρ we will only have one condition to determine M and V in
terms of the brane parameter MP l, so that only the ratio M10/V will be identified.

Since in this approximation the quadratic and higher order dependence of H2 on ρ are absent, we
won’t capture the eventual Starobinsky [197] behavior of the solutions to the Einstein equations [198].
The higher derivative terms are necessary in that case to calculate the exit from inflation to a matter
dominated universe and the subsequent thermalization to radiation dominated era. For Starobinsky,
the higher derivative terms are represented by the type D conformal anomaly contribution to the
trace of the stress–energy tensor. Nonetheless, in the 5D RS holographic dual analysis of [125], where
these terms are cancelled, stringy corrections like Gauss–Bonnet terms can play the same role. We
note that in our set–up, the 6D conformal anomaly contains suitable higher derivative terms, not
only in the total derivative contributions but also in type B anomaly.

Here are the results to which the slowly scaling approximation leads in some particular limits.

Equal scale factors

We start looking at the Einstein, conservation and anomaly equations in the equal scale factor limit.
The system of equations (8.2.18)–(8.2.21) for the theory on the brane takes the form

M4
P l

(
10H2 + 3

k

a2
+

κ

a2

)
= ρ+ σ + λ (8.4.1)

M4
P l

(
4Ḣ + 10H2 +

k

a2
+

κ

a2

)
= −wρ− ωσ + ω

(A(6) + Y
)

+ λ

σ̇ + 6Hσ = H
(A(6) + Y

)
(8.4.2)

ρ̇+ (3(1 + w) + 2(1 + wπ))Hρ = 0 (8.4.3)

We note that the set of equations is independent of the hidden sector parameter ω and it is above
all interesting that the homogeneous equation associated to 8.4.2 is indeed precisely the 6D free
radiation equation, independently of the value for ω. In particular, the two conservation equations
can be written in the integral form

σ = χ+ a−6

∫
dt a6H

(A(6) + Y
)
, χ = χ0

(a0

a

)6
(8.4.4)

ρ = ρ0

(a0

a

)3(1+w)+2(1+wπ)
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Plugging the result for σ in the first equation on the system (8.4.1) and neglecting the curvature
higher order terms that come from the integration of

(A(6) + Y
)
, we obtain the following expression

for H2, together with the ρ and χ equations in their differential form

H2 +
1

10

(
3
k

a2
+
κ

a2

)
=

1

10M4
P l

(ρ+ χ) +
1

10M4
P l

λ (8.4.5)

χ̇+ 6Hχ = 0 (8.4.6)

ρ̇+ (3(1 + w) + 2(1 + wπ))Hρ = 0 (8.4.7)

It is now easy to compare (8.4.5)–(8.4.7) with the corresponding system of equations in the bulk
description of the equal scale factor universe, with zero brane–bulk energy exchange T 0

7 and bulk
“self interaction” T 7

7 . The expression for H2 can also be written in a w–independent way fixing
wπ (in this particular case we could also include the quadratic term in ρ in the w–independent
formulation). Neglecting the second order term in the energy densities we obtain

H2 +
1

10

(
3
k

a2
+
κ

a2

)
=

2c̃V (eq)V

5M10
(ρ+ χ) + λRS (8.4.8)

χ̇+ 6Hχ = 0 (8.4.9)

ρ̇+ (3(1 + w) + 2(1 + wπ))Hρ = 0 (8.4.10)

The two systems of equations (8.4.5)–(8.4.7) and (8.4.8)–(8.4.10) perfectly agree at this order in
the approximation. The matching between the scales on the two sides of the duality is then

M10

V
= 4c̃V (eq)M

4
P l

wπ=w−→ M10

V
=
M4

P l

20
(8.4.11)

As I announced, only the ratio M10/V can be determined, since we only have one condition to match
the two descriptions. When higher order corrections are included in the brane description we would
generally find a matching for both M and V , which in principle would depend on the particular CFT
parameters (cA, cB , cY ). We can guess that the ratio M10/V would not depend on them (indeed, for
the pure RS set–up we get M4

P lV ∝ M10). When wπ = w (i.e. when the pressures of the matter
perfect fluid relative to the 2D internal space and the 3D space are equal π = p) the coefficient c̃V
becomes c̃V (eq) = 1/80. It is interesting to note that for w = wπ the matching exactly reduces to the
RS condition for zero effective cosmological constant on the brane λRS = 0. Since we are in the limit
F = H, it seems natural to have π = p too.

Static compact extra dimensions

We consider the static extra dimension limit F = 0. The Einstein equations plus conservation and
anomaly equations in this limit read

M4
P l

(
3H2 + 3

k

a2
+
κ

b20

)
= ρ+ σ + λ (8.4.12)

M4
P l

(
2Ḣ + 3H2 +

k

a2
+
κ

b20

)
= −wρ− ωσ + ω

(A(6) + Y
)

+ λ (8.4.13)

σ + 3(1 + ω)Hσ = 3ωH
(A(6) + Y

)
(8.4.14)

ρ̇+ 3(1 + w)Hρ = 0 (8.4.15)
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The homogeneous equation associated to (8.4.14) is the 4D free radiation equation only if ω = 1/3,
implying that the hidden sector pressure of the internal space σπ must be zero. With this assumption,
the two conservation equations become

σ = χ+ a−4

∫
dt a4H

(A(6) + Y
)
, χ = χ0

(a0

a

)4
(8.4.16)

ρ = ρ0

(a0

a

)3(1+w)

The results for χ and ρ agree with the bulk formulation for zero energy exchange. Plugging (8.4.16)
into (8.4.12) and neglecting the curvature higher order term, as we are in the slowly scaling approxi-
mation, we find (for k = 0)

H2 +
1

3

κ

b20
=

1

3M4
P l

(ρ+ χ) (8.4.17)

χ̇+ 4Hχ = 0 (8.4.18)

ρ̇+ 3(1 + w)Hρ = 0 (8.4.19)

Although conservation equations agree, the Friedmann–like equation doesn’t give the expected 1/6
coefficient in front of the κ/b20 term in (8.4.17). In fact, the equations on the bulk gravity side

H2 +
1

6

κ

b20
=

2c̃V (st)V

3M10
(ρ+ χ) (8.4.20)

χ̇+ 4Hχ = 0 (8.4.21)

ρ̇+ 3(w + 1)Hρ = 0 (8.4.22)

The bulk equations are derived in the density linear approximation and for vanishing energy exchange
T 0

7 and T 7
7 . The coefficient c̃V (st) can be written in a w–independent way if we fix wπ.

As a consequence the ratio of the two bulk parameters can be identified with

M10

V
= 2c̃V (st)M

4
P l

wπ= w+5
6−→ M10

V
=
M4

P l

20
(8.4.23)

The κ/b20 terms differ in the two dual descriptions (in the static extra dimension background). The
matching (8.4.23) gives a result that depends on the values of w,wπ in a different way if compared
to the equal scale factor limit (8.4.11). It is thus interesting to further examine how the matching
varies according to the value of the internal space Hubble parameter. I am indeed going to consider
the proportionality ansatz F = ξH to better understand this behavior. I note that in the limit
wπ = (w + 5)/6 we recover in (8.4.23) the RS fine–tuning determining zero effective cosmological
constant on the brane λRS = 0, since c̃V (st) = 1/40.

Proportional Hubble parameters

Following the computations in the last two sections and generalizing them, we derive the set of
equations for H2, χ and ρ for proportional and small Hubble parameters. Since, as before, σ = χ if
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we neglect higher order terms in the small curvature approximation, equations (8.2.18)–(8.2.21) lead
to the following set

H2 +
1

(ξ2b + 6ξb + 3)

κb

b2
=

1

(ξ2b + 6ξb + 3)M4
P l

(ρ+ χ) (8.4.24)

χ̇+ dξb
Hχ = 0 (8.4.25)

ρ̇+ wξb
Hρ = 0 (8.4.26)

where dξb
≡ 3(1 + ω) + 3ξb(1− ω), wξb

≡ 3(1 + w) + 2ξb(1 + wπ) and ξb is the proportionality factor
F = ξbH (or b = aξb). The bulk equations where derived in (7.2.38)–(7.2.40). For the moment we will
keep two different proportionality factors so that we have in the bulk F = ξBH. Following section
7.2.4 (putting zero T 7

7 and T 0
7 ) we get

H2 +
1

(ξ2B + 3ξB + 6)

κB

b2
=

2c̃V,ξV

(2ξB + 3)M10
(ρ+ χ) (8.4.27)

χ̇+ dξB
Hχ = 0 (8.4.28)

ρ̇+ wξB
Hρ = 0 (8.4.29)

The following definitions have been used: dξB
≡ 6(ξ2B+2ξB+2)/(2ξB+3), wξB

≡ 3(1+w)+2ξB(1+wπ)
and recall that c̃V,ξ is c̃V,ξ ≡ cV /(wξB − dξB), where cV = (31w − 6wπ − 5)/400.

In order for the two descriptions to be equivalent w.r.t. the χ and ρ differential equations (which
don’t get any correction from higher order contributions), we have to put ξb = ξB = ξ, as it was
expected. Besides, the parameter relating σπ to σp must be ω = 1/(2ξ + 3). However, assuming an
equal proportionality relation on the two sides of the duality, the coefficients of the κ terms in (8.4.24)
and (8.4.27) differ if the two curvatures in the bulk and brane descriptions are equal, unless ξ = 1.
So, the only set–up that predicts the same effective spatial curvature for the internal space for general
backgrounds in the brane and bulk descriptions is the equal scale factor background (neglecting higher
order corrections). However, we can determine an effective spatial curvature for the internal space in
the brane description, given by κb = (ξ2 + 6ξ + 3)κB/(ξ

2 + 3ξ + 6).
The matching for the scales of the two dual theories is given by

M10

V
=
ξ2 + 6ξ + 3

2ξ + 3
2c̃V,ξM

4
P l (8.4.30)

It is always possible to choose a wπ such that the matching relation (8.4.30) gives the RS fine–tuning
condition M4

P l = 20M10/V . Otherwise, missing the fine–tuning would amount to introducing a non
vanishing effective cosmological constant on the RS brane.

8.5 Non conformal interacting generalization

To examine the general cosmological evolution that reflects presence of energy exchange between
brane and bulk and of bulk pressure in the seven dimensional picture, we will drop the assumption
of having a conformal non interacting field theory living on the brane. Intuitively, a non vanishing
T 0

7 in the bulk description corresponds to interactions between the gauge theory and the visible
matter. The diagonal T 7

7 component appears in the brane description as dual to a new trace term
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8.5. Non conformal interacting generalization

spoiling the conformal invariance. The generalization of the 6D RS dual action amounts to adding the
new interaction term and substituting the hidden sector CFT with a strongly coupled gauge theory
(SCGT). The following analysis will be in analogy with the 4D holographic dual generalization exposed
in [125], corresponding to the 5D RS cosmology.

Using the notations of section 8.1 we write the generalized action as

Sgen = SSCGT + SR + SR2 + SR3 + Sm,b + Sint (8.5.1)

where the new entry is the interaction term Sint and SCFT has been changed into SSCGT . The
strongly coupled fields can be integrated out, transforming the sum of the strongly coupled theory
action plus the interaction term into an effective functional of the visible fields (and of the metric)
WSCGT . As a result, the action becomes

Sgen = WSCGT + SR + SR2 + SR3 + Sm,b (8.5.2)

As in the conformal non interacting case, we are now ready to calculate the general 6D equations
of motion for the holographic generalized RS cosmology.

8.5.1 Generalized evolution equations

The stress–energy tensors are defined in the following way

Tμν =
1√−γ

δSm

δγμν
, Wμν =

1√−γ
δWSCGT

δγμν
(8.5.3)

Yμν =
1√−γ

δSR2

δγμν
, Zμν =

1√−γ
δSR3

δγμν

Vμν = Wμν + Yμν + Zμν , Y μ
μ = Y

The Einstein equation, the conservation conditions and the anomaly equation then read

M4
P lGμν = Tμν +Wμν + Yμν + Vμν

∇νTμν = T

∇νVμν = −T
V μ

μ = A(6) + Y +X (8.5.4)

The total stress–energy tensor is still conserved. Taking account of the interactions between the
hidden theory and the matter generally amounts to having non separately conserved Vμν and Tμν .
This will be reflected by the introduction of a non homogenous term in the conservation equations.
The anomaly equation contains the general expression for the conformal anomaly in six dimensions
A(6) and the trace term Y . Furthermore, it gets modified including an extra term X that accounts for
classical and quantum breaking of the conformal symmetry in a FRW plus compact space background.
The stress–energy tensors are parametrized as before

T00 = ρ(t), Tij = p(t) γij , Tab = π(t) γab

V00 = σ(t), Vij = σp(t) γij , Vab = σπ(t) γab
(8.5.5)
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8. Holography in the seven dimensional Randall–Sundrum background

The consequent changes in the equations written in terms of the Hubble parameters and of the
energy densities and pressures are the following. The Friedmann equations remain the same

M4
P l

(
3H2 + 6H F + F 2 + 3

k

a2
+
κ

b2

)
= ρ+ σ + λ

M4
P l

(
2Ḣ + 3H2 + 4H F + 2Ḟ + 3F 2 +

k

a2
+
κ

b2

)
= −p− σp + λ (8.5.6)

the conservation equations now involve the quantity T

σ̇ + 3(σ + σp)H + 2(σ + σπ)F = T

ρ̇+ 3(ρ+ p)H + 2(ρ+ π)F = −T (8.5.7)

and the anomaly equation includes the conformal breaking term, as a consequence of the masses and
β–functions of the strongly coupled gauge theory

σ − 3σp − 2σπ = A(6) + Y +X (8.5.8)

X has to be written in terms of the β-functions and operators of the SCGT and matter theory. Taking
the same ansatz for the pressures as for the non interacting conformal theory

σπ = Ωσp (ω−1 ≡ 3 + 2Ω)

p = wρ, π = wπρ (8.5.9)

and using the anomaly equation to eliminate σp = ω
(
σ −A(6) − Y −X

)
from the set of remaining

equations, we get

M4
P l

(
3H2 + 6H F + F 2 + 3

k

a2
+
κ

b2

)
= ρ+ σ + λ (8.5.10)

M4
P l

(
2Ḣ + 3H2 + 4H F + 2Ḟ + 3F 2 +

k

a2
+
κ

b2

)
= −wρ− ωσ + λ+ ω

(A(6) + Y +X
)

σ̇ + [3(1 + ω)H + 3(1− ω)F ] σ = [3ωH + (1− 3ω)F ]
(A(6) + Y +X

)
+ T (8.5.11)

ρ̇+ [3(1 + w)H + 2(1− wπ)F ] ρ = −T (8.5.12)

The cosmological evolution described by these differential equations that include the non con-
formality (represented by the X term) and the matter/hidden interactions (related to the T term)
could now be investigated. In the spirit of the AdS/CFT correspondence, the CFT generalization
amounts to introducing non trivial dynamics in the bulk and brane–bulk energy exchange (and bulk
self–interaction) in the 7D picture.

8.5.2 Critical points and stability

The fixed points can be derived as I have done in appendix A.2 for the conformal non interacting
theory and their stability can then be studied for specific theories. I won’t discuss this topic here.
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8.5. Non conformal interacting generalization

Since the new deformation parameters X,T depend on the 6D space–time curvature, they contain
functions of the Hubble parameters and spatial curvatures and of the intrinsic energy scale of the
background, the AdS7 radius (or MP l). They will thus in general modify the equations for the fixed
points and their stability in a sensible way, depending on the specific generalization one wants to
consider.

I will instead try to understand how the comparison with the bulk description gets changed when
we go to the generalized scenario. This will be the subject of the next subsection.

8.5.3 Correspondence: interactions and conformal breaking vs. energy exchange
and bulk self–interaction

As for T = X = 0, we will make some assumptions simplifying the set of equations including Einstein,
conservation and anomaly equations, with the aim of understanding some peculiar features of this
cosmological model and its two dual descriptions. First of all, we are going to neglect terms containing
higher orders in the background curvature — namely the anomaly and the trace contribution Y coming
from the second order action SR2 .

Equal scale factors The correspondence works as in the conformal non interacting analysis of sub-
section 8.4.1. On the brane side (referring to eqs (8.5.10)–(8.5.12)), the slowly scaling approximation
leads to the equations

H2 +
1

10

(
3
k

a2
+
κ

a2

)
=

1

10M4
P l

(ρ+ χ) +
1

10M4
P l

λ (8.5.13)

χ̇+ 6Hχ = HX + T (8.5.14)

ρ̇+ (3(1 + w) + 2(1 + wπ))Hρ = −T (8.5.15)

To get the bulk description expressions for H, ρ, χ we truncate equations (7.2.35)–(7.2.37) to first
order in the density, neglecting ρ/V w.r.t. order 1 terms

H2 +
1

10

(
3
k

a2
+

κ

a2

)
=

2c̃V (eq)V

5M10
(ρ+ χ) + λ (8.5.16)

χ̇+ 6Hχ = 2T 0
7 −

40M5

V
HT 7

7 (8.5.17)

ρ̇+ (3(1 + w) + 2(1 + wπ))Hρ = −2T 0
7 (8.5.18)

The matching with the system of equations on the brane (8.5.13)–(8.5.15) is exact if we have the
following relations among the brane and bulk parameters

M4
P l =

M10

2c̃V (eq)V

wπ=w−→ M4
P l = 20

M10

V
(8.5.19)

T = 2T 0
7 (8.5.20)

X = − M5

2c̃V (eq)V
T 7

7 =⇒ X

M4
P l

= − T 7
7

M5
(8.5.21)

In the previous equations we have also explicitely evaluated the matching for wπ = w, that gives the
RS fine–tuning λRS = 0.
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8. Holography in the seven dimensional Randall–Sundrum background

Static compact extra dimensions The condition of static internal space F = 0, together with the
small Hubble parameter approximation, brings equations (8.5.10)–(8.5.12), for the brane description,
and equations (7.2.35)–(7.2.37), for the bulk description. Indeed, we get respectively

H2 +
1

3

κ

b20
=

1

3M4
P l

(ρ+ χ) (8.5.22)

χ̇+ 4Hχ = HX + T (8.5.23)

ρ̇+ 3(1 + w)Hρ = −T (8.5.24)

(where we assumed ω = 1/3) and

H2 +
1

6

κ

b20
=

2c̃V (st)V

3M10
(ρ+ χ) (8.5.25)

χ̇+ 4Hχ = 2T 0
7 −

40M5

V
HT 7

7 (8.5.26)

ρ̇+ 3(w + 1)Hρ = −2T 0
7 (8.5.27)

The parameters in the gauge and gravity descriptions are thus related by the following expressions

M4
P l =

M10

4c̃V (st)V

wπ= w+5
6−→ M4

P l = 20
M10

V
(8.5.28)

T = 2T 0
7 (8.5.29)

X = − M5

2c̃V (st)V
T 7

7 =⇒ X

M4
P l

= −2
T 7

7

M5
(8.5.30)

For wπ = (w + 5)/6 we get the zero effective cosmological constant on the RS brane.

Proportional Hubble parameters In the limit of proportional Hubble parameters or equivalently
scale factors related by b = aξb , we use the set of equations (8.5.10)–(8.5.12), substituting F = ξbH
and κ→ κb, and expanding in the slowly scaling approximation

H2 +
1

(ξ2b + 6ξb + 3)

κb

b2
=

1

(ξ2b + 6ξb + 3)M4
P l

(ρ+ χ) (8.5.31)

χ̇+ dξb
Hχ = (3ω + ξb(1− 3ω))HX + T (8.5.32)

ρ̇+ wξb
Hρ = −T (8.5.33)

As before, dξb
≡ 3(1 +ω)+ 3ξb(1−ω), wξb

≡ 3(1 +w) + 2ξb(1 +wπ). The bulk dynamics is described
by (7.2.38)–(7.2.40) with F = ξBH and κ→ κB

H2 +
1

(ξ2B + 3ξB + 6)

κB

b2
=

2c̃V,ξV

(2ξB + 3)M10
(ρ+ χ) (8.5.34)

χ̇+ dξB
Hχ = 2T 0

7 −
40M5

V
HT 7

7 (8.5.35)

ρ̇+ wξB
Hρ = −2T 0

7 (8.5.36)
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8.6. Remarks on the 7D RS holographic description

with dξB
≡ 6(ξ2B + 2ξB + 2)/(2ξB + 3), wξB

≡ 3(1 + w) + 2ξB(1 + wπ).
If w and wπ are the same on both sides of the duality, then we must make the identification

ξb = ξB = ξ to match ρ equations. As a consequence ω = 1/(2ξ + 3) in order to have agreement
for the mirage density conservation equations and κb = (ξ2 + 6ξ + 3)κB/(ξ

2 + 3ξ + 6). With these
conditions, the comparison between the two sets of equations thus gives the following matching
relations

M4
P l =

2ξ + 3

ξ2 + 6ξ + 3

M10

2c̃V,ξV
(8.5.37)

T = 2T 0
7 (8.5.38)

X = − 2ξ + 3

2ξ2 + 3

M5

2c̃V,ξV
T 7

7 =⇒ X

M4
P l

= −ξ
2 + 6ξ + 3

2ξ2 + 3

T 7
7

M5
(8.5.39)

8.6 Remarks on the 7D RS holographic description

In the context of holographic cosmology, I have investigated the specific background of 7D RS gravity,
including an energy exchange interaction between brane and bulk. Some novel features arise both
on the bulk side of the duality and in the conformal holographic theory on the brane. In particular,
I found distinctive results in the comparison between the two descriptions that need a better under-
standing. The originality with respect to the 5D/4D holographic cosmology [159, 125] is due to the
compactification over a 2D internal space, around which we warp the 5–brane. The 6D space–time
filled by the brane acquires an inhomogeneity that distinguishes the 3D visible space from the 2D
internal directions. Evolution can generally be different in the two spaces and pressures are individu-
ally related to the energy density by the usual ansatz p = wρ and π = wπρ (p and π are respectively
the 3D and 2D pressures), with wπ �= w in general.

The rather detailed study of the various cosmologies emerging from the 7D RS model with energy
exchange has been embodied in the context of the AdS/CFT correspondence. I have examined the
role played in the holographic critical point analysis by the 6D anomalous CFT coupled to 6D gravity
— with the addition of the higher order counterterms to the dual action. The dual theory on the
brane is conformal (classically) and non interacting (with the matter theory on the brane). This
CFT would then correspond to the RS set–up with no energy exchange. Despite this fact, I may
find inflationary critical point solutions, depending on the anomaly parameters and on the coefficient
of the second order counterterm (in the curvature). All this fixed points are characterized by zero
matter energy density. Clearly, neglecting all the higher order contributions (including the anomaly
A(6) and the trace term Y ) I recover the trivial fixed points of the pure RS gravity background.

The comparison between the two dual descriptions has been achieved in the approximation where
all the higher order terms can be neglected, i.e. for small Hubble parameters. Since higher order
terms are truncated, we cannot access to the typical non conventional ρ2 dependence in the expression
for H2 — only linear terms are present in this approximation.

Comparing the bulk Friedmann equation with the corresponding equation derived in the holo-
graphic description, we have to match the ratioM10/V (M is the 7D Planck Mass and V is the tension
of the RS brane) in terms of the 6D Planck mass M4

P l (the 4D Planck mass M(4) is related to MP l

by M2
(4) = V(2)M

4
P l). The RS fine–tuning M4

P l = 20M10/V is restored when I recover homogeneity
in the background, imposing F = H and wπ = w. With these assumptions indeed, the matching is
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8. Holography in the seven dimensional Randall–Sundrum background

exact also with respect to the spatial curvature terms. As I move away from homogeneity, I have to
define an effective spatial curvature for the compact extra dimensions in the holographic description.
The matching between the scales of the theories reflects the RS fine–tuning for a specific value of the
matter pressure in the internal space (determined by wπ), depending on the proportionality factor ξ
relating the two Hubble parameters F (t) = ξH(t), or b(t) = aξ(t).

I finally matched the evolution equations in the generalized holographic dual theory with the
general bulk description. The interactions between hidden and visible sectors encodes the dynamics
of the brane–bulk energy exchange T 0

7 �= 0 on the bulk gravity side while the breaking of conformal
invariance (via non zero β–functions or masses) amounts to turning on the bulk “self–interaction”
T 7

7 �= 0.
In my paper [96], the 7D RS background has been quite accurately studied on the bulk side,

though many profound cosmological aspects have not been explored. The holographic dual theory
could also give an interesting cosmological description of the brane–world. It would be interesting to
exploit Starobinsky argument of graceful exit from primordial inflation via higher derivatives term in
this context.
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Summary and conclusive remarks

In this thesis I tackled two significant issues related to string theory. Noncommutative field theories,
appearing in the low energy description of suitable string backgrounds, are the subject of the first part
of my work. The second part of my Ph.D. project deals with brane–world cosmology and holography,
motivated by the demand of embedding cosmological data into the string framework.

Noncommutative field theories are shown to exhibit special features, both at classical and quantum
level. It is particularly interesting to investigate the faith of symmetries through generalization to
noncommutative geometry. In my two publications [63, 46], integrability of the sine–Gordon quantum
field theory was considered. Integrable theories are of great interest, since they display nice properties
of the S–matrix that I discussed. Furthermore the S–matrix can be explicitely calculated in some cases
— in sine–Gordon model, for example. Quantum statistics applications are also very well known,
such as spin model analysis. Moreover, these remarkable theories play a rather relevant role in string
theory, since they often arise as effective theories describing open string dynamics on branes. In this
context, their noncommutative generalization — arising in noncommutative string backgrounds — is
an intriguing question that I addressed.

Integrability is the consequence of the existence of infinitely many conserved currents in the classi-
cal theory. Thus, one may wish to deform a theory in such a way that conservation of these local cur-
rents is automatically preserved. The existence of infinite deformed conserved currents is guaranteed
if the noncommutativity parameter is introduced in the reformulation of the gauged bicomplex. In-
deed, the equations of motion for an integrable theory can be obtained as the compatibility conditions
of a linear differential system. An infinite chain of differential one forms can then be constructed and
yield the conserved currents. Ordinary (euclidean) sine–Gordon follows from a specific matrix valued
differential system, which produces a noncommutative version of the model upon the implementation
of noncommutative geometry in the matrix equation. Deformed currents are still conserved, so that
the theory is formally classically integrable. The model derived by means of this procedure has been
considered in my paper [63], written in collaboration with M. Grisaru, S. Penati and L. Tamassia.

However, a theorem by Zamolodchikov and Zamolodchikov states that integrability in two di-
mensions is equivalent to the introduction of restrictions on the S–matrix. Roughly, S–matrix is
factorizable in two particle scattering processes while production processes are absent. Despite the
existence of the infinite number of conserved currents, the deformed theory generally do not exhibit
the nice properties of the S–matrix, expected in integrable models. This is indeed what happens in
the aforementioned noncommutative sine–Gordon theory in [63]. We calculated the scattering am-
plitudes at tree level for 2 → 2, 2 → 3 and 2 → 4 processes. The results yield non zero value for
production amplitudes, showing that Zamolodchikovs’ theorem doesn’t generally hold in noncommu-
tative set–up. Moreover, we found that causality was violated too, as it is usual in noncommutative
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field theories. In fact, causality and factorization of the S–matrix are two related issues, in the sense
that the first condition seems to be necessary in order for the second property to be satisfied. We
thus argued that an eventual causal noncommutative version of sine–Gordon could also be integrable,
with respect to the full notion of integrability implying S–matrix factorization.

Moreover, the euclidean noncommutative sine–Gordon equations of motion constructted in [68]
can be traced back to four dimensional SDYM, via dimensional reduction. Nevertheless, the associ-
ated action derived in [63] cannot be obtained by the same procedure, i.e. the dimensional reduction
from SDYM doesn’t work at the level of the action. On the other hand, we showed how this non-
commutative sine–Gordon model can be interpreted as the bosonization of noncommutative abelian
massive Thirring model, naturally generalized to NC geometry. The abelianity is due to the fact that
our sine–Gordon contains two copies of the same WZW action plus the self–interaction for two fields
g and ḡ, belonging to the complexified U(1). The appearance of two fields rather that one comes
from the noncommutative group structure. We deduced the equations of motion from a linear system
defined in terms of a U(2) gauge connection, which is the obliged generalization from the SU(2)
connection in ordinary geometry — since SU(2) is no more closed under noncommutative product.
Hence, an additional U(1) factor pops out, so that we get two independent equations of motion and
two abelian fields.

Since the results were not satisfactory in what concerns S–matrix properties, we were induced to
consider a noncommutative generalization of sine–Gordon, with a different reduction from the stringy
SDYM. Indeed, we proposed in [46] — together with O. Lechtenfeld, A. D. Popov, S. Penati and
L. Tamassia — a model which is a dimensional reduction from integrable noncommutative (2 + 2)–
dimensional SDYM. N = 2 superstrings, with N coincident space filling D3–branes and constant
NS–NS two form, are described at tree level by noncommutative U(N) SDYM in four dimensions
with signature (+,+,−,−). SDYM is known to be integrable also in its noncommutative version,
since this can be proven by the vanishing of all amplitudes beyond three point functions. A first
dimensional reduction yields an intermediate (2 + 1)–dimensional modified sigma model. Further
reduction leads to our integrable (1 + 1)–dimensional sine–Gordon model. However, this is done in
two steps, first factorizing the dependence on the extra coordinate and then restricting the form of the
U(2) fields appearing in the linear system. The second operation is crucial and causes the interaction
terms in the action to mix the two U(1) fields g+ and g−. Indeed, the U(2) group is broken to its
diagonal U(1)× U(1) subgroup, which seems the most natural assumption.

Results are surprising, since S–matrix looks factorizable and causal. We computed all the 2 → 2,
2 → 3, 3 → 3 and 2 → 4 amplitudes at tree level, both in the Leznov and Yang gauges. Particle
production is absent and 2 → 2 processes are causal. Besides, Leznov formulation gives all zero
amplitudes, in agreement with properties of SDYM in the Leznov gauge, coming from superstrings.
I emphasize that dimensional reduction works also at the level of the action, in this model.

Due to the mixed interaction term in the action, it is not trivial to relate the noncommuta-
tive integrable sine–Gordon to some fermionic noncommutative U(1)×U(1) Thirring–like model via
bosonization. Indeed, this is still an open issue. However, an additional result we obtained is the
construction of noncommutative multi–soliton solutions, which is achieved by means of the dress-
ing method in the gauged bicomplex approach — again through dimensional reduction from the
(2 + 1)–dimensional non linear sigma model.
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I then moved to a more phenomenological application of string theory. This has to do with the idea
that our world is somehow represented by an effectively four dimensional defect in ten dimensional
space–time, described by strings degrees of freedom (or eleven dimensional space–time if we consider
M theory). The defect is naturally identified in string theory with a brane — or a stack of coincident
branes, or else appropriate intersections of branes. The concept of brane–world solves the problem of
finding an explanation to the number of visible dimensions (four) in comparison to the target space
dimension (ten) where critical superstrings are embedded. However, since gravity is free to propagate
in the whole space–time, one still has to find a way to hide the extra dimensions, which are not
detected by experiments. This was usually achieved by compactification of extra dimensions.

On the other hand, RS set–up leads to gravity localization on the brane, without the need of
compactifying. Indeed, the massless graviton mode rapidly falls off as the distance from the brane
increases. Furthermore, massive modes are also localized and give negligible contributions to the
gravitational potential at large distances (larger than the RS scale, defined in terms of the brane
tension or, equivalently, of the bulk cosmological constant). For small energies, Newton’s law is
thus recovered on the four dimensional brane in five dimensional bulk with warped extra dimension.
The warp factor of RS geometry is responsible for the localization of gravity and allows for an
infinite volume extra direction. I indeed exploited the crucial characteristics of RS models in a higher
dimensional set–up — in which compactification over an internal manifold is also involved — in order
to derive new cosmological evolution features in this context.

On general grounds, cosmology in RS brane–worlds appears to be non conventional, in the sense
that standard Friedmann equations are not obtained. Evolution is hence not described by the usual
formalism. However, conventional cosmology is restored in the limit of small matter energy densities,
at late times. This is an interesting issue if we try to deal with the open questions of cosmology,
as for instance present time acceleration data, primordial inflation, dark energy. Moreover, one can
introduce an energy exchange between brane and bulk, yielding more intriguing and complicated
cosmologies. These can display non conventional behavior even at late times, hopefully matching
some aspects of the observed cosmological evolution. The cosmological analysis with brane–bulk
energy exchange has been first performed in [159, 125] for the 5D RS model.

I proposed in my paper [96] an analogous brane–world analysis for the 7D RS model with non
zero energy exchange. Due to the two additional extra dimensions, a further compactification over
a two dimensional internal manifold was necessary in order to get effective four dimensional gravity
at low energies. Two different scale factors H and F were introduced for the 3D and 2D spaces,
respectively. I derived the Friedmann–like equations from Einstein equations by defining a mirage
density through the associated differential equation. The mirage density encodes the bulk dynamics.
It reduces to 6D and 4D radiation in the equal scale factor H = F and static extra dimensions F = 0
background, respectively. However, the effective 4D mirage density is 4D free radiation in the RS
vacuum for both these configurations.

I then considered the cosmological evolution of equal scale factors and static extra dimensions uni-
verses, showing interesting consequences of brane–bulk energy exchange in this model. In particular,
when influx is considered (energy flowing from the bulk onto the brane), I found stable accelerating
fixed point solutions that can be interpreted as the present accelerated era. Scenarios can be roughly
depicted, where the evolution trajectory initially pass through an accelerated phase, to be identified
with primordial inflation, starts decelerating after a change of regime from outflow to influx, and
finally ends into the inflationary critical point. The matching of the cosmological analysis to obser-
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vational data would need a more rigorous formulation, indeed. I have moreover remarked the new
features with respect to the 5D model. For instance, the outflow case exhibits more complicated
results, since it is not necessary for the 4D matter energy density to be attracted by the trivial fixed
point, characterized by vanishing acceleration and density.

An explicit solution in the radiation dominated universe was found. It showed that if a particular
linear ansatz on the outflowing energy exchange parameter is considered, the brane dynamics is
dominated by mirage radiation at late times, while matter radiation prevails at early times. The
whole cosmological analysis is strongly dependent on the form of the energy exchange. It would be
important to understand more clearly how to eventually embed a realistic description of our universe
in this context.

It have already noted that RS brane somehow plays the role of a IR cutoff for gravity in the bulk.
Moreover, since the RS static bulk is a slice of AdS space, it is natural to look for a holographic dual
description of RS models invoking the AdS/CFT correspondence. Holographic renormalization is a
rigorous formulation of gauge/gravity duality which carefully cures the divergences that plague the
two sides of the duality. First of all, a regularization of the supergravity theory is needed. In RS
models this is indeed provided by the cutoff brane. Then, AdS/CFT teaches us that the IR cutoff
on the supergravity side corresponds to a UV cutoff for the CFT. Hence, one obtains an holographic
cutoff conformal theory. Besides, gravity gets renormalized with the addition of covariant boundary
counterterms that appear in the renormalized dual theory as the lower dimensional gravity plus higher
order corrections.

I constructed the holographic dual theory corresponding to the 7D RS model, using the holographic
renormalization prescription specified to seven dimensions. The result is a 6D CFT coupled to 6D
gravity with higher derivative corrections. The Friedmann–like equations were calculated, together
with conservation and anomaly equations. The mirage energy density is related to the energy density
parametrizing the stress–energy tensor contribution from CFT and higher order corrections, which
are quadratic and cubic in the curvature. The anomaly is also cubic in the curvature and yields a
very complicated expression in terms of the Hubble parameters. A distinctive feature of this 7D/6D
model is that the higher derivative terms contained in the anomaly may drive an exit from inflation as
described in the Starobinsky model. The absence of these contributions in the 5D/4D set–up is due
to the fact that they are cancelled from the highest order counterterm appearing in the holographic
action. In six dimensions some of the higher derivative terms survive, since they are not uniquely
contained in the scheme dependent part of the anomaly, which always gets cancelled.

I performed the critical point analysis in equal scale factors and static extra dimensions back-
grounds, finding non trivial inflationary points. However, an analytical expression of H in terms
of matter and mirage energy densities has been obtained only working in the approximation where
higher order terms are neglected. The Friedmann–like equation still displays non conventional behav-
iors, which have been compared to the expression obtained in the 7D picture. Indeed, matching the
dimensionful parameters yields the RS fine–tuning that implies zero effective cosmological constant
on the brane. This result is achieved in a homogeneous background, where the scale factors and pres-
sures of the 3D and 2D spaces are equal. Deviations from this configuration lead to the generation
of a non zero effective cosmological constant on the brane.

Further insights about the duality ensue from the generalization of the field theory to a non con-
formal interacting strongly coupled gauge theory. Indeed, while the conformal theory corresponds
to 7D gravity bulk with no brane–bulk energy exchange, nor bulk self–interaction (which has been
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neglected in the cosmological analysis and represents the bulk diagonal component of stress–energy
tensor associated to matter in the bulk), its generalization holographically describes these two ob-
jects. More explicitely, we introduced a term in the trace equation representing the classical and
quantum breaking of conformal invariance. Conversely, non conservation of matter and hidden sector
stress–energy tensors separately is related to the matter/hidden interactions. This is encoded in an
additional factor appearing in the conservation equations. As a result from the comparison of the
two sides, I obtained that brane–bulk energy exchange and bulk self–interaction correspond through
proportionality relations to the matter/hidden interaction term and conformal breaking term, re-
spectively. Analogous relations appear in the 5D/4D set–up. This is an expected result, since the
hidden sector in the holographic description is associated to the bulk dynamics on the 7D gravity side.
Hence, interactions between the visible and hidden fields are dual to the energy exchange between
brane and bulk. Deformations of the hidden sector theory instead amount to introducing some bulk
self–interactions.

The framework of AdS/CFT and brane–worlds offers a wide range of phenomenologically inter-
esting subjects. I here considered a cosmological model leading to a rich description of the universe,
eventually giving some hints to solve open questions in cosmology — from the holographic point of
view as well. However, this model is not rigorously embedded in a string theory background. The
first question to address would then be how such a cosmological description can arise in string theory.

To conclude, this thesis contains the detailed study of two distinct topics sharing the attribute
of being recent applications of string theory. I investigated the properties of noncommutative field
theories, focusing on integrability, which is a field of great interest in string theory, as well as in
AdS/CFT. My results show that sine–Gordon theory seems to be generalizable to noncommutative
geometry preserving integrability (at tree level). Hence, there is hope that integrable field theories
coming from strings background inducing noncommutativity bear the same nice properties of the
S–matrix as ordinary integrable field theories do. Nonetheless, it is a challenge to determine whether
noncommutative geometry arises at high energies as a quantum deformation of ordinary space–time.

I then began the analysis of a cosmological brane–world model à la Randall–Sundrum, which
can be traced back to M5–branes in eleven dimensional M theory. Interesting results come both
from the cosmological analysis in the 7D set–up and from the construction and comparison of the
6D holographic dual theory. Cosmological scenarios are depicted, which give hints about possible
descriptions of our universe evolution. The matching of the two dual theories yields further intuitions
on the AdS/CFT correspondence for RS brane–worlds with energy exchange. However, I walked the
firsts steps in the holography and cosmology of 7D RS, but a deeper understanding of the model is
an open issue.
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Appendix A

Hographic Weyl anomaly and critical
point analysis

A.1 Conformal anomaly and traces in six dimensions

Conformal anomaly The conformal anomaly for 6D theories has been studied in [196]. It can be
derived using AdS/CFT and the gravitational renormalization procedure as in [189, 190, 193].

In our notations, the general expression for the trace anomaly in a six–dimensional CFT is

A(6) = −
(
cAE(6) + cBI(6) +∇μJ

μ
(5)

)
(A.1.1)

E(6) is the Euler density in six dimensions (type A anomaly), I(6) is a fixed linear combination of three
independent Weyl invariants of dimension six (type B anomaly) and ∇iJ

μ
(5) is an linear combinations

of the Weyl variation of six independent local functionals (type D anomaly), so that at the end we
have eight free coefficients in the general form of the anomaly depending on the specific CFT. The
type D anomaly is a trivial (it is a total derivative, indeed) scheme dependent term that can be
cancelled by adding local covariant counterterms to the action [192].

For our metric we obtain as a result that E(6) depends on the Hubble parameters and on their
time derivatives up to order one (that is, up to the second time derivative of the scale factors). I(6)
instead depends on H and F time derivatives up to order three, and so does the divergence term.
To be more specific, I(6) is made up by three contributions I1, I2, I3, with fixed coefficients; the first
two are two different contractions of three Weyl tensors (and contain only derivatives of the Hubble
parameters up to order one), while in I3 there are second order derivatives of the Weyl tensor (i.e.
third order time derivatives of the Hubble parameters).

For a 6D FRW background the sum of type A plus type B anomalies depends on the Hubble
parameters only up to the first time derivative, while the type D anomaly contains time derivatives
up to order three.

In terms of the Riemann tensor, Ricci tensor and scalar curvature, the A, B and D contributions
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to the anomaly read [189]

E(6) =
1

6912
E0

I(6) =
1

1152

(
−10

3
I1 − 1

6
I2 +

1

10
I3

)
Jμ

(5) = − 1

1152
[−Rμνρσ∇τRτνρσ + 2 (Rνρ∇μRνρ −Rνρ∇νRμρ)] +

− 1

2880
Rμν∇νR+

1

5760
R∇μR (A.1.2)

where

E0 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8

I1 =
19

800
K1 − 57

160
K2 +

3

40
K3 +

7

16
K4 − 9

8
K5 − 3

4
K6 +K8

I2 =
9

200
K1 − 27

40
K2 +

3

10
K3 +

5

4
K4 − 3

2
K5 − 3K6 +K7

I3 = K1 − 8K2 − 2K3 + 10K4 − 10K5 − 1

2
K9 + 5K10 − 5K11

and

(K1, . . . ,K11) =
(
R3, RRμνR

μν , RRμνρσR
μνρσ , Rμ

νRν
ρRρ

μ, RμνRρσRμρσν ,

RμνR
μρστRν

ρστ , RμνρσR
μντλRρσ

τn, RμνρσR
μτλσRν

τλ
ρ,

R�R,Rμν�R
μν , Rμνρσ�Rμνρσ)

In the analysis of the solutions to the Friedmann equations we plug in the specific expression for
the Riemann tensor obtained considering our ansatz (8.2.1) for the metric. But before doing this,
we use the anomaly equation and some standard assumptions on the pressures that parametrize the
stress–energy tensors to manipulate our system of differential equations.

To give an explicit result for the conformal anomaly in the specific case of 6D CFT on curved
space–time, with the ansatz 8.2.1 for a 4D FRW plus a 2D compact internal space background, we
write the type A contribution, in terms of the 3D and 2D spaces Hubble parameters H,F and spatial
curvatures k, κ:

E(6) = − 1

48

{
κ

b2

(
Ḣ +H2

)(
H2 +

k

a2

)
+ F 2

(
Ḣ +H2

)(
3H2 +

k

a2

)
+

+2
(
Ḟ + F 2

)(
H2 +

k

a2

)}
(A.1.3)

The type B and D contributions have a more complicated form and we write them when it is necessary,
in the specific limits we consider throughout the paper.

For the (0,2) SCFT dual to the N M5 background, the anomaly coefficients are given by cA =
cB = 4N3/π3 [189].
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Counteterm traces The dual RS theory action contains the three counterterms S1, S2, S3 written
in (8.1.6). Varying these contributions w.r.t. the six dimensional induced metric γμν on the brane
yields1[193]

T ct
μν = −2M5

(
5γμν +

1

4

(
Rμν − 1

2
Rγμν

)
− 1

32

[
−�Rμν + 2RμσνρR

ρσ +
2

5
∇μ∇νR− 3

5
RRμν

−1

2
γμν

(
RρσR

ρσ − 3

10
R2 − 1

5
�R

)]
− T a

μν log ε

)
(A.1.4)

Where T a
μν is a traceless tensor of cubic order in the curvature. The trace of the conformal variation

of S1 (corresponding to the linear part of (A.1.4) in the curvature) gives a term proportional to the
Einstein tensor. The variation of the S3 action (related to T a

μν) is traceless because it is proportional
[193] to the traceless tensor h(6)μν that enters into the parametrization of the metric (8.1.1) due to
Fefferman and Graham. Finally, the trace of S2 (equal to the trace of the quadratic contributions in
(A.1.4)) is

Y =
1

32
M5�

(
RμνRμν − 3

10
R2

)
(A.1.5)

which can be expressed in terms of the Hubble parameters H,F and of the spatial curvatures k, κ of
the (4D FRW + 2D compact space) background (8.2.1) as

Y = −2M5�

160

{
− 3

k2

a4
+ 6

k

a2

(
3
κ

b2
+ F 2 + 8FH + 3H2 + 6Ḟ + 4Ḣ

)
+

+2
κ

b4
+ 2

κ

b2

[
− (F − 6H) (F + 3H) + Ḟ + 9Ḣ

]
+

−3F 4 + 48F 3H + 6FH
(
21H2 + 7Ḟ + 13Ḣ

)
+ F 2

(
111H2 − 4Ḟ + 24Ḣ

)
+

+3

[
6H2 −

(
Ḟ − Ḣ

)2
+ 2H2

(
7Ḟ + 3Ḣ

)]}
(A.1.6)

We define cY ≡ M5�/32M2
P l which is given as a function of the number N of M5–branes in the

gravity background by cY =
√

2N3/π3.

A.2 Fixed points in the holographic description

In this appendix, we are going to look for the existence of inflationary points for our specific holo-
graphic model and to find what kind of dependence they have on the parameters of the theory. We
will also study the stability matrix determining — in some special limits — whether the critical points
are stable or saddles.

In the calculations, we suppose that the effective cosmological constant on the brane λ is null.

1Just for this formula we set 	 = 1 to simplify the notation
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A. Hographic Weyl anomaly and critical point analysis

A.2.1 Flat compact extra dimensions

We start by considering the case of flat internal space, which could be for example a two–torus.
The three spatial dimensions of the 4D FRW are already supposed to be flat, so that the system of
equations of motion simplify having dropped the terms proportional to the two spatial curvatures.

The general flat extra dimension fixed points (F �= 0) are not easy to characterize. We choose to
analyze the case in which the extra dimensions Hubble parameter is zero at the fixed point, meaning
that the fixed point represents a universe with static flat extra dimensions.

F �= 0, ω �= 1
5

Fixed point solutions Looking for the solution of the Friedmann plus conservation set of equations
with constant Hubble parameters (H ≡ H, F ≡ F) and zero curvatures (k = κ = 0), we have to
consider the simplified system of equations (where we have already solved the equation for σ)

M4
P l

(
3H2

 + 6H F + F 2


)− [3ωH + (1− 3ω)F]
(
Ã(6) + Ỹ

)
= λ (A.2.1)

M4
P l

(
3H2

 + 4H F + 3F 2


)− ω (3H + 2F)
(
Ã(6) + Ỹ

)
= λ (A.2.2)

σ = [3ωH + (1− 3ω)F] Ã(6) = M4
P l

(
3H2

 + 6HF + F 2


)− λ (A.2.3)

σp = −ω (3H + 2F)
(
Ã(6) + Ỹ

)
= −M4

P l

(
3H2

 + 4HF + 3F 2


)
+ λ (A.2.4)

ρ = 0, χ = 0 (A.2.5)

where the relation between Ω and ω was defined to be 1/ω = 2Ω + 3 and the trace contributions
A(6), Y take the form

A(6) =
cA
48

[
2F 3

H
3
 + 3F 2

H
4


]
+

cB
4800

[
12F 6

 − 128F 5
H +

+291F 4
H

2
 + 184F 3

H
3
 + 557F 2

H
4
 + 138FH5

 − 54H6


]
(A.2.6)

Y =
6

5
cYM

2
P l

(
2H2

 + 2HF + F 2


) (
3H2

 + 18HF − F 2


)
(A.2.7)

and Ã(6), Ỹ have been defined as

Ã(6) ≡ A(6)/ [3(1 + ω)H + 3(1− ω)F]

Ỹ ≡ Y/ [3(1 + ω)H + 3(1− ω)F]

for (1 + ω)H + (1− ω)F �= 0.
For F �= 0 and ω �= 1/5, we can reformulate eqs (A.2.1) and (A.2.2) in order to get

(3− 21ω)H2
 + (4− 30)FH − (3− 11ω)F 2

 = (1− 5ω)
λ

M4
P l

(A.2.8)(
Ã(6) + Ỹ

)
= 2M4

P l

H − F

1− 5ω
(A.2.9)

Imposing λ = 0 (no effective constant on the brane) greatly simplifies the solution since H ∝ F.
Under that assumption, defining Cε and Dε — as functions of ω and ε = ±1 (Dε is a function of the
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anomaly parameters cA and cB , of cY and the Planck mass as well) — such that H − F = CεF and(
Ã(6) + Ỹ

)
= DεF

5
 , the solution takes the form

H2
 = M2

P l (Cε + 1)2
[

2Cε

(1− 5ω)Dε

] 1
2

, F 2
 = M2

P l

[
2Cε

(1− 5ω)Dε

] 1
2

(A.2.10)

This solution exists for the values of ω such that Cε/Dε > 0 (for ω < 1/5) or Cε/Dε < 0 (for ω > 1/5).
The CFT energy density and pressures are then given by

σ = M6
P l (1 + 3ωCε)Dε

[
2Cε

(1− 5ω)Dε

] 3
2

(A.2.11)

σp =
2ω

1− 3ω
σπ = −M6

P l ω (5 + 3Cε)Dε

[
2Cε

(1− 5ω)Dε

] 3
2

, ρ = 0 (A.2.12)

(for ω = 1/3 we have σπ = 0).

F �= 0, ω = 1
5

Fixed point solutions To analyze the case ω = 1/5, it’s better to reformulate equations (A.2.1)
and (A.2.2) in the following way:

2M4
P l (H − F)F − (1− 5ω)F

(
Ã(6) + Ỹ

)
= 0 (A.2.13)

M4
P l

(
3H2

 + 6H F + F 2


)− [3ωH + (1− 3ω)F]
(
Ã(6) + Ỹ

)
= λ (A.2.14)

From the first equation we get H = F and substituing in the second we find the equation for H

− 5

288
(cA + 2cB)H6

 − 120cY M
2
P lH

4
 + 10M4

P lH
2
 = λ (A.2.15)

For λ = 0 it has a non trivial solution only if (24cY )2 > (cA + 2cB)

H2
 = F 2

 = − 24

cA + 2cB
M2

P l

[
24cY ±

√
576c2Y + (cA + 2cB)

]
(A.2.16)

The energy density and pressures are equal to

σ = −σp = −σπ = − 240

cA + 2cB
M6

P l

[
24cY ±

√
576c2Y + (cA + 2cB)

]
(A.2.17)

ρ = 0

F = 0

Fixed point solutions Supposing instead F = 0, the fixed point solution is

H2
 = − 20

3cB

ω

ω + 1
M2

P l

[
48cY ±

√
6

(
384c2Y − cB

ω

ω + 1

)]
(A.2.18)

σ = −σπ =
2ω

3ω − 1
σπ = − 20

cB

ω

ω + 1
M6

P l

[
48cY ±

√
6

(
384c2Y − cB

ω

ω + 1

)]
(A.2.19)

ρ = 0
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for ω �= −1. This gives real Hubble parameter for 384c2Y − cBω/(ω + 1) > 0. If ω = −1, we find

H2
 =

640cY
cB

M2
P l, σ = −σp =

1

2
σπ =

640cY
3cB

M6
P l, ρ = 0 (A.2.20)

If the CFT is characterized by a positive cB , there is no non trivial critical point. For vanishing cB
the only fixed point with λ �= 0 is the trivial one.

When F = −H(1+ω)/(1−ω), there is only one possible solution, for which the parameters must
have the values: ω = −1 (i.e. σπ = −2σp), cB = 0, F = 0 and the fixed point is thus the one in
(A.2.20).

Stability analysis For both fixed point characterized by the zero value of the extra dimension
Hubble parameter, i.e. both for ω �= −1 or ω = −1, we must find the eigenvalues of a 4 × 4 matrix.
In fact we have a third order linearized differential equation for the perturbation δH(t) and a first
order ODE for the energy density δρ, while δF (t) is found to be proportional to δH(t) solving an
algebraic equation

δH(3) = −a2 δḦ − a1 δḢ − a0 δH + c0 δρ (A.2.21)

δρ̇ = −3(1 + w)Hδρ (A.2.22)

δF = α δH (A.2.23)

The coefficients in the differential equations are functions of the anomaly parameters cA, cB , of the
trace parameter cY , of ω and of MP l.

The eigenvalues λ1, λ2, λ3 are then given by the roots of the third degree polynomial

λ3 + a2λ
2 + a1λ+ a0 = 0 (A.2.24)

while λ4 = −3(1 + w)H < 0. The coefficients a0, a1, a2 are given by

a0 =
12

25

8000M4
P l(3 + 2α+ 3(1 + α)ω)

cBH(1− α)ω
− (cBH4

 (23α − 54) + 144cY M
2
P lH

2


)
ω

a1 =
1

25

960000M4
P l(1 + α)

cBH2
 (1− α)ω

− (cBH4
 (137α − 222) + 36cY M

2
P lH

2


)
ω

a2 =
7− 6α

1− α
H (A.2.25)

where

α = −3
800M4

P l(1 + ω)− (−3cBH
4
 + 480cY M

2
P lH

2


)
ω

800M4
P l(5− 3ω)− (−3cBH4

 + 480cY M
2
P lH

2


)
(1− 3ω)

(A.2.26)

The sign of the eigenvalues λ1, λ2, λ3 (λ3 = λ2 iff 27a2
0 + 4a3

1 − 18a0a1a2 − a2
1a

2
2 + 4a0a

3
2 > 0,

otherwise we get three real roots) determines the nature of the fixed point. Since λ4 < 0, we find
that we can only have a completely stable fixed point or a saddle. In the case of one real and two
complex conjugated roots the critical point can be attractive only if a2 > 0 and

−2a2

3
< A+B <

a2

3
(A.2.27)
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where

A = sgn(R)
(
|R|+

√
R2 −Q3

) 1
3
, B =

Q

A
(A.2.28)

R ≡ 1

54
(2a3

2 − 9a1a2 + 27a0), Q ≡ 1

9
(a2

2 − 3a1) (A.2.29)

When the three roots are real, they are negative (corresponding to an attractive fixed point) iff
a0, a1, a2 > 0. For the other values of a0, a1, a2 the critical point is a saddle.

The coefficients of the linearized differential equation don’t depend on the anomaly parameter cA
corresponding to the type A anomaly, so that only type B anomaly influence the characteristics of
this fixed point.

A.2.2 Static compact extra dimensions

We analyze the set of differential equations when the extra dimensions are compactified on a sphere,
i.e. κ > 0, supposing that the corresponding acceleration factor b(t) remains constant, so that
F (t) ≡ 0.

Beside the H = 0 fixed points, we only have two acceptable time–independent solutions to the
Friedmann equations. The H = 0, κ �= 0 fixed points are always saddle points as we can conclude
from the linear order analysis since the eigenvalues of the stability matrix (or their real parts) are
one opposite to the other.

ω �= 0

Fixed point solutions The energy density ρ is zero, H and σ are then determined by

(A(6) + Y

) ≡ cA
48

κ

b20
H4

 −
cB

4800

(
54H6

 − 98
κ

b20
H4

 + 42
κ2

b40
H2

 − 6
κ3

b60

)
+

+
4cY
5
M2

P l

(
9H4

 + 18
κ

b20

κ2

b40

)
=

=
1 + ω

ω
M4

P l

(
3H2

 +
κ

b20

)
(A.2.30)

σ = M4
P l

(
3H2

 +
κ

b20

)
(A.2.31)

ρ = 0 (A.2.32)

Restricting the possible values of ω, we can obtain at least one positive root H2
 of eq (A.2.30),

without having limitations on the anomaly coefficients cA, cB .

We can illustrate an example, choosing the simple case cB = 0 (i.e. there is no contribution from
the conformal invariants in the anomaly) and also ω = −1, which simplifies the equation (A.2.30).
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The fixed point is thus determined by

H2
 =

κ

b20

[
9±

√
90 +

5cA
192cY

1

M2
P l

κ

b20

]−1

(A.2.33)

σ = −σp = 2σπ = M4
P l

⎛⎝3

[
9±

√
90− 5cA

192cY

1

M2
P l

κ

b20

]−1

+ 1

⎞⎠ κ

b20
(A.2.34)

ρ = 0

which is real for 192c2Y M
2
P l > −cAκ/45b20. We can moreover have two distinct positive H fixed points

if 5cAκ/9b
2
0 < −192c2Y M

2
P l.

Stability analysis We now analyze the H �= 0 fixed points behavior.

Regarding the fixed point determined by (A.2.30), we get a negative eigenvalue λ4 = −3(1+w)H

(given that w > −1,H > 0) and the other three are the roots of the third degree polynomial

λ3 + a2λ
2 + a1λ+ a0 = 0 (A.2.35)

where ai = ãi/ã3, i = 0, 1, 2 and

ã0 = −cAω
12

κ

b20
H3

 +
cBω

1200
H

(
81H4

 − 98
κ

b20
H2

 + 21
κ2

b40

)
+

144cY ω

5
M2

P l

(
H2

 +
κ

b20

)
+ 6M4

P l(1 + ω)H,

ã1 = −cAω
48

κ

b20
H2

 +
cBω

4800

(
111H4

 − 68
κ

b20
H2

 + 21
κ2

b40

)
+

36cY ω

5
M2

P l

(
H2

 +
κ

b20

)
+ 2M4

P l,

ã2 =
7cBω

1920
H

(
H2

 +
κ

b20

)
, ã3 =

cBω

1920

(
H2

 +
κ

b20

)
(A.2.36)

We get a 4 × 4 stability matrix — despite the fact that we should have only 2 variables (H, ρ) —
because the differential equations are of third order: the ρ eigenvalue is λ4, but H is a superposition
of the four modes corresponding to the four eigevalues of the matrix.

As in the previous analysis for the flat extra dimensions, the solutions λ1,2,3 of the equation
(A.2.35) are such that λ1 ∈ R, λ3 = λ2 or λ1, λ2, λ3 ∈ R. Besides, when we have the complex
conjugated pair, there are only three possibilities:

(i) λ1,�(λ2) = �(λ3), λ4 ≤ 0 ⇒ the solution is stable (even if one of the eigenvalues are null,
because that mode won’t then contribute to the expression for H)

(ii) λ1, λ4 < 0, �(λ2) = �(λ3) > 0 ⇒ we get a saddle point

(iii) λ1 > 0, �(λ2) = �(λ3), λ4 < 0 ⇒ in this case too, the fixed point is a saddle

The equalities λ1 = 0 and �(λ2) = �(λ3) in the case (i) are possible, but not simultaneously. When
the roots are all real we can get a stable point iff a0, a1, a2 > 0, which implies λ1, λ2, λ3 < 0, and a
saddle otherwise, with one negative two positive, or two negative one positive roots.
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A.2.3 Equal scale factors

Another limit that simplifies some of the calculations is the equal scale factor assumption. In this
case the Hubble parameters of the internal space and the 3D space are equal, F = H, and we remain
with a set of equations for the variables H, ρ, σ, as in the static extra dimension limit.

ω �= 0

Fixed point solutions We observe that when ω = 0 there is no acceptable solutions of the time–
independent Einstein equations. So we want to find the fixed points in the H = F , ω �= 0 limit. The
time–independent Friedmann plus conservation equations lead to

(A(6) + Y

) ≡ 5
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(
H2

 +
κ

a2

)
− 1

192
cB
κ2

a4
H2

 +
1

800
cB
κ3

a6
+

+
4cY
5
M2

P l

(
150H4

 + 20
κ

b20
H2

 −
κ2

b40

)
= 6M4

P l

(
10H2

 +
κ

a2

)
(A.2.37)

σ = M4
P l

(
10H2

 +
κ

a2

)
(A.2.38)

ρ = 0 (A.2.39)

provided that 5+3w+2wπ �= 02. As a consequence of solving the system of equations we also obtain
a constraint on the CFT pressure of the hidden sector σπ, as we must impose ω = 1/5, i.e. σπ = σp.
The equation (A.2.38) yields the value of the Hubble parameter at the fixed point as a function of
cA, cB , cY ,MP l, κ.

In the case of flat extra dimensions κ = 0 we immediately solve the system of equations finding
(discarding the trivial H = 0 solution)

H2
 = − 24

cA + 2cB
M2

P l

[
24cY ±

√
576c2Y + (cA + 2cB)

]
(A.2.40)

σ = −σp = −σπ = − 240

cA + 2cB
M6

P l

[
24cY ±

√
576c2Y + (cA + 2cB)

]
, ρ = 0

The solution is acceptable if −(cA − 2cB) < (24cY )2 and the two roots are both positive when
(cA − cB) < 0.

Stability analysis The last situation that we are going to consider is the case of equal scale factors,
as in the fixed point analysis. In related subsection we found only one fixed point with F = H, that
entails a relation between the two CFT pressures σπ = σp (ω = 1/5). We calculate the stability
matrix eigenvalues corresponding to this particular limit.

2If the reasonable range of values for the pressures is given by w,wπ ≥ −1, this condition is satisfied whenever w (or
wπ) is strictly greater than −1 and, since we are interested in fixed points with a general w �= −1, we will assume that
this is the case.
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A. Hographic Weyl anomaly and critical point analysis

When the extra dimensions spatial curvature is zero κ = 0, in addition to the vanishing 3D
curvature (k = 0), the stability matrix can be studied straightforward. All the eigenvalues are
coincident since δH ∝ δσ ∝ δρ. They are given by

λ = −(5 + 3w + 2wπ)H < 0 (A.2.41)

For H > 0 the fixed point is stable.
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