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thème.

Cesare Pavese
Il mestiere di vivere





Abstract

Developments of formal specifications and proofs have spectacularly blossomed
over the last decades, hosted by a diversity of frameworks, systems and commu-
nities. And yet, the heterogeneity of these environments has hindered some fun-
damental steps in the scientific process: the sharing and reuse of results. This
dissertation proposes a way of distributing the same formal development between
various proof systems, thus augmenting their interoperability.

Chapters 1 and 2 present the logical framework that is used to centralize the
formal specifications and proofs. In particular, it is based on a variation of the
λ̄µµ̃-calculus designed to support interactive proof developments. Chapters 3 and 4
develop the rewriting and categorical structures required to give strict semantics
to proof languages.

Based upon these first results, chapters 5 and 6 respectively use a type system
for proof languages to secure a type safety proposition, and expose a series of
translations of the centralized developments into other major formal frameworks.
Among other things, the latter contributes to a simplification of Frege-Hilbert
deduction systems.

Finally, chapters 7 and 8 deal with the problems arising from the imple-
mentation of our centralized proof development system. Of special notice is the
presentation of a theory of classes, that allows for the finite first-order expression
of axiom schemes.

Résumé

Les développements de spécifications et des preuves formelles ont pris de l’am-
pleur durant les dernières décennies, élaborés au sein d’une diversité de canevas,
de systèmes et de communautés. Cependant l’hétérogénéité de ces environnements
gêne quelques-unes des étapes fondamentales du processus de réflexion scientifique :
le partage et la réutilisation des résultats. Cette dissertation propose une méthode
de distribution du même développement formel entre de divers systèmes de preuve,
augmentant ainsi leur interopérabilité.

Les chapitres 1 et 2 présentent le cadre logique qui est employé pour cen-
traliser les spécifications et les preuves formelles. Sa principale contribution est
une variation du λ̄µµ̃-calcul conçu pour supporter le développement interactif de
preuves. Les chapitres 3 et 4 développent les structures de récriture et catégoriques
nécessaire à l’expression formelle de la sémantique des langages de preuve.

Basé sur ces premiers résultats, le chapitre 5 utilise un système de types
pour des langages de preuve pour asseoir un propriété de sûreté de typage, et
le chapitre 6 expose une série de traductions des développements centralisés dans
d’autres cadres formels majeurs. Entre autres, le dernier contribue à une simplifi-
cation des systèmes de déduction à la Frege-Hilbert.

En conclusion, les chapitres 7 et 8 s’intéressent aux problèmes résultant de
l’implémentation de notre système de développement centralisé de preuve. Ainsi,
celui-ci décrit les détails du logiciel créé, et celui-là fait la présentation d’une théorie
de classes qui permet l’expression finie au premier ordre de schémas d’axiomes.





Contents

Contents i

List of Figures iv

List of Tables v

Introduction 1

1 Sequent Calculus 7

This chapter recalls the definition of sequent calculus, exposes some of

the means of representing proofs in this formalism, and proposes a clas-

sification of proof language constructs.

1.1 Syntax of predicate languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The sequent calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Proofs and traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 A taxonomy of proof commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 λ̄µµ̃-Calculus and Variations 17

Here we define the logical framework of our developments, in the form

of a proof term calculus; it is declined into four variations: classical,

intuitionistic, and their respective minimal weakening.

2.1 The proof-as-term isomorphism for lkµµ̃ . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The classical system lk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 The intuitionistic system lj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 The minimal systems lkm and ljm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Incomplete proof representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 State-based Semantics 35

We see how the exploration of semantical frameworks for imperative lan-

guages can help establish a basis for the semantics of proof languages.

3.1 Syntax and notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Small-step operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Store-based operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Extending IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

i



3.6 Application: proof-based operational semantics. . . . . . . . . . . . . . . . . 50

4 The Proof Monad 55

We present a structure adapted to the representation of proofs and to the

semantics of strategies in procedural theorem provers.

4.1 Proof representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 The proof monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 The semantics of proof languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 The proof monad in PVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 A Typing system for Proof Languages 71

In this chapter we aim at providing an additional formal foundation for

proof languages, in the form of a typing system.

5.1 Types for tactics: a simple example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Proof elements and values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Types and typing judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Type inference rules: indexed proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Type inference rules: tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Type inference rules: strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Type inference rules: application and abstraction . . . . . . . . . . . . . . 80
5.8 The type safety property for proof languages . . . . . . . . . . . . . . . . . . . 82

6 Interoperability 85

Here we demonstrate various ways to export proofs in first-order predi-

cate logic into other proof frameworks.

6.1 A Frege-Hilbert style deduction system. . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Natural deduction: the λ1-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Coq and PVS proof scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Natural language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 Looking forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Fellowship is a Super Prover 111

In this chapter we describe the specifications of a piece of software,

named Fellowship, serving as an interoperable front end to other pro-

cedural provers.

7.1 Design principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 The logical frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Syntax and semantics of the interaction language . . . . . . . . . . . . . . 114
7.5 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



8 Classes 125
We expose a formalism that allows the expression of any theory with one

or more axiom schemes into first-order predicate logics, using a finite

number of axioms.

8.1 A theory with the comprehension scheme . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Finite class theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Conclusion and Perspectives 143

Bibliography 147



List of Figures

1.1 Syntax of well-formed terms and formulas in L1
m . . . . . . . . . . . . . . . . . . . 9

1.2 Inference rules for lkµµ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 A proof trace as a tree of sequents and rules. . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Non redundant proof traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 lkµµ̃ as a type inference system for λ̄µµ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Classical inference rules labeled by λ̄µµ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Intuitionistic inference rules labeled by λ̄
∗
µµ̃ . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Classical minimal inference rules labeled by λ̄µµ̃ . . . . . . . . . . . . . . . . . . . 30
2.5 Intuitionistic minimal inference rules labeled by λ̄µµ̃ . . . . . . . . . . . . . . 31

3.1 Evaluation rules for IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Big-step semantics for IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Semantics of the programming commands . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Semantics of the interactive commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 A hardened list strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Typing rules for λ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Typing rules for CIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 The semantics of Coq base tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Proof rules for PVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 The semantics of PVS base tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 The semantics of Fellowship’s tactics (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 The semantics of Fellowship’s tactics (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 The semantics of Fellowship’s tactics (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1 Two-dimensional operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Rewrite system R for arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

iv



List of Tables

1.1 Language classes and purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Example operational semantics reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Example state-based semantics reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1 Concrete notation for L1
m in Fellowship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1 Theorems from the library of reals in Fellowship . . . . . . . . . . . . . . . . . . . . 140

v





Introduction

An interoperable representation of mathematical proofs can be achieved by
combining a simple logical framework with a formal definition of the concept
of proof language.

⋆

Formal methods is a discipline at the intersection of mathematics and
computer science. It advocates the use of software programs called formal
tools to discover, specify and verify the properties of mathematical objects.
And since mathematics are the preferred language of experimental sciences
such as physics, chemistry or biology, and their engineering derivatives, the
range of applications for formal methods is very broad — from verification
of spacecraft flight software (Gluck and Holzmann, 2002) to modeling of
protein interaction in biological networks (Danos and Laneve, 2004; Eker
et al., 2002).

In formal methods, a significant status is given to the objects represent-
ing evidence that a given property is verified. For instance, this kind of
evidential information is mandatory to pass standardized certification re-
quirements, such as the assurance level 7 of the Common Criteria (ISO,
1998), recently adopted as the international standard 15408. The form of
the evidence varies, and can be very different from a mathematical proof of
the property: some tools just return Ok when the verification is achieved,
while others support the generation of a data structure equivalent to a de-
tailed mathematical proof.

Proof assistants, or theorem provers1, belong to the second category:
they help the formal methods developer walk through the details of the
mathematical proof of a given property, in order to verify it. Modern-day
examples of such tools are ACL2, Coq, HOL, Isabelle, Lego, Mizar, NuPrl,
PVS, etc. A proof assistant provides a set of commands, or proof language,
manipulated by the user to produce a proof, under the supervision of a
proof engine ensuring that the user’s operations are mathematically sound.
For instance, the proof engine verifies that the specifications input by the
user are well-formed, or that a language construct is indeed a description
of a mathematically correct proof. Because they already allow their users
to deal closely with the proofs during the verification process, usually these
tools produce evidence which are close to detailed mathematical proofs.

Still, depending on the proof assistant, the practical form of evidential
data is very different. For instance, proofs in PVS are represented by con-
structs of the proof language, while in Coq they are objects of the proof term

1 In this manuscript, we consider “theorem prover” as a synonym for “proof assistant”.
Historically, theorem provers were fully-automated tools while proof assistants proceeded
much more interactively; however the current trend (Boulton, 1992; Aagaard et al., 1993;
Lowe and Duncan, 1997) seems to be the convergence of these kinds of systems.

1



Introduction

language. What is more, the specification frameworks and proof languages
also vary greatly between provers. Combined, these discrepancies are seri-
ous enough to impeach the interchangeability, or interoperability, of proofs
between tools. As a consequence, if a proof in, e.g. Coq cannot be reused in
another prover, then it needs to be re-coded and maintained independently,
which is, at best, inefficient. This also limits the opportunities for collabo-
rative work between proof developers. Furthermore, as the domain matures,
the size of developments grows, amplifying these problems.

As stated earlier, the two main components of a theorem prover are
its proof language and its proof engine. In this manuscript, we make the
case that interoperability in the representation of proofs can be obtained by
enforcing a few conditions on the design of these two components. In par-
ticular, we present a simple logical framework, i.e. a base for a proof engine,
which checks proofs that are generic enough to fit other proof assistant’s
proof engines. We also propose a formalization of the definition of proof
languages, which includes the presentation of semantical and typing frame-
works, and allow us to better comprehend the existing languages, identify
interoperable features, and eventually suggest ways to enhance them.

⋆

Let us spare some words on the topic of proof languages. The concept
of proof language was introduced in the s, with the emergence of the
first proof assistants: AUTOMATH (de Bruijn, 1970), Mizar (Trybulec, 1978)
and Nqthm (Boyer and Moore, 1979, 1988). Most of these used declarative
languages, that consist in stating intermediary lemmas until the proof en-
gine manages to combine them into the final proof. This approach is quite
close to the way proofs are developed in natural language, but does not al-
low much interaction between the user and the proof engine. Tools using
procedural languages, that provide users with commands to direct the proof
engine through the proof construction, appeared almost simultaneously, and
blossomed in the following decade: LCF (Gordon et al., 1978, 1979) which
can be seen as the ancestor of procedural theorem provers, soon followed by
Coq (Coquand and Huet, 1985), NuPrl (Constable et al., 1986), Isabelle 

(Paulson, 1988), PVS (Owre et al., 1992), HOL (Gordon and Melham, 1993),
Lego (Pollack, 1994)), . . . . A detailed comparison of these tools, their logi-
cal frameworks and their proof languages, can be found in (Delahaye, 2001;
Wiedijk, 2006).

In all these tools, the proof language, be it declarative or procedural, is
only a fraction of the complete interaction language of the proof assistant. In
addition, there are instructions to specify mathematical objects, a necessary
step before starting proving properties on these objects. Depending on the
tool reviewed, one can also find instructions enabling modular developments,
undo/redo facilities, proof display triggers, etc. A proof language is used
solely in proof-editing mode, i.e. the mode entered by the prover when a
proof is started, and that the prover leaves when the proof is completed.

2



On the contrary, the rest of the interaction language can be found in any
part of the formal developments. In this work, we are mainly interested in
the proof language part of the interaction, and more precisely in procedural
proof languages.

Traditionally, elements of proof languages have been divided between
tactics and strategies (also called tacticals in some tools), with tactics being
used to modify the state of the proof, and strategies being considered as
tactics combinators. With time, strategies evolved into an abstraction of
the prover’s implementation language, borrowing more and more features
from the programming world, and eventually leading to the ML family of
programming languages. As a result of this evolution, the exact definition
of tactics and strategies is quite vague, and subject to recurring debates.
Since these were named after military terms, to examine their meaning in
this context does not seem an inappropriate place to start.

The Dictionary of Military and Associated Terms (Uni, 2001) defines
tactics as:

“The level of war at which battles and engagements are planned
and executed to achieve military objectives.”

And strategies are:

“A prudent idea or set of ideas for employing the instruments
of national power in a synchronized and integrated fashion to
achieve theater, national, and/or multinational objectives.”

In other terms, tactics are used as a mean to achieve a given local objective:
say, prove a particular case of a property. An emphasis is made on the
execution of tactics, and they stand close to the action (the construction of
the proof) itself. On the contrary, strategies are viewed as a mean to attain
a global objective — for example, prove a non-trivial lemma — by devising
a way to “synchronize and integrate” tactics.

An atypical definition of the notions of tactics and strategies is given, in
a less belligerent context, by theologian and philosopher Michel de Certeau
(de Certeau, 1948). De Certeau was interested in the link between human
beings and the space they occupy: he links strategies to the design and
manipulation of the urban landscape on a high level by institutions and
structure of power, and defines tactics as the means employed by individuals
to create space for themselves in environments defined by strategies:

“[A tactic is deployed] on and with a terrain imposed on it and
organized by the law of a foreign power.”

In this setting, the same idea surfaces: tactics are viewed as fine-grained
means to meet an objective in a framework defined by strategies.

In this dissertation, we follow the aforementioned definitions, and we
define tactics as procedures that directly modify the proof: the application

3
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of a tactic on a proof in construction extends it. The part of the proof that
the tactic applies onto is called the goal, and the extensions generated are
called subgoals. Tactics, as transformers of goals into subgoals, thus have a
definition that is both operational (i.e. tactics are about execution of the
transformation) and local (i.e. tactics are only concerned with one extension
of the proof). On the other hand, we view strategies as constructs that take
other tactics and strategies as parameters to build a proof. Instantiated
strategies, also called proof scripts, derive subgoals from a given goal: they
behave just as tactics; however, strategies in their uninstantiated form are
inapplicable to proofs, and appear as a way to combine, integrate tactics
together. In other terms, we consider strategies as higher-order tactics, i.e.

functions on tactics.

Therefore, if it is just a difference between higher and first-order con-
structs, is there a need to separate tactics from strategies in a proof lan-
guage? Or is it time to reunite the two notions under the unified terminol-
ogy of proof commands? In general, we leave this question up for grabs; but
for the work exposed here we believe that the distinction between tactics
and strategies, if not relevant from an analytical point of view, can still have
its utility in the semantical realm. This can be compared to the distinc-
tion made in analysis between functions and constants: the first are just a
higher-level version of the second, and having different labels for them helps
cope with the mental manipulation of these objects. Hence in the rest of this
work, we will try as much as possible to state general properties on proof
commands, but we will resort to the tactic / strategies paradigm whenever
we feel it aids comprehension. We will also demonstrate how a different take
on the classification of proof language constructs can shed a different light
on the structure of proof languages.

⋆

Two postulates, originally formulated by de Bruijn as advices to devel-
opers of formal tools, guide this work. They can be paraphrased as follows:

Postulate 1 (Simplicity). Strive to keep the underlying for-
malism of provers as simple as possible.

Postulate 2 (Choice). People will never agree on the logical
framework: they need to be given a choice.

Postulate 1 is motivated by both the need to ascertain that at least the
core of formal tools is bug-free, supporting the long-standing concept of
correctness-by-minimality and the concern that if formal methods are to be
popularized, one cannot afford to put off potential users with intricate frame-
works and involved theories. Postulate 2 was enacted as a response to the
multitude of logical frameworks (in particular with duplication engendered
by the classical / intuitionistic schism) that are eligible as a basis for for-

4



mal tools, and the seemingly never-ending controversy over their respective
merits and limitations.

It is easy to see that the two postulates fit tightly the topic of this
dissertation: interoperability is, if anything, about choice; and the thesis
of this work relies on the elegant simplicity of a logical framework and of a
formalism for proof languages. The stake here is in whether both features can
be implemented without interference (because in particular, choice hardly
entails simplicity), and if the compromises generated with respect to the
other parts of the system in order to satisfy postulates 1 and 2 are reasonable.

⋆

The dissertation follows the didactic pattern used in the this introduc-
tion. Chapter 1, after a brief recall on predicate languages and sequent
calculus, exposes the current state of the art in terms of proof representa-
tion. Chapter 2 presents the logical frameworks that are used throughout
the rest of the manuscript, and highlights their relations to one another. In
chapter 3 to 5 the formalization of the concept of proof language is tackled:
chapter 3 draws a parallel between imperative programming languages and
procedural proof languages, and sketches a semantical framework for these
types of languages; chapter 4 uses a bit of category theory to characterize
a pivotal element of the semantics of strategies; chapter 5 provides insights
on a typing system for proof languages, and uses the semantical formalism
developed in the previous chapters to provide type-safety results.

While first five chapters deal with proof languages in general, and are
illustrated using toy examples, the second part of this manuscript instanti-
ates these frameworks with concrete proof languages. The chapter 6 builds
upon the previous parts to propose a series of methods to achieve interop-
erability between proofs in various logical settings, and for various formal
tools. Chapter 7 describes an implementation of these ideas on the form of
a prototype system for developing interoperable proofs, i.e. an interoperable
proof assistant called Fellowship. Finally chapter 8 justifies the viability of
the approach taken, by demonstrating a way for first-order logic to finitely
express the full power of axiom schemes.

Parts of this dissertation have been published in international confer-
ences and workshops (Kirchner, 2005a,b, 2007; Kirchner and Muñoz, 2006;
Kirchner and Sinot, 2006).
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1 Sequent Calculus

This chapter recalls the definition of sequent calculus, exposes some of the
means of representing proofs in this formalism, and proposes a classification
of proof language constructs.

⋆

First-order logic is a well understood, very widespread formalism. More-
over it is quite a capable framework: in practice a lot of real-world spec-
ifications and proofs are first-order, and one could argue that in fine the
representation of any problem as bits and registers in a computer’s memory
is a first-order one. In this manuscript we are interested in a particular logi-
cal formalism, where formulas are written in a predicate language and proofs
are build using sequent calculus: this chapter presents that formalism. It
continues by addressing the topic of the representation of proofs, and finally
following up on the discussion of the introduction and proposing a taxonomy
for proof language elements.

1.1 Syntax of predicate languages

Definition 1.1.1 (L1). Let L1 be a language parametrized by the following
possibly infinite, but countable, sets of symbols:

· the set of predicate symbols P = {p, q, . . .}, along with their arities;

· the set of function and constant symbols F = {f, g, h . . .}, along with
their arities;

· the set of variable symbols V = {x, y, z, . . .};

The syntax of well-formed terms and formulas of the language follows, in
Backus-Naur form:

t, u ::= x | f(t1, . . . , tn)

A, B ::= ⊤ | ⊥ | p(t1, . . . , tn)

| ¬A | A⇒ B | A ∧ B | A ∨ B | ∀x.A | ∃x.A

where f and p are respectively function and predicate symbols of arity n,
and x is a variable.

Note. The reunion of the sets P and F constitute the signature of L1.

We define informally the main concepts and operations that take place
over the language L1 — for a formal definition of these mainstream notions,
see for instance (Krivine, 1993).
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1. Sequent Calculus

Bound variables of a formula A are variables appearing in A under the
scope of a quantifier on the same variable. Free variables are unbound
variables, and fresh variables wrt. a formula A appear neither bound
nor free in a A. For instance, in ∀x.p(x, y), x is bound (by the quan-
tifier ∀x), y is free and z is fresh.

Substitution is the replacement of a free variable by a term in a term
or formula, modulo renaming of variables to avoid variable catching.
Substitution is denoted [x ← t]. For instance, (∀x.p(x, y))[y ← f(x)]

is ∀z.p(z, f(x)).

Sub-terms and sub-formulas are parts of a term or formula, with free
variables possibly substituted. For instance, p(f(x)) is a sub-formula
of ∀x.p(x).

The above definition of a predicate language can be adapted to deal with
multiple sorts, thus giving rise to many-sorted predicate languages.

Definition 1.1.2 (L1
m). Let L1

m be a language comprising:

· a set of sorts S = {s, r, . . .} including a sort bool;

· a set of predicate symbols P = {p, q, . . .}, each with their arity;

· a set of function and constant symbols F = {f, g, h, . . .}, each with their
arity;

· for each sort s, a countable set of variables Vs = {x, y, z, . . .}.

Moreover,

· to each function symbol of arity n is associated a rank s1 → . . . →
sn → sn+1 where s1, . . . , sn are the sorts of its arguments and sn+1

is the sort of its result;

· to each predicate symbol p is associated a rank s1 → . . .→ sn → bool

where s1, . . . , sn are the sorts of its arguments;

· for any function or predicate symbol z, we name z∗ its associated sort.

The syntax of well-formed terms and formulas is derived from the syntax of
L1, with additional constraints enforced by sorts. This syntax uses Church
notation, where abstractions are decorated with the sorts of their variables.
The well-formedness constraints are given using inference rules to reflect the
conditional nature of their formulation: for instance, a term f(t1, . . . , tn) is
well-formed if f is a function symbol of rank s1 → . . . → sn → sn+1, and
each ti has sort si. Using the notation 3 a : s for the statement “a is a
well-formed term or formula of sort s”, figure 1.1 presents the inference rules
for well-formed terms and formulas.

Note. This is a slight variation in notation from the common presentation
of many-sorted first-order languages, where ranks are written using tuples
instead of arrows, and for predicates the final sort bool is omitted.
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x ∈ Vs3 x : s 3 f : f∗

3 f : s1 → . . .→ sn → sn+1 3 t1 : s1 . . . 3 tn : sn

3 f(t1, . . . , tn) : sn+1

3 ⊤ : bool 3 ⊥ : bool 3 p : p∗

3 p : s1 → . . .→ sn → bool 3 t1 : s1 . . . 3 tn : sn

3 p(t1, . . . , tn) : bool
3 A : bool

3 ¬A : bool

3 A : bool 3 B : bool
with † ∈ {⇒, ∧, ∨}

3 A † B : bool

3 x : s 6= bool 3 A : bool

3 ∀xs.A : bool

3 x : s 6= bool 3 A : bool

3 ∃xs.A : bool

Figure 1.1: Syntax of well-formed terms and formulas in L1
m

Notation. Contiguous universal and existential quantifications over similarly-
sorted variables are collapsed. For instance, the formula ∀xs

1.(. . . (∀xs
n.A))

is written ∀x1, . . . , xs
n.A.

All other concepts, such as bound and free variables, replacement, sub-
stitution, sub-terms and sub-formulas, are extended similarly to deal with
many-sorted terms and formulas.

1.2 The sequent calculus

Sequent calculus is a logical formalism pioneered by Gentzen in 1935, orig-
inally as a tool to study natural deduction (Gentzen, 1935). As with any
calculus, it has two fundamental components: objects called sequents, and
some sort of computation called deduction.

Sequents assert that from a finite multiset of formulas Γ , one can prove at
least a formula of another multiset ∆. This assertion is noted Γ ⊢ ∆,
and Γ and ∆ are called respectively the antecedent and the succedent.
Unlike in the Gentzen’s presentation of sequents, we make it possible
to distinguish a particular formula amongst the members of Γ and ∆,
called active formula. Depending if an active formula A belongs to the
antecedent or the succedent of a sequent, we note Γ ;A ⊢ ∆ or Γ ⊢ A;∆:
we say that such a sequent is polarized.
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1. Sequent Calculus

Deduction consists in a series of rules, that transform an input sequent
into zero, one or more resulting sequents. These transformations are
called inferences, and denoted by the vertical stacking of input and
output sequents, separated by a horizontal bar and annotated with
the name of the rule. For instance, is S0 is the input sequent and
S1, . . . , Sn are the output sequents of a rule r, we write:

S1 . . . Snr
S0

In particular, if the input sequent contains an active formula, only this
formula is subject to a computation, i.e. its non-active parts will be
found unchanged by the inference in the output sequents. Rules that
deal with an active formula are earmarked with either a left label L or
a right label R, depending on the polarization of the sequent.

When a sequent calculus is defined based on a first-order predicate lan-
guage such as the ones of definitions 1.1.1 and 1.1.2, it forms a logical frame-
work called first-order logic.

Definition 1.2.1 (lkµµ̃). Figure 1.2 presents a set of inference rules that
define a classical sequent calculus called lkµµ̃ (Herbelin, 2005), based on
the single-sorted predicate language L1.

Remark that because we use a definition of sequents where the antecedent
and the succedent are multisets, there is no need in this system for formula-
swapping rules. The weakening rules are moved into the axiom rules, and
contraction rules are missing from the figure 1.2. One can chose either to
add them directly, resulting in two new inference rules. The alternative is to
encode them using the cut rule with a notable drawback: the cut-elimination
property no longer holds, simply because contraction cannot be eliminated
without losing logical completeness.

1.3 Proofs and traces

A proof consists of a series of computations over an initial input sequent, by
successive application of rules: when no output sequent remains, the initial
sequent is proved. The trace of the computation is often stored for future
reference, in the form of a tree of sequents where edges are labelled by rules,
often called proof tree. Figure 1.3 illustrates the form of a trace.

Notice however that there is some redundancy in this representation,
because inference rules are deterministic. For instance in lkµµ̃, if an input
sequent Γ ;A ⇒ B ⊢ ∆ produces two sequents Γ ⊢ A;∆ and Γ ;B ⊢ ∆, then
we know that only the ⇒L rule can have resulted in that transformation.
Hence the information contained in the tree of sequents is enough to build
a complete representation of a proof.
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axL
Γ ;A ⊢ A, ∆

axR
Γ, A ⊢ A;∆

⊥L
Γ ;⊥ ⊢ ∆

⊤R
Γ ⊢ ⊤;∆

Γ, A ⊢ ∆
activateL

Γ ;A ⊢ ∆
Γ ⊢ A, ∆

activateR
Γ ⊢ A;∆

Γ ⊢ A;∆ Γ ;A ⊢ ∆
cut

Γ ⊢ ∆

Γ ⊢ A;∆ Γ ;B ⊢ ∆
⇒L

Γ ;A⇒ B ⊢ ∆

Γ, A ⊢ B;∆
⇒R

Γ ⊢ A⇒ B;∆

Γ, x : A, y : B ⊢ ∆
∧L

Γ ;A ∧ B ⊢ ∆

Γ ⊢ A;∆ Γ ⊢ B;∆
∧R

Γ ⊢ A ∧ B;∆

Γ ;A ⊢ ∆ Γ ;B ⊢ ∆
∨L

Γ ;A ∨ B ⊢ ∆
Γ ⊢ A;∆

∨1R
Γ ⊢ A ∨ B;∆

Γ ⊢ B;∆
∨2R

Γ ⊢ A ∨ B;∆

Γ ⊢ A;∆
¬L

Γ ;¬A ⊢ ∆

Γ ;A ⊢ ∆
¬R

Γ ⊢ ¬A;∆

Γ ;B[x← t] ⊢ ∆
∀L

Γ ;∀xA.B ⊢ ∆

Γ ⊢ B;∆
∀R

Γ ⊢ ∀xA.B;∆

Γ ;B ⊢ ∆
∃L

Γ ;∃αA.B ⊢ ∆

Γ ⊢ B[x← t];∆
∃R

Γ ⊢ ∃xA.B;∆

Figure 1.2: Inference rules for lkµµ̃

S0

r0

S11

r11

. . . . . .

S12

r12

. . . . . .

. . .

Figure 1.3: A proof trace as a tree of sequents and rules.
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1. Sequent Calculus

S0

S11

. . . . . .

S12

. . . . . .

. . .

(a) Sequents

S0

r0

r11

. . . . . .

r12

. . . . . .

. . .

(b) Rules

Figure 1.4: Non redundant proof traces

Conversely, if given an input sequent and an inference rule, then one can
deduct the result sequents. By induction, one can reconstitute the complete
proof representation from only the initial sequent and the collection of infer-
ence rules. The two simplified representations are summarized in figure 1.4.

However, proofs can become large objects, taking even sometimes years
to develop (Hales, 2004; Gonthier, 2005). Therefore, there is a need to store
and represent proofs in the making, i.e. open proofs. In these proofs, one
or more sequents are left untouched by inference rules: they are called open
goals; any part of the proof tree that contains at least one open goal is
called an open branch. Dealing with these open proofs is not a problem in
the representation of figure 1.4a: the unproved sequents will just be leaves
of the tree (sometimes emphasized by using a question mark above them).
However, in the representation of figures 1.3 and 1.4b, there is a need for a
new inference rule, stating that the associated sequents are unproved. To
this end, we introduce the idtac rule, which is the identity computation,
i.e. processes its input sequent into the same output sequent. This rule acts
as a placeholder for another inference, allowing for well-formed trace trees.

1.4 A taxonomy of proof commands

Now that the logical framework has been defined, and that the topic of proof
representation has been evoked, we can complete the discussion started in
the introduction about the classification of proof language constructs.

In modern procedural theorem provers, some tactics correspond to the
bare logical inference rules, while others are abstracted and automated ver-
sions of these rules. When building a proof, both kinds of tactics are used,
but when available the latter is often preferred, because of their ease of use
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— the advantages they provide to facilitate the interactive process range
from automatic name generation to complex backtracking and branching
features.

What is more, proofs are seldom saved in their canonical, tree-like form.
Instead, what is retained is the proof script that generated them. While
this kind of representation has the advantage of giving a higher-level (albeit
unstructured) comprehension of the essence of the proof and facilitating its
re-edition, it also has the flaw of being easily broken by changes in the proof
language semantics. In some cases, the tactics may be over-dimensioned for
the goal, and thus provide very few information to the reader. For instance,
calling an automatic first-order solver via a tactic on a first-order goal masks
the effective inference rules and forces the reader looking for a finer-grained
proof to re-discover it.

We argue that these two pattern of utilisation for proof languages are
equally important in their uses. Hence in establishing a classification of such
languages, we will consider the following criterions:

1. Is the language construct used to build the proof?

2. Is the language construct suitable to represent the proof?

Commands as inference rules

The first identifiable set of commands corresponds to the tactics that imple-
ment the logical framework’s inference rules. The presence of these tactics is
by definition a requisite for procedural theorem proving, and they constitute
the building bricks of the proof. As such, they are mandatory both to build
a proof and its representation. We call them base tactics.

Commands as programming constructs

Strategies are used to build other commands, i.e. they act as a programming
language at the level of the proof language. They are not used directly to
construct proofs per se, but rather to build the proof builders. Moreover,
strategies are not suited for the representation of proofs. Indeed, because
they are in essence programming constructs, only the result of the programs
are to be retained. As an example, take the following proof script:

try (apply lemma_1) (apply lemma_2)

that attempts to perform a deduction by applying the result of a first lemma,
and that applies a second lemma if the first one is unsuccessful. Whichever
branch of the try strategy gets selected should be recorded in the represen-
tation of the proof. However, there is no point in recording the whole script.
We call these programming strategies.

Yet there are two constructs that are important exceptions to the non
representativity of strategies:
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1. Sequent Calculus

· ;[||], which combines commands in a tree structure, isomorphic to
the structure of the proof. It is the“glue”that holds the building bricks
of the proof together, and thus it is necessary to the representation of
non-trivial proofs.

· idtac, that “does nothing” when applied to a sequent. It is used to
represent incomplete proofs, and fill the place where later tactics might
be added.

Together with tactics, these two strategies are all that are needed to repre-
sent proofs. In reference to their tree-structuring functionality, we call these
special programming strategies bark strategies.

Commands as super inference rules

We call extended tactic a command that is defined as a combination of
tactics, by either using strategies or the prover’s implementation language.
Thus an extended tactic may be seen as a super inference rule, created by the
combination of smaller rules. As such, extended tactics are proof builders,
on par with base tactics.

At the level of proof representation, extended tactics should be viewed
as labelled boxes containing instances of inference rules. Or, equivalently,
a combination of base tactics and bark strategies. This enables the proof
reader to eventually refine its understanding of the proof by “opening the
box” labelled by an extended tactic. For instance, the apply tactic men-
tioned in the previous paragraph should be expandable to display the ap-
propriate cut rule, and the quantifier rules that have been used to achieve
unification.

Commands as interaction controls

Building a proof is a largely interactive process, with goals being presented
one by one, postponed, changes undone, etc.. The last group of commands
are the ones that control such interactions. They do not contribute directly
to the construction of the proof, neither should they appear in a finished
proof script. Examples of such commands include the postpone construct
evoked in the introduction, PVS’s (hide) / (reveal) or Coq’s focus. Also,
Coq’s unassuming ‘.’ command, that (literally) punctuates command ap-
plications, should be seen as both an evaluation trigger and an interactive
control, returning the first subgoal of the active subtree once the evaluation
is complete. We call these controls interactive commands.

Table 1.1 sums up the behaviour of the different language classes with
respect to these two criterions.
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Table 1.1: Language classes and purposes

Proof construction Proof representation

Base tactics X X

Extended tactics X Xas a macro
Bark strategies X X

Programming strategies x x

Interaction controls x x
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2 λ̄µµ̃-Calculus and Variations

Here we define the logical framework of our developments, in the form of a
proof term calculus; it is declined into four variations: classical, intuitionis-
tic, and their respective minimal weakening.

These frameworks are adaptations of the system lkµµ̃, defined in chap-
ter 1, that present interesting characteristics for interactive theorem proving
and proof interoperability. What is more, the simplicity and diversity of the
first-order logics they define qualifies them under both postulates 1 and 2.

In this chapter we review the principle of the proof-as-term isomorphism,
illustrated with the example of the lkµµ̃ system. Then, by the means of this
isomorphism, we detail the logical inference rules of our original systems; we
start with the most general logical setting, i.e. classical logic, and from
there we work our way through more restricted, intuitionistic and minimal,
settings. We conclude with the representation of incomplete proofs.

⋆

The Curry-de Bruijn-Howard correspondence identifies formulas as types,
making a sequent into a typing statement, and deduction rules as type in-
ferences. The objects being typed are called proof terms, which should not
be confused with terms of the predicate language (to this end, we will never
omit the ‘proof’ adjective when referring to proof terms). For instance, a
well-known proof term language is the λ-calculus, which can label formulas
of minimal natural deduction.

Classical sequent calculus being a more elaborate construction than min-
imal natural deduction, the proof term language also needs to be more com-
plex than plain λ-calculus. A few languages have been proposed, from Her-
belin’s λ̄-calculus (Herbelin, 1995) to Urban’s calculus of names and conames
(Urban, 2001), and including Girard’s ?, and Barbarena and Berardi’s ? cal-
culi. In all of these formalisms, the idea is to associate with each inference
rule a construction of the proof term language.

Along with the choice of a proof language, one needs to examine to fol-
lowing question: to which element of the sequent is a proof term associated?
The problem of the place of the proof term in the sequent arises because,
unlike in natural deduction, a deduction in sequent calculus can take place
on any formula in a sequent. The use of sequents with active formulas partly
solve this question: the polarization marks the target of the computation.
The active formula in a sequent is considered as the type of a particular
proof term (independently from the choice of a proof term language). Thus
sequents are written:

Γ ; t : A ⊢ ∆ Γ ⊢ t : A;∆
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2. λ̄µµ̃-Calculus and Variations

However in case where there is no active formula, the problem remains. The
solution is to have the whole sequent represent the type of the proof term,
which we note:

t : (Γ ⊢ ∆)

Interestingly, this last notation is not much different from the one proposed
by Urban, where the proof term is a component of the sequent, at the same
level as the antecedent or the succedent.

In the rest of this chapter, we introduce λ̄µµ̃, a calculus of proof terms
that works with sequents that have active formulas. This presentation uses
the flip side of the Curry-de Bruijn-Howard correspondence: we define a
calculus of proof terms as a labeling system for a given logical framework,
instead of defining the logics as a type inference system for a particular
language. Of course, an isomorphism being symmetrical by nature, it is
sometimes easier to refer to the typing side of the correspondence. The
logical aspects, however, will remain the guiding concern of this development.

2.1 The proof-as-term isomorphism for lkµµ̃

For the deduction system lkµµ̃, the proof language used by Herbelin is

called the λ̄µµ̃-calculus (Curien and Herbelin, 2000; Wadler, 2003; Herbelin,
2005), i.e. an extension of λ-calculus with two binders µ and µ̃ to capture
classical logic, and the choice of an active formula in the sequent. What is
more, one introduces additional operators to reflect the types ∧ and ∨, and
a symmetrical to λ to inhabit existential types.

Note that because our purpose is only to give a quick overview of the
mechanisms of the calculus, we do not enter its details. All these results
can be found and further explained in (Curien and Herbelin, 2000; Herbelin,
2005).

Definition 2.1.1 (λ̄µµ̃ proof terms). The syntax of the λ̄µµ̃-calculus defines
commands c, terms v and environments e:

c ::= 〈v‖e〉

v, v ′ ::= x | ⋉ | λxA.v | e · v | ¬(e) | (v, v ′) | injrv | injlv | µαA.c

e, e ′ ::= α | ⋊ | v · e | λ̃αA.e | ¬[v] | proj[x, x ′, c] | [e, e ′] | µ̃xA.c

where A is a formula. ⋉ and ⋊ are constants, respectively called unit and
tinu, linked to the connectors ⊤ and ⊥.

Remark that this syntax is perfectly symmetrical, notwithstanding the
projection operators (due to lkµµ̃’s asymmetric use of an additive sum and
of a multiplicative product). The symmetry is extended to the reduction
rules of the calculus.
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Definition 2.1.2 (Reduction rules for λ̄µµ̃). The evaluation rules for λ̄µµ̃

proof terms are the same as in (Curien and Herbelin, 2000): one will recog-
nize the evaluation relations for λ, µ and µ̃ redexes, enriched with the dual
projection and pair reductions.

〈λxA.v1‖v2 · e〉 → 〈v2‖µ̃xA.〈v1‖e〉〉 (λ)

〈(e2 · v)‖λ̃βA.e1〉 → 〈µβA.〈v‖e1〉‖e2〉 (λ̃)

〈µβA.c‖e〉 → c[β← e] (µ)

〈v‖µ̃xA.c〉 → c[x← v] (µ̃)

〈injlv‖[e1, e2]〉 → 〈v‖e1〉 (injl)

〈injrv‖[e1, e2]〉 → 〈v‖e2〉 (injr)

〈(v1, v2)‖proj[x1, x2, c]〉 → 〈v1‖µ̃x1.〈v2‖µ̃x2.c〉〉 (proj1)

〈(v1, v2)‖proj[x1, x2, c]〉 → 〈v2‖µ̃x2.〈v1‖µ̃x1.c〉〉 (proj2)

Note. Let us recall a few customary observations: first of all notice that
the rules (µ) and (µ̃) one the one hand, and (λ) and (λ̃) on the other
hand, are dual from one another. Second, notice that the rules (µ) and (µ̃)
form a critical pair, and that giving priority to the first reduction imposes a
call-by-value reduction strategy, whereas the alternative results in a call-by-
name reduction strategy. Note that the rules (proj1) and (proj2) also form
a critical pair, convergent in the case of a call-by-name strategy but not so
for call-by-value.

Definition 2.1.3 (Equivalence rules for λ̄µµ̃). A series of η-equivalences
can be defined for each of the binders in the proof term syntax:

v↔ λx.µα.〈v‖x · α〉 x, α not free in v (ηR
λ)

e↔ µβ.〈λx.µα.〈x‖β〉‖e〉 · µ̃y.〈λx.y‖e〉 β not free in e (ηL
λ)

v↔ µ̃y.〈v‖λ̃α.µ̃x.〈y‖α〉〉 · µβ.〈v‖λ̃α.β〉 y not free in v (ηR
λ̃
)

e↔ λ̃α.µ̃x.〈α · x‖e〉 α not free in e (ηL
λ̃
)

v↔ µα.〈v‖α〉 α not free in v (ηµ)

e↔ µ̃x.〈x‖e〉 x not free in e (ηµ̃)

And for the projection and pair operators:

v↔ (µα.〈v‖π1(α)〉, µβ.〈v‖π2(β)〉) (ηR
proj)

e↔ µ̃z.〈z‖π1(µ̃x.〈z‖π2(µ̃y.〈(x, y)‖α〉)〉〉) (ηL1

proj)

e↔ µ̃z.〈z‖π2(µ̃y.〈z‖π1(µ̃x.〈(x, y)‖α〉)〉〉) (ηL2

proj)

v↔ µα.〈injlµβ.〈injrµγ.[β, γ]‖α〉‖α〉 (ηL1

inj)

v↔ µα.〈injrµγ.〈injlµβ.[β, γ]‖α〉‖α〉 (ηL2

inj)

e↔ [µ̃x.〈injlx‖e〉, µ̃y.〈injry‖e〉] (ηR
inj)
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2. λ̄µµ̃-Calculus and Variations

assuming the following definitions:

π1(e) = proj[x1, x2, 〈x1‖e〉]

π2(e) = proj[x1, x2, 〈x2‖e〉]

The definition of the notion of linearity on λ̄µµ̃ proof terms is a bit
stronger than the usual definition of linearity: it implies that binder of linear
variables do no overlap.

Definition 2.1.4 (Linearly bound variables). In a proof term t, we say that
a variable x is bound linearly by a binder b (either λ, µ or µ̃) in a subterm
u if:

· x is bound by b in u,

· x appears exactly once in u,

· between b and x, there is no occurrence of a binder of the same kind
as b.

As highlighted in the introducing paragraph, typing statements for λ̄µµ̃

proof terms, i.e. sequents in the logical formalism, are of the three following
forms:

Γ ; e : A ⊢ ∆ Γ ⊢ v : A;∆ c : (Γ ⊢ ∆)

where A is a formula of L1
m, and the contexts Γ and ∆ are multisets of labeled

formulas of L1
m. By using multisets instead of plain lists, formula-swapping

rules are made implicit.

Definition 2.1.5. Figure 2.1 presents the logical system lkµµ̃ and a set of

type inference rules for λ̄µµ̃.

Note. In figure 2.1, the usual quantifier side conditions have been omitted
for space : in ∀R (resp. ∃L), the variable x (resp α) does not appear free
in Γ or ∆; in ∀L and ∃R, t and x have the same sort A. This leads us to
another remark: an implicit conversion is done between sorts and formulas
for the bound variables of the quantifier rules. Because of the trivial injection
between ranking system and the formulas of first-order logic, this coercion
works as expected.

Figure 1.2 does not include formula management rules, which are pre-
sented here. There are four weakening rules:

Γ ⊢ v : C;∆
weak1R

Γ, x : A ⊢ v : C;∆

Γ ⊢ v : C;∆
weak2R

Γ ⊢ v : C; x : A, ∆

Γ ; e : C ⊢ ∆
weak3L

Γ, x : A; e : C ⊢ ∆

Γ ; e : C ⊢ ∆
weak4L

Γ ; e : C ⊢ x : A, ∆
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axL
Γ ;α : A ⊢ α : A, ∆

axR
Γ, x : A ⊢ x : A;∆

⊥L
Γ ; ⋊ : ⊥ ⊢ ∆

⊤R
Γ ⊢ ⋉ : ⊤;∆

c : (Γ, x : A ⊢ ∆)
activateL

Γ ; µ̃xA.c : A ⊢ ∆

c : (Γ ⊢ α : A, ∆)
activateR

Γ ⊢ µαA.c : A;∆

Γ ⊢ v : A;∆ Γ ; e : A ⊢ ∆
cut

〈v‖e〉 : (Γ ⊢ ∆)

Γ ⊢ v : A;∆ Γ ; e : B ⊢ ∆
⇒L

Γ ; v · e : A⇒ B ⊢ ∆

Γ, x : A ⊢ v : B;∆
⇒R

Γ ⊢ λxA.v : A⇒ B;∆

c : (Γ, x : A, y : B ⊢ ∆)
∧L

Γ ; proj[x, y, c] : A ∧ B ⊢ ∆

Γ ⊢ v : A;∆ Γ ⊢ v ′ : B;∆
∧R

Γ ⊢ (v, v ′) : A ∧ B;∆

Γ ; e : A ⊢ ∆ Γ ; e ′ : B ⊢ ∆
∨L

Γ ; [e, e ′] : A ∨ B ⊢ ∆
Γ ⊢ v : A;∆

∨1R
Γ ⊢ injlv : A ∨ B;∆

Γ ⊢ v : B;∆
∨2R

Γ ⊢ injrv : A ∨ B;∆

Γ ⊢ v : A;∆
¬L

Γ ;¬[v] : ¬A ⊢ ∆

Γ ; e : A ⊢ ∆
¬R

Γ ⊢ ¬(e) : ¬A;∆

Γ ; e : B[x← t] ⊢ ∆
∀L

Γ ; t · e : ∀xA.B ⊢ ∆

Γ ⊢ v : B;∆
∀R

Γ ⊢ λxA.v : ∀xA.B;∆

Γ ; e : B ⊢ ∆
∃L

Γ ; λαA.e : ∃αA.B ⊢ ∆

Γ ⊢ e : B[x← t];∆
∃R

Γ ⊢ t · e : ∃xA.B;∆

Figure 2.1: lkµµ̃ as a type inference system for λ̄µµ̃

and the two contraction rules are derived using cut and axiom rules.

Γ ⊢ v : C;α : C, ∆
contrR

Γ ⊢ µαC.〈v‖α〉 : C;∆

Γ, x : C; e : C ⊢ ∆
contrL

Γ ; µ̃xC.〈x‖e〉 : C ⊢ ∆

Note. This system does not have the cut-elimination property, because it
makes use of the cut rule to encode contraction.

Remark that once a formalism for introducing proof terms in sequents is
devised, the notion of deductive computation can be replaced by one of type
inference of a proof term. Because the whole proof trace can be replaced by
a proof term, the proof-as-term morphism offers a compact alternative to
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2. λ̄µµ̃-Calculus and Variations

the representations of figures 1.3 and 1.4. For instance, the λ̄µµ̃ proof term:

λxA.λyA⇒B.µαB.〈y‖x · α〉

when typechecked in the system lkµµ̃, builds a proof of the tautology A⇒
(A⇒ B)⇒ B.

In the following sections we propose a series of original logical systems
derived from lkµµ̃. We will see how they are adapted to interactive proof
construction, and overall proof manipulation.

2.2 The classical system lk

Proof terms for our classical framework lk are expressed in a slight sim-
plification of the λ̄µµ̃-calculus, arguably better-suited for interactive proof
construction. In the rest of this manuscript, we use the name λ̄µµ̃ to des-
ignate this simplification. We give first the syntax of the calculus, before
developing the reduction rules.

Definition 2.2.1 (Simpler λ̄µµ̃ proof terms). The simplified syntax of the
λ̄µµ̃-calculus defines commands c, terms v and environments e:

c ::= 〈v‖e〉

v, v ′ ::= x | ⋉ | λxA.v | (v, v ′) | injrv | injlv | µαA.c

e, e ′ ::= α | ⋊ | v · e | proj[x, x ′, c] | [e, e ′] | µ̃xA.c

This syntax is similar to the one of definition 2.1.1, with the environment
constructors λ and ¬ and the term constructors · and ¬ removed.

Definition 2.2.2 (Reduction and equivalence rules for λ̄µµ̃). Following the
restriction in the syntax, the reduction rules (λ̃), (ηR

λ̃
) and (ηL

λ̃
) are discarded.

All other rules from definitions 2.1.2 and 2.1.3 are applicable to the restricted
λ̄µµ̃ proof terms.

Typing statements for λ̄µµ̃ proof terms, i.e. sequents in the logical for-
malism, are of the two following forms:

Γ ; e : A ⊢ ∆ Γ ⊢ v : A;∆

where the contexts Γ and ∆ are multisets of labeled formulas — by using
multisets instead of plain lists, formula-swapping rules are made implicit.
Contrary to lkµµ̃, remark the absence of any judgements without active
formula, i.e. of the form c : (Γ ⊢ ∆).

Definition 2.2.3 (lk). Figure 2.2 describes the logical inference rules for
first-order classical sequent calculus. This system is called lk.
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axL
Γ ;α : A ⊢ α : A, ∆

axR
Γ, x : A ⊢ x : A;∆

⊥L
Γ ; ⋊ : ⊥ ⊢ ∆

⊤R
Γ ⊢ ⋉ : ⊤;∆

Γ, x : A ⊢ v : B;∆ Γ, x : A; e : B ⊢ ∆
cutL

Γ ; µ̃xA.〈v‖e〉 : A ⊢ ∆
Γ ⊢ v : B;α : A, ∆ Γ ; e : B ⊢ α : A, ∆

cutR
Γ ⊢ µαA.〈v‖e〉 : A;∆

Γ ⊢ v : A;∆ Γ ; e : B ⊢ ∆
⇒L

Γ ; v · e : A⇒ B ⊢ ∆

Γ, x : A ⊢ v : B;∆
⇒R

Γ ⊢ λxA.v : A⇒ B;∆

Γ, x : A, y : B ⊢ v : C;∆ Γ, x : A, y : B; e : C ⊢ ∆
∧L

Γ ; proj[x, y, 〈v‖e〉] : A ∧ B ⊢ ∆
Γ ⊢ v : A;∆ Γ ⊢ v ′ : B;∆

∧R
Γ ⊢ (v, v ′) : A ∧ B;∆

Γ ; e : A ⊢ ∆ Γ ; e ′ : B ⊢ ∆
∨L

Γ ; [e, e ′] : A ∨ B ⊢ ∆
Γ ⊢ v : A;∆

∨1R
Γ ⊢ injlv : A ∨ B;∆

Γ ⊢ v : B;∆
∨2R

Γ ⊢ injrv : A ∨ B;∆

Γ ⊢ v : A;∆
¬L

Γ ; µ̃x¬A.〈x‖v ·⋊〉 : ¬A ⊢ ∆
Γ ; e : A ⊢ ∆

¬R
Γ ⊢ µα¬A.〈λyA.µβ⊥.〈y‖e〉‖α〉 : ¬A;∆

Γ ; e : B[x← t] ⊢ ∆
∀L

Γ ; t · e : ∀xA.B ⊢ ∆

Γ ⊢ v : B;∆
∀R

Γ ⊢ λxA.v : ∀xA.B;∆

Γ ; e : B ⊢ ∆
∃L

Γ ; proj[α, β, 〈β‖e〉] : ∃αA.B ⊢ ∆

Γ ⊢ v : B[x← t];∆
∃R

Γ ⊢ (t, v) : ∃xA.B;∆

Figure 2.2: Classical inference rules labeled by λ̄µµ̃
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2. λ̄µµ̃-Calculus and Variations

Definition 2.2.4. A classical proof term is an expression of λ̄µµ̃ that is
well-typed in the system of figure 2.2.

A general remark on the lk logical system is that it retains as much
information as possible: in particular, formulas are duplicated in order to
forego destructive inferences. More precisely, in this framework:

· the contraction rule is embedded into much of the inferences: in bottom-
up application of inferences, when branching is achieved, the contexts
in both hypothesis and conclusion are duplicated. Hence ∨L and ∧R

are additive rules, while ∧L uses the inference for multiplicative con-
junction. Incidentally, for the sake of symmetry, a cut rule is embedded
in the ∧L rule, the alternatives (having two inference rules depending
on which formula is focussed upon, or arbitrarily choosing A or B as
the principal formula for the rule’s hypothesis) being deemed unsatis-
factory. Finally, the choice of an additive ∨R rule is a minor deviation
from the aforementioned principle, justified by the coherence with the
intuitionistic fragment of this formalism, detailed later. Moreover, the
right rule for a multiplicative disjunction is easily simulated using a
cut.

· these choices have an impact on the quantifiers side. While the de-
pendent product ∀ is unsurprisingly labeled by a λ construct, the de-
pendent sum ∃ reuses the environment projection operator, instead
of introducing a new notation as it is the case in lkµµ̃. This is made
possible by the multiplicativity of the ∧L rule, which in turn produced
a projection constructor rich enough to label the existential quantifier
rule.

· (ηµ) and (ηµ̃) expansions are used to explicitly store the type of a λ̄µµ̃

expression inside a η-redex. For instance, if v is a term of type A, one
can record this type information using a variable α by performing the
following (ηµ) expansion:

v→ µαA.〈v‖α〉

This is used in the case of the deduction rules for negation ¬R and ¬L,
to generate non-minimal proof terms that include information about
the expansion of negation into an implication. A (ηµ) expansion is
also performed at the beginning of each proof, in order to store in the
proof term the formula that is being proven.

These characteristics make the system lk well-suited for interactive theorem
proving and proof interoperability, two topics that require proof structures
as information-rich as possible.

In lk, since there are no typing judgements for standalone commands,
they are typed only as subterms of a term or a environment. In short, this
consists in a variation of lkµµ̃, inlining the ‘cut’ and ‘activate’ rules into
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any rule that produces a command. Thus the rules for cutR, cutL, ∧L and
∃L. A consequence of this design is the following proposition.

Proposition 2.2.5 (Liveliness). For any sequent in a lk proof, there is an
active formula.

Proof. By induction on the structure of the proof.

The liveliness property is important to us for several reasons, related
to the practice of interactive proof systems. First, it is essential to ensure
that the user of such systems always knows which formula he is working
on. Having sequents where there are distinguished formulas, and others
where there are none, arguably adds a level of complexity to the (already
involved) comprehension and intuition of a proof formalism. Second, in the
case of automated or partly-automated theorem proving, it is conjectured
that this property facilitates the design of algorithms, and reduces the search
space: this intuition is also mentioned in (Sacerdoti Coen, 2006), and works
by Andreoli (Andreoli, 1992) and more recently Saurin (Saurin, 2006) on
focussing proofs tend to confirm this hypothesis.

The formula management rules for lk (weakening and contraction) are
similar the corresponding rules of lkµµ̃.

Proposition 2.2.6. The logical system lk is equivalent to the lkµµ̃ formu-
lation of first-order classical sequent calculus, as per definition 1.2.1.

Proof. The equivalence between L1 and L1
m, i.e. single-sorted and many-

sorted first-order languages, is an established result. A many-sorted lan-
guage can be encoded in a single-sorted language by introducing predicate
symbols that represent sort membership. On the logical side, when consid-
ering unannotated formulas, the system lk is similar to lkµµ̃ except for the
cut and left conjunction:

· the cutL and cutR are inlined versions of the usual focus and cut
inference rules. The equivalence holds because in lkµµ̃, the only rule
that can follow a focus on the left or on the right is a cut rule.

· the same reasoning holds for the left conjunction rule ∧L. While
embedding a focus rule would have been sufficient, the use of an addi-
tional cut rule is not detrimental to the equivalence of both systems,
as choosing C = A or C = B and using the weakening rules proves.

The labelling of the proofs by proof terms is slightly different in lk and in
lkµµ̃. It is easy, by using typing information in some cases, to establish a
translation between them. In particular, the two symbols ¬ and the left λ

in lkµµ̃ are equivalent to constructions using ·, λ and proj in lk.

Proposition 2.2.7 (Consistency). The lk logical framework is consistent.
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Proof. This follows from proposition 2.2.6, i.e. equivalence with Herbelin’s
lkµµ̃ sequent calculus.

Note. As in lkµµ̃, cut elimination in lk is lost to compound contraction
rules.

2.3 The intuitionistic system lj

Restricting the framework of classical logic to an intuitionistic formalism is a
simple process: it suffices to constrain the conclusion of sequents to contain
at most one formula. This constraint has a clearly identifiable counterpart at
the proof term level. Indeed, when introducing a µ-abstraction to name the
formula one wants to prove next, the previously designated formula and its
label are overridden, due to the one-formula-per-consequent constraint. As
a consequence, only one environment variable, denoted ∗, is ever used, and
the µ-bindings do not overlap: the environment variables for intuitionistic
proof terms are linearly bound.

Definition 2.3.1 (λ̄
∗
µµ̃ proof terms). The λ̄

∗
µµ̃ terms are similar to λ̄µµ̃

terms, albeit with a unique environment variable ∗.

c ::= 〈v‖e〉

v, v ′ ::= x | ⋉ | λxA.v | (v, v ′) | injrv | injlv | µ∗A.c

e, e ′ ::= ∗ | ⋊ | v · e | proj[x, x ′, c] | [e, e ′] | µ̃xA.c

The reduction rules given in definition 2.2.2, with the relevant cases
pruned, still hold. Also, the form of the typing statements for proof terms
isn’t changed from section 2.2.

The one formula limitation entails the deprecation of the right contrac-
tion rule contrR and the right weakening rule weak2R. Only remain the
following weakening and contraction rules:

Γ ⊢ v : C
weak1R

Γ, x : A ⊢ v : C

Γ, x : C; e : C ⊢ y : D
contrL

Γ ; µ̃xC.〈x‖e〉 : C ⊢ y : D

Γ ; e : C ⊢ y : D
weak3L

Γ, x : A; e : C ⊢ y : D

Γ ; e : C ⊢
weak4L

Γ ; e : C ⊢ x : A

Definition 2.3.2 (lj). Figure 2.3 exposes the inference rules for first-order
intuitionistic sequent calculus.

Definition 2.3.3. An intuitionistic proof term is an expression of λ̄
∗
µµ̃ that

is well-typed in the system of figure 2.3.

The intuitionistic formalism being a weakened version of the classical
setting, it inherits its liveliness property (proposition 2.2.5).
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axL
Γ ; ∗ : A ⊢ ∗ : A

axR
Γ, x : A ⊢ x : A

⊥L
Γ ; ⋊ : ⊥ ⊢ A

⊤R
Γ ⊢ ⋉ : ⊤

Γ, x : A ⊢ v : B Γ, x : A; e : B ⊢ C
cutL

Γ ; µ̃xA.〈v‖e〉 : A ⊢ C
Γ ⊢ v : B Γ ; e : B ⊢ ∗ : A

cutR
Γ ⊢ µ∗A.〈v‖e〉 : A

Γ ⊢ v : A Γ ; e : B ⊢ C
⇒L

Γ ; v · e : A⇒ B ⊢ C

Γ, x : A ⊢ v : B⇒R

Γ ⊢ λxA.v : A⇒ B

Γ, x : A, y : B ⊢ v : C Γ, x : A, y : B; e : C ⊢ D
∧L

Γ ; proj[x, y, 〈v‖e〉] : A ∧ B ⊢ D
Γ ⊢ v : A Γ ⊢ v ′ : B

∧R
Γ ⊢ (v, v ′) : A ∧ B

Γ ; e : A ⊢ C Γ ; e ′ : B ⊢ C
∨L

Γ ; [e, e ′] : A ∨ B ⊢ C
Γ ⊢ v : A

∨1R
Γ ⊢ injlv : A ∨ B

Γ ⊢ v : B
∨2R

Γ ⊢ injrv : A ∨ B

Γ ⊢ v : A¬L
Γ ; µ̃x¬A.〈x‖v ·⋊〉 : ¬A ⊢ B

Γ ; e : A ⊢ ⋊ : ⊥
¬R

Γ ⊢ µ∗¬A.〈λyA.µ∗⊥.〈y‖e〉‖∗〉 : ¬A

Γ ; e : B[x← t] ⊢ C
∀L

Γ ; t · e : ∀xA.B ⊢ C

Γ ⊢ v : B∀R
Γ ⊢ λxA.v : ∀xA.B

Γ ; e : B ⊢ C
∃L

Γ ; proj[∗, ∗, 〈β‖e〉] : ∃∗A.B ⊢ C

Γ ⊢ v : B[x← t]
∃R

Γ ⊢ (t, v) : ∃xA.B

Figure 2.3: Intuitionistic inference rules labeled by λ̄
∗
µµ̃
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Proposition 2.3.4 (Liveliness). For any sequent in a lj proof, there is an
active formula.

Equivalence with the intuitionnistic restriction of lkµµ̃ can be derived
similarly to what is done in lk, entailing consistency.

Proposition 2.3.5 (Consistency). The lj logical framework is consistent.

In the rest of this section, we give a few propositions linking the intu-
itionistic and classical frameworks.

Classical λ̄µµ̃ proof terms can be characterized (Sacerdoti Coen, 2006)
as expressions that contain non-linear environment variables, i.e. variables
that are not bound by the innermost enclosing µ binder. For instance, the
rule (ηL

λ) is not compatible with the intuitionnistic restriction, because in the
right-hand side of the equivalence, the variable α is not linearly bound. Con-
versely, λ̄µµ̃ expressions where environment variables only appear linearly

are isomorphic to λ̄
∗
µµ̃ expressions, thus intuitionistic. Hence the following

proposition:

Proposition 2.3.6. Any intuitionistic derivation in lk is also a valid proof
in lj.

Proof. The translation between λ̄
∗
µµ̃ and λ̄µµ̃ proof terms is the identity

function (modulo renaming of environment variables to ∗).

In the following we extend the previous result, and we show that a classi-
cal proof term can be expressed as a proof term of the system lj+em, where
environment variables are linear.

Definition 2.3.7 (lj+em). The logical system lj+em is defined as the
theory using the inference rules of figure 2.3, extended as follows:

excluded middle
Γ ⊢ emA : A ∨ ¬A

Definition 2.3.8 (F-translation). We define by structural induction the
translation function of classical λ̄µµ̃-terms to intuitionistic λ̄µµ̃-terms en-
riched with the aforementioned set of constants, noted F·(·):

Fσ(µαA.c)→

∣

∣

∣

∣

µαA.Fσ(c) if α appears linearly in c,
µβA.〈emA‖[µ̃xA.〈x‖β〉, µ̃a¬A.F(α,a,A)::σ(c)]〉 else.

(2.1)

Fσ(α)→

∣

∣

∣

∣

µ̃xA.〈a‖x ·⋊〉 if (α, a,A) ∈ σ,
α else.

(2.2)

Where σ is a list of triplets containing an environment variable, a term
variable and a formula. Note the ηµ̃-expansion of β in the second branch
of (2.1), used to record type information about the formula A. For the other
cases, the translation function is non-destructively applied to subterms of
the considered expression.
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Proposition 2.3.9. The result of the F-translation of a well-typed λ̄µµ̃

proof term is a well-typed λ̄
∗
µµ̃ proof term, modulo renaming of environment

variables into ∗ and introduction of the em constant.

Proof. The intuition is that F·(·) replaces the non-linear environment vari-
able abstractions by linear ones, and possibly non-linear term variable ab-
stractions. This can be easily proved by induction on the second argument
of F·(·).

The first case is when a variable α appears non-linearly in the body of a µ-
abstraction µαA.c (second branch of (2.1)). In this case, F·(·) translates the
term into µβA.〈emA‖[µ̃xA.〈x‖β〉, µ̃a¬A.F(α,a,A)::σ(c)]〉, which is typable in
lj+em since, by induction hypothesis, F(α,a,A)::σ(c) is.

The second case is when a non-linear variable is reached: by (2.2) it is
translated into a µ̃-abstraction, typable in lj+em. All the other cases are
dealt with by trivial induction hypothesis.

Since the resulting terms are linear, then the environment variable names-
pace can be collapsed to ∗.

Corollary 2.3.10 (Correctness). For any classical proof πlk of a formula
A, πlj+em = Fnil(πlk) is a proof of A in lj+em.

Proposition 2.3.11 (Completeness). For any proof term πlj+em typable in
lj+em, there exist a classical proof term πlk such that πlj+em = Fnil(πlk).

Proof. Since πlj+em has got only linear environment variables, then its iden-
tity translation into λ̄µµ̃ will provide a proof in lk, that additionally contains
the em constant. Now because lk can trivially implement this constant
as a λ̄µµ̃ proof term, we can provide a term πlk that verifies: πlj+em =

Fnil(πlk).

2.4 The minimal systems lkm and ljm

The framework of minimal logic was investigated by Johansson (Johansson,
1937) in an attempt to minimize the logical content of the implication sym-
bol. In that paper, the result was a logic stricter than Heyting’s intuitionistic
calculus, where the ¬a formula was considered as a macro for a⇒ f, with
f being an unassuming predicate variable. Note that this is different from
what some authors call minimal logic, that is a logic with only the ⇒ and
∀ connectives (in this manuscript, we call this last definition minimalistic
logic).

The concept has since then been generalized, for instance to classi-
cal frameworks. However the principle remains the same, and can be re-
formulated as: minimal logic is a framework in which negation is a notation
for an implication of the symbol ⊥, which has no logical content. As a
consequence, in minimal frameworks there is no deduction rule for ⊥, and
negation is systematically introduced as an implication.
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2. λ̄µµ̃-Calculus and Variations

Because intuitionistic minimal logic is the direct Curry-de Bruijn-Howard
counterpart of simply typed lambda-calculus, this formalism has drawn some
attention in the recent decades. In particular, this feature has favored the
development of the first extraction mechanisms (Hayashi and Nakano, 1988).
More recently, the MINLOG theorem prover implements both classical and
intuitionistic minimal logic, with a strong emphasis on program extraction
(Schwichtenberg, 1993).

The figures 2.4 and 2.5 summarize the inference rules of respectively
classical and intuitionistic first-order minimal sequent calculus, which will
be referred to as, respectively, lkm and ljm. The weakening and contraction
rules are identical to their non-minimal counterparts.

axL
Γ ;α : A ⊢ α : A, ∆

axR
Γ, x : A ⊢ x : A;∆

⊤R
Γ ⊢ ⋉ : ⊤;∆

Γ, x : A ⊢ v : B;∆ Γ, x : A; e : B ⊢ ∆
cutL

Γ ; µ̃xA.〈v‖e〉 : A ⊢ ∆
Γ ⊢ v : B;α : A, ∆ Γ ; e : B ⊢ α : A, ∆

cutR
Γ ⊢ µαA.〈v‖e〉 : A;∆

Γ ⊢ v : A;∆ Γ ; e : B ⊢ ∆
⇒L

Γ ; v · e : A⇒ B ⊢ ∆

Γ, x : A ⊢ v : B;∆
⇒R

Γ ⊢ λxA.v : A⇒ B;∆

Γ, x : A, y : B ⊢ v : C;∆ Γ, x : A, y : B; e : C ⊢ ∆
∧L

Γ ; proj[x, y, 〈v‖e〉] : A ∧ B ⊢ ∆
Γ ⊢ v : A;∆ Γ ⊢ v ′ : B;∆

∧R
Γ ⊢ (v, v ′) : A ∧ B;∆

Γ ; e : A ⊢ ∆ Γ ; e ′ : B ⊢ ∆
∨L

Γ ; [e, e ′] : A ∨ B ⊢ ∆
Γ ⊢ v : A;∆

∨1R
Γ ⊢ injlv : A ∨ B;∆

Γ ⊢ v : B;∆
∨2R

Γ ⊢ injrv : A ∨ B;∆

Γ ⊢ v : A;∆ Γ, ⋊ : ⊥ ⊢ ∆
¬L

Γ ; v ·⋊ : ¬A ⊢ ∆

Γ ; x : A ⊢ ⋊ : ⊥, ∆
¬R

Γ ⊢ λxA.⋊ : ¬A;∆

Γ ; e : B[x← t] ⊢ ∆
∀L

Γ ; t · e : ∀xA.B ⊢ ∆

Γ ⊢ v : B;∆
∀R

Γ ⊢ λxA.v : ∀xA.B;∆

Γ ; e : B ⊢ ∆
∃L

Γ ; proj[α, β, 〈β‖e〉] : ∃αA.B ⊢ ∆

Γ ⊢ v : B[x← t];∆
∃R

Γ ⊢ (t, v) : ∃xA.B;∆

Figure 2.4: Classical minimal inference rules labeled by λ̄µµ̃
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axL
Γ ; ∗ : A ⊢ ∗ : A

axR
Γ, x : A ⊢ x : A

⊤R
Γ ⊢ ⋉ : ⊤

Γ, x : A ⊢ v : B Γ, x : A; e : B ⊢ C
cutL

Γ ; µ̃xA.〈v‖e〉 : A ⊢ C
Γ ⊢ v : B Γ ; e : B ⊢ ∗ : A

cutR
Γ ⊢ µαA.〈v‖e〉 : A

Γ ⊢ v : A Γ ; e : B ⊢ C
⇒L

Γ ; v · e : A⇒ B ⊢ C

Γ, x : A ⊢ v : B⇒R

Γ ⊢ λxA.v : A⇒ B

Γ, x : A, y : B ⊢ v : C Γ, x : A, y : B; e : C ⊢ D
∧L

Γ ; proj[x, y, 〈v‖e〉] : A ∧ B ⊢ D
Γ ⊢ v : A Γ ⊢ v ′ : B

∧R
Γ ⊢ (v, v ′) : A ∧ B

Γ ; e : A ⊢ C Γ ; e ′ : B ⊢ C
∨L

Γ ; [e, e ′] : A ∨ B ⊢ C
Γ ⊢ v : A

∨1R
Γ ⊢ injlv : A ∨ B

Γ ⊢ v : B
∨2R

Γ ⊢ injrv : A ∨ B

Γ ⊢ v : A Γ, ⋊ : ⊥ ⊢ B¬L
Γ ; v ·⋊ : ¬A ⊢ B

Γ ; x : A ⊢ ⋊ : ⊥
¬R

Γ ⊢ λxA.⋊ : ¬A

Γ ; e : B[x← t] ⊢ C
∀L

Γ ; t · e : ∀xA.B ⊢ C

Γ ⊢ v : B∀R
Γ ⊢ λxA.v : ∀xA.B

Γ ; e : B ⊢ C
∃L

Γ ; proj[α, β, 〈β‖e〉] : ∃αA.B ⊢ C

Γ ⊢ v : B[x← t]
∃R

Γ ⊢ (t, v) : ∃xA.B

Figure 2.5: Intuitionistic minimal inference rules labeled by λ̄µµ̃

It is easy to prove that the minimal restrictions lkm and ljm of lk and
lj are themselves consistent logical frameworks.

2.5 Incomplete proof representation

Just as the proof representations of chapter 1, the proof-as-terms paradigm
can be adapted to describe incomplete proofs. Indeed, a common approach
(Magnusson, 1995; Muñoz, 2001a; Jojgov, 2003a; Lengrand, 2006) is to add
metavariables to the syntax of proof terms, i.e. placeholders for the terms
whose type will constitute the incomplete branches of the proof. In the
case of first-order logic, this extension is fairly simple, simply requiring the
addition of metavariables to the syntax (in higher-order systems dealing
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2. λ̄µµ̃-Calculus and Variations

with dependent types and polymorphism, extensions need to be made to
the structure of sequents and inference rules to include constraints and their
resolution).

Hence term and environment metavariables, which we note with grayed
capital letters, are added to the definition of proof terms:

v, v ′ ::= . . . | X

e, e ′ ::= . . . | Ξ

Proof terms that contain metavariables are called open terms, those that do
not are called closed terms.

Notation. We note t[X1, . . . , Xn] to explicitly state that the proof term t

contains the metavariables X1, . . . , Xn in a pre-defined order, i.e., from left
to right.

Definition 2.5.1 (Types for metavariables). In order to be able to type
terms containing metavariables, we need to add a new context Υ for metavari-
ables in typing statements, called a metavariable signature. The form of the
typing judgements is modified to take this signature into account:

Υ ∴ Γ ; e : A ⊢ ∆ Υ ∴ Γ ⊢ v : A;∆

All the type inference rules are extended to this new form, and the following
two rules are added:

mvR
Υ, X0 : A ∴ Γ ⊢ X0 : A, ∆

mvL
Υ, Ξ0 : A ∴ Γ ;Ξ0 : A ⊢ B, ∆

In the works that have pioneered their usage, metavariables were used
to write proof enumeration algorithms; however here they only serve the
purpose of representing incomplete proofs. For this representative usage,
there is only a need for a simple substitution mechanism of metavariables,
called grafting.

Definition 2.5.2 (Grafting on proof terms). Given two proof terms t and
u, and Υ a collection of the metavariables in u and their types, a grafting
of the metavariable X of t by u, denoted t[X ←Υ u], is the term t where
all instances of the metavariable X are syntactically replaced by the term u,
provided X and u have the same type.

Definition 2.5.3 (Grafting on signatures). Given a metavariable signature
Υ = Υ1, X : A, the grafting of the metavariable X in Υ by a proof term t,
denoted Υ[X←Υ2

t], results in the signature Υ1, Υ2, provided that:

· the metavariables declared in Υ2 do not appear in Υ1,

· t and X have the same type.
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For a more detailed description of the explicit substitution required to
deal with metavariable instantiation in dependently typed systems, refer to
(Muñoz, 2001b). Note that in the rest of this work, when unambiguous we
will leave the metavariable signature implicit, and the grafting operation at
the meta-level.

Example 2.5.4. We reuse an example from (Muñoz, 1997, p. 71), i.e. the
proof in lk of the well-formed formula A ⇒ ((A ⇒ B) ⇒ B). Finding such
a proof is merely finding a grafting of a metavariable X0 such that:

Γ ⊢ X0 : A⇒ ((A⇒ B)⇒ B)

Grafting X0 with the term λxA.λyA⇒B.X1 allows the derivation to progress
up to the typing judgement of the new metavariable X1:

Γ, x : A, y : A⇒ B ⊢ X1 : B
2×⇒R

Γ ⊢ λxA.λyA⇒B.X1 : A⇒ ((A⇒ B)⇒ B)

Now X1 can be grafted with the µ-abstraction µzB.〈y‖Ξ0〉, which leads to
the derivation:

axR
Γ ′ ⊢ y : A⇒ B; z : B Γ ′;Ξ0 : A⇒ B ⊢ z : B

cutR
Γ ′ ⊢ µzB.〈y‖Ξ0〉 : B

2×⇒R
Γ ⊢ λxA.λyA⇒B.µzB.〈y‖Ξ0〉 : A⇒ ((A⇒ B)⇒ B)

where Γ ′ = Γ, x : A, y : A ⇒ B. Finally the metavariable Ξ0 can be grafted
with the application x · z, which completes the proof:

axR
Γ ′ ⊢ y : A⇒ B; z : B

axR
Γ ′ ⊢ x : A; z : B

axL
Γ ′; z : B ⊢ z : B

⇒L
Γ ′; x · z : A⇒ B ⊢ z : B

cutR
Γ ′ ⊢ µzB.〈y‖x · z〉 : B

2×⇒R
Γ ⊢ λxA.λyA⇒B.µzB.〈y‖x · z〉 : A⇒ ((A⇒ B)⇒ B)

Remark that the proof of example 2.5.4 is fully described by the following
three graftings:

[X0 ←X1:B λxA.λyA⇒B.X1]

[X1 ←Ξ0:A⇒B µzB.〈y‖Ξ0〉]

[Ξ0 ← x · z]

Hence another representation of proofs can be used: as a series of metavari-
able graftings.
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3 State-based Semantics

With the logical basis of our work set, we turn our attention to the for-
malization of the concept of proof languages. We see how the exploration
of semantical frameworks for imperative languages can help establish a basis
for the semantics of proof languages.

Procedural proof languages bear a close resemblance to imperative lan-
guages, in that they both provide means to modify a persistent object: a
proof state, or a memory state. In fact, just as developing a proof consists
in exercising a proof language to guide deductive computations, imperative
programming similarly consists in performing computations by using side
effects on a memory state. Hence the idea, which is the premiss of this
chapter, of using the familiar framework of imperative programming as an
entry point to the novel and complex problem of the semantics of proof
languages.

An imperative language is usually given an operational semantics à la

Plotkin, focusing on the values of the program and integrating the concept of
memory states and side effects through an explicit extension of the syntax of
the formalism. Yet in the case of proof languages, we do not care for the val-
ues of a script, but only for the side effects it generates on the proof state.
Thus in this chapter we show how an alternative, memory state-centered
operational semantics can be designed to deal specifically with imperative
languages and their extensions. We prove its equivalence with a well-known
big-step formalism, and we finish by adapting this framework to proof lan-
guages, and discussing its strengths and weaknesses.

⋆

Small-step operational semantics (Plotkin, 1981) expresses the semantics
of a programming language through the use of reduction rules such as:

e −→ e ′

where e and e ′ are expressions of the language. The length of the step
implemented by each reduction is arbitrarily defined and the reductions are
repeated until a normal form, the result or value of the program, is reached.
This way of expressing the semantics allows for a detailed description of the
evaluation process; indeed small-step operational semantics have been used
in many occasions to prove a number of properties of programming languages
(Wright and Felleisen, 1994; Dubois, 2000; Dubois and Boite, 2001; Nipkow,
2003)

Unlike functional languages that carry out computations via reduction
of expressions, imperative languages heavily rely on side effects, in other
words the alteration of a memory state by instructions, to achieve some
computation. Reflecting this particularity usually requires a few changes
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3. State-based Semantics

to the aforementioned semantical formalism. For example, the small-step
operational semantics of the imperative fragment of the programming lan-
guages Ocaml (Pottier and Rémy, 2005) or C++ (Wasserrab et al., 2006)
uses reduction rules over pairs, also called configurations. These pairs are
constituted by a program i, made of instructions of the language, and a
memory state σ:

〈i, σ〉 −→ 〈i ′, σ ′〉

However a number of problems arise from the introduction of pairs as objects
of the reductions. Since imperative programs no longer compute a value, the
normal forms of the programs must be adapted. Also, subterms of a pair
are not pairs themselves, thus making the expression of a congruence rule
quite ticklish.

Besides, any imperative program can be translated to a functional one.
This functional translation can serve, for example, to prove properties of
imperative programs (Filliâtre, 1998).

But as we shall see, the process of considering a program as a function can
also spawn the design of a formalism slightly different from the one presented
above, for which the central element is the memory state rather than the
program values. Although the resulting formalism has some similarities
with the one over pairs, it is simpler in several respects: for instance, the
definition of normal forms no longer depends on a special value such as
skip, and a simple congruence rule replaces the more sophisticated context
rules. These properties make this formalism well-suited for expressing the
semantics of an imperative language, as a straightforward rewrite system. It
also proves interesting when studying purely imperative languages, such as
proof languages (Delahaye, 2000; Jojgov, 2003b; Martin and Gibbons, 2002),
that do not have a notion of returned value. Finally, since the result of an
evaluation is a memory state, it is close to the spirit of Winskel’s big-step
semantics (Winskel, 1993).

Thus in this chapter, after exposing the syntax of the small impera-
tive language IMP, we recall its usual small-step semantics and we review
the principle of functionalization of imperative languages. Based on these
systems we expose the store-based operational semantics of IMP, a slight
deviation of the operational semantics better suited to accommodate the
particularities of imperative programming. We then study the evolution of
these formalisms when the language evolves to allow exceptions or to con-
sider instructions as a subset of expressions. Finally, after having examined
related work, we investigate how this approach can be applied to the seman-
tics of proof languages.

3.1 Syntax and notations

The syntax of the imperative language IMP(Winskel, 1993) can be divided
into three parts defining arithmetic expressions a, boolean expressions b and
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commands (or instructions) c:

a ::= n | X | a1 + a2 | a1 − a2 | a1 × a2

b ::= true | false | a1 = a2 | a1 6 a1 | ¬b | b1 ∧ b2 | b1 ∨ b2

c ::= skip | X := a | c1; c2 | if b then c1 else c2 | while b do c

X ranges over an enumerable set whose elements are called references, and
n is an integer. The letter e refers to the union of arithmetic and boolean
expressions, and v denotes values:

e ::= a | b

v ::= n | true | false

The letters σ and σ ′ denote memory states (also called stores). We write
σ{X 7→ n} for the extension of the memory state σ that associates v to X,
i.e. for any reference Y,

σ{X 7→ v}(Y) =

{

v if Y = X

σ(Y) else

When needed a store will be noted in extension : X1 7→ v1, . . . , Xn 7→ vn is
the store such that ∀i ∈ [1 . . . n], σ(Xi) = vi.

3.2 Small-step operational semantics

Formalism

A first definition of the semantics of IMP is derived from the operational
semantics of functional languages, where reduction rules read e→ e ′. When
dealing with a imperative languages one must also take into account side
effects, which is done by adding stores to terms as objects of the rewrite
rules. By definition, in a pair 〈instruction, store〉, addresses defined in the
store are bound in the instruction, and addresses are manipulated modulo
alpha-conversion.

Thus in a formalism that takes into account side-effects, a reduction rule
reads:

〈c, σ〉 → 〈c ′, σ ′〉

This kind of rules is combined with a notion of context in order to deal with
in-depth reduction of instruction. For instance, to design a left-to-right
reduction strategy, then contexts are defined as:

C ::= [ ] | C; c
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3. State-based Semantics

where [ ] represents the usual notion of hole, and C[c] is the context C in
which the hole [ ] is replaced by the instruction c. The congruence rule
follows:

〈c, σ〉 → 〈c ′, σ ′〉

〈C[c], σ〉 → 〈C[c ′], σ ′〉

In addition, another notion of pairing Lexpression, storeM is introduced
to allow the computation of arithmetic and boolean expressions in a given
memory state. In order to allow the reduction of expressions within instruc-
tions, we define the congruence rule:

Le, σM→ e ′

〈C[e], σ〉 → 〈C[e ′], σ〉

and we enrich the context C:

C ::= [ ] | C; c | X := C ′ | if C ′ then c1 else c2

where C ′ is a dedicated context to reduce expressions:

C ′ ::= [ ] | C ′ + a | v + C ′ | C ′ − a | v − C ′ | C ′ × a | v× C ′

| C ′ = a | v = C ′ | C ′ 6 a | v 6 C ′ | C ′ ∧ a | v ∧ C ′ | C ′ ∨ a | v ∨ C ′a

These context rules defines a left-to-right reduction strategy. What is more,
by separating context from evaluation rules, the distinction between the
specification of elementary reductions and of the evaluation strategy is made
explicit.

Evaluation rules

The evaluation rules for expressions are not thoroughly exposed here: they
are quite straightforward. For example, the reduction rules for the sum of
integers 4 and 3 or for the boolean conjunction of true and false are:

L4 + 3, σM→ 7

Ltrue ∧ false, σM→ false

and access to a store reads:

LX, σM→ σ(X)

The following rules describe the semantics of the instructions of IMP. We
start with store affectation, written:

〈X := n, σ〉 → 〈skip, σ{X 7→ n}〉 (i)
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The instructions for sequence and conditional are evaluated by:

〈skip; c, σ〉 → 〈c, σ〉 (ii)

〈if true then c1 else c2, σ〉 → 〈c1, σ〉 (iii)

〈if false then c1 else c2, σ〉 → 〈c2, σ〉 (iv)

Finally the loop unfolds as a fixpoint:

〈while b do c, σ〉 → 〈if b then (c; while b do c) else skip, σ〉 (v)

Thus in this formalism a series of reductions is written as a succession of
pairs 〈instruction, store〉:

〈c, σ〉 → 〈c1, σ1〉 → 〈c2, σ2〉 → · · · → 〈cn, σn〉

In this formalism, the normal form for a well-formed program is a pair
〈skip, σ ′〉, with σ ′ being the memory state at the end of execution.

Example 3.2.1. Given two well-formed programs c1 and c2, we illustrate
the combined use of context deduction rules and rewriting rules in a small-
step evaluation sequence by the reduction, in the memory state X 7→ 5, of
the program if X = 5 then c1 else c2:

LX, X 7→ 5M→ 5

〈if X = 5 then c1 else c2, X 7→ 5〉 → 〈if 5 = 5 then c1 else c2, X 7→ 5〉

then

L5 = 5, X 7→ 5M→ true

〈if 5 = 5 then c1 else c2, X 7→ 5〉 → 〈if true then c1 else c2, X 7→ 5〉

finally,

〈if true then c1 else c2, X 7→ 5〉 → 〈c1, X 7→ 5〉

3.3 Store-based operational semantics

Functional translation

Another way to deal with imperative language consists in using the concept
of program functionalization (Filliâtre, 1998), where an imperative program
is treated as a function mapping memory states to memory states. The re-
sulting functional language can be given conventional operational semantics,
which we do not fully expose here; yet it is interesting to understand the
intuitive signification of the instructions once they have been functionalized.

Instructions are treated as functions over stores. Actually:
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3. State-based Semantics

· the skip instruction is simply the identity function λσ.σ for stores;

· the sequence instruction ; has the semantics of a functional composition
operator for two instructions f and g: ◦ = λfλgλσ · (g (f σ)) ;

· the loop instruction while b do c can be seen as the fixpoint of the
function:

λfλσ · (if b then 〈c ◦ f, σ〉 else σ)

Moreover the affectation instruction is similar to a function for store manip-
ulation and the instruction if refers to the usual conditional functionality.
Note that some formalisms use monads to express in a functional way the
dynamics of side effects. This is called a monadic translation; it is a gener-
alization of the one developed in this section to accommodate a variety of
side-effects: refer to (Moggi, 1991; Wadler, 1995) for further reading on this
topic.

Windup: reasoning on types

Define I as the type of instructions, E the type of expressions, V the type of
values and S the type of stores.

Section 3.2 presented reduction rules over objects of type I× S. The 〈 , 〉
and L , M symbols were considered as constructors of cartesian products.

On the contrary, in section 3.3, the interpretation of an imperative pro-
gram as a function over memory states implies that I is identical to S → S

and E to S → V. Here the symbol 〈 , 〉 of type I × S → S, as well as the
notation L , M of type E× S→ V, denote the application function. Note how
this allows the evaluation to create terms with nested 〈 , 〉 and L , M.

Blending these two concepts yields an alternative approach: to short-
circuit the functional interpretation of imperative programs, by using a set of
reduction rule interpreting the 〈 , 〉 symbol as an operator for store construc-
tion, that is, as a symbol of type I× S→ S. We will see in the next section
how this translates with regards to simplifying the semantical framework,
but the attentive reader can already foresee the goal that is being aimed for:
amalgamating the simplicity of the definition of operational semantics with
the fitness of the functional translation’s store-centred approach.

Formalism.

In the store-based formalism, the semantics of IMP is expressed as a set
of relations between memory states. We consider the 〈 , 〉 symbol as a store
constructor, hence the normal form of 〈c, σ〉 is a store, namely the final state
resulting from the execution of c in the memory state σ.

Here as in the previous section, for all pair 〈c, σ〉, the addresses defined
in σ are manipulated modulo alpha-conversion and bound in c, even if σ is
not atomic, i.e. if it is built with the symbols 〈 , 〉. Finally, since extensions
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can only be carried out on an atomic store, application of extensions on
non-atomic stores are deferred — close in this sense to explicit substitution.

Reduction rules are written:

σ→ σ ′ ,

and the congruence rule reads:

σ→ σ ′

〈c, σ〉 → 〈c, σ ′〉

where c is an instruction of IMP. Its simplicity triggers the expression of the
reduction strategy at the level of the reduction rules. Finally, we reuse the
L , M notation for expression evaluation, and allow reduction of subexpression
inside expressions and instructions.

Evaluation rules.

The evaluation rules for expressions are the same as in section 3.2, to which
are added the context rules. For example, for addition, the context rule
reads:

La1 + a2, σM→ LLa1, σM + La2, σM, σM

Intermediate notations, such as + and := are introduced to mark that eval-
uation of an expression has already been triggered, and the next step should
happen after we get a value. In the case of operators on arithmetical (resp.

boolean) expressions, the underlined operators can be viewed as their inter-
pretation in Z (resp. B). Remark that this approach is as modular as the
usual one, since the context and elementary rules can easily be separated
into two disjoint sets of rules.

For instructions, the reduction rules are provided in Fig. 3.1. Observe
how now a sequence of reductions is a series of memory states:

σ1 → σ2 → · · · → σn

in which some of the σi are syntactically built using 〈 , 〉, and others are
conventional, reference-to-integer mappings.

Example 3.3.1. The reduction sequence for the program of example 3.2.1
reads:

〈if X = 5 then c1 else c2, X 7→ 5〉

→ 〈if LX = 5, X 7→ 5M then c1 else c2, X 7→ 5〉

→ 〈if LX, X 7→ 5M = L5, X 7→ 5M then c1 else c2, X 7→ 5〉

→ 〈if 5 = L5, X 7→ 5M then c1 else c2, X 7→ 5〉

→ 〈if 5 = 5 then c1 else c2, X 7→ 5〉

→ 〈if true then c1 else c2, X 7→ 5〉

→ 〈c1, X 7→ 5〉
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〈X := a, σ〉 → 〈X := La, σM, σ〉 (1)

〈X := n, σ〉 → σ{X 7→ n} (2)

〈skip, σ〉 → σ (3)

〈c1; c2, σ〉 → 〈c2, 〈c1, σ〉〉 (4)

〈if b then c1 else c2, σ〉 → 〈if Lb, σM then c1 else c2, σ〉 (5)

〈if true then c1 else c2, σ〉 → 〈c1, σ〉 (6)

〈if false then c1 else c2, σ〉 → 〈c2, σ〉 (7)

〈while b do c, σ〉 → 〈if b then (c; while b do c)
else skip, σ〉 (8)

Figure 3.1: Evaluation rules for IMP

Admittedly, things can get a bit lengthier when expressions have side effects:
this issue will be addressed in section 3.4.

Comparison.

In section 3.2 of this note we exposed the usual operational semantics of
IMP. Although it is widespread, some of its features are somewhat peculiar:
the congruence rule, asymmetric with respect to the elements of the pairs
〈instruction, store〉; or the role of the skip instruction in the definition of
a normal form. Therefore this semantical framework is often considered as
being rather ad hoc.

In the present section we have first seen how the functional translation
puts the memory state in the midst of the semantics of instructions, a thing
that is not well mirrored by the usual operational semantics. This led us to
reformulate the small-step semantics of IMP, using a store-centered formal-
ism in which the congruence rule is direct and the skip instruction no longer
plays any peculiar role. The possibility of writing terms such as 〈c2, 〈c1, σ〉〉
in this formalism allows for the fairly natural expression of the concept
of sequence, as the application of an instruction to the result of another’s
evaluation. Eventually the evaluation rules of this store-based operational
semantics are quite close to the ones of the usual operational semantics.
One can recognize in (2) the affectation rule of section 3.2, as well as the
rules (6), (7), and (8) for the conditional and the loop. The rules (1) and (5)
are the alternatives to the context rule. The intuitiveness of the formalism
is best reflected by the rules (3) and (4). Remark that these rules describe
exactly the semantics of the functionalized instructions: indeed, (4) and (3)
are related to the composition and identity over stores.
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Table 3.1: Example operational semantics reduction

Rules State
〈(X := 4;X := 5), X 7→ 8 :: Y 7→ 12〉

(i) 〈(skip;X := 5), X 7→ 4 :: Y 7→ 12〉
(ii) 〈(X := 5), X 7→ 4 :: Y 7→ 12〉
(i) 〈(skip), X 7→ 5 :: Y 7→ 12〉

Table 3.2: Example state-based semantics reduction

Rules State
〈(X := 4;X := 5), X 7→ 8 :: Y 7→ 12〉

(4) 〈(X := 5), 〈(X := 4), X 7→ 8 :: Y 7→ 12〉〉
(2) 〈(X := 5), X 7→ 4 :: Y 7→ 12〉
(2) X 7→ 5 :: Y 7→ 12

For an illustration, consider the evaluation of the program (X := 4;X :=

5) in the initial memory state X 7→ 8 :: Y 7→ 12, using the formalism of
the usual operational semantics (Table 3.1) and of our store-based approach
(Table 3.2). Remark how, even though the context inference rules for stan-
dard operational semantics have been omitted, the store-based semantics
still manages to be simpler with regards to both the normal form and the
intermediate steps. Also note that in the case of Table 3.2, another reduc-
tion sequence is possible, and yields the same result. Indeed, the rewriting
system we propose allows for multiple reduction paths, while remaining con-
fluent. If too itching, the alternative derivations can be suppressed either
by specifying that innermost reductions should be given precedence, or by
defining a notion of atomic stores σ⋆ and replacing any σ variable in Fig. 3.1
by a σ⋆.

Well-behavedness.

We want to make sure that the rules of Fig 3.1 indeed describe the semantics
of IMP. This is done by proving that the store-based semantics is equivalent
to another, widely accepted as correct, semantics of IMP.

However it is not easy to use the classical operational semantics to this
end: as illustrated by Tables 3.1 and 3.2, the reduction sequences generated
by both frameworks are quite different. In fact, whereas for a given program
there exists only one “conventional” reduction path, there might be many
possible “store-based” paths. What we need is a semantical framework that
directly associates its value to an expression without mentioning the inter-
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3. State-based Semantics

mediate steps, i.e., big-step semantics. Figure 3.2 describes this setting; for
more details on this formalism see for instance (Winskel, 1993).

La, σM։ v

〈X := a, σ〉։ σ{X 7→ v}
(A)

〈skip, σ〉։ σ
(B)

〈c1, σ〉։ σ ′ 〈c2, σ ′〉։ σ ′′

〈c1; c2, σ〉։ σ ′′
(C)

Lb, σM։ true 〈c1, σ〉։ σ ′

〈if b then c1 else c2, σ〉։ σ ′
(D)

Lb, σM։ false 〈c2, σ〉։ σ ′

〈if b then c1 else c2, σ〉։ σ ′
(E)

Lb, σM։ false

〈while b do c, σ〉։ σ
(F)

Lb, σM։ true 〈c, σ〉։ σ ′ 〈while b do c, σ ′〉։ σ ′′

〈while b do c, σ〉։ σ ′′
(G)

Figure 3.2: Big-step semantics for IMP

Let →∗ be the reflexive transitive closure of the rewriting relation →.
The following proposition is considered common knowledge (Winskel, 1993,
Exercice 4.10):

Theorem 3.3.2. The semantics of IMP in the classical small-step frame-
work is equivalent to its big-step semantics in the following sense: 〈c, σ〉։
σ ′ if and only if 〈c, σ〉 →∗ σ ′.

We want to prove:

Proposition 3.3.3. The store-based operational semantics of IMP is equiv-
alent to its big-step semantics in the following sense: 〈c, σ〉։ σ ′ if and only
if 〈c, σ〉 →∗ σ ′.

Proof. We prove the left-to-right implication with a recursion on the
structure of the big-step derivation 〈c, σ〉 ։ σ ′. For a derivation of
height 1, only the rule (B) can be used, and the small-step rule (3) is
its obvious counterpart. The recursive case is done by examining the
topmost command: we will only develop the case of composition as
other cases are dealt with similarly.

If 〈c1; c2, σ〉։ σ ′′ then by (C) the premisses of this rule are 〈c1, σ〉։
σ ′ and 〈c2, σ ′〉 ։ σ ′′. By induction, we can assume the small-step
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derivations 〈c1, σ〉 →∗ σ ′ and 〈c2, σ ′〉 →∗ σ ′′. Moreover the rule (4)
transforms 〈c1; c2, σ〉 into 〈c2, 〈c1, σ〉〉 ; which can then be reduced by
the two last rules, first to 〈c2, σ ′〉, then to σ ′′. Hence we have produced
the derivation 〈c1; c2, σ〉 →∗ σ ′′.

The right-to-left implication is proved by induction on the length of the
small-step derivation. For a derivation of length 1, as before there is
only one possibility, and the rules (3) and (B) are complementary. As
in the first part of the proof, we demonstrate the inductive case on the
composition, with the proofs of the other cases being comparable.

Assume a reduction path π which starts with the step 〈c1; c2, σ〉 →
〈c2, 〈c1, σ〉〉. We can assume that 〈c1, σ〉 is reduced first: if not, all the
reductions generated by c2 will be blocked until c1 is evaluated. Then
π contains the reduction sequence 〈c1, σ〉 →∗ σ ′, and hence a reduc-
tion sequence 〈c2, σ ′〉 →∗ σ ′′. By induction, to these two sequences
correspond the derivations 〈c1, σ〉 ։ σ ′ and 〈c2, σ ′〉 ։ σ ′′, which,
combined by the rule (C), yield the derivation 〈c1; c2, σ〉։ σ ′′.

By transitivity, theorem 3.3.2 and proposition 3.3.3 allow to conclude to
the equivalence of the classical and the store-based operational semantics of
IMP.

3.4 Extending IMP

IMP, as a ‘toy language’, is but an academic exercise as long as non-trivial
extensions are left out of the picture. Thus local variable declarations, alge-
braic types, records, etc. can be added to the language, and their semantics
can be expressed in either the usual or the store-based semantical frame-
works. In this section we deal with two cases in particular: exceptions and
expression languages.

Adding exceptions

IMP can be enriched to allow the use of exceptions, by adding two com-
mands raise v and try c1 with x→ c2 to the syntax of the language.
The raise operator interrupts the current evaluation and raises an excep-
tion. Its counterpart try evaluates its first argument c1 and, if it results in
an exception, restores the original memory state and proceeds to evaluate
c2 with the variable x replaced by the value carried by the exception.

For instance, the program try (X := 1024; raise 9) with z→ (Y := z)

modifies the memory state X 7→ 8 :: Y 7→ 12 into X 7→ 8 :: Y 7→ 9. In
particular, note that the affectation of the value 1024 to X before the raise

command is backtracked during the evaluation of try.
As the following paragraphs will show, this language extension illus-

trates clearly the specificities of both the conventional and the store-based
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3. State-based Semantics

formalisms — in particular relatively to the way they manage information
within a reduction sequence. Remark that this extension is also relevant in
the case of proof languages, in which backtracking is an essential feature.

Operational semantics.

This formalism being centered around the values of programs, it is natu-
ral to use them (i.e. the left element of 〈 , 〉 pairs) to carry the exception
information. Therefore a new value exnv is introduced, that stands for an
exception that carries a value v. The evaluation context is enriched with the
try C with x→ c construction. A first rewrite rule is needed to generate
an exception:

〈raise v, σ〉 → 〈exnv, σ〉

What is more, this exception needs to be propagated until it hits a try

command. This is done by defining a new context E called exception context
defined as:

E ::= [ ] | E; c | X := E | if C ′ then c1 else c2

where C ′ is the context for expression reduction. The following rule is added:

E[exnv]→ exnv

Finally the exception-catching command obeys:

〈try v with x→ c, σ〉 → 〈v, σ〉

〈try exnv with x→ c, σ〉 → 〈c[x← v], σ〉

where c[x ← v] denotes the substitution of the variable x in c by the value
v.

Store-based semantics.

The store-based formalism does not rely on programs to relay the exception
mechanism. Instead, true to its philosophy that stores are at the center of the
computation of imperative programs, it integrates a new store constructor
exn of type V×S→ S. The congruence rule is untouched, and the following
reduction rules are added to the semantical formalism:

〈raise v, σ〉 → exnv σ

〈c, exnv σ〉 → exnv σ

〈try c1 with x→ c2, σ〉 → 〈c1; tryx

σ
c2, σ〉

〈tryx

σ
c, exnv σ ′〉 → 〈c2[x← v], σ〉

〈tryx

s
c, σ ′〉 → σ ′
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These rules are quite easily understood: raise creates an “exception” mem-
ory state, which does not allow any command execution except outside of
the try catching primitive, itself derived from the evaluation of a try in-
struction.

Note. Overall, this section illustrates the polarity of both store-based and
conventional approaches. Indeed, the treatment of exceptions, as either
special programs or special stores, highlights the way that the continuity of
computation is ensured — again, through program values or store values. In
other words, the information flow is, depending on the formalism, captured
either by the program or the memory state, i.e., the left-hand side or the
right-hand side of the 〈 , 〉 construction.

IMP as an expression language

Sections 3.2 and 3.3 showed how, for an imperative language, operational
semantics and functional translation articulate. This is an attempt to study
the case, occurring in some programming languages, where expressions can
trigger side effects.

To this end, we consider a language where all elements of the language
IMP are seen as expressions that both return a value and possibly trigger
side effects. Hence skip or :=, in addition to their usual semantics, return
an arbitrarily defined value: for instance, unit or end. As a consequence,
the notation 〈 , 〉 previously used to evaluate instructions is useless here, only
the symbol for expression evaluation L , M remains.

Operational semantics.

Because expressions now encompass instructions, thus being allowed to trig-
ger side effects, the rule scheme of section 3.2

Le, σM→ e ′

is no longer fit. Pairs need to be used on both sides of the reduction relation
to record changes performed to the memory state. Hence the new reduction
rules for expressions read:

Le, σM→ Le ′, σ ′M

And a single context rule remains:

Le, σM→ Le ′, σ ′M

〈C[e], σ〉 → 〈C[e ′], σ ′〉
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3. State-based Semantics

The reduction rules for the usual expressions simply return the store
unchanged along with the result of the computation:

L4 + 3, σM→ L7, σM

Ltrue ∧ false, σM→ Lfalse, σM

LX, σM→ Lσ(X), σM

The reduction rules for instructions are identical to those of the corre-
sponding paragraph in section 3.2, modulo the pair-naming convention.

LX := n, σM→ Lskip, σ{X 7→ n}M

Lskip; c, σM→ Lc, σM

Lif true then c1 else c2, σM→ Lc1, σM

Lif false then c1 else c2, σM→ Lc2, σM

With the while construct being defined as the usual combination of the“if”
and “;” commands.

Store-based semantics.

Here as in section 3.4, the addition of side-effects to expression in the lan-
guage entails the creation of a new operator to evaluate the expressions: L , M,
of type E × S → V × S. This operator for Cartesian product construction
yields proper expression evaluation, which results in the creation of a pair
(value, store) witnessing both the side effects and the value of the compu-
tation. The functions ·1 and ·2 are defined as the usual projections over
pairs.

The rules handling arithmetic and boolean expressions, when bringing
“imperative” expressions in, become a bit more space-consuming than in
section 3.3: the reduction of subexpressions has an impact on stores that
needs to be mirrored. For example, addition has for context rule:

La1 + a2, σM→ LLa1, σM1 + La2, La1, σM2M1, La2, La1, σM2M2M

and the reduction rule that returns the final (value, store) pair:

L4 + 3, σM → (7, σ)

The addition of return values to instructions entail a few modifications
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in the reduction rules. The store-based rules follow:

LX := a, σM→ LX := La, σM1, La, σM2M

LX := n, σM→ (end, σ{X 7→ n})

Lskip, σM→ (end, σ)

Lc1; c2, σM→ Lc2, Lc1, σM2M

Lif b then c1 else c2, σM→ Lif Lb, σM1 then c1 else c2, Lb, σM2M

Lif true then c1 else c2, σM→ Lc1, σM

Lif false then c1 else c2, σM→ Lc2, σM

Lwhile b do c, σM→ Lif b then (c; while b do c)
else skip, σM

An evaluation sequence for an expression e and a memory state σ will then
read as a sequence of pairs:

Le, σM→ Le1, σ1M→ . . .→ Len, σnM→ (v, σ ′)

Because it manipulates pairs, this formalism draws noticeably close to
the usual operational semantics. The only difference resides in the choice
of having a congruence rule, where traditionally an asymmetrical context
rule is preferred. Despite the fact that the rules expressing the reduction
strategy are consequently quite unwieldy, an advantage is found in having a
relatively simple composition rule. Also, this formalism is entirely based on
rewrite rules.

3.5 Related work

Following Crank and Felleisen (Crank and Felleisen, 1991), Wright and
Felleisen (Wright and Felleisen, 1994) have shown that, for typed program-
ming languages, type safety proofs can be built simply by using typing judge-
ments on the reducts of a program. Because their method required the
formulation of a language’s semantics as a rewriting system, it generated
a strong interest for small-step operating semantics, built on this concept.
However, in order to be able to use their methodology, one needs to be able
to type the program reducts. While this is not explored in the case of IMP,
we intend to develop this in the case of proof languages.

Pitts and others (Ager, 2004; Hannan and Miller, 1992; Pitts, 2002) de-
rive big- and small-step semantics from abstract machines where stores are
at the center of program evaluation. Compared to these, the formalism in
this chapter is much more abstracted from implementation problems, which
facilitates the understanding of the reduction rules and the process of rea-
soning using them. Moreover, in the case of proof languages, talks about of
compilation today make little sense. Note however that these works attest
if need be of the relevance of formalism based on stores.
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Ariola (Ariola and Sabry, 1998) uses a semantical framework with a com-
positional sequence operator to prove the correctness of an implementation
of the state monad. Messeguer and Rosu (Meseguer and Roşu, 2006) use
rewriting logics as a semantical framework for the semantics of programs.
This allows them to position themselves at the intersection of the opera-
tional and denotational approaches. The also use a particularly rich notion
of state, including memory, thread continuations, input-output and global
environment — close in this to abstract machines. However both of these
semantics are centered on expressions.

3.6 Application: proof-based operational semantics

As mentioned at the beginning of this chapter, a proof language is very
similar to an imperative programming language: the state of a proof can
be seen as a memory state, which is modified by proof scripts that do not
have a return value. Thus the store-based semantics of section 3.3 makes
a relevant fit for this kind of language: in particular, there is absolutely no
benefit in having tactics return an artificial value.

We show, on a simple example, how the store-based approach can be
applied to proof languages. The case in point, intuitionistic minimalistic
logic, is a restriction of L1

m and ljm to two logical connectives: implication
⇒ and truth true. The corresponding inference rules follow:

axL
Γ ; x : A ⊢ x : A

axR
Γ, x : A ⊢ x : A

trueR
Γ ⊢ ⋉ : true

Γ ⊢ v : A Γ ; e : B ⊢ C
⇒L

Γ ; v · e : A⇒ B ⊢ C

Γ, x : A ⊢ v : B ⇒R

Γ ⊢ λxA.v : A⇒ B

Γ, x : A ⊢ v : B Γ, x : A; e : B ⊢ C
cutL

Γ ; µ̃xA.〈v‖e〉 : A ⊢ C
Γ ⊢ v : B Γ ; e : B ⊢ ∗ : A

cutR
Γ ⊢ µαA.〈v‖e〉 : A

The proof language built upon this formalism contains the following con-
structs:

· for each inference rule in the logical system, a similarly named tactic:
two nullary tactics ⇒L and trueR, three unary tactics ⇒R, axL and
axR and two binary tactics cutL and cutR;

· the nullary identity strategy idtac, that leaves the proof untouched,
and the binary sequence strategy ⋄, that successively evaluates its two
arguments.
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Then it is easy to provide local semantical evaluation rules for the tactics:
using a proof representation based on sequents, we have:

〈axL x,
?

Γ ;Ξ0 : A ⊢ x : A 〉 → Γ ; x : A ⊢ x : A (1)

〈axR x,
?

Γ, x : A ⊢ X0 : A 〉 → Γ, x : A ⊢ x : A (2)

〈trueR,
?

Γ ⊢ X0 : true 〉 → Γ ⊢ ⋉ : true (3)

〈⇒L,
?

Γ ;Ξ0 : A⇒ B ⊢ C 〉 →

?
Γ ⊢ X1 : A

?
Γ ;Ξ1 : B ⊢ C

Γ ;X1 · Ξ1 : A⇒ B ⊢ C (4)

〈⇒R x,
?

Γ ⊢ X : A⇒ B 〉 →

?
Γ, x : A ⊢ X1 : B

Γ ⊢ λxA.X1 : A⇒ B (5)

〈cutL x B,
?

Γ ;Ξ0 : A ⊢ C 〉 →

?
Γ, x : A ⊢ X1 : B

?
Γ, x : A;Ξ1 : B ⊢ C

Γ ; µ̃xA.〈X1‖Ξ1〉 : A ⊢ C (6)

〈cutR α B,
?

Γ ⊢ X0 : A 〉 →

?
Γ ⊢ X1 : B

?
Γ ;Ξ1 : B ⊢ α : A

Γ ⊢ µαA.〈X1‖Ξ1〉 : A (7)

Notation. The use of pointy brackets 〈 , 〉 can turn out quite cumbersome
at times. As an alternative notation, we place the name of the command
on the arrow denoting reduction. For instance, the semantics of the right
implication tactic would write:

?
Γ ⊢ X0 : A⇒ B

⇒R−−→

?
Γ, x : A ⊢ X1 : B

Γ ⊢ λxA.X1 : A⇒ B

Although it could be employed systematically, in this manuscript this nota-
tion will only be used when the right element of the pointy brackets is an
atomic construct, i.e. a proof not built using other brackets.

While these rules are local, i.e. they deal with only one open goal at
a time, they can be instantly generalized to any proof with an arbitrary
number of goals. It suffices, for instance, to chose to apply tactics to the
first (in an innermost-leftmost sense) open goal in the proof tree.

Then we can propose the following reduction rules for the two strategies:

〈idtac, σ〉 → σ (8)

〈c1 ⋄ c2, σ〉 → 〈c2, 〈c1, σ〉〉 (9)

Finally, as with the store-based formalism, all that is needed to enable in-
depth reductions is a simple congruence rule.
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Example 3.6.1. Let us consider how the proof of example 2.5.4:

axR
Γ ′ ⊢ y : A⇒ B; z : B

axR
Γ ′ ⊢ x : A; z : B

axL
Γ ′; z : B ⊢ z : B

⇒L
Γ ′; x · z : A⇒ B ⊢ z : B

cutR
Γ ′ ⊢ µzB.〈y‖x · z〉 : B

2×⇒R
Γ ⊢ λxA.λyA⇒B.µzB.〈y‖x · z〉 : A⇒ ((A⇒ B)⇒ B)

with Γ = A, B : bool and Γ ′ = Γ, x : A, y : A ⇒ B, can be obtained by
evaluating the proof script:

⇒R x ⋄⇒R y ⋄ cutR (A⇒ B) z ⋄ axR y ⋄⇒L ⋄ axR x ⋄ axL z

on the initial proof X0. Using proof terms to represent the proof, the evalu-
ation of the script unfolds as follow:

〈⇒R x ⋄⇒R y ⋄ cutR (A⇒ B) z ⋄ axR y ⋄⇒L ⋄ axR x ⋄ axL z, X0〉

This reduces, by four consecutive applications of the rule (9), into:

〈axL z, 〈axR x, 〈⇒L, 〈axR y, 〈cutR (A⇒ B) z, 〈⇒R y, 〈⇒R x, X0〉〉〉〉〉〉〉〉

Then the evaluation proceeds with the tactics: by dual application of (5),

〈axL z, 〈axR x, 〈⇒L, 〈axR y, 〈cutR (A ⇒ B) z, λxA.λyA⇒B.X2〉〉〉〉〉〉

Then, by (7) and (2),

〈axL z, 〈axR x, 〈⇒L, λxA.λyA⇒B.µzB.〈y‖Ξ0〉〉〉〉

And finally, through (4), (2) and (1), the final proof term is obtained:

λxA.λyA⇒B.µzB.〈y‖x · z〉

Remark that this derivation, although more space-consuming than the one
of Table 3.2, shows a strong similarity with it.

The parallel with imperative programming is indisputable: on the one
hand, tactics are the equivalent of specific instances of the affectation rule.
The comparison between incomplete proofs and stores is even better seen
when using proof terms to represent them: for instance, the tactic trueR

transforms a proof term (think: store) t into a proof term (again: store)
t{X0 ← ⋉} which is exactly the semantics of an affectation. On the other
hand, semantically the two strategies ⋄ and idtac are perfect copycats of
the sequence and skip imperative operators, and it is possible to derive proof
language equivalents of the conditional, loop and exception operators.

While elegant and simple, this approach has several limitations. First,
because of the generalization we did of local semantical rules to complete
proofs, tactics are bound to be applied linearly. In order words, there is no

52



way to apply a tactic to the second open goal in the tree — only to the first
one. Second, the semantics presented here do not account for tactic failure,
success, and progress, thus making it impossible to express the semantics of,
say, a strategy such as Coq’s first that applies different tactics until one
of them generates a progress in the proof. Finally, mirroring the behaviour
of, for instance, one of PVS’s fundamental strategies then* (that applies its
second argument to all of the subgoals generated by the application of its
first argument), would be quite complicated.

These problems are solved by introducing a more complex representation
of the proof state, that includes a way to designate current goals, i.e. the
goal or set of goals that the evaluation of tactics will affect. The proof
representation should also provide a mean to store information about the
outcome of a tactic. Finally, it should retain as much as possible of the
formalism of this chapter, and in particular the simplicity of a congruence-
based system. These problems are addressed in the forthcoming chapter.
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4 The Proof Monad

The previous chapter has proposed a semantical framework that is well-
suited for tactics, but not rich enough to deal with strategies: in this chapter
we turn to this problem. We present a structure adapted to the represen-
tation of proofs and to the semantics of strategies in procedural theorem
provers.

One could compare the procedural development of a proof to a dialog
between a proof engine and a scientist, and the representation of this dialog
is still a young research topic. Only in the last few years has some research
been conducted on the semantics of proof languages and their formalization
(Delahaye, 2000; Jojgov, 2003b; Martin et al., 1996; Coen et al., 2007), and
this area is still the object of ongoing work. However, these analyses —
and chapter 3 with them — concentrate on one side of the dialogue, namely
the scientist to machine part: given a goal, they identify which commands
can be validly applied, and how. Few efforts, if any, have been made to
formalize the machine to scientist feedback. In fact, the representations
of proofs proposed so far do not contain enough information to accurately
mirror both sides of the dialogue: as a result, expressing the semantics of
sophisticated strategies is made complicated, if not impossible.

Using the branch of mathematics known as category theory, this chapter
exposes an innovative way of representing proof states, interpreting con-
structs of a proof language and modelling the feedback of the proof engine.
More specifically, in this chapter we formalize an important aspect of the
prover to scientist conversation: the communication by the prover of the cur-
rent goals. This leads us to formalize the notion of proof trees with current
goals; we show that this formalization has the characteristics of a monad,
and we investigate its connection with the semantics of chapter 3.

⋆

As seen in chapter 3, a naive encoding of the state of a proof has limita-
tions when it comes to expressing the semantics of tactics, for which more
information on the state of the proof in general and its history in particu-
lar is required. For instance, a successful tactic application generates some
progress at the level of the proof state, which is a difficult thing to identify
using this representation. In turn, this makes giving semantics to a strategy
that tests for a command’s outcome impossible.

A concrete example of the limitations of the usual proof representation
is to be found in a recent attempt to formalize the semantics of one of PVS’s
most feature-rich strategies: try. Informally, (try t1 t2 t3) applies its
first argument t1 to the goal, and if it generates subgoals, it applies t2 to
the subgoals, else it applies t3. Furthermore, if t2 fails, for example, because
t2 = (fail), then it initiates a backtracking sequence, which is propagated
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until it is evaluated as the first member of another try construct, in which
case it evaluates its third argument. The formal semantics of try is given in
(Archer et al., 2003) using five different types of state information: failure,
success, skip, subgoals, backtrack. Using |.| as a semantic evaluator, the
semantics of try can be expressed as follows:

|(try t1 t2 t3)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|t3| if |t1| ∈ {skip, backtrack}
|t1| if |t1| ∈ {failure, success}
backtrack if |t1| = subgoals,

|t2| ∈ {failure, backtrack}
subgoals if |t1| = subgoals,

|t2| ∈ {skip, subgoals}
success if |t1| = subgoals,

|t2| = success ,

where

|(skip)| = skip

|(fail)| = failure .

Remark that the information required to deal with the semantics of try
is quite different from the one found in the usual arborescent representation
of proofs, and presents itself as a complement to the latter — in fact, in
these semantics of the try strategy, the proof tree isn’t even mentioned.
This hints at the solution: to provide adequate proof search control, some
information needs to be added to the encoding of proofs.

Enter monads. Monads are constructs of the theory of categories, intro-
duced in computer science to deal with non-functional constructs in purely
functional programming languages. The idea behind monads is to bundle
extra information into the objects manipulated by functions. For instance, a
function f on expressions, say mapping a to b, could be extended to a func-
tion f ′ on couples, that also increments a counter x: f ′(a, x) = (b, x + 1): in
this simplistic example, the ‘bundling’ is done by using a pair. While this
example illustrates the case of imperative side-effects, monads generalize
this approach to any type of side-effects, such as exceptions, input-output,
continuations, non-determinism, etc.

In this chapter, we demonstrate how adding a simple monadic structure
to a generic proof object allows us to give formal semantics to non-trivial
procedural proof languages. The use of monads as denotations for proof
states permits the description of the scientist-proof engine dialogue without
any operational bias. We show that key tactics and strategies can be derived
from monadic operators, and we discuss the compatibility of the monadic
framework with the semantical framework of chapter 3. Finally we reference
complete proof languages that have been designed or documented using this
formalism.

56



4.1 Proof representations

A characteristic of procedural theorem provers is that, because dealing with
the whole proof tree would be both cumbersome and confusing, they restrain
the user’s working field to one or more sequents. As a consequence, in
most cases the proof engine’s dialogue with the user concerns the working
sequents, or current goals, rather than the whole proof tree. Hence the
semantics of proof language constructs needs to be able to refer to a subset
of the whole proof tree.

The representations of a proof detailed in chapter 1 can easily be modified
to incorporate the definition of current goals. However, we prefer a more
factorized definition of this representation, that takes advantage of the tree-
like structure of proofs.

Definition 4.1.1 (Current index). In a given open proof, we call current
index the nearest common ancestor of the proof’s current goals.

Definition 4.1.2 (Indexed proof). An indexed proof is a proof parametrized
by a current index, that has the following property: there are no open goals
that share the ancestor represented by the current index, but that are not
current goals.

Hence in indexed proofs, we can refer to the current goals of a proof
simply by their nearest common ancestor. The advantage of this definition
is that it is arguably abstract enough to be independent from the various
representations of proofs.

Notation. Let x, y, z be variables that range over proof trees, and α, β, γ

variables for proof tree indexes. Let x[α] the proof tree x where the current
index is α. Let τ be the type of indexed proof trees.

When relevant, we will allow ourselves to omit the mention of the current
index, and overload the notation x to denote indexed proofs.

Definition 4.1.3. Let ↓i be the partial function of type τ→ τ that changes
a proof’s current index to the i-th element of the set of current goals, when
it exists. Let  be the partial function of type τ → τ that changes the
current index to the next following open goal, i.e. an open goal that is not
in the input tree’s active goals, if it exists.

Note that these functions are specified, but not detailed: any tree struc-
ture, and any tree traversing functions can be used as their implementation.

Example 4.1.4. Let us illustrate using simplified graphics the semantics
of the two functions ↓i and  . In the following graphics, the big triangle
represents a proof, of which the small triangle designates a subproof. The
grayed area denotes the subtree whose open leafs goals are the current goals.
The ↓i provides a way to displace the current index to a leaf of the active
subtree. For instance, ↓1 would transform the indexed proof tree:
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4. The Proof Monad

x

α

into

x

α

On the other hand, the function  would modify the indexed proof:

x

α

into

x

α

4.2 Monads

Adding computational effects such as side-effects, exceptions or input / out-
put to pure functional languages is an important step towards the usability
of these languages. While some languages such as Ocaml or Scheme take
the party to augment their semantics with ad hoc constructions and rules,
others such as Haskell or Gallina look for ways to translate these features into
pure functional constructs. One simple idea is to augment the objects that
functions manipulate, in order to encompass a memory state, an exception
stack or an input / output socket. Moggi’s decisive contribution (Moggi,
1989, 1991) was to provide a structure to achieve this which is based on
well-known mathematical construct: monads. By recognizing the capabili-
ties that monads have of capturing computational effects, Moggi brought a
complete toolbox of well-know mathematical operations and properties to
this topic.

The following formulation of the theory of categories is inspired by in-
formal lectures by Buronni (Buronni, 2004), other approaches exist but this
one has the merit of being quite graphical.

Definition 4.2.1 (Graph). A graph is defined as a quadruplet (G0, G1, s, t),
where G0 is the set of objects and G1 is the set of morphisms of the graph.
For any morphism f in G1, the objects x = s f and y = t f are called
respectively the source and the target of f, and we note f : x → y. This
definition of a graph can be illustrated by the following diagram:

G1

s
−−−−−→−−−−−→

t
G0

Definition 4.2.2 (Category). A category is defined as a triple (G, id, ◦),
where G is a graph and id and ◦ are morphism constructors, called respec-
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tively identity and composition:

G0
id

−−−−−→ G1 (G1, G1)
◦

−−−−−→ G1

The elements of a category verify:

· for any morphisms f, g of G such that t f = s g,

s (f ◦ g) = s f t (f ◦ g) = t g .

· for any object x of G,

s (id x) = t (id x) = x .

· for any morphisms f, g, h of G such that t f = s g and t g = s h,

(f ◦ g) ◦ h = f ◦ (g ◦ h) .

· For any morphism f : x→ y of G

f ◦ (idy) = (id x) ◦ f = f .

Note that there is a one-to-one correspondence between identity mor-
phisms and objects: in other words, one can define an identity morphism
for each object of the category.

Definition 4.2.3 (Functor). Functors are morphisms between categories. A
functor F : C→ C ′ between two categories is defined by an homomorphism
h : G→ G ′ between their corresponding graphs such that:

· for any object x of G,

h (id x) = id (h x) .

· for any morphisms f, g of G such that t(f) = s(g),

h (f ◦ g) = (h f) ◦ (h g) .

Composition between morphisms is defined by the composition between their
corresponding graph homomorphisms.

Definition 4.2.4 (Natural transformation). Natural transformations are
morphisms between functors. Given two categories C, C ′ and two functors
F, F ′ : C→ C ′, a natural transformation φ : F→ F ′ is a family of morphisms
indexed by the objects of C such that:

· for any object x of C,

s φx = F x t φx = F ′ x .
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4. The Proof Monad

· for any morphism f : x→ y of C,

(F f) ◦ φy = φx ◦ (F ′ f) .

The diagrammatic representation of a natural transformation between two
functors is as follow:

C

F
−−−−−→
⇓φ

−−−−−→
F′

C ′

These definitions lay the groundwork for the definition of monads.

Definition 4.2.5 (Monad). A monad over a given category C = (G, id, ◦) is
a triple (T, unit , ⋆), where T : C→ C is a functor, and the monadic operators
unit : id → T and ⋆ : T → (id → T) → T are natural transformations such
that:

· for any object x of C and morphism f : C→ T C,

unit x ⋆ f = (f x)

· for any object m of T C,

m ⋆ unit = m

· for any object m of T C and morphisms f, g : C→ T C,

m ⋆ λx.((f x) ⋆ g) = (m ⋆ f) ⋆ g

In category theory, this definition of a monad is called a Kleisli triple.

Now if monads are viewed as means to carry computational effects, one
can encode programs as functions mapping from a category of values to
the monad of computations defined over this category. Thus, assuming that
the types A and B are objects from the category of values, and (T, unit , ⋆)

is a monad, then a program is represented as a morphism A → T B. The
monadic operator unit : A → T A initializes the system by turning a value
into its trivial computation counterpart, and ⋆ : T A → (A → T B) → T B

allows a program of type A → T B to be applied to a computation of type
T A.

Of course, there are as many choices for T as there are computational
effects and combinations of these. As an example, let us illustrate this
concept with a monad that deals with exceptions.

Example 4.2.6 (The exception monad). For a functor we choose the func-
tion of type A → (Exception |Return B). The natural transformations unit

and ⋆ are defined as:

unit = λa.return a

⋆ = λm.λf.match m with
∣

∣

∣

∣

exception 7→ exception

return a 7→ f a
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A wealth of other programming examples as well as an introduction to
monads for programmers can be found in (Wadler, 1995).

4.3 The proof monad

This section presents the monadic formalization of the theory of proof lan-
guages. It will be used to add additional information into the proof repre-
sentation, and appropriately mirror the semantics of proof languages.

First we need to define a category for the basic elements of our theory:
indexed proofs, and morphisms on them.

Definition 4.3.1 (Cτ, τ). Let Cτ be a category, of which τ is an object.

Definition 4.3.2 (Proof monad). Let (M, unit , ⋆) be a monad over Cτ.
Define M as the datatype constructor:

data M τ =

∣

∣

∣

∣

∣

∣

x[success]

x[subgoals b α]

exception s

where x is a proof indexed by α, b is one of the booleans true, false and
s is a symbol. The semantics of the “success”, “subgoals ” and “exception ”
symbols constitute the information feedback of the proof system, which will
be detailed in section 4.4. Let “match”be a destructor of this datatype. The
monadic operators are defined as follow:

unit : τ→M τ

unit = λx[α].x[subgoals false α]

⋆ : M τ→ (τ→M τ)→M τ

⋆ = λm.λf.match m with
∣

∣

∣

∣

∣

∣

∣

∣

x[subgoals b α] 7→ match (f x[α]) with
∣

∣

∣

∣

y[subgoals b ′ β] 7→ y[subgoals (b⊕ b ′) β]

∗ 7→ (f x[α])

∗ 7→ m ,

where ⊕ is the boolean disjunction. Propositions 4.3.3 and 4.3.4 verify that
these operators are correctly defined.

Note. In order for this structure to be a well-defined monad, one needs to
complete the definition of Cτ to recursively add as objects of this category
all the constructions M τ, M(M τ), . . . ,M(. . . (M τ) . . .), etc..

Proposition 4.3.3. The monadic operators satisfy the left and right unit
properties:

∀x[α] : τ,∀f : τ→M τ, (unit x[α]) ⋆ f = (f x[α]) (1)

∀m : M τ, m ⋆ unit = m (2)
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4. The Proof Monad

Proof. The proofs of these two properties are easy. For equality (1) we use
case reasoning on the outcome of f. Equality (2) is proved by case analysis
on m. In both proofs we use the fact that the boolean disjunction with
false is the identity.

Proposition 4.3.4. The ⋆ operator is associative:

∀m : M τ,∀f1, f2 : τ→M τ, m ⋆ λxτ.((f1 x) ⋆ f2) = (m ⋆ f1) ⋆ f2 (3)

Proof. The proof is carried by induction on m, and then case analysis on
the outcome of f1 and f2. The associativity of ⊕ concludes the proof.

Additional map and join operators can also be defined. They are usually
seen as a decomposition of the ⋆ operator: m ⋆ k = join (mapk m).

Definition 4.3.5 (Map). This operator lifts a function on proof trees to a
function on computations.

map : (τ→ τ)→ (M τ→M τ)

map = λf.λm.m ⋆ λx.unit (f x)

= λf.λm.match m with
∣

∣

∣

∣

x[subgoals b α] 7→ x[subgoals b (f α)]

∗ 7→ m

Definition 4.3.6 (Join). Join ‘flattens’ two layers of information into one.

join : M (M τ)→M τ

join = λm.m ⋆ λx.x

= λm.match m with
∣

∣

∣

∣

x[subgoals b α] 7→ x[α]

∗ 7→ m

4.4 The semantics of proof languages

For a sample proof language, we use a variation on the original LCF language,
combined with the tactics of minimalistic logic, as defined in section 3.6.
Its strategies include most of the widely used features in modern theorem
provers such as Coq, Isabelle or PVS.

Definition 4.4.1 (PRF). The proof language for minimalistic logic PRF

consists in the following tactics and strategies:

c ::= axL x | axR x | trueR | ⇒L | ⇒R x | cutL x B | cutR x B

| postpone | c.c

| idtac | c; c | [clist]

clist ::= nil | c::clist
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where x and B are respectively a well-formed variable and a well-formed
formula of L1

m. The tactics correspond to the inference rules of minimalistic
logic, as per section 3.6.

We describe the informal semantics of PRF by case:

· tactics apply once their corresponding inference rule to each of the
current goals: in particular, if the current index points a subtree in
the proof, the inferences are applied to all of the open goals in this
subtree;

· “postpone” is a strategy to delay the treatment of the current goals
and ‘.’ is a toplevel command evaluator à la Coq: in the taxonomy of
section 1.4, these two commands are interactive commands;

· “idtac” and ‘;’ are the identity and composition strategies. Composi-
tion is different from the simplistic ⋄ operator of section 3.6: it applies
its second argument to each of the subgoals generated by the applica-
tion of its first argument. Finally, the “[clist]” construct applies a list
of length n of commands to the same number n of open goals, on a
ordered one-to-one basis. These strategies are programming strategies
in the taxonomy of section 1.4.

The following define the set of mathematical objects that are manip-
ulated by the proof commands. In particular it defines τ as the type of
indexed proofs.

Definition 4.4.2. Define the set of indexed proofs τ, with x, y, z indexed
proof variables. Let Cτ be the category of proofs built upon τ, and ↓i a
morphism of Cτ. Let (M, unit , ⋆) be a monad over the category Cτ defined
as per definition 4.3.2.

The key element of these semantics is the application function, that pits
PRF commands against indexed proofs, returning monadic constructions.
While in the previous paragraphs this operators was denoted by the simple
juxtaposition of its two arguments, here we use the symbols 〈 , 〉.

Definition 4.4.3 (Application). Let 〈 , 〉 be the application operator of proof
commands to indexed proofs. For any command c and object x[α] in τ, then
〈c, x[α]〉 builds an object in M τ.

Note. A few intuitions on the choices made with this formalization:

· commands are functions from proofs to computations, i.e., of type
τ → M τ. In this sense, our treatment of proof languages is very
similar to that of functional programming languages;

· 〈s, x[α]〉 denotes the application of the command c to the whole subtree
of x designated by α. In particular, if c is a tactic, this denotes its
systematic application to every open goal of α;
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4. The Proof Monad

· subgoals b indicates whether or not subgoals have been generated by
the command. By convention subgoals false means that the current
goals were not modified;

· success indicates that the command has discharged (proved) the cur-
rent goals;

· exception s indicates that the command has raised the exception s.
The exceptions are raised by the user (through the use of the appro-
priate tactic) or the proof engine (if a tactic fails to apply correctly).

The semantics of tactics can simply be lifted from the semantics given in
section 3.6. It is easy to assign a monadic constructor to each possible case
of tactic applications.

Definition 4.4.4 (Semantics of tactics). The result of the evaluation of a
tactic t on an indexed proof x[α] is derived from the semantics of its local
application to a given sequent, as per section 3.6, by the following algorithm.
If there is only one current goal:

· if the topmost symbol of the active formula does not match the symbol
s required for the logical inference rule, then the result is the monadic
construction exception Not a s;

· else, if there are no premisses in the inference rule, and y is the proof x

with the previously current goal closed, then the result is the monadic
construction y[success];

· else, assume there are n premisses in the inference rule, and y is the
proof x extended with the n subgoals, then the result is the monadic
construction subgoals b y[α]. Remark that this constructor is the
counterpart to IMP’s exn store constructor (section 3.4).

This is extended to the case where there are m current goals. The tactic t is
recursively evaluated on each of the goals using an innermost leftmost path:

· if any of the evaluation generates an exception, then return this ex-
ception;

· else if the evaluation closes the current goal, and z is the proof x with
all its previously current goals closed, then the result is the monadic
construction z[success];

· else if for some goal subgoals are generated, and z is the proof x ex-
tended with the subgoals, then the result is the monadic construction
subgoals true z[α]

This algorithm is deterministic, hence from each tactic local evaluation rule
(as defined in section 3.6) one can automatically derive the semantics of its
evaluation on a global indexed proof.
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Example 4.4.5. Take for instance, the semantics of ⇒L, locally given as:

〈⇒L,
?

Γ ;Ξ0 : A⇒ B ⊢ C 〉 →

?
Γ ⊢ X1 : A

?
Γ ;Ξ1 : B ⊢ C

Γ ;X1 · Ξ1 : A⇒ B ⊢ C

adding the monad constructors, this can be extended to:

〈⇒L,
?

Γ ;Ξ0 : A⇒ B ⊢ C 〉 → subgoals true

?
Γ ⊢ X1 : A

?
Γ ;Ξ1 : B ⊢ C

Γ ;X1 · Ξ1 : A⇒ B ⊢ C

〈⇒L,
?

Γ ⊢ C 〉 → exception Not an implication

Then this definition is again extended to deal with any number of current
goals: if there are k current goals, then either ⇒L applies to all of them,
and subgoals true is generated. Else the exception constructor is used.

The following aside allows us to rest the difference between program-
ming and interactive commands on a mathematical characterization of their
semantics.

Definition 4.4.6 (Programming strategies characterization). Let c be any
proof command constituted only of tactics and programming strategies (in-
cluding bark strategies). Assuming 〈c, x[α]〉 = subgoals b y[β], then α = β.
In other terms, the programming strategies do not modify the position of
the current index.

Definition 4.4.7 (Interactive commands characterization). Interactive com-
mands are the only constructs of a proof language that can modify the po-
sition of the current index in the proof.

Definition 4.4.8 (Semantics of strategies). Figures 4.1 and 4.2 complete
the definition of the evaluation function for strategies. Remark that the
monadic operators unit and ⋆ are exact denotations for the “idtac” and ‘;’
strategies. An intermediary function fold is used to inductively define the
semantics of the list evaluation. The monadic operator map is also implicitly
used to implement “postpone”.

Note. The list operator [.] is a programming command that seems to modify
the current index. However, it is easy to demonstrate that this modification
is only internal to the evaluation of the construct, and that globally it does
not alter the position of the current index.

Note. The list operator [.] does not handle well cases where the number
of open goals and the number of elements in the list are not equal. In
implementations of this strategy where such a mismatch can occur, tests are
added to detect and correct these cases. Figure 4.3 shows the semantics of
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4. The Proof Monad

〈idtac, x[α]〉 = unit x[α]

〈c1; c2, x[α]〉 = 〈c1, x[α]〉 ⋆ c2

〈[c :: l], x[α]〉 → foldα,2 l 〈c, x[↓1α]〉

with

foldα,i nil m→ match m with
∣

∣

∣

∣

x[subgoals b β] 7→ x[subgoals b α]

∗ 7→ m

foldα,i c :: l m→ match m with
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x[subgoals b β] 7→ match 〈c, x[↓iα]〉 with
∣

∣

∣

∣

∣

∣

y[subgoals b ′ γ] 7→ foldα,i+1 l y[subgoals (b⊕ b ′) γ]

y[success] 7→ foldα,i+1 l y[subgoals b β]

exception s 7→ exception s

x[success] 7→ foldα,i+1 l 〈c, x[↓iα]〉
exception s 7→ exception s

Figure 4.1: Semantics of the programming commands

〈postpone, x[α]〉 = subgoals false x[ α]

〈c1.c2, x[α]〉 = match 〈c1, x[α]〉 with
∣

∣

∣

∣

∣

∣

y[subgoals b β] 7→ 〈c2, y[↓1 β]〉
y[success] 7→ 〈c2, y[ α]〉
exception s 7→ exception s

Figure 4.2: Semantics of the interactive commands
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〈spread l, x[α]〉 = if length l > card α

then 〈[truncate (card α) l], x[α]〉

else if length l < card α

then 〈[extend (card α) l], x[α]〉

else 〈[l], x[α]〉 ,

where

· length l and card α return respectively the length of the list l

and the number of open goals in α.

· truncate n l and extend n l respectively truncate the list l at
length n and extend the list l to length n, using its last element
as a filler.

Figure 4.3: A hardened list strategy

such a strategy, called “spread”: if there are less goals than elements in the
list, then truncate the list; if there are more then apply the last element
of the list to the all the additional goals. This treatment of special cases
can also be easily applied to generate hardened versions of the commands
“postpone” and ‘.’.

This prototype proof language and its formal semantics can easily be ex-
tended with exception constructors and destructors (e.g., throw and catch),
progress testers (e.g., orelse) and more. Most of these extensions have been
included in the implementations we made of this concept. But in fact, we
argue that the result of this formalization of the proof monad is stronger
than this: it allows for the formal characterization of a language of strate-
gies. However in order to get to this characterization, we need to be able to
consider the n + 1-ary strategy c0; [c1:: . . . ::cn::nil ] as an implementation of
a monadic composition operator.

Conjecture 4.4.9. There exists an extension of the theory of monads,
where the monadic operator ⋆, noted ⋆n is n-ary on the right. The monad
laws for this construction are the left and right unit:

idtac ⋆n (c1, . . . , cn) = [c1:: . . . ::cn::nil ]

c ⋆n (idtac, . . . , idtac) = c
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4. The Proof Monad

and associativity:

c0 ⋆n (c1
0 ⋆n (c1

1, . . . , c1
n1

), . . . , cm
0 ⋆n (cm

1 , . . . , cm
nm

)) =

c0 ⋆n (c1
0, . . . , cm

0 ) ⋆n (c1
1, . . . , cm

nm
)

Given such an extension, the triple (M, idtac, ⋆n) is a monad.

Conjecture 4.4.10. A strategy language consists in a programming lan-
guage combined with a proof monad (M, idtac, ⋆n), and a monadic datatype
destructor.

Finally, we make the link with the proof-based formalism of chapter 3.
First, remark that the system presented in this chapter can be considered
as a rewriting system, relying on a congruence rule to achieve in-depth re-
ductions. The commands “idtac” and ‘;’ are still linked to the identity and
sequence of the formalism, and it is easy to overload the definition of the
evaluation symbol 〈 , 〉 in order to have 〈c, m〉 = m ⋆ c, thus recovering the
rule 〈c1; c2, x[α]〉 = 〈c2, 〈c1, x[α]〉〉.

What is more, since we have shown that the semantics for tactics can
be derived from their simple expression as rewriting rules on local sequents,
it is possible to refer directly to these simplified rules when dealing with
the semantics of tactics. This is an illustration of the modularity of the
combination of the two frameworks: for tactics, simple rules are enough, and
for strategies the addition of the proof monad provides a rich and capable
formalism.

4.5 The proof monad in PVS

PVS has an extensive proof language (Shankar et al., 1999). Initial attempts
to formalize its semantics (Archer et al., 2003), although incomplete, have
highlighted its complexity. In particular, it uses two kinds of exceptions,
called failure and backtrack. In (Kirchner and Muñoz, 2006), we have pro-
posed formal semantics for a large part of this language, based on a monadic
mathematical structure. The theory of the proof monad is a direct extension
of this work, and the results obtained in (Kirchner and Muñoz, 2006) can
be easily translated into this formalism.

The results of the formalization of the semantics of PVS’s strategies are
twofold: first, the formalization of the proof structure allowed for a better
documentation of PVS’s proof language. A number of commands, testing
the state of the prover, have been written to aid the user in controlling the
prover’s power. For instance we have implemented the monadic datatype
destructor as a strategy named test, that simulates the application of an
command on the proof state. Depending on the outcome of this masquerade,
it applies one of it five remaining arguments.

syntax: (test step step1 step2 step3 step4 step5)
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usage: (test (grind)

(skip-msg "grind will generate subgoals")

(skip-msg "grind won’t do anything")

(skip-msg "grind will prove the goal")

(skip-msg "grind will fail")

(skip-msg "grind will backtrack"))

errors: No error messages other than those generated by the given com-
mands.

Second, a streamlined proof language was designed based on the proof
structure, with the aim of providing commands with very elements semantics
to the user. This language, called PVS#, has been implemented as a PVS

package, and is available to download from the Internet.

4.6 Related work

Delahaye (Delahaye, 2000) made the first attempt to formalize the concept of
a proof language. He proposed a prototyped proof language called Lpdt , and
gave its formal big-step semantics. However, these semantics were coupled
with the semantics of lower-level tactics, making it difficult to abstract the
principles of his design from his implementation. Using the inherited LCF
language as a basis, Delahaye also enriched Coq’s proof language with a few
powerful programming constructs, and documented this work using informal
big-step semantics.

Jojgov (Jojgov, 2004) followed in the steps of Delahaye, using a notion
of parametrized metavariables to describe unproved branches in incomplete
proofs. He proposed small-step operational semantics for proof languages,
but he did not recognize the modularity of the formalisms for tactics and
strategies: as a result, the rules in his framework have to deal with whole
proofs. What is more, the case of the sequence and identity strategies are
only mentioned as an aside, and the semantics are focussed on the case of
tactics.

Sacerdoti Coen, Tassi and Zacchiroli (Coen et al., 2007) recently formal-
ized and implemented a step-by-step evaluator for some of the strategies in
the LCF proof language. In doing so, they expressed the small-step semantics
of their language in a manner not quite unlike ours. However, they treated
proofs as collections of lists (context, continuation, open goals, etc.), in-
stead of synthetic indexed trees; and they did not make the connection with
monadic structures, which limited the expressive power of their framework.

Martin and Gibbons (Martin and Gibbons, 2002) in an unpublished note
remarked that Angel’s proof language had a monadic structure, and gener-
alized their observations to a generic proof language. While their note is
based on the same intuition as our work, their development had two draw-
backs: first, they intentionally avoided any description of a proof datatype,
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4. The Proof Monad

only mapping proof language constructs to monadic operators. Second, their
proof language was quite minimal, and their formalism was not easily ex-
tendible to nowadays developments. On the other hand, we wanted to give
an insight into which structures were specifically necessary and sufficient to
implement or describe a modern proof language.

Finally, rewriting strategies (Cirstea et al., 2003) use some state infor-
mation very similar to our monadic structure to provide means to program
strategies. Moreover, the structure of proof trees is quite similar to the
structure of the majority of the rewriting system targets, i.e. terms. On the
down side, rewriting strategy languages are often quite simple compared to
proof languages: for instance, there are no interactive strategies in rewriting
languages.
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5 A Typing system for Proof Languages

Another aspect of the dialog between the proof engine and the scientist lies
in the discrimination of well-formed inputs, or proof scripts. In this chapter
we aim at providing an additional formal foundation for proof languages, in
the form of a typing system.

A first application of the semantics exposed in the two previous chapters
is to derive a type-safety result for proof languages. This is obtained by
providing a typing mechanism for proof languages, and the definition of
the type of tactics and strategies entails brings us to study the type of the
proofs they manipulate. In a sense, the raw types for proofs and tactics
provided in the proof monad formalism implicitly announced the system of
types presented in this chapter: the latter can be seen as a refinement of the
former.

The type system presented here guarantees that proof commands apply
to, and generate sequents where the active formula has the indented form.
Thus it does more than just ensure that proof commands operate on proofs,
but it does not seek to ensure that a proof script will correctly close a give
set of goals — this role is left to the semantical formalism.

In this chapter, we incrementally build a typing system for proofs and
proof commands: after a simple example and the definition of the form of
types, we define well-formed typing judgements for indexed proofs, and we
work our way through tactics, strategies, and application and abstraction
over these constructs. We conclude by using the semantics of the previous
chapters to demonstrate a type-safety result.

⋆

An important question with proof languages is whether a certain class of
proof scripts behaves correctly. This class is formed by well-typed scripts in a
given typing system, and their correct behaviour is called type safety. In the
case of programming languages, this topic has been addressed since the last
century with the first typing systems and typed languages, e.g. (Whitehead
and Russell, 1910; ANSI, 1966, 1996; Leroy et al., 2003; McBride, 2004). For
instance, the type of the list concatenation operation:

append : list(n)→ list(m)→ list(n + m)

ensures both that append manipulates finite lists, and not say integers, and
that the resulting list has a correct length. As a result, if the development
of a program includes a type-checking pass, then during that phase parts
of that program that break the previous properties can be identified and
corrected, thus alleviating the tedious (and potentially incomplete) runtime
debugging process. Hence proof systems provide an additional level of both
safety and comfort for the programmer.
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5. A Typing system for Proof Languages

But for proof languages and interactive theorem proving, no such system
exists yet1, perhaps due to the relative simplicity of the proof scripts writ-
ten up to recently. However, the development of a community of strategy
programmers (Archer et al., 2006) has created a demand for the additional
comfort provided by a typing system in programming with proof languages.
For instance, we want to detect that the tactic that corresponds to the cutR

rule generates two subgoals, and that as a consequence it cannot be chained
within a strategy that assumes that it will return exactly three subgoals.
We also want to detect more fine-grained errors, such as the one triggered
by the following proof script:

cutR x (A⇒ B) ; [ trueR | idtac ]

where the right introduction rule of the true connective cannot take place,
since the sequents generated by the cutR rule have A ⇒ B as an active
formula.

5.1 Types for tactics: a simple example.

Let us give a taste of what’s ahead with an example based on two tactics
exposed in section 3.6: ⇒R and ⇒L. Recall the local semantics of these
commands:

?
Γ ⊢ X0 : A⇒ B

⇒R x
−−−−→

?
Γ, x : A ⊢ X1 : B

Γ ⊢ λxA.X1 : A⇒ B

?
Γ, Ξ0 : A⇒ B ⊢ C

⇒L−−→

?
Γ ⊢ X1 : A

?
Γ ;Ξ1 : B ⊢ C

Γ ;X1 · Ξ1 : A⇒ B ⊢ C

In the first rule, the evaluation of⇒R takes place on a sequent containing
a metavariable X0 of the expected type, and return a structure where X0 has
been instantiated, and a new metavariable X1 has been introduced as part
of the instantiated proof term. The type of the metavariable X0 determines
whether the tactic applies or not; the type of X1 corresponds to the new
active formula, and can be seen as the result of the tactic. The same rea-
soning applies in the second rule, except that in this case two metavariables
are generated: the result of the tactic in this case is the couple (X1, Ξ1).

1 With an exception lying in the area of proof planning (Bundy, 1991), which makes use
of methods with pre- and post-conditions to automate large parts of the development of
formal proofs, and can come quite close to featuring a typing system. These methods,
however, are very much unlike the tactics and strategies of procedural proof languages.
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Hence, using the symbol → as a constructor for functional tactic types,
the idea is to write:

⇒R x :

X0
︷ ︸︸ ︷

(A⇒ B)→ B
︸︷︷︸

X1

⇒L :

Ξ0
︷ ︸︸ ︷

(A⇒ B)→ ( A
︸︷︷︸

X1

, B
︸︷︷︸

Ξ1

)

This example however is too simplistic, as the typing system needs to be
enriched to handle a bit more information:

· the type of the tactic’s parameter is a fundamental element of the
tactic’s behaviour. For instance, the fact that x : A in intro x. As
such, it is very desirable to incorporate it in the typing judgement;

· in general, a metavariable in an open proof term is grafted with another
open proof term, which in turn may contain a number of metavariables.
Hence, more than one metavariable can be created in a semantic step;

· this example takes place on a local modification of the proof. In order
to consider the typing of global commands, such as strategies, the
types need to take into account that there are possibly several current
goals;

· the types have to take into account the type of the monadic computa-
tion. Since in chapter 4 we have defined the type of the proof monad
depending on the type of indexed proofs, all we need is the latter.

5.2 Proof elements and values

We illustrate our purpose using the proof language PRF, as presented in
definition 4.4.1. Recall the grammar of the language:

c ::= axL xA | axR xA | trueR | ⇒L | ⇒R xA | cutL xA B | cutR xA B

| postpone | c.c

| idtac | c; c | [clist]

clist ::= nil | c::clist

where x and B are respectively a variable and a well-formed formula of L1
m.

Remark that we use Church-like notations to embed the types of the tactic
variable parameter into their syntax. The tactics correspond to the inference
rules of minimalistic logic, as per section 3.6. The objects manipulated by
PRF are the indexed proofs and the proof monad as defined in chapter 4. Also
as in chapter 4, we note application with the symbols 〈 , 〉. To complement
it, we explicit the notion of abstraction, for which we use the traditional λ

binder.
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5. A Typing system for Proof Languages

Definition 5.2.1 (Proof elements). We define proof elements, and we note ǫ

as the compilation of indexed proof trees, proof commands, and abstractions
and applications operator.

ǫ ::= x | x[α] | c | λxT .ǫ | 〈ǫ1, ǫ2〉

where T is the type of a proof element, defined a bit later. Note that one
shouldn’t confuse constants for proof trees x[α] with proof element variables
x. To this end, proof tree constant will systematically feature a current
index.

Note. Proof states as used in chapters 3 and 4 are a subset of proof elements,
and the application symbol 〈 , 〉 is a generalization of the application for proof
states. Hence the definition of proof elements regroups into one category all
the objects that we want to type in our system.

Definition 5.2.2 (Substitution of proof elements). We define a notion of
implicit substitution on proof elements, i.e. the replacement of a proof el-
ements variable modulo α-conversion. We note ǫ1{x ← ǫ2} the element ǫ1

where the variable x is replaced by the element ǫ2, without capture.

Definition 5.2.3 (Values). Standalone indexed proof trees are called values,
together with unapplied abstractions and proof commands.

ǫ ::= x[α] | c | λxT .ǫ

5.3 Types and typing judgements

Based on these remarks, we introduce a framework to assign types to proof
commands. We proceed gradually, by first assigning types to open goals,
and then working our way up to the types of higher-order proof commands:

· the type of an open goal, i.e. a sequent whose active formula A is
labelled by a metavariable, is the formula A. The syntax of well-
formed formulas is given by figure 1.1;

· the type of a list of current goals, i.e. a list of open goals, is built with
the list constructors { }. If A1, . . . , Aj are the types of the j current
goals, then globally their type is {A1, . . . , Aj};

· the type of indexed proofs, denoted τ in chapter 4, is build by com-
bining the type of its current goals and the type of its other open
goals, using the constructor [ ]. Given a proof with n open goals, if
Ai+1, . . . , Ai+j are the types of the j current goals, A1, . . . , Ai are the
types of the first i open goals and Ai+j+1, . . . , An the types of its last
open goals, then the type of the whole indexed proof is denoted:

[A1, . . . , Ai, {Ai+1, . . . , Ai+j}, Ai+j+1, . . . , An]
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· the type of monadic constructions respects the definition 4.4.2: given
an indexed proof tree of type τ, a monadic computation has type M τ;

· the type of tactics reflect their condition as functions on indexed proofs.
Using the type operator for functional abstraction →, we write τ →
M τ the type of a tactic that maps an indexed proof of type τ into a
computation of type M τ;

· the type of strategies, i.e. functions on tactics, is built either as the
type of a tactic, or as an arrow type → between two strategic types.

To sum things up, the following condenses the aforementioned comments
into one definition:

Definition 5.3.1 (Proof language type). The type T of a proof state con-
struct is the sum of the types of indexed proofs, tactics and strategies:

τ ::= [A1, . . . , Ai, {Ai+1, . . . , Aj}, Aj+1, . . . , An]

Tt ::= τ→M τ ′

Ts ::= Tt | Ts → T ′
s

T ::= τ | Tt | Ts

where A1, . . . , An are well-formed formulas of L1
m.

We can then proceed to give the definition of proof language typing
judgements.

Definition 5.3.2 (Typing judgements). We write Γ  ǫ : T to state that
the proof element ǫ has type T in the context Γ .

Example 5.3.3. The typing judgements for the two tactics ⇒R and ⇒L,
used as examples at the beginning of this section, write:

⇒R xA : [. . . {(A⇒ B), . . . , (A⇒ B)} . . .]→M [. . . , {B, . . . , B} . . .]

⇒L : [. . . {(A⇒ B), . . . , (A⇒ B)} . . .]→M [. . . , {A, B, . . . , A, B} . . .]

Note. We introduce a different kind of inference rules which are double-
lined, and a new typing judgement , in order to clearly separate the logical
and proof element typing realms. An exception, the symbol ‘:’ is quite over-
loaded, being used as it is in the typing of elements of L1

m, proof terms
and proof commands. However, the form of inference rules, typing judge-
ments, and types being clearly different, no need was felt to introduce a new
notation here.

Note. Already we see that, as was the case with the semantics of tactics,
there is some redundancy in specifying tactics over the whole proof: the
types of the input (resp. resulting) open goals are all identical. Therefore
the types of tactics can be defined locally, i.e. relatively to a single input and
result open goal; and extended automatically to the complete proof when
needed.
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5. A Typing system for Proof Languages

Notation. For clarity and when unambiguous, the types of proof elements
are noted as arrows mapping the type of a single open goal to the type of
a list of current goals. Hence the previous example can be written, without
loss of generality, in a more readable format:

⇒R xA : {A⇒ B}→M {B}

⇒L : {A⇒ B}→M {A, B}

As we will see later, this simplification cannot be applied to typing judge-
ments for interactive proof commands, because they change the current set
of goals.

Note. The types of the proof elements are implicitly polymorphic. For in-
stance, the aforementioned type of the tactic ⇒R would, explicitly, write:

⇒R xA : ∀A, B : bool.{A⇒ B}→M {B}

Definition 5.3.4 (Types of pre-defined proof commands). To each proof
command is associated a type T . We call † the mapping from proof com-
mands to types. For instance, we have: (⇒R x)† = {A⇒ B}→M {B}.

Note. In practice, this means that a proof languages such as PRF is presented
in the form of a typed signature.

We now state the type inference rules for proof elements, i.e. the rules
that allow for well-formed typing judgements. We proceed gradually, start-
ing with the types of indexed proof, then tactics, strategies, and finally proof
elements in general.

5.4 Type inference rules: indexed proofs

Definition 5.4.1. Well-formed typing judgements for indexed proofs write:

C
Γ  x[α] : [A1, . . . , Ai, {Ai+1, . . . , Aj}, Aj+1, . . . , An]

with C a side condition that states that A1, . . . , An are the types of the
metavariables in the well-formed proof x, and more specifically Ai+1, . . . , Aj

are the types of the metavariables in the current goals.

Example 5.4.2. For instance if we chose a proof term representation for
proofs where we underline the subterm corresponding to the active subtree,
then the following typing judgement is well-formed:

C
 λxA.λyA⇒B.µzB.〈X0‖x · Ξ0〉 : [(A⇒ B), {B}]

with C being: λxA.λyA⇒B.µzB.〈X0‖x · Ξ0〉 is a well-formed proof term, and
X0 and Ξ0 are of type respectively A⇒ B and B. Also note that the pointer
for the active subtree sits one node under the open goal labelled by the
metavariable Ξ0: this information is lost at the level of the types, as the
proof term λxA.λyA⇒B.µzB.〈X0‖x ·Ξ0〉 has the same type as the earlier one.
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Note. The side-condition of the inference rule can be verified by using the
logical proof derivation rules of minimalistic logic with particular rules for
metavariables. If the derivation is complete, then the side-condition is veri-
fied. To achieve this we need to add two inference rules to the logical system
of minimalistic logic, to deal with active metavariables:

amvR
Υ, X0 : A ∴ Γ ⊢ X0 : A

amvL
Υ, Ξ0 : A ∴ Γ ;Ξ0 : A ⊢ B

and for any non-metavariable term, their potential underlining is disregarded
by the inference rules. The other logical frameworks (lk, lj and their mini-
mal counterparts) can be extended similarly. For instance, in example 5.4.2,
the side condition amounts to the deduction:

mv
Υ ∴ Γ ′ ⊢ X0 : A⇒ B; z : B π

cutR
Υ ∴ Γ ′ ⊢ µzB.〈X0‖x · Ξ0〉 : B

2×⇒R
Υ ∴ Γ ⊢ λxA.λyA⇒B.µzB.〈X0‖x · Ξ0〉 : A⇒ ((A⇒ B)⇒ B)

with π =

axR
Υ ∴ Γ ′ ⊢ x : A; z : B

amv
Υ ∴ Γ ′;Ξ0 : B ⊢ z : B

⇒L
Υ ∴ Γ ′; x · Ξ0 : A⇒ B ⊢ z : B

where Γ = A, B : bool, Γ ′ = Γ, x : A, y : A⇒ B and Υ = X0 : A⇒ B, Ξ0 : B.
Remark that a possible way of presenting this information would be to stack
the logical derivation on top of the indexed proof typing derivation.

5.5 Type inference rules: tactics

Definition 5.5.1. Let t be a tactic that introduces some of its parame-
ters x1 : P1, . . . , xn : Pn into the structure of the proof. Assume that t

instantiates a metavariable X0 of type A0 with a proof term containing the
metavariables X1, . . . , Xn of types resp. A1, . . . , An. A well-formed typing
judgement for this tactic is written:

3 x1 : P1 . . . 3 xp : Pp
Γ  t : A0 → {A1, . . . , An}

As with the side condition for indexed proof type inferences, the parameter
well-formation judgements can be stacked on top of the tactic type inference
rule:

3 x1 : P1 . . . 3 xp : Pp

Γ  t : A0 → {A1, . . . , An}

These judgements are then derived using the rules of figure 1.1.

Example 5.5.2. We develop the typing rules for the base tactics of PRF,
which entails extending the † mapping to deal with all of them. Let us begin
with the implicative tactics:
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5. A Typing system for Proof Languages

Γ ⇒L : {A⇒ B}→M {A, B} Γ ⇒R xA : {A⇒ B}→M {B}

The ⇒L tactic takes no parameter, and instantiates a metavariable of type
A ⇒ B with a proof term containing two metavariables of type A and B.
The ⇒R tactic instantiates a metavariable of type A ⇒ B by a proof term
containing a metavariable of type B. The axiom and truth tactics type
inference rules write:

Γ  axL xA : {A}→M {} Γ  axR xA : {A}→M {}

Γ  ⋉R : {true}→M {}

where the empty result list {} signals that the corresponding rules do not gen-
erate any new metavariables. The two axiom rules specify that the metavari-
able in the sequent is instantiated and no other metavariable is introduced.
Since their parameter x designates a formula in the proof, it is already a part
of the proof, and needs not be checked. The truth rule simply instantiates
any metavariable of type true with the constant ⋉. Finally well-formed
types of the cut rules are written:

3 x : A 3 B : bool

Γ  cutL xA B : {A}→M {B, B}

3 α : A 3 B : bool

Γ  cutR αA B : {A}→M {B, B}

Both rules verify that their parameter variable and formula are well-formed,
and replace the metavariable in the current goal with two new metavariables
whose type is the new formula.

This example can be extended to tactics for quantifiers:

3 t : A

Γ  ∀L t : {∀xA.B}→M {B[x← t]} Γ  ∀R xA : {∀xA.B}→M {B}

where the ∀L tactic operates a substitution in the type of its metavariable,
after having checked that the term used for the substitution is well-formed.
∀R performs the introduction of the quantified variable, using the variable
x which is already present in the proof. The type system can easily be
extended to tactics for the other logical connectives of L1

m.

Example 5.5.3. Well-formed types for interactive commands require the
use of the complete types of indexed proofs: they need to be able to express
modifications in the position of the current index (and thus designate a new
set of current goals in the proof). The typing rules for “postpone” follow:

Γ  postpone : [A1, . . . , Ai, {Ai+1, . . . , Aj}, Aj+1, . . . , An]

→M [A1, . . . , Ai, Ai+1, . . . , Aj, {Aj+1}, Aj+2, . . . , An]

We can already note that here again, much of the simplicity of the typ-
ing system comes from the fact that there is always an active formula in
the sequent. This liveliness property (proposition 2.2.5) allows the typing
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framework to abstract information from a single formula within each se-
quent, instead of having to encode an entire sequent. In particular, since
the number of succedent formulas in a sequent is not relevant in this sys-
tem, it means that the typing rules for classical and intuitionistic tactics are
identical. Presumably, this system could be extended to logical formalisms
where there is no ambiguity on the active formula, e.g. intuitionistic natural
deduction.

5.6 Type inference rules: strategies

Definition 5.6.1. Let s be an n-ary strategy, that combines proof com-
mands of respective types ∀i ∈ [1, . . . , n], (τ → M τ). In other words,
s
† = (τ → M τ) → . . . → (τ → M τ) (with n arrows). The well-formed

type of the strategy s is given by the following inference rule:

Γ  s : s†

Example 5.6.2. In this example we give the typing rules, using the simpli-
fied notation for indexed proof types, of the two bark strategies of PRF.

Γ  idtac : {A}→M {A}

The idtac proof command does not modify any part of the proof: current
goals are left untouched.

Γ  ; : T1 → T2 → {A}→M{C1
1, . . . , Cm

n }

where T1 = {A}→M {B1, . . . , Bn},
and T2 = {Bi}→M {C1

i , . . . , Cm
i }

The ‘;’ sequencing tactic combines a tactic that for each current goal possibly
generates n subgoals, with a tactic that may generate m subgoals for each
of the potential i ∈ [1, . . . , n] subgoals. One can easily verify that this
corresponds to the type of the unit and ⋆ monadic operators as defined in
chapter 4. Finally, the list construction [.:: . . . ::.::nil ] of length m verifies the
following type inference:

Γ  [.:: . . . ::.::nil ] : T1 → . . .→ Tn → T

where ∀i ∈ [1, . . . ,m], Ti = {Ai}→M {Bi
1, . . . , Bi

ni
}

and T = {A1, . . . , Am}→M {B1
1, . . . , Bm

nm
}.

The list construction maps a list of tactics to a same-sized collection of
current goals, on a one-to-one basis.

Example 5.6.3. In this example we give the typing rules of the interactive
strategy ‘.’.
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5. A Typing system for Proof Languages

Γ  . : T1 → T2 → T

where T1 = [. . . {Ai+1, . . . , Aj} . . .]→M [. . . {B1, . . . , Bm} . . .]

and T2 = [. . . {B1} . . .]→M [. . . {C1, . . . , Ck} . . .]

and T = [. . . {Ai+1, . . . , Aj} . . .]→M [. . . {C1, . . . , Ck}, B2, . . . , Bm, . . .]

That is, ‘.’ applies its first argument to the current goals, and then postpones
them before applying its second argument.

Example 5.6.4. We conclude our review of strategic types with the well-
formed type of the monadic datatype destructor “match”.

Γ  match . with

∣

∣

∣

∣

∣

∣

success 7→ .

subgoals b α 7→ .

exception s 7→ .

: T1 → T2 → T3 → T4 → T5

where ∀i ∈ [1, . . . , 5], Ti = {Ai}→M {B1
i , . . . , Bn

i }. Operationally, the seman-
tics of this strategy consists in applying its first argument, and depending
on the monadic structure of the outcome of this application, apply one of
the three following arguments.

5.7 Type inference rules: application and abstraction

Definition 5.7.1. Well-formed types for abstraction and application are as
given by th following inference rules:

Γ, x : T1  ǫ : T2

Γ  λxT1 .ǫ : T1 → T2

Γ  ǫ1 : T1 → T2 Γ  ǫ2 : T1

Γ  〈ǫ1, ǫ2〉 : T2

Note. In particular, these rules hold for first-order application, i.e. the ap-
plication of a tactic to a proof tree: take T1 = [. . . {A1, . . . , An} . . .], and
T2 = M[. . . {A1

1, . . . , Am
1 , . . . , A1

n, . . . , Am
n } . . .]. They also cover the case of

second-order application, i.e. the application of a strategy to a proof com-
mand, with T1 = τ1 →M τ1 and T2 = τ2 →M τ2.

Note. In the case of n-ary strategies, we take the liberty to condense the n

application inferences into one.

Example 5.7.2. As a first example, take the first step of the typechecking
derivation of the application of the sequence strategy to two tactics of PRF:

⇒R xA : {A⇒ B}→M {B}

 axR yB : {B}→M {}

 ; : ({A⇒ B}→M {B})→ ({B}→M {})→ {A⇒ B}→M{}

⇒R xA ; axR yB : {A⇒ B}→M{}

Note that the type of the strategy ‘;’ can be inferred from the types of its
arguments and of the result, making its typing judgement redundant. Hence,
without loss of generality, we can simplify the derivation step to:
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⇒R xA : {A⇒ B}→M {B}  axR yB : {B}→M {}

⇒R xA ; axR yB : {A⇒ B}→M {}

Example 5.7.3. A more elaborate example consists in typechecking one
case of the definition of the focus extended tactic, defined as:

focus xB yA ::= cutR yA B ; [axR xB | idtac]

if x : B is a hypothesis, and when the active formula is in the succedent.
Intuitively, this tactic consists in naming the active formula of the sequent
y, and making hypothesis formula x active. The typing derivation, using
the simplified notation introduced in the previous example, writes:

3 y : A 3 B : bool

 cutR yA B : {A}→M{B, B}  axR xB : {B}→M{}  idtac : {B}→M{B}

 cutR yA B ; [axR xB | idtac] : {A}→M{B}

The statement 3 B : bool is verified because x : B is a hypothesis of the
current goal. Remark that the typing derivation would have failed if the
type of the parameter x of the axiom rule did not match the parameter
formula of the cut rule. Finally one can introduce the following “shortcut”
for this typing derivation:

3 y : A

 focus xB yA : {A}→M{B}

The other cases of the definition of focus are typechecked similarly.

Definition 5.7.4. As in all type systems, the following rule is used to verify
trivial typing judgements:

Γ, ǫ : T  ǫ : T

Recall that types are implicitly polymorphic. As a consequence, we consider
that this last rule also encompasses the case when the type on the right of
the judgement is an instance of the type on the left.

Example 5.7.5. This last example illustrates the use of strategic abstrac-
tion. The definition of LCF’s strategy orelse, that applies its first argument
and then its second only if the first has failed to apply, can be formalized as:

orelse ::= λs1
T1→T ′

1 .λs2
T2→T ′

2 .match s1 with
∣

∣

∣

∣

∣

∣

∣

∣

success 7→ s1

subgoals true α 7→ s1

subgoals false α 7→ s2

exception s 7→ s2

where T1 = {A}, T ′1 = M {A1, . . . , An}, T2 = {B} and T ′2 = M {B1, . . . , Bm}.
Remark that there is an implicit application of the match strategy to s1 and
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5. A Typing system for Proof Languages

s2. In the following typing derivation, we note
⊕

(s1, s1, s2, s2) the applied
match construct, and we define T3 = {C}, T ′3 = M {C1, . . . , Ck} and Tf =

(T1 → T ′1)→ (T2 → T ′2)→ (T3 → T ′3):

s1 : T1 → T ′

1, s2 : T2 → T ′

2  s1 : T1 → T ′

1 s1 : T1 → T ′

1, s2 : T2 → T ′

2  s2 : T2 → T ′

2

s1 : T1 → T ′

1, s2 : T2 → T ′

2 
⊕

(s1, s1, s2, s2) : T3 → T ′

3

 λs1
T1→T ′

1 .λs2
T2→T ′

2 .
⊕

(s1, s1, s2, s2) : Tf

5.8 The type safety property for proof languages

This typing system for proof commands can be combined with the structural
operational semantics exposed in chapters 3 and 4, to derive type safety
results. Indeed, the reduction relation → can be extended to deal with not
only proof states, but all the proof elements as specified by definition 5.2.1.
To the reduction rules of the proof-based semantics we add the β-reduction
entailed by the use of the abstraction and application operations:

〈λxT .ǫ1, ǫ2〉 → ǫ2{x← ǫ1}

Now we can state and demonstrate some of the usual results of type theory.

Proposition 5.8.1 (Preservation of type by reduction). Assume given a
proof element ǫ and its reduct ǫ ′ such that ǫ→ ǫ ′. If ǫ is well-typed and of
type T , then ǫ ′ is also well-typed, and of type T .

Proof. We need to prove: if Γ  ǫ : T and ǫ → ǫ ′ then Γ  ǫ ′ : T . This is
done by induction on the structure of ǫ, and by case.

Proposition 5.8.2 (Progression). If a proof element ǫ is typable, then it is
either a value, or there exists ǫ ′ such that ǫ→ ǫ ′.

Proof. By induction on the structure of ǫ, and by case.

Proposition 5.8.3 (Type safety). If a proof element ǫ is typable and reduces
in finitely many steps to an irreducible script ǫ ′, then ǫ ′ is a value.

Proof. Assume Γ  ǫ : T By proposition 5.8.1, then Γ  ǫ ′ : T . And by
proposition 5.8.2, ǫ ′ is a value.

Intuitively, the type safety property for the application of a proof script
to a proof guarantees that the execution of the script does indeed return the
appropriate result.

Even at the level of simple scripts, it is easy to see the added program-
ming comfort that this system supplies. The ongoing trend of using more
complex strategies to program tactics using exceptions, side-effects and pat-
tern matching will only make this feature more helpful.
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The difficulty may reside in the presentation of this information to the
proof programmer. Indeed, this formalism constitutes yet another type sys-
tem in a domain that already counts a few of them, and could be a risk
of confusion. We hope that the simplicity of the system presented in this
chapter will contribute to alleviate this risk.
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6 Interoperability

Here we demonstrate various ways to export proofs in first-order predicate
logic into other proof frameworks.

Building upon the logical and semantical frameworks developed earlier
in this manuscript, in this chapter we examine the problem of designing in-
teroperability mechanisms towards a variety of proof systems. In particular,
in accordance with the heterogeneity of the formal proof tool ecosystem, we
propose several translation algorithms that take advantage of various char-
acteristics of these systems. Thus we argue that our mechanism can fit most
systems, regardless of their features and specificities.

Some of the translations in this chapter generate proof script results,
and are illustrated on a case-per-case basis: we present translations towards
Coq’s and PVS’s proof languages, although we conjecture that any other
proof system can be adapted. An important fact is that the proof of cor-
rection of the translations constitute a major application of the semantical
formalism for proof commands. Indeed, we give in this chapter the semantics
of a subset of Coq’s and PVS’s proof languages.

In order to achieve the translation, the working (or source) framework
retrained is first-order logic, as exposed in chapter 2. We provide a total
of four translations, each of them more or less general, and more or less
subject to the aforementioned critics, onto varying target frameworks. In
particular, we expose and prove the correction of a translation towards a
Frege-Hilbert style deduction system, that only uses the modus ponens and
axiom deduction rules, and does not verify the deduction lemma. We also
review translations towards the proof term calculus of natural deduction,
and the proof languages of Coq and PVS; finally we provide a translation
towards natural language. We discuss the advantages and drawbacks of
these translations in the last section of this chapter.

⋆

Converting proofs is, in general, a difficult problem. Many logical frame-
works have non-overlapping feature sets, different levels of expressiveness,
when not downright disparate proof strengths. A reasonable approach to this
first problem is to restrict the conversion to developments that lie within a
common logical framework. Then, the naive way would be to establish a
translation between the different inference rules and axiomatizations con-
sidered. However, this alternative is rapidly toppled by the facts: the imple-
mentations that various proof assistants make of inference rules are by and
large uneven, and often very fragile:

· The semantics of the inference steps are often based on an idealization
of the implemented theory, and not their actual encoding as tactics.
Thus given two concrete systems implementing the same presumptive
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6. Interoperability

framework, the same rule can behave quite differently depending on
which system it runs upon. Simplification and re-ordering of formulas,
automatic proof of trivial premisses, etc., all these features — that
are necessary for an enlightened interaction the user — are as many
obstacles to a tactic-for-tactic translation.

· These semantics are often modified, for instance because of newer ad-
vances in proof theory or to accommodate the requests of its user base.
Even minor modifications such as formula numbering or the handling
of implicit arguments would completely break a translation system.
Thus, supposing the semantic issues are resolved, basing proof inter-
operability on such volatile grounds as the implementation of inference
rules, would be a sure recipe for a maintainability nightmare1.

Hence having a translation function acting as a morphism on proof com-
mands cannot be heralded as a one-stop solution to proof interoperability.
We show in this chapter that an approach based on more basic objects than
inferences, such as sequents is doable. We also look at transformations based
on closed proof terms, i.e. terms that contain no metavariables.

6.1 A Frege-Hilbert style deduction system

We call proof steps the set of sequents that are bound together by the appli-
cation of an inference rule. The first translation views proofs in the source
formalism as a series of proof steps. It is tied exclusively to the language L1

m

of first-order logic, and not to proof terms or inference rules. Proof steps
are translated into the target system as a series of inference rules.

We use a deduction system à la Frege-Hilbert as a target of this first
translation. This kind of systems was pioneered by Hilbert and Frege, and
constituted the first modern attempt to formalize the notion of demonstra-
tion. The principle is to have a number of axioms to encode the behaviour
of logical connectives, and only a few deduction rules used to apply these
axioms. For instance, early formalizations of intuitionistic logic have been
given in this type of framework (Heyting, 1930).

Definition 6.1.1 (L>). We call L> a language that is able to express the
syntax of many-sorted first-order predicate logic, as per definition 1.1.2. In
order to differentiate the constructions of the two languages, in L> we use
connectives with a circle superscript, e.g. ⇒ for implication.

The language L1
m is isomorphic to L>: a translation function \.\ between

the two syntaxes is the identity function (up to renaming of the logical
connectives). We extend this function to translate sequents of formulas in

1 A prototype implementation of such a translator, named League, was carried out in ,
and promptly validated the aforementioned statement.
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L1
m into formulas of L>:

\A1, . . . , An ⊢ B\ = C(\A1\ ⇒ . . . ⇒ \An\ ⇒ \B\)

where, given a formula F of L>, C(F) denotes its universal closure. Note that
in this translation, we don’t distinguish active formulas. List of sequents can
also be translated as a conjunction of their elements:

\Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n\ = \Γ1 ⊢ ∆1\ ∧ . . . ∧ \Γn ⊢ ∆n\

Definition 6.1.2 (hmp). Let hmp be a logical framework capable of ex-
pressing the modus ponens and axiom inference rules:

A A ⇒ Bmp
B

axiom A ∈ A
A

We define the set of axioms A as containing all formulas of the form

\~s \ ⇒ \s\

where s (resp. ~s) is the conclusion (resp. premisses) of a deduction rule of
lj, as per definition 2.3.2. Rules with no premiss generate axioms of the
form:

\s\

Finally the two following formulas are considered as elements of A:

A ⇒ B ⇒ (A ∧ B) (∗1)

(A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C)) (∗2)

Note. Let us bring up two important remarks about the hmp framework:

· the sequents in hmp only have a consequent formula, and no ante-
cedents (hence we omit the turnstile symbol). Indeed, the framework
does not have any inference rule that grow the context: it can thus be
treated as a global constant, which corresponds to the theory’s set of
axioms A.

· the set of axioms A contains the following formula, that corresponds
to the ∀R rule of lj:

∀xs.((A1
∧ . . . ∧ An) ⇒ A) ⇒ ((A1

∧ . . . ∧ An) ⇒ ∀xs.A)

This axiom is correct, because of the freshness condition that the rule
∀R enforces on the variable x wrt. its context formulas A1, . . . , An,
which is thus implicitly enforced in this axiom. A similar remark can
be made about the axiom of A that corresponds to the ∃L rule of lj.

Notation. In the rest of this section we use a macro inference rule, named
“auto”, which given an input formula:
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6. Interoperability

1. if the formula is of the form B ⇒ (A ∧ B) , applies the (∗1) axiom
using modus ponens,

2. if the formula is of the form (A ∧ C) ⇒ (B ∧ C) , applies the (∗2)
axiom using modus ponens,

3. immediately proves the resulting formula, by applying the “axiom”
rule.

Having defined the target logical framework, we can propose a translation
between proofs in lj and in hmp. Each inference step in a proof tree is
interpreted using the inference rules of hmp:

∖ π1

s1 · · ·
πn

sn

s

∖

πl
~s

=

∖

π1
s1

∖

π2
s2

::···::
πn
sn

::
πl
~s auto

\s1 . . . sn~s \ ⇒ \s~s \
mp

\s~s \

\ s \
π1
s1

::
πl
~s =

∖

π1
s1

∖

πl
~s auto

\s1~s \ ⇒ \s s1~s \
mp

\s s1~s \

\ s \
nil

= auto
\s\

Note that this translation uses a continuation of subproofs (in superscript on
the translation function) to encode an innermost-leftmost proof tree traver-
sal. However any bottom-up tree traversing strategy would be adequate
here: the objective is simply to deal with one premise (and its subtree) at a
time. Alternatively, one could consider a modus ponens rule with an arbi-
trary number of premisses, allowing to deal in parallel with all the premisses
of the source inference.

In order to translate the proofs in lk and lkm into this intuitionistic
framework, we extend the translation function to deal with multiple conse-
quents, and Gödel’s double negation translation is applied on each formula
in the target inference tree. We note \.\NNPP the combination of the \.\

translation with this systematic double negation translation.

Example 6.1.3. Writing down the inference trees is rapidly very space-
costly, thus the case in point is quite small. Take the proof of the classical
tautology ((¬B⇒ ¬A)⇒ A⇒ B):
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axL
A;B ⊢ B

¬R
A ⊢ ¬B;B

axR
A ⊢ A;B

¬L
A;¬A ⊢ B

⇒L
A;¬B⇒ ¬A ⊢ B

focus
¬B⇒ ¬A, A ⊢ B⇒R

¬B⇒ ¬A ⊢ A⇒ B⇒R
⊢ (¬B⇒ ¬A)⇒ A⇒ B

with the “focus” inference being a macro for the composition of a trivial cut
(here, on ¬B ⇒ ¬A) and an axiom rule. Since the translation does not
mind which formula is active, this rule is transparent for this purpose, and
will be ignored for the sake of conciseness. The \.\-translation generates the
following proof (in the form of russian headstocks, for typesetting purposes):

π1
auto

P1 ⇒ P1mp
P1 ≡ ( ¬B ⇒ ¬A) ⇒ A ⇒ B

auto
P1 ⇒ P1mp

P1 ≡ ( ¬B ⇒ ¬A) ⇒ A ⇒ B

with π1:

π2
auto

P3 ⇒ P2mp
P2 ≡ (A ⇒ ( ¬B ∨ B)) ∧ (A ⇒ ¬A ⇒ B)

auto
P2 ⇒ P1mp

P1 ≡ ( ¬B ⇒ ¬A) ⇒ A ⇒ B

and π2:

auto
P5 ≡ A ⇒ (A ∨ B)

auto
P5 ⇒ P4mp

P4 ≡ A ⇒ ¬A ⇒ B
auto

P4 ⇒ P3mp
P3 ≡ (A ⇒ B ⇒ B) ∧ (A ⇒ ¬A ⇒ B)

where the ≡ symbol is used as a labelling operator, and the bold labels
represent their respective formulas.

Proposition 6.1.4. For each formula A of L1
m that has a lj-proof πA, then

\πA\ is a valid proof in hmp of the formula \A\ of L>.

Proof. By double induction on the structure of the proof πA and of the
translation continuation. If πA is a leaf, then we proceed by case on the
structure of the stack of subproofs:

· if the continuation is empty, then the proof is translated into a single
“auto” rule (last equation of the proof translation rules). Since πA is
a leaf, then its conclusion s is an axiom of lj, whose translation \s\ is
an element of A. Thus “auto” proves the goal by applying the “axiom”
rule of hmp.
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· if the continuation is non-empty, then the translated proof uses modus
ponens to discard the goal and pop the continuation (second equation
of the proof translation rules). Since πA is a leaf, then its conclusion s

is an axiom of lj, whose translation \s\ is an element of A. Thus“auto”
proves the premiss \s1~s \ ⇒ \ss1~s \ by applying the formula (∗1) via

modus ponens, which yields the formula \s\. This formula is then
discarded by the “axiom” rule. The other premiss is a valid proof of
\ss1~s \, by induction hypothesis.

If πA is a tree, then the translated proof uses modus ponens to discard the
goal, then prove the translation of the first premiss while pushing into the
continuation the translation of the other premisses (first equation of the
proof translation rule). Then the premiss \s1 . . . sn~s \ ⇒ \s~s \ is proven
by “auto” by applying the axiom (∗2) if needed (i.e. if the continuation
is non-empty), and then discarding the formula \s1 . . . sn\ ⇒ \s\ using the
“axiom” rule. The other premiss if a valid proof of \s1 . . . sn~s \, by induction
hypothesis.

Corollary 6.1.5. For each formula A of L1
m that has a lk-proof πA, then

\πA\NNPP is a valid proof in hmp of the formula \A\ of L>.

Note. As illustrated by example 6.1.3 with the translation of the first two
⇒R inferences, some of the native inference steps generate superfluous modus
ponens steps of the form:

A A ⇒ Amp
A

These steps do not contribute to the translated proof, hence a simple opti-
mization of the interpretation function can be done to discard such irrelevant
proof steps.

To conclude this section, we emphasize the contribution of the system
hmp to the design of Frege-Hilbert formalisms. Proposition 6.1.4 asserts the
equivalence of hmp with lj, yet our formalism importantly differs from the
usual formulation of Frege-Hilbert systems on the following points:

· our framework does not have quantifier deduction rules: introduction
of the universal quantifier and elimination of the existential quantifier.

· it does not verify the deduction lemma, which states: if B is derivable
from A and F then (A ⇒ B) is derivable from F.

These two specificities are related to the use of context-free sequents. They
represent a significant simplification of Frege-Hilbert style formalisms.
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6.2 Natural deduction: the λ1-calculus

A second translation can be made at the level of closed proof terms: it
supposes that both the source and the target system are based on the Curry-
de Bruijn-Howard isomorphism. In particular, the target system in this case
will use λ-calculus with dependent types, which at the logical level represent
proofs in first-order natural deduction.

Because of the need for terms to encode non-minimal logical connectors, a
subset of the consensual λ1-calculus is used as the target for the translation.

Definition 6.2.1 (λ1-calculus). Terms of the λ1-calculus are given the fol-
lowing syntax:

t, u,A, B ::= x | c | (t t ′) | λxA.t

| I | (RA t)

| πA
1 t | πA

2 t | (pA t u)

| (δA,B,C f g t) | iA,B t | jA,B t

| ⊤ | ⊥ | A + B

| ΠxA.B | ΣxA.B

| Kind | Type

and equipped with an equivalence relation ≡. The reduction rules as follow:

(λxA.t u)→ t[x← u]

(π1 (p t u))→ t

(π2 (p t u))→ u

(δ f g (i t))→ (f t)

(δ f g (j a))→ (g t)

The type inference rules for λ1 are given by figure 6.1.

We begin with the translation of the language of L1
m into constructs of

λ1, which is relatively straightforward. We note ‖.‖ the translation function.
For types:

‖bool‖ = Type

‖k‖ = ck

‖s→ r‖ = Πx‖s‖. ‖r‖ x fresh

for terms:

‖x‖ = x

‖f(t1, . . . , tn)‖ = (cf ‖t1‖ . . . ‖tn‖)
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Γ ⊢ Type : Kind Γ, x : A ⊢ x : A

Γ ⊢ ⊤ : Type Γ ⊢ I : ⊤

Γ ⊢ ⊥ : Type
Γ ⊢ t : ⊥

Γ ⊢ (RA t) : A

Γ ⊢ A : Type Γ, x : A ⊢ B : Kind

Γ ⊢ ΠxA.B : Kind

Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ ΠxA.B : Type

Γ ⊢ t : ΠxA.B Γ ⊢ u : A

Γ ⊢ (t u) : B[x← u]

Γ ⊢ A : Type Γ, x : A ⊢ B : Kind Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : ΠxA.B

Γ ⊢ A : Type Γ, x : A ⊢ B : Type Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : ΠxA.B

Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ ΣxA.B : Type

Γ ⊢ A : Type Γ, x : A ⊢ B : Type Γ ⊢ t : A Γ ⊢ u : B[x← A]

Γ ⊢ (pΣxA.B t u) : ΣxA.B : Type

Γ ⊢ t : ΣxA.B

Γ ⊢ (πΣxA.B
1 t) : A

Γ ⊢ t : ΣxA.B

Γ ⊢ (πΣxA.B
2 t) : B[x← (πΣxA.B

1 t)]

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ A + B : Type

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ t : A

Γ ⊢ (iA,B t) : A + B

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ t : B

Γ ⊢ (jA,B t) : A + B

Γ ⊢ t : A + B Γ ⊢ C : Type Γ ⊢ f : A→ C Γ ⊢ g : B→ C

Γ ⊢ (δA,B,C f g t) : C

Γ ⊢ t : A Γ ⊢ B : Type Γ ⊢ A : Type A ≡ B

Γ ⊢ t : B

Figure 6.1: Typing rules for λ1
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and for formulas:

‖true‖ = ⊤

‖false‖ = ⊥

‖p(t1, . . . , tn)‖ = (cp ‖t1‖ . . . ‖tn‖)

‖¬A‖ = Πx‖A‖.⊥ x fresh

‖A⇒ B‖ = Πx‖A‖. ‖B‖ x fresh

‖A ∧ B‖ = Σx‖A‖. ‖B‖ x fresh

‖A ∨ B‖ = ‖A‖+ ‖B‖

‖∀xs.A‖ = Πx‖s‖. ‖A‖

‖∃xs.A‖ = Σx‖s‖. ‖A‖

Now the proof terms themselves can be translated into λ1. The process is
akin to Prawitz’ translation (Prawitz, 1965). The idea is that derivations in
sequent calculus are recipes for constructing deductions in natural deduction.
Recursively, for intuitionistic proof terms:

‖⋉‖ = I

‖x‖ = x
∥

∥λxA.v
∥

∥ = λx‖A‖. ‖v‖

‖(v, v ′)‖ = (p ‖C‖ ‖v‖ ‖v ′‖) with (v, v ′) : C

‖injrv‖ = (j‖A‖,‖B‖ ‖v‖) with injrv : A ∨ B

‖injlv‖ = (i‖A‖,‖B‖ ‖v‖) with injrv : A ∨ B
∥

∥µ∗A.c
∥

∥ = ‖c‖

for environments:

‖⋊‖t = (RA t) where A is inferred

‖∗‖t = t

‖v · e‖t = ‖e‖(t ‖v‖)

‖proj[x, y, c]‖t =
∥

∥

∥
c[x← (π

‖C‖
1 t)][y← (π

‖C‖
2 t)]

∥

∥

∥
with proj[x, y, c] : C

‖[e, e ′]‖
t

= (δA,B,C (λzA. ‖e‖z) (λzB. ‖e ′‖
z
) t) where C is inferred

∥

∥µ̃xA.c
∥

∥

t
= let (xA := t) in ‖c‖

finally, for commands:

‖〈v‖e〉‖ = ‖e‖‖v‖
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Additionally, the first ηµ redex is discarded by the translator, which uses
it solely to retrieve the final type of the term. This in turn allows the type
inference constraints, mentioned in some translation cases, to be satisfied2.

For classical proof terms, the F-translation can be used to generate
lj+em terms. Then the translation can proceed using the intuitionistic
rules, extended with the correspondence between emA and the term of clas-
sical λ1 that inhabits A + ΠxA.⊥. We note ‖.‖

em
this extended translation.

Proposition 6.2.2. If πA is a proof term of type A in lj, then ‖πA‖ is a
proof term of type ‖A‖ in λ1.

Proof. By induction on the structure on terms, and by case analysis.

Corollary 6.2.3. If πA is a proof term of type A in lk, then ‖Fnil(πA)‖
em

is a proof term of type ‖A‖
em

in λ1.

6.3 Coq and PVS proof scripts

Generating Coq proof scripts

The original syntax of Coq terms is based in the Calculus of Inductive Con-
structions, a powerful, yet bare formalism. The Init library provides global
definitions more elaborate constructs, such as the common logical construc-
tions. Finally, tactics are used to incrementally build proof terms by succes-
sive instantiation of open terms. In what follows, we describe a simplified
subset of this layering, using when necessary the results of the previous
chapters. We then provide a translation from λ̄µµ̃ proof terms to Coq proof
terms, using the bias of the tactic mechanism.

Definition 6.3.1 (CIC: the calculus of inductive constructions). We follow
the definition of (Paulin-Mohring, 1993) using the usual vectorial notation~.

for sequences:

s ::= Set | Type

Ar ::= s | ΠxA.Ar

C ::= xI | (C t) | ΠxA.C

t, u,A, B ::= x | c | s | (t t ′) | λxA.t | ΠxA.B

| Ind(x : Ar){~C} | Constr(i, t) | Elim(Ar, t){~u}

where C is a form constructor wrt. xI of type Ar, and in the dependent
product for constructors, A satisfies a positivity condition3. The letter i

denotes a natural number of the meta-theory. Figure 6.2 recaps the type
inference rules for this calculus. Note that in the constructor and elimination

2 This type inference process can be avoided by using a translation function that keeps
track of the type of its argument.
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rule, I denotes Ind(x : Ar){C1 . . . Cn} with Ar ≡ Π~x
~A.s. The notation

C{xI, A, t} is used to denote the appropriate instantiation3 of the constructor
C by the terms xI, A and t. Finally the → notation is used to denote non-
dependent products.

Γ ⊢ Set : Type Γ, x : A ⊢ x : A

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2
(s1, s2) ∈ {Set, Type}2

Γ ⊢ ΠxA.B : s2

Γ ⊢ t : ΠxA.B Γ ⊢ u : A

Γ ⊢ (t u) : B[x← u]

Γ ⊢ ΠxA.B : s Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : ΠxA.B

s ∈ Ar ∀i ∈ [1 . . . n], (Γ, xI : Ar ⊢ Ci : s) ∀i ∈ [1 . . . n], xI ∈ Ci

Γ ⊢ Ind(xI : Ar){~C} : Ar

Γ ⊢ I : Ar 1 6 i 6 n

Γ ⊢ Constr(i, I) : Ci[xI ← I]

Γ ⊢ t : (I ~a) Γ ⊢ A : Π~x
~B.(I ~x)→ s ′

∀i ∈ [1 . . . n], (Γ ⊢ ui : Ci{I, A, Constr(i,I)})

Γ ⊢ Elim(A, t){~u} : (A ~a t)

Γ ⊢ t : A Γ ⊢ B : s A ≡ B
Γ ⊢ t : B

Figure 6.2: Typing rules for CIC

Notation. In accordance with the Init library, we introduce the following
concrete syntax:

A -> B = A→ B

forall x : A, B = ΠxA.B

and definitions:

True = Ind(xI : Set){xI}

False = Ind(xI : Set){}

~A = A→ False

A /\ B = Ind(xI : Set){A→ B→ xI}

A \/ B = Ind(xI : Set){A→ xI, B→ xI}

exists x : A, B = Ind(xI : Set){ΠyA.(P[x← y])→ (xI A λxA.P)}

3 More on positivity and all that in (Paulin-Mohring, 1993).

95



6. Interoperability

Definition 6.3.2 (Syntax of Coq proof commands). The following simpli-
fied subset of the tactic language of Coq is used for the translation:

t ::= exact t | contradiction | intro x | apply x | cut A

| destruct x as [x1
1 . . . x1

m1
| . . . |xn

1 . . . xn
mn

] | rename x y

| constructor | left | right | split | exists t

A simplistic strategy language is also considered:

s ::= t | t ; s | t ; [s1 | ...| sn]

Definition 6.3.3 (Semantics of Coq proof commands). Figure 6.3 presents
the semantics of tactics within the formalism of chapter 3, i.e. as a set of
rewrite rules over a simplified proof state. Moreover,

left = split = constructor 1

right = constructor 2

exists t = constructor 1

with t being used as a clue for type unification

contradiction = destruct H as []

with H being the name of the False hypothesis

The semantics of strategies is akin to the one developed in chapter 4.

The translation of L1
m in Coq is achieved via the use of the translation

function /./. For types:

/bool/ = Set

/k/ = ck

/s→ r/ = (/s/ -> /r/)

terms:

/x/ = x

/f(t1, . . . , tn)/ = (cf /t1/ . . . /tn/)
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?

Γ ⊢ X : A
exact t
−−−−→ Γ ⊢ t : A

?

Γ ⊢ X : ΠxA.B
intro x
−−−−→

Γ ⊢ ΠxA.B : s

?
Γ, x : A ⊢ Y : B

Γ ⊢ λxA.Y : ΠxA.B

?

Γ, x : Π~y
~A.B ⊢ X : B

apply x
−−−−→

π1 π2

Γ, x : Π~y
~A.B ⊢ (x Y) : B

where π1 = Γ, x : Π~yA.B ⊢ x : Π~y
~A.B

and π2 =
?

Γ, x : Π~y
~A.B ⊢ Y : A

?
Γ ⊢ X : B

cut A
−−−→

?

Γ ⊢ Y : ΠxA.B

?
Γ ⊢ Z : A

Γ,⊢ (Y Z) : B

?
Γ, x : (I ~a) ⊢ X : (A ~a t)

destruct x as l
−−−−−−−−−→

π1 π2 π1
3 . . . πn

3

Γ, x : (I ~a) ⊢ Elim(A, x){~u} : (A ~a t)

where l = [x1
1 . . . x1

m1
| . . . |xn

1 . . . xn
mn

]

and π1 = Γ, x : (I ~a) ⊢ x : (I ~a)

and π2 = Γ, x : (I ~a) ⊢ A : Π~x
~B.(I ~x)→ s ′

and πi
3 =

?

Γ, x : (I ~a), ~xi
ji

: ~Bi ⊢ Xi : Di

Γ, x : (I ~a) ⊢ λ ~xi
ji

~Bi

.Xi : Π ~xi
ji

~Bi

.Di

and Π ~xi
ji

~Bi

.Di = Ci{I, A, Constr(i,I)}

?

Γ, x : A ⊢ X : B
rename x y
−−−−−−→

?

Γ [x←], y : A ⊢ X : B[x← y]

?

Γ ⊢ X : Π~xB.C
constructor i
−−−−−−−−→

π1 π2

Γ,~x : ~B ⊢ (Constr(i, I) ~X) : D

Γ ⊢ λ~x
~B.(Constr(i, I) ~X) : Π~x

~B.D

where Π~x
~B.D = Ci[xI ← I]

and π1 = Γ,~x : ~B ⊢ Constr(i, I) : Π~x
~B.D

π2 =
?

Γ,~x : ~B ⊢ ~X : ~B

Figure 6.3: The semantics of Coq base tactics
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6. Interoperability

and formulas:

/true/ = True

/false/ = False

/p(t1, . . . , tn)/ = (cp /t1/ . . . /tn/)

/¬A/ = ~/A/

/A⇒ B/ = (/A/ -> /B/)

/A ∧ B/ = /A/ /\ /B/

/A ∨ B/ = /A/ \/ /B/

/∀xs.A/ = (exists x : /s/, /A/)

/∃xs.A/ = (forall x : /s/, /A/)

The translation of proof terms stems from the idea of emulating the
type inference rules of λ̄µµ̃ in Coq. However, while in sequent calculus
both hypothesis and succedents can be active, it is not the case in natural
deduction. Hence the translation function /./ gets appended a superscript:

we note /t/
H the translation of the proof term t in which the hypothesis

H is active. The following rules hold in the case of intuitionistic proofs; for
terms:

/x/ = exact x

/⋉/ = constructor 1
/

λxA.v
/

= intro x ; /v/

/(v, v ′)/ = split ; [/v/ | /v ′/]

/(t, v)/ = exists /t/ ; /v/

/injlv/ = left ; /v/

/injrv/ = right ; /v/
/

µ∗A.〈v‖e〉
/

= cut /B/ ; [intro H ; /e/
H:B

| /v/]
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and for environments:

/∗/H:A
= exact H

/⋊/
H:A

= contradiction

/v · e/
H:A⇒B

= cut /B/ ;

[intro H ′ ; /e/
H′:B

| apply H ; /v/]

/t · e/
H=∀x:A.B

= cut /B[x← t]/;

[intro H ′ | apply H]; /e/
H′:B[x←t]

/proj[x, y, 〈v‖e〉]/H:A∧B
= destruct H as [x y] ; /µ∗.〈v‖e〉/

/proj[x, y, 〈y‖e〉]/H:∃x:A.B
= destruct H as [x H ′] ; /e/

H′:B

/[e, e ′]/
H:A∨B

= destruct H as [H ′|H ′′] ;

[/e/
H′:A

| /e/
H′′:B

]
/

µ̃xA.〈v‖e〉
/H:A

= rename H x ; cut /B/ ;

[intro H ′ ; /e/
H′:B

| /v/]

Classical proofs are dealt with using the F-translation, and the appro-
priate Coq rule for excluded middle:

/emA/ = exact (classic /A/)

Example 6.3.4. Assume given a type N for natural numbers, as well as the
two constructor 0 and S. Add the two predicates Even and Odd and the
following formula definitions:

E0 = (Even 0)

OS = ∀nN.(Even n)⇒ (Odd (S n))

ES = ∀nN.(Odd n)⇒ (Even (S n))

A proof that (S (S 0)) is even, in the context that contains the formulas E0,
OS and ES, is the λ̄µµ̃-term:

µ∗(Even 2).〈µ∗(Even 2).〈ES‖1 · µ∗
Odd 1.〈OS‖0 · µ∗

(Even 0).〈E0‖∗〉 · ∗〉 · ∗〉‖∗〉

where the decimal notations 1 and 2 are used for the terms (S 0) and
(S (S 0)). The /./-translation yields a Coq proof script of (S (S 0))’s even-
ness:

1 cut (forall n:nat, ((Odd n) -> (Even (S n)))) ;

2 [ intro H ;
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6. Interoperability

3 cut ((Odd (S O)) -> (Even (S (S O)))) ;

4 [ intro H’

5 | apply H ] ;

6 cut (Even (S (S O))) ;

7 [ intro H’’ ; exact H’’

8 | apply H’ ;

9 cut (forall n:nat, ((Even n) -> (Odd (S n)))) ;

10 [ intro H’’’ ;

11 cut ((Even O) -> (Odd (S O))) ;

12 [ intro H’’’’

13 | apply H’’’] ;

14 cut (Odd (S O)) ;

15 [ intro H’’’’’ ; exact H’’’’’

16 | apply H’’’’ ;

17 cut (Even O) ;

18 [ intro H’’’’’’ ; exact H’’’’’’

19 | exact EO]]

20 | exact OS]]

21 | exact ES ]

Note that we discarded the first ηµ-redex, for clarity.

Proposition 6.3.5. If πA is a proof of the formula A of L1
m in lj, then

/πA/ is a proof in Coq of the formula /A/.

Proof. It is easy (but tedious) to check that each Coq tactic generates the
appropriate proof term of CIC. The second part of the proof consists in
linking λ̄µµ̃ proof terms to CIC term, which is a trivial consequence of
proposition 6.2.2.

Corollary 6.3.6. If πA is a proof of the formula A of L1
m in lk, then

/Fnil(πA)/
em

is a proof in Coq of the formula /A/.

Generating PVS proof scripts

PVS is based on higher-order logics, and uses tactics to build a tree of indexed
formulas rather than proof terms. The target framework for this translation
is a simplified subset of the semantics of PVS, as presented in (Owre and
Shankar, 1999). As such, it is to some level an idealized version of the actual
implementation of this framework.

Definition 6.3.7 (HOL for PVS). The syntax of PVS defines types and
terms with built-in abstraction, application, tuples and projections:

s, r ::= type+ | bool | k | [s -> r] | [s,r]

t, u,A, B,C ::= x | f | λ(x : s) : t | t(u) | (t, u) | pi(t)
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Three particular function symbols are defined:

true : bool

false : bool

if : [bool,s,s] -> s

= : [s,s] -> bool

Figure 6.4 provides proof inference rules for these objects. While sequents in
PVS are pairs of lists of indexed formulas, this presentation abstracts from
the ordering and numbering process. Also remark that, unlike in (Owre and
Shankar, 1999), the typing context and the formula antecedents are mixed,
which saves some redundancy.

⊢ true
Γ ⊢ true, ∆

false ⊢
Γ, false ⊢ ∆ Γ, A ⊢ A, ∆

Γ, A ⊢ ∆ Γ ⊢ A, ∆
cut

Γ ⊢ ∆

Γ, A ⊢ B, ∆ Γ ⊢ A, C,∆
⊢ if

Γ ⊢ if (A, B,C), ∆

Γ, A, B ⊢ ∆ Γ, C ⊢ A, ∆
if ⊢

Γ, if (A, B,C) ⊢ ∆

refl
Γ ⊢ A = A, ∆

true-false
Γ, true = false ⊢ ∆

Γ [B/A], A = B ⊢ ∆[B/A]
repl

Γ, A = B ⊢ ∆

β
⊢ (λ(x : s) : t)(u) = t[x← u]

π
⊢ pi(t1, t2) = ti

Γ, t, u : [s -> r], x : s ⊢ t(x) = u(x), ∆
funext

Γ, t, u : [s -> r] ⊢ t = u, ∆

Γ ⊢ p1(t) = p1(u), ∆ Γ ⊢ p2(t) = p2(u), ∆
tupext

Γ, t, u : [s,r] ⊢ t = u, ∆

Figure 6.4: Proof rules for PVS

Notation. The logical connectives are introduced as notations for terms:

not A = λ(x : bool) : x = false

A and B = if (A,B,false)

A or B = if (A,true,B)

A => B = if (A,B,true)

forall (x : s) : A = (λ(x : s) : A) = (λ(x : s) : true)

exists (x : s) : A = not (λ(x : s) : not A)
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6. Interoperability

The proof rules for these connectives can be derived using the rules of fig-
ure 6.4.

Definition 6.3.8 (Syntax of PVS proof commands). The tactics used are
very close to the inference rules for the logical connectives, and sport limited
automation:

t ::= (propax) | (lemma "x") | (flatten-disjunct) | (split i 1)

| (skolem! i) | (instantiate i ("t") F) | (case "A")

where i, j are formula indexes. We also make use of some of the PVS#

strategies defined in chapter 4:

s ::= t | (then# t s) | (else# t s) | (spread# t (s1 ...sn))

Definition 6.3.9 (Semantics of PVS proof commands). Figure 6.5 exposes
the semantics of these constructs, within the formalism of chapter 3. Note
that the indexes of formulas in a sequent are at times made explicit, over-
loading the colon symbol: i : A for a formula A at index i.

The translation, denoted /./, of L1
m into PVS syntax is straightforward.

For types:

/bool/ = bool

/k/ = k

/s→ r/ = [/s/ -> /r/]

terms:

/x/ = x

/f(t1, . . . , tn)/ = ff(/t1/ , . . . , /tn/)

and formulas:

/true/ = true

/false/ = false

/p(t1, . . . , tn)/ = fp(/t1/ , . . . , /tn/)

/¬A/ = not /A/

/A⇒ B/ = (/A/ => /B/)

/A ∧ B/ = /A/ and /B/

/A ∨ B/ = /A/ or /B/

/∀xs.A/ = (exists (x : /s/): /A/)

/∃xs.A/ = (forall (x : /s/): /A/)
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?

Γ, A ⊢ A, ∆
(propax)
−−−−−→ Γ, A ⊢ A, ∆

?

Γ ⊢ true, ∆
(propax)
−−−−−→ Γ ⊢ true, ∆

?

Γ, false ⊢ ∆
(propax)
−−−−−→ Γ, false ⊢ ∆

?

Γ, x : A ⊢ A, ∆
(lemma "x")
−−−−−−−→ Γ, x : A ⊢ A, ∆

?
Γ ⊢ A => B, ∆

(flatten-disjunct)
−−−−−−−−−−−→

?
Γ, A ⊢ B, ∆

Γ ⊢ A => B, ∆

?
Γ ⊢ i : A or B, ∆

(flatten-disjunct)
−−−−−−−−−−−→

?
Γ ⊢ i : A, i + 1 : B, ∆

Γ ⊢ A or B, ∆

?
Γ, i : A and B ⊢ ∆

(flatten-disjunct)
−−−−−−−−−−−→

?
Γ, i : A, i + 1 : B ⊢ ∆

Γ, i : A and B ⊢ ∆

?
Γ ⊢ i : A and B, ∆

(split i 1)
−−−−−−−→

?
Γ ⊢ i : A, ∆

?
Γ ⊢ i : B, ∆

Γ ⊢ i : A and B, ∆

?
Γ, i : A or B ⊢ ∆

(split i 1)
−−−−−−−→

?
Γ,−1 : A ⊢ ∆

?
Γ,−1 : B ⊢ ∆

Γ, i : A or B ⊢ ∆

?
Γ, i : A => B ⊢ ∆

(split i 1)
−−−−−−−→

?
Γ ⊢ 1 : A, ∆

?
Γ,−1 : B ⊢ ∆

Γ, i : A => B ⊢ ∆

?
Γ ⊢ i : forall (x : s) : B, ∆

(skolem! i)
−−−−−−−→

?
Γ ⊢ i : B, ∆

Γ ⊢ i : forall (x : s) : B, ∆

?
Γ, i : exists (x : s) : B ⊢ ∆

(skolem! i)
−−−−−−−→

?
Γ, i : B ⊢ ∆

Γ, i : exists (x : s) : B ⊢ ∆

?
Γ ⊢ i : exists (x : s) : B, ∆

(instantiate i ("t") F)
−−−−−−−−−−−−−−→

?
Γ ⊢ i : B[x← t], ∆

Γ ⊢ i : exists (x : s) : B, ∆

?
Γ, i : forall (x : s) : B ⊢ ∆

(instantiate i ("t") F)
−−−−−−−−−−−−−−→

?
Γ, i : B[x← t] ⊢ ∆

Γ, i : forall (x : s) : B ⊢ ∆

?
Γ ⊢ ∆

(case A)
−−−−−→

?
Γ,−1 : A ⊢ ∆

?
Γ ⊢ 1 : A, ∆

Γ,⊢ ∆

Figure 6.5: The semantics of PVS base tactics
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6. Interoperability

As PVS uses classical sequent calculus, the core of this translation is much
more straightforward than the previous one, and holds whether the proof is
constructive or not. Note that PVS does not use string labels, but rather
formula numbers: this makes the corresponding rules much less robust in the
face of potential numbering implementation changes. Let /./ be the proof
terms evaluator, carrying as an exponent notation the active formula and
its index. Then, recursively, for terms:

/⋉/ = (propax)

/x/ = (else# (propax) (lemma "x"))
/

λxA.v
/i:A⇒B

= (then# (flatten-disjunct i 1) /v/
i:B

)

/

λxA.v
/i:∀xA.B

= (then# (skolem! i) /v/
i:B

)

/(v, v ′)/
i:A∧B

= (spread# (split i 1) (/v/
i:A

/v ′/
i:B

))

/(t, v)/
i:∃xA.B

= (then# (instantiate i ("t") F)

/v/
i:B[x←t]

)

/injlv/
i:A∨B

= /injrv/
i:A∨B

/injrv/
i:A∨B

= (then# (flatten-disjunct i 1)

/v/
i:A,i+1:B

)
/

µαA.〈v‖e〉
/i:A

= (spread# (case "B") (/e/
−1:B

/v/
1:B

))

and for environments:

/⋊/ = (propax)

/α/ = (else# (propax) (lemma "α"))

/v · e/
i:A⇒B

= (spread# (split i 1) (/e/
−1:B

/v/
1:A

))

/t · e/
i:∀xA.B

= (then# (instantiate i ("t") F)

/e/
i−1:B[x←t]

)

/proj[x, y, 〈v‖e〉]/i:A∧B
= (then# (flatten-disjunct i 1)

/µα.〈v‖e〉/i:A,i+1:B
)

/proj[x, y, 〈y‖e〉]/i:∃xA.B
= (then# (skolem! i) /e/

i:B
)

/[e, e ′]/
i:A∨B

= (spread# (split i 1)

(/e/
−1:A

/e/
−1:B

))
/

µ̃xA.〈v‖e〉
/i:A

= (spread# (case "B") (/e/
−1:B

/v/
1:B

))

The intuitionistic case is a simple restriction of the transformation to terms
that have only one environment variable.
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Example 6.3.10. We illustrate the /./-translation to PVS scripts with the
proof from example 6.3.4:

µ∗(Even 2).〈µ∗(Even 2).〈ES‖1 · µ∗
Odd 1.〈OS‖0 · µ∗

(Even 0).〈E0‖∗〉 · ∗〉 · ∗〉‖∗〉

This proof term is mapped to the following script:

1 (spread# (case "forall (n:int): (Odd(n) => Even(S(n)))")

2 ( (then# (instantiate -1 ("1") F)

3 (spread# (split -2 1)

4 ( (propax)

5 (spread# (case "forall (n:int): (Even(n) => Odd(S(n)))")

6 ( (then# (instantiate -1 ("O") F)

7 (spread# (split -2 1)

8 ( (propax)

9 (spread# (case "Even(O)")

10 ( (propax)

11 (else# (propax) (lemma "EO"}))))))

12 (else# (propax) (lemma "OS")))))))

13 (else# (propax) (lemma "ES")))))

As previously, for brevity the first ηµ-redex is not considered.

Proposition 6.3.11. If πA is a proof of the formula A of L1
m in lk, then

/πA/ is a proof in PVS of the formula /A/.

Proof. By induction on the length of the typing derivation of πA, and by
case by logical connective.

Corollary 6.3.12. If πA is a proof of the formula A of L1
m in lj, then

/πA/ is a proof in PVS of the formula /A/.

6.4 Natural language

As a testament to the richness of the λ̄µµ̃ datatype, we expose natural
language rendering function. While this section is obviously not as formal
as the previous, it answers nonetheless to an essential necessity: make the
proofs available for understanding by a human mind.

The challenge in such a translation comes from the opulence of natural
language: a much detailed translation into a scarce subset of the human
language is all but readable. Here the advantage of having additional binders
— µ and µ̃ — for proof terms, as well as native constructors for logical
connectives, is a great asset. The translation process takes full advantage of
these constructs to allow high level notions to pervade the final rendering.

This translation, denoted |.|, builds upon a similar work (Sacerdoti Coen,
2006). Here a superscript annotation is used when needed to disambiguate
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6. Interoperability

the type of the translated proof term. Recursively, starting with terms:

|x| = by x

|⋉| = by definition of True
∣

∣λxA.v
∣

∣

A⇒B
= assume A ( x ), |v|

∣

∣λxA.v
∣

∣

∀xA.B
= consider an arbitrary but fixed x of type A, |v|

|(v, v ′)|
A∧B

= |v| and |v ′|

|(t, v)|
∃xA.B

= |v|

|injlv| = |v|, trivial

|injrv| = |v|, trivial
∣

∣µαA.〈v‖e〉
∣

∣ = we need to prove A: ( |〈v‖e〉| )

for environments:

|α| = done

|⋊| = absurd

|v · e|
A⇒B

= and |v|, |e|

|t · e|
∀xA.B

= |e|

|proj[x, y, 〈v‖e〉]|A∧B
= we proved A ( x ) and B ( y ), |e|

|proj[x, y, 〈y‖e〉]|∃x
A.B

= let x be the element of type A which satisfies the property, |e|

|[e, e ′]| = by cases: first case: (by case hypothesis |e|)

second case: (by case hypothesis |e ′|)
∣

∣µ̃xA.〈v‖e〉
∣

∣ = we proved A ( x ), |〈v‖e〉|

and for commands:

|〈v‖e〉| = |v|, |e|

Note that the witnesses in the case of the quantifiers are hidden. This
choice was motivated by the wish to produce a relatively high-level descrip-
tion of the proof. Technical details such as the substitution of variables tend
to clutter the proof, and are easily inferred by the reader.

Example 6.4.1. Assume given a type N, a binary predicate symbol p :

N→ N→ bool, and two formulas:

A1 = ∃yN.∀xN.(p x y)

A2 = ∀xN.∃yN.(p x y)
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We translate in natural language the intuitionistic proof of A1 ⇒ A2, i.e.

that existential quantifiers can be pushed under universal quantifiers 4.

To improve readability, we indent the resulting script to reflect the ex-
pression’s parenthesizing.

∣

∣

∣

∣

∣

µ∗A1⇒A2 .〈λHA1

1 .µ∗A2 .〈H1‖ proj[y, z,

〈z‖ µ̃H
∀xN.(p x y)

2 .〈λxN.(y, µ∗(p x y).〈H2‖x · ∗〉)‖∗〉〉]〉‖∗〉

∣

∣

∣

∣

∣

=

we need to prove A1 ⇒ A2:

(assume A1 ( H1 ),

we need to prove A2:

(by H1,

let y be the element of type N that satisfies the property,

we proved ∀xN.(p x y) ( H2 ),

consider an arbitrary but fixed x of type N,

we need to prove (p x y):

(by H2,

done),

done),

done)

Remark that this translation can be easily extended to randomize natural
language constructions, in order to further the ease of reading rendered
proofs.

6.5 Discussion

Let us spare a few words on the advantages and drawbacks of the vari-
ous translations presented in this chapter. We consider several aspects of
the problem, ranging from extensibility to robustness, from performance to
practical availability.

This dissertation in general, and this chapter in particular, puts a large
emphasis on two proof assistants: Coq and PVS. All the translation algo-
rithms are designed with these provers in mind, thus one could ask if these
ideas can apply to other formal tools. The short answer to this question
is: yes, provided these tools provide an input method for their proofs. The
form of the input is not relevant, because the translation can accommodate
both proof terms à la Curry-de Bruijn-Howard5, and tactics. A more de-
tailed answer lies in the examination of the details of the considered prover:
if one wants to use the “proof scripts” approach, reliable semantics for the

4 In particular, if N is the poset equipped with the partial ordering p =≺, then this is the
property of correctness of its supremum.

5 Although there exist proof term mechanisms that do not rely on λ-calculus (and λ̄µµ̃-
calculus is an easy illustration of this fact) most of them are convertible to it.
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6. Interoperability

tactic language are mandatory. For the “Frege-Hilbert system” method, the
obstacle is the availability of the “auto” tactic.

As exposed in the first words of this chapter, of great concern is the
resilience of the translation algorithms: how vulnerable they are to changes
in the target formalisms. Needless to say, the most stable translation is the
natural language rendering: it is difficult to imagine an API change in this
domain. The morphism of proof terms is almost as good as that: proof
terms are at the core of the proof engine, and very rarely altered, at least in
their root constructs (i.e. the subset of these languages that correspond to
λ1). The translations to Frege-Hilbert systems and to proof scripts are both
hampered by their reliance on the proof language. For the first one, the
critical elements are reduced to the two tactics “modus ponens” and “auto”.
For the second one however, the tactics for first-order inferences, and a
few strategies constitute a non-negligible number of sources for breakdowns.
This vulnerability is worsened by the relative immaturity of proof languages
in general, and the instability that results. Yet in some cases (e.g. PVS),
such translations are the only way to communicate a proof.

But maybe most important is the efficiency of the translated proofs in
the target frameworks. Indeed, if large contributions are to be exported into
various formal libraries, then it is fundamental to have each proof checked in
a reasonably short period of time. On this aspect, since the 20th century, the
human mind is no longer the fastest tool available. However our translations
to machine tools are not equal in efficiency. Generating and checking a tree
of “modus ponens” and “auto” is very costly, especially when large numbers
of lemmas are used in the context. Using proof scripts as targets is somewhat
more efficient, but some performance is lost in the unification algorithm and
the input / output mechanism. When possible, the use of proof terms as
target for the translation yields the fastest proof-checking results.

Overall, all these approaches have advantages and drawbacks. In some
cases, some optimizations can be made to take advantage of the specificities
of the target prover. But in general, all these approaches are necessary to
be able to deal as robustly as possible with the large number of frameworks
available nowadays.

6.6 Looking forward

In this chapter, we have constructively detailed several translations methods
for proofs between frameworks sporting various features. We compared their
strengths and weaknesses, allowing when possible to choose between the
different methods to better meet expectations.

This work on proofs is trivially extended to deal with toplevel declara-
tions, and it is well known that this translation does not impact the proofs
themselves (Severi and Poll, 1994). As a result, it is possible to process com-
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plete specification files, and translate them into corresponding specifications
in the target frameworks. Thus, interoperability is achieved.

All these algorithms for proof translation have been implemented, and
to a certain extent tested, in Fellowship (more on this tool in chapter 7).
The next step would be to integrate such translation tools directly into the
mainstream provers. This would allow, for instance PVS to generate Coq

specifications and first-order proofs, and vice-versa. Another direction for
further work could be to try and enhance the source framework with richer
constructs. The deciding factor here lies in the target system, and less in
the strength of its formalism than in the availability, and validity, of its
semantics.
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7 Fellowship is a Super Prover

In this chapter we describe the specifications of a piece of software, named
Fellowship, serving as an interoperable front end to other procedural provers.

Fellowship serves as a real-world validation platform for the concepts in-
troduced in this manuscript. Its design embraces the λ̄µµ̃ logical formalism,
and includes a proof language that implements the local semantics of tactics
and the proof monad-based semantics for strategies; it leverages the features
of these concepts to facilitate scientist to proof engine dialogue. Finally it
leverages the translation algorithms to achieve interoperability with other
theorem provers, thus being called a “super prover”.

Although the Fellowship tool can be used to build and check proofs, it is
mainly a way to organize and export formal developments. Thus we argue
that Fellowship can be called a proof manager, in the sense that it handles
proofs in a more general sense than any other proof assistant. As we will
see in this chapter, this orientation has several consequences in the overall
design choices and structure of the implementation of Fellowship.

⋆

The Fellowship tool was originally though out as a repository of proofs in
first-order predicate sequent calculus, with exporting mechanisms towards
other formal tools such as Coq and PVS. While this focus on interoperability
remains unchanged, an interactive layer was adjoined to permit the develop-
ment of proofs within Fellowship itself, thus making it into a proof assistant.
The combination of these two aspects now allows the simultaneous develop-
ment of specifications and proofs for both provers.

Technically, Fellowship is implemented in Ocaml by Claudio Sacerdoti
Coen and the author. The code is about 4000 lines in total, licensed under
the CeCILL free software license, version 2.0. It features a toplevel mode
for interactive proof development, and a compiler mode for batch proof-
checking. Fellowship can be found online at (Kirchner and Sacerdoti Coen,
2007); it is distributed since 2005 and is still under active development.

Fellowship is intended to be used for developing formal specification and
proof libraries that are common to several provers, and do not make much use
of higher-order logics. Such libraries are somewhat widespread amongst the
various formal methods communities: often efforts had to be replicated to
re-implement local developments into different tools (Mayero, 2001; Muñoz
and Mayero, 2001; Daumas et al., 2001; Boldo and Muñoz, 2006).
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7.1 Design principles

Fellowship, as a proof assistant, is required to meet postulates 1 and 2. But
it is aimed at being more than a proof assistant: to be a proof manager. As
highlighted in chapter 6, this change of finality has several consequences at
the level of the logical framework. Thankfully these constraints come close
to the ones entailed by the de Bruijn postulates: Fellowship is based on a
simple framework with understandable semantics, and it provides a choice
of logics to work with.

The logical framework of the prover is based on the work presented in
chapter 2. The specification language is L1

m, allowing for multisorted first-
order constructions. Classical, intuitionistic, and minimal logics are made
available, and comply with the definitions of lj, lk, ljm and lkm. Finally,

proof terms are written in the λ̄µµ̃ and λ̄
∗
µµ̃-calculi. These proof terms

are generated on the fly, as in Alf, rather than being produced during the
proof post-processing phase (Coq takes such an approach). This allows the
display of additional information, derived from the proof terms, during the
proof editing process. For instance, one can wish to overview in such a
manner the construction of the exported proof.

The conception of the proof language is based on the work of chapter 5.
In particular, it articulates around a datatype similar to the proof monad,
enriched to deal with instructions. In addition to this mechanism, tactics
take advantage of the liveliness property of the sequent calculus: there is
always an active formula in a sequent, and as a consequence there is always
an active topmost formula constructor. Hence only four base tactics are
introduced:

cut which corresponds either to the cutL or the cutR inference rule,

axiom which refers to either the axL or axR inference,

elim which is the union of all left and right connector rules, and introduces
(or eliminates, from a bottom-up perspective) the active topmost for-
mula constructor,

weaken which corresponds to either the left or the right weakening rule.

More elaborate tactics are derived by combining the base tactics, either
using Ocaml code or the strategy language. The latter is based on the proof
monad operators, and provides basic combinatory facilities.

The core feature of this prover is, as mentioned earlier, interoperability.
The design of this particular functionality has to meet two criteria: first,
maintainability, due as highlighted in chapter 6 to the changing nature of
proof assistants. Extensibility is second, because in the long run the aim is
to address the majority of tomorrow’s seasoned formal systems; thus com-
patibility with these should be easy to implement. As a consequence, the
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interoperability layer is implemented by associating fields containing partic-
ular prover-specific syntax to fields representing abstracted common manip-
ulations (e.g. “declare a variable”, “initiate a proof” or “apply an inference
rule”). This kind of record datatype is easily serviceable and augmented,
even with little knowledge in Ocaml, and it is easily convertible if need be
into a full-fledged, language agnostic database.

Finally, an important design principle is one of modularity. It is not a
gratuitous constraint, but more of the developers taking note of the pace of
innovation in the domain of formal methods. The added benefit is one of
maintainability, each of the software components being implemented inde-
pendently. In particular, the three aforementioned features — the logical
framework, the proof language, and the interoperability functions — are as
many interchangeable modules.

7.2 Structure

This implementation of a theorem prover is in general similar to other devel-
opments: it consists in a proof engine, with which the user interacts by using
a proof language to build proofs. However, while in most other provers the
finality of this process is to discard proof challenges and perhaps constitute
a library by collecting them, in Fellowship the goal is to export the finished
proofs and libraries into other theorem provers.

In Fellowship, all these features are implemented as several more or less
independent modules, each of them in charge of a specific functionality. To
each module corresponds one physical ml file.

· A module contains the definition of the abstract syntax of the prover:
terms, sorts and formulas, as well as tactics and strategies. It also
contains the functions closely related to these objects: for instance the
type-checking algorithms.

· A module defines the proof structure: sequents, proof state, proof
monad; and all the related functions: initialization, accessing, pretty-
printing, conversion, etc..

· A module regroups the collection of the functions that are used to in-
teract with the prover outside of the proof-editing mode. This includes
the front-end for the exporting mechanisms.

· A module contains the set of functions that are used to interact with
the prover in proof-editing mode: the implementation of tactics and
strategies.

· Two modules provide the back-end implementation of the exporting
algorithms. They also contain the datatype describing the mapping
into the languages of the target systems.
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7. Fellowship is a Super Prover

Table 7.1: Concrete notation for L1
m in Fellowship

Abstract syntax Concrete syntax

bool bool

s→ r s -> r

⊤ true

⊥ false

f(t1, . . . , tn) f(t1)...(tn)

p(t1, . . . , tn) p[t1]...[tn]

¬A ~ A

A⇒ B A -> B

A ∧ B A /\ B

A ∨ B A \/ B

∀xs.A forall x:s, A

∃xs.A exists x:s, A

These modules are complemented with a lexer and parser implementation,
a main program entry point and a help message database.

7.3 The logical frameworks

The logics implemented faithfully follow the systems lj, lk, ljm and lkm

described in chapter 2. Proof terms are generated by successive instantiation

of open terms. Depending on the logics, either the λ̄µµ̃ or the λ̄
∗
µµ̃-calculus

are used.

The correspondence between abstract and concrete syntax of first-order
predicate formulas is given by Table 7.1. Remark that function symbols use
parenthesis to structure their arguments, while predicate symbols use square
brackets. The proposition (p t) ∧ (q u), where p and q are unary predicate
symbols and t and u are terms, read (p[t] \/ q[u]) in Fellowship syntax.

7.4 Syntax and semantics of the interaction language

The proof language follows closely the theory in chapters 4 and 5. A number
of instructions are added to deal with the proof management feature.

Definition 7.4.1 (Instruction language). The following instructions are
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part of the non-proof-editing mode of Fellowship:

i ::= lj | lk | minimal | full | help t

| declare [x : s|x : t|x : A] | theorem x : A | next | prev

| qed | undo | open f | checkout p

| discard [theorem|all] | quit

Their semantics are given informally:

· lj, lk, minimal and full are flags enabling the corresponding logical
frameworks. These can only be used at the beginning of a development,
i.e. while no proof has been carried.

· declare adds sort, term or formula constants, as well as axioms, to a
global environment.

· theorem starts the proof of a formula. It enters proof-editing mode,
sets the formula as the consequence of an empty sequent, and per-
forms an η-expansion of the proof term in order to retain the theorem
formulation.

· next and prev are interactive proof management instructions. They
trigger the switch to the next (resp. previous) open goal, as formalized
in chapter 4.

· qed concludes a proof where all branches are closed. It stores the
theorem in the global environment, and saves its proof term.

· checkout exports the global environment into a file, and runs the
corresponding prover on this file.

· discard either clears the theorem being locally proved, or the whole
proof state.

Definition 7.4.2 (The base tactic language). The following tactics imple-
ment the inference rules of the logical framework of Fellowship:

t ::= axiom x | cut x (A) | weaken x | idtac

| elim ξ

where the argument of elim, ξ, can either be empty, or be en identifier, or
a sequence of two identifiers and a formula, or the left or right keyword,
or a term.

Figures 7.1, 7.2 and 7.3 provide the small-step operating semantics of
the four basic tactics, in a classical logical framework, using the formalism
developed in chapter 3. The intuitionistic and minimal cases are trivial
variations on these semantics.

A few remark follow on these semantics:
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?

Γ ;Ξ0 : A ⊢ α : A, ∆
axiom α
−−−−→ Γ ;α : A ⊢ α : A, ∆

?

Γ, x : A ⊢ X0 : A;∆
axiom x
−−−−→ Γ, x : A ⊢ x : A;∆

?

Γ ;Ξ0 : A ⊢ ∆
cut x (B)
−−−−−−→

?

Γ, x : A ⊢ X1 : B;∆

?

Γ, x : A;Ξ1 : B ⊢ ∆

Γ ; µ̃xA.〈X1‖Ξ1〉 : A ⊢ ∆

?

Γ ⊢ X0 : A;∆
cut α (B)
−−−−−−→

?

Γ ⊢ X1 : B;α : A, ∆

?

Γ ;Ξ1 : B ⊢ α : A, ∆

Γ ⊢ µαA.〈X1‖Ξ1〉 : A;∆

?

Γ, x : A ⊢ X0 : C;∆
weaken x
−−−−−→

?

Γ ⊢ X1 : C;∆

Γ, x : A ⊢ X1 : C;∆

?

Γ ⊢ X0 : C; x : A, ∆
weaken x
−−−−−→

?

Γ ⊢ X1 : C;∆

Γ ⊢ X1 : C; x : A, ∆

?

Γ, x : A;Ξ0 : C ⊢ ∆
weaken x
−−−−−→

?

Γ ;Ξ1 : C ⊢ ∆

Γ, x : A;Ξ1 : C ⊢ ∆

?

Γ ;Ξ0 : C ⊢ x : A, ∆
weaken x
−−−−−→

?

Γ ;Ξ1 : C ⊢ ∆

Γ ;Ξ1 : C ⊢ x : A, ∆

?

Γ ;X0 : A ⊢ ∆
idtac
−−−→

?

Γ ;X0 : A ⊢ ∆

?

Γ ⊢ X0;∆
idtac
−−−→

?

Γ ⊢ X0;∆

Figure 7.1: The semantics of Fellowship’s axiom, cut, weaken and idtac

tactics
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?

Γ ;Ξ0 : ⊥ ⊢ ∆
elim
−−→

⊥L
Γ ; ⋊ : ⊥ ⊢ ∆

?

Γ ⊢ X0 : ⊤;∆
elim
−−→

⊤R
Γ ⊢ ⋉ : ⊤;∆

?

Γ ;Ξ0 : A⇒ B ⊢ ∆
elim
−−→

?

Γ ⊢ X1 : A;∆

?

Γ ;Ξ1 : B ⊢ ∆
⇒L

Γ ;X1 · Ξ0 : A⇒ B ⊢ ∆

?

Γ ⊢ X0 : A⇒ B;∆
elim x
−−−−→

?

Γ, x : A ⊢ X1 : B;∆
⇒R

Γ ⊢ λxA.X1 : A⇒ B;∆

?

Γ ;Ξ0 : A ∧ B ⊢ ∆
elim x y (C)
−−−−−−−−→

π1 π2
∧L

Γ ; proj[x, y, 〈X1‖Ξ1〉] : A ∧ B ⊢ ∆

where π1 =
?

Γ, x : A, y : B ⊢ X1 : C;∆

and π2 =
?

Γ, x : A, y : B;Ξ1 : C ⊢ ∆

?

Γ ⊢ X0 : A ∧ B;∆
elim
−−→

?

Γ ⊢ X1 : A;∆

?

Γ ⊢ X2 : B;∆
∧R

Γ ⊢ (X1, X2) : A ∧ B;∆

?

Γ ;Ξ0 : A ∨ B ⊢ ∆
elim
−−→

?

Γ ;Ξ1 : A ⊢ ∆

?

Γ ;Ξ2 : B ⊢ ∆
∨L

Γ ; [Ξ1, Ξ2] : A ∨ B ⊢ ∆

?

Γ ⊢ X0 : A ∨ B;∆
elim left
−−−−−→

?

Γ ⊢ X1 : A;∆
∨1R

Γ ⊢ injlX1 : A ∨ B;∆

?

Γ ⊢ X0 : A ∨ B;∆
elim right
−−−−−−→

?

Γ ⊢ X1 : B;∆
∨2R

Γ ⊢ injlX1 : A ∨ B;∆

?

Γ ;Ξ0 : ¬A ⊢ ∆
elim
−−→

?

Γ ⊢ X1 : A;∆
¬L

Γ ; µ̃x¬A.〈x‖X1 ·⋊〉 : ¬A ⊢ ∆

?

Γ ⊢ X0 : ¬A;∆
elim x
−−−−→

?

Γ ;Ξ1 : A ⊢ ∆
¬R

Γ ⊢ µα¬A.〈λyA.µβ⊥.〈y‖Ξ1〉‖α〉 : ¬A;∆

Figure 7.2: The semantics of Fellowship’s elim tactic — propositional con-
nectives
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?

Γ ;Ξ0 : ∀xA.B ⊢ ∆
elim [t]
−−−−−→

?

Γ ; e : B[x← t] ⊢ ∆
∀L

Γ ; t · e : ∀xA.B ⊢ ∆

?

Γ ⊢ X0 : ∀xA.B;∆
elim x
−−−−→

?

Γ ⊢ X1 : B;∆
∀R

Γ ⊢ λxA.X1 : ∀xA.B;∆

?

Γ ;Ξ0 : ∃αA.B ⊢ ∆
elim α
−−−−→

?

Γ ;Ξ1 : B ⊢ ∆
∃L

Γ ; proj[α, β, 〈β‖Ξ1〉] : ∃αA.B ⊢ ∆

?

Γ ⊢ X0 : ∃xA.B;∆
elim [t]
−−−−−→

?

Γ ⊢ X1 : B[x← t];∆
∃R

Γ ⊢ (t, X1) : ∃xA.B;∆

Figure 7.3: The semantics of Fellowship’s elim tactic — quantifiers

· The semantics of these tactics in the case of intuitionistic logics is
similar to the classical case, except that the number of formulas in the
right-hand side of the sequent is restricted to one.

· For minimal logics, the introduction rule for ⊥ is obviously removed.
The negation symbol is treated as an implication, and discharged as
such.

· A few facilities have been implemented in these tactics in order to sim-
plify the management of identifiers. Hence axiom can be used with no
argument, and will search the sequent for a proposition that matches
the active formula. Quantifier introduction can be achieved in batch
mode, i.e. treating a list of similarly-quantified variables in one step.
Finally, although it goes against good coding practice, automatic iden-
tifier generation is available.

Definition 7.4.3 (Extended tactics).

t
′ ::= focus x y | contraction x | apply x
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These are constructs based in the base tactics, whose definitions are:

focus x y = cut y (A) ; [axiom | idtac]

where x : A is a hypothesis

focus x y = cut y (A) ; [idtac | axiom]

where x : A is a conclusion

contraction x = cut x (A) ; [axiom | idtac]

if the active formula A is in the hypothesis

contraction x = cut x (A) ; [idtac | axiom]

if the active formula A is in the conclusion

apply x = elim [t] ; elim ; elim ; [axiom ; idtac]

if x : ∀ys.∃zr.A⇒ B is a hypothesis

and the active fornula B[y← t] is in the hypothesis

apply x = elim [t] ; elim ; elim ; [idtac ; axiom]

if x : ∀ys.∃zr.A⇒ B is a hypothesis

and the active fornula B[y← t] is in the conclusion

where ; and ;[||] denote strategies (see definition 7.4.4). Also remark that
the semantics of apply extend to the case where any number of quantified
variables are mixed in the active formula, or when the implication A ⇒ B

collapses into B.

The tactic language of Fellowship is the union of the base tactic and the
extended tactic languages: t ∪ t

′.

Definition 7.4.4 (Strategy language).

s ::= t in x y | t ; s | t ; [s1 | ...| sn]

The semantics of most of these strategies are similar to the one provided in
chapter 4. As for the remaining t in x y construct, it is a macro for the
script focus x y ; t.

7.5 Interoperability

This tool implements all the translation functions defined in chapter 6,
adapted for their use in Coq and PVS. In detail, this means that in the
first translation function \.\, the generic tactics “modus ponens” and “auto”
are instantiated respectively:

· in Coq by the proof scripts cut and firstorder;
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· in PVS by the proof scripts (case) and (then (flatten) (assert)

(grind)).

What is more, the morphism of proof terms ‖.‖ is trivially adapted to Coq’s
syntax. The remaining translations are implemented as they are exposed in
chapter 6.

7.6 Example

The proof that 2 is even illustrates the unfolding of a proof in Fellowship.
The ascii symbols “\” and “;:” are used to respectively represent the λ and
µ symbols. In the proof editing part, the open lambda-term and the partial
natural language rendering of that term are printed at each step.

First we launch Fellowship: the “-ascii” option forces the formatting of
the output.

% ./launcher.sh -ascii

> Welcome! This is FSP version 0.2.0.

To get help type "help" followed by a dot.

Current logic: intuitionistic sequent calculus.

Before anything, we specify the logical setting of our development: here,
ljm. Then the various sort, function and predicate symbols of the theory are
declared: the sort of natural numbers, their constructors, and two predicate
symbols “Even” and “Odd”. We also provide an axiomatic definition of these
predicate symbols.

fsp < minimal. lj.

declare N: type.

declare O: N.

declare S: N -> N.

declare Even: N -> bool.

declare Odd: N -> bool.

declare EO: (Even [O]).

declare OS: (forall n:N, Even [n] -> Odd [S n]).

declare ES: (forall n:N, Odd [n] -> Even [S n]).

> Current logic: minimal intuitionistic sequent calculus.

N defined.

O defined.

S defined.

Even defined.

Odd defined.

EO defined.

OS defined.

ES defined.
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Now the proof can begin: we state the theorem that is proven, and Fellowship

enters the proof-editing mode. Remark that the metavariable in the proof
term are printed using a numbered question mark, here “?1”. In natural
rendering, it is represented by an ellipsis “...”, and in addition the current
goal is marked with an arrow “<======”.

fsp < theorem even_2: (Even [S (S O)]).

> Proof term:

;:thesis:Even (S (S O)).<?1||thesis>

Natural language:

we need to prove Even (S (S O))

.... (1) <======

done

1 goal yet to prove!

|----- 1

*:Even (S (S O))

The first tactic applied consists in focussing on the axiom that states the
inductive case of the definition of the “Even” predicate symbol. The axiom,
which was left implicit in the antecedent, is now printed; the active formula,
denoted by a “*” prefix, is switched to this axiom.

fsp < focus ES th.

> Proof term:

;:thesis:Even (S (S O)).<;:th:Even (S (S O)).<ES||?1.2>

||thesis>

Natural language:

we need to prove Even (S (S O))

we need to prove Even (S (S O))

by ES

...(1.2) <======

done

1 goal yet to prove!

*:forall n:N,Odd n->Even (S n)

|----- 1.2

th:Even (S (S O))

Then we apply the ∀L rule, and we provide a term“S 0” for the instantiation
of the quantified variable.

fsp < elim [S O].
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> Proof term:

;:thesis:Even (S (S O)).<;:th:Even (S (S O)).<ES||S O*

?1.2.1>||thesis>

Natural language:

we need to prove Even (S (S O))

we need to prove Even (S (S O))

by ES

...(1.2.1) <======

done

1 goal yet to prove!

*:Odd (S O)->Even (S (S O))

|----- 1.2.1

th:Even (S (S O))

The next step is to introduce the implicative connective, which generates
two subgoals: the first one is that 1 is odd, and the second one is that 2 is
even assuming that 2 is even. The latter being trivial, it is discarded using
the axL rule.

fsp < elim ; [idtac | axiom].

> Proof term:

;:thesis:Even (S (S O)).<;:th:Even (S (S O)).<ES||S O*

?1.2.1.1*th>||thesis>

Natural language:

we need to prove Even (S (S O))

we need to prove Even (S (S O))

by ES

and .... (1.2.1.1) <======

done

done

1 goal yet to prove!

|----- 1.2.1.1

*:Odd (S O)

The remaining goal is treated as the previous one, using the inductive case of
the definition of the “Odd” symbol, and then the base case of the definition of
the “Even” symbol. Remark that, while tactics here have been kept simple,
the “apply” tactic of Fellowship would have sped the proof, by automati-
cally finding and implementing the appropriate introductions to complete
the proof.
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fsp < focus OS th; elim [O] ; elim; [focus EO th; axiom

| axiom].

> Closed the last branch:

Proof completed!

Proof term:

;:thesis:Even (S (S O)).<;:th:Even (S (S O)).<ES||S O*

;:th:Odd (S O).<OS||O*;:th:Even O.<EO||th>*th>*th>

||thesis>

Natural language:

we need to prove Even (S (S O))

we need to prove Even (S (S O))

by ES

and we need to prove Odd (S O)

by OS

and we need to prove Even O

by EO

done

done

done

done

Finally, we save the proof and exit the proof-editing mode, before exporting
it to Coq and PVS.

fsp < qed.

> even_2 defined.

fsp < checkout coq.

> Proof checked successfully by Coq.

fsp < checkout proof term coq.

> Proof checked successfully by Coq.

fsp < checkout pvs.

> Proof checked successfully by PVS.
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7. Fellowship is a Super Prover

fsp < quit.

> Out.

7.7 Future work

As a prototype proof assistant, Fellowship succeeds in proving the feasibility
and elegance of basing a proof assistant on the proof monad, and a structured
proof language. And as a prototype proof manager, it serves as a testbed
and validator for interoperability explorations. While still a beta piece of
software, relatively large developments have been carried out using it.

As usual in this type of project, a number of possible future implementa-
tions are possible. The ones that follow, all are efforts in attempt to provide
the working scientist more of the choice advocated by postulate 2.

Investigation has started to understand how to include the subtraction
(Rauszer, 1974; Crolard, 2001) in our logical frameworks. This would provide
the syntax with a dual to the implication operator and its inference rules.
However this is not without problems, one of them being the definition of the
intuitionistic restriction in the presence of this operator. A necessary and
sufficient condition (Dyckhoff, 1992) is to apply this restriction only to the
upper sequent of the ⇒R inference rule. By duality, this restriction would
extend to the −L rule of subtractive logic, which should be made to contain
at most one hypothesis (Crolard, 2001).

At the level of the proof language, some time can still be spared to im-
plement the most advanced features in chapter 5. In particular, the prospect
of having definable tactics and a typing system for this language would dra-
matically improve ease of use. Another request is to design a declarative
proof language with close ties to the natural language used in chapter 6. It
should be interesting to study the prospects offered in this domain by the
λ̄µµ̃-calculus.

Finally, on the interoperability topic, work should go on in adding other
proof assistants to the translation function. Support for the Isabelle frame-
work is already underway, but the task requires a good understanding of the
target formalisms, which is not always the authors’ case. What is more, the
prospect of “popping the hood” and tinkering with Ocaml code is not always
appealing to external proof assistant maintainers. One way to alleviate the
burden of such a work would be to base the translation on simple xml files,
allowing for simple if not painless edition.

124



8 Classes

Throughout this manuscript the basis of our work has been a weak logical
framework: first-order logic. Now that we have demonstrated the relevance
of this framework for interoperability purposes, we need to prove that its
domain of application is not limited to trivial examples. In this chapter, we
present a theory that validates this requirement. We expose a formalism
that allows the expression of any theory with one or more axiom schemes
into first-order predicate logics, using a finite number of axioms.

This allows us to give finite first-order axiomatizations of second-order
theories such as arithmetic and real closed fields theory. We also derive a
presentation of arithmetic in deduction modulo that has a finite number of
rewrite rules. Overall, this formalization relies on a weak calculus of explicit
substitutions to provide a simple and finite framework.

This work is part of a long term project investigating the possibility to
base proof checkers on weaker frameworks, such as first-order logic. The
maturity of these frameworks make them very secure centerpieces of formal
tools in general, and proof checkers in particular; some designs (e.g. (Ridge
and Margetson, 2005)) have already taken advantage of them. It is essential
in this project to implement strong theories, such as arithmetic, real closed
fields or set theory, with a finite number of axioms. The main result of this
chapter is a systematic way of conducting these implementations, using a
theory of classes.

⋆

In mathematics, some theories — such as arithmetic or set theory — are
often expressed using an infinite number of axioms. This is achieved through
the use of one or more axiom schemes, i.e. sets of axioms, often described
within the meta-theory. For instance the induction scheme in arithmetic can
be expressed as: for any proposition P,

P(0)⇒ ∀y, (P(y)⇒ P(S(y)))⇒ ∀z, P(z)

This scheme, parametrized by the schematic variable P that takes values in
the set of formulas of arithmetic, generates an infinite number of axioms.

The use of these axiom schemes can be avoided though, by introducing
a new sort of objects, classes (which we will distinguish from other objects
by using uppercase letters), and a membership symbol ∈. Using classes
as representatives for propositions, the induction scheme is re-written as a
single axiom:

∀E, (0 ∈ E⇒ ∀y, (y ∈ E⇒ S(y) ∈ E)⇒ ∀z, z ∈ E)

However, in order for classes to soundly emulate propositions, one needs to
guarantee that any proposition has an associated class. This is assured by
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8. Classes

the comprehension axiom scheme, which states: for any proposition P that
is well formed in the original language,

∃E,∀x, (x ∈ E⇔ P(x))

This extension of arithmetic is conservative, meaning that any formula that
is provable in the theory of arithmetic plus classes, involving symbols of
arithmetic only, was already provable in arithmetic. Also note that some
axiom schemes might have propositions with two free variables or more, and
that to deal with this in the most general way, one needs not only classes
of objects but classes of n-tuples of objects. Therefore, one will for instance
introduce a sort of lists, list constructors and adapt the symbol ∈ and the
comprehension axiom scheme to this new structure.

In the end, however, the theory would still have an axiom scheme that
generates an infinite number of axioms.

This is not a zero-sum game, though. Previous works (von Neumann,
1925; Bernays, 1958; Gödel, 1940; Mendelson, 1997; Vaillant, 2002) have
shown that, in the case of set theory, it is possible to reduce the comprehen-
sion axiom scheme to a finite number of axioms. However we believe that the
notion of class is independent of set theory and can be extended to express
any theory containing axiom schemes in a finite first-order axiomatization.
Moreover, unlike in the previous systems, we will see that the axioms in the
theory of classes can easily be oriented as rewrite rules.

8.1 A theory with the comprehension scheme

We consider a language L1= in first-order predicate logic with equality, and
we call Σ its finite signature. Let T be an intuitionistic theory of this lan-
guage that has one or more axiom schemes, i.e. axioms of the form:

s(P(t1
1, . . . , t1

n), . . . , P(t
p
1 , . . . , tp

n))

where n and p are natural numbers depending on each scheme, s is a p-ary
first-order formula, the ti

j are terms of L1= and P is a schematic formula
variable. Remark that, although the axiom schemes in this chapter only
have one schematic variable P, the generalization of our results to a system
with arbitrary axiom schemes is straightforward.

Definition 8.1.1 (Lcs). Let Lcs be a many-sorted language with three sort
symbols: the sort of objects X, lists L, and classes C. In Lcs, Σ is finitely
extended into a signature Σcs with a predicate symbol ∈ of rank (L, C) and
two function symbols:

nil : L

:: : (X, L)L

126



Notation. We use 〈x1, . . . , xn〉 as syntactic sugar for the term x1:: . . . ::xn::nil .

Definition 8.1.2 (Tcs). Define Tcs as the theory of the language Lcs derived
from T by adding the comprehension scheme:

∃E : C,∀x1, . . . ,∀xn : X, (〈x1, . . . , xn〉 ∈ E⇔ P) (Tcs

1)

where P is built with the symbols of L1=, and may contain some of the xi

as free variables. Axiom schemes are replaced by axioms:

∀E : C, s(〈t1
1, . . . , t1

n〉 ∈ E, . . . , 〈tp
1 , . . . , tp

n〉 ∈ E) (Tcs

2)

Example 8.1.3. Following the translation of definition 8.1.2, the induction
axiom scheme:

P(0)⇒ ∀y, (P(y)⇒ P(S(y)))⇒ ∀z, P(z)

is replaced by the following axiom scheme and axiom:

∃E : C,∀x1, . . . ,∀xn : X, (〈x1, . . . , xn〉 ∈ E⇔ P)

∀E : C, 〈0〉 ∈ E⇒ ∀y, (〈y〉 ∈ E⇒ 〈S(y)〉 ∈ E)⇒ ∀z, 〈z〉 ∈ E

Proposition 8.1.4. Tcs is an extension of T.

Proof. We need to show that in Tcs, for any P,

s(P(t1
1, . . . , t1

n), . . . , P(t
p
1 , . . . , tp

n))

is provable. This is immediate, by the comprehension scheme (Tcs

1) and the
axioms (Tcs

2).

We have now all ingredients to move towards our goal, finding a finite
axiomatization of the comprehension scheme.

8.2 Finite class theory

Setting and notations.

Definition 8.2.1 (Lws). We extend Lcs with the function symbols:

1 : X ∅ : C

S : (X)X ∩,∪,⊃ : (C, C)C

·[·] : (X, L)X P, C : (C)C

To each predicate symbol p is associated a function symbol ṗ of similar arity,
which constructs elements of sort C. We call Lws this language, and Σws its
finite signature.
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8. Classes

Definition 8.2.2 (Tws). Let Tws be the theory of the language Lws formed
with the following axioms for explicit substitutions:

∀x : X, x[nil ] = x (Tws

1 )

∀ℓ : L,∀x : X, 1[x::ℓ] = x (Tws

2 )

∀ℓ : L,∀x, y : X, S(y)[x::ℓ] = y[l] (Tws

3 )

∀ℓ : L,∀x1, . . . , xn : X, f(x1, . . . , xn)[ℓ] = f(x1[ℓ], . . . , xn[ℓ]) (Tws

4 )

and the axioms for proposition encoding:

∀ℓ : L,∀x1, . . . , xn : X, ℓ ∈ ṗ(x1, . . . , xm)⇔ p(x1[ℓ], . . . , xm[ℓ]) (Tws

5 )

∀A, B : C,∀ℓ : L, ℓ ∈ A ∩ B⇔ ℓ ∈ A ∧ ℓ ∈ B (Tws

6 )

∀A, B : C,∀ℓ : L, ℓ ∈ A ∪ B⇔ ℓ ∈ A ∨ ℓ ∈ B (Tws

7 )

∀A, B : C,∀ℓ : L, ℓ ∈ A ⊃ B⇔ ℓ ∈ A⇒ ℓ ∈ B (Tws

8 )

∀ℓ : L, ℓ ∈ ∅⇔ ⊥ (Tws

9 )

∀A : C,∀ℓ : L, ℓ ∈ P(A)⇔ ∃x, x::ℓ ∈ A (Tws

10)

∀A : C,∀ℓ : L, ℓ ∈ C(A)⇔ ∀x, x::ℓ ∈ A (Tws

11)

A couple of remarks on this formalization:

· The symbols 1 and S in Lws are constructors of de Bruijn indices. It is
important for them to be given the sort X, because the symbol S will
need to be applied to non-substitutable variables of X to lift them out
of the substitution’s reach1.

· This axiom system features a weak calculus of explicit substitutions
(Hardin et al., 1996): the substitutions are propagated over the ele-
ments of the language via the symbols ∈ and ·[·], and no lift is intro-
duced by the P or C binders (axioms (Tws

10) and (Tws

11)).

· Axiom scheme (Tws

4 ) (resp. (Tws

5 )) represents a finite number of first-
order axioms, as there is one such axiom for each function (resp. pred-
icate) symbol of arity n (resp. m) in the language Lws (which as a
finite extension of Lcs is finite).

· The P and C operators are respectively called projection and cylin-
drification in Algebra. Figure 8.1 illustrates the semantics of these
combinators in a two-dimensional space.

From now on in this paper, we will spare the type of variables in quan-
tifiers when no ambiguities hold.

Expressiveness

We want to associate to each proposition a characteristic class, constructed
with the symbols exposed in definition 8.2.1.

1 This operation is called pre-cooking in (Dowek et al., 2001).
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Figure 8.1: Two-dimensional operators
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8. Classes

Example 8.2.3. Assume a predicate symbol < and the associate character-
istic set constructor <̇. Using infix notations and the decimal representations
2 and 3 for the Peano numbers S(1) and S(S(1)), the class of objects x such
that ∃y,∃z, (x < z ∧ z < y) is written PP(3<̇1 ∩ 1<̇2). Indeed,

〈x〉 ∈ PP(3<̇1 ∩ 1<̇2)

⇔ ∃y,∃z, (〈z, y, x〉 ∈ 3<̇1 ∩ 1<̇2)

⇔ ∃y,∃z, (〈z, y, x〉 ∈ 3<̇1 ∧ 〈z, y, x〉 ∈ 1<̇2)

⇔ ∃y,∃z, (x < z ∧ z < y)

Example 8.2.4. Assume the function symbols f, 0, − and |.| and the pred-
icate symbols < and > given. For readability’s sake, we will use infix no-
tations. Let us try to define the class of real points r around which f is
continuous, i.e. the class E such that:

〈r〉 ∈ E⇔ ∀ε, ∃η,∀x, ε > 0⇒ η > 0⇒ |x − r| < η⇒ |f(x) − f(r)| < ε.

Given the sets <̇, and >̇ associated to the predicates < and >, and using
the axiom (Tws

5 ) of definition 8.2.2, the right hand side of this formula is
equivalent to:

∀ε, ∃η,∀x, 〈ε, η, x, r〉 ∈ 1 >̇ 0⇒ 〈ε, η, x, r〉 ∈ 2 >̇ 0⇒

〈ε, η, x, r〉 ∈ |3 − 4| <̇ 2⇒ 〈ε, η, x, r〉 ∈ |f(3) − f(4)| <̇ 1

Now the axiom (Tws

8 ) for implication allows for the following factorization:

∀ε, ∃η,∀x, 〈ε, η, x, r〉 ∈ 1 >̇0 ⊃ 2 >̇ 0 ⊃ |3 − 4| <̇ 2 ⊃ |f(3) − f(4)| <̇ 1

Axioms (Tws

10) and (Tws

11) allow us to land the final equivalent formula:

〈r〉 ∈ CPC(1 >̇ 0 ⊃ 2 >̇ 0 ⊃ |3 − 4| <̇ 2 ⊃ |f(3) − f(4)| <̇ 1)

Remark that we only used the axioms of definition 8.2.2 to prove this instance
of the axiom scheme of comprehension.

We first need a little lemma to prove that the term substitution axioms
are complete:

Lemma 8.2.5. For all term u and variables x1, . . . , xn of L1=, there exists a
term t of Lws in which none of the xi appear, such that u = t[x1:: . . . ::xn::nil ]

is provable in Tws.

Proof. We proceed inductively on the structure of u.

· If u is one of the xi, then we take Si−1(1) for t and by using ax-
ioms (Tws

2 ) and (Tws

3 ), xi = Si−1(1)[x1:: . . . ::xn::nil ] is provable.

· If u is a variable y different from the xi, we take t = Sn(y), and by
axioms (Tws

1 ), (Tws

2 ) and (Tws

3 ) we can prove y = Sn(y)[x1:: . . . ::xn::nil ].
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· Finally, if u is a term f(u1, . . . , um), then by induction hypothesis
there exist t1, . . . , tm such that for any 0 < i 6 m, ui = ti[x1:: . . . ::xn::nil ].
Axiom (Tws

4 ) allows to conclude:

f(u1, . . . , um) = f(t1, . . . , tm)[x1:: . . . ::xn::nil ]

We now show that the comprehension axiom scheme holds in our formal-
ism. Translated in our framework, the scheme states:

Proposition 8.2.6. For any formula P built with the symbols of L1=, the
formula:

∃E,∀x1, . . . ,∀xn, (〈x1, . . . , xn〉 ∈ E⇔ P)

is provable in Tws.

Proof. We show by induction on the structure of P that for any formula
P there exists a term E of sort C such that, for all x1, . . . , xn of sort X,
(〈x1, . . . , xn〉 ∈ E)⇔ P.

If P is an atomic proposition p(u1, . . . , um), where p is a predicate sym-
bol and u1, . . . , un are terms, lemma 8.2.5 allows us to equate this proposi-
tion to p(t1[l], . . . , tm[l]) where l = 〈x1, . . . , xn〉. Then by Axiom (Tws

5 ), E

is ṗ(t1, . . . , tm).
For the propositional connectors, using Axioms (Tws

6 ) to (Tws

9 ), we prove
that:

· if P = P ′ ∧ P ′′ then we can take E = EP ′ ∩ EP ′′ ,

· if P = P ′ ∨ P ′′ then we can take E = EP ′ ∪ EP ′′ ,

· if P = ⊥ then we can take E = ∅,

· if P = P ′ ⇒ P ′′ then we can take E = EP ′ ⊃ EP ′′ ,

where, by induction hypothesis, EP ′ and EP ′′ are the classes characterized
by, respectively, the formulas P ′ and P ′′.

For the case P = ∃y, A, the bi-dimensional illustration of figure 8.1a
provides the intuition: the class such that there exists a value y for which
A holds — and EA is characterized — is its projection P(EA). Indeed, we
can derive:

〈x1, . . . , xn〉 ∈ E⇔ 〈x1, . . . , xn〉 ∈ P(EA)

⇔ ∃y, 〈y, x1, . . . , xn〉 ∈ EA by axiom (Tws

10)

⇔ ∃y, A

Similarly for the universal quantifier: if P = ∀y, A then E = C(EA).

Remark that while our theory Tws is intuitionistic, this proof unfolds just
as well in a classical setting. In this case, we can additionally discard the ∪,
∩ and C symbols and related axioms, and to use the De Morgan equivalences
to carry out the proof.
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8. Classes

Because this entails that Tws is an extension of Tcs, and that Tcs is an
extension of T, we have:

Proposition 8.2.7 (Extension). Tws is an extension of T.

This property ensures that the formalism we proposed is sufficiently ex-
pressive; however it should not be too strong: it should not be able to prove
propositions that were not provable by using axiom schemes.

Proposition 8.2.8 (Conservativity). Tws is a conservative extension of T.

Proof. We prove this proposition by showing that for each model M of T

there is a model of Tws validating the same T-built formulas.
Let M be a model of T, and consider the structure M ′ defined as follows:

· JXKM′

is the set of functions from Mω to M, where Mω is the set of
infinite lists of elements of M.

· For any n-ary function symbol f of L1=, JfKM′

, is the function:

a1 7→ . . . 7→ an 7→ u 7→ JfKM(a1(u), . . . , an(u))

where ∀i, ai ∈ JXKM′

and u ∈Mω.

· The denotation of a predicate symbol p of L1= in M ′ is the function
mapping elements a1, . . . , an of JXKM′

to 1 if and only if for all infinite
lists u, JpKM(a1(u), . . . , an(u)) = 1.

Note that the denotation of a formula P of L1= in M ′ is entirely known
when given JXKM′

and the denotation of the symbols of L1=.
Upon such a basis, we can define denotations for the symbols of Lws:

· We say that a set e of sequences of elements of JXKM′

is definable if
and only if there exists a formula P in L1= such that the sequence
a1, . . . , an is a member of e if and only if JPKM′

a1/x1,...,an/xn
= 1.

· JLKM′

is the set of finite sequences of elements of JXKM′

, and JCKM′

is
the set of definable subsets of JLKM′

.

· J1KM′

is the function that, to each infinite list, associates its first el-
ement. And JSKM′

maps a function f into a function g, such that
g(u1, u2, . . .) = f(u2, u3, . . .).

· The denotation of t[ℓ] is the element of JXKM′

that associates to any
list u = u1, u2, . . . the term JtKM′

(b1(u), . . . , bn(u), u1, u2, . . .) where
the finite sequence b1, . . . , bn is the denotation of ℓ.

· JṗKM′

is the set of sequences defined by the corresponding predicate
symbol p.

· The denotation of the rest of the symbols of Lws is self-evident: ∩ is
set intersection, ∈ is set membership, etc.
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Remark that this definition of definability and the denotation of the symbols
of Lws make the following sentence a tautology: if e is the set of sequences
defined by a proposition P then for all a1, . . . , an,

J〈x1, . . . , xn〉 ∈ EKM′

a1/x1,...,an/xn,e/E = JPKM′

a1/x1,...,an/xn
(∗)

Indeed, both are interpreted as 1 when a1, . . . , an is a member of e.

To prove that M ′ is a model of Tws, we check that it validates ax-
ioms (Tws

1 ) to (Tws

11). We also check that the translation we did of the
original axiom schemes (e.g. the induction scheme of example 8.1.3) is also
valid in M ′. Let

s(P(t1
1, . . . , t1

n1
), . . . , P(t

p
1 , . . . , tp

np
))

be an axiom scheme of T, and

∀E, s(〈t1
1, . . . , t1

n1
〉 ∈ E, . . . , 〈tp

1 , . . . , tp
np
〉 ∈ E)

its translation in Tws. We prove that for any definable set e and sequence
a1, . . . , an,

Js(〈t1
1, . . . , t1

n1
〉 ∈ E, . . . , 〈tp

1 , . . . , tp
np
〉 ∈ E)KM′

a1/x1,...,an/xn,e/E = 1

Assume e is defined by the proposition Q of L1=. Since the particular
scheme instance s(Q(t1

1, . . . , t1
n1

), . . . , Q(t
p
1 , . . . , t

p
np

)) is valid in M,

Js(Q(t1
1, . . . , t1

n1
), . . . , Q(t

p
1 , . . . , tp

np
))KM′

a1/x1,...,an/xn

= Js(Q(t1
1, . . . , t1

n1
), . . . , Q(t

p
1 , . . . , tp

np
))KM

a1/x1,...,an/xn

= 1 ,

and all we need to do is to prove:

Js(〈t1
1, . . . , t1

n1
〉 ∈ E, . . . , 〈tp

1 , . . . , tp
np
〉 ∈ E)KM′

a1/x1,...,an/xn,e/E

= Js(Q(t1
1, . . . , t1

n1
), . . . , Q(t

p
1 , . . . , tp

np
))KM′

a1/x1,...,an/xn

But this is simply a consequence of (∗). Hence M ′ is a model of Tws.

Finally, a formula of the language of L1= has, obviously, the same deno-
tation in M and in M ′. Thus we can conclude the conservativity of Tws over
T.

This last proof holds in classical logic. However it can be extended to
an intuitionistic proof by using Heyting algebra based models instead of
classical models.
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8.3 Applications

The result of propositions 8.2.7 and 8.2.8 can be applied to any theory
that uses axiom schemes. For instance, Zermelo’s set theory accepts a con-
servative extension, built by applying these propositions to the traditional
formulation of the theory. The same holds for the binary replacement axiom
scheme of Zermelo-Fraenkel’s theory, or the three schemes that result from
Dowek and Miquel’s encoding of set theory in a theory of pointed graphs
(Dowek and Miquel, 2006). We detail two examples: arithmetic and real
analysis.

A finite theory of arithmetic

In the following, we will explore Heyting’s arithmetic. While our formalism
applies to the original formulation of the theory, HA, we consider here a
slightly more elaborate presentation of the theory where the universe of
discourse is not restricted to natural numbers. This theory, called HAN, was
presented in (Dowek and Werner, 2005) by Dowek and Werner.

Definition 8.3.1 (HAN). The theory HAN of arithmetic is defined in first-
order logic using the symbols 0, Succ, +, ×, Pred , =, Null and N. It consists
of the axioms:

N(0) ∀x,(N(x)⇒ N(Succ(x)))

Pred(0) = 0 ∀x,(Pred(Succ(x)) = x)

Null(0) ∀x,(¬Null(S(x)))

∀y,(0 + y = y) ∀x,∀y,(Succ(x) + y = Succ(x + y))

∀y,(0× y = 0) ∀y,(Succ(x)× y = x× y + y)

the axiom and axiom scheme for equality:

∀x, (x = x)

∀x,∀y, (x = y⇒ P(x)⇒ P(y))

and the induction scheme:

P(0/x)⇒ ∀y, (P(y/x)⇒ P(Succ(y)/x))⇒ ∀n, (N(n)⇒ P(n/x))

In (Dowek and Werner, 2005), the authors define a translation |·| between
the languages of HA and HAN, and prove:

Proposition 8.3.2. HAN is a conservative extension of HA in the sense
that if A is a closed proposition formed in the language of HA then A is
provable in HA if and only if |A| is provable in HAN.
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Finitizing the presentation of these axiom schemes is achieved by in-
troducing lists and classes and a set of axioms that allows one to express
comprehension, as per Sect. 8.2.

Definition 8.3.3 (HA
ws

N ). Define HA
ws

N as an extension of HAN, composed
of the ranked signature:

0, 1 : X S,Succ,Pred : (X)X

+,× : (X, X)X = : (X, X)

N,Null : (X) ·[·] : (X, L)X

∅ : C P, C : (C)C

∩,∪,⊃ : (C, C)C ∈ : (L, C)

axioms (Tws

1 ) to (Tws

11), the axioms of arithmetic:

N(0) ∀x,(N(x)⇒ N(Succ(x)))

Pred(0) = 0 ∀x,(Pred(Succ(x)) = x)

Null(0) ∀x,(¬Null(Succ(x)))

∀y,(0 + y = y) ∀x,∀y,(Succ(x) + y = Succ(x + y))

∀y,(0× y = 0) ∀y,(Succ(x)× y = x× y + y)

the equality axioms:

∀x, (x = x)

∀x,∀y, (x = y⇒ ∀A, (〈x〉 ∈ A⇒ 〈y〉 ∈ A))

and the induction axiom:

∀n, ∀A, (〈0〉 ∈ A⇒ ∀y, (〈y〉 ∈ A⇒ 〈Succ(y)〉 ∈ A)⇒

∀n, (N(n)⇒ 〈n〉 ∈ A))

In particular, axiom (Tws

4 ) has four instances (Succ, Pred , + and ×) and
axiom (Tws

5 ) three (=, N and Null), for a total of 29 axioms.
Remark that there are two sets of integer constructors in HA

ws

N : the
native arithmetic integers, build with 0 and Succ; and the de Bruijn indices
formed by the symbols 1 and S.

Propositions 8.2.7 and 8.2.8 applied to HAN, composed with proposi-
tion 8.3.2, allow us to state:

Proposition 8.3.4. HA
ws

N is as a conservative extension of HA.

We can define a slight variant of HA
ws

N by replacing the class induction
axiom and Leibniz’s equality axiom by the equivalences:

∀x,∀y, (x = y⇔ ∀A, (〈x〉 ∈ A⇒ 〈y〉 ∈ A))

∀n, (N(n)⇔ ∀A, (〈0〉 ∈ A⇒ ∀y, (〈y〉 ∈ A⇒ 〈Succ(y)〉 ∈ A)⇒

∀n, 〈n〉 ∈ A))
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And we can drop the three axioms ∀x, (x = x), N(0) and ∀x, (N(x) ⇒
N(Succ(x))) that have become superfluous.

Definition 8.3.5 (HA
+). Let HA

+ be this shortened theory.

Lemma 8.3.6. HA
+ is equivalent to HA

ws

N , and counts 26 axioms instead
of 29.

Proof. Trivial.

Arithmetic as a theory modulo

A theory modulo (Dowek et al., 2003) is a theory in which formulas are
identified modulo a congruence, defined as a rewriting system. In particular,
the theory of arithmetic has been expressed in such a framework (Dowek and
Werner, 2005), but this formalization had an infinite number of rewrite rules.
The goal of this section is to show how the result of section 8.2 allows a finite
formulation of arithmetic modulo.

Definition 8.3.7 (HA
mod). The language of the theory HA

mod is the same
as the theory HA

+. The congruence ≡R associated with this theory is given
by the rewrite system R of figure 8.3.

The system is split between rules dealing with substitutions, rules for
arithmetic operations and rules defining relations (equality, etc.). This for-
malism counts a total of 26 rules, which is reduced to 22 or 23 in classical
logic using the fact that all the connectors and quantifiers can be defined
from 2 or 3 primitive ones.

Application to real closed fields

Real numbers or their approximation are used in exact arithmetic, pro-
gramming languages, computer algebra and formal systems. The following
formalization is quite common (Lelong-Ferrand and Arnaudies, 1972), and is
used e.g. in the proof assistant Coq to implement the theory of real numbers.

Definition 8.3.8 (Rcs). The language of the theory of real numbers R
cs is

formed by the symbols 0, 1, +, ×, the opposite −, inverse 1/·, the symbol
⌈·⌉ that maps real numbers to natural numbers, and the predicates < and
=. We note 6 the disjunction of the two aforementioned predicates. The
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Substitutions rules

t[nil ]→ t (HA
mod

1 )

1[t::ℓ]→ t (HA
mod

2 )

S(n)[t::ℓ]→ n[ℓ] (HA
mod

3 )

Succ(t)[ℓ]→ Succ(t[ℓ]) (HA
mod

4 )

Pred(t)[ℓ]→ Pred(t[ℓ]) (HA
mod

5 )

(t1 + t2)[ℓ]→ t1[ℓ] + t2[ℓ] (HA
mod

6 )

(t1 × t2)[ℓ]→ t1[ℓ]× t2[ℓ] (HA
mod

7 )

Arithmetic rules

Pred(0)→ 0 (HA
mod

8 )

Pred(Succ(x))→ x (HA
mod

9 )

0 + y→ y (HA
mod

10 )

0× y→ 0 (HA
mod

11 )

Succ(x) + y→ Succ(x + y) (HA
mod

12 )

Succ(x)× y→ x× y + y (HA
mod

13 )

Proposition rules

ℓ ∈ ˙Null(t)→ Null(t[ℓ]) (HA
mod

14 )

ℓ ∈ =̇(t1, t2)→ t1[ℓ] = t2[ℓ] (HA
mod

15 )

ℓ ∈ Ṅ(t)→ N(t[ℓ]) (HA
mod

16 )

x = y→ ∀A, (〈x〉 ∈ A⇒ 〈y〉 ∈ A)) (HA
mod

17 )

N(n)→ ∀A, (〈0〉 ∈ A⇒ ∀y, (〈y〉 ∈ A⇒ 〈Succ(y)〉 ∈ A)⇒ 〈n〉 ∈ A)

(HA
mod

18 )

Null(0)→ ⊤ (HA
mod

19 )

Null(Succ(x))→ ⊥ (HA
mod

20 )

ℓ ∈ A ∩ B→ ℓ ∈ A ∧ ℓ ∈ B (HA
mod

21 )

ℓ ∈ A ∪ B→ ℓ ∈ A ∨ ℓ ∈ B (HA
mod

22 )

ℓ ∈ A ⊃ B→ ℓ ∈ A⇒ ℓ ∈ B (HA
mod

23 )

ℓ ∈ ∅→ ⊥ (HA
mod

24 )

ℓ ∈ P(A)→ ∃n, n::ℓ ∈ A (HA
mod

25 )

ℓ ∈ C(A)→ ∀n, n::ℓ ∈ A (HA
mod

26 )

Figure 8.2: Rewrite system R for arithmetic
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axioms follow:

(1 = 0)⇒ ⊥ (R1)

∀x, ∀y, x + y = y + x (R2)

∀x, ∀y,∀z, (x + y) + z = x + (y + z) (R3)

∀x, x + (−x) = 0 (R4)

∀x, x + 0 = x (R5)

∀x,∀y, x× y = y× x (R6)

∀x,∀y,∀z, (x× y)× z = x× (y× z) (R7)

∀x, ((x = 0)⇒ ⊥)⇒ (1/x)× x = 1 (R8)

∀x, 1× x = x (R9)

∀x,∀y,∀z, x× (y + z) = x× y + x× z (R10)

∀x,∀y, (x < y) ∨ (x = y) ∨ (y < x) (R11)

∀x,∀y, x < y⇒ y < x⇒ ⊥ (R12)

∀x,∀y,∀z, x < y⇒ y < z⇒ x < z (R13)

∀x,∀y,∀z, y < z⇒ x + y < x + z (R14)

∀x,∀y,∀z, 0 < x⇒ y < z⇒ x× y < x× z (R15)

∀x, x < ⌈x⌉∧ (⌈x⌉+ (−x) 6 1) (R16)

One way of formulating the completeness theorem of real closed fields is to
use classes and bounds. Thus we consider classes of reals, manipulated using
the nil , :: and ∈ symbols, and the comprehension axiom scheme:

∀E,∀x1, . . . , xn, (〈x1, . . . , xn〉 ∈ E⇔ P) (R17)

The last four axioms of this theory follow: the first three define the semantics
of the predicate symbols isUB(·, ·), bounded(·) and isLUB(·, ·); the fourth is
the completeness axiom.

∀E,∀m, (∀x, 〈x〉 ∈ E⇒ x 6 m)⇔ isUB(E, m) (R18)

∀E, (∃m, isUB(E, m))⇔ bounded(E)) (R19)

∀E,∀m, (isUB(E, m) ∧ (∀b, isUB(E, b)⇒ m 6 b))⇔ isLUB(E, m) (R20)

∀E, (bounded(E)⇒ (∃x, 〈x〉 ∈ E)⇔ (∃m, isLUB(E, m))). (R21)

Following the result of Sect. 8.2, we give a conservative finite first-order
presentation of this theory.

Definition 8.3.9 (Rws). Define R
ws as an extension of R

cs, formed with the
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ranked signature:

0, 1 : X S, −, 1/· : (X)X

+,× : (X, X)X <, = : (X, X)

⌈·⌉ : (X)X ·[·] : (X, L)X

∅ : C P, C : (C)C

∩,∪,⊃ : (C, C)C ∈ : (L, C)

axioms (Tws

1 ) to (Tws

11), the axioms (R1) to (R16) and (R18) to (R21).

In particular, axiom (Tws

4 ) has six instances (S, −, 1/·, +, × and ⌈·⌉)
and axiom (Tws

5 ) two (= and <), for a total of 37 axioms. Propositions 8.2.7
and 8.2.8 applied to R allow us to state:

Proposition 8.3.10. R
ws is as a conservative extension of R

cs.

Remark that in the ranked signature of R
ws, ⌈·⌉ has the rank (X)X, which

is too general. This is because there is no notion of natural numbers in
the formalism of definition 8.3.9. This can be rectified by introducing the
appropriate sort X ′, and the language and theory of natural arithmetic as
in the previous section; then writing ⌈·⌉ : (X)X ′. However a more lightweight
way of solving this issue is to emulate natural numbers within the sort of real
numbers X. Indeed, we can define N as the smallest class of real numbers
that satisfy the conjunction of the formulas:

0 ∈ N ∀x : R, x ∈ N⇒ x + 1 ∈ N

Now the signature of ⌈·⌉ would still read (X)X, however the semantics of the
operator would restrict its values to elements of the class N.

Implementation: a theory of reals in Fellowship

An implementation of the theory of real closed fields as a library for Fellow-

ship, using the theory of classes, is in progress. This theory is a good ex-
ample of second-order development whose implementation is being largely
reproduced between theorem provers. For instance, a library of reals has
been developed in Coq by Mayero during her Ph.D (Mayero, 2001), who
then ported it to PVS during her post-doctoral studies (Muñoz and Mayero,
2001). By using the theory of classes and the interoperability features of
Fellowship, we make it possible to avoid this duplication of efforts.

To this day, the library of real closed fields constitutes the biggest exam-
ple carried out within Fellowship: the current development totals more than
1500 lines of code and over 150 proofs. The table 8.1 contains a few examples
of the included theorems. Although automation is not much developed in
Fellowship, this development is only roughly 1.5 times larger than in similar
implementations in other theorem provers. This library is available online
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Table 8.1: Theorems from the library of reals in Fellowship

∀r1, r2, r1 < r2 ∨ r1 > r2 ⇔ r1 6= r2

∀r1, r2, r3, r4, r1 6 r2 ∧ r2 < r3 ⇒ (r1 6 r2 ∧ r2 < r4) ∨ (r4 6 r2 ∧ r2 < r3))

∀r1, r2, r1 6= 0 ∧ r2 6= 0⇒ r1 × r2 6= 0)

∀r1, r2, r3, r1 6= 0⇒ (r1/r2)× (r3/r1) = r3 × (1/r2)

∀r1, r2, 1 6 r1 ⇒ r1 < r2⇒ 1/r2 < 1/r1

∀r1, r2, r2
1 + r2

2 = 0⇒ r1 = 0 ∧ r2 = 0

∀r1, r2, (∀ε, 0 < ε⇒ r1 6 r2 + ε)⇒ r1 6 r2

from Fellowship’s website. In the close future, tools such as (Ayache and
Filliâtre, 2006) could be used to speed-up the development of the library by
automatically importing specifications from other provers’ existing libraries.

8.4 Related work

The work we present in the previous sections is related to von Neumann,
Bernays and Gödel’s formalism for set theory (NBG) (Mendelson, 1997)
that rehabilitated the notion of class used by 19th century mathematicians
(Bourbaki, 1968). However it improves on a couple of points:

· Classes and the NBG approach have largely been associated to set
theory (Bourbaki, 1968). We generalize it to any theory that has
axiom schemes.

· By clarifying the classes/set distinction, not only is the system simpli-
fied, but we also allow a more structured hierarchy of objects. In Tws

the sorts X, L and C are clearly separate entities, while in NBG the
sorts of objects and classes are indistinctly embedded into one another.

· Using lists and explicit substitutions to instantiate predicate free vari-
ables also greatly clarifies the argument-passing process, and allows us
to bypass a couple of permutation axioms. Also, because we use native
lists we are spared the tedious process of re-encoding them using sets,
as is done in NBG.

· There is no easy way to orient NBG’s permutation axioms to generate
a well-behaved rewrite system. On the contrary, and as illustrated in
section 8.3, the rules (Tws

1 ) to (Tws

11) are easily orientable.

What is more, our formalism applied to Zermelo’s set theory would use 15
axioms (in the classical case) vs. 14 for NBG, thus we feel it allows for a more
understandable presentation of set theory without being overly bloated.
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Vaillant (Vaillant, 2002) gives a presentation of set theory using explicit
substitutions (in the form of the λσ-calculus) to manipulate classes. The
axiomatization we propose differs from it in the following ways:

· While Vaillant’s paper, following NBG, was focused on set theory, our
method applies to any theory with one or more axiom schemes.

· We have shown that a weak substitution calculus is strong enough to
allow the complete manipulation of substitutions in this type of frame-
work. This allows us to greatly reduce both the language’s signature
(neither lift, shift nor compose operators) and the number of axioms
in our presentation.

If a comparison of the size of the two formalizations could reinforce the
reader’s opinion that our system is lighter, consider that Vaillant’s intu-
itionistic theory uses a total of 42 axioms, while ours would only require
18 and still express full-blown Zermelo set theory. These axiom numbers
comparisons might seem pointless without any experimental data, thus ir-
relevant in the scope of automated reasoning. However one should note that
this work is destined to be implemented in proof assistants, where the low
number of axioms, in particular for variable substitution, will allow for faster
and less tedious computational steps.

Finally, while Megill’s work on a finite formal predicate calculus (Megill,
1995) also uses a form reification, its approach is more invasive than the
ones presented above, as the whole logical system (including inference rules)
is finitized. This would make this solution hard to implement in a existing,
general purpose prover.

8.5 Conclusion

We have exposed a generic formalization of theories with axiom schemes,
which has the property of being finite. This was achieved through the use of
classes and the recourse to weak explicit substitutions to cope straightfor-
wardly with variable instantiation. This operating protocol was applied to
give a finite axiomatization of the theories of arithmetic and of real closed
fields, and a finite formalization of the former in deduction modulo.

Comparing to other methods such as von Neumann, Bernays and Gödel’s
or Vaillant’s, it appears this way of formalizing theories using axiom schemes
has links with both works. The use of a weak calculus allows us to keep
a reduced number of axioms, and provides an intuitive, direct mechanism
for substitutions — all of which are highly desirable properties in a proof
checking environment.

Such a result easily fits into the trend set by the previous works done
to formalize arithmetic and set theory into computer proof assistants (Be-
linfante, 1999; Boyer et al., 1986; Paulson, 1993; Quaife, 1992; Dowek and
Miquel, 2006). Moreover, the fact that our axioms are easily orientable is a

141



8. Classes

major asset when dealing with theories in deduction modulo. An implemen-
tation of the theory of real numbers into Fellowship using this technique is
currently underway, and demonstrates the feasibility of using weak frame-
works such as first-order logic as a basis for proof-checkers.

Burel has derived from this work the following result (Burel and Kirchner,
2007): given a proof in n+1-th order arithmetic one can find a proof of linear
size in n-th order arithmetic, within the framework of deduction modulo. In
other terms, proof speed-up in deduction modulo is linear: this demonstrates
that the speed-up conjectured by Gödel (Gödel, 1936) can be expressed as
a computation and does not come from the deduction part of proofs.
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Conclusion and Perspectives

In this manuscript, we have demonstrated how proof interoperability can
be attained using a centralized model, where specifications and proofs are
developed in a streamlined logical framework using a formally defined pro-
cedural proof language. We have shown how the mathematical objects built
in this framework can be exported into other formal systems using a number
of different specialized translations, which can be selected depending on the
target system specificities.

Throughout this work, we have proposed original solutions to various
questions, from the design of a sequent calculus adapted to interactive proof
construction, to the proposal of a disruptive semantical framework for im-
perative programming languages; from the devise of a typing system for
proof languages, to the elaboration of a finite first-order encoding of axiom
schemes using a theory of classes.

Higher-order sequent calculi

The duality between λ̄µµ̃-calculus and its variants on the one hand, and
first-order sequent calculus on the other hand, is quite a recent topic, but is
now relatively well understood. The next frontier is higher-order settings,
and in particular pure type systems. In this field, scientists are still chipping
away.

Dyckhoff and Pinto have proposed an extension of sequent calculus with
dependent types (Pinto and Dyckhoff, 1998), using several restrictions. In
their setting, only proof terms in normal form are considered, and the types
are only allowed to contain pure λ-terms, falling short of a pure type system.

Lately, Lengrand, Dyckhoff and McKinna (Lengrand et al., 2006) have
coined the term pure type sequent calculus to refer to a sequent calculus for
pure type systems, and have developed a theory for such systems. Unfor-
tunately, they can only deal with intuitionistic constructs. Lengrand and
Miquel (Lengrand and Miquel, 2006) have proposed a classical extension
of λ̄µµ̃ to Fω, i.e. with polymorphism and type constructors. It has the
drawback of using mono-sided sequents, which does away with the µ / µ̃

differences, and thus blurs the duality of the calculus (there is no way to
express call-by-value / call-by-name reduction strategies, for instance).

Generalizing this approach while preserving duality is a difficult chal-
lenge, as highlighted by Herbelin in (Herbelin, 2005), because dependent
types break the symmetry of sequents. Yet pushing towards an hypothetical
‘λ̄µµ̃Π’ could well prove worthwhile: Cousineau and Dowek (Cousineau and
Dowek, 2007) have shown that any PTS can be conservatively embedded
in the λΠ-calculus modulo. Thus the question can be displaced to the field
of deduction modulo: can this framework be adapted to sequent calculus?
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Recent work by Brauner and Houtmann suggest so, but their answer avoids
λ̄µµ̃ in favor of Urban’s calculus (Urban and Bierman, 1999).

Formal proof languages

The formal frameworks for proof languages introduced in this work are tested
on relatively simple systems. A natural course of events would for this testing
to continue and expand towards more complex examples — yielding, in turn,
improvements and refinements in these frameworks.

The use of a monadic construction to reflect the semantics of strate-
gies sparks an interesting question: is there a deeper categorical foundation
behind these languages? The peculiar form of the proof monad seems to sug-
gest so, and the tree-like representation and modification of indexed proofs
hints at a possible direction of investigation. Also, the study of strategies
from a proof search point of view, i.e. as commands used to shape the search
space, should yield additional insight on the definition of these concepts.
Incidentally, the study of the relationship between strategies in rewriting
frameworks (Clavel and Meseguer, 1996; Visser, 2001; Cirstea et al., 2003)
and in proof language could provide another bridging point between proof
theory and rewriting systems, which would cross-fertilize both fields.

Finally, the idea of a typing system for proof languages, exposed in chap-
ter 5, can surely be extended with more intricate constructions. The system
exposed in this work could be compared to a framework of simple types,
with the arrow symbol → as a single type constructor: future work should
study the feasibility and use of adding extra constructions, such as depen-
dent types and sub-typing, to this system. It should also be interesting to
examine the link between the logical framework of the proof checker, and
the typing framework of the proof language.

Interoperability anywhere?

Work on the interoperability of theorem proving systems has already made
strides, and mostly takes place around the HOL tool. Connections with
NuPrl (Howe, 1996; Naumov et al., 2001), Isabelle (Obua and Skalberg, 2006)
and Coq (Denney, 2000) have been made, yet most of them only translate
specifications, and the ones that deal with proofs do so in a very specialized
fashion, that can hardly be reused.

Our work presents a series of approaches to the proof translation prob-
lem, based on a simple premiss: proofs can be written in a separate frame-
work, and then translated to any formally-defined tool. The nascent Europa

system, initiated by Dowek, intends to use the λΠ-modulo framework to
express proofs coming from PTS-based tools. Thus a lattice of importing
provers could be sketched (arrows indicate the direction of proof translation
functions between the systems):
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Fellowship

Coq Isabelle PVS . . .

Europa

Now the stake of the search for a λ̄µµ̃Π-calculus modulo becomes even
higher: this structure would enable the adaptation of the exporting functions
of Fellowship to a λ̄µµ̃Π-based core of Europa, thus creating truly transparent
interoperability between proof systems. While this is a long-term vision,

Finally, although the subject of this manuscript lies in proof assistant
compatibility, it should be interesting to examine the case of other tools for
formal verification, such as model-checker or sat-solvers. The concept of a
‘blackboard’, as found in (Rushby, 2006), is indeed quite close to the notion
of ‘proof manager’ in our work, i.e., a centralized repository of formulas
and their proofs. Yet extending the methods presented in this manuscript
to different kinds of formal tools certainly requires a good deal of work, if
only to adapt the base logical formalism to enable the expression of ad hoc

assertions required to communicate with these tools.
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José Meseguer and Grigore Roşu. The rewriting logic semantics project.
Theoretical Computer Science, to appear, 2006. 50

Eugenio Moggi. Computational lambda-calculus and monads. In Proc. 4th
IEEE Symp. Logic in Computer Science. IEEE Comp. Soc. Press, 1989.
Superseded by (Moggi, 1991). 58

153



Bibliography

Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991. 40, 58, 153
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François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin Pierce, editor, Advanced Topics in Types and Programming Lan-
guages, chapter 10, pages 389–489. MIT Press, 2005. 36

Dag Prawitz. Natural Deduction: a Proof-Theoretical Study, volume 3 of
Stockholm Studies in Philosophy. Almqvist & Wiksell, 1965. 93

Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set the-
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