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Jean-Christophe OLIVO-MARIN Directeur

Henri MAITRE Président et co-directeur

Raimund OBER Rapporteur

Claude BOCCARA Rapporteur

Dimitri VAN DE VILLE Examinateur

Josiane ZERUBIA Invitée

Jean-Luc STARCK Invité
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Résumé

Cette thèse propose trois contributions principales pour l’imagerie en microscopie à fluorescence.

(1) Modélisation du système optique : nous avons étudié les approximations gaussiennes des

moindres carrés pour les réponses impulsionnelles optiques (PSFs) limitées par la diffraction du

microscope en champ large (WFFM), du microscope confocal (LSCM), et du microscope confocal à

disque rotatif (DSCM). Les situations paraxiales/non-paraxiales et 2D/3D sont toutes considérées.

Les PSFs sont décrites par les intégrales de diffraction de Debye. Nous avons dérivé les paramètres

gaussiens optimaux pour la PSF 2D paraxiale du WFFM, sous les normalisations L∞ et L1. Pour les

autres PSFs, avec la normalisation L∞, des paramètres quasi-optimaux sont explicitement dérivés

par l’appariement des séries de Maclaurin. Ces modèles approximatifs gaussiens peuvent être calculés

rapidement, et facilitent considérablement la modélisation des objets biologiques. (2) Débruitage

des images de fluorescence : les images issues des LSCM et DSCM ont des statistiques pure-

ment poissoniennes ou poissoniennes et gaussiennes mélangées (MPG) selon les différents modes

d’acquisition du microscope. Deux approches sont proposées pour restaurer une image poissoni-

enne. La première méthode, basée sur les tests d’hypothèses dans le domaine de Haar biorthog-

onale, est particulièrement appropriée à estimer rapidement les intensités poissoniennes régulières

dans des données de grandes tailles. Notre deuxième méthode, basée sur une transformée stabil-

isatrice de variance (VST), permet de gaussianiser et stabiliser un processus poissonien filtré. Cette

VST peut être combinée avec de nombreuses transformées multi-échelles, ce qui conduit aux VSTs

multi-échelles (MS-VSTs). Nous montrons que les MS-VSTs permettent de restaurer efficacement

des structures saillantes de diverses formes (isotropes, linéiques et curvilignes) avec un (très) faible

flux photonique. La MS-VST est également généralisée pour débruiter les données MPG et pour

extraire les taches fluorescentes dans les données MPG. (3) Détection super-résolutive : nous

avons revu et étendu les résultats des limites de la résolution pour les sources ponctuelles issus des

théories de la détection, de l’estimation, et de l’information. En particulier, nous avons proposé

d’appliquer la VST pour étudier les limites de la résolution dans le cas d’observations poissoniennes

ou MPG. Les résultats sont asymptotiquement consistants et les expressions sont de formes closes.

Nous avons également généralisé une approche de super-résolution qui est basée sur l’ajustement de

modèle paramétrique et la sélection de l’ordre de modèle pour localiser un nombre inconnu de spots

ou de bâtonnets. Cette méthode permet non seulement de localiser les sources ayant des configura-

tions spatiales complexes, mais aussi d’extraire les objets séparés par des distances inférieures à la

résolution optique de Rayleigh (super-résolution).

Mots-clés: PSF microscopique, approximation gaussienne de PSF, ondelette de Haar biorthogonale,

transformée stabilisatrice multi-échelle de variance, processus poissonien, processus poissonien et

gaussien mélangé, détection de spots, détection super-résolutive de spots, détection super-résolutive

de bâtonnets.





Abstract

This thesis mainly contributes to three aspects in fluorescence microscopy imaging. (i) Optical

system modeling: we have comprehensively studied the least squares Gaussian approximations

of the diffraction-limited 2D/3D paraxial/non-paraxial point spread functions (PSFs) of wide-field

fluorescence microscope (WFFM), laser-scanning confocal microscope (LSCM) and disk-scanning

confocal microscope (DSCM) described using the Debye diffraction integrals. Optimal Gaussian

parameters are derived for the 2D paraxial WFFM PSF, under both the L∞ and L1 normaliza-

tions. For the other PSFs, with the L∞ normalization, near-optimal parameters in explicit forms

are derived using Maclaurin series matching. These Gaussian approximative PSF models allow fast

computation and greatly simplify the modeling of biological objects under these microscopes. (ii)

Fluorescence image denoising: images produced by LSCM and DSCM have either a Poisson

or a mixed-Poisson-Gaussian (MPG) statistical nature according to different function modes of the

microscope. We have proposed two approaches for Poisson noise removal. One method is based on

biorthogonal Haar-domain hypothesis tests, which is particularly suitable for fast estimating smooth

intensities from large datasets. Our second method makes use of a well designed variance stabilizing

transform (VST) allowing to Gaussianize and stabilize a filtered Poisson process. This VST can

be combined with most multi-scale transforms yielding multi-scale VSTs (MS-VST). We show that

this MS-VST approach provides a very effective denoiser capable of recovering important structures

of various (isotropic, line-like and curvilinear) shapes in (very) low-count images. This MS-VST

method has also been extended to remove MPG noise, and to extract fluorescent spots within MPG

noisy data. (iii) Super-resolution object detection: we have reviewed and extended the re-

sults of resolution limits for point-like sources under detection-theoretic, estimation-theoretic and

information-theoretic points of view. In particular, we propose to apply the VST to study the

limiting resolution with Poisson or MPG data, leading to asymptotically consistent results with

closed-form expressions. We have also generalized an existing super-resolution approach, which is

based on parametric model fitting and model-order selection, to localize an unknown number of

spots or rods. This method allows not only to localize sources having complex spatial configura-

tions, but also to detect objects separated with distances smaller than Rayleigh optical resolution

(super-resolution).

Keywords: Fluorescence microscope PSF, Gaussian PSF approximation, biorthogonal Haar wavelet,

multi-scale variance stabilizing transform, Poisson process, mixed-Poisson-Gaussian process, spot

detection, super-resolution spot detection, super-resolution rod detection.





Résumé de la thèse « Contributions à la

microscopie à fluorescence en imagerie

biologique : modélisation de la PSF, restauration

d’images et détection super-résolutive »

Bo ZHANG

1 Introduction

Cette thèse propose trois contributions principales pour l’imagerie en micro-
scope à fluorescence. (1) Modélisation du système optique : nous avons
étudié les approximations gaussiennes des moindres carrés pour les réponses im-
pulsionnelles optiques (PSFs) limitées par la diffraction du microscope en champ
large (WFFM), du microscope confocal (LSCM), et du microscope confocal à
disque rotatif (DSCM). Les situations paraxiales/non-paraxiales et 2D/3D sont
toutes considérées. Les PSFs sont décrites par les intégrales de diffraction de
Debye. Nous avons dérivé les paramètres gaussiens optimaux pour la PSF 2D
paraxiale du WFFM, sous les normalisations L∞ et L1. Pour les autres PSFs,
avec la normalisation L∞, des paramètres quasi-optimaux sont explicitement
dérivés par l’appariement des séries de Maclaurin. Ces modèles approximatifs
gaussiens peuvent être calculés rapidement, et facilitent considérablement la
modélisation des objets biologiques. (2) Débruitage des images de fluores-
cence : les images issues des LSCM et DSCM ont des statistiques purement
poissoniennes ou poissoniennes et gaussiennes mélangées (MPG) selon les diffé-
rents modes d’acquisition du microscope. Deux approches sont proposées pour
restaurer une image poissonienne. La première méthode, basée sur les tests d’hy-
pothèses dans le domaine de Haar biorthogonale, est particulièrement appropriée
pour estimer rapidement les intensités poissoniennes régulières dans des données
de grandes tailles. Notre deuxième méthode, basée sur une transformée stabili-
satrice de variance (VST), permet de « gaussianiser » et stabiliser un processus
poissonien filtré. Cette VST peut être combinée avec de nombreuses transfor-
mées multi-échelles, ce qui conduit aux VSTs multi-échelles (MS-VSTs). Nous
montrons que les MS-VSTs permettent de restaurer efficacement les structures
saillantes de diverses formes (isotropes, linéiques et curvilignes) avec un (très)
faible flux photonique. La MS-VST est également généralisée pour débruiter des
données MPG et pour extraire les taches fluorescentes. (3) Détection super-
résolutive : nous avons revu et étendu les résultats des limites de la résolution
pour les sources ponctuelles issus des théories de la détection, de l’estimation,
et de l’information. En particulier, nous avons proposé d’appliquer la VST pour
étudier les limites de la résolution dans le cas d’observations poissoniennes ou
MPG. Les résultats sont asymptotiquement consistants et les expressions sont de
formes closes. Nous avons également généralisé une approche de super-résolution
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pour localiser un nombre inconnu de spots ou de bâtonnets. Cette méthode per-
met non seulement de localiser les sources ayant des configurations spatiales
complexes, mais aussi d’extraire les objets séparés par des distances inférieures
à la résolution optique de Rayleigh (super-résolution).

2 Approximations gaussiennes des PSFs micro-

scopiques

Les PSFs des microscopes à fluorescence (WFFM, LSCM et DSCM) jouent
un rôle important dans les études de la performance d’imagerie. De nombreux ef-
forts ont été apportés pour dériver les modèles physiques de PSFs. Malgré l’exis-
tence des modèles physiques rigoureux, les PSFs approximatives notamment les
approximations gaussiennes sont largement préférées dans les applications qui
requièrent des traitements rapides des données. En effet, comparé aux modèles
physiques, une PSF gaussienne a une expression beaucoup plus simple et peut
être calculée beaucoup plus rapidement. De plus, grâce à la simplicité, une PSF
gaussienne permet de faciliter des analyses théoriques et des modélisations.

Nous étudions les approximations gaussiennes des moindres carrés pour les
PSFs limitées par la diffraction du WFFM, LSCM et DSCM. Les PSFs sont
décrites par les intégrales de diffraction de Debye (Section 2.1). Nous dérivons
sous les normalisations L∞ et L1 les paramètres gaussiens optimaux et quasi-
optimaux pour les PSFs (Section 2.2). Les simulation numériques montrent que :
(i) les approximations 2D sont très précises ; (ii) il n’existe pas d’approximations
précises pour la PSF 3D du WFFM ; (iii) pour les sténopés de tailles standards,
les approximations 3D sont précises pour DSCM et quasi-parfaites pour LSCM.
Tous les paramètres gaussiens dérivés ont des formes closes qui sont présentés
dans les Tableaux 1, 2 et 3.

2.1 Modèles physiques des PSFs limitées par la diffraction

Nous supposons que les modèles des PSFs sont limités par la diffraction et
que les aberrations optiques sont ignorées. Considérons un objectif microsco-

x
y

z
O

α

n

Objective 

lens

Fig. 1: Un faisceau de lumière focalisé par un objectif.

pique uniformément éclairé (Fig. 1). La distribution d’amplitude proche-focale
est donnée par l’intégral de Debye :

h(x, y, z; λ) = C0

∫
α

0

√
cos θJ0(kρ sin θ)e−ikz cos θ sin θ dθ (1)
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où λ est la longueur d’onde d’excitation, n l’indice de réfraction de l’espace d’ob-
jet, k = n 2π

λ
le nombre d’onde, C0 une constante complexe, J0 la fonction Bessel

d’ordre zéro de première espèce, ρ =
√

x2 + y2, et α le semi-angle maximum
de la convergence par l’objectif. Il est connu que ce modèle de Debye est bien
adapté pour décrire la distribution de lumière en situation non-paraxiale, i.e.,
pour un objectif d’une ouverture numérique (NA) importante. Si NA diminue,
(1) tend asymptotiquement vers le modèle paraxial :

h(x, y, z; λ) = C1e
−ikz

∫
1

0

J0(kρt sin α)e
i
2
kzt

2
sin

2
αt dt (2)

où C1 = α2C0.

2.1.1 PSFs du WFFM, LSCM et DSCM

La PSF du WFFM est donné par (3).

PSFWFFM (x, y, z) = |h(x, y, z; λem)|2 (3)

où λem est la longueur d’onde d’émission.
Pour le LSCM, nous supposons que le sténopé est circulaire de rayon r =

D/2. La longueur d’onde d’excitation est notée par λex. La PSF du LSCM est
exprimée par :

PSFLSCM (x, y, z) = |h(x, y, z; λex)|2·
∫

{x
2

1
+y

2

1
≤r

2
}

|h(x−x1, y−y1, z; λem)|2 dx1dy1

(4)
Pour le DSCM, la distance entre deux sténopés adjacents est notée par d.

La PSF est :

PSFDSCM (x, y, z) =

∣∣∣∣∣
∑

(nx,ny)∈D

h

(
x − d

2
(nx + ny), y −

√
3

2
d(nx − ny), z; λex

)∣∣∣∣∣

2

·

∫

{x
2

1
+y

2

1
≤r

2
}

|h(x − x1, y − y1, z; λem)|2 dx1dy1 (5)

où l’ensemble des indices des sténopés d’illumination est noté par D ⊂ Z2.
Finalement, les expressions des PSFs paraxiales des trois microscopes sont

obtenues en insérant l’intégrale paraxiale (2) dans (3), (4) et (5). Les expressions
des PSFs non-paraxiales sont dérivées de la même façon, sauf que l’intégrale
paraxiale (1) doit être utilisée. On peut vérifier à partir de ces expressions que
toutes les PSFs sont symétriques par rapport au plan xy. De plus, PSFWFFM

et PSFLSCM ont une symétrie cylindrique par rapport à l’axe z, et PSFDSCM

est presque cylindriquement symétrique si la distance d est suffisamment large.

2.2 Approximations Gaussiennes des modèles de PSFs

Pour dériver les approximations gaussiennes des PSFs (3), (4) et (5), nous
supposons que la fonction gaussienne est centrée à l’origine de la PSF considérée
et est séparable. Les gaussiennes centrées et séparables sont les seules fonctions
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gaussiennes qui préservent les symétries des PSFs. Par conséquent, nous notons
les gaussiennes 2D et 3D gσ :

gσρ
(x, y) := A1 exp

(
−x2 + y2

2σ2
ρ

)
= A1 exp

(
− ρ2

2σ2
ρ

)
(6)

gσρ,σz
(x, y, z) := A2 exp

(
−x2 + y2

2σ2
ρ

− z2

2σ2
z

)
= A2 exp

(
− ρ2

2σ2
ρ

− z2

2σ2
z

)
(7)

Nous souhaitons trouver les paramètres gaussiens optimaux, i.e. σ∗ = σ∗

ρ
pour

le cas 2D, et σ∗ = {σ∗

ρ
, σ∗

z
} pour 3D, qui minimisent le critère des moindres

carrés (LSQ), i.e.
σ∗ = argmin

σ>0

‖PSF − gσ‖2

2
(8)

2.2.1 Exemple : paramètres gaussiens pour les PSFs 2D du WFFM

Nous décrivons les approximations pour les PSFs 2D du WFFM. La PSF
2D paraxial du WFFM, connue sous le nom « disque d’Airy », est dérivée par
(2) et (3) où z est fixé à 0, i.e.

PSFWFFM (ρ) =

[
2
J1(kemNAρ)

kemNAρ

]2
(9)

La solution de (8) est donnée par

σ∗

ρ
≈ 0.21

λem

NA
(10)

Contrairement au cas paraxial où le paramètre optimal peut être déduit
exactement, la minimisation de (8) est difficile pour la situation non-paraxiale
puisque la PSF non-paraxiale n’a pas de forme close. Toutefois, nous pouvons
constater que l’énergie L2 de la PSF (‖PSFWFFM‖2

2
) se concentre essentielle-

ment dans le lobe principal qui se situe dans un petit voisinage de l’origine. Ainsi,
une approximation près de l’origine capturant la décroissance du lobe principal,
e.g. gσ(ρ) → PSFWFFM (ρ) quand ρ → 0, pourrait donner une approximation
précise. Cela peut être facilement atteint en appariant la série Maclaurin de la
PSF et celle de gaussienne. Les deux séries diffèrent à partir de leurs termes
d’ordre second. Ainsi, en imposant l’égalité de leurs termes du second ordre,
nous obtenons :

σ̂∗

ρ
=

1

nkem

[
4 − 7 cos

3

2 α + 3 cos
7

2 α

7(1 − cos
3

2 α)

]
−

1

2

(11)

D’un point de vue géométrique, cette approche apparie les courbures principales
des deux fonctions à l’origine.

La solution exacte de (8) peut être aussi déduite pour la PSF 2D du WFFM
sous la normalisation L1. Pour les PSFs restantes, l’appariement des séries Ma-
claurin est utilisé pour trouver les paramètres approximatifs. Ces paramètres
sont montrés dans les Tableaux 1, 2 et 3.
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2.2.2 Consistances des paramètres gaussiens

Système paraxial : Si NA devient petit, les paramètres gaussiens non-paraxiaux
2D/3D du WFFM, LSCM et DSCM se rapprochent des paramètres pa-
raxiaux ;

Confocalité idéal : Si le rayon des sténopés tend vers zéro, les paramètres
gaussiens 2D/3D du LSCM et DSCM convergent vers les paramètres dé-
rivés pour des sténopés nuls ;

Sténopé entièrement ouvert : Si le rayon des sténopés tend vers l’infini,
les paramètres gaussiens 2D/3D du LSCM et DSCM se rapprochent de
ceux du WFFM où λem est remplacée by λex, sauf pour le paramètre
non-paraxial σ̂∗

z
. La dernière exception implique que les approximations

gaussiennes non-paraxiales 3D pour LSCM et DSCM ne peuvent pas être
appliquées aux cas de grands sténopés.

2.2.3 Résultats

La Figure 2 montre des exemples d’approximations gaussiennes pour les
PSFs. Nous pouvons constater visuellement que les approximations sont précises
sauf celle pour la PSF axiale du WFFM où les lobes secondaires de la PSF ne
peuvent pas être bien approximés.

Quantitativement, les erreurs des approximations ont été évaluées en utili-
sant le critère de l’erreur quadratique relative (RSE) définie par

RSE :=
‖PSF − gσ̂

∗‖2
2

‖PSF‖2

2

(12)

où gσ̂
∗ est la fonction gaussienne approximative. Le critère de l’erreur relative

du paramètre (PRE), i.e. |σ̂∗ − σ∗|/σ∗, a été aussi utilisé pour comparer le
paramètre proposé σ̂∗ et celui de vérité terrain σ∗ déduit numériquement.

Les simulation ont montré que : (i) les approximations 2D sont très précises ;
(ii) il n’existe pas d’approximations précises pour la PSF 3D du WFFM ; (iii)
pour les sténopés de tailles standards, les approximations 3D sont précises pour
DSCM et quasi-parfaites pour LSCM.
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Fig. 2: Approximations gaussiennes des PSFs du WFFM, LSCM et DSCM
avec la normalisation L∞. Cas non-paraxiaux, λex = 488nm, λem = 520nm,

n = 1.515, NA = 1.0, d0 := 1

2

(
λem

λex
+ D + 1

)
AU, et le diamètre des sténopés

D = 0.5AU pour LSCM et DSCM. (a) PSF latérale du WFFM ; (b) PSF latérale
du LSCM ; (c) PSF latérale du DSCM (d = d0) ; (d) PSF axiale du WFFM ; (e)
PSF axiale du LSCM ; (f) PSF axiale du DSCM (d = d0).
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Tab. 1: Paramètres gaussiens pour les PSFs 2D

Microscope Paramètre gaussien1

WFFM paraxial
(normalisation
L∞)

σ̂∗

ρ
= 0.21λem/NA

WFFM paraxial
(normalisation
L1)

σ̂∗

ρ
= 0.22λem/NA

WFFM non-
paraxial (norma-
lisation L∞)

σ̂∗

ρ
= 1

nkem

[
4−7 cos

3

2 α+3 cos
7

2 α

7(1−cos
3

2 α)

]
−

1

2

LSCM et DSCM
paraxiaux (d ≥
d0, normalisation
L∞)

σ̂∗

ρ
=

√
2
[

c
2

1

r
2 +

4c2J0(c2)J1(c2)−8J
2

1
(c2)

r
2[J2

0
(c2)+J

2

1
(c2)−1]

]
−

1

2

LSCM et
DSCM non-
paraxiaux (d ≥
d0, normalisation
L∞)

σ̂∗

ρ
=

√
2


 2σ

4

em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–

+r
2
σ

2

ex,ρ

σ
2
ex,ρσ

4
em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–



−

1

2

1 kex := 2π

λex
, kem := 2π

λem
, c1 := kexrNA, c2 := kemrNA, d0 :=

1

2

(
λem

λex
+ D + 1

)
AU, σem,ρ est donné par l’expression de σ̂∗

ρ
du

WFFM non-paraxial (normalisation L∞), et σex,ρ par la même ex-
pression avec kem replacé par kex.

Tab. 2: Paramètres gaussiens latéraux pour les PSFs 3D (norma-
lisation L∞)

Microscope Paramètre gaussien latéral1

WFFM paraxial σ̂∗

ρ
=

√
2/(kemNA)

WFFM non-
paraxial

σ̂∗

ρ
= 1

nkem

[
4−7 cos

3

2 α+3 cos
7

2 α

7(1−cos
3

2 α)

]
−

1

2

LSCM et DSCM
paraxiaux (d ≥
d0)

σ̂∗

ρ
=

√
2
[

c
2

1

r
2 +

4c2J0(c2)J1(c2)−8J
2

1
(c2)

r
2[J2

0
(c2)+J

2

1
(c2)−1]

]
−

1

2

LSCM et DSCM
non-paraxiaux
(d ≥ d0)

σ̂∗

ρ
=

√
2


 2σ

4

em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–

+r
2
σ

2

ex,ρ

σ
2
ex,ρσ

4
em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–



−

1

2

1 kex := 2π

λex
, kem := 2π

λem
, c1 := kexrNA, c2 := kemrNA, d0 :=

1

2

(
λem

λex
+ D + 1

)
AU, σem,ρ est donné par l’expression de σ̂∗

ρ

du WFFM non-paraxial, et σex,ρ par la même expression avec
kem replacé par kex.
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Tab. 3: Paramètres gaussiens axiaux pour les PSFs 3D (normali-
sation L∞)

Microscope Paramètre gaussien axial1

WFFM paraxial σ̂∗

z
= 2

√
6 · n/(kemNA2)

WFFM non-
paraxial

σ̂∗

z
= 5

√

7(1−cos
3

2 α)

√

6·nkem

h

4 cos5 α−25 cos
7

2 α+42 cos
5

2 α−25 cos
3

2 α+4

i

1

2

LSCM et DSCM
paraxiaux (d ≥
d0)

σ̂∗

z
= 2

√
6

[
c
2

1
NA2

r
2
n

2 − 48c
2

2
[J

2

0
(c2)+J

2

1
(c2)]−192J

2

1
(c2)

n
2
k
2
emr

4[J2

0
(c2)+J

2

1
(c2)−1]

]
−

1

2

LSCM et DSCM
paraxiaux (d ≥
d0)

σ̂∗

z
=

σex,zσem,z

[σ2
ex,z+σ

2
em,z]

1

2

1 kex := 2π

λex
, kem := 2π

λem
, c1 := kexrNA, c2 := kemrNA, d0 :=

1

2

(
λem

λex
+ D + 1

)
AU, σem,z est donné par l’expression de σ̂∗

z

du WFFM non-paraxial, et σex,z par la même expression avec
kem replacé par kex.

3 Débruitage d’images de fluorescence

Nous avons étudié les différentes sources du bruits qui dégradent la qualité
d’images de fluorescence (bruit photonique, bruit de courant noir, bruit de lec-
ture, et bruit de quantification). Les modèles finaux des signaux du WFFM,
LSCM et DSCM sont résumés comme suit.

WFFM Le signal S est contaminé par un bruit gaussien :

S ≈ αλ + µ + B, B ∼ N (0, σ2) (13)

où α est le gain du microscope, µ la moyenne et σ2 la variance du bruit.

LSCM Nous distinguons les deux modes d’acquisition :
– Pour le mode analogique, le signal est un processus poissonien et gaus-

sien mélangé (MPG) :

S = αNs + Nr, Ns ∼ P(λ), Nr ∼ N (µ, σ2) (14)

où Ns, une variable poissonienne, modélise le comptage de photons, et
Nr, une variable gaussienne, représente le bruit de lecture.

– Pour le mode de comptage de photons, le signal est Poissonien :

S ∼ P(λ) (15)

DSCM Le signal est un processus MPG :

S = αNs + Nr, Ns ∼ P(λ), Nr ∼ N (µ, σ2) (16)

3.1 Suppression du bruit poissonien

Nous formulons d’abord le problème de débruitage poissonien. Nous obser-
vons des données discrètes de comptage de photons X = (Xi)i∈Zq où Xi est une
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variable aléatoire de Poisson d’intensité λi, i.e., Xi ∼ P(λi). Ici, nous supposons
que les Xi’s sont mutuellement indépendantes. Le débruitage vise à estimer les
intensités sous-jacentes Λ = (λi)i∈Zq des observations X.

Concernant ce sujet, notre contribution a été de proposer deux nouvelles
méthodes de débruitage poissoniens. Notre première approche est basée sur les
tests d’hypothèses dans le domaine des ondelettes Haar biorthogonales (Bi-Haar)
(Section 3.1.1). Cette approche est particulièrement adaptée pour estimer rapi-
dement les intensités régulières des données volumineuses. Notre deuxième mé-
thode utilise une transformée stabilisatrice de la variance (VST) bien conçue.
Elle peut être associée à la plupart des transformées multi-échelles pour adapter
les diverses morphologies des sources à restaurer (Section 3.1.2).

3.1.1 Débruitage poissonien par les tests d’hypothèses dans le do-
maine de Bi-Haar

Le débruitage par ondelettes peut être achevé par réduction à zéro des co-
efficients non-significatifs tout en préservant ceux qui sont significatifs. Nous
détectons les coefficients significatifs par l’application d’un test binaire pour
chaque coefficient d’ondelette d :

H0 : d = 0 vs. H1 : d 6= 0

Notons que comme toute ondelette a une moyenne zéro, si d provient d’un signal
d’intensité constante dans le support d’ondelette, nous aurons d ∈ H0. Les tests
d’hypothèses individuels sont largement utilisés pour contrôler un taux de faux
positifs (FPR) préfixé dans le domaine d’ondelettes, disons α.

Les tests requièrent le calcul de la p-valeur de chaque coefficient d’ondelette
sous H0. Pour obtenir des distributions de formes maniables pour les coeffi-
cients, des ondelettes simples sont privilégiées, comme Haar. A notre connais-
sance, Haar est la seule ondelette dont la distribution de probabilité (pdf ) des
coefficients a une forme close. Mais, à cause des filtres discontinus de Haar, les
intensités estimées pourraient être très irrégulières avec des artefacts d’escaliers
lorsque la décimation est impliquée.

Pour résoudre ce dilemme entre la maniabilité de la distribution et la régu-
larité de reconstruction, nous proposons d’utiliser l’ondelette Bi-Haar. Son banc
de filtre est donné par :

h = 2−c[1, 1], g = 2−cr[1
8
, 1

8
,−1, 1,−1

8
,−1

8
];

h̃ = 2c−1r[−1

8
, 1

8
, 1, 1, 1

8
,−1

8
], g̃ = 2c−1[1,−1]

où c et r = (1 + 2−5)−1/2 sont deux facteurs normalisateurs, (h, g) et (h̃, g̃)
sont respectivement le banc de filtres d’analyse et celui de synthèse. Rappelons
que le banc de filtres de Haar est (h = 2−c[1, 1], g = 2−c[−1, 1], h̃ = 2c−1[1, 1],
g̃ = 2c−1[1,−1]). Il s’ensuit que la fonction d’échelle synthétique de Haar est
discontinue tandis que celle de Bi-Haar est quasi-Lipschitzienne. Ainsi, la re-
construction de Bi-Haar sera plus régulière.

Nous notons respectivement un coefficient de Haar et celui de Bi-Haar par dh

j

et dbh

j
. Notons aussi que pH := Pr(dh

j
≥ 2−cjk0|H0) la p-valeur d’un coefficient

de Haar où k0 = 1, 2, · · · , et pBH := Pr(dbh

j
≥ 2−cjk0|H0) la p-valeur d’un

coefficient Bi-Haar. Pour des intensités élevées ou de grandes échelles, dh

j
et dbh

j
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convergent asymptotiquement vers une même loi (gaussienne). Ainsi, ils auront
les mêmes p-valeurs, i.e., pH ≈ pBH .

Pour de faibles intensités (λ ≪ 1) et petites échelles, nous avons montré que
pBH est essentiellement bornée supérieurement par pH sous H0. Par exemple,

pour les données 1D, nous avons pBH ≤ pH +A(λ)(1−2pH) où A(λ) = 2
9j−7

2835
λ9+

o(λ9) et j l’indice d’échelle.
Les tests individuels peuvent être mis en œuvre par les opérateurs de seuillage.

Autrement dit, nous pouvons trouver t̃j tel que Pr(|dbh

j
| ≥ t̃j |H0) ≤ α où α re-

présente le FPR contrôlé. Supposons que dans le cas de Haar nous avons dérivé
le seuil tj . Alors, en fixant t̃j := 2−cjq⌈2cjqtj⌉ la relation entre pH et pBH nous
permet de conclure que le FPR d’un test Bi-Haar sera toujours borné supérieure-
ment par α. Ainsi, nous bénéficions de la régularité des filtres Bi-Haar pour avoir
une reconstruction régulière tout en maintenant une complexité faible de calcul
(celle de Haar décimée). Il reste donc à trouver tj . Pour cela, nous écrivons :

Pr(dh

j
≥ tj |H0) = Pr

(
χ2

(2mj)
(λj) < λj

)
≈ Pr(γχ2

(f)
< λj) (17)

≈ Pr

(
Z >

√
2f − 1 −

√
2λj

γ

)
(18)

où mj = 2cjqtj , γ = (2mj+2λj)/(2mj+λj), f = (2mj+λj)
2/(2mj+2λj), et Z ∼

N (0, 1). Ici, deux étapes d’approximation sont utilisées : (1) la distribution chi-
deux non-centrale est approximée par une distribution chi-deux centrale (17) ;
(2) cette dernière est encore approximée par la loi normale (approximation de
Fisher (18)). Nous avons dérivé le seuil tj sous cette approximation de Fisher
(noté par le seuillage FAB).

Résultats La Figure 3 présente les restaurations de la fonction « Smooth » par
la méthode Haar et celle de Bi-Haar. La Figure 3(a) montre que notre approche
permet de restaurer les intensités sous-jacentes tout en préservant la régularité
des intensités. Nous pouvons aussi voir que l’approche Haar conduit à des ar-
tefacts d’escaliers. La Figure 3(b) compare les erreurs quadratiques moyennes
intégrées normalisées des débruitages. Nous pouvons constater dans cet exemple
que la performance de l’estimation de Bi-Haar est tout à fait comparable à celle
de Haar non-décimée (TI Haar) qui a une complexité temporelle/spatiale beau-
coup plus importante.

3.1.2 Débruitage poissonien par MS-VST

Le débruitage par Bi-Haar est rapide, et produit des estimations régulières.
Toutefois, pour les applications ne nécessitant pas de traitements en temps réel,
les transformées non-décimées sont toujours préférables que celles décimées. Ce-
pendant, le gain offert par Bi-Haar non-décimée plutôt que Haar est marginal.
Une autre limite de cette approche est qu’elle est conçue pour les ondelettes Bi-
Haar seulement. Pour les sources linéiques ou curvilignes, ce filtre d’ondelettes
est clairement inadapté. Pour les sources isotropes q-dimensionelles (q ≥ 2), la
transformée en ondelettes biorthogonales (plus généralement pour toute trans-
formée en ondelettes séparables) n’offre pas une analyse isotrope. De ce fait,
cette méthode conduit à une estimation non-optimale de ces sources.

10



100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

λ(
x)

Haar vs. Bi−Haar

 

 
Original
Haar + FAB
Bi−Haar + FAB
TI Haar + FAB

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

λ
max

N
M

IS
E

Haar vs. Bi−Haar

 

 
Haar + FAB
Bi−Haar + FAB
TI Haar + FAB

(b)

Fig. 3: Débruitage de la fonction « Smooth » (longueur = 1024). Comparaison
des estimations par Haar, Bi-Haar et TI Haar (non-decimée) avec α = 10−3 et
nombre d’échelles J = 7. (a) résultats des débruitages ; (b) erreurs quadratiques
moyennes intégrées normalisées (NMISEs).

Ainsi, nous avons proposé un autre estimateur des intensités poissoniennes
qui est plus souple pour adapter de différents types de sources. Il est basé sur
une VST conçue pour d’une part stabiliser la variance d’un processus poissonien
filtré et d’autre part pour le gaussieniser. Cette nouvelle transformée, qui étend
celle d’Anscombe, est simple, rapide et efficace pour des données à (très) faible
flux de comptage.

Etant donné un processus poissonien X := (Xi)i, Yj :=
∑

i
h[i]Xj−i est le

processus filtré en convoluant X avec un filtre h. Yj pour j quelconque sera
noté par Y . Nous définissons τk :=

∑
i
(h[i])k pour k = 1, 2, · · · . De plus, nous

adoptons une hypothèse d’homogénéité locale que λj−i = λ pour tout i dans le
support de h.

Nous pouvons montrer que si h a une moyenne non-nulle, la transformée de
racine carrée sous forme (19) est une VST.

T (Y ) := b · sgn(Y + c)|Y + c|1/2 (19)

Ici, b est un facteur normalisateur et c ∈ R, dont la valeur contrôle la vitesse
de convergence vers la loi normale. Nous avons montré que la valeur asympto-
tiquement optimale est donnée par

c =
7τ2

8τ1

− τ3

2τ2

(20)

En conséquence, nous avons T (Y ) − b
√

τ1λ
D−→

λ→+∞

N (0, 1) où b = 2
√

τ1

τ2

.

En reconnaissant qu’une grande famille des transformées multi-échelles est
implémentée par des filtres (e.g. ondelettes, ridgelets et curvelets), cette VST
peut être combinée avec les banques de filtres des transformées, ce qui conduit
aux VSTs multi-échelles (MS-VSTs). En vue du débruitage poissonien, nous
sommes autorisés à choisir ou à concevoir la transformée la plus adaptative pour
les sources à restaurées selon leurs morphologies. Nous montrerons que notre
VST peut facilement être associée à ces différentes décompositions géométriques,
ce qui produit des coefficients asymptotiquement normalement distribués dont
la variation est connue. Les tests d’hypothèses classiques sont ensuite adoptés
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pour détecter les coefficients significatifs, et une approche itérative est proposée
pour reconstruire l’estimation finale.

Par exemple, (21) montre comment la VST est combinée avec la transformée
en ondelettes isotropes (IUWT). En effet, comme les coefficients d’approxima-
tion (aj) sont itérativement filtrés par les filtres passe-bas (h̄↑j)j , nous sommes
autorisés à appliquer les VSTs sur aj pour les stabiliser et gaussieniser.

IUWT

{
aj = h̄↑j−1 ⋆ aj−1

dj = aj−1 − aj

=⇒
MS-VST

+
IUWT

{
aj = h̄↑j−1 ⋆ aj−1

dj = Tj−1(aj−1) − Tj(aj)

(21)
où h↑j [l] = h[l] si l/2j ∈ Z et 0 sinon, et h̄[n] := h[−n]. Notons que le filtrage
sur aj−1 peut être ré-écrit comme un filtrage sur les données originales a0 := X,
i.e., aj = h(j) ⋆ a0, où h(j) = h̄↑j−1 ⋆ · · · ⋆ h̄↑1 ⋆ h̄ pour j ≥ 1 et h(0) = δ. Tj est
la VST à l’échelle j :

Tj(aj) = b(j) sgn(aj + c(j))
√
|aj + c(j)| (22)

Nous définissons aussi τ
(j)

k
:=
∑

i

(
h(j)[i]

)
k

. Selon (20), la constante c(j) associée

à h(j) est donnée par

c(j) :=
7τ

(j)

2

8τ
(j)

1

− τ
(j)

3

2τ
(j)

2

(23)

Avec ce schéma MS-VST, nous pouvons montrer que les coefficients d’onde-
lettes sont stabilisés et gaussienisés :

dj [k]
D−→

λ→+∞

N
(

0,
τ

(j−1)

2

4τ
(j−1)

1

2
+

τ
(j)

2

4τ
(j)

1

2
− 〈h(j−1), h(j)〉

2τ
(j−1)

1
τ

(j)

1

)
(24)

Ce résultat nous permet d’appliquer les tests d’hypothèses sur dj pour détec-
ter les coefficients significatifs. Notons le support de multi-résolution M :=
{(j, k) | si dj [k] est significatif}.

Finalement, la reconstruction est formulée par un problème d’optimisation
convexe (25).

min
d∈C

J(d), J(d) := ‖d‖
1

où C := S1 ∩ S2, S1 := {d|dj [k] = (WX)j [k], (j, k) ∈ M}, S2 := {d|Rd ≥ 0}
(25)

où W représente l’opérateur de la transformée en ondelettes, et R celui de syn-
thèse. Nous cherchons une solution qui peut être représentée dans le domaine
d’ondelettes de façon clairsemée. Ainsi, nous minimisons la norme ℓ1 des co-
efficients d’ondelette d, sous deux contraintes S1 et S2. S1 requiert que les
coefficients significatifs de d préservent ceux des données X ; S2 assure une esti-
mation positive puisque les intensités poissoniennes sont toujours non-négative.
Ce problème est résolu par la méthode itérative de la descente rapide hybride
(HSD).

Outre cette combinaison de la VST avec IUWT, nous avons aussi combiné
la VST avec la transformée en ondelettes séparables, la transformée en ridgelets
et celle en curvelets.
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Résultats La Figure 4 permet de comparer notre approche à plusieurs débrui-
teurs poissoniens proposés dans la littérature. Nous pouvons voir que visuelle-
ment et quantitativement le meilleur résultat est donné par celui de MS-VST
combinée avec les curvelets. Le dictionnaire de curvelets est adapté puisque les
tubulines ont des formes filamenteuses. Nous trouvons donc que notre approche
est très compétitive par rapport à l’état de l’art.

En résumé, cette approche MS-VST présente les avantages suivants :
– Elle est efficace et sensible pour l’estimation dans les données à (très) faible

flux de comptage ;
– Nous avons le choix d’intégrer les VST avec la transformées multi-échelle

que nous croyons la plus appropriée pour restaurer des sources ayant cer-
taine caractéristique morphologique (isotrope, linéique, courviligne, etc) ;

– Le temps de calcul est similaire à celui d’un débruitage gaussien.

3.2 Suppression du bruit MPG

Pour un LSCM travaillant dans le mode analogique, ou un DSCM, les images
sont modélisés par des processus MPG :

Xi = αUi + Vi, Ui ∼ P(λi), Vi ∼ N (µ, σ2) (26)

où α > 0 est le gain du système, Ui une variable poissonienne, Vi une variable
normale, et toutes (Ui)i et (Vi)i sont supposées mutuellement indépendantes.
Etant donné un filtre h, le processus MPG filtré est défini par :

Yi :=
∑

j∈Zq

h[j]Xi−j (27)

Nous pouvons montrer que (19) est encore une VST pour (27) sauf que la valeur
optimale du paramètre c est donnée par

c∗ := −µτ1 +
τ1σ

2

α
+

7ατ2

8τ1

− ατ3

2τ2

(28)

La MS-VST est obtenu de la même manière comme dans le cas poissonien.

3.2.1 Résultats

Un exemple de débruitage d’une image de télomères sous DSCM est montré
par la Figure 5. Les résultats de débruitage sous différentes hypothèses du bruit
sont comparés. Nous pouvons voir qu’en supposant seulement un bruit MPG on
peut supprimer tout le bruit dans l’image.

3.3 Détection de spots fluorescents

Nous avons aussi proposé une méthode de détection de spots fluorescents ba-
sée sur la MS-VST. Nous dérivons premièrement le support de multi-résolution
en appliquant la MS-VST combinée avec IUWT. Ensuite, les coefficients positifs
et significatifs d’IUWT à travers plusieurs échelles sont corrélés (i.e. multipliés).
En effet, les maxima locaux des coefficients d’ondelettes ont tendance à se pro-
pager à travers plusieurs échelles s’ils sont dus aux spots, alors qu’ils ne le sont
pas s’ils sont issus du bruit. Les échelles sont choisies en fonction des tailles des
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Fig. 4: Débruitages poissoniens des tubulines en fluorescence (taille d’image : 256 ×

256). (a) image d’intensités poissoniennes (intensité ∈ [0.53, 16.93]) ; (b) image bruitée ;
image débruitée par (c) Anscombe (ondelettes non-décimées (UWT), banc de filtres
7/9, J = 4, FDR = 0.1, NMISE = 0.095) ; (d) Haar-Fisz (UWT, banc de filtres 7/9,
J = 4, FDR = 0.1, 25 déplacements cycliques où 5 sur chaque axe, NMISE = 0.096) ;
(e) CVS (UWT, banc de filtres 7/9, J = 4, FDR = 0.1, NMISE = 0.10) ; (f) Haar+FDR
(Haar UWT, J = 4, FDR = 0.1, NMISE = 0.10) ; (g) MS-VST+UWT (UWT, banc
de filtres 7/9, J = 4, Nmax = 5 itérations HSD, FDR = 0.1, NMISE = 0.090) ; (h)
platelets (γ = 1/3, 25 déplacements aléatoires cycliques, NMISE = 0.079) ; (i) MS-
VST+Curvelets (J = 4, Nmax = 5 itérations HSD, FDR = 0.1, NMISE = 0.078).
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Fig. 5: Débruitage avec IUWT d’une image des télomères de cellules sac-
charomyces cerevisiae. h = 2D B3-Spline filtre, nombre d’échelles J = 5, et
FDR = 10−2. (a) image observée ; (b) image débruitée en supposant un bruit
gaussien ; (c) image débruitée en supposant un bruit poissonien (Nmax = 10
itérations HSD ; (d) image débruitée en supposant un bruit MPG (Nmax = 10
itérations HSD) ; (e) zoom local de (a) ; (f) zoom local de (b) ; (g) zoom local
de (c) ; (h) zoom local de (d).
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spots. Le fond régulier peut être facilement éliminé grâce aux moments nuls des
ondelettes. L’image corrélée est seuillée et binarisée, et finalement les compo-
sants connexes sont déterminés comme les spots putatifs. En faisant cela, nous
pouvons montrer que le taux de fausses détections d’une image de bruit MPG
homogène (λi ≡ λ) est borné par le FDR contrôlé dans le domaine d’ondelettes.

3.3.1 Résultats

La Figure. 6 permet de comparer notre méthode de détection avec celle basée
sur la transformée Anscombe généralisée (GAT) pour une grille de spots simulée.
Nous avons trouvé que pour tous les FDRs testés, notre approche est toujours
plus sensible et le taux de vrais positifs reste environs 20% plus élevé que celui
de GAT.
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Fig. 6: Détection des spots simulés. Paramètres MPG : α = 20, µ = 10, σ =
1 ; h = 2D B3-spline filtre, et les indices d’échelles corrélées Is = {3, 4}. (a)
sources simulées (amplitudes λA ∈ [0.05, 30] ; fond = 0.05) ; (b) un exemple de
la détection basée sur GAT (FDR= 10−2 ; 75 bonnes détections (croix vertes)
parmi 180 (cercles rouges), 0 fausse détection) ; (c) un exemple de la détection
basée sur la MS-VST (FDR= 10−2 ; 125 bonnes détections (croix vertes) parmi
180 (cercles rouges), 0 fausse détection) ; (d) Les taux de vrais positifs en fonction
du FDR∈ [10−9, 10−1].
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La Figure 7 présente la détection des spots (télomères) vus sous DSCM en
supposant différentes hypothèses du bruit. La préparation du spécimen biolo-
gique garantit que chaque cellule dans l’image contient au plus un seul télomère.
Par conséquent, des détections multiples dans une même cellule sont les faux
positifs. Les cellules peuvent être vues dans la Figure 7(a) qui ont des formes de
bulbes. Encore une fois, la bonne hypothèse du bruit (MPG) conduit au résultat
avec le moins de faux positifs.
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Fig. 7: Détection des télomères de cellules saccharomyces cerevisiae. h = 2D
B3-Spline filtre, FDR = 10−2, et Is = {3, 4}. (a) image observée ; (b) spots
détectés en supposant un bruit gaussien ; (c) spots détectés en supposant un
bruit poissonien ; (d) spots détectés en supposant un bruit MPG.

4 Détection super-résolutive des objets biolo-

giques

La résolution classique du WFFM 2D est prédite par le critère de Rayleigh,
qui est donnée par dR := 0.61λem/NA. Dans le sens de Rayleigh, deux sources
ponctuelles séparées par une distance latérale de moins de dR ne sont pas dis-
tinguables. Il est clair que cette limite de résolution dR est formulée de façon
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déterministe. Il ne prend pas en compte la nature statistique des images de
fluorescence.

Nous avons donc ré-étudié les limites de la résolution à l’aide des théories de
la détection, de l’estimation et de l’information. Notamment, nous avons proposé
d’utiliser la VST pour étudier la résolution pour les observations poissoniennes
ou MPG. Cette approche simplifie considérablement l’analyse en gaussianisant
le problème, et conduit à des résultats asymptotiquement consistants qui s’ex-
priment sous formes closes. La conclusion principale est que la résolution n’est
pas limitée, et la limite de Rayleigh peut effectivement être dépassée si le rap-
port signal sur bruit (SNR) est suffisamment élevé. Nous avons aussi étendu une
méthode de super-résolution pour détecter des spots ou des bâtonnets séparés
par des distances inférieures à la résolution de Rayleigh (super-résolution).

4.1 Limites de la résolution

Premièrement, nous avons ré-étudié la limite de résolution par la théorie de
la détection. Nous considérons la situation idéale où nous observons une image
y = (y(xn))n composée de deux sources ponctuelles placées sur l’axe x séparées
latéralement d’une distance d, i.e.,

y(xn) = f(xn; d) + w(xn), n = 1, . . . , N (29)

f(xn; d) = A · h(xn − d/2, yn, zn) + A · h(xn + d/2, yn, zn) (30)

où xn := [xn, yn, zn]T est un échantillon, N le nombre de pixels, w(xn) ∼
N (0, σ2) le processus du bruit gaussien, A l’amplitude des sources, et h la PSF.
Pour décider s’il y a une ou deux sources, nous testons les hypothèses binaires
H0 : d = 0 vs. H1 : d > 0. Etant donnés pf et pd respectivement le FPR et le
taux minimum de vrais positifs à atteindre, nous pouvons déduire que

d ≥ 2√
A/σ(hT

11
h11)1/4

[
Φ−1(1 − pf ) − Φ−1(1 − pd)

]1/2

(31)

où Φ est la distribution cumulée (cdf ) de la loi normale standard. Si le SNR est

défini par SNR := A/σ, nous avons d ∝ SNR−1/2.
Pour les observations MPG, le modèle d’image est :

y(xn) = αF (xn; d) + w(xn), F (xn; d) ∼ P(f(xn; d)), w(xn) ∼ N (µ, σ2)(32)

f(xn; d) = A · h(xn − d/2, yn, zn) + A · h(xn + d/2, yn, zn)

(32) se réduit au modèle poissonien si α = 1 et µ = σ = 0. Nous appliquons la
VST pour gaussieniser le problème, i.e.,

T (y(xn)) = 2
√

f(xn; d) + wT (xn) (33)

où T (x) = 2/
√

α sgn(x+c∗)|x+c∗|1/2, et wT (xn) ∼ N (0, 1). Aucune information
n’est perdue puisque T est inversible. Remarquons que cette gaussienisation par
la VST est seulement valable pour des intensités poissoniennes élevées.

Grâce à cette gaussienisation, nous pouvons montrer que

d ≥ 2 · 21/4

A1/4

[∑
N

n=1
h11(xn)2/h(xn)

]1/4

[
Φ−1(1 − pf ) − Φ−1(1 − pd)

]1/2

(34)
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Selon la statistique MPG, nous pouvons définir SNR := αA/
√

α2A + σ2. (34)

montre encore que d ∝ SNR−1/2.
Deuxièmement, la limite résolutive peut être également calculée par la théo-

rie de l’estimation. Sous ce point de vue, la distance entre les sources d dans
le modèle (29) est un paramètre à estimer. Ensuite, la borne de Cramér-Rao
(CRLB) peut être appliquée, ce qui donne une limite inférieure de la précision
(l’écart type) de l’estimation parmi tous estimateurs sans biais. Par conséquent,
d est considérée résolvable si d est supérieure à l’écart type donné par CRLB.
Pour des observations gaussiennes, nous avons la limite résolutive :

d ≥ 12σxy

[
36
√

3σxy

A

σ

√
f2

xy
fzπ3/2σz − 15

]1/2
(35)

où σxy et σz sont les écart-types de la PSF gaussienne, et fxy et fz sont res-
pectivement les fréquences latérales et axiales d’échantillonnage de l’image. (35)

montre que d0 ∝ SNR−1/2.
Pour des observations MPG, en appliquant la VST qui gaussienise notre

problème nous pouvons montrer que :

d ≥ 2
√

2σxy

[
4
√

2Aσxy

√
f2

xy
fzπ3/2σz

√
2 − 2

]1/2
(36)

(36) montre encore que d0 ∝ SNR−1/2.
Troisièmement, la limite résolutive a été étudiée par la théorie de l’informa-

tion. Nous considérons une image y avec N pixels au total :

y(xn) = f(xn) + w(xn), 1 ≤ n ≤ N (37)

(37) peut être considéré comme l’utilisation de N canaux gaussiens parallèles.
Ces canaux ont une capacité, c’est-à-dire, la limite supérieure du nombre de bits
d’information par l’utilisation qui peut être transmis de façon fiable. Ceci est
prédit par le théorème de la capacité de Shannon. Nous considérons que f est
composée de K sources ponctuelles où le nombre K est supérieurement borné.
De plus, nous supposons que K suive une distribution dont la moyenne est µK .
Nous avons calculé la capacité de nos canaux qui borne la quantité maximale
d’information dans notre image, à partir de laquelle nous avons dérivé la limite
inférieure des séparations résolvables entre ces K sources :

d ≥ V
1

3

(
A

σ

) 2

3
[

1

2
σ2

xy
σzπ3/2µKf2

xy
fz log

2
e
] 1

3

(38)

où V est la volume d’image. Pour des observations MPG, nous avons :

d ≥ V
1

3

A
1

3

(
4
√

2π3/2µKσ2
xy

σzf2
xy

fz log
2
e
) 1

3

(39)

(38) et (39) montrent que d ∝ SNR−2/3. Clairement, ces bornes basées sur
la théorie de l’information sont plus lâches que celles issues des théories de la
détection et de l’estimation.
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4.2 Détection super-résolutive de spots

Nous avons montré qu’il est théoriquement possible d’identifier des sources
ponctuelles séparées par des distances plus petites que celle de Rayleigh, à condi-
tion que nous ayons un SNR suffisamment élevé. Pratiquement, nous avons
conçu une approche de détection qui est composée d’une première pré-détection
suivie par l’ajustement itératif de modèle.

La pré-détection vise à offrir une première estimation du nombre, des posi-
tions et des amplitudes des spots dans l’image. Nous supposons une image MPG
y décrite par :

y(xn) = αF (xn) + w(xn) (40)

F (xn) ∼ P(f(xn)), f(xn) = b +

K∑

i=1

Aih(xn − pi) (41)

w(xn) ∼ N (µ, σ2) (42)

où b ≥ 0 représente le fond, Ai et pi représentent respectivement l’amplitude
et la position du i-ième spot, K le nombre total des spots, et h le profil d’une
source avec une amplitude normalisée à 1.

Notre pré-détection est réalisée comme suit. Nous appliquons le schéma MS-
VST+IUWT pour obtenir le support de multi-résolution. Ensuite, nous recons-
truisons l’image par les coefficients significatifs d’IUWT en mettant à zéro la
bande d’approximation. Cela permet d’éliminer le bruit et le fond régulier de
l’image. Puis, dans l’image reconstruite, les pixels de valeurs négatives sont mis
à zéro. Enfin, tous les maxima locaux sont extraites comme spots putatifs.

Les paramètres des spots calculés à ce stade doivent être améliorés pour
plusieurs raisons. La pré-détection pourrait produire de faux positifs à cause
du bruit. Si deux ou plusieurs spots sont très proches, i.e. la fluorescence se
chevauche, la pré-détection pourrait produire une seule réponse. Nous cherchons
donc à améliorer la pré-détection en recourant à l’estimation par un modèle
paramétrique.

En supposant que la distribution d’intensité d’une source est décrite par une
fonction gaussienne de l’écart-type σ0, et que la PSF est également approximée
par une gaussienne, le profil observé pour une source est donné par :

h(x, y, z) = exp

[
− x2 + y2

2(σ2

0
+ σ2

xy
)
− z2

2(σ2

0
+ σ2

z
)

]

(41) est donc un mélange gaussien et l’ensemble des paramètres du signal f est
donné par ΘK = {(pi)1≤i≤K , (Ai)1≤i≤K , σ0, b} où K indique l’ordre du modèle
(nombre de spots). Pour spécifier que f dépend de ΘK , nous écrivons f(x; ΘK).

Etant donné une valeur K, ΘK peut être estimé par la méthode des moindres
carrés appliquée sur les observations gaussienisées par la VST (notée par T ,
voir (43)), sachant que l’estimateur de maximum de vraisemblance pour les
observations MPG n’a pas de formes closes.

θ̂K = arg min
ΘK

N∑

n=1

[
T (y(xn)) − 2

√
f(xn; ΘK)

]2
(43)

Des contraintes sur les paramètres peuvent aussi être imposées selon les connais-
sances a priori. Outre cette méthode, on pourrait aussi considérer l’approche
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des moindres carrés généralisés :

θ̂K = arg min
ΘK

N∑

n=1

(y(xn) − αf(xn; ΘK) − µ)2

α2f(xn; ΘK) + σ2
(44)

Il nous reste donc à déterminer l’ordre du modèle K. Ceci est effectué par les
tests d’hypothèses itératifs. Etant donné un modèle de l’ordre M (ΘM ), nous
ajustons le nouveau modèle ΘM+1 dans l’image pour savoir si ΘM+1 donne une
approximation de l’image significativement meilleure que ΘM . Ceci est réalisé
en testant H0 : K = M vs. H1 : K > M . Sous H0, la statistique à tester est
celle de Fisher :

F :=

∑
N

n=1

[
T (y(xn)) − 2

√
f(xn; θ̂M )

]2
/rM

∑
N

n=1

[
T (y(xn)) − 2

√
f(xn; θ̂M+1)

]2
/rM+1

(45)

La distribution de F est supposée celle de Fisher avec rM et rM+1 degrés de
liberté. Ici rM = N − pM , et pM = 4M + 2 est le nombre des paramètres libres
du modèle ΘM .

Nous ajoutons itérativement un nouveau spot et le nouveau modèle est ac-
cepté lorsque le test ci-dessus reste toujours significatif. Nous appelons cette
étape « bottom-up » puisque l’ordre du modèle testé se crôıt de façon mo-
notone. La « bottom-up » nous permet d’identifier les sources proches que la
pré-détection n’a pas arrivé à résoudre. A la suite de la « bottom-up », nous di-
minuons itérativement l’ordre en supprimant chaque fois un spot dans le modèle.
Les tests sont donc inversés : H0 : K = M vs. H1 : K < M . Cette étape, qu’on
nomme « top-down », nous permet d’enlever les faux positifs de la pré-détection.

4.2.1 Résultats

Nous avons d’abord testé la détection pour un spot individuel. Les résultats
pour le cas SNR = 15 sont résumés dans le Tableau 4. Toutes les erreurs de
localisation sont de l’ordre de quelques nanomètres. La précision de l’estimation
de l’amplitude est également élevée, avec des erreurs de quelques pour cent
seulement.

Cette approche permet de s’affranchir de la limite de Rayleigh dans la dé-
tection lorsque le SNR est suffisant. Par exemple, la Figure 8 montre une confi-
guration de deux spots séparés par une distance deux fois plus petite que celle
de Rayleigh. Pour un SNR = 15, notre méthode est capable de les identifier de
façon fiable.
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Tab. 4: Performance de la localisation (SNR = 15)

CDR% RMSEx (nm) RMSEy (nm) RMSEz (nm) PRE (A)%
F-test∗ (100, 100) (1.65, 1.53) (1.77, 1.82) (4.66, 5.74) (4.50, 5.54)
F-test (100, 100) (1.65, 1.53) (1.77, 1.82) (4.66, 5.74) (4.50, 5.54)

Dans les parenthèses, les premières valeurs sont issues de la méthode des moindres
carrés basée sur la VST, et les deuxièmes sont données par l’approche des moindres
carrés généralisés. La p-valeur pour F-test∗ est donnée par α = 0.05 ; celle pour F-test
est fixée à α = 0.1. 50 réplications sont effectuées pour chaque méthode d’ajustement.
CDR (le taux des détections correctes) ; RMSE (la racine de l’erreur quadratique
moyenne) ; PRE (l’erreur relative du paramètre).
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Fig. 8: Deux spots simulés séparés par une distance latérale dxy = dR/2 et
SNR = 15. Ils peuvent être résolus de façon fiable par les tests de Fisher (p-
valeur α = 0.05) avec la méthode des moindres carrés généralisés, ou par les
mêmes tests (p-valeur α = 0.1) avec la méthode des moindres carrés basée sur
la VST. (a) le plan xz ; (b) les positions des spots sont indiquées en vert pour
(a).

4.3 Détection super-résolutive de bâtonnets

La détection super-résolutive des spots a été étendue pour la détection des
bâtonnets. Nous avons conçu un modèle paramétrique pour un bâtonnet indi-
viduel qui est décrit par la convolution de la PSF avec un segment de longueur
L = 2l. Le segment est supposé avoir une section transversale gaussienne d’un
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écart-type σ0. Le modèle d’un bâtonnet est donné par :

R(x, y, z) = C

∫
1

−1

l exp

[
− (x − tl sin(φ) cos(θ))2 + (y − tl sin(φ) sin(θ))2

2σ2

1

− (z − tl cos(φ))2

2σ2

2

]
dt

=
A

2
exp

[
−σ2

2
(sin(θ) sin(φ)x − cos(θ) sin(φ)y)2

2σ2

1
(cos(φ)2σ2

1
+ σ2

2
sin(φ)2)

−x2 cos(φ)2 + y2 cos(φ)2 + z2 sin(φ)2 − cos(θ) sin(2φ)xz − sin(θ) sin(2φ)yz

2(cos(φ)2σ2

1
+ σ2

2
sin(φ)2)

]

·
(

erf

[√
2(lσ2

2
sin(φ)2 + l cos(φ)2σ2

1
+ cos(θ) sin(φ)σ2

2
x + sin(θ) sin(φ)σ2

2
y + cos(φ)σ2

1
z)

2σ1σ2

√
cos(φ)2σ2

1
+ σ2

2
sin(φ)2

]

+ erf

[√
2(lσ2

2
sin(φ)2 + l cos(φ)2σ2

1
− cos(θ) sin(φ)σ2

2
x − sin(θ) sin(φ)σ2

2
y − cos(φ)σ2

1
z)

2σ1σ2

√
cos(φ)2σ2

1
+ σ2

2
sin(φ)2

])

·
(

erf

[ √
2l(σ2

2
sin(φ)2 + σ2

1
cos(φ)2)

2σ1σ2

√
cos(φ)2σ2

1
+ σ2

2
sin(φ)2

])
−1

(46)

où A est l’amplitude, C une constante telle que R a une valeur maximum de A,
φ et θ sont respectivement les angles formés entre le bâtonnet et l’axe z et l’axe
x (voir Fig. 9), σ1 = [σ2

xy
+ σ2

0
]1/2, σ1 = [σ2

z
+ σ2

0
]1/2, et erf(x) := 2Φ(

√
2x) − 1

est la fonction d’erreur.

x

y

z

O

Fig. 9: Le modèle d’un bâtonnet.

Ainsi, notre image est modélisée par un mélange de bâtonnets où chacun est
décrit par (46). Les mêmes étapes « bottom-up » et « top-down » comme dans
le cas de spots sont effectuées pour localiser un nombre inconnu des bâtonnets
en super-résolution.

4.3.1 Résultats

Cette approche a été appliquée avec succès pour détecter les bactéries Shi-
gella sous DSCM. Un exemple est montré par la Figure 10 où l’algorithme a
réussi à résoudre les bactéries très proches qui sont difficile à distinguer visuel-
lement.
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Fig. 10: Détection des bactéries Shigella. Trois bactéries existent dans l’image
dont deux se situent en bas qui sont très proches et difficile à distinguer visuel-
lement. L’existence des deux bactéries à cet endroit-là a été confirmée par leur
séparation dans les images à la suite dans la séquence de vidéo. Notre algorithme
a réussi à identifier les trois bactéries. La p-valeur dans les tests de Fisher a été
fixée à α = 0.05. Coupe optique observée à (a) z = 0.2µm ; (b) z = 0.8µm ;
(c) z = 1.4µm ; Modèle généré par les paramètres de la détection observé à
(d) z = 0.2µm ; (e) z = 0.8µm ; (f) z = 1.4µm ; (g) la reconstruction 3D des
bactéries détectées.
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5 Conclusion

Cette thèse apporte une contribution dans trois sujets de l’imagerie micro-
scopique à fluorescence. Nous avons premièrement étudié les approximations
gaussiennes des moindres carrés pour les PSFs du WFFM, LSCM et DSCM li-
mitées par la diffraction. Les paramètres (quasi-)optimaux ont été dérivés et ont
des formes explicites. Nous avons constaté que les approximations 2D sont très
précises ; aucune approximation précise n’existe pour la PSF 3D du WFFM ;
pour les sténopés de tailles standards, les approximations sont précises pour la
PSF 3D du DSCM et quasiment parfaite pour celle du LSCM. Ces modèles
gaussiens permettent de simplifier significativement la modélisation des objets
biologiques.

En perspectives, les approximations pourraient être améliorées en considé-
rant les modèles vectoriels de diffraction. Nous pourrions aussi envisager d’étu-
dier les approximations en présence d’aberrations optiques. Pourtant, ce ne se-
rait pas trivial parce que les aberrations détruisent les symétries de la PSF.
De ce fait, les approximations par les fonctions autres que celles gaussiennes
pourraient être plus appropriées.

Le second problème que nous avons abordé est le débruitage des images
de fluorescence qui ont des statistiques poissoniennes ou MPG. Deux approches
sont proposées pour la suppression du bruit poissonien. L’une repose sur les tests
d’hypothèses dans le domaine Bi-Haar, adaptée pour estimer rapidement les
intensités régulières dans les données de grandes tailles. L’autre fait appel à une
VST bien conçue permettant de stabiliser et gaussieniser un processus poissonien
filtré. La combinaison de cette VST avec des dictionnaires multi-échelles tels que
les ondelettes, les ridgelets et les curvelets conduit à un estimateur MS-VST
très efficace pour restaurer les sources de diverses morphologies observées avec
un faible flux de photons. Nous avons aussi étendu l’approche MS-VST pour
débruiter les données MPG.

Concernant les travaux futurs, nous pouvons envisager la combinaison si-
multanée de la VST avec plusieurs dictionnaires pour adapter simultanément de
différentes structures morphologiques. Cela pourrait être fait de façon similaire
comme dans le cas du débruitage gaussien. De plus, ce serait aussi intéressant
d’appliquer cette MS-VST aux problèmes de déconvolution.

La troisième partie de notre travail considère la détection super-résolutive
des objets. Nous avons revu et étendu les limites de la résolution en utilisant
les théories de la détection, de l’estimation et de l’information. Nous avons
aussi établi un algorithme capable de localiser très précisément les spots ou les
bâtonnets dans une image et d’identifier les sources séparées par des distances
inférieures à celle de Rayleigh (super-résolution). Nous envisageons de combiner
cette méthode de détection avec des approches de séparation de sources, ce qui
permet de détecter les objets avec un fond complexe (e.g. un fond structuré).
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Introduction

Fluorescence microscopes have become important and widely used tools in investigating un-

derlying biological processes by imaging fluorescence emission from the objects of interest.

Modern microscopes, such as the wide-field fluorescence microscope (WFFM), the laser-

scanning confocal microscope (LSCM) and the disc-scanning confocal microscope (DSCM),

allow monitoring of the specimen in 3D space and in time. These imaging systems provide

us with unprecedented large quantity of data such that automated approaches of image pro-

cessing and analysis are indispensable in order to extract pertinent quantitative information,

based on which faithful interpretations can be carried out.

This thesis contributes principally to three aspects of fluorescence microscopic imag-

ing and fluorescence image processing. The three contributions have been organized into

the three parts of the thesis.

The first presents the modeling of the optical PSFs of fluorescence microscopes.

Chapter 1 and 2 review the classical diffraction theory and derive the general PSF forms

for fluorescence microscopes, respectively. In chapter 3, we comprehensively study the least

squares Gaussian approximations of the diffraction-limited 2D/3D paraxial/non-paraxial

PSFs of WFFM, LSCM and DSCM described using the Debye diffraction integrals. Opti-

mal Gaussian parameters with closed forms are derived for the 2D paraxial WFFM PSF,

under both the L∞ normalization imposing peak matching and the L1 normalization im-

posing energy conservation. For the other PSFs, with the L∞ normalization, near-optimal

parameters in explicit forms are derived using Maclaurin series matching. These Gaus-

sian approximative PSF models can be computed fast and greatly simplify the modeling of

biological objects under these microscopes.

Our second contribution is for fluorescence image denoising. Noise is one of the

major factors that degrade image quality. Chapter 4 points out that the images produced
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2 Abbreviations

by LSCM and DSCM have either a Poisson or a MPG statistical nature according to different

function modes of the microscope. Regarding Poisson noise removal, after discussing the

state of the art we have proposed two approaches in chapter 5. One method is based on

biorthogonal Haar-domain hypothesis tests, which is fast in estimating smooth intensities

from large datasets. Our second method makes use of a well designed VST allowing to

Gaussianize and stabilize a filtered Poisson process. This VST can be combined with most

multi-scale transforms yielding MS-VSTs. We show that this MS-VST approach provides

a very effective denoiser capable of recovering important structures of various (isotropic,

line-like and curvilinear) shapes in (very) low-count images. Furthermore, in chapter 6 this

MS-VST method has been extended to remove MPG noise and to extract fluorescent spots

embedded in MPG noisy data.

Our third part considers the super-resolution object detection problem. In chapter

7, we have reviewed and extended the results of resolution limits for point-like sources

under detection-theoretic, estimation-theoretic and information-theoretic points of view. In

particular, we propose to apply the VST to study the limiting resolution with Poisson or

MPG data, leading to asymptotically consistent results with closed-form expressions. We

have also generalized an existing super-resolution method, which is based on parametric

model fitting and model-order selection, to localize an unknown number of point-like sources.

Chapter 8 extends this framework to super-resolution detection of rods. This approach

allows not only to localize sources having complex spatial configurations, but also to detect

objects separated with distances smaller than Rayleigh optical resolution (super-resolution).

At the end of every chapter, a conclusion is drawn to summarize the important points

in the chapter. At the end of this thesis, we present a general conclusion and suggest future

directions of our work. Finally, all mathematical details are deferred to appendices.
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Chapter 1

Diffraction of a Lens System

For a microscope operating at the far-field region, the behavior of the light distribution is

dominated by the diffraction effect of the instrument. The goal of this chapter is to derive

Debye’s scalar diffraction models of a lens system, which will serve as basis for our analysis

and modeling in the sequel. Toward this aim, we first review the classical scalar diffraction

theories (Section 1.1.2) which are useful in describing fields of a paraxial lens. Then, we

will derive a nonparaxial diffraction integral using Kirchhoff’s theory (Section 1.1.3). Based

on this integral, Debye’s diffraction formulas are re-derived in Section 1.2, which will be

useful in describing theoretical microscope point-spread functions (PSFs) (Chapter 2). For

self-completeness, diffraction in the presence of aberrations and vectorial diffraction theories

will also be briefly introduced in Section 1.3. We conclude this chapter in Section 1.4.

1.1 Scalar Diffraction Integral for a Nonparaxial Lens

In this section, we consider the 3D diffraction field of a nonparaxial lens focusing a beam of

light. We will modify the classical planar diffraction model such that the new model adapts

to the nonparaxial situation. Then, by making use of the Helmholtz-Kirchhoff integral

theorem, we derive the general diffraction formula for a nonparaxial lens, which can be

deemed as an extension of the Fresnel-Kirchhoff diffraction formula.

We point out that our treatment is based on the scalar diffraction theory, which

neglects the vectorial nature of the EM-field. Fortunately, for the diffraction within a

homogeneous medium by an aperture, a scalar approach yields accurate results if 1) the

diffracting aperture is much larger than a wavelength; 2) the diffraction field is observed at

5



6 Chapter 1: Diffraction of a Lens System

a distance from the aperture much larger than a wavelength [1][2][3]. These two conditions

are satisfied in our problems.

Let us first recall some fundamental definitions and results. A time-harmonic scalar

wave of frequency ω is defined by

V (x, t) := U(x)e−iωt (1.1)

where x := [x, y, z]T , and U(x) is usually termed as complex amplitude. The wavenumber

is defined as k := 2π/λ, where λ is the wavelength. We denote the refractive index by n.

In a homogeneous medium containing no currents or charges, every scalar component

of the EM-field satisfies the following homogeneous wave equation [1]

△V − 1

v2

∂2V

∂t2
= 0 (1.2)

where v represents the light velocity in the medium, and △ is the Laplacian w.r.t. the

spatial coordinates. For any time-harmonic scalar wave V satisfying (1.2), U satisfies the

Helmholtz equation

(△ + k2)U = 0 (1.3)

1.1.1 Integral theorem of Helmholtz and Kirchhoff

The integral theorem of Helmholtz and Kirchhoff [1] serves as a fundamental tool for our

following analysis. We first establish Lemma 1 whose proof is given in Appendix A.1.

Lemma 1 Let S = ∂W be an arbitrary closed surface and W be its enclosed volume (see

Fig. 1.1). Let V be a time-harmonic scalar wave satisfying (1.2) with U ∈ C2(W). Then,

for any U ′ ∈ C2(W) and U ′ satisfying (1.3), we have

∫

S
U
∂U ′

∂n
− U ′∂U

∂n
dS = 0 (1.4)

where n is the inward normal to S.

If the auxiliary function U ′ in Lemma 1 is chosen to be a spherical wave emitted from an

arbitrary inner point P of W , we can show the following integral theorem of Helmholtz

and Kirchhoff (Theorem 1, proof in Appendix A.2). This theorem expresses the solution of

(1.2) at P in terms of the values of the solution and its first derivatives at all points on the

closed surface S = ∂W surrounding that point (see Fig. 1.1).
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n

P

Fig. 1.1: Integral theorem of Helmholtz and Kirchhoff

Theorem 1 (Integral theorem of Helmholtz and Kirchoff [1]) Suppose a wave V (x, t) =

U(x)e−iωt satisfying (1.2). For a point P inside the closed surface S, let s = ‖Px‖, and

U ′(x) = eiks

s . Then we have

U(P ) =
1

4π

∫

S
U
∂

∂n

(
eiks

s

)
− eiks

s

∂U

∂n
dS =

1

4π

∫

S
U
∂U ′

∂n
− U ′∂U

∂n
dS (1.5)

1.1.2 Classical diffraction theories

In this section, we will briefly review the classical diffraction theories, i.e., Fresnel-Kirchhoff

theory and Rayleigh-Sommerfeld theory [1][4]. They are constructed to describe the diffrac-

tion field given by a planar aperture, and are applicable for expressing diffraction field of a

paraxial lens.

P
0

n

r

s

R

P

O
z

y

x

Q

Fig. 1.2: Diffraction by a planar screen

Consider the diffraction model depicted in Fig. 1.2. A point source P0 emits a

spherical wave which propagates through an opening A in a plane opaque screen. We

intend to derive the disturbance at the point P due to the diffraction of the screen. For
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this, we surround the point P by a closed surface S = A∪B ∪ C such that B is the surface

behind the opaque screen, and C is the large spherical surface shown in Fig. 1.2. We note

r := ‖r‖ and s := ‖s‖, and we assume r ≫ λ and s ≫ λ. Now, Theorem 1 shows that the

disturbance at P can be determined by the disturbance on S, i.e.,

U(P ) =
1

4π

[∫

A
+

∫

B
+

∫

C

]{
U
∂

∂n

(
eiks

s

)
− eiks

s

∂U

∂n

}
dS (1.6)

It can be shown that the contribution from the surface C tends to zero as R→ +∞ [2] (see

also Section 1.1.3). Now, for the values of U and ∂U/∂n on A and B, which are not known

exactly, Kirchhoff supposes the following boundary conditions:

1. on A: U = U (i), ∂U
∂n = ∂U(i)

∂n ;

2. on B: U = 0, ∂U
∂n = 0.

where U (i) = eikr/r is the incident wave. The hypothesis on A means that U and ∂U/∂n

do not differ substantially from the values obtained in the absence of the screen. This

assumption clearly ignores the modification of the EM-field in the immediate neighborhood

of the rim of the aperture. The error introduced by ignoring this rim-effect is negligible

only if the aperture is large compared with a wavelength. The hypothesis on B supposes

that no wave propagates on that part. Eventually, under Kirchhoff’s boundary conditions,

U(P ) can be expressed as a function of the disturbance on A

U(P ) = − i

2λ

∫

A

eik(r+s)

rs
[cos(n, r) − cos(n, s)] dS (1.7)

which is known as the Fresnel-Kirchhoff formula. Kirchhoff’s theory have been found ex-

perimentally to be remarkably accurate [2]. However, this theory contains some internal

inconsistencies. First, the boundary condition on B imposes zero on both the field and its

normal derivative. This will imply that the field vanishes in the entire space behind the

aperture [2], which is not true. Second, Kirchhoff’s diffraction integral does not recover the

assumed boundary values as P approaches the aperture [1].

The inconsistencies of Kirchhoff’s theory have been removed by Rayleigh-Sommerfeld

diffraction theory [1][4][2], which eliminates the necessity of imposing boundary values on

both the disturbance and its normal derivative simultaneously.

Indeed, thanks to the planar diffraction interface (A∪B), we can make a particular

choice of the auxiliary function U ′ in Lemma 1, i.e.,

U ′
I(x) =

eiks

s
− eiks

′

s′
(1.8)
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where s′ := ‖P ′x‖, and P ′ is the mirror point of P w.r.t. the plane A ∪ B. Note that P ′

is outside the surface S. With this choice, we see immediately that U ′
I(A ∪ B) ≡ 0. Then,

one can verify that (R→ +∞) [1][2]

U(P ) =
1

4π

∫

S
U
∂U ′

I

∂n
− U ′

I

∂U

∂n
dS =

1

4π

∫

A∪B
U
∂U ′

I

∂n
− U ′

I

∂U

∂n
dS

=
1

4π

∫

A∪B
U
∂U ′

I

∂n
dS =

1

2π

∫

A∪B
U
eiks

s

(
ik − 1

s

)
cos(n, s) dS (1.9)

Now, as (1.9) suggests, we on longer need to impose boundary values on the normal deriva-

tive of U . Thus, we suppose that

1. on A, U = U (i);

2. on B, U = 0.

Then, we obtain from (1.9) that

(1.9) =
1

2π

∫

A
U (i) e

iks

s

(
ik − 1

s

)
cos(n, s) dS ≈ i

λ

∫

A
U (i) e

iks

s
cos(n, s) dS (1.10)

=
i

λ

∫

A

eik(r+s)

rs
cos(n, s) dS (1.11)

Here, we assumed s ≫ λ in the approximation. (1.11) is known as the first-kind Rayleigh-

Sommerfeld diffraction formula.

Another possible choice of U ′ is given by

U ′
II(x) =

eiks

s
+
eiks

′

s′
(1.12)

In this case,
∂U ′

II
∂n |A∪B ≡ 0. This allows us to impose boundary values for the normal

derivative only, i.e.,

1. on A, ∂U
∂n = ∂U(i)

∂n ;

2. on B, ∂U
∂n = 0.

The resulting integral is the second-kind Rayleigh-Sommerfeld diffraction formula (r ≫ λ)

U(P ) = − 1

2π

∫

A

eiks

s

∂U (i)

∂n
dS ≈ − i

λ

∫

A

eik(r+s)

rs
cos(n, r) dS (1.13)

For small incidence angles cos(n, r) ≈ 1 and small diffraction angles cos(n, s), we can see

that (1.7) ≈ (1.11) ≈ (1.13), i.e., under these circumstances Fresnel-Kirchhoff’s formula and
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Rayleigh-Sommerfeld’s formulas have no essential difference. As the field point approaches

the aperture plane, it can be shown that the Rayleigh-Sommerfeld integrals reproduce the

assumed boundary values [1]. However, these values are not true physical field in the

aperture plane as the diffraction at the rim of the aperture is ignored. Indeed, although the

Rayleigh-Sommerfeld theory solves the inconsistencies of the Fresnel-Kirchhoff diffraction,

it does not necessarily yield more accurate results in practice [4]. There exists even evidence

that the Kirchhoff’s theory gives results that are in closer agreement with observation [1].

Now, let us turn to the diffraction field of a lens system. Consider the model shown in

Fig. 1.3. We denote respectively by U1 and U2 the light fields on the planes U1 and U2 which

are immediately before and behind the lens. The fields U1(x, y) and U2(x, y) are related by

the transmittance of the lens t(x, y), i.e., U2(x, y) = t(x, y)U1(x, y). The transmittance can

be expressed by

t(x, y) = P (x, y)eiφ(x,y)

where P (x, y) is the pupil function of the lens. P (x, y) and φ(x, y) respectively represent

the amplitude and phase changes for the incident light. For a typical lens having a uniform

circular aperture of a radius a, P (x, y) is nothing but the indicating function of the circular

transparent area, i.e.,

P (x, y) =





1
√
x2 + y2 ≤ a

0 otherwise
(1.14)

It remains to determine the phase term φ. For a lens with spherical surfaces working

under the paraxial condition, the function t can be explicitly specified [2][4]. Thus, given

an incident field U1, the output field U2 can be easily calculated. Then, (1.10) is used

to derive the diffraction field at the point P where U (i) is set to U2 [2][4]. However, the

transmittance function of a practical microscope objective is generally unknown because

1) microscope objectives often work under the nonparaxial condition; 2) their surfaces are

usually made aspherical to correct optical aberrations; 3) the geometric information of the

optical components in an objective is unavailable. Consequently, the diffraction field has

to be derived differently. Section 1.1.3 provides a general solution to the diffraction field

generated by a uniformly illuminated objective working under the nonparaxial condition.
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Fig. 1.3: Paraxial diffraction model of a lens.

1.1.3 Diffraction model for a nonparaxial lens

Consider a uniformly illuminated lens shown in Fig. 1.4(a). To derive its diffraction field, we

make use of the fact that a well corrected objective should give out a spherical converging

wave-front (A in Fig. 1.4(a)). We further suppose a light density A(x) on the wave-front

A. A(x) is usually called apodization function and its explicit form is typically known (see

Section 1.1.3.1). As a result, the field on A is expressed by

UA(x) = A(x)
e−ikf

f
(1.15)

where f is the focal length. Now, our problem becomes that given UA we want to determine

the field at P . Note that under this formulation, we do not need to know the transmittance

of the objective. However, as the wave-front A is no longer planar, the Rayleigh-Sommerfeld

diffraction theory cannot be applied. The Kirchhoff’s formulation has no restriction on the

shape of the region A, but the classical model of the diffraction by a planar screen should

be modified.

Here, we construct a more appropriate model for the light focusing of a (nonparaxial)

lens, which is illustrated in Fig. 1.4(b). The surface A represents the spherical wave-front

on the aperture, focusing at the point O. The expression of the field at P is given by

Theorem 2, and its proof is provided in Appendix A.3. The derivation is completely similar

to that of the Fresnel-Kirchhoff formula.

Theorem 2 Consider the model in Fig. 1.4(b). We note n as the inward normal on the

surface S = A∪ B ∪ C, f := ‖OQ‖, and s := ‖s‖ = ‖PQ‖ where Q is any point on A. We

suppose that
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Fig. 1.4: Fresnel-Kirchhoff diffraction of a nonparaxial lens.

1. on A, ∂A
∂n = 0;

2. on B, UB ≈ 0 and ∂UB

∂n ≈ 0;

3. on C, limR→+∞R
(
ikU + ∂U

∂n

)
= 0;

4. f, s≫ λ.

UA being given by (1.15), we have that

U(P ) =
i

2λ

∫

A
A
eik(s−f)

sf
(cos(n, s) − 1) dS (1.16)

The hypothesis on A is reasonable, as it supposes that in the immediate neighborhood of A,

the ray density is maintained in the direction of the wave propagation. The hypothesis on B
is the same as the Kirchhoff’s condition. The hypothesis on C is known as the Sommerfeld

radiation condition. It is satisfied if the disturbance U vanishes as fast as a diverging

spherical wave while R increases, so that the contribution from C to U(P ) approaches zero

(see the proof in Appendix A.3). It guarantees that only outgoing waves will present on C
rather than incoming waves. Since only outgoing waves will fall on C in our problem, this

condition is satisfied here (see also [2]).

1.1.3.1 Apodization function

Consider a lens with a uniform circular aperture. Typically, the apodization function A(x)

is radially symmetric w.r.t. the optical axis and can be represented by A(θ). For commercial
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microscopes, A(θ) is usually designed to be

A(θ) =
√

cos θ (1.17)

(1.17) is known as the sine condition [1][4]. This condition guarantees that a small region

of the object plane in the neighborhood of the optical axis is imaged sharply by a family

of rays which can have any angular divergence [4]. The optical system satisfying the sine

condition is called aplanatic which exhibits 2D transverse shift invariance.

Another less used apodization function is

A(θ) = 1 (1.18)

That is, the ray density is constant over the range of the convergence angle. This is known

as the Herschel condition [1][4]. When this condition is fulfilled, an element of the axis

will be imaged sharply by a family of rays having any angular divergence, i.e., the axial

shift invariance is satisfied [4]. Note that if a lens has a small NA, i.e., working under the

paraxial situation, the difference between the two apodization functions above is negligible.

Real microscopes usually have high-NA lens (nonparaxial lens) designed to satisfy

the sine condition. By the above discussion, they will not satisfy the Herschel condition.

Fortunately, in biological applications, particularly when dealing with thin specimens, the

axial working range of a microscope objective is very small, say, several microns. For an

object undergone an axial shift within such small distances, its image will not be substan-

tially changed except for a corresponding shift [5]. Thus, the microscope lens can still be

considered to have both the transverse and the axial shift invariance.

1.2 Scalar Debye integrals

We still consider the model in Fig. 1.4(b). We note p := OP , and q := 1
fOQ which is

the unit vector in the direction of OQ. Debye’s integral expresses the diffraction field at

near-focus points, i.e., at the points P such that ‖p‖ is small (compared with f). It can be

obtained by applying the following approximations on our nonparaxial diffraction integral

(1.16).

1. s−f ≈ −q ·p. This means that the spherical wavelets originating from the wave-front

A are approximated by plane wavelets;
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2. cos(n, s) ≈ −1;

3. the distance s in the dominator in (1.16) is approximated by f .

Consequently, the Debye integral is given by

U(P ) = − i

λ

∫

A
A
e−ikq·p

f2
dS = − i

λ

∫

Ω
Ae−ikq·p dΩ (1.19)

where dΩ is an element of the solid angle subtended by A at O. It was known that the

Debye’s integral is well adapted to high NA situations [4].

To make (1.19) more explicit, let us introduce the spherical coordinates to represent

Q, and the cylindric coordinates to represent P .

Q = (xa, ya, za) = (f sin θ cosφ, f sin θ sinφ,−f cos θ), 0 ≤ θ ≤ α, 0 ≤ φ < 2π

P = (x, y, z) = (ρ cosψ, ρ sinψ, z), 0 ≤ ψ < 2π

where α is the maximum angle of the convergence of rays. We have also dΩ = sin θdθdφ.

Suppose that A = A(θ). Then, (1.19) becomes

(1.19) = − i

λ

∫ 2π

0

∫ α

0
A(θ) exp [−ikρ sin θ cos(φ− ψ) + ikz cos θ] sin θdθdφ

= −ik
∫ α

0
A(θ)J0(kρ sin θ)eikz cos θ sin θ dθ (1.20)

= −ikeikz
∫ α

0
A(θ)J0(kρ sin θ)e−2ikz sin2 θ

2 sin θ dθ (1.21)

where J0 is the zero order Bessel function of the first kind. It can be seen that the Debye

theory predicts the intensity distribution |U(P )|2 to be axially symmetric.

Now, the Debye integral for a lens satisfying the sine condition is given by

U(P ) = −ik
∫ α

0

√
cos θJ0(kρ sin θ)eikz cos θ sin θ dθ (1.22)

= −ikeikz
∫ α

0

√
cos θJ0(kρ sin θ)e−2ikz sin2 θ

2 sin θ dθ (1.23)

If the NA of the lens becomes small (α → 0), i.e., the system becomes paraxial, we will

have that sin θ ≈ θ and
√

cos θ ≈ 1. Hence, U(P ) tends asymptotically to

U(P ) = −ikeikz sin2 α

∫ 1

0
J0(kρt sinα)e−

i
2
kzt2 sin2 αt dt (1.24)
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1.3 Aberrations and Vectorial Diffractions

1.3.1 Aberrations

Practical optical systems are rarely aberration-free. Aberration means that the wave-front

after a lens is not a spherical surface. In the presence of aberrations, the system would lose

the shift-invariance property.

General aberrations can be formulated as the phase differences from the real wave-

front to a reference spherical wave-front [4]. Consider the model in Fig. 1.5. S is the

reference spherical wave-front that is supposed to converge to the point O. The real wave-

front is given by A. Given a point P where the diffraction field is to be determined and any

point Q on S, the extension of the line PQ intersects A at point Q∗. The path difference

Φ := Q∗Q is a function of the point Q∗ and is defined as the aberration function. Thereby,

kΦ stands for the phase change w.r.t. S caused by aberration. Now, we can rewrite (1.16)

by introducing this phase term

U(P ) =
i

2λ

∫

S
Ae−ikΦ

eik(s−d)

sd
(cos(n, s) − 1) dS (1.25)

Note that the integration is performed on the reference surface S. Then, Debye’s approxi-

mations (see Section 1.2) can be used to simplify (1.25).

Traditionally, Zernike’s circular polynomials (Zi(t, φ))i are used to expand Φ for

a circular lens working under the paraxial condition [4][6]. This is appropriate because

these polynomials (Zi(t, φ))i form a complete orthogonal set on the unit disk [1]. Here,

t (0 ≤ t ≤ 1) is the normalized radial coordinate and φ the polar angle on the circular

aperture plane. Thus, we can write Φ(t, φ) =
∑

i aiZi(t, φ) where the expansion coefficients

(ai)i should be experimentally measured [6].

It has been pointed out that in biological microscopes the most significant aberration

may be that due to the mismatches of refractive indices [7][8]. This occurs if, for example,

the investigated specimen is mounted in a medium with a refractive index different from that

of the immersion medium, or the index of the immersion medium differs from that of the

coverslip. In these cases, analytical expressions of Φ have been studied [7][9] as a function

of the microscope setup parameters such as the indices and the thickness of the media. If

the reference wave-front S is focused at an on-axis point, Φ under this aberration is radially

symmetric and is termed spherical aberration [4]. This aberration is more pronounced as

the specimen becomes thicker [4].
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Fig. 1.5: General aberration model.

1.3.2 Vectorial diffractions

The scalar Debye diffraction integral (1.19) can be generalized into a vectorial form by

replacing A with the vectorial electric field on the spherical wave-front [10][11][12][4]. The

resulting vectorial Debye integral provides a more accurate description of the diffraction field

than the scalar theory. In particular, it allows to explicitly take the light polarization into

account. Always based on Debye’s approximations, [13][14][15][16] have proposed vectorial

computations of the diffraction field with spherical aberrations due to focusing a light into

stratified media of mismatched indexes. For the same situation, [17] proposed to compute

the field using the Huygens-Fresnel principle. This approach is shown to be equivalent to

that using Debye’s approximations as the Fresnel number1 tends to infinite, which can be

deemed as a good assumption for practical microscopes [18].

1.4 Conclusion

In this chapter, we first reviewed the classical scalar diffraction theory, which is useful to

describe the diffraction field of a paraxial lens. Then, we constructed a diffraction model

adapted to the nonparaxial imaging condition. By using Kirchhoff’s theory, we derived

a diffraction integral for nonparaxial lens. Based on this formulation, Debye’s diffraction

integrals were re-derived, which adapt well high NA conditions and are the basis of our

following work. Finally, aberration theory and vectorial diffractions were briefly reviewed.

We point out that although vectorial theories give a more accurate description of the

1Fresnel number is defined to be N = NA2f/(nλ), where f is the focal length and λ is the vacuum
wavelength. In practical microscope, f is much larger than λ.
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lens diffraction, in our work only the scalar formulation will be used, and the microscope

imaging system will be assumed diffraction-limited with negligible aberrations. This is be-

cause the scalar theory introduces substantial simplifications compared with a full vectorial

theory, while the assumption of negligible aberrations is reasonable for imaging thin objects.

The simplification provided by a diffraction-limited scalar model facilitates considerably our

subsequent analysis and modeling.

Finally, let us rewrite the derived Debye’s diffraction formulas which will serve ex-

tensively in the following chapters. The nonparaxial diffraction integral is given by

h(P ;λ) = −ik
∫ α

0

√
cos θJ0(kρ sin θ)eikz cos θ sin θ dθ (1.26)

where λ is the vacuum wavelength, k = n2π
λ , and n the refractive index. The paraxial

integral is given by

h(P ;λ) = −ikeikz sin2 α

∫ 1

0
J0(kρt sinα)e−

i
2
kzt2 sin2 αt dt (1.27)
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Chapter 2

Fluorescence Microscope PSFs

Fluorescence microscope has become a widely used and essential tool in biology research to

imaging cellular or sub-cellular targets with a high degree of specificity. Its imaging func-

tion relies on the principle of fluorescence emission upon light excitation. Typically, the

specimen is first stained by certain fluorophores (dyes) which can target themselves to label

the components of interest (genes, proteins, membranes, vesicles, etc.). The specimen is

then illuminated with light at a specific wavelength which is absorbed by the fluorophores,

causing them to emit light of a longer wavelength, i.e., light of a different color than the

absorbed light. Thus, the much weaker emitted fluorescence can be separated from the

illumination light through the use of an emission filter, and is finally detected by a charge-

coupled device (CCD) or a photomultiplier (PMT) detector. In this way, only the labeled

components of interest are imaginged but not the entire cellular structures. To date, more

and more fluorescence dyes with different excitation and emission characteristics have been

made available allowing simultaneous labeling of different cellular components. Further-

more, dynamic biological processes in live cells can be observed using less phototoxic dyes

e.g. green fluorescent protein (GFP). The richness of the fluorescent probes make fluores-

cence microscope a powerful tool to reveal diverse biological phenomena.

The goal of this chapter is to characterize three types of fluorescence microscopes,

i.e., WFFM, LSCM and DSCM, by their diffraction-limited PSFs. These PSFs have been

extensively studied in the literature (e.g., see [19][20][21][11][22][23][24][25][26]). Here, we

give a comprehensive review and provide a formal derivation of the PSFs.

The structure of the chapter is as follows. First, an overview of the optical models

of these microscopes is introduced (Section 2.1). Then, we study the photodynamics of

19
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fluorescence dyes (Section 2.2). Finally, using these results and the Debye’s diffraction inte-

grals (Chapter 1), we show the microscope PSFs under both the paraxial and nonparaxial

conditions (Section 2.3).

2.1 Optical Models of WFFM, LSCM and DSCM

2.1.1 WFFM optical model

Fig. 2.1 provides an illustrative optical path model in a WFFM. Commercial microscope

usually uses an arc lamp as light source to provide sufficiently intense illumination. The illu-

mination light is filtered by an excitation filter, which selects the desired band of excitation

wavelengths (λex) at which the fluorophores attain a high or even a maximum absorption

rate.

The specimen is evenly illuminated and the dyes emit fluorescence of an average

wavelength λem. The emission wavelength is always longer than the excitation one, a

phenomenon called Stokes shift [27]. This is because the fluorophores lose a portion of

the absorbed energy before re-releasing the rest of the energy as fluorescence. Thanks to

the Stokes shift, the emission filter can be designed to eliminate from the fluorescence any

residual excitation light. The fluorescence is finally detected by a CCD camera situated at

the rear focal plane of the emission beam. To scan the whole volume of the specimen, the

objective is moved along the z-direction, and the planes at different depths of the specimen

will be in focus and will be imaged on the camera. It can be noted that for the imaging at

any in-focus z-plane, the fluorescence from the out-focus planes will also be superposed on

the camera, as the whole volume is illuminated all the time.

2.1.2 LSCM optical model

In LSCM (see Fig. 2.2), each sample point of the specimen is excited by a highly focused light

from a laser source. The emitted fluorescence is detected by a PMT, a single-element photon

detector, immediately behind a pinhole located at the rear focal point of the emission beam.

By focusing the laser sequentially at every sample point, the 3D volume can be scanned.

Unlike the WFFM case, the presence of a pinhole in a LSCM prevents the detection of

out-focus fluorescence. As a result, the confocal system has a better resolution than the

conventional widefield system. But the fact that the LSCM has to do a pointwise sampling
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Fig. 2.1: WFFM optical path

makes the imaging duration much longer than in WFFM.

In the excitation phase shown in Fig. 2.2, a laser source is used, which provides

both a sufficient excitation photon flux and a highly specific wavelength. The laser is first

expanded by a beam expander. The expansion of the light is necessary to provide a uniform

illumination on the rear part of the objective [28]. Indeed, the beam expander performs a

spatial filtering, and the resulting intensity profile of the excitation light mainly depends on

the diffraction of the excitation pinhole, and is little influenced by the profile of the original

laser [28].

In the emission phase, the detection lens plays a role of light collimator which con-

verges the emission light to the detection pinhole. This pinhole must be small enough to

reject the emission light from out-focus planes in order to enhance the resolution. But a too

small pinhole will reduce the number of photons arrived at the PMT so eventually reduce

the signal-to-noise ratio (SNR). Thus, a trade-off exists between resolution and SNR.

2.1.3 DSCM optical model

The Nipkow disk (see Fig. 2.3) plays a central role in the design of modern DSCMs. A

series of pinholes are arranged in an Archimedean spiral of constant pitch on the disk.

The polar-system representation of such spirals is given by ρ(θ) = c · θ where ρ and θ are

radial and angular coordinates respectively, and c > 0. While the Nipkow disk is rotated,
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these pinholes form a series of concentric arcs in the viewport W . If an image is present

at the back side of the disk, the image will undergoes a line-by-line scanning. Since the

scanlines are in effect not straight lines but rather curves, the ideal Nipkow disk should

have either a very large diameter and the viewport situating at the outer sectors (to have

smaller curvatures), or a very narrow angular opening of its viewport. The initial version of

the disk allowed only a small number of pinholes, and at any instant, only a single pinhole

is present in the viewport, which makes it inefficient for detecting image information.

Petrán redesigned the Nipkow disk, who made the implementation of a real DSCM

possible. Petrán’s disk [29], or tandem disk (Fig. 2.4), contains a series of interlaced

Archimedean spirals of constant pitch. Every spiral is started in a sector that repeats an

even number of times around the disk. One of the spirals is highlighted in green in Fig. 2.4.

Note that the pattern of the holes repeats from sector to sector. In practice, tandem disk

can have a large number of interlaced spirals, such that the disk contains a high density of

holes (Fig. 2.5(a)). A regional zooming view of the disk is shown in (Fig. 2.5(b)). It can be

seen that the holes form a quasi-hexagonal array. At any instant, thousands of pinholes are
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illuminated in parallel, and their image will be projected by the objective onto the focus

plane in the specimen creating the same number of excitation points. The emission light

will be rerouted to the pinholes diametrically opposite to the illuminated ones. This design,

despite its extreme mechanical complexity, avoids the influence of the reflected illumination

light from the disk to the emission light, so that the image can be directly viewed by eyes

without any reflection glare. When the disk begins to rotate, the same number of scanlines

(“scancurves” in effect) as for the pinholes will be created. This kind of scanning greatly

reduces the acquisition period on a plane compared with the single-pinhole scanning mech-

anism used in LSCM. However, this system (and also its variants [30, 31]) suffers from a

low illumination efficiency (∼ 4%) [32] due to the limited transparent area (pinholes) on

the disk.

To enhance the illumination efficiency, modern DSCM employs the Yokogawa’s mi-

crolens design where a second microlens disk is set up above the tandem disk (Fig. 2.6).

The microlens disk contains about 2 × 104 microlens, each one focusing the illuminating

laser beam onto its corresponding pinhole below. The light is then diffused by each pinhole

to cover the rear stop of the objective. A beam splitter between the two disks directs the

fluorescence light emerging from the pinholes to the CCD camera via the detection lens.

Note that although the transparent area on the pinhole disk is very small, that on the
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will be rerouted to the opposite circular area.

microlens disk can be quite large. By microlens focusing, very little light is wasted between

the two disks. As a result, the illumination efficiency has been observed to be improved by

an order of magnitude (∼ 40%) [32] compared with the tandem disk.

2.2 Photodynamics of Fluorophores

The goal of this section is to show that the emission intensity of fluorescence is approxi-

mately linearly proportional to the excitation intensity, as long as the excitation intensity

is moderate.

Fig. 2.7 sketches a simplified model of the energy level system for fluorescence

molecules. The molecules are initially at the ground state S0. Upon absorption of a pho-

ton of an energy matching the difference between the energy level S0 and S1 (excitation

state), the molecule will be excited to the state S1. Let us consider the upward transition

(S0 → S1). Suppose Iex (W/m2) to be the excitation intensity, σ to be the area of the

absorption cross section of a single fluorescence molecule, and hνex to be the energy of an

absorbed photon where h is Planck’s constant and νex is the photon’s frequence. Assume

further that we have initially N0 molecules at the ground state S0. For a short period of

time ∆t, the molecules are irradiated by a total energy of Eex = IexN0σ∆t. Thereby, the

average number of the excited molecules is Nex = Eex/(hνex). Consequently, the upward
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Fig. 2.5: Quasi-hexagonal pinhole array on a Tandem disk. (a) Tandem disk (b) local zoom

transition rate for the ground-state molecules is given by

α =
Nex

N0∆t
=
Iexσ

hνex
percent/sec (2.1)

Next, let us consider the downward transition (S1 → S0). There are several ways

for a molecule at S1 to give up energy to return to S0, one of which is by the fluorescence

emission. Suppose that we have initially N1 molecules at S1. As the radioactive decay is

an exponential function of time (t), we have that

N1(t) = N1e
−βt

where β is the decay constant for the considered dye. The downward transition rate can

now be calculated for a short ∆t, which actually equals to β [Eq.(2.2)].

N1 −N1(∆t)

N1∆t
=

1 − e−β∆t

∆t
∆t→0+−→ β percent/sec (2.2)

Note that this rate includes not only the radiative rate such as the fluorescence decay rate,

but also all other energy-releasing rates such as that of the nonradiative conversions [27].

Therefore, the fluorescence decay rate is always smaller than β, and is written as Qβ, where

Q (< 1) is the quantum efficiency for fluorescence.

Now, it is straightforward to write out the following population equations depicting
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the dynamics between S0 and S1.





N ′
0(t) = βN1(t) − αN0(t)

N ′
1(t) = αN0(t) − βN1(t)

N0(0) = N0, N1(0) = N1 (2.3)

where N0(t) and N1(t) are respectively the populations of the state S0 and S1 at time t.

The solution of (2.3) is given by

N1(t) =
α

α+ β
(N0 +N1) +

βN1 − αN0

α+ β
e−(α+β)t

Thereby, the steady state solution (large t) N s
1 is given by

N s
1 =

α

α+ β
(N0 +N1) (2.4)

When α = β, half of the molecules will be in the excited state. We define the corresponding

excitation intensity in this case as Isat := βhνex/σ. Isat characterizes the saturation of the

system. We also write out the global fluorescence emission rate (w.r.t. the total number of
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molecules N0 +N1)

rf =
QβN s

1

N0 +N1
= Q

αβ

α+ β
=

QβσIex
σIex + βhνex

percent/sec (2.5)

The emission intensity of the fluorescence is thus

Iem =
rf (N0 +N1)hνem

S
=
Qβ(N0 +N1)hνem

S
· Iex
Iex + Isat

(2.6)

where νem is the frequence of emission photons, and S is the observation-surface area.

(2.6) shows that the emission intensity is proportional to the underlying fluorescein density

(N0 + N1), and is a nonlinear function of the excitation intensity. But if Iex ≪ Isat, Iem

becomes approximately linear w.r.t. Iex.

Fig. 2.8 illustrates the behavior of Iem as a function of the ratio Iex/Isat for the dye

Rh B with an excitation vacuum wavelength λex = 500nm. For this dye, we have that [27]

σ = 1.3 × 10−20m2 and β = 3.33 × 108. The nonlinear behavior of Iem can be clearly seen

in Fig. 2.8(a). As Iex raises higher and higher than Isat, the emission intensity becomes

eventually saturated. Fig. 2.8(b) shows that if no saturation occurs, i.e., Iex ≪ Isat, we find

an almost linear emission response.

2.3 Diffraction-limited PSFs of WFFM, LSCM and DSCM

For a fluorescence microscope, the input is the spatial fluorophore distribution in the spec-

imen, i.e., the density of the fluorophore molecules as a function of spatial locations. The

output of the system is the fluorescence intensity image recorded by the camera. We suppose

that the emitted fluorescence is an incoherent light. Then, by the fact that the emission
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Fig. 2.8: The emission intensity Iem as a function the ratio Iex/Isat. The multiplicative

constant factor in (2.6) is omitted. Dye Rh B is assumed. λex = 500nm, σ = 1.3×10−20m2

and β = 3.33 × 108. (a) the ratio Iex/Isat ∈ [0.1, 10]; (b) the ratio Iex/Isat ∈ [0.01, 0.2].

intensity is proportional to the underlying fluorescein density (Section 2.2), the fluorescence

microscope system can be seen to be linear. We further suppose that the system is 3D shift

invariant. Then, we will characterize the microscopes by their PSFs such that the output

can be obtained by convolving the input with the PSF.

In the following PSF derivation, we suppose that the excitation intensity is moderate

such that the linear relationship between the emission and the excitation holds. We will

also make use of the reciprocity principle [33]. It indicates that in a continuous linear

medium with symmetric permittivity and magnetic permeability, the relationship between

an oscillating point source and the resulting disturbance is unchanged if one interchanges

the positions where the source is placed and where the disturbance is measured.

2.3.1 WFFM PSF

Fig. 2.9 shows the coordinate systems used for the WFFM model presented in Fig. 2.1. The

object space is where the specimen locates. Without loss of generality, we create O−xyz as

its 3D coordinate system where the z-axis coincides with the optical axis. The image space

is where the camera situates. O′ − x′y′ is a 2D coordinate system for the camera plane.

We also introduce the system O0 − x0y0z0 centered at the objective focus for expressing

the diffraction field h(x0, y0, z0;λ) using Debye’s integral. We further denote the lateral
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magnification of the microscope by ML. To avoid confusion, a subscript will be used for

every coordinate to indicate the coordinate system that is used for representing that point.

For example, (a, b, c)O is represented under the system O−xyz, and (a, b, c)O0 is under the

system O0 − x0y0z0. Let the coordinate of O0 to be (0, 0, z)O.

We place a Dirac fluorescein distribution at O, and the PSF is given by the recorded

3D intensity image. As the whole specimen is evenly illuminated with a constant excitation

intensity, say Iex, the fluorescence emitted by the Dirac fluorophore should also have a

constant intensity proportional to Iex (see Section 2.2). As the imaging is shift-invariant,

the intensity recorded in the image at (x′, y′)O′ = (MLx,MLy)O′ for the current focus depth

z is equivalent to that recorded at O′ by shifting the Dirac to (−x,−y, 0)O. Now let us

apply the reciprocity theorem. We should calculate the intensity at (−x,−y, 0)O by placing

the Dirac at O′. But this intensity is given by the Debye’s integral, i.e.,

PSFWFFM (x, y, z)O = C0|h(−x,−y,−z;λem)O0 |2 = C0|h(x, y, z;λem)O0 |2 (2.7)

where C0 is a constant proportional to Iex, h is given by (1.26) in the nonparaxial condition,

or by (1.27) under the paraxial situation.

2.3.2 LSCM PSF

Fig. 2.10 shows the coordinate systems used for the LSCM model in Fig. 2.2. O0 is the

current scanning position, and has a coordinate (x, y, z)O. O′ is the pinhole location. We

suppose that the pinhole is circular with a radius r = D/2 when projected into the object

space.

The excitation of LSCM is due to focusing a beam of laser. For a Dirac fluorescein
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distribution at O, the excitation intensity distribution in the object space, and particularly

at O, can be derived using Debye’s formula, i.e.,

Iex(0, 0, 0)O = |h(−x,−y,−z;λex)O0 |2 = |h(x, y, z;λex)O0 |2

Thereby, the Dirac fluorophore should emit fluorescence with an intensity proportional to

Iex(0, 0, 0)O. It remains to calculate the integral intensity presented in the pinhole support.

This can be proceeded in the same way as in the WFFM case and by applying the reciprocity

theorem, we obtain

PSFLSCM (x, y, z)O = C1|h(x, y, z;λex)O0 |2 ·
∫

{x2
1+y

2
1≤r2}

|h(x−x1, y− y1, z;λem)O0 |2 dx1dy1

(2.8)

where C1 is a constant. Note that the LSCM PSF is the product of excitation and emission

intensity distributions, i.e., |h(x, y, z;λex)|2 and |h(x, y, z;λem)|2. They are respectively

termed to be the excitation PSF and the emission PSF.

2.3.3 DSCM PSF

We have shown that the pinholes on the disk of DSCM form a nearly periodic hexagonal

pattern in the object space (see Section 2.1.3) with an adjacent pinhole distance d. For

excitation from each pinhole, a local coordinate system with origin Onx,ny at the excitation

focus will be created, where (nx, ny) indexes the pinholes. Then, the DSCM PSF can be
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derived in the same way as for LSCM PSF. The final expression is given by

PSFDSCM (x, y, z)O = C2

∣∣∣∣∣
∑

(nx,ny)∈D
h

(
x− d

2
(nx + ny), y −

√
3

2
d(nx − ny), z;λex

)

Onx,ny

∣∣∣∣∣

2

·

∫

{x2
1+y2

1≤r2}
|h(x− x1, y − y1, z;λem)O0,0 |2 dx1dy1

= C2

∣∣∣∣∣
∑

(nx,ny)∈D
h

(
x− d

2
(nx + ny), y −

√
3

2
d(nx − ny), z;λex

)

O0,0

∣∣∣∣∣

2

·
∫

{x2
1+y2

1≤r2}
|h(x− x1, y − y1, z;λem)O0,0 |2 dx1dy1 (2.9)

where C2 is a constant. Note that the total excitation distribution is the sum of the

individual excitation distributions from the illuminating pinholes whose index set is denoted

as D ⊂ Z2. We point out that the light source of DSCM here is assumed to be a laser, since

it is the most widely used source in commercial microscopes. Thus, as a coherent source is

used, the first modulus sign in (2.9) is applied to the entire sum instead of to each summing

term.

It can be verified from (2.7), (2.8) and (2.9) that all the PSFs have mirror symmetry

about the xy-plane. Furthermore, PSFWFFM and PSFLSCM have circular symmetry about

the z-axis, and PSFDSCM is almost circularly symmetric if the distance d is sufficiently

large.

2.4 Conclusion

We have shown in this chapter the diffraction-limited PSFs of WFFM, LSCM and DSCM

based on Debye’s integrals. The LSCM and DSCM PSFs can be written as a product of the

excitation distribution and the emission distribution. As we have shown, these multiplicative

forms emerge only if the excitation intensity is controlled well below the saturation level so

that the fluorescence emission reacts linearly to the excitation.
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Chapter 3

Gaussian Approximations of

Diffraction-limited Microscope

PSFs

The PSFs of WFFM, LSCM and DSCM discussed in Chapter 2 play a central role in under-

standing the imaging performances, such as the theoretical resolution limit and the optical

sectioning capacity. Despite the availability of these physical models of PSFs, approximative

PSFs and particularly separable Gaussian approximations are widely preferred in practical

microscopic applications requiring fast data processing, such as single fluorescent particle

tracking [34, 35, 36], fluorescent dot localization and tracking with super-resolution [37, 38],

and myopic deconvolution [39]. Indeed, compared with a physical PSF model, which usu-

ally involves non-trivial terms such as integrals and infinite series, a Gaussian approximative

PSF is much simpler and can be computed much faster. Furthermore, due to its special an-

alytical form and nice properties (semi-group property, invariance under Fourier transform,

etc.), a Gaussian PSF is often chosen to facilitate theoretical analysis and modeling, such

as the derivation of analytical solutions to 3D Fluorescence Recovery After Photobleach-

ing (FRAP) process [40, 41], the modeling of 3D tubular structures in confocal images [42]

and the analysis of convergence properties of expectation-maximization (EM) deconvolu-

tion [43].

Despite the popularity of Gaussian approximations, most of the above mentioned

works either assume the validity of the approximations or only justify them empirically on

33
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observed data. The approximation accuracy and the selection of Gaussian parameters have

rarely been rigorously investigated with any physical PSF model, leaving these approxima-

tions essentially arbitrary. To the best of our knowledge, only a few works [44, 38] considered

the approximations based on physical models, but they solely covered the paraxial WFFM

PSF case with an L∞ constraint (see Section 3.1 for details on this constraint).

In this chapter, we propose a comprehensive study of the least squares Gaussian

approximations of the diffraction-limited 2D/3D paraxial/non-paraxial PSFs of WFFM,

LSCM and DSCM. The PSFs are expressed using the Debye integrals, as have been pre-

sented in Chapter 2. Then, in Section 3.1 we derive, under an L∞ constraint imposing

peak matching, optimal and near-optimal Gaussian parameters for the WFFM, LSCM and

DSCM PSFs. Next, we consider in Section 3.2 the approximations with an L1 constraint

imposing energy conservation, where an optimal Gaussian parameter is derived for the 2D

paraxial WFFM PSF. Numerical results in Section 3.3 show that: (i) the 2D approximations

are all very accurate; (ii) no accurate Gaussian approximation exists for 3D WFFM PSFs;

(iii) with typical pinhole sizes, the 3D approximations are accurate for DSCM and nearly

perfect for LSCM. All the Gaussian parameters derived in this work are in explicit analyt-

ical forms listed in Tab. 3.1, 3.2 and 3.3, allowing their direct use in practical applications.

Some conclusion remarks are drawn in Section 3.4.

3.1 Gaussian Approximations of the PSF Models with an L
∞

Constraint

To derive Gaussian approximations of the PSFs given in (2.7), (2.8) and (2.9), we suppose

in the following that the Gaussian functions are centered at the origin of the PSFs and are

separable. We make these two assumptions not only because they simplify the calculus and

are widely adopted as stated before, but also because centered separable Gaussians are the

only Gaussian functions that preserve the intrinsic symmetries in the PSF models, as shown

in Proposition 1 (proof in Appendix A.4).

Proposition 1 Assuming a 3D Gaussian distribution

gΣ(x) := (2π)−
3
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x − µ)

)

where we denote x = (x, y, z)T , the mean vector µ = (µx, µy, µz)
T and the covariance matrix
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Σ = [σij]1≤i,j≤3. gΣ has circular symmetry about the z-axis and mirror symmetry about the

xy-plane if and only if µ = 0 and Σ is diagonal with σ11 = σ22.

Therefore, the 2D and 3D Gaussians gσ are respectively given by:

gσρ(x, y) := A1 exp

(
−x

2 + y2

2σ2
ρ

)
= A1 exp

(
− ρ2

2σ2
ρ

)
(3.1)

gσρ,σz(x, y, z) := A2 exp

(
−x

2 + y2

2σ2
ρ

− z2

2σ2
z

)
= A2 exp

(
− ρ2

2σ2
ρ

− z2

2σ2
z

)
(3.2)

We want to find the best Gaussian parameter, i.e. σ∗ = σ∗ρ in 2D and σ∗ = {σ∗ρ, σ∗z} in 3D,

that minimizes the least squares (LSQ) criterion, i.e.

σ∗ = argmin
σ>0

‖PSF − gσ‖2
2 (3.3)

In this section, we suppose that the Gaussian functions and the PSFs are normalized

according to their L∞ norm i.e. ‖gσ‖∞ = ‖PSF‖∞ = 1. We have thus A1 = A2 = 1. It

can be noted that since the Gaussians, the WFFM PSFs, the LSCM PSFs and the DSCM

PSFs (with d sufficiently large) are all maximized at the origin, this normalization imposes

matching the peaks of gσ and the PSF. In the following, we will denote by σ̂∗ the proposed

parameter and by σ∗ the optimal parameter given by (3.3).

3.1.1 Gaussian approximations of 2D WFFM PSFs

We begin with the 2D paraxial WFFM PSF, which is known as “Airy disk” and can be

directly derived from (1.27) and (2.7) by setting z = 0, i.e.

PSFWFFM (ρ) =

[
2
J1(kemNAρ)

kemNAρ

]2

(3.4)

where J1 is the first order Bessel function of the first kind and kem = 2π
λem

is the emission

wavenumber. The solution to (3.3) is given by Proposition 2 (proof in Appendix A.5).

Proposition 2 The unique solution to (3.3) under the condition ‖gσ‖∞ = ‖PSF‖∞ = 1 is

given by

σ∗ρ ≈ 0.21
λem
NA

(3.5)

This value (3.5) was first given in [38].

Unlike the paraxial case where the optimal parameter value can be found exactly, a

direct minimization of (3.3) is difficult in the non-paraxial case since the non-paraxial PSF,
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derived by inserting (1.26) into (2.7) with z = 0, has no closed form. However, we can

note that the L2 energy of the PSF (‖PSFWFFM‖2
2) concentrates mostly in the main lobe,

which is situated in a small neighborhood of the origin. Therefore, an approximation near

the origin capturing the decay of the main lobe, e.g. gσ(ρ) → PSFWFFM (ρ) as ρ → 0, can

be expected to give a good global approximation. This can be easily achieved by matching

the Maclaurin series of the PSF ((A.8) in Appendix A.7) with that of a Gaussian function

((A.6) in Appendix A.7) with z = 0. The two expansions differ in their second and higher

order terms. Thus, by imposing the equality on their second order terms, we obtain:

σ̂∗ρ =
1

nkem

[
4 − 7 cos

3
2 α+ 3 cos

7
2 α

7(1 − cos
3
2 α)

]− 1
2

(3.6)

The positivity of the bracketed term in (3.6) can be easily verified, so σ̂∗ρ is well defined.

From a geometric point of view, this approach matches the principal curvatures of the

graphs of the two functions at the origin [44], since the gradients and the second-order

mixed derivatives of the PSF and of the Gaussian vanish at the origin.

The near-optimality of (3.6) under the original LSQ criterion (3.3) will be confirmed

by the numerical results in Section 3.3. Yet, the consistency analysis below already sheds

some light on why (3.6) can be considered as a “good” parameter.

3.1.1.1 Consistency of the Gaussian parameters

As α→ 0 or NA → 0, i.e. as the system becomes paraxial, we have,

lim
α→0+

(3.6)√
2/(kemNA)

= 1 (3.7)

Therefore, (3.6) tends asymptotically to
√

2/(kemNA) ≈ 0.225λem/NA, a value only a few

percent larger than (3.5). This implies that the non-paraxial parameter (3.6) gets close to

the optimal solution in the paraxial limit.

3.1.2 Gaussian approximations of 2D LSCM PSFs

The Maclaurin expansion of the 2D paraxial LSCM PSF is given by (A.9) with z = 0. By

applying the same series-matching method as in Section 3.1.1, the Gaussian parameter is

found to be:

σ̂∗ρ =
√

2

[
c21
r2

+
4c2J0(c2)J1(c2) − 8J2

1 (c2)

r2[J2
0 (c2) + J2

1 (c2) − 1]

]− 1
2

(3.8)



Chapter 3: Gaussian Approximations of Diffraction-limited Microscope PSFs 37

where c1 = kexrNA, c2 = kemrNA and kex = 2π
λex

is the excitation wavenumber.

In the non-paraxial case, due to the complexity of the non-paraxial PSF, the pa-

rameter derived by series matching has no closed-form expression, which is inconvenient for

practical use. One solution to this is based on the observation that the non-paraxial LSCM

PSF will be much simplified if the terms |h| in (2.8) are first approximated by Gaussian

functions. This pre-approximation of the PSF model is reasonable, since the terms |h| share

the same form as the 2D non-paraxial WFFM PSF, which can be very accurately approxi-

mated by the Gaussians with the parameters derived in the previous section (see Section 3.3

for the numerical results). By matching the series of this pre-approximated PSF, i.e. (A.10)

with z = 0, and that of a Gaussian, we obtain:

σ̂∗ρ =
√

2




2σ4
em,ρ

[
exp

(
r2

2σ2
em,ρ

)
− 1
]

+ r2σ2
ex,ρ

σ2
ex,ρσ

4
em,ρ

[
exp

(
r2

2σ2
em,ρ

)
− 1
]



− 1

2

(3.9)

where σem,ρ is given by (3.6) and σex,ρ is also expressed by (3.6) with kem replaced by kex.

3.1.2.1 Consistency of the Gaussian parameters

First, we can see that as the system becomes paraxial, the non-paraxial parameter (3.9)

tends asymptotically to the paraxial one (3.8):

lim
α→0+

(3.9)

(3.8)
= 1 (3.10)

Second, we study the asymptotic behavior of (3.8) and (3.9) in the vanishing pinhole

case (r → 0+), i.e. as the system approaches ideal confocality. In this situation, the pinhole

is modelled as a Dirac distribution and the LSCM PSF (2.8) simply reduces to the product

of two WFFM PSFs. Maclaurin series matching is then applied for this ideal confocality

case to derive the paraxial and non-paraxial Gaussian parameters, given by (3.11) and (3.12)

respectively.

σ̂∗ρ =

√
2

2πNA

λexλem

(λ2
ex + λ2

em)1/2
(3.11)

σ̂∗ρ =
λexλem

2πn(λ2
ex + λ2

em)
1
2

[
7 cos

3
2 α− 3 cos

7
2 α− 4

7(cos
3
2 α− 1)

]− 1
2

(3.12)

The following results confirm the consistency of the parameters (3.8) and (3.9) with (3.11)

and (3.12) as r → 0+.

lim
r→0+

(3.8) = (3.11), lim
r→0+

(3.9) = (3.12) (3.13)
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Interestingly, we can note that if the Stokes shift [27] is negligible, i.e. λex ≈ λem, both

pairs of equations (3.5)(3.11) and (3.6)(3.12) imply that in the ideal confocality situation,

the effective width of the LSCM PSF is approximately 1.4 times smaller than that of the

WFFM PSF. Here, we see the well-known resolution gain factor in LSCM.

Finally, for a full-open pinhole (r → +∞), the equations below show that the Gaus-

sian parameters (3.8) and (3.9) tend towards those of WFFM with λem replaced by λex,

which is consistent with the known fact that in this case an LSCM behaves as a WFFM.

lim
r→+∞

(3.8) =

√
2

kexNA
≈ 0.225

λex
NA

, lim
r→+∞

(3.9) =
1

nkex

[
7 cos

3
2 α− 3 cos

7
2 α− 4

7(cos
3
2 α− 1)

]− 1
2

(3.14)

3.1.3 Gaussian approximations of 2D DSCM PSFs

The DSCM case is more complex as the approximation quality varies with the adjacent

pinhole distance d. We will assume that d is sufficiently large so that the PSF is almost

circularly symmetric, or equivalently, that the contribution of individual excitation distribu-

tions from adjacent pinholes to the total PSF is negligible. This condition can be considered

fulfilled if the support of the main lobe of the emission PSF contains only one main lobe of

the excitation PSF. In terms of d, we should require:

d ≥ d0 :=
1

2

(
λem
λex

+D + 1

)
AU (3.15)

where “AU” stands for the “Airy Unit”, i.e. 1AU = 1.22 · λex/NA. Under this condition,

the DSCM PSF approaches reasonably well the LSCM PSF, and the Gaussian parameters

(3.8) and (3.9) can be applied respectively to the paraxial and non-paraxial DSCM PSFs

(see also Section 3.3).

3.1.4 Gaussian approximations of 3D PSFs

The Maclaurin series of the 3D paraxial WFFM PSF, 3D non-paraxial WFFM PSF, 3D

paraxial LSCM PSF and 3D pre-approximated non-paraxial LSCM PSF are given by (A.7),

(A.8), (A.9) and (A.10) in Appendix A.7. The lateral and axial Gaussian parameters for

these PSFs are found by the same series matching method as described in the 2D case. The

same Gaussian parameters as LSCM are proposed for the DSCM PSFs under the condition

(3.15).
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Tab. 3.1, 3.2 and 3.3 summarize the proposed 2D and 3D Gaussian parameters. The

consistency of the 3D parameters can be studied in the same manner as in the 2D case and

the main results are listed below:

Paraxial system: As the NA becomes small, the 3D non-paraxial lateral and axial Gaus-

sian parameters of WFFM, LSCM and DSCM tend asymptotically to the paraxial

Gaussian parameters;

Ideal confocality: As the pinhole radius approaches zero, the 3D lateral and axial Gaus-

sian parameters of LSCM and DSCM converge to the parameters derived in the van-

ishing pinhole situation;

Full-open pinhole: As the pinhole radius tends to infinity, the 3D Gaussian parameters

of LSCM and DSCM approach those of WFFM with λem replaced by λex, except for

the non-paraxial axial parameter σ̂∗z . The latter exception implies that the 3D non-

paraxial Gaussian approximations of LSCM and DSCM PSFs cannot be applied to

large pinhole situations.

3.2 Gaussian Approximations of the PSF Models with an L
1

Constraint

In the applications where photometry should be preserved, it is important to consider

the L1 constraint ‖gσ‖1 = ‖PSF‖1 = 1 in the optimization problem (3.3) instead of the

L∞ constraint. This constraint requires the PSF energy to be conserved by the Gaussian

function used to approximate the PSF.

Note that this constrained optimization is infeasible for 3D WFFM PSFs, since they

are not L1 functions. In general, analytical solutions to this optimization problem are

difficult to obtain except for the 2D paraxial WFFM case, where we can show the following

result (proof in Appendix A.5).

Proposition 3 The unique solutions to (3.3) under the condition ‖gσ‖1 = ‖PSF‖1 = 1 is

given by:

σ∗ρ ≈ 0.22
λem
NA

(3.16)

The general result of the approximation of the 2D paraxial WFFM PSF with an Lp con-

straint (1 ≤ p ≤ ∞) is given by Proposition 4 (proof in Appendix A.6).
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Proposition 4 The solution to (3.3) for ‖gσ‖p = ‖PSF‖p = 1 with 1 ≤ p ≤ ∞, if it exists,

satisfies necessarily the following equation (taking the limit for the case p = ∞):

c2‖h‖p
( p

2π

) 1
p
σ

2− 2
p

(
1 − 2

p

)
= 8

[
p−1

(
e−c

2σ2
I0(c

2σ2) − 1
)

+ e−c
2σ2
I1(c

2σ2)(p−1 + 1)
]

(3.17)

3.3 Numerical Evaluations of the Approximations

The approximation error is evaluated using the Relative Squared Error (RSE) defined by

RSE :=
‖PSF − gσ̂∗‖2

2

‖PSF‖2
2

(3.18)

where the Gaussian function and the PSF are both normalized according to their L∞ norm

or L1 norm, depending on the approximation constraint used. Clearly, this criterion is

essentially the same as the one defined in (3.3), since the squared L2 norm of the PSF

in (3.18) is just a normalizing constant. To compute the optimal Gaussian parameter

σ∗ of (3.3), a numerical LSQ fit is used. Then, the Parameter Relative Error (PRE),

i.e. |σ̂∗ − σ∗|/σ∗, is evaluated.

3.3.1 Numerical results

In our simulations, λex and λem are set to 488nm and 520nm respectively, which are two

wavelengths frequently used in real experiments. The refractive index is set to n = 1.515,

which is the typical value of immersion oils. In LSCM and DSCM, the pinhole diame-

ter ranges from 0AU to 3AU, i.e. from a vanishing size to a large size. For DSCM, d is

set to d0. The NA varies from 0.2 to 0.7 in the paraxial cases, and from 0.8 to 1.4 in

the non-paraxial cases. Given an NA value, the exact theoretical PSFs are computed us-

ing (2.7), (2.8) and (2.9), the Gaussian approximations are generated using the parameters

shown in Tab. 3.1, 3.2 and 3.3, and then the approximation errors are evaluated. The results

of the approximations with the L∞ constraint are shown in Tab. 3.4, 3.6 and 3.7, where

we present the minimal and maximal RSE values for the WFFM, LSCM and DSCM cases.

The minimal and maximal PRE values of the lateral and axial parameters (σ̂∗ρ and σ̂∗z) are

also shown. The results of the approximation of the 2D paraxial WFFM PSF with the L1

constraint are given in Tab. 3.5. Examples of the Gaussian approximations with the two

constraints are presented in Fig. 3.1 and Fig. 3.3.
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3.3.2 Discussion

The following conclusions can be drawn by examining Tab. 3.4, 3.6, 3.7 and 3.5.

2D approximations for WFFM, LSCM and DSCM The approximation accuracy

for all 2D PSFs is very high, since we have RSE < 2% in WFFM (cf. Tab. 3.4 and 3.5),

≤ 2% in LSCM (cf. Tab. 3.6) and < 4% in DSCM (cf. Tab. 3.7).

3D approximations for WFFM Tab. 3.4 shows that the approximations of the 3D

WFFM PSFs are only average, as an RSE of about 17% is observed. However, this is not

a defect of the Maclaurin series matching method, since the very low PRE values (≃ 2%)

confirm the near-optimality of the proposed parameter σ̂∗. Indeed, the numerical LSQ

Gaussian fits are found to result in almost the same RSE (data not shown). It follows that

an RSE of about 17% is the lower error bound, whatever the approximation approach used.

This inaccuracy is actually due to the fact that the axial WFFM PSF decreases slowly (as

O(z−2)). In contrast, the axial decreasing speed of the LSCM PSF with typical pinhole sizes

is much higher (as O(z−4)), since the PSF is in the form of the product of excitation and

emission PSFs both having O(z−2) as decreasing rate. This can also be seen in Figure 3.1,

where secondary lobes with significant amplitudes are present in Figure 3.1(d) (axial WFFM

PSF), while they are almost invisible in Figure 3.1(e) (axial LSCM PSF). We also show the

xz-planes of the PSFs, of their Gaussian approximations and of the approximation residues

in Fig. 3.2. It can be seen from the residues that the WFFM secondary lobes decrease much

more slowly than those of LSCM. Hence, Gaussian approximations perform much better

for LSCM with typical pinhole sizes (see below).

3D approximations for LSCM and DSCM Tab. 3.6 and 3.7 show that, the 3D ap-

proximations are accurate for DSCM with typical pinhole sizes (RSE < 7%, D < 1AU), and

accurate for LSCM up to reasonably large pinhole sizes (RSE < 9%, D < 3AU). In partic-

ular, the 3D approximations for LSCM with typical pinhole sizes are nearly perfect (RSE

< 1%, D < 1AU).

As pinholes become larger and larger, the PSFs tend asymptotically to WFFM PSFs.

It follows from the previous discussion on 3D approximations for WFFM that in this case,

any Gaussian approximation will become inaccurate. In the experiments, as can be seen

in Tab. 3.6, the performance of our approximations for LSCM degrades (RSE > 10%) as
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D ≥ 3AU. In the case of DSCM, the RSE values are larger than 10% as long as D ≥ 1AU

(cf. Tab. 3.7).

Therefore, we conclude that the regions where our 3D approximations perform ac-

curately for LSCM and for DSCM are given by the sets of D satisfying D < 3AU and

D < 1AU, respectively.

Accuracy of Gaussian parameters As can be seen from Tab. 3.4, 3.6 and 3.5, in the

cases of WFFM, 2D LSCM, and 3D LSCM with D < 3AU, almost all the PRE values are

within only a few percent, implying the near-optimality of the proposed Gaussian parame-

ters. For 2D DSCM and for 3D DSCM with D < 1AU, the PRE values are generally larger

than those in LSCM under the same condition but remain satisfactory (cf. Tab. 3.7).

Finally, we point out that as the optimal Gaussian parameters (3.5) and (3.16) de-

rived for 2D paraxial WFFM PSF have undergone numerical approximations (see Appendix

A.5), their PRE values deviate slightly from zero (cf. Tab. 3.4 and 3.5).

3.4 Conclusion

We have studied comprehensively the least squares Gaussian approximations of the diffraction-

limited 2D/3D paraxial/non-paraxial PSFs of WFFM, LSCM and DSCM described using

the Debye integrals. Optimal Gaussian parameters are derived for the 2D paraxial WFFM

PSF, under both the L∞ constraint imposing peak matching and the L1 constraint imposing

energy conservation. For the other PSFs, with the L∞ constraint, near-optimal parameters

in explicit forms are derived using Maclaurin series matching. We found that: (i) the 2D

approximations are all very accurate; (ii) no accurate Gaussian approximation exists for

3D WFFM PSFs; (iii) with typical pinhole sizes, the 3D approximations are accurate for

DSCM and nearly perfect for LSCM.
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Tab. 3.1: Gaussian parameters for 2D PSFs

Microscope Gaussian Parameter1

Paraxial WFFM

(L∞ constraint)

σ̂∗ρ = 0.21λem/NA

Paraxial WFFM

(L1 constraint)

σ̂∗ρ = 0.22λem/NA

Non-paraxial

WFFM (L∞ con-

straint)

σ̂∗ρ = 1
nkem

[
4−7 cos

3
2 α+3cos

7
2 α

7(1−cos
3
2 α)

]− 1
2

Paraxial LSCM and

DSCM (d ≥ d0, L
∞

constraint)

σ̂∗ρ =
√

2
[
c21
r2

+
4c2J0(c2)J1(c2)−8J2

1 (c2)

r2[J2
0 (c2)+J2

1 (c2)−1]

]− 1
2

Non-paraxial LSCM

and DSCM (d ≥ d0,

L∞ constraint)

σ̂∗ρ =
√

2




2σ4
em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–

+r2σ2
ex,ρ

σ2
ex,ρσ

4
em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–



− 1

2

1 kex := 2π
λex

, kem := 2π
λem

, c1 := kexrNA, c2 := kemrNA, σem,ρ is given by the

expression of σ̂∗ρ of the non-paraxial WFFM (L∞ constraint) and σex,ρ is given

by the same expression with kem replaced by kex.
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Tab. 3.2: Lateral Gaussian parameters for 3D PSFs (L∞ constraint)

Microscope Lateral Gaussian Parameter1

Paraxial WFFM σ̂∗ρ =
√

2/(kemNA)

Non-paraxial

WFFM

σ̂∗ρ = 1
nkem

[
4−7 cos

3
2 α+3cos

7
2 α

7(1−cos
3
2 α)

]− 1
2

Paraxial

LSCM and

DSCM (d ≥ d0)

σ̂∗ρ =
√

2
[
c21
r2

+
4c2J0(c2)J1(c2)−8J2

1 (c2)

r2[J2
0 (c2)+J2

1 (c2)−1]

]− 1
2

Non-paraxial

LSCM and

DSCM (d ≥ d0)

σ̂∗ρ =
√

2




2σ4
em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–

+r2σ2
ex,ρ

σ2
ex,ρσ

4
em,ρ

»

exp

„

r2

2σ2
em,ρ

«

−1

–



− 1

2

1 kex := 2π
λex

, kem := 2π
λem

, c1 := kexrNA, c2 := kemrNA, σem,ρ is given by

the expression of σ̂∗ρ of the non-paraxial WFFM and σex,ρ is given by the

same expression with kem replaced by kex.

Tab. 3.3: Axial Gaussian parameters for 3D PSFs (L∞ constraint)

Microscope Axial Gaussian Parameter1

Paraxial WFFM σ̂∗z = 2
√

6 · n/(kemNA2)

Non-paraxial

WFFM

σ̂∗z = 5
√

7(1−cos
3
2 α)

√
6·nkem

h

4 cos5 α−25 cos
7
2 α+42 cos

5
2 α−25 cos

3
2 α+4

i

1
2

Paraxial

LSCM and

DSCM (d ≥ d0)

σ̂∗z = 2
√

6

[
c21NA2

r2n2 − 48c22[J
2
0 (c2)+J2

1 (c2)]−192J2
1 (c2)

n2k2
emr

4[J2
0 (c2)+J2

1 (c2)−1]

]− 1
2

Non-paraxial

LSCM and

DSCM (d ≥ d0)

σ̂∗z =
σex,zσem,z

[σ2
ex,z+σ2

em,z]
1
2

1 kex := 2π
λex

, kem := 2π
λem

, c1 := kexrNA, c2 := kemrNA, σem,z is given by

the expression of σ̂∗z of the non-paraxial WFFM and σex,z is given by the

same expression with kem replaced by kex.
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Tab. 3.4: Approximation errors§ on WFFM PSFs (L∞ constraint)

RSE% 2D Parax. 2D Non-Parax. 3D Parax. 3D Non-Parax.

(0.4, 0.5) (1.6, 1.7) (16.0, 19.9) (16.2, 17.4)

PRE% σ̂∗ρ σ̂∗ρ σ̂∗ρ σ̂∗z σ̂∗ρ σ̂∗z

(0.3, 1.5) (7.0, 7.0) (0.6, 2.0) (2.1, 2.4) (2.2, 2.6) (0.9, 1.9)

§ The top part of the table shows the RSE% and the bottom part shows the PRE%. In

parentheses, the minimal and maximal errors are shown: (Min.Err.%, Max.Err.%). The

NA varies from 0.2 to 0.7 in the paraxial cases and from 0.8 to 1.4 in the non-paraxial

cases.

Tab. 3.5: Approximation errors§ on the 2D paraxial WFFM PSF (L1 constraint)

RSE% PRE% (σ̂∗ρ)

(1.1, 1.3) (0.0, 1.7)

§ In parentheses, the minimal and maximal errors are shown: (Min.Err.%, Max.Err.%).

The NA varies from 0.2 to 0.7.
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Tab. 3.6: Approximation errors§ on LSCM PSFs (L∞ constraint)

RSE% 2D Parax. 2D Non-Parax. 3D Parax. 3D Non-Parax.

D=0† (0.1, 0.3) (0.2, 0.3) (0.3, 0.4) (0.4, 0.4)

D=0.25 (0.1, 0.2) (0.3, 0.6) (0.3, 0.5) (0.5, 0.8)

D=0.5 (0.1, 0.3) (0.6, 0.6) (0.4, 0.5) (0.6, 0.7)

D=1 (1.3, 2.0) (1.0, 1.0) (1.7, 2.2) (1.5, 1.6)

D=2 (1.1, 1.6) (1.5, 1.6) (5.3, 5.7) (7.6, 8.5)

D=3 (1.1, 1.6) (1.5, 1.7) (9.2, 9.6) (11.8, 13.5)

PRE% σ̂∗ρ σ̂∗ρ σ̂∗ρ σ̂∗z σ̂∗ρ σ̂∗z

D=0 (0.5, 3.1) (2.8, 3.2) (0.2, 2.4) (2.5, 2.9) (2.1, 2.5) (2.2, 2.4)

D=0.25 (0.6, 3.0) (3.7, 5.2) (0.3, 2.2) (2.4, 3.3) (2.9, 4.3) (1.9, 2.7)

D=0.5 (0.9, 3.1) (5.2, 5.3) (0.2, 2.0) (1.7, 2.1) (4.1, 4.2) (0.9, 1.2)

D=1 (7.4, 9.0) (5.4, 5.7) (5.6, 7.3) (0.0, 0.3) (3.9, 4.1) (7.6, 8.3)

D=2 (5.9, 7.5) (6.9, 7.1) (1.9, 3.5) (3.7, 4.0) (3.3, 3.5) (20.6, 21.2)

D=3 (5.7, 7.2) (6.8, 6.9) (1.0, 2.6) (2.6, 2.8) (2.4, 2.8) (24.0, 24.3)

§ The top part of the table shows the RSE% and the bottom part shows the PRE%. In

parentheses, the minimal and maximal errors are shown: (Min.Err.%, Max.Err.%). The

NA varies from 0.2 to 0.7 in the paraxial cases and from 0.8 to 1.4 in the non-paraxial

cases.

† D is the pinhole diameter and its unit is Airy Unit (1AU = 1.22 · λex/NA). D=0

corresponds to the vanishing pinhole situation.
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Tab. 3.7: Approximation errors§ on DSCM PSFs (L∞ constraint)

RSE% 2D Parax. 2D Non-Parax. 3D Parax. 3D Non-Parax.

D=0† (3.3, 3.3) (3.2, 3.4) (6.1, 6.1) (3.9, 5.5)

D=0.25 (2.0, 2.1) (2.2, 2.4) (2.8, 2.8) (2.3, 2.9)

D=0.5 (0.3, 0.4) (0.5, 0.7) (2.3, 2.3) (2.5, 3.3)

D=1 (1.2, 1.2) (2.1, 2.8) (11.6, 11.8) (16.2, 18.4)

D=2 (3.8, 3.8) (3.7, 4.0) (16.4, 16.9) (15.5, 16.7)

D=3 (1.6, 1.7) (1.6, 2.3) (19.0, 21.9) (23.2, 24.5)

PRE% σ̂∗ρ σ̂∗ρ σ̂∗ρ σ̂∗z σ̂∗ρ σ̂∗z

D=0 (12.6, 12.6) (12.3, 12.7) (14.4, 14.4) (2.3, 2.3) (13.5, 14.4) (0.1, 3.4)

D=0.25 (9.7, 10.2) (10.1, 10.8) (10.5, 11.0) (4.8, 4.9) (10.5, 11.5) (5.8, 8.2)

D=0.5 (3.1, 3.2) (4.2, 5.2) (3.4, 3.5) (12.8, 13.0) (4.1, 5.4) (14.4, 18.9)

D=1 (5.7, 5.8) (9.0, 10.4) (5.6, 5.6) (26.6, 26.6) (8.8, 10.1) (32.9, 35.9)

D=2 (12.4, 12.4) (11.6, 12.0) (9.1, 9.1) (7.4, 7.5) (8.9, 9.3) (18.7, 21.0)

D=3 (7.1, 7.1) (6.8, 7.7) (2.1, 2.1) (3.4, 3.4) (1.9, 3.2) (20.1, 23.4)

§ The top part of the table shows the RSE% and the bottom part shows the PRE%. In

parentheses, the minimal and maximal errors are shown: (Min.Err.%, Max.Err.%). The

NA varies from 0.2 to 0.7 in the paraxial cases and from 0.8 to 1.4 in the non-paraxial

cases. d is set to d0.

† D is the pinhole diameter and its unit is Airy Unit (1AU = 1.22 · λex/NA). D=0

corresponds to the vanishing pinhole situation.
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Fig. 3.1: Examples of the Gaussian approximations of WFFM, LSCM and DSCM PSFs

with an L∞ constraint. Non-paraxial cases, λex = 488nm, λem = 520nm, n = 1.515, NA

= 1.0 and the pinhole diameter D = 0.5AU in LSCM and DSCM. (a) Lateral WFFM PSF;

(b) Lateral LSCM PSF; (c) Lateral DSCM PSF (d = d0); (d) Axial WFFM PSF; (e) Axial

LSCM PSF; (f) Axial DSCM PSF (d = d0).
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Fig. 3.2: xz-planes of nonparaxial microscope PSFs (NA = 1.0), of their Gaussian approx-

imations and of the approximation residues. (a) WFFM PSF; (b) Gaussian approximation

for (a); (c) Residue for (b); (d) LSCM PSF (D = 0.5AU); (e) Gaussian approximation for

(d); (f) Residue for (e); (g) DSCM PSF (D = 0.5AU, d = d0); (h) Gaussian approximation

for (g); (i) Residue for (h).
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Fig. 3.3: Examples of the Gaussian approximations of 2D Paraxial WFFM PSF. (a) approx-

imation with an L∞ constraint; (b) approximation with an L1 constraint. λem = 520nm,

n = 1.515 and NA = 0.3.
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Fluorescence Image Restoration





Chapter 4

Noise Sources in Fluorescence

Microscope

The data acquired by a fluorescence microscope are contaminated by various noise sources

in the microscope imaging system. As discussed in Chapter 2, principal instruments used

for fluorescence detection are CCDs and PMTs. This chapter will study the noise sources

contributing to image degradation in these two types of detectors, and propose for each

microscope its noise model. The CCD noise is studied in Section 4.1, and the noise process

in a PMT is discussed in Section 4.2. We conclude by summarizing our noise models for

different microscopes in Section 4.3.

4.1 CCD Noise Sources

A typical CCD camera functions as follows. The incident fluorescence photons hit the

light-sensing photodiode elements of the CCD, resulting in the liberation of electrons. Each

absorbed photon will create on average a mobile electron and a corresponding positively

charged electron hole. The resulting charge in each pixel is linearly proportional to the

number of incident photons. During the exposure time, the charge of each pixel will be

accumulated and stored in a potential well. Then, the charge will be amplified and converted

to a proportional voltage by the output amplifier. Finally, the voltage will be quantified

by an analog-to-digital converter (ADC) and the corresponding value will be stored in the

image file in the memory. Several noises are involved in the above detection process.

53
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Fluorescence photon noise The fluorescence photon noise, due to the stochastic nature

of the photon emission, is inherent in all optical signals. Supposing the average photon flux

to be λ, the observed photon number Np follows a Poisson distribution with intensity

parameter λ, i.e., Np ∼ P(λ). If we dispose of a high photon flux, Np will be asymptotically

normally distributed with both the mean and the variance equal to λ.

Dark noise The kinetic vibration of silicon atoms in the CCD substrate will liberate

electrons or holes even when no incident fluorescence photon is present. The resulting

charge will contribute to the final signal and is termed dark noise. Secondary sources of the

dark noise are cosmic rays or external high-energy radiation from nearby sources such as an

indoor illumination. The dark noise Nd follows also a Poisson distribution, i.e., Nd ∼ P(λd),

where λd represents the average dark flux. In practice, the CCDs are usually cooled (cooled

CCD) to reduce the dark noise.

Readout noise The readout noise primarily originates from the imperfectness of the

output amplifier during the process of converting charge into a voltage signal. This noise

is usually described by a normal distribution, i.e., Nr ∼ N (µ, σ2). Sometimes, the readout

noise may be frequency-dependent.

Quantification noise Suppose that the output voltage of the amplifier is within V ∈
[−VM/2, VM/2]. Given Q bits for the quantification and V as the input voltage, the output

of the ADC is given by ⌊V/q + 1/2⌋, where q = VM/2
Q is the quantification step. The

quantification noise can thereby be written as Nq = V −q⌊V/q+1/2⌋, and Nq ∈ [−q/2, q/2].

As Nq is bounded, its mean µNq and standard deviation σNq are also and it is easy to show

that

|µq| ≤ q/2 = 2−(Q+1)VM , σNq ≤ q = 2−QVM

That is, µNq and σNq decrease exponentially to 0 asQ augments. Thereby, the quantification

noise becomes rapidly negligible as the quantification bits increase.

4.1.1 Noise in wide-field microscopes

By the above analysis, if the quantification noise is ignored, the final detected signal S can

be written as

S = α(Np +Nd) +Nr
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where α is the overall gain of the camera. As Np and Nd are independent Poisson variables,

Np +Nd is also Poisson distributed. Thus, S can be further simplified as

S = αNs +Nr, Ns ∼ P(λ+ λd), Nr ∼ N (µ, σ2) (4.1)

We name (4.1) as a mixed-Poisson-Gaussian (MPG) model. In WFFM, λ is generally

high. This is because the camera collects not only the photons from the focused plane but

those from out-of-focus planes as well. Hence, Ns becomes asymptotically normally (AN )

distributed. Thereby,

S = α(λ+ λd) + µ+B, B ∼ AN (0, α2(λ+ λd) + σ2)

We have therefore a non-stationary Gaussian noise. For a CCD having a dominating readout

noise (σ ≫ α), the noise part B can be further approximated by a white noise, i.e.,

S ≈ α(λ+ λd) + µ+B, B ∼ N (0, σ2)

4.1.2 Noise in disc-scanning confocal microscopes

In DSCMs, the noise can no longer be approximated to be Gaussian. This is because the

detection pinholes reject the photons from out-focus planes, so that we have only a very

limited number of detected photons and the Gaussian approximation for Ns is no longer

valid. In addition, in contrast to the WFFM case high gain CCDs are usually employed in

DSCM systems such as EM-CCDs. Consequently, our noise is signal-dependent, and the

resulting data has a MPG nature (4.1).

4.2 PMT Noises

In LSCM systems, the detection is carried out by PMTs which usually have high gains. A

photocathode is a critical element of a PMT. When the incidence photons hit the photocath-

ode, part of the excitation energy will be converted and produce a flux of photoelectrons.

The number of photoelectrons will be amplified through a chain of dynodes, resulting in a

current pulse. A PMT can normally function in two modes, i.e., analog mode and photon-

counting mode. When the emission rate is high, the light pulses overlap and produce a

continuous waveform. This current is then amplified and measured by an ADC. However,

if the emission rate is very low, direct photon counting is possible, since there are very few

pileups of photon events.
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4.2.1 Noise in laser-scanning confocal microscopes

Similar to the CCD case, for a PMT operating in the analog mode, the four noise sources

discussed in Section 4.1 are present. We point out that the dark noise in a PMT is origi-

nated from the thermal emission of electrons from the photocathode and the dynodes, and

the radiation from nearby secondary sources. Thus, ignoring the quantification noise, the

final signal model is given by the MPG one (4.1). For the same reason as in DSCM, an

approximation to the MPG model by a Gaussian one will be inaccurate.

For a PMT operating in the photon-counting mode, the signal will be Poisson-

distributed (no readout noise), i.e.,

S = Np +Nd ∼ P(λ+ λd) (4.2)

4.3 Conclusion

We studied in this chapter the different noise sources that degrade the image acquisition

in fluorescence microscopes. The final signal models for WFFM, LSCM and DSCM are

summarized as follows.

WFFM The signal is corrupted by a Gaussian noise:

S = α(λ+ λd) + µ+B, B ∼ AN (0, α2(λ+ λd) + σ2) (4.3)

With a dominating readout noise, we have the approximation

S ≈ α(λ+ λd) + µ+B, B ∼ N (0, σ2) (4.4)

LSCM We distinguish the two modes of a PMT.

• For a PMT operating in the analog mode, the signal model is MPG:

S = αNs +Nr, Ns ∼ P(λ+ λd), Nr ∼ N (µ, σ2) (4.5)

• For a PMT operating in the photon-counting mode, the model is Poissonian:

S ∼ P(λ+ λd) (4.6)

DSCM The signal model is MPG:

S = αNs +Nr, Ns ∼ P(λ+ λd), Nr ∼ N (µ, σ2) (4.7)
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The signal restoration in the presence of a Poisson noise or a MPG noise will be studied in

Chapter 5 and Chapter 6, respectively.



58 Chapter 4: Noise Sources in Fluorescence Microscope



Chapter 5

Poisson Noise Removal

Denoising Gaussian additive noise present in a signal has been very well studied in the

literature. Vast successful approaches have been proposed such as the optimal filters

[45][46][47][48][49], multiscale denoisers [50][51][52][53][54], PDE-based smoothing [55][56][57],

and Bayesian estimators [58][59][60][61]. These methods are well applicable for WFFM

images, but probably not so for LSCM data obtained in the photon-counting mode (see

Chapter 4). In contrast to denoising Gaussian additive noise, Poisson data restoration has

been much less studied.

Let us first formulate the problem of Poisson denoising. We observe a discrete

dataset of counts X = (Xi)i∈Zq where Xi is a Poisson random variable of intensity λi,

i.e., Xi ∼ P(λi). Here we suppose that Xi’s are mutually independent. The denoising aims

at estimating the underlying intensity profile Λ = (λi)i∈Zq from the observation X.

The present chapter contributes to this subject by proposing two novel Poisson de-

noising methods following a review of the state of the art (Section 5.1). Our first approach is

based on biorthogonal Haar-domain hypothesis tests (Section 5.2). This approach is partic-

ularly suitable for estimating smooth intensities for large datasets in real time. Our second

method makes use of well designed multi-scale variance stabilizing transforms (VSTs). It

can be combined with most multi-scale transforms to adapt different source morphologies

in the restoration (Section 5.3).

We point out that in our formulation of the Poisson denoising problem, we have

supposed a zero dark intensity, i.e., λd = 0 (see Chapter 4). The proposed denoisers can be

easily adapted to the case of nonzero dark intensity as to be discussed in Section 5.4.
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5.1 Existing Methods for Denoising Poisson Data

We summarize the existing intensity estimators into four categories, i.e., VST-based meth-

ods (Section 5.1.2), filters in the wavelet domain (Section 5.1.3), approaches using hypoth-

esis tests (Section 5.1.4), and Bayesian and penalized maximum-likelihood (ML) estimators

(Section 5.1.5). Many of these estimators are based on wavelet shrinkage, and we first pro-

vide a brief review of the wavelet background (Section 5.1.1). More details can be found,

for example, in [62], [63], and [64].

5.1.1 Wavelet background

The wavelet transform represents a one-dimensional (1D) real-valued continuous-time signal

f(t), t ∈ R, in terms of shifts and dilations of a lowpass scaling function φ(t) and bandpass

wavelet ψ(t). Let us note φj,n(t) := 2−j/2φ(2−jt− n), and ψj,n(t) := 2−j/2ψ(2−jt− n). For

special choices of these functions, the shifts and dilations {φJ,n, ψj,m| j ≤ J, (n,m) ∈ Z2}
form an orthonormal basis of L2(R). Thereby, we have the signal representation

f(t) =
∑

n

aJ [n]φJ,n +
J∑

j=−∞

∑

n

dj [n]ψj,n (5.1)

aJ [n] = 〈f, φJ,n〉, dj[n] = 〈f, ψj,n〉 (5.2)

Here, (aj [n])n and (dj[n])n are respectively approximation coefficients (or scaling coeffi-

cients) and detail coefficients (or wavelet coefficients) at scale j; 〈·, ·〉 denotes inner product.

The above representation reveals the multiresolution feature of the wavelet analysis. The

first sum in (5.1) is an approximation of f at scale (resolution) J , and the second double

sum consists of refinements at finer and finer scales j ≤ J . Unlike the infinitely supported

Fourier basis, compactly supported wavelets with arbitrary number of vanishing moments1

can be constructed [62]. Thereby, wavelets provide an analysis that adapts to the local

signal variations.

The approximation and detail coefficients can be computed iteratively and efficiently.

Using the fact that the scaling function and the wavelet are related by [64]

φ(x/2) =
√

2
∑

n

h[n]φ(x− n), ψ(x/2) =
√

2
∑

n

g[n]φ(x− n)

1A wavelet having p vanishing moments is orthogonal to any polynomial of degree p − 1.
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where h[n] and g[n] are discrete-time lowpass and bandpass filters, respectively. The ap-

proximation and detail coefficients can be recursed as

aj+1[n] = h̄ ⋆ aj [2n] =
∑

k

h[k − 2n]aj [k], dj+1[n] = ḡ ⋆ aj [2n] =
∑

k

g[k − 2n]aj [k] (5.3)

where h̄[n] := h[−n], and ⋆ denotes convolution. Let x̌[n] = x[p] if n = 2p and 0 otherwise,

which is an up-sampling scheme. The reconstruction of the approximation coefficients can

be obtained from those of the coarser resolutions

aj [n] =
∑

k

ǎj+1[k]h̃[n− k] +
∑

k

ďj+1[k]g̃[n− k] (5.4)

where h̃ = h and g̃ = g for orthonormal wavelets [64]. (5.3) and (5.4) can be summarized

into a discrete-time filter bank comprising lowpass and bandpass filters, decimators and

upsamplers (Fig. 5.1). For a discrete signal f [n], the recursions (5.3) and (5.4) define

h

[n]a j

g

2

2

[n]a 1j

[n]d 1j

2

2

h
~

g~

+ [n]a j

Fig. 5.1: Wavelet transform implemented by an iterative filter bank.

a discrete wavelet decomposition and inversion, respectively. The transform has a linear

complexity O(N) where N is the signal length. For two-dimensional (2D) image f [n,m],

the discrete wavelet transform is implemented by a 2D filter bank. If a separable wavelet

basis is used, the filters h and g will also be separable. Then, the transform is obtained by

alternating the application of the h and g filters on rows and columns of the image. The

transform for higher dimensional signals can be likewise achieved.

It is important in many applications such as pattern recognition to have a translation-

invariant representation of the signal. When a pattern is translated, its numerical descrip-

tors should be translated but not modified. However, it is easy to verify that the wavelet

representation (5.2) is not translation-invariant. The translation invariance can be regained

by computing the approximation and detail coefficients over the integer grid

aj [n] = 〈f(t), φj,n〉, φj,n = 2−j/2φ(2−j(t− n)) (5.5)

dj [n] = 〈f(t), ψj,n〉, ψj,n = 2−j/2ψ(2−j(t− n)) (5.6)
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Practical computation of aj and dj can also be achieved by a recursion scheme, or “à trous”

algorithm [65][66].

aj+1[l] = h̄↑j ⋆ aj [l] =
∑

k

h[k]aj[l + 2jk], dj+1[l] = ḡ↑j ⋆ aj [l] =
∑

k

g[k]aj[l + 2jk] (5.7)

where h↑j [l] = h[l] if l/2j ∈ Z and 0 otherwise. The reconstruction is given by: aj [l] =

1
2

[
(h̃↑j ⋆ aj+1)[l] + (g̃↑j ⋆ dj+1)[l]

]
. We summarize the à trous algorithm in Fig. 5.2. Comparing

jh

[n]a j

jg

[n]a 1j

[n]d 1j

jh
~

jg~

+ [n]a j

x 1/2

Fig. 5.2: Undecimated wavelet transform implemented by an iterative filter bank.

to Fig. 5.1, the decimators and the upsamplers are absent. Thus, this schema is also termed

as undecimated wavelet transform (UWT). This transform has a complexity O(N log(N))

which is only slightly larger than the decimated version.

The wavelet transform of real-world signals tends to be very sparse, with a few large

scaling and wavelet coefficients dominating the representation, while most of the wavelet

coefficients are almost zero. Formally speaking, if we approximate a signal by keeping the

M vectors in a wavelet basis having the largest amplitudes of their coefficients, then the

ℓ2-norm of the approximation error can be written as a function decaying with M , i.e.,

O(M−α) where α > 0. The larger is α, the higher is the decaying rate, and hence the

sparser is the signal representation in the wavelet domain. It is shown that for signals

of bounded variations wavelets offer the highest decay rate that cannot be improved by

either optimal spline approximation or any approximation calculated in an orthonormal

basis [64][67]. Bounded variation functions include those that are piecewise regular with a

finite number of point discontinuities. This property makes the wavelet transform a very

efficient representation for many practical signals. However, we should point out that data

of a dimension higher than 1 can have more complex singularities other than the point-

like discontinuities (such as line-like and curvilinear boundaries in 2D). For such data,

wavelet system is no longer optimal, and other more efficient multiscale transforms have

been developed (see Sections 5.1.5 and 5.3).
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This sparsity property is also advantageous for signal recovery applications. Indeed,

the wavelet transform will tend to concentrate the energy of the desired signal into a small

number of large-amplitude (high signal-to-noise ratio (SNR)) coefficients. The other coeffi-

cients will have small amplitudes (low SNR) that are mainly due to noise. Thus, a simple

coefficient-wise thresholding that removes insignificant coefficients and retains the signifi-

cant ones will lead to noise removal. A general thresholding configuration can be written

as

d̃j [n] = h · dj [n]

where 0 ≤ h ≤ 1. A zero-valued factor h completely removes the contribution of the basis

function ψj,n; setting h = 1 leaves it intact. Letting 0 < h < 1 shrinks the contribution of

ψj,n accordingly. Widely used thresholding functions include hard-thresholding

h =





1 |dj[n]| ≥ T

0 |dj[n]| < T

and soft thresholding

h =





1 − T ·sgn(dj [n])
dj [n] |dj[n]| ≥ T

0 |dj[n]| < T

where T is an user-specified threshold value which is generally proportional to the noise

level. In the Gaussian white noise case, with an appropriate choice of the threshold level,

the soft thresholding procedure is near-minimax optimal over the bounded variation space

(more generally a wide interval of the Besov scale) [68].

Denoising using the standard decimated wavelet transform sometimes exhibits visual

artifacts due to the lack of translation invariance. Translation-invariant denoising can be

achieved by the procedure of cycle-spinning [51]. The basic idea is to “average out” the

translation dependence. For a range of cyclic shifts, one shifts the data, denoises the shifted

data, and then unshifts the denoised data. Doing this for each of a range of shifts, and

averaging the results so obtained, produces a reconstruction with far weaker artifacts. Cycle-

spinning over the range of all cyclic shifts leads to exact translation-invariant estimation,

which is equivalent to thresholding the UWT coefficients.

5.1.2 VST-based denoisers

Given Poisson data X, each sample Xi ∼ P(λi) has a variance Var [Xi] = λi. Thus, the

variance of X is signal-dependent. The aim of a VST T is to stabilize the data such that
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each coefficient of T (X) has an (asymptotically) constant variance, say 1, irrespective of

the value of λi. In addition, for the VSTs to be presented below, T (X) is asymptotically

normally distributed. Thus, the VST-transformed data are approximately stationary and

Gaussian. Once we are brought to the Gaussian denoising problem, any standard method

such as wavelet shrinkage [69, 50][64] can be applied to obtain the denoised coefficients

T̂ (X). Finally, the intensity is estimated by inverting the VST, i.e., λ̂ = T−1(T̂ (X)).

Anscombe transform [70][71] is a widely used VST which has a simple square-root

form

T (X) := 2
√
X + 3/8 (5.8)

We can show that T (X) is asymptotically normal as the intensity increases.

T (x) − 2
√
λ

D−→
λ→+∞

N (0, 1) (5.9)

It can be shown that Anscombe transform requires a high underlying intensity to stabilize

the data correctly (typically for λ ' 10, see also Section 5.3.1.3).

[72] proposed another VST based on the Fisz transform in the Haar wavelet domain

(see Section 5.1.1 for a general wavelet review). It consists of the following steps.

1. Apply the Haar wavelet transform of X and modify the detail coefficients by

d̃j [k] :=





0 if aj [k] = 0

dj[k]/
√
aj [k] otherwise

(5.10)

2. Apply the inverse Haar transform to the modified coefficients (aJ , dJ , dJ−1, . . . , d1) to

produce X̃.

Here, aj [k] and dj [k] are respectively the Haar approximation and detail coefficients at

scale j and location k. For Haar transform, aj [k] and dj [k] can be respectively written

as a sum and a difference of two independent Poisson variables U and V , i.e., aj [k] =

U + V and dj [k] = U − V . Asymptotic Gaussianity and variance stabilization for the form

(U−V )/(U+V )p where U and V are nonnegative, independent random variables, and p > 0

were studied by Fisz [73]. Thus (5.10) can be seen as a multi-scale Fisz transform (p = 1/2)

applied in the Haar domain, and the entire transform defined by the above procedure

X̃ := T (X) is termed as a Haar-Fisz transform [72]. [72] shows that the transformed data

X̃ are asymptotically uncorrelated and normally distributed. This VST adapts to the data

with lower photon rates than for Anscombe (typically λ ' 1, see Section 5.3.1.3).
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[74] extended the Haar-Fisz transform for any wavelet basis. A wavelet coefficient

dj [k] can be written as a linear combination of the input data dj[k] =
∑

l∈Lj,k
gj,k[l]Xl. Here,

gj,k is the band-pass filter at scale j and location k, and Lj,k is the index set where gj,k[l] 6= 0

for l ∈ Lj,k. We further denote Nj [k] :=
∑

l∈Lj,k
Xl. Then, the wavelet coefficients will be

normalized to be

d̃j[k] :=





dj [k]/
√
Nj [k] if Nj [k] 6= 0

0 otherwise
(5.11)

[74] shows that Var
[
d̃j [k]|Nj,k 6= 0

]
= ‖gj,k‖2

2/Lj,k where Lj,k = |Lj,k|. This stabilization

approach is called conditional variance stabilization (CVS). If Haar basis is used, the CVS

becomes the multi-scale Fisz transform. We should emphasis a delicate difference between

the Haar-Fisz VST and the CVS. In the former method, the forward transform involves

the inversion of the Haar transform. In other words, the Gaussinized data are obtained

from a complete Haar decomposition and reconstruction. In contrast, once CVS produces

the stabilized wavelet coefficients, they are immediately thresholded based on the normal

statistics. These thresholded coefficients are then re-multiplied by the normalization factor
√
Nj [k] before reconstructing the final intensity estimate. In summary, the stabilization and

the coefficient estimation are separated in Haar-Fisz approach, whereas they are coupled

together in the CVS framework.

5.1.3 Wavelet-domain filters

Nowak and Baraniuk [75], and Antoniadis and Sapatinas [76] proposed a wavelet domain

shrinkage operator, which can be deemed as an approximative oracle attenuation under a

wavelet basis. We write dj [k] =
∑

i gj,k[i]Xi. Let

σ̂2
j,k =

∑

i

gj,k[i]
2Xi

be an unbiased estimate of the noise power at the wavelet coefficient dj[k], and

d̂j [k]2 = dj [k]
2 − σ̂2

j,k

be an unbiased estimate of the signal power at dj [k]. Then, the shrinkage filter has the form

h = max


 d̂j [k]2

d̂j [k]2 + σ̂2
j,k

, 0


 (5.12)
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This filter weights each noisy coefficient dj[k] by a factor that approaches 1 for high SNR

and to 0 for low SNR. Hence, this filter can be interpreted as a data-adaptive wavelet-

domain Wiener filter. As the total counts increase, this filter is asymptotically optimal in

the mean-square error sense.

5.1.4 Hypothesis tests

The wavelet thresholding can be also implemented by applying a binary hypothesis test on

each wavelet coefficient dj [k] [77]:

H0 : dj [k] = 0 vs. H1 : dj [k] 6= 0

The coefficients of the null hypothesis are insignificant coefficients and those of the alterna-

tive hypothesis are significant. Note that since any wavelet has a zero mean, if dj [k] comes

from a signal having a constant intensity within the wavelet support, then dj [k] would be

zero if no noise were present. Thus, dj [k] ∈ H0 in this case.

Individual hypothesis tests are carried out in a coefficient-by-coefficient manner.

First, the user pre-specifies a false positive rate (FPR) in the wavelet domain, say α. Then

the p-value of each coefficient pi is calculated under the null hypothesis H0. Finally, all the

coefficients with pi > α will be zeroed.

If we desire to control global statistical error rates, multiple hypothesis tests should

be used. For example, the Bonferroni over-conservative correction controls the probability

of erroneously rejecting even one of the true null hypothesis, i.e., Family-Wise Error Rate

(FWER). To upper bound FWER by α, the same individual-testing procedure is performed

as above but with FPR set to α/N , where N is the number of wavelet coefficients. Alter-

natively, one can carry out the Benjamini and Hochberg procedure [78] to control the false

discovery rate (FDR), i.e., the average fraction of false detections over the total number of

detections

FDR := E

[ |FP|
|FP| + |TP|

]
(5.13)

where |FP| and |TP| are the number of false positives and that of true positives, respectively.

The control of FDR has the following advantages over that of FWER: 1) it usually has a

greater detection power; 2) it can easily handle correlated data [79]. The latter point allows

the FDR control in non-orthogonal wavelet domains. Minimaxity of FDR has also been

studied in various cases (see [80][81] for details).
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For any hypothesis testing procedure, we need to know the distribution of the wavelet

coefficients dj [k] under the null hypothesis to calculate the p-values. [82] shows the proba-

bility density function (pdf ) of dj [k] to be

p(dj [k] = w;λs) =
∑

n≥0

⋆(n)Hψ(w)
(λs)

n

n!
e−λs

⋆(n)Hψ =





δ n = 0

Hψ ⋆ · · · ⋆ Hψ︸ ︷︷ ︸
n times n > 0

(5.14)

where Hψ is the normalized histogram of ψ, and δ is the Dirac disrtibution. We suppose a

constant intensity within the support of ψj,k, and λs is the total intensity in that support.

For a general wavelet, the pdf has no closed form, and is therefore computationally complex

in practice. To obtain distributions of manageable forms, simple wavelets are preferred,

such as Haar. To the best of our knowledge, Haar is the only wavelet yielding a closed-form

pdf, which is given by [83] (n ≥ 0),

p(dj [k] = X1 −X2 = n) = e−2λIn(2λ), X1,2 ∼ P(λ) (5.15)

where In(z) is the first kind modified Bessel function of order n. For negative n, the

probability can be obtained by symmetry. The tail probability (i.e. p-value) is given by

[84],

Pr(d ≥ n;λ) = Pr
(
χ2

(2n)(2λ) < 2λ
)
, n ≥ 1 (5.16)

where χ2
(f)(∆) is the non-central chi-square distribution with f degrees of freedom and ∆

as non-centrality parameter. The individual hypothesis tests in the Haar domain can be

equivalently implemented by thresholding operators. The details can be found in Section

5.2.

Kolaczyk [85] also attempted to generalize the hypothesis tests for wavelets other

than Haar. The implementing thresholds are “corrected” versions of the usual Gaussian-

based thresholds for the Poisson case. However, the asymptotic approximation he adopts

may not allow reasonable solutions in low-count situations.
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5.1.5 Bayesian and penalized ML estimators

Poisson intensity estimation has also been formulated in a Bayesian framework. Special

attention has been focused on the multiscale analysis provided by the Haar transform,

a0[k] = Xk, k = 0, 1, . . . , 2J − 1

aj [k] = aj−1[2k] + aj−1[2k + 1], k = 0, 1, . . . , 2J−j − 1, j = 1, 2, . . . , J

The parameter aj [k]’s are the Haar approximation coefficients. Let us define λj [k] as the

approximation coefficients of the underlying intensity Λ by applying the same transform.

The relationship between a parent (aj[k]) and a child (aj−1[2k]) is of fundamental in-

terest in multiscale analysis. This relationship is expressed by the conditional likelihood

p(aj−1[2k]|aj[k],Λ) which happens to follow a simple binomial distribution

p(aj−1[2k]|aj[k],Λ) = Binomial(aj−1[2k]| aj[k], θj[k])

where θj [k] := λj−1[2k]/λj[k] which can be deemed as splitting factors that govern the

inter-scale intensity assignment. This leads to the following factorization of the likelihood

function

p(X|Λ) = p(aJ [0]|λJ)
J∏

j=1

2J−j−1∏

k=0

p(aj−1[2k]|aj[k], θj[k])

where λJ =
∑

i λi is the total intensity. Now, Bayesian method consists of specifying a prior

distribution on θj [k] and then derive the posterior distribution from the likelihood and the

prior.

Kolaczyk [86] proposed the prior on the multiscale parameters θj [k] to be a mixture

of a point mass at 1/2 and a symmetric beta distribution, i.e.,

θj [k] ∼ γj [k]
1

2
+ (1 − γj [k])Bj[k],

γj [k] ∼ Bernoullio(pj),

Bj [k] ∼ Beta(Aj , Aj)

where 0 ≤ pj ≤ 1 and Aj > 0 are hyperparameters. Then the final posterior mean of the

intensity can be expressed in a recursive manner across the scales.

[87] moves beyond [86] by introducing a more general beta mixture for θj [k].

p(θj [k]) =
M∑

i=1

pi
(θj [k](1 − θj [k]))

si−1

2B(si, si)
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where B(·, ·) is the Euler beta function, si ≥ 1 are hyperparameters, (pi)i are mixture

probabilities and
∑M

i=1 pi = 1. The fact that the beta family is conjugate to the likelihood

function (binomial) leads to a posterior mean with a closed-form expression.

[88] considered the indirectly observed Poisson data, i.e., Λ = Pµ where P is a

known matrix of weight and µ is the intensity to estimate. The same Haar-based multiscale

framework is used and an EM algorithm is introduced to derive the maximum a posterior

(MAP) intensity estimate. Recently, [74] proposed to condition the total counts in the

wavelet support when computing a given coefficient. This concept allows to generalize

the Haar-based Bayesian framework to arbitrary wavelet. The low-intensity case apart,

Bayesian approaches generally outperform the direct wavelet filtering [89].

Poisson denoising has also been formulated as a penalized maximum likelihood (ML)

estimation problem [90][91][92][93] within wavelet, wedgelet and platelet dictionaries. Unlike

wavelet-based estimators where the image is recursively decomposed into dyadic square

partitions, the wedgelet partition [94] is based on a recursive dyadic square partition of the

image in which the final nodes are allowed to terminate with a wedge instead of a square.

The wedge split is defined by a line connecting two points on two sides of the square. Then,

each cell of the partition is approximated by a constant. Platelet generalizes the wedgelet

transform in that it fits each cell with a planar surface. That is, a platelet is a function of

3 parameters [95]

fS(x, y) = (ASx+BSy + CS)IS(x, y)

where AS , BS , CS ∈ R, S is a dyadic square or wedge at a terminal node of an recursive

partition. Clearly, platelets are localized atoms at various locations, scales and orientations

that can produce accurate piecewise linear approximations to images consisting of smooth

regions separated by smooth boundaries.

The penalized maximum-likelihood estimation with platelets is formulated as follows

[93].

Λ̂ = arg min
Λ∈ΓP

− log p(X|Λ) + 2 · penalty(Λ) (5.17)

penalty(Λ) := γ · log n · |{PlateletCoefficients(Λ)}| (5.18)

where the penalty is proportional to the number of platelet coefficients associated with the

estimate Λ. n is the total number of counts, and γ is a tunning parameter controlling the

balance between the likelihood term and the penalty. ΓP is the family of solutions consisting
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of intensities corresponding to wedgelet partitions with platelet models fit to the end nodes.

This penalized MLE platelet framework produces near-minimax optimal intensity

estimates for images composed of smooth surfaces (Hölder-α, α ∈ (1, 2]) separated by

smooth boundaries (Hölder-β, β ∈ (1, 2]) [92]. The platelet approximation for the intensities

in this class outperforms those using Fourier basis, wavelets, or wedgelets. Indeed, Fourier

does not perform well due to the singularities; wavelets can handle point-like singularities

but are seriously challenged by boundaries in 2D; wedgelets can handle the boundaries but

provide a piecewise constant approximations which perform poorly for nonconstant smooth

intensity regions.

Ridgelet [52] and curvelet [96] systems are near optimal in representing line-like and

twice-differentiable curvilinear singularities, respectively. To our knowledge, no Poisson

denoising method has been proposed for the ridgelet and curvelet transforms.

5.2 Denoising by Hypothesis Tests in the Biorthogonal Haar

Domain

The Haar-based methods reviewed in Section 5.1.4 apply hypothesis tests on Haar coeffi-

cients to control a user-specified FPR. When working with very large datasets or real-time

applications, the decimated Haar transform is generally required to meet limited-memory or

computation-time constraints. Unfortunately, for regular underlying intensities, decimation

yields discontinuous estimates with strong “staircase” artifacts, thus significantly degrading

the denoising performance.

In this section, we propose to combine the hypothesis testing framework with the

decimated biorthogonal Haar (Bi-Haar) transform. The Bi-Haar filter bank is normalized

such that the p-values of Bi-Haar coefficients (pBH) approximate those of Haar (pH) for high-

intensity settings or large scales; for low-intensity settings and small scales, we show that

pBH are essentially upper-bounded by pH . Thus, we may apply the Haar-based hypothesis

tests to Bi-Haar coefficients to control a prefixed FPR. By doing so, we benefit from the

regular Bi-Haar filter bank to gain a smooth estimate. A Fisher-approximation-based (FAB)

threshold implementing the hypothesis tests is also established. We find that this approach

even exhibits a performance comparable to the more time/space-consuming translation-

invariant Haar (TI Haar or undecimated Haar) denoising in some of our experiments.
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This section is organized as follows. The Bi-Haar domain tests are presented in

Section 5.2.1. Section 5.2.2 details some thresholding operators implementing the tests.

The final denoising algorithm is summarized in Section 5.2.3, and the numerical results are

shown in Section 5.2.4.

5.2.1 Bi-Haar domain testing

Haar wavelet provides us with a manageable distribution under H0. But due to the lack

of continuity of Haar filters, its estimate can be highly irregular with strong “staircase”

artifacts when decimation is involved.

To solve this dilemma between distribution manageability and reconstruction regu-

larity, we propose to use the Bi-Haar wavelet. The implementation filter bank is given by

[97]:

h = 2−c[1, 1], g = 2−cr[18 ,
1
8 ,−1, 1,−1

8 ,−1
8 ];

h̃ = 2c−1r[−1
8 ,

1
8 , 1, 1,

1
8 ,−1

8 ], g̃ = 2c−1[1,−1]

where c and r = (1 + 2−5)−1/2 are normalizing factors, (h, g) and (h̃, g̃) are respectively

the analysis and synthesis filter banks. Note that our Bi-Haar filter bank has an unusual

normalization. The motivation behind this is to ensure that the Bi-Haar coefficients will

have the same variance as the Haar ones at each scale. Let us also point out that to

correct for the introduction of the factor r, the Bi-Haar coefficients must be multiplied by

r−1 at each stage of the recursive reconstruction. For comparison, the Haar filter bank is

(h = 2−c[1, 1], g = 2−c[−1, 1], h̃ = 2c−1[1, 1], g̃ = 2c−1[1,−1]). It follows that the synthesis

Haar scaling function is discontinuous while that of Bi-Haar is almost Lipschitz [98][99].

Hence, the Bi-Haar reconstruction will be smoother.

At scale j ≥ 1, let us define λj = 2jλ where λ is the underlying constant intensity.

Then, a Haar coefficient can be written as dhj = 2−cj(X1 − X2) where X1, X2 ∼ P(λj/2)

are independent. We note pH := Pr(dhj ≥ 2−cjk0|H0) to be the p-value of a Haar coefficient

where k0 = 1, 2, · · · . Accordingly, a Bi-Haar coefficient can be written as dbhj = 2−cjr(X3 −
X4 + 1

8(X1 −X2)), where X1, X2 ∼ P(λj) and X3, X4 ∼ P(λj/2) are all independent. We

note pBH := Pr(dbhj ≥ 2−cjk0|H0) to be the p-value of a Bi-Haar coefficient at the same

critical threshold as for pH . These definitions can be extended to higher dimensions (q > 1)

straightforwardly.

For high-intensity settings or for large scales, dhj and dbhj will be asymptotically
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normal with the same asymptotic variances σ2
h = σ2

bh = 2qj(1−2c)λ due to the normalized

filter banks. Thereby, they will have asymptotically equivalent tail probabilities, i.e., pBH ≈
pH .

For low intensity settings (λ≪ 1) and small scales, the following proposition (proof

in Appendix A.8) shows for 1D signals that pBH is essentially upper-bounded by pH under

H0. The bounds for multidimensional data (q > 1) are also studied in Appendix A.8.

Proposition 5 We have the following upper-bound for 1D signals

pBH ≤ pH +A(λj)(1 − 2pH) (5.19)

where

A(λj) =
1

2

[
1 − e−2λj

(
I0(2λj) + 2

8∑

m=1

Im(2λj)

)]

As λ→ 0+, A(λj) = 29j−7

2835 λ
9 + o(λ9).

This theoretical bound is clearly confirmed by the numerical simulations shown in Table 5.1.

Here we show the results for λj ∈ [10−1, 102] and different critical thresholds k0 at the tails

of the distributions. We indeed observe that pBH is always strictly smaller than pH .

Tab. 5.1: pH and pBH

λj = 10−1 λj = 100 λj = 101 λj = 102

k0 = 2 (1.15 × 10−3,

1.17 × 10−4)

k0 = 4 (1.12 × 10−3,

4.57 × 10−4)

k0 = 9 (3.97 × 10−3,

2.48 × 10−3)

k0 = 20 (2.56 × 10−2,

2.28 × 10−2)

k0 = 3 (1.91 × 10−5,

1.87 × 10−6)

k0 = 5 (1.09 × 10−4,

4.34 × 10−5)

k0 = 12 (2.12 × 10−4,

1.26 × 10−4)

k0 = 30 (1.62 × 10−3,

1.39 × 10−3)

k0 = 4 (2.38 × 10−7,

2.28 × 10−8)

k0 = 6 (8.90 × 10−6,

3.49 × 10−6)

k0 = 15 (6.60 × 10−6,

3.78 × 10−6)

k0 = 40 (4.22 × 10−5,

3.52 × 10−5)

Every parenthesis shows (pH , pBH) for 1D signals, where we always observe that pBH < pH .

5.2.2 Thresholds for individual tests

For individual tests controlling FPR, the HTs can be implemented by thresholding opera-

tors. In other words, one can find t̃j such that Pr(|dbhj | ≥ t̃j |H0) ≤ α where α represents the

controlled FPR. Now consider the Haar case and suppose that we have derived the Haar

threshold tj under the controlled FPR. Then, by setting t̃j := 2−cjq⌈2cjqtj⌉ the results in

Section 5.2.1 allow us to conclude that the FPR for a Bi-Haar test will always be upper-

bounded by α. We point out that to simplify the presentation, tj and t̃j are supposed to
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be scale-dependent only, but scale and location-dependent thresholds can be derived using

the same procedure presented below.

Section 5.2.2.1 reviews a Haar-domain threshold introduced by Kolaczyk [100], and

then a more sensitive threshold is derived in Section 5.2.2.2.

5.2.2.1 CLTB threshold [101, 85, 100, 102]

The Haar coefficient can be written as dhj = 2−cjq(X1 −X2) where X1, X2 ∼ P(λj/2) are

independent. It follows from (5.16) that:

Pr(dhj ≥ tj |H0) = Pr
(
χ2

(2mj)
(λj) < λj

)
≈ Pr(γχ2

(f) < λj) (5.20)

≈ Pr

(
Z >

f − λj/γ√
2f

)
(5.21)

where mj = 2cjqtj , γ = (2mj + 2λj)/(2mj + λj), f = (2mj + λj)
2/(2mj + 2λj), χ

2
(v) is a

central chi-square variable and Z ∼ N (0, 1). Here, two stages of approximation are used: 1)

the non-central chi-square distribution is first approximated by a central one (5.20) [103]; 2)

the central chi-square variable is then approximated by a normal one (5.21) using the central

limit theorem (CLT). tj is thus called the CLT-based (CLTB) threshold. Consequently, it

remains to solve the equation (5.21) = α/2, and the solution is given by:

tj = 2−cjq−1
(
z2
α/2 +

√
z4
α/2 + 4 · λjz2

α/2

)
(5.22)

where zα/2 = Φ−1(1−α/2), and Φ is the standard normal cdf. Universal threshold can also

be obtained by setting zα/2 =
√

2 lnNj in (5.22) where Nj is the total number of coefficients

in one band at scale j.

5.2.2.2 FAB threshold

An improvement of CLTB threshold can be achieved by replacing (5.21) with an approxi-

mation of faster convergence, e.g., the following one proposed by Fisher [104]:

√
2χ2

(f)
→ N (

√
2f − 1, 1), f → ∞ (5.23)

Therefore, (5.21) changes to:

Pr
(
γχ2

(f) < λj

)
≈ Pr

(
Z >

√
2f − 1 −

√
2λj
γ

)
(5.24)
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Let us denote:

G(mj) :=
√

2f − 1 −
√

2λj
γ

=

√
(2mj + λj)2

mj + λj
− 1 −

√
λj(2mj + λj)

mj + λj
(5.25)

It remains to solve G(mj) = zα/2, which leads to a quartic equation in mj :

16m4
j +

[
16λj − 8(z2

α/2 + 1)
]
m3
j +

[
(z2
α/2 + 1)2 − (20z2

α/2 + 12)λj + 4λ2
j

]
m2
j

+
[
2(z2

α/2 + 1)2λj − 16z2
α/2λ

2
j − 4λ2

j

]
mj + (z2

α/2 + 1)2λ2
j − 4z2

α/2λ
3
j = 0 (5.26)

The final Fisher-approximation-based (FAB) threshold tj is obtained from m∗
j , the solution

of (5.26). Owing to the following results (proof in Appendix A.9), we do not need to write

out the explicit expression of m∗
j , which could be rather complex:

Proposition 6 The feasible condition for mj is given by (5.27), and the feasible solution

m∗
j exists and is unique.

mj ≥
1

8

[
z2
α/2 − 2λj + 1 +

(
z4
α/2 + (12λj + 2)z2

α/2 + 4λ2
j + 12λj + 1

)1/2
]

(5.27)

Proposition 6 implies that we can use any numerical quartic-equation solver, e.g. Hacke’s

method [105], to find the four solutions of (5.26). One and only one of the solutions will

satisfy (5.27), which is m∗
j . The universal threshold can also be derived in the same way as

in the CLTB case.

Fig. 5.3 compare the values scaled by 2j of the exact threshold, the CLTB threshold

and the FAB threshold as functions of λj where we set c = q = 1. The scaling makes the

threshold values independent of the scale j. But this does not bias the comparison as all

the thresholds are scaled by the same factor. We can clearly see that for any intensities,

the FAB threshold provides a much more accurate approximation to the exact one than for

CLTB.

5.2.3 Summary of the denoising algorithm

Note that the thresholds tj (more generally the p-value of dhj ) depend on the background

rate at scale j (i.e. λj). Without any prior knowledge, it can be estimated by the values of

the approximation coefficients at scale j + 1 (i.e. aj+1). Here, the wavelet denoising should

be carried out in a coarse-to-fine manner, outlined in Algorithm 1.
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Fig. 5.3: Comparison of the exact threshold, the CLTB and FAB thresholds as functions of

λj . The thresholds are scaled by 2j. c = q = 1. The exact threshold implements a (a) 2σ

thresholding level; (b) 3σ thresholding level; (c) 4σ thresholding level; (d) 5σ thresholding

level.

Algorithm 1 Poisson noise removal by hypothesis tests in the Bi-Haar domain

1: Bi-Haar transform of v up to j = J to obtain aJ and dbhj (1 ≤ j ≤ J)
2: for j = J down to 1 do
3: λ̂j = 2jqλ if λ is known; otherwise λ̂j = max(2cjqaj , 0)
4: Testing dbhj by applying thresholds t̃j for a prefixed FPR = α
5: Reconstruct aj−1 by inverse Bi-Haar transform
6: end for
7: Positivity projection: Λ̂ = max(a0, 0)
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5.2.4 Results

5.2.4.1 Haar vs. Bi-Haar denoising for regular intensities

To compare Haar and Bi-Haar denoising for regular intensities, we generate noisy signals

from the “Smooth” function [89] (see Fig. 5.4(a)) and measure the Normalized Mean Inte-

grated Squared Error (NMISE) per bin from the denoised signals. The NMISE is defined

as: NMISE := E[(
∑N

i=1(λ̂i − λi)
2/λi)/N ], where (λ̂i)i is the intensity estimate. Note that

the denominator λi plays the role of variance stabilization in the error measure.

Fig. 5.4(a) shows the denoising examples given by Haar, Bi-Haar and TI Haar es-

timations, where FAB thresholds are applied. The original intensity function is scaled to

cover a wide range of intensities, and Fig. 5.4(b) compares the NMISEs (measured from 100

replications) of the three estimators as functions of the underlying peak intensity.

It can be seen that the Bi-Haar estimate is much more regular than the Haar one,

and is even almost as good as TI Haar at every intensity level under the NMISE criterion.

This surprising performance is gained with the same complexity as in the Haar denoising,

i.e., O(N) only, as opposed to O(N logN) in the TI Haar case.
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Fig. 5.4: Denoising the “Smooth” function (length = 1024). Estimates from Haar, Bi-Haar

and TI Haar (undecimated) are compared. α = 10−3 and J = 7. (a) denoising results; (b)

NMISEs.
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Fig. 5.5: Denoising a mixture of 15 simulated Gaussian sources. Image size 128 × 128.

λ ∈ [0.05, 7.11]. FAB threshold, FPR = 10−3 and J = 4. (a) original image; (b) Poisson

counts; (c) Haar + FAB (NMISE = 0.13); (d) Bi-Haar + FAB (NMISE = 0.069).

5.2.4.2 Restoration of simulated images

We test our method on a 2D image where a mixture of 15 Gaussian sources of different

variances are simulated (Fig. 5.5)(a). The peak intensity in the image is λmax = 7.06. After

adding a constant background (λB = 0.05) and a Poisson noise, we obtain the image of

counts in Fig. 5.5(b). The restored images using Haar and Bi-Haar wavelets are respec-

tively shown in Fig. 5.5(c) and Fig. 5.5(d). Here, the FAB thresholding is employed. The

smoothness gained by the Bi-Haar wavelet can be clearly seen. Moreover, Bi-Haar estima-

tion is more accurate (NMISE = 6.9 × 10−2) than that of Haar (NMISE = 13.0 × 10−2)

where the NMISEs are measured from 100 replications.
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5.3 Denoising by Multi-scale Variance Stabilizing Transform

The proposed Bi-Haar based estimation is fast, and produces regular estimates. However,

for applications not requiring real-time processing, undecimated transforms are always pre-

ferred than the decimated one. In that case, the gain offered by using Bi-Haar rather than

Haar wavelet is marginal. Another limitation of this approach is that it is designed for

Bi-Haar wavelet only. For line-like or curvilinear sources, this wavelet filter is clearly un-

adapted. For q-dimensional (q ≥ 2) isotropic sources, the biorthogonal wavelet transform

(more generally for any standard separable wavelet transform) does not provide an isotropic

analysis. Thereby, this method leads to a suboptimal estimation for those sources.

In this section, we propose another Poisson intensity estimator which is more flexible

in adapting different source types and is also more powerful. It is based on a VST designed

to stabilize the variance of a filtered discrete Poisson process, yielding a near Gaussian

process. This new transform, which can be deemed as an extension of the Anscombe

transform to filtered data, is simple, fast and efficient in (very) low-count situations. The

rationale behind the benefits of stabilizing a filtered version of the original process is as

follows. It is well known that the performance of the Anscombe VST deteriorates as the

intensity becomes low [97] (typically for λ < 10), i.e., as the SNR decreases. Hence, one can

alleviate this limitation and enhance the performance of the VST if the SNR is increased

before stabilization. This can be achieved by pre-filtering the original process provided that

the filter acts as an “averaging” kernel, and more generally, a low-pass filter. A detailed

asymptotic analysis will support these claims.

By recognizing that a large family of multiscale transforms are computed from filter-

ing equations (e.g. wavelets), the proposed VST can be seamlessly combined with their filter

banks, leading to multiscale VSTs (MS-VSTs). Toward the goal of Poisson denoising, we

are allowed to choose or design the most adaptive transform for the sources to be restored

based on their morphology. Indeed, owing to recent advances in modern harmonic analy-

sis, different multiscale transforms were shown to be very effective in sparsely representing

different kinds of information. For example, to represent efficiently isotropic singularities

and regular structures, a qualified candidate is the wavelet transform [64][97]. The ridgelet

transform [52] has been shown to be very effective in representing global lines in an im-

age. The curvelet system [96][53] is highly suitable for representing smooth (C2) images

away from C2 contours. These transforms are also computationally attractive particularly
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in large-scale applications. We will show that our new VST can be easily combined with

these different multiscale geometrical decompositions, yielding asymptotically normally dis-

tributed coefficients with known variances. A classical hypothesis testing framework is then

adopted to detect the significant coefficients, and a sparsity-driven iterative scheme is pro-

posed to reconstruct the final estimate. We show that the MS-VST approach provides

a very effective denoiser capable of recovering important structures of various (isotropic,

line-like and curvilinear) shapes in (very) low-count images.

This section is organized as follows. In Section 5.3.1, a detailed analysis is provided

to characterize the VST. Section 5.3.2 outlines the denoising setting using MS-VST with

wavelets. Section 5.3.2.2 and 5.3.2.3 show how the VST can be combined with the isotropic

undecimated wavelet transform and the standard separable undecimated wavelet transform,

respectively. Denoising by MS-VST combined with ridgelets and curvelets are respectively

presented in Section 5.3.3 and 5.3.4.

5.3.1 VST of a filtered Poisson process

Given a Poisson process X := (Xi)i where Xi’s are independent and Xi ∼ P(λi), Yj :=
∑

i h[i]Xj−i is the filtered process obtained by convolving (Xi)i with a discrete filter h.

We will use Y to denote any one of Yj. Let us define τk :=
∑

i(h[i])
k for k = 1, 2, · · · .

In addition, we adopt a local homogeneity assumption that λj−i = λ for all i within the

support of h.

5.3.1.1 VST-heuristics

It can be seen that the variance of Y (Var [Y ]) is proportional to the intensity λ. To stabilize

Var [Y ], we seek a transformation Z := T (Y ) such that Var [Z] is (asymptotically) constant,

say 1, irrespective of the value of λ.

Heuristically, the Taylor expansion gives us T (Y ) ≈ T (µY )+T ′(µY )(Y −µY ), where

µY := E [Y ] = λτ1. We then have Var [Z] ≈ T ′(µY )2 · Var [Y ] = T ′(µY )2 · λτ2. Hence, by

setting Var [Z] = 1, we obtain a differential equation T ′(µY ) = µY
−1/2

√
τ1/τ2, of which

the solution is given by T (Y ) = 2
√
τ1/τ2

√
Y . This implies that the square-root transform

could serve as a VST. It is possible to use higher order Taylor expansions to find VST of

different forms, but solving the associated differential equations is found difficult since they

are highly non-linear.
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5.3.1.2 VST-rigor

We define the square-root transform T as follows:

T (Y ) := b · sgn(Y + c)|Y + c|1/2 (5.28)

where b is a normalizing factor. Lemma 2 (proof in Appendix A.10) confirms our heuristics

that T is indeed a VST for a filtered Poisson process (with a nonzero-mean filter) in that

T (Y ) is asymptotically normally distributed with a stabilized variance as λ becomes large.

Lemma 2 (Square root as VST) If τ1 6= 0, ‖h‖2, ‖h‖3 <∞, then we have:

sgn(Y + c)
√
|Y + c| − sgn(τ1)

√
|τ1|λ D−→

λ→+∞
N
(

0,
τ2

4|τ1|

)
(5.29)

where sgn(·) is the sign function.

This result holds true for any c ∈ R, of which the value controls the convergence rate in

(5.29). The next section provides an analysis of the asymptotic rate and determines the

optimal value of c.

5.3.1.3 Optimal parameter of the VST

To simplify the asymptotic analysis, we assume a non-negative filter h and a positive con-

stant c (a non-positive h with a negative c can also be considered). Thus, our VST is

simplified to Z := T (Y ) = b
√
Y + c. We can now derive the asymptotic expansions of E [Z]

and Var [Z] as stated in Proposition 7 (proof in Appendix A.11). Note that the last point

in the proposition results directly from Lemma 2.

Proposition 7 (Optimal parameter of the VST)

(i) Define Z := b
√
Y + c. Then we have:

E [Z] = b
√
λτ1 + b

4cτ1 − τ2

8τ
3/2
1

λ−1/2 +Oλ→+∞(λ−1) (5.30)

Var [Z] = b2
τ2
4τ1

+ b2
(

7τ2
2

32τ3
1

− 2τ2c+ τ3
8τ2

1

)
λ−1 + b2

(
5τ4 + 16c2τ2 + 16cτ3

64τ3
1

− 17τ2τ3 + 21cτ2
2

32τ4
1

+
75τ3

2

128τ5
1

)
λ−2 +Oλ→+∞(λ−5/2) (5.31)
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(ii) For the VST to be second order accurate and Z to have asymptotic unit variance, b

and c must satisfy:

c =
7τ2
8τ1

− τ3
2τ2

, b = b1 := 2

√
τ1
τ2

(5.32)

(iii) For b and c as above, Z − b1
√
τ1λ

D−→
λ→+∞

N (0, 1).

Proposition 7 tells us that for the chosen value of c, the first order term in the expansion

(5.31) disappears, and the variance is almost constant up to a second order residue. As a

normalizing factor, the value of b does not influence the convergence rate. Note that if there

is no filtering (h = δ), the value of c in (5.32) equals 3/8, i.e., the value of the Anscombe

VST.

Now fix c to the value given in (5.32). Once the asymptotic expectation is normal-

ized to
√
λ, the coefficient of the higher-order term O(λ−1/2) in (5.30) is given by (5.33).

Similarly, the asymptotic variance being normalized to 1, the coefficient of the term O(λ−2)

in (5.31) is shown in (5.34).

CE =
5τ2

2 − 4τ1τ3
16τ2

1 τ2
(5.33)

CVar =
5τ2

1 τ2τ4 + 13τ4
2 − 4τ2

1 τ
2
3 − 13τ1τ

2
2 τ3

16τ4
1 τ

2
2

(5.34)

These higher-order coefficients (5.33) and (5.34) can be used to evaluate the stabilization

efficiency for a given filter. The ideal filters will be those minimizing (5.33) and (5.34).

Tab. 5.2 shows the values of CE and CVar for different filters, where h = δ corresponds

to the Anscombe VST (no filtering). Note that the values for the Anscombe VST are 10

or even 100 times larger than for the other cases, indicating the benefits of filtering prior

to the stabilization. This is also confirmed by the simulations depicted in Fig. 5.6, where

the estimates of E [Z] (resp. Var [Z]) obtained from 2 · 105 replications are plotted as a

function of the intensity λ for Anscombe [70] (dashed-dotted), Haar-Fisz [72] (dashed) and

our VST (solid). The asymptotic bounds (dotted), i.e.,
√
λ for the expectation and 1 for the

variance, are also shown. It can be seen that for increasing intensity, E[Z] and Var [Z] stick

to the theoretical bounds at different rates depending on the VST used. Quantitatively,

Poisson variables transformed using the Anscombe VST can be reasonably considered to

be unbiased and stabilized for λ ' 10, using Haar-Fisz for λ ' 1, and using our VST (after

low-pass filtering with the chosen h) for λ ' 0.1.
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Tab. 5.2: CE and CVar of different filters

Filter1 h CE CVar

δ (Anscombe) 6.25 × 10−2 6.25 × 10−2

2D Average = hA ⊗ hA 6.94 × 10−3 7.72 × 10−4

2D B3-Spline = hB3 ⊗ hB3 −4.94 × 10−4 −3.45 × 10−4

1 hA = [1 1 1]/3; hB3 = [1 4 6 4 1]/16; ⊗ denotes the tensor

product.
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Fig. 5.6: Behavior of (a) E [Z] and (b) Var [Z] as a function of the underlying intensity, for

the Anscombe VST, 2D Haar-Fisz VST, and the proposed VST with a low-pass filter h =

2D B3-Spline filter.

5.3.2 Denoising by MS-VST+wavelets

5.3.2.1 General settings

In this section, the proposed VST will be incorporated within the multiscale framework of-

fered by the (non-necessarily separable) UWT, giving rise to the MS-VST. The undecimated

transform is used because it provides translation-invariant denoising. Below, we first discuss

the 1D denoising case, and then the multidimensional extension will be straightforward (see

Section 5.3.2.2 and 5.3.2.3).

The VST can be combined with the UWT in the following way: since (h̄↑j)j are low-

pass filters (so have nonzero means), we can first stabilize the approximation coefficients

(aj)j using the VST, and then compute in the standard way the detail coefficients from
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the stabilized aj ’s. Note that the VST is now scale-dependent (hence MS-VST). By doing

so, the asymptotic stabilized Gaussianity of the aj ’s will be transferred to the dj’s, as will

be shown later. Thus, the distribution of the dj ’s being known (Gaussian), we can detect

the significant coefficients by classical hypothesis tests. With the knowledge of the detected

coefficients, the final estimate can be reconstructed. In summary, UWT denoising with the

MS-VST involves the following three main steps:

1. Transformation (Sections 5.3.2.2 and 5.3.2.3): Compute the UWT in conjunc-

tion with the MS-VST;

2. Detection (Section 5.3.2.4): Detect significant detail coefficients by hypothesis

tests;

3. Estimation (Section 5.3.2.5): Reconstruct the final estimate iteratively using the

knowledge of the detected coefficients.

The last step needs some explanation. The signal reconstruction requires inverting the

MS-VST-combined UWT after the detection step. However, the nonlinearity of the MS-

VST makes a direct inversion impossible in the general case. Even for the isotropic UWT

(IUWT) which uses special filter banks yielding an invertible MS-VST, the direct inverse

will be seen to be suboptimal. Hence, we propose to reformulate the reconstruction as a

convex optimization problem and solve it by an iterative steepest descent algorithm (Section

5.3.2.5).
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h̄ T1
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↑1

d1
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+ �� + ��
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+
a0+ ��
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ḡ
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Fig. 5.7: Diagrams of the MS-VST in 1D for (a) the IUWT and (b) the standard UWT.
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5.3.2.2 MS-VST+isotropic UWT

The IUWT [106] uses the filter bank (h, g = δ − h, h̃ = δ, g̃ = δ) where h is typically

a symmetric low-pass filter such as the B3-Spline filter. The particular structure of the

analysis filters (h, g) leads to the iterative decomposition scheme shown in the left part of

(5.35). The reconstruction is trivial, i.e., a0 = aJ +
∑J

j=1 dj. This algorithm is widely used

in biomedical imaging [107] and astronomy [97] to detect isotropic objects.

As stated in Section 5.3.2.1, we apply the VST on the aj ’s resulting in the stabiliza-

tion procedure shown in the right part of (5.35):

IUWT





aj = h̄↑j−1 ⋆ aj−1

dj = aj−1 − aj
=⇒

MS-VST
+

IUWT





aj = h̄↑j−1 ⋆ aj−1

dj = Tj−1(aj−1) − Tj(aj)
(5.35)

Note that the filtering step on aj−1 can be rewritten as a filtering on a0 := X, i.e., aj =

h(j) ⋆ a0, where h(j) = h̄↑j−1 ⋆ · · · ⋆ h̄↑1 ⋆ h̄ for j ≥ 1 and h(0) = δ. Tj is the VST operator

at scale j (see Lemma 2):

Tj(aj) = b(j) sgn(aj + c(j))
√

|aj + c(j)| (5.36)

Let us define τ
(j)
k :=

∑
i

(
h(j)[i]

)k
. Then according to (5.32), the constant c(j) associated to

h(j) should be set to

c(j) :=
7τ

(j)
2

8τ
(j)
1

− τ
(j)
3

2τ
(j)
2

(5.37)

This stabilization procedure is directly invertible as we have:

a0 = T−1
0


TJ(aJ) +

J∑

j=1

dj


 (5.38)

The decomposition scheme and the inversion of MSVST+IUWT are also illustrated in

Fig. 5.7(a).

Asymptotic Distribution of the Detail Coefficients

Theorem 3 (Asymptotic distribution of dj) Setting b(j) := sgn(τ
(j)
1 )/

√
|τ (j)

1 |, if λ is

constant within the support of the filter h(j)[k − ·], then we have:

dj [k]
D−→

λ→+∞
N


0,

τ
(j−1)
2

4τ
(j−1)
1

2 +
τ

(j)
2

4τ
(j)
1

2 − 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1


 (5.39)
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The proof of this theorem is given in Appendix A.12. This is a very useful result showing

that the detail coefficients issued from locally homogeneous parts of the signal (null hy-

pothesis H0, see Section 5.3.2.4) follow asymptotically a centered normal distribution with

an intensity-independent variance which only relies on the filter h and the current scale.

Hence, the stabilized variance (also the constants b(j), c(j), τ
(j)
k ) can all be pre-computed

once for any given h.

Extension to the Multi-dimensional Case The filter bank in qD (q > 1) becomes

(hqD, gqD = δ − hqD, h̃qD = δ, g̃qD = δ) where hqD = ⊗q
i=1h. Note that gqD is in general

nonseparable. The MS-VST decomposition scheme remains the same as (5.35), and the

asymptotic result above holds true. The complexity for pre-computing b(j), c(j), τ
(j)
k and

the stabilized variance in (5.39) remains the same as in the 1D case.

5.3.2.3 MS-VST+standard UWT

In this section, we show how the MS-VST can be used to stabilize the wavelet coefficients

of a standard separable UWT. In the same vein as (5.35), we apply the VST on the ap-

proximation coefficients (aj)j, leading to the following scheme (see also the block-diagram

of Fig. 5.7(b)):

UWT





aj = h̄↑j−1 ⋆ aj−1

dj = ḡ↑j−1 ⋆ aj−1

=⇒
MS-VST

+
UWT





aj = h̄↑j−1 ⋆ aj−1

dj = ḡ↑j−1 ⋆ Tj−1(aj−1)
(5.40)

where Tj(aj) = b(j) sgn(aj + c(j))
√

|aj + c(j)|, and c(j) is defined as in (5.37).

Asymptotic Distribution of the Detail Coefficients

Theorem 4 (Asymptotic distribution of dj) Setting b(j) := 2

√
|τ (j)

1 |/τ (j)
2 , if λ is con-

stant within the support of the filter (ḡ↑j−1 ⋆h(j−1))[k−·], then dj [k]
D−→

λ→+∞
N (0, σ2

j ), where

σ2
j =

1

τ
(j−1)
2

∑

m,n

ḡ↑j−1[m]ḡ↑j−1[n]
∑

k

h(j−1)[k]h(j−1)[k +m− n] (5.41)

Parallel to Theorem 3, Theorem 4 (proof in Appendix A.12) shows the asymptotic normality

of the detail coefficients issued from locally homogeneous parts of the signal (null hypothesis

H0, see Section 5.3.2.4). Here, the values of b(j), c(j), τ
(j)
k and σj can all be pre-computed

once (h, g) has been chosen.
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Extension to the Multi-dimensional Case The scheme (5.40) can be extended straight-

forward to higher dimensional cases, and the asymptotic result above holds true. For exam-

ple, in the 2D case, the UWT is given by the left part of (5.42) and the version combined

with the MS-VST is given on the right:

UWT





aj = h̄↑j−1h̄↑j−1 ⋆ aj−1

d1
j = ḡ↑j−1h̄↑j−1 ⋆ aj−1

d2
j = h̄↑j−1ḡ↑j−1 ⋆ aj−1

d3
j = ḡ↑j−1ḡ↑j−1 ⋆ aj−1

=⇒
MS-VST

+
UWT





aj = h̄↑j−1h̄↑j−1 ⋆ aj−1

d1
j = ḡ↑j−1h̄↑j−1 ⋆ Tj−1(aj−1)

d2
j = h̄↑j−1ḡ↑j−1 ⋆ Tj−1(aj−1)

d3
j = ḡ↑j−1ḡ↑j−1 ⋆ Tj−1(aj−1)

(5.42)

where hg ⋆ a is the convolution of a by the separable filter hg, i.e., convolution first along

the rows by h and then along the columns by g. The complexity for pre-computing the

constants b(j), c(j), τ
(j)
k and σj remains the same as in the 1D case.

5.3.2.4 Detection by wavelet-domain hypothesis testing

Our wavelet-domain detection is formulated by hypothesis tests, i.e., testing the null hy-

pothesis H0 : dj[k] is insignificant against the alternative H1 : dj[k] is significant. Note

that wavelet coefficients computed from locally homogeneous parts of the signal are in-

significant. Indeed, if there were no noise, these coefficients issued from the classical UWT

scheme would be zero-valued, as any wavelet has a zero mean. Thanks to Theorems 3 and

4, the distribution of the stabilized dj [k] under the null hypothesis H0 is now known (Gaus-

sian). Thus, according to the statistical error rate intended to be controlled, individual

tests and multiple tests are all applicable.

5.3.2.5 Iterative reconstruction

Following the detection step, we have to invert the MS-VST schemes to reconstruct the

estimate. For the standard UWT case, direct reconstruction procedure is unavailable since

the convolution (by ḡ↑j−1) operator and the VST operator Tj−1 do not commute in (5.40).

For the IUWT case, the estimate can be reconstructed by [Eq.(5.38)]. However, this direct

MS-VST inversion followed by a positivity projection2 could entail a loss of important

structures in the estimate. Here, we propose to reformulate the reconstruction as a convex

optimization problem described below, and solve it iteratively. This procedure will be

2Positivity projection because Poisson intensity is always nonnegative.
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shown to better preserve the significant structures in the data than the direct inverse. In

the following, we will concentrate on the 1D case for clarity.

We suppose that the underlying intensity function Λ is sparsely represented in the

wavelet domain. We define the multiresolution support [108] M, which is determined by

the set of detected significant coefficients at each scale j and location k, i.e.,

M := {(j, k) | if dj [k] is significant} (5.43)

The estimation is then formulated as a constrained sparsity-promoting minimization prob-

lem in terms of the wavelet coefficients d. A component of d can be indexed by the usual

scale-location index (j, k) (i.e. dj [k]). The indices can also be renumbered so that d is

mapped to a vector in RL. In this case, a component of d is indexed in a 1D way, i.e., d[i].

Hereafter, both notations will be used. Our optimization problem is given by

min
d∈C

J(d), J(d) := ‖d‖1

where C := S1 ∩ S2, S1 := {d|dj [k] = (WX)j[k], (j, k) ∈ M}, S2 := {d|Rd ≥ 0}
(5.44)

where W represents the wavelet transform operator, and R its (weak-generalized) left inverse

(synthesis operator). It can be seen that we seek the sparsest solution by minimizing the

ℓ1 objective [109][110] within the feasible set C := S1 ∩ S2. The set S1 requires that the

significant elements of d preserve those of the data X; the set S2 ensures a positive intensity

estimate.

(5.44) is a convex optimization problem which be cast as a Linear Programming

(LP) and solved using interior-point methods. However, the computational complexity of

the LP solver increases dramatically with the size of the problem. Classical projected (sub-

)gradient method is also difficult to apply here since the projector on the feasible set is

unknown. Below we propose a much faster alternative based on the hybrid steepest descent

(HSD) [111]. The HSD approach allows minimizing convex functionals over the intersection

of fixed point sets of nonexpansive mappings. It is much faster than LP, and in our problem,

the nonexpansive mappings do have closed forms. We first establish the following theorem

(proof in Appendix A.13).

Theorem 5 Let d ∈ RL. Define the following optimization problem (ǫ ≥ 0):

min
d∈CB

Jǫ(d), Jǫ(d) :=
∑L

i=1

√
d[i]2 + ǫ

where CB := S1 ∩ S2 ∩ S3, S3 := {d| ‖d‖2 ≤ B,B ≥ ‖WX‖1}
(5.45)
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Define the HSD iteration scheme [111] (k ≥ 0):

d(k+1)
ǫ := TCB

d(k)
ǫ − βk+1∇Jǫ

(
TCB

d(k)
ǫ

)
(5.46)

where ∇Jǫ is the gradient of Jǫ, and TCB
:= PS3 ◦ PS1 ◦QS2,

PS3d :=
d

‖d‖2
·min(‖d‖2, B); (PS1d)j [k] :=





(WX)j[k] (j, k) in M

dj [k] otherwise
; QS2d := WP+Rd

(5.47)

where P+ represents the projection on the nonnegative orthant, and PS1 and PS3 are the

projectors onto their respective constraint sets. The step sequence satisfies:

lim
k→∞

βk = 0,
∑

k≥1

βk = +∞ and
∑

k≥1

|βk − βk+1| < +∞ (5.48)

Suppose that in (ii)-(v) below W represents a tight frame decomposition and R its pseudo-

inverse operator. Then we have:

(i) The solution set of (5.44) is the same as that of (5.45) with ǫ = 0;

(ii) TCB
is nonexpansive, and its fix point set is Fix(TCB

) = CB 6= ∅;

(iii) ∀ǫ > 0, with any d
(0)
ǫ ∈ RN , d

(k)
ǫ −→

k→+∞
d∗
ǫ , where d∗

ǫ is the unique solution to (5.45);

(iv) As ǫ→ 0+, the sequence (d∗
ǫ )ǫ>0 is bounded. Therefore, it has at least one limit point;

(v) As ǫ→ 0+, every limit point of the sequence (d∗
ǫ )ǫ>0 is a solution to (5.44).

Theorem 5 implies that in practice instead of directly solving (5.44), one can solve its

smoothed version (5.45) by applying (5.46) with a small ǫ. In practice, TCB
can be simplified

to TCB
= TC := PS1 ◦QS2 . Indeed, for real problems the exact value of B is not important,

and it can be considered to be sufficiently large so that the constraint S3 is always satisfied.

We also point out that although Theorem 5 assumes a tight frame decomposition and

pseudo-inverse reconstruction, in our experiments, it has been observed that the iterations

(5.46) applied equally to general frame decompositions and inverses, and performed very

well even with ǫ = 0 (see results in Section 5.3.2.6). For ǫ = 0, (5.49) rewrites:

d(k+1) := TCd
(k) − βk+1∇J

(
TCd

(k)
)

where ∇J(d) = sgn(d) (5.49)
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where ∇J(d)[i] = sgn(d[i]) is the limiting gradient3 of Jǫ as ǫ→ 0+. (5.49) is implemented

in practice as a soft thresholding with a threshold βk+1 (noted as STβk+1
). Now the MS-

VST denoising using the IUWT and the standard UWT is presented in Algorithm 2 and

3 respectively. In Algorithm 2, step 1 – 6 obtain a first estimate of Λ by directly

Algorithm 2 MS-VST + IUWT

Require: a0 := X; a low-pass filter h,
Detection

1: for j = 1 to J do
2: Compute aj and dj using (5.35).
3: Hypothesis testing dj assuming the normal statistics (Theorem 3), get the estimate

d̂j , and update M.
4: end for

Estimation
5: Estimate E [T0(a0)] by: T̂0a0 =

∑J
j=1 d̂j + TJ(aJ)

6: Estimate E [a0] by: â0 = Var [T0(a0)] + T̂0a0
2 − c(0)

7: Initialize d(0) = WP+â0

8: for k = 1 to Nmax do
9: d̃ := PS1 ◦QS2d

(k−1)

10: d̂ := d(k) := STβk
[d̃].

11: end for
12: Get the estimate Λ̂ = P+Rd̂.

Algorithm 3 MS-VST + Standard UWT

Require: a0 := X; a wavelet filter bank (h, g, h̃, g̃),
Detection

1: for j = 1 to J do
2: Compute aj and dj using (5.40).
3: Hypothesis testing dj assuming the normal statistics (Theorem 4) and update M.
4: end for

Estimation

5: Initialize d
(0)
j [k] = (WX)j[k], if (j, k) ∈ M; 0 otherwise.

6: for k = 1 to Nmax do
7: d̃ := PS1 ◦QS2d

(k−1)

8: d̂ := d(k) := STβk
[d̃].

9: end for
10: Get the estimate Λ̂ = P+Rd̂.

inverting MS-VST+IUWT after zeroing the insignificant wavelet coefficients. The direct

3Clearly, ∇J(d) is also a sub-gradient of J . The sub-gradient of J is given by ∂J(d)[i] = sgn(d[i]) if
d[i] 6= 0 and ∂J(d)[i] ∈ [−1, 1] otherwise.
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inverse serves as the initialization of the iterations. In step 6, the term Var [T0(a0)] corrects

the bias due to squaring an estimate. Indeed, if Z =
√
a0 + c(0), then λ = E [a0] =

E
[
Z2
]
−c(0) = Var [Z]+E [Z]2−c(0). We can also see that every iteration of (5.49) involves

a projection onto S1 that restores all the significant coefficients. This actually results in a

better preservation of the important structures than the direct inverse (see also the results

in Section 5.3.2.6).

In Algorithm 3 the initialization is given by the detected significant wavelet coeffi-

cients (step 5). In both algorithms, Nmax is the maximal number of iterations. A possible

choice of the sequence (βk)k is a linearly decreasing one: βk = Nmax−k
Nmax−1 , k = 1, 2, · · · , Nmax.

It can be noted that for (βk)k chosen as above, the conditions in (5.48) are all satisfied as

Nmax → ∞. The computational cost of the whole denoising is dominated by the iterative

estimation step. This step involves an analysis and a synthesis at each iteration and thus

has a complexity of O(2NmaxV ), where V = O(N logN) is the complexity of UWT and N

is the number of data samples.

5.3.2.6 Applications

Simulated confocal image restoration We have simulated an image containing disk-

like isotropic sources on a constant background (see Fig. 5.8(a)) where the pixel size is

100nm×100nm. From the leftmost column to the rightmost one, source radii increase from

50nm to 350nm. This image has been convolved with a Gaussian PSF with a standard

deviation of 103nm. This function approximates the PSF of a nonparaxial LSCM (λex =

488nm, λex = 520nm, NA = 1.0, D = 1AU, see Chapter 3). The source amplitudes range

from 0.08 to 4.99, and the background level is 0.03. This spot grid can be deemed as a

model for cellular vesicles of different sizes and intensities. A realization of the photon-count

image is shown in Fig. 5.8(b). We present the restoration results given by Anscombe [71]

(Fig. 5.8(c)), Haar-Fisz [72] (Fig. 5.8(d)), CVS [74] (Fig. 5.8(e)), Haar+CLTB thresholding

[100] (Fig. 5.8(f)), Platelet estimation [112, 92, 93](Fig. 5.8(g)), and the MS-VST denoiser

using iterative (Fig. 5.8(h)) and direct (Fig. 5.8(i)) reconstructions. IUWT has been used

to produce the results in Fig. 5.8(c)(d)(e)(i)(j); standard Haar UWT is used in Fig. 5.8(f);

cycle spinning with a total of 25 shifts is employed in Fig. 5.8(d)(g) to attenuate the block

artifacts. The controlled FPR in all the wavelet-based methods is set to 5 × 10−3; for the

platelet approach, the penalizing factor γ is set to 1/3.
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As revealed by Fig. 5.8, all the estimators perform comparatively well at high inten-

sity levels (right part of the images). For low-intensity sources, Haar-Fisz, CVS, Platelets

and the MS-VST are the most sensitive approaches. We can see that the IUWT-based

methods preserve better the isotropic source shapes than the other methods. Some residual

noise can be seen in the estimate of CVS.

We also quantify the performances in terms of the NMISE per bin based on 5 repli-

cations. The MS-VST denoiser results in the second lowest error, which is slightly larger

than that of the platelet estimate. The platelet estimator offers an efficient piecewise linear

approximation to the image. However, on the isolated smooth spots, it tends to alter the

isotropic shapes and produces some artifacts. The regularity in the result could be im-

proved by averaging a larger number of cyclic shifts, but leading to a very time-consuming

procedure (a computation-time benchmark is shown for a real example in Section 5.3.4.3).

Finally, we can also observe that the iterative reconstruction Fig. 5.8(i) is more

effective in restoring low-flux sources (see the upper part of the image) than the direct

inverse Fig. 5.8(j). This phenomenon is clearly expected.

Other application: astronomical image restoration Our method can be equally

applied to the image restoration problems in astronomical domains. Fig. 5.9 compares

the restoration methods on a galaxy image. The FDR control is employed in Anscombe,

Haar-Fisz, CVS, TI Haar hypothesis tests [100], and the MS-VST methods. Among all the

results, Haar-Fisz, CVS, Platelets and the MS-VST estimates detect more faint sources. It

is found that Haar-Fisz, Haar hypothesis tests, Platelets and the MS-VST with iterative

construction generate comparable low NMISE values, among which the iterative MS-VST

leads to the smallest one.

5.3.3 Denoising by MS-VST+ridgelets

5.3.3.1 The ridgelet transform

The ridgelet transform [52] has been shown to be very effective for representing global

lines in an image. Ridgelet analysis may be constructed as a wavelet analysis in the Radon

domain. Recall that the 2D Radon transform of an object f is the collection of line integrals

indexed by (θ, t) ∈ [0, 2π) × R given by

Rf(θ, t) =

∫

R2

f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2 (5.50)
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Fig. 5.8: Denoising an image of simulated spots of different radii (image size: 256 × 256). (a)

simulated sources (amplitudes ∈ [0.08, 4.99]; background = 0.03); (b) observed counts; (c) Anscombe-

denoised image (IUWT, J = 5, FPR = 5 × 10−3, NMISE = 2.34); (d) Haar-Fisz-denoised image

(IUWT, J = 5, FPR = 5 × 10−3, 25 cyclic shifts where 5 for each of the axes, NMISE = 0.33);

(e) CVS-denoised image (IUWT, J = 5, FPR = 5 × 10−3, NMISE = 0.81); (f) image denoised by

HT-based Haar thresholding (Haar UWT, J = 5, FPR = 5 × 10−3, NMISE = 0.10); (g) platelet-

denoised image (γ = 1/3, 25 random cyclic shifts, NMISE = 0.059); (h) MS-VST-denoised image

(IUWT, J = 5, FPR = 5 × 10−3, Nmax = 20 iterations, NMISE = 0.069); (i) MS-VST-denoised

image (IUWT, J = 5, FPR = 5 × 10−3, direct inverse, NMISE = 0.073).
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Fig. 5.9: Denoising a galaxy image (image size: 256×256). (a) galaxy image (intensity ∈ [0, 5]); (b)

observed counts; (c) Anscombe-denoised image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1,

NMISE = 0.15); (d) Haar-Fisz-denoised image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1, 25

cyclic shifts where 5 for each of the axes, NMISE = 0.04); (e) CVS-denoised image (IUWT, B3-spline

filter bank, J = 5, FDR = 0.1, NMISE = 0.074); (f) denoised image by Haar HTs (Haar UWT,

J = 5, FDR = 0.1, NMISE = 0.036); (g) Platelet-denoised image (γ = 1/3, 25 random cyclic shifts,

NMISE = 0.038) (h) MS-VST-denoised image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1,

Nmax = 20 iterations, NMISE = 0.035); (i) MS-VST-denoised image (IUWT, B3-spline filter bank,

J = 5, FDR = 0.1, direct inverse, NMISE = 0.051).
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where δ is the Dirac distribution. Then the ridgelet transform is precisely the application

of a 1D wavelet transform to the slices of the Radon transform where the angular variable

θ is constant and t is varying. For each scale s > 0, position t ∈ R and angle θ ∈ [0, 2π),

the 2D ridgelet function ψs,t,θ is defined from a 1D wavelet function ψ as:

ψs,t,θ(x1, x2) = s−1/2 · ψ((x1 cos θ + x2 sin θ − t)/s) (5.51)

A ridgelet is constant along the lines x1 cos θ + x2 sin θ = const. Transverse to a ridge is a

wavelet.

Thus, the basic strategy for calculating the continuous ridgelet transform is first to

compute the Radon transform Rf(t, θ) and second, to apply a 1D wavelet transform to the

slices Rf(·, θ). Different digital ridgelet transforms can be derived depending on the choice

of both the Radon algorithm and the wavelet decomposition [113]. For example, the Slant

Stack Radon (SSR) transform [114][115] is a good candidate, which has the advantage

of being geometrically accurate, and is used in our experiments. The inverse SSR has

however the drawback to be iterative. If computation time is an issue, the recto-polar

Radon transform is a good alternative. More details on the implementation of these Radon

transforms can be found in [53][114][115][113].

5.3.3.2 MS-VST with ridgelets

As a Radon coefficient is obtained from an integration of the pixel values along a line,

the noise in the Radon domain follows also a Poisson distribution. Thus, we can apply

the 1D MS-VST wavelet detection described in Section 5.3.2 to the slices of the Radon

transform. Let M := {(θ, j, k)} denote the ridgelet multi-resolution support, where (θ, j, k)

indicates that the stabilized ridgelet coefficient at projection angle θ, scale j and location k

is significant. M being available, we can formulate a constrained ℓ1-minimization problem

in the same way as in the wavelet case (Section 5.3.2.5), which is then solved by HSD

iterations. Hence, the Ridgelet Poisson denoising algorithm consists of the following three

steps:

Algorithm 4 MS-VST + Ridgelets

1: Apply the Radon transform.
2: For each Radon slice, apply the 1D MS-VST+UWT detection and update M.
3: Apply the HSD iterations to the ridgelet coefficients before getting the final estimate.
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5.3.3.3 Experimental results

We have simulated an image with smooth ridges shown in Fig. 5.10(a). The peak inten-

sities of the vertical ridges vary progressively from 0.1 to 0.5; the inclined ridge has a

maximum intensity of 0.3; the background level is 0.05. A Poisson-count image is shown in

Fig. 5.10(b). The biorthogonal 7/9 filter bank [64] is used in the Anscombe (Fig. 5.10(c)),

Haar-Fisz (Fig. 5.10(d)), CVS (Fig. 5.10(e)), and MS-VST+UWT (Fig. 5.10(g)) approaches.

Denoising using Haar HTs is given by Fig. 5.10(f). The estimates by Platelets and by MS-

VST+Ridgelets are shown in Fig. 5.10(h) and Fig. 5.10(i), respectively. Due to the very

low-count setting, the Anscombe estimate is highly biased. Among all the wavelet-based

methods, MS-VST+UWT leads to the smallest error, but is outperformed by the Platelet

and the MS-VST-based ridgelet estimates. The two latter methods result in the lowest

NMISE values among all the competitors. Clearly, this is because wavelets are less adapted

to line-like sources. It can also be seen that the shape of the ridges is better preserved by

the ridgelet-based estimate.

5.3.4 Denoising by MS-VST+curvelets

5.3.4.1 The first generation curvelet transform

The ridgelet transform is efficient for finding only the lines of the size of the image. To detect

line segments, a partitioning need to be introduced. The image is first decomposed into

smoothly overlapping blocks of side-length B pixels, and the ridgelet transform is applied

independently on each block. This is called the local ridgelet transform. The curvelet

transform [116][117] opens the possibility to analyze an image with different block sizes,

but with a single transform. The idea is to first decompose the image into a set of wavelet

bands using the IUWT, and to analyze each band with a local ridgelet transform. The

block size is changed at every other scale. The coarsest resolution of the image (aJ) is

not processed. This transform has been shown to provide optimal approximation rate for

piecewise C2 images away from C2 contours, and is very effective in detecting anisotropic

structures of different lengths. More details can be found in [116][53].
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Fig. 5.10: Poisson denoising of smooth ridges (image size: 256 × 256). (a) intensity image (the

peak intensities of the 9 vertical ridges vary progressively from 0.1 to 0.5; the inclined ridge has a

maximum intensity of 0.3; background = 0.05); (b) Poisson noisy image; (c) Anscombe-denoised

image (UWT, 7/9 filter bank, J = 4, FDR = 10−7, NMISE = 0.83); (d) Haar-Fisz-denoised image

(UWT, 7/9 filter bank, J = 4, FDR = 10−7, 25 cyclic shifts where 5 for each of the axes, NMISE

= 0.035); (e) CVS-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 10−7, NMISE = 0.034);

(f) image denoised by Haar+FDR (J = 4, FDR = 10−7, NMISE = 0.044); (g) image denoised by

MS-VST+UWT (7/9 filter bank, J = 4, FDR = 10−7, Nmax = 10 iterations, NMISE = 0.023); (h)

Platelet-denoised image (γ = 1/3, 25 random cyclic shifts, NMISE = 0.017); (i) MS-VST+Ridgelets

(J = 4, FDR = 10−7, Nmax = 10 iterations, NMISE = 0.017).
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5.3.4.2 MS-VST with curvelets

As the first step of the algorithm is an IUWT, we can stabilize each resolution level in the

same way as described in Section 5.3.2.2. We then apply the local ridgelet transform on

each stabilized wavelet band. Significant Gaussianized curvelet coefficients will be detected

by HTs from which the curvelet multiresolution support M is derived. Finally, the same

to the wavelet and ridgelet case, we solve a constrained ℓ1-minimization problem on the

curvelet coefficients by HSD iterations before reconstructing the estimate. We now present

a sketch of the Poisson curvelet denoising algorithm:

Algorithm 5 MS-VST + Curvelets

1: Apply the MS-VST+IUWT with J scales to get the stabilized wavelet subbands (dj)j.
2: set B1 = Bmin

3: for j = 1 to J do
4: Partition the subband dj with blocks of side-length Bj and apply the digital ridgelet

transform to each block to obtain the stabilized curvelet coefficients.
5: Test the stabilized curvelet coefficients to obtain M.
6: if j modulo 2 = 1 then
7: Bj+1 = 2Bj
8: else
9: Bj+1 = Bj

10: end if
11: end for
12: Apply the HSD iterations to the curvelet coefficients before getting the final estimate.

It is not as straightforward as with the wavelet and ridgelet transforms to derive the

asymptotic noise variance in the stabilized curvelet domain. In our experiments, we derived

them using simulated data with Poisson noise only. After having checked that the standard

deviation in the curvelet bands becomes stabilized as the intensity level λ increases (which

means that the stabilization is working properly), we stored this standard deviation σj1,j2,l

for each wavelet scale j1, each ridgelet scale j2, and each direction angle l. Then, once the

stabilized curvelet transform is applied to our data, these values of (σj1,j2,l)j1,j2,l serve in

the hypothesis testing framework described in Section 5.3.2.4 to test the significance of each

stabilized curvelet coefficient at each scale (j1, j2) and direction angle l.
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5.3.4.3 Experimental results

Fig. 5.11 compares the methods on a fluorescent tubulin filaments stained with Bodipy FL

goat anti-mouse IgG4. The FDR control is employed in Anscombe (Fig. 5.11(c)), Haar-Fisz

(Fig. 5.11(d)), CVS (Fig. 5.11(e)), Haar hypothesis tests (Fig. 5.11(f)), MS-VST+UWT

(Fig. 5.11(g)), and MS-VST+Curvelet (Fig. 5.11(i)). MS-VST+UWT outperforms all the

wavelet-based methods; among all the compared approaches, MS-VST+Curvelet leads to

the best result both quantitatively and visually. For this example, we also evaluated

the computation time of the tested methods on a 1.1GHz PC, giving: Anscombe (C++

codes, 4 sec), Haar-Fisz (C++ codes, 90 sec), CVS (Matlab codes, 3 sec), Haar HTs

(C++ codes, 8 sec), MS-VST+UWT (C++ codes, 18 sec), Platelets (Matlab MEX codes,

2404 sec), MS-VST+Curvelet (Matlab codes, 1287 sec). This time benchmark shows that

our MS-VST+UWT provides a fast solution among the wavelet-based estimators; MS-

VST+Curvelet is more computationally intensive but is about one time faster than platelet

denoising in our example.

5.4 Conclusion

In this chapter, we have introduced two novel Poisson denoisers. The first one is based on

the hypothesis tests in the biorthogonal Haar domain, which is suitable for estimating reg-

ular intensities within real-time applications. We also proposed a more accurate threshold

implementing individual hypothesis tests in the Haar/Bi-Haar domain. The second Poisson

intensity estimator is based on a filter-adapted variance stabilization method and we have

shown that it can be easily combined with various multiscale transforms such as the un-

decimated wavelet (isotropic and standard), the ridgelet and the curvelet transforms. This

MS-VST approach enjoys the following advantages:

• It is efficient and sensitive in detecting faint features at a very low-count rate;

• We have the choice to integrate the VST with the multiscale transform we believe to

be the most suitable for restoring a given kind of morphological features (isotropic,

line-like, curvilinear, etc);

4The image is available on the ImageJ website http://rsb.info.nih.gov/ij
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Fig. 5.11: Poisson denoising of fluorescent tubulins (image size: 256 × 256). (a) intensity image

(intensity ∈ [0.53, 16.93]); (b) Poisson noisy image; (c) Anscombe-denoised image (UWT, 7/9 filter

bank, J = 4, FDR = 0.1, NMISE = 0.095); (d) Haar-Fisz-denoised image (UWT, 7/9 filter bank,

J = 4, FDR = 0.1, 25 cyclic shifts where 5 for each of the axes, NMISE = 0.096); (e) CVS-denoised

image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, NMISE = 0.10); (f) denoised image by Haar+FDR

(Haar UWT, J = 4, FDR = 0.1, NMISE = 0.10; (g) denoised image by MS-VST+UWT (UWT, 7/9

filter bank, J = 4, Nmax = 5 iterations, FDR = 0.1, NMISE = 0.090); (h) platelet-denoised image

(γ = 1/3, 25 random cyclic shifts, NMISE = 0.079); (i) denoised image by MS-VST+Curvelets

(J = 4, Nmax = 5 iterations, FDR = 0.1, NMISE = 0.078).
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• The computation time is similar to that of a Gaussian denoising, which makes our

denoising method capable of processing large data sets.

Comparison to competing methods in the literature show that the MS-VST is very compet-

itive offering performance as good as state-of-the-art approaches, with low computational

burden.

In all our presentation, a zero dark intensity λd has been assumed. In reality, λd is

always positive. It can be estimated by calibrating the microscope camera. However, this

value may vary from one experiment to another due to the temperature change. Thus, it

may be more accurate to directly estimate in the data at hand by taking the average in

a object-free zone. Then, in Algorithm 1, the estimate of λj should be modified to λ̂j =

max(2cjqaj , 2
jqλd), and the positivity projection should be changed to Λ̂ = max(a0, λd).

In the MS-VST estimations (5.44), it suffices to replace the positivity constraint of the

estimate Rd ≥ 0 by Rd ≥ λd.



Chapter 6

Mixed-Poisson-Gaussian Noise

Removal

For a LSCM working under the analog mode, or a DSCM, the fluorescence images are cor-

rupted by photon-counting and camera readout noises. Statistically, the data is modeled by

a MPG process. For data restoration and object detection applications, it would be rather

complicated to directly deal with such processes since the distribution of a MPG sample

has an infinite Gaussian mixture structure. Many denoisers proposed in the literature are

based on simplified assumptions such as a pure Gaussian or a pure Poisson process (see

e.g. [118][112][119][120][39][121] and the references therein), which model only partially the

noise statistics. To fully take into account the MPG process, a widely used approach is to

apply the generalized Anscombe VST (GAT) [97] to preprocess the MPG data such that

they become stabilized and Gaussianized. Standard restoration and detection algorithms

derived from Gaussianity assumptions can then be applied on the transformed data. After

processing the data in the transform domain, the VST is inverted if the data reconstruc-

tion is needed. GAT preprocessing has been successfully applied to fluorescence sequence

restoration [122] when high photon flux are present. For low-count settings where the per-

formace of GAT degrades, [122] proposed to use several Radon projections to increase the

photon flux within a patch-based denoising algorithm [49][123].

In this chapter, we will extend the concept in Section 5.3 and propose a VST which

is capable of stabilizing and Gaussianizing a filtered MPG process (Section 6.1). This

transform can be seen as a generalization of GAT for filtered data. We then combine this

101
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VST with the IUWT leading to a multiscale VST (MS-VST, Section 6.2) where the wavelet

coefficients are stabilized and Gaussianized. We demonstrate the usefulness of the MS-VST

for noise removal (Section 6.2) and for spot detection (Section 6.3) in confocal microscopy.

In the first case, owing to the Gaussianized wavelet bands, significant wavelet coefficients are

detected using classical multiple hypothesis tests under a false discovery rate (FDR) control.

A sparsity-driven iterative scheme is applied to properly reconstruct the final estimate. In

the second case, the Gaussianization provided by the VST allows us to directly apply a

multiscale correlation based spot detector for Gaussian data [107]. Experiments show that

1) compared with the simplified assumption of a Gaussian or a Poisson noise, the MPG

model is more realistic and results in a higher denoising performance and less false positives

in the detection; 2) for MPG data with low Poisson intensities the MS-VST-based denoising

and detection outperform those using GAT.

6.1 VST for a Filtered MPG Process

A fluorescence image is modeled by a MPG process X := (Xi)i∈Zq where

Xi = αUi + Vi, Ui ∼ P(λi), Vi ∼ N (µ, σ2) (6.1)

where α > 0 is the overall gain of the microscope imaging system, Ui is a Poisson variable

modeling the photon counting, Vi is a normal variable representing the camera readout

noise, and all (Ui)i and (Vi)i are assumed mutually independent. Similar to the Poisson

denoising case, it suffices to consider a zero dark intensity. Given a discrete filter h, we

define a filtered MPG process as:

Yi :=
∑

j∈Zq

h[j]Xi−j (6.2)

We will use the index-free notations X and Y to denote any one of Xi and Yi respectively.

We recall that τk denotes the quantity
∑

i(h[i])
k for k = 1, 2, · · · .

We adopt a local stationarity assumption that, i.e., λi = λ within the support of h.

This will serve to derive the distribution under the null hypothesis in our detection step.

The variance of Y , i.e., Var [Y ] = (α2λ+σ2)τ2, is an affine function of the Poisson intensity

λ. We seek a VST T (Y ) such that Var [T (Y )] is (asymptotically) constant, irrespective

of the value of λ. Parallel to Lemma 2, Lemma 3 (proof in Appendix A.14) shows that
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the square-root transform [Eq.(6.4)] can serve as a VST for stabilizing and Gaussianizing a

filtered MPG process with a nonzero mean filter.

Lemma 3 (square root as VST) If τ1 6= 0, and τ1, ‖h‖2, and ‖h‖3 are all finite, then

we have

T (Y ) − b · sgn(τ1)
√
|τ1|αλ D−→

λ→+∞
N
(

0,
αb2τ2
4|τ1|

)
(6.3)

where

T (Y ) := b · sgn(Y + c)|Y + c|1/2, b 6= 0, c ∈ R (6.4)

In (6.3), b is only a normalizing factor and (6.3) holds true for any real value of c. As the

Poisson case, the convergence rate in (6.3) varies with the value of c, and we will determine

its asymptotic optimal value.

6.1.1 Optimal parameter of the VST

Without loss of generality, we suppose that τ1 > 0. Then, Pr(Y + c > 0) can be made

arbitrarily close to 1 as λ→ +∞. Thus, in the asymptotic regime our VST will essentially

take the form T (Y ) := bT0(Y ) := b
√
Y + c. Expanding T0(Y ) by Taylor series about the

point Y = E[Y ] up to the 4th order term, and by applying the expectation, one can show

the asymptotic expectation and variance of T (Y ):

E[b1T0] ≈
√
λ+

4τ1(τ1µ+ c) − τ2α

8τ2
1α︸ ︷︷ ︸

CE(c)

λ−1/2 (6.5)

Var [b2T0] ≈ 1 +

8τ2
1 τ2(σ

2 − αµ) − 4τ1α(2τ2c+ τ3α) + 7τ2
2α

2

8α2τ2
1 τ2︸ ︷︷ ︸

CVar(c)

λ−1 (6.6)

where b1 = 1/
√
τ1α and b2 = 2

√
τ1/

√
ατ2. These settings normalize respectively the asymp-

totic expectation and variance to
√
λ and 1, both values being independent of the filter h.

The value of c is chosen so that the variance residual term O(λ−1) is canceled in (6.6), i.e.,

c∗ := −µτ1 +
τ1σ

2

α
+

7ατ2
8τ1

− ατ3
2τ2

(6.7)

[124] also proposed to compute the value by minimizing C2
E

+ |CV ar| (η set to 1/2 in [124]),

which is a bias-variance trade-off criterion. However, experiments show that these different

settings impact little the outputs.
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This VST reduces to GAT if h = δ (Dirac filter, i.e., no filtering). Moreover, we can

find appropriate filters such that the resulting VSTs are more efficient than GAT. As an

example, Fig. 6.1 compares the mean E[b1T0] and the variance Var [b2T0] for GAT and for

our VST with h = 2D B3-spline filter, both as functions of the underlying intensity. The

plots are obtained from a Monte-Carlo simulation with 2 × 105 replications. Stabilizations

with different values of the gain are tested. Other parameters are µ = 10 and σ = 1. It

is clear that as the intensity increases, the mean and the variance resulted from our VST

stick to the asymptotic bounds much faster than those given by GAT, particularly as α is

large.

In practice, we need to estimate µ, σ, and α if they are unknown a priori. As the

MPG distribution has an infinite mixture structure, the classical expectation-maximization

(EM) estimator has no closed forms. A faster and simpler approach is to match the first

four cumulants of a MPG process with the k-statistics [125] of the observations in a uni-

form image background region. This follows from the fact that the k-statistics are the

minimum variance unbiased estimators for cumulants. Computational details are shown in

Appendix B. Moment matching can also be applied [126]. We should point out that these

approaches are not robust against outliers. Robust estimation of MPG parameters is one

of the future perspectives to improve our method.

6.2 Fluorescence Image Denoising Using MS-VST

We can now combine the VST with a large family of multiscale transforms implemented by

iterative filters, leading to MS-VSTs. Isotropic structures are often presented in biological

fluorescence images due to micrometric subcellular sources (marked genes, vesicles, etc.). In

this chapter we will concentrate on these sources and combine the proposed VST with the

IUWT, which adapts very well the isotropic features in images. For line-like and curvilinear

sources, ridgelet and curvelet transforms can be used. The combination of the VST with

these transforms follows the same way as in the pure Poisson noise case (see Chapter 5).

The MPG noise removal by MS-VST involves the same three steps as in the Poisson

case. First, we compute the VST-combined IUWT. The wavelet bands will be shown to be

stabilized and Gaussianized with known variances (Section 6.2.1). Second, we detect signif-

icant coefficients by applying classical hypothesis tests (Section 6.2.2). Finally, the image

estimate is reconstructed by inverting the VST-combined IUWT which is done iteratively
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Fig. 6.1: Stabilized mean and variance as functions of intensity λ, for GAT and for the

proposed VST with h = 2D B3-spline filter (= hB3 ⊗ hB3 , hB3 = [1, 4, 6, 4, 1]/16, where

⊗ represents the tensor product). Other parameters are: µ = 10 and σ = 1. (a) E[b1T0]

(α = 2); (b) E[b1T0] (α = 5); (c) E[b1T0] (α = 10); (d) Var [b2T0] (α = 2); (e) Var [b2T0]

(α = 5); (f) Var [b2T0] (α = 10).
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(Section 6.2.3). For the clarity of presentation, we assume 1D data, but the results hold

indeed in any dimensional case.

6.2.1 IUWT-based MS-VST

The VST is coupled with IUWT in the usual way:





aj = h̄↑j−1 ⋆ aj−1

dj = aj−1 − aj
⇒





aj = h̄↑j−1 ⋆ aj−1

dj = Tj−1(aj−1) − Tj(aj)
(6.8)

where a0 := X is the original MPG data in the form of (6.1). Tj is the VST operator at

scale j (cf. Eq.(6.4)):

Tj(aj) = b(j) sgn(aj + c(j))|aj + c(j)|1/2

The constants b(j) and c(j) are associated to the filter h(j), and c(j) is set to c∗. Paral-

lel to Theorem 3, Theorem 6 (proof in Appendix A.15) shows the asymptotic stabilized

Gaussianity of the wavelet coefficients resulted from the MS-VST scheme.

Theorem 6 (Stabilized Gaussianity of dj) Setting b(j) := sgn(τ
(j)
1 )/

√
α|τ (j)

1 |, if λ is

constant within the support of the filter h(j)[k − ·], we have that dj
D−→

λ→+∞
N (0, σ2

j ), where

σ2
j :=

τ
(j−1)
2

4[τ
(j−1)
1 ]2

+
τ

(j)
2

4[τ
(j)
1 ]2

− 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1

(6.9)

where τ
(j)
k :=

∑
i(h

(j)[i])k. This result shows that the asymptotic variance of dj depends

only on the wavelet filter bank and the current scale, and thus can be pre-computed once

h is chosen.

6.2.2 Detection of significant coefficients by FDR

Wavelet denoising is achieved by testing binary hypothesis: ∀ dj [l], H0 : dj [l] = 0 vs. H1 :

dj [l] 6= 0. The distribution of dj under the null hypothesis H0 is provided by Theorem 6.

We apply the multiple hypothesis testing controlling the FDR, i.e., Benjamini-Hochberg

procedure. We use d̂j to denote the thresholded wavelet coefficients.
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6.2.3 Sparsity-driven iterative reconstruction

We formulate the following ℓ1 minimization problem.

min
d∈C

J(d) := ‖d‖1 where C := S1 ∩ S2 (6.10)

S1 := {d|dj [k] = (WX)j [k], (j, k) ∈ M} and S2 := {d|Rd[l] ≥ µ, ∀ l}

Only the constraint of S2 is changed compared with the Poisson case. Here, S2 assures a

model-consistent estimate since E[Xi] = αλi+µ ≥ µ. Then, this problem is solved by HSD

iterations [111].

d(k) := TCd
(k−1) − βk sgn

(
TCd

(k−1)
)

(6.11)

d(0) can be initialized by the wavelet coefficients of the direct MS-VST inverse. The operator

TC is defined as TC := PS1 ◦QS2 , where

(PS1d)j [k] :=





(WX)j[k] (j, k) ∈ M
dj [k] otherwise

; QS2d := WPµRd

Here, Pµ(x)[l] := max(x[l], µ). The final image estimate is given by â0 = PµRd(Nmax)

where Nmax is the maximum number of iteration. Algorithm 6 summarizes the whole

MPG-denoising steps.

Algorithm 6 MPG noise removal by MS-VST

Require: a0 := X; a low-pass filter h; wavelet-domain FDR bound γw

Detection

1: for j = 1 to J do

2: Compute aj and dj using the MS-VST [Eq.(6.8)].

3: Apply the Benjamini-Hochberg tests on dj to get d̂j and M.

4: end for

Estimation

5: Direct MS-VST inverse: â∗0 := T−1
0 [
∑J

j=1 d̂j + TJ(aJ)]

6: Initialize d(0) = WPµâ
∗
0

7: for k = 1 to Nmax do

8: d(k) := STβk
[PS1 ◦QS2d

(k−1)].

9: end for

10: Get the estimate â0 = PµRd(Nmax).
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6.2.4 Results

In all our experiments, the low-pass filter h in the IUWT is set to the 2D B3-spline filter.

6.2.4.1 MS-VST vs. GAT

We first test our denoising approach on a simulated 18 × 10 isotropic-source grid (pixel

size = 100 nm) shown in Fig. 6.2. From the leftmost to the rightmost column, the source

radii increase from 50nm to 350nm. The image is then convolved with a 2D Gaussian

function with a standard deviation σg = 103nm, which simulates a typical LSCM PSF.

Fig. 6.2(a) shows the sources with amplitudes λA ∈ [0.05, 30]. After adding a MPG noise

(α = 20, µ = 10, σ = 1), we obtain Fig. 6.2(b). Fig. 6.2(c) and (d) respectively show the

denoising examples using GAT and MS-VST. The controlled FDR is set to 10−2. We can

see that MS-VST is more sensitive than GAT since more faint sources are restored.

The performance of the two methods is also quantified using the NMISE measure,

i.e., NMISE := E[(
∑N

i=1(Ê(X)i − αλi − µ)2/(α2λi + σ2))/N ]. Based on 10 replications, the

NMISE for GAT and for MS-VST approaches are evaluated to be 0.19 and 0.05 respectively.

This shows that the MS-VST denoising is more accurate.

6.2.4.2 Denoising comparison with different noise assumptions

Second, our method is applied on real fluorescence confocal images where the necessity of

the MPG noise model is illustrated. Fig. 6.3(a) shows one confocal slice of a drosophila

melanogaster ovary. The part of nurse cells consist of many nucleus and GFP (Green

Fluorescent Protein)-marked Staufen genes. These genes have isotropic intensity profiles.

This image is then denoised by different denoisers whose essential difference is in the noise

assumption. Fig. 6.3(b) results from the IUWT denoising assuming a Gaussian noise. The

noise variance is pre-estimated using the median absolute deviation (MAD) estimator in the

domain of Daubechies wavelet with 4 vanishing moments. Fig. 6.3(c) is given by the MS-

VST denoiser derived for Poisson noise (Chapter 5). Fig. 6.3(d) is yielded by our proposed

approach which is adapted for MPG noise. The MPG parameters are estimated by cumulant

matching. The local zooms of these denoising results are presented in Fig. 6.3(e)-(h). The

same FDR bound (FDR = 10−2) is set for wavelet coefficient detection in all the denoisers.

It is clear that only our method assuming a MPG noise outputs an almost noise-free image,

while residual noises persist in the other results. It is also interesting to notice that the
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Fig. 6.2: Simulated source denoising using IUWT. h = 2D B3-spline filter, J = 5, and

FDR = 0.01. (a) simulated sources (amplitudes λA ∈ [0.05, 30]; background = 0.05); (b)

MPG noisy image (α = 20, µ = 10, σ = 1); (c) GAT denoised image, NMISE = 0.19; (d)

MS-VST denoised image (Nmax = 10 iterations), NMISE = 0.05.



110 Chapter 6: Mixed-Poisson-Gaussian Noise Removal

Gaussian noise model leads to an estimate with less residual noise than the Poisson model.
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Fig. 6.3: IUWT denoising of a drosophila melanogaster ovary image (estimates α̂ = 178.6,

µ̂ = 981.0, σ̂ = 33.8). h = 2D B3-Spline filter, J = 5, and FDR = 10−2. (a) observed image;

(b) denoised image assuming a Gaussian noise; (c) denoised image assuming a Poisson noise

(Chapter 5, Nmax = 10 iterations); (d) image denoised by the proposed method assuming

a MPG noise (Nmax = 10 iterations); (e) local zoom of (a); (f) local zoom of (b); (g) local

zoom of (c); (h) local zoom of (d).

We repeat this comparison on an image of saccharomyces cerevisiae cells acquired by

a DSCM (Fig. 6.4). In each cell, a subtelomere is marked which exhibits a spot structure.

The same denoising performances can be observed as for Fig. 6.3.

6.3 Detection of Fluorescent Spots Using MS-VST

Fluorescent bright spots are formed by marked nanometric cellular or subcellular compo-

nents. Information such as their number and their locations can be important for the study

of the spatial distribution and the dynamics of these objects [127][128][129].
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Fig. 6.4: IUWT denoising of an image of saccharomyces cerevisiae cells (estimates α̂ =

93.4, µ̂ = 1016.5, σ̂ = 26.6). h = 2D B3-Spline filter, J = 5, and FDR = 10−2. (a)

observed image; (b) denoised image assuming a Gaussian noise; (c) denoised image assuming

a Poisson noise (Chapter 5, Nmax = 10 iterations); (d) image denoised by the proposed

method assuming a MPG noise (Nmax = 10 iterations); (e) local zoom of (a); (f) local zoom

of (b); (g) local zoom of (c); (h) local zoom of (d).



112 Chapter 6: Mixed-Poisson-Gaussian Noise Removal

Difficulties as a low SNR in microscopy images and complex nonuniform backgrounds

underly spot detections. Various spot extractors have been proposed in the literature to

suppress the influence of noise and background. For example, in the context of detecting

telomeres [127] deconvolves the image by assuming a Poisson noise followed by a top-hat

filter to eliminate the background shading. Then the spots are extracted by thresholds. [130]

proposed to partition the image using quad-tree into regions of small intensity variation, and

apply a Fuzzy c-means clustering procedure in each subimage to find spots (peroxisomes).

An aspect-ratio criterion is also introduced to separate close spots. If the number of spots

is small, least-square fit using a mixture of Gaussians is also widely used [36][131][38].

The underlying hypothesis are that the objects are small compared with the PSF, the

background can be described by a simple parametric model (e.g., uniform, linear, etc.), and

the photon flux is high such that the Poisson noise becomes asymptotically normal. In

the video-microscopy context, [122] proposed to detect vesicles by either applying a model-

selection based threshold or a a contrario decision in the image where the background has

been subtracted. The background is estimated by fitting a linear temporal model into

the denoised video sequence [49][123][122]. In [107], significant positive isotropic wavelet

coefficients across several selected scales are correlated (i.e., multiplied). This is based

on the observation that the local maxima of the wavelet coefficients tend to propagate

across several scales if they are due to the spots while they are not if due to noise. The

significant wavelet coefficients are detected by wavelet thresholds for Gaussian noise. The

scales are selected according to the size of the interested spots. Regular backgrounds are

easily eliminated owing to the vanishing moments of the wavelet. The correlated image

is thresholded and binarized, the connected components are determined as putative bright

spots, and their centroids are computed as spot locations.

Here, thanks to the MS-VST, we can generalize the IUWT-based detector [107] to

the MPG case in a straightforward way. We first derive the multiresolution support M by

making hypothesis tests in the stabilized wavelet domain, and then multiply the wavelet

bands with positive significant coefficients of the original image. The correlated wavelet

band is then binarized by a threshold T ≥ 0. This procedure is summarized in Algorithm 7

whose output dp is a binary image. In all our experiments T is set to 0, i.e., all positive

parts in the correlated band are retained as detections.

With this approach, the false detection rate in a spot-free noisy image can be con-

trolled:
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Algorithm 7 Spot detection by MS-VST

Require: a0 := X; a low-pass filter h; wavelet-domain FDR; indices of bands to be multi-

plied Is; binarizing threshold T ≥ 0

1: for j = 1 to J do

2: Compute aj and dj using the MS-VST [Eq.(6.8)].

3: Apply the Benjamini-Hochberg tests on dj to get M.

4: end for

5: for j = 1 to J do

6: Compute aj and dj using the classical IUWT [Eq.(6.8)].

7: dj [l] = 0 if dj [l] < 0 or (j, l) 6∈ M.

8: end for

9: dp := Πj∈Isdj

10: ∀ l, dp[l] = 1 if dp[l] > T , and otherwise dp[l] = 0.

Proposition 8 The probability of erroneously detecting spots in an object-free homogeneous

MPG noisy image (λi ≡ λ) is upper bounded by the controlled FDR in the wavelet domain.

The proof of this proposition is very simple: as all detections in pure noise are false discov-

eries, the FDR [Eq.(5.13)] reduces to the global probability of false detection, from which

this proposition follows.

6.3.1 Results

6.3.1.1 MS-VST vs. GAT

Although Proposition 8 assures a false positive rate control in a pure noisy image, it is

more interesting to quantify the detection sensibility and specificity when both signal and

noise are present. For this purpose, 100 detection replications were made on the simulated

spot grid Fig. 6.5(a) (the same as Fig. 6.2(a)) with different noise realizations. We set

Is = {3, 4}, and we compare the detection performances resulted from the use of GAT and

of the MS-VST. A connected component is considered as a good detection if its centroid

falls into the support of one of the spots. Multiple good detections in the same spot support

will be counted as one good detection only. Now, Fig. 6.5(d) shows the true positive rates

(TPRs) as functions of FDR ∈ [10−9, 10−1] for the two methods. The maximal measured

FDR of the detections are very low in both methods: 0% and 0.38% respectively for GAT
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and for the MS-VST. This shows their good specificity against noise. However, we can see

that the detection using the MS-VST always leads to a sensibility of about 20% higher

than GAT. Typical detection examples by GAT and the MS-VST are shown in Fig. 6.5(b)

and Fig. 6.5(c) respectively. The circles indicate the true spot locations, and the crosses

indicate the centroids of the detections. Visually, the MS-VST detects more spots owing to

its higher sensibility to faint objects.

6.3.1.2 Detection comparison with different noise assumptions

We compare the spot extractions using different noise assumptions in the image of saccha-

romyces cerevisiae cells where the subtelomeres are objects of interest (Fig. 6.6(a)). The

detection settings are Is = {3, 4} and FDR = 10−2. Fig. 6.6(b), Fig. 6.6(c) and Fig. 6.6(d)

are results yielded by the detection using a Gaussian noise assumption, a Poisson noise

assumption, and a MPG noise assumption. Different noise modeling leads to different mul-

tiresolution supports, and thus to different detections. The biological specimen preparation

ensures that each cell in the image contains at most one spot. Therefore, multiple detec-

tions in one cell are due to false positives. The cells can be seen in Fig. 6.6(a) which are

bulb-shaped objects holding the subtelomeres. The results show that all the three detectors

correctly extract almost all the visible spots, but the detectors based on Gaussian or Poisson

noise assumptions result in more false positives.

Furthermore, cellular structures in the image background are not detected. Indeed,

as wavelets are band-pass filters, background information is mostly encoded in the ap-

proximation band. Since the spot detection are realized in the wavelet domain, regular

backgrounds are successfully suppressed.

6.4 Conclusion

The noise in LSCM and DSCM images is modeled by a MPG process. We have designed

a VST to stabilize and Gaussianize a filtered MPG process. This VST is then combined

with the IUWT yielding the MS-VST. We have shown the effectiveness of the MS-VST

approach in removing MPG noise and in extracting spots from nonuniform backgrounds.

Our experiments show that 1) compared with standard denoising methods adopting the

simplified assumption of a Gaussian or a Poisson noise, the MPG model is more realistic

and results in a higher denoising performance and less false positives in the detection; 2)
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Fig. 6.5: Detection of simulated spots. MPG parameters: α = 20, µ = 10, σ = 1; detection

settings: h = 2D B3-spline filter, and Is = {3, 4}. (a) simulated sources (amplitudes λA ∈
[0.05, 30]; background = 0.05); (b) example of the GAT-based detection (FDR= 10−2; 75

good detections among 180, 0 false detection); (c) example of the MS-VST-based detection

(FDR= 10−2; 125 good detections among 180, 0 false detection); (d) TPRs as functions of

FDR∈ [10−9, 10−1].
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Fig. 6.6: Detection of subtelomeres of saccharomyces cerevisiae cells. h = 2D B3-Spline

filter, FDR = 10−2, and Is = {3, 4}. (a) observed image; (b) extracted spots with a

Gaussian noise assumption; (c) extracted spots with a Poisson noise assumption (Chapter

5); (d) extracted spots with a MPG noise assumption.
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for MPG data with low Poisson intensities the MS-VST-based denoising and detection

outperform those using the GAT.
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Part III

Super-resolution Object Detection





Chapter 7

Super-resolution Spot Detection

Classical 2D WFFM resolution limit is predicted by the Rayleigh criterion. Suppose that

we have two point sources generating two Airy patterns. If the first zero of one Airy image

superposes the peak of the other, then the distance between these two Airy patterns is

defined as the Rayleigh distance, which is given by dR := 0.61λem/NA. Rayleigh states that

any two point sources separated with a lateral distance smaller than dR are “unresolvable”.

Clearly, the limiting distance dR is formulated in a deterministic way. It does not take the

statistical nature of fluorescence imaging into account. For example, the influence of SNR

on the source-detection performance is not reflected.

In this chapter, we will first briefly review in Section 7.1 recent studies on the limit-

ing resolution in detection-theoretic, estimation-theoretic and information-theoretic points

of view. Our main contribution to this subject is that we propose to use the VST to study

the resolution with Poisson or MPG observations in these frameworks. This approach sig-

nificantly simplifies the analysis by Gaussianizing the problem, and leads to asymptotically

consistent results with closed-form expressions. The localization accuracy limits are also

studied. The main conclusion is that the resolution is not limited, and Rayleigh’s limit

can indeed be broken if the SNR in the image is sufficiently high. Then, in Section 7.2

we extends an existing super-resolution approach which combines parametric model fitting

and model-order selection for practically determining an unknown number of spots in the

image.

121
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7.1 Resolution Limit

Below, to simplify the presentation, only the lateral resolution will be considered in the

detection and estimation-theoretic frameworks.

7.1.1 Detection-theoretic resolution limit

The resolution limit has been studied in a statistical decision framework [132][133][134][135][136].

To resolve two point sources, we test a binary hypothesis, i.e., H0 : one source is present vs.

H1 : two sources are present. The useful information we want to know is the relationship

between the smallest detectable source separation under a given FPR, a given SNR, and a

given minimum true positive rate (TPR).

7.1.1.1 Gaussian observations

Below, we follow the presentation of [135][136]. To clarify the idea, let us consider an

ideal situation where we observe an image y = (y(xn))n of two symmetrically placed point

sources along the x-axis with a lateral separation d, i.e.,

y(xn) = f(xn; d) + w(xn), n = 1, . . . , N (7.1)

f(xn; d) = A · h(xn − d/2, yn, zn) +A · h(xn + d/2, yn, zn) (7.2)

where xn := [xn, yn, zn]
T is a sample point, N is the number of pixels, w(xn) ∼ N (0, σ2)

is the Gaussian noise process, A is the amplitude of the point sources, h is the PSF, and d

is the source separation which is assumed to be the only unknown parameter. Note that if

the pixelation is considered, the function h is the effective PSF, i.e., the convolution of the

optical PSF and the pixel indicating function 1C which takes value 1 within a pixel support

C and value zero elsewhere. The binary hypothesis test can now be equivalently formulated

as H0 : d = 0 vs. H1 : d > 0, which can be again rewritten as




H0 : y(xn) = f0(xn) + w(xn), ∀n
H1 : y(xn) = f(xn; d) + w(xn), ∀n

(7.3)

where f0(xn) = 2Ah(xn). This is a composite hypothesis testing problem which is typically

solved by the general likelihood ratio test (GLRT) procedure. That is, we first carry out

the ML estimation of d, then use this estimated value to form the standard Neyman-

Pearson test. This detection problem is highly nonlinear and a second order Maclaurin
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approximation for f around d = 0 is employed to linearize the problem, i.e.,

f(xn; d) ≈ 2Ah(xn) +
A

4
h11(xn)d

2

where h11(xn) = ∂2h
∂x2 (xn). As we will see, by doing so, a closed-form expression can be de-

rived for the minimum separation. This approximation is reasonable since we are interested

in small d only. Note that 2Ah(xn) is known to the detector and is independent of d. Thus,

the test can be further simplified as




H0 : z(xn) = w(xn), ∀n
H1 : z(xn) = A

4 h11(xn)d
2 + w(xn), ∀n

(7.4)

where z(xn) = y(xn)−2Ah(xn). It can be easily verified that the GLRT statistic is given by

T (z) = (hT11h11)
−1/2hT11z, where h11 = [h11(x1), . . . , h11(xN )]T and z = [z(x1), . . . , z(xN )]T .

It can be shown that this test is uniformly most powerful (UMP) in the sense that it produces

the highest detection probability for all values of d under a given FPR. Note that T (z) is

normally distributed under H0 and H1, and it follows that

d ≥ 2√
A/σ(hT11h11)1/4

[
Φ−1(1 − pf ) − Φ−1(1 − pd)

]1/2
(7.5)

where Φ is the standard normal cdf, pf and pd are respective the FPR and the minimum

TPR to attain. If we define the SNR to be the ratio SNR := A/σ, then d ∝ SNR−1/2. A

more comprehensive analysis of the minimum detectable separation for asymmetric sources,

under-Nyquist sampling (aliased image), and PSF mismatch situations can be found in

[135][136].

7.1.1.2 Poisson and MPG observations

To our knowledge, the limiting resolution has not been studied in the detection-theoretic

framework with Poisson and MPG observations. Here, we propose to apply the VST (6.4)

on the data, which significantly facilitates the analysis by bringing the problem to the

Gaussian case, and leads to closed-form expressions. Clearly, this approach is not valid for

(very) low-count images where the Poisson intensity level falls out of the effective domain

of the VST.

We specify the MPG image model

y(xn) = αF (xn; d) + w(xn), F (xn; d) ∼ P(f(xn; d)), w(xn) ∼ N (µ, σ2) (7.6)

f(xn; d) = A · h(xn − d/2, yn, zn) +A · h(xn + d/2, yn, zn)
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(7.6) reduces to a Poisson model if α = 1 and µ = σ = 0. Direct application of GLRT will

not result in a closed-form expression for the test statistic due to the MPG distribution.

However, by applying the VST we can treat the observations as if they were issued from a

Gaussian process, i.e.,

T (y(xn)) = 2
√
f(xn; d) + wT (xn) (7.7)

where T (x) = 2/
√
α sgn(x + c∗)|x + c∗|1/2, and wT (xn) ∼ N (0, 1). No information is lost

since T is invertible.

Now using the second order series approximation on the transformed signal 2
√
f(xn; d),

our test becomes




H0 : z(xn) = wT (xn), ∀n
H1 : z(xn) =

√
2A

8
√
h(xn)

h11(xn)d
2 + wT (xn), ∀n

(7.8)

Similar calculus as in the Gaussian case shows that

d ≥ 2 · 21/4

A1/4
[∑N

n=1 h11(xn)2/h(xn)
]1/4

[
Φ−1(1 − pf ) − Φ−1(1 − pd)

]1/2
(7.9)

According to the MPG statistics, we can define SNR := αA/
√
α2A+ σ2. (7.9) shows that

d ∝ A−1/4, or d ∝ SNR−1/2.

As we have mentioned, (7.9) is valid for high enough Poisson intensities only. In par-

ticular, if the readout noise level increases, higher intensity is required to correctly stabilize

the data. As an example, for the setting α = 10 and µ = 1, Fig. 7.1 shows the minimum

intensity required by the VST as a function of the readout noise standard deviation. The

curve is obtained from Monte-Carlo simulations. The MPG data are considered well sta-

bilized as long as the mean and the variance of the VST-transformed data are within the

±2.5% range of the theoretic asymptotic values.

7.1.1.3 Some extensions

Multivariate case Up to now, we have supposed that the only unknown parameter is

the source separation. A more realistic signal model is given by

f(xn; θ) = A1 · h(xn + d1, yn + d2, zn + d3) +A2 · h(xn + d4, yn + d5, zn + d6)

where θ = [A1, A2, d1, . . . , d6] are unknown parameters. A second order Maclaurin approxi-

mation on f around (d1, . . . , d6) = 0 will lead to a linear model detection problem, and the
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Fig. 7.1: Minimum Poisson intensity (λ) required to correctly stabilize the MPG data as a

function of the readout noise standard deviation (σ). Other MPG parameters are α = 10

and µ = 1.

relation between θ and (SNR, pf , pd) can be derived using the same GRLT framework (see

[135][136] for details).

7.1.2 Estimation-theoretic resolution limit

The resolution limit has also been extensively studied using the statistical estimation theory

[133][137][138][139][140][141]. The fundamental idea is to construct a parametric model of

the image in which the distance between the point sources is a parameter to estimate. Then,

the Cramér-Rao lower bound (CRLB) is applied, which provides a fundamental limit on

the attainable precision for estimating the distance by any unbiased estimator. Although

other MSE lower bounds are also applicable leading to tighter bounds (see Appendix C for

a brief review of the classical MSE bounds), CRLB has the advantage of having a simple

form. Consequently, a source separation is considered resolvable if it is not smaller than

the limiting standard deviation given by CRLB.

7.1.2.1 Gaussian observations

Consider the same image model as in (7.1),

y(xn) = f(xn; d) + w(xn) (7.10)

f(xn; d) = A · h(xn − d/2, yn, zn) +A · h(xn + d/2, yn, zn) (7.11)

Here, the distance d is the only unknown parameter to estimate.
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Let Txy and Tz represent the size of a voxel on the x and y-axis, and that on z-axis

respectively. Accordingly, we denote the sampling frequency by fs = [fxy, fz]. We assume fs

to be sufficiently high (e.g., at least Nyquist for band-limited signals), such that the Fisher

information (C.2) can be approximately calculated by an integral1

I(d) =
1

σ2

N∑

n=1

(
∂f

∂d
(xn; d)

)2

≈
f2
xyfz

σ2

∫

R3

(
∂f

∂d
(x; d)

)2

dx (7.12)

For h to be a Gaussian with unit amplitude h(x, y, z) := exp[−(x2+y2)/(2σ2
xy)] exp[−z2/(2σ2

z)],

(7.12) =
π3/2A2f2

xyfzσz

8σ2

[
2 + e

− d2

4σ2
xy

(
d2

σ2
xy

− 2

)]

Here, h is normalized according to its L∞ norm. Other normalization may also be used

leading to slightly different bounds, but the asymptotic behavior of the bounds as a function

of the SNR remains the same. Now, the standard deviation of d (σd) is bounded by CRLB,

σd ≥
1√
I(d)

=
4
√

3σxyσ

3A
√
f2
xyfzπ

3/2σz
d−1 +

5
√

3σ

36Aσxy

√
f2
xyfzπ

3/2σz
d+ o(d2) (7.13)

Here, we expand the CRLB in its Maclaurin series. For small d, we can ignore the term

o(d2) above, and the smallest resolvable distance d0 can be explicitely written out

d0 =
12σxy

[
36

√
3σxy

A
σ

√
f2
xyfzπ

3/2σz − 15
]1/2 (7.14)

(7.14) shows that d0 ∝ SNR−1/2.

7.1.2.2 Poisson and MPG observations

A comprehensive treatment of CRLB with Poisson and MPG observations can be found in

[140], where the resolution is considered under the influence of dark intensity, pixelation,

and unsynchronized photobleaching. Our following treatment is less sophisticated but is

sufficient in providing instructive and consistent results. We will make use of the VST (6.4)

to bring the problem to the Gaussian case.

The same MPG image model as (7.6) will be used

y(xn) = αF (xn; d) + w(xn) (7.15)

1The Fisher information can also be approximately calculated in the Fourier domain using Plancherel
formula [135], which yields the same result.
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Since y has an infinite-mixture distribution, exact calculation of Fisher information will

result in complex expressions. However, by applying the VST the problem is Gaussianized,

i.e.,

T (y(xn)) = 2
√
f(xn; d) + wT (xn)

The Fisher information can now be easily calculated by the continuous integral approxima-

tion

I(d) =
N∑

n=1

(
∂f
∂d (xn; d))

)2

f(xn; d)
≈ f2

xyfz

∫

R3

(
∂f
∂d (x; d)

)2

f(x; d)
dx

For a unit-amplitude Gaussian PSF, CRLB yields that

σd ≥
1√
I(d)

=
21/4σxy√

f2
xyfzπ

3/2σzA
d−1 +

21/4

4σxy

√
f2
xyfzπ

3/2σzA
d+ o(d2)

Ignoring o(d2), the minimal resolvable distance is given by

d0 =
2
√

2σxy
[
4
√

2Aσxy

√
f2
xyfzπ

3/2σz
√

2 − 2
]1/2 (7.16)

(7.16) shows that d0 ∝ A−1/4, or d0 ∝ SNR−1/2.

Remark We should not deduce from (7.16) that the minimum resolvable distance decreases

if we increase the sampling rate fs. Indeed, unlike the Gaussian observation case which

represents a “photon-unlimited” imaging, most biological fluorescence acquisition is photon

limited as is modeled by a Poisson or a MPG process. Thus, the peak amplitude A of one

source in (7.11) should be understood as the peak value at the sampling rate fs. That is,

A depends on fs. Actually, for a fixed field of view and a fixed camera exposure time, the

increasing of fs means a decreasing of the pixel size on the camera. Due to the photon-limited

imaging, the average number of photons arrived at every pixel will decrease accordingly and

so does the value of A. For sufficiently high rates fs, Af
2
xyfz approximates a constant. The

same attention should also be called for the detection-theoretic limits derived from the

MPG observations, since fs is implicitly involved in the finite sum in the expression of the

minimum separation (7.9).

Fig. 7.2(a) shows the minimum resolvable distance as a function of Af2
xyfz according

to (7.16). An LSCM (NA = 0.5, λex = 488nm, λem = 520nm, D = 1AU) is supposed, and

σxy and σz are derived from the values given in Chapter 3. Clearly, higher SNR implies
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Fig. 7.2: An LSCM (λex = 488nm, λem = 520nm, D = 1AU) is supposed, and σxy and σz

are derived from the values given in Chapter 3. (a) d0 as a function of Af2
xyfz according

to (7.16) (NA = 0.5); (b) d0 as a function of NA where d0’s are computed with the PSFs

being L1-normalized and Af2
xyfz = 50.

smaller resolvable distance d0. We have also studied the influence of the value of NA on d0

(Fig. 7.2(b)). Here, d0’s are computed with the PSFs h being L1-normalized (‖h‖1 = 1)

such that the images of the PSFs have equivalent average total photon counts. We can see

that a higher resolution can be achieved by using an objective of a higher NA.

7.1.2.3 Some extensions

Localization precision limit The same framework can be applied to study the local-

ization precision limit for a single particle [142][133][143][144][145][141]. Take the scalar

estimation case, the observed image model is given by

y(xn) = A · h(xn − d, yn, zn) + w(xn) (7.17)

where w(xn) ∼ N (0, σ2), and d is the lateral location parameter to estimate. For h having

a unit-amplitude Gaussian profile, the Fisher information is given by

I(d) =
A2

σ2

N∑

n=1

(
∂h

∂x
(xn − d, yn, zn)

)2

≈
A2f2

xyfzσzπ
3/2

2σ2

Thus, the precision limit is given by

σd ≥
1√
I(d)

=

√
2

fxy
√
fzσzπ3/4

σ

A
(7.18)
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This shows that σd ∝ SNR−1.

If the image is of a MPG nature, i.e., y(xn) = αF (xn) + w(xn) where F (xn) ∼
P(A · h(xn − d, yn, zn)) and w(xn) ∼ N (µ, σ2), by applying the VST we have that

T (y(xn)) = 2
√
A · h(xn − d, yn, zn) + wT (xn)

Similar calculus as in the Gaussian case shows that

I(d) ≈ 2
√

2Af2
xyfzσzπ

3/2

σd ≥ 1√
I(d)

=
1

√
A
[
2
√

2f2
xyfzσzπ

3/2
]1/2 (7.19)

Again, we find that σd ∝ SNR−1, or in other words σd is inversely proportional to the square

root of the total underlying Poisson intensity [144]. Note that (7.19) is different from the

value derived in [144] just by a constant factor, due to the different normalizations on the

source profile h.

Multivariate estimation A more realistic signal model is given by

f(xn; θ) := A1h(xn + d1, yn + d2, zn + d3) +A2h(xn + d4, yn + d5, zn + d6)

θ := [A1, A2, d1, . . . , d6] (7.20)

Here, the parameter θ to estimate is a vector. The CRLB follows from inverting the Fisher

information matrix associated with θ. The case of nonidentical source profiles can also be

studied similarly. Details can be found, e.g., in [144][140][141].

7.1.3 Information-theoretic resolution limit

Kosarev [146] has proposed to study the resolution limit using Shannon’s channel capacity

theory (see Appendix D for a brief introduction). Here, using the same information-theoretic

framework we will summarize and extend [146] to study the limiting resolution for a finite

number and a upper-bounded but unknown number of sources with Gaussian, Poisson and

MPG observations, and the localization accuracy limit. The information-theoretic approach

exhibits an advantage over the detection-theoretic or estimation-theoretic methods in the

aspect that it can tackle more easily K > 2 (or even an unknown number of) sources. The

disadvantage of this approach is that it leads to looser bounds. In the presentation below,

no assumption will be made on the sampling rate.
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7.1.3.1 Gaussian observations

We observe an image y of N pixels,

y(xn) = f(xn) + w(xn), 1 ≤ n ≤ N (7.21)

where f is the noise-free image, and w(xn) ∼ N (0, σ2) is the noise process.

A finite number of sources We assume that f is generated from the convolution of the

PSF h with K point sources of equal amplitudes A, i.e.,

f(x) = A
K∑

i=1

h(x− pi) (7.22)

where pi is the position vector of the i-th source. Let us suppose h to be a Gaussian PSF

of unit amplitude.

(7.21) can be deemed as one use of N parallel Gaussian channels. These channels

have a capacity, i.e., the upper bound on the maximum information bits per use that can

be reliably transmitted. This is predicted by Shannon’s capacity theorem (Theorem 11).

We will calculate the capacity of our channels which will bound the maximum information

in our image, from which we can derive the resolution limit. Before applying the capacity

theorem we should find the energy constraint. Supposing for a moment that the image

support is periodized so that every pixel plays a symmetric role. Assuming further that

(pi)i are independent and uniformly distributed in an observed image volume V much larger

than the PSF size, then we have that

E

[
N∑

n=1

f(xn)
2

]
= A2

N∑

n=1

K∑

i,j=1

E [h(xn − pi)h(xn − pj)]

≈ A2N


∑

i=j

σ2
xyσzπ

3/2

V
+
∑

i6=j

[
2
√

2π3/2σ2
xyσz

V

]2



=
NA2Kσ2

xyσzπ
3/2

V 2

(
V + 8π3/2(K − 1)σ2

xyσz

)
=: PK

Dropping off the periodization, it follows immediately that

E

[
N∑

n=1

f(xn)
2

]
≤ PK
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Therefore, by Theorem 11 the total information bits transmitted by the whole image with

N pixels are bounded by

C ≤ 1

2

N∑

n=1

log2

[
1 +

PK/N

σ2

]

= log2

[
1 +

A2Kσ2
xyσzπ

3/2

σ2V 2

(
V + 8π3/2(K − 1)σ2

xyσz

)]N/2
(7.23)

Now, we have at most 2C distinguishable messages. Thus, if we partition the image volume

by cubes of sidelength ∆, we will have a 3D grid of M = V/∆3 = NT 2
xyTz/∆

3 cubes.

Thereby, we have a total of CKM different configurations (ignoring orders) of these K sources

at the resolution level ∆. These configurations form the entire message set. Thus, the

minimal resolution level for K sources are given by the solution of ∆ of the equation

2C = CKM .

If K ≪M , we have CKM ≈MK/K!. Thus,

∆ ≈ V
1
3

(K!)
1

3K

[
1 +

A2Kσ2
xyσzπ3/2

σ2V 2

(
V + 8π3/2(K − 1)σ2

xyσz
)]V f2

xyfz
6K

(7.24)

Now, if V is large, (7.24) can be again approximated by

∆ ≈ V
1
3

(K!)
1

3K

exp

[
−
A2σ2

xyσzπ
3/2

6σ2T 2
xyTz

]
(7.25)

This shows that ∆ ∝ exp(−SNR2).

An upper-bounded but unknown number of sources If no prior information of the

exact source number is available, but if M is large enough such that it can be deemed as

an upper bound of the source number, the message set includes a total of
∑M

K=0 C
K
M = 2M

different configurations. Supposing the source number K follows a distribution with mean

µK and variance σ2
K , the total energy constraint becomes

E

[
N∑

n=1

f(xn)
2

]
= E

[
E

[
N∑

n=1

f(xn)
2

∣∣∣∣∣K
]]

≈ E[PK ]

=
NA2σ2

xyσzπ
3/2

V 2

(
µKV + 8π3/2σ2

xyσz(σ
2
K + µ2

K − µK)
)
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We derive the resolution level for this situation,

∆ =
V

1
3

[
log2

(
1 +

A2σ2
xyσzπ3/2

σ2V 2

[
µKV + 8π3/2σ2

xyσz(σ
2
K + µ2

K − µK)
])N/2] 1

3

(7.26)

For a large V , we have

∆ ≈ V
1
3

(
A
σ

) 2
3
[

1
2σ

2
xyσzπ

3/2µKf2
xyfz log2 e

] 1
3

(7.27)

This shows that ∆ ∝ SNR−2/3.

7.1.3.2 Poisson and MPG observations

Our image model after applying the VST (6.4) is given by

T (y(xn)) = 2
√
f(xn) + w(xn), 1 ≤ n ≤ N (7.28)

where w(xn) ∼ N (0, 1).

A finite number of sources If K sources are present in the image with a large volume

V , the energy constraint is given by

E

[
N∑

n=1

4f(xn)

]
≈
ANK8

√
2π3/2σ2

xyσz

V
(7.29)

The total capacity of these parallel channels is given by

C = log2

(
1 +

AK8
√

2π3/2σ2
xyσz

V

)N
2

(7.30)

For K ≪M , the resolution level is thus

∆ ≈ V
1
3

(K!)
1

3K

(
1 +

AK8
√

2π3/2σ2
xyσz

V

)V f2
xyfz

6K

(7.31)

For a large V , the resolution level is approximated by

∆ ≈ V
1
3

(K!)
1

3K

exp

(
−4

3
A
√

2π3/2σ2
xyσzf

2
xyfz

)
(7.32)

This shows that ∆ ∝ exp(−SNR2).
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An upper-bounded but unknown number of sources Again, we assume M to be

an upper-bound of the source number. We have the energy constraint

E

[
N∑

n=1

4f(xn)

]
≈
ANµK8

√
2π3/2σ2

xyσz

V
(7.33)

The capacity is given by

C = log2

[
1 +

AµK8
√

2π3/2σ2
xyσz

V

]V f2
xyfz/2

(7.34)

The resolution level is given by

∆ =
V

1
3

(
log2

[
1 +

AµK8
√

2π3/2σ2
xyσz

V

]V f2
xyfz/2

) 1
3

(7.35)

which can be approximated for a large V by

∆ ≈ V
1
3

A
1
3

(
4
√

2π3/2µKσ2
xyσzf

2
xyfz log2 e

) 1
3

(7.36)

This shows again that ∆ ∝ SNR−2/3.

7.1.3.3 Some extensions

Localization accuracy limit We setK = 1 in (7.24) and (7.25) to derive the localization

accuracy limits.

∆ ≈ V
1
3

[
1 +

A2σ2
xyσzπ3/2

σ2V

]V f2
xyfz

6

(7.37)

(large V ) ∆ ≈ V
1
3 exp

[
−
A2σ2

xyσzπ
3/2f2

xyfz

6σ2

]
(7.38)

We set K = 1 in (7.31) and (7.32) to derive the localization accuracy limit for MPG

data.

∆ ≈ V
1
3

(
1 +

8
√

2π3/2Aσ2
xyσz

V

)V f2
xyfz

6

(7.39)

(large V ) ∆ ≈ V
1
3 exp

(
−4

3
A
√

2π3/2σ2
xyσzf

2
xyfz

)
(7.40)
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7.1.3.4 Looseness of the bounds

It can be seen that all the information-theoretic bounds derived above are looser than those

derived in the detection/estimation frameworks. The first reason is that Shannon’s capacity

theorem considers only the energy constraint, and the PSF shape is not fully taken into

account. Indeed, at a first look, the bounds (7.27) and (7.36) could be counter-intuitive

because they decrease as the mean number of sources increases. However, this is plausible

in the Shannon’s sense that as the total energy constraint E[PK ] is an increasing function

of µK , SNR rises for larger µK . Thereby, more information bits can be transmitted in the

Gaussian channels. There is a second reason for the looseness of the bounds. In effect, only

some special coding/decoding schemes for the message set can achieve the channel capacity,

such as random coding and jointly typical decoding (see [147]). In reality, the coding for

our messages of the source locations is implicitly determined by the microscope imaging

system, which could be suboptimal such that the real information rate is much lower than

Shannon’s capacity.

7.2 Super-resolution Spot Detection

Section 7.1 showed that it is theoretically possible to localize highly accurately an individual

point source and to identify close sources with a separation smaller than Rayleigh’s distance,

provided that we have a sufficient SNR.

Concerning practical algorithm for localizing a single particle, [148] extracted the

object of interest by thresholding after linear filtering of the image. The location is estimated

by the center-of-mass of the object. Recently, parametric method such as least-squares PSF

fittings, and in general, ML estimations are investigated [149][36][131][144][141]. Indeed, as

a subresolutional particle has a microscope PSF profile, the image can be modeled by a

theoretical PSF. For Poisson observations, the ML estimation is asymptotically optimal in

the sense that as the observed photon number increases (or SNR increases), the estimator

attains the CRLB, i.e., the ultimate localization precision limit. ML estimation is also

proposed to localize a single particle with one or a few defocus observation planes and a

WFFM PSF model considering spherical aberrations [150].

By modeling the image as a mixture of PSFs, the ML approach allows to localize a

known number of particles separated even below the Rayleigh’s distance (super-resolution)
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[37][140]. In applications of quantum dots, the blinking statistics can be analyzed by an

independent component analysis [151] to separate nearby dots.

If the source number K is unknown, a model selection procedure has to be carried

out to determine this number. [152] proposed to impose prior distributions on the source

separations. Then, MAP estimation is carried out for every possible number of sources and

the most probable values are retained. However, in real biological applications what the

true priors for the separations should be is not clear. In [38], a super-resolution detection

of submicrometric fluorescent tags has been proposed for Gaussian data. These tags were

modeled as point-like sources, and the PSF as a Gaussian, yielding an image model consist-

ing of a mixture of Gaussians. In a first step, spots are pre-detected based on a “spottiness”

score equal to the product of the local average and the Gaussian curvature of the image

intensity, providing a score image that is then thresholded using an empirical threshold. In

a second step, a parametric-model fitting routine refines the positions of spots, and itera-

tively inserts new Gaussians into the model. The acceptance of new spots is controlled by

hypothesis tests, i.e., H0 : K = M vs. H1 : K ≥ M + 1. The test statistic is the ratio of

the residues of the least-square fits with M and M + 1 sources, which is assumed to have a

F-distribution under H0. The tests are carried out from a small M to larger ones only, and

the tests terminate as long as the fit no longer improves significantly.

Here, we propose a source localization framework where the source number K is

unknown and the data can be of a MPG nature. This approach can be seen as an extension

of [38]. A pre-detection will be carried out followed by an iterative parametric-model fitting

with model-order selections in order to refine the number of spots and their locations. We

will mainly discuss the MPG case where the generalized least-squares fit and the VST-based

least-squares fit will be both tested. We will also evaluate the performance of a variety of

model selection methods for this super-resolution problem.

7.2.1 Pre-detection

We will describe the pre-detection scheme, which aims to provide a good initial guess of

the number, the positions, and the amplitudes of spots in the image. This initial guess will

then be improved upon by the model-fitting approach described in section 7.2.2.
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Our MPG image model is given by

y(xn) = αF (xn) + w(xn) (7.41)

F (xn) ∼ P(f(xn)), f(xn) = b+
K∑

i=1

Aih(xn − pi) (7.42)

w(xn) ∼ N (µ, σ2) (7.43)

where b ≥ 0 represents a dark intensity background, Ai and pi respectively describe the

amplitude and the position vector of i-th spot, K is the total number of spots, and h is the

unit-amplitude source profile.

The pre-detection is based on the MS-VST+IUWT scheme (chapter 6). A slight

modification of the detection method proposed in section 6.3 will allow us to estimate the

spot amplitudes in addition to their locations. Our pre-detection consists of the following

steps. First, in an object-free background region, we estimate (α, b, µ, σ) by cumulant

matching. Second, we carry out MS-VST+IUWT detection, and once the multi-resolution

support is available, we reconstruct the image from the significant wavelet coefficients with

the coarsest approximation band set to zero. This eliminates most regular background as

wavelets are band-pass filters. Third, in the reconstructed image the pixels with an intensity

below a threshold T will be set to zero. In our experiments, the positive part is retained

(i.e. T = 0) since we are interested in bright spots. Finally, all local maxima are extracted

as putative spots with their amplitudes. Parallel to Proposition 8, wavelet FDR control

will lead to detection error probability control in an object-free homogeneous MPG noisy

image. Let us suppose that M0 spots are pre-detected.

7.2.2 Model fitting and model-order selection

The spot parameters computed at this stage are a first guess, which must be improved upon

for several reasons. The pre-detection scheme described above could produce false detection

due to noise. If two or more spots are very close to each other or overlap, the pre-detection

may produce only one hit. Moreover, the localization precision of the pre-detection is

limited by the size of the pixels. We therefore seek to improve the pre-detection using a

parametric-model estimation procedure. This second step aims to: (i) resolve multiple spots

that produced a single predetection hit, possibly with super-resolution; (ii) remove residual

false detections; (iii) achieve subpixelic localization.
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7.2.2.1 Parametric object model

Each spot profile h is described by the convolution of the underlying spot intensity dis-

tribution with the microscope PSF. The Gaussian approximative PSF will be used with

standard deviations (σxy, σz) calculated in chapter 3. We will also suppose the underlying

source intensity distribution to be a Gaussian with a standard deviation σ0. σ0 represents

the size of the source and we assume that typical range of the source size is available from

prior biophysical knowledges. This modeling results in a closed-form expression for h, i.e.,

h(x, y, z) = exp

[
− x2 + y2

2(σ2
0 + σ2

xy)
− z2

2(σ2
0 + σ2

z)

]

(7.42) is now a mixture of Gaussians and the parameter set for the signal f is given by

ΘK = {(pi)1≤i≤K , (Ai)1≤i≤K , σ0, b} where the subscript K indicates the model order. To

specify that f depends on ΘK , we will write f(x; ΘK).

7.2.2.2 Iterative model fitting

Given a value of K, θ can be determined by the ML estimation. The exact ML estimator

has no closed forms due to the MPG distribution. However, by applying the VST on y, we

get an asymptotic normal model,

T (y(x)) = 2
√
f(x; ΘK) + wT (x) (7.44)

where wT (x) ∼ N (0, 1). Clearly, the ML estimation for this transformed image model is

simply the least-squares fitting, i.e.,

θ̂K = arg min
ΘK

N∑

n=1

[
T (y(xn)) − 2

√
f(xn; ΘK)

]2
(7.45)

Constraints on the parameters can also be imposed based on prior knowledges such as the

positivity, i.e., Ai, σ0, b ≥ 0. In our experiments, we also test the generalized least-squares

fitting on the MPG observations [131] where the variance at each sample is considered in

the fit, i.e.,

θ̂K = arg min
ΘK

N∑

n=1

(y(xn) − αf(xn; ΘK) − µ)2

α2f(xn; ΘK) + σ2
(7.46)

It remains to determine the value of K by a model-order selection approach. Three

categories of order selection methods will be evaluated, i.e., hypothesis tests, information
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criteria, and MDL criteria. In the discussion below, we will concentrate on the model selec-

tion with the VST-based fit (7.45), since it has a log-likelihood form which is theoretically

required by many model-selection methods.

Hypothesis tests At the onset, we have a list of spots Ls which initially contains the

pre-detection ones. The model fitting is initialized with the parameter of pre-detection

ΘM0 . The initial fit (7.45) produces a refined estimation of the spot parameters allowing

subpixelic localization.

At this stage, however, close and overlapping spots remain to be resolved. We

therefore follow up a bottom-up addition of spots [38]. To do this, we sequentially try to

add spots to the model using hypothesis tests to decide whether to accept spot addition

or not. After adding a spot to the current model ΘM , we fit the new model ΘM+1 to the

image, and then ask whether the new fit is significantly better than the previous fit. This

is done by testing H0 : K = M against the alternative H1 : K > M . The GLRT statistic

−2 lnR(y) [153] is constructed, i.e.,

−2 lnR(y) = −2 ln
supΘM

Likelihood(ΘM |T (y))

supΘM+1
Likelihood(ΘM+1|T (y))

= −2 ln

exp

(
−1

2

∑N
n=1

[
T (y(xn)) − 2

√
f(xn; θ̂M )

]2
)

exp

(
−1

2

∑N
n=1

[
T (y(xn)) − 2

√
f(xn; θ̂M+1)

]2
) (7.47)

Under H0 we test −2 lnR(y) using a Chi-square distribution with a degree of freedom

|ΘM+1| − |ΘM | = 4, and a significance level α. The spot addition is accepted only if the

test is significant. Then, this new spot will be inserted into Ls, and the new test becomes

H0 : K = M+1 vs. H1 : K > M+1. If H0 is maintained, this spot addition is refused since

the smaller model ΘM provides an equally good fit to the data as ΘM+1, and another spot

in Ls is examined. This procedure is repeated until all the spots in Ls have been examined.

The bottom-up procedure allows to distinguish close and overlapping spots, but

we should also remove superfluous spots due to false positives of the pre-detection. For

this reason, we carry out a top-down procedure for spot removal, where the hypothesis

test described above is applied in reverse. That is, one spot in Ls will be removed from the

model as long as the quality of fit is not significantly degraded. The output of the algorithm

is the spot parameters from the final fit.
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Besides GLRT, [38] has proposed the F-test. The test statistic is the ratio of two

Chi-square residues,

F :=

∑N
n=1

[
T (y(xn)) − 2

√
f(xn; θ̂M )

]2

/rM

∑N
n=1

[
T (y(xn)) − 2

√
f(xn; θ̂M+1)

]2

/rM+1

(7.48)

Under H0, F is tested using a Fisher distribution of rM and rM+1 degrees of freedom. Here

rM = N − pM , and pM = 4M + 2 is the number of free parameters of the model ΘM .

It can be seen that the probability of erroneously detecting objects in an object-free

noisy image is still upper-bounded by the wavelet FDR value using this bottom-up and

top-down hypothesis testing framework. If in addition the distribution of the pre-detection

number is known for a pure noisy image, say, αp = Pr(M0 = p|H0), the detection error rate

can be easily shown to be

Pr(K̂ 6= 0|H0) =
∞∑

b=1

b∑

p=1

Cb2b−p[1 − (1 − α)b]αb−p(1 − α)bαp

where K̂ is the number of finally detected spots.

Finally, we should point out that in GLRT, as (y(xk))k are not identically distributed,

the Chi-square distribution for H0 is only an approximation. Similarly, in F-test, as the

numerator and the denominator in (7.48) are not independent statistics, the Fisher distri-

bution is also an approximation under the null hypothesis.

Information criteria In addition to HTs, information criteria (see [154][155] and the

references therein) are also widely used for order selection. They include, e.g., Akaike

information criterion (AIC), Corrected AIC rule (AICc) and Bayesian information criterion

(BIC).

These criteria can be derived by maximizing the relative Kullback-Leibler informa-

tion under different hypothesis (see [154] for details). They can be written in a general

penalized-likelihood form

K̂ = arg min
K

ICK , ICK = −2 ln
[
Likelihood(θ̂K |T (y))

]
+ η · pK

= arg min
K

N∑

n=1

[
T (y(xn)) − 2

√
f(xn; θ̂K)

]2

+ η(4K + 2) (7.49)
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where η = 2 for AIC, η = 2N/(N −K − 1) for AICc, and η = lnN for BIC. These criteria

can be combined with our iterative bottom-up/top-down schemes in a similar way as for the

HTs. For example, in the bottom-up procedure, ICK is evaluated for each spot addition,

and the new spot is accepted only if it induces a smaller value of ICK .

An interesting relation between the information criteria and the GLRT statistic is

noted in [156], i.e.,

ICM − ICM+1 = −2 lnR(y) − 4η

This shows that the information criteria correspond to particular choices of the p-value in

GLRT.

MDL criteria Like information criteria, the Minimum Description Length (MDL) prin-

ciple for model-order selection can also be written in a penalized-likelihood form [157][158]

K̂ = arg min
K

−2 ln
[
Likelihood(θ̂K |T (y))

]
+ pK ln

N

2π
(7.50)

Although (7.50) shares a similar form with (7.49), they are derived using fundamentally

different assumptions. Roughtly speaking, for information criteria, we assume that there

exists a true distribution from which the observations are sampled, and the goal of model

selection is to find the model closest to the truth. For the MDL principle, however, whether

a true distribution even exits is considered inherently unanswerable. The goal of model

selection is to identify the model that allows to describe the data with fewest symbols, i.e.,

the model that achieves the greatest data compression [158].

The penalization term in (7.50) is derived by assuming the existence of an upper-

bound of the model order. If this hypothesis is dropped, the MDL should be corrected to

[157]

K̂ = arg min
K

−2 ln
[
Likelihood(θ̂K |T (y))

]
+ pK ln

N

2π
+ 2 ln(K + 1) (7.51)

The term 2 ln(K+1) represents the additional symbols necessary to encode the model index

K which is not bounded [159]. This criterion will be denoted as MDLi.

7.2.3 Detection within Gaussian data

Although not discussed above, the proposed framework can be easily applied to detect spots

in Gaussian noisy data. The image model is given by y(xn) = f(xn; ΘK)+w(xn) where f is
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shown in (7.42) and w(xn) ∼ N (0, σ2). Regarding the pre-detection, the method proposed

in [38] can be adopted. We can also resort to IUWT-based detection as proposed for the

MPG case but without using the MS-VST. Parametric model fitting for Gaussian data boils

down to the least-squares fitting. The model-order selections completely resemble the way

described for the MPG case with the use of VST, since VST just brings us to a Gaussian

image model.

7.2.4 Experiments

To quantitatively evaluate the performance of the algorithm, we run series of experiments

on simulated MPG data. The images were generated using the model of (7.42) and the

following parameters: voxel sizes Tx = Ty = 0.1µm, Tz = 0.3µm, image field 5.1µm ×
5.1µm× 6.3µm, the standard deviation of the underlying source profile σ0 = 0.02µm, and

Gaussian PSF standard deviations σxy = 0.103 and σz = 0.368 which approximate a non-

paraxial LSCM with NA = 1, an oil immersion objective, a pinhole of diameter 1AU, an

excitation wavelength λex = 488nm, and an emission wavelength λem = 520nm. MPG noise

with the following parameters are generated: gain α = 20, dark intensity b = 0.01, readout

mean µ = 5 and standard deviation σ = 2. Source amplitude A is varied to produce images

at various SNR, defined to be

SNR :=
αA√

α2(A+ b) + σ2

7.2.4.1 Localizing an individual spot

We first test our algorithm on images of a single spot, without the complications due to

overlapping fluorescence from several spots. Example images of SNR ∈ [5, 15] are shown in

Fig. 7.3. We have tested both the VST-based least-squares fit and the generalized least-

squares fit; all the model-order selection methods discussed in section 7.2.2.2 are imple-

mented. For each combination of SNR, model-fitting approach and model-order selection

criterion, we have run 50 replications of the detection under different noise realizations.

Based on these trials, the following quantities are evaluated: the correct detection rate

(CDR), i.e., the percentage that the algorithm detect exactly one spot in the image; RMSEx,

RMSEy and RMSEz, i.e., the root mean squared errors of the x-coordinate, y-coordinate

and z-coordinate of the spot center; PRE of A, i.e., the relative error on the amplitude

estimation. The RMSEs and PREs are evaluated only for those correctly detected spots.
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Numeric results are shown in Tab. 7.1, 7.2 and 7.3. CDR equal or higher than 80% are

emphasized with bold face.

It can be seen that only the order-selection by F-test leads to high CDRs for all

the SNRs. Moreover, all the localization errors are in the range of several nanometers for

the lateral coordinates and tens of nanometers for the axial one. The localization becomes

more accurate as SNR increases. The accuracy of the amplitude estimation is also high,

with errors of a few percent only.
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Fig. 7.3: Simulated individual spot at different SNRs. xy-planes passing through the spot

center for (a) SNR = 5; (b) SNR = 10; (c) SNR = 15; yz-planes passing through the spot

center for (d) SNR = 5; (e) SNR = 10; (f) SNR = 15. The image intensities are shown in a

square-root scale.
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Tab. 7.1: Localization performance (SNR = 5)

Order Sel. CDR% RMSEx (nm) RMSEy (nm) RMSEz (nm) PRE (A)%

GLRT∗ (0, 6) (-, 3.43) (-, 3.02) (-, 9.77) (-, 9.33)

GLRT (2, 4) (4.28, 3.99) (0.21, 4.81) (2.5, 23.95) (15.22, 5.45)

F-test∗ (100, 100) (4.62, 5.27) (4.77, 4.97) (17.29, 19.31) (4.86, 7.39)

F-test (100, 100) (4.62, 5.27) (4.77, 4.97) (17.29, 19.31) (4.86, 7.39)

AIC (2, 2) (8.28, 4.97) (4.55, 2.16) (12.63, 9.09) (1.29, 8.89)

AICc (0, 2) (-, 4.97) (-, 2.16) (-, 9.09) (-, 8.89)

BIC (36, 76) (4.48, 5.12) (4.26, 5.30) (15.7, 19.66) (4.63, 6.92)

MDL (30, 66) (4.36, 5.72) (4.88, 5.02) (14.49, 19.82) (5.50, 6.81)

MDLi (20, 60) (5.04, 5.31) (4.89, 5.45) (18.03, 18.83) (3.75, 7.33)

In every parenthesis, the first value is from the VST-based least-squares fit, and the second is given

by the generalized least-squares fit. In the pre-detection step, J = 3 is used in IUWT and the

wavelet-domain FDR is set to 10−6. The p-value for GLRT∗ and F-test∗ is α = 0.05; that for GLRT

and F-test is set to α = 0.1. 50 replications are carried out for each order-selection method and each

model fitting method. CDR equal or higher than 80% are emphasized with bold face.

Tab. 7.2: Localization performance (SNR = 10)

Order Sel. CDR% RMSEx (nm) RMSEy (nm) RMSEz (nm) PRE (A)%

GLRT∗ (36, 8) (1.68, 1.71) (1.88, 1.29) (9.47, 15.31) (5.19, 5.16)

GLRT (22, 10) (1.53, 1.53) (1.88, 1.22) (10.00, 13.72) (4.11, 6.19)

F-test∗ (100, 100) (2.23, 2.12) (2.16, 2.40) (9.07, 10.07) (6.67, 5.47)

F-test (100, 100) (2.23, 2.12) (2.16, 2.40) (9.07, 10.07) (6.67, 5.47)

AIC (28, 6) (1.57, 1.90) (2.06, 3.23) (9.74, 16.17) (4.63, 2.87)

AICc (22, 8) (1.82, 2.31) (2.21, 2.83) (9.09, 14.28) (4.37, 4.26)

BIC (58, 78) (2.29, 2.26) (2.20, 2.58) (8.35, 9.47) (6.72, 4.82)

MDL (56, 68) (2.35, 2.23) (2.09, 2.57) (8.44, 9.88) (7.31, 4.64)

MDLi (64, 66) (1.84, 2.36) (2.10, 2.44) (9.01, 9.22) (6.83, 5.30)

In every parenthesis, the first value is from the VST-based least-squares fit, and the second is given

by the generalized least-squares fit. In the pre-detection step, J = 3 is used in IUWT and the

wavelet-domain FDR is set to 10−6. The p-value for GLRT∗ and F-test∗ is α = 0.05; that for GLRT

and F-test is set to α = 0.1. 50 replications are carried out for each order-selection method and each

model fitting method. CDR equal or higher than 80% are emphasized with bold face.
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Tab. 7.3: Localization performance (SNR = 15)

Order Sel. CDR% RMSEx (nm) RMSEy (nm) RMSEz (nm) PRE (A)%

GLRT∗ (42, 24) (1.21, 1.64) (1.97, 1.48) (4.67, 4.84) (4.33, 6.98)

GLRT (34, 20) (1.28, 1.53) (2.11, 1.72) (4.83, 5.34) (4.16, 6.52)

F-test∗ (100, 100) (1.65, 1.53) (1.77, 1.82) (4.66, 5.74) (4.50, 5.54)

F-test (100, 100) (1.65, 1.53) (1.77, 1.82) (4.66, 5.74) (4.50, 5.54)

AIC (40, 14) (1.22, 1.81) (2.09, 1.88) (4.94, 5.70) (4.13, 7.34)

AICc (36, 20) (1.28, 1.73) (1.98, 1.58) (4.13, 6.20) (3.83, 7.36)

BIC (64, 82) (1.50, 1.57) (1.83, 1.70) (4.96, 5.26) (3.81, 4.92)

MDL (54, 76) (1.26, 1.56) (1.91, 1.75) (4.67, 5.41) (3.62, 4.82)

MDLi (58, 74) (1.33, 1.56) (1.84, 1.64) (5.08, 5.44) (3.76, 4.95)

In every parenthesis, the first value is from the VST-based least-squares fit, and the second is given

by the generalized least-squares fit. In the pre-detection step, J = 3 is used in IUWT and the

wavelet-domain FDR is set to 10−6. The p-value for GLRT∗ and F-test∗ is α = 0.05; that for GLRT

and F-test is set to α = 0.1. 50 replications are carried out for each order-selection method and each

model fitting method. CDR equal or higher than 80% are emphasized with bold face.

7.2.4.2 Resolving close spots

In order to test the ability of the algorithm to separate spots whose fluorescence overlaps,

we now simulate images of two spots with various distances dxy along x-axis, and SNR. By

the property that the dip between the two superimposed Airy functions at the Rayleigh

distance amounts to 73.5% of the maximum intensity, we derive the corresponding Rayleigh

distance for Gaussian approximative PSF to be dR ≈ 2.8σ1 where σ1 = [σ2
0 + σ2

xy]
1/2. We

have tested the algorithm for dxy = dR, dxy = dR/2 and dxy = dR/3. The numeric results

are shown in Tab. 7.4, where the rate of correctly resolving the two spots is provided for

each combination of SNR, fitting method and model-order selection method. We say that

the two spots are correctly detected if the algorithm outputs exactly two spots, each center

of which falls inside the neighborhood of one of the true spot centers. The neighborhood of

a spot center is defined as an ellipsoidal region, which is centered at the spot position and

whose principal lateral and axial radii are 1.96σ1 and 1.96σ2, respectively. Note that the

interval [−1.96σ, 1.96σ] corresponds to the 95% confidence interval for a normal distribution.

Several conclusions can be drawn by analyzing Tab. 7.4. First, good order-selection
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methods for super-resolution are F-test, BIC, MDL, and MDLi. F-test achieves a near

perfect detection rate for the sources at the Rayleigh distance. A resolution factor of 2 is

reliably gained, i.e. for dxy = dR/2, by F-test (α = 0.05), the generalized least-squares

fit and SNR ≥ 10, or by F-test (α = 0.1), the VST-based fit and SNR ≥ 15. Second,

VST-based fit requires in general higher SNRs than for the generalized least-squres fit to

resolve the spots. This is expected as the performance of the VST degrades for low Poisson

intensities, i.e., small SNRs, such that the asymptotic model (7.44) is no longer valid. Third,

F-test loses rapidly its sensitivity as SNR lowers or dxy decreases. For example, the tests

totally fail at dxy = dR/3. However, BIC, MDL and MDLi may remain effective (detection

rate ≈ 80% – 90%) when the resolvability of F-test drops to zero.

An example of dxy = dR/2 is given in Fig. 7.4 at SNR = 15, where the source centers

are plotted in green.

We have also evaluated the axial resolvability of the approach by simulating spots

with various axial distances dz and SNR. The corresponding Rayleigh distance is given by

dR = 2.8σ2 where σ2 = [σ2
0 + σ2

z ]
1/2. The results are shown in Tab. 7.5. Similar conclusions

as for the lateral resolution case can be drawn. Note that BIC, MDL and MDLi perform

less well than for the lateral cases.
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Tab. 7.4: Lateral resolution performance

SNR GLRT∗ GLRT F-test∗ F-test AIC AICc BIC MDL MDLi

dxy = dR

5 (32,16) (32,16) (98,100) (100,100) (28,16) (22,4) (46,76) (64,60) (62,66)

10 (50,12) (66,16) (100,100) (100,100) (52,12) (50,12) (90,80) (90,68) (90,68)

15 (68,24) (58,10) (100,100) (100,100) (64,16) (60,16) (82,92) (82,94) (82,90)

dxy = dR/2

5 (48,46) (48,30) (0,0) (0,0) (46,40) (38,44) (54,90) (62,88) (66,84)

10 (54,42) (74,28) (0,100) (0,100) (48,34) (50,40) (86,90) (84,90) (86,92)

15 (84,48) (78,50) (54,100) (98,100) (66,52) (68,54) (88,86) (88,88) (88,88)

dxy = dR/3

5 (14,32) (16,26) (0,0) (0,0) (12,22) (14,30) (6,42) (6,52) (6,42)

10 (74,54) (80,44) (0,0) (0,0) (66,58) (62,52) (44,84) (56,82) (56,88)

15 (64,44) (62,38) (0,0) (0,0) (50,42) (60,36) (84,80) (84,82) (84,82)

The percentages of correctly resolving the two spots are shown. In every parenthesis, the first value

is from the VST-based least-squares fit, and the second is given by the generalized least-squares

fit. In the pre-detection step, J = 3 is used in IUWT and the wavelet-domain FDR is set to 10−6.

The p-value for GLRT∗ and F-test∗ is α = 0.05; that for GLRT and F-test is set to α = 0.1. 50

replications are carried out for each order-selection method, each model fitting method, and each

SNR. Percentages equal or higher than 80% are emphasized with bold face.
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Fig. 7.4: Two simulated close spots separated with a lateral distance dxy = dR/2 at SNR =

15. The two sources can be reliably resolved by F-test (α = 0.05) with the generalized

least-squares fit, or by F-test (α = 0.1) with the VST-based fit. (a) the xy-plane passing

through the spot center; (b) the xy-plane as for (a) with spot positions indicated in green;

(c) the xz-plane passing through the spot center; (d) the xz-plane as for (c) with spot

positions indicated in green. The image intensities are shown in a square-root scale.
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Tab. 7.5: Axial resolution performance

SNR GLRT∗ GLRT F-test∗ F-test AIC AICc BIC MDL MDLi

dz = dR

5 (30,12) (16,10) (100,100) (100,100) (20,10) (16,4) (46,68) (38,68) (36,60)

10 (34,24) (22,18) (100,100) (100,100) (26,16) (18,16) (50,80) (44,76) (48,74)

15 (28,16) (16,10) (100,100) (100,100) (18,12) (22,10) (32,54) (34,54) (42,56)

dz = dR/2

5 (24,34) (10,24) (0,4) (0,44) (16,26) (20,30) (60,90) (54,92) (40,80)

10 (34,38) (26,36) (2,100) (54,100) (34,26) (26,28) (54,82) (52,80) (54,76)

15 (54,34) (52,32) (100,100) (100,100) (52,30) (42,32) (64,76) (68,72) (74,72)

dz = dR/3

5 (38,50) (28,42) (0,0) (0,0) (34,54) (40,40) (36,80) (50,78) (50,74)

10 (72,54) (62,52) (0,0) (0,14) (78,54) (80,52) (82,80) (76,82) (84,78)

15 (78,82) (82,74) (0,82) (0,96) (82,78) (84,72) (88,92) (88,88) (88,90)

The percentages of correctly resolving the two spots are shown. In every parenthesis, the first value

is from the VST-based least-squares fit, and the second is given by the generalized least-squares

fit. In the pre-detection step, J = 3 is used in IUWT and the wavelet-domain FDR is set to 10−6.

The p-value for GLRT∗ and F-test∗ is α = 0.05; that for GLRT and F-test is set to α = 0.1. 50

replications are carried out for each order-selection method, each model fitting method and each

SNR. Percentages equal or higher than 80% are emphasized with bold face.

7.2.5 Fast super-resolution detection

In practice, the bottom-up and top-down detections may lead to a high computational com-

plexity. One possible way to accelerate the algorithm is to consider projective models. That

is, we integrate the data (y(xk))k along parallel lines or planes to obtain lower dimensional

data (2D or 1D). Note that the projected data follow also a MPG distribution since we

sum independent MPG variables by projections. In addition, the signal model will remain

to be Gaussian mixtures as projections of a Gaussian result in low-dimensinal Gaussian

functions. Thus, we can fit the projective model into a few projections. Note that this

projection-model approach resembles that proposed in [160], where projective templates for

3D local curvilinear structures are designed and incorporated in an active contour framework

to reconstruct DNA filaments from the stereo-micrographs of Cryo-electron microscopy. In
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[160], only two projective views are available due to biophysical constraints. However in

our case as the original data are available, any number of projections can be produced in

any lower dimension. This approach accelerates significantly the detection, but at a cost of

sensibility and the resolvability. The reason is that, as most energy of a LSCM or a DSCM

PSF concentrates in a local support, the SNR of the projected data can be much lower than

that of the original data especially when the projections are applied in a large image.

Another possibility is to fit the model using only a few defocused planes as proposed

by [150]. However, this requires a more complex PSF model, e.g., a diffraction model

including aberration terms, such that the diffraction patterns change rapidly as a function

of defocus. A highly complex PSF model may have no closed forms, which could even slow

down the fitting. Another limitation is that if the defocus is large, the SNR on the planes

can be so small that we may even lose the detection of an isolated source.

7.3 Conclusion

In this chapter, we have reviewed and studied the limiting resolution of point sources us-

ing detection-theoretic, estimation-theoretic and information-theoretic methods. We pro-

posed to use the VST in the theoretical study such that asymptotically the resulting limits

have closed-forms for Poisson or MPG observations. It is then immediately clear that the

Rayleigh limit can indeed be broken as long as we have a sufficiently high SNR. Prac-

tically, we extended an existing super-resolution detection method which unites iterative

parametric model fitting and model-order selection. Experiments show that the generalized

least-squares fit and the VST-based fit combined with F-test as order selection criterion

effectively localize individual spot and close spots with overlapping fluorescence below the

Rayleigh’s limit.
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Chapter 8

Super-resolution Rod Detection

The super-resolution detection approach for spots can be well extended to detect other

objects with highly constrained shapes. Here, we will describe the detection of rod-like

objects. The application background is as follows. In the study of the bacteria Shigella

flexneri [161], we want to understand the cellular invasion process. Toward this purpose

we have to track these bacteria in microscope videos, and at the first place, we need to

detect and localize these objects in each frame. These bacteria are rod-shaped and we

will propose below an analytical model for the fluorescence distribution of a rod. Clearly,

the same detection-theoretic, estimation-theoretic, and information-theoretic frameworks

as in the case of point sources can be carried out to show that highly accurate localization

and resolution below the Rayleigh limit are possible. For example, the detection-theoretic

bounds remain the same as (7.5) and (7.9) with h being a rod profile; for another instance,

[162] derived the CRLB for localizing a line, i.e., a rod with its length tending to infinity.

Parallel to the spot case, super-resolution rod detection consists of a pre-detection

and an iterative parametric-model fitting with model-order selections. Experiments show

that the method allows to accurately localize the objects and to distinguish overlapping

segments with super-resolution. Examples of extracting fluorescent Shigella bacteria by

this approach are also shown.

8.1 Parametric Rod Model

The fluorescence distribution of a single rod is modeled by the convolution of the PSF with

a finite segment of a length L = 2l. The segment is assumed to have a Gaussian cross-

151
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section profile of which the standard deviation is denoted as σ0. σ0, which is proportional

to the diameter of the cross section, represents thus the thickness of the rod. We assume

that typical ranges of the rod length and cross-section diameter are available from prior

biophysical knowledges. Then, thanks to the Gaussian approximative PSF the analytical

rod model has a closed form and is given by

R(x, y, z) = C

∫ 1

−1
l exp

[
−(x− tl sin(φ) cos(θ))2 + (y − tl sin(φ) sin(θ))2

2σ2
1

− (z − tl cos(φ))2

2σ2
2

]
dt

=
A

2
exp

[
−σ

2
2(sin(θ) sin(φ)x− cos(θ) sin(φ)y)2

2σ2
1(cos(φ)2σ2

1 + σ2
2 sin(φ)2)

−x
2 cos(φ)2 + y2 cos(φ)2 + z2 sin(φ)2 − cos(θ) sin(2φ)xz − sin(θ) sin(2φ)yz

2(cos(φ)2σ2
1 + σ2

2 sin(φ)2)

]

·
(

erf

[√
2(lσ2

2 sin(φ)2 + l cos(φ)2σ2
1 + cos(θ) sin(φ)σ2

2x+ sin(θ) sin(φ)σ2
2y + cos(φ)σ2

1z)

2σ1σ2

√
cos(φ)2σ2

1 + σ2
2 sin(φ)2

]

+ erf

[√
2(lσ2

2 sin(φ)2 + l cos(φ)2σ2
1 − cos(θ) sin(φ)σ2

2x− sin(θ) sin(φ)σ2
2y − cos(φ)σ2

1z)

2σ1σ2

√
cos(φ)2σ2

1 + σ2
2 sin(φ)2

])

·
(

erf

[ √
2l(σ2

2 sin(φ)2 + σ2
1 cos(φ)2)

2σ1σ2

√
cos(φ)2σ2

1 + σ2
2 sin(φ)2

])−1

(8.1)

where A the amplitude, C a normalizing constant so that R has a peak value of A, φ and

θ are respectively the angle formed by the rod and z-axis and that formed by the rod and

x-axis (see Fig. 8.1), σ1 = [σ2
xy + σ2

0]
1/2, σ1 = [σ2

z +σ2
0 ]

1/2, and erf(x) := 2Φ(
√

2x)− 1 is the

error function.

x
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z

O

Fig. 8.1: The coordinate system for a rod.
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8.1.1 Asymptotic models

It can be verified that as l → 0, the rod model tends to the spot model (Gaussian) as

expected, i.e.,

R(x, y, z)
l→0−→ A exp

[
−x

2 + y2

2σ2
1

− z2

2σ2
2

]
(8.2)

As l → ∞, the error functions in (8.1) tend to 1, and thus

R(x, y, z)
l→∞−→ A exp

[
−σ

2
2(sin(θ) sin(φ)x− cos(θ) sin(φ)y)2

2σ2
1(cos(φ)2σ2

1 + σ2
2 sin(φ)2)

−x
2 cos(φ)2 + y2 cos(φ)2 + z2 sin(φ)2 − cos(θ) sin(2φ)xz − sin(θ) sin(2φ)yz

2(cos(φ)2σ2
1 + σ2

2 sin(φ)2)

]
(8.3)

This is the fluorescence distribution for an infinite-length line with a Gaussian cross section.

8.2 Rod Pre-detection

For Gaussian data, we follow the idea of spot pre-detection proposed in [38]. We first

perform a matched filtering by convolution of the image y with the Gaussian filter g ap-

proximating the microscope PSF to increase the SNR. Then, a pixelic score is constructed

for each local maximum in the pre-filtered image as the product of the local average intensity

IM with the mean curvature IK , i.e.,

S(y) := IK(y) · IM (y) = (△ ⋆ g ⋆ y) · (A ⋆ g ⋆ y) (8.4)

where △ is a convolution kernel approximating the Laplacian operator, and A is the 3 × 3

constant averaging matrix. We point out that the Gaussian curvature κ has been used

for computing the score of spots [38], but this is less adapted for rods, because a point on

a segment has both a large and a small principal curvatures, yielding lower values of the

product for κ. Both for this reason and for its linearity, we prefer the mean curvature IK .

This score was found to be highly discriminating for rods embedded in very noisy images.

For an image of Gaussian white noise, IK and IM are two correlated normal vari-

ables thank to the linearity of the convolution operators. We found that the score S is

asymptotically normally distributed as stated in Proposition 9.



154 Chapter 8: Super-resolution Rod Detection

Proposition 9 If X = (Xi)i∈Zd are i.i.d. normal variables where Xi ∼ N (µ, σ2), and H

is normalized ‖H‖1 = 1, then we have that S(X) ∼ AN (µS , σ
2
S), as µ

σ‖H‖2
→ ∞, where

µS = σ2〈H,L〉

σ2
S = σ2µ2‖L‖2

2 + σ4(〈H,L〉2 + ‖H‖2
2‖L‖2

2)

Here, L = △ ⋆ g is the Laplacian of Gaussian filter, and H = A ⋆ g. Proposition 9

can be proved using the asymptotic-normality result of the product of two normal vari-

ables [163][164]. The distribution of S being known, we can threshold the score S with a

control on the false positive rate.

In order to evaluate µS and σS , we require the image background µ and the Gaussian

noise variance σ2. Here, we estimate µ̂ from the median of y and σ̂ from the median absolute

deviation estimation [64] of the Daubechies D8 wavelet coefficients at the finest scale. To

each of M0 detected pixels (xi,0, yi,0, zi,0)i=1..M0, we associate the orientation angles φi,0 and

θi,0 computed from the eigenvector of the Hessian corresponding to the lowest eigenvalue,

an amplitude Ai,0 = IM (xi,0, yi,0, zi,0) − µ̂, and an initial assumed length Li,0 = L0.

For MPG data, we apply the same MS-VST+IUWT detection as in the spot case.

The image is reconstructed from the significant wavelet coefficients with the coarsest ap-

proximation band set to zero. We retain the positive part and extract all local maxima.

For each local maximum, we compute the same initial rod parameters as for the Gaussian

case.

8.3 Rod Mixture Model Fitting

For Gaussian data, the image model is given by y(xn) = f(xn; ΘK)+w(xn) where w(xn) ∼
N (0, σ2). For MPG data, the image model is provided by (7.42) with f(xn; ΘK) being the

underlying Poisson intensity. In both cases, f(xn; ΘK) is modeled by a mixture of rods, i.e.,

f(xn; ΘK) = b+
K∑

i=1

AiRi(xn − pi) (8.5)

where Ri is given by (8.1), (pi)i are the centroids of rods, and the parameter set is given

by ΘK := {(pi)i, (Ai)i, (φi)i, (θi)i, (li)i, σ0, b} for i = 1, . . . ,K. Now, the same bottom-up

and top-down scheme as in the spot case can be carried out in order to localize an unknown

number of rods with super-resolution.
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8.4 Experiments

We will evaluate the performance of the algorithm by series of experiments on Gaussian

data. For our simulations, the images are generated from the model (8.5) with the following

parameters: σ0 = 0.08µm, φ = θ = π/4, L = 2µm, readout noise mean µ = 5 and standard

deviation σ = 2. The image size, pixel size, the standard deviations of Gaussian PSF are

the same as described in Section 7.2.4. Source amplitude A is varied to produce images at

various SNR, defined to be SNR = A/σ.

8.4.1 Localizing an individual rod

We have tested our method for detecting a single rod. Example images of SNR ∈ [5, 15]

are shown in Fig. 8.2. For each SNR, we have run 20 replications of the detection with

least-squares fitting and F-test as model selection method. Numerical results are shown in

Tab. 8.1 where we present the correct detection rate, the RMSEs on the coordinates of the

rod center, φ, θ, and the PREs on the length L and the amplitude A.

As in the case of spot detection, F-test with least-squares fit reliably detects exactly

one rod underlying the robustness of the algorithm to noise. It can also be seen that

the localization accuracy is within tens of nanometers only for even the lowest SNR. The

orientation is estimated with an error around 1 degree. The accuracy of rod length and

intensity estimation is also very high, with errors of a few percent only.

Tab. 8.1: Localization performance (Rod)

Order Sel. CDR% RMSEx

(nm)

RMSEy

(nm)

RMSEz

(nm)

RMSEφ

(deg.)

RMSEθ

(deg.)

PRE

(L)%

PRE

(A)%

SNR = 5

F-test 100 9.77 9.37 17.75 1.25 0.73 2.73 2.61

SNR = 10

F-test 100 6.36 4.75 8.80 0.42 0.31 0.94 1.08

SNR = 15

F-test 100 3.20 3.27 5.42 0.36 0.25 0.77 0.76

In the pre-detection step, the global false positive rate is set to 10−6 using Bonferroni correction. The

p-value of F-test is α = 0.05 (α = 0.1 is also tested and leads to the same results). 20 replications

are carried out for each SNR. CDR equal or higher than 80% are emphasized with bold face.
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Fig. 8.2: Simulated individual rod at different SNRs. (a) slice z = 2.4µm, SNR = 5; (b)

slice z = 3µm, SNR = 5; (c) slice z = 3.6µm, SNR = 5; (d) slice z = 2.4µm, SNR = 10; (e)

slice z = 2.4µm, SNR = 10; (f) slice z = 2.4µm, SNR = 10; (g) slice z = 2.4µm, SNR = 15;

(h) slice z = 2.4µm, SNR = 15; (i) slice z = 2.4µm, SNR = 15.
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8.4.2 Resolving close rods

We test the detection approach in the images where two close rods are simulated at various

SNRs. To derive the corresponding Rayleigh limit for the rod case, we adopt the same

principle described in Section 7.2.4.2. In our case, the lateral Rayleigh distance is given

by dR ≈ 0.49µm, and the axial one equals dR ≈ 1.12µm. Our model-order selection

method is set to F-test. The correct resolving rates are presented in Tab. 8.2 for dxy = dR,

dxy = dR/2 and dxy = dR/3. The numerical results for axial resolution performance are

shown in Tab. 8.3. It can be seen that as the SNR increases, a resolution beyond the

Rayleigh limit can be gained.

Tab. 8.2: Lateral resolution performance (Rods)

dxy = dR dxy = dR/2 dxy = dR/3

SNR F-test∗ F-test F-test∗ F-test F-test∗ F-test

5 90 90 0 0 0 0

10 100 100 0 0 0 0

15 100 100 40 80 0 0

20 100 100 100 100 0 0

The percentages of correctly resolving the two rods are shown. In the pre-detection step, the global

false positive rate is set to 10−6 using Bonferroni correction. The p-value of F-test∗ is α = 0.05; that

for F-test is set to α = 0.1. 10 replications are carried out for each order-selection method and each

SNR. Percentages equal or higher than 80% are emphasized with bold face.

Tab. 8.3: Axial resolution performance (Rods)

dz = dR dz = dR/2 dz = dR/3

SNR F-test∗ F-test F-test∗ F-test F-test∗ F-test

5 80 80 0 0 0 0

10 90 90 0 60 0 0

15 100 90 100 100 0 0

20 100 100 100 100 0 0

The percentages of correctly resolving the two rods are shown. In the pre-detection step, the global

false positive rate is set to 10−6 using Bonferroni correction. The p-value of F-test∗ is α = 0.05; that

for F-test is set to α = 0.1. 10 replications are carried out for each order-selection method and each

SNR. Percentages equal or higher than 80% are emphasized with bold face.
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8.4.3 Detecting Shigella flexneri

Finally, two examples of detecting Shigella bacilli [161] in real images are shown in Fig. 8.3

and Fig. 8.4. The images of bacilli are obtained by a spinning-disc confocal system (Ultra-

View RS; Perkin-Elmer) with an Orca D-ER camera and a 63× Apochromat 1.4 objective.

The pixel size is set to 0.205µm× 0.205µm× 0.2µm. The acquisition of these images was

ill-conditioned: 1) the system seems to be not well adjusted or have strong aberrations as

its PSF size was found to be significantly larger than a theoretical DSCM PSF. For this

reason, instead of using the Gaussian parameters shown in chapter 3, we have to empirically

adjust their values to be σxy = 0.2µm and σz = 0.5µm; 2) the noise distribution is found to

be approximately symmetric, and thus we have adopted a Gaussian assumption. This could

be due to a run-down camera that produces high dominant readout noises. Despite these

imperfect conditions, our algorithm still succeeded in detecting the bacilli in the images. In

each figure, we show the image model generated from the rod parameters of the detections.

In Fig. 8.3, the three bacteria are well detected. The two close rods at the bottom of the

image hardly distinguishable by eyes are also precisely identified. The existence of two rods

at this place is confirmed by our later video frames where the two bacteria are eventually

well separated. This demonstrates the super-resolution ability of our method.

Another example is given by Fig. 8.4 where the three bacilli form a junction in the

3D space. Our approach has resolved this complex spatial configuration by identifying the

three bacilli.

8.5 Conclusion

In this chapter, a rod parametric model has been constructed. Then, we have extended

the super-resolution spot detection framework to detect an unknown number of rod-like

objects. The experiments show that the method allows to accurately localize the objects

and to distinguish overlapping segments with super-resolution. We have also applied this

approach to extract Shigella bacilli, where two examples are provided demonstrating the

effectiveness of the method in resolving close bacteria and complexly configured bacteria.
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Fig. 8.3: Detection of Shigella bacilli. Three bacilli exist in the image. Two of them at the bottom

of the image are very close that are hardly distinguishable by eyes. The algorithm succeeded in

identifying the three rods. In the pre-detection step, the global false positive rate is set to 10−6

using Bonferroni correction. F-test as model-selection method is used with α = 0.05. Observed slice

at (a) z = 0.2µm; (b) z = 0.8µm; (c) z = 1.4µm; Model generated from the rod parameters of the

detections at (d) z = 0.2µm; (e) z = 0.8µm; (f) z = 1.4µm; (g) 3D reconstruction of the detected

rods.
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Fig. 8.4: Detection of Shigella bacilli. Three bacilli are in the image forming a junction in the 3D

space. The algorithm succeeded in resolving the complex spatial configuration by identifying the

three rods. In the pre-detection step, the global false positive rate is set to 10−6 using Bonferroni

correction. F-test as model-selection method is used with α = 0.05. Observed slice at (a) z = 2.8µm;

(b) z = 3.8µm; (c) z = 4.8µm; Model generated from the rod parameters of the detections at (d)

z = 2.8µm; (e) z = 3.8µm; (f) z = 4.8µm; (g) 3D reconstruction of the detected rods.



Conclusion and Perspectives

The first part of the thesis has discussed the modeling of the optical systems of fluorescence

microscopes. We have comprehensively studied the least squares Gaussian approximations

of the diffraction-limited 2D/3D paraxial/non-paraxial PSFs of WFFM, LSCM and DSCM

described using the Debye diffraction integrals. Optimal Gaussian parameters are derived

for the 2D paraxial WFFM PSF, under both the L∞ and L1 normalizations. For the

other PSFs, with the L∞ normalization, near-optimal parameters in explicit forms are

derived using Maclaurin series matching. We found that the 2D approximations are all

very accurate; no accurate Gaussian approximation exists for 3D WFFM PSFs; with typical

pinhole sizes, the 3D approximations are accurate for DSCM and nearly perfect for LSCM.

These Gaussian approximative PSF models allow fast computation and greatly simplify the

modeling of biological objects under these microscopes.

This work can be extended along several lines. First, in order to treat more ac-

curately the non-paraxial diffraction, the approximations can be studied using a vectorial

Debye diffraction model instead of the current scalar one. The only detail is that, as the

PSF is no longer circularly symmetric about the z-axis in general except for a circularly

polarized laser [11], the standard deviations on x-axis and y-axis of the Gaussian should be

different. Second, we could also consider the approximation in the presence of aberrations,

e.g., spherical aberration. This is, however, not trivial as the PSF looses the mirror sym-

metry about the xy-plane. Thereby, approximations with functions other than Gaussians

may be more appropriate.

The second problem we addressed is the fluorescence image denoising. The images

produced by LSCM and DSCM are of either Poisson or MPG statistics. Concerning the

Poisson case, we have proposed two approaches for removing the noise. One method relies

on biorthogonal Haar-domain hypothesis tests, which is suitable for fast estimating smooth

161
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intensities from large datasets. Our second method makes use of a well designed VST

allowing to Gaussianize and stabilize a filtered Poisson process. This VST is then combined

with wavelets, ridgelets and curvelets yielding MS-VSTs. We have shown the MS-VST

approach to be very effective in recovering important structures of various (isotropic, line-

like and curvilinear) shapes within (very) low-count images. This MS-VST method has also

been extended to remove MPG noise and to extract fluorescent spots embedded in MPG

noisy data.

Concerning the future work, first, the curvelet denoising could be improved if the

VST is applied after the Radon transform in the local ridgelet transform step, rather than

on the wavelet coefficients as proposed here. This is however not trivial and requires fur-

ther investigations. Second, new multiscale transforms have been recently proposed such

as the fast curvelet transform [165] and the wave atom transform [166], and it would also

be very interesting to investigate how our MS-VST could be linked to them. Third, here

we have considered the denoising with a single multiscale transform only. If the data con-

tains features with different morphologies, it could be better to introduce several multiscale

transforms in the denoising algorithm. This could be done in a very similar way as in the

Gaussian noise case [54]. Finally, it is worth investigating how this MS-VST framework can

be applied in deconvolution problems.

The third part of our work has focused on super-resolution object detection. We have

reviewed and extended the results of resolution limits for point-like sources under detection-

theoretic, estimation-theoretic and information-theoretic points of view. In particular, we

propose to apply the VST to study the limiting resolution with Poisson or MPG data,

leading to asymptotically consistent results with closed-form expressions. We have seen

that it is theoretically possible to localize highly precisely an individual point source and

to identify close sources with a separation smaller than Rayleigh’s distance, provided that

we have a sufficient SNR. In practice, a general framework has also been proposed based

on an existing super-resolution approach to localize an unknown number of point-like or

rod-like sources. This method allows not only to localize sources having complex spatial

configurations, but also to detect close objects with super-resolution.

Currently, this proposed approach presents two limitations. First, the image model

is considered as a mixture of the sources of interest plus a uniform background. In practice,

the background can be highly complex which may contain other biological structures such

as membranes, cell kernels, actin filaments, etc. For Gaussian observations with piecewise
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regular backgrounds, we may consider the model fitting in the wavelet domain (or some

band-pass transformed domain). The wavelet vanishing moments automatically cancel out

most regular background such that we are brought to the uniform background case. For

MPG observations, a VST preprocessing may be necessary to obtain additive Gaussian

noise before applying the wavelet fit. The wavelet (or some band-pass filter) should be

well designed such that we can obtain close-form expressions for the source profiles in the

transform domain. For highly structured background, the detection could be achieved

by combining the source models with the source separation framework [167]. Second, the

iterative model fitting and model selection is a time consuming procedure. Projective model

fitting and fitting with a few defocused planes may accelerate the algorithm but both present

some limitations. Hence, fast super-resolution detection requires more investigations in our

future work.
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Appendix A

Proofs of the Results

A.1 Proof of Lemma 1

proof: On one hand, as U,U ′ ∈ C2(W ), the divergence theorem tells us
∫

W
U△U ′ − U ′△U dW =

∫

W
∇ · (U∇U ′ − U ′∇U) dW

= −
∫

S
U
∂U ′

∂n
− U ′∂U

∂n
dS (A.1)

On the other hand, as U and U ′ satisfy (1.3), we have
∫

W
U△U ′ − U ′△U dW = 0 (A.2)

This shows (1.4).

A.2 Proof of Theorem 1

proof: The auxiliary function U ′ has a singularity at s = 0. Thus, we will surround P by

a small sphere S′ of radius ǫ (see Fig. A.1) and we have by Lemma 1 that
∫

S∪S′

U
∂

∂n

(
eiks

s

)
− eiks

s

∂U

∂n
dS = 0 (A.3)

Hence,
∫

S
U
∂

∂n

(
eiks

s

)
− eiks

s

∂U

∂n
dS = −

∫

S′

U
eiks

s

(
ik − 1

s

)
− eiks

s

∂U

∂n
dS′

= −
∫

Ω

[
U
eikǫ

ǫ

(
ik − 1

ǫ

)
− eikǫ

ǫ

∂U

∂n

]
ǫ2 dΩ

= 4πU(P ), ǫ→ 0
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P

n

n

Fig. A.1: Proof of the integral theorem of Helmholtz and Kirchhoff

where dΩ is an element of the solid angle. Then, (1.5) follows.

A.3 Proof of Theorem 2

proof: By Theorem 1, we have

U(P ) =
1

4π

∫

A∪B∪C
U
∂

∂n

(
eiks

s

)
− eiks

s

∂U

∂n
dS

The integral on B equals zero by the hypothesis. Let us verify that the integral on C vanishes

as R→ +∞. As eiks

s = eikR

R on C, we have that

1

4π

∫

C
U
∂

∂n

(
eikR

R

)
− eikR

R

∂U

∂n
dS = − 1

4π

eikR

R

∫

C
U

(
ik − 1

R

)
+
∂U

∂n
dS

= − 1

4π
eikR

(∫

Ω
R

[
ikU +

∂U

∂n

]
dΩ −

∫

Ω
U dΩ

)
R→+∞−→ 0

where Ω is the solid angle subtended by C at P . The limit zero is obtained by the hypothesis

on C and the fact that U is vanishing as R tends to infinity.

Now the original integral involves only the surface A. We can verify that

∂

∂n

(
eiks

s

)
=
eiks

s

(
ik − 1

s

)
cos(n, s)

and
∂U

∂n
=
e−ikf

f

(
ik +

1

f

)
A+

e−ikf

f

∂A

∂n
=
e−ikf

f

(
ik +

1

f

)
A

Now, we can rewrite the original integral as

U(P ) =
1

4π

∫

A

eik(s−f)

sf

[
A

(
ik − 1

s

)
cos(n, s) −A

(
ik +

1

f

)]
dS

As f, s≫ λ, we have that ik − 1
s ≈ ik, and ik − 1

f ≈ ik. Then, (1.16) follows.
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A.4 Proof of Proposition 1

proof: The sufficiency is obvious and we prove the necessity as follows. Let us write

µ = (µxy, µz)
T , Σ =


 Σ11 Σ13

ΣT
13 σ33




where µxy = (µx, µy)
T , and Σ11 and Σ13 are matrices of sizes 2 × 2 and 2 × 1 respectively.

Then the conditional distribution of z given c := (x, y)T = (x0, y0)
T is an 1D Gaussian g1

with the mean and the variance respectively as

µz|xy = µz + ΣT
13Σ

−1
11 (c− µxy), Σz|xy = σ33 − ΣT

13Σ
−1
11 Σ13

Note that Σz|xy is given by the Schur complement of Σ with respect to Σ11. Since gΣ has

mirror symmetry about the xy-plane, g1 is centered at z = 0. This is true for any c, which

shows that µz = 0 and Σ13 = 0. Similarly, we can write out the conditional distribution

of (x, y) given z = z0, which is a 2D Gaussian. Then, using the fact that Σ is positive

definite and the circular symmetry of gΣ, it can be easily shown that µxy = 0 and that Σ11

is diagonal with σ11 = σ22.

A.5 Proofs of Proposition 2 and Proposition 3

We recall the expressions of the Airy function h and the Gaussian function gσ:

h(ρ) =

(
2
J1(cρ)

cρ

)2

and gσ(ρ) = exp

(
− ρ2

2σ2

)

where c = kemNA. We can rewrite the objective function to minimize by including the

constraint of Lp normalization for 1 ≤ p ≤ ∞,

Ep(σ) :=

∥∥∥∥
h

‖h‖p
− gσ

‖gσ‖p

∥∥∥∥
2

2

In the following, In denotes the n-th order modified Bessel functions of the first kind.

proof: We will only prove the case p = 1, as the proof for the case p = ∞ is completely

similar.

As ‖h‖1 = 4π
c2

(cf. Ref. [168]), we have (the calculus details are in the proof of

Proposition 4):

∂E1

∂σ
(σ) =

3ec
2σ2 − 4I0(c

2σ2) − 8I1(c
2σ2)

2πσ3ec
2σ2 (A.4)
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We define the numerator of (A.4) as f(u) := 3eu − 4I0(u) − 8I1(u) where u = c2σ2. Then

we have, on one hand, f(u) < 0 in a right neighborhood of the origin; on the other hand,

f(u) → +∞ as u→ +∞. Therefore, there must exist at least one u∗ such that f(u∗) = 0.

We will prove the uniqueness of u∗. The series expansion of f ′′(u) is given by:

f ′′(u) = 1 +
∞∑

k=1

(k + 1)(k + 2)ck · uk

ck =





3
(2n)! − 4

22n(n!)2
k = 2n− 2

3
(2n+1)! − 4

22nn!(n+1)!
k = 2n− 1

n = 1, 2, . . .

It can be shown from induction that ck ≥ 0, so f ′′(u) > 0 for u ≥ 0. This strict convexity

of f on [0,+∞) together with the fact that f(0) = −1 < 0 ensures the uniqueness of u∗.

We have thus f(u) < 0 on (0, u∗) and f(u) > 0 on (u∗,+∞). Numerically, u∗ ≈
1.9116. The proof is completed by noting the positivity of the denominator of equation

(A.4).

A.6 Proof of Proposition 4

proof: The case p = ∞ is proven in Ref. [169]. For 1 ≤ p < ∞, note that ‖gσ‖p =

(2π)
1
pσ

2
p p

− 1
p , and ‖h‖p is a constant independent of σ. Then, we differentiate the objective

function with respect to σ, and for σ > 0 the differentiate operator and the integral can be

shown to be interchangeable:

d

dσ

∥∥∥∥
h

‖h‖p
− gσ

‖gσ‖p

∥∥∥∥
2

2

= 2π

∫ ∞

0
ρ
d

dσ

(
h(ρ)

‖h‖p
− gσ(ρ)

‖gσ‖p

)2

dρ

= 4π
( p

2π

) 1
p

(T0 + T1 + T2) (A.5)

where

T0 =
( p

2π

) 1
p
σ
− 4

p
−1
∫ ∞

0
exp

(
−ρ

2

σ2

)[
σ−2ρ2 − 2

p

]
ρ dρ =

( p

2π

) 1
p p− 2

2p
σ

1− 4
p

T1 =
8σ

− 2
p
−1

pc2‖h‖p

∫ ∞

0
J2

1 (cρ) exp

(
− ρ2

2σ2

)
ρ−1 dρ =

4σ
− 2

p
+1

p‖h‖p
· 1 − exp(−c2σ2)[I0(c

2σ2) + I1(c
2σ2)]

c2σ2

T2 = −4σ
− 2

p
−3

‖h‖pc2
∫ ∞

0
J2

1 (cρ) exp

(
− ρ2

2σ2

)
ρ dρ = −4σ

− 2
p
−1

‖h‖pc2
exp(−c2σ2)I1(c

2σ2)

The results of the integrals T1 and T2 are taken from Ref. [168]. Finally, the equation (3.17)

is obtained by setting (A.5) to zero.
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A.7 List of Maclaurin Expansions of the PSFs

To simplify the expressions, we define the intensity distributions given by the paraxial and

non-paraxial Debye integrals i.e. hp and hnp, and the Gaussian function gσρ,σz as follows.

hp(x, y, z;λ) :=

∣∣∣∣
∫ 1

0
J0(kt

√
x2 + y2 sinα)e−

i
2
kzt2 sin2 αt dt

∣∣∣∣
2

hnp(x, y, z;λ) :=

∣∣∣∣
∫ α

0

√
cos θJ0(k

√
x2 + y2 sin θ)eikz cos θ sin θ dθ

∣∣∣∣
2

gσρ,σz(x, y, z) := exp

(
−x

2 + y2

2σ2
ρ

− z2

2σ2
z

)

where the wavenumber in the object space k = n2π
λ . The excitation and emission wavenum-

bers are denoted as kex = 2π
λex

and kem = 2π
λem

, respectively. We further denote x :=

(x, y, z)T .

Below shows the second-order Maclaurin expansion of the 3D separable Gaussian

function:

gσρ,σz(x, y, z) = 1 − 1

2σ2
ρ

(x2 + y2) − 1

2σ2
z

z2 + o(‖x‖2) (A.6)

The expansions of the 3D paraxial and non-paraxial WFFM PSFs are given by:

4hp(x, y, z;λem) = 1 − k2
emNA2

4
(x2 + y2) − k2

emNA2 sin2 α

48
z2 + o(‖x‖2) (A.7)

9

4(1 − cos
3
2 α)2

hnp(x, y, z;λem) = 1 − n2k2
em(4 − 7 cos

3
2 α+ 3 cos

7
2 α)

14(1 − cos
3
2 α)

(x2 + y2)

−
3n2k2

em

(
4 + 4 cos5 α− 25 cos

7
2 α+ 42 cos

5
2 α− 25 cos

3
2 α
)

175(1 − cos
3
2 α)2

z2 + o(‖x‖2) (A.8)

By denoting c1 := kexrNA and c2 := kemrNA, the expansion of the 3D paraxial LSCM PSF

is given by:

4k2
emNA2

π[1 − J2
0 (c2) − J2

1 (c2)]
hp(x, y, z;λex)

∫

t21+t
2
2≤r2

hp(x− t1, y − t2, z;λem) dt1dt2

= 1 − 1

4

[
c21
r2

+
4c2J0(c2)J1(c2) − 8J2

1 (c2)

r2[J2
0 (c2) + J2

1 (c2) − 1]

]
(x2 + y2)

− 1

48

[
c21NA2

r2n2
− 48c22[J

2
0 (c2) + J2

1 (c2)] − 192J2
1 (c2)

n2k2
emr

4[J2
0 (c2) + J2

1 (c2) − 1]

]
z2 + o(‖x‖2) (A.9)

If the excitation PSF and the emission PSF are modeled by Gaussian functions gσex,ρ,σex,z
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and gσem,ρ,σem,z , respectively, the expansion of the 3D LSCM PSF is given by:

exp
(

r2

2σ2
em,ρ

)

2πσ2
em,ρ

[
exp

(
r2

2σ2
em,ρ

)
− 1
]gσex,ρ,σex,z(x, y, z)

∫

t21+t
2
2≤r2

gσem,ρ,σem,z(x− t1, y − t2, z) dt1dt2

= 1 − 1

4

2σ4
em,ρ

[
exp

(
r2

2σ2
em,ρ

)
− 1
]

+ r2σ2
ex,ρ

σ2
ex,ρσ

4
em,ρ

[
exp

(
r2

2σ2
em,ρ

)
− 1
] (x2 + y2)

−1

2

σ2
ex,z + σ2

em,z

σ2
ex,zσ

2
em,z

z2 + o(‖x‖2) (A.10)

A.8 Proof of Proposition 5

proof: We note that

pH = Pr(dhj ≥ 2−cjk0|H0) =
∑

k≥k0
e−λjIk(λj) =

∑

k≤−k0
e−λjI|k|(λj)

where k0 ≥ 1. The p-value of dBH is given by

pBH = Pr(X1 −X2 + 8(X3 −X4) ≥ ⌈8k0/r⌉|H0)

=
∑

k∈Z

Pr(X3 −X4 = k|H0)

∞∑

n=⌈8k0/r⌉
Pr(X1 −X2 = n− 8k|H0)

where X1,2 ∼ P(λj), X3,4 ∼ P(λj/2), and (Xi)i are independent. Now we have,

pBH =
∑

k≥k0
Pr(X3 −X4 = k|H0) ·

∞∑

n=⌈8k0/r⌉
Pr(X1 −X2 = n− 8k|H0) + Pr(X1 −X2 = n+ 8k|H0)

+
∑

|k|<k0
Pr(X3 −X4 = k|H0)

∞∑

n=⌈8k0/r⌉
Pr(X1 −X2 = n− 8k|H0) (A.11)

≤ pH +
∑

|k|<k0
e−λjI|k|(λj)

∞∑

n=⌈8k0/r⌉
e−2λjI|n−8k|(2λj)

︸ ︷︷ ︸
T

To bound T , we use the identity [170] ex = I0(x) + 2
∑∞

n=1 In(x). As r < 1, we have

T ≤ e−2λj
∑

n≥9

In(2λj) =
1

2

[
1 − e−2λj

(
I0(2λj) + 2

8∑

m=1

Im(2λj)

)]
=: A(λj)

Thus, pBH ≤ pH +A(λj)(1 − 2pH). As λ→ 0+, we have that A(λj) = 29j−7

2835 λ
9 + o(λ9).
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The same arguments can be carried out to bound pBH in multi-dimensional cases. As an

example, let us consider 2D data. A 2D wavelet transform will produce bands of horizontal,

vertical and diagonal detail coefficients, i.e., dj;H , dj;V , and dj;D. For horizontal and vertical

coefficients, we have that pBH ≤ pH + A(λj)(1 − 2pH), where λj := 4jλ. For diagonal

coefficients, it can be shown that pBH ≤ pH +B(λj)(1 − 2pH), where

B(λj) :=
1

2

[
1 −

64∑

n=−64

∞∑

k=−∞
e−8λjI|k|(4λj)I|n−8k|(4λj)

]
(A.12)

To see the behavior of B(λj) as the intensity becomes small, we note B(λj) = BK(λj)+ ǫK .

Here, BK is given by (A.12) with k ranging from −K to K, and ǫK is the residual which

can be made arbitrary small as K increases. Then, we have for all K ≥ 8 that BK(λj) =

8
567λ

9
j+o(λ

9
j ). Clearly, this procedure can be continued for higher dimensional cases (q > 2).

A.9 Proof of Proposition 6

proof: The facts that G(mj) = zα/2, zα/2 > 0, 2f − 1 ≥ 0, mj > 0 and λj ≥ 0 show (5.27).

Next, when the equality in (5.27) holds, we have:

G(mj) =

√
z2
α/2 +

λj
2mj

(z2
α/2 + 1) −

√
λj

2mj
(z2
α/2 + 1) ≤ zα/2

The existence and uniqueness of the feasible solution follow from the fact that G is a strictly

increasing function under (5.27), and that G(mj) → +∞ as mj → +∞.

A.10 Proof of Lemma 2

We first prove the following lemma.

Lemma 4 (Filtered MPG process with a high intensity) Suppose a filtered MPG pro-

cess Y :=
∑

i h[i]Xi, where Xi := Ui + Vi, Ui ∼ P(λ), Vi ∼ N (µ, σ2) and all Ui and Vi are

mutually independent. Assuming c ∈ R, τ1 <∞, τ2 < +∞ and ‖h‖3 < +∞, we have:

√
τ2λ

(
Y + c

τ2λ
− τ1
τ2

)
D−→

λ→+∞
N (0, 1) (A.13)
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proof: The characteristic function of the LHS of (A.13) is:

E

[
exp

(
jt

∑
i h[i](Ui + Vi) + c− τ1λ√

τ2λ

)]

= exp

[
jt

(
c√
τ2λ

−
√
λ
τ1√
τ2

)]
· Πi exp

[
λ

(
exp

[
j
h[i]t√
τ2λ

]
− 1

)]
exp

[
jµ

h[i]t√
τ2λ

− 1

2
σ2h[i]

2t2

τ2λ

]

= exp

[
jt(c+ µτ1)√

τ2λ
− t2σ2

2λ
− t2

2

]
· exp


λ
∑

i

∑

k≥3

jk

k!

h[i]ktk

(τ2λ)k/2


 λ→+∞−→ e−

1
2
t2 (∀t ∈ R)

Indeed, for any t 6= 0, by ‖h‖3 < +∞, we have:

λ

∣∣∣∣∣∣
∑

i

∑

k≥3

jk

k!

h[i]ktk

(τ2λ)k/2

∣∣∣∣∣∣
≤ λ

∑

i

∑

k≥3

1

k!

|h[i]t|k
(τ2λ)k/2

= λ
∑

i

(
exp

[ |h[i]t|√
τ2λ

]
− 1 − |h[i]t|√

τ2λ
− |h[i]t|2

2τ2λ

)

=
|t|3

3!τ
3/2
2 λ1/2

∑

i

|h[i]|3 exp

[ |h[i]|√
τ2λ

ξ

]
λ→+∞−→ 0

where ξ ∈ (0, |t|). The case of t = 0 is trivial. We conclude by applying Lévy’s continuity

theorem.

Now, we prove Lemma 2.

proof: We define the function f(x) := sgn(x)
√
|x|. Since τ1 6= 0, we have f ′(τ1/τ2) =

√
τ2/(2

√
|τ1|). By the result of Lemma 4 and by setting µ = σ = 0, we obtain the desired

result by applying the Delta-method with the function f :

√
τ2λ

[
f

(
Y + c

τ2λ

)
− f

(
τ1
τ2

)]
= sgn(Y + c)

√
|Y + c| − sgn(τ1)

√
|τ1|λ D→ N

(
0,

τ2
4|τ1|

)

A.11 Proof of Proposition 7

The proposition will be proved in four stages.

A.11.1 Proof – stage I

Expand T (Y ) in the neighborhood of Y = µY , we obtain

T (Y ) = b
√
Y + c = b

√
µY + c+ b

1

2

Y − µY√
µY + c

− b
(Y − µY )2

8(µY + c)3/2
+ · · · +Rs (A.14)
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where the Lagrangian form of the remainder Rs is given by

Rs := b
(−1)s−1(2s− 3)!!

2ss!

(Y − µY )s

(ξ + c)s−1/2
(s > 1) (A.15)

with ξ strictly between µY and Y . The following lemma gives an asymptotic bound on the

expectation of the remainder Rs. The proof is provided in the following sections A.11.2 and

A.11.3.

Lemma 5 (Asymptotic bound of E [|Rs|] with a high intensity) Consider Y :=
∑

i h[i]Xi

a filtered Poisson process where h is a nonnegative FIR filter with τ1 > 0. If s > 1 and

c > 0, then E [|Rs|] = Oλ→+∞(λ−
s−1
2 ).

A.11.2 Proof – stage II

First, let us recall the Cramér-Chernoff inequality [171].

Lemma 6 (Cramér-Chernoff) Let (Xi)1≤i≤n be i.i.d. real random variables. Consider

the sum Sn :=
∑n

i=1Xi. Let M(t) := E
[
etX1

]
be the moment generating function of X1

and define IX(x) := supt∈R(tx− logM(t)) for x ∈ R (IX is thus [0,+∞] valued). Then, we

have,

Pr(Sn ≤ nx) ≤ e−nIX(x), x ≤ E [X1]

Remark If we define F (t) := tx− logM(t), we have F (t) = (x−E [X1])t+o(t) for small t.

Therefore, if x 6= E [X1], IX(x) is strictly positive. It can also be shown by Cauchy-Schwarz

inequality that F (t) is concave and is strictly concave if Xi is not almost surely a constant.

Second, we have the following lemma,

Lemma 7 Consider a filtered Poisson process Y :=
∑n

i=1 h[i]Ui where Ui ∼ P(λ) are

independent, and h is an FIR filter with τ1 > 0. Then, for all c∗ ∈ (0, τ1/
√
τ2), there exists

β > 0 depending only on h and c∗ such that,

Pr (Y ≤ λ(τ1 − c∗
√
τ2)) ≤ e−λβ

proof: Rewrite Y as follows:

Y :=
n∑

i=1

h[i]Ui =
n∑

i=1

h[i]

λ/a∑

j=1

Wi,j =

λ/a∑

j=1

n∑

i=1

h[i]Wi,j =

λ/a∑

j=1

Tj , Tj :=
n∑

i=1

h[i]Wi,j
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where ∃ a > 0 such that λ/a ∈ N and Wi,j ∼ P(a) are i.i.d. Poisson variables. It can be

noted that (Tj)j are also i.i.d. variables.

We will apply Lemma 6 on Y . First let us calculate IT (x) as follows:

IT (x) := sup
t∈R

(tx− logMT (t)) = sup
t∈R

(
tx−

n∑

i=1

a
(
eh[i]t − 1

))
(A.16)

where MT is the moment generating function of T1. We will evaluate IT (x) at x0 :=

a(τ1 − c∗
√
τ2) > 0. Since T1 is not almost surely a constant, IT (x0) must be attained for

a unique t0. Thus, setting x = x0, we take the derivative of the term in the sup of (A.16)

and set it to zero, resulting in the equation necessarily satisfied by t0:

n∑

i=1

h[i]
(
1 − eh[i]t0

)
= c∗

√
τ2 (A.17)

IT (x0) is given by:

IT (x0) = aβ, β = t0(τ1 − c∗
√
τ2) −

n∑

i=1

(
eh[i]t0 − 1

)
(A.18)

Both (A.17) and (A.18) show that t0 and β depend only on h and c∗. We have in addition

IT (x0) > 0, since x0 < τ1a. We can now apply Lemma 6, giving:

Pr (Y ≤ x0λ/a) = Pr (Y ≤ λ(τ1 − c∗
√
τ2)) ≤ e−IT (x0)λ/a = e−λβ

A.11.3 Proof – stage III

Now we are at the point to prove Lemma 5.

proof: It can be seen from (A.15) that Rs satisfies:

|Rs| ≤ Bs :=
|b|
2s

|Y − µY |s

|ξ + c|s− 1
2

(A.19)

Denote µY := λτ1 and σY :=
√
λτ2. We have,

E [Bs] =

∫
1
(
y ≥ µY − c∗λ

1
2σY

)
Bs dPY +

∫
1
(
0 ≤ y < µY − c∗λ

1
2σY

)
Bs dPY

≤ |b|
2s

E [|Y − µY |s]
(µY − c∗λ

1
2σY + c)s−

1
2

+
|b|
2s

µsY

cs−
1
2

Pr (0 ≤ Y < λ(τ1 − c∗
√
τ2))

≤ |b|
2s

E [|Y − µY |s]
(λ(τ1 − c∗

√
τ2) + c)s−

1
2

+
|b|
2s

λsτ s1

cs−
1
2

· e−λβ (A.20)
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where there exists c∗ ∈ (0, τ1/
√
τ2) and the second term in (A.20) results from Lemma 7.

Then,

(A.20) = E [|Y − µY |s] ·Oλ→+∞(λ−s+
1
2 )

We will conclude by showing that M̃s := E [|Y − µY |s] = Oλ→+∞(λs/2). The moment Mn

and the cumulant κn of the centered random variable (Y − µY ) are related by:

Mn = κn +

n−2∑

p=2

Cpn−1Mpκn−p (n ≥ 2)

= κn︸︷︷︸
O(λ)

+

n−2∑

p=2

Cpn−1κpκn−p

︸ ︷︷ ︸
O(λ2)

+

n−2∑

p=2

p−2∑

q=2

Cpn−1C
q
p−1κn−pκp−qκq

︸ ︷︷ ︸
O(λ3)

+ · · · (A.21)

It can be shown by induction that Mn is a polynomial of κ2, · · · , κn, which has a minimal

order 1 and a maximal order ⌊n/2⌋. The p-th cumulant of (Y − µY ) is κp = λτp for p ≥ 2.

Therefore Mn = Oλ→+∞(λ⌊n/2⌋). Consequently, M̃k satisfies:

M̃2k := E

[
|Y − µY |2k

]
= M2k = Oλ→+∞(λk)

M̃2k+1 := E

[
|Y − µY |2k+1

]
= E

[
|Y − µY |k|X − µY |k+1

]
≤M

1/2
2k M

1/2
2k+2 = Oλ→+∞(λ

2k+1
2 )

This shows M̃s = Oλ→+∞(λs/2).

A.11.4 Proof – stage IV

We are at the final point to prove Proposition 7.

proof: (i) Using (A.14) and (A.15), we can derive the Taylor expansion of E [Z] about

λ = +∞ up to order s = 3. Applying Lemma 5, (5.30) follows. (5.31) can be proved

similarly. (ii) The parameter c is chosen to cancel out the first-order term in (5.31); the

parameter b does not influence the variance stabilization asymptotic rate and it can be set

to b1 to get an asymptotic unit variance. (iii) The last statement follows from Lemma 2.

A.12 Proofs of Theorem 3 and Theorem 4

We will prove Theorem 3 below, and Theorem 4 can be proved in the same way. We first

establish the following lemma.
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Lemma 8 Let Fj := [aj−1 + c(j−1), aj + c(j)]T and µj := [τ
(j−1)
1 λ, τ

(j)
1 λ]T . Suppose

τ
(j−1)
1 , τ

(j)
1 <∞, 0 < τ

(j−1)
2 , τ

(j)
2 < +∞, and ‖h(j−1)‖3, ‖h(j)‖3 < +∞. Then we have:

Fj − µj√
λ

D−→
λ→+∞

N (0,Σj), Σj =


 τ

(j−1)
2 〈h(j−1), h(j)〉

〈h(j−1), h(j)〉 τ
(j)
2


 (A.22)

proof: Define Z := (Fj − µj)/
√
λ and c := [c(j−1), c(j)]T . We calculate the characteristic

function of Z as follows:

E [exp(i〈t,Z〉)] = exp

(
− i√

λ
〈t,µj〉

)
E

[
exp

(
i√
λ
〈t,Fj〉

)]

= exp

(
− i√

λ
〈t,µj − c〉

)
ΠkE

[
exp

(
i√
λ

(
t1h

(j−1)[k] + t2h
(j)[k]

)
Xk

)]

= exp

(
− i√

λ
〈t,µj − c〉

)
exp

[∑

k

λ

(
exp

(
i
t1h

(j−1)[k] + t2h
(j)[k]√

λ

)
− 1

)]

Similar the proof of Lemma 4, if ‖h(j−1)‖3, ‖h(j)‖3 < +∞, then as λ→ +∞,

E [exp(i〈t,Z〉)] → exp

[
−1

2

∑

k

(t1h
(j−1)[k] + t2h

(j)[k])2

]
= exp

(
−1

2
tTΣjt

)

where Σj is a positive semi-definite matrix:

Σj =



∑

k h
(j−1)[k]2

∑
k h

(j−1)[k]h(j)[k]
∑

k h
(j−1)[k]h(j)[k]

∑
k h

(j)[k]2


 =


 τ

(j−1)
2 〈h(j−1), h(j)〉

〈h(j−1), h(j)〉 τ
(j)
2




We conclude by applying Lévy’s continuity theorem.

We will now prove Theorem 3:

proof: Define µ0 := [τ
(j−1)
1 , τ

(j)
1 ]T and g(x1, x2) := b(j−1) sgn(x1)

√
|x1|−b(j) sgn(x2)

√
|x2|.

Then the gradient of g is given by:

∇g(x1, x2) =
1

2

[
b(j−1)|x1|−1/2, −b(j)|x2|−1/2

]T
, x1, x2 6= 0

From Lemma 8 we have,
√
λ

(
Fj
λ

− µ0

)
D−→

λ→+∞
N (0,Σj)
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where Σj is given by (A.22). Applying the multivariate Delta-method for the function g

gives:

√
λ

[
b(j−1) sgn(aj−1 + c(j−1))

√
|aj−1 + c(j−1)|

λ
− b(j) sgn(aj + c(j))

√
|aj + c(j)|

λ
−

(
b(j−1) sgn(τ

(j−1)
1 )

√
|τ (j−1)

1 | − b(j) sgn(τ
(j)
1 )

√
|τ (j)

1 |
)]

= b(j−1) sgn(aj−1 + c(j−1))
√

|aj−1 + c(j−1)| − b(j) sgn(aj + c(j))
√
|aj + c(j)|

= dj
D−→

λ→+∞
N (0, σ2

0)

where,

σ2
0 = [∇g(µ0)]

T Σj [∇g(µ0)] =
τ

(j−1)
2

4τ
(j−1)
1

2 +
τ

(j)
2

4τ
(j)
1

2 − 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1

A.13 Proof of Theorem 5

We will first prove Lemma 9. Given a Hibert space H with inner product 〈·, ·〉H and

induced norm ‖ · ‖H, we call a mapping V : H → H nonexpansive if for all x, y ∈ H, ‖V x−
V y‖H ≤ ‖x − y‖H. Suppose that a mapping V : H → H is nonexpansive and Fix(V ) 6=
∅. Then V is attracting (w.r.t. Fix(V )) if for every x /∈ Fix(V ), y ∈ Fix(V ), we have

‖V x− y‖H < ‖x− y‖H. Properties of nonexpansive and attracting mappings can be found

in [172]. We also define η-strongly monotone mappings as follows. For a given set S ⊂ H,

a mapping V : H → H is η-strongly monotone over S if there exists η > 0 such that

〈V x−V y, x− y〉H ≥ η‖x− y‖2
H for all x, y ∈ S. Let us point out that in our case, H = RL.

Lemma 9 With the same notations as in Theorem 5, we have:

(a) S1, S2, S3 and CB are all closed convex nonempty sets;

(b) PS1 and PS3 are attracting, and Fix(PS1) = S1 and Fix(PS3) = S3;

(c) Fix(QS2) = S2, and if W represents a tight frame and R is the pseudo-inverse operator,

then QS2 is nonexpansive;

(d) If V1 is attracting, V2 is nonexpansive, and Fix(V1) ∩ Fix(V2) 6= ∅, then V := V1 ◦ V2

is nonexpansive with Fix(V ) = Fix(V1) ∩ Fix(V2).
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proof: (a) As ‖d‖2
H = ‖d‖2

2 ≤ ‖d‖2
1, we have that Wx ∈ CB. CB is thus nonempty. The

closeness and convexity can also be easily verified. (b) results from the fact that PS1 and

PS3 are the projectors onto S1 and S3, respectively. To prove (c), we have by assumption

on W and R that ‖W‖‖R‖ = 1 (see [64]). Then using the fact that P+ is a projector (so

nonexpansive), we have:

‖QS2x−QS2y‖H ≤ ‖W‖‖P+Rx−P+Ry‖H0 ≤ ‖W‖‖Rx−Ry‖H0 ≤ ‖W‖‖R‖‖x−y‖H ≤ ‖x−y‖H

where H0 is the initial Hilbert space (the space of x). So QS2 is nonexpansive. Fix(QS2) =

S2 can be easily verified. To prove (d), V can be easily verified to be nonexpansive. It

is obvious that Fix(V1) ∩ Fix(V2) ⊆ Fix(V1 ◦ V2). To prove the other inclusion, pick

x ∈ Fix(V1 ◦V2). It is sufficient to show that x ∈ Fix(V2). Suppose that x /∈ Fix(V2), then

necessarily V2x /∈ Fix(V1). Now pick any y ∈ Fix(V1)∩Fix(V2). Since V1 is attracting, we

have:

‖x− y‖H = ‖V1 ◦ V2x− y‖H < ‖V2x− y‖H = ‖V2x− V2y‖H ≤ ‖x− y‖H

which is absurd. Thus Fix(V1) ∩ Fix(V2) = Fix(V1 ◦ V2) = Fix(V ).

We prove now Theorem 5.

proof: (i) can be easily verified. (ii) is a direct result of the point (d) of Lemma 9. To

prove (iii), we note that Jǫ is convex and ∇Jǫ(d)[i] = d[i](d[i]2 + ǫ)−1/2. It can be verified

that ∇Jǫ(d) is ǫ−1/2-Lipschitzian and ǫ(B2 +ǫ)−3/2-strongly monotone over TCB
(RL). Then

(iii) results from the convergence theorem of HSD [111]. (iv) is obvious. To prove (v), we

have for any convergent subsequence of d∗ǫ , say d∗ǫj −→
ǫ→0+

d∗0, that:

∀d ∈ CB, J(d∗
ǫj ) =

L∑

i=1

|d∗
ǫj [i]| ≤

L∑

i=1

√
d∗
ǫj [i]

2 + ǫj ≤
L∑

i=1

√
d[i]2 + ǫj (A.23)

Then by taking the limit ǫ → 0+ on both sides of (A.23), we have ‖d∗
0‖1 ≤ ‖d‖1. d∗

0 ∈ CB
since CB is closed. d∗

0 is thus a solution to (5.45) with ǫ = 0, and hence also a solution to

(5.44) by (i).

A.14 Proof of Lemma 3

Lemma 3 can be proved similarly as for Lemma 2.
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proof: We have by Lemma 4 that

√
τ2λ

(
Yk + c

ατ2λ
− τ1
τ2

)
D−→

λ→+∞
N (0, 1) (A.24)

We obtain the desired result by applying the Delta-method with the function f(x) :=

b · sgn(x)
√
α|x| and (A.24).

A.15 Proof of Theorem 6

The proof Theorem 6 is similar to that of Theorem 3.

proof: We define Fj := [aj−1+c
(j−1), aj+c

(j)]T and µ0 := α[τ
(j−1)
1 , τ

(j)
1 ]T . Lévy’s continuity

theorem shows that
√
λ

(
Fj
λ

− µ0

)
D−→

λ→+∞
N (0,Σj) (A.25)

where

Σj := α2


 τ

(j−1)
2 〈h(j−1), h(j)〉

〈h(j−1), h(j)〉 τ
(j)
2




Define the function g(x1, x2) := b(j−1) sgn(x1)
√
|x1| − b(j) sgn(x2)

√
|x2|, where b(j) :=

sgn(τ
(j)
1 )/

√
α|τ (j)

1 |. Applying the Delta-method with g and (A.25), we obtain the desired

asymptotic normality with variance σ2
j = ∇T g(µ0)Σj∇g(µ0), which is given by (6.9).
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Appendix B

MPG Parameter Estimation by

Cumulant Matching

Given n i.i.d. MPG variables Xi = αUi +Vi where Ui ∼ P(λ), Vi ∼ N (µ, σ2) and Ui

and Vi are independent. We want to estimate α, µ and σ2. The first four cumulants of X

are given by

κ1 = αλ+ µ, κ2 = α2λ+ σ2

κ3 = α3λ, κ4 = α4λ

Suppose k1, k2, k3, k4 are k-statistics [125] for the four cumulants, then the MPG parameters

can be estimated by

α̂ =
k4

k3

µ̂ = k1 −
k3

α̂2
= k1 −

k3
3

k2
4

σ̂2 = k2 −
k3

α̂
= k2 −

k2
3

k4
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Appendix C

MSE Lower Bounds

We briefly summarize the classical results on the MSE lower bounds based on the

Cauchy-Schwarz inequality. More details can be found in [173][174].

Lemma 10 (Cauchy-Schwarz inequality) Given any random vectors T and S and sup-

posing E[SST ] to be invertible, we have:

E[TTT ] ≥ E[TST ]E−1[SST ]E[STT ] (C.1)

The equality holds iff T = E[TST ]E−1[SST ]S a.s.

proof: Let Z = T− E[TST ]E−1[SST ]S. We have that

0 ≤ E[ZZT ] = E[TTT ] − E[TST ]E−1[SST ]E[STT ]

Note that if the equality holds, E[Z2
i ] = 0 for all i.

We point out that the RHS of (C.1) is invariant under the exchange of rows or columns in

S. Below, we will study three well known MSE lower bounds derived using Cauchy-Schwarz

inequality, i.e., Cramér-Rao (CRLB), Bhattacharyya (BHLB), and Barankin lower bounds

(BLB). Different bounds result from different choices of the score function S.

C.1 Cramér-Rao Lower Bound

Suppose that we have a pdf f(x; θ) of a random vector X ∈ Rn, where θ ∈ Rd. The Fisher

information matrix is a d× d matrix with element

Ii,j(θ) := Eθ

[
∂

∂θi
ln f(X; θ)

∂

∂θj
ln f(X; θ)

]
(C.2)
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We define also the following regularity conditions for f :

1. There exists D = A∪B ⊆ Rn where A := {x|f(x; θ) > 0} and B has a zero Lebesgue

measure such that D is independent of θ;

2. ∀i,
∫

Rn
∂
∂θi
f(x; θ) dx = ∂

∂θi

∫
Rn f(x; θ) dx, and ∀i, j,

∫
Rn Ti(x) ∂

∂θj
f(x; θ) dx = ∂

∂θj

∫
Rn Ti(x)f(x; θ) dx,

where T (X) is an estimator of θ.

It is straightforward to verify that under the regularity conditions, I(θ) = NI1(θ) where I
and I1 are the Fisher information matrices associated to N i.i.d. variables (Xi)i=1,··· ,N and

X1, respectively. CRLB chooses the following score function S(x, θ) := ∇θ ln f(x; θ).

Theorem 7 (CRLB) Define ψT (θ) := Eθ[T (X)]. Assuming the regularity conditions and

that I is invertible, then:

Covθ[T (X)] ≥ ∇ψT (θ)I−1(θ)∇TψT (θ) (C.3)

The equality (C.3) holds iff T = ψT (θ) + ∇ψT (θ)I−1(θ)S a.s.

proof: We can verify under the assumptions of the theorem that 1) Eθ[S] = 0; 2) ∀α ∈
Rd,Eθ[(T − α)ST ] = Eθ[TS

T ] = ∇ψT (θ); 3) Eθ[SS
T ] = I(θ). Setting T := T − Eθ[T ] and

S := S, (C.1) leads to (C.3).

Let us define a collection of estimators Tψ := {T |Eθ[T ] = ψ(θ)}. This is the set of T ’s whose

expectations depend only on a fixed function ψ(θ). Then (C.3) becomes a uniform lower

bound for Tψ. Note that all unbiased estimators form a family Tψ with ψ(θ) = θ.

Corollary 1 (CRLB for MSE)

Eθ[(T (X) − θ)(T (X) − θ)T ] ≥ (ψT (θ) − θ)(ψT (θ) − θ)T︸ ︷︷ ︸
bias

+∇ψT (θ)I−1(θ)∇TψT (θ)︸ ︷︷ ︸
variance

Eθ[‖T (X) − θ‖2] ≥ ‖ψT (θ) − θ‖2

︸ ︷︷ ︸
bias

+ tr
(
∇ψT (θ)I−1(θ)∇TψT (θ)

)
︸ ︷︷ ︸

variance

Corollary 2 (CRLB for unbiased estimators) If T (X) is an unbiased estimator, then:

Covθ[T (X)] ≥ I−1(θ) (C.4)
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C.2 Bhattacharyya Lower Bound

If f satisfies some more regularity conditions, tighter bounds than CRLB can be derived.

BHLB chooses the following score function:

ST := [f1, f2, . . . , fd︸ ︷︷ ︸
∂θ1

, f11, f12, . . . , fdd︸ ︷︷ ︸
∂θ2

, . . . , f11···1, . . . , fdd···d︸ ︷︷ ︸
∂θk

]/f

where fi1i2...im := ∂mf/∂θi1∂θi2 · · · ∂θim . Clearly, this choice of S reduces to that in CRLB

if k = 1. Since more derivatives are involved in S, we need more stringent regularity

conditions to derive BHLB:

1. the same condition on D as for CRLB;

2.
∫

∂m

∂θi1
∂θi1

···∂θim
f(x; θ) dx = ∂m

∂θi1
∂θi1

···∂θim

∫
f(x; θ) dx, and

∫
T (x) ∂m

∂θi1
∂θi1

···∂θim
f(x; θ) dx =

∂m

∂θi1
∂θi1

···∂θim

∫
T (x)f(x; θ) dx, for 1 ≤ m ≤ k.

T is an estimator of θ. We define Ĩ(θ) := Eθ[SS
T ]. We can verify that 1) Eθ[S] = 0; 2)

∀α ∈ Rd,Eθ[(T − α)ST ] = Eθ[TS
T ] = [∇ψT (θ),∇(2)ψT (θ), . . . ,∇(k)ψT (θ)].

Theorem 8 (BHLB) Under the regularity conditions, we have

Covθ(T ) ≥ [∇ψT (θ),∇(2)ψT (θ), . . . ,∇(k)ψT (θ)]Ĩ−1(θ)[∇ψT (θ),∇(2)ψT (θ), . . . ,∇(k)ψT (θ)]T

BHLB reduces to the CRLB for k = 1.

Corollary 3 (BHLB for unbiased estimators) If T is an unbiased estimator for θ,

then Covθ(T ) ≥ (Ĩ−1(θ))1..d,1..d.

C.3 Barankin Lower Bound

BLB chooses the following score function:

S(x, θ) :=

∫

Θ

f(x; θ̃)

f(x; θ)
f(θ̃; θ) dθ̃

where f(θ̃; θ) = f(1)(θ̃; θ) − f(2)(θ̃; θ) and f(1) ∈ Rd and f(2) ∈ Rd are two arbitrary vector

functions of density on θ̃, i.e.,
∫
Θ f(i)(θ̃; θ) dθ̃ = 1d×1, and Θ ⊆ Rd is the parameter space.
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Thus, we have Eθ[S] = 0. We can verify that

Eθ[TS
T ]i,j =

∫

Θ
Eθ̃[Ti]fj(θ̃; θ) dθ̃

Eθ[SS
T ]i,j =

∫

Θ×Θ
Eθ

[
f(X; θ̃1)f(X; θ̃2)

f2(X; θ)

]
fi(θ̃1; θ)fj(θ̃2; θ) dθ̃1dθ̃2

Theorem 9 (BLB) We have:

Covθ(T ) ≥ sup
f(i)

Eθ[TS
T ]E−1

θ [SST ]Eθ[ST
T ]

If T is an unbiased estimator of a scalar θ, then:

V arθ(T ) ≥ sup
f(i)

(
E(1)[θ̃] − E(2)[θ̃]

)2

∫
Rn

(
R

Θ f(x;θ̃)[f(1)(θ̃;θ)−f(2)(θ̃;θ)] dθ̃)
2

f(x;θ) dx

(C.5)

Note that since f(1) and f(2) are arbitrary, sup operator is used in BLB. We can also notice

that BLB does not require any regularity conditions. Barankin [175] has shown that (C.5)

is the greatest lower bound.



Appendix D

Capacity of Real Gaussian

Channels

We briefly summarize the information-theoretic results on the capacity of parallel

Gaussian channels. More details can be found in [147].

Definition 1 (Differential entropy) The differential entropy of a random vector X ∈ Rn

is defined as

h(X) := −E[log2(f(X))] = −
∫
f(x) log2(f(x)) dx (D.1)

where f(x) is the density of X if it exists.

The unit of entropy is (information) bit. For a complex random vector X = Xc+jXs ∈ Cn,

its differential entropy is defined as h(X) := h(Xc,Xs). If X is independent of Y, then

h(X,Y) = h(X) + h(Y).

Definition 2 (Conditional differential entropy) The conditional differential entropy

of X ∈ Rn given Y ∈ Rm is defined as

h(X|Y) := −E[log2(f(X|Y))] = −
∫
f(x,y) log2(f(x|y)) dxdy (D.2)

where f(x|y) is the conditional density of X given Y if it exists.

Note that h(X|Y) = h(X,Y) − h(Y).

Definition 3 (Mutual information) The mutual information of X and Y is defined as

I(X;Y) := h(X) − h(X|Y) = h(Y) − h(Y|X) = h(X) + h(Y) − h(X,Y).

189



190 Appendix D: Capacity of Real Gaussian Channels

It can be verified that I(X;Y) = D(f(x,y)‖f(x)f(y)), where D(·||·) denotes the Kullback-

Leibler distance.

A (M,n) code consists an index set M := {1, 2, . . . ,M}, an encoding function f and

a decoding function g. M is used to index M distinct messages. The encoding function

f generates for each index a code of length n. This code is transmitted in a channel and

undergoes some distortion due to the imperfectness of the channel such as noise. The

decoding function g associate an element in M to each received vector of length n. The

sending index being i, the probability that g 6= i is denoted as ei. We define the maximal

probability of error e(n) for a (M,n) code to be maxi∈M ei. The rate of a (M,n) code is

defined to be R := (log2M)/n bits per transmission. A rate R is said achievable if there

exists a sequence of (⌈2nR⌉, n) codes such that e(n) → 0 as n → ∞. The capacity of a

channel C is the supremum of all achievable rates.

Proposition 10 X ∈ Cm, Y,Z ∈ Cn, and g : Cm 7→ Cn. Write g(X) := gc(Xc,Xs) +

jgs(Xc,Xs) and suppose that gc, gs are derivable. Then, for Z := g(X) + Y we have

h(Z|X) = h(Y|X).

proof: By the assumptions we can show that fX,Z(xc,xs, zc, zs) = fX,Y(xc,xs, zc−gc(xc,xs), zs−
gs(xc,xs)), from which we derive that fZ|X(zc, zs) = fY|X(zc−gc(Xc,Xs), zs−gs(Xc,Xs)).

Thus,

h(Z|X) := −E[log2(fZ|X(Zc,Zs))]

= −E[log2(fY|X(Zc − gc(Xc,Xs),Zs − gs(Xc,Xs)))]

= −E[log2(fY|X(Yc,Ys))] =: h(Y|X)

It can be verified that for a normal vector X ∼ N (µ,K) where µ ∈ Rn and K the covariance

matrix, the entropy is given by h(X) = 1
2 log2((2πe)

n|K|).

Theorem 10 (Entropy bound - real case) Let X ∈ Rn be a continuous random vector

of a zero mean and a covariance K. Then,

h(X) ≤ 1

2
log2[(2πe)

n|K|]

with equality iff X ∼ N (0,K).
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proof: Let g be any density satisfying
∫
xixjg(x) dx = Kij for all i, j. Let f(x) be the

normal density. Then, by noting log2(f(x)) to be a quadratique form, we have that:

0 ≤ D(g||f) =

∫
g(x) log2(g(x)/f(x)) dx = −h(g) −

∫
g(x) log2(f(x)) dx

= −h(g) −
∫
f(x) log2(f(x)) dx = −h(g) + h(f)

Theorem 11 (Capacity of parallel real Gaussian channels) Suppose that we have k

independent real Gaussian channels, Y [i] = X[i] + W [i] for i = 1, 2, . . . , k where W [i] ∼
N (0, σ2

i ). Under the total energy constraint E[
∑k

i=1X[i]2] ≤ P , the total capacity is given

by

C =
1

2

k∑

i=1

log2

(
1 +

ǫ[i]

σ2
i

)
(D.3)

where ǫ[i] = (β − σ2
i )+, and β is determined by

∑k
i=1 ǫ[i] = P .

proof: It can be shown that C is given by the supremum of the mutual information under

the energy constraint [147]

C := sup
fX

E[
Pk

i=1
X[i]2]≤P

I((X[i])i; (Y [i])i) = sup
ǫ≥0,fX

Pk
i=1

ǫ[i]≤P

E[X[i]2]≤ǫ[i]

I((X[i])i; (Y [i])i) (D.4)

where by Proposition 10,

I((X[i])i; (Y [i])i) = h((Y [i])i) − h((W [i])i) ≤
k∑

i=1

h(Y [i]) − h(W [i])

with equality iff (Y [i])i are independent. By V ar[Yi] = E[X2
i ] − µ2

i + σ2
i , by Theorem 10,

and using the constraint in (D.4), we have that h(Yi) ≤ 1
2 log2[2πe|ǫ[i]+σ[i]2|] with equality

iff X[i] is centered, E[X[i]2] = ǫ[i], and that Y [i] is Gaussian (i.e. X[i] is Gaussian). Now,

(D.4) = sup
ǫ≥0

Pk
i=1

ǫ[i]≤P

1

2

k∑

i=1

log2

(
1 +

ǫ[i]

σ2
i

)
(D.5)

Then, by inverting the sign of the objective function, we can verify that (D.5) becomes a

convex minimization problem. It can be solved by Lagrange multiplier and we can verify

that ǫ[i] = (β − σ2
i )+, and

∑k
i=1 ǫ[i] = P satisfy the KKT condition.
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Publications and Softwares

Journal Publications

• B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence mi-

croscope point-spread function models,” Applied Optics, vol. 46, No. 10, pp. 1819-1829, 2007.

• B. Zhang, J. M. Fadili, J.-L. Starck, and S. W. Digel, “Fast Poisson Noise Removal by

Biorthogonal Haar Domain Hypothesis Testing,” Statistical Methodology, Elsevier, 2007, sub-

mitted.

• B. Zhang, J. M. Fadili, and J.-L. Starck, “Wavelets, Ridgelets and Curvelets for Poisson Noise

Removal,” IEEE Transactions on Image Processing, 2007, submitted.

Conference Publications

• B. Zhang, J. M. Fadili, J.-L. Starck, and J.-C. Olivo-Marin, “Multiscale variance-stabilizing

transform for mixed-Poisson-Gaussian processes and its applications in bioimaging,” IEEE

International Conference on Image Processing, 2007.

• P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia,

“Parametric blind deconvolution for confocal laser scanning microscopy,” IEEE Engineering

in Medicine and Biology Society International Conference, 2007.

• B. Zhang, J. M. Fadili, and J.-L. Starck, “Multi-scale variance stabilizing transform for multi-

dimensional Poisson count image denoising,” IEEE International Conference on Acoustics,

Speech and Signal Processing, vol. 2, pp. 81-84, 2006.

• B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “A study of Gaussian approximations of fluores-

cence microscopy PSF models,” Three-Dimensional and Multidimensional Microscopy: Image

Acquisition and Processing XIII, Proceedings of SPIE, vol. 6090, pp. 104-114, 2006.
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• B. Zhang, J. Enninga, J.-C. Olivo-Marin, and C. Zimmer, “Automated super-resolution de-

tection of fluorescent rods in 2D,” IEEE International Symposium on Biomedical Imaging,

pp. 1296-1299, 2006.

Developed Softwares

• PSFMODEL It allows to calculate the 2D/3D paraxial/non-paraxial PSFs of WFFM, LSCM

and DSCM using Debye’s scalar diffraction integrals. It computes also the Gaussian approxi-

mation parameters for these PSFs. The software is implemented in Java. Reference: Chapters

2 and 3.

• MWIR The software allows to estimate the underlying Poisson intensity by hypothesis tests

in the Haar or Bi-Haar domain. It is implemented in C++. Reference: Section 5.2.

• MSVST The software allows to estimate the underlying Poisson intensity by the MS-VST

method. IUWT+MS-VST and UWT+MS-VST are implemented in C++, and Ridgelet+MS-

VST is written in Matlab. Reference: Section 5.3.

• MSVSTMPG It allows to restore a MPG image using IUWT+MS-VST. It is coded in

Matlab. Reference: Section 6.2.

• SPOTDETECT It allows to detect bright spots in a MPG image by using IUWT+MS-VST

with scale correlation. It is implemented in Matlab. Reference: Section 6.3.

• SUPERSPOT It allows to detect spots with super-resolution in a Gaussian or MPG image.

Least-square fitting is available for Gaussian data. For MPG data, VST-based least-square

fitting and the generalized least-square fitting are both implemented. Model selections using

hypothesis tests, information criteria, and MDL criteria are available. It is coded in Matlab.

Reference: Chapter 7.

• SUPERROD It allows to detect rods with super-resolution in a Gaussian or MPG image.

The same fitting and model-selection options as for SUPERSPOT are available. It is coded

in Matlab. A preliminary version is written in Java. Reference: Chapter 8.
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