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Résumé 

Les dérivés de crédit ont connu en quelques années un développement fulgurant en finance : 

les volumes de transactions ont augmenté exponentiellement, de nouveaux produits ont été 

créés. La récente crise du sub-prime a mis en évidence l’insuffisance des modèles actuels. Le 

but de cette thèse est de créer de nouveaux modèles mathématiques qui prennent en compte la 

dynamique de dépendance (« tail dependence ») des marchés. 

Après une revue de la littérature et des modèles existants, nous nous focalisons sur la 

modélisation de la « corrélation » (ou plus exactement la dynamique de la structure de 

dépendance) entre différentes entités dans un portefeuille de crédit (CDO). Dans une première 

phase, une formulation simple des copules dynamiques est proposée. Ensuite, nous présentons 

une seconde formulation en utilisant des processus de Lévy à spectre positif (i.e. gamma 

Ornstein-Uhlenbeck). L’écriture de cette nouvelle famille de copules archimédiennes nous 

permet d’obtenir une formule asymptotique simple pour la distribution des pertes d’un 

portefeuille de crédit granulaire. L’une des particularités du modèle proposé est sa capacité de 

reproduire des dépendances extrêmes comparables aux phénomènes récents de contagion sur 

les marchés comme la crise du « subprime » aux Etats-Unis. Une application sur l’estimation 

des prix des tranches de CDOs est aussi présentée.  

Dans cette thèse, nous proposons également d’utiliser des copules dynamiques pour modéliser 

des migrations jointes des qualités de crédit afin de prendre en compte les co-migrations 

extrêmes. En effet, les copules nous permettent d’étendre notre connaissance des processus de 

migration mono-variable à un cadre multi-variables. Afin de tenir compte de multiples 

sources de risques systémiques, nous développons des copules dynamiques à plusieurs 

facteurs. Enfin, nous montrons que la brique élémentaire de structure de dépendance induite 

par une mesure du temps aléatoire « Time Changed Process » rentre dans le cadre des copules 

dynamiques. 

 

Mots-clés : crédit dérivés, CDO, copules archimédiennes, processus de Lévy, processus 

Ornstein-Uhlenbeck non gaussiens, chaînes de Markov « credit migration ». 
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Structure de la Thèse 

Dans la première partie de la thèse, nous analysons : 

• L’évolution récente du marché des dérivés de crédit et de la titrisation 

• Les événements récents du subprime sur le marché 

• La revue de la littérature 

La deuxième partie est composée de trois chapitres (deux a quatre) 

• Construction des copules dynamiques 

• Modélisation des migrations jointes de qualité de crédit avec des copules 

• Développement des copules a plusieurs facteurs 

Dans la troisième partie, nous présentons deux applications pour la tarification des tranches de 

CDOs (chapitres cinq et six) 

• Dynamic Copula Processes: A new way of modelling CDO tranches 

• Dynamic copulas processes: Comparison with five 1-factor models for pricing CDOs 

Enfin le chapitre sept du document de thèse présente les principales conclusions et 

perspectives. 

Evolution récente des dérivés de crédit 

Les dérivés de crédit ont connus un des développements les plus rapides en finance du marché 

jusqu’à présent. Les montants nominaux des transactions ont eus une croissance 

exponentielle, ce qui a entraîné naturellement la création continuelle de nouveaux produits 

pour répondre aux besoins du marché. Nous présenterons ces produits en commençant par les 

CDS introduit sur les marchés au début des années 90. Nous montrons que ce développement 

a été à l’initiative du marché, avec des modèles mathématiques utilisés pas toujours à jour de 

ces innovations financières. Un exemple typique est l’utilisation des modèles structurels de la 

firme (Merton, 1974) pour estimer les prix des CDS. La standardisation des CDS est devenue 

une réalité grâce aux nouvelles normes et définitions mises en place par l’ISDA1, le prix du 

CDS devenant un juste équilibre de l’offre et de la demande. 

                                                 
1 International Swap & Derivatives Association. 
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Ce travail de thèse a commencé en octobre 2003. A ce moment-là, les sujets d’actualité 

étaient l’estimation de la Value at Risk (VaR), ainsi que la contribution a la VAR pour la 

gestion de risque et les dérivées de crédit. Les limitations de modèle de Merton avaient déjà 

conduits a l’utilisation des modèles à intensité avec prise en compte des corrélations 

implicites, la base correlation venait à peine de faire son chemin sur le marché. A ce moment, 

Jon Gregory, alors Responsable de l’Equipe de Recherche Crédit chez BNP Paribas suggère a 

mon directeur de thèse que le vrai problème est de trouver un modèle dynamique pour les 

dépendances extrêmes, qui permettrai de prendre en compte les fondamentaux du risque de 

crédit. Des tests effectués par Burtschell, Gregory & Laurent (2005a) montrent que la copule 

de Clayton peut donner des résultats nettement plus intéressants que ceux obtenus avec les 

copules de Gauss et de Student, tout en les surpassant pour l’explication des dépendances 

extrêmes.  

Les copules gaussiennes suggèrent que l’événement de contagion extrême sur les marchés a 

une probabilité quasi nulle d’occurrence. Dans des périodes de marasme économique, un 

défaut a tendance à déclencher d’autres, ce qui n'est pas le cas dans des conditions 

économiques standard avec présence de liquidité. La forme classique en « cône» de la copule 

de Clayton avec sa dépendance de queue inférieure (figure 0.1, gauche) capture cette 

asymétrie ; la copule de Gauss (la distribution normale) (figure 0.1, la droite) ne nous permet 

pas de reproduire cette caractéristique.  

Figure 0.1: Copule de Clayton avec pour parametre θ = 5 (gauche) et une copule Gaussienne avec ρ = 0.87 (droit) 

Notre premier objectif était donc de construire un modèle dynamique de copule présentant 

dépendance de queue inférieure afin d’effectuer la tarification de différents de dérivées de 

crédit. 
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Les évenements recents du Subprime 

Depuis la fin du premier trimestre 2007, des rumeurs de plus en plus persistantes sur la qualité 

de titres adossés sur le subprime aux Etats-Unis ont gagnés les marchés. Un « subprime » 

(subprime loan ou subprime mortgage en anglais) est un crédit à risque, offert à un 

emprunteur qui n'offre pas les garanties suffisantes pour bénéficier du taux d'intérêt le plus 

avantageux (prime rate). Le terme est employé plus particulièrement pour désigner une forme 

de crédit hypothécaire (mortgage), apparu aux États-Unis et destiné aux emprunteurs à risque. 

Ce crédit immobilier est gagé sur le logement de l'emprunteur).  

Une hausse des taux de défaut prévus sur les actifs sous-jacents, combinée, le cas échéant, à 

des changements de méthodologie, a conduit les principales agences de notation à dégrader 

courant juillet et août 2007 la notation de nombreuses tranches de subprime  RMBS2, quelle 

que soit d'ailleurs leur position initiale sur l'échelle de notation ce qui a entraînée 

inéluctablement un mouvement extrême de co-migration des qualités de crédit, combinée à 

une baisse de prix ou plus exactement une augmentation du taux de défaut implicite.  

La figure 0.2 montre l’évolution des notations des tranches. On observe qu’en moyenne, il y a 

plus de « downgrades » que d’ « upgrades », d’où une anticipation de détérioration globale de 

la qualité de crédit de cette classe d’actifs. La figure 0.3 nous montre d’une part que les 

volumes de transactions notées par l’agence Fitch sont plus importantes de 2003 à 2006 

qu’avant 2002, et d’autre part que les transactions émises sur le marche en 2005 et 2006 sont 

de moins bonne qualité en moyenne, d’où un taux d’abaissement de la note de crédit plus 

élevé. 

  

 

Figure 0.2 Source  Fitch: « US RMBS Rating Actions » par catégorie de Rating au 07 septembre 2007 

 

                                                 
2 RMBS (Residential mortgage-backed securities) : Titrisation des prêts adossés aux créances hypothécaires 
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Figure 0.3 Source  Fitch: « US RMBS Rating Actions » par « vintage »  au 07 septembre 2007 

 

L’indice ABX HE est un indice de CDS sur les titrisations subprime RMBS, composé de 20 

des 25 plus importantes titrisations subprime RMBS mises en place dans les 6 mois précédant 

son lancement. La figure 0.4 montre son évolution, ou plus exactement celle de différentes 

tranches de AAA (rouge) au  BBB- (marron), du 19 janvier au 06 juillet 2007. La baisse des 

prix indique une augmentation de la probabilité de défaut. 

 

 

 

 

 

 

 

 

 

Figure 0.4: Evolution des prix des tranches ABS AAA (en rouge) jusqu’à BBB- (en marron) pendant la periode du 19 
janvier au 06 juillet 2007. La baisse des prix indique une augmentation de la probabilite de defaut implicite. 

 

La figure 0.5 nous montre l’évolution journalière des prix de trois tranches de l’index ABX 

(AAA, A et BBB) dans les six premiers mois de 2007. On note que d’une part que les 

variations importantes de prix sont des événements rares, et d’autre part que ces types 

d’événements ont tendance à avoir une très forte corrélation. 
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Figure 0.5: Analyse de l’histogramme des marginales et de la dependance empirique des variations des  prix des 
tranches ABS AAA à BBB pendant la periode du 19 janvier au 06 juillet 2007. Les baisses extremes sont celles qui 

apparaissent en juillet. 

Alors qu’elles n’avaient pas été atteintes par les mouvements de prix de février 2007, avec la 

crise de liquidité en juillet, les tranches de meilleure notation (AAA et AA) ont vu pour la 

première fois leur prix baisser, dans le sillage des dégradations et mises sous surveillance 

survenues les 10 et 11 juillet, entraînant ainsi un vent de panique et une très forte incertitude 

sur l'ensemble des marchés financiers. La figure 0.6 se focalise sur la période de mars a 

septembre 2007, sur les indices les plus liquides du crédit. On peut voir clairement qu’en 

juillet et août, la dynamique de ces indices est identique, d’où une forte dépendance, que celle 

due à la crise de crédit et de liquidité de l’été 2007. 

 

Figure 0.6: Source Bloomberg : Spread DJ CDX cross-Over, High volatility & Investment grade de mars 2007 a 
septembre 2007 
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Deux crises ont secoué le monde du crédit dans les trois dernières années : celle du subprime 

en 2007, et celle de Ford et General Motors en 2005. Pendant ces crises, le mouvement des 

marges, « spreads », de crédit sont tout à fait asymétriques et présente un cône de dépendance 

comparable a celle que l’on obtient avec une copule de type Clayton (voir figure 0.7). Sur la 

copule empirique de dépendance entre l’indice iTraxx série S3 Auto & Senior Financial (CDS 

10 ans), on observe qu’en période de crise, on a des dépendances extrêmes : en été 2005 avec 

le downgrade de Ford et General Motor (points verts), et en été 2007, crise du subprime et 

crise de liquidité (points rouges). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.7: Analyse empirique de la distribution de valeurs des CDS et de la dynamique de la dependance entre 
mars 2005 a septembre 2007. Copule  des spreads de l’indice iTraxx S3 series, Auto10Y versus Senior Financials 

10Y, ainsi que leur histogrammess (Senior Financials à gauche & Autos en bas).  Les points verts correspondent à 
la crise GM-Ford en 2005, tandis les rouges sont de la crise subprime 
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Trois générations de produits dérivés de crédit  

Dans le document de thèse, nous donnons dans la première partie un bref aperçu de l’histoire 

récente des dérivés de crédit et de la titrisation, une revue de la littérature sur les modèles 

existants, et nous présentons également les principales générations de produits : 

1. Les obligations risques et les Credit Default Swap 

2. Les Basket Default Swap 

3. Les Produits forward-starting (exposition future au risque de risque de crédit) 

Le sujet central de cette thèse, la modélisation de la structure de dépendance dans les produits 

de seconde et de troisième génération, est développé dans les chapitres deux, trois et quatre. 

 

 

Figure 0.8 Evolution des produits de seconde et de troisième  generation des derives de credit  
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Chapitre 2 : Modélisation des copules archimediennes dynamiques 

 Les fonctions copules font partie des nouvelles méthodologies de plus en plus significatives, 

qui offrent une flexibilité dans l’analyse des co-mouvements entre les facteurs de risque et 

d’autres variables importantes étudiées en finance. Les premières applications des copules se 

sont effectuées en statistiques.  

Avec le développement des marches financiers et l’apparition des événements extrêmes, 

l’hypothèse de non normalité des variables utilisées en finance devenant de plus en plus 

prédominante, des développements sont effectués pour capturer la non normalités des 

distributions marginales d’une part, et d’autre part, l’asymétrie et la dynamique de la 

dépendance, ce qui l’objet de ce chapitre qui commence par une construction simple des 

copules archimédiennes dynamique. 

Une littérature vaste existe sur les copules, surtout les copules archimédiennes, avec des 

applications dans une grande variété de champs. Mais quand l'on regarde de plus près, la 

plupart des publications scientifiques sur le sujet traitent seulement des copules à deux 

variables. Très peu de documents sont disponibles sur les copules de multi variables. Dans 

cette thèse, nous expliquons les difficultés théoriques inhérentes à l’extension des copules à 

deux variables aux copules à trois variables, et par conséquent à plusieurs variables.  

Il est clair que c'est encore plus difficile de construire des processus dynamiques sur des 

copules à plusieurs variables que sur les copules statiques.  

Notre objectif est donc de construire les procédés de copule dynamiques, basé sur des  

processus stochastiques. 

Les copules multi variables 

Le manuel canonique sur les copules, Nelson (1999) énumère plusieurs types de copules 

archimédiennes a deux variables (avec un ou plus de paramètres) mais comme la plupart de 

ces copules a deux variables ne sont pas strictes, très peux d’équivalents multi variables 

existent.  

Les générateurs de copules strictes peuvent être reliées à une transformée de Laplace 

spécifique. Par exemple, le générateur de la copule de Clayton, correspond à la transformée de 

Laplace d’une distribution gamma et la copule de Gumbel est reliée à une distribution alpha-

stable.  

Nelsen (1999) donne plusieurs contre-exemples afin de montrer la difficulté de trouver des 

copules a plusieurs variables. Un autre  livre de référence majeure, Joe (1997), fournit 
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quelques résultats pour le cas a trois variables et a quatre variables. Lindskog (2000) fournit 

également quelques extensions intéressantes et montre les contraintes sur les valeurs des 

paramètres dans le cas non-échangeable. Mais toutes ces copules étudiées sont statiques. 

Copules archimediennes 

On appelle copule archimédienne, une fonction copule telle qu’il existe une fonction 

inversible [ ] { }1 : 0,1ϕ−
+→ℜ ∪ ∞  vérifiant :  

( ) (1
1

1

,...,
N

N i
i

C u u xϕ ϕ−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ) .  

Dans ce cas, { }x +∀ ∈ℜ ∪ ∞ , on a ( ) ( )' ''0, 0x xϕ ϕ≺ ; . 

Une façons assez simple de générer des copules archimédiennes, c’est de considérer les 

transformées de Laplace des distributions de variables aléatoires. Soit Y une variable aléatoire 

a spectre positif ayant pour transformée de Laplace : 

( ) ( ) ( ) ( )
0

exp exp Ys E s Y s y f y dϕ
+∞

= − × = − × ×⎡ ⎤⎣ ⎦ ∫ y

dy

, 

Alors nous avons : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0

0, 1 exp

1 0

nn n
Y

n n

s s y s y f y

s

ϕ

ϕ

+∞

∀ = − × − × ×

⇒ −

∫;

;

 

On obtient ainsi les conditions nécessaires et suffisantes de construction des copules. 

Quelques proprietes des copules archimediennes 

Dépendance inférieure 

La dépendance extrême dans les queues s’écrit facilement dans le cas des copules 

archimédiennes : 

( ) ( )

( )( ) ( )
( )

1 2
0 0

1

0

,
lim lim

2 2
lim lim

Inf
t t

zt

C t t
P x t x t

t
t z

t z

λ

ϕ ϕ ϕ
ϕ

+ +

+

→ →

−

→+∞→

= ≤ ≤ =

= =
 

Dans le cas d’une copule de Clayton, on a  ( )
( )

12
lim 2Inf z

z
z

θ
ϕ

λ
ϕ

−

→+∞
= = . Il peut être facilement 

prouvé que pour une copule gaussienne, 0Infλ =  voir  Embrechts, Lindskog & Mc Neil 

(2001).  

 xvi xvi



Chapter 0: Summary  D. Totouom  
 

Par construction, Infλ c’est la probabilité d’avoir une réalisation extrême dans une direction 

sachant que nous avons déjà  un extrême dans la même direction.  

Si 0Infλ = , alors les extrêmes sont dits indépendants, et si 1Infλ = , les extrêmes sont 

parfaitement “corrélés”.  

Infλ  Est donc une “mesure de corrélation” des extrêmes. C’est le coefficient de dépendance de 

queue. Pour la distribution normale multidimensionnelle, vaut Infλ  systématiquement 0 sauf 

lorsque la corrélation est égale `a 1. La distribution normale ne présente pas de dépendance de 

queue, ce qui n’est pas le cas de la distribution de Student multidimensionnelle. Mais cette 

dernière a une dépendance en queue symétrique. 

Dépendance supérieure 

( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )
( )

1 2 1 2
1 2

1 1
2

1

1 1 0

1 ,
lim lim

1 21 , 1 2
2 lim 2 lim 2 lim

1 1 1

Sup
t t

t t z

P x t P x t P x t x t
P x t x t

P x t

tC t t z
t t z

λ

ϕ ϕ ϕ
ϕ

− −

− − +

→ →

−

→ → →

⎧ ⎫+ − + ≤ ≤⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

−− −
= − = − = −

− − −

; ;
; ;

;
 

La mesure de dépendance Tau de Kendall 

( ) ( )
( ) ( )1 2

1 1

1 2 1 20 0

, 1 1 1 2 1 2
1 20 0

1 2

4 , ,

, ,
1 4

X X C

C x x dC x x

C x x C x x
dx dx

x x

τ τ

⎧
⎪⎪= = ⎨ ∂ ∂
⎪ −

∂ ∂⎪⎩

∫ ∫

∫ ∫
 

Dans le cadre des copules archimédiennes, cette relation s’écrie simplement : 

( )
( ) ( )

( )
1 2

21
1

, '0 01
1 4 1 4X X C

u ddu s s ds
dsu

ϕ
τ τ ϕ

ϕ

−
∞

−

⎡ ⎤= = + = − ⎢ ⎥⎣ ⎦∫ ∫  

Dans le cas d’une copule de Clayton, on a  
2C

θτ
θ

=
+

 

Les copules du point de vue des series temporelles 

Les économétriciens ont développé les modèles de copule dynamiques d'un point de vue des 

séries temporelles. Patton (2001 & 2003) a développé une approche basé des processus type 

ARMA et l'a appliqué aux taux de change des devises. Fermanian & Wegkamp (2004) ont 

étendu l'approche de Patton. Duan (1995) et plus récemment Goorbergh et al (2005) ont 

utilisés les processus GARCH. Un défaut majeur de ces papiers est qu'ils considèrent 

seulement les cas à deux variables. Chen & Evente (2005) considèrent une classe de copule 

semi-paramétriques à plusieurs variables. Le modèle dynamique est calibré sur des données 
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intra-day. Aucun de ces derniers ne semble être convenable pour évaluer les tranches de 

CDOs sur les grands paniers d’actifs. Berd, Engle & Voronov (2005) ont développés un 

modèle hydride dans lequel les variables latentes fondamentales suivent soit un processus 

GARCH, soit un processus TARCH. Ceci a l'avantage de produire les distributions de retour 

de total qui sont asymétriques et clairement non gaussiens. Les auteurs ont utilisé des données 

historiques sur le SP500 a partir de 1962 jusqu'à la période pré-1990. Ces données historiques 

n’incluent pas forcement la prime de risque du marche d’une part et d’autre part, le marche 

actions n’est pas entièrement correle avec le marche du crédit, d’où la difficulté a pouvoir 

calibrer les probabilités implicites de défaut de chaque nom d’une part, et d’autre estimer les 

prix de tranches de CDO. 

Les copules  dynamiques 

Très peu de publications portent sur l’analyse des copules en temps continu. L’un des 

premiers papiers à traiter du sujet semble être Darsow & al (1992) qui a étudié les copules 

archimédiennes et les processus de Markov d'un point de vue théorique. Plusieurs auteurs ont 

modélisé la dynamique de risque de crédit en utilisant des modèles a intensités implicites de 

défaut. Rogge & Schonbucher (2003) ont développé une méthode de modélisation du risque 

de portefeuille de crédit de façon dynamique avec les copules archimédiennes. Ils fournissent 

quelques résultats très utiles qui relient les copules archimédiennes aux transformées de 

Laplace spécifiques, et présentent également une méthode rapide et efficace de simulation 

Monte Carlo, cela n'est pas mentionné par Nelsen (1999).  

 

Madan analyse la dynamique du marché actions (Madan & Seneta, 1990, et Madan & Milne, 

1991). Cariboni & Schouten (2004) sur le marché du crédit. Joshi & Stacey (2004) utilise un 

modèle a intensité pour la tarification des tranches de CDOs, ils ont trouvé qu’avec deux 

processus gamma combinés, il était possible de reproduire les niveaux de « base correlation » 

observées dans le marché correctement. Une des difficultés des modèles a intensité c’est 

l’exigence du calibrage nom par nom de la courbe implicite des probabilités de défaut. 
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Les copules archimediennes dynamiques 

En partant des développements de Rogge & Schonbucher (2003), nous considérons une 

variable aléatoire Y positive avec pour transformée de Laplace ϕ(s). Soit Ui N variable 

aléatoires uniformes sur [0,1] mutuellement indépendantes, et indépendantes de Y, Alors les 

N variables aléatoires définies par Vi  telle que : 

( )i
i

Ln U
V for

Y
−⎛ ⎞

= ϕ =⎜ ⎟
⎝ ⎠

…i 1, N

( )⎟⎟

     

Sont uniformes sur [0,1], et leur distribution jointe est données par :  

( )
N

1
1 1 N N i

i 1

Pr ob V v , ,V v v−

=

⎛ ⎞
≤ ≤ = ϕ ϕ⎜⎜

⎝ ⎠
∑"       

La distribution jointe de ces variables est une copule archimédiennes statique. Nous définition 

la copula archimédienne dynamique en considérant que Y n’est plus une variable aléatoire, 

mais un processus stochastique.  

( )
( )( )

( )
i

i t

Ln U t
V t for i 1, N

Y t

⎛ ⎞−
= ϕ =⎜ ⎟⎜ ⎟

⎝ ⎠
…      

Les propriétés classiques des copules archimédiennes sont conservées. 

Exemple de construction des copules dynamiques 

Dans cette exemple (figure 0.9), nous utilisons un processus non gaussien avec retour a la 

moyenne type gamma Ornstein-Uhlenbeck. Le choix de ce processus est motive d’une part 

par l’existence d’une solution analytique connue pour sa transformée de Laplace, et d’autre 

part, sa caractéristique d’être a spectre positif,  ce qui lui permet d’être aussi bien utilisable 

pour la modélisation des taux d'intérêt. Barndorff-Nielsen & Shephard (2001) ont utilisé un 

model similaire pour modéliser la volatilité stochastique sur les marchés actions.  

 

Plus récemment ce processus a été étudié par Schoutens, Simonsy & Tistaertz (2003). Leurs 

résultats démontrent  que ce processus permet de bien capturer la dynamique de la volatilité 

des prix d’actions. Ce processus est aussi connu en géostatistique comme « processus 

d'Ambartzumian » d’après le mathématicien Soviétique du même nom depuis plusieurs 

années (Chilès & Delfiner 1999 p489, et Matheron, 1969).  
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Figure 0.9: Construction d’un processus gamma O-U et de son integrale temporelle 

 

Pour les copules spot 

La transformée de Laplace du processus est donnée par : 

( ) ( )( ) ( )( )0 2 2

1 1 1

exp 1 exp 1 1 expt
sx s a t s a ss t Ln

a s a s a
λ λϕ λ

λ λ λ λ
⎛ ⎞⎛ ⎞

= − − − − + + − −⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠
tλ   

Nous en déduisons l’écriture de la variable latente de construction de la copule archimédienne 

dynamique correspondante. 

( )
( )

t
t t

Ln U
V

Y t
ϕ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

   

 

Pour les copules forward  

La transformée de Laplace du processus sachant que nous connaissons la filtration jusqu’en t0 

est donnée par : 
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( ) ( )( )( )

( )( )( )

0

0

2 0
, 0

1

2
0

1 1

( )exp 1 exp

exp 1 1 exp

t
t t

sx s a t ts t t
a s

s a sLn t t
a s a

λϕ λ
λ λ

λ λ
λ λ

⎛ ⎞−
= − − − × − − +⎜ ⎟+⎝ ⎠

⎛ ⎞⎛ ⎞
× + − − × −⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

 

Nous en déduisons l’écriture de la variable latente de construction de la copule archimédienne 

dynamique forward correspondante. 

( )
( ) ( )( )0 0

t
t ,t t ,t

0

Ln U
V

Y t Y t
ϕ

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

   

Distribution asymptotique d’un portefeuille granulaire dans le cadre des copules dynamiques 

Considérons un portefeuille de crédit ayant N noms avec des notionnels Pi =P/N, et des taux 

de récupérations fixes . Le taux agrégé de perte au titre du risque de 

crédit dans le portefeuille est donne par la formule suivante : 

(iR R, i 1,..., N= = )

( ) ( ) { }
( )

{ }i i

N N

N i i τ t τ t
i 1 i 1

1 R P
Loss t 1 R P 1 1

N
= =

−
= − =∑ ∑≺ ≺   

où  est la fonction indicatrice du défaut du i{ }iτ t1 ≺
ième nom dans le portefeuille. 

La transformée de Laplace de la distribution des pertes est donnée par : 

( )( ){ } { }( ) { }i i

1N
N

N τ t τ ti 1
E exp s Loss t E 1 1 1 η

=

⎧ ⎫⎧ ⎫⎪ ⎪− = − +⎨ ⎨
⎪ ⎪⎩ ⎭⎩ ⎭
∏ ≺ ≺ ⎬⎬

 ( )( )( )
N1

1N
t tE 1 η exp Y PD t 1−

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − − +⎨⎢ ⎥⎜ ⎟
⎝ ⎠

⎬
⎪⎣ ⎦⎩ ⎭

ϕ
⎪

 

avec . ( )( )exp s N 1 R 0η = − − >

En utilisant les propriétés classiques des calculs aux limites, 

( ) ( )
1 x
N

N
x 0

ηlim N η 1 Ln η 1
x→+∞

=

⎧ ⎫⎛ ⎞ ∂⎪ ⎪− = = = − −⎨ ⎬⎜ ⎟ ∂⎪ ⎪⎝ ⎠⎩ ⎭
sN R  

On en déduit : 

( ) ( ) ( )( )( )1
N t tN

Loss t P 1 R exp Y PD t−

→+∞
≈ − − ϕ  

Chapitre 3 : Utilisation des copules archimediennes pour les migrations jointes de qualité de 
credit 

Nous proposons un modèle pour la dynamique des migrations jointes de la qualité de crédit 

avec des copules. Les migrations individuelles des qualités de crédit sont modélisées par une 

chaîne de Markov en temps continue, pendant que leur dynamique commune repose sur 
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l’utilisation des copules. L'usage de copules nous permet d'étendre notre connaissance des 

« upgrades » et « downgrades » individuels à un cadre multi varie.  

Nous revisitons alors les lois communes des temps implicites de défaut de toutes les 

entreprises dans un portefeuille de crédit. Le développement de nouveaux produits (CPDO) 

exige une parfaite prise en compte des migrations de crédit, et la dépendance. 

La probabilité de migration d’un état donné d’une chaîne de Markov vers un autre état à une 

écriture simple dans le cadre des copules archimédiennes. 

Soit ( ) ( )( ) ( )( ) ( )( )( )1 N 1 N
t tt 0 t 0

X , , X = X , , X
≥ ≥

" "  une chaîne de Markov en temps continu sur un 

espace ( )NS , avec pour matrice génératrice de transition ( ) ( )( )1 N, ,Λ Λ" : 

( )
1

N

S 1
S =

S 1

N

m

m

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

"
" " " "

"
.        

Nous définissons ci-dessous les seuils correspondant a chaque état ou Notation (Rating) dans 

la chaîne de Markov. 

Soit  Q la matrice définie par : 

  
( ) ( )( )k k

, expt t t tQ tδ δ+ = ×Λ
  

Alors les seuils de transition a chaque date sont données par : 
 
 

( )

( )

( )( )

( )

( )( ) ( )

( )( )

( )
( )( )

( )

( )

( )

, ,

1
, 1

,1 ,

k k
, , ,,1 ,

,
, ,1

1

1

1

RN

RN RN

t t t t t t RN

t t t
i t t t

k
t t t t t t t t ti i j

N
N t t t

t t t RN i

K cumQ

cumQ
K

cumQ cumQ K

KcumQ

δ δ

δ
δ

δ δ δ

δ
δ

+ +

+
+

+ + +

+
+

=

⎧ ⎫
⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪

⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪ ⎩ ⎭⎪ ⎪⎩ ⎭

"

# % $ # #

## $ % #

"

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

  

Avec  
( )

( )( ) ( )

( )( )k k
, ,

, ,1
RN RN

i

t t t t t t
i j i jj

cumQ Qδ δ+ +
=

=∑  

 

Pour chaque couple ( )N, Sη υ∈ , ( ) ( )( )1V = V , , V
JG

" N est un ensemble de variable aléatoires 

uniformes où la distribution jointe est donnée par la fonction copule C, dont la transformée de 

Laplace de la variable latente systémique Y est  ϕ .  

Pour des raisons de simplicité de calcul, nous considérons que: 
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( )( )k
, ,0

0t t t i
K δ+ =          

La fonction copula de la migration jointe de migration ou de défaut de toute transition entre 

deux états quelconques de la chaîne de Markov  

{ } (
1 1

, , ,i i

m m

where m
η υ

η υ η υ
η υ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

# # " )1, ,∈      

est donnée par : 

( )
( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
1 1 1 1

1 1 1 1

t+h t

1 1 1
, t+h , , t+h ,, 1 , , 1 , 1

1 1 1
, t+h , , t+h ,, 1 , , 1 , 1

P X = X =

P X , , X

X , , X

N N N N

N N N N

RN

N N N
RN t t t t t t t t t t t t

N N N
t t t t t t t t t t t t

K K K K

C K K K K

δ δ δ δη υ η υ η υ η υ

δ δ δ δη υ η υ η υ η υ

υ η

+ + + +
− −

+ + + +
− −

⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

≺ " ≺

≺ " ≺

−

−

 
 
 
Ce qui peut s’écrire dans le cadre des copules archimédiennes: 

( )
( )( )( ) ( )( )
( )( )( ) ( )( )

1 1

1 1

11 1
, ,, ,

t+h t
11 1

, ,, 1 , 1

P X = X =
N N

N N

N
t t t t t t

RN
N

t t t t t t

K K

K K

δ δη υ η υ

δ δη υ η υ

ϕ ϕ ϕ
υ η

ϕ ϕ ϕ

− −
+ +

− −
+ +

− −

⎛ ⎞⎛ ⎞+ + ⎜ ⎟⎜ ⎟⎝⎝ ⎠=
⎛ ⎞⎛ ⎞− + + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

"

"

⎠   

 

 

 

 

 

 

 

 

 

Figure 0.10 : à gauche ’une copule de Clayton ; à droite la zone correspondante a la probabilite jointe de migration 
dans le cas de cette copule  

Chapitre 4 : Copules archimediennes generalisées ou multifactorielles. 

Dans ce chapitre, nous développons des copules archimédiennes généralisées. 
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Modelisation multifactorielle avec les copules dynamique 

Les modèles a facteurs sont des constructions mathématiques qui tentent d’expliquer la 

corrélation entre une grande série de variables a partir d’un nombre restreint de facteurs 

fondamentaux. Une hypothèse majeure d'analyse par facteurs avec les copules 

archimédiennes est que ce n'est pas possible d'observer ces facteurs directement. Dans le 

cadre de travail des copules dynamiques, nous supposons également que les facteurs ne sont 

pas observables. Soit  un processus à spectre positif, processus de Levy 

indépendants ou aussi un « compound Levy process » avec un spectre positif.  

( ) [ m1..k,tYk ∈ ]

Nous supposons que la transformée de Laplace de chaque ( ) [ m1..k,tYk ∈ ] existe et est 

définie par 

( ) ( )( )k ks E exp sY tϕ ⎡ ⎤= −⎣ ⎦   

Supposons que la variable, Y(t), puisse s’écrire comme une combinaison linéaire de facteurs : 

( ) ( )kY t Y t
m

k

k

η=∑  

Nous pouvons démontrer facilement que: 

( ) ( )( ) (k

1

s E exp sY t s
m

k

k

η )ϕ ϕ η
=

⎡ ⎤= − =⎣ ⎦ ∏�     

Definition d’une copule multi-facteurs 

A partir de maintenant, nous analyserons la structure de dépendance dans un portefeuille de N 

variables (noms) qui dépendent a leurs tours des facteurs. Le iième nom dans le portefeuille 

aura une variable de dépendance systémique, Yi(t), définie par : 

( ) ( ) [ ] [kY t Y t , k 1..m , 1..k
i i

k

i Nη= ∈ ]∈∑   

Si  Ui(t) est une variable uniforme ou un processus alors 

( ) ( )( )
( ) [ ]N1..i,
tY

tULn~tV
i

ηi ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i
i ϕ    

est la variable latente uniforme d’une copule archimédienne à plusieurs facteurs. 

Preuve: 

( ) ( )( )
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }( )N1

1 1 N N

1 1ηη
1 1 1 N N

Pr V t x ,...,V t x

Pr U t exp Y t x ,..., U t exp Y t xϕ ϕ
− −

< <

= < − < −� � N
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Conditionnellement à Yi(t), les Ui(t) sont mutuellement indépendants, d’où 

( ) ( )( ) ( ) ( ) ( ){ }

( ) ( ) [ ] [ ]

i

i

1η
1 1 N N i

i

1ηk k
i i

k i

Pr V t x ,...,V t x E exp Y t x

x η , k 1..m ,, i 1.. N

i ϕ

ϕ ϕ

−

−

⎡ ⎤
< < = −⎢ ⎥

⎢ ⎥⎣ ⎦
⎛ ⎞

= × ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∏

∏ ∑

�

� ∈

  

 Exemple avec un “compound gamma process” 

( ) ( )( ) ( )( )( )
( )( )( )

1a tk k
2

1 2

s E exp sY t 1 a Ln 1 sβ t

exp a t Ln 1 a Ln 1 sβ t

k
k

k k

ϕ
−

⎡ ⎤= − = + +⎣ ⎦
⎡ ⎤= − + +⎣ ⎦

 

La figure 0.11 montre le cas où 6 processus dépendent de deux facteurs fondamentaux comme 

donné ci-dessous : 

( )
( )
( )
( )
( )
( )

( )
( )⎥⎦
⎤

⎢
⎣

⎡
×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

tY
tY

tY
tY
tY
tY
tY
tY

2

1

2
6

1
6

2
5

1
5

2
4

1
4

2
3

1
3

2
2

1
2

2
1

1
1

6

5

4

3

2

1

ηη
ηη
ηη
ηη
ηη
ηη

,     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00.000.1
00.000.1
50.050.0
50.050.0
00.100.0
00.100.0

2
6

1
6

2
5

1
5

2
4

1
4

2
3

1
3

2
2

1
2

2
1

1
1

6

5

4

3

2

1

ηη
ηη
ηη
ηη
ηη
ηη

η
η
η
η
η
η

( )
( )( )

( ) [i

i
η

1 2

Ln U t
V t , 0.15, 0.20 &T = 5ans i 1..6

Y ti
i

a aϕ
⎛ ⎞
⎜ ⎟= − = = ∈
⎜ ⎟
⎝ ⎠

� ]   

 

 

Figure 0.11:  La copula dynamique a plusieurs facteurs nous permet de representer plusieurs formes de 
dependances entre les differentes distributions marginales. Les variables ne sont plus forcement interchangeables  
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Partie II : Applications 

La deuxième moitié de la thèse est subdivisée en deux chapitres, chacun présente une 

application différente.  

1. Le premier (Chapitre 5) sur les copules dynamiques et leur application à la 

tarification des tranches de CDOs a été présentés au congrès Advances in 

Econometrics, 5th Annual Advances in Econometrics Conference in Baton Rouge, 

Louisiane, November 3-5 2006 » et a été accepté pour publication dans « Advances in 

Econometrics: Econometrics of Risk Management", Volume 22, 2007 ».  

2. Le second (Chapitre 6) présente une analyse comparée des résultats  obtenus avec les 

copules dynamiques et d’autres modèles a un facteur. « Dynamic copulas process: 

Comparison with five 1-factor models for pricing CDOs ». Il a été soumis au « Journal 

of Derivatives ».  

3. Une troisième application « Pricing Forward Starting CDOs using Dynamic Copula 

Processes » non présente dans cette thèse est acceptée pour publication dans « Credit 

derivatives Handbook » MacGraw Hill Edition 2007 ».  

 

Conclusions et perspectives 

Nous avons dans cette thèse créé de nouveaux modèles mathématiques qui prennent en 

compte entre autre la dynamique de dépendance (« tail dependence ») des marchés. Avec 

cette nouvelle famille de copules archimédiennes, nous avons effectué une première extension 

au cadre multi facteurs, et en suite nous avons montré que ce modèle peut être utilisé pour la 

prise en compte des migrations jointes qui peuvent être extrêmes. 

 

Perspectives pour le travail futur :  

La croissance fulgurante des dérivés de crédit dans l'industrie de la finance continuera à 

induire de nouvelles questions, tout en posant de nouveaux défis pour la modélisation 

mathématique. Un champ d’application intéressant pour les copules dynamiques est la 

modélisation de la structure de dépendance des fonds d’investissements alternatifs. Les 

dépendances extrêmes sur les marches de taux et de changes pourraient être également 

modélisées avec les copules dynamiques. 
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 Chapter 1 :  Introduction  

Credit derivatives are one of the fastest developing parts of market finance at present. Not 

only have the nominal amounts increased phenomenally, but new products are continually 

being created. In the second part of this introductory chapter, we present these products 

starting out from the credit default swap, CDS, and show how they have evolved since their 

inception in the early 90s. Our aim is demonstrate this development has been market driven, 

with the mathematical models used for pricing lagging behind. At the outset models, such as 

Merton’s model of the firm (1974), were required for pricing credit default swaps. As the 

market developed the weak points of the model became apparent and improved models were 

developed to overcome these points. Then as the credit derivative sector matured and the CDS 

market became more & more liquid, there was no point in using a model to price them; their 

default spreads were available directly in the market. 

The next generation of products was based on a basket or a portfolio of underlying assets 

rather a single entity as had been the case in the first generation. Examples of such products 

are the first-to-default (or more generally the nth to default) and then the collateralised debt 

obligation (or CDO). The first CDOs, called cash CDOs, required the product structurers to 

purchase the underlying bonds, which started to distort the bond markets. Synthetic CDOs 

were then created. Since it was no longer necessary to physically acquire the underlying 

assets, it became possible to sell individual tranches in the structure. Nowadays the standard 

CDOs (e.g. iTraxx and CDX) are based on portfolios of 125 entities (or names). There are two 

aspects to pricing tranches out of these structures  

 Modelling the default probabilities of the individual entities (which can be done via 

the CDS spreads if the CDS for that name is sufficiently liquid) 

 Modelling the “correlation” (or more accurately the dependency structure) between 

the entities in the portfolio 

In this thesis we focus on the second question. Many different models have been developed 

for this. They include the Gaussian copula and the interpolation of base correlations, 

parametric factor copulas (local correlation), non-parametric factor approaches (implied 

copula), loss dynamics (top down, bottom up), with different strengths and weaknesses. Base 

correlation, first developed by JP Morgan McGinty & Ahluwalia (2004) became the industry 

standard for pricing CDO tranches. The base correlation model is based on Homogeneous 
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Large Pool Gaussian Copula Model, which is a simplified version of the Gaussian copula 

widely used in the market. This model is not new, the methodology is almost identical to the 

original Credit Metrics model (Gupton et al, 1997). It is a simplified form of earlier one-factor 

models (Vasicek, 1987) and is described in numerous places, for example Rogge & 

Schonbucher (2003), Schonbucher (2003). 

By about 2003-2004 CDOs were becoming standard products. A new generation of products 

which we will refer to as third generation credit derivatives were starting to come on line: 

these include forward-starting CDS, forward-starting CDOs, options on CDOs and so forth. In 

contrast to early products, these derivatives require a dynamic model of the evolution of the 

“correlation” between the names over time, something which base correlation was not 

designed to do. The aim of this doctorate has been to develop a mathematically consistent 

framework for pricing these types of products. 

Now let’s step back in time to when this work started in October 2003. At that time, the “hot” 

topics were linked to computing the VaR for credit derivatives. The limitations of Merton’s 

model of the firm were well known. It had been superseded by intensity models and by 

implied correlation, but base correlation was still in the future. At that point Jon Gregory, then 

the global head of credit derivatives research analytics at BNP Paribas, told my supervisor 

that the real problem was to find a dynamic model with lower tail dependence, which would 

be capable of modelling large baskets of underlying assets. Tests by Burtschell, Gregory & 

Laurent (2005a) had shown that the Clayton copula gave better results than most of other 

copulas, notably the Gaussian and Student’s t which is computationally intensive. Copulas 

based on elliptic distributions (such as the Gaussian or Student’s t) have symmetric upper and 

lower tails. They are effectively saying that defaults occur in the same way in bull and bear 

markets. In tough times, one default tends to trigger others, which is not the case in normal 

times. The classic “icecream cone” shape of the Clayton copula with its lower tail dependence 

(Figure 1.1, left) captures this insight; the symmetric Gaussian (normal distribution) copula 

(Figure 1.1, right) does not. So our objective right from the start was to build a dynamic 

copula model with lower tail dependency like this, and to test it on different types of credit 

derivatives. 

1.1 Recent subprime crisis in the US 

Since March 2007 there have been persistent rumours about the quality of subprime rated 

portfolios in the US. (The rising interest rates have meant that some Americans were unable 

to make mortgage repayments and were declared bankrupt). In the mid July, it was announced 
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that two Bear Stearns asset-backed (AB) funds based on these subprime mortgages were 

worthless. Our analysis of this crisis shows that as expected, downward movements in credit 

ratings (and upward rises in spreads) are quite asymmetric, with tighter correlation in the 

downward spiral. 

Figure 1.1: Clayton copula with parameter θ = 5 (left) and Gaussian copula with ρ = 0.87 (right) 

Background to ABX 

The ISDA ABCDS documentation which was completed in 2005, paved the way for the 

creation of a standardized synthetic index (ABX) in January 2006. Just one year later, the 

ABS market took another step forward via trading standardized ABX tranches which are 

based on a specific portfolio of 40 ABS tranches. Two products are traded: one based on BBB 

tranches and another based on BBB- tranches. The underlying ABS portfolio (40 tranches) for 

each product is the combination of tranches from ABX 06-2 and ABX 07-1. The BBB and 

BBB- portfolios use different attachment/detachment points. Table 1.1 compares these ABX 

BBB and ABX BBB- tranches with CDX and with a mezzanine tranche from a CDO of ABS. 

In normal market conditions, there is an almost no correlation between the ABX AAA price 

and the ABX BBB tranches, but when market conditions deteriorate, there is a significant 

increase in the dependency during the price decline. Figure 1.2 shows the price of five ABX 

tranches rated from AAA down to BBB over the period from 19 January to 6 July 2007. As 

expected the AAA tranche is rated at par (100%) almost the whole time except for a slight 

drop near the end of June. In contrast the other four tranches have consistently lost value. This 

decline indicates an increasing the likelihood of default. Note the correlation in price drops 

especially between the tranches with lower ratings. 
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Table: 1.1: Comparison of ABX, CDX and a CDO of ABS. (Source: JP Morgan based on 06-02 spread only) 

 ABX BBB / ABX BBB- CDX Mezzanine CDO of ABS 

Number of Names 40 125(IG), 100(HY) 70-120 

Underlying Assets 100% Home Equity ABS 
Diversified Corporate 

CDS 

Home Equity ABS 

CDOs, CMBS 

Alt A RMBS 

Index Spread 289/471 bps 
33 bps (IG 5y), 241 bps 

(HY 5y) 
180-250 bps target 

Management Unmanaged Unmanaged Managed 

Cash Flow Linear write-down Linear write-down 

Payment prioritiy varies: 

Interest/Principal can be 

diverted to senior 

tranches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Evolution of the price of five ABX tranches rated from AAA (in red) through to BBB- (in brown) over the 
period from 19 January to 6 July 2007. The price decline indicates an increasing probability of default.  
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Figure 1.3: The daily variation of ABX index AAA and BBB. A negative variation of the price means a deterioration of 
the credit quality. (Source Bloomberg) 

 

The asymmetric nature of downward changes compared to upward changes can be seen in 

Figure 1.3 which shows the daily variation of the ABX index AAA (X-axis) compared to that 

of the ABX index BBB (Y axis). ABX are quoted in terms of price instead of spread as are 

credit indexes such as iTraxx and CDX. So a negative variation of the spread means a 

deterioration of the credit quality. Here the extreme daily variations of -4% or more for ABX 

BBB were mainly caused by the sub-prime effect in the US in the second quarter 2007. 

The effect of the deterioration in the sub-prime class can also be seen in Figure 1.4 which 

shows the spreads for four indexes over the second quarter 2007: 

• DJ DCX America S8 Investment Grade 5Y (blue) 

• DJ DCX America S8 High Yield 5Y (brown) 

• DJ DCX America S8 High Volatility 5Y (purple) 

• DJ DCX America S8 Crossover 5Y (red) 

Note how the investment grade (in blue) has remained virtually flat compared to the other 

three. In comparison, the high yield index (in brown) jumped sharply from 200bps to 300 bps 

in mid-March and rose again to nearly 400bps at the end of the quarter. Figure 1.5 shows the 

histograms of the changes in daily spread change of these four US indexes over the same 

period. The impact of the subprime is much more marked for the high yield index compared 

to the investment grade. In fact we can even observe a daily jump of 40% for the high yield. 
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Figure 1.4 : The evolution of four US indexes during the second quarter 2007. Note how much the high yield index 
(brown) has deteriorated compared to the investment grade (blue). 

 

Figure 1.5: The histogram of daily spread (iTraxx and CDX are quoted in spread) change of four US indexes during 
the second quarter 2007. Note that the impact of the subprime is much more higher for  the high yield index 
compared to the investment grade. In fact we can even observe a daily jump of 40%, the Invest grade index become 
slightly asymmetric conditional to the subprime event. 
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The daily spread variations of the CrossOver Index (X-Over) for the US versus the same 

index for Europe during the second quarter 2007 are presented in Figure 1.6(a) & (b) firstly as 

a cross-plot then as a copula. As before, the extreme variations of 7% or more are mainly due 

to the sub-prime effect in the US. As these data give the daily variation in spread, positive 

values correspond to deterioration in credit quality, which explains the upper tail dependence 

instead on lower tail dependence in standard CDOs. 

 

 

 

 

 

 

 

 

 

Figure 1.6(a): The daily variation of the CrossOver Index (X-Over) US and Europe seems to have an asymmetric 
dependence. A positive variation of the spread means a deterioration of the credit quality. The extreme daily 

variations of 7% or more are mainly due by the Sub Prime crisis in the US. (Source Bloomberg) 

 

Figure 1.6(b): Copula representation based on empirical cumulative distribution of the  daily variation of the 
CrossOver Index (X-Over) US and US High Yield index shows upper tail dependence for spread variation, which is 

equivalent to a lower tail depdendence of default. As spread is a decreasing function of default probability, an 
increase in the spread means a drop in credit quality.  
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A clearer picture of credit crises can be obtained by taking the iTraxx S3 spreads over a 

longer period, for example by starting in April 2005 during the GM-Ford crisis through to the 

end of August 2007. Figure 1.8 compares the spreads for the Auto 10Y S3 series with those 

for Senior Financials 10Y. As expected, the histograms are markedly skew. The experimental 

copula shows the characteristic “ice-cream cone” shape. The points shown in green 

correspond to the GM-Ford crisis while the red ones go from July to August 2007. These 

show that during the subprime crisis the spreads for the Senior Financials 10Y rose much 

faster than those for Autos 10Y.  

 

The events that occurred during the recent subprime crisis have confirmed our impression 

about the importance of being able to incorporate upper/lower tail dependence when modeling 

correlation products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Empirical copula  computed from the spreads for the iTraxx S3 series, Auto10Y versus Senior Financials 
10Y, together with their histograms (senior Financials on left & Autos below). The data cover the period April 2005 
to August 2007.  The green points correspond to the GM-Ford crisis in 2005, the red one to the subprime crisis
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1.2 Structure of the thesis 

In the rest of this chapter, we give a brief history of credit derivatives and review the market 

trends in the credit derivatives & securitization. Then we present the characteristics of the 

main products which can be split into three generations: 

1. Single name protection 

2. Basket products (where the correlation between the different names becomes important) 

3. Forward-starting products 

Although the thrust of this thesis is modelling the correlation found second and third 

generation products, we describe the main steps involved in pricing first generation products 

because we will use these techniques when fitting the marginal distributions for individual 

names within portfolios. It is clear that as the market evolved, more advanced models were 

required in order to capture idiosyncratic risk and dynamic dependence or correlation risk. 

The last part of the chapter reviews the literature on modelling correlation and on 

Archimedean copulas.  

Ch 2: Dynamic copula model   

We present the first formulation of the dynamic copula processes and then a new model for 

pricing CDO tranches based on a dynamic copula process with low tail dependence as in the 

Clayton copula  

A formula for the asymptotic loss distribution, similar to the Vasicek formula, is derived. This 

simplifies the computations for the case of a fine grained portfolio.  

We finally in this section, explore the use as a building block of a dynamic copula a gamma 

Ornstein–Uhlenbeck process, where a closed form solution is known for the Laplace 

transform. The mathematical constructions in this part of the thesis no longer use Brownian 

motion. 

Ch 3: Combining credit migration and copula  

We propose a model for the joint dynamics of credit ratings of several firms based on copulas 

and dynamic copulas. Namely, individual credit ratings are modelled by a continuous time 

Markov chain, while their joint dynamics is modelled using copulas. The use of copulas 

allows us to incorporate our knowledge of the modelling of single name credit migration 

processes, into a multivariate framework. We then revisit the joint laws of the default times of 

all the firms in the portfolio. The development of new products such as Constant Proportion 
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Debt Obligation (CPDO) requires the modelling of credit migration, and correlation in order 

to handle substitution rule on index during the roll. 

Ch 4: Multi-factor & Time changed approach 

A multifactor approach is developed within the new formulated dynamic copula processes, 

and a time changed levy process is used to introduce dependency on spreads dynamics. We 

show in this chapter that the building block of time changed approach fail within the 

frameworks of dynamic copulas. 

Part II:  Two practical applications 

The second half of the thesis is split into two chapters, each presenting work on a different application. 

The first one on pricing synthetic CDOs at different maturities was presented at the 5th Annual 

Advances in Econometrics Conference in Baton Rouge, Louisiane, November 3-5 2006 and has been 

submitted for publication in "Advances in Econometrics: Econometrics of Risk Management", 

Volume 22, 2007. The second one presents a comparison of the pricing given by these dynamic 

copulas with five well-known copula models. It has been submitted to the Journal of Derivatives. 

These two chapters present developments of work on dynamic copulas with applications to credit risk 

derivatives.  

Ch 5: Dynamic Copula Processes: A new way of modelling CDO tranches 

In this chapter, the dynamic copula framework is used for pricing tranches of synthetic CDOs at 

different maturities, which requires a model of the dynamic dependence between default times. While 

the base correlation approach gives good results at any given maturity, it does not link prices and 

spreads at different times. A stochastic process with time-dependence between the different names is 

needed. Existing factor models using Gaussian or Student’s t copulas do not price CDO tranches 

correctly, because their upper and lower tails are symmetric. An “icecream cone” shaped copula with 

lower tail dependence (such as in the Clayton copula, Fig 1) would be more appropriate. After 

presenting a new family of dynamic copula processes, we focus on a specific one with lower tail 

dependence. Using CDS data as at July 2005, we show that the base correlations given by this model 

at the standard detachment points are very similar to those quoted in the market for a maturity of 5 

years.  
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Ch 6: Dynamic copulas processes: Comparison with five 1-factor models for pricing CDOs 

The tests carried out in the previous chapter showed that the model could reproduce the base 

correlations. But how does it compare to other models? In this chapter using market data as at 

30 January 2006 we demonstrate that it outperforms five well-known one factor copula 

models. Following the approach used by Van der Voort (2006), we fitted the parameters to 

match the base correlation for a maturity of 5Y for iTraxx and for CDX, then computed the 

model-implied correlation skew for a maturity of 10Y. In both cases the results obtained from 

the dynamic copula model were much closer to the market correlation skews, than those given 

by existing copula factor models.  

Ch 7: Conclusions 

The final chapter reviews the work that has been carried out and suggests several perspectives 

for further work. 

Ch 8: References 
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1.3 Brief history of credit derivatives up to 2000  
Credit derivatives are among the fastest growing products in the capital markets arena, rapidly 

assuming more complex structures and forms. Banks, insurance companies, hedge funds, 

pension funds, asset managers and structured finance vehicles are increasingly using credit 

derivatives for arbitrage, speculation and hedging. 

Credit derivatives1 had emerged by early 1993. In March 1993, Global Finance carried an article 

saying that three Wall Street firms - J. P. Morgan, Merrill Lynch, and Bankers Trust - were marketing 

some form of credit derivatives. Prophetically, this article also said that credit derivatives could, 

within a few years, rival the $4-trillion market for interest rate swaps. In retrospect, we know that this 

was right. According to a new report to be published by the British Bankers' Association (BBA) at its 

Credit Derivatives conference in September 2006, the global market in Credit Derivatives is expected 

to rise to $33 trillion by the end of 2008 (Fig 1.8). 

  

 

Figure 1.8: The evolution of the credit derivatives market since 1996. Note: Notional excludes asset swaps. Source: 
British Bankers Association Credit Derivatives Report 2006; Barclays Capital Credit Research 

                                                 
1 Readers interested in the history of how credit derivatives were developed, can consult Credit Risk Modelling 
edited by M. Gordy (2003) which is a compendium of 34 technical papers published in Risk from 1999 to 2003, 
or Credit Derivatives: The Definitive Guide edited by Jon Gregory (2003) which is a collection of 21 articles on 
credit risk derivatives. 
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Although credit derivatives were already a frequent topic in the financial press by 1993, they 

initially faced resistance. In November 1993, the Investment Dealers Digest carried an article 

entitled Derivatives pros snubbed on latest exotic product which claimed that a number of 

private credit derivative deals had been seen in the market but it was doubted if they were 

ever completed. The article also said that Standard and Poor's had refused to rate credit 

derivative products and this refusal may put a permanent damper on the fledgling market. 

S&P seems to have issued some kind of a document which said that in essence, these 

securities represent a bet by the investor that none of the corporate issuers in the reference 

group will default or go bankrupt. One commentator quoted in the said article said:  

It (credit derivatives) is like Russian roulette. It doesn't make a difference if there's 

only one bullet: If you get it you die. 

Almost 3 years later, Euromoney2 reported that a lot of credit derivatives deals were already 

happening. From a product that was branded as a "touted" product in 1993, the market 

perception had changed into one of unbridled optimism. The article said:  

The potential of credit derivatives is immense. There are hundreds of possible 

applications: for commercial banks which want to change the risk profile of their loan 

books; for investment banks managing huge bond and derivatives portfolios; for 

manufacturing companies over-exposed to a single customer; for equity investors in 

project finance deals with unacceptable sovereign risk; for institutional investors that 

have unusual risk appetites (or just want to speculate); even for employees worried 

about the safety of their deferred remuneration. The potential uses are so widespread 

that some market participants argue that credit derivatives could eventually outstrip 

all other derivative products in size and importance. 

Key Milestones 

Here are some significant milestones in the development of credit derivatives: 

• 1992 - Credit derivatives emerge. ISDA3 first uses the term "credit derivatives" 

to describe a new, exotic type of over-the-counter contract.  

• 1993 -KMV introduces the first version of its Portfolio Manager model, the first 

credit portfolio model.  

The KMV model is an extension of the Merton model that allows the estimation of the loss 

                                                 
2 March 1996: Credit derivatives get cracking 
3 ISDA: International Swap Dealers Association 
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distribution of a portfolio of loans based on the calibrated default probability. The best known 

representative of this type of default probabilities is the Expected Default Frequency (EDF) from 

Moody’s KMV.  

• 1994 - Credit derivatives market begins to evolve.  

• September 1996 - The first CLO by UK's National Westminster Bank.  

A balance-sheet collateralized loan obligation (CLO) is a form of securitization in which 

assets (bank loans) are removed from a bank’s balance sheet and packaged into marketable 

securities that are sold on to investors4. Different tranches of the CLO have different risk-

return characteristics and can be targeted at specific investor classes. One appeal of certain 

CLO tranches has been that they can offer more attractive yields than similarly rated 

securities. 

The first significant step in the development of the CLO market was the $5bn ROSE Funding 

#1 issue by the UK’s National Westminster Bank in September 19965. This CLO was backed 

by an international portfolio of more than 200 commercial loans. One year later, Nations 

Bank launched a $4bn CLO, the first significant deal in the US. Japanese and Continental 

European banks soon followed. Deutsche Bank’s first Core CLO was largely backed by loans 

to medium-sized German companies. In the absence of a CLO-type structure, selling loans 

made to Mittelstand companies would have been difficult because of the strong lending 

relationships built up by German banks with their corporate clients. 

• April 1997 - J P Morgan launches CreditMetrics  

CreditMetrics is a tool for assessing portfolio risk due to changes in debt value caused by changes in 

obligor credit quality. It includes changes in value caused not only by possible default events, but also 

by upgrades and downgrades in credit quality. 

• October 1997 - Credit Suisse launches CreditRisk+  

Developed by Credit Suisse, CreditRisk+ is based on a portfolio approach to modelling credit default 

risk that takes into account information relating to size and maturity of an exposure and the credit 

quality and systematic risk of an obligor. The CreditRisk+ Model is a statistical model of credit default 

risk that makes no assumptions about the causes of default. Actuarial techniques applied widely in the 

                                                 
4 The main alternative to a balance sheet CLO is an arbitrage CLO. In these, an asset management firm will buy 
credit risk in the market before selling claims on the repackaged risk. The originator of the deal profits from the 
yield differential between the assets in the portfolio and the cost of funding the assets through the sale of 
securities.  
5 Continental Bank’s FRENDS issue in 1988 is often cited as a precursor to the CLO market, but this was a 
relatively isolated deal.. 
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insurance industry are used to model the sudden event of an obligor default. This approach contrasts 

with the mathematical techniques typically used in finance where one is usually concerned with 

modelling continuous price changes rather than sudden events. Applying insurance modelling 

techniques, the analytic CreditRisk+ Model captures the essential characteristics of credit default 

events and allows explicit calculation of a full loss distribution for a portfolio of credit exposures. 

• December 1997 - The first synthetic securitisation, JP Morgan's Bistro deal.  

Generally viewed as the first synthetic securitisation, BISTRO was a JP Morgan vehicle 

brought to market in December 1997. The aim of the transaction was to remove the credit risk 

on a portfolio of corporate credits held on JP Morgan’s books, with no funding or balance 

sheet impact. 

 

Reference portfolio 

Corporate Loans 100% 

BIS US $9.7 billion 

Corporate Loans 100% 

BIS (Asset Backed 

funded portion) 

US $9 billion retained risk 

credit default swap 

US $700 million notes Senior 

Notes Subordinated notes 

Investors  

US $ 32 million reserve account

Risk 

Source: JP Morgan 

Figure 1.9: The structure of the first synthetic securitisation brought to market in Dec 1997 by JP Morgan  

 

• 1998 -McKinsey introduced CreditPortfolioView , credit risk portfolio model 

• July 1999 - Credit derivative definitions issued by ISDA. 

The development of credit derivatives had been hampered by the lack of standardised 

contracts and the amount of legal work required to set up each deal. In July 1999 ISDA, the 

International Association of Swap Dealers, provided a standardised legal framework with 

agreed-upon definitions of default events. This considerably simplified the back office 

procedures for booking these deals.  
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1.4 Three generations of credit derivatives 

Credit derivatives have gone from strength to strength since then. The products that have been 

developed can be split into three generations: 

1. Single name protection 

2. Basket products (where the correlation between the names first became important) 

3. Forward-starting products 

First-generation credit derivatives 

Credit derivatives can be defined as arrangements that allows one party (protection buyer or 

originator) to transfer the credit risk of a reference asset (or assets), which it may or may not 

own, to one or more other parties (the protection sellers).  

The main first generation credit derivatives currently being used in the market are: 

Total return swap: 

Total return swap, or total rate of return swap, or TRORS, is a contract in which one party 

receives interest payments on a reference asset plus any capital gains and losses over the 

payment period, while the other receives a specified fixed or floating cash flow unrelated to 

the credit worthiness of the reference asset, especially where the payments are based on the 

same notional amount. The reference asset may be any asset, index, or basket of assets. 

TRORS are particularly popular on bank loans, which do not have a liquid repo market. 

So TRORS allows one party to derive the economic benefit of owning an asset without 

putting that asset on its balance sheet, and allows the other (which does retain that asset on its 

balance sheet) to buy protection against loss in its value. 

The essential difference between a TRORS and a credit default swap is that the latter provides 

protection not against loss in asset value but against specific credit events. In a sense, a 

TRORS is not a credit derivative at all, in the same sense that a CDS is. A TRORS is 

funding-cost arbitrage. 

Credit default swap: 

A credit default swap (CDS) is a swap designed to transfer the credit exposure of fixed 

income products between parties. It is an agreement between a protection buyer and a 

protection seller in which the buyer pays a periodic fee in return for a contingent payment by 

the seller if a credit event (such as a certain default) happens to the reference entity. Most 

CDS contracts are physically settled: if a credit event occurs, the protection seller must pay 
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the par amount of the contract to the protection buyer who is obliged to deliver a bond or loan 

of the name against which protection is being sold. Figure 1.10 summarises the situation. 

. 

 

Figure 1.10: Basic principles in a credit default swap (CDS) in which a protection buyer, Bank A, pays a fixed 
amount to the protection provided, X, provided that no credit event occurs. However conditional on default Bank A 
received a reference bond (generally the cheapest-to deliver) from a specified set. Here R is a recovery value of a 
reference bond. It is assumed to be the same for all CDS on a given name. 

 

 

A CDS is often used like an insurance policy, or hedge for the holder of debt, except that 

because there is no requirement to actually hold any asset or suffer a loss. So a CDS is not 

actually insurance. Over recent years, the CDS market has become extremely liquid. The 

typical maturities available for CDS contract are 3, 5, 7 and 10 years with 5Y being the most 

liquid. Almost any maturity is possible for an over-the-counter CDS. Box N° 1 describes the 

standard method for valuing a CDS, by computing the value of the two legs: fee and 

contingent. For a par spread, the net present value of both legs must equal to zero. 

 

Credit default swaption or credit default option: 

A default option, credit default swaption or credit default option is an option to buy protection 

(payer option) or sell protection (receiver option) as a credit default swap on a specific 

reference credit with a specific maturity. The option is usually European, (i.e. exercisable at 

only one date in the future). The strike price is defined as a coupon on the credit default swap. 

Credit default options on single credits are extinguished upon default without any cashflows. 

Therefore buying a payer option is not a good protection against an actual default; it merely 

provides protection against a rise in the credit spread.  Having said that, options on credit 

indices such as iTraxx and iBoxx, include any defaulted entities in the intrinsic value of the 

option when exercised. 
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 Box N°1: Determining the Par Spread of a Credit Default Swap  
 The value of the fee leg is approximated by: 

n

n n n i i
i=1

PV No Default = S Annuity = S DF×PND ×  
iΔ∑  

 
where  Sn is the Par Spread for maturity n 

 
DFi is the Riskless Discount Factor from To to Ti

 PNDi  is the No Default Probability from To to Ti

 Δi is the Accrual Period from Ti-1 to Ti

If accrual fee is paid upon default, then the value of the fee leg is approximated 

by: 
 

 
( )
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PV No Default+ PV Default Accruals S Annuity S Default Accruals

= S DF× PND × + S DF× PND - PND ×
2

= +
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where (PNDi-1 – PNDi) is the probability of a credit event occurring during period Ti-1 

to Ti
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2
Δ  is the Average Accrual from Ti-1 to Ti 

 

The value of the contingent leg is approximated by: 

( ) (
n

n i i-1
i=1

PV Of Contingent = Contingent = 1- R DF× PND - PND∑
 

)i  

where R is the Recovery Rate of the reference obligation 

 

 

 Therefore, for a par credit default swap is the solution of the equation, 

PV No Default+ PV Default Accruals = PV Of Contingent   
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Credit linked notes: 

A credit-linked note (CLN) is a security issued by a special purpose company or trust, 

designed to offer investors par value at maturity unless a referenced credit defaults. In the 

case of default, the investors receive a recovery rate. The trust will also have entered into a 

default swap with a dealer. In case of default, the trust will pay the dealer par minus the 

recovery rate, in exchange for an annual fee which is passed on to the investors in the form of 

a higher yield on their note. 

The purpose of the arrangement is to pass the risk of specific default onto investors willing to 

bear that risk in return for the higher yield it makes available. The CLNs themselves are 

typically backed by very highly-rated collateral, such as U.S. Treasury securities. CLN is a 

security with an embedded credit default swap allowing the issuer to transfer a specific credit 

risk to credit investors. 

CLNs are created through a Special Purpose Company (SPC), or trust, which is collateralised 

with AAA-rated securities. Investors buy securities from a trust that pays a fixed or floating 

coupon during the life of the note. At maturity, the investors receive par unless the referenced 

credit defaults or declares bankruptcy, in which case they receive an amount equal to the 

recovery rate.  

Second generation credit derivatives 

The development of credit derivatives parallels that of fixed income and interest rate products. 

The increased use of credit default swaps and other basic credit derivatives helped to build the 

critical mass and liquidity levels required for constructing the next generation credit 

derivative products. Portfolio products such as synthetic CDOs and nth-to-default baskets, 

with enhanced returns and customized risks, were among the first extensions of CDS. These 

products borrowed techniques from the securitization business. In a conventional cash flow 

CDO, a portfolio of loans or other debt obligations are transferred to a vehicle that issues 

liabilities (rated notes and equity). Repayment of the liabilities is collateralised by the 

portfolio of loans or debts. However, in the case of synthetic CDOs, the tranches are 

collateralized by a portfolio of investment-grade assets and the additional credit yield is 

acquired by selling credit protection. 

By purchasing a combination of AAA-rated instruments and selling CDS on individual 

single-name instruments, the vehicle can create the desired maturities, together with the 

concentration and industry focus required to issue liabilities with strong ratings. 
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First-to-default basket: 

In a first-to-default basket, the risk buyer typically takes a credit position in each credit equal 

to the notional at stake. After the first credit event, the first-to-default note (swap) stops and 

the investor no longer bears the credit risk to the basket. First-to-default Credit Linked Note 

will either be unwound immediately after the Credit Event – this is usually the case when the 

notes are issued by an SPV - or remain outstanding – this is often the case with issuers - in 

which case losses on default will be carried forward and settled at maturity. Losses on default 

are calculated as the difference between par and the final price of a reference obligation, as 

determined by a bid-side dealer poll for reference obligations, plus or minus, in some cases, 

the mark-to-market on any embedded currency/interest rate swaps transforming the cash 

flows of the collateral.  

Collateralised debt obligation 

Collateralised debt obligations (CDOs) are similar to asset-backed securities and structured 

finance products. In a CDO a portfolio of bonds, loans, or other fixed income securities is 

gathered together, and used to create a new set of fixed income securities. This allows for a 

technique called "credit tranching" by which losses from the portfolio are repackaged.  

CDOs typically issue four classes of securities designated as senior debt, mezzanine debt, 

subordinate debt and equity. Any losses from the portfolio of investments are applied to 

equity first before being applied to earlier ones. As a result, products ranging from the risky 

equity debt to the relatively low risk senior debt can be created from one basket of bonds or 

loans. See Fig 1.11. CDOs can be split into two broad classes: balance sheet CDOs and 

arbitrage CDOs. Balance sheet CDOs are those which result into transfer of loans from the 

balance sheet and hence, which impact the balance sheet of the originator. Arbitrage CDOs 

are those where the originator is merely a repackager: buying loans or bonds or ABS from the 

market, pooling them together and securitising the same. The prime objective in balance sheet 

CDOs is the reduction of regulatory capital, while the purpose in arbitrage CDOs is making 

arbitraging profits.  
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Figure 1.11: Typical CDO showing the asset on the left and the tranching structure on the right   

(Source BNPParibas)  

 

From a legal point of view, most CDOs are constructed via a special purpose vehicle (SPV), a 

bankruptcy remote company. See Figure 1.12. 

The term CDO is often used as a generic term that includes: 

• Collateralised bond obligations (CBOs) -- CDOs backed primarily by bonds  

• Collateralised loan obligations (CLOs) -- CDOs backed primarily by leveraged loans  

• Structured finance CDOs (SFCDOs) -- CDOs backed primarily by asset-backed 

securities  

• Collateralised mortgage obligation (CMOs) -- CDOs backed primarily by residential 

or commercial mortgages.  

• Commercial Real Estate CDOs (CRE CDOs) -- backed primarily by real estate assets  

• CDO-Squared -- CDOs backed primarily by securities issued by other CDO vehicles.  

• CDOn -- Generic term for CDO^3 (CDO cubed) and higher. These are particularly 

difficult vehicles to model due to the possible repetition of exposures in the 

underlying.  
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Figure 1.12: The role of the special purpose vehicle (SPV) in a typical CDO Structure 
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Figure 1.13 shows the evolution of the second and third generation credit derivatives from 

basket derivatives through CDOn and latest products. Market value CDOs transactions such as 

CFO  (Colletarised Fund Obligations) are also mentioned as an innovative product, alongside 

CPPI and CPDO 

• Forward starting CDS 

The only difference between a forward starting contract and a regular contract is that regular 

CDS starts immediately, while a forward CDS starts on a future date. Box 2 shows how the 

present value of a CDS contract starting at time tk with maturity tn, can be expressed from a 

protection seller’s point of view. Forward spread is defined as the par spread of a forward 

starting CDS contract. 

• Forward starting CDO and possibly options on CDO tranches 

The availability of CDO data for multiple time horizons presents researchers with an 

interesting and important challenge. This is to develop a dynamic model that fits market data 

and tracks the evolution of the credit risk of a portfolio. Dynamic models are important for the 

valuation of some structures. For example, options on tranches of CDOs cannot be valued in a 

satisfactory way without a dynamic model. 
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Figure 1.13 shows the evolution of  second and third generation credit derivatives from basket derivatives through 
CDOn and latest products. 

 
Box N°2: Determining the Forward Spread 

Using the same methodology as per standard credit default swap, the  

Forward Par credit default swap is the solution of the equation, 
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• Market Values CDO 

Although closely resembling a hedge fund, market value CDOs are considered to be ABS 

(Asset Backed Securities) due to their fundamental structure.  As with other ABS, a market 

value CDO is a debt obligation issued by a bankruptcy remote SPV secured by some form of 

receivable.  CDOs also often use overcollateralization and subordinated notes to achieve the 

desired credit quality.  

Where a market value CDO really differs from a traditional ABS structure is with respect to: 

(i) the servicer's level of involvement,  

(ii) the diversity of assets, and  

(iii) the number of tranches issued. In a market value CDO, the portfolio manager does 

more than simply collect and service the portfolio, but also actively trades the asset 

pool.   

Common market value CDO portfolios include cash, treasuries, bonds, loans, CP 

(Commercial Papers), mezzanine debt, distressed debt, equity, emerging market debt, and 

even other CDOs.  

The primary impetus for issuing a CDO is to take advantage of either an arbitrage 

opportunity or to improve a financial institution's capital ratios.  The issuance of a market 

value CDO provides an insurance company or investment manager with the means to rapidly 

expand assets under management, leading in turn to increased management fees.  Demand for 

market value CDOs typically originates from investors who seek some exposure to the high 

yield market, but are constrained by minimum rating requirements. Market value CDOs also 

provide an investment offering not commonly available in the traditional ABS, such as notes 

whose credit ratings cover a broader credit spectrum (AAA to B) and long terms to maturity 

(4 to 15 years). 

• Collaterised Fund Obligations 

Unlike cash flow deals, the underlying asset pools for Collaterised Fund Obligations are Hedge Funds 

assets and their value at each valuation date are marked-to-market. The market value CFO meets 

principal (if applicable) and interest liabilities by generating cash from trading assets and from interest 

or dividends on invested assets.  

Hedge fund assets do not generate predictable cash flow streams, but have significant market value 

upside potential as well as significant downside potential. Market value deal managers trade actively 

and aggressively and can employ leverage. Of course, not every trade results in a gain. The ratio of the 
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market value of assets to the face value of liabilities is a key risk metric of a market value CFO. The 

amount of debt or note tranches that a CFO can issue as a percentage of market value is limited by a 

“haircut” to maintain a set level of theoretical over- collateralisation. 

The CFO methodology enhances the framework of market value transaction as opposed to 

classical cash transaction where one disregards the market value of the asset. The Net Asset 

Value, and liquidity profile monitoring are key factors in CFO methodology, and also in the 

following market new types of transactions. 

• SIV (Structured Investment Vehicle, can be seen as long or long-short credit only 

hedge fund strategy) 

• Market Value CDO 

• Equity Default Swap, Equity CDO 

• FX CDO  

• Commodities CDO 

 

 

Figure 1.14: Generic market value CDO structure (Source: BNP Paribas) 

 

• Constant Proportion Portfolio Insurance (CPPI) 

The constant proportion portfolio insurance (CPPI), first established by Black and Jones 

(1986), is a technique for leveraging up investments while providing full or partial protection. 

This method has been used extensively in equities and hedge funds and is now applied to the 

credit market. The investment is comprised of two parts:- 

Risky asset + Risk Free Asset (Zero coupon bonds) 

The higher the amount of risky assets in the portfolio, the higher the potential returns over the 

principal amount. The fraction of risky asset in the dynamic basket is referred to as 

 25 Page 25



Chapter 1: Introduction  D. Totouom  
 

“Exposure”. It is adjusted from time to time to maximize potential return and ensure principal 

protection. CPPI rebalances between an investment in the risky asset and a zero coupon bond to 

provide principal protection 

 

 

 

 

 

 

Figure 1.15: Typical constant proportion portfolio insurance CPPI structure 
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• Constant proportion debt obligations (CPDO) 
Ri Zesky Asset

Investment in
ro Bond

Constant proportion debt obligations (CPDOs) are a recent innovation in the credit market 

answering the growing need for a rated coupon. CPDOs are essentially a variant of CPPI. The 

main differences are a fixed coupon with no upside and different leverage rules. Like credit 

CPPIs, CPDOs give leveraged exposure to credit portfolios, although they do not offer 

principal protection to investors. Constant proportion debt obligations (CPDOs) are 

engineered to combine attractive yield and high ratings for investors who typically take 

exposure to a large diversified portfolio of credits without engendering the traditional 

correlation risk present on single-tranche CDO transactions (STCDO). 

A Constant Proportion Debt Obligation could be backed by an index of debt securities (such 

as CDX or Itraxx) or could be deal specific). This is periodically rolled, thus introducing 

market risk through the rollover. The leverage of the CPDO is periodically re-adjusted to 

match asset and liability spread. 
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Figure 1.16: Typical structure of a constant proportion debt obligations (CPDO). (Source: BNP Paribas) 

 

Terminology used in CPDO 

Note Value (NV): This is the current market value of the CPDO and is calculated as the 

present value of all outstanding positions which includes the cash deposit and any other 

unrealised gains/losses. 

Cash Deposit: Like the CPPI, the cash deposit account holds the investment proceeds, 

interest, premiums and any mark-to-market gains achieved. Any losses which arise are also 

settled using cash from this account. 

Target Redemption Value (TRV): This is the present value of all promised future liabilities 

(coupons and principal payments) payable under the CPDO strategy. 

Shortfall: The shortfall is calculated as the difference between the TRV and the NV, and 

represents the value that still needs to be extracted from the strategy to enable it to ‘cash-in’. 

The size of the shortfall therefore drives the allocation to the credit risky portfolio; as the 

shortfall increases a more leveraged strategy is adopted. The overall aim of the CPDO 

strategy is to reduce this shortfall to zero prior to maturity. 

Gearing Factor (GF): The (static) gearing factor determines the credit exposure, and hence 

the risk, of the CPDO strategy. A high factor increases the exposure and hence the probability 

of triggering either a cash-in or a cash-out event. 
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Investment Portfolio Premium Value (IPPV): This is the present value of all future 

premiums that will be paid by the credit assets held in the investment portfolio. The IPPV is 

used to determine the target credit exposure, and hence the leverage, of the strategy. A higher 

IPPV essentially means that less exposure needs to be taken. 

1.5 Pricing first generation products 

At the outset of credit derivatives, the key problem was in being able to price products based 

on single assets. The increased liquidity of the CDS market for the standard maturities (3Y, 

5Y, 7Y and even 10Y) means that this is no longer the main problem. Market values are used, 

at least for the well-known names. 

However, the problem of data availability and quality is still an issue for more illiquid 

reference assets or names. Under ideal conditions, firms would price a credit derivative from a 

name-specific credit curve. In the absence of reliable market data, generic credit curves (e.g., 

AA Utilities) are used. Whatever the approach, curves are generally constructed using 

available market information, whether it is a term structure of spreads for a generic curve or 

market quoted CDS rates for a specific name. The next section shows how this is done. 

Constructing the swap curves 

A bootstrap method is selected in constructing swap curves. This is done mainly because there 

are only a handful of benchmark swap inputs covering the maturity horizons. Since these 

swaps are highly liquid, they should be priced exactly. The bootstrap procedure processes 

consecutive swap instruments individually to ensure exact fits. Furthermore, the method, 

along with low-order polynomial parameterization, ensures that the constructed curve does 

not have excessive wiggles due to large spacing between swap maturities. In contrast, the 

yield curve for treasuries is usually built with least-square optimization of cubic splines. This 

is because in the U.S. Treasury market there are over a hundred bonds densely distributed 

over the maturity horizon, and the supply-demand for different bonds causes differences in 

their relative prices. The least squares method searches for the best fit, not for exact pricing of 

input bonds, but rather for overall accuracy and stability. The stability is achievable because 

of the large number of bond inputs. In comparison, the method would not be effective for 

constructing swap curves due to the limited number of swap inputs. Using splines with 

relatively few inputs usually leads to wavy and unstable curves. 
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Figure 1.17: Standard CDS maturities quoted in the market for liquid company. Source Bloomberg  

 

After the curve of benchmark securities is constructed, the credit derivative pricing model 

must then be calibrated to the market which –assuming deterministic recovery rates – 

generates the hazard rates.  

Figure 1.17 shows the quotes on Bloomberg for the standard CDS maturities for a liquid 

company. The implied hazard rates for the company above given different recovery rates 

assumptions are given in Table 1.2. 

 

Table 1.2 : Implied default hazard rate for different recovery rates assumptions 

Year Hazard Rate ( 
30% RR)

Hazard Rate 
( 40% RR)

Hazard Rate 
( 50% RR)

Hazard Rate 
( 60% RR)

0.5 0.00045        0.00053       0.00063       0.00079       
1 0.00045        0.00053       0.00063       0.00079       
2 0.00071        0.00083       0.00100       0.00125       
3 0.00089        0.00104       0.00125       0.00156       
4 0.00109        0.00127       0.00152       0.00190       
5 0.00143        0.00167       0.00200       0.00250       
7 0.00210        0.00245       0.00294       0.00367       

10 0.00257        0.00300       0.00360       0.00450        
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Figure 1.18 : Implied default hazard rate for different recovery rates assumptions 

 

Calibration flexibility is a critical piece of the risk management equation, especially with the 

variability and unreliable quality of input data. For example, recovery rate assumptions are 

generally based around historically observed recoveries (by sector and seniority) provided by 

the rating agencies. Because these recovery rates are a very difficult to estimate and since 

there is no liquid market on recovery rate such as Recovery Default Swap, one has to use the 

recovery rates with care in the calibration framework. The ability to stress test these 

assumptions and see their effect on model risk is crucial. 

The recovery rate is usually modelled as a stochastic variable derived from a beta distribution 

with two parameters: mean and standard deviation, which depend on the country and the 

seniority. 

Table 1.3 : Corporate: Information on 500 non-financial public and private US Companies that have defaulted since 
1998, Structured Finance Instruments: Information on 2,000 defaulted Banks, loans, high yield bonds and other debt 

instruments (Source S&P) 

 U.K. U.S. France

Mean 60% 50% 40%

Standard deviation 20% 20% 20%

Mean 33% 38% 29%

Standard deviation 15% 20% 15%

Mean 17% 20% 14%

Standard deviation 13% 15% 11%

Mean 25% 25% 25%

Standard deviation 12% 12% 12%Sovereigns

Senior 
Secured

Senior 
Unsecured

 Subordinate
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Figure 1.19 : Source S&P: on the left figure, Beta Distributed Recovery Rates for Senior Secured Debt and on the 
right: Beta Distributed Recovery Rates for Senior Unsecured Debt 

 

The lack of quality market data and hence the potential inconsistencies in valuation and risk 

management are important issues that must be addressed in order to accurately manage interest rate 

risk, foreign exchange risk and credit risk at a portfolio level across different assets, liabilities and 

derivatives. 

The gap in reliable market data is being addressed by a number of new information providers 

that have entered the market. Many of these providers stem from broker-dealers, who have 

years of compiled data directly from their businesses.  

However, even as the market develops more consistent methodologies for valuing single-

name products, the proliferation of basket trades and other portfolio products is making new 

demands for more consistency in default probability correlation models and challenging 

previous assumptions about credit correlation. 

1.6 Literature review 

This thesis focuses on the question of modelling the “correlation” (or more accurately the 

dependency structure) between the entities in the portfolio. Over the years many different 

models have been developed for this. They include the Gaussian copula and interpolation of 

base correlations, parametric factor copulas (local correlation), non-parametric factor 

approaches (implied copula), loss dynamics (top down, bottom up, etc). In this section we 

review the strengths and weaknesses of these models and explain why a new model is 

required. 

As the solutions proposed in this thesis are stochastic processes based on Archimedean 

copulas, we review the literature on copulas, focussing on Archimedean copula in the second 

part of this section. 
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Early models for risk management   

Merton (1974) was the first to model the default of a company. Default probabilities are 

calculated based on the firm’s capital structure and asset volatility. The model says that a firm 

defaults when the value of its liabilities exceeds its assets at the debt’s maturity date. It uses 

an option framework to calculate this risk neutral default probability. The equity holders of 

the firm have a call option on the underlying value of the firm with a strike price equal to the 

face value of the firm’s debt. Figure 1.20 illustrates the concept. 

 

 

 

 

 

 

 

 

Figure 1.20 : Asset value dynamics in Merton’s model of the firm. In the illustration, after two near misses (on left) 
the firm finally defaults  (on right) 
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The model recognizes that neither the underlying value of the firm nor its volatility are directly 

observable. Under the model’s assumptions both can be inferred from the value of equity, the 

volatility of equity and several other observable variables by solving two nonlinear simultaneous 

equations. After inferring these values, the model specifies that the probability of default is the 

cumulative normal distribution function of a z-score depending on the firm’s underlying value, the 

firm’s volatility and the face value of the firm’s debt.  

As the model assumes that asset returns follow a geometric Brownian motion process, the 

joint distribution of asset returns is multivariate normal (and hence is uniquely determined by 

its correlation matrix). The default correlation is taken into account through the correlation 

asset returns of the companies. 
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Asset Value Dynamic in the Merton Model
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Figure 1.21 : Asset value dynamics of two correlated firms in Merton’s model. The illustration shows the z-scores of 
the entities. The correlation between Z1 & Z2 means that Z2’s defaults makes Z1’s default much more likely 

 

As KMV and CreditMetrics are extensions of Merton’s model, the joint distribution of asset 

returns (after transformation) is the standard multivariate normal with a common correlation 

between the asset returns. If Zi denotes the (transformed) asset returns, and if ρ denotes the 

correlation between assets returns, then Zi can be written in terms of a common term Y plus 

an uncorrelated terms Ui, which are i.i.d. standard normal: 

 1i iZ Y Uρ ρ= + −  

Then conditional on Y, the default rate for an asset with a mean default rate p is 
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The default rate volatility can be expressed in terms of the bivariate normal integral, using: 

 2 1 1
2[ ] ( ( ), ( ); )R p p ρ− −= Φ Φ ΦE . 

Moody’s KMV  approach  

KMV applies the framework developed by Merton (1974). The structural model used by 

Moody’s KMV in modelling default risk provides a framework to help in understanding the 

factors affecting credit quality and is based on an in-depth analysis of market information in 

the form of valuations (prices) and volatility of valuations (business risk) as observed amongst 

public firms.  

Moody’s KMV approach, also called Vasicek’s approach, has been used widely in the market, 

and its one factor asymptotic approach for homogeneous loan portfolio loss distribution is a 
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benchmark. One of its strong points is that it provides an asymptotic expression for the 

percentage of portfolio loss for a large homogeneous portfolio. 

Asymptotic Vasicek’s formula in a one-factor model for a homogeneous loan portfolio 

Following the Merton model, the value of the ith borrower’s assets  follows a geometric 

Brownian process :  

iA

( )
( ) ( )d

dt d ti
i i i i

i

A t
A w

A t
μ σ= +  

The asset value at maturity T  can be represented as:  

[ ] [ ] 2
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where iε  is a standard normal variable. 

A default occurs if the value of the borrower’s assets at the loan maturity  falls below the 

contractual value  of its obligations payable. Thus, a default situation occurs when 

; that is, 
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The probability of default of the ith loan is then: 

                 [ ] ( )i i i ip (T) P A (T) < B (T) N c (T)= =   

where  is the cumulative normal distribution. N

Let  be an indicator variable, such that )(TEi 1)( =TEi  if the ith firm has defaulted between 

time 0 and T, and 0 otherwise. We can write: [ ]i ip (T) = P E (T) = 1 . With a loss-given-default 

 for the firm , the percentage loss is: iLGD i

               iii LGDTETL ⋅= )()(%

Consider a portfolio consisting of  loans with the same term T. If theN iε are jointly standard 

normal variables with the same pair wise correlation, ρ, they can therefore be expressed in 

terms of a common factor Y and mutually independent idiosyncratic errors  
1 2
, ,...,

nF F Fε ε ε . 

  1
ii FYε ρ ε ρ= + −  

The variable Y  can be interpreted as a portfolio common factor, such as an economic index, 

over the interval (0, T ). Then the term ρY  is the company’s exposure to the common 
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factor and the term 1
iFε ρ−  represents the company specific risk. When the common factor 

is fixed, it is not difficult to show that the conditional probability of an event of default on any 

one loan is given by: 
1( )Pr ( )

1
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i
N p YY N ρ

ρ

−⎛ ⎞−
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The probability  is the loan default probability under scenario Y; the unconditional 

default probability  is the average of the conditional probabilities over the scenarios. The 

percentage loss  conditional on the factor, Y : 

Pr ( )i Y

ip

)(% YL i iii LGDYpYL ⋅= )()(% . 

If  denotes the percentage loss for the portfolio and w%L i are the weights: 
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Vasicek worked out an asymptotic expression for  if the portfolio is homogeneous (the 

same probability of default p for all loans). The portfolio percentage loss  conditional 

on the factor Y  converges towards its expectation P, as N tends to infinity (the infinite 

granular portfolio hypothesis) if and only if the sum of the squares of the weights tends to 

zero.  
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Provided that the condition  holds, the portfolio conditional on the factor Y  is: 2
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CreditMetrics approach 

CreditMetrics is based on the risk measurement methodology developed by JP Morgan for the 

measurement, management and control of the credit risk in its trading, arbitrage and 

investment account activities. It can be seen as a tool for professional risk managers in the 

financial markets. It is widely used now as a benchmark for the credit risk measurement.  

The principal aim of CreditMetrics was to capture counterparty default risk as per the 

available data on credit quality in the market. In this approach it is much more complicated to 

assess credit risk than market risk. In fact, the market risk is easy to compute because we 

easily have the daily price observations available to calculate the VaR. The fundamental 
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technique in CreditMetrics is the migration analysis from one credit state to another through 

time. JP Morgan developed these transition matrices in 1987 and this was the starting point of 

all the other methods based on transition matrices to build their own portfolio credit risk 

calculation.  

CreditMetrics method is an analytic method based on the Monte Carlo simulations which can 

be described in 3 steps: 

• Generation of scenarios: in a time horizon the aim is to generate future credit ratings 

for the obligors in the overall portfolio. This is done through a basic procedure which 

consists on the calculating the asset return limit for the obligors, generating the 

scenarios on the asset returns according to a normal distribution and finally the 

mapping of the asset return scenarios to credit rating scenarios (transition 

probabilities). 

• Portfolio valuation: in each scenario, the portfolio is revalued in order to reflect the 

changes in credit ratings. This step will return a large number of possible future 

portfolio values.  

• Aggregation of the results: having the distribution generated into different scenarios, 

the model allows us to estimate risk parameters at the portfolio level. 

 

CreditPortfolioView: an econometric approach  

In 1998 McKinsey introduced the CreditPortfolioView approach. Tom Wilson, formerly of 

McKinsey, developed a credit portfolio model which takes account of the current macro-

economic environment. Rather than using historical default rate averages calculated from 

decades of data, CreditPortfolioView uses default probabilities conditional on the current state 

of the economy. The portfolio loss distribution is conditioned by the current state of the 

economy for each country and industry segment. 

The macro-economic variable, Y, is assumed to be normally distributed. The default rate is 

given as a function of  Y by the logit function: 

    ( ) 1/(1 )a bYR Y e += +

Had the cumulative normal function been used instead of the logit function for R(Y), the 

results would have been similar to those of the Merton model. 
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CreditRisk+ : an actuarial approach 

Unlike the Merton-based approach used by Portfolio Manager and CreditMetrics, the 

CreditRisk+ methodology developed by Tom Wilde (1997) at Credit Suisse is based on 

mathematical models used in the insurance industry. CreditRisk+ models default rates as 

continuous random variables. Observed default rates for credit ratings vary over time, and the 

uncertainty in these rates is captured by the default rate volatility estimates (standard 

deviations).  

Default correlation is generally caused by external factors such as regional economic strength 

or industry weakness. Credit Suisse argues that default correlations are difficult to observe 

and are unstable over time. Instead of trying to model these correlations directly, CreditRisk+ 

uses the default rate volatilities to capture the effect of default correlations and produce a long 

tail in the portfolio loss distribution. CreditRisk+ can handle thousands of exposures and uses 

a portfolio approach which reduces risk for diversification.  

CreditRisk+ modelling framework. 

Consider a portfolio with N loans or credits. The default or non-default of the ith loan by a 

fixed time horizon is indicated by a random variable which can only take the values 1 (for 

default) or 0 otherwise. Its exposure, , is measured as a positive integer multiple of a basic 

currency unit. Consequently 

iD

iE

( ) [ ]i iP D = 1 0,1p = ∈ is the default probability of the ith loan. The 

realized total loss L0 of the portfolio is then given as: 
N

0 i
i=1

L = E D∑ i
 

If the default probabilities pi are small, the total loss distribution does not change too much 

when the Bernoulli variables are replaced by random variables  with non-

negative integer values. Conditional on some factors these are assumed to be independent 

Poisson-distributed with measurable intensities such that 

iD 1, , NN N"

0 , , 0NR R" ;

[ ] , 1, ,i iE R p i N= = "  

CreditRisk+ uses the following approximate distribution: 

                                                         

N

0 i
i=1

L = E N∑ i

The stochastic intensities Ri of the Ni are given as: 
 

, , , , 0
0 1 1

, 1, , , 0, 0, 1, 0 & constant
K K N

i j i j j i j i j i
j j i

R r S i N r r r S
= = =

= = =∑ ∑ ∑" ; ; ;  
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The Sj are K independent gamma-distributed with parameters (αj, βj). They are usually 

interpreted as default intensities which are characteristic for sectors, countries, or branches. 

[ ] 0, 0 ,
1

, 1, ,
K

i i i j i j j
j

E R p r S r i Nα β
=

= = + =∑ "  

 
Table 1.4 compares these risk management model used by banks. 

 Credit Migration Approach Contingent claim 

approach 

Actuarial 

Approach 

Model CreditMetrics CreditPortfolioView Moody’s KMV CreditRisk+

Risks 

definition 

Change in market  

value 

Change in market  

value 
Default losses Default losses

Credit 

events 

Downgrade/ 

Default 
Downgrade/ Default 

Continuos default 

probabilities 
Default 

Risk 

drivers 
Asset Value Macro-factors Asset Values 

Expected 

default rate 

Transition 

probabilitie

s 

Constant 
Driven by 

 macro-factors 

Driven by: 

Individual term 

structure of EDF 

Asset value 

processes 

N/A 

Correlation 

of credit 

events 

Standard 

multivariate normal 

distribution (Equity 

factor model) 

Conditional default 

probabilities as a 

function of macro-

factors 

Standard 

multivariate normal 

distribution (Asset 

factor model) 

Conditional 

default 

probabilities 

as a function 

of common 

risk factors 

Recovery 

rates 

Random (Beta 

distribution) 

Random (empirical 

distribution) 

Random (Beta 

distribution) 

Deterministic 

Loss Given 

default 

Numerical 

approach 
Simulation/Analytic Simulation Simulation/Analytic Analytic 
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Gordy (2001) and Tasche & al (2002) have computed the characteristic function of the loss: 

 ( ) ( )0 0 0L
0 0, ,1

1 1

E z exp 1 1
jN NKE E

i j jj
i i

g z S r z r zj i

α

β β
−

=
= =

⎛ ⎞⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞
= = − + −⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝⎝ ⎠

∑ ∑∏
⎞
⎟
⎠

 

As we have shown above, exposures can be allocated to industrial or geographical sectors and 

different time horizons of exposure can be incorporated. The minimal data requirements make 

the model easy to implement, and the analytical calculation of the portfolio loss distribution is 

very fast. 

Single versus multi-name products ; single versus multiperiod 

When analysing credit derivatives it is interesting to split them into four broad categories 

depend on whether they are single or multi-name products and whether they refer to single 

time periods or several. Table 1.5 presents the different credit derivatives in these four 

categories. We now present the pricing models in the same categories. 

 

Table 1.5: Schematic comparison of credit derivatives

 Single Name 

Payoff depends only on one 

risky asset 

Multi Names 

Payoff depends only on the pool of 

underlying credits 

Single  Period 

Static C
redit m

odel 

 

 

• Corporate Bonds 

• CDS (Credit default Swap) 

• (Index Swap) 

• … 

Depends only on actual loss distribution 

• CDO Tranche 

• CDOn 

• NtD (Nth-To-Default basket) 

• … 

M
ulti  Period 

D
ynam

ic C
redit m

odel 

• CDS option 

• Forward Start products 

• … 

Depends on forward loss distribution 

• Forward Tranche 

• Tranche Options 

• Leverage Super Senior 

• … 
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Single -period static credit models 

Gaussian copula – the current industry standard 

Base correlation, first developed by JP Morgan: McGinty & Ahulwalia, (2004a & b) has 

become the industry standard for pricing CDO tranches. The base correlation model is based 

on Homogeneous Large Pool Gaussian Copula Model, which is a simplified version of the 

Gaussian copula widely used in the market. This model is not new, it is a simple methodology 

that is almost identical to the original CreditMetrics model (Gupton et al, 1997). It is a 

simplified form of earlier one-factor models (Vasicek, 1987). 

Hyperbolic copulas induced by a one factor Levy model 

In the same way that Vasicek’s one-factor model results in a Gaussian copula, a more general 

approach using a Lévy factor model has been introduced and provides an endless variety of 

different copulas. To understand the extent of the class of copulas that we can choose from, 

we start by presenting some characteristics of the Lévy process. 

The generalized hyperbolic (GH) distribution was introduced by Barndorff-Nielsen (1977b) 

for describing dune movements and was first applied to financial time series by Eberlein and 

Keller (1995). Today, the GH distribution and its subclasses are very popular within finance 

since they give almost exact fits to different log returns. See for example Prause (1999). 

Barndorff-Nielsen (1977a) proved that the GH distribution is infinitely divisible and thus 

induces a Lévy process. This is why hyperbolic distributions are used for correlated default 

modelling for CDO pricing. Levy copulas do not necessarily introduce asymmetric 

dependence and are only used in practice as static copula for vanilla CDO. 

Multi  Period Dynamic Credit model 

Classical reduced form models 

Reduced-form models provide an alternative to structural models (Merton type model). They 

were introduced by Duffie and Gârleanu (2001). They assume that the hazard rate of a 

company is the sum of an idiosyncratic component, a component common to all companies, 

and a component common to all companies in the same sector. Each component follows a 

process with both a diffusion and a jump component.  

Dynamic generalized-Poisson loss model 

Brigo & al (2007 & 2006) considered a dynamic model for the number of defaults in a pool of 

names. In contrast to most other approaches, their model which is based on generalized 

Poisson processes, allows for more than one default in small time intervals.  
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They model the pool loss directly and introduce extensions based on piecewise-gamma, 

scenario-based or CIR random intensities, leading to richer spread dynamics. According to the 

authors, their model was related to insurance shock models leading to a “bottom-up” approach 

where single name default dependence is represented through a Marshal-Olkin copula, but 

they have not yet provided a valid proof. 

Affine point processes 

Giesecke & al (2006 & 2007) proposed an affine point process as a dynamic model of 

portfolio loss. The recovery at each default is random and events are governed by an intensity 

that is driven by affine jump diffusion risk factors. The portfolio loss itself is a risk factor so 

past defaults and their recoveries influence future loss dynamics. This specification 

incorporates feedback from events and a dependence structure among default and recovery 

rates. Hawkes model (Hawkes & al, 1971 & 1974) and Moller, Jesper & Rasmussen (2004), 

are examples of a computationally tractable affine point process used by Giesecke & al. 

 

 
Figure 1.22: Sample paths of the intensity and the associated loss process L. A jumpin the intensity represents the 
impact of a default. The jump size is the product of the loss at default and the sensitivity parameter δ = 1. The loss 
at default is drawn from an independent uniform distribution on {0:4; 0:6; 0:8; 1}. The reversion rate κ= 5 and the 
reversion level λ long term = 0:7. The volatility  σ= 0:2 controls the diffusiveusive uctuation of the intensity between 
events. Source: Giesecke & al (2006 & 2007) 
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The intensity based model for portfolio default and loss is defined by: 

Simple form 

N ( ) Nt t
mean reversion coeff jump term

d dλ κ λ λ δ∞= × − + tt dL  

General form 

N ( ) Nt t t
mean reversion coeff

t t
jump termdiffusion term

d dtλ κ λ λ σ λ δ∞= × − + +��	�
dW dL  

The authors show that the model leads to analytically tractable transform based pricing, 

hedging and calibration of credit derivatives. But it is difficult to analyse idiosyncratic risk 

within this framework. 

This model does not specify the real granularity in the portfolio (example different names 

with different spreads and recovery rates). It is also unclear how one could analyses 

idiosyncratic risk, or how we can do a mapping between the correlation or dependence and 

the volatility and jump of the underlying process. 

Markovian Bivariate Spread-Loss Model for Portfolio Credit Derivatives 

The BSLP model developed by Arnsdorf and Halperin (2007) is a two-dimensional dynamic model of 

interacting portfolio-level loss and loss intensity processes. It is constructed as a Markovian, short-rate 

intensity model, which facilitates fast lattice methods for pricing various portfolio credit derivatives 

such as tranche options, forward-starting tranches, leveraged super-senior tranches, but only on a very 

liquid index, without taking into account the dynamics of single names. As for the previous model, 

this one does not specify the real granularity in the portfolio (e.g. different names with different 

spreads and recovery rates). It is also unclear how one could analyse idiosyncratic risk, or how we can 

do a mapping between the correlation or dependence and the volatility and jump of the underlying 

process. 

Local Intensity Model  

This model can be used only with local intensity incorporating contagion and assuming that 

only one default can happen per time period, dt. The link between the marginal default 

distribution over time dt and the local intensity is given by: 

( ) ( ) ( ) ( )( ) ( ), 1, 1, 1 1,
default no default

k t k t dt k t k t dt k tπ λ π λ π= − − + − −����	���
 ,
�����	����


 

where  k is the number of defaults in the portfolio and the intensity is given by: 

( ) ( ) ( )
1

1, ,
,

k

i

dk t i t
k t dt

λ π
π =

= − ∑  
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Hence, starting at k = 0, the local intensity can be solve iteratively. So it  is of the form: 

( ) ( ) ( ), ,t t t

Contagion factors Number names in portfolio

K t f K t N Kλ = −��	�
 ��	�
  

Stochastic Intensity Bivariate Spread Loss Process; (BSLP) Model  

A stochastic driven factor Yt is introduced.  

( ) ( ) ( ), ,t t t

Contagion factors Number names in portfolio

K t f K t N K Yλ = × −��	�
 ��	�
 t×  

Its dynamics are given by the following equation: 

( ) ( )( )t
t t t

t

dY a Ln Ln Y dW dK
Y

θ σ= − + + tγ  

The one-dimensional local intensity model obtained in the zero volatility limit of the 

stochastic intensity is useful in its own right for pricing non-standard index tranches by 

arbitrage-free interpolation. But it is difficult to analyse idiosyncratic risk within this 

framework. 

Dynamic Credit Correlation Model ( derived from credit barrier model) 

The dynamic credit correlation model proposed by Albanese et al (2006) is based on 

continuous time lattice models correlated by conditioning to a non-recombining tree. The 

model describes rating transitions and spread dynamics as well as default events, while 

preserving single name marginals. Its strengths are that it can be made consistent with many 

data sources such as rating transition probabilities, historical default probabilities, single name 

credit spread curves and equilibrium recovery swap rates. The authors found that tranche 

spreads for the CDX and iTraxx index portfolios in the period subsequent to the summer 2005 

could be calibrated simultaneously.  

The problem with this model is that it requires a full calibration of credit spreads and the 

correlation. It lacks the flexibility of a copula approach where the dynamics of the margins are 

segregated from that of the joint distribution. It is very difficult to translate pricing on very 

liquid names or index with different set of products for calibration into a pricing of bespoke 

portfolio. This model is very computer intensive and it lacks a simple asymptotic properties.  

First Passage Model under Stochastic Volatility 

Fouque & al (2006) extended the first passage model to model default dependency by 

extending it to multi-dimensions and by incorporating stochastic volatility. The authors 

consider a pool of N defaultable bonds whose underlying firm process ( ){ }
1

Ni
t i

X
=

exhibits the 
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following multi-factor stochastic volatility dynamics under the real world probability 

measure: 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1
1 1

2 2
2 2

,

,

,

t t t t t t

i
t t t t t t

N N N
t N t N t t t

dX X dt f Y Z X dW

dX X dt f Y Z X dW

dX X dt f Y Z X dW

μ

μ

μ

= +

= +

= +

… " """

2

N
t

 

Where 

( ) ( )

( ) ( )

21

2

YY
t Y t t t

Z
t Z t Z t

dY m Y dt Y dW

dZ m Z dt Y dW

υ
ε ε
δ υ δ

= − +

= − + t

  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
{ }

,

, 1

i Y i Z
t t iY t t iZ

Z Y i j
t tZ iY t t i j

E dW dW E dW dW

E dW dW E dW dW dt

ρ ρ

ρ ≠

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

 

 

The default time of the ith firm is defined as: 

   ( ) ( ) ( ) ( ){ } ( ) ( ) ( )inf , , ii i i i t
t ts t X B s B s K ei ητ = ≥ ≤ = ,  

where B(i)(t) is the pre-specified default threshold at time t, as in Black and Cox (1976). 

 

This modelling approach falls into the conditional independence framework which simplifies 

the computation. Using regular and singular perturbation techniques as in an earlier paper on 

single names (Fouque & al, 2003), they obtained an approximation for the joint survival 

probabilities. The asymptotic formulation of this model could help for a fast computation of 

standard vanilla CDO, but is very computer intensive and lacks simple asymptotic properties 

when modelling more exotic products.  
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1.6 Archimedean copulas within the credit derivatives framework 

Our overall objective is to develop a family of multivariate copula processes with different 

types of upper and lower tail dependence so as to be able to reproduce the correlation 

smiles/skews observed in practice. We have chosen to work with Archimedean copulas 

because they encompass a wide range of types of upper and lower tail dependence.  

 

Archimedean copulas are defined via a generator, f6  : 

  [ ]1
1 n 1 nC(u , u ) f f (u ) f (u )−= + +… …       

An enormous amount of literature exists on copulas especially Archimedean copulas, with 

applications in a wide range of fields. But when one looks closely at it, the most papers 

concern bivariate copulas. Much less has been published on multivariate copulas. In the next 

section we explain the theoretical difficulties involving in extending from bivariate to 

trivariate and hence to multivariate copulas. Clearly it is even more difficult to construct 

dynamic multivariate copula processes than static copulas. Our aim is to construct dynamic 

copula processes based on continuous stochastic processes. 

 

Static multivariate copulas 

The canonical textbook on copulas, Nelson (1999) lists many bivariate Archimedean copulas 

(with one or more parameters) but as most are not strict 2-copulas no corresponding n-copula 

exists. The generators of strict copulas are related to specific Laplace transforms. For 

example, the generator for the Clayton copula, corresponds to a gamma distribution with 

parameter 1/θ and the Gumbel copula is related to an α-stable distribution. Table 1.6 lists a 

selection of n-copulas together with their Laplace transform. Nelsen (1999) also contains 

several counter-examples which demonstrate how wrong “intuition” can be and how difficult 

it is to find multivariate Archimedean copulas. The other major reference book, Joe (1997), 

provides some results for the trivariate & quadrivariate cases. Lindskog (2000) provides some 

interesting extensions and shows the level of constraints on the parameter values in the non-

exchangeable case. But these are all static copulas. 

 

                                                 
6 To avoid confusion, in this paper we use ϕ for  a Laplace transform, and f for the generator of  an Archimedean 

copula, whereas Nelsen (1994) uses ϕ  for the generator of an Archimedean copula. 
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Table 1.6: The Laplace Transforms corresponding to selected strict bivariate copulas (which can be extend to n-
copulas). The names LTE, LTF, LTG, LTH and LTI are derived from the naming system used by Joe (1997).  

 

Copula Name Generator (Laplace Transform) 

 
Clayton 

 
( ) ( ) θϕ

1
1 −+= ss ,  0θ >

 
 
Gumbel 
 

 

( ) ( )1
s exp s θϕ = − , 1θ >  

 
Frank 

 
( ) ( ) ( ){ }[ ]θθϕ −−−−−= exp1exp11 sLns , 0≠θ  

 
LTE 

 

( ) θ
δϕ

1
1

1
−

⎟
⎠
⎞⎜

⎝
⎛ += ss  

 
 
LTF 

 
( ) ( )( ) θδϕ

1
1 11 −− ++= sLns , 0, 1δ > θ ≥  

 
 
LTG 

 
( ) ( )[ ]{ }θδϕ

1
1 11exp sLns +−= − , 0, 1δ > θ ≥  

 
 
LTH 

 

( ) { } θ
δϕ

1
1

exp11 ⎥⎦
⎤

⎢⎣
⎡ −−−= ss , 0, 1δ > θ ≥  

 
 
 
LTI 

 

( ) ( ) θ
δϕ

1
1

111 ⎥⎦
⎤

⎢⎣
⎡ +−−= −ss , 0, 1δ > θ ≥  

 
 

Dynamic copulas seen from a time series point of view 

Econometricians have developed dynamic copula models from a time series point of view. 

Patton (2001 & 2003) developed an approach based on an ARMA-type process and applied it 

to foreign exchange data. Fermanian & Wegkamp (2004) extended Patton’s approach  which 

was based on pseudo-copulas. Duan (1995) and more recently Van den Goorbergh et al 

(2005) have used GARCH processes. A major shortcoming of these papers have is that they 

only consider bivariate cases. Chen & Fan (2005) consider a class of semi-parametric copula 
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based multivariate dynamic models which they apply to daily exchange rates. None of the 

latter seems to be suitable for pricing CDOs on large portfolios.  

Berd, Engle & Voronov (2005) have developed a more promising hydrid model in which the 

dynamics of the underlying latent variables are governed by a GARCH or a TARCH process.  

 

This has the advantage of producing aggregate return distributions that are asymmetric and 

clearly non-Gaussian. The authors used historical data on the SP500 going back to 1962 as a 

proxy for market returns (pre and post 1990). While they mention using some market data 

(e.g. the level of hazard rates and the expected default probabilities) to calibrate parameters, 

they do not seem to use the available CDS data. 

Dynamic copula processes 

Fewer papers have tackled the question from a continuous point of view. The earliest paper on 

copula processes seems to be Darsow et al (1992) who studied Archimedean copulas and 

Markov processes from a theoretical point of view. Several authors have modelled credit risk 

dynamics using default intensities rather than default times. Rogge & Schonbucher (2003) 

developed a method for modelling dynamic portfolio credit risk based on Archimedean 

copulas. They provide some very useful results that link Archimedean copulas with Laplace 

transforms, and also a fast and efficient method for simulating realisations, one that is not 

mentioned by Nelsen (1999). Following Madan’s work on stock prices (Madan & Seneta, 

1990, and Madan & Milne, 1991) and that of Cariboni & Schouten (2004) on the value of the 

firm, Joshi & Stacey (2004) used a gamma process when modelling default intensities and 

pricing CDOs. They found that a double gamma process was required to match the base 

correlations observed in the market correctly. One disadvantage of working with intensities is 

that it requires calibrating the default functions for each of the names. 

To summarize, very little work is available on multivariate copula. We will take information 

from Rogge & Schonbucher (2003) as the starting point for our models.  
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 Chapter 2 : Dynamic copula model   

Our objective is to develop a family of multivariate copula processes with different types of 

upper and lower tail dependence so as to be able to reproduce the correlation smiles/skews 

observed in practice. We chose to work with Archimedean copulas because they encompass a 

wide range of types of tail dependence. In this chapter we present two different approaches 

for developing these processes. The first model developed is a non-additive jump process 

based on a background gamma process; the second approach is based on time changed 

spectrally positive Levy process. The first approach is very convenient for simulations; the 

second approach is based on additive building blocks and hence is a more general. To start 

with we give a brief overview of Levy processes with the gamma process being a special case. 

2.1 Levy processes including gamma processes 

The emergence of Levy processes in finance literature is due to empirical observations that 

the distribution of equity returns is in general skewed and leptokurtotic. Empirical data show 

evidence for non-normally distributed credit spreads together with the presence of stochastic 

volatility and/or jumps in spread. Nowadays, a battery of models is available which capture 

non-normality and integrate stochastic volatility. After defining a Levy process, we focus on a 

model that has a gamma process as its building block. Barndorff-Nielsen and Shephard (2001) 

were first to introduce gamma processes for modelling stock market data. 

Definition of a Levy process 

A cadlag1 stochastic process (  on ) 0t ≥tX ( )ΡF,Ω, with values in such that is said to 

a Levy process if it possesses the following properties:  

nℜ 00 =X

 Independent increments: for every increasing sequence of times , the random 

variables

n0 t,...,t

1010 tttt,t ,...,
−

−−
nn

XXXXX  are independent. 

 Stationary increments  do not depend on t tt XX h −+

 Stochastic continuity: ( ) 0εXXPlim0,ε tht0h
=≥−∀ +→

;  . 

                                                 
1 Some authors do not impose the cadlag (right-continuity and left limit) property in the definition of the Levy 
process but it can be shown that every Levy Process (defined without a cadlag property) has a unique 
modification that is cadlag. Therefore the cadlag property can be assumed without loss of generality. 
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For more information on Levy processes and their applications in finance, the reader can 

consult Sato (1999) on Levy processes and infinitely divisible distribution. Carr, Geman, 

Madan and Yor (2001) developed Levy models with stochastic time. Cont and Tankov (2004) 

generalized this framework for exponential Levy Processes. This class of models is built out 

of a Levy process which is time-changed by a stochastic clock. This induces the desired 

stochastic volatility effect. 

Gamma processes 

Gamma processes belong to a special class of Levy process called subordinators. These 

consist of a purely non-Gaussian Levy process { }tX  in ( )+∞∞− , , whose Levy measure υ  

satisfies the following two conditions: 

  ( ]( ) 00, =∞−υ   

( ) +∞∫ ≺
1

0

dxxν . 

In particular, the trajectories ( )ωtXt6  are increasing functions a.s. and the transition 

kernels ( ) ( xXdyX st )=∈≡− Probdyx,K st  are supported in[ )+∞,x . 

Definition of a gamma process 

Let  be a process with independent increments following a gamma distribution such that ( )tα

( ) ( ) ( )
( )

1 2

0 0

t t t a t,aα δ α Γ δ

α

+ − ≡

=
      [2.01] 

Its value at time t has the following gamma distribution: 

( ) ( )1 2≡α Γt a t ,a         [2.02] 

and its density is given by:  

( )
( ) ( )

1

1

1

1 2
22 2

− ⎛
= ⎜

⎝ ⎠Γ

a t

a t

⎞
− ⎟

x xf x,a t ,a exp
aa a

     [2.03] 

where  is the gamma function. See Joshi & Stacey (2005) for details.  ( )xΓ

 

This process has an interesting scaling property. The gamma process ( )tα  with parameters a1 

and a2, can be rewritten as  

( ) ( )1
2

1 t a t
a
α Γ≅ ,1          [2.04] 
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where Γ(α1t,1) is a gamma process with parameters a1 and 1. So in order to simulate this 

process we merely need to be able to simulate standard gamma distributions. Two algorithms 

for doing this are given in Box 2.1 

 

 Box N° 2.1: Two algorithms for generating a standard gamma variable  
There are two well-known algorithms for simulating standard gamma variables, 

depending on the value of the parameter. 

 

Johnk’s generator of gamma variables, for 1≤a  

Repeat 

Generate i.i.d. uniform [0,1] random variables U,V 

Set aUX
1

=  and ( )aVY  

 

 

 

 

 

 

−= 1
1

Until 1≤+YX  

Generate an exponential random variable E 

( )
YX

XEa
+

≡Γ 1,  

Best’s generator of gamma variables, for  1;a

Set b  and 1−= a
4
33 −= ac  

Repeat 

Generate i.i.d. uniform [0,1] random variables U,V 

Set W ( )UU −= 1 , ⎟
⎠
⎞

⎜
⎝
⎛ −=

2
1U

W
cY , YbX +=  

If ,go to Repeat 0<X

Set   33VW64Z =

Until ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛≤ Y

b
xbLn2ZLn  

Generate an exponential random variable E 

( ) Xa ≡Γ 1,  
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2.2 Dynamic copulas from a gamma process perspective 

The first approached consisted of developing a family of dynamic Archimedean copula 

processes to model the default times. For simplicity we assume that the portfolio is large but 

not necessarily homogeneous. We require a stochastic process in which the copula defining 

the defaults amongst the N names is a valid N-dimensional copula at any point in time. As 

was explained in the literature review in Chapter 1, while there is a vast literature on bivariate 

or 2-dimensional copulas, much less has been published on multivariate copulas. Our 

approach is based on one of Rogge & Schonbucher’s observations, from which we developed 

a family of dynamic copula processes based on a generalised compound gamma process. In 

Chapter 5 we show how this can be used for pricing CDOs. 

  

Following Rogge & Schonbucher (2003), let Y be a positive random variable whose Laplace 

transform is ϕ(s) and let Ui  be n uniform random variables on [0,1] that are mutually 

independent and also independent of Y. Then the n random variables Vi  defined as 

( )i
i

Ln U
V for

Y
−⎛ ⎞

= ϕ =⎜ ⎟
⎝ ⎠

…i 1, n

( )
⎞
⎟⎟

     [2.05] 

are uniform on [0,1], and their cumulative distribution function is given  

( )
N

1
1 1 N N i

i 1

Pr ob V v , , V v v−

=

⎛
≤ ≤ = ϕ ϕ⎜⎜

⎝ ⎠
∑"      [2.06] 

Consequently their multivariate copula is the Archimedean copula having ϕ-1 as its generator.  

 

The extension from the static case to dynamic processes is straightforward. Let Y(t) be a 

stochastic process that takes positive values. It represents the state of the economy. Let ϕt(s) 

be its Laplace transform. Note that as Y(t) need not be stationary, its distribution (and hence 

ϕ) depends on t. Let Ui(t) be n mutually independent stochastic processes taking values that 

are uniform on [0,1]. As before, these must also be independent of Y(t).  

 

The procedure for simulating the dynamic copula process Vi(t) is simple. Simulate the 

processes Y(t) and the Ui(t). The copula process Vi(t) is given by: 

( )
( )( )

( )
i

i t

Ln U t
V t where Y(t) 0

Y t

⎛ ⎞−
⎜ ⎟= ϕ >
⎜ ⎟
⎝ ⎠

    [2.07] 
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At any given time t, the multivariate structure between Vi(t) and Vj(t) (for i≠ j) is just the 

Archimedean copula having ϕt
-1 as its generator. In the next sections we study the dynamic 

properties of these processes.  

Evolution of Vi(t) over time 

In this section we compute the bivariate distribution function of Vi(t) and Vi(t+δt) for two 

different cases. To simplify the notation, let 

 

( ) ( ) ( ) ( ) ( )( )
i i i iV t ,V t δtK a,b Prob V t a,V t δt b+ = < + <       [2.08] 

 

( ) ( ) ( ) ( ) ( )( )
i i i iU t ,U t δtH a,b Prob U t a, U t δt b+ = < + <  

 
Note that these can also be viewed as integral transforms. In the multi-period case, we extend 

this notation in the obvious way: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )( )
i i i

t t kδ t t nδ t
i i iV t ,...V t k δ t ,,...,V t nδ t

t t kδ t t δ t
i i i i i i

K v ,..., v ,..., v

Pr ob V t v ,...,V t k δ t v ,...,V t nδ t v

+ +
+ +

+ += < + < + < n

 
 
By conditioning on the values of Y(t) and Y(t+δt) and noting that 

 ( )( ) ( )( )1
i i iln U / Y V U exp Y v−ϕ − ≤ ⇔ ≤ − ϕ i  

 
it is easy to show that 

 
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )1 1
t t t

i i

w Y t z Y t t
i i U t ,U t δt

Prob V t w,V t δt z | Y t ,Y t t H e ,e
− −

+δ−ϕ −ϕ +δ

+
< + < + δ =

 [2.09] 
 
Hence 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )1 1

t t t

i i i i

w Y t z Y t t
V t ,V t δt U t ,U t δt

K w, z) E H e ,e
− −

+δ−ϕ −ϕ +δ

+ +
⎡ ⎤= ⎢⎣ ⎥⎦

)

    [2.10] 
 

Case N° 1 : One time step analysis 

We assume  and  are independent and that Y(t) is a stochastic process with 

independent identically distributed increments. Because of the independence and because the 

process U(t) is uniform on [0,1] 

( )iU t (iU t t+ δ

( ) ( ) ( ) ( ) ( )( )
i i i iU t ,U t δtH a,b Prob U t a) Pr ob(U t δt b a b+ = < × + < = ×  

  
If we let 1δt>0 be an indicator function that takes the value 1 if δt > 0, and 0 otherwise, then 
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( ) ( ) ( ) ( ) ( )
i i

t t t t t t t t t
i i t 0 i i t 0 i iU t , U t δt

H u ,u 1 u u 1 1 Min u ,u+δ +δ +δ
δ > δ >+

= × × + − ×
 

 
Consequently 

         [2.11] 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
t t t t t t

i i

w Y t z Y t t Y t Max w , z
t 0 t 0V (t ),V t δtK (w, z) E 1 e 1 1 e

− − − −
+δ +δ⎡ ⎤ ⎡− ϕ +ϕ +δ − ϕ ϕ⎣ ⎦ ⎣

δ > δ >+
⎡ ⎤= × + − ×⎢ ⎥⎣ ⎦

⎤
⎦

 
Since Y(t) is a stochastic process with independent identically distributed increments 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1
t t t t t

i i

1 1
t t t

w z Y t z Y t t Y t
t 0

V (t ),V (t δt )

Y t Max w , z
t 0

1 E e E e

K (w,z)

1 1 E e

− − −
+δ +δ

− −
+δ

⎡ ⎤− ϕ +ϕ −ϕ +δ −⎡ ⎤⎣ ⎦ ⎣
δ >

+

⎡ ⎤− ϕ ϕ⎣ ⎦
δ >

⎧ ⎡ ⎤ ⎦⎡ ⎤× ×⎪ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎪

= +⎨
⎪ ⎡ ⎤⎪ − × ⎢ ⎥⎣ ⎦⎩    [2.12] 

Since ϕt is a decreasing function, this simplifies to 

( ) ( )( ) ( )( )

( )
i i

1 1 1
t 0 t t t t t t t

V (t ),V (t δt )

t 0

1 w z

K (w,z)
1 1 Min(w, z)

− − −
δ > +δ δ +δ

+

δ >

⎧ ×ϕ ϕ +ϕ ×ϕ ϕ
⎪⎪= +⎨
⎪ − ×⎪⎩

z

    [2.13] 
If δt = 0 

[ ]
i iV (t),V (t 0)K (w,z) Min w+ = , z  

As δt → 0 

( ) ( )( )
[ ]

i i

i i

1 1
V (t ),V (t δt ) t t t

V ( t ),V (t 0)

As t 0 K (w, z) w z

K (w,z) Min w,z

+ −
+

+

δ → → ϕ ϕ +ϕ

≤ =

−

 

     [2.14] 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 2.1: the relation between the probability when δt = 0 and when δt → 0. Note the discontinuity at zero. 

 

0 δT +∞

1

Min[w,z]

w*z
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Case N° 2 : Multi-time step analysis    

As before, we assume  and ( )iU t ( )iU t t+ δ  are independent and that Y(t) is a stochastic 

process with independent identically distributed increments. Because of the independence, 

( ) ( ) ( ) ( )

( )

i i i

t t kδ t t nδ t
i i iU t ,...,U t k δ t ,...,U t nδ t

n
t k t t t kδ t t nδ t

δt 0 i δt 0 i i i
k 0

H u ,..., u ,..., u

1 u 1 1 Min u ,..., u ,..., u

+ +
+ +

+ δ + +

=

⎡ ⎤= × + − × ⎣ ⎦∏; ;

   
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

i i i

t t kδ t t nδ t
i i iV t ,...,V t k δ t ,...,V t nδ t

n
1 t kδ t

δt 0 t k δt i
k 0

1 t 1 t n δ t
δt 0 t i t n δt i

K v ,..., v ,..., v

1 exp v Y t k δt

E

1 1 exp Y t Max v ,..., v

+ +
+ +

− +
+

=

− − +
+

⎡ ⎤⎛ ⎞
× − ϕ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥= +⎢ ⎥
⎢ ⎥⎡ ⎤− × − ϕ ϕ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

∑;

;

    [2.15] 
 

Remark: since 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }
n n n

1 t kδ t 1 t kδ t 1 δ t
t k δt i t k δt i k δt i

k 0 k 0 m 1

v Y t k δt Y t v Y t k δt Y t v− + − + − +
+ +

= = ≥

ϕ + = × ϕ + + − ×ϕ∑ ∑ ∑ t k

kv

⎥⎦

)

)

t

 
we obtain 

( ) ( ) ( ) ( )

( ) ( )( )

( )

i i i

t t kδ t t nδ t
i i iV t ,...,V t k δ t ,...,V t nδ t

nn
1 t kδ t 1 t δ t

δt 0 t t k δt i k δt t k δt i
k 0 m 1

t t kδ t t nδ t
δt 0 i i i

K v ,..., v ,..., v

1 v

E

1 1 Min v ,..., v ,..., v

+ +
+ +

− + − +
+ +

= =

+ +

⎡ ⎤⎛ ⎞
×ϕ ϕ ϕ ϕ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥= +⎢ ⎥
⎢ ⎥⎡ ⎤− × ⎣ ⎦⎢ ⎥
⎢⎣

∑ ∏;

;

    [2.16] 
 

Properties of dynamic Archimedean copula when i≠j 

In this section we focus on the case of two different names, i & j. Using the same notation 

( ) ( )( ) ( )i ji j V (t ),V t δtProb V t w, V t δt z K (w, z+< + < =
 

 
( ) ( )( ) ( )i ji j u (t ),U t δtProb U t w, U t δt z H (w,z+< + < =

      [2.17] 
 
The simplest case is when  Ui(t) and Uj(t+δt) are independent, and when Y(t) has independent 

identically distributed increments: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
i j i j

1 1
t t tV t ,V t δt U t ,U t δt

K (w,z) H exp w Y t ,exp z Y t− −
+δ+ +

⎡ ⎤ ⎡ ⎤= −ϕ −ϕ + δ⎣ ⎦ ⎣ ⎦   [2.18] 
 

As Y(t) & Y(t+δt) need not be independent these formulas cannot be simplified. However the 

conditional probability can be factorized: 
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( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )(

i j

1 1
t t t

Prob V t w,V t δt u Y t ,Y t t

exp w Y t exp z Y t t− −
+δ

< + < + δ

= − )ϕ × −ϕ + δ      [2.19] 

We compute the conditional probability given Y(t) & Y(t+δt) and then decondition over all 

possible Y(t) & Y(t+δt). As δt → 0, this gives 

      
 [2.20] 

( ) ( )
( ) ( ) ( ) ( )1 1

t t t

i j

w Y t z Y t t
V t ,V t δt

K (w,z) E e e
− −

+δ−ϕ −ϕ +δ

+
⎡ ⎤= ×⎣ ⎦

 

In this case the results are different from those obtained earlier: 

( ) ( ) ( )( )
i j

1 1
t t tV (t),V t δt t 0

K (w,z) w
+

− −
+ δ →

= ϕ ϕ +ϕ z
 

Consequently 

( ) ( )( ) ( ) ( )( )i i i i t 0t 0
Prob V t w,V t δt z Prob V t w,V t δt z

+ δ =δ →
< + < = < + <

  [2.21] 

This approach was used in Chapter 6 for pricing CDOs. 

2.3 Dynamic copulas seen from a Levy process perspective: compound gamma process 

In the next two sections we define two compound gamma processes; firstly the standard 

version, then a more general version which is rescaled by a deterministic factor to have the 

same mean. In both cases the standard building blocks are additive. 

Definition of a standard ompound gamma process 

First we define a standard compound gamma process, X(t) or Xt for short. This is stochastic 

process with independent increments having a gamma distribution whose first parameter takes 

a value equal to the corresponding increment of the gamma defined earlier: 

( )(+ − =X(t δt) X ( t ) Γ δα t ,1)       [2.22] 

At time t, conditional on the realization of the gamma process, ( )tα , X(t) has a gamma 

distribution Γ(α(t),1). Figure 2.2 shows a typical realization of α(t) in red, together with two 

realizations of the standard compound gamma X(t) based on this. Table 2.1 gives its mean & 

variance. We will now show that X(t) is a Levy process. 
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. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Simulation of a gamma process (red) together with two realisations of the standard compound gamma 
process constructed using this realisation of α(t) 

 

Table 2.1: Mean & Variance of a standard compound gamma process 
 

Mean 1 2a a t  

Variance ( )1 2 2a a t 1 a+  

 

Proof  

Following the line of reasoning in Cont and Tankov [2004], we prove that the standard 

compound process is a Levy process. The first two properties are obvious from the definition 

given earlier. By construction the process ( ) 0t ≥tX  is defined on ( )ΡF,Ω, :  

( )( ,1tδαΓδ tδttt =−≡ + XXX )

1 a

      [2.23] 

Since α(t) is a gamma process with independent increments, for i ≠ j the increments  

( ) ( )i iα t α t −−  nd ( ) ( )j j 1α t α t −−   

are independent and so are ( )i i 1t tX X
−

− and ( )j j 1t tX X
−

− . 
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Now we show that the increments are stationary. The increment  has the gamma 

distribution 

tt XX h −+

( ) ( )( )Γ α t h α t ,1+ −  while the corresponding increment of the α process has the 

following gamma distribution: 

( ) ( ) ( 1 2α t h α t Γ a h,a+ − ≡ )

)

.        [2.24] 

Consequently the increments have a compound gamma distribution: 

( )(t h t 1 2X X Γ Γ a h,a ,1+ − ≡         [2.25] 

whose parameters depend on the time difference h but not on t itself. So the stationary 

increment  does not depend on t. tt XX h −+

Stochastic continuity:  

In order to prove that ( )t h th 0
ε 0, limP X X ε 0+→

∀ > − ≥ = , we compute the Laplace transform 

of t h t t h tX X X X+ +− = − : 

( ) ( )( )
( )( )( )

( ) ( )( )( )( ) ( )

( )( )( )
1 2

t h t t h t

1 2 1 2

1 2Γ a h,a

1 2

E exp s X X E exp s X X

E exp sΓ Γ a h,a ,1 , a 0,a 0

E exp s Γ Γ u,1 ,1 Γ a h,a u

exp a h Ln 1 Ln 1 s a

+ +⎡ ⎤ ⎡ ⎤− − = − −⎣ ⎦⎣ ⎦
⎡ ⎤= − ≥ ≥⎣ ⎦

⎡ ⎤= − =⎣ ⎦

= − + +

  

( ){ } ( )( )( ){ }t h t 1 2h 0 h 0

s 0, h 0,

lim E exp s X X lim exp a h Ln 1 Ln 1 s a 1+→ →

∀ ≥ ∀ >

⎡ ⎤− − = − + + =⎣ ⎦
  

Therefore: 

( )t h t
h 0

ε 0, lim P X X ε 0+
→

∀ > − ≥ = [      [2.26] 

Definition of a more general compound gamma process  

We now use this standard compound gamma process to define a more general compound 

gamma process, Y(t), by rescaling X(t).  Let β(t) be a positive deterministic function, i.e. β(t) 

> 0 for t > 0. Two obvious candidates are β(t) = 1/t and β(t) = exp(-t).   

 

On an incremental basis, Y(t) starts from 0 and follows the dynamic equation below. 

( ) ( ) ( ) t
tY t Y t t Y t β t

2
δ Xδ δ ⎛ ⎞

⎜ ⎟
⎝ ⎠

= + − = + δ        [2.27] 
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Using the scaling property of the gamma process, the value Y(t) has the following distribution  

( ) ( ) ( )(
n

n 0 i
i 1

δtY t Y t β t Γ α δt ,1
2
i

=

⎛ ⎞= + − ×⎜ ⎟
⎝ ⎠

∑ )      [2.28] 

In continuous time, the process Y(t) can be written as the integral of an increment of a Levy 

process (the standard compound gamma X(t) times the continuous function α(t)): 

( ) s0 s t
Y t ΔY=∑ ≺ ≺

         [2.29] 

Figure 2.3 shows the steps of construction of a general compound gamma process. Figures 2.4 

& 2.5 show several realisations of this process for the cases where β(t) = 1/t and β(t) = exp(-t) 

respectively.   

 

Figure 2.3: Simulation of general compound gamma process. The standard compound gamma process has more 
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volatility than the underlying gamma process; the general coumpound gamma is a smooth process through time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Simulation of a specific compound gamma process, β(t) = 1/t and Y(0) = Γ(a1,a2) 

 

 

Figure 2.5: Simulation of a specific compound gamma process, β(t) = exp(-t), and Y(0) = Γ(a1,a2)  

 

Some properties of the process Y(t) 

As the increments are independent, the first two moments of Y(t) are just 

( )
n

i i 1
n 1 2

i 1

t tE Y t a a β t
2

−

=

+⎛ ⎞=⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠∑ iδ       [2.30] 
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( ) ( ) ( )
2n

i i 1
n 0 1 2 2

i 1

t tVar Y t Var Y t a a 1 a β t
2

−

=

+⎛ ⎞= + +⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠∑ iδ   [2.31] 

The next step is to compute its Laplace transform ϕ(s).  

( ) ( )( )ns E exp s Y tϕ ⎡ ⎤= −⎣ ⎦

 ( )( )
1 ia δt

n
i i 1

0 2
i 1

t tE exp s Y t 1 a Ln 1 sβ
2

−

−

=

⎡ ⎤⎛ + ⎞⎛ ⎞⎡ ⎤= − + +⎢ ⎥⎜ ⎟⎜⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦
∏ ⎟

2 ⎤⎦ ⎟

    [2.32] 

This is used in the construction and simulation of the Vi(t). It is also important because it 

guarantees that the resulting copula is “strict” (see Nelsen 1997) and hence the construction 

gives rise to a valid multivariate Archimedean copula. 

 

Its continuous time limit which will be used in the next section is :  

{ }
( )

( )( ) ( )( )

i

n

max δt 0

t

0 1

0

Lim s

E exp s Y t exp exp a Ln 1 Ln 1 sβ u a du

ϕ
+→

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎡ ⎤ ⎡= − − + +⎣ ⎦ ⎣⎜ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫

   [2.33] 

Asymptotic continuous time properties of the process Y (t)  

Since we only need to know the behaviour of Y(t) between t0 and tn,we analyse the asymptotic 

behaviour of the Laplace transform of  ( ) ( )0n tYtY −  instead of ( )Y tn ,  

( ) ( ) ( )( )
n

i i 1
n 0 i

i 1

t tY t Y t β Γ α δt ,1
2

−

=

+⎛ ⎞− = ⎜ ⎟
⎝ ⎠∑  : 

1 ia δt
n

i i 1
2

i 1

t t(s) 1 a Ln 1 sβ
2

ϕ
−

−

=

⎡ ⎤⎛ + ⎞⎛ ⎞= + +⎢ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠⎣ ⎦
∏� ⎥⎟     [2.34] 

{ }
( )( ){ }

{ }i i

n
i i 1

1 i 2
max δt 0 max δt 0

i 1

t tLim Ln s Lim a δt Ln 1 a Ln 1 s β
2

ϕ
+ +

−

→ →
=

⎧ ⎫⎡ ⎤⎛ + ⎞⎪ ⎪⎛ ⎞− = − + +⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑�  

 

Based on classical results on Riemann integral theory, the Riemann sums above converge to 

the integral below. 

{ }
( ){ } ( )( )

n

i

0

t

1 2
max δt 0

t

Lim Ln (s) a Ln 1 a Ln 1 s β u duϕ
+→

⎡ ⎤− = + +⎣ ⎦∫�     [2.35] 

Hence we have computed the Laplace transform of ( ) ( )0n tYtY −  on a continuous time: 
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{ }
( )( )

n

i

0

t

1 2
max δt 0

t

Lim (s) exp a Ln 1 a Ln 1 sβ u du
+→

⎛ ⎞
⎜ ⎟⎡ϕ = − + +⎣⎜ ⎟
⎝ ⎠
∫� ⎤⎦    [2.36] 

Its moments can be obtained by differentiating and setting s = 0 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

n

0

n

0

t

n 0 1 2

t

t
2

n 0 1 2 2

t

Mean Y t Y t a a β u du

Var Y t Y t a a 1 a β u du

− =

− = +

∫

∫

� �

� �
    [2.37] 

2.4 Modelling default times  

A single name will default during a time period [ [i 1 it , t−  if and only if the variable 

 
( )

( ) ( )( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
−

−−
1ii

t
t,tt,t tYtY

ULn
V i

i1ii1i
ϕ        [2.38] 

falls below a threshold equal to its forward default probability. is a latent variable; it 

cannot be observed directly. Let us assume, as is usual in credit derivatives that the survival 

default probability of the company is given by:  

i1i t,tV
−

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

0

duuλexptS        [2.39] 

The forward default probability between during the time period [ [i 1 it , t−  is given by: 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∫

−

−

i

1i

t

t
i1i duuλexp1t,tFwdDP      [2.40] 

The default event of a company is then defined by:  

( )
i 1 it ,t i 1 iV FwdDP t , t
− −< ,  

That is, if 

( )
( ) ( )( ) ( )

i

i

i 1 i

i 1

t
t

t ,t
i i 1 t

Ln U
1 exp λ u du

Y t Y t
ϕ

−

−
−

⎛ ⎞⎛ ⎞
⎜⎜ ⎟− < − −
⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
∫ ⎟     [2.41] 

Default only occurs at discrete payment dates 

Although default events can occur at any time in practice, the legal contracts defining CDOs 

specify a finite set of n payment dates at which default may occur. Consequently, the default 
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time is the smallest time at which the value of   falls below the threshold for that time 

interval: 

i 1 it ,tV
−

( )
( )

( ) ( )( ) ( )
i

i

i 1 i

i 1

t
t

n i t ,t
i i 1 t

Ln U
τ t inf t 0, i n 1 exp λ u du

Y t Y t
ϕ

−

−
−

⎧ ⎫⎛⎛ ⎞⎪ ⎪⎜⎜ ⎟= < ≤ − < − −⎨ ⎬⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∫

⎞
⎟   [2.42] 

Lemma:  ( ){ }Pr τ t 0n = +∞ =  

Proof:  Since  is a uniform variable on [0,1] at any given time, we only need to show 

that in at least one interval[ , the probability of default is different from zero. 

i 1 it ,tV
−

[i 1 it , t−

nt < +∞ , and hence  { } ( )
i

i 1

t

t

i 1,..., n , 0 1 exp λ u du 1
−

⎛ ⎞
⎜ ⎟∀ ∈ < − − <
⎜ ⎟
⎝ ⎠
∫

Let kq be the maximum of the forward default probabilities on the intervals [ [  i 1 it , t−

{ }
( ) ( ) 1k0duuλexp1duuλexp1maxk q

t

t

t

t
n1,...,iq

q

1q

i

1i

≺≺⇒
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
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⎝

⎛
−−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∫∫

−−
∈

 [2.43] 

Since is a uniform on [0,1], 
i 1 it ,tV
−

( )

{ }
( )

( ) ( )( ) ( )
i

i

i 1 i

i 1

n

t
t

t ,t
i i 1 t

τ t

Ln U
i 1,..., n , prob 1 exp λ u du 0

Y t Y t
ϕ

−

−
−

= +∞

⎧ ⎫⎛ ⎞⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟⎜ ⎟⇒ ∀ ∈ − < − − =⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭
∫

 

But 

( )
( ) ( )( ) ( )

( )

q

q

q 1 q q 1 q

q 1

q

q 1

t
t

t ,t t ,t
q q 1 t

t

t

Ln U
prob V 1 exp λ u du

Y t Y t

1 exp λ u du 0

ϕ
− −

−

−

−

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟= − − −⎨ ⎬⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎛ ⎞
⎜ ⎟= − − ≠
⎜ ⎟
⎝ ⎠

∫

∫

≺
    [2.44] 

Hence . ( ){ } 0tτ =+∞=nprob

By construction our model is automatically calibrated to the forward default probability and 

hence to the cumulative probability. This is a desirable feature since the CDS spread or the 

forward CDS spread (which give the implied term structure) can have a wide range of shapes.  

To illustrate the procedure we have taken the historical term structure of the probability of 

default for names in Moody’s Baa2 ratings class because this is the average rating of CDO 

portfolios traded in the market. Any other class (Aaa, A2 … Ba2 Caa) could have been used; 

our model would automatically be calibrated to the term structure.  
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Box 2.2: Marginal Default Probability reconstitution with Forward Dynamic Copula 

Algorithm 

Extraction of the Survival probability curve associated with a Company:  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

0

duuλexptS   

For piecewise constant hazard rate or clean spread: 

( ) ( ) ( ) ( ) ( )
t

0

S t exp λ u du exp λt exp CleanSpread t 1 PD t
⎛ ⎞
⎜ ⎟= − = − = − × = −
⎜ ⎟
⎝ ⎠
∫   

where ( )( )
t

tPD1LndCleanSprea −
=   

Construction of the default probability curve associated with a Company: 

 ( ) ( )tS1tPD −=

Construction of the forward default probability curve given a time step : δt

( ) ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

+
−=+ ∫

+δtt

t

duuλexp1
tS
δttS1δttt,FwdDP  

For j =1 to maximum number of simulations 

 For i=1 to n (find if there is any default from today to maturity) 

 If 
( )

( ) ( )( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=
i

V  ∫
−

−−
−

i

1i

i

i1i1i

t

t1ii

t
t,tt,t duuλexp1

tYtY
ULn

≺ϕ

 Then the default happens before the maturity  

 Next j simulation 

 Aggregate results. 

 

 

Figure 2.6 compares the forward default probability produced by the forward dynamic copula 

(green) and the one extracted from idealized default probability term structure provided by 

Moody’s for a Baa2 rating based on historical data (blue). Ten thousand MC simulations were 

used to compute the model. Here, we can see that with this many simulations that we have 

convergence. 
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Figure 2.6 presents the forward default probability produced by the forward dynamic copula (green) and the one 
extract from idealized default probability term structure provided by Moody’s for a Baa2 rating based on historical 

data (blue). Here, we can see that with 10 000 simulations, we have a convergence. 

 

Figure 2.7 compares the cumulative default probability produced by the forward dynamic 

copula (green) and the one extracted from idealized default probability term structure 

provided by Moody’s for a Baa2 rating based on historical data (blue). As before, with 10 000 

simulations, the convergence is excellent. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 presents the cumulative default probability produced by the forward dynamic copula (green) and the one 
extract from idealized default probability term structure provided by Moody’s for a Baa2 rating based on historical 
data (blue) . Here, we can see that with 10 000 simulations, we have a very good convergence. 
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Asymptotic spot loss distribution with bullet exposure 

Assume that the credit portfolio consists of N underlying credits whose notionals are Pi =P/N, 

with fixed recovery rates are ( )iR R, i 1,..., N= = . The aggregate loss from today to time t is 

a fixed sum of random variables: 

( ) ( ) { }
( )

{ }i

N N

N i i τ t τ t
i 1 i 1

1 R P
Loss t 1 R P 1 1

N
= =

−
= − =∑ ≺ i∑ ≺    [2.45] 

where  is the indicator function for the default of the i{ }iτ t1 ≺
th name. Its Laplace transform is 

( )( ){ } ( )
{ }i

N

N τ t
i 1

sP 1 R
E exp s Loss t E exp 1

N
=

⎧ ⎫⎛ ⎞−⎪ ⎪− = −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑ ≺  

{ }( ) { }i i

1N
N

τ t τ ti 1
E 1 1 1 η

=

⎧ ⎫⎧ ⎫⎪ ⎪= − +⎨ ⎨
⎪ ⎪⎩ ⎭⎩ ⎭
∏ ≺ ≺ ⎬⎬   

 [2.46] 

Letting ( )( )exp s N 1 R 0η = − − >   

( )( ){ } ( )( )( )
N1

1N
N t tE exp sLoss t E 1 η exp Y PD t 1ϕ −

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪− = − − +⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 

We now compute its limit as N the number of names tends to infinity. Since 

( ) ( )

1
N

1 x
N

N n
x 0

η 1
ηlim N η 1 lim Ln η 11 x

N

sN R
→+∞ →+∞

=

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟⎧ ⎫⎛ ⎞ ∂⎪ ⎪ ⎪ ⎪⎝ ⎠− = = = = − −⎨ ⎬ ⎨ ⎬⎜ ⎟ ∂⎪ ⎪⎝ ⎠⎩ ⎭ ⎪ ⎪

⎪ ⎪⎩ ⎭

 

we obtain 

( ) ( ) ( )( )( 1
N tN

Loss t P 1 R exp Y PD tϕ −

→+∞
≈ − − )t     [2.47] 

 Asymptotic forward loss distribution 

Here we want to compute the aggregate loss from t to time T, assuming no default prior to 

time t. If k defaults had occurred in the portfolio, the analysis below would still hold, we need 

only replace N by (N-k).  

 

As before the credit portfolio consists of N underlying credits with equal notional amounts 

and with a fixed recovery rate R. The individual notional is independent of the number, k, of 
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prior defaults. For simplicity, we only consider the case where we have zero defaults prior to 

time t. As before, 

( ) ( )
{ }i

N N

N i t t T
i=1 i=1

1- R P
Loss t,T = L = 1

N ≤∑ ∑ ≺   

With , we compute its Laplace transform  ( )(exp s N 1 R 0η = − − >)

( )( ){ }

( ) ( )( )( )( ) ( ) ( )( )( )

N

N1
1 1N

T t t,T T t t,T

E exp s Loss t,T

E 1 exp Y Y FwdPD t,T η exp Y Y FwdPD t,Tϕ ϕ− −

−

⎧ ⎫⎡ ⎤⎪ ⎪= − − − + − −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 

where   

( ) ( ) ( )
( )tPD1

tPDTPDTt,FwdPD
−

−
=  

Hence, 

( )( ){ } ( ) ( )( )( )
N1

1N
N T t t,TE exp s Loss t,T E 1 η exp Y Y FwdPD t,T 1ϕ −

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪− = − − −⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

+  

So its limit as N tends to infinity is: 

( ) ( ) ( ) ( )( )( )1
T t t,TLoss t,T 1 exp Y Y FwdPD t,TN N

P R −

→+∞
≈ − − − ϕ   [2.48] 

 

The generator function of the forward copula ( )t t ,t sδϕ −  is the Laplace transform of the 

probability distribution of the forward compound gamma process ( )δttt YY −−  with the 

filtration .  δttF−

The equation for the forward loss is quite similar to that for the spot loss. The difference is 

that the total notional of the portfolio from which it should be deducted, decreases whenever 

there is a loss. 

 

2.5 Dynamic copulas from a Levy process perspective: gamma Ornstein–Uhlenbeck process 

In this section we construct another building block for dynamic copulas, but this time based 

on a gamma Ornstein–Uhlenbeck process. This process was chosen because a closed form 

solution is known for its Laplace transform.  Secondly it is a positive process and has been 

used for modelling stochastic spreads and interest rates. For example Barndorff-Nielsen and 

Shephard (2001) applied it when modelling the stock market. In that case the volatility was 

 67 Page 67



Chapter 2: Dynamic copula model Draft  D. Totouom  
 

modelled by an Ornstein Uhlenbeck (OU) process driven by a subordinator. More recently 

this process was studied by Schoutens, Simonsy & Tistaertz (2003). Their results were 

impressive in term of capturing the dynamics of the volatility of the stock prices. The process 

has also been known to geostatisticians working in the earth sciences for nearly 40 years. 

According to Chilès & Delfiner (1999, p489), Matheron (1969) called this an Ambartzumian 

after the Soviet mathematician of the same name. 

Definition of gamma Ornstein–Uhlenbeck process 

We use the classical and tractable example of the gamma-OU process. The marginal law of 

the volatility is gamma-distributed. Volatility can only jump upwards and then it decays 

exponentially. A co-movement effect between up-jumps in volatility and (down)-jumps in the 

stock price is also incorporated to make the price of the asset jump downwards when the 

volatility jumps upward. In the absence of a jump, the asset price process moves continuously 

and the volatility decays also continuously. Other choices for OU-processes can be made; we 

mention especially the Inverse Gaussian OU process; this is also tractable. 

 

The squared volatility now follows a SDE of the form: 

( ) ( ) ( tdzdtttd λλσσ +−= 22 ),       [2.49] 

where 0;λ  and { }0, ≥= tzz t  is a subordinator. 

The risk-neutral dynamics of the log-price ( )tt SLnZ = are given by: 

( ) ( ) ( ) ( )tdzdWtdttqrdZ tt λρσσρλ ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

2

2

,    [2.50] 

where ,  is a Brownian motion and is independent of the 

subordinator process . The parameter ρ controls the correlation between the 

volatility and the stock price dynamics. 

( )00 SLnZ = { 0, ≥= tWW t }

}{ 0, ≥= tzz t

 

In our case, the factor Y(t) will be a gamma-OU process; that is, 

( ) ( ) ( )dY t Y t dt dz tλ λ= − +        [2.51] 
 

With  where ( ) ( )1 2lim ,
t

Y t a a
→+∞

≡ Γ
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( ) ( ) ( )
( ) ( ) { }01

1

2

1
, 1exp2

2

≥
−

+∞→ −
Γ

= x
a

a

ttY xax
a
a

xf
     [2.52] 

Box 2.3: Reminders on the Poisson process  

A Poisson process N(t) is an increasing process at the integers 0,1,2,… Let η be the 

intensity of the Poisson process. We assume that  

• the probability of a jump in the next small time interval tδ is proportional to tδ  

• jumps by more than one do not occur,  

• jumps in disjoint time intervals happen independently of each other. Conversely, 

this means that the probability of the process remaining constant is: 

    ( ) ( )( )0 1prob N t t N t tδ ηδ+ − = = −     

Figure 2.8 presents a typical simulation of a Poisson process. 

 

 

Figure 2.8 presents a typical simulation of a Poisson process. 

 
 

This means that the Levy measure has zero drift and has the density: 

  
( ) ( ) { }01

2 1exp ≥−= x
y xa

x
a

xυ
       [2.53] 

We can deduce that the Levy density of the Levy process Z(t) has zero drift; its density 

( ) ( ) { }012 1exp ≥−= xxaaxυ .        [2.54] 
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This Levy process is a compound Poisson subordinator with exponential jump size. See Box 

2.3 for information on Poisson processes. 

 

Next we will analyse the integrated process   

( ) ( )∫=
t

dssYtY
0

~

.        [2.55] 

Based on the properties of non-Gaussian Ornstein-Uhlenbeck processes, we have the 

following: 

( ) ( ) ( )( ) ( )( )( ) sdzstt
y

dssYtY
tt

∫∫ −−−+−−=≡
0

0

0

exp11exp1~ λ
λ

λ
λ

( )
  [2.56] 

( ) ( ) ( ) ( ) ( )( )01~

0

YtYtzdssYtY
t

+−=≡ ∫ λ
λ       [2.57] 

Characteristic function of the integrated process 

Cont and Tankov (2004) gave an explicit formula for the Laplace transform of a positive 

Ornstein-Uhlenbeck process, but we derive a different formulation of the Laplace transform 

here. 

( )( )

( )( ) ( )( )( )0

0

exp

exp 1 exp 1 exp
t

E uY t

uy ut l t s dλ λ
λ λ

⎡ ⎤−⎣ ⎦
⎛ ⎞⎛⎜ ⎟= − − − + − − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

�

s⎞
    [2.58] 

Where: 

( ) ( )( )[ ] ( )ua
uauzEul

+
=−=

1

21exp λ
 

( )( )

( )( ) ( )( )0 2 2

1 1 1

exp

exp 1 exp 1 1 exp

E uY t

uy u a t u a ut Ln
a u a u a
λ λλ λ

λ λ λ λ

⎡ ⎤−⎣ ⎦
⎛ ⎞⎛ ⎞

= − − − − + + − −⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

�

t
 

The Laplace transform of the joint distribution is. 

( ) ( )( )

( )( ) ( )( )( )0

0

exp

exp 1 exp 1 exp
t

E uY t vz t

uy ut l v t s dsλ λ
λ λ

⎡ ⎤− −⎣ ⎦
⎛ ⎞⎛ ⎞= − − − + + − − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∫

�

  [2.59] 
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Box 2.3: Fast simulation for the gamma-OU process 

Algorithm 

The gamma OU process is as follows: 

( ) ( ) ( ) ( ) ( )1 2, lim ,
t

dY t Y t dt dz t with Y t a aλ λ
→+∞

= − + ≡ Γ  

 

To simulate the gamma OU process in discrete time ,...,3,2,1, == ntntn δ  we first 

simulate a Poisson process  with intensity parameter{ 0, ≥= tNN t } 1aλ  at the same time 

points. Then, with the convention that an empty sum equals zero), 

( ) (
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)

( )

1

1 1

1 2

1
2

1 exp

arg , , , 0,1 ,

,

tn

n n
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N

t t k
k N

k k

k
k

y t y x t

with m inal a a u u uniform

Ln u
x N t Poisson a t

a

λδ λ δ

λ

−

−
= +

= − + − × ×

Γ

= −

∑ �

�

,ku

    [2.60] 

The integrated process is given by the following formula: 

( ) ( ) ( )( ) ( )( )( sdzstt
y

dssYtY
tt

∫∫ −−−+−−=≡
0

0

0

exp11exp1~ λ
λ

λ
λ

) ( )   [2.61] 

 

Mean reverting gamma O-U process simulation 

A mean reverting gamma O-U process can be seen as a classical mean reverting process 

where the stochastic part is driven by a compound Poisson process. The number of jumps is a 

Poisson counting process during the time interval, and the size of the jumps follow an 

exponential distribution. 

Our simulation is a direct implementation of the algorithm described in Box 2.3. The 

background Levy process (BGLP) is as follows: 

( )
1

1 1

exp
tn

n n

tn

N

t t k
k N

kBGLP BGLP x t uλδ
−

−= +

= + −∑ �     [2.62] 

Figure 2.9 shows the background Levy process that is a compound Poisson process with an 

exponentially distributed jump size. The second graph is the corresponding gamma O-U 

process, and we can see clearly that the resulting process is mean reverting. 
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Figure 2.9  As expected the process is stationary and mean reverting distribution. 

 

Building block based on integrated gamma Ornstein–Uhlenbeck process 

For spot copula 

( ) ( )( ) ( )( )0 2 2

1 1 1

exp 1 exp 1 1 expt
sy s a t s a ss t Ln

a s a s a
λ λϕ λ

λ λ λ λ
⎛ ⎞⎛ ⎞
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tλ  [2.63] 

As usual the marginal spot copula variable is given by: 
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( )

t
t t

Ln U
V
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ϕ
⎛ ⎞

= −⎜⎜
⎝ ⎠� ⎟⎟             [2.64] 

For the forward dynamic copula  
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And its copula variable is given by: 
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( ) ( )(0 0

t
t ,t t ,t

0
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Y t Y t
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Box 2.4: Alternative fast simulation for the gamma-OU process 

Algorithm 

The integrated process is given by the following formula: 

( ) ( ) ( )( ) ( )( )( ) sdzstt
y

dssYtY
tt

∫∫ −−−+−−=≡
0

0

0

exp11exp1~ λ
λ

λ
λ

( )  

Based on the result below, we will simulate the integrated gamma OU process  

 ( ) ( ) ( ) ( )
( )

(
1

120
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i
i i

t s d s t Ln
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)trλ λ α λ λ λ
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With marginal distribution ( ) [ ]1 2, , 0,1ia a r uniformΓ  

( ) 1 1, 1i iN t Poisson a t c cλ + ≤≺  

  

 

ic are arrival times of the Poisson process
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λ
λ λ =

⎛ ⎞
≡ − − + −⎜ ⎟

⎝ ⎠
∑� ))λ   [2.68] 

The back ground Levy process (BGLP) is given by the following formula: 
( )

( )(
1

1
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1 1 1 exp 1
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i i
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Chapter 3: Combining credit migration and copulas  

The development of new products such as Constant Proportion Debt Obligation (CPDO) 

requires being able to model credit migration and correlation in order to handle substitutions 

on the index during the roll, so we propose a model for the joint dynamics of credit ratings of 

several firms. Individual credit ratings are modelled by a continuous time Markov chain, and 

their joint dynamics are modelled using a copula process. Copulas allow us to incorporate our 

knowledge of single name credit migration processes, into a multivariate framework. We now 

revisit the joint distributions of the default times of all the firms in the portfolio.   

3.1 Construction of the single name credit migration and default process  

Consider a portfolio that is composed of N risky bonds with respective ratings ( ) ( )1 N
t tX , , X" . 

The ratings take values in the ordered set ( )S = 1, , m" , where 1 is the best rating, and m is 

the default state. The goal is to model the joint behaviour of the stochastic processes 
( ) ( )1X , ,X" N . The assumptions made below are natural in a credit rating migration context. 

The first assumption concerns the dynamics of the individual ratings while the second relates 

to their joint distribution. 

For any  is a continuous time Markov chain on S. Its infinitesimal 

generator  is , that is 

( ) ( )( )k k
t t 0

1 k N, X = X
≥

≤ ≤
( )kΛ

 

( ) ( ) ( )( )
( ) ( )
( ) ( )

k
ijk k k

t+h t k
ii

h + o h , j i
P X = j X = i = , i, j

1+ h + o h , j = i
Q S

⎧ Λ ≠⎪= ∈⎨
Λ⎪⎩

  [3.01] 

Furthermore, for any k, the only absorbing state is state m (default). This is standard 

continuous-time modelling of the individual credit ratings ( )kX , where ratings can change at 

any time according to a Markov chain. As the only absorbing state is default, setting 
( ) ( )k

iλ = −Λ k
ii , implies that ( )k

i 0 if i mλ ; ≺  and ( )k 0 1 k Nmλ = ≤ ≤ . 

 
We then assume this distribution evolves according to the Kolmogorov equation 
 

( ) ( ) ( )k k
tQ

t
∂

= Λ
∂

k
tQ          [3.02] 

This equation leads to: 
( ) ( )( )k exptQ t= ×Λ k          [3.03] 
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Estimation of the transition intensity  

By using a one-year average historical rating transition for example, one can obtain an 

estimate, Λ
�

, of the generator matrix Λ . If the rating transitions of the obligors or instruments 

were observed over a period of T years, then a classical estimator of the λi,j’s of the generator 

matrix (see Andersen and Borgan, 1995) is given by: 

i, j
i, j T

i0

N (T)
=

Nbr (s)ds
λ

∫
        [3.04] 

where Ni,j(T) is the total number of transitions migrating from rating category i to rating 

category j during the T-year period and  is the number of firms in rating category i at 

time s. 

( )iNbr s

Usually, rating agencies do not publish the generating matrix Λ  of the rating migration 

process, but only the transition probability  

( ) ( )({ )}k k
t+1year t

1 i, j m
P X = j X = iQ

≤ ≤
= .     [3.05] 

Public historical transition matrices do not include the exact timing of transitions. They 

merely give estimates of, say, one-year  transition probabilities that are obtained by 

observing the credit ratings of cohorts of firms or structured finance securities at the 

beginning and at the end of the year. Table 3.1 gives a typical example of an average 1-year 

migration transition matrix (as at 1997). We use these estimates to obtain an approximation 

(t = 1)

)1(Q
�

 of , which in turn provides an estimate )1(Q Λ
�

 of the generator matrix . The latter is 

used to obtain transition probabilities  for every t. 

Λ

)(tQ

 

Table 3.1  Estimates of average 1-year migration matrix (conditional upon no rating withdrawal): Moody’s Investors 
Service, July 1997.  “Moody’s Rating Migration and Credit Quality Correlation, 1920-1996” 
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Following Jarrow, Lando and Turnbull (1997), we have the following approximation for  
( ) ( )( )k exptQ t= ×Λ k

t

t

:         [3.06] 

1,1

2,2

3,3

1,2 1,1 1,3 1,1 1,16 1,1 1, 1 1,1 1, 1,1

2,1 2,2 2,3 2,2 2,16 2,2 2, 1 2,2 2, 2,2

3,1 3,3 2,3 3,3 3,16 3,3 3, 1 3,3 3, 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

t

t
m m

t
m m

t
m m

e

e t t t t

t e t t t t

t t e t t
Q t

λ

λ

λ

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

Λ

−

−

−

≈

=

"

"

"�

2, 2

1, 1

,3

2,1 2, 2 2,2 2, 2 2,3 2, 2 2, 1 2, 2 2, 2, 2

1,1 1, 1 1,2 1, 1 1,3 1, 1 1, 2 1, 1 1,

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m m

m m

t
m m m m m m m m m m m m m m m m m

t
m m m m m m m m m m m m m m m m

t

t t t e t

t t t t e

λ

λ

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ

− −

− −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − −

# # # % # # #

"

" 1, 1( )
0 0 0 0 0 1

m t−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠"

 

where 
ii

t

ii

iiet
,

,
1)(

,

λ
ϕ

λ −
=  for         i = 1,...,m-1

So the 1-year transition probability matrix (t = 1)Q
�

can be computed from the 1-year rating 

transition matrix  published by a rating agency. The values of ( )i, jP = p ( jiqQ ,)1( )��
=  can be read 

directly from P = (pi,j), where pi,j has been adjusted for the “Withdrawn” ratings and 

normalised so that the sum is 1.0. 

 

From )1(Q
�

, we can estimate the generator matrix Λ
�

. Then solving Λ≈
��

eQ )1( , gives the 

following iiqe ii
,

, ��

≈λ . Hence  

 )ln( ,,, iiiiii q�
�

=≈ λλ  for        [3.07] 1,...,i = m

For the off-diagonal elements, we have: 

              
)ln(
11

,

,
,

,
,,,,

,

ii

ii

ji
ji

iiji
jiii

ji
jiji q

qeq
ii

�
��

�
����

�
−

≈
−

=≈
≠≠≠

λ
λ

λϕλ
λ

, 

hence  

        
1
)ln(

,

,
,,, −

=≈
≠≠ ii

ii
ji

ji
ji

ji
ji q

q
q �

�
��

λλ  for 1,...,i m=       [3.08] 

 

Table 3.2 shows the real world transition intensities computed from the 1-year migration 

matrix (conditional on no rating withdrawal) that were computed in this way from the data in 

Table 3.1. Table 2.4 shows the intensities of the transition from one state of rating to another.  
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Table 3.2 Estimates of the real world transition intensitiess matrix from the average 1-year transition matrix 
(conditional upon no rating withdrawal) using Jarrow, Lando and Turnbull (1997) method. Data source: Moody’s 
Investors Service, July 1997.  “Moody’s Rating Migration and Credit Quality Correlation, 1920-1996” 

 

Table 3.3 Estimation of the real world transition intensitiess matrix from the average one year transition matrix 
(conditional upon no rating withdrawal) using Jarrow, Lando and Turnbull (1997) method. Data source: Moody’s 
Investors Service, July 1997.  “Moody’s Rating Migration and Credit Quality Correlation, 1920-1996” 

 

 

Table 3.4  Estimates of the real world cumulative quaterly migration matrix threshold using Jarrow, Lando and 
Turnbull (1997) method. Data source: Moody’s Investors Service, July 1997.  “Moody’s Rating Migration and Credit 
Quality Correlation, 1920-1996” 
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This table should not be compared directly to Table 2.3 since the later gives directly the 

probability of migration on a one year horizon. However, the Table 2.4 allows us to estimate 

the migration probability on any time horizon assuming that the migration process is an 

homogeneous Markov process. 

3.2 Construction of the risk neutral single name credit migration and default process  

A good credit risk pricing model is one that can be calibrated to benchmark market prices, or 

alternatively can be specified under the martingale measure and not under historical 

probabilities. By construction, we have extracted the risk neutral default and the forward risk 

neutral default probability from CDS market prices. (See Box 3.1). 

 

It is important to adjust the historical probabilities to martingale probabilities because of the 

presence of large risk premiums in credit market. By construction, we have extracted the risk 

neutral default and the forward risk neutral default probability from CDS market prices. See 

below. 

Risk neutral probability migration. 

Each of the N companies has its own ratings migration matrix with its infinitesimal generator 

 in the real world measure. Following Lando (2000), let ( )kΛ ( ) ( )( )k k
t t 0

X = X
≥

 be a continuous 

time Markov chain on the set of ratings, S. The risk neutral transition matrix is given by: 

 
( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

k k k
t+h t

k
ij

k
i

k k
i ij

j i, j m

P X = j X = i

h + o h , j i, j m

h + o h , j i, j m= ,

1 h + o h , j = i

RN RN

i m

i m

Q

t S

t

μ

μ
≠

=

⎧ Λ ≠
⎪
⎪ Λ ≠ ≤ i, j∈⎨

⎛ ⎞⎪
− Λ + Λ⎜ ⎟⎪

⎝ ⎠⎩
∑
≺

≺
  [3.09] 

 

The middle line in eqn [3.09] corresponds to a default event; the last one corresponds to 

staying in the same state. The term μ(t) is a correction term from the historic probability to the 

risk neutral one.  
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Box 3.1: Algorithm for risk neutral marginal default probability extraction from CDS prices 

Algorithm 

Extraction of the survival probability curve associated with a company:  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

0

duuλexptS        [3.10] 

For piecewise constant hazard rate or clean spread: 

( ) ( ) ( ) ( ) ( )
t

0

S t exp λ u du exp λt exp CleanSpread t 1 PD t
⎛ ⎞
⎜ ⎟= − = − = − × = −
⎜ ⎟
⎝ ⎠
∫   

Where 

 
( )( )Ln 1 PD tSpreadCleanSpread

tLGD
−

= =      [3.11] 

Construction of the risk neutral default probability curve associated with a Company  

( ) ( )tS1tPD −=  

Construction of the forward default probability curve given a time stepδ : t

( ) ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

+
−=+ ∫

+δtt

t

duuλexp1
tS
δttS1δttt,FwdDP   [3.12] 

 

Alternatively we could have linked the risk neutral probability migration equation proposed 

by Lando with the real world probability migration in the following way. 

 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( )

( )
( )

k k
ij ij

k k k k
i i ii ij

j i, j m

, j i, j m
, i, j

, ,

RN

m i mRN RN RN

S
t andμ

≠

⎧ Λ = Λ ≠
⎪

j = i
∈⎨

Λ = Λ Λ = Λ⎪
⎩

∑
≺

≺
 [3.13]  

 
The estimate of the adjustment parameter that leads the real world measure and the risk 

neutral measure is: 

( )
( ) ( ) ( ) ( )

( )
( )

δt 0k k
i i k

i

1lim FwdDP t, t δt
δt

m i m iRN
m

t tμ μ
→

⎛ ⎞+⎜ ⎟
⎝Λ = Λ ⇒ =

Λ
⎠    [3.14] 
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Illustration of marginal rating migration by simulation in the real world 

We need first of all  to construct a discrete time matrix migration. 

         
( ) ( )( )k k

, expt t t tQ tδ δ+ = ×Λ
          [3.15] 

Every quarter, we consider a uniform random variable between 0 and 1, that could be 

correlated within a copula framework and we compare that value with the appropriate 

thresholds for the appropriate rating (its rating at the beginning of quarter). This allows us to 

determine the rating at the end of the period. This can lead to upgrades, no-action, 

downgrades, or defaults. The thresholds used in Table 3.5 for the simulation are the ones 

obtained in Table 3.4 that are the quarterly cumulative migration probability. 

3.3 Copula approach for dependent credit migrations and default processes  

Once we have built the model for individual credit rating migrations, we need to model their 

joint evolution. This multivariate problem has been one of the most technically challenging in 

the credit risk literature. For example Greg et al. (1997) use a single Poisson-based transition 

matrix for all the individual securities, and a Gaussian copula to model their joint behaviour.  

 

Table 3.5 Illustration of rating migration 

Quarter Rating at the 
beginning of 
the period 

Uniform 
Random 

Rating at the 
end of the 

period 

Simulated 
rating action 

1 AAA 98,00% AA Downgrade 
2 AA 10,00% AA No action 
3 AA 99,80% A Downgrade 
4 A 30,00% A No action 
5 A 99,94% BB Downgrade 
6 BB 80,00% BB No action 
7 BB 50,00% BB No action 
8 BB 99,56% B Downgrade 
9 B 20,00% BB Upgrade 

10 BB 99,90% Default Default 
10 Default 10,00% Default Non 

reversible 
12 Default 2,00% Default Non 

reversible 
 

 

Since the individual Markov chains all evolve according to the same transition matrix, the 

value of the portfolio is determined strictly by the number of bonds initially in each state, 

without allowing these bonds to have different characteristics. This elimination of 

idiosyncratic default risk and risk premiums in the credit derivatives market is quite a severe 
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simplification. We now show how to estimate the actual rating at each time step from the 

initial state until maturity. 

Construction of a multivariate migration threshold for any given time period and interval tδ  

Let ( ) ( )( ) ( )( ) ( )( )( )1 N 1 N
t tt 0 t 0

X , , X = X , , X
≥ ≥

" "  be a continuous time Markov chain on the state 

space ( )NS , with infinitesimal generator ( ) ( )( )1 N, ,Λ Λ" : 

 

( )
1

N

S 1
S =

S 1

N

m

m

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

"
" " " "

"
.       [3.16] 

 
We define the threshold that corresponds to each rating in the state space. Let Q be the matrix 

defined in eqn [3.15]  

 

( )

( )( ) ( )

( )( )k k
, ,

, ,1
RN RN

i

t t t t t t
i j i jj

cumQ Qδ δ+ +
=

=∑  

 
( )

( )

( )( )

( )

( )( ) ( )

( )( )

( )
( )( )

( )

( )

( )

, ,

1
, 1

,1 ,

k k
, , ,,1 ,

,
, ,1

1

1

1

RN

RN RN

t t t t t t RN

t t t
i t t t

k
t t t t t t t t ti i j

N
N t t t

t t t RN i

K cumQ

cumQ
K

cumQ cumQ K

KcumQ

δ δ

δ
δ

δ δ δ

δ
δ

+ +

+
+

+ + +

+
+

=

⎧ ⎫
⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪

⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪ ⎩ ⎭⎪ ⎪⎩ ⎭

"

# % $ # #

## $ % #

"

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

 [3.17] 

 
 

For any ( )N, Sη υ∈ , we define  as a set of uniform random variables where 

the joint distribution is a copula function C with the associated generating function 

( ) ( )( 1V = V , ,V
JG

" )N

ϕ . For 

simplicity, we define: 
( )( )k

, ,0
0t t t i

K δ+ =         [3.18] 

 

Hence, the copula function of the joint migration and default for any transition between two 

states is: 
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{ } (
1 1

, , ,i i

m m

where m
η υ

η υ η υ
η υ

⎧ ⎫
⎪ ⎪= ∈⎨ ⎬
⎪ ⎪
⎩ ⎭

# # " )1, ,     [3.19] 

is given by: 

 
( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

1 1 1 1

1 1 1 1

t+h t

1 1 1
, t+h , , t+h ,, 1 , , 1 , 1

1 1 1
, t+h , , t+h ,, 1 , , 1 , 1

P X = X =

P X , , X

X , , X

N N N N

N N N N

RN

N N N
RN t t t t t t t t t t t t

N N N
t t t t t t t t t t t t

K K K K

C K K K K

δ δ δ δη υ η υ η υ η υ

δ δ δ δη υ η υ η υ η υ

υ η

+ + + +− −

+ + + +
− −

⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

≺ " ≺

≺ " ≺

−

−

 
To illustrate the concept, we assume that the joint distribution between two names is given by 

a Clayton copula (Figure 3.6 left). The thresholds for a given rating class for the first name are 

shown as 0.5 and 0.7; similarly for the other variable they are 0.2 and 0.6. The figure on the 

right shows the points that correspond to a pair of ratings. 

 

Figure 3.6: Joint transition with a migration dependence driven by Clayton copula with parameter θ = 5 (left) and 

probability estimation with two variables (right) 

 
The joint transition probability has an Archimedean form copula as expected: 
 

( )
( )( )( ) ( )( )
( )( )( ) ( )( )

1 1

1 1

11 1
, ,,

t+h t
11 1

, ,, 1 , 1

P X = X =
N N

N N

N
t t t t t t

RN
N

t t t t t t

K K

K K

δ δη υ η υ

δ δη υ η υ

ϕ ϕ ϕ
υ η

ϕ ϕ ϕ

− −
+ +

− −
+ +

− −

⎛ ⎞⎛ ⎞+ + ⎜ ⎟⎜ ⎟⎝⎝ ⎠=
⎛ ⎞⎛ ⎞− + + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

"

"

, ⎠  [3.20] 
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Box 3.2: Modelling dependent credit migration and default with forward dynamic copula 

Algorithm 

Extraction of the survival probability curve associated with a company:  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

0

duuλexptS   

Construction of the forward default probability curve given a time step δ  with the 

standard algorithm: 

t

( ) ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

+
−=+ ∫

+δtt

t

duuλexp1
tS
δttS1δttt,FwdDP  

For each time period, adjust the risk neutral transition matrix. 

( )
( ) ( ) ( ) ( )

( )
( )

δt 0k k
i i k

i

1lim FwdDP t, t δt
δt

m i m iRN
m

t tμ μ
→

⎛ ⎞+⎜ ⎟
⎝ ⎠Λ = Λ ⇒ =

Λ
 

For j =1 to maximum number of simulations 

 For i=1 to n (find migration or default from today to maturity) 

  For each company 

Compute the risk neutral migration matrix for the given time step 

Compute the risk neutral multivariate migration threshold ,t t tK δ+  

   compute ,Vt t tδ+ , the latent marginal copula   

Estimate the new rating of the company including default 

Handle if need be the action of the new rating on the transaction 

   If the new rating is the default state, draw the recovery rate 

 Next j simulation 

 Aggregate results. 
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Chapter 4: Multi-factor & time changed approach  

In this chapter, a multifactor approach is developed within the new formulated dynamic 

copula processes, and a time changed levy process is used to introduce dependency on spreads 

dynamics. The spread dynamics are very important to transactions such as CPDO (Mark-to-

Market risk on Index roll), Leverage Super Senior (LSS) and also cash CDO transaction when 

one to model more accurately reinvestment risk. The first section focuses on multi-factor 

approach while the second one focuses on the time changed. 

 

4.1 Multi-factor approach for dependent defaults 

We now extend the dynamic copula process to handle cases where several market factors 

explain the returns on an asset over time. These factors can be thought of as capturing the 

effects of potentially unobservable, economic forces that affect certain groups of assets 

(Industry, Region, Country …). In most areas of applied finance, factor models have 

established themselves as the most predictive approach to estimating correlations. The 

advantage is that they reduce the dimensionality of the problem to be solved. 

 

For example, Moody’s KMV uses a factor model to measure correlations between the asset 

returns of firms because this produces better predictive estimates than simple historical 

measures of correlations. Historical correlations are subject to a large amount of sampling or 

random error. The predictive power of the factor model results largely from its control over 

these errors. As is shown in Figure 3.1, there are three levels of factors in the structure: (1) a 

composite company specific factor, (2) country and industry factors, (3) global, regional and 

industrial sector factors. 

 

In a similar way, the rating agency, Fitch, highlighted the fact that the overwhelming majority 

of global structured finance defaults over the 1991–2005 period (more than 97% of the total) 

were from the U.S., and what is more, they were concentrated within the ABS sector.  The 

remaining 27 international defaults were primarily from the CDO sector. This confirms how 

important it is to take account of the impact of geography and industrial sector on credit 

portfolios. See Figure 4.2. 
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Figure 4.1:  Factors used within the Moody’s KMV framework (Source KMV) 

 

 

 

 

 

 

 

 

 

 

Figure 4.2:  Default drivers depends on sectors (Source Fitch Ratings) 

 

Factor analysis can be based either on known economic variables or on statistically 

determined factors which are implicit in the data set. Within the dynamic copula framework, 

the parameters or the distribution of the factors are implicit, since they are not directly 

observable. 
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Factors in a Gaussian framework 

KMV uses a multivariate Gaussian copula for portfolio loss modeling. This means that a unit 

normal variable is assigned to each obligor. When its value, Xi, hits a critical threshold, a 

default event (  if default occurs, 0 if not) is generated.  1Di =

)](pN1[XD i

1

ii

−
<=  

 

The underlying factor model is a multivariate linear regression: 

       [4.01] i i0 i i1 1 imX α ε α Y α Ym= + + +

Here the Y are systemic factors while the ε are obligor-specific. As usual these are mutually 

independent unit normal variables. To ensure that the variance of Xi is 1,  

       1
0

2 =∑
=

m

k
ikα

The variable Xi is interpreted as the asset return of the ith obligor (after a logarithmic 

transformation and rescaling); the weights, αij, can be inferred (estimated) from stock market 

correlations.  

In credit derivatives and hedge funds, systemic risk is commonly used to describe the 

possibility of a series of correlated defaults among financial institutions - typically bank runs 

that occur over a short period of time - are often provoked by a single major event.  

 

Multi-factor dynamic spot copula 

As has been said, factor models are mathematical constructions which attempt to explain the 

correlation between a large set of variables in terms of a small number of underlying factors. 

A major assumption of factor analysis is that it is not possible to observe these factors 

directly; the variables depend upon the factors but are also subject to random errors.  

 

In the dynamic copula framework, we also assume that the factors are not observable. Let 

 be a set of positive-valued, independent Levy processes or compounded 

Levy processes with a positive spectrum. Secondly we assume that the Laplace transform of 

each   exists and is defined by: 

( ) [ m1..k,tYk ∈ ]

]( ) [ m1..k,tYk ∈

( ) ( )( )k s E exp sY tϕ ⎡= −⎣
k ⎤⎦       [4.02] 
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Suppose that the variable of interest, Y(t), can be written in terms of these factors: 

( ) ( )kY t Y t
m

k

k

η=∑  

It is easy to show that its Laplace transformation is 

( ) ( )( ) (k

1

s E exp sY t s
m

k

k

η )ϕ ϕ η
=

⎡ ⎤= − =⎣ ⎦ ∏     [4.03] 

Definition of the multi-factor spot copula 

From now on, we want to analyze the dependence structure within N variables (names) which 

depend in turn on the m factors. The ith name, Yi(t), can be expressed  as 

( ) ( ) [ ] [kY t Y t , k 1..m , 1..k
i i

k

i Nη= ∈ ]∈∑   

If Ui(t) are uniform random variables or processes, then the variable  

( ) ( )( )
( ) [ N1..i,
tY

tULn~tV
i

ηi ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i
i ϕ ]

N

∈

     [4.04] 

is the conditional marginal of  the multi-factor Archimedean copula.  

Proof: 

From equation [2.50] it is clear that  

( ) ( )( )
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }( )N1

1 1 N N

1 1ηη
1 1 1 N N

Pr V t x ,...,V t x

Pr U t exp Y t x ,..., U t exp Y t xϕ ϕ
− −

< <

= < − < −
 

Conditional on the factors Yi(t), the Ui(t) are mutually independent and hence 

( ) ( )( ) ( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) [ ] [ ]

i

i

i

i

1η
1 1 N N i

i

1η k k
i i

i k

1ηk k
i i

k i

1ηk k
i i

k i

Pr V t x ,...,V t x E exp Y t x

E exp x η Y t

E exp Y t x η

x η , k 1..m ,, i 1.. N

i ϕ

ϕ

ϕ

ϕ ϕ

−

−

−

−

⎡ ⎤
< < = −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎧ ⎫⎪ ⎪= −⎢ ⎥⎨ ⎬

⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
⎡ ⎤⎧ ⎫⎪ ⎪= − ×⎢ ⎥⎨ ⎬

⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
⎛ ⎞

= × ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∏

∏ ∑

∑ ∑

∏ ∑

 [4.05] 
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Now we are going to consider two cases: firstly a compound gamma process, then a CIR 

process. 

(1) Based on a compound gamma process 

Let Ui(t) be a uniform random process that is independent of Yk(t) k∈ [1, …m].In its simplest 

form it could be a series of independent uniform random numbers taking values between 0 

and 1. But other possibilities exist. Each Yk(t) has a compound gamma distribution  

( ) ( ) ( )( )kY t t ,1tβ α= Γ k        [4.06] 

where  is a gamma process with independent increments. ( )α tk

( ) ( ) ( 1 2
k k kt t t a t,aα δ α Γ δ+ − ≡ )k       [4.07] 

Its Laplace transform is 

( ) ( )( ) ( )( )( )
( )( )( )

1a tk k
2

1 2

s E exp sY t 1 a Ln 1 sβ t

exp a t Ln 1 a Ln 1 sβ t

k
k

k k

ϕ
−

⎡ ⎤= − = + +⎣ ⎦
⎡ ⎤= − + +⎣ ⎦

    [4.08] 

Example 1:  

Consider the case where 6 processes depend on two underlying factors as given below: 

 

( )
( )
( )
( )
( )
( )

( )
( )⎥⎦
⎤

⎢
⎣

⎡
×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

tY
tY

tY
tY
tY
tY
tY
tY

2

1

2
6

1
6

2
5

1
5

2
4

1
4

2
3

1
3

2
2

1
2

2
1

1
1

6

5

4

3

2

1

ηη
ηη
ηη
ηη
ηη
ηη

,     [4.09] 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00.000.1
00.000.1
50.050.0
50.050.0
00.100.0
00.100.0

2
6

1
6

2
5

1
5

2
4

1
4

2
3

1
3

2
2

1
2

2
1

1
1

6

5

4

3

2

1

ηη
ηη
ηη
ηη
ηη
ηη

η
η
η
η
η
η

 

 

 

Both factors are composed of independent identically distributed increments having a gamma 

distribution: 

( ) ( ) ( )1 2,k k kt t t a t aα δ α+ − = Γ k ,  

So  

( )
( )( )

( ) [i

i
η Ln U t

V t , i 1..6
Y ti
i

ϕ
⎛ ⎞

= − ∈⎜ ⎟
⎜ ⎟
⎝ ⎠

]    [4.10] 
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Figure 4.3 shows simulations of the Vi(t) for the case where a1 = a2 = 0.15. Note how different 

the dependence is between the different copulas. Considering factors introduces more 

flexibility into the model. 

 

(2) Based on a CIR Process 

In this case each of the m factors ( )kY t  has a non-central chi-squared distribution  

( ) ( )( ) ( )k k k k k
tdY t a θ Y t dt σ Y t dWk= − +     [4.11] 

The relation ( )2kk

2
1θa kσ has to be satisfied, to ensure that the factors are positive 

( ) ( )k k, Y 0 0 Y tt∀ ⇒  

 

 

Figure 4.3:  The various copula related to each factor can have quite different types of dependence between them 
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The parameters of the non-central chi-squared distribution are 

Variance:   ( ) ( )( )t
k

k ×−−= k
k

2

aexp1
a4

ση ,   [4.12] 

Non-centrality parameter   ( )
( ) ( )( )t

t
k

k

×−−

×−
=

k2

kk

aexp1
aexpa4~

σ
λ ,   [4.13] 

Degrees of freedom:   ( )2
kkθa4

k

k

σ
υ =      [4.14] 

Figure 4.4 illustrates the construction of the CIR process; Figure 4.5 shows the resulting 

copula. 

Figure 4.4:  Construction of a CIR process by simulation. The integrated CIR process is an increasing function of 
time. We could also observe that the shape of the CIR process that is a mean reverting process with positive 

spectrum is very similar to the one of the mean reverting gamma O-U process. 
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Figure 4.5:  Example of CIR copula 

 

4.2 Time changed Levy process for dependent spreads dynamics 

Some products such as CPDO need a multivariate dynamic spread model. This work is based 

on the results obtained by Cariboni and Schoutens (2006). They presented an intensity-based 

credit risk model where the default intensity of the point process was modelled by an 

Ornstein-Uhlenbeck type process completely driven by jumps.  Two particular cases were 

considered: firstly, one where the stationary distribution is a gamma (hence the name gamma-

OU) and secondly an inverse Gaussian one (denoted by IG-OU). Following Barndorff-

Nielsen & Sheppard they also considered an integrated version of the process. They computed 

the default probability over time by linking it to the characteristic function of the integrated 

intensity process. In case of the gamma-OU and IG-OU processes this leads to closed form 

expressions for the default probability and to a straightforward estimate of credit default swap 

prices.    

 

In this thesis, we will only focus on the result obtained with gamma O-U process, knowing 

that it could be extended to a large class of Levy process with positive spectrum. 
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In the intensity models framework, the marginal survival functions are given by specifying 

the default intensity so that it matches the market. As the gamma-OU process takes positive 

values it is particularly interesting for modelling stochastic spreads and interest rates.  

 

The default probability here is defined as: 

( ) ( ) ( )( )
0

exp exp t
t

S t E s ds Eλ
⎡ ⎤⎛ ⎞

λ⎡ ⎤= − = −⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
∫     [4.15] 

Here ( )tλ  is the stochastic intensity of the Poisson process that defines the default intensity. 

( ) ( )
0

t

t sλ λ= ∫ ds  and  

( ) ( ) ( ) ( ) ( )1 2, lim ,
t

d t t dt dz t with t a aλ ηλ η λ
→+∞

= − + ≡ Γ    [4.16]  

      

Substituting the result obtained in the equation [2.59] in chapter 2 on the integrated OU 

process, into eqn [4.15] gives a closed form formula for the survival probability. The most 

widely used reduced-form approach is based on the work of Jarrow and Turnbull (1995), who 

characterise a credit event as the first event of a Poisson counting process which occurs at 

some time t with a probability defined as ( ) ( )t λprob t t t dtτ δ τ≤ + = .ie, the probability of 

a default occurring within the time interval [t, t+dt] conditional on surviving to time t, is 

proportional to some time dependent function λ(t), known as the hazard rate, and the length of 

the time interval dt. Over a finite time period T, it is possible to show that the probability of 

surviving is given by 

( ) ( ) ( )

( )

t

0
0

t

0

S t t exp λ u du

inf t 0 λ u du U , U

prob E

uniform

τ

τ

⎧ ⎫⎛ ⎞⎪ ⎪= = −⎨ ⎬⎜ ⎟
⎪ ⎝⎩

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

∫

∫

⎪⎠⎭      [4.17] 

 

( ) ( )( ) ( )( )0 2 2

1 1 1

1S t exp 1 exp 1 1 exp
1 1

a t at Ln
a a a

λ λ ηη η
η η η λ

⎛ ⎞⎛ ⎞
= − − − − + + − −⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

t  [4.18] 
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Box 4.1: CDS price computation 

Consider a CDS with maturity T and a continuous spread c. Let P(t) be the risk-neutral 

probability of no-default between 0 and t. The price of this CDS is then given by. 

( ) ( ) ( ) ( ) ( )
0 0

1 exp exp
T T

CDS RR rs dP s ds Spread rs dP s ds
⎛ ⎞

= − − − − × −⎜ ⎟
⎝ ⎠
∫ ∫  [4.20] 

where RR is the asset specific recovery rate and r is the default-free discount rate. From 

this, we find the par spread, denoted by Spread* that makes the CDS price equal to zero: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0*

0

0

0

1 exp

exp

1 1 exp exp

exp

T

T

T

T

RR rs dP s ds
Spread

rs dP s ds

RR rT P T r rs P s

rs dP s ds

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠=
−

⎛ ⎞
− − − − −⎜ ⎟

⎝ ⎠=
−

∫

∫

∫

∫

ds

      [4.21] 

 

Calibration on CDS term structure curve 

The calibration of the model to the market data is straight forward and is carried out on a 

series of CDS term structures taken from the market. See Box 3.3. The Levenberg-Macquart  

algorithm available in MATLAB Package could be used to minimize the difference between 

market CDS prices and calibrate the model in the least-squares sense: minimizing the root 

mean square error (rmse): 

( )∑ −
=

Options

2

OptionsofNumber
PriceModelPriceMarketrmse     [4.19] 

 

Cariboni and Schoutens (2006) carried out a study in which they calibrated the 125 credit 

default swaps constituting the Itraxx Europe Index, using both the gamma-OU and the IG-OU 

models. The capabilities of the OU models were compared with the homogeneous and 

inhomogeneous Poisson models and with the CIR model, using data from January 2005 to 

February 2006. They showed that while homogeneous and inhomogeneous Poisson models 

failed to replicate real market structures, the CIR, gamma-OU and IG-OU models could be 
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calibrated to market data quite satisfactorily. In addition the calibration time for both OU 

models was quite short. At the end of their paper Carboni & Schoutens comment that it would 

be interesting to extend this to a multivariate setting. The next section will be devoted to this. 

As was noted earlier, this is important in practice for modelling CPDO. 

 

Dynamics copula representation of time changed intensity model  

Following in the footsteps of Joshi and Stacey (2005), Luciano and Schoutens (2005) and 

Cariboni and Schoutens (2006), we introduce dependency by time-changing. Consider N 

assets described by N independent individual intensity models: 
( ) ( ){ } [ ], 0 , 1,...,i i

t t iλ λ= ≥ ∈ N       [4.22] 

The default of each asset is defined by the first jump-time of a Cox process 
( ) ( ){ } [ ], 0 , 1,...,i i

tM M t i N= ≥ ∈       [4.23] 

We assume that the corresponding default intensities are described by the OU model: 
( ) ( ) ( ) ( ) ( ) ( )( )i i id t t dt dz tλ η λ η= − + i       [4.24] 

Where ( ) ( ) ( )( ) [ ]1 2lim , , 1,...,i i

t
t a a iλ

→+∞
≡ Γ ∈ N  

 

In the next two sections we propose two different possibilities for the subordinator: firstly a 

gamma process then a compound gamma process. 

Time-changed gamma process 

Here, we introduce dependency by time-changing the individual Cox processes by a common 

subordinator. A tractable choice for this subordinator is the gamma process: 
( ) ( )

( ){ } [ ], 0 , 1,...,i i
tM M t i Nα α= ≥ ∈  

Where ( ) ( ) ( 1 2t t t a t ,aα δ α Γ δ+ − ≡ )       [4.25] 

The time to default ( )iτ of the ith firm is again defined as: 
( ) ( )

( ){ }0i i
tinf t ,M ατ = ≥ 0        [4.26] 

The implied survival probability up to time t of the ith firm is given by 
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( ) ( ) ( ) ( )
( )

( )

( )
( ) ( )( )( )

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )( )( )

( )
( ) ( )

0

20

1

2

1 1

exp

1 exp
1

exp
11 1 exp

1

1

t
i i

i ii
i

i i i

i i
i

i i i i

i
t

S t E s ds

a t
t

a
E

a Ln t
a a

E

α

α

λ

λ αλ η α
η η

η η α
η λ

ϕ

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞×
− − − × −⎢ ⎥⎜ ⎟

+⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟⎛ ⎞⎢ ⎥⎜ ⎟+ + − − ×⎜ ⎟⎜ ⎟⎢ ⎥+ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤= ⎣ ⎦

∫

  [4.27] 

That is, it is the expectation of the Laplace transform evaluated at s = 1.  

 

Now we compute the joint survival probability in a conditional independence framework. We 

denote the joint survival probability by  
( ) ( ) ( ) ( )( )1, , 1 , ,N NS t P t tτ τ=   

Using the same line of reasoning as above, this is equal to 
( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

( ) ( ){ } ( ) ( )
1

1

1, ,

1
0

1

1

10
22 2

exp

1

1 exp

N

t
N i

ti

N i
ti

a t
N i

x a ti

S t

E E s ds

E

x x dx
aa a

α

α

α

λ

ϕ

ϕ

=

=

−+∞

=

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩⎣
⎡ ⎤= ⎣ ⎦
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟Γ ⎝ ⎠⎝ ⎠

∏ ∫

∏

∏∫

⎭⎦     [4.28] 

The join survival probability has a quasi-closed form solution. 

Time-changed standard compound gamma process 

This time, the standard compound gamma process that was introduced earlier in this thesis is 

used as the subordinator. Its increments have a compound gamma distribution: 

( )( ) ( )( )t h t 1 2X X Γ Γ a h,a ,1 Γ t ,β α β+ − ≡ × ≡     [4.29] 

The implied survival probability up to time t of the ith firm becomes 
( ) ( ) ( )

( ) ( )1i i
X tS t E ϕ⎡= ⎣

⎤
⎦        [4.30] 

Now we compute the joint survival probability in a conditional independence framework. 
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( ) ( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( ) ( )
1

1

1, ,
1

1

11

10 0
22 2

1

1

1 exp exp

NN i
X ti

N i
t X t ti

a tu
N i

x u t a ti

S t E

E E

x x u udx du
aa a

α α

ϕ

ϕ

ϕ
ββ β

=

=

−−+∞ +∞

×=

⎡ ⎤= ⎣ ⎦
⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦
⎛ ⎞⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟= −⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠

∏

∏

∏∫ ∫ −

[4.31] 

The join survival probability has here also a quasi-closed form solution, in fact we only need 

to compute a two dimensional integration. 

Time-changed mean reverting gamma O-U process 

This time, the standard compound gamma process that was introduced earlier in this thesis is 

used as the subordinator. Its increments have a compound gamma distribution: 

( )

( )
0

1 2 1 2 1

t

t u t t

tt

X x , x x dt z t ,

with lim x a ,a , where a a

δ δ η δ η

Γ
→+∞

= = − +

≡ ×

∫
=

     [4.32] 

The implied survival probability up to time t of the ith firm becomes 
( ) ( ) ( )

( ) ( )1i i
X tS t E ϕ⎡= ⎣

⎤
⎦        [4.33] 

Now we compute the joint survival probability in a conditional independence framework. 
( ) ( )

( )
( ) ( )

( )

( )
( ) ( )
( ) ( ){ } ( )( )

1, ,

1
0

1

10

exp

1

1

N

X t
N i

X ti

N i
X ti

N i
xi

S t

E E s ds

E

f x dx

λ

ϕ

ϕ

=

=

+∞

=

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥⎢ ⎥= −⎜ ⎟⎨ ⎬⎜⎢ ⎢⎪ ⎝⎣⎩⎣
⎡ ⎤= ⎣ ⎦

= ×

∏ ∫

∏

∏∫

⎟ ⎥⎥⎪⎠⎦⎭⎦        [4.34] 

where f(x) is the distribution function of the mean reverting gamma O-U process. This 

function could be evaluated numerically by using the inverse Laplace transform or inverse 

Fourier transform techniques. The joint survival probability here also has a quasi-closed form 

solution. In fact we only need to compute a 1-dimensional integral. 

 

We have proposed two possible extensions here on the framework developed by Cariboni and 

Schoutens (2006).Further improvement could be made by using a multi factor approach where 

the background driven positive process is a linear combination of a small number of factors, 

with coefficients specifics to each obligor. This further extension could then allow to taking 

into account regional and sector systemic risk. 
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Chapter 5: A new way of modelling CDO tranches  

Since its creation in 2004, base correlation (McGinty & Ahulwalia, 2004 a & b) has become 

popular with market practioners for pricing CDOs because it reproduces prices and spreads. 

Unfortunately it does not link prices/spreads at different times, which is needed for pricing 

different maturities and more importantly for forward starting CDOs. Ideally we would like a 

mathematically consistent model of the dependence structure between default times (as in 

factor copulas) that reproduces market prices and spreads (as base correlations do). 

 

Over the past five years the factor copulas first proposed by (Li, 2000) have been widely used 

for pricing CDOs. See Andersen, Sidenius & Basu (2003 & 2005), Gregory & Laurent 

(2003), Hull & White (2003) and Burtschell Gregory & Laurent (2005a). Their strong points 

are that the pricing is semi-analytic and that the dependence structure between default times 

can be specified independent of the marginal credit curves. But as the CDS market became 

more liquid, it became clear that a flat correlation model did not price CDO tranches 

correctly. See Burtschell et al (2005b) for an example. Tests by Burtschell, Gregory & 

Laurent (2005a) showed that the Clayton copula gave better results than other copulas, 

notably the Gaussian and student’s t. Why is this? 
 

Factor copulas based on the normal distribution (or student’s t) have symmetric upper and 

lower tails. They are effectively saying that defaults occur in the same way in bull and bear 

markets. In tough times, one default tends to trigger others, which is not the case in normal 

times. The classic “icecream cone” shape of the Clayton copula with its lower tail dependence 

(Figure 5.1, left) captures this insight; the symmetric gaussian (normal distribution) copula 

(Figure 5.1, right) does not. The Clayton copula belongs to a special family of copulas called 

Archimedean copulas. While books have been written about their statistical properties 

(Nelsen (1999) and Joe (1997)), very little work has been done on stochastic processes based 

on them. In this paper we present a family of dynamic Archimedean copula processes suitable 

for pricing synthetic CDO tranches.  
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Figure 5.1: Clayton copula with parameter θ = 5 (left) and Gaussian copula with ρ = 0.87 (right) 

 

This section of the thesis is organized as follows. In the next section, after giving an overview 

of Archimedean copulas we introduce the new family of dynamic copula processes. In Section 3, we 

present a specific copula process related to the Clayton, which is lower tail dependent but not upper 

tail dependent. In Section 4 this model is used to price standard CDO tranches assuming a bullet 

exposure at maturity (5 years) and a large but not necessarily homogeneous portfolio. Using market 

data (Anon, 2005) we show that a correlation skew similar to that observed in the market in July 2005, 

can be obtained with a suitable set of parameter values. In fact a wide range of correlation skews (both 

convex & concave) can obtained, depending on the parameter values. The conclusions follow in the 

last section. 

5.1 Dynamic Archimedean copula processes 

Copulas express the dependence structure between two or more variables X1, … Xn separately 

from their marginal distributions. The original variables X1, … Xn are replaced their 

cumulative distribution functions V1, … Vn which are uniform on [0,1]. In our case they will 

represent the default probabilities of n names in a credit portfolio. Archimedean copulas are a 

special type of copula that are defined via a generator, f 1: 

                                                 
1 To avoid confusion, note that in this paper,  we use ϕ to denote a Laplace transform, and f for the generator of 

an Archimedean copula, whereas Nelsen (1999) uses ϕ for the generator of an Archimedean copula. The 

function f must be a continuous and strictly decreasing. 
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   [ ]1
1 n 1 nC(v , v ) f f (v ) f (v )−= + +… …      [5.01] 

While many bivariate Archimedean copulas are known, few multivariate ones exist because 

their generators have to be Laplace transforms. Table 5.1 lists selected multivariate 

Archimedean copulas with their Laplace transforms. For example, the Clayton copula 

corresponds to a gamma distribution.  

 

Table 5.1: The Laplace Transforms corresponding to selected strict bivariate copulas (which can be extend to n-
copulas). The names LTE, LTF, LTG, LTH and LTI are derived from the naming system used by Joe (1997).  

Copula Name Generator (Laplace Transform) 
Clayton ( ) ( ) θϕ

1
1 −+= ss   0θ >  

Gumbel ( ) ( )1
s exp s θϕ = −    1θ >  

Frank ( ) ( ) ( ){ }1s Ln 1 exp s 1 exp⎡ ⎤ϕ = − − − − −θ⎣ ⎦θ
,  0≠θ  

LTE 
( ) θ

δϕ
1

1
1

−

⎟
⎠
⎞⎜

⎝
⎛ += ss  

LTF ( ) ( )( ) θδϕ
1

1 11 −− ++= sLns , 0, 1δ > θ ≥  
 

LTG 

( ) ( )[ ]{ }θδϕ
1

1 11exp sLns +−= − , 0, 1δ > θ ≥  

 

LTH 
( ) { } θ

δϕ
1

1
exp11 ⎥⎦

⎤
⎢⎣
⎡ −−−= ss , 0, 1δ > θ ≥  

 

LTI 
( ) ( ) θ

δϕ
1

1
111 ⎥⎦

⎤
⎢⎣
⎡ +−−= −ss , 0, 1δ > θ ≥  

 

 

Burtschell, Gregory & Laurent (2005a) showed that the Clayton copula was useful for 

modeling the correlation smile at a fixed point in time. The question was how to develop a 

dynamic continuous time stochastic process whose values at any given time have a given 

Archimedean copula (in our case, one with lower tail dependence). Our approach is based on 

an observation found in Rogge & Schonbucher (2003): let Y be a positive random variable 

whose Laplace transform is ϕ(s) and let Ui  be n uniform random variables on [0,1] that are 

mutually independent and also independent of Y. Then the n random variables Vi  defined by

 ( )i
i

Ln U
V for

Y
−⎛ ⎞

= ϕ =⎜ ⎟
⎝ ⎠

…i 1, n       [5.02] 
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are uniform on [0,1], and their cumulative distribution function is given 

( )
n

1
1 1 n n i

i 1

Pr ob V v , ,V v v−

=

⎛ ⎞
≤ ≤ = ϕ ϕ⎜⎜

⎝ ⎠
∑" ( )⎟⎟

)2

                                                

    [5.03] 

Consequently their multivariate copula is the Archimedean copula having ϕ-1 as its generator 

(See Rogge & Schonbucher for details). This provides a fast and efficient method for 

simulating realisations, one that is not mentioned by Nelsen (1999)2. At this point we diverge 

from their approach. We let Y(t) be a stochastic process that represents the state of the 

economy, and so the Vi become stochastic processes, Vi(t). Provided the Ui(t) are mutually 

independent and independent of Y(t), then the static copula of the Vi(t) is the Archimedean 

copula given in [3]. Ui(t) can be interpreted as the prior probability of default, which is then 

updated by the current state of the economy Y(t). So Vi(t) is the expected posterior 

probability of default, since the Laplace transform computes the expectation depending on the 

distribution of Y(t). 

The specific properties of Vi(t) and Vi(t+δt), and of Vi(t) and Vj(t+δt) for i ≠ j depend on the 

way the Ui(t) are constructed. See Totouom & Armstrong (2005) for details.  

5.2 Specific dynamic Archimedean copula process  

First we construct a new type of compound gamma process Y(t) conditional on an underlying 

gamma process α(t). As usual  α(0) = 0. For t > 0, its increments are independent gammas3: 

( ) ( ) ( 1t t t a t, aα + δ −α ≡ ×δΓ        [5.04] 

The parameters a1 and a2 are constant over time. For t > 0, α(t) has the gamma distribution:  

Γ(a1t, a2). 

The values of Y(t) are drawn from the gamma distribution: Γ(α(t), β(t)) where β(t) is a strictly 

positive, deterministic function of time. There are two obvious choices: β(t) = 1 and β(t) = 1/t. 

While the first one leads to a Levy process, the second does not. To the best of our knowledge 

this process has not been studied before. In the next section we compute the Laplace 

transform of Y(t), and hence its moments.  

 
2 Nelsen (1999) gives several general methods for simulating bivariate Archimedean copulas and some ad-hoc 
methods for specific copulas. These are presented in Exercises N° 4.13, 4.14 & 4.15 p108 
3 To make it simpler to use standard software to do the simulations, we have changed to the standard notation: 

if the random variable X has the gamma distribution ( )a, bΓ , its density is 

 
a 1

x / b
a

xf (x) e x 0
(a)b

−
−= ≥

Γ
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The mean and variance of the two processes given in Table 5.2 will be used later when 

calibrating the model to market data. 

Table 5.2 : Moments of the processes α(t) and Y(t) 

 

 

 Mean Variance 

α(t) 1 2a a t  2
1 2a a t  

Y(t) 1 2a a t (t)β  ( ) (1 2 2a a t t 1 a tβ + β )⎡ ⎤⎣ ⎦  

Laplace Transform of Y(t)  

As the process Y(t) is always positive, its Laplace transform is given by:  

( ) ( ){ } ( ) ( ){ }t ts E exp s Y t E E exp s Y tα
⎡ ⎤ϕ = − × = − ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦    [5.05] 

We first compute the conditional Laplace transform of Y(t) given α(t). 

( ) ( )( ) ( ){ } ( )( )( t )
t s | (t) 1 s t exp t where Ln 1 s t

−α
ϕ α = + β = −λα λ = + β  [5.06] 

Deconditioning over all values of α(t) gives the Laplace transform of Y(t): 

( ) ( )( )( )
( )( )( )

1a t

t 2

1 2

s 1 a Ln 1 s t

exp a t Ln 1 a Ln 1 s t

−
ϕ = + + β

⎡ ⎤= − + + β⎣ ⎦

        [5.07] 

For any given time t, the associated static copula is not a standard Clayton copula but it has 

the same type of lower tail dependence (Figure 1). For want of a better name we call it an 

extended Clayton copula. The shape can be interpreted as follows. When Y(t) takes low 

values, the values of the Vi(t) will be low and hence correlated. If one of the names defaults, 

others are likely to follow suit. Conversely when Y(t) takes high values, the Vi(t) will be 

poorly correlated. So if one name defaults the others are unlikely to do so. So this dynamic 

copula process effectively reproduces what one would intuitively expect. 

Simulating Vi(t)  

A simple three-step procedure is used for simulating Vi(t)  

(a) Simulate the process α(t) 

• Initialize α(0) to 0 

• For any t > 0 and  δt > 0, simulate an increment 

 103 Page 103



Chapter 5: A new way of modelling CDO tranches   D. Totouom  
 

( ) ( ) ( 1 2t t t a t, aα + δ −α ≡ ×δΓ )  

• Compute ( )t tα + δ  

(b) Simulate the compound gamma process Y(t)  

• At time t > 0, draw a value of Y(t) with the conditional gamma distribution 

( ) ( )( )t , tα βΓ   

• The values at different times, Y(t1) and Y(t2), are drawn conditional on the values 

of the underlying process, α(t1) and α(t2), but otherwise independent of each other. 

This adds  random noise around α(t). 

(c) Simulate the Ui(t) then deduce the Vi(t) 

• For each of the N realizations of Y(t) simulate n Ui(t) where n is the number of 

names in the portfolio. 

5.3 Pricing a correlation product: CDO 

Pricing synthetic CDOs involves computing aggregate loss distributions over different time 

horizons. So CDO tranche premiums depend upon the individual credit risk of names in the 

underlying portfolio and the dependence structure between default times. 

Notation & Definitions 

i =1, …n:  Single name credits in the base portfolio for CDO pricing 

τ1,τ2…τn:  Default times 

iLGD  :  Loss given default on the Name i  

( )iPD t :  Cumulative default probability of on the Name i  at time t 

 iN  :    Nominal of the Name i  

 

The aggregated loss in the portfolio at time t is given by: 

( ) { }i

n

i i t
i 1

Loss t N LGD 1
τ <

=

=∑        [5.08] 

If Ku and Kd are the upper and lower detachment points, the loss in the tranche [Kd, Ku] at 

time t is: 
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( ) ( ) ( )t d u u dLoss K ,K Min K , Loss t Min K ,Loss t⎡ ⎤ ⎡= −⎣ ⎦ ⎣ ⎤⎦    [5.09] 

The Expected Loss (EL) in the base tranche [0, K] at time t is just: 

( ){ }EL E Min K,Loss t= ⎡⎣ ⎤⎦        [5.10] 

Having analytic expressions for the expected loss makes it easy to compute the Greeks for the 

portfolio. 

Data source  

We used market data (Anon, 2005a & b) as of July 22 2005. (See Table 5.3). Figure 5.2 

shows the base correlation as a function of the detachment point. The next step was to 

compute the cleanspreads and the default probabilities for the 125 names, for different 

horizons: 1 year, 3 years, 5 years, 7 years or 10 years, from the second spreadsheet. A 

constant loss given default of 60% was assumed on all names. The cumulative default 

probability at any time horizon was computed as follows: 

( ) ( )i
i

i

Spread Horizon
cleanSpread Horizon

LGD
=    [5.11] 

( ) ( )i
i

cleanSpread Horizon
PD Horizon 1 exp Horizon

10000
⎡ ⎤

= − − ×⎢ ⎥
⎣ ⎦  

 

Table 5.3 : Attachment & detachment points  for the market data for 22 July 2005 extracted from excel file on 
Wilmott website, together with the correlation expressed as a percentage. 

 
22 July 2005 Extracted Dealer Source (a) 

 
Attach % Detach % Correl % 26 July 25 July 18 July 

0 3% 12,08 12,3 11,4 11,6 

0 7% 33,8 32,9 32,3 33.6 

0 10% 44,14 43.2 42.5 44.1 

0 15% 58,14 56.2 55.4 57.2 

0 30% 79,78 80.2 78.8 80.5 

$Index Not $Index EL Index (bps) Index (bps) Index (bps) Index (bps) 

$125,000 $2,933.69 53 53 53 56 
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Figure 5.2: Base correlation as a function of the detachment point for the market data as at 22 July 2005 

 

The average 5 year default probability in the portfolio is 4.30%. Table 5.4 gives the summary 

statistics of default probabilities at a 5 year horizon.  

 

Table 5.4 : Summary statistics of 125 5-year default probabilities 

 

Minimum 0.09% Median 3.05% 

Maximum 36.80% Mode 2.26% 

Mean 4.30% Skewness 4.30 

Standard Deviation 4.78% Kurtosis 22.13 

 

Calibrating the parameters for Monte Carlo pricing of the CDO  

A simple iterative procedure was used to calibrate the parameters of the gamma distribution. 

The base correlation was computed by running Monte Carlo simulations of the portfolio and 

comparing this with the market base correlation. Typically 10,000 simulations were carried 

out. For simplicity all the exposures are bullet. Further work will be needed to improve the 

calibration procedure. 

The riskfree rate shown in Figure 5.4 was used within the model and within the gaussian 

copula model to obtain the base correlation but as the two cancel out, this choice has no 

impact on the base correlation. So the result is the same as if we assumed that it was zero as 

does JP Morgan. See McGinty & Ahulwalia, (2004a & b). 
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Figure 5.4: Term structure of the riskfree rate as at 22 July 2005 

 

The parameters were calibrated for a maturity of 5 years because this is the most liquid. There 

is no unique optimum. Three possible sets of values are shown in Table 5.5. The resulting 

base correlations (blue, black and red) are compared to those for the market (pink), at the 

standard detachment points. As different parameter values give comparable base correlations 

for this maturity, other maturities should be used to choose the most appropriate set overall. 

Table 5.6 shows the term structure for the equity tranche for the standard maturities (5yr, 7yr 

& 10yr) for the same sets of parameters.  

 

Figure 5.4 presents the base correlation as a function of the detachment point, for the four 

maturities (3yr, 5yr, 7 yr & 10 yr) for different values of the second parameter a2. Note how 

the convexity of the curve changes with the maturity. The model can produce convex curves 

as well as concave ones. 

 

Table 5.5 : The base correlations computed from the model using 3 sets of parameter estimates for the process 

α(t), together with the market values. The parameters are shown below 

Detach Pt Market Set 1 Set 2 Set 3 

3% 12% 16.6% 15.5% 17.9%

7% 34% 28.7% 28.3% 30.6%

10% 44% 38.9% 38.8% 41.0%

15% 58% 52.9% 52.8% 55.2%

30% 80% 80.7% 80.7% 82.7%

 1a  5 5.55 4.55 

 2a  60 90 110 
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Figure 5.4: The base correlation as a function of the detachment point for the four standard maturities: 3yr top left, 
5yr top right, 7yr lower left & 10 yr lower right. Note that the change in the convexity with maturity 

 

 

Figure 5.5: The term structure of the equity tranche for different maturities; on the left, for a fixed value of the first 
parameter a1, on the right, for a fixed value of the second parameter a2 
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Figure 5.6 illustrates the impact of these two ratios on the terms structure. In both cases, 

increasing one parameter for a fixed value of the other one, leads to a decrease in the base 

correlation of the equity tranche. 

 

Table 5.6 : The term structure (i.e. the base correlation for the equity  tranche for the same parameters) 

 
Maturity Market Set 1 Set 2 Set 3  

3 yr 46.1% 44.1% 49.2%  
 5 yr 16.6% 15.5% 17.9% 
 

7 yr 9.3% 8.6% 9.9%  
 10 yr 6.1% 5.9% 6.6% 
 

1a  5 5.55 4.55  
 

2a  60 90 110 

 

 

5.4 Conclusions 

In this paper we have chosen to model default times rather than intensities, and have 

developed a new class of dynamic copula processes, based on the well-known relation 

between Archimedean copulas and Laplace transforms: 

( )i
i

Ln U
V for

Y
−⎛ ⎞

= ϕ =⎜ ⎟
⎝ ⎠

…i 1, n  

Replacing the random variables Y and Ui, by suitably chosen processes Y(t) and Ui(t), 

provides a simple way of constructing and simulating a wide range of dynamic copula 

processes. This effectively overcomes the difficulties of constructing multivariate copulas that 

have been well documented in the literature on copulas (Nelsen, 1999 & Joe, 1997).  

 

After presenting the procedure for simulating this class of copula processes (Section 5.2), we 

focus on a particular case: where Y(t) is a new type of compound gamma process, because 

this gives rise to a dynamic process in which the copulas have lower tail dependence but not 

upper tail dependence. As we use Y(t) to represent the current economic climate, this means 

that defaults are correlated in unfavourable times but not during normal times, as one would 

intuitively expect. The Ui(t) can be interpreted as the prior probability of default which is 

updated given the state of the economy to obtain the posterior probability of default Vi(t). 
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In Section 5.4 we use market data to calibrate the model. We show that the model reproduces 

the base correlations observed at that time. We have also studied the types of term structure 

given by the model. One advantage of this approach compared to those based on default 

intensities is that it provides a simple way of computing base correlations without having to 

specify or calibrate the marginal densities, but its primary strong point is that it provides a 

mathematically consistent framework for modelling the structure of defaults over different 

time horizons. 
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Chapter 6: Comparison with five 1-factor models 

Over recent years, major changes have occurred in the credit derivatives industry. The 

liquidity of single name CDS has increased dramatically, in parallel with the volume of 

transactions. Quotes are now available for standard tranches for reference baskets, iTraxx in 

Europe and CDX in North America, for the standard maturities of 3Y, 5Y, 7Y and 10Y. Base 

correlation (McGinty et al, 2004) has become the industry standard for pricing CDOs. Many 

new types of derivatives including forward starting CDOs, options on CDOs and leveraged 

super-senior tranches have been developed. It is now recognized that existing models for 

pricing credit derivatives are static and as such not suitable for pricing these new products 

(Hull & White, 2006). A dynamic model of portfolio losses over time is required.  

 

This model should be a properly defined stochastic process and should correctly reproduce the 

correlation structure observed in the market. Andersen and Sidenius (2004) noted that the 

correlation between the various names was not the same during bearish and bullish periods. In 

difficult economic times, defaults tended to occur in cascades, whereas in better times they 

were more or less independent of each other. With this in mind we developed a dynamic 

copula process model where the correlation between defaults depends on an underlying factor, 

which is a proxy for the state of the economy (Totouom and Armstrong, 2007). Conditional 

on this factor, the default copula has lower tail dependence similar to a Clayton copula. In 

preliminary tests using market data from July 2005, this model gave acceptable results for the 

base correlation as a function of the detachment point and for the term structure of the base 

correlation. The question is: How does it perform compared to other models, notably one 

factor copula models? 

 

Van der Voort (2006) ran performance tests on five well-known one factor models chosen 

from those considered by Burtschell, Gregory & Laurent (2005): 

 External defaults model (Li, 2000; Laurent and Gregory, 2005; Hull and White, 2004) 

 Random factor loadings model  (Andersen and Sidenius, 2004)  

 Mixture model  

 Mixture model with random recovery (Andersen and Sidenius, 2004) 

 Double t copula model (Hull and White, 2004) 
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Using the term structure of the CDS for individual names and the risk-free rate deduced from 

swap market quotes on 30 January 2006, he estimated the parameters of the models so as to 

match the 5Y market skews and then used these values to compute the model implied base 

correlation skews for iTraxx and CDX for a maturity of 10 years. Parameters chosen to match 

the 5Y market skews resulted in a poor fit for the 10Y skew. All models had problems 

matching the steepness of the base correlation.  

To test our model we used the same procedure and the same data as van der Voort  (2006); 

that is, we fitted the parameters to the 5Y market skews for both iTraxx and CDX, and then 

used these to predict the 10Y base correlation skew. We demonstrate that our model 

outperforms the five models listed above, correctly predicting the base correlation skews for 

iTraxx 10Y and CDX 10Y, as well as reproducing those of iTraxx 5Yand CDX 5Y. 

 

The paper is structured as follows. The new dynamic copula model is presented in the next 

chapter; the results of the comparisons are given in Chapter 3. The conclusions follow in 

Chapter 4. 
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6.1 Dynamic copula process 

Our approach is based on an observation found in Rogge & Schonbucher (2003): let Y be a 

positive random variable whose Laplace transform is ϕ(s) and let Ui  be n uniform random 

variables on [0,1] that are mutually independent and also independent of Y. Then the n 

random variables Vi  defined by  

( )i
i

Ln U
V for

Y
−⎛ ⎞

= ϕ =⎜ ⎟
⎝ ⎠

…i 1, n

( )⎟⎟

)

     [6.01] 

are uniform on [0,1], and their cumulative distribution function is given 

( )
n

1
1 1 n n i

i 1

Pr ob V v , ,V v v−

=

⎛ ⎞
≤ ≤ = ϕ ϕ⎜⎜

⎝ ⎠
∑"    [6.02] 

Consequently their multivariate copula is the Archimedean copula having ϕ-1 as its generator 

(See Rogge & Schonbucher for details). This provides a fast and efficient method for 

simulating realisations. At this point we diverge from their approach, by letting Y(t) be a 

stochastic process that represents the state of the economy. So the Vi become stochastic 

processes, Vi(t). Provided the Ui(t) are mutually independent and independent of Y(t), then 

the static copula of the Vi(t) is as in [2].  

 

The process Y(t) will be used as a proxy for the state of the economy at time t; the Ui(t) 

represent idiosyncratic variations and the resulting Vi(t) indicate each firm’s creditworthiness 

at time t on a uniform scale from 0 to 1. If Vi(t) falls below a critical threshold then the firm is 

considered to have defaulted. In contrast to Merton’s model of the firm (1974) where default 

occurred when its debt exceeded its equity, the threshold in our model is determined indirectly 

from the firm’s CDS spread at that maturity (i.e. by the market’s appreciation of its 

creditworthiness).  

A proxy for the state of the economy, Y(t) 

We use a two-step procedure for generating Y(t), based on an underlying gamma process α(t) 

with independent increments: 

( ) ( ) ( 1 2t t t a t,aα + δ − α ≡ δΓ       [6.03] 

As usual  α(0) = 0. The parameters a1 and a2 are constant over time. For t > 0, α(t) has the 

gamma distribution: Γ(a1t, a2). The values of Y(t) are drawn from the gamma distribution: 
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Γ(α(t), 1/t); that is, conditional on the realisation of α(t). This results in a new type of 

compound gamma process for Y(t). Its properties (including its moments) can be found by 

computing the Laplace transform of Y(t). See  Totouom & Armstrong (2007) for details. 

Table 6.1 gives the mean and variance of the two processes which are used when calibrating 

the model to market data. 

Table 6.1: Moments of the processes α(t) and Y(t) 

 Mean Variance 

α(t) 1 2a a t  2
1 2a a t  

Y(t) 1 2a a  ( )1 2 2a a 1 a / t+  

 

Copula with lower tail dependence 

Once the Y(t) have been simulated at all times of interest, it is easy to generate the Vi(t). The 

procedure is described in the box. For any given time t, the associated static copula is lower 

tail dependent and is similar to a Clayton copula (Figure 6.1). For want of a better name we 

call it an extended Clayton copula. The shape can be interpreted as follows. When Y(t) takes 

low values, the values of the Vi(t) will all be low and hence correlated. If one of the names 

defaults, others are likely to follow suit. Conversely when Y(t) takes high values, the Vi(t) 

will be poorly correlated. So if one name defaults the others are unlikely to do so. So this 

dynamic copula process effectively reproduces what one would intuitively expect.  

 

 

 

 

 

 

 

 

 

Figure 6.1: Simulations of the extended Clayton copula showing the lower tail dependence 
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Three-step procedure for simulating Vi(t) 

1. Simulate the process α(t) 

• Initialize α(0) to 0 

• For any t > 0 and  δt > 0, simulate an increment 

( ) ( ) ( 1 2t t t a t,aΓα + δ −α ≡ δ )  

• Compute ( )t tα + δ . 

2. Simulate the compound gamma process Y(t)  

• At time t > 0, draw a value of Y(t) with the conditional gamma distribution 

( )( )t ,1/ tΓ α   

• The values at different times, Y(t1) and Y(t2), are drawn conditional on the 

values of the underlying process, α(t1) and α(t2), but otherwise independent 

of each other. This adds random noise around α(t). 

3. Simulate the Ui(t) then deduce the Vi(t) 

• For each of the N realizations of Y(t) simulate n Ui(t) where n is the number 

of names in the portfolio. 

6.2 Pricing a correlation product: CDO 

Pricing synthetic CDOs involves computing aggregate loss distributions over different time 

maturities. So CDO tranche premiums depend upon the credit risk of the individual names in 

the underlying portfolio and the dependence structure between default times. In the previous 

section we saw how to simulate the Vi(t); in this section we focus on determining whether the 

ith name has defaulted at time t. 

The cumulative risk neutral default probability PDi(t) is derived from the term structure of the 

CDS spread at maturity, assuming 40% gross recovery rate which means a loss given default 

LDGi of 60%. If the simulated value of Vi(t) is less than PDi(t), the name is considered to be 

in default at time t.  
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Notation & Definitions 

The aggregate loss in the portfolio at time t is just the sum of the nominals of those names 

which have defaulted up to time t. As usual the loss in the tranche [Kd, Ku]  at time t is: 

( ) ( ) ( )t d u u dLoss K ,K Min K , Loss t Min K ,Loss t⎡ ⎤ ⎡= −⎣ ⎦ ⎣ ⎤⎦    [6.04] 

and the Expected Loss (EL) in the base tranche [0, K] at time t is just: 

( ){ }EL E Min K,Loss t= ⎡⎣ ⎤⎦        [6.05] 

Data Source 

To facilitate comparisons with the models already tested by Van der Voort (2006), we used 

the same data as he did; that is, quotes for the standard tranches on the iTraXX and CDX 

baskets for 5Y, 7Y and 10Y, for 30 January 2006. Figure 6.2 shows the base correlations as a 

function of the attachment point for iTraxx (left) and CDX (right) for these three maturities. 

Figure 6.2: Base correlation as a function of the detachment point for the market data as at 30 January 2006, 

for the standard maturities of 5Y (blue), 7Y (red) and 10Y (black) for iTraxx (left) and for CDX (right) 

 

We computed the cleanspreads and the cumulative default probabilities for the 125 names, for 

the three maturities: 5 years, 7 years or 10 years, using a constant loss given default of 60%. 

As the spread is quoted in basis points, the clean spread is divided by 10000 to get the 

absolute value of the spread. 

( ) ( )i
i

i

Spread Maturity
cleanSpread Maturity

LGD
=    [6.06] 

( ) ( )i
i

cleanSpread Maturity
PD Maturity 1 exp Maturity

10,000
⎡ ⎤

= − − ×⎢ ⎥
⎣ ⎦

 [6.07] 
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Calibrating the parameters for pricing of the CDO  

An iterative least squares procedure was used to calibrate the parameters (a1,a2) of the gamma 

distribution, using data with a 5 year maturity because it is the most liquid. The base 

correlation was computed by running Monte Carlo simulations of the portfolio and comparing 

this with the market base correlation. Typically 10,000 simulations were carried out. For 

simplicity all the exposures are bullet. The resulting base correlations are compared to those 

for the market at the standard detachment points. Table 6.2 gives the parameter values for 

iTraxx (left) and CDX (right). These were then used to compute the base correlations for a 

maturity of 10Y.  

Table 6.2: Values of parameters fitted to iTraxx and CDX quotes on  30 January 2006 

 iTraxx CDX 

a1 14 13 

a2 44 63 

 

Figure 6.3 presents the market base correlation (solid red line) and the base correlation given 

by the dynamic copula model (solid black line) as a function of the standard attachment points 

for a maturity of 10Y, for iTraxx (above) and for CDX (below). In addition the base 

correlations computed by van der Voort (2006) for five common models are also presented in 

grey. It is clear that overall the dynamic copula reproduces the market results better than any 

of those models. 

6.3 Conclusions 

One of the challenges currently facing the credit risk industry is to develop dynamic models 

for pricing credit derivatives such as CDOs, and then to test them against market data. In a 

previous paper (Totouom & Armstrong, 2007) we proposed a new family of dynamic copula 

processes for modelling the evolution of the credit risk of a large portfolio over time. 

Preliminary tests using market data indicated that it gave acceptable results for the base 

correlation as a function of the detachment point and for the term structure of the base 

correlation. The next step was to test its performance compared to other one-factor copula 

models. 
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Figure 6.3: Comparing the market base correlation (red) at 10Y iTraxx (above) and 10Y CDX (below) with predictions 
given different models, those tested by van der Voort  (2006) in grey and dynamic copula (thick black line), for 30 
January 2006. In all cases parameter values were fitted using 5Y maturity. The dynamic copula tracks the market 

values more closely than the other five 1-factor copula 
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Market data as at 30 January 2006 for the most liquid maturity 5Y were used to calibrate the 

model. We then ran 10,000 simulations of the Vi(t) for a maturity of 10Y using the parameters 

fitted to the 5Y data, together with the individual CDS spreads for 10Y. Comparing the 

cumulative probability of default computed from each firm’s CDS spread with the simulated 

Vi(t) tells us which firms have defaulted in each simulation, and hence the loss in any given 

tranche. The model-implied base correlation can be computed from this. The model 

reproduced the market base correlations for iTraxx and for CDX quite well. Having used the 

same market data (30 January 2006) as van der Voort (2006) this demonstrates that it 

outperforms the five well-known one factor copula models that he considered. 

 

This new class of dynamic copula processes was developed by extending on a well-known 

relation between Archimedean copulas and the Laplace transforms of random variables to 

stochastic processes: 

( ) ( )i
i

Ln U (t)
V t for i 1, n

Y(t)
−⎛ ⎞

= ϕ =⎜ ⎟
⎝ ⎠

…  

where Ui(t) is a uniform process on [0,1], Y(t) is a type of gamma process and ϕ is the 

Laplace transform of the distribution of Y. The processes Y(t) and Ui(t) must be mutually 

independent. This provides a simple way of constructing and simulating dynamic copula 

processes which effectively overcomes the difficulties of constructing multivariate copulas 

that have been well documented in the literature (Nelsen 1999 & Joe 1997).  

 

Having chosen Y(t) to be a compound gamma process the copula between any two names 

Vi(t) and Vj(t) at time t, is lower tail dependent but not upper tail dependent (rather like the 

Clayton copula). In our model Y(t) acts as a proxy for the current economic climate. So the 

lower tail dependence means that defaults are correlated in unfavourable times but not during 

normal times, as one would intuitively expect. The Ui(t) represent idiosyncratic variations in 

each firm’s credit status. Combining these two gives each firm’s creditworthiness Vi(t) at time 

t on a uniform scale from 0 to 1. If this value falls below a critical threshold determined from 

its CDS spread at that maturity, then that name is considered to have defaulted.  

 

To summarize, this new family of dynamic copula processes has the type of lower tail 

dependence needed to model credit risk, as well as being a properly defined stochastic 
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process. In addition the two processes Y(t) and U(t) that are used in its construction are 

economically meaningful. Lastly we have shown that outperforms a range of well-known one-

factor copula models. 
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Figure 6.4: Comparing the market base correlation (blue) at 5Y iTraxx (above) and 5Y CDX (below) with calibrated 
results given by different models, those tested by van der Voort  (2006) (external, random factors, mixture, double T) 

and dynamic copula (thick green line), for 30 January 2006. In all cases parameter values were fitted using 5Y 
maturity. The dynamic copula tracks the market values more closely than the other five 1-factor copula 
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Figure 6.5: Comparing the market base correlation (blue) at 10Y iTraxx (above) and 10Y CDX (below) with 
parameters obtained by calibration on 5Y Index. predictions given different models are those tested by van der 
Voort  (2006) (external, random factors, mixture, double T) and dynamic copula (thick green line), for 30 January 

2006. In all cases parameter values were fitted using 5Y maturity, and the calibrated results are in the figure 6.4. The 
dynamic copula tracks the market values more closely than the other five 1-factor copula 
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Chapter 7: Conclusions  

In this thesis, we show that with the growth of credit derivatives markets, new products are 

continually being created and market liquidity is increasing. After reviewing these products 

starting out from the credit default swap, CDS, and describing their evolution since their 

inception in the early 90s, we demonstrate that this development has been market driven, with 

the mathematical models used for pricing lagging behind. As the market developed, the weak 

points of the models became apparent and improved models had to be developed. In October 

2003 when the work on this thesis started, CDOs (Collateralised Debt Obligations) were 

becoming standard products. A new generation of products which we will refer to as third 

generation credit derivatives were starting to come on line: these include forward-starting 

CDS, forward-starting CDOs, options on CDOs, CPDO (in full) and so forth. In contrast to 

early products, these derivatives require a dynamic model of the evolution of the “correlation” 

between the names over time, something which base correlation was not designed to do. The 

aim of this doctorate has been to develop a mathematical consistent framework for pricing 

these types of products. 

 

After reviewing the literature it became clear that  

• A dynamic (rather static) model would be required to handle multiple maturities 

simultaneously and third generation credit derivatives (especially forward starting 

products) 

• Models based on copulas have the advantage of separating the modelling of the 

marginal distribution from that of the correlation structure between companies 

(names) in the CDO basket. So we decided to develop a dynamic copula model 

• Work by Burtschell, Gregory & Laurent (2005a)  had shown that for a given maturity, 

a (static) copula with lower tail dependence such as the Clayton copula gave better 

results than the other copulas (notably the Gaussian copula and Student’s t) 

• The Clayton copula belongs to a broad family of copulas called Archimedean copulas 

which encompass a wide range of types of tail dependence.  

• Although many models exist for bivariate copulas, very few have multivariate 

equivalents. Archimedean copulas are amongst the few “strict” copulas with this 

property. 
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Consequently our objective was to develop a family of multivariate copula processes with 

different types of upper and lower tail dependence so as to be able to reproduce the 

correlation smiles/skews observed in credit derivatives in practice. We chose to work with a 

dynamic version of Archimedean copulas because unlike many other copulas found in the 

literature, they are mathematically consistent multivariate models. Chapter 2 presents two 

different approaches for developing these processes. The first model developed is a non-

additive jump process based on a background gamma process; the second approach is based 

on time changed spectrally positive Levy process. The first approach is very convenient for 

simulations; the second approach is based on additive building blocks and hence is a more 

general. Two applications of these models to credit risk derivatives were carried out. The first 

one on pricing synthetic CDOs at different maturities (Chapter 5) was presented at the 5th 

Annual Advances in Econometrics Conference in Baton Rouge, Louisiane, November 3-5 

2006 and has been submitted for publication. The second one which presents a comparison of 

the pricing given by these dynamic copulas with five well-known copula models, has been 

submitted to the Journal of Derivatives (see Chapter 6). 

 

Having tested the basic dynamic copula models in a credit derivative context, we went on to 

combine this framework with matrix migration approach (Chapter 3). In order to market 

structured credit derivatives, banks have to get them rated by rating agencies such as S&P, 

Moody’s and Fitch. A key question is the evolution of the rating over time (i.e. its migration).  

As the latest innovations in the credit derivatives markets such as Constant Proportion Debt 

Obligation (CPDO) require being able to model credit migration and correlation in order to 

handle substitutions on the index during the roll, we propose a model for the joint dynamics of 

credit ratings of several firms.  

 

We then proposed a mathematical framework were individual credit ratings are modelled by a 

continuous time Markov chain, and their joint dynamics are modelled using a copula process. 

Copulas allow us to incorporate our knowledge of single name credit migration processes, 

into a multivariate framework.  

 

This is further extended with the multi-factor and time changed approach. A multifactor 

approach is developed within the new formulated dynamic copula processes, and a time 

changed Levy process is used to introduce dependency on spread dynamics. The latter are 

very important to transactions such as CPDO (Mark-to-Market risk on Index roll), Leverage 
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Super Senior (LSS) and also cash CDO transaction in order to model reinvestment risk more 

accurately. We showed that the building block of time changed approach falls within the 

framework of dynamic copulas. 

 

Perspectives for future work 

Credit risk derivatives are one of the most rapidly developing parts of the finance industry. 

These rapid changes mean that new and interesting questions arise constantly, posing new 

challenges for mathematical modellers. Below we cite one potential application that it would 

be interesting to tackle from the point of view of dynamic copulas. 

 

Potential application to Hedge Funds and Collaterized Fund Obligation (CFO) modelling.  

A Collateralized Fund Obligation can be regarded as a financial structure with equity 

investors and lenders where all the assets, equity and bonds, are invested in a portfolio of 

hedge funds. The lenders earn a spread over interest rates and the equity holders, usually the 

managers of the CFO, earn the total return of the fund minus the financing fees. The dynamic 

copula framework might allow us to incorporate two well known characteristics from the 

return series of hedge funds: first, the skewed and leptokurtic nature of the marginal 

distribution functions, and second, the asymmetric correlation or correlation breakdown 

phenomenon (Longin and Solnik, 2001). The correlation between the different hedge funds 

depends on the direction of the market. For instance, correlations tend to be larger in a bear 

market than in a bull market. 

 

As hedge funds report returns only on a monthly basis, this leads to a lack of data for 

estimation purposes. Therefore it becomes necessary to consider multivariate models with as 

few parameters as possible. One way to achieve this (that is, to capture both the one-

dimensional leptokurtic and asymmetric nature of hedge fund returns and the correlation 

breakdown phenomenon), would be by using dynamic copula for the dependence process and 

a time changed Levy or self similar process for modelling the returns of a single or pool of 

hedge funds. 
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