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Abstract

This thesis is centered upon developing methodologies for estimation of stochas-
tic volatility parameters from time-series under a classical framework.

The first chapter of the thesis presents a general introduction and a concise
survey of various nondeterministic volatility models. Some popular models such
as Heston or VGSA are discussed in more detail.

The second and principal chapter lays out our time-series inference method-
ologies, which are mostly based on the maximization of likelihood. Employing
particle-filters, we implement a systematic and flexible algorithm usable for any
parametric stochastic volatility model.
Moreover, we study the reliability of these procedures by running them against
simulated data. We will examine the choice of the filter, the time-step and the
data length. We also will test the fitting performance of various models upon
real market-data. Again, we shall focus on a few examples such as Heston, Bates
and VGSA.

The third chapter contains a few examples of application of the previously con-
structed inference tools. The main example involves the comparison of the
skewness of the distributions implied from the stock and options markets. We
shall observe an excess negative-skewness in the latter, which may imply either
a model misspecification or a trade opportunity. A skewness transaction based
on this idea will then be described and tested.
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Résumé 
 
             I 
Le sujet de cette thèse est la Volatilité Stochastique. Le fait que la volatilité des actions 
soit non-déterministe est accepté depuis les années soixante où Samuelson et Mandelbrot  
ont décrit le caractère aléatoire de la variance de la distribution du marché des actions. 
 
Cet aspect aléatoire de la volatilité a des conséquences immédiatement visibles sur la 
distribution des rendements. En effet, celle–ci n’est Normale que de manière 
conditionnelle. La distribution marginale du rendement sera asymétrique et leptokurtique.  
 
Les conséquences existent également sur l’évaluation des prix d’options et autres 
produits dérivés. La formule bien connue de Black-Scholes-Merton ne sera plus valide 
une fois que la volatilité devient non-déterministe. 
 
Il est donc essentiel de noter que ce caractère aléatoire est doublement observable. D’une 
part, la série temporelle du marché des actions nous fournit des rendements qui ne sont 
pas Normaux ; et d’autre part les volatilités implicites aperçues dans le marché des 
options, pour une maturité donnée et pour des prix d’exercice différents, sont non-
constantes. 
Ce dernier phénomène est généralement dénommé le smile ou le skew de la volatilité. 
Plusieurs théories existent pour expliquer ce smile. La volatilité stochastique est l’une des 
théories principales. Une autre est l’existence de sauts dans le prix du sous-jacent, comme 
Robert Merton l’a mentionné dès les années soixante-dix.  
 
Une manière différente d'aborder le problème serait d’utiliser les prix d’option et en 
déduire la distribution implicite du rendement du prix de l’action. Cette approche nous 
donne la possibilité de déterminer ce qui est habituellement appelé la volatilité locale. 
Cette notion a été introduite par Bruno Dupire au début des années quatre-vingt-dix. On 
peut calculer cette volatilité locale soit de manière analytique, soit par l’intermédiaire 
d’un arbre implicite comme le proposent d’une part Rubinstein et Jackwerth, et d’autre 
part Derman et Kani. Ces arbres nous offrent les probabilités risque-neutres et implicites 
dans les prix d’options. Ayant le choix entre les options Put et Call, on choisit souvent 
celles qui sont hors-monnaie pour des raisons de liquidité. 
 
Certains, comme Cox et Ross (CEV) ou encore Bensoussan, Crouhy et Galai (BCG) 
introduisent le concept d’une volatilité qui dépend du niveau du prix de l’action. Les 
modèles CEV représentent une classe particulière de la volatilité stochastique où le 
coefficient de la corrélation entre le rendement du prix du sous-jacent et la volatilité 
instantanée, est égal à 1.0 
 
Le modèle BCG possède l’avantage d’avoir une interprétation financière : En effet, dans 
ce modèle, similairement à un modèle proposé par Merton, la valeur de l’action est elle-
même une option sur la valeur des actifs de l’entreprise. Dans ce cas là, ces actifs, sur 
lesquels il n’y a pas de marché, ont leur propre volatilité. Or il est possible d’éliminer 
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cette volatilité des équations et obtenir une relation directe entre l’action et sa volatilité. 
Cette dernière est, par conséquent, une fonction implicite de l’action. 
Quant aux modèles de type CEV, ses auteurs spécifient la relation entre la volatilité et 
l’action explicitement. Cette dépendance est en fait artificielle, mais elle simplifie les 
calculs considérablement. 
 
La méthode d’économétrie pour introduire la notion de la volatilité stochastique serait 
l’utilisation de modèles de type GARCH, où le bruit du rendement du prix constitue une 
série temporelle qui elle-même est composée de variables aléatoires. Ce qui est plus, les 
termes de cette série sont auto-corrélés.  
Cela dit, il est primordial de noter que sous ce modèle, la variance est parfaitement 
connue à une date donnée, comme fonction des rendements historiques de même que des 
variances précédentes. Ceci est différent de la théorie générale de la volatilité 
stochastique où l’on a un modèle à deux facteurs. En effet, pour un tel modèle la variance 
n’est pas parfaitement connue à une date donnée et représente une variable aléatoire. 
L’idée fondamentale derrière le modèle GARCH, est basée sur le fait qu’en pratique, on 
observe qu’une volatilité élevée est suivie par une période de volatilités élevées et vis 
versa. Ce phénomène dénommé cluster pourrait en effet être modélisé par un GARCH. 
 
On a dit que pour évaluer les prix d’option, on ne peut utiliser les formules classiques 
supposant une volatilité constante. Les méthodes disponibles pour le calcul de prix 
d’options sous volatilité stochastique comprennent plusieurs catégories :  
 
La première catégorie est celle des méthodes de Différences Finies (FD) appliquées aux 
Equations aux Dérivées Partielles (PDE) Cette méthode nous donnera une grille à trois 
dimensions : le temps, le prix de l’action et le niveau de la volatilité instantanée. Un des 
avantages de cette méthode est qu’elle peut évaluer les options américaines et prendre en 
compte la possibilité de l’exercice prématuré.  
 
La deuxième catégorie est celle de méthodes d’inversion de transformées de Fourier. En 
effet, pour la plupart des modèles de volatilité stochastique existant dans la littérature, la 
transformée de Fourier est disponible de manière analytique. Le modèle de Heston est 
l’exemple le plus connu concernant ce fait. L’inversion de cette transformée pourrait être 
effectuée numériquement comme l’ont suggéré par exemple Carr et Madan. 
 
La troisième catégorie est celle de modèles à simulation Monte-Carlo. Cela pourrait se 
faire soit directement en prenant les équations à deux facteurs, soit en utilisant des 
techniques de Mixage de Hull et White ou encore Romano et Touzi. Dans ces méthodes, 
on simule la variable aléatoire représentant la volatilité instantanée, puis on applique la 
formule de Black-Scholes à un prix d’action modifié et une volatilité composite 
correspondant au chemin simulé. 
 
Finalement il existe des méthodes de développement en séries. Par exemple Alan Lewis 
suggère un développement sur la volatilité de la volatilité. Cette série devient 
analytiquement concise pour certains modèles populaires tels que celui de Heston. 
Autres séries utilisent le  développement asymptotique pour maturités longues. 
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Il est intéressant de noter que contrairement au cas de la volatilité constante ou 
déterministe, sous une volatilité stochastique, les marchés ne sont pas complets. 
Cela veut dire que l’on ne peut pas dupliquer la valeur d’une option en utilisant le sous-
jacent et des obligations. En effet, en plus du risque associé au sous-jacent, il existe 
maintenant une deuxième source d’incertitude indépendante de la première. Cette 
deuxième source est le prix de marché du risque associé à la volatilité, qui est encore une 
fois totalement distincte du prix de marché du risque associé au sous-jacent même. 
Certains considèrent malgré cela que les marchés sont complets. En effet on peut toujours 
générer la valeur des produits dérivés si l’on se sert d’une option en plus du sous-jacent et 
l’obligation. 
 
Une autre catégorie populaire de modèles de volatilité stochastique rejette l’idée de la 
diffusion complètement et utilise des sauts. Ceci est différent des modèles de Merton ou 
Bates où l’on superpose des sauts de Poisson à la distribution Gaussienne. Ici on détient 
un modèle purement basé sur des sauts.  
Autrement dit, les modèles de Merton et Bates expliquent les mouvements infinitésimaux 
du sous-jacent à travers une distribution Normale, et les mouvements plus grands et plus 
brusques par des sauts. En revanche les modèles de sauts purs, expliquent même les 
mouvements infinitésimaux avec des sauts. L’exemple le plus populaire parmi ces 
modèles est celui de Variance Gamma (VG) de Madan et Carr, de même que ses modèles 
dérivés comme VGSA ou VGG. Comme le nom l’indique, la distribution de base utilisée 
ici est une distribution Gamma appliquée au temps.  
 
Ainsi ces modèles introduisent la notion de la volatilité stochastique grâce à une 
randomisation du temps. Autrement dit, les mouvements du sous-jacent s’effectuent non 
pas de manière chronologiquement uniforme, mais de manière aléatoire. Cela crée les 
propriétés désirées d’une distribution leptokurtique et asymétrique. 
 
Le modèle VGSA ajoute à ceci une randomisation du temps d’arrivée dans la distribution 
Gamma. Cela permet d’obtenir les fameux clusters de volatilité, observés en pratique 
dans le marché. 
L’évaluation des prix d’options sous ces modèles peut encore une fois se faire soit par 
l’intermédiaire de l’inversion de transformées de Fourier, soit en utilisant des simulations 
Monte-Carlo. 
 
 
 
 
 
 
 
 
 
     II 
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Nous avons donc commencé par décrire les différents modèles de volatilité stochastique  
qui existent dans la littérature. Nous abordons par la suite, le problème fondamental du 
calibrage des paramètres pour ces modèles. L’estimation des paramètres peut se faire soit 
en utilisant des séries temporelles de prix d’actions, soit en utilisant des prix d’options à 
une date donnée. Naturellement on pourrait également utiliser des séries temporelles de 
prix d’options. 
 
Le calibrage via les options, est celui qui est habituellement utilisé dans le marché. Il 
nous permet, en minimisant par exemple la somme des carrés des différences entre les 
prix de marché et les prix théoriques  des options, d’obtenir les paramètres optimaux. 
Notez que ces paramètres sont obtenus dans l’univers risque-neutre, où les options sont 
couvertes dynamiquement, et par conséquent le drift du sous-jacent est remplacé par le 
taux d’intérêt. Comme on l’a déjà signalé, les prix théoriques devront être calculés avec 
des modèles par exemple à base de simulations Monte-Carlo ou à base d’inversion de 
transformée de Fourier.  
 
Plusieurs questions se posent à cette occasion. Quelles options doit-on choisir ? Souvent 
on répond à cette question par des arguments de liquidité. Typiquement les options 
proches et hors la monnaie sont celles qui sont plus utilisées.  
 
Combien de prix d’exercice doit-on inclure dans le processus de l’optimisation ? Là, il 
existe un compromis entre la fiabilité des prix (donc encore une fois la liquidité des 
options) et l’exhaustivité du processus.  
 
La même question se pose pour les maturités. Idéalement, on devrait obtenir les mêmes 
paramètres pour deux maturités différentes. Autrement dit, ces paramètres devraient être 
temporellement homogènes. Mais en pratique ceci peutt ne pas être le cas, ce qui pourrait 
indiquer une mauvaise spécification du modèle. 
De plus, certains pensent qu’il faut associer des poids aux options utilisées dans 
l’optimisation. En effet les options plus proche de la monnaie ont plus d’importance que 
les autres. On pourrait par exemple se servir des taux de changement de ces options 
relativement à la volatilité, communément dénommés vega. 
 
Quant à la méthode d’optimisation, elle peut être choisie de manière relativement libre, 
comme la fonction sous l’optimisation est typiquement une somme de carrés de 
différences de prix, et par conséquent  continue et différentiable. 
 
Le calibrage via les séries temporelles est un peu plus subtil. En effet la difficulté que 
l’on rencontre immédiatement est que la volatilité instantanée n’est pas observable dans 
les marchés.  
Pour obtenir les paramètres, on peut par exemple utiliser une méthode de Maximisation 
de la Vraisemblance (MLE)  
Mais précisément parce que l’on a cet état non-observable (latent), on ne peut calculer la 
vraisemblance directement. D’où la nécessité d’un Filtre pour intégrer l’état 
inobservable.  
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Il existe deux étapes dans ce procédé: La Prédiction et le Filtrage. Au cours de la 
Prédiction, on met à jour la distribution a priori de l’état latent au temps t en utilisant 
toute l’information que l’on a avant cette date. Cela équivaut à résoudre une équation de 
Fokker-Planck. Au cours du Filtrage, on obtient la distribution a posteriori de l’état en 
utilisant d’une part la distribution a priori et d’autre part la vraisemblance conditionnelle. 
On fait ceci en se servant du théorème de Bayes : A un temps t donné, la distribution a 
posteriori de l’état, est égale à sa distribution a priori, multipliée par la vraisemblance 
conditionnelle, et divisée par la vraisemblance inconditionnelle. Or pour déterminer cette 
vraisemblance inconditionnelle (totale) à un temps donné, on a besoin de calculer 
l’intégrale associée, ce qui n’est pas toujours réalisable. 
 
Un cas particulier fondamental correspond à celui du filtre de Kalman où les équations 
sont linéaires et les bruits sont Gaussiens. En effet dans ce cas, les distributions à priori et 
à postériori sont Normales et par conséquent, peuvent être caractérisées par leurs deux 
premiers moments. Cela va sans le dire, cette propriété simplifie les calculs 
considérablement et tout peut se faire de manière analytique. 
 
Or, si l’on suppose que l’équation différentielle stochastique (SDE) du rendement du prix 
de l’action observable, de même que celle de la volatilité instantanée, sont quasi-linéaires 
et ne contiennent que des variables aléatoires Normales, alors on pourra utiliser un Filtre 
de Kalman Étendu (EKF)  
Dans l’EKF, on effectue un développement de Taylor de premier ordre sur les fonctions 
non-linéaires de transition et d’observation. Le reste peut se faire identiquement à un 
filtre de Kalman traditionnel. 
 
Si l’on juge que les non-linéarités sont importantes mais que les distributions restent 
conditionnellement Normales, alors un Filtre de Kalman Unscented (UKF) ou un Filtre 
Non-Linéaire de Kushner (NLF) devra être utilisé. Là, on ne fait plus d’approximation 
linéaire, on utilise les véritables fonctions non-linéaires mais on suppose que les 
distributions restent plus ou moins Gaussiennes. Cela nous permet de travailler encore 
une fois avec les deux premiers moments uniquement. 
 
UKF utilise des points spéciaux appelés les points sigma pour calculer ces moments. NLF 
utilise les racines de polynômes de Gauss-Hermite à cette fin. De plus NLF contient une 
étape itérative d’alignement de la distribution de la vraisemblance conditionnelle, et de la 
distribution a priori de l’état. En effet, si ces les deux densités sont concentrées sur des 
régions différentes, la convergence de l’algorithme peut en être très affectée. 
 
 
Si maintenant on ne suppose plus que les variables aléatoires sont Normales, même 
conditionnellement, et que par exemple elles contiennent des sauts de Poisson ou plus 
généralement correspondent à des distributions de type Lévy quelconque, alors on devra 
utiliser des Filtres à Particules (PF) où l’on simule des points par leur SDE discrétisée, 
avec la méthode Monte-Carlo et l’on associe à chacune de ces particules un poids 
correspondant à la vraisemblance de l’observation conditionnée par l’état simulé.  
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Ceci est équivalent à calculer l’intégrale de la vraisemblance via une méthode 
d’échantillonnage d’importance ou encore un changement de numéraire.  
 
Au lieu de simuler directement par la SDE de l’état, on peut également simuler par une 
distribution plus simple, et ensuite modifier les poids pour compenser cela. Cette étape 
permet de tenir compte de la vraisemblance dans l’étape simulation.  
Des exemples de filtres de ce type sont Filtres à Particules Étendus (EPF) ou Filtres à 
Particules Unscented (UPF) 
 
Une raison importante pour faire cela, est liée à la remarque que l’on a faite à propos de 
NLF. En effet, lorsque la vraisemblance conditionnelle et la distribution a priori ne sont 
pas alignées, la convergence de l’algorithme peut être nettement détériorée. C’est pour 
cette raison que l’on devrait simuler d’une distribution candidate qui contient déjà une 
certaine information sur l’observation, et par conséquent s’aligne mieux avec la 
vraisemblance. La correction des poids pourrait par la suite se faire via la même méthode 
d’échantillonnage d’importance. 
 
Notons que tout ceci était connu depuis longtemps. Cependant ces Filtres à Particules 
divergeaient souvent, parce que la variance des poids que l’on vient de mentionner, croît 
à chaque étape. La raison pour laquelle on peut utiliser ces algorithmes, c’est que 
récemment des techniques de réduction de variance appelées ré-échantillonnage ont été 
introduites par des chercheurs tels que Neil Gordon, Adrian Smith et Arnaud Doucet. 
 
Ces techniques permettent d’éliminer les particules simulées avec des poids trop petits et 
reproduire celles avec des poids énormes. Après cela, on remet tous les poids 
uniformément égaux à l’inverse du nombre initial des particules. Différentes techniques 
de ré-échantillonnage existent, cependant elles sont toutes basées sur cette même idée de 
la réduction de la variance des poids. 
 
L’avantage majeur des Filtres à Particules est leur flexibilité. En effet, du moment que 
l’on sait simuler par la SDE de la volatilité, et que l’on connaît la densité conditionnelle 
du prix de l’action, le reste peut être effectué de manière quasi-automatique. 
 
L’optimisation même de la vraisemblance peut être effectuée en utilisant des algorithmes 
divers. Cependant nous recommandons celui de Powell, étant donné qu’il n’utilise pas de 
gradient, et qu’il fonctionnera même en présence de sauts et autres discontinuités.  
 
Dans une méthode alternative, on peut utiliser les mêmes filtres, mais au lieu de calculer 
et maximiser la vraisemblance, on augmente la dimension de l’état en y ajoutant les 
paramètres du modèle. Ainsi ayant par exemple quatre paramètres (comme dans le 
modèle de Heston) on aura un état de dimension cinq. On peut alors choisir des 
conditions initiales et appliquer  les filtres à cet état augmenté. Après un certain nombre 
d’observations, les éléments de l’état correspondant aux paramètres devraient converger 
vers leurs valeurs réelles. Cette méthode est souvent appelée Filtre Joint (JF) 
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La difficulté principale de l’estimation des paramètres des modèles de volatilité 
stochastique, est que par sa définition même, la volatilité affecte le bruit de l’observation 
et non pas l’observation même. Cette remarque d’apparence anodine a des conséquences 
dramatiques sur la vitesse de convergence des estimateurs.  
 
De nombreux Diagnostiques existent pour les estimateurs. Pour une série temporelle 
d’observations donnée, on peut après la détermination des paramètres optimaux, utiliser 
ceux-ci pour calculer l’erreur entre la valeur de l’observation même et la valeur prédite 
par le filtre. Les erreurs normalisées communément dénommées les résidus, peuvent 
alors être utilisées pour déterminer par exemple le variogramme. Le variogramme d’une 
série de points Gaussiens standards non-corrélés est constante et égale à 1.0 –sauf en zéro 
ou il vaut zéro par définition- 
Pour les modèles de volatilité stochastique à base de diffusion, ces résidus devraient être 
non-corrélés et répartis selon une loi Normale standard. Des histogrammes, des tests 

et des tests de Box-Ljung permettent de vérifier ces propriétés. 2χ
 
On peut également évaluer la moyenne et l’écart type de ces résidus. Ces valeurs sont 
dénommées respectivement MPE et RMSE. Naturellement des valeurs élevées de MPE et 
RMSE correspondraient à une mauvaise performance des filtres. 
 
Même si en réalité on ne dispose que d’un chemin historique, et par conséquent d’une 
série temporelle, pour juger la performance des estimateurs on devrait simuler plusieurs 
chemins et observer comment l’estimateur fonctionne en moyenne. Ainsi on pourra 
obtenir un ensemble de paramètres optimaux par chemin, et ensuite calculer la moyenne 
et l’écart type de ces paramètres optimaux. La distribution de ces paramètres sur les 
différents chemins est dénommée la distribution d’échantillonnage, et peut être obtenue 
via des histogrammes. 
Il est clair que plus le chemin observé est long, plus les paramètres implicites obtenus 
seront précis. En effet les théorèmes ergodiques nous indiquent que les paramètres 
convergent vers leurs vraies valeurs lorsque la longueur du chemin tend vers l’infini. 
Cette convergence a bien lieu pour le problème de la volatilité stochastique, mais elle est 
encore une fois plus lente que celle des problèmes usuels.  
Ceci peut être évidemment observé pour les paramètres de dérive de la volatilité, mais 
encore plus dramatiquement pour les paramètres de volatilité de la volatilité. En effet ces 
derniers n’affectent que le bruit d’un état qui lui-même n’affecte que le bruit de 
l’observation. Malgré ceci, en simulant des chemins suffisamment longs, on peut 
apercevoir que la convergence a bel et bien lieu. 
 
Il faut cependant se souvenir qu’en réalité, on ne dispose que d’une seule série 
(historique) et que même si l’estimateur marchait très bien en moyenne cela ne suffirait 
pas pour garantir des valeurs précises. En effet les estimateurs devraient non seulement 
avoir un biais aussi négligeable que possible, mais ils devraient aussi être efficaces et 
avoir une variance aussi petite que possible. 
 
La médiocrité relative des résultats d’inférence est en accord avec les conclusions du 
travail effectué par des chercheurs tels que Arun Bagchi. Le fait que la volatilité 
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instantanée ne soit observable qu’au second ordre du développement de Taylor, est une 
interprétation plausible. Ceci expliquerait pourquoi ce problème n’existe pas avec les 
modèles de type GARCH, où la volatilité instantanée est parfaitement connue à chaque 
instant en fonction des prix historiques du sous-jacent. Ceci expliquerait également 
pourquoi choisir un intervalle temporel plus grand rendrait le processus d’inférence plus 
facile. 
  
Bien que nous ayons choisi la méthodologie statistique classique, il faut au moins 
brièvement mentionner une autre méthode pour estimer ces paramètres, basée sur le 
formalisme  Bayesien, où chaque paramètre est considéré non plus comme fixe mais 
comme une variable aléatoire. On peut donc d’abord choisir des distributions a priori 
pour les paramètres et par la suite les mettre à jour pour obtenir les distributions a 
posteriori.  
 
Nous devrons probablement choisir les distributions a priori de ces paramètres de 
manière aussi générale que possible pour ne pas influencer les résultats subjectivement. 
Après cela, on peut par exemple considérer la moyenne a posteriori de chacun de ces 
paramètres pour l’estimation.  
 
Pour certaines distributions les densités a priori et a posteriori appartiennent à la même 
famille. Dans ce cas, on appelle ces distributions a priori conjuguées. 
 
Pour certains cas élémentaires, les distributions a posteriori sont analytiquement connues 
et par conséquent on peut calculer la moyenne et la variance des paramètres directement. 
Cependant en pratique, ceci n’est souvent pas possible et de ce fait on a besoin de 
techniques numériques de Chaîne de Markov Monte Carlo (MCMC) comme 
l’Échantillonneur de Gibbs où l’on simule les paramètres et l’état (la volatilité) 
alternativement.  
En outre on peut rarement simuler directement par la distribution a posteriori, et par 
conséquent on devra utiliser un algorithme de Metropolis-Hastings (MH) où l’on simule 
par une distribution candidate connue (par exemple la distribution a priori) et ensuite on 
accepte ou l’on rejette le point simulé en observant le quotient MH.  
 
Ce quotient MH est simplement le quotient de la densité a posteriori et la densité 
candidate à l’itération k, divisé par la même quantité à l’itération k-1. Ce quotient (du 
moment qu’il est plus petit que 1.0) peut être interprété comme la probabilité avec 
laquelle on accepte le point simulé par la distribution candidate. On peut donc comparer 
cette quantité avec une variable aléatoire uniforme entre zéro et un, et si la première est 
plus grande que la dernière alors on accepte le point et autrement on le rejette. 
 
Les algorithmes MCMC ont l’avantage de ne pas avoir besoin d’une optimisation de type 
Powell ou autre. En effet un des dangers de la méthode la maximisation de la 
vraisemblance est que l’optimisation pourrait nous donner un optimum local, et pour 
éviter cela,  nous devrons choisir plusieurs conditions initiales pour nous rassurer de la 
convergence vers l’optimum global. Au cas où l’on obtiendrait plusieurs réponses 
différentes, on devra prendre la réponse qui donne la vraisemblance la plus élevée. Le 
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danger décrit ci-dessus devient plus important si le nombre de paramètres à estimer 
augmente. En effet plus la dimension du problème d’optimisation est élevée, plus la 
fonction de la vraisemblance devient plate. 
 
Cependant les algorithmes MCMC sont très spécifiques au modèle que l’on choisit. Ils 
sont donc bien moins flexibles que les algorithmes basés sur la maximisation de la 
vraisemblance. En effet l’algorithme qui marche pour un modèle de Heston, est 
entièrement différent de celui qui fonctionnerait pour un modèle VGG. En effet la 
relation entre les distributions a priori et a posteriori ne sera plus la même. En revanche 
pour la méthode classique de maximisation de la vraisemblance via PF, cette difficulté 
n’existe pas. 
 
Il est clair que lorsque l’on utilise des distributions a priori non informatives, et lorsque 
l’on choisit des conditions initiales quelconques, les premières valeurs simulées seront 
loin des valeurs réelles et c’est seulement après un certain nombre d’itérations que l’on 
commence à obtenir de bonnes valeurs. Cette première période que l’on ignore s’appelle 
la période Burn In. Ainsi la valeur estimée d’un paramètre serait sa moyenne en 
commençant après cette période. La même remarque est valide pour sa variance. 
 
Il est intéressant de remarquer que certains utilisent une étape MH dans la méthode 
classique de la maximisation de vraisemblance via PF. En effet après l’étape de ré-
échantillonnage décrite ci-dessus, on risque d’avoir un phénomène d’Appauvrissement 
d’Échantillons, où les particules s’écroulent vers une seule valeur. Cette étape 
supplémentaire MH nous permet donc de régénérer les particules autour de celles qui 
sont importantes, i.e. celles qui ont des poids élevés et ont survécu le ré-échantillonnage. 
 
Dans tout ceci, il faut se souvenir que nous avons affaire ici  à des modèles et des 
méthodes de calibrage paramétriques.  Il existe en effet également des méthodes non- 
paramétriques (NP) ou encore semi-non paramétriques (SNP), où l’on utilise des formes 
fonctionnelles au lieu d’expressions paramétriques exactes. Aït-Sahalia et Lo d’une part 
et Derman et Kani d’autre, utilisent des méthodologies purement NP, où la seule 
hypothèse est celle de diffusion, et où la dépendance de la volatilité vis-à-vis du sous-
jacent, demeure entièrement libre. D’autres comme Gallant et Tauchen utilisent dans leur 
Méthode Efficiente de Moments (EMM) des fonctions SNP.  
L’avantage évident des méthodes NP/ SNP est qu’elles permettent des formulations plus 
générales et sont pour ainsi dire, moins contraignantes.  Cela dit, même si on a plus de 
limitation avec les méthodes paramétriques, on a également plus de contrôle pour 
interpréter les résultats. 
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Comme évoqué précédemment, le calibrage des options nous fournit les paramètres 
optimaux dans un monde risque-neutre. Mais lorsque l’on utilise les séries temporelles, 
on obtient les paramètres dans l’univers réel.  
 
Dans les modèles à base de diffusion, cette différence entre les mesures n’affecte que les 
paramètres drift de la volatilité. En effet, en utilisant le théorème de Girsanov on peut 
voir que la volatilité de la volatilité ξ  et le coefficient de la corrélation ρ entre la 
volatilité et le rendement du prix de l’action, devraient être identiques sous les deux 
mesures. 
 
Il est intéressant d’apercevoir qu’en pratique, on observe le phénomène inverse : les 
paramètres drift estimés sont proches sous les deux mesures, alors que les valeurs de ξ  et 
ρ  (en valeur absolue) sont bien plus élevées sous la mesure risque-neutre. 
 
Ceci peut avoir deux significations : Soit les modèles de diffusion sont incorrects et l’on 
doit ajouter des sauts pour réconcilier les deux mesures; soit les options prédissent la 
possibilité d’un saut qui est absent dans la série temporelle passée.  
 
Ce deuxième choix nous donne la possibilité d’une transaction pour profiter de cette 
différence. Par exemple, en achetant des options Call hors de la monnaie et en vendant 
des options Put hors de la monnaie, on devrait obtenir un premium qui est top élevé si 
l’on considère les mouvements du sous-jacent.  
 
Cela dit, cette transaction n’est pas sans risque. Effectivement, si jamais il y a un crash, 
on pourrait perdre énormément de capital. En effet dans ce cas les options auraient été 
correctes dans leur évaluation de risque. Ce risque perçu par certains participants mais 
absent dans la série historique est parfois appelé le risque de Peso. 
 
Cette expression a été inventée par l’économiste Milton Friedman au début des années 
soixante-dix. Durant cette période la valeur du taux d’échange entre le dollar américain et 
le peso mexicain, était trop élevée et n’était pas compatible avec les niveaux relatifs des 
taux d’intérêts des deux pays. Cela était donc considéré comme une sorte de paradoxe à 
l’époque. Milton Friedman a proposé l'explication suivante : L’information contenue 
dans les taux d’intérêt était correcte et même si le taux d’échange était trop élevé jusqu’à 
ce moment, cela ne voulait pas dire qu’il resterait au même niveau éternellement. En effet 
peu de temps après cela, la monnaie mexicaine a été dévaluée drastiquement. Ceci a 
justifié a posteriori le niveau relatif des taux d’intérêt. 
Le même phénomène peut en partie expliquer l’incompatibilité entre les valeurs 
implicites de ξ  contenues dans les options d’une part, et dans la série temporelle d’autre 
part. 
 
La transaction décrite ci-dessus devra idéalement être faite de manière delta et vega 
neutre. Pour cela on devrait d’abord choisir le nombre relatif d’options Put et Call à fin 
d’égaliser le vega net à zéro, puis on devra choisir le nombre d’actions pour avoir le delta 
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total égal à zéro. Cette transaction exploite principalement la différence entre les 
skewness implicites dans les des densités.  
 
On pourrait également exploiter la différence entre les kurtosis des deux distributions en 
effectuant la transaction suivante : On  vend des options à la monnaie de même que celles 
loin-hors de la monnaie, puis on achète des options proche-hors de la monnaie.  
Notez que la première transaction utilise les différences entre les valeurs de ξ  et ρ  alors 
que la deuxième utilise seulement la différence entre les valeurs de ξ  
 
On pourrait également utiliser les résultats de ces transactions comme une mesure 
empirique de la cohérence  de l’information contenue dans les marchés des Options d’une 
part et celle du marché des Actions d’autre part. En effet si ces informations sont 
inconsistantes comme on le pense, alors ces transactions devraient être profitables. Si ce 
n’est pas le cas, cela veut dire que la différence entre les paramètres résultants de nos 
estimations, n’est pas fiable.  Effectivement on l’a vu dans la deuxième partie, 
l’estimation des paramètres ξ et ρ via une maximisation de la vraisemblance est 
extrêmement difficile et par conséquent pas nécessairement crédible. 
 
Dans le cas de modèles non-Gaussiens, comme VGG, souvent les relations d’invariance 
de paramètres sous les deux mesures ne seront plus valides. Cependant on peut utiliser 
l’information de p(x) la distribution statistique obtenue des séries temporelles d’une part, 
et celle de la distribution risque-neutre q(x) obtenue du marché des options d’autre part, 
de la manière suivante : 
 
Comme l’ont démontré Carr et Madan, on peut choisir une fonction d’utilité économique 
et maximiser la valeur finale des investissements en se servant de cette fonction U(x), le 
paiement final f(x) à déterminer,  et la distribution p(x) 
En effet la valeur finale de la richesse sera distribuée suivant la probabilité statistique 
correspondant à la réalité.  
Cependant ce problème d’optimisation en f(x) contient des contraints sur la valeur de 
notre investissement initial. En effet on a initialement besoin d’au moins la valeur 
présente moyenne du paiement final, sous la distribution risque-neutre q(x) 
Ainsi, on peut voir que pour déterminer la fonction de paiement optimal, on a besoin des 
distributions p(x) et q(x) à la fois, ce qui justifie leurs estimations séparées. 
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The Volatility Process 1

Introduction

Summary

This thesis focuses upon developing Methodologies for Estimating Stochastic
Volatility (SV) parameters from the Stock-Price Time-Series under a Classical
framework. The text contains three Chapters and is structured as follows:

In the First Chapter, we shall introduce and discuss the concept of various
parametric SV models. This chapter represents a brief survey of the existing
literature on the subject of non-deterministic volatility.

We start with the concept of lognormal distribution and historic volatility. We
then will introduce the Black-Scholes [38] framework. We shall also mention
alternative interpretations as suggested by Cox and Rubinstein [66]. We shall
state how these models are unable to explain the negative-skewness and the lep-
tokurticity commonly observed in the stock markets. Also, the famous implied-
volatility smile would not exist under these assumptions.

At this point we consider the notion of level-dependent volatility as advanced
by researchers such as Cox and Ross [64], [65] as well as Bensoussan, Crouhy
and Galai [33]. Either an artificial expression of the instantaneous variance will
be used, as is the case for Constant Elasticity Variance (CEV) models, or an
implicit expression will be deduced from a Firm model similar to Merton’s [189],
for instance.

We also will bring up the subject of Poisson Jumps [190] in the distributions
providing a negative-skewness and larger kurtosis. These jump-diffusion models
offer a link between the volatility smile and credit phenomena.

We then discuss the idea of Local Volatility [36] and its link to the instantaneous
unobservable volatility. Work by researchers such as Dupire [89], Derman and
Kani [74] will be cited. We shall also describe the limitations of this idea due
to an ill-poised inversion phenomenon, as revealed by Avellaneda [16] and others.

Unlike Non-Parametric Local Volatility models, Parametric Stochastic Volatil-
ity (SV) models [140] define a specific stochastic differential equation for the
unobservable instantaneous variance. We therefore will introduce the notion
of two-factor Stochastic Volatility and its link to one-factor Generalized Auto-
Regressive Conditionally Heteroskedastic (GARCH) processes [40]. The SV
model class is the one we shall focus upon. Studies by scholars such as Engle
[94], Nelson [194] and Heston [134] will be discussed at this juncture. We will
briefly mention related works on Stochastic Implied Volatility by Schonbucher
[213] as well as Uncertain Volatility by Avellaneda [17].
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Having introduced SV, we then discuss the two-factor Partial Differential Equa-
tions (PDE) and the incompleteness of the markets when only cash and the
underlying asset are used for hedging.

We then will examine Option Pricing techniques such as Inversion of the Fourier
transform, Mixing Monte-Carlo as well as a few asymptotic pricing techniques,
as explained for instance by Lewis [177].

At this point we shall tackle the subject of pure-jump models such as Madan’s
Variance Gamma [182] or its variants VG with Stochastic Arrivals (VGSA) [48].
The latter adds to the traditional VG a way to introduce the volatility cluster-
ing (persistence) phenomenon. We will mention the distribution of the stock
market as well as various option pricing techniques under these models. The
inversion of the characteristic function is clearly the method of choice for option
pricing in this context.

In the Second Chapter we will tackle the notion of Inference (or Parameter-
Estimation) for Parametric SV models. We shall first briefly analyze the Cross-
Sectional Inference and will then focus upon the Time-Series Inference.

We start with a concise description of cross-sectional estimation of SV parame-
ters in a risk-neutral framework. A Least Squares Estimation (LSE) algorithm
will be discussed. The Direction-Set optimization algorithm [204] will be also
introduced at this point. The fact that this optimization algorithm does not use
the gradient of the input-function is important, since we shall later deal with
functions that contain jumps and are not necessarily differentiable everywhere.

We then discuss the parameter inference from a Time-Series of the underly-
ing asset in the real world. We shall do this in a Classical (Non-Bayesian) [240]
framework and in particular we will estimate the parameters via a Maximization
of Likelihood Estimation (MLE) [127] methodology. We shall explain the idea
of MLE, its link to the Kullback-Leibler [100] distance as well as the calculation
of the Likelihood function for a two-factor SV model.

We will see that unlike GARCH models, SV models do not admit an ana-
lytic (integrated) likelihood function. This is why we will need to introduce the
concept of Filtering [129].

The idea behind Filtering is to obtain the best possible estimation of a hid-
den state given all the available information up to that point. This estimation
is done in an iterative manner in two stages: The first step is a Time Update
where the prior distribution of the hidden state at a given point in time, is deter-
mined from all the past information via a Chapman-Kolmogorov equation. The
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second step would then involve a Measurement Update where this prior distri-
bution is used together with the conditional likelihood of the newest observation
in order to compute the posterior distribution of the hidden state. The Bayes
rule is used for this purpose. Once the posterior distribution is determined, it
could be exploited for the optimal estimation of the hidden state.

We shall start with the Gaussian case where the first two moments characterize
the entire distribution. For the Gaussian-Linear case, the optimal Kalman Fil-
ter (KF) [129] is introduced. Its nonlinear extension, the Extended KF (EKF)
is described next. A more suitable version of KF for strongly nonlinear cases,
the Unscented KF (UKF) [166] is also analyzed. In particular we will see how
this filter is related to Kushner’s Nonlinear Filter (NLF) [173], [174].

EKF uses a first order Taylor approximation upon the nonlinear transition and
observation functions, in order to bring us back into a simple KF framework.
On the other hand, UKF uses the true nonlinear functions without any ap-
proximation. It however supposes that the Gaussianity of the distribution is
preserved through these functions. UKF determines the first two moments via
integrals that are computed upon a few appropriately chosen “sigma points”.
NLF does the same exact thing via a Gauss-Hermite quadrature. However NLF
often introduces an extra centering step, which will avoid poor performance due
to an insufficient intersection between the prior distribution and the conditional
likelihood.

As we shall observe, in addition to their use in the MLE approach, the Fil-
ters above could be applied to a direct estimation of the parameters via a Joint
Filter (JF) [133]. The JF would simply involve the estimation of the param-
eters together with the hidden state via a dimension augmentation. In other
words, one would treat the parameters as hidden states. After choosing initial
conditions and applying the filter to an observation data set, one would then
disregard a number of initial points and take the average upon the remaining
estimations. This initial rejected period is known as the “burn in” period.

We will test various representations or State Space Models of the Stochastic
Volatility models such as Heston’s [134]. The concept of Observability [205] will
be introduced in this context. We will see that the parameter estimation is not
always accurate given a limited amount of Daily data.

Before a closer analysis of the performance of these estimation methods, we
shall introduce simulation-based Particle Filters (PF) [79], [122], which can be
applied to Non-Gaussian distributions. In a PF algorithm, the Importance Sam-
pling technique is applied to the distribution. Points are simulated via a chosen
proposal distribution and the resulting weights proportional to the conditional
likelihood are computed. Since the variance of these weights tends to increase
over time and cause the algorithm to diverge, the simulated points go through a
variance reduction technique commonly referred to as Resampling [14]. During
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this stage, points with too small a weight are disregarded and points with large
weights are reiterated. This technique could cause a Sample Impoverishment
which can be corrected via a Metropolis-Hastings Accept/ Reject test. Work
by researchers such as Doucet [79], Smith and Gordon [122] are cited and used
in this context.

Needless to say, the choice of the proposal distribution could be fundamental in
the success of the PF algorithm. The most natural choice would be to take a
proposal distribution equal to the prior distribution of the hidden state. Even
if this makes the computations simpler, the danger would be a non-alignment
between the prior and the conditional likelihood as we previously mentioned.
To avoid this, other proposal distributions taking into account the observation
should be considered. The Extended PF (EPF) and the Unscented PF (UPF)
[229] precisely do this by adding an extra Gaussian Filtering step to the process.
Other techniques such as Auxiliary PF (APF) have been developed by Pitt and
Shephard [203].

Interestingly, we will see that PF brings only marginal improvement to the
traditional KF’s when applied to daily data. However, for a larger time-step
where the nonlinearity is stronger, the PF does help more.

At this point we also compare the Heston model to other SV models such as the
“3/2” model [177] using real market data, and we will see that the latter per-
forms better than the former. This is in line with the findings of Engle and Ishida
[95]. We can therefore apply our inference tools to perform Model Identification.

Various Diagnostics [129] are used to judge the performance of the estimation
tools. Mean Price Errors (MPE) and Root Mean Square Errors (RMSE) are
calculated from the residual errors. The same residuals could be submitted to
a Box-Ljung test, which will allow us to see whether they still contain auto-
correlation. Other tests such as the Chi-Square Normality test as well as plots
of Histograms and Variograms [110] are performed.

Most importantly, for the Inference process, we back-test the tools upon ar-
tificially simulated data, and we observe that although they give the correct
answer asymptotically, the results remain inaccurate for a smaller amount of
data points. It is reassuring to know that these observations are in agreement
with work by other researchers such as Bagchi [19].

Here, we shall attempt to find an explanation for this mediocre performance.
One possible interpretation comes from the fact that in the SV problem, the
parameters affect the noise of the observation and not its drift. This is dou-
bly true of volatility-of-volatility and stock-volatility correlation, which affect
the noise of the noise. We should, however, note that the product of these two
parameters enters in the equations at the same level as the drift of the instan-
taneous variance, and it is precisely this product that appears in the skewness



The Volatility Process 5

of the distribution.

Indeed the instantaneous volatility is observable only at the second order of
a Taylor (or Ito) expansion of the logarithm of the asset-price. This also ex-
plains why one-factor GARCH models do not have this issue. In their context
the instantaneous volatility is perfectly known as a function of previous data
points.

The issue therefore seems to be a low Signal to Noise Ratio (SNR). We could
improve our estimation by considering additional data points. Using a high fre-
quency (several quotes a day) for the data, does help in this context. However
one needs to obtain clean and reliable data first.

Also we can see why a large time-step (e.g. yearly) makes the inference process
more robust by improving the observation quality. Still, using a large time-step
brings up other issues such as stronger nonlinearity as well as fewer available
data points, not to mention the non-applicability of the Girasnov theorem.

We shall analyze the Sampling Distributions of these parameters over many
simulations and see how unbiased and efficient the estimators are. Not surpris-
ingly, the inefficiency remains significant for a limited amount of data.

One needs to question the performance of the actual Optimization algorithm as
well. It is known that the greater the number of the parameters we are dealing
with, the flatter the Likelihood function and therefore the more difficult to find
a global optimum.

Nevertheless, it is important to remember that the SNR and therefore the per-
formance of the inference tool depend on the actual value of the parameters.
Indeed, it is quite possible that the real parameters are such that the inference
results are accurate.

We then apply our PF to a jump-diffusion model (such as the Bates [28] model)
and we will see that the estimation of the jump parameters is more robust than
the estimation of the diffusion parameters. This reconfirms that the estimation
of parameters affecting the drift of the observation is more reliable.

We finally apply the PF to non-Gaussian models such as VGSA [48] and we
will observe similar results as for the diffusion-based models. Once again the
VG parameters directly affecting the observation are easier to estimate, while
the arrival rate parameters affecting the noise are more difficult to recover.

Although as mentioned we use a Classical approach, we briefly discuss Bayesian
methods [34] such as Markov Chain Monte Carlo’s (MCMC) [163] including the
Gibbs Sampler [55] and the Metropolis-Hastings (MH) [58] algorithm. Bayesian
methods consider the parameters not as fixed numbers, but random variables
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having a prior distribution. One then updates these distributions from the ob-
servations similarly to what is done in the Measurement Update step of a Filter.
Sometimes the prior and posterior distributions of the parameters belong to the
same family and are referred to as Conjugates. The parameters are finally
estimated via an averaging procedure similar to the one employed in the JF.
Whether the Bayesian methods are actually better or worse than the Classical
ones has been a subject of long philosophical debate [240] and remains for the
reader to decide.

Other methodologies that differ from ours are the Non-Parametric (NP) and
the Semi-Non-Parametric (SNP) ones. These methods are based upon Kernel-
based interpolation procedures, and have the obvious advantage of being less
restrictive. However, Parametric models such as the ones used by us, offer the
possibility of comparing and interpreting parameters such as drift and volatility
of the instantaneous variance explicitly. Researchers such as Gallant, Tauchen
[109] and Äıt-Sahalia [6] use NP/ SNP approaches.

Finally, in the Third Chapter, we will apply the above Parametric Inference
methodologies to a few assets and will question the Consistency of information
contained in the Options markets on the one hand, and in the Stock market on
the other hand.

We shall see that there seems to be an excess negative-skewness and kurtosis
in the former. This is in contradiction with the Gisanov theorem for a Heston
model and could mean either that the model is misspecified, or that there is a
profitable transaction to be made. Another explanation could come from the
Peso Theory [12] (or Crash-O-Phobia [155]) where an expectation of a so-far
absent crash exists in the options markets.

Adding a jump component to the distributions helps to reconcile the volatil-
ity of volatility and correlation parameters, however remains insufficient. This
is in agreement with statements made by Bakshi, Cao and Chen [20].

It is important to realize that ideally, one should compare the information em-
bedded in the options and the evolution of the underlying asset during the life
of these options. Indeed ordinary put or call options are forward (and not back-
ward) looking. However given the limited amount of available daily data through
this period, we make the assumption that the dynamics of the underlying asset
do not change before and during the existence of the options. We therefore use
time-series that start long before the commencement of these contracts.

This assumption allows us to consider a Skewness Trade [6] where we would
exploit such discrepancies by buying Out-of-the-Money (OTM) Call Options
and selling OTM Put Options. We shall see that the results are not necessarily
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conclusive. Indeed, even if the trade often generates profits, occasional sudden
jumps cause large losses. This transaction is therefore similar to “selling insur-
ance”.

We also apply the same idea to the VGSA model where despite the non-Gaussian
features, the volatility of the arrival rate is supposed to be the same under the
real and risk-neutral worlds.

Let us be clear on the fact that this chapter does not constitute a thorough
empirical study of stock versus options markets. It rather presents a set of
examples of application for our previously constructed inference tools. There
clearly could be many other applications, such as Model Identification as dis-
cussed in the second chapter.

Yet another application of the separate estimations of the statistical and risk-
neutral distributions, is the determination of optimal positions in derivatives
securities as discussed by Carr and Madan [52]. Indeed the expected Utility
function to be maximized needs the real world distribution, while the initial
wealth constraint exploits the risk-neutral distribution. This can be seen via a
self-financing portfolio argument similar to the one used by Black and Scholes
[38].

Finally, we should remember that in all the above, we are assuming that the
asset and options dynamics follow a known and fixed model such as Heston or
VGSA. This is clearly a simplification of reality. Indeed the true markets follow
an unknown and perhaps more importantly constantly changing model. The
best we can do is to use the information hitherto available and hope that the
future behavior of the assets is not too different from the past one.
Needless to say, as time passes by and new information becomes available, we
need to update our models and parameter values. This could be done within
either a Bayesian or Classical framework.

In the Bibliography section, many but not all relevant articles and books are
cited. Only some of them are directly referred to in the text.
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Contributions and Further Research

The Contribution of the thesis is presenting a general and systematic way to
calibrate any parametric SV model (diffusion-based or not) to a Time-Series
under a Classical (non-Bayesian) framework. Although the concept of Filtering
has been used for estimating volatility processes before [130], to our knowledge,
this has always been for specific cases and was never generalized. The use of
Particle Filtering allows us to do this in a flexible and simple manner. We also
studied the convergence properties of our tools and showed their limitations.

Whether the results of these calibrations are consistent with the information
contained in the Options markets is a fundamental question. The applications
of this test are numerous among which the Skewness trade is only one example.

What else can be done? A comparative study between our approach and
Bayesian ones on the one hand, and Non-Parametric ones on the other hand.
Work by researchers such as Johannes, Polson and Äıt-Sahalia would be ex-
tremely valuable in this context.

Data and Programs

This thesis centers on Time-Series methodologies and exploits either artificially
generated inputs, or real market data. When real market data is utilized, the
source is generally Bloomberg. However, most of the data could be obtained
from other public sources available on the Internet.

All numeric computations are performed via routines implemented in the C
programming language. Some algorithms such as the Direction-Set Optimiza-
tion algorithm are taken from “Numerical Recipes in C” [204]. No statistical
packages such as S-Plus or R have been used.

The Skewness transactions studied in the third chapter of this thesis, were car-
ried out at RBC Capital Markets and remain proprietary. All Cross-Sectional
Calibrators (whether implemented via Fourier-Inversion or Monte-Carlo Mix-
ing) belong to RBC Capital Markets or Citigroup.
However the Time-Series Filters and Likelihood Maximization routines, which
constitute the major portion of the text, belong to the author and are available
upon request.

Scope

We study Stochastic Volatility (SV) models under a Parametric framework. We
therefore do not use Non-Parametric or Semi-Non-Parametric (SNP) method-
ologies such as the Efficient Method of Moments [109], Indirect Inference [123]
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or Kernel-based algorithms [100].

We use a Classical framework where the unknown parameters are fixed. In
particular, we focus upon Likelihood Maximization algorithms. We therefore
are not using Bayesian approaches such as Markov-Chain Monte-Carlo’s [163]
even if we do mention and discuss them.

We are principally focusing upon two-factor SV models and not one-factor
GARCH [96] models. However we do compare our approach to GARCH-based
algorithms.

We use Bates and VGSA models containing jumps in the stock return, but
not in the volatility process itself as Matytsin [187] does for instance.

We consider only one asset at a time and do not evaluate cross-asset trans-
actions exploiting correlations, as is done for instance by Avellaneda [15] in the
context of Dispersion Trading.

We perform separate inference analysis for the Options and the Stock Mar-
kets, since we intend to examine the consistency of the information contained
in them. Others [56], [165] present a joint parameter-estimation from the two
markets.

We analyze the dynamics of Equity Indices as well as individual Stocks. We
do not study Foreign-Exchange or Interest-Rate Dynamics. The methodologies
could however be applied to these markets without great difficulty. It is impor-
tant to note that a new approach based on Chaos theory, unifying Interest-Rate
Dynamics with Stochastic Volatility, was suggested by Hughston [144].

In our empirical studies we use Daily time-series and not High Frequency (HF)
data as some [24] do in the context of Realized Volatility. Yet as we shall state,
having access to reliable HF data would be extremely valuable.

Finally, we shall not discuss the speed of our various Filters. Indeed the com-
putational times are highly machine dependent and could vary between a few
minutes (e.g. Kalman Filter applied to 5000 data points) and several days (e.g.
Particle Filter applied to 5, 000, 000 data points via 1000 particles). Our primary
concern has been to have more accurate and not necessarily faster estimation
tools.
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Chapter 1

The Volatility Problem

Suppose we use the standard deviation of possible future returns on a stock as
a measure of its volatility. Is it reasonable to take that volatility as a constant
over time? I think not.
- Fisher Black

1.1 Introduction

It is widely accepted today that an assumption of a constant volatility fails to
explain the existence of the volatility smile as well as the leptokurtic character
(fat tails) of the stock distribution. The above Fisher Black quote made shortly
after the famous constant-volatility Black-Scholes model was developed, proves
the point.

In this Chapter, we will start by describing the concept of Brownian Motion
for the Stock Price Return as well as the concept of Historic Volatility.

We will then discuss the Derivatives Market and the ideas of Hedging and Risk
Neutrality. We will briefly describe the Black-Scholes Partial Derivatives Equa-
tion (PDE) in this section.

Next, we will talk about Jumps and Level Dependent Volatility models. We
will first mention the Jump Diffusion process and introduce the concept of
Leverage. We will then refer to two popular Level Dependent approaches: the
Constant Elasticity Variance (CEV) model and the Bensoussan-Crouhy-Galai
(BCG) model.

15
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At this point, we will mention Local Volatility models developed in the re-
cent past by Dupire and Derman-Kani and we will discuss their stability.

Following this, we will tackle the subject of Stochastic Volatility where we will
mention a few popular models such as the Square-Root model and GARCH.

We will then talk about the Pricing PDE under Stochastic Volatility and the
risk-neutral version of it. For this we will need to introduce the concept of Mar-
ket Price of Risk.

The Generalized Fourier Transform is the subject of the following section. This
technique was used by Alan Lewis extensively for solving Stochastic Volatility
problems.

Next, we will discuss the Mixing Solution, both in a correlated and non-correlated
case. We will mention its link to the Fundamental Transform and its usefulness
for Monte-Carlo based methods.

We will then describe the Long Term Asymptotic case, where we get closed-
form approximations for many popular methods such as the Square-Root model.

We will finally talk about pure-jump models such as Variance Gamma and
VGSA.
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1.2 The Stock Market

1.2.1 The Stock Price Process

The relationship between the stock market and the mathematical concept of
Brownian Motion goes back to Bachelier [18]. A Brownian Motion corresponds
to a process the increments of which are independent stationary normal random
variables. Given that a Brownian Motion can take negative values, it cannot be
used for the stock price. Instead, Samuelson [211] suggested to use this process
to represent the return of the stock price, which will make the stock price a
Geometric (or exponential) Brownian Motion.

In other words, the stock price S follows a Log-Normal process1

dSt = µStdt+ σStdBt (1.1)

where dBt is a Brownian Motion process, µ the instantaneous expected total
return of the stock (possibly adjusted by a dividend yield) and σ the instanta-
neous standard deviation of stock price returns, called the volatility in financial
markets.

Using Ito’s lemma,2 we also have

d ln(St) = (µ − 1
2
σ2)dt+ σdBt (1.2)

The stock return µ could easily become time dependent without changing any
of our arguments. For simplicity, we will often refer to it as µ even if we mean
µt. This remark holds for other quantities such as rt the interest-rate, or qt the
dividend-yield.

The equation (1.1) represents a continuous process. We can either take this
as an approximation to the real discrete tick by tick stock movements, or con-
sider it the real unobservable dynamics of the stock price, in which case the
discrete prices constitute a sample from this continuous ideal process. Either
way, the use of a continuous equation makes the pricing of financial instruments
more analytically tractable.

The discrete equivalent of (1.2) is

lnSt+∆t = lnSt + (µ − 1
2
σ2)∆t+ σ

√
∆tBt (1.3)

where (Bt) is a sequence of independent normal random variables with zero
mean and variance of 1.

1For an introduction to Stochastic Processes see Karatzas [167] or Oksendal [197].
2See for example Hull [146].
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1.2.2 Historic Volatility

This suggests a first simple way to estimate the volatility σ, namely the his-
toric volatility. Considering S1, ..., SN a sequence of known historic daily stock
close prices, calling Rn = ln(Sn+1/Sn) the stock price return between two days
and R̄ = 1

N

∑N−1
n=0 Rn the mean return, the historic volatility would be the

annualized standard deviation of the returns, namely

σhist =

√√√√ 252
N − 1

N−1∑

n=0

(Rn − R̄)2 (1.4)

Because we work with annualized quantities, and we are using daily stock close
prices we needed the factor 252, supposing that there are approximately 252
business days in a year.3

Note that N the number of observations can be more or less than one year,
hence when talking about a historic volatility, it is important to know what
time horizon we are considering? We can indeed have three month historic
volatility or three year historic volatility. Needless to say taking too few prices
would give an inaccurate estimation. Similarly the begin and end date of the
observations matter. It is preferable to take the end date as close as possible to
today, so that we include more recent observations.

An alternative was suggested by Parkinson [200] where instead of daily close
prices, we use the high and the low prices of the stock on that day, and
Rn = ln(Shighn /Slown ).
The volatility would then be

σparkinson =

√√√√ 252
N − 1

1
4 ln(2)

N−1∑

n=0

(Rn − R̄)2

This second moment estimation derived by Parkinson, is based upon the fact
that the range Rn of the asset, follows a Feller distribution.

Plotting for instance the one-year rolling4 historic volatility (1.4) of S&P500
Stock Index, it is easily seen that this quantity is not constant over time. This
observation was made as early as the 60’s by many financial mathematicians and
followers of the Chaos Theory. We therefore need time-varying volatility models.

One natural extension of the constant volatility approach is to make σt a de-
terministic function of time. This is equivalent to giving the volatility a term
structure, by analogy with interest rates.

3Clearly the observation frequency does not have to be daily.
4By rolling we mean that the one-year interval slides within the total observation period.
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1.3 The Derivatives Market

Until now we only mentioned the stock price movements independently from
the derivatives market, we now are going to include the financial derivatives
(specially options) prices as well. These instruments became very popular and
as liquid as the stocks themselves after Balck and Scholes introduced their risk-
neutral pricing formula in [38].

1.3.1 The Black Scholes Approach

The Black Scholes approach makes a number of reasonable assumptions about
markets being frictionless and uses the log-normal model for the stock price
movements. It also supposes a constant or deterministically time dependent
stock drift and volatility. Under these conditions they prove that it is possible
to hedge a position in a contingent claim dynamically by taking an offsetting
position in the underlying stock and hence become immune to the stock move-
ments. This risk neutrality is possible because, as they show, we can replicate
the financial derivative (for instance an option) by taking positions in Cash and
the Underlying Security. This condition of possibility of replication is called
Market Completeness.

In this situation everything happens as if we were replacing the stock drift µt
with the riskfree rate of interest rt in (1.1) or rt− qt if there is a dividend-yield
qt. The contingent claim f(S, t) having a payoff G(ST ) will satisfy the famous
Black-Scholes equation

rf =
∂f

∂t
+ (r − q)S

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
(1.5)

Indeed the Hedged Portfolio Π = f − ∂f
∂SS is immune to the stock random

movements and according to Ito’s lemma verifies

dΠ = (
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
)dt

which must also be equal to rΠdt or else there would be possibility of Riskless
Arbitrage.5

Note that this equation is closely related to the Feynman-Kac equation satis-
fied by F (S, t) = Et(h(ST )) for any function h under the risk-neutral measure.

5For a detailed discussion see Hull [146].
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F (S, t) must be a Martingale6 under this measure and therefore must be drift-
less, which implies dF = σS ∂F

∂S
dBt and

0 =
∂F

∂t
+ (r − q)S

∂F

∂S
+

1
2
σ2S2 ∂

2F

∂S2

This would indeed be a different way to reach the same Black-Scholes equation,
by using f(S, t) = exp(−rt)F (S, t) as was done for instance in Shreve [218].

Let us insist again on the fact that the real drift of the stock price does not
appear in the above equation, which makes the volatility σt the only unobserv-
able quantity.
As we said the volatility could be a deterministic function of time without chang-
ing the above argument, in which case all we need to do is to replace σ2 with
1
t

∫ t
0 σ

2
sds and keep everything else the same.

For Calls and Puts, where the payoffs G(ST ) are respectively MAX(0, ST −K)
and MAX(0,K − ST ) where K is the strike price and T the maturity of the
option, the Black Scholes Partial Derivatives Equation is solvable and gives the
celebrated Black Scholes formula

callt = Ste
−q(T−t)Φ(d1) −Ke−r(T−t)Φ(d2) (1.6)

and

putt = −Ste−q(T−t)Φ(−d1) +Ke−r(T−t)Φ(−d2) (1.7)

where Φ(x) = 1√
2π

∫ x
−∞ e−

u2
2 du is the Cumulative Standard Normal function

and
d1 = d2 + σ

√
T − t and d2 = ln(

St
K )+(r−q− 1

2σ
2)(T−t)

σ
√
T−t .

Note that using the well known symmetry property for Normal distributions
Φ(−x) = 1 − Φ(x) in the above formulae, we could reach the Put-Call Parity
relationship

callt − putt = Ste
−q(T−t) −Ke−r(T−t) (1.8)

that we can also rearrange as

Ste
−q(T−t) − callt = Ke−r(T−t) − putt

the left-hand side of the last equation is called a covered call, and is equivalent
to a short position in a put combined with a bond.

6For an explanation see Shreve [218] or Karatzas [167].
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1.3.2 The Cox Ross Rubinstein Approach

Later, Cox, Ross and Rubinstein [66] developed a simplified approach using the
Binomial Law to reach the same pricing formulae.
The approach commonly referred to as the Binomial Tree uses a tree of recom-
bining spot prices where at a given time step n we have n + 1 possible S[n][j]
spot prices, with 0 ≤ j ≤ n.
Calling p the upward transition probability and 1 − p the downward transition
probability, S the stock price today, Su = uS and Sd = dS upper and lower
possible future spot prices, we can write the expectation equation7

E[S] = puS + (1 − p)dS = er∆tS

which immediately gives us

p =
a − d

u− d

with a = exp(r∆t).
We can also write the variance equation

V ar[S] = pu2S2 + (1 − p)d2S2 − e2r∆tS2 ≈ σ2S2∆t

which after choosing a centering condition such as ud = 1, will provide us with
u = exp(σ

√
∆t) and d = exp(−σ

√
∆t).

Using the above values for u, d and p we can build the Tree and using the
final payoff we can calculate the option price by backward induction.8

We can aslo build this tree by applying an Explicit Finite Difference scheme
to the PDE (1.5) as was done in Wilmott [238].
An important advantage of the Tree method is that it can be applied to Amer-
ican Options (with early exercise) as well.

It is possible to deduce the implied volatility of Call and Put options by solving
a reverse Black-Scholes equation: i.e. find the volatility that would equate the
Black-Scholes price to the market price of the option.

This is a good way to see how derivatives markets perceive the underlying
volatility. It is easy to see that if we change the maturity and strike prices
of options (and keep everything else fixed) the implied volatility will not be con-
stant. It will have a linear skew and a convex form as the strike price changes.
This famous “smile” cannot be explained by simple time dependence, hence the
necessity of introducing new models.9

7The expectation equation is written under the risk-neutral probability.
8For an in-depth discussion on Binomial Trees see Cox [67].
9It is interesting to note that this smile phenomenon was practically non-existent prior to

the 1987 stock-market crash. Many researchers therefore believe that the markets have learnt
to factor-in a crash possibility, which creates the volatility smile.
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1.4 Jump Diffusion and Level Dependent Volatil-
ity

In addition to the volatility smile observable from the implied volatilities of the
options, there is evidence that the assumption of a pure normal distribution
(also called pure diffusion) for the stock return is not accurate. Indeed “fat
tails” have been observed away from the mean of the stock return. This phe-
nomenon is called leptokurticity and could be explained in many different ways.

1.4.1 Jump Diffusion

Some try to explain the smile and the leptokurticity by changing the underlying
stock distribution from a diffusion process to a jump-diffusion process. A Jump
Diffusion is not a Level Dependant Volatility process, however we are mention-
ing it in this section to demonstrate the importance of the leverage effect.

Merton [190] was first to actually introduce jumps in the stock distribution.
Kou [172] recently used the same idea to explain both the existence of fat tails
and the volatility smile.

The stock price will follow a modified stochastic process under this assump-
tion. If we add to the Brownian Motion dBt a Poisson (Jump) process10 dq
with an intensity11 λ, then calling k = E(Y −1) with Y −1 the random variable
percentage change in the stock price, we will have

dSt = (µ− λk)Stdt+ σStdBt + Stdq (1.9)

or equivalently

St = S0 exp[(µ− σ2

2
− λk)t + σBt]Yn

where Y0 = 1 and Yn =
∏n
j=1 Yj with Yj ’s independently identically distributed

random variables and n a Poisson random variable with a parameter λt.
It is worth noting that for the special case where the jump corresponds to total
ruin or default, we have k = −1 which will give us

dSt = (µ + λ)Stdt+ σStdBt + Stdq (1.10)

and

St = S0 exp[(µ+ λ − σ2

2
)t+ σBt]Yn

10See for instance Karatzas [167].
11The intensity could be interpreted as the mean number of jumps per time unit.
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Given that in this case E(Yn) = E(Y 2
n ) = e−λt it is fairly easy to see that in the

risk-neutral world
E(St) = S0e

rt

exactly as in the pure diffusion case, but

V ar(St) = S2
0e

2rt(e(σ
2+λ)t − 1) ≈ S2

0(σ2 + λ)t (1.11)

unlike the pure diffusion case where V ar(St) ≈ S2
0σ

2t.

Proof:
Indeed

E(St) = S0 exp((r + λ)t) exp(−σ
2

2
t)E[exp(σBt)]E(Yn) =

S0 exp((r + λ)t) exp(−σ
2

2
t) exp(

σ2

2
t) exp(−λt) = S0 exp(rt)

and
E(S2

t ) = S2
0 exp(2(r + λ)t) exp(−σ2t)E[exp(2σBt)]E(Y 2

n ) =

S2
0 exp(2(r + λ)t) exp(−σ2t) exp(

(2σ)2

2
) exp(−λt) =

S2
0 exp((2r + λ)t) exp(σ2t)

and as usual
V ar(St) = E(S2

t ) −E2(St)

(QED)

Link to Credit Spread

Note that for a zero-coupon risky bond Z with no recovery, a credit spread C
and a face value X paid at time t we have

Z = e−(r+C)tX = e−λt(e−rtX) + (1 − e−λt)(0)

consequently λ = C and using (1.11) we can write

σ̃2(C) = σ2 +C

where σ is the fixed (pure diffusion) volatility and σ̃ is the modified jump diffu-
sion volatility. The above equation relates the volatility and leverage, a concept
we will see later in level dependent models as well.

Also, we could see that everything happens as if we were using the Black-Scholes



26

pricing equation but with a modified “interest rate” which is r+C. Indeed the
Hedged Portfolio Π = f − ∂f

∂S
S now satisfies

dΠ = (
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
)dt

under the no-default case which occurs with a probability of e−λdt ≈ 1 − λdt
and

dΠ = −Π

under the default case which occurs with a probability of 1 − e−λdt ≈ λdt.
We therefore have

E(dΠ) = (
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
− λΠ)dt

and using a diversification argument we can always say that E(dΠ) = rΠdt
which provides us with

(r + λ)f =
∂f

∂t
+ (r + λ)S

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
(1.12)

which again is the Black-Scholes PDE with a “risky rate”.

A generalization of the Jump Diffusion process would be the use of the Levy
Process. A Levy Process is a stochastic process with independent and stationary
increments. Both the Brownian Motion and the Poisson process are included in
this category. For a description, see Matacz [186].

1.4.2 Level Dependent Volatility

Many assume that the smile and the fat tails are due to the level dependence
of the volatility.
The idea would be to make σt level dependent or a function of the spot itself,
we would therefore have

dSt = µtStdt+ σ(S, t)StdBt (1.13)

Note that to be exact, a Level Dependent Volatility is a function of the spot
price alone. When the volatility is a function of the spot price and time, it is
referred to as Local Volatility, which we shall discuss further.

The Constant Elasticity Variance Approach

One of the very first attempts to use this approach was the Constant Elasticity
Variance (CEV) method realized by Cox [64] and [65]. In this method we would
suppose an equation of the type

σ(S, t) = CSγt (1.14)
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where C and γ are parameters to be calibrated either from the stock price re-
turns themselves or from the option prices and their implied volatilities. The
CEV method was recently analyzed by Jones [165] in a paper where he uses two
γ exponents.

This level depending volatility represents an important feature that is observed
in options markets as well as in the underlying prices: The negative correlation
between the stock price and the volatility, also called the Leverage Effect.

The Bensoussan Crouhy Galai Approach

Bensoussan, Crouhy and Galai (BCG) [33] try to find the level dependence of
the volatility differently from Cox and Ross. Indeed in the CEV model, Cox
and Ross first suppose that σ(S, t) has a certain exponential form and only then
try to calibrate the model parameters to the market. BCG, on the other hand
try to deduce the functional form of σ(S, t) by using a firm structure model.
The idea of firm structure is not new and goes back to Merton [189] where he
considers that the Firm Assets follow a Log-Normal process

dV = µV V dt+ σV V dBt (1.15)

where µV and σV are the assets return and volatility. One important point is
that σV is considered constant.
Merton then argues that the equity S of the firm could be considered a call
option on the assets of the firm with a strike price K equal to the face value
of the firm liabilities and an expiration T equal to the average liability maturity.

Using Ito’s lemma, it is fairly easy to see that

dS = µSdt + σ(S, t)SdBt = (
∂S

∂t
+ µV V

∂S

∂V
+

1
2
σ2
V V

2 ∂
2S

∂V 2
)dt+ σV V

∂S

∂V
dBt

(1.16)
which immediately provides us with

σ(S, t) = σV
V

S

∂S

∂V
(1.17)

which is an implicit functional form for σ(S, t).

BCG then eliminate the asset term in the above functional form and end up
with a non-linear PDE

∂σ

∂t
+

1
2
σ2S2 ∂

2σ

∂S2
+ (r + σ2)S

∂σ

∂S
= 0 (1.18)

This PDE gives the dependence of σ on S and t.

Proof:
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A quick sketch of the proof is as follows: S being a contingent-claim on V we
have the risk-neutral Black-Scholes PDE

∂S

∂t
+ rV

∂S

∂V
+

1
2
σ2
V V

2 ∂
2S

∂V 2
= rS

and using ∂S
∂V = 1/∂V∂S as well as ∂S

∂t = − ∂S
∂V

∂V
∂t and ∂2S

∂V 2 = −∂2V
∂S2 /

(
∂V
∂S

)3
we

have the reciprocal Black-Scholes equation

∂V

∂t
+ rS

∂V

∂S
+

1
2
σ2S2 ∂

2V

∂S2
= rV

Now posing Ψ(S, t) = lnV (S, t) we have ∂V
∂t

= V ∂Ψ
∂t

as well as ∂V
∂S

= V ∂Ψ
∂S

and
∂2V
∂S2 = V

(
∂2Ψ
∂S2 + (∂Ψ

∂S
)2
)

we will have the new PDE

r =
∂Ψ
∂t

+ rS
∂Ψ
∂S

+
1
2
σ2S2

(
∂2Ψ
∂S2

+ (
∂Ψ
∂S

)2
)

and the equation

σ = σV /(S
∂Ψ
∂S

)

this last identity implies ∂Ψ
∂S = σV

Sσ as well as ∂2Ψ
∂S2 = −σV (σ+S ∂σ

∂S )

S2σ2 and therefore
the PDE becomes

r =
∂Ψ
∂t

+ rσV /σ +
1
2
(σ2
V − σV (σ + S

∂σ

∂S
))

taking the derivative with respect to S and using ∂2Ψ
∂S∂t = − σV

Sσ2
∂σ
∂t we get the

final PDE
∂σ

∂t
+

1
2
σ2S2 ∂

2σ

∂S2
+ (r + σ2)S

∂σ

∂S
= 0

as previously stated. (QED)

We therefore have an implicit functional form for σ(S, t) and just like for the
CEV case, we need to calibrate the parameters to the market data.
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Figure 1.3: CEV Model for SPX on Feb 12 2002 with Index=1107.5 USD, 1
month to Maturity. The smile is fitted well, but the model assumes a perfect
(negative) correlation between the stock and the volatility.
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month to Maturity. The smile is fitted well.
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1.5 Local Volatility

In the early 90’s Dupire [89] on the one hand, and Derman & Kani [74] on the
other, developed a concept called Local Volatility where the volatility smile was
retrieved from the option prices.

1.5.1 The Dupire Approach

The Breeden & Litzenberger Identity

This approach, uses the options prices to get the implied distribution for the
underlying stock. To do this we can write

V (S0,K, T ) = call(S0,K, T ) = e−rT
∫ +∞

0

(S −K)+p(S0, S, T )dS (1.19)

where S0 is the stock price at time t = 0 and K the strike price of the call,
and p(S0, S, T ) the unknown transition density for the stock-price. As usual
x+ = MAX(x, 0)

Using the above equation and differentiating with respect to K twice we get
the Breeden & Litzenberger [44] implied distribution

p(S0,K, T ) = erT
∂2V

∂K2
(1.20)

Proof:
The proof is straightforward if we write

erTV (S0,K, T ) =
∫ +∞

K

Sp(S0, S, T )dS −K

∫ +∞

K

p(S0, S, T )dS

and take the first derivative

erT
∂V

∂K
= −Kp(S0,K, T ) +Kp(S0,K, T )−

∫ +∞

K

p(S0, S, T )dS

and the second derivative in the same manner. (QED)

The Dupire Identity

Now according to the Fokker-Planck (or forward Kolmogorov) equation12 for
this density, we have

∂p

∂T
=

1
2
∂2(σ2(S, t)S2p)

∂S2
− r

∂(Sp)
∂S

12See for example Wilmott [237] for an explanation on Fokker-Planck equation.
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and therefore after a little rearrangement

∂V

∂T
=

1
2
σ2K2 ∂

2V

∂K2
− rK

∂V

∂K

which provides us with the local volatility formula

σ2(K,T ) =
∂V
∂T

+ rK ∂V
∂K

1
2
K2 ∂2V

∂K2

(1.21)

Proof:
For a quick proof of the above let us use the zero interest rates case (the general
case could be done similarly). we would then have

p(S0,K, T ) =
∂2V

∂K2

as well as Fokker-Planck

∂p

∂T
=

1
2
∂2(σ2(S, t)S2p)

∂S2

Now
∂V

∂T
=
∫ +∞

0

(ST −K)+
∂p

∂T
dST =

∫ +∞

0

(ST −K)+
1
2
∂2(σ2(S, T )S2p)

∂S2
dST

and integrating by parts twice and using the fact that

∂2(ST −K)+

∂K2
= δ(ST −K)

with δ(.) the Dirac function, we will have

∂V

∂T
=

1
2
σ2(K,T )K2p(S0,K, T ) =

1
2
K2σ2(K,T )

∂2V

∂K2

as stated. (QED)

It is also possible to use the implied volatility σBS from the Black-Scholes for-
mula (1.6) and express the above local volatility in terms of σBS instead of V .
For a detailed discussion we could refer to Wilmott [237].

Local Volatility vs. Instantaneous Volatility

Clearly the local volatility is related to the instantaneous variance vt, as Gatheral
[113] shows, the relationship could be written as

σ2(K,T ) = E[vT |ST = K] (1.22)
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that is, local variance is the risk-neutral expectation of the instantaneous vari-
ance conditional on the final stock price being equal to the strike price.13

Proof:
Let us show the above identity for the case of zero interest rates.14

As mentioned above, we have

σ2(K,T ) =
∂V
∂T

1
2
K2 ∂2V

∂K2

On the other hand using the call payoff V (S0,K, t = T ) = E[(ST − K)+] we
have

∂V

∂K
= E[H(ST −K)]

with H(.) the Heaviside function and

∂2V

∂K2
= E[δ(ST −K)]

with δ(.) the Dirac function.
Therefore the Ito lemma at t = T would provide

d(ST −K)+ = H(ST −K)dST +
1
2
vTS

2
T δ(ST −K)dT

Using the fact that the Forward Price (here with zero interest rates, the Stock
Price) is a Martingale under the risk-neutral measure

dV = dE[(ST −K)+] =
1
2
E[vTS2

T δ(ST −K)]dT

Now we have

E[vTS2
T δ(ST −K)] = E[vT |ST = K]K2E[δ(ST −K)] =

E[vT |ST = K]K2 ∂
2V

∂K2

Putting all this together

∂V

∂T
=

1
2
K2 ∂

2V

∂K2
E[vT |ST = K]

and by the above expression of σ2(K,T ) we will have

σ2(K,T ) = E[vT |ST = K]

as claimed. (QED)

13Note that this is independent from the process for vt, meaning that any stochastic volatil-
ity model satisfies this property, which is an attractive feature of local volatility models.

14For the case of non-zero rates we need to work with the Forward Price instead of the
Stock Price.
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1.5.2 The Derman Kani Approach

The Derman & Kani technique is very similar to the above approach, except it
uses the Binomial (or Trinomial) Tree framework instead of the continuous one.

Using the Binomial Tree notations, their upward transition probability pi from
the spot si at time tn to the upper node Si+1 at the following time-step tn+1,
is obtained from the usual

pi =
Fi − Si
Si+1 − Si

(1.23)

where Fi is the stock forward price known from the market, and Si the lower
spot at the step tn+1.
In addition, we have for a call expiring at time-step tn+1

C(K, tn+1) = e−r∆t
n∑

j=1

[λjpj + λj+1(1 − pj+1)]MAX(Sj+1 −K, 0)

where λj ’s are the known Arrow-Debreu prices corresponding to the discounted
probability of getting to the point sj at time tn from S0 the initial stock price.
These probabilities could easily be derived iteratively.
This allows us after some calculation to obtain Si+1 as a function of si and Si,
namely

Si+1 =
Si[er∆tC(si,K, tn+1) − Σ]− λisi(Fi − Si)

[er∆tC(si,K, tn+1) − Σ]− λi(Fi − Si)

where the term Σ represents the sum
∑n

j=i+1 λj(Fj−si). This means that after
choosing the usual centering condition for the Binomial Tree

s2i = SiSi+1

we have all the elements to build the tree and deduce the implied distribution
from the Arrow-Debreu prices.

1.5.3 Stability Issues

The local volatility models are very elegant and theoretically sound, however
they present in practice many stability issues. They are Ill-Posed Inversion
problems and are extremely sensitive to the input data.15 This might introduce
arbitrage opportunities and in some cases negative probabilities or variances.
Derman and Kani suggest overwriting techniques to avoid such problems.
Andersen [13] tries to improve this issue by using an Implicit Finite Difference
method, however he recognizes that the negative variance problem could still
happen.

15See Tavella [226] or Avellaneda [16].
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One way to make the results smoother is to use a constrained optimization.
In other words, when trying to fit theoretical results Ctheo to the market prices
Cmrkt instead of minimizing

N∑

j=1

(Ctheo(Kj) −Cmrkt(Kj))2

we could minimize

λ
∂σ

∂t
+

N∑

j=1

(Ctheo(Kj) −Cmrkt(Kj))2

where λ is a constraint parameter which could also be interpreted as a Lagrange
multiplier.
However this is an artificial way to smoothen the results and the real issue re-
mains that once again, we have an inversion problem that is inherently unstable.

What is more, local volatility models imply that future implied volatility smiles
will be flat relative to today’s, which is another limitation.16 As we will see in
the following section, Stochastic Volatility models offer more time-homogeneous
volatility smiles.

An alternative approach suggested in [16] would be to choose a prior risk-neutral
distribution for the asset (based on a subjective view) and then minimize the
relative Entropy distance between the desired surface and this prior distribu-
tion. This approach uses the Kullback-Leibler distance (which we will discuss in
the context of MLE) and performs the minimization via Dynamic Programming
[35] on a tree.

1.5.4 Calibration Frequency

One of the most attractive features of Local-Vol models is their ability to match
plain-vanilla puts and calls exactly. This will avoid arbitrage situations, or
worse, market manipulations by traders to create “phantom” profits.

As explained in Hull [147], these arbitrage-free models were developed by re-
searchers with a Single Calibration (SC) methodology assumption. However
traders use them with a Continual Recalibration (CR) strategy in practice.
Indeed if they used the SC version of the model, significant errors would be
introduced from one week to the following as shown by Dumas et al. [88].

However once this CR version is used, there is no guarantee that the no-arbitrage

16See Gatheral [114].
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property of the original SC model is preserved. Indeed the Dupire equation de-
termines the marginal stock distribution at different points in time, but not the
joint distribution of these stock prices. Therefore a path-dependent option could
very well be mispriced, and the more path-dependent this option, the greater
the mispricing.

Hull [147] takes the example of a Bet Option, a Compound Option and a Bar-
rier Option. The Bet Option depends on the distribution of the stock at one
point in time and therefore is correctly priced with a Continually Recalibrated
Local-Vol model. The Compound Option has some path dependency, hence a
certain amount of mispricing compared to a Stochastic Volatility (SV) model.
Finally, the Barrier Option has a strong degree of path dependency and will
introduce large errors.

Note that this is due to the discrete nature of the data. Indeed the maturi-
ties we have are limited. If we had all possible maturities in a continuous way,
the joint distribution would be determined completely.

Also, when interpolating in time, it is customary to interpolate upon the true
variance tσ2

t rather than the volatility σt given the equation

T2σ
2(T2) = T1σ

2(T1) + (T2 − T1)σ2(T1, T2)

Interpolating upon the true variance will provide smoother results as shown by
Jackel [152].
Proof:
Indeed, calling for 0 ≤ T1 ≤ T2 the spot return variances

V ar(0, T2) = T2σ
2(T2)

V ar(0, T1) = T1σ
2(T1)

for a Brownian Motion, we have independent increments and therefore a forward
variance V ar(T1, T2) such that

V ar(0, T1) + V ar(T1, T2) = V ar(0, T2)

which demonstrates the point. (QED)
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1.6 Stochastic Volatility

Unlike Non-Parametric Local Volatility models, Parametric Stochastic Volatility
(SV) models define a specific stochastic differential equation for the unobserv-
able instantaneous variance. As we shall see, the previously defined CEV model
could be considered a special case of these models.

1.6.1 Stochastic Volatility Processes

The idea would be to use a different stochastic process for σ altogether. Mak-
ing the volatility a deterministic function of the spot is a special “degenerate”
two-factor, a natural generalization of which would precisely be to have two
stochastic processes with a non-perfect correlation.17

Several different stochastic processes have been suggested for the volatility. One
popular one is the Ornstein-Uhlenbeck (OU) process:

dσt = −ασtdt+ βdZt (1.24)

where α and β are two parameters, remembering the stock equation

dSt = µtStdt+ σtStdBt

there is a (usually negative) correlation ρ between dZt and dBt which can in
turn be time or level dependent.

Heston [134] and Stein [223] were among those who suggested the use of this
process. Using Ito’s lemma, we can see that the stock-return variance vt = σ2

t

satisfies a Square-Root or Cox-Ingersoll-Ross (CIR) process

dvt = (ω − θvt)dt+ ξ
√
vtdZt (1.25)

with ω = β2, θ = 2α and ξ = 2β.

Note that the OU process has a closed form solution

σt = σ0e
−αt + β

∫ t

0

e−α(t−s)dZs

17Note that here, the instantaneous volatility is stochastic. Recent work by researchers
such as Schonbucher supposes a Stochastic Implied-Volatility process, which is a completely
different approach. See for instance [213].
On the other hand, Avellaneda et al. [17] use the concept of Uncertain Volatility for pricing
and hedging Derivative Securities. They make the volatility switch between two extreme
values based on the convexity of the derivative contract and obtain a nonlinear Black-Scholes-
Barenblatt equation, which they solve on a grid.
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which means that σt follows in law Φ(σ0e
−αt, β

2

2α (1− e−2αt)), with Φ again the
Normal Distribution. This was discussed in Fouque [104] and Shreve [218].

Heston and Nandi [137] show that this process corresponds to a special case of
the General Auto-Regressive Conditional Heteroskedasticity (GARCH) model
that we will discuss further below.
Another popular process is the GARCH(1,1) process where we would have

dvt = (ω − θvt)dt+ ξvtdZt (1.26)

1.6.2 GARCH and Diffusion Limits

The most elementary GARCH process called GARCH(1,1) was developed orig-
inally in the field of econometrics by Engle [94] and Bollerslev [40] in a discrete
framework. The stock discrete equation (1.3) could be rewritten by taking
∆t = 1 and vn = σ2

n as

lnSn+1 = lnSn + (µ − 1
2
vn+1) +

√
vn+1Bn+1 (1.27)

calling the mean adjusted return

un = ln(
Sn
Sn−1

) − (µ − 1
2
vn) =

√
vnBn (1.28)

the variance process in GARCH(1,1) is supposed to be

vn+1 = ω0 + βvn + αu2
n = ω0 + βvn + αvnB

2
n (1.29)

where α and β are weight parameters and ω0 a parameter related to the long-
term variance.18

Nelson [194] shows that as the time interval length decreases and becomes in-
finitesimal, the above equation (1.29) becomes precisely the previously cited
equation (1.26). To be more accurate there is a weak convergence of the dis-
crete GARCH process to the continuous diffusion limit.19 For a GARCH(1,1)
continuous diffusion, the correlation between dZt and dBt is zero.

It might appear surprising that even if the GARCH(1,1) process has only one
18It is worth mentioning that as explained in [100] a GARCH(1,1) model could be rewritten

as an Auto-Regressive Moving Average model of first order ARMA(1,1) and therefore an
Auto-Regressive model of infinite order AR(+∞).
GARCH is therefore a parsimonious model that can fit the data with only a few parameters.
Fitting the same data with an ARCH or AR model would require a much larger number of
parameters. This feature makes the GARCH model very attractive.

19For an explanation on weak convergence see for example Varadhan [230].
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source of randomness, namely Bn, the continuous version has two independent
Brownian Motions. This is understandable if we consider Bn a standard nor-
mal random variable and An = B2

n − 1 another random variable. It is fairly
easy to see that An and Bn are uncorrelated even if An is a function of Bn.
As we go towards the continuous version, we can use Donsker’s Theorem,20 by
letting the time interval ∆t → 0, to prove that we end up with two uncor-
related and therefore independent Brownian Motions. This is a limitation of
the GARCH(1,1) model, hence the introduction of the Non-Linear Asymmetric
GARCH (NGARCH) model.

Duan [83] attempts to explain the volatility smile by using the NGARCH process
expressed by

vn+1 = ω0 + βvn + α(un − c
√
vn)2 (1.30)

where c is a parameter to be determined.
The NGARCH process was first introduced by Engle [97]. The continuous coun-
terpart of NGARCH is the same equation (1.26) except unlike the equation
resulting from GARCH(1,1) there is a non-zero correlation between the stock
process and the volatility process. This correlation is created precisely because
of the parameter c that was introduced, and is once again called the leverage
effect. The parameter c is sometimes referred to as the leverage parameter.
We can find the following relationships between the discrete process and the
continuous diffusion limit parameters by letting the time interval become in-
finitesimal

ω =
ω0

dt2

θ =
1 − α(1 + c2) − β

dt

ξ = α

√
κ − 1 + 4c2

dt

and the correlation between dBt and dZt

ρ =
−2c√

κ− 1 + 4c2

where κ represents the Pearson Kurtosis21 of the mean adjusted returns (un).
As we can see, the sign of the correlation ρ is determined by the parameter c.

20For a discussion on Donsker’s Theorem, similar to the Central Limit Theorem, see for
instance Whitt [235].

21The Kurtosis corresponds to the Fourth Moment. The Pearson Kurtosis for a Normal
Distribution is equal to 3.
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Proof:
A quick proof of the convergence to diffusion limit could be outlined as fol-
lows. Let us assume that c = 0 for simplicity, we therefore are dealing with the
GARCH(1,1) case.
As we saw

vn+1 = ω0 + βvn + αvnB
2
n

therefore
vn+1 − vn = ω0 + βvn − vn + αvn − αvn + αvnB

2
n

or
vn+1 − vn = ω0 − (1 − α− β)vn + αvn(B2

n − 1)

Now, allowing the time-step ∆t to become variable and posing Zn = (B2
n −

1)/
√
κ− 1

vn+∆t − vn = ω∆t2 − θ∆tvn + ξvn
√

∆tZn

and annualizing vn by posing vt = vn/∆t we shall have

vt+∆t − vt = ω∆t− θ∆tvt + ξvt
√

∆tZn

and as ∆t→ 0 we get

dvt = (ω − θvt)dt+ ξvtdZt

as claimed. (QED)

Note that the discrete GARCH version of the Square-Root process (1.25) is

vn+1 = ω0 + βvn + α(Bn − c
√
vn)2 (1.31)

as Heston and Nandi show22 in [137].

Also, note that having a diffusion process dvt = b(vt)dt+a(vt)dZt we can apply
an Euler Approximation23 to discretize and obtain a Monte-Carlo process such
as vn+1 − vn = b(vn)∆t+ a(vn)

√
∆tZn. It is important to note that if we use

a GARCH process and go to the continuous diffusion limit, and then apply an
Euler Approximation, we will not necessarily find the original GARCH process
again. Indeed, there are many different ways to discretize the continuous diffu-
sion limit and the GARCH process corresponds to one special way.

In particular, if we use (1.31) and allow ∆t → 0 to get to the continuous
diffusion limit, we shall obtain (1.25). As we will see later in the section on
Mixing Solutions, we can then apply a discretization to this process and obtain
a Monte-Carlo simulation

vn+1 = vn + (ω − θvn)∆t+ ξ
√
vn

√
∆tZn

22For a detailed discussion on the convergence of different GARCH models towards their
Diffusion Limits, also see Duan [85].

23See for instance Jones [165].
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which is again different from (1.31) but obviously has to be consistent in terms
of pricing. However, we should know which method we are working with from
the very beginning to perform our calibration on the corresponding specific pro-
cess.

Corradi [61] explains this in the following manner: The discrete GARCH model
could converge either towards a two-factor continuous limit if one chooses the
Nelson parameterization, or could very well converge to a one-factor diffusion
limit if one chooses another parameterization. What is more, an appropriate
Euler discretization of the one-factor continuous model will provide a GARCH
discrete process, while as previously mentioned the discretization of the two-
factor diffusion model provides a two-factor discrete process. This distinction
is fundamental and could explain why GARCH and SV behave differently in
terms of parameter estimation.
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1.7 The Pricing PDE under Stochastic Volatil-
ity

A very important issue to underline here is that, because of the unhedgeable
second source of randomness, the concept of Market Completeness is lost. We
can no longer have a straightforward risk neutral pricing. This is where the
market price of risk will come into consideration.

1.7.1 The Market Price of Volatility Risk

Indeed, taking a more general form for the variance process

dvt = b(vt)dt+ a(vt)dZt (1.32)

as we previously said, using the Black-Scholes risk-neutrality argument, the
equation (1.1) could be replaced with

dSt = (rt − qt)Stdt+ σtStdBt (1.33)

This is equivalent to changing the probability measure from the real one to
the risk neutral one.24 We therefore need to use (1.33) together with the risk
adjusted volatility process

dvt = b̃(vt)dt+ a(vt)dZt (1.34)

where
b̃(vt) = b(vt) − λa(vt)

with λ the market price of volatility risk. This quantity is closely related to the
market price of risk for the stock λe = (µ − r)/σ. Indeed as Hobson [140] and
Lewis [177] both show, we have

λ = ρλe +
√

1 − ρ2λ∗ (1.35)

where λ∗ is the market price of risk associated with dBt − ρdZt which can also
be regarded as the market price of risk for the hedged portfolio.
The passage from the above equation (1.32) to (1.34) and the introduction of
the market price of volatility risk could also be explained by the Girsanov the-
orem as was done for instance in Fouque [104].

It is important to underline the difference between the real and the risk neutral
measures here. If we use historic stock prices together with the real stock-return
drift µ to estimate the process parameters, we will obtain the real volatility-drift

24See Hull [146] or Shreve [218] for more detail.
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b(v). An alternative method would be to estimate b̃(v) by using current option
prices and performing a Least Square Estimation. These Calibration methods
will be discussed in more detail in the following chapters.

The risk neutral version for a discrete NGARCH model would also involve the
market price of risk and instead of the usual

lnSn+1 = lnSn + (µ − 1
2
vn+1) +

√
vn+1Bn+1

vn+1 = ω0 + βvn + αvn(Bn − c)2

we would have

lnSn+1 = lnSn + (r − 1
2
vn+1) +

√
vn+1B̃n+1 (1.36)

vn+1 = ω0 + βvn + αvn(B̃n − c− λe)2

where B̃n = Bn + λe which could be regarded as the discrete version of the
Girsanov theorem. Note that the market price of risk for the stock λe is not
separable from the leverage parameter c in the above formulation.
Duan shows in [84] and [86] that the above risk-neutral GARCH system (1.36)
will indeed converge towards the continuous risk-neutral GARCH

dSt = Strdt+ St
√
vtdBt

dvt = (ω − θ̃vt)dt+ ξvtdZt

as we expected.

1.7.2 The Two Factor PDE

From here, writing a two factor PDE for a derivative security f becomes a simple
application of the two-dimensional Ito’s lemma. The PDE will be25

rf =
∂f

∂t
+ (r − q)S

∂f

∂S
+

1
2
vS2 ∂

2f

∂S2
+ b̃(v)

∂f

∂v
+

1
2
a2(v)

∂2f

∂v2
+ ρa(v)

√
vS

∂2f

∂S∂v
(1.37)

Therefore it is possible, after calibration, to apply a Finite Difference Method26

to the above PDE to price the derivative f(S, t, v). An alternative would be to
use directly the stochastic processes for dSt and dvt and apply a Two-Factor
Monte-Carlo simulation. Later in the chapter we will also mention other possi-
ble methods such as the Mixing Solution or Asymptotic Approximations.

25For a proof of the derivation see Wilmott [237] or Lewis [177].
26See for instance Tavella [227] or Wilmott [237] for a discussion on Finite Difference Meth-

ods.
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Other possible approaches for incomplete markets and stochastic volatility as-
sumption include Super-Replication and Local Risk Minimization.27

The Super-Replication strategy is the cheapest self-financing strategy with a
terminal value no less than the payoff of the Derivative contract. This tech-
nique was primarily developed by El-Karoui and Quenez in [91].
Local Risk Minimization involves a partial hedging of the risk. The risk is
reduced to an “intrinsic component” by taking an offsetting position in the
underlying security as usual. This method was developed by Follmer and Son-
dermann in [102].

27For a discussion on both these techniques see Frey [107].
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1.8 The Generalized Fourier Transform

1.8.1 The Transform Technique

One useful technique to apply to the PDE (1.37) is the Generalized Fourier
Transform.28 First, we can use the variable x = lnS in which case, using Ito’s
lemma, (1.37) could be rewritten as

rf =
∂f

∂t
+ (r − q − 1

2
v)
∂f

∂x
+

1
2
v
∂2f

∂x2
+ b̃(v)

∂f

∂v
+

1
2
a2(v)

∂2f

∂v2
+ ρa(v)

√
v
∂2f

∂x∂v
(1.38)

Calling

f̂(k, v, t) =
∫ +∞

−∞
eikxf(x, v, t)dx (1.39)

where k is a complex number,29 f̂ will be defined in a complex strip where the
imaginary part of k is between two real numbers α and β.
Once f̂ is suitably defined, meaning that ki = I(k) (the imaginary part of k) is
within the appropriate strip, we can write the Inverse Fourier Transform

f(x, v, t) =
1
2π

∫ iki+∞

iki−∞
e−ikxf̂(k, v, t)dk (1.40)

where we are integrating for a fixed ki parallel to the real axis.

Each derivative satisfying (1.37) or equivalently (1.38) has a known payoff
G(ST ) at maturity. For instance, as we said before, a Call Option has a payoff
MAX(0, ST − K) where K is the call strike-price. It is easy to see that for
ki > 1 the Fourier Transform of a call option exists and the payoff Transform is

−
Kik+1

k2 − ik
(1.41)

Proof:
Indeed, we can write

∫ +∞

−∞
eikx(ex −K)+dx =

∫ +∞

lnK

eikx(ex −K)dx =

0 −
(
Kik+1

ik + 1
−K

Kik

ik

)
=

28See Lewis [177] for a detailed discussion on this technique.
29As usual we note i =

√
−1.
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−Kik+1

(
1

ik + 1
− 1
ik

)
= −Kik+1 1

k2 − ik

as stated. (QED)
The same could be applied to a Put option or other derivative securities. In
particular, a Covered Call (Stock minus Call) having a payoff MIN (ST ,K) will
have a transform for 0 < ki < 1 equal to

Kik+1

k2 − ik
(1.42)

Applying the Transform to the PDE (1.38) and introducing τ = T − t and

ĥ(k, v, τ ) = e(r+ik(r−q))τ f̂ (k, v, τ ) (1.43)

and posing30 c(k) = 1
2 (k2 − ik) we get the new PDE equation

∂ĥ

∂τ
=

1
2
a2(v)

∂2ĥ

∂v2
+ (b̃(v) − ikρ(v)a(v)

√
v)
∂ĥ

∂v
− c(k)vĥ (1.44)

Lewis calls the Fundamental Transform a function Ĥ(k, v, τ ) satisfying the PDE
(1.44) and satisfying the initial condition Ĥ(k, v, τ = 0) = 1.

If we know this Fundamental Transform, we can then multiply it by the deriva-
tive security’s payoff transform and then divide it by e(r+ik(r−q))τ and apply
the inverse Fourier technique by keeping ki in an appropriate strip and finally
get the derivative as a function of x = lnS.

1.8.2 Special Cases

There are cases where the Fundamental Transform is known. The case of a
constant (or deterministic) volatility is the most elementary one. Indeed using
(1.44) together with dvt = 0 we can easily find

Ĥ(k, v, τ ) = e−c(k)vτ

which is analytic in k over the entire complex plane. Using the Call payoff
Transform (1.41) we can rederive the Black-Scholes equation. The same can be
done if we have a deterministic volatility dvt = b(vt)dt by using the function
Y (v, t) where dY = b(Y )dt.

The Square-Root model (1.25) is another important case where Ĥ(k, v, τ ) is
known and analytic. We have for this process

dvt = (ω − θvt)dt+ ξ
√
vtdZt

30We are following Lewis [177] notations.
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or under the risk-neutral measure

dvt = (ω − θ̃vt)dt+ ξ
√
vtdZt

with θ̃ = (1−γ)ρξ +
√
θ2 − γ(1 − γ)ξ2 where γ ≤ 1 represents the risk-aversion

factor.

For the Fundamental Transform, we get

Ĥ(k, v, τ ) = exp[f1(t) + f2(t)v] (1.45)

with

t = 1
2
ξ2τ ω̃ = 2

ξ2
ω c̃ = 2

ξ2
c(k) and

f1(t) = [tg − ln(
1 − hetd

1 − h
)]ω̃

f2(t) = [
1 − etd

1 − hetd
]g

where

d =
√
θ̄2 + 4c̃ g = 1

2 (θ̄ + d) h = θ̄+d
θ̄−d and

θ̄ = 2
ξ2 [(1− γ + ik)ρξ +

√
θ2 − γ(1 − γ)ξ2]

The above transform has a cumbersome expression, but it can be seen that
it is analytic in k and therefore always exists. For a proof of the above refer to
Lewis [177].

The Inversion of the Fourier Transform for the Square-Root (Heston) model
is a very popular and powerful approach. It is appealing by its robustness and
speed.

The following example is based upon SPX options as of 20040309 expiring in 1
to 8 years from the calibration date.

As we shall see further, the optimal Heston parameter-set to fit this surface
could be found via a Least Square Estimation approach and for the index at
S = 1156.86 USD we find the optimal parameters v̂0 = 0.1940 and

Ψ̂ = (ω̂, θ̂, ξ̂, ρ̂) = (0.052042332, 1.8408, 0.4710,−0.4677)
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T / M 0.70 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30
1.000 24.61 21.29 19.73 18.21 16.81 15.51 14.43 13.61 13.12 12.94 13.23
2.000 21.94 18.73 18.68 17.65 16.69 15.79 14.98 14.26 13.67 13.22 12.75
3.000 20.16 18.69 17.96 17.28 16.61 15.97 15.39 14.86 14.38 13.96 13.30
4.000 19.64 18.48 17.87 17.33 16.78 16.26 15.78 15.33 14.92 14.53 13.93
5.000 18.89 18.12 17.70 17.29 16.88 16.50 16.13 15.77 15.42 15.11 14.54
6.000 18.46 17.90 17.56 17.23 16.90 16.57 16.25 15.94 15.64 15.35 14.83
7.000 18.32 17.86 17.59 17.30 17.00 16.71 16.43 16.15 15.88 15.62 15.15
8.000 17.73 17.54 17.37 17.17 16.95 16.72 16.50 16.27 16.04 15.82 15.40

Table 1.1: SPX implied surface as of 03/09/2004. T is the maturity and M =
K/S the inverse of the moneyness.

T / M 0.70 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30
1.000 30.67 21.44 17.09 13.01 9.33 6.18 3.72 2.03 1.03 0.50 0.13
2.000 31.60 22.98 18.98 15.25 11.87 8.89 6.37 4.35 2.83 1.78 0.66
3.000 32.31 24.18 20.44 16.98 13.82 11.00 8.55 6.47 4.77 3.43 1.66
4.000 33.21 25.48 21.93 18.66 15.63 12.91 10.50 8.39 6.61 5.10 2.93
5.000 33.87 26.54 23.20 20.09 17.22 14.63 12.30 10.21 8.39 6.82 4.36
6.000 34.56 27.55 24.34 21.36 18.60 16.08 13.79 11.73 9.89 8.26 5.64
7.000 35.35 28.61 25.52 22.64 19.96 17.49 15.24 13.19 11.35 9.70 6.97
8.000 35.77 29.34 26.39 23.64 21.07 18.69 16.51 14.51 12.68 11.04 8.24

Table 1.2: Heston prices fitted to the 2004/03/09 surface.
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1.9 The Mixing Solution

1.9.1 The Romano Touzi Approach

The idea of Mixing Solutions was probably presented for the first time by Hull
and White [149] for a zero correlation case. Later, Romano and Touzi [209]
generalized this approach for a correlated case.

The basic idea is to separate the random processes of the stock and the volatil-
ity, integrate the stock process conditionally upon a given volatility and finally
end up with a one-factor problem.
Let us remind the two processes we had:

dSt = (rt − qt)Stdt+ σtStdBt

and
dvt = b̃(vt)dt+ a(vt)dZt

under a risk-neutral measure.
Given a correlation ρt between dBt and dZt we can introduce the Brownian
Motion dWt independent of dZt and write the usual Cholesky31 factorization:

dBt = ρtdZt +
√

1 − ρ2
tdWt

We can then introduce the same Xt = lnSt and write the new system of equa-
tions:

dXt = (r − q)dt+ dYt −
1
2
(1 − ρ2

t )σ
2
t dt+

√
1 − ρ2

tσtdWt (1.46)

dYt = −1
2
ρ2
tσ

2
t dt+ ρtσtdZt

dvt = b̃tdt+ atdZt

where once again, the two Brownian Motions above are independent.

It is now possible to integrate the Stock process for a given volatility and end
up with an expectation on the volatility process only. We can think of (1.46) as
the limit of a discrete process, while the time step ∆t→ 0.

For a derivative security f(S0, v0, T ) with a payoff32 G(ST ), using the bivariate
normal density for two uncorrelated variables, we can write

f(S0, v0, T ) = e−rTE0[G(ST )] = (1.47)

31See for example Press [204].
32The payoff should not depend on the volatility process.
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e−rT lim
∆t→0

∫ ∞

−∞
...

∫ ∞

−∞
G(ST )

T−∆t∏

t=0

exp[−1
2
(Z2

t +W 2
t )]

dZtdWt

2π

Now if we know how to integrate the above over dWt for a given volatility and
we know the result f∗(S, v, T ) (for instance for a European Call Option, we
know the Black-Scholes formula (1.6), there are many other cases where we
have closed-form solutions) then we can introduce the auxiliary variables33

Seff = S0e
YT = S0 exp(−

1
2

∫ T

0

ρ2
tσ

2
t dt+

∫ T

0

ρtσtdZt) (1.48)

and

veff =
1
T

∫ T

0

(1 − ρ2
t )σ

2
t dt (1.49)

and as Romano and Touzi prove in [209] we will have

f(S0, v0, T ) = E0[f∗(Seff , veff , T )] (1.50)

where this last expectation is being taken on dZt only.

Note that in the zero correlation case discussed by Hull and White [149] we
have Seff = S0 and veff = vT = 1

T

∫ T
0
σ2
tdt which makes the expression (1.50)

a natural weighted average.

1.9.2 A One Factor Monte-Carlo Technique

As Lewis suggests this will enable us to run a single-factor Monte-Carlo simula-
tion on the dZt and apply the known closed-form for each simulated path. The
method does suppose however that the payoff G(ST ) does not depend on the
volatility.
Indeed, going back to (1.46) we can do a simulation on Yt and vt using the
random sequence of (Zt), then after one path is generated, we can calculate
Seff = S0 exp(YT ) and veff = 1

T

∑T−∆t
t=0 (1−ρ2

t )vt∆t and then apply the known
closed-form (e.g. Black-Scholes for a call or put) with Seff and veff . Repeating
this procedure for a large number of times and averaging over the paths, as we
usually do in Monte-Carlo methods, we will have f(S0, v0, T ).

This will give us a way to calibrate the model parameters to the market data.
For instance using the Square-Root model

dvt = (ω − θvt)dt+ ξ
√
vtdZt

we can estimate ω, θ, ξ and ρ from the market prices via a least-square es-
timation applied to theoretical prices obtained from the above Monte-Carlo

33Again, all notations are taken from Lewis [177].
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method. We can either use a single calibration and suppose we have time-
independent parameters, or perform one calibration per maturity. The single
calibration method is known to provide a bad fit, hence the idea of adding jumps
to the stochastic volatility process as described by Matytsin [187]. However this
method will introduce new parameters for calibration.34

34Eraker et al. [98] claim that a model containing jumps in the return and the volatility
process will fit the options and the underlying data well, and will have no misspecification
left.
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Figure 1.7: Mixing Monte-Carlo Simulation with the Square-Root Model for
SPX on Feb 12 2002 with Index=1107.5 USD, 1 month and 7 months to Maturity
Powell Optimization method was used for Least-Square Calibration. As we can
see, both maturities are fitted fairly well.
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1.10 The Long Term Asymptotic Case

In this section we will discuss the case where the contract time to maturity is
very large, i.e. t → ∞. We will focus on the special case of a Square-Root
process, since this is the model we will use in many cases.

1.10.1 The Deterministic Case

We shall start with the case of Deterministic Volatility and use that for the
more general case of the Stochastic Volatility.
We know that under the Square-Root model the variance follows

dvt = (ω − θvt)dt+ ξ
√
vtdZt

As an approximation we can drop the stochastic term and obtain

dvt
dt

= ω − θvt

which is an ordinary differential equation providing us immediately with

vt =
ω

θ
+ (v − ω

θ
)e−θt (1.51)

where v is the initial variance for t = 0.

Using the results from the Fundamental Transform for a Covered Call Option
and Put-Call parity we have for 0 < ki < 1

call(S, v, τ ) = Se−qτ −Ke−rτ
1
2π

∫ iki+∞

iki−∞
e−ikX

Ĥ(k, v, τ )
k2 − ik

dk (1.52)

where τ = T − t and X = ln( Se
−qτ

Ke−rτ ) represents the adjusted moneyness of the
option. For the special “At The Money”35 case where X = 0 we have

call(S, v, τ ) = Ke−rτ [1 − 1
2π

∫ iki+∞

iki−∞

Ĥ(k, v, τ )
k2 − ik

dk] (1.53)

As we previously said for a deterministic volatility case, we know the Funda-
mental Transform

Ĥ(k, v, τ ) = exp[−c(k)U (v, τ )]

35This is different from the usual definition of At The Money calls where S = K. This
vocabulary is borrowed from Alan Lewis.
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with U (v, τ ) =
∫ τ
0 v(t)dt and as before c(k) = 1

2 (k2−ik), which in the special
case of the Square-Root model (1.51), will provide us with

U (v, τ ) =
ω

θ
τ + (v − ω

θ
)(

1 − e−θτ

θ
)

This shows once again that Ĥ(k) is analytic in k over the entire complex plane.

Now if we let τ → ∞ we can write the approximation

call(S, v, τ )
Ke−rτ

≈ 1 − 1
2π

∫ iki+∞

iki−∞
exp[−c(k)ω

θ
τ − c(k)

1
θ
(v − ω

θ
)]

dk

k2 − ik
(1.54)

We can either calculate the above integral exactly using the Black-Scholes the-
ory, or take the minimum where c′(k0) = 0, meaning k0 = i

2
, and perform a

Taylor approximation parallel to the real axis around the point k = kr+ i
2

which
will give us

call(S, v, τ )
Ke−rτ

≈ 1 − 2
π

exp(− ω

8θ
τ ) exp[− 1

8θ
(v − ω

θ
)]
∫ ∞

−∞
exp(−k2

r

ω

2θ
τ )dkr

the integral being a Gaussian we will get the result

call(S, v, τ )
Ke−rτ

≈ 1 −
√

8θ
πωτ

exp[− 1
8θ

(v − ω

θ
)] exp(− ω

8θ
τ ) (1.55)

which finishes our deterministic approximation case.

1.10.2 The Stochastic Case

For the Stochastic Volatility case, Lewis uses the same Taylor expansion. He
notices that for the deterministic case we had

Ĥ(k, v, τ ) = exp[−c(k)U (v, τ )] ≈ exp[−λ(k)τ ]u(k, v)

for τ → ∞ where
λ(k) = c(k)

ω

θ

and
u(k, v) = exp[−c(k)1

θ
(v − ω

θ
)]

If we suppose that the above identity holds for the Stochastic Volatility case
as well, we can use the PDE (1.44) and interpret the result as an eigenvalue-
eigenfunction identity with the eigenvalue λ(k) and the eigenfunction u(k, v).
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This assumption is reasonable since the first Taylor approximation term for the
stochastic process is deterministic.

Indeed introducing the operator

Λ(u) = −1
2
a2(v)

d2u

dv2
− [b̃(v) − ikρ(v)a(v)

√
v]
du

dv
+ c(k)vu

we have
Λ(u) = λ(k)u (1.56)

Now the idea would be to perform a Taylor expansion around the minimum k0

where λ′(k0) = 0. Lewis shows that such k0 is always situated on the imaginary
axis. This property is referred to as the “ridge” property.

The Taylor expansion along the real axis could be written as

λ(k) = λ(k0 + kr) ≈ λ(k0) +
1
2
k2
rλ

′′(k0)

Note that we are dealing with a minimum and therefore λ′′(k0) > 0. Using the
above second order approximation for λ(k) we get

call(S, v, τ )
Ke−rτ

≈ 1 − u(k0, v)
k2
0 − ik0

1√
2πλ′′(k0)τ

exp[−λ(k0)τ ]

We can then move from the special “At The Money” case to the general case
by reintroducing X = ln( Se

−qτ

Ke−rτ ) and we will finally obtain

call(S, v, τ )
Ke−rτ

≈ eX − u(k0, v)
k2
0 − ik0

1√
2πλ′′(k0)τ

exp[−λ(k0)τ − ik0X] (1.57)

which completes our determination of the asymptotic closed-form in the general
case.

For the special case of the Square-Root model, taking the risk-neutral case
γ = 1, we have36

λ(k) = −ωg∗(k) =
ω

ξ2
[
√

(θ + ikρξ)2 + (k2 − ik)ξ2 − (θ + ikρξ)]

which also allows us to calculate λ′′(k). Also

u(k, v) = exp[g∗(k)v]

where we use the notations from (1.45) and we pose

g∗ = g − d

36We can go back to the general case γ ≤ 1 by replacing θ with
√

θ2 − γ(1 − γ)ξ2+(1−γ)ρξ
since this transformation is independent from k altogether.
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The k0 such that λ′(k0) = 0 is

k0 =
i

1 − ρ2
(
1
2
− ρ

ξ
[θ − 1

2

√
4θ2 + ξ2 − 4ρθξ])

which together with (1.57) provides us with the result for call(S, v, τ ) in the
asymptotic case under the Square-Root stochastic volatility model.
Note that for ξ → 0 and ρ → 0 we find again the deterministic result k0 → i

2 .



The Volatility Process 59

1.10.3 A Series Expansion on Volatility-of-Volatility

Another asymptotic approach for the stochastic volatility model suggested by
Lewis [177] is a Taylor expansion on the volatility-of-volatility. There are two
possibilities for this, we can perform the expansion either for the Option price
or for the implied-volatility directly.

In what follows we consider the former approach. Once again, we use the fun-
damental transform H(k, V, τ ) with H(k, V, 0) = 1 and

∂H

∂τ
=

1
2
a2(v)

∂2H

∂v2
+ (b̃(v) − ikρ(v)a(v)

√
v)
∂H

∂v
− c(k)vH

and c(k) = 1
2(k2 − ik).

We then pose a(v) = ξη(v) and expand H(k, V, τ ) on powers of ξ and finally
apply the inverse Fourier Transform to obtain an expansion on the Call Price.
With our usual notations τ = T − t, X = ln( SK ) + (r− q)τ and Z(V ) = V τ , the
series will be

C(S, V, τ ) = cBS (S, v, τ ) + ξτ−1J1R̃11
∂cBS (S, v, τ )

∂V
+

ξ2[τ−2J3R̃20 + τ−1J4R̃12 +
1
2
τ−2J2

1 R̃22]
∂cBS (S, v, τ )

∂V
+O(ξ3)

where v(V, τ ) is the deterministic variance

v(V, τ ) =
ω

θ
+ (V − ω

θ
)(

1 − e−θτ

θτ
)

and R̃pq = Rpq(X, v(V, τ ), τ ) with Rpq given polynomials of (X,Z) of degree
four at most, and Jn’s known functions of (V, τ ).

The explicit expressions for all these functions are given in the third chapter of
the Lewis book [177].

The obvious advantage of this approach is its speed and stability. The issue
of lack of time-homogeneity of the parameters Ψ = (ω, θ, ξ, ρ) could be ad-
dressed by performing one calibration per time-interval. In this case, for each
time-interval [tn, tn+1] we will have one set of parameters Ψn = (ωn, θn, ξn, ρn)
and depending on what maturity T we are dealing with, we will use one or the
other parameter-set.

We compare the values obtained from this series-based approach with those from
a mixing Monte-Carlo method in figure 1.8. We are taking the example that
Heston studied in [134]. The graph shows the difference C(S, V, τ )−cBS (S, V, τ )
for a fixed K = 100 USD and τ = 0.50 years. The other inputs are ω = 0.02,
θ = 2.00, ξ = 0.10, ρ = −0.50, V = 0.01 and r = q = 0.



60

As we can see, the true value of the Call is lower than the Black-Scholes value
for the OTM region. The higher ξ and |ρ| are, the larger this difference will be.

In figures 1.9 and 1.10 we reset the correlation ρ to zero to have a symmet-
ric distribution, but we use a volatility-of-volatility of ξ = 0.10 and ξ = 0.20
respectively. As discussed, the parameter ξ is the one creating the leptokur-
ticity phenomenon. A higher volatility-of-volatility causes higher valuation for
Far-from-the-Money options.37

37Also note that the gap between the closed-form series and the Monte-Carlo model increases
with ξ. Indeed the accuracy of the expansion decreases as ξ becomes larger.
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Figure 1.8: Comparing the Volatility-of-Volatility Series expansion with the
Monte-Carlo Mixing Model. The graph shows the price difference C(S, V, τ ) −
cBS (S, V, τ ). We are taking ξ = 0.10 and ρ = −0.50. This example was used in
the original Heston paper.
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Figure 1.9: Comparing the Volatility-of-Volatility Series expansion with the
Monte-Carlo Mixing Model. The graph shows the price difference C(S, V, τ ) −
cBS (S, V, τ ). We are taking ξ = 0.10 and ρ = 0. This example was used in the
original Heston paper.
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Figure 1.10: Comparing the Volatility-of-Volatility Series expansion with the
Monte-Carlo Mixing Model. The graph shows the price difference C(S, V, τ ) −
cBS (S, V, τ ). We are taking ξ = 0.20 and ρ = 0. This example was used in the
original Heston paper.

Unfortunately the above series approximation becomes poor as soon as the
volatility of volatility becomes larger than 0.40 and the maturity becomes of the
order of 1 year. This case is not unusual at all and therefore makes the use of
this method limited.
This is why the method of choice remains the Inversion of the Fourier Transform
as previously described.
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1.11 Pure-Jump Models

1.11.1 Variance Gamma

An alternative point of view is to drop the diffusion assumption altogether and
replace it with a pure-jump process. Note that this is different from the Jump-
Diffusion process previously discussed. Madan et al. suggested the following
framework called Variance-Gamma (VG) in [182].
We would have the Log-Normal-like Stock process

d lnSt = (µS + ω)dt+X(dt;σ, ν, θ)

where as before µS is the real-world statistical drift of the stock log-return and
ω = 1

ν ln(1 − θν − σ2ν/2).

As for X(dt;σ, ν, θ) it has the following meaning:

X(dt;σ, ν, θ) = B(γ(dt, 1, ν); θ, σ)

where B(dt; θ, σ) would be a Brownian Motion with drift θ and volatility σ. In
other words

B(dt; θ, σ) = θdt+ σ
√
dtN (0, 1)

and N (0, 1) is a standard Gaussian realization.
The time-interval at which the Brownian Motion is considered is not dt but
γ(dt, 1, ν) which is a random realization following a Gamma distribution with a
mean 1 and variance-rate ν.
The corresponding probability density function is

fν(dt, τ ) =
τ

dt
ν −1e−

τ
ν

ν
dt
ν Γ(dtν )

where Γ(x) is the usual Gamma function.

Note that the Stock log-return density could actually be integrated for the VG
model and the density of ln(St/S0) is known and could be implemented via
Kα(x) the modified Bessel function of the second kind.
Indeed, calling z = ln(Sk/Sk−1) and h = tk − tk−1 and posing xh = z − µSh−
h
ν ln(1 − θν − σ2ν/2) we have

p(z|h) =
2 exp(θxh/σ2)

ν
h
ν

√
2πσΓ(hν )

(
x2
h

2σ2/ν + θ2

) h
2ν − 1

4

Kh
ν − 1

2

(
1
σ2

√
x2
h(2σ2/ν + θ2)

)

What is more, as Madan et al. show, the option valuation under VG is fairly
straightforward and admits an analytically tractable closed-form which can be
implemented via the above modified Bessel function of second kind and a de-
generate hypergeometric function. All details are available in [182].
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Remark on the Gamma Distribution

The Gamma Cumulative Distribution Function (CDF) could be defined as

P (a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt

Note that with our notations

Fν(h, x) = F (h, x, µ = 1, ν)

with

F (h, x, µ, ν) =
1

Γ(µ
2h
ν )

(µ
ν

)µ2h
ν

∫ x

0

e−
µt
ν t

µ2h
ν −1dt

In other words

F (h, x, µ, ν) = P (
µ2h

ν
,
µx

ν
)

The behavior if this CDF is displayed in figure 1.11 for different values of the
parameter a > 0 and for 0 < x < +∞.

Using the inverse of this CDF we can have a simulated data-set for the Gamma
law:

x(i) = F−1
ν (h,U (i)[0, 1])

with 1 ≤ i ≤ Nsims and U (i)[0, 1] a uniform random realization between zero
and one.

Stochastic Volatility vs. Time-Changed processes

As mentioned in [23], this alternative formulation leading to Time-Changed
processes, is closely related to the previously discussed Stochastic Volatility
approach in the following way:
Taking the above VG Stochastic Differential Equation

d lnSt = (µS + ω)dt+ θγ(dt, 1, ν) + σ
√
γ(dt, 1, ν)N (0, 1)

one could consider σ2γ(t, 1, ν) as the integrated-variance and define vt(ν) the
instantaneous-variance as

σ2γ(dt, 1, ν) = vt(ν)dt

in which case, we would have

d lnSt = (µS + ω)dt+ (θ/σ2)vt(ν)dt+
√
vt(ν)dtN (0, 1) =

(µS + ω + (θ/σ2)vt(ν))dt+
√
vt(ν)dZt

where dZt is a Brownian Motion.
This last equation is a traditional Stochastic Volatility one.
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Figure 1.11: The Gamma Cumulative Distribution Function P (a, x) for various
values of the parameter a. The implementation is based on code available in
“Numerical Recipes in C”.
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1.11.2 Variance Gamma with Stochastic Arrival

An extension to the VG model would be a Variance Gamma model with Stochas-
tic Arrival (VGSA) which would include the volatility Clustering effect. This
phenomenon (also represented by GARCH) means that a high (low) volatility
will be followed by a series of high (low) volatilities.
In this approach we replace the dt in the previously defined fν(dt, τ ) with ytdt
where yt follows a Square-Root (CIR) process

dyt = κ(η − yt)dt+ λ
√
ytdWt

where the Brownian Motion dWt is independent from other processes in the
model.
This is therefore a VG process where the arrival time itself is stochastic. The
mean-reversion of the Square-Root process will cause the volatility persistence
effect that is empirically observed. Note that (not counting µS) the new model
parameter-set is Ψ = (κ, η, λ, ν, θ, σ).

Option Pricing under VGSA

The option pricing could be carried out via a Monte-Carlo simulation algorithm
under the risk-neutral measure, where as before µS is replaced with r − q. We
first would simulate the path of yt by writing

yk = yk−1 + κ(η − yk−1)∆t+ λ
√
yk−1

√
∆tZk

then calculate

YT =
N−1∑

k=0

yk∆t

and finally apply one-step simulations

T ∗ = F−1
ν (YT ,U [0, 1])

and38

lnST = lnS0 + (r − q + ω)T + θT ∗ + σ
√
T ∗Bk

Note that we have two Normal random-variables Bk, Zk as well as a Gamma-
distributed random variable T ∗, and that they are all uncorrelated.
Once the Stock price ST is properly simulated, we can calculate the option price
as usual.

38This means that T in VG, is replaced with YT . The rest remains identical.
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The Characteristic Function

As previously discussed, another way to tackle the option-pricing issue would
be to use the characteristic functions.
For VG, the characteristic function is

Ψ(u, t) = E[eiuX(t)] =

(
1

1 − i νµu

)µ2
ν t

Therefore the Log-Characteristic Function could be written as

ψ(u, t) = ln(Ψ(u, t)) = tψ(u, 1)

In other words
E[eiuX(t)] = Ψ(u, t) = exp(tψ(u, 1))

Using which, the VGSA characteristic function becomes

E[eiuX(Y (t))] = E[exp(Y (t)ψ(u, 1))] = φ(−iψ(u, 1))

with φ() the CIR characteristich function, namely

φ(ut) = E[exp(iuYt)] = A(t, u) exp(B(t, u)y0)

where

A(t, u) =
exp(κ2ηt/λ2)

[cosh(γt/2) + κ/γ sinh(γt/2)]
2κη

λ2

B(t, u) =
2iu

κ+ γ coth(γt/2)

and
γ =

√
κ2 − 2λ2iu

This allows us to determine the VGSA characteristic function, which we can
use to calculate options prices via numeric Fourier inversion as described in [48]
and [51].

1.11.3 Variance Gamma with Gamma Arrival Rate

For the Variance Gamma with Gamma Arrival Rate (VGG), as before, the Stock
Process under the risk-neutral framework is

d lnSt = (r − q + ω)dt +X(h(dt);σ, ν, θ)

with ω = 1
ν ln(1 − θν − σ2ν/2) and

X(h(dt);σ, ν, θ) = B(γ(h(dt), 1, ν); θ, σ)
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and the general Gamma Cumulative Distribution Function for γ(h, µ, ν) is

F (µ, ν;h, x) =
1

Γ(µ
2h
ν )

(µ
ν

)µ2h
ν

∫ x

0

e−
µt
ν t

µ2h
ν −1dt

and here h(dt) = dYt with Yt is also Gamma-distributed

dYt = γ(dt, µa, νa)

The parameter-set is therefore Ψ = (µa, νa, ν, θ, σ).
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Chapter 2

The Inference Problem

In applying option pricing models, one always encounters the difficulty that the
spot volatility and the structural parameters are unobservable.
- Gurdip Bakshi, Charles Cao & Zhiwu Chen

2.1 Introduction

Regardless of which specific model we are using, it seems that we cannot avoid
the issue of calibration. There are two possible sets of data that we can use for
estimating the model parameters: options prices and historic stock prices.1

Using options prices via a Least Square Estimator (LSE) has the obvious advan-
tage of guaranteeing that we will match the used option market-prices within
a certain tolerance. However the availability of option data is typically limited
which would force us to use interpolation and extrapolation methods. These
data manipulation approaches might deteriorate the quality and the smooth-
ness of our inputs. More importantly, matching a set of plain-vanilla option
prices does not necessarily mean that we would obtain the correct price for an-
other more exotic derivative.

Using Stock Prices has the disadvantage of offering no guarantee of matching
option prices. However supposing that the model is right, we do have a great
quantity of data-input for calibration, which is a powerful argument in favor of
this approach.

1Recently some researchers have also tried to use Historic Option Prices. See for instance
Elliott [93] or Van der Merwe [229].
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It is important however to note that in using historic stock prices we are assum-
ing that our time-step ∆t is small enough so that we are almost in a continuous
setting. What is more, we are assuming the validity of the Girsanov theorem
which is applicable to a diffusion-based model. This also means we are implic-
itly assuming that the market price of volatility risk is stable and so are the
risk-neutral volatility-drift parameters.
More accurately having for instance a real-world model

dvt = (ω − θvt)dt+ ξvpt dZt

with p = 0.5 corresponding to the Heston model, we know that the risk-neutral
volatility-drift parameter is

θ(r) = θ + λξvp−1
t

As a result, supposing that θ(r) is a stable (or even constant) parameter, is
equivalent to supposing that λ the market-price-of-volatility-risk2 verifies

λ = φv1−p
t

with φ a constant coefficient.
The implication of this assumption for a model with a real-world parameter-set
Ψ = (ω, θ, ξ, ρ) and a risk-neutral counterpart Ψ(r) = (ω(r), θ(r), ξ(r), ρ(r)) is

ξ = ξ(r)

ρ = ρ(r)

ω = ω(r)

θ = θ(r) − φ

Let us insist on the fact that the above assumption3 is valid only for a diffusion-
based model. For some non-Gaussian pure-jump models such as VGG, we lose
the comparability between the statistical and the risk-neutral parameters. We
could instead use the stock-price time-series to determine the statistical density
p(z) on the one hand, and use the options-prices to determine the risk-neutral
density q(z) on the other; and calculate the ratio r(z) = p(z)/q(z) correspond-
ing to the Radon-Nikodym derivative of the two measures for this model.

2Note that many call the market-price-of-volatility-risk the quantity λξvp
t .

3Also as stated by Bakshi, Cao & Chen [20]: When the risk-aversion coefficient of the
representative agent is bounded within a reasonable range, the parameters of the true distri-
butions will not differ significantly from their risk-neutral counterparts.
The direct implication of this is

θ ≈ θ(r)

More importantly, for daily data we have

∆t = o(
√

∆t)

and therefore using either the real-world asset-drift µS or the dividend-adjusted risk-free rate
r − q would not make a difference in parameter estimation. Some [10] even ignore the stock
drift term altogether.
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The central question of this chapter is therefore the Inference of the param-
eters embedded in a stochastic volatility model. The summary of the logical
subdivisions of the problem is as follows:

1. Cross-Sectional vs. Time-Series: The former uses Options Prices at
a given point in time and the latter a series of the underlying prices for a
given period. As mentioned earlier, the former provides an estimation of
the parameters in the risk-neutral universe and the latter estimation takes
place in the statistical universe.

2. Classical vs. Bayesian: Using Time-Series, one could suppose that
there exists an unknown but fixed set of parameters and try to estimate
them as closely as possible. This is a Classical (Frequentist) approach.
Alternatively one could use a Bayesian approach where the parameters
are supposed to be random variables and have their prior distributions
that one can update via the observations.

3. Learning vs. Likelihood-Maximization: Under the Classical hy-
pothesis, one could either try to estimate the instantaneous variance to-
gether with the fixed parameters, which corresponds to a Learning pro-
cess. A more robust way would be to estimate the Likelihood function
and maximize it over all the possible values of the parameters.

4. Gaussian vs. Non-Gaussian: In any of the above approaches the
stochastic volatility (SV) model could be diffusion-based or not. As we will
see further, this will affect the actual estimation methodology. Among the
Gaussian SV models we consider, are Heston, GARCH and 3/2. Among
the Non-Gaussian ones are Bates, VGSA and VGG.

5. State-Space Representation: For each of the above approaches and
for each SV model, we have a number of ways of choosing a state and
represent the instantaneous variance as well as the spot price. Needless to
say, a more parsimonious and lower-dimension state is preferable.

6. Diagnostics & Sampling Distribution: Once the inference process is
finished, one has to verify its accuracy via various Tests. Quantities such
as MPE, RMSE, Box-Ljung or χ2 numbers correspond to some of the
possible Diagnostics. Observing the Sampling Distribution over various
paths is another way of checking the validity of the inference methodology.

Finally it is worth noting that our entire approach is based upon Parametric
stochastic volatility models. This model class is more restrictive than the Non
or Semi Parametric one, however it has the advantage of offering the possibility
of a direct interpretation of the resulting parameters.
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2.2 Using Option Prices

Using a set of current vanilla option prices, we can perform an LSE and assess
the risk-neutral model parameters. Taking a set of J strike prices Kj’s with
their corresponding option prices Cmkt(Kj) for a given maturity, we would try
to minimize

J∑

j=1

(Cmodel(Kj) −Cmkt(Kj))2

The minimization4 could for example be done via the Direction Set (Powell)
method, the Conjugate Gradient (Fletcher-Reeves-Polak-Ribiere) method or the
Levenberg-Marquardt (LM) method. We will now briefly describe the Powell
optimization algorithm.

2.2.1 Direction Set (Powell) Method

The optimization method we will use later is the Direction Set (Powell) method
and does not require any Gradient or Hessian computation.5 This is a quadrat-
ically convergent method producing mutually conjugate directions.

Most multi-dimensional optimization algorithms require a one-dimensional line
minimization routine which does the following: Given as input the vectors P
and n and the function f , find the scalar λ that minimizes f(P + λn), then
replace P with P + λn and n with λn.
The idea would be to take a set of directions that are as non-interfering as pos-
sible in order to avoid spoiling one minimization with the subsequent one. This
way an interminable cycling through the set of directions will not occur.
This is why we seek conjugate directions. Calling the function to be minimized
f(x) with x a vector of dimension N , we can write the second order Taylor
expansion around a particular point P

f(x) ≈ f(P) + ∇f(P)x +
1
2
xHx

where Hij = ∂2f
∂xi∂xj

is the Hessian matrix of the function at point P.
We therefore have for the variation of the gradient δ(∇f) = Hδx and in order

4Some consider that this minimization will give more importance to the ATM options and
try therefore to correct this by introducing weights in the summation.
There are also Entropy-based techniquesas discussed in [16] applied to Local Volatility models,
which are different from our parametric models.

5This is an important feature when the function to be optimized contains discontinuities.
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to have a non-interfering new direction we choose v such as the motion along v
remains perpendicular to our previous direction u

uδ(∇f) = uHv = 0

In this case the directions u and v are said to be conjugate.
Powell suggests a quadratically convergent method that produces a set of N
mutually conjugate directions. The following description is taken from Press
[204] where the corresponding source code could be found as well.

1. Initialize the set of directions ui to the basis vectors for i = 1, ..., N

2. Save the starting point as P0

3. Move Pi−1 to the minimum along direction ui and call it Pi

4. Set ui to ui+1 for i = 1, ..., N − 1 and set uN to PN −P0

5. Move PN to the minimum along uN and call this point P0 and go back
to step 2

For a quadratic form, k iterations of this algorithm will produce a set of di-
rections whose last k members are mutually conjugate. The idea is to repeat
the steps until the function stops decreasing. However, this procedure tends to
produce directions that are linearly dependent and therefore provides us with
the minimum only over a sub-space. Hence the idea of discarding the direction
along which f made the largest decrease. This seems paradoxical, we are drop-
ping our best direction in the new iteration, however this is the best chance of
avoiding a buildup of linear dependence.

In what follows we apply the Powell algorithm to SPX options valued via the
mixing monte-carlo method.

2.2.2 Numeric Tests

We apply the Powell algorithm to SPX Options valued via the Mixing Monte-
Carlo method. The optimization is performed across close-to-the-money strike
prices as of t0 = 2002/05/21 with the index S0 = 1079.88 and maturities T =
2002/08/17, T = 2002/09/21, T = 2002/12/21, and T = 2003/03/22.
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Figure 2.1: S&P500 Volatility Surface as of 20020521 with Index=1079.88 USD.
The surface will be used for fitting via the Direction Set (Powell) Optimiza-
tion algorithm applied to a Square-Root model implemented with a one-factor
Monte-Carlo Mixing method.
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Figure 2.2: Mixing Monte-Carlo Simulation with the Square-Root Model for
SPX on 20020521 with Index=1079.88 USD, Maturity 20020817
Powell (Direction Set) Optimization method was used for Least-Square Calibra-
tion
Optimal Parameters ω̂ = 0.081575, θ̂ = 3.308023, ξ̂ = 0.268151, ρ̂ = −0.999999
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Figure 2.3: Mixing Monte-Carlo Simulation with the Square-Root Model for
SPX on 20020521 with Index=1079.88 USD, Maturity 20020921
Powell (Direction Set) Optimization method was used for Least-Square Calibra-
tion
Optimal Parameters ω̂ = 0.108359, θ̂ = 3.798900, ξ̂ = 0.242820, ρ̂ = −0.999830
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Figure 2.4: Mixing Monte-Carlo Simulation with the Square-Root Model for
SPX on 20020521 with Index=1079.88 USD, Maturity 20021221
Powell (Direction Set) Optimization method was used for Least-Square Calibra-
tion
Optimal Parameters ω̂ = 0.126519, θ̂ = 3.473910, ξ̂ = 0.222532, ρ̂ = −0.999991
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Figure 2.5: Mixing Monte-Carlo Simulation with the Square-Root Model for
SPX on 20020521 with Index=1079.88 USD, Maturity 20030322
Powell (Direction Set) Optimization method was used for Least-Square Calibra-
tion
Optimal Parameters ω̂ = 0.138687, θ̂ = 3.497779, ξ̂ = 0.180010, ρ̂ = −1.000000
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As we see in table 2.1, the estimated parameters are fairly stable for differ-
ent maturities and therefore the stochastic volatility model seems to be fairly
time-homogeneous.

T ω̂ θ̂ ξ̂ ρ̂

20020817 0.081575 3.308023 0.268151 -0.999999
20020921 0.108359 3.798900 0.242820 -0.999830
20021221 0.126519 3.473910 0.222532 -0.999991
20030322 0.138687 3.497779 0.180010 -1.000000

Table 2.1: The estimation is performed for SPX on t=20020521 with In-
dex=1079.88 USD for different maturities T.

2.2.3 The Distribution of the Errors

Since the parameter-set Ψ contains only a few elements and we can have many
options prices, it is clear that the matching of the model and market prices is
not perfect. Hence the idea of observing the distribution of the errors

Cmkt(Kj) = Cmodel(Kj , Ψ̂) exp{−1
2
Υ2 + ΥN (j)(0, 1)}

with 1 ≤ j ≤ J and Υ the error standard-deviation, and Ψ̂ the optimal
parameter-set. As usual N (0, 1) is the standard Normal distribution.
Note that our previously discussed LSE approach is not exactly equivalent to
the maximization of a Likelihood function based upon the above distribtion,
since the latter would correspond to the minimization of the sum of the squared
Log returns.

A good Bias test would be to check for the predictability of the errors. For
this, one could run a regression of the error

ej = Cmkt(Kj) − Cmodel(Kj , Ψ̂)

upon a few factors corresponding for instance to moneyness or maturity. A low
R2 for the regression would prove that the model errors are not predictable and
there is no major bias. For a detailed study, see [182] for instance.
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2.3 Using Stock Prices

2.3.1 The Likelihood Function

If as in the previous section, we use European Options with a given maturity T
and with different strike prices, then we will be estimating

q(ST |S0; Ψ)

which corresponds to the risk-neutral density, given a known current stock price
S0 and given a constant parameter-set Ψ. As discussed, the Least-Squares Esti-
mation (LSE) is used to find the best guess for the unknown ideal parameter-set.

On the other hand if we use a time-series of stock-prices (St)0≤t≤T we would be
dealing with the joint probability

p(S1, ..., ST |S0; Ψ)

which we can rewrite as

p(S1, ..., ST |S0; Ψ) =
T∏

t=1

p(St|St−1, ..., S0; Ψ)

It is the above joint probability that is commonly referred to as the Likelihood
Function L0:T (Ψ). Maximizing the Likelihood over the parameter-set Ψ would
provide us with the best parameter-set for the statistical density p(ST |S0; Ψ).
Note that we are using a Classical (Frequentist) approach where we assume that
the parameters are unknown but fixed over [0, T ]. In other words we would be
dealing with the same parameter-set for any of the p(St|St−1, ..., S0; Ψ) with
1 ≤ t ≤ T .
It is often convenient to work with the Log of the Likelihood function since this
will produce a sum

lnL0:T (Ψ) =
T∑

t=1

ln p(St|St−1, ..., S0; Ψ)

The Justification for the MLE

As explained for instance in [100], one justification of the maximization of the
(Log) Likelihood function, comes from the Kullback-Leibler (KL) distance.
The KL distance is defined as6

d(p∗, p) =
∫
p∗(x) (ln p∗(x) − ln p(x)) dx

6Hereafter when the bounds are not specified, the integral is taken on the entire space of
the integrand argument.
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where p∗(x) is the ideal density, while p(x) the density under estimation.
We can write

d(p∗, p) = E∗ ln (p∗(x)/p(x))

Note that using the Jensen (Log convexity) inequality

d(p∗, p) = −E∗ ln (p(x)/p∗(x)) ≥ − ln (E∗(p(x)/p∗(x)))

so
d(p∗, p) ≥ − ln

∫
p∗(x)p(x)/p∗(x)dx = 0

and d(p, p∗) = 0 if and only if p = p∗, which confirms that d(., .) is a distance.

Now minimizing d(p, p∗) over p() would be equivalent to minimizing the term

−
∫
p∗(x) lnp(x)dx

since the rest of the expression depends on p∗() only.
This latter expression could be written in the discrete framework, having T
observations S1, ..., ST as

−
T∑

t=1

ln p(St)

since the observations are by assumption distributed according to the ideal p∗().
This justifies our maximizing

T∏

t=1

p(St)

Note that in a pure parameter estimation, this would be the MLE approach.
However the minimization of the KL distance is more general and can allow for
Model Identification.

MLE has many desirable asymptotic attributes as explained for example in [127].
Indeed ML estimators are consistent and converge to the right parameter-set as
the number of observations increases. They actually reach the lower bound for
the error, referred to as the Cramer-Rao bound which corresponds to the inverse
of the Fisher Information matrix.
Calling the first derivative of the Log-likelihood the score function

h(Ψ) =
∂ lnL0:T (Ψ)

∂Ψ

it is known that MLE could be interpreted as a special case of the General
Method of Moments (GMM) where the moment g(Ψ) such that

E[g(Ψ)] = 0
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is simply taken to be the above score function.
Ineed we would then have

E[h(Ψ)] =
∫
∂ lnL0:T (Ψ)

∂Ψ
L0:T (Ψ)dz0:T = 0

which means that ∫
∂L0:T (Ψ)

∂Ψ
dz0:T = 0

as previously discussed in the MLE.

Note that taking the derivative of the above with respect to the parameter-
set (using one-dimensional notations for simplicity)

∫
∂

∂Ψ
(h(Ψ)L0:T (Ψ)) dz0:T = 0

which will give us

∫
∂2 lnL0:T (Ψ)

∂Ψ2
L0:T (Ψ)dz0:T = −

∫ ∂L0:T (Ψ)
∂Ψ

L0:T (Ψ)
∂L0:T (Ψ)

∂Ψ
dz0:T =

−
∫ (

∂ lnL0:T (Ψ)
∂Ψ

)2

L0:T (Ψ)dz0:T

meaning that

J = −E
[
∂2 lnL0:T (Ψ)

∂Ψ2

]
= E

[(
∂ lnL0:T (Ψ)

∂Ψ

)2
]

which is referred to as the Information Matrix Identity.
As previously stated, asymptotically we have for the optimal parameter-set Ψ̂
and the ideal Ψ∗

Ψ̂ − Ψ∗ ∼ N
(
0,J−1

)

Likelihood Evaluation and Filtering

For GARCH models the Likelihood is known under an integrated form. Indeed
calling ut the mean-adjusted stock return, vt the variance and (Bt) a Gaussian
sequence, we have for any GARCH model

ut = h(vt, Bt)

and
vt = f(vt−1, ut−1; Ψ)
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where f() and h() are two deterministic functions.
This will allow us to directly determine and optimize7

L1:T (Ψ) ∝ −
T∑

t=1

ln(vt) +
u2
t

vt

This is possible because GARCH models have one source of randomness and
there is a time-shift between the variance and the spot equations.

Unlike GARCH, most Stochastic Volatility models have two (non-perfectly cor-
related) sources of randomness (Bt) and (Zt) and have equations of the form

ut = h(vt, Bt)

vt = f(vt−1, Zt; Ψ)

which means that the Likelihood function is not directly known under an inte-
grated form, and we need Filtering techniques for its estimation and optimiza-
tion.

Another justification for Filtering is its application to Parameter Learning. As
we shall see, in this approach we use the joint distribution of the hidden state
and the parameters. In order to obtain the optimal value of the hidden state vt
given all the observations z1:t we need to use a Filter.

2.3.2 Filtering

The idea here is to use the Filtering Theory for the estimation of Stochastic
Volatility model parameters.
What we are trying to do is to find the probability density function (pdf) corre-
sponding to a state xk at time step k given all the observations z1:k up to that
time.

Looking for the pdf p(xk|z1:k) we can proceed in two stages:

1) First we can write the Time Update iteration by applying the Chapman-
Kolmogorov equation8

p(xk|z1:k−1) =
∫
p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1 =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

by using the Markov property.

7We generally drop constant terms in the likelihood function since they do not affect the
optimal arguments. Hence the notation L1:T (Ψ) ∝ ...

8See Shreve [218] for instance.
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2) Following this, for the Measurement Update we use the Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

where the denominator p(zk|z1:k−1) could be written as

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk

and corresponds to the Likelihood Function for the time-step k.

Proof:
Indeed we have

p(xk|z1:k) =
p(z1:k|xk)p(xk)

p(z1:k)

=
p(zk, z1:k−1|xk)p(xk)

p(zk, z1:k−1)

=
p(zk|z1:k−1, xk)p(z1:k−1|xk)p(xk)

p(zk|z1:k−1)p(z1:k−1)

=
p(zk|z1:k−1, xk)p(xk|z1:k−1)p(z1:k−1)p(xk)

p(zk|z1:k−1)p(z1:k−1)p(xk)

=
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

which proves the claimed result. (QED)
Note that we use the fact that at time-step k the value of z1:k is perfectly known.

The Kalman Filter (detailed below) is a special case where the distributions
are Normal and could be written as

p(xk|zk−1) = N (x̂−k , P
−
k )

p(xk|zk) = N (x̂k, Pk)

Indeed in the special Gaussian case, each distribution could be entirely charac-
terized via its first two moments.
However, it is important to remember that the Kalman Filter (KF) is optimal
in the Gaussian linear case. In the Non-Linear case, it will indeed always be
sub-optimal.
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Interpretation of the Kalman Gain

The basic idea behind the KF is the following observation. Having x a Nor-
mally distributed random-variable with a mean mx and variance Sxx, and z a
Normally distributed random-variable with a mean mz and variance Szz, and
having Szx = Sxz the covariance between x and z, the conditional distribution
of x|z is also normal with

mx|z = mx +K(z −mz)

with
K = SxzS

−1
zz

Interpreting x as the hidden-state and z as the observation, the above matrix
K would correspond to the Kalman filter in the linear case.
We also have

Sx|z = Sxx −KSxz

An alternative interpretation of the Kalman Filter could be based upon Lin-
ear Regression. Indeed, if we knew the time-series of (zk) and (xk), then the
regression could be written as

xk = βzk + α+ εk

with β the slope, α the intercept and (εk) the residuals. It is known that under
a Least Squares regression, we have

β = SxzS
−1
zz

which again is the expression for the Kalman Gain.

We now will describe various non-linear extensions of the Kalman Filter.
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2.3.3 The Simple and Extended Kalman Filters

The first algorithms we choose here are the Simple and Extended Kalman Fil-
ters9 due to their well-known flexibility and ease of implementation.
The simple or traditional Kalman Filter (KF) applies to linear Gaussian cases,
while the Extended KF (EKF) could be used for nonlinear Gaussian cases via
a first-order linearization. We shall therefore describe EKF and consider the
simple KF as a special case.
In order to clarify the notations, let us briefly rewrite the EKF equations. Given
a dynamic process xk following a possibly non-linear transition equation

xk = f (xk−1,wk) (2.1)

we suppose we have a measurement zk via a possibly non-linear observation
equation

zk = h(xk,uk) (2.2)

where wk and uk are two mutually-uncorrelated sequences of temporally-uncorrelated
Normal random-variables with zero means and covariance matrices Qk, Rk re-
spectively.10 Moreover, wk is uncorrelated with xk−1 and uk uncorrelated with
xk.

We define the linear a priori process estimate as

x̂−
k = E[xk] (2.3)

which is the estimation at time step k − 1 prior to measurement.
Similarly, we define the linear a posteriori estimate

x̂k = E[xk|zk] (2.4)

which is the estimation at time step k after the measurement.

We also have the corresponding estimation errors e−k = xk−x̂−
k and ek = xk−x̂k

and the estimate error covariances

P−
k = E[e−k e−

t

k ] (2.5)

Pk = E[eketk] (2.6)

where the superscript t corresponds to the transpose operator.

We now define the Jacobian matrices of f with respect to the system process and
the system noise as Ak and Wk respectively. Similarly, we define the gradient
matrices of h with respect to the system process and the measurement noise as
Hk and Uk respectively.

9For a description see for instance Welch [233] or Harvey [129].
10Some prefer to write xk = f(xk−1 ,wk−1). Needless to say, the two notations are equiva-

lent.
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More accurately, for every row i and column j we have

Aij = ∂fi/∂xj(x̂k−1, 0) Wij = ∂fi/∂wj(x̂k−1, 0)

Hij = ∂hi/∂xj(x̂−
k , 0) Uij = ∂hi/∂uj(x̂−

k , 0)

We therefore have the following Time Update equations

x̂−
k = f (x̂k−1, 0) (2.7)

and
P−
k = AkPk−1At

k + WkQk−1Wt
k (2.8)

We define the Kalman gain as the matrix Kk used in the Measurement Up-
date equations

x̂k = x̂−
k + Kk(zk − h(x̂−

k , 0)) (2.9)

and
Pk = (I− KkHk)P−

k (2.10)

where I represents the Identity matrix.

The optimal Kalman gain corresponds to the mean of the conditional distri-
bution of xk upon the observation zk or equivalently, the matrix that would
minimize the mean square error Pk within the class of linear estimators.
This optimal gain is

Kk = P−
kHt

k(HkP−
k Ht

k + UkRkUt
k)

−1 (2.11)

The above equations complete the Kalman Filter algorithm.

Another Interpretation of the Kalman Gain

Note that an easy way to observe that Kk minimizes the a posteriori error
covariance Pk is to consider the one-dimensional linear case

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) = x̂−k +Kk(zk −Hkxk +Hke

−
k )

so
ek = xk − x̂k = e−k −Kk(uk +Hke

−
k )

Therefore

Pk = E(e2k) = P−
k +K2

k(Rk +H2
kP

−
k + 0) − 2KkHkP

−
k
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and taking the derivative with respect to Kk and setting it to zero, we get

Kk =
P−
k Hk

H2
kP

−
k + Rk

which is the one-dimensional expression for the linear Kalman Gain.

Residuals, MPE and RMSE

In what follows we shall call the estimated observations ẑ−k . For the Simple and
Extended Kalman Filters we have

ẑ−k = h(x̂−k , 0)

The residuals are the observation errors, defined as

z̃k = zk − ẑ−k

Needless to say the smaller these residuals, the higher the quality of the Filter.
Therefore to measure the performance, we define the Mean Price Error (MPE)
and Root Mean Square Error (RMSE) as the mean and standard-deviation of
the residuals

MPE =
1
N

N∑

k=1

z̃k

RMSE =

√√√√ 1
N

N∑

k=1

(z̃k −MPE)2
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2.3.4 The Unscented Kalman Filter

Recently Julier and Uhlmann [166] proposed a new extension of the Kalman Fil-
ter to Nonlinear systems, completely different from the EKF. They argue that
EKF could be difficult to implement and more importantly difficult to tune and
only reliable for systems which are almost linear within the update intervals.
The new method called the Unscented Kalman Filter (UKF) will calculate the
mean to a higher order of accuracy than the EKF and the covariance to the
same order of accuracy.
Unlike the EKF, this method does not require any Jacobian calculation since it
does not approximate the nonlinear functions of the process and the observation.
Therefore it uses the true nonlinear models but approximates the distribution
of the state random variable xk by applying an Unscented Transformation to
it. As we will see below, we construct a set of Sigma Points which capture the
mean and covariance of the original distribution and when propagated through
the true non-linear system, capture the posterior mean and covariance accu-
rately to the third order.

Similarly to the EKF, we start with an initial choice for the state vector x̂0 =
E[x0] and its Covariance Matrix P0 = E[(x0 − x̂0)(x0 − x̂0)t].
We then concatenate the space vector with the system noise and the observation
noise11 and create an augmented state vector for each step k greater than one

xak−1 =




xk−1

wk−1

uk−1




and therefore

x̂ak−1 =




x̂k−1

0
0




and

Pa
k−1 =




Pk−1 Pxw(k − 1|k− 1) 0
Pxw(k − 1|k − 1) Pww(k − 1|k− 1) 0

0 0 Puu(k − 1|k− 1)




for each iteration k. The augmented state will therefore have a dimension
na = nx + nw + nu.

We then need to calculate the corresponding Sigma Points through the Un-
scented Transformation:

χak−1(0) = x̂ak−1

For i = 1, ..., na
χak−1(i) = x̂ak−1 + (

√
(na + λ)Pa

k−1)i

11This space augmentation will not be necessary if we have additive noises as in xk =
f(xk−1) + wk−1 and zk = h(xk) + uk
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and for i = na + 1, ..., 2na

χak−1(i) = x̂ak−1 − (
√

(na + λ)Pa
k−1)i−na

where the above subscripts i and i−na correspond to the ith and i−ntha columns
of the square-root matrix.12 This prepares us for the Time Update and the Mea-
surement Update equations, similarly to the EKF.

The Time Update equations are

χk|k−1(i) = f (χxk−1(i), χ
w
k−1(i))

for i = 0, ..., 2na+ 1 and

x̂−
k =

2na∑

i=0

W
(m)
i χk|k−1(i)

and

P−
k =

2na∑

i=0

W
(c)
i (χk|k−1(i) − x̂−

k )(χk|k−1(i) − x̂−
k )t

where the superscripts x and w respectively correspond to the state and system-
noise portions of the augmented state.
The W (m)

i and W (c)
i weights are defined as

W
(m)
0 =

λ

na + λ

and
W

(c)
0 =

λ

na + λ
+ (1 − α2 + β)

and for i = 1, ..., 2na
W

(m)
i = W

(c)
i =

1
2(na + λ)

The scaling parameters α, β, κ and λ = α2(na+κ)−na will be chosen for tuning.

We also define within the Time Update equations

Zk|k−1(i) = h(χk|k−1(i), χuk−1(i))

and

ẑ−k =
2na∑

i=0

W
(m)
i Zk|k−1(i)

12The square-root matrix is calculated via Singular Value Decomposition (SVD) and
Cholesky factorization [204]. In case Pa

k−1 is not Positive-Definite, one could for example
use a truncation procedure.
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where the superscript u corresponds to the observation-noise portion of the
augmented state.
As for the Measurement Update equations, we have

Pzkzk =
2na∑

i=0

W
(c)
i (Zk|k−1(i) − ẑ−k )(Zk|k−1(i) − ẑ−k )t

and

Pxkzk =
2na∑

i=0

W
(c)
i (χk|k−1(i) − x̂−

k )(Zk|k−1(i) − ẑ−k )t

which gives us the Kalman Gain

Kk = PxkzkP
−1
zkzk

and we get as before
x̂k = x̂−

k + Kk(zk − ẑ−k )

where again zk is the observation at time (iteration) k.
Also, we have

Pk = P−
k −KkPzkzkK

t
k

which completes the Measurement Update Equations.
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2.3.5 Kushner’s Non-Linear Filter

It would be instructive to compare this algorithm to the nonlinear filtering algo-
rithm based on an approximation of the conditional distribution by Kushner et
al. [174]. In this approach, the authors suggest using a Gaussian Quadrature in
order to calculate the integral at the measurement update (or the time update)
step.13

As the Kushner paper indicates, having an N -dimensional normal random-
variable X = N (m,P) with m and P the corresponding mean and covariance,
for a polynomial G of degree 2M − 1 we can write14

E[G(X)] =
1

(2π)
N
2 |P| 12

∫
G(y) exp[−

(y −m)tP−1(y − m)
2

]dy

which is equal to

E[G(X)] =
M∑

i1=1

...

M∑

iN=1

wi1...wiNG(m +
√

Pζ)

where ζt =
(
ζi1 , ..., ζiN

)
is the vector of the Gauss-Hermite roots of order

M and wi1 , ..., wiN are the corresponding weights.
Note that even if both Kushner’s NLF and UKF use Gaussian Quadratures,
UKF only uses 2N + 1 sigma points, while NLF needs MN points for the inte-
gral computation.

Kushner and Budhiraja suggest using this technique primarily for the mea-
surement update (filtering) step. They claim that provided this step is properly
implemented, the time update (prediction) step can be carried out via a lin-
earization similarly to the EKF.

Details of the Kushner algorithm

Let us use the same notations as for the UKF algorithm. We therefore have the
augmented state xak−1 and its covariance Pa

k−1 as before.
Here, for a Quadrature order of M on an N -dimensional variable, the sigma-
points are defined for j = 1, ..., N and ij = 1, ...,M as

χak−1(i1, ..., iN) = x̂ak−1 +
√

Pa
k−1ζ(i1, ..., iN)

where the square-root here corresponds to the Cholesky factorization, and again
ζ(i1, ..., iN)[j] = ζij for each j between 1 and the dimension N and each ij

13The analogy between Kushner’s Nonlinear Filter and the Unscented Kalman Filter, has
already been studied in Ito & Xiong [151].

14A description of the Gaussian Quadrature could be found in Press et al. [204].
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between 1 and the Quadrature order M .
Similarly to the UKF, we have the Time Update equations

χk|k−1(i1, ..., iN) = f
(
χxk−1(i1, ..., iN), χwk−1(i1, ..., iN)

)

but now

x̂−
k =

M∑

i1=1

...

M∑

iN=1

wi1 ...wiNχk|k−1(i1, ..., iN)

and

P−
k =

M∑

i1=1

...

M∑

iN=1

wi1 ...wiN(χk|k−1(i1, ..., iN) − x̂−
k )(χk|k−1(i1, ..., iN) − x̂−

k )t

Again, we have

Zk|k−1(i1, ..., iN) = h
(
χk|k−1(i1, ..., iN), χuk−1(i1, ..., iN)

)

and

ẑ−k =
M∑

i1=1

...
M∑

iN=1

wi1 ...wiNZk|k−1(i1, ..., iN)

Therefore the Measurement Update Equations will be

Pzkzk =
M∑

i1=1

...

M∑

iN=1

wi1...wiN (Zk|k−1(i1, ..., iN) − ẑ−k )(Zk|k−1(i1, ..., iN) − ẑ−k )t

and

Pxkzk =
M∑

i1=1

...
M∑

iN=1

wi1...wiN (χk|k−1(i1, ..., iN) − x̂−
k )(Zk|k−1(i1, ..., iN) − ẑ−k )t

which gives us the Kalman Gain

Kk = PxkzkP
−1
zkzk

and we get as before
x̂k = x̂−

k + Kk(zk − ẑ−k )

where again zk is the observation at time (iteration) k.
Also, we have

Pk = P−
k −KkPzkzkK

t
k

which completes the Measurement Update Equations.

When N = 1 and λ = 2, the numeric integration in the UKF will correspond
to a Gauss-Hermite Quadrature of order M = 3. However in the UKF we can
tune the filter and reduce the higher term errors via the previously mentioned
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parameters α and β.

Note that when h(x, u) is strongly nonlinear, the Gauss Hermite integration
is not efficient for evaluating the moments of the measurement update equa-
tion, since the term p(zk|xk) contains the exponent zk−h(xk, uk). The iterative
methods based on the idea of importance sampling proposed in [174] correct this
problem at the price of a strong increase in computation time. As suggested
in [151], one way to avoid this integration would be to make the additional hy-
pothesis that xk, h(xk, uk)|z1:k−1 is Gaussian.
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2.3.6 Parameter Learning

One important issue to realize is that the Kalman Filter can be used either for
State Estimation (Filtering) or for Parameter Estimation (Machine Learning).
When we have both State Estimation and Parameter Estimation we are dealing
with a Dual or Joint Estimation. This latter case is the one concerning us since
we are estimating the state volatility as well as the model parameters.

As explained in Haykin’s book [133], in a Dual Filter we separate the state
vector from the parameters and we apply two intertwined filters to them. On
the other hand in a Joint Filter, we concatenate the state vector and the param-
eters and apply one filter to this augmented state. Note that in the Dual Filter
we need to compute recurrent derivatives with respect to parameters, while in
a Joint Filter no such step is needed.

It is possible to interpret the Joint Filter in the following way. In a regular
filter, i.e. filtering of the state xk for a fixed set of parameters Ψ0, we are
maximizing the conditional density

p(x1:k|z1:k,Ψ0)

and as we said, to do that we write

p(x1:k|z1:k,Ψ0) =
p(z1:k|x1:k,Ψ0)p(x1:k|Ψ0)

p(z1:k|Ψ0)

so we maximize the above with respect to the state xk for a given set of param-
eters.
This means that the optimal state x̂1:k for a given parameter-set is given by

x̂1:k = argmax[p(z1:k, x1:k|Ψ0)]

As we will see, in an MLE approach we use this optimal state filtering for each
iteration of the likelihood-maximization over the parameter-set Ψ.

In a Joint Filter on the other hand, we are directly optimizing the joint condi-
tional density

p(x1:k,Ψ|z1:k)

which we can also write as

p(x1:k,Ψ|z1:k) =
p(z1:k|x1:k,Ψ)p(x1:k|Ψ)p(Ψ)

p(z1:k)

given that the denominator is functionally independent of x1:k and Ψ, and given
that p(Ψ) contains no prior information,15 the maximization will be upon

p(z1:k|x1:k,Ψ)p(x1:k|Ψ) = p(z1:k, x1:k|Ψ)
15Again we are in a Frequentist framework, not Bayesian.
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In other words in a Joint Filter, the optimal state x̂1:k and parameter-set Ψ̂ are
found by writing

(x̂1:k, Ψ̂) = argmax[p(z1:k, x1:k|Ψ)]

In what follows we apply the Joint EKF methodology to a few examples.

An Illustration

Before using this technique for the Stochastic Volatility model, let us take a
simple example where

ξk = ξk−1 + π + 0.10wk

and
zk = ξk + 0.10uk

where π ≈ 3.14159 and wk, uk are independent Gaussian random variables.

The linear state-space system could be written as

xk =
(

ξk
πk

)
=
(

1 1
0 1

)
xk−1 + 0.10

(
wk
0

)

and
zk =

(
1 0

)
xk + 0.10uk

We choose the initial values ξ0 = z0 = 0 and π0 = 1.0. We also take Q = 0.1I2

and R = 0.10.

Applying the Kalman Filter to an artificially generated data-set, we plot the
resulting πk in figure 2.6. As we can see, the parameter converges very quickly
to its true value.

Even if we associated a noise of 0.10 to the constant parameter π we can see that
for 5000 observations, taking the mean of the filtered state between observations
20 and 5000 we get

π̂ = 3.141390488

which is very close to the value 3.14159 used in data generation process.
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Figure 2.6: A simple example for the Joint Filter. The convergence towards the
constant parameter π happens after a few iterations.
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Joint Filtering Examples

After going through this simple example, we now apply the JF technique to our
Stochastic Volatility problem. We shall study a few examples in order to find
the best state space representation.

Example 1 Our first example would be the Square-Root Stochastic Volatil-
ity model

lnSk = lnSk−1 + (µS − 1
2
vk−1)∆t+

√
vk−1

√
∆tBk−1

vk = vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk−1

To simplify we suppose that the value of µS is known.
We can now define the state variable16

xk =




lnSk
vk
ω
θ
ξ
ρ




and the system noise

wk =
(
Bk
Zk

)

with its covariance matrix

Qk =
(

1 ρ
ρ 1

)

and therefore

xk = f (xk−1,wk−1) =




lnSk−1 + (µS − 1
2
vk−1)∆t+

√
vk−1

√
∆tBk−1

vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk−1

ω
θ
ξ
ρ




and therefore the Jacobian Ak is

Ak =




1 −1
2
∆t 0 0 0 0

0 1 − θ∆t ∆t −vk−1∆t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




16In reality we should write the estimation parameters ωk , θk , ξk and ρk . However we drop
the indexes for simplifying the notations.
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and

Wk =




√
vk−1

√
∆t 0

0 ξ
√
vk−1

√
∆t

0 0
0 0
0 0
0 0




having the measurement zk = lnSk we can write

Hk =
(

1 0 0 0 0 0
)

and Uk = 0.

We could however introduce a measurement noise R corresponding to the intra-
day stock price movements and the bid-ask spread, in which case we would have
zk = lnSk +Rεk where εk represents a sequence of uncorrelated standard Nor-
mal random variables. This means that Rk = R and Uk = 1. We can then tune
the value of R in order to get more stable results.

Example 2 The same exact methodology could be used in the GARCH
framework. We define the state variable xtk = (lnSk, vk, ω0, α, β, c) and taking
for observation the logarithm of the actual stock price Sk.
The system could be written as

xk = f (xk−1,wk−1)

with wk = Bk a one-dimensional source of noise with a variance Qk = 1 and

f (xk−1,wk−1) =




lnSk−1 + (µS − 1
2
vk−1) + √

vk−1Bk−1

ω0 + βvk−1 + α(Bk−1 − c
√
vk−1)2

ω0

α
β
c




and the Jacobian

Ak =




1 −1
2 0 0 0 0

0 β + αc2 1 c2vk−1 vk−1 2αcvk−1

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



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and

Wk =




√
vk−1

−2αc√vk−1

0
0
0
0




The observation zk will be

zk = h(xk) = ln(Sk)

exactly as in the previous example. The rest of the algorithm would therefore
be identical to the one included in Example 1.

Example 3 In the above example we included all the variables in the sys-
tem process and we observed part of the system. It is also possible to separate
the measurement and the system variables as follows.

Taking a general discrete Stochastic Volatility process as17

lnSk = lnSk−1 + (µS − 1
2
vk)∆t+

√
vk
√

∆tBk

vk = vk−1 + b(vk−1)∆t+ a(vk−1)
√

∆tZk
with Bk and Zk two Normal random sequences with a mean of zero and variance
one, with a correlation equal to ρ.
Posing yk =

√
vkZk and performing the usual Cholesky factorization Bk =

ρZk +
√

1 − ρ2Xk where Zk and Xk are uncorrelated, we can now take the case
of a Square-Root process and write

xk =




vk
yk
ω
θ
ξ
ρ




and xk = f (xk−1, Zk) with

f (xk−1, Zk) =




vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk

(vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk)

1
2Zk

ω +QZk
θ + QZk
ξ +QZk
ρ +QZk




17Note that the indexing here is slightly different from the previous examples.
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which provides us with the Jacobian

Ak =




1 − θ∆t 0 ∆t −vk−1∆t 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




and

Wk =




ξ
√
vk−1

√
∆t

(vk−1 + (ω − θvk−1)∆t)
1
2

Q
Q
Q
Q




The measurement equation is

zk = ln(
Sk
Sk−1

) = (µS − 1
2
vk)∆t+ ρ

√
∆tyk +

√
1 − ρ2

√
vk
√

∆tXk

and therefore
Hk =

(
−1

2∆t ρ
√

∆t 0 0 0 0
)

with uk = Xk and Uk =
√

1 − ρ2
√
vk
√

∆t which completes our set of equations.
Again we could tune the system noise Q in order to obtain more stable results.
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Figure 2.7: EKF Estimation (Example 1) for the drift parameter ω
SPX Index Daily Close Prices were used over five years from 19961001 to
20010928. The convergence is fairly good.
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Figure 2.8: EKF Estimation (Example 1) for the drift parameter θ
SPX Index Daily Close Prices were used over five years from 19961001 to
20010928. The convergence is fairly good.
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Figure 2.9: EKF Estimation (Example 1) for the volatility-of-volatility param-
eter ξ
SPX Index Daily Close Prices were used over five years from 19961001 to
20010928. The convergence is rather poor. We shall explain this via the concept
of observability.
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Figure 2.10: EKF Estimation (Example 1) for the correlation parameter ρ
SPX Index Daily Close Prices were used over five years from 19961001 to
20010928. The convergence is rather poor. We shall explain this via the concept
of observability.
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Observability

From the above tests it seems that the EKF provides us with a non-robust
calibration methodology. Indeed the results are very sensitive to the choice of
system noise Q and observation noise R. We chose for this case Q = 10−3 and
R ≈ 0.

This brings to attention the issue of Observability. A non-linear system with
a state vector xk of dimension n is observable if

O =




H
HA
HA2

...
HAn−1




has a full rank of n. For an explanation refer to Reif et al. [205].

It is fairly easy to see that among the above examples, the first and third one
(corresponding to the Stochastic Volatility formulation) have for the observation
matrix O a rank of four and therefore are not observable. This explains why
they do not converge well and are so sensitive to the tuning parameters Q and
R.
This means that the choices of the state variables for the Examples 1 and 3 were
rather poor. One reason is that in our state space choice, we considered

zk = h(vk−1, ...)

and
xk = (..., vk, ...) = f(xk−1, ...)

which implies that
∂h

∂vk
= 0

We shall see how to correct this in the next section by choosing a more appro-
priate state space representation.
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The One-Dimensional State within the Joint Filter

Considering the state equation

vk = vk−1+(ω−θvk−1)∆t+ξ
√
vk−1

√
∆tZk−1−ρξ[lnSk−1+(µS−

1
2
vk−1)∆t+

√
vk−1

√
∆tBk−1−lnSk]

posing for every k

Z̃k =
1√

1 − ρ2
(Zk − ρBk)

we will have as expected Z̃k uncorrelated with Bk. Therefore considering the
augmented state

xk =




vk
ω
θ
ξ
ρ




we will have the state transition equation

f (xk−1, Z̃k−1) =



vk−1 + [(ω − ρξµS) − (θ − 1
2ρξ)vk−1]∆t+ ρξ ln( Sk

Sk−1
) + ξ

√
1 − ρ2√vk−1

√
∆tZ̃k−1

ω
θ
ξ
ρ




and the measurement equation would be

zk = lnSk+1 = lnSk + (µS − 1
2
vk)∆t+

√
vk
√

∆tBk

The corresponding EKF Jacobians for this system are

Ak =



1 − (θ − 1
2ρξ)∆t ∆t −vk−1∆t ρ

(
ln( Sk

Sk−1
) − (µS − 1

2vk−1)∆t
)

ξ
(
ln( Sk

Sk−1
) − (µS − 1

2vk−1)∆t
)

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




Wk =




ξ
√

1 − ρ2√vk−1

√
∆t

0
0
0
0



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Hk =
(
−1

2∆t 0 0 0 0
)

Uk =
√
vk
√

∆t

It is easy to check that this system is observable since the observation matrix
Ok is of full rank. This shows that our state space choice is better than the
previous ones.

The UKF would be implemented in a similar fashion from the transition and
observation equations above. Again, for the UKF we would not need to compute
any Jacobians.

An important issue to consider is that of Tuning. We could add extra-noise
to the observation and hence lower the weight associated with the observations.
In which case after choosing a tuning parameter R we would write

Uk =
( √

vk
√

∆t R
)

and
UkUt

k = vk∆t+ R2

The choice of the initial conditions and the tuning parameters could make the
algorithm fail or succeed. It therefore seems that there is little robustness in
this procedure.

We consider the example of 5000 artificial data points artificially produced via
a Heston stochastic volatility process with a parameter-set

Ψ∗ = (ω = 0.10, θ = 10.0, ξ = 0.03, ρ = −0.50)

with a given µS = 0.025. We then choose a tuning parameter R = 0.10 and
take a reasonable guess for the initial-conditions

Ψ0 = (ω0 = 0.15, θ0 = 10.0, ξ0 = 0.02, ρ0 = −0.51)

and apply the Joint Filter. The results are displayed in figures 2.11 to 2.14. As
we can see, the convergence for ω and θ are better than the two others. We
shall see later why this is.
Allowing a burn in period of 1000 points, we can calculate the mean (and the
standard-deviation) of the generated parameters after the simulation 1000.
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Figure 2.11: Joint EKF Estimation for the parameter ω
Prices were simulated with Ψ∗ = (0.10, 10.0, 0.03,−0.50). The convergence
remains mediocre. We shall explain this in the following section.
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Figure 2.12: Joint EKF Estimation for the parameter θ
Prices were simulated with Ψ∗ = (0.10, 10.0, 0.03,−0.50). The convergence
remains mediocre. We shall explain this in the following section.
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Figure 2.13: Joint EKF Estimation for the parameter ξ
Prices were simulated with Ψ∗ = (0.10, 10.0, 0.03,−0.50). The convergence
remains mediocre. We shall explain this in the following section.
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Figure 2.14: Joint EKF Estimation for the parameter ρ
Prices were simulated with Ψ∗ = (0.10, 10.0, 0.03,−0.50). The convergence
remains mediocre. We shall explain this in the following section.
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Joint Filters and Time Interval

One difficulty with the application of the Joint Filter (JF) to the Stochastic
Volatility problem, is the following: Unless we are dealing with a longer time-
interval such as ∆t = 1, the observation error

√
vk
√

∆tBk is too large compared
to the sensitivity of the filter with respect to the state through −0.5vk∆t. Indeed
for a ∆t = 1/252 we have18

∆t = o(
√

∆t)

A simple Monte-Carlo test will allow us to verify this: We simulate a Heston
model on the one hand, and a modified model where we multiply both Brownian
Motions by a factor ∆t. This will make the errors smaller by a factor of 252 for
the daily case. We call this model the Modified Model.
After generating 5000 data points with a parameter set (ω∗ = 0.10, θ∗ =
10.0, ξ∗ = 0.03, ρ∗ = −0.50) and a drift µS = 0.025, we suppose we know
all parameters except ω.

We then apply the JKF to find the estimate ω̂. We can observe in figure 2.15
that the filter diverges when applied to the Heston model but converges fast
when applied to the Modified model.
However in reality we have no control over the observation error, which is pre-
cisely the volatility!

In a way, this brings up a more fundamental issue regarding the stochastic
volatility Estimation problem: By definition, volatility represents the noise of
the stock process. Indeed if we had taken the spot price Sk as the observation
and the variance vk as the state, we would have

Sk = Sk−1 + Sk−1µS∆t+ Sk−1
√
vk
√

∆tBk

we would then have an observation function gradient H = 0 and the system
would be unobservable !
It is precisely because we use a Taylor second order expansion

ln(1 + R) ≈ R− 1
2
R2

that we obtain access to vk through the observation function. However the error
remains dominant as the first order of the expansion.

Some [130] have tried

ln
(

ln2(
Sk
Sk−1

)
)

≈ ln(vk) + ln(∆t) + ln(B2
k)

and
ln(B2

k) ∼ −1.27 +
π√
2
N (0, 1)

18Hereafter xh = o(yh) means xh/yh → 0 as h → 0, or more intuitively, xh is much smaller
than yh for a tiny h.
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but the latter approximation may or may not be valid depending on the problem
under study.
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Figure 2.15: Joint EKF Estimation for the parameter ω applied to the Heston
model as well as to a Modified model where the noise is reduced by a factor 252.
As we can see, the convergence for the modified model is improved dramatically.
This justifies our comments on large observation error.
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2.3.7 Parameter Estimation via MLE

As previously stated, one of the principal methods of estimation under the clas-
sical framework is the Maximization of the Likelihood. Indeed this estimation
method has many desirable asymptotic properties.

Therefore instead of using the filters alone, we could separate the parameter-set
Ψ = (ω, θ, ξ, ρ) from the state vector (lnSk, vk) and use the Kalman Filter for
state filtering within each MLE iteration19 and estimate the parameters itera-
tively.

An Illustration

Let us first consider the case of the previous illustration

ξk = ξk−1 + π + 0.10wk

and
zk = ξk + 0.10uk

where π ≈ 3.14159 and wk, uk are independent Gaussian random variables.
Here we take

xk = ξk

and
Ak = Hk = 1

Wk = Uk = 0.1

The maximization of the Gaussian Likelihood with respect to the parameter π
is equivalent to minimizing

L1:N =
N∑

k=1

[ln(Fk) +
z̃2
k

Fk
]

with residuals
z̃k = zk − ẑ−k = zk − x̂−k

and
Fk = Pzkzk = HkP

−
k H

t
k + UkRkU

t
k

Note that we used scalar notations here and in vectorial notations we would
have

L1:N =
N∑

k=1

[ln(|Fk|) + z̃tkF
−1
k z̃k]

19To be more accurate, since the noise process is conditionally Gaussian, we are dealing with
a Quasi-Maximum-Likelihood (QML) Estimation. More detail could be found for instance in
Gourieroux [124].
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where |Fk| is the determinant of Fk.
We use the scalar notations for simplicity and also because in the Stochastic
Volatility problem, we usually deal with one-dimensional observations (namely
the Stock Price).

The minimization via a Direction Set (Powell) method over 500 artificially gen-
erated observation points will provide

π̂ = 3.145953

very quickly.

Stochastic Volatility Examples

For our previous first example the system state vector now becomes

xk =
(

lnSk
vk

)

which means the dimension of our state is now two, and

xk = f (xk−1,wk−1) =
(

lnSk−1 + (µS − 1
2vk−1)∆t+

√
vk−1

√
∆tBk−1

vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk−1

)

The system noise is still

wk =
(
Bk
Zk

)

and the corresponding covariance matrix is

Qk =
(

1 ρ
ρ 1

)

We have the measurement zk = lnSk and therefore we can write

Hk =
(

1 0
)

Now for a given set of parameters (ω, θ, ξ, ρ) we can filter this system with the
EKF (or the UKF) using

Ak =
(

1 −1
2∆t

0 1 − θ∆t

)

and

Wk =
( √

vk−1

√
∆t 0

0 ξ
√
vk−1

√
∆t

)

Note that the observation matrix is

Ok =
(

1 0
1 −1

2∆t

)
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which is of full rank. Our system is therefore observable.

After filtering for this set of parameters, we calculate the sum to be mini-
mized

φ(ω, θ, ξ, ρ) =
N∑

k=1

[ln(Fk) +
z̃2
k

Fk
]

with
z̃k = zk − h(x̂−

k , 0)

and
Fk = HkP−

k Ht
k + UkRkUt

k

The minimization could once again be done via a Direction Set (Powell) method
as described previously. This will avoid a calculation of the gradient ∇φ.

It is interesting to observe (cf. figures 2.16 and 2.17) that the results of the
EKF and UKF are very close and the filter errors are comparable. However
the estimated parameter set Ψ = (ω, θ, ξ, ρ) can have a different set of values
depending on which filter is actually used.20

Hence the question, how sensitive are these filters to Ψ? In order to answer this
question we can run an estimation for EKF and use the estimated parameters
in UKF and observe how good a fit we obtain. The results show that this sensi-
tivity is fairly low. Again, this might be due to the relative insensitivity of the
filters to the parameter-set Ψ or the non-uniqueness of the optimal parameter-
set. As we will see, the answer to this question also depends on the sample size.

Optimization-Constraints for the Square-Root Model

In terms of the optimization constraints, in addition to the usual

ω ≥ 0 (2.12)

θ ≥ 0

ξ ≥ 0

−1 ≤ ρ ≤ 1

we need to make sure that the value of the variance remains positive, i.e.

vk + (ω − θvk)∆t+ ξ
√
vk
√

∆tZk ≥ 0

for any vk ≥ 0 and any Gaussian random value Zk.

For a Gaussian random variable Zk and any positive real number Z∗, we

20Note however that the values of the resulting long-term volatilities
√

ω
θ

are rather close.
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can write Zk ≥ −Z∗ with a probability P ∗. For instance if Z∗ = 4 then
P ∗ = 0.999968. Therefore, fixing a choice of Z∗, it is almost always enough for
us to have

vk + (ω − θvk)∆t− ξ
√
vk
√

∆tZ∗ ≥ 0

for any vk ≥ 0.
Considering the function f(x) = x+(ω−θx)∆t−ξ

√
x
√

∆tZ∗ it is fairly easy to
see that f(0) = ω∆t ≥ 0 by assumption, and for x very large f(x) ≈ (1− θ∆t)x
which is positive if

θ ≤ 1
∆t

(2.13)

This is most of the time realized for a small ∆t such as ours.
Now f(x) being a continuous function and having positive values at zero and
infinity it would be sufficient to make sure that its one minimum on [0,+∞[
is also positive. A simple derivative computation shows that xmin = ξ2∆t(Z∗)2

4(1−θ∆t)2

and therefore the positivity is realized if21

ξ ≤ 2
Z∗

√
ω(1 − θ∆t) (2.14)

which completes our set of constraints.

21Naturally we suppose ∆t > 0
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Figure 2.16: SPX Historic Data (1996-2001) is filtered via EKF and UKF. The
results are very close however the estimated parameters Ψ̂ = (ω̂, θ̂, ξ̂, ρ̂) differ.
Indeed we find (ω̂ = 0.073028, θ̂ = 1.644488, ξ̂ = 0.190461, ρ̂ = −1.000000) for
the EKF and (ω̂ = 0.540715, θ̂ = 13.013577, ξ̂ = 0.437523, ρ̂ = −1.000000) for
the UKF.
This might be due to the relative insensitivity of the filters to the parameter-set
Ψ or the non-uniqueness of the optimal parameter-set. We shall explain this
low sensitivity in more detail.
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Figure 2.17: EKF and UKF absolute filtering-errors for the same time-series.
As we can see there is no clear superiority of one algorithm over the other.
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An Alternative Implementation

We could also perform the same estimation but based on our previous third
example. Again we have

lnSk = lnSk−1 + (µS − 1
2
vk)∆t+

√
vk
√

∆tBk

vk = vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk

with Bk and Zk two Normal random sequences with a mean of zero, a variance
of one, and a correlation equal to ρ.

However since for a Kalman Filter the process noise and the measurement noise
must be uncorrelated, we introduce

yk =
√
vkZk

and performing the usual Cholesky factorization Bk = ρZk +
√

1 − ρ2Xk where
Zk and Xk are uncorrelated, we can write

xk =
(
vk
yk

)

and xk = f (xk−1, Zk) with

f (xk−1, Zk) =
(

vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk

(vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk)

1
2Zk

)

which provides us with the Jacobian

Ak =
(

1 − θ∆t 0
0 0

)

and

Wk =
(

ξ
√
vk−1

√
∆t

(vk−1 + (ω − θvk−1)∆t)
1
2

)

The measurement equation is

zk = lnSk = lnSk−1 + (µS − 1
2
vk)∆t+ ρ

√
∆tyk +

√
1 − ρ2

√
vk
√

∆tXk

and therefore
Hk =

(
−1

2
∆t ρ

√
∆t

)

with uk = Xk and Uk =
√

1 − ρ2
√
vk
√

∆t which completes our set of equations.
Note that the observation matrix is

Ok =
(

−1
2∆t ρ

√
∆t

−1
2
∆t(1 − θ∆t) 0

)

which is of full rank. Our system is therefore observable.
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The One-Dimensional State

Finally, a simpler way of writing the state-space system, which will be our method
of choice hereafter, would be to subtract from both sides of the state equation
xk = f(xk−1, wk−1), a multiple of the quantity h(xk−1, uk−1) − zk−1 which is
equal to zero. This would allow us to eliminate the correlation between the
system and the measurement noises.
Indeed, if the system equation is

lnSk = lnSk−1 + (µS − 1
2
vk−1)∆t+

√
vk−1

√
∆tBk−1

vk = vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk−1

writing
vk =

vk−1+(ω−θvk−1)∆t+ξ
√
vk−1

√
∆tZk−1−ρξ[lnSk−1+(µS−

1
2
vk−1)∆t+

√
vk−1

√
∆tBk−1−lnSk]

posing for every k

Z̃k =
1√

1 − ρ2
(Zk − ρBk)

we will have as expected Z̃k uncorrelated with Bk and

xk = vk = vk−1+[(ω−ρξµS )−(θ−1
2
ρξ)vk−1]∆t+ρξ ln(

Sk
Sk−1

)+ξ
√

1 − ρ2
√
vk−1

√
∆tZ̃k−1

(2.15)
and the measurement equation would be

zk = lnSk+1 = lnSk + (µS − 1
2
vk)∆t+

√
vk
√

∆tBk (2.16)

With this system everything becomes one-dimensional and the computations
become much faster both for the EKF and UKF.

For the EKF we will have

Ak = 1 − (θ − 1
2
ρξ)∆t

and
Wk = ξ

√
1 − ρ2

√
vk−1

√
∆t

as well as

Hk = −1
2
∆t

and
Uk =

√
vk
√

∆t
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Again, for the MLE we will try to minimize

φ(ω, θ, ξ, ρ) =
N∑

k=1

[ln(Fk) +
z̃2
k

Fk
]

with residuals
z̃k = zk − h(x̂−

k , 0)

and
Fk = HkP−

kHt
k + UkUt

k

The same time update and measurement update will be used with the UKF.
The ML Estimator can be used as usual.

Other stochastic volatility models

It is easy to generalize the above state space model to other stochastic volatility
approaches. Indeed we could replace the Heston equation with

vk = vk−1 + (ω − θvk−1)∆t+ ξvpk−1

√
∆tZk

where p = 1/2 would naturally correspond to the Heston model, p = 1 to the
GARCH diffusion-limit model, and p = 3/2 to the 3

2
model described in [177].

This idea will be developed further in the chapter.
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2.3.8 Diagnostics

After having estimated the parameter-set Ψ we should test for model misspeci-
fication. Two important questions are

1. Do the normalized residuals (zk−ẑ−k )/Fk follow a standard normal N (0, 1)
law?

2. Do theses residuals have zero auto-correlation?

Chi-Square Test

The first question could be answered by performing a Chi-Square test. We
take a number NB of intervals or “bins” bounded by the points x0, x1, ..., xJ.
We then count the number of observations Nj within each bin [xj, xj+1] for j
between zero and NB −1. We then compare these numbers with the theoretical
numbers implied by the normal distribution nj = [Φ(xj+1) − Φ(xj)]N with Φ
the cumulative normal function and N the total number of observations.
The sum

NB−1∑

j=0

(Nj − nj)2

nj

asymptotically follows a χ2
ν law with degrees of freedom ν equal to NB − 1.

Box-Ljung Test

The second question could be answered with a Box-Ljung test. We should first
calculate a number of auto-correlations

rk =
∑N−k
i=1 (z̃i − ¯̃z)(z̃i+k − ¯̃z)
∑N

i=1(z̃i − ¯̃z)2

for k between one and a prespecified integer K. Once again z̃i = zi − ẑ−i and ¯̃z
corresponds to their mean.
We then consider the sum

N (N + 2)
K∑

k=1

r2k
N − k

which asymptotically follows a χ2
ν law with degrees of freedom ν equal to K −p

where p = 4 is the numbers of parameters we estimated.
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Test Results

In the previously studied SPX examples we had N = 1256. For the Normality
test we choose NB = 21 and for the Box-Ljung test we take K = 24, in both
cases we will have to compare the outputs to the critical threshold χ2

20 which
for a confidence of 0.95 is around 31.5.
For the (one-dimensional) EKF we obtain 27.738862 for the Normality test and
0.007889 for the Box-Ljung test. For the (one-dimensional) UKF we obtain
22.657545 for the Normality test and again 0.016053 for the Box-Ljung test.
This means that there is very little auto-correlation in our system noise. Also,
it seems reasonable to model the noise as approximately normally distributed.

The Chi-Square test proves that the Normality assumption is plausible and
the Kalman Filter can indeed be used.

A visual confirmation of this could be achieved by plotting the correspond-
ing histograms. As we can see in figure 2.18, there are no excessively “fat tails”,
however the central value at zero is higher than the normal distribution.
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Figure 2.18: Histogram for filtered data via EKF versus the Normal distribution.
The residuals are fairly normal.
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Variogram

Similarly to Fouque et al [104] we can use a variogram to visualize the volatil-
ity behavior of the model. As Galli [110] mentions, the main reasons to use
variograms instead of covariance or correlogram are: variograms do not need
to estimate the mean, and they are interpretable under wider conditions than
covariances or correlograms.
The expression for the variogram of a process It is

γI(h) =
1
2
E[(I(t + h) − I(t))2] ≈ 1

2Nhi

Nhi∑

t=0

(I(t + hi) − I(t))2

where Nhi is the total number of points such that I(t+ hi) exists.

For instance for a sequence of Independent Gaussian Random-Variables we
should have

γI (h) =
1
2
E[I2(t+ h)] +

1
2
E[I2(t)] −E[I(t)I(t + h)] =

1
2

+
1
2
− 0 = 1

In our case, the process It could be defined for instance as

It =
zt − ẑ−t√

Ft

which should correspond to a sequence of Independent Gaussian Random-Variables.

As we can see in figure 2.19, the variogram is consistent with the Gaussian
assumption which reconfirms what we observed from the histograms.

Another way of expressing the same idea is to build a Brownian Motion from
the above sequence. Calling the Independent Gaussian Random-Variables (Bk),
we can write

In =
√

∆t
n∑

k=0

Bk

and plot the variogram for the Brownian Motion In.
For a Brownian Motion, it is easy to see that the variogram should be linear

γI (h) =
1
2
(t+ h) +

1
2
t− t =

1
2
h

This could indeed be seen in figure 2.20.
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Figure 2.19: Variograms for filtered data via EKF and UKF. The input corre-
sponds to a sequence of Independent Gaussian Random-Variables. As we can
see, the variograms are close to one.
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Figure 2.20: Variograms for filtered data via EKF and UKF. The input cor-
responds to a Brownian Motion. As we can see, the Variograms are close to
x/2.
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2.3.9 Particle Filtering

A different approach to filtering and parameter estimation has recently become
popular [79], [122], [171]. In this approach, we use Monte-Carlo Simulations
instead of Gaussian approximations for (xk|zk) as the Kalman or Kushner Fil-
ters do. This will precisely allow us to deal with fundamentally Non-Gaussian
situations.22

Underlying Theory

The idea is based on the Importance Sampling technique:
We can calculate an expected value

E[f(x0:k)] =
∫
f(x0:k)p(x0:k|z1:k)dx0:k (2.17)

by using a known and simple proposal distribution q().
More precisely, it is possible to write

E[f(x0:k)] =
∫
f(x0:k)

p(x0:k|z1:k)
q(x0:k|z1:k)

q(x0:k|z1:k)dx0:k

which could be also written as

E[f(x0:k)] =
∫
f(x0:k)

wk(x0:k)
p(z1:k)

q(x0:k|z1:k)dx0:k (2.18)

with
wk(x0:k) =

p(z1:k|x0:k)p(x0:k)
q(x0:k|z1:k)

defined as the filtering non-normalized weight as step k.
Proof:
Indeed, we can write

p(x0:k|z1:k)
q(x0:k|z1:k)

=
p(z1:k|x0:k)p(x0:k)
p(z1:k)q(x0:k|z1:k)

=
wk(x0:k)
p(z1:k)

as we claimed. (QED)

We therefore have

E[f(x0:k)] =
Eq[wk(x0:k)f(x0:k)]

Eq [wk(x0:k)]
= Eq [w̃k(x0:k)f(x0:k)] (2.19)

22An existing (but less effective) alternative to the Particle Filtering method is the Grid-
based Approximation as the one suggested by Kitagawa [170], [108]. The main advantage of
the Particle Filter is that it will make the grid focus adaptively on the state-space regions
with higher relevance.
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with
w̃k(x0:k) =

wk(x0:k)
Eq [wk(x0:k)]

defined as the filtering normalized weight as step k.
Proof:
Indeed

E[f(x0:k)] =
1

p(z1:k)

∫
f(x0:k)wk(x0:k)q(x0:k|z1:k)dx0:k

=
∫
f(x0:k)wk(x0:k)q(x0:k|z1:k)dx0:k∫
p(z1:k|x0:k)p(x0:k)

q(x0:k|z1:k)
q(x0:k|z1:k)

dx0:k

=
∫
f(x0:k)wk(x0:k)q(x0:k|z1:k)dx0:k∫

wk(x0:k)q(x0:k|z1:k)dx0:k

which is the ratio of the expectations as earlier stated. (QED)

Using Monte-Carlo sampling from the distribution q(x0:k|z1:k) we can write
in the discrete framework:

E[f(x0:k)] ≈
Nsims∑

i=1

w̃k(x
(i)
0:k)f(x

(i)
0:k) (2.20)

with again

w̃k(x
(i)
0:k) =

wk(x
(i)
0:k)∑Nsims

j=1 wk(x
(j)
0:k)

Now supposing that our proposal distribution q() satisfies the Markov property,
it can be shown that wk verifies the recursive identity

w
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

0:k−1, z1:k)
(2.21)

which completes the Sequential Importance Sampling algorithm.

Proof:
Indeed, the Markov property mentioned above could be written as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (2.22)

We also assume that the state (xk) is a Markov process, meaning

p(xk|x0:k−1) = p(xk|xk−1)

and the observations (zk) are conditionally independent given the states, so that

p(zk|x0:k) = p(zk|xk)
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Finally we use the fact that at time-step k, all previous observations are perfectly
known, and

p(zk|xk, z1:k−1) = p(zk|xk)

Therefore

wk(xk) =
p(z1:k|x0:k)p(x0:k)

q(x0:k|z1:k)

=
p(zk|xk)p(z1:k−1|x0:k−1)p(xk|xk−1)p(x0:k−1)

q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1)

which demonstrates the point. (QED)

It is important to note that the above means that the state xk cannot depend
on future observations, i.e. we are dealing with Filtering and not Smoothing.

Resampling

One major issue with this algorithm is that the variance of the weights increases
randomly over time. In order to solve this problem, we need to use a Resampling
algorithm which would map our unequally weighted xk’s to a new set of equally
weighted sample points.
Different methods have been suggested for this. See for instance Arulampalam
[14], [171].
The basic idea is to compare the Cumulative Distribution Function (CDF) cre-
ated from the normalized weights, with a CDF constructed from a uniformly
simulated number U [0, 1]. We would then eliminate the indices having too small
a weight and repeat those having a sufficiently large weight.

More accurately, at a given time step k, for 1 ≤ j ≤ Nsims
If

1
Nsims

(U [0, 1] + j − 1) ≥
i∑

l=1

w̃
(l)
k

then increment and “skip” i, otherwise take x(i)
k and set its weight to 1

Nsims
.

Note that the Resampling algorithm could create a situation where the resulting
sample has many repeated points. This is known as sample impoverishment and
could lead to an extreme case where all points collapse to a unique particle after
a few iterations. This phenomenon is more likely if the process noise is small.
One possible solution to this issue is to add a Markov-Chain Monte-Carlo
(MCMC) step after the Resampling. As described further below, a Metropolis-
Hastings (MH) sampling algorithm would be suitable.
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Needless to say, the choice of the proposal distribution is crucial. Many suggest
using

q(xk|x0:k−1, z1:k) = p(xk|xk−1)

since it will give us a simple weight identity

w
(i)
k = w

(i)
k−1p(zk|x

(i)
k )

Based upon this type of choices, hereafter we shall simplify and write

q(xk|x0:k−1, z1:k) = q(xk|xk−1, z1:k)

without any change to our arguments.
However this choice of the proposal distribution does not take into account our
most recent observation zk at all and therefore could become inefficient.
Hence the idea of using a Gaussian Approximation for the proposal, and in
particular an approximation based on the Kalman Filter, in order to incorporate
the observations.
We therefore will have

q(xk|xk−1, z1:k) = N (x̂k, Pk) (2.23)

using the same notations as in the section on the Kalman Filter. Such filters are
sometimes referred to as the Extended Particle Filter (EPF) or the Unscented
Particle Filter (UPF). This is fairly similar to the Iterative Centering Algorithm
in Kushner’s NLF.

From here, in order to estimate the parameter-set Ψ we can either use a Dual/
Joint Filter, or use an ML Estimator.
Note that since the particle filter does not necessarily assume Gaussian noise,
the likelihood function to be maximized has a more general form than the one
used in previous sections.
Given the likelihood at step k

lk = p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk

the total likelihood is the product of the lk’s above and therefore the log-
likelihood to be maximized is

ln(L1:N ) =
N∑

k=1

ln(lk) (2.24)

Now lk could be written as

lk =
∫
p(zk|xk)

p(xk|z1:k−1)
q(xk|xk−1, z1:k)

q(xk|xk−1, z1:k)dxk
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and given that by construction the x(i)
k ’s are distributed according to q(), we

can write the Monte-Carlo approximation

lk ≈
Nsims∑

i=1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

k−1, z1:k)
(2.25)

which we already computed for the sequential importance sampling weight up-
date.
As we shall see in the next paragraph, it is also possible to interpret the step k
likelihood, as a quantity related to the total weight

Nsims∑

i=1

w
(i)
k

Finally, we could interpret the Particle Filter as follows. We are using a Monte-
Carlo simulation (via an importance sampling technique) to calculate the inte-
gral

∫
f(xk)p(xk|z1:k)dxk.

This is exactly what other Filtering techniques try to do. The Kushner Non-
Linear Filter (NLF) tries to calculate the integral via a Gaussian Quadrature.
Indeed NLF uses Hermite polynomials because it treats the distributions as
Normal.23

23Other filters cited for instance in [79] use the more general Legendre polynomials.
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Implementation

Given the above theory, the algorithm for an Extended or Unscented Particle
Filter could be implemented in the following way:

(1) For time step k = 0 choose x0 and P0 > 0.
For i such that 1 ≤ i ≤ Nsims take

x
(i)
0 = x0 +

√
P0Z

(i)

where Z(i) is a standard Gaussian simulated number.
Also take P (i)

0 = P0 and

w
(i)
0 =

1
Nsims

While 1 ≤ k ≤ N

(2) For each simulation-index i

x̂
(i)
k = KF(x(i)

k−1)

with P (i)
k the associated a posteriori error covariance matrix.

(KF could be either the EKF or the UKF)

(3) For each i between 1 and Nsims

x̃
(i)
k = x̂

(i)
k +

√
P

(i)
k Z(i)

where again Z(i) is a standard Gaussian simulated number.

(4) Calculate the associated weights for each i

w
(i)
k = w

(i)
k−1

p(zk|x̃(i)
k )p(x̃(i)

k |x(i)
k−1)

q(x̃(i)
k |x(i)

k−1, z1:k)

with q() the normal density with mean x̂(i)
k and variance P (i)

k .

(5) Normalize the weights

w̃
(i)
k =

w
(i)
k∑Nsims

i=1 w
(i)
k

(6) Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃

(i)
k = 1

Nsims
.

(7) Increment k, Go back to step (2) and Stop at the end of the While
loop.
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From step (4) we have

l̄k =
Nsims∑

i=1

p(zk|x̃(i)
k )p(x̃(i)

k |x(i)
k−1)

q(x̃(i)
k |x(i)

k−1, z1:k)

where l̄k is a Monte-Carlo proxy for the likelihood lk at the step k.
As we saw in the previous section, by minimizing

−
N∑

k=1

ln(l̄k)

using for instance the Direction Set algorithm, we will be maximizing the like-
lihood function and hence we will be obtaining the optimal parameter-set Ψ̂.

Given the resetting of w(i)
k to a constant 1

Nsims
during the resampling step,

we can also replace l̄k with

l̃k =
Nsims∑

i=1

w
(i)
k

which will provide us with an interpretation of the likelihood as the total weight.

An Illustration

Let us consider once again the case of the previous illustration

ξk = ξk−1 + π + 0.10wk

and
zk = ξk + 0.10uk

where π ≈ 3.14159 and wk, uk are independent Gaussian random variables.
We apply the same Kalman Filter and then apply the previous algorithm to the
system. Calling

n(x,m, s) =
1√
2πs

exp
(
− (x−m)2

2s2

)

the normal density with mean m and standard deviation s, we will have

q(x̃(i)
k |x(i)

k−1, z1:k) = n
(
x̃

(i)
k ,m =x̂(i)

k , s =
√
P

(i)
k

)

as well as
p(zk|x̃(i)

k ) = n
(
zk,m =x̃(i)

k , s =0.10
)

and
p(x̃(i)

k |x(i)
k−1) = n

(
x̃

(i)
k ,m =x(i)

k−1 + π, s =0.10
)
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Taking 100 particles and 500 observation points, the EPF converges very quickly
to π̂ = 3.148200.
Alternatively the simple PF (with no Kalman component) would converge to
π̂ = 3.140266.

Note that this example is Gaussian and Linear and therefore the Particle Fil-
tering is not an improvement over the Kalman Filter! Indeed the Kalman Filter
is optimal for Gaussian Linear cases.

Application to the Heston Model

We could now apply the above Particle Filtering algorithm to our one-dimensional
state where xk = vk and zk = lnSk+1 as before.

Calling

n(x,m, s) =
1√
2πs

exp
(
− (x− m)2

2s2

)

the normal density with mean m and standard deviation s, we will have

q(x̃(i)
k |x(i)

k−1, z1:k) = n
(
x̃

(i)
k ,m = x̂

(i)
k , s =

√
P

(i)
k

)

as well as

p(zk|x̃(i)
k ) = n

(
zk,m = zk−1 + (µS − 1

2
x̃

(i)
k )∆t, s =

√
x̃

(i)
k

√
∆t
)

and
p(x̃(i)

k |x(i)
k−1) =

n
(
x̃

(i)
k ,m = x

(i)
k−1 + [(ω − ρξµS ) − (θ − 1

2
ρξ)x(i)

k−1]∆t+ ρξ(zk−1 − zk−2), s
)

with
s = ξ

√
1 − ρ2

√
x

(i)
k−1

√
∆t

which provides us with the densities we need for the filter implementation.

The estimation of the observable state zk is

ẑ−k =
1

Nsims

Nsims∑

i=1

ẑ
(i)
k

with ẑ(i)
k the estimation of zk from KF(x(i)

k−1).
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Test Results

The results from an Extended Particle Filter (EPF) are shown in figure 2.21.
The filter was constructed with the one-dimensional Heston model and was
applied to a simulated time-series of 5000 points with

Ψ∗ = (0.40, 10.0, 0.01,−0.50)

As we can see in the figure, no clear superiority of the EPF is detected. The
optimal parameters found via EPF are

Ψ̂EPF = (0.020331, 0.499987,0.040000,0.050026)

which could not be considered as an improvement over

Ψ̂EKF = (0.065886, 1.711686,0.180884,0.147660)

Again the long-term-variances ω
θ are close to 0.04 for all cases, which is consis-

tent with what we had observed.

The next natural step would be to implement and test the Unscented Particle
Filter (UPF) where everything is done similarly to the EPF except the choice
of the proposal distribution.
UPF has been strongly recommended by Wan and Van der Merwe in [231] and
[133]. Indeed the authors claim that the filtering error from the UPF is consid-
erably smaller than EKF, UKF or EPF.
As we can see in figure 2.22, it is true that the filtering error resulting from UPF
is considerably lower than those generated from the other filters. However, the
optimal parameter-set

Ψ̂UPF = (0.020132, 0.500031, 0.040000,0.050004)

obtained via UPF, is again very different from the original parameter-set Ψ∗

used in the data generation.

We shall analyze the reasons behind this poor inference results more closely
in the following sections.
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Figure 2.21: Filtering Errors: Extended Kalman Filter and Extended Particle
Filter are applied to the one-dimensional Heston model. The PF has better
performance.
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Figure 2.22: Filtering Errors: All Filters are applied to the one-dimensional
Heston model. The PF’s have better performance.
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Error Size

One possibility is that our time-series has too small an error for the filters to
make a significant difference. Hence the idea of studying another case where
∆t = 1 year. Let us take 200 points generated with the parameter-set

Ψ∗ = (0.02, 0.5, 0.05,−0.5)

We obtain
Ψ̂EKF = (0.036, 0.093, 0.036,−1.00)

and
Ψ̂UKF = (0.033, 0.086,0.033,−0.98)

which shows that UKF results are very close to EKF ones.
Using the particle filters, we get

Ψ̂EPF = (0.019, 0.5, 0.03,−0.58)

which is considerably closer to the original set Ψ∗. Therefore EPF did bring an
improvement over the traditional non-linear filters and seems to be simpler and
more robust24 than its competitors.

As for the filtering errors, it can be seen in figure 2.23 that the EPF errors
are smaller than (although comparable to) those produced by EKF and UKF,
which is consistent with the particle filtering theory.

As for UPF, we obtain

Ψ̂UPF = (0.019480, 0.489375, 0.047030,−0.229242)

which is very close to the EPF result. As we can see, the UPF errors are even
smaller than those generated by EPF.

In addition to the above it would be interesting to test a Gauss-Hermite Filter
(GHF) [151]. We obtain

Ψ̂GHF = (0.020398, 0.524215, 0.069661,−1.000000)

which is closer to the real parameter-set Ψ∗ compared to EKF or UKF results.
However the filtering-error is more variable than those of its competitors as
could be seen in figure 2.24.

Note however that this would mean that we would have access to 200 years
of historic data, which is clearly unrealistic.25 This issue will be revisited in the

24This is because for a larger time-step the non-linearity and non-Gaussianity have a
stronger impact.

25What is more, the Girsanov theorem would not be valid and (ξ, ρ) would have no reason
to be the same under the risk-neutral and real measures.
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following sections.
Also, here we generated the data via a discrete equation with ∆t = 1. There
was therefore no discretization error from a continuous equation. We cannot
apply the same method to data coming from a continuous process.
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Figure 2.23: Filters are applied to the one-dimensional Heston model. The
time-series has a larger time-step ∆t = 1.0. Naturally the errors are larger then
the case were ∆t = 1/252.
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Figure 2.24: EKF and GHF are applied to the one-dimensional Heston model.
The time-series has a larger time-step ∆t = 1.0. Naturally the errors are larger
then the case were ∆t = 1/252.
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As a measure of performance, we can compute the Mean-Price-Error (MPE)
as well as the Root-Mean-Square-Error (RMSE) for each filter. These corre-
spond respectively to the mean and the standard deviation of the plotted errors.
For the MPE’s we obtain:

MPE RMSE
EKF 0.007484269 0.003422215
UKF 0.007660269 0.003733748
GKF 0.009129157 0.005816919
EPF 0.007620208 0.002269224
UPF 0.007076066 0.001359393

This shows us again that the Particle Filters outperform the other ones.
Again, let us remind that given 200 points with ∆t = 1 and a true parameter-set

Ψ∗ = (0.02, 0.5, 0.05,−0.5)

we obtained:

ω̂ θ̂ ξ̂ ρ̂

EKF 0.036 0.093 0.036 -1.00
UKF 0.033 0.086 0.033 -0.98
GKF 0.020 0.524 0.070 -1.00
EPF 0.019 0.500 0.033 -0.58
UPF 0.019 0.489 0.047 -0.22
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The MH Enhancement

As mentioned earlier, the Resampling algorithm helps with the issue of Degen-
eracy, which means that it will reduce the variance of the weights. However it
might introduce a Sample Impoverishment phenomenon where all particles will
have a tendency to collapse to one.
The Metropolis-Hastings (MH) algorithm could be a solution to this problem
and is implemented as follows:
After the Resampling step (6) we obtain a set ˜̃x(i)

1:k

(6-a) Reapply the Kalman Filter (Extended or Unscented) to this set in or-
der to obtain

x
∗(i)
k = KF

(
˜̃x(i)
k−1

)

(6-b) Choose between x
∗(i)
k and ˜̃x(i)

k as follows:
Define

α = min

(
1,
p(zk|x∗(i)k )p(x∗(i)k |x(i)

k−1)q(˜̃x
(i)
k |x(i)

k−1, z1:k)

p(zk|˜̃x(i)
k )p(˜̃x(i)

k |x(i)
k−1)q(x

∗(i)
k |x(i)

k−1, z1:k)

)

then sample v from U [0, 1] and
Choose x∗(i)k if α > v and choose ˜̃x(i)

k if α ≤ v.

The result is then x
(i)
k and we go to Step (7) as before.

Note that α could be interpreted as the ratio of the non-normalized weights
for the two particles we are choosing from.

Indeed

α = α
(i)
k = min

(
1,
w(x∗(i)k )

w(˜̃x(i)
k )

)

Applied to the same time-series as in the previous paragraph, the EPF with the
MH modification will provide

Ψ̂EPF−MH = (0.019, 0.499, 0.040,−0.358)

and
MPEEPF−MH = 0.007753

RMSEEPF−MH = 0.001927

compared to the previous EPF

MPEEPF = 0.00762

RMSEEPF = 0.002269

As we can see from the above results and the figure 2.25, there is only a marginal
improvement from the introduction of the MH step in the filtering process. This
is in line with the findings in the literature such as [231].
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Figure 2.25: The EPF without and with the Metropolis-Hastings step is applied
to the one-dimensional Heston model. The time-series has a time-step ∆t = 1.0.
The improvement is hardly visible.
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2.3.10 Comparing Heston with other Models

We can now apply our inference tools to real market-data, in order to see which
model matches the true dynamics of the assets more closely, and therefore per-
form Model Identification.

The Models

It is easy to generalize the Heston state space model to other stochastic volatility
approaches. Indeed we could replace the Heston state equation with

vk = vk−1 + (ω − θvk−1)∆t+ ξvpk−1

√
∆tZk−1 (2.26)

where p = 1/2 would naturally correspond to the Heston (Square-Root) model,
p = 1 to the GARCH diffusion-limit model, and p = 3/2 to the 3/2 model.
These models have all been described and analyzed in [177].
The new state transition equation would therefore become

vk = (2.27)

vk−1+
[
ω − ρξµSv

p− 1
2

k−1 −
(
θ − 1

2
ρξv

p− 1
2

k−1

)
vk−1

]
∆t+ρξvp−

1
2

k−1 ln(
Sk
Sk−1

)+ξ
√

1 − ρ2vpk−1

√
∆tZ̃k−1

where the same choice of state space xk = vk is made.
For the EKF we will have

Ak = 1−
[
ρξµS (p− 1

2
)vp−

3
2

k−1 + θ − 1
2
ρξ(p +

1
2
)vp−

1
2

k−1

]
∆t+(p−1

2
)ρξvp−

3
2

k−1 ln(
Sk
Sk−1

)

and
Wk = ξ

√
1 − ρ2vpk−1

√
∆t

as well as
Hk = −1

2
∆t

and
Uk =

√
vk
√

∆t

The same time update and measurement update equations could be used with
the UKF or Kushner’s NLF.
We could also apply the Particle Filtering algorithm to our problem. Using the
same notations as in section 1.3.2 and calling

n(x,m, s) =
1√
2πs

exp
(
− (x−m)2

2s2

)

the Normal density with mean m and standard deviation s, we will have

q(x̃(i)
k |x(i)

k−1, z1:k) = n
(
x̃

(i)
k ,m =x̂(i)

k , s =
√
P

(i)
k

)
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as well as

p(zk|x̃(i)
k ) = n

(
zk,m =zk−1 + (µS −

1
2
x̃

(i)
k )∆t, s =

√
x̃

(i)
k

√
∆t
)

and
p(x̃(i)

k |x(i)
k−1) = n

(
x̃

(i)
k ,mx, s =ξ

√
1 − ρ2(x(i)

k−1)
p
√

∆t
)

with

mx =x(i)
k−1+

[
ω − ρξµS(x(i)

k−1)
p− 1

2 −
(
θ − 1

2
ρξ(x(i)

k−1)
p− 1

2

)
x

(i)
k−1

]
∆t+ρξ(x(i)

k−1)
p− 1

2 (zk−1−zk−2)

and as before we have

w
(i)
k = w

(i)
k−1

p(zk|x̃(i)
k )p(x̃(i)

k |x(i)
k−1)

q(x̃(i)
k |x(i)

k−1, z1:k)

which provides us with what we need for the filter implementation.

The Results

The above filters were applied to five years of S&P500 time-series (1996 to 2001)
and the filtering errors were considered for the Heston model, the GARCH model
and the 3/2 model. Daily index close-prices were used for this purpose, and the
time interval was set to ∆t = 1/252.

MPE RMSE
EKF-Heston 3.58207e-05 1.83223e-05

EKF-GARCH 2.78438e-05 1.42428e-05
EKF-3/2 2.63227e-05 1.74760e-05

UKF-Heston 3.00000e-05 1.91280e-05
UKF-GARCH 2.99275e-05 2.58131e-05

UKF-3/2 2.82279e-05 1.55777e-05
EPF-Heston 2.70104e-05 1.34534e-05

EPF-GARCH 2.48733e-05 4.99337e-06
EPF-3/2 2.26462e-05 2.58645e-06

UPF-Heston 2.04000e-05 2.74818e-06
UPF-GARCH 2.63036e-05 8.44030e-07

UPF -3/2 1.73857e-05 4.09918e-06
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Figure 2.26: Comparison of EKF Filtering errors for Heston, GARCH and 3/2
Models. The latter seems to perform better.



156

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0 200 400 600 800 1000 1200

e
rr

o
rs

Days

UKF errors for different SV Models

Heston
GARCH

3/2

Figure 2.27: Comparison of UKF Filtering errors for Heston, GARCH and 3/2
Models. The latter seems to perform better.



The Volatility Process 157

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

4e-05

4.5e-05

5e-05

5.5e-05

0 200 400 600 800 1000 1200

e
rr

o
r

Days

EPF errors for different SV Models

Heston
GARCH

3/2

Figure 2.28: Comparison of EPF Filtering errors for Heston, GARCH and 3/2
Models. The latter seems to perform better.
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Figure 2.29: Comparison of UPF Filtering errors for Heston, GARCH and 3/2
Models. The latter seems to perform better.
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Figure 2.30: Comparison of Filtering errors for the Heston Model. PF’s seem
to perform better.
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Figure 2.31: Comparison of Filtering errors for the GARCH Model. PF’s seem
to perform better.
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Figure 2.32: Comparison of Filtering errors for the 3/2 Model. PF’s seem to
perform better.
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Two immediate observations can be made: On the one hand the Particle
Filters have a better performance than the Gaussian ones, which reconfirms
what one would anticipate. On the other hand for most of the Filters, the 3/2
model seems to outperform the Heston model, which is in line with the findings
of Engle & Ishida [95]. Again, this shows that the filtering process could be
used not only for Parameter-Estimation but also for Model Identification.

This suggests further filtering on other existing models such as Jump Diffu-
sion [190]. Clearly, because of the non-Gaussianity of jump based models, the
Particle Filtering technique will need to be applied to them.

Parameter Learning Revisited

We tried a JF via the Kalman Filter where the parameters were given a prior
distribution. We can now apply the Particle Filtering techniques to this frame-
work as in [176], [224]:
We simulate x(i)

k at time-step k from the prior p(xk|x(i)
k−1) and we also simulate

each parameter ψ(i) from its prior q(ψ) = N (mψ , sψ) where these mean and
standard-deviations are to be determined.
We then update the priors by incorporating the observation zk

p(x(i)
k |zk) ∝ p(zk|x(i)

k , ψ
(i))p(x(i)

k |x(i)
k−1)

and similarly
p(ψ(i)|zk) ∝ p(zk|x(i)

k , ψ
(i))p(ψ(i)|x(i)

k−1)

and we obtain the posterior distributions.
Calling

w
(i)
k =

p(zk|x(i)
k , ψ

(i))w(i)
k−1∑Nsims

i=1 p(zk|x(i)
k , ψ

(i))w(i)
k−1

We now have the posteriors of xk and ψ and we can simulate them for the
following step via a Metropolis-Hastings (MH) accept/ reject technique with
the proposal distribution q(ψ,mψ , sψ) with

mψ =
Nsims∑

i=1

w
(i)
k ψ(i)

and

sψ =
Nsims∑

i=1

w
(i)
k (ψ(i) −mψ)2

The MH step will consist in the following: we accept the simulation point ψ̃(i)

from q() with a probability α(ψ(i), ψ̃(i)) where ∀i between 1 and Nsims we have

α(ψ(i), ψ̃(i)) = min

(
1.0,

p(ψ̃(i)|zk)/q(ψ̃(i))
p(ψ(i)|zk)/q(ψ(i))

)
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In practice we simulate a uniform random-variable u and accept the simulated
point ψ̃(i) if α > u, and reject it (and keep ψ(i)) otherwise.

We keep simulating alternatively the state variable and each parameter by incor-
porating the observations at each step and wait for the parameters to converge
to their ideal mean.

It is important to note that this Joint Filtering differs from the usual MCMC
techniques such as [156], [92] where we update the particles by incorporating all
observations at each simulation-step.
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2.3.11 The Performance of the Inference Tools

We have applied various Gaussian and Particle-based Filters to daily historic
data. None of the methodologies performed very well at that frequency.26 We
now try to analyze the reasons behind this issue.

A known weakness of optimization algorithms is the following. The higher
the number of parameters, the worse the performance of the algorithm. This
means that a one-parameter optimization should perform best. To test this, we
simulate 5000 points27 via the Heston model with a parameter-set Ψ∗ as shown
below (Also see figure 2.33).
We use a drift of µS = 0.025 and a time-step ∆t = 1/252 as before.
In order to get the best performance we fix all parameters except one. For in-
stance to obtain ω̂ we fix θ = 10.0, ξ = 0.03, ρ = −0.50, µS = 0.025, we choose a
reasonable initial point ω0 and then optimize upon ω only. We choose an initial
parameter-set Ψ0 as shown below. The results are displayed in the table 2.4.

It is interesting to note that the estimation of the volatility-drift parameters

Ψ∗ ω∗ = 0.10 θ∗ = 10.0 ξ∗ = 0.03 ρ∗ = -0.50

Table 2.2: The true parameter-set Ψ∗ used for data simulation.

Ψ0 ω0 = 0.15 θ0 = 15.0 ξ0 = 0.02 ρ0 = -0.50

Table 2.3: The initial parameter-set Ψ0 used for the optimization process.

Filter ω̂ θ̂ ξ̂ ρ̂

EKF 0.098212 10.188843 0.052324 -0.873571
UKF 0.107281 10.089381 0.000001 +0.598434
EPF 0.098287 10.130531 0.044437 -0.827729
UPF 0.100581 10.221816 0.051902 -0.487695

Table 2.4: The optimal parameter-set Ψ̂. The estimation is performed individu-
ally for each parameter on the artificially generated time-series. Particle Filters
use 1000 simulations.

26Note that in this section we are not checking the validity of the assumption that the real
stock-market follows a Heston (or another) process. We assume we know the process exactly,
and try to recover the embedded parameters.

27We made the 5000 daily simulations directly from the discretized SDE with a ∆t = 1/252.
We also tried simulating 5, 000,000 points with ∆t = 1/252,000 and sampling 5000 daily
points from there. Although the second method is more correct, the difference in results was
small, which means that the Euler discretization is sufficiently accurate at the daily level.
This is in agreement with results found by Elerian [92].
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(ω, θ) could be done fairly well via EKF.28 This makes sense since the depen-
dence on these parameters is linear.
The estimation of volatility and correlation parameters (ξ, ρ) is not as straight-
forward. This could be seen by plotting the likelihood L(Ψ) as a function of
ω, θ, ξ and ρ separately. We fix three parameters to their optimal values and
plot L(Ψ) as a function of the last one. We observe in figures 2.34 to 2.37 that
the likelihood function is fairly easy to optimize for (ω, θ). However the func-
tion is very flat around the optimal ξ and ρ. Hence the difficulty of finding the
optimums !

28A joint estimation of (ω, θ) based on the same data-set with known (ξ, ρ) provides (ω̂ =

0.117889, θ̂ = 11.996760)
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Figure 2.33: Simulated Stock-Price path via Heston using Ψ∗. This is an arti-
ficial time-series following the Heston model.
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Figure 2.34: f(ω) = L(ω, θ̂, ξ̂, ρ̂) has a good slope around ω̂=0.10.
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Figure 2.35: f(θ) = L(ω̂, θ, ξ̂, ρ̂) has a good slope around θ̂=10.0.
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Figure 2.36: f(ξ) = L(ω̂, θ̂, ξ, ρ̂) is flat around ξ̂=0.03.
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Figure 2.37: f(ρ) = L(ω̂, θ̂, ξ̂, ρ) is flat and irregular around ρ̂=-0.50.
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Sample Size

It seems therefore that the estimation is inefficient for the parameter ξ no mat-
ter which filter we use. The issue is that of inefficiency (large error variance) for
this given sample size. This is indeed one of the shortcomings of the Maximum
Likelihood Estimators (MLE). For a given sample size they can very well be
inefficient and even have a bias.29 The choice of the filter will not solve this
issue.
However (under minimal regularity conditions) MLE’s are consistent and there-
fore asymptotically converge to the correct optimum. This means that the
sample size is key.
To test this we can choose larger samples of N = 50, 000, N = 100, 000 and
N = 500, 000 points and rerun the simplest filter, namely the EKF. As ex-
pected the optimum of the Likelihood function becomes closer and closer to ξ∗.
This can be seen in figures 2.38 to 2.41 as well as in table 2.5.
Same exact observations could be made for the correlation parameter ρ and the
results are displayed in the same table 2.5. The likelihood graphs are omitted
in the interest of brevity.
As for the drift parameters ω and θ, the convergence was good even forN = 5000
as previously observed.

Unfortunately in reality we have limited historic data. Even at a daily fre-
quency 50, 000 points would correspond to 200 years !
One possibility would be to use intra-day data, however that assumes that the
behavior of the stock-price is the same intra-day (which is reasonable considering
we started with a continuous SDE). Moreover, clean intra-day data is usually
not readily available and needs preprocessing.

N ξ̂ ρ̂

5000 0.052324 -0.873571
50, 000 0.036463 -0.608088
100, 000 0.033400 -0.556868
500, 000 0.031922 -0.532142

Table 2.5: The Optimal EKF parameters ξ̂ and ρ̂ given a sample size N .
The true parameters are ξ∗ = 0.03 and ρ∗ = −0.50.
The initial values were ξ0 = 0.02 and ρ0 = −0.40.

Therefore, having p parameters in the optimal parameter-set Ψ̂N =
(
Ψ̂N [j]

)
1≤j≤p

29A known and simple example for the bias of MLEs, is that of the estimation of the variance
of a Gaussian sequence of a finite size (x1, ..., xN ). The ML estimate for the mean is µ̂N =
1
N

∑N
k=1 xk and the ML estimate for the variance is v̂N = 1

N

∑N
k=1(xk − µ̂N )2. The latter

ML estimation is biased and the correct estimation would be ˆ̂vN = 1
N−1

∑N
k=1(xk − µ̂N )2.

However it is clear that as N → +∞ we have v̂N ≈ ˆ̂vN and the bias gradually disappears.
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for a sample size N , we have for each parameter Ψ[j]

lim
N→+∞

Ψ̂N [j] | {Ψ[k] = Ψ∗[k]; 1 ≤ k ≤ p; k 6= j} = Ψ∗[j] (2.28)

What is more, this is true for any valid initial value Ψ0[j], which means the
MLE is robust.
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Figure 2.38: f(ξ) = L(ω̂, θ̂, ξ, ρ̂) via EKF for N = 5000 points. The true value
is ξ∗ = 0.03.
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Figure 2.39: f(ξ) = L(ω̂, θ̂, ξ, ρ̂) via EKF for N = 50, 000 points. The true value
is ξ∗ = 0.03.
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Figure 2.40: f(ξ) = L(ω̂, θ̂, ξ, ρ̂) via EKF for N = 100, 000 points. The true
value is ξ∗ = 0.03.
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Figure 2.41: f(ξ) = L(ω̂, θ̂, ξ, ρ̂) via EKF for N = 500, 000 points. The true
value is ξ∗ = 0.03.
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Joint Estimation of the Parameters

Let us now assume that we do not know any of the parameters, choose an initial
set Ψ0 and test the consistency of the MLE. We shall apply the EKF to the
data and take the same true parameter set Ψ∗ as in the previous section. We
assume that µS = 0.025 is known, otherwise it could be estimated together with
the model parameters.

As previously mentioned, the likelihood function becomes flat and therefore
harder to maximize under a higher number of parameters. The convergence of
the estimator will therefore be slower.
Despite this, we can observe in table 2.8 the asymptotic convergence of the es-
timator even under the joint estimation of all parameters.
Indeed we have now

lim
N→+∞

Ψ̂N = Ψ∗ (2.29)

which corresponds to the generalization of (2.28) in the previous section.

Ψ∗ ω∗ = 0.10 θ∗ = 10.0 ξ∗ = 0.03 ρ∗ = -0.50

Table 2.6: The true parameter-set Ψ∗ used for data generation.

Ψ0 ω0 = 0.15 θ0 = 15.0 ξ0 = 0.02 ρ0 = -0.40

Table 2.7: The initial parameter-set Ψ0 used for the optimization process.

N ω̂ θ̂ ξ̂ ρ̂

5000 0.150854 15.294576 0.266175 -0.128835
50, 000 0.126387 12.748852 0.020521 -1.000000
100, 000 0.136023 13.700906 0.044353 -0.439961
500, 000 0.100097 10.030336 0.061688 -0.257305

1, 000, 000 0.105264 10.548642 0.043818 -0.356234
2, 000, 000 0.103183 10.334876 0.039767 -0.374677
4, 000, 000 0.105292 10.538019 0.043288 -0.347562
5, 000, 000 0.101097 10.118951 0.028588 -0.514346

Table 2.8: The Optimal EKF parameter-set Ψ̂ for given a sample size N . The
four parameters are estimated jointly.
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We ran other Filters (UKF, EPF, UPF) on the same data set and observed
only marginal improvement. The results are omitted in the interest of brevity.
It therefore seems that the fundamental issue is related to the slow convergence
of the MLEs regardless of the Filtering method.

A related issue previously mentioned is the size of the observation error Uk ∝√
∆t which is large compared to the observation function Hk ∝ ∆t for daily

observations.
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Error Size revisited

As previously mentioned, this underlines the more fundamental problem for
the SV Estimation: By definition, volatility represents the noise of the stock
process. Indeed if we had taken the spot price Sk as the observation and the
variance vk as the state, we would have

Sk+1 = Sk + SkµS∆t+ Sk
√
vk
√

∆tBk

we would then have an observation function gradient H = 0 and the system
would be unobservable !
It is precisely because we use a Taylor second order expansion

ln(1 + x) ≈ x−
1
2
x2

that we obtain access to vk through the observation function. However in

ln(
Sk+1

Sk
) = (µS − 1

2
vk)∆t+

√
vk
√

∆tBk

the error remains dominant as the first order of the expansion.30

Harvey, Ruiz and Shephard [130] use the approximation ∆t = o(
√

∆t) and
take

zk = ln
(

ln2(
Sk+1

Sk
)
)

≈ ln(vk) + ln(∆t) + ln(B2
k)

Note that under this form EKF would blow up since z−k = h(vk, 0) = −∞.

They therefore use the fact that E[ln(B2
k)] = −1.27 and stdev[ln(B2

k)] = π/
√

2
and consider the Gaussian approximation

ln(B2
k) ∼ −1.27 +

π√
2
N (0, 1)

which may or may not be valid. We call this approximation Harvey-Ruiz-
Shephard (HRS) and apply it to the same case as in the previous paragraphs.
As can be seen in table 2.9 the approximation seems to be valid for our example.
Note that UKF would not have this issue since we would work with the real
nonlinear function z = h(x, u) above. However we would still deal with log’s of
very small quantities which could be numerically unstable.

30Note that this is different from a Variance Swap where we work with the expected values.
Indeed the approximation is perfectly valid if for the return R = ∆S/S we write

E[ln(1 + R) − R] ≈ −
1

2
v

but again, the approximation breaks if we work for one sample path.
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N ω̂ θ̂ ξ̂ ρ̂

5000 0.722746 71.753861 0.044602 -1.000000
50, 000 0.234110 23.575193 0.028056 -1.000000
100, 000 0.150512 15.186113 0.017748 -1.000000
500, 000 0.109738 11.020391 0.027140 -0.531481

Table 2.9: The Optimal EKF parameter-set Ψ̂ via the HRS approximation for
given a sample size N . The four parameters are estimated jointly.

Another way of tackling the same equation would be via a Particle Filter
where

zk = ln
(
| ln(

Sk+1

Sk
)|
)
≈ 1

2
ln(vk) +

1
2

ln(∆t) + ln(|Bk|)

and as stated in [10] the density of ln(|Bk|) is

f(x) = 2exn(ex)

with n() the normal density.31

Testing the same data set provides table 2.10 which does not seem to improve
upon the KF.

N ω̂ θ̂ ξ̂ ρ̂

5000 0.147212 14.999999 0.070407 -0.555263

Table 2.10: The Optimal PF parameter-set Ψ̂ for given a sample size N . The
four parameters are estimated jointly.

31It is easy to see that if X is a standard Normal variable, then the CDF of ln(|X |) is

F (x) = P (ln(|X |) ≤ x) = P (|X | ≤ ex) = P (−ex ≤ X ≤ ex)

therefore
F (x) = N(ex) − N(−ex) = 2N(ex) − 1

and the density is determined by taking the derivative with respect to x as usual.
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It is important to note that even if we took the example of the Heston model,
the same issues are true for any stochastic volatility model of type

vk = vk−1 + (ω − θvk−1)∆t+ ξvpk−1

√
∆tZk−1

including the GARCH-diffusion and the 3/2 models.
Indeed, as previously mentioned, even if the Transition equation is different
here, the Observation equation remains the same.
Applying the EKF, we have the Transition matrix and noise

Ak = 1−
[
ρξµS (p− 1

2
)vp−

3
2

k−1 + θ − 1
2
ρξ(p +

1
2
)vp−

1
2

k−1

]
∆t+(p−1

2
)ρξvp−

3
2

k−1 ln(
Sk
Sk−1

)

Wk = ξ
√

1 − ρ2vpk−1

√
∆t

However, we still have the Observation matrix and noise

Hk = −1
2
∆t

and
Uk =

√
vk
√

∆t

and the same issue of ∆t = o(
√

∆t) still exists at observation level for any value
of p.

Another point that should be mentioned is that even if ξ and ρ are separately
harder to estimate than ω and θ, the product ρξ appears in the equations at
the same level. Indeed as we just saw, in Ak only the product ρξ is available.
However at the noise level Wk, we can distinguish the two parameters ρ and ξ.
For instance, in our previous EKF joint estimation table we had for 50, 000
points ξ̂ ≈ 0.020521 , ρ̂ ≈ −1.0000 and again, the individual estimations of ξ
and ρ remained far from their true values. However we have ξ̂ρ̂ ≈ −0.020521
which is much closer to ξ∗ρ∗ = −0.015.
Interestingly, the product ρξ is what we need to determine the Skewness of the
distribution.32 However, we do need to determine ξ alone to obtain the distri-
bution Kurtosis.

It is also worth noting that in a GARCH framework, we do not have this issue
of poor Observability for the discrete case. Indeed at each point in time, vk is
known exactly as a function of previous observations. Only later, we go to the
two-factor Diffusion limit as Nelson [194] does.
However, we have to bear in mind that this GARCH Diffusion limit is a very spe-
cial case of the Stochastic Volatility problem, since it misses the second source
of randomness in the discrete case. As Corradi [61] explains, a discrete GARCH
model may very well converge towards a one-factor diffusion process without
stochastic volatility. Interestingly, when discretizing the one-factor continuous

32This remark will be used in the following chapter.
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process we can recover GARCH, whereas when discretizing the two-factor con-
tinuous process we will not obtain GARCH but the two-factor discrete process
we have been working with.
This explains why GARCH MLE (without Filtering) can recover parameters
used in a simulated time-series of length 5000 created via a one-factor GARCH
process, while it cannot recover the diffusion-limit parameters from a time-series
created via a two-factor Stochastic Volatility process as accurately. 33 Indeed,
one could see this in tables 2.11 and 2.12.

ω α β c

Ψ∗ 0.00000176 0.0626 0.89760 0.00
Ψ̂ 0.00000200 0.0530 0.89437 0.05

Table 2.11: Real and Optimal parameter-sets obtained via NGARCH MLE. The
5000 points were generated via the one-factor NGARCH with daily parameters

ω θ ξρ

Ψ∗ 0.100000 10.00 -0.015
Ψ̂GARCH 0.063504 6.84 -0.019
Ψ̂EKF 0.148000 14.48 -0.023

Table 2.12: Real and Optimal parameter-sets obtained via NGARCH MLE
as well as EKF. The 5000 points were generated via the two-factor GARCH
Diffusion limit with annual parameters

This also explains why estimating ω and θ alone works so much better with
5000 points. After all if we had ξ = 0 and therefore a deterministic instanta-
neous variance, we would have no observability problem to talk about. Indeed

33Needless to say, whether the equations are written via yearly (Stochastic Volatility con-
vention) or daily (GARCH convention) parameters, will not change the nature of the problem.
Indeed it would be tempting to try to get around the ∆t = o(

√
∆t) issue by rewriting the

equations via daily parameters µd
S = µS∆t and vd

k = ∆tvk as well as ωd = ∆t2ω, θd = ∆tθ

and ξd = ∆tξ with ρ remaining unchanged. Dropping the superscript d for simplifying the
notations, we shall have

lnSk+1 = ln Sk + µS −
1

2
vk +

√
vkBk

vk+1 = vk + ω − θvk + ξ
√

vkZk

which seems to have eliminated the difficulty. However now we have

vk = o(
√

vk)

which was not the case with yearly variances, and the same poor observability issue arises
again! We therefore see that the heart of the difficulty is a low signal-to-noise ratio (SNR) for
the problem at hand.
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vt would be exactly known at each time-step, as is the case in a GARCH frame-
work.

Finally, we can now see better why the estimation worked fairly well even with
200 points if ∆t = 1 year. Simply because we do not have ∆t = o(

√
∆t) and

the observability is much more accurate. Having said that, with such a large
∆t other issues such as strong non-linearity and the non-applicability of the
Grisanov theorem arise. Not to mention the fact that 200 points would corre-
spond to two-hundred years of data!
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High Frequency Data

Given that the results seem to converge for a large number of data points, one
idea would be to use a higher sampling frequency. Indeed if instead of using
daily data we sample every five seconds, one a ten year range we will have
10 × 252 × 6.5 × 60 × 60 ÷ 5 = 11, 793, 600 data points which is very sufficient
for our MLE’s.
For testing the use of high frequency data, we can generate via Monte-Carlo
5, 000, 000 points with a ∆t = 1/252, 000 which corresponds to 20 years. We
obtain the results in the table 2.13 below. Both rows have reasonable results. It
is however notable that the EKF/ HRS method seems to perform better than
the plain EKF.

ω̂ θ̂ ξ̂ ρ̂

EKF 0.090280 9.019962 0.042984 -0.283236
EKF/ HRS 0.092372 9.224421 0.030951 -0.507763

Table 2.13: The Optimal parameter-set Ψ̂ for 5, 000, 000 data points. The
sampling is performed 1000 times a day and therefore the data-set corresponds
to 5000 business days. The four parameters are estimated jointly.

It may seem a little surprising that for the same time period [0, T ] dividing
∆t by 1000 and multiplying N by 1000 helps us. Indeed, why don’t the two
operations cancel one another?
However, observing the negative of log-Likelihood function in an EKF frame-
work

φ(ω, θ, ξ, ρ) =
N∑

k=1

[ln(Fk) +
z̃2
k

Fk
]

with
z̃k = zk − h(x̂−

k , 0)

and
Fk = HkP−

kHt
k + UkUt

k

We can see that considering first order terms, dividing ∆t by 1000, or equiv-
alently multiplying it by ε = 1/1000, will cause the transition matrix Ak to
be unchanged, the transition noise Wk to be multiplied by

√
ε, the observation

matrix Hk to be multiplied by ε and the observation noise Uk to be multiplied
by

√
ε.

What is more Ak being unchanged, will cause P−
k and Pk to remain unchanged

as well. Therefore z̃k will be multiplied by
√
ε and the term Fk will be multiplied

by ε and the fraction used in the log-Likelihood sum will remain the same. This
causes the sum φ(ω, θ, ξ, ρ) to be higher by a factor 1/ε which shows that higher
frequency does allow us to obtain a higher Likelihood function and therefore
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better convergence. This is in agreement with what we observed in the above
test.

The Frequency of the Observations

Note that the ideal stochastic Differential Equations are supposed to be contin-
uous, however we only have discrete observations obtained via an Euler scheme.
This introduces a discretization Error which may become important as the time-
interval ∆t becomes larger.
As mentioned in [92], [164], [201] the solution would be to fill the missing data
via additional simulations in time:
For the observation time-step 1 ≤ k ≤ N , the simulation 1 ≤ i ≤ Nsims and the
additional time-step 1 ≤ j ≤ M we would have the particles

x̃
(i)

k+ j
M

= x̃
(i)

k+ j−1
M

+ (ω − θx̃
(i)

k+ j−1
M

)
∆t
M

+ ξ

√
x̃

(i)

k+ j−1
M

√
∆t
M
Z

(i)

k+ j
M

and the observation

zk+1 = zk +
M∑

j=1

(µS − 1
2
x̃k+ j

M
)
∆t
M

+

√√√√
M∑

j=1

x̃k+ j
M

∆t
M
Bk

where each Z(i)

k+ j
M

has a correlation ρ with Bk. Naturally the innovations Zl are
mutually uncorrelated.
However as discussed in [164] the discretization error is small when ∆t = 1/252,
which is the case we are dealing with.
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Sampling Distribution

Even if in practice we deal with one historic path, we should determine the
distribution of the optimal parameter-set as follows.
We simulate P = 500 paths of length N = 5000 and estimate for each path j
the optimal set Ψ̂(j). We then can estimate

¯̂Ψ =
1
P

P−1∑

j=0

Ψ̂(j)

as well as the variance

V (Ψ̂) =
1
P

P−1∑

j=0

(Ψ̂(j) − ¯̂Ψ)2

This way we will know how the estimator performs in average and how far we
could be from this average. The distribution of the parameter-set around its
mean is referred to as the Sampling Distribution [168].
As we can see in table 2.14 the average-estimated parameter-set is closer to the
true-set than the one-path-estimated set we were considering in the previous
section. However the corresponding standard-deviation is quite high and we
could very well get poor results as previously seen.
From figures 2.42 to 2.45 we can see that for this data length N and this sample
size P the parameters ω and θ are determined via EKF in a fairly unbiased way.
However the estimator is not efficient and has a large standard-deviation. As
for ξ and ρ we have both bias and inefficiency.
This is not surprising given the results of the previous paragraphs. We obtained
good results for (ω, θ) when estimated alone, and not so good results for (ξ, ρ).
As mentioned, classical filtering theory works well when the parameters affect
the drift of the observation and not the noise. This causes a slow convergence
issue for all our parameters. But this is doubly true for (ξ, ρ) since they affect
the “noise of the noise”.
As previously observed the bias and inefficiency will disappear as N → +∞ as is
the case for any MLE estimator. Indeed the biases and the standard-deviations
are smaller for N = 50, 000 than for N = 5000 as we can see in table 2.14.



The Volatility Process 187

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2 0.25 0.3

omega

density
histogram

Figure 2.42: Density for ω̂ estimated from 500 paths of length 5000 via EKF.
The true value is ω∗ = 0.10. The sampling distribution is fairly unbiased, but
is inefficient.
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Figure 2.43: Density for θ̂ estimated from 500 paths of length 5000 via EKF.
The true value is θ∗ = 10. The sampling distribution is fairly unbiased, but is
inefficient.
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Figure 2.44: Density for ξ̂ estimated from 500 paths of length 5000 via EKF.
The true value is ξ∗ = 0.03. The sampling distribution is inefficient and even
has a bias.
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Figure 2.45: Density for ρ̂ estimated from 500 paths of length 5000 via EKF.
The true value is ρ∗ = −0.50. The sampling distribution is inefficient and even
has a bias.
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ω̂ θ̂ ξ̂ ρ̂

N = 5000 0.11933899 11.92271488 0.056092146 -0.34321724
(0.098995729) (9.673829518) (0.049741887) (0.297433861)

N = 50, 000 0.102554592 10.26233092 0.04383931 -0.351998284
(0.027020734) (2.706564396) (0.013004526) (0.074998408)

Table 2.14: Mean and (Standard-Deviation) for the estimation of each param-
eter via EKF over P = 500 paths of lengths N = 5000 and N = 50, 000.
The true values are (ω∗ = 0.10, θ∗ = 10, ξ∗ = 0.03, ρ∗ = −0.50).

2.3.12 The Bayesian Approach

Even if our method of choice is the Classical one, it is worth going over the
Bayesian philosophy and methodologies, which have some similarities but also
some fundamental differences with our point of view.
The MLE methodology is a Classical (Frequentist) approach where we assume
that there is a set of unknown but fixed parameters. Alternatively, in the
Bayesian approach the parameters are considered as random-variables with a
given prior distribution. We then use the observations (the likelihood) to up-
date these distributions and obtain the posterior distributions.

It would seem that in order to be as objective as possible and to use the ob-
servations as much as possible, one should use priors that are non-informative.
However this sometimes creates degeneracy issues and one should choose a dif-
ferent prior for this reason.

Markov Chain Monte-Carlo’s (MCMC) include the Gibbs Sampler as well as
the Metropolis-Hastings (MH) algorithm. The theoretical justification is pro-
vided by the Hammersley-Clifford theorem and the Ergodic Averaging theorem.
Details could for instance be found in [34] or [163].

Briefly, the Hammersley-Clifford theorem states that having a parameter-set
Ψ, a state x and an observation z, we can obtain the joint distribution p(Ψ, x|z)
from p(Ψ|x, z) and p(x|Ψ, z), under some mild regularity conditions. There-
fore by applying the theorem iteratively, we can break a complicated multi-
dimensional estimation problem into many simple one-dimensional problems.
Creating a Markov Chain Ψ(i) via a Monte-Carlo process, the Ergodic Averag-
ing theorem states that the time-average of a parameter will converge towards
its posterior mean.

The Gibbs Sampler

The Gibbs Sampler consists in iterative simulations from the posterior distribu-
tions.
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Having a parameter-set
Ψ = (Ψj)1≤j≤J

a hidden state
x = (xk)1≤k≤N

and an observation set
z = (zk)1≤k≤N

We proceed as follows:

(0) Initialize the state vector and the parameter-set to x(0) and Ψ(0) and choose
the prior distribution p(ψ).

For each simulation index i between 1 and Nsims do:

(1) Simulate x(i) as
x(i) ∼ p(x|z,Ψ(i−1))

(2) Simulate each parameter from its posterior conditional on partially updated
parameters: For each j between 1 and J

Ψ(i)
j ∼ p(ψ|z, x,Ψ(i)

0 , ...,Ψ(i)
j−1,Ψ

(i−1)
j+1 , ...,Ψ(i−1)

J )

with
p(ψ|z, x, ...) ∝ p(z|x, ψ, ...)p(x|ψ)p(ψ)

(3) Go back to step (1) and stop after i reaches Nsims

(4) calculate the posterior mean for each parameter after allowing a “burn-in”
period

Ψ̂j =
1

Nsims − i0

Nsims∑

i=i0+1

Ψ(i)
j

with for instance i0 = Nsims/10.

It is important to note that in some cases, the prior and the posterior dis-
tributions are the same and only differ in parameters. In this case the priors
are referred to as conjugate priors.

The justification is available for instance in [55] and could be summed up as
follows: Having two random variables (X,Y ) we can write

E[X] =
∫
xp(x)dx
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but
p(x) =

∫
p(x|y)p(y)dy =

∫
p(x|y)

∫
p(y|ξ)p(ξ)dξdy

therefore, we have

p(x) =
∫
p(ξ)h(x, ξ)dξ

with
h(x, ξ) =

∫
p(x|y)p(y|ξ)dy

Which shows that p(x) is a stationary solution for the above integral equation,
and h(x, ξ) corresponds to the limit transition density.

Similarly, it is possible to show that for a sequence (xk) generated from a Gibbs
Sampler, we have

P (xk|x0) =
∫
P (xk−1|x0)P (xk, xk−1)dxk−1

It is therefore possible to see that as k → +∞ we have

P (xk|x0) → p(xk)

and
P (xk|xk−1) → h(xk, xk−1)

which are the stationary marginal and transition densities.

A Simple Illustration

For a simple illustration consider a sequence of Normally distributed data points
z with an unknown mean µ and an unknown variance 1/λ. The parameter λ is
often referred to as the precision of the distribution.
One possible way to proceed is to choose uniform (non-informative) priors p(µ)
and p(λ) ∝ 1/λ and use the known results [34]

p(µ|z, σ) = N (Z̄, σ)

with N (m, s) the Normal distribution with mean m and standard-deviation s
and

Z̄ =
1
N

N∑

k=1

zk

as well as
p(λ|z, µ) = G(

N

2
,
S

2
)

with G(a,A) the previously described Gamma distribution34 and

S =
N∑

k=1

(zk − µ)2

34Note that G(a, A) = P (a, Ax) to use our previous notations.
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and again
σ = 1/

√
λ

We therefore know both posterior distributions and can simulate from them
iteratively and perform a Gibbs sampling as described above.

For testing this, we generated a time-series of 1000 Gaussian points with a
mean of µ∗ = 10 and a standard-deviation of σ∗ = 5. We applied the Gibbs
sampler viaNsims = 10, 000 simulations and considered the average between the
1000th and 10, 000th simulations. We chose initial values µ0 = 7.0 and σ0 = 3.0
and obtained

µ̂ = 9.943416

σ̂ = 4.816300

We ploted the simulations from the posteriors in figures 2.46 and 2.47.
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Figure 2.46: Gibbs Sampler for µ in N (µ, σ). The true value is µ∗ = 10.0.
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Figure 2.47: Gibbs Sampler for σ in N (µ, σ). The true value is σ∗ = 5.0.
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The Metropolis-Hastings Algorithm

The Gibbs Sampler is fast and simple when the posterior distributions are known
and easy to sample from. However in practice, and in particular for our Stochas-
tic Volatility problem, this often is not the case.

We assume for simplicity that we do know the posteriors for the parameters
and therefore can use the Gibbs Sampler for them, however we cannot do the
same for the latent state.
In this case the Metropolis-Hastings (MH) algorithm approach can be used for
x as follows:

(0) Initialize the state vector and the parameter-set to x(0) and Ψ(0) and choose
the prior distribution p(ψ). Also choose a proposal distribution q(x|z,Ψ) for
the state

For each simulation index between 1 and Nsims do:

(1-a) Simulate from the proposal distribution

x(i) ∼ q(x|z,Ψ)

(1-b) Compare to a randomly generated uniform random-variable u the ratio

α = min

(
1,

p(x(i)|z,Ψ)/q(x(i)|z,Ψ)
p(x(i−1)|z,Ψ)/q(x(i−1)|z,Ψ)

)

and accept x(i) if α > u, otherwise reject it and set x(i) = x(i−1).

(2) Simulate Ψ(i) via a Gibbs Sampler.

(3) Go back to (1-a) and continue until i reaches Nsims.

(4) calculate the posterior mean for each parameter after allowing a “burn-in”
period

Ψ̂j =
1

Nsims − i0

Nsims∑

i=i0+1

Ψ(i)
j

with for instance i0 = Nsims/10.

Two special cases are worth being mentioned:

1. First, if we simulate from the posterior, the MH ratio becomes 1.0 and
every simulation will be accepted. This is therefore a Gibbs sampler.

2. Second, if we simulate from the prior, the MH ratio becomes the likelihood
ratio, which makes the computation simpler. We shall use this second case
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extensively in our stochastic volatility inferences.

The justification for the MH algorithm is available for instance in [58] or
[120]. The idea is to find the transition probability from x to y P (x, y) such that
for a given target density π we would have the invariant distribution property

π(dy) =
∫
P (x, dy)π(x)dx

It is possible to express the transition probability P (x, dy) as

P (x, dy) = p(x, y)dy +
(

1 −
∫
p(x, z)dz

)
δx(dy)

with δx() the Dirac function.
The first term above corresponds to the passage probability from x to a point
in dy, and the second term to the probability of staying at x.
Now if the function p(x, y) satisfies the reversibility condition

π(x)p(x, y) = π(y)p(y, x)

then we could see that π() is the invariant distribution as described above.
Indeed then calling the rejection probability

r(x) = 1 −
∫
p(x, z)dz

we have
∫
P (x,A)π(x)dx =

∫ [∫

A

p(x, y)dy + r(x)δx(A)
]
π(x)dx =

∫

A

[∫
p(x, y)π(x)dx

]
dy +

∫

A

r(x)π(x)dx =

∫

A

[∫
p(y, x)π(y)dx

]
dy +

∫

A

r(x)π(x)dx =
∫

A

(1 − r(y))π(y)dy +
∫

A

r(x)π(x)dx =
∫

A

π(y)dy

which proves that π(x) is the invariant distribution for the transition probability
P (x, y).

However in practice the reversibility condition is hardly ever satisfied and there-
fore we need to construct an MH density that would indeed be reversible.
Taking any proposal density q(x, y) we would simply write

pMH (x, y) = q(x, y)min
(

1,
π(y)/q(x, y)
π(x)/q(y, x)

)
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Indeed then pMH(x, y) would be reversible and hence admit π(x) as its invariant
distribution.
Proof:
To see why this is, let us consider the case where π(y)/q(x,y)

π(x)/q(y,x)
> 1 which means

its inverse is smaller than 1. We would then have

pMH(x, y)π(x) = q(x, y)π(x) = q(y, x)
π(x)/q(y, x)
π(y)/q(x, y)

π(y) = pMH(y, x)π(y)

which proves the point. (QED)

One more point we need to explain is the “Blocking” technique. Having two
random variables X1, X2, the product of the conditional transition densities,
admits the joint distribution π(X1, X2) for invariant distribution. This is why
we can alternate between parameters and hidden states.
Indeed ∫ ∫

P1(x1, dy1|x2)P2(x2, dy2|y1)π(x1, x2)dx1dx2 =

∫
P2(x2, dy2|y1)

[∫
P1(x1, dy1|x2)π1|2(x1|x2)dx1

]
π2(x2)dx2 =

∫
P2(x2, dy2|y1)π1|2(dy1|x2)π2(x2)dx2 =

∫
P2(x2, dy2|y1)π2|1(x2|y1)π1(dy1)dx2 =

π1(dy1)
∫
P2(x2, dy2|y1)π2|1(x2|y1)dx2 =

π1(dy1)π2|1(dy2|y1) = π(dy1, dy2)

which proves that π(x1, x2) is the invariant distribution for this product transi-
tion probability.

Illustration

We use the same example as for the Gibbs sampler, only this time we simulate
from the priors and use the likelihood ratio to accept or reject the simulations.
We choose the priors

µ ∼ N (7.0, 3.0)

and
σ ∼ 1√

G(1/9.0, 1.0)

We obtain after M = 10, 000 simulations

µ̂ = 9.989504
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and
σ̂ = 4.797105

Naturally the evoluation of the Markov Chain is different from the Gibbs Sam-
pler’s. This can be seen in figues 2.48 and 2.49.
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Figure 2.48: Metropolis-Hastings algorithm for µ in N (µ, σ). The true value is
µ∗ = 10.0.
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Figure 2.49: Metropolis-Hastings algorithm for σ in N (µ, σ). The true value is
σ∗ = 5.0.
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A Few Distributions

Below are a few distributions commonly used in MCMC algorithms.

The Student Cumulative Distribution Function

F (x, ν) = 1 − I

(
ν

ν + x2
,
ν

2
,
1
2

)

with I(x, a, b) the Incomplete Beta Function (IBF)

I(x, a, b) =
B(x, a, b)
B(1, a, b)

where
B(x, a, b) =

∫ x

0

ta−1(1 − t)b−1dt

with a, b two strictly positive parameters.
A few plots of the IBF are provided in figure 2.50.

The Inverse-Gamma (IG) Cumulative Distribution Function IG(a, x) could
be defined from that of the previously defined Gamma distribution P (a, x)

P (a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt

Indeed by definition, if the random variable X is Gamma-distributed, Y = 1/X
will be IG-distributed and therefore

IG(a, x) = P (Y ≤ x) = P (X ≥ 1
x

) = 1 − P (a,
1
x

)

As for the densities they are related by

fIG(a, x) =
1
x2
fG(a,

1
x

)
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Figure 2.50: Plots of the Incomplete Beta Function. Implementation is based
on code from “Numerical Recipes in C”.
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Regression Analysis

We have the following useful results as described in [34], [163] using some of the
previous distributions

Considering a univariate regression

Y = βX + ε

where
ε ∼ N (0, σ2)

We suppose we know the priors

p(β) = N (a,A)

where a corresponds to the mean and A to the variance.

p(σ2) = IG(b, B)

with the density

fIG(x, b, B) =
Bbe−

B
x

Γ(b)xb+1

Then we have for the β posterior:

p(β|Y,X, σ2) ∝ p(Y |X, β, σ2)p(β) ∝ N (a∗, A∗)

with

a∗ =
(

1
A

+
1
2
XtX

)−1(
a

A
+
XtY

σ2

)

A∗ =
(

1
A

+
XtX

σ2

)−1

As for the σ2 posterior we have

p(σ2|Y,X, β) ∝ p(Y |X, β, σ2)p(σ2) ∝ IG(b∗, B∗)

with
b∗ = T + b

and
B∗ = (Y − βX)t(Y − βX) + B
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Application to Gaussian SV Models (Heston)

Various MCMC approaches have been suggested for the SV problem. Jacquier,
Polson and Rossi [156] were first to a apply a hybrid approach between the
Gibbs Sampler and the MH algorithm to a log-SV model. Kim, Shephard and
Chib [169] used a slightly different approach for the same model.

We describe the method employed by Forbes, Martin and Wright (FMW) [103].
Using their notations

dvt = κ(θ − vt)dt+ σv
√
vtdZt

Obviously our (ω, θ, ξ, ρ) could easily be obtained as (κθ, κ, σv, ρ).

The algorith becomes:

(0) Initialize v(0) = (v(0)
k )1≤k≤N and choose constant and therefore non-informative

priors for the parameter-set35

Ψ = (κ, θ, σv, ρ)

(1) We simulate the state vt from the Heston prior, we have for any time-step
k between 1 and N and simulation i

v
(i)
k = v

(i)
k−1 + κ(θ − v

(i)
k−1)∆t+ σv

√
v
(i)
k−1∆tZk−1

As previously mentioned the MH ratio is therefore the likelihood ratio:

α = min

(
1.0,

p(lnS|v(i),Ψ)
p(lnS|v(i−1),Ψ)

)

where

p(lnS|v,Ψ) ∝
N∏

k=1

1√
(1 − ρ2)∆tvk−1

exp
{
− 1

2(1 − ρ2)vk−1∆t
(lnSk − µk)2

}

with

µk = lnSk−1 + (µS −
1
2
vk−1)∆t+

ρ

σv
(vk − [θκ∆t+ (1 − κ∆t)vk−1])

Any negative variance would be rejected in the MH step.

(2) The Heston equation

vk = vk−1 + κ(θ − vk−1)∆t+ σv
√
vk−1∆tZk−1

35As before we assume for simplicity that µS is known. Adding it to the parameter-set
would be easy.
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could be rewritten

vk − (1 − κ∆t)vt−1√
vt−1∆t

= θ
κ∆t√
vt−1∆t

+ σvZk−1

which is a linear regression
yk = θxk + ek

with

yk =
vk − (1 − κ∆t)vt−1√

vt−1∆t

xk =
κ∆t√
vt−1∆t

and
ek ∼ N (0, σv)

Hence, taking constant priors, we have

θ|κ, σv, v ∼ N (θ̄, σθ)

with

θ̄ =
∑N

k=1 xkyk∑N
k=1 x

2
k

and

σθ = σv/

√√√√
N∑

k=1

x2
k

What is more
σ2
v|κ, v ∼ IG(N − 1, s2v)

with

s2v =
N∑

k=1

(yk − θ̄xk)2

It is also possible to show that

p(κ|v) ∝ St(κ̄, σκ)(
N∑

k=1

x2
k)

− 1
2

where St(m, s) corresponds to the Student Law of mean m and standard-
deviation s. The expressions for these mean and standard-deviations could
be found in [103].
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We can therefore simulate from the priors, except we have an adjustment factor(∑N
k=1 x

2
k

)− 1
2

to multiply the prior by. The MH ratio will therefore be

α = min

(
1.0,

p(lnS|v, κ(i), θ(i), σ
(i)
v , ρ)(

∑N
k=1(x

(i)
k )2)−

1
2

p(lnS|v, κ(i−1), θ(i−1), σ
(i−1)
v , ρ)(

∑N
k=1(x

(i−1)
k )2)−

1
2

)

(3) As for the correlation paramater ρ, we choose a Normal proposal distribution
and use a constant prior again. Therefore

α = min

(
1.0,

p(lnS|v, κ, θ, σv, ρ(i))/q(ρ(i)|v, κ, θ, σv, S)
p(lnS|v, κ, θ, σv, ρ(i−1))/q(ρ(i)|v, κ, θ, σv, S)

)

with q() the Normal distribution with mean

∑N
k=1 xkyk∑N
k=1 x

2
k

and variance
∆t

∑N
k=1 x

2
k

with

xk =
vk − κθ∆t − (1 − κ∆t)vk−1

σv
√
vk−1

yk =
lnSk − lnSk−1 − (µS − 1

2vk−1)∆t
vk−1

Note that for any of the parameters above if we simulate one that does not
satisfy the usual constraints θ ≥ 0, κ ≥ 0, σv ≥ 0, σv ≤ 2κθ and −1 ≤ ρ ≤ 1,
the we simply do not accept them during the MH accept/ reject step.

Also note that we update (κ, θ, σv) in a “block” instead of updating them one
by one. This technique is used by many since it makes the algorithm faster.

For the actual results the reader could refer to Forbes et al. [103]. Note that
the authors test their Bayesian Estimator against simulated data, and observe
inefficiency. This is in agreement with our observations when applying MLE
techniques to simulated data.
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2.3.13 Using the Characteristic Function

In a recent article [31] the use of the Characteristic Function has been suggested
for the purpose of Filtering. In this approach however, we have to limit ourselves
to the case where F (U, V, xt) = E[exp(Uzt+1 + V xt+1)|xt] has a known form.
One natural form would be the affine process where

F (U, V, xt) = E[exp(Uzt+1 + V xt+1)|xt] = exp{C(U, V ) +D(U, V )xt}

After choosing the initial conditions, the Time Update equation

p(zt+1, xt+1|t) =
∫
p(zt+1, xt+1|xt)p(xt|t)dxt

becomes in terms of the characteristic function

Fzx|t(U, V ) = Et[E (exp(Uzt+1 + V xt+1)|xt)] =

E[exp{C(U, V ) +D(U, V )xt}|z1:t] =

exp[C(U, V )]Gt|t[D(U, V )]

where Gt|s(U ) = E[exp(Uxt)|z1:s] is the Moment-Generating Function of xt
conditional on the observations up to time s.

The Measurement Update equation

p(xt+1|t+ 1) =
p(zt+1, xt+1|t)
p(zt+1|t)

becomes in terms of the characteristic function

Gt+1|t+1(V ) =

∫ +∞
−∞ Fzx|t(iU, V ) exp(−iUzt+1)dU∫ +∞
−∞ Fzx|t(iU, 0) exp(−iUzt+1)dU

This remarkably gives us a one-step induction expression

Gt+1|t+1(V ) =

∫+∞
−∞ exp[C(iU, V ) − iUzt+1]Gt|t[D(iU, V )]dU
∫ +∞
−∞ exp[C(iU, 0)− iUzt+1]Gt|t[D(iU, 0)]dU

which allows us to determine the a posteriori estimate and errors

x̂t = G
′

t|t(0)

and
Pt = V art(xt) = G

′′

t|t(0) −
(
G

′

t|t(0)
)2

at each iteration.

In this framework, the likelihood function could be written as

L1:T =
T−1∏

t=0

lt
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with

lt =
1
2π

∫ +∞

−∞
exp[C(iU, 0) − iUzt+1]Gt|t[D(iU, 0)]dU

which is equivalent to

lt =
1
π

∫ +∞

0

R
{
exp[C(iU, 0) − iUzt+1]Gt|t[D(iU, 0)]

}
dU (2.30)

where R{} corresponds to the real part of a complex number.
In order to be able to calculate the integral, we need to know the value of
Gt|t(x) at each point. For this, Bates [31] suggests making an assumption on
the distribution of the hidden state. For a Gamma distribution we have a
moment-generating-function of the form

Gt|t(x) = (1 − κx)−vt

The integral (2.30) can be evaluated numerically, however when dealing with
“outliers” the density of the observation takes near-zero values which makes the
integration difficult. Bates suggests scaling transformations equivalent to the
importance sampling technique used in particle filtering.

Independently from this, Dragulescu and Yakovenko [81], [219] derived a semi-
analytic expression for the likelihood under the Heston model, by using Fourier
Inversion. Note that a Particle Filter calculates this very integral via Monte-
Carlo simulations.

It is worth noting that the main advantage of our Particle Filtering approach
is its complete generality. Indeed the Bates method would work only for model
classes that have an exponentially affine Fourier Transform. It is true that the
Heston model falls in this category, however a VGG (Variance Gamma with
Gamma-distributed Arrival-Rate) process would not, and therefore could only
be analyzed though a simulation-based methodology.
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2.3.14 Introducing Jumps

The Model

As in Bates [28], let us introduce a Jump Process (independent from the Brown-
ian Motion) with a given intensity λ and a fixed36 fractional jump size 0 ≤ j < 1.
The number of jumps between t and t + dt will therefore be dNt. Needless to
say, if either the intensity λ = 0 or the jump-size j = 0, then we are back to the
pure diffution case.

The new Stochastic Differential Equation for the Stock Price in the risk-neutral
framework will be

dSt = (µS + λj)Stdt+
√
vtStdBt − StjdNt

and applying Ito’s lemma for Semi-Martingales

d lnSt = (µS − 1
2
vt + λj)dt +

√
vtdBt + ln(1 − j)dNt

which we can rewrite in the discrete version as

lnSk+1 = lnSk + (µS − 1
2
vk + λj)∆t +

√
vt
√

∆tBk + µk

with µ0 = 0 and

µk = δ0(0)e−λ∆t + δ0 (ln(1 − j)) (1 − e−λ∆t)

where δ0() corresponds to the Dirac delta function.37

Also
vk =

vk−1 + (ω − θvk−1)∆t+ ξ
√
vk−1

√
∆tZk−1−

ρξ[lnSk−1 + (µS + λj − 1
2
vk−1)∆t+

√
vk−1

√
∆tBk−1 + µk−1 − lnSk]

which completes our set of equations.
It is important to note that the new parameter-set is

Ψ = (ω, θ, ξ, ρ, λ, j)

which effectively gives us two additional degrees of freedom.38

36We could make j a Gaussian random variable without changing the methodology.
37This means that −∞ < µk ≤ 0 for every k.

Note that we are assuming that we can have at most one jump within [t, t + ∆t] which means
that ∆t is small enough. This is completely different from pure-jump models such as Variance-
Gamma.

38A related idea was developed by Hamilton [126] as well as Chourdakis [59] and Deng [72].
Chourdakis uses the characteristic function for the jump-diffusion process.
Doucet [80] suggests the use of Particle Filtering for the Jump process. Maheu & McCurdy
[184] use a fully integrated GARCH likelihood with Poisson Jumps. Äıt-Sahalia [3] uses
moments to separate the diffusion parameters from the jumps. Johannes, Polson and Stroud
[164] use the Particle Filtering technique as well, however in a Bayesian MCMC framework.
Finally Honoré [142] shows that an MLE approach always works for a constant jump size.
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The Generic Particle Filter

Since µk is following a Poisson process we have to use a Non-Gaussian Filter.
The use of a Generic Particle Filter (GPF) is therefore natural. In a generic
particle filter the proposal distribution q(xk) is simply set equal to p(xk|xk−1).

The state xk could be chosen as

xk =
(
µk
vk

)

and the transition equation becomes

xk =
(

δ0(0)e−λ∆t + δ0 (ln(1 − j)) (1 − e−λ∆t)
vk−1 + [(ω − ρξ(µS + λj) − (θ − 1

2ρξ)vk−1]∆t+ ρξ[ln( Sk

Sk−1
) − µk−1] + ξ

√
1 − ρ2√vk−1

√
∆tZ̃k−1

)

It becomes therefore possible to implement a Particle Filter as follows

(1) Choose v0 and P0 > 0 and set µ0 = 0, so for i in 1, ..., Nsims

x
(i)
0 =

(
0

v0 +
√
P0Z

(i)

)

Then for each k with 1 ≤ k ≤ N do

(2) Write the new x̃
(i)
k = (µ̃(i)

k , ṽ
(i)
k )t as the result of simulations

ṽ
(i)
k ∼

N
(
m = v

(i)
k−1 + [ω − ρξ(µS + λj) − (θ − 1

2
ρξ)v(i)

k−1]∆t+ ρξ[ln(
Sk
Sk−1

) − µ
(i)
k−1], s

)

with s = ξ
√

1 − ρ2

√
v
(i)
k−1

√
∆t

and
µ̃

(i)
k = 0

if U [0, 1] ≤ e−λ∆t and
µ̃

(i)
k = ln(1 − j)

otherwise.

(3) Define the weights
w

(i)
k = w

(i)
k−1p(zk|x̃

(i)
k )

with

p(zk|x̃(i)
k ) = n(zk, zk−1 + (µS + λj −

1
2
ṽ
(i)
k )∆t+ µ̃

(i)
k ,

√
ṽ
(i)
k ∆t)
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(4) Normalize the weights

w̃
(i)
k =

w
(i)
k∑Nsims

i=1 w
(i)
k

(5) Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃

(i)
k = 1/Nsims.

This completes the Generic Particle Filtering algorithm.

Note that there is no Kalman Filtering here and therefore

ẑ−k =
1

Nsims

Nsims∑

i=1

ẑ
(i)
k

with ẑ(i)
k the estimation of zk from x

(i)
k−1

ẑ
(i)
k = zk−1 + (µS + λj −

1
2
v
(i)
k−1)∆t+ µ

(i)
k−1

and the estimation error is zk − ẑ−k as before.

The likelihood maximization is not different from the EPF or UPF. We need to
maximize

N∑

k=1

ln

(
Nsims∑

i=1

w
(i)
k

)

where w(i)
k ’s are defined at Step 3.

Extended/ Unscented Particle Filters

Using the same model, we can take advantage of the independence of vk and µk
and apply the (Nonlinear) Gaussian Kalman Filter to the former.
In this case, the Steps 2 and 3 should be replaced with:

(2-a) Write x̂(i)
k = (µ̂(i)

k , v̂
(i)
k )t with

v̂
(i)
k = KF(v(i)

k−1)

with P (i)
k the associated a posteriori error covariance matrix, KF the Extended

or Unscented Kalman Filter, and

µ̂
(i)
k = µ

(i)
k−1

(2-b) Now take the simulations

ṽ
(i)
k ∼ N

(
v̂
(i)
k , P

(i)
k

)
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and
µ̃

(i)
k = 0

if U [0, 1] ≤ e−λ∆t and
µ̃

(i)
k = ln(1 − j)

otherwise.

(3) Define the weights

w
(i)
k = w

(i)
k−1

p(zk|x̃(i)
k )p(x̃(i)

k |x(i)
k−1)

q(x̃(i)
k |x(i)

k−1, z1:k)

with

p(zk|x̃(i)
k ) = n(zk, zk−1 + (µS + λj − 1

2
ṽ
(i)
k )∆t+ µ̃

(i)
k ,

√
ṽ
(i)
k ∆t)

p(x̃(i)
k |x(i)

k−1) = n(ṽ(i)
k ,m, s = ξ

√
1 − ρ2

√
v
(i)
k−1

√
∆t)p(µ̃(i)

k |µ(i)
k−1)

with

m = v
(i)
k−1 + [ω − ρξ(µS + λj) − (θ − 1

2
ρξ)v(i)

k−1]∆t+ ρξ ln(
Sk
Sk−1

) − ρξµ
(i)
k−1

and
q(x̃(i)

k |x(i)
k−1, z1:k) = n(ṽ(i)

k , v̂
(i)
k , P

(i)
k )p(µ̃(i)

k |µ(i)
k−1)

Note that as for the GPF, the terms p(µ̃(i)
k |µ(i)

k−1) cancel out and need not to be
evaluated.

The rest of the algorithm remains the same.
This way we will not lose the information contained in the Kalman gain for the
Gaussian dimension.

The Srivastava Approach

Srivastava [222] suggests the following approach for simulating the jump com-
ponent:
Instead of allowing a jump at each time-interval [tk, tk + ∆t] with a probability
1 − e−λ∆t as we do now, we can flag the time-steps such that

tk−1 <
1
λ

ln
(

1
U [0, 1]

)
≤ tk

where U [0, 1] is a uniform random-variable between zero and one, and then
perform a jump of size | ln(1 − j)| on these steps for all paths.
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We therefore would first initialize tp = 0 and loop through k’s between 1 and
N and if

e−λ(tk−tp) ≤ U [0, 1] < e−λ(tk−1−tp)

we flag this k and set tp = tk and resimulate U [0, 1].
In the Particle Filter we would set for all indices i’s

µ̃
(i)
k = ln(1 − j)

for the flagged k’s and we would set µ̃(i)
k = 0 for other indices.

It is important to note that in this approach the simulation for the Jump com-
ponent is completely “orthogonal” to the Diffusion SIS part. Indeed the index i
above is irrelevant for the entity µ̃(i)

k . This means that the KF step, the weight
calculation and the resampling are independent from the Jump component al-
together.

Numeric results

As a check, we simulate a time-series with the parameter-set

Ψ∗ = (ω∗ = 0, θ∗ = 0, ξ∗ = 0, ρ∗ = 0, λ∗ = 2.52, j∗ = 0.20)

which corresponds to a jump frequency of λ∆t = 0.01 and a jump-size of 20
percent. We generated N = 245 points and used M = 1000 particles.
The estimated set via the above EPF is

Ψ̂ = (ω̂ = 0.23, θ̂ = 1.5, ξ̂ = 0.34, ρ̂ = 0.21, λ̂ = 2.65, ĵ = 0.20)

As we see the diffusion parameters are not close to the original ones, but this is
probably due to the small ∆t as previously discussed. The jump parameters are
close to the original ones, which means the filter is valid for the jump compo-
nent. Note that despite the difference in the diffusion parameters, the estimated
and original time-series are rather close for a new simulation, as could be seen
in figure 2.52.
This reconfirms our previous remark: when the parameters affect the drift of
the observation (as opposed to its noise) their estimation is far more accurate
and requires fewer data points.

The Optimization Algorithm

It is important to realize that the Likelihood function here (due to the jumps) is
not Differentiable everywhere and therefore gradient based maximization meth-
ods could not be applied. The optimization could however still be carried out
via the Direction Set algorithm as previously described.
Note that as mentioned in [164] so far there has been no formal proof on the
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convergence of the discretized Jump-Diffusion equations towards the continuous
ones, however empirical evidence makes the convergence assumption plausible.
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Figure 2.51: Comparison of EPF results for Heston and Heston+Jumps models.
The presence of jumps can be seen in the residuals.



218

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

0 100 200 300 400 500

L
o
g

 S
to

c
k
-P

ri
c
e

Days

Simulated vs. Estimated Time-Series

Original Time-Series
Estimated Time-Series via EPF

Figure 2.52: Comparison of EPF results for Simulated and Estimated Jump-
Diffusion Time-Series. The filtered data matches the real data fairly well.
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2.3.15 Pure-Jump Models

The Variance Gamma with Stochastic Arrival (VGSA) and the Variance Gamma
with Gamma Arrival (VGG) Models were defined in the previous chapter. These
models being non-Gaussian, we could apply the Particle Filtering technique to
them.

It is important to note that we are not dealing with Diffusion models and there-
fore we do not have the Girsanov theorem. We are estimating the parameter-set

Ψ = (µS , θ, σ, ν, ...)

In order to make the back-testing simpler we suppose however that we know
the stock-drift and try to estimate the other parameters.
However as mentioned earlier, for a high frequency data-set we have

∆t = o(
√

∆t)

and the drift term has a negligible impact.

VG

The Variance Gamma model has the advantage of offering an integrated density,
which allows us to calculate the exact likelihood.
Calling z = ln(Sk/Sk−1) and h = tk − tk−1 and posing xh = z − µSh− h

ν ln(1−
θν − σ2ν/2) we have

p(z|h) =
2 exp(θxh/σ2)
ν

h
ν

√
2πσΓ(h

ν
)

(
x2
h

2σ2/ν + θ2

) h
2ν − 1

4

Kh
ν − 1

2

(
1
σ2

√
x2
h(2σ2/ν + θ2)

)

and the likelihood is

L1:N =
N∏

k=1

p(zk|zk−1, h)

The implementation of the above estimation procedure is straightforward and
has already been done in [182].
One could also back-test the estimation procedure in the following way: First
choose a parameter-set (θ, σ, ν) as well as a drift µS and a time-step ∆t. Then
simulate via Monte-Carlo a Gamma-distributed random-variable as well as a
Gaussian one. Deduce an artificial stock-price time-series and apply the MLE
procedure to it and try to recover the original parameter-set.
Using ∆t = 1/252, µ∗

S = 0.05 and

θ∗ = 0.02

σ∗ = 0.2

ν∗ = 0.005
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We simulated 500 data points, applied the MLE and found an optimal parameter-
set Ψ̂ = (0.018, 0.22,0.006) which is close to the original set.

VGSA

Using the same notations as in the previous chapter, the Euler discretized VGSA
process could be written via the auxiliary variable

yk = yk−1 + κ(η − yk−1)∆t+ λ
√
yk−1

√
∆tWk−1

and the state
xk = F−1

ν (yk∆t,U [0, 1])

as well as the observation zk = lnSk+1

zk = zk−1 + (µS + ω)∆t+ θxk + σ
√
xkBk

with ω = 1
ν ln(1 − θν − σ2ν/2).

The Filtering Algorithm

The PF algorithm could therefore be written as follows:

(1) Initialize the arrival-rate y(j)
0 , the state x

(i)
0 and the weight w(i)

0 for j
between 1 and Msims, and i between 1 and Nsims

While 1 ≤ k ≤ N

(2) Simulate the arrival-rate yk for j between 1 and Msims

y
(j)
k = y

(j)
k−1 + κ(η − y

(j)
k−1)∆t+ λ

√
y
(j)
k−1

√
∆tN−1

(
U (j)[0, 1]

)

(3-a) Simulate the state xk for each y(j)
k and for i between 1 and Nsims

x̃
(i|j)
k = F−1

ν

(
y
(j)
k ∆t,U (i)[0, 1]

)

(3-b) Compute the unconditional state

x̃
(i)
k =

∫
x̃

(i)
k (yk)p(yk|yk−1)dyk ≈

1
Msims

Msims∑

j=1

x̃
(i|j)
k

(4) Calculate the associated weights for each i

w
(i)
k = w

(i)
k−1p(zk|x̃

(i)
k )
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with
p(zk|x̃(i)

k ) = n(zk,m, s)

the normal density with mean m = zk−1 + (µS + ω)∆t + θx̃
(i)
k and standard

deviation s = σ

√
x̃

(i)
k

(5) Normalize the weights

w̃
(i)
k =

w
(i)
k∑Nsims

i=1 w
(i)
k

(6) Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃

(i)
k = 1/Nsims.

(7) Increment k, Go back to step (2) and Stop at the end of the While loop.
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Parameter Estimation

As usual, the Log-Likelihood to be maximized is

ln(L1:N ) =
N∑

k=1

ln

(
Nsims∑

i=1

w
(i)
k

)

The maximization takes place over the parameter-set Ψ = (κ, η, λ, ν, θ, σ).
Again, in reality the stock-drift µS should be estimated together with the other
parameters, however with a view to simplifying, we suppose we know µS in our
back-testing procedures.

A More Efficient Algorithm

We could take advantage of the fact that VG provides an integrated density
of stock return. Calling z = ln(Sk/Sk−1) and h = tk − tk−1 and posing xh =
z − µSh − h

ν
ln(1 − θν − σ2ν/2) we have

p(z|h) =
2 exp(θxh/σ2)

ν
h
ν

√
2πσΓ(hν )

(
x2
h

2σ2/ν + θ2

) h
2ν − 1

4

Kh
ν − 1

2

(
1
σ2

√
x2
h(2σ2/ν + θ2)

)

As we can see the dependence on the Gamma distribution is “integrated out”
in the above.

For VGSA, for a given arrival rate dt∗ = ytdt we have a VG distribution and

d lnSt = (µS + ω)dt +B(γ(dt∗, 1, ν); θ, σ)

and the corresponding integrated density becomes

p(z|h, h∗) = (2.31)

2 exp(θxh/σ2)

ν
h∗
ν

√
2πσΓ(h∗

ν
)

(
x2
h

2σ2/ν + θ2

)h∗
2ν − 1

4

Kh∗
ν − 1

2

(
1
σ2

√
x2
h(2σ2/ν + θ2)

)

Indeed, as described in [182] for VG we have

p(z|h) =
∫ +∞

0

p(z|g, h)p(g|h)dg

with p(z|g, h) a Normal density and p(g|h) a Gamma density.
More accurately

p(z|g, h) =
1

σ
√

2πg
exp

(
−

1
2σ2g

(z − µSh−
h

ν
ln(1 − θν − σ2ν/2)− θg)2

)
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and

p(g|h) =
g

h
ν −1 exp(− g

ν )

ν
h
ν Γ(hν )

Now, for VGSA we simply have a different arrival rate h∗ for the Gamma process
and therefore

p(z|h, h∗) =
∫ +∞

0

p(z|g, h)p(g|h∗)dg

which demonstares the point.

This gives us the idea of using the arrival rate as the state and use the fol-
lowing algorithm:

(1) Initialize the state x(i)
0 and the weight w(i)

0 for i between 1 and Nsims

While 1 ≤ k ≤ N

(2) Simulate the state xk for i between 1 and Nsims

x̃
(i)
k = x

(i)
k−1 + κ(η − x

(i)
k−1)∆t+ λ

√
x

(i)
k−1

√
∆tN−1

(
U (i)[0, 1]

)

(3) Calculate the associated weights for each i

w
(i)
k = w

(i)
k−1p(zk|x̃

(i)
k )

with p(zk|x̃(i)
k ) as defined in (2.31) where h will be set to ∆t and h∗ to the

simulated state x̃(i)
k times ∆t

(4) Normalize the weights

w̃
(i)
k =

w
(i)
k∑Nsims

i=1 w
(i)
k

(5) Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃

(i)
k = 1/Nsims.

(6) Increment k, Go back to step (2) and Stop at the end of the While loop.

The advantage of this method is that there is one simulation process instead of
two and we “skip” the Gamma distribution altogether. However the dependence
of the observation zk on xk is highly nonlinear which makes the convergence
more difficult.

An Extended/ Unscented Particle Filter

Finally, a natural idea would be to use a proposal distribution q(x) for the
state taking into account the observation information. In order to be able to
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use a Kalman-based proposal distribution (EPF or UPF) we need a Gaussian
approximation. Note that given the strong non-Gaussianity of the equations,
we absolutely need the Particle Filtering aspect.
The Gaussian approximation for the observation equation would be39

zk = zk−1 + (µS + ω + θxk)∆t+
√
θ2ν + σ2

√
xk∆tBk

which is of the form zk = h(xk, Bk) and allows us to use the Kalman Filtering
algorithm.
We therefore replace the steps (2) and (3) of the previous algorithm with:

(2-a) Apply an Extended/ Unscented Kalman Filter for i between 1 and
Nsims to the state x(i)

k−1 and obtain

x̂
(i)
k = KF(x(i)

k−1)

as well as the associated covariance P (i)
k .

(2-b) Simulate the state for i between 1 and Nsims

x̃
(i)
k = x̂

(i)
k +

√
P

(i)
k N−1

(
U (i)[0, 1]

)

(3) Calculate the associated weights for each i

w
(i)
k = w

(i)
k−1

p(zk|x̃(i)
k )p(x̃(i)

k |x(i)
k−1)

q(x̃(i)
k |x(i)

k−1, z1:k)

with p(zk|x̃(i)
k ) as defined in (2.31) where h will be set to ∆t and h∗ to the

simulated state x̃(i)
k times ∆t

p(x̃(i)
k |x(i)

k−1) the Normal density with mean x(i)
k−1 +κ(η−x(i)

k−1)∆t and standard

deviation λ
√
x

(i)
k−1

√
∆t and

q(x̃(i)
k |x(i)

k−1, z1:k) the Normal density with mean x̂
(i)
k and standard deviation√

P
(i)
k .

The rest of the algorithm is exactly the same as the previous one.

Numeric Results

We performed the same kind of back-testing procedure as for the VG model,
using either the above Particle-Filters to an artificially generated stock-price
time-series. We chose ∆t = 1/252, µ∗

S = 0, y0 = 1 and

Ψ∗ = (κ∗ = 0, η∗ = 0, λ∗ = 0, ν∗ = 0.005, θ∗ = 0.02, σ∗ = 0.2)
39We are using the fact that for X(t) = B(γ(t,1, ν); θ, σ) we have a mean θt and a variance

(θ2ν + σ2)t as stated in [182].
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after applying the Importance Sampling / Resampling PF via the modified
Bessel function, we found

Ψ̂ = (0.13, 0.001,0.37, 0.0048,0.018,0.21)

which seems to indicate that the estimation process for (ν, θ, σ) works well, while
the one for (κ, η, λ) does not. However if we simulate two sets of spot-price times-
series with these different parameter-sets we will see that the generated paths
are very similar. See Figures 2.53 and 2.54. This also confirms our previous
remarks about the estimation of the parameters affecting the noise.

We performed a second test with more realistic choice of parameters. With
once again ∆t = 1/252, Nsims = 100 and 500 data points corresponding to two
years.
The real values were

Ψ∗ = (κ∗ = 2.10, η∗ = 5.70, λ∗ = 2.00, ν∗ = 0.05, θ∗ = −0.40, σ∗ = 0.20)

Note that θ has a negative value which corresponds to the negative skewness of
the distribution.
We choose a fairly reasonable initial set

Ψ0 = (κ0 = 2.00, η0 = 6.00, λ0 = 1.50, ν0 = 0.03, θ0 = −0.30, σ0 = 0.30)

and
µ0 = µ∗ = 0.05

We find the optimal parameter-set

Ψ̂ = (κ̂ = 4.25, η̂ = 7.89, λ̂ = 3.25, ν̂ = 0.047, θ̂ = −0.40, σ̂ = 0.19)

and
µ̂ = µ∗ = 0.05

Again we see that the estimation for the three VG parameters (ν, θ, σ) is much
more accurate than those corresponding to the arrival process (κ, η, λ). This, de-
spite our choosing the initial arrival parameters close to the real ones. As previ-
ously stated, the time-series of spot-prices has little sensitivity to the arrival-rate
parameters and a higher degree of sensitivity to the Gamma process parameters.
Again, this shows that Estimation methodologies such as MLE work much bet-
ter when applied to parameters that affect the drift of an observation, and not
its noise.
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Figure 2.53: The simulated arrival rates via Ψ = (κ = 0, η = 0, λ = 0, σ =
0.2, θ = 0.02, ν = 0.005) and Ψ = (κ = 0.13, η = 0, λ = 0.40, σ = 0.2, θ =
0.02, ν = 0.005) are quite different ...
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Diagnostics

As for diagnostics, we need to estimate the observation error associated with
the algorithm. We define once again

ẑ
(i)
k = zk−1 + (µS + ω + θx̃

(i)
k )∆t

ẑ−k =
1

Nsims

Nsims∑

i=1

ẑ
(i)
k

or

ẑ−k = zk−1 + (µS + ω)∆t+ θ∆t
1

Nsims

Nsims∑

i=1

x̃
(i)
k

and the error term
ek = zk − ẑ−k

The variance associated to this error is

sk = (θ2ν + σ2)
1

Nsims

Nsims∑

i=1

x̃
(i)
k ∆t

and
ẽk = ek/sk

would represent the normalized error.

MPE/ RMSE
In order to measure the performance, once again we use the Mean Price Error
(MPE) and the Root Mean-Squared Error (RMSE). As an example we use the
S&P500 data between 1992 and 1994 (as used in [182]) we find for the generic
particle filter (GPF) and the extended particle filter (EPF)

MPE RMSE
PF -0.000350241 0.005867065

EPF -4.74747e-07 0.005869782

Table 2.15: MPE and RMSE for the VGSA model under a generic PF as well
as the EPF.

As we can see the use of the extended Kalman filter as the proposal distri-
bution brings some improvement.

Chi-Square Test
The residuals are normal, indeed a χ2

20 test provides us with a value of 10.397699
which is below the threshold value of 31.5 for a confidence of 0.95. This means
that the non-Gaussianity was “filtered out” of the time-series successfully. This
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could also be observed in the corresponding histogram in figure 2.57.

Auto-Correlation
Having p = 7 parameters and taking K = 27, we shall have K − p = 20 so we
will compare the output of the Box-Ljung test to the χ2

20 threshold, which as
previously mentioned for a confidence of 0.95 is around 31.5.
We find a value of 0.001138 which definitely passes the test. This shows that
the residuals are indeed uncorrelated.

Variogram
The variogram still indicates that we have independent and identically dis-
tributed random variables. Calling

γh =
1
2
E[(ẽk+h − ẽk)2] =

1
2
E[ẽ2k+h] +

1
2
E[ẽ2k] −E[ẽk+h ẽk]

we should obtain 1
2

+ 1
2
− 0 = 1, which is indeed the case as seen in figure 2.58.
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VGG

The observation is zk = lnSk+1

zk = zk−1 + (µS + ω)∆t+ θxk + σ
√
xkBk

with ω = 1
ν

ln(1 − θν − σ2ν/2).

and the hidden-state is
xk = Yk(∆t)

We could take advantage of the fact that VG provides an integrated density of
stock return [182].
Calling z = ln(Sk/Sk−1) and h = tk − tk−1 and posing

ξh = z − µSh− h

ν
ln(1 − θν − σ2ν/2)

we have

p(z|h) =
2 exp(θξh/σ2)

ν
h
ν

√
2πσΓ(hν )

(
ξ2h

2σ2/ν + θ2

) h
2ν − 1

4

Kh
ν − 1

2

(
1
σ2

√
ξ2h(2σ2/ν + θ2)

)

where Kα(x) corresponds to the modified Bessel function of second kind.
As we can see the dependence on the Gamma distribution is “integrated out”
in the above. For the VGG for a given arrival rate dt∗ = dYt we have a VG
distribution and

d lnSt = (µ + ω)dt+ B(γ(dt∗, 1, ν); θ, σ)

and the corresponding integrated density becomes

p(z|h, h∗) = (2.32)

2 exp(θξh/σ2)

ν
h∗
ν

√
2πσΓ(h∗

ν
)

(
ξ2h

2σ2/ν + θ2

)h∗
2ν − 1

4

Kh∗
ν − 1

2

(
1
σ2

√
ξ2h(2σ2/ν + θ2)

)

Hence the idea of using the arrival-rate as the state and use the following algo-
rithm:

(1) Initialize the state x(i)
0 and the weight w(i)

0 for i between 1 and Nsims

While 1 ≤ k ≤ N

(2) Simulate the state xk for i between 1 and Nsims

x̃
(i)
k = F−1(µa, νa; ∆t,U (i)[0, 1])
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where as before F represents the Gamma CDF.
(3) Calculate the associated weights for each i

w
(i)
k = w

(i)
k−1p(zk|x̃

(i)
k )

with p(zk|x̃(i)
k ) as defined in (2.32) where h will be set to ∆t and h∗ to x̃(i)

k

(4) Normalize the weights

w̃
(i)
k =

w
(i)
k∑Nsims

i=1 w
(i)
k

(5) Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃

(i)
k = 1/Nsims.

(6) Increment k, Go back to step (2) and Stop at the end of the While loop.

As for VGSA, numeric tests were carried out in the following way:
After choosing a time-step ∆t = 1/252, µS = 0 and a parameter-set

Ψ = (µa = 10.0, νa = 0.01, ν = 0.05, σ = 0.2, θ = 0.002)

an artificial time-series of N = 500 spot-prices was generated. The above filter-
ing algorithm was then applied to this time-series and the resulting likelihood
was maximized. The optimal parameter-set was

Ψ̂ = (9.17, 0.19,0.012,0.21,0.0019)

It therefore seems that the parameters ν and νa are not recovered properly.
Hence the question how sensitive the observable spot-prices are to these vari-
ables? Simulating two time-series with the two different parameter sets, we can
see in Figure 2.59 that the results could be very close.
This once again brings up the issue of inference reliability. Not having enough
data points, we can get parameter-sets that are quite different from the real
ones and that could generate similar time-series. This is consistent with what
we have seen for diffusion-based processes.
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Figure 2.59: Simulation of VGG-based Log-Stock-Prices with two different
Parameter-Sets Ψ = (µa = 10.0, νa = 0.01, ν = 0.05, σ = 0.2, θ = 0.002) and
Ψ = (9.17, 0.19, 0.012, 0.21,0.0019). The observed time-series remain close.
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A Bayesian Approach for VGSA

A similar approach as in the paragraph on the Bayesian approach for Heston
could be used here, since the latent state follows the same square-root SDE.
The only thing that changes, is the likelihood function. Instead of having a
conditionally Log-Normal observation we have a conditionally VG observation.
What is more, we do know the density of the VG distribution under a closed-
form as previously mentioned.

Indeed as previously mentioned, we have the state (the arrival-rate)

dyt = κ(θ − yt)dt+ σy
√
ytdWt

and the observation

d lnSt = (µS + ω)dt+ B(γ(dt∗, 1, ν); θ, σ)

and the corresponding conditional likelihood becomes

p(lnSk|yk,Ψ) =
2 exp(θxh/σ2)

ν
h∗
ν

√
2πσΓ(h∗

ν )

(
x2
h

2σ2/ν + θ2

)h∗
2ν − 1

4

Kh∗
ν − 1

2

(
1
σ2

√
x2
h(2σ2/ν + θ2)

)

with Kα(x) the modified Bessel function and

xh = ln(Sk/Sk−1) − µSh− h

ν
ln(1 − θν − σ2ν/2)

h = ∆t

and
h∗ = yk∆t

Finally integrating over time, we have

p(lnS|y,Ψ) =
N∏

k=1

p(lnSk|yk,Ψ)

Note that in the classical VGSA model there is no correlation between the sys-
tem noise and the observation noise. This means that the likelihood function
will not depend on the parameters κ, θ, σy and therefore the MH update step
becomes almost a Gibbs sampler (except for the adjustment factor

∑N
k=1 x

2
k).
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2.4 Recapitulation

We tested three categories of models: the Heston/ GARCH category where a
pure diffusion assumption was used, the Bates category where Poisson jumps
were added to the stock SDE, and the VG category where a Gamma distribution
was applied to the time dimension.

2.4.1 Model Identification

We saw from the table 2.3.10 that in the pure diffusion category, a power of 3/2
outperformed the Heston model (power of 1/2). As stated, this is in line with
the findings of Engle & Ishida [95].
Needless to say, adding Poisson jumps (Bates model) will reduce the MPE/
RMSE of the filters, however will cause the number of parameters to increase.
A simple comparison between the residual errors is therefore not fair.
In other words, given the fundamental differences between the categories, we
need to judge their appropriateness not by comparing the residuals, but by us-
ing financial arguments such as Should the stock process contain jumps or not?
Once a category is chosen, then we can compare the performance of models
belonging to a given category.

Note that there exist a number of likelihood-based tools such as the Akaike
Information Criterion [100], which will take into the account the number of
parameters when assessing the goodness of fit for a model. These tools would
therefore allow us to compare models belonging to different categories (e.g. He-
ston vs. VGSA). However these criteria remain valid only asymptotically. As
we saw, this often requires a large number of data points, which may or may
not have readily available.

2.4.2 Convergence Issues and Solutions

No matter which category we choose, it seems that the same convergence issues
exist. For all the above models we can see that a parameter affecting the drift
of the observation, is much easier to estimate than one affecting the noise of the
observation.
For the pure diffusion category, we saw that all four parameters ω, θ, ξ and ρ
were difficult to estimate (in some cases) and the two latter parameters, which
affect the noise of the noise, were even harder to estimate properly.
For the Bates model, we saw that the jump parameters λ, j were much more
straightforward to estimate than the above mentioned four diffusion parameters.
For the VGSA models we saw that the VG parameters θ, ν and σ (which once
again, affect the observation drift) are much easier to infer than the arrival-rate
parameters κ, η and λ.
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All this was explained via the poor observability at a daily frequency level, due
to the fact that ∆t = o

(√
∆t
)
. We tested the validity of this statement by

artificially reducing the observation-noise and see the convergence rate increase
dramatically.

As stated, a possible solution would be to employ more observation-points via
the use of high-frequency data. We saw that the increase in the number of
observations and the decrease in ∆t (after a certain level) do not cancel, and
a higher frequency would indeed cause the likelihood function to have a higher
value and provide a better estimation of the parameters.
In any case, since we do not know in advance how good the inference results
are, and whether we are in the asymptotic area or not, it is always a good idea
to perform a simulation test and determine the sampling distribution of each
parameter.

In the next chapter, we shall apply these inference tools to a specific question:
are the implied distributions from the stock and options markets consistent?
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Chapter 3

The Consistency Problem

Whether cross-sectional option prices are consistent with the time-series prop-
erties of the underlying asset returns is probably the most fundamental of tests.
- David S. Bates

3.1 Introduction

In the previous chapter we discussed two different approaches for stochastic
volatility parameter estimation: the cross-sectional one where we use a number
of options prices for given strike prices (and possibly maturities); and the time-
series approach where we use the stock prices over a certain period of time.
One natural question1 would therefore be the following: Will the theoretically
invariant portion of the parameter-sets obtained by the two methods be the
same?

More accurately, supposing we are at time t = 0 and we use J options with
strikes K1, ...,KJ and with maturity T , we have

Ψ̂options = argmin





J∑

j=1

[Cmodel(t = 0, S0,Kj , T,Ψ) −Cmkt(t = 0, S0,Kj, T )]2





(3.1)
the above options could include calls or puts.
On the other hand, during the period [0, T ] we can observe (Sk)0≤k≤N corre-
sponding to the time-points t0, ..., tN with t0 = 0 and tN = T , and then apply
one of the previously discussed Filters and estimate the parameter-set via the

1Äıt-Sahalia [6], Bakshi et al [20], Dumas et al. [88] have already asked a similar question,
however they use a different approach for the Time-Series treatment.
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Maximum-Likelihood method.

Ψ̂stocks = argmax{L(S0, ..., SN ,Ψ)} (3.2)

Now the question is how different these estimations for (ξ, ρ) are and why?

As we saw in the previous chapter, the size of the time-interval ∆t and the
time-series length are to be questioned: Indeed ∆t has to be small enough
for us to be able to apply the Girsanov theorem. However we saw that for a
very small ∆t, the filtering errors are so little that the MLE will not necessar-
ily converge to the right parameter-set. On the other hand, we would need the
time-series to be as long as possible, which requires a high observation frequency.

This brings up a more fundamental question: Current Financial Econometrics
literature seems to make Inference-based conclusions using a limited amount of
daily data. As we saw in the previous chapter, the time-series inference results
are not necessarily reliable unless the number of observations is sufficiently large.
This is the central question of this chapter: Are the implied parameters from
the options markets and the assets time-series indeed inconsistent?

Many practical issues need to be questioned: how many strikes should we be
using in the cross-sectional analysis and which ones? Should we use only OTM
puts and calls for liquidity reasons?
Many use a penalty function p() in the cross-sectional optimization in order to
get reasonable results. Do we need such a function here?
In the cross-sectional method, what value for v0 are we using? Should we es-
timate this value together with the other four parameters? If so, should this
estimated v̂0 be used in the time-series?

If the results are substantially different for the parameters ξ and ρ (assum-
ing the validity of the Girsanov theorem) can this test be used as an argument
against the validity of the Heston stochastic volatility model? or would it mean
that the options markets do not predict the stock movements as they should?
And if so, does this mean that there is a profitable trading strategy to take?
i.e. are options systematically mispriced?

If the Heston model is judged to be incorrect, what is the correct model?
GARCH or 3/2 ? Is the diffusion assumption itself to be questioned? Do
we need to introduce jumps?2

2Note that an alternative method not involving any optimization would be a method of
Matching of Moments. Indeed the Heston parameters ω, θ, ξ, ρ are analytically related to the
first four moments of the time-series (mean, variance, skew, kurtosis).
The calculation of the moments from the Time-series is fairly easy. The calculation of the
moments from the options would require the use of the Carr-Madan [50] replication strategy
using all available strike prices. However the information contained in the first four moments
being less complete than the information contained in the density, the optimization method
is more accurate.
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Another way to approach the question is to reason in the following manner:
If the information contained in the options markets is indeed inconsistent with
the one embedded in the assets time-series, there should be a regularly and con-
clusively profitable trade strategy. For instance a higher volatility-of-volatility
and more negative correlation in the options market should indicate the possi-
bility of a profitable skewness trade (to be explained further below) in absence
of crashes. We could therefore use the Profit/Loss of this trade as an empirical
measure of the inconsistency of the information.
If (and only if!) there exists a regular and definite profit generated from this
strategy, we can conclude that there is inconsistency. It is important to note
that this empirical measure is model free.

In our empirical analysis, unless stated otherwise, we shall use S&P500 Calls
and Puts. There are two main reasons for this:

1. First of all these are the most liquid European Options available on CBOE.
They expire on the third Friday of each contract month at the Open.

2. Also, there has already been abundant research carried out on these op-
tions. Indeed Äıt-Sahalia [6], Bakshi, Cao and Chen [20], Bates [30],
Dumas, Fleming and Whaley [88] and many others have all carried out
their empirical analysis on S&P500 Options.

The data quality is obviously dependent on the degree of liquidity. Another
issue we need to take into account is that of synchronization between the spot
close-price and the option close-price. Indeed the timing of these two closings
being off by a few minutes, the accuracy of the implied-volatility can be affected.
Bates [32] specifically mentions this issue.

Let us be clear on the fact that this chapter does not constitute a thorough
empirical study of the stock versus the options markets. It rather presents a
set of examples of application of our inference tools constructed in the previous
chapter. There clearly could be many other applications for these tools. As
discussed in the second chapter, Model Identification is another instance.

It might seem that by avoiding the numeric optimization involved in our method we would
gain precision, however given that the equations linking the first four moments and the four
parameters are nonlinear, we would need to solve them numerically, which would be similar
to an optimization.
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3.2 The Consistency Test

In this section we shall compare the values of (ξ, ρ) in the results Ψ̂options to
Ψ̂stocks obtained via MLE. The time period [0, T ] is fixed and the time interval
∆t for the stock is daily as in the previous chapter.

3.2.1 The Setting

The test is based upon SPX options as of 20020201 expiring in approximately 1
year from the calibration date. The daily time-series is taken during a period of
12 years corresponding to approximately 3000 points. The start of the period is
10 years before the calibration date and the end of the period is 1 year after the
expiration of the options. Ideally we should only use the asset prices between
the calibration date and the expiration to see whether the options predict the
asset movements consistently. However this would provide us with too few ob-
servation points.

In what follows we will be considering one example of comparison between
cross-sectional and time-series implied parameters. Many other similar exam-
ples were examined. They are not reported here since they do not change the
conclusions.
The cross-sectional results (obtained from the options markets) belong to RBC
Capital Markets and are similar to results reported by many others such as
Bates [26] or Bakshi et al. [20].
The original contribution of our approach is presenting a systematic way to eval-
uate time-series embedded parameters. We shall do this via the methodologies3

detailed in the second chapter.

3.2.2 The Cross-Sectional Results

We consider one-year options as of January 2nd 2002 for close-to-the-money
options. The calibration is done via LSE Monte-Carlo Mixing as well as the
Fourier Inversion applied to the Heston model. We fix the instantaneous vari-
ance v0 at 0.04 and we take the index level at S0 = 1154.67 USD.
As usual we take the appropriate interest-rate rT and dividend-yield4 qT where
T represents the options maturity. The dividend-yield could for instance be the
one implied from the Forward contracts FT calculated as

qT = rT − 1/T ln(FT/S0)

3These filter-based routines belong to the author and are available upon request.
4No discrete dividends were considered.
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We use various strike-price sets (Kj) and determine the average optimal one-
year parameters. Needless to say the results are obtained under the risk-neutral
measure.
We obtain the risk-neutral implied parameter-set

ω θ ξ ρ
0.03620 1.1612 0.4202 -0.6735

Table 3.1: Average Optimal Heston parameter-set (under the Risk-Neutral dis-
tribution) obtained via LSE applied to one-year SPX options on January 2002.
Various Strike-Price sets were used.

which represents a rather high negative skewness and a high kurtosis.5 The
long-term volatility is

√
ω/θ ≈ 0.17. Needless to say, these parameter values

vary everyday, but usually remain in the same range.

Robustness Issues for the Cross-Sectional Method

1. For the Cross-Sectional analysis we have used a Mixing Mote-Carlo method.
The Monte-Carlo time-steps of this method were spaced weekly. There-
fore one natural question is how sensitive to this choice the results are.
In order to verify this, we reran the simulations with daily Monte-Carlo
time-steps and obtained

Ψ̂options−daily = (ω = 0.036846, θ = 1.169709, ξ = 0.42112, ρ= −0.67458)

which is close to the original set.
We also checked the results with the volatility-of-volatility series method,
as well as the Fourier inversion method, and obtained comparable param-
eters.

2. For our Cross-Sectional calibration we used Call Bid Prices. It is well
known that Calls and Put prices are not always consistent. Indeed, as
can be seen on figure 3.1 the Put and Call implied-volatilities are slightly
different which seems to be a violation of Put-Call-Parity.6 However this
difference is not large enough (The Put and Call Bid-Ask spreads actually
overlap) and a profitable arbitrage cannot take place simply based upon
this difference. This is why we consider the mid-point between Puts and
Calls Bids and Asks.

5We drop the “hat” notations for optimal parameters in this chapter for simplifiction. For
example, instead of ω̂ we simply write ω.

6This is most probably due to the illiquidity of ITM options, as explained in [192].
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Figure 3.1: Implied Volatilities of close to ATM Puts and Calls as of 2002/01/02.
Maturity is 2002/12/21 and Index at 1154.67 USD’s. The Bid-Ask spread can
clearly be observed.

Our implied-volatility is therefore

σimp =
1
4

[σimp(CallBid) + σimp(CallAsk) + σimp(PutBid) + σimp(PutAsk)]

Using these “mid” implied-volatilities as opposed to the original Call-Bids
we obtain a parameter-set

Ψ̂options−mid−call−put = (ω = 0.043184, θ = 1.173119, ξ = 0.40258, ρ= −0.64593)
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3. If we do include v0 in the set of parameters Ψ = (ω, θ, ξ, ρ, v0), then we
obtain

Ψ̂options−mid−call−put =

(ω = 0.043224, θ = 1.144957, ξ = 0.482009, ρ= −0.661427,
√
v0 = 0.224659)

It is possible to see that the optimal
√
v̂0 is around 0.20 which corresponds

to our initial choice.

4. As already mentioned, further from the money options are less reliable in
terms of pricing and liquidity. However disregarding them decreases the
cross-sectional sensitivity to the volatility-of-volatility parameter.
Adding to the previous close-to-the-money strikes, additional further-
from-the-money ones, we find

Ψ̂options = (ω = 0.035896, θ = 1.149324, ξ = 0.386453, ρ= −0.659319,
√
v0 = 0.221988)

Again, the drift parameters are stable, and so is v0. The question is how
the volatility parameters are affected?
Interestingly we do not observe a great difference from what we had with
the previous sets. We therefore have a good degree of robustness.
In any case, we use various sets of strike-prices and take an average over
the optimal parameter-sets.

5. One issue to consider in the Cross-Sectional method is how the risk-neutral
implied distribution, or in our case the parameter-set Ψ evolves in time.
Needless to say, if the model was perfectly correct these parameters would
never change, however as we know this is never the case. The question
therefore becomes how time-homogeneous these parameters are.
Considering the same maturity 20021221 but at a date closer to this ma-
turity, we use close-to-the-money strikes. More accurately we stand at
20020903, take the spot at 878.02 USD, and use the yield-curve as of
20020903.
The strikes are

Kset = {775.00, 800.00,825.00, 850.00,875.00,900.00,925.00, 950.00, 975.00}

The optimization via Monte-Carlo mixing provides:

Ψ̂options = (ω = 0.0501244, θ = 1.189817, ξ = 0.547149, ρ= −0.661552,
√
v0 = 0.265441)

which is not too far from the other parameter-sets.
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3.2.3 Time-Series Results

As mentioned, the first idea is to choose a period corresponding to the life
of the options considered in the previous section. Indeed we would like to
see whether the options are predicting the underlying asset dynamics correctly
during their life. However this provides us with one year of daily data or 252
points which as we know from the previous chapter is highly insufficient for
time-series estimators.
In order to obtain more reliable results we use various Filters (EKF, EPF ...)
and take the average optimal parameter-set. For a period of 12 years ending
on January 2004 (which includes the options life) applying the filters studied in
the pervious chapter, we obtain the following average results

ω θ ξ ρ
0.018620 0.523947 0.096389 -0.132527

Table 3.2: Average Optimal Heston parameter-set (under the Statistical distri-
bution) obtained via Filtered MLE applied to SPX between January 1992 and
January 2004. Various Filters were used in the MLE.

The above results show a lower (ξ, ρ) and therefore a lower implied skewness
and kurtosis, than the ones obtained from the options markets.

Robustness Issues for the Time-Series Method

Given the above results, it would be instructive to test the sensitivity of the ob-
servations to the drift parameters (ω, θ) on the one hand, and to the volatility
parameters (ξ, ρ) on the other.7

The point is that even if the state vk itself is greatly affected by these volatility
parameters, the impact of these parameters on the observations is small. How-
ever the impact of the drift parameters is quite large. This could explain why
the Cross-Sectional and Time-Series volatility-of-volatility parameters are not
close.
This point can be observed in the simulations represented in figures 3.2 to 3.5.
Note that this issue is related to the discussion in Chapter 2 on the Sampling
Distribution. Indeed as previously stated, ξ and ρ have a lesser effect on the
observations since they affect the “noise of the noise”.

7Note that we could not have done this separation in a nonparametric model such as [6].
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One year simulation with

√
v0 = 0.20, ω = 0.04, θ = 0.5. Cross-Sectional uses

ξ = 0.036 and ρ = 0.50 while Time-Series uses ξ = 0.09 and ρ = −0.80. This is
consistent with what we had seen previously.
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Figure 3.4: The observations have a great deal of sensitivity to the drift parame-
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√
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uses ω = 0.04 and θ = 0.50 while Time-Series uses ω = 0.08 and θ = 5.0.
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√
v0 = 0.20, ξ = 0.036, ρ = 0.50. Cross-Sectional uses

ω = 0.04 and θ = 0.50 while Time-Series uses ω = 0.08 and θ = 5.0.



The Volatility Process 253

3.2.4 Financial Interpretation

The current Financial Econometrics consensus is the following: No matter which
case we consider, the cross-sectional parameters ξ and ρ are always greater (in
absolute-value) than the time-series ones.
This means that the skewness and the kurtosis implied from options are stronger
than those implied from the time-series. As we will see in the following para-
graphs, this could suggest a trade to take advantage of this inconsistency, sup-
posing that the options are misjudging the spot movements.
We can observe the above statement graphically by plotting the SPX volatility
smile from the options market prices on the one hand, and from the time-series
implied parameters on the other. Note that we need no calibration for the op-
tions since we are using the usual Black-Scholes implied volatility.
Figure 3.6 shows the difference between the two slopes. Again the options curve
has a stronger (negative) slope, which is consistent with a stronger negative
product ξρ.

As explained in [69] the higher moments of the stock-price return can be calcu-
lated from the stochastic-volatility model parameters.
Indeed, for a given parameter-set Ψ = (ω, θ, ξ, ρ) we have

skewness =

(
3ξρe

1
2 θT

√
θ

)

ω
θ (2 − 2eθT + θT + θTeθT ) − v0(1 + θT − eθT )
(
ω
θ
[(1 − θT + θTeθT ) + v0(eθT − 1)]

) 3
2




and

kurtosis = 3
[
1 + ξ2

( ω
θA1 − v0A2

B

)]

with y = θT and

A1 = [1 + 4ey − 5e2y + 4yey + 2ye2y] + 4ρ2[6ey − 6e2y + 4yey + 2ye2y + y2ey]

A2 = 2[1 − e2y + 2yey ] + 8ρ2[2ey − 2e2y + 2yey + y2ey]

B = 2θ[
ω

θ
(1 − ey + yey) + v0(ey − 1)]2

Without entering into the details of the calculations, we can see that for given
ω and θ, higher (ξ, |ρ|) correspond to higher skewness and kurtosis.
As we said in the previous chapter, the skewness depends on ω, θ and the prod-
uct ξρ which has a more reliable estimation than the separate values of ξ and
ρ. This makes the estimation of the skewness more trustworthy.
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3.3 The “Peso” Theory

3.3.1 Background

As [6] mentions, one possibility regarding the Cross-Sectional vs. Time-Series
observed differences is the following:
As we know the Time-Series corresponds to one realization of the stock-return
stochastic process. Now supposing that the true stock Stochastic Differential
Equation (SDE) contains jumps, there is a possibility that the historic path we
are observing does not contain any of these jumps.8 This is referred to as the
Peso theory.

As mentioned in [12], this term goes back to Milton Friedman in his analy-
sis of Mexican Peso during the early 70’s. The Mexican interest rates remained
significantly above the US interest rates, although the peso was pegged at 0.08
dollars per peso. Friedman argued that the interest rates reflected an expec-
tation about a future devaluation of the peso. In August 1976, the peso was
devaluated by 37.5% to a new rate of 0.05 dollar per peso, thus validating the
previous interest rates differential.

This assumption seems reasonable since as we saw in the previous tests, the
Cross-Sectional method usually provides higher volatility parameters (ξ, ρ) and
therefore higher skewness (in absolute value) and kurtosis. Introducing a jump
component in the options pricing model should lower these optimal parameters.

Note that in [3], Äıt-Sahalia tries to find out whether the discrete observations
of S&P500 come from a diffusion, or from a distribution containing jumps? He
derives a criteria for continuity of the paths

∂2

∂x∂y
ln (p(∆t, y = Xt+∆t|x = Xt)) > 0

for every ∆t > 0 and given (x, y).
Based upon the implied cross-sectional distribution he finds that S&P500 op-
tions do consider jumps in the paths.

Using the Jump Diffusion model as we did in the previous chapter

d lnSt = (µS −
1
2
vt + λj)dt +

√
vtdBt + ln(1 − j)dNt

dvt = (ω − θvt)dt+ ξ
√
vtdZt

we may very well see no difference introduced from the parameters (λ, j) for the
Time-Series and we can even disregard them. However, this does not mean that
the stock process does not contain jumps, but rather this specific path happens

8Jackwerth and Rubinstein [155] refer to this phenomena as Crash-o-Phobia.
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to contain none.
The Options on the other hand, always include the possibility of jumps in their
pricing. Adding (λ, j) will affect the resulting (ξ, ρ) from the Cross-Sectional
method.

3.3.2 Numeric Results

We use the same Options and Time-Series as in the previous section. As shown
in Merton’s paper [190] we have for a given volatility path σ =

√
v

Call =
+∞∑

n=0

e−λ(1−j)T (λ(1 − j)T )n

n!
CBS(S,K, T, σ, rn)

with
rn = r + λj +

n

T
ln(1 − j)

We then take the expectation upon the volatility stochastic process as we usu-
ally do in a Mixing algorithm.9

We find for the parameter-set Ψ̂ = (ω, θ, ξ, ρ, λ, j) the values

Ψ̂options = (ω, θ, ξ, ρ,
√
v0, λ, j) =

(0.032648, 1.165598, 0.360646,−0.585302, 0.218333, 0.008982,0.913772)

instead of the previous pure-diffusion parameter-set

Ψ̂options−mid−call−put =

(ω = 0.043224, θ = 1.144957, ξ = 0.482009, ρ = −0.661427,
√
v0 = 0.224659)

As we see even with the addition of jump parameters (λ, j), the cross-sectional
volatility parameters (ξ, ρ) remain significantly above the time-series ones. This
is in agreement with the findings of Bakshi, Cao and Chen [20].
We have a small λ and a j close to one. This means that options are expecting
a large but infrequent jump, i.e. they are factoring in the possibility of a crash.

9Note that an alternative method would be to use a Fourier inversion of the known Char-
acteristic Function as Lewis does in [178] or [180].
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3.4 Trading Strategies

Supposing that the model we are dealing with is correct, if the options are mis-
taken in evaluating the stock distribution during their lifetime, there should be
an arbitrage opportunity to take advantage of.
The ninth chapter of the Härdle et al. book [128] has a description of these
strategies. Note that both these strategies are European and cannot be changed10

until maturity.

At this point we should reiterate that the Profit and Loss of this trade could
be used as an empirical and model-free measure of how consistent or inconsis-
tent the information embedded in the options is with the one in the underlying
stocks.

3.4.1 Skewness Trades

To capture an undervalued third moment we can buy OTM calls and sell OTM
puts. Note that Äıt-Sahalia [6] says that the options are overly skewed, which
means that the options skew is larger in absolute value. However given the
negative sign of the skew, the cross-sectional skew is actually lower than the
one implied by the Time-Series, hence the described strategy.
Note that in order to be immune to parallel-shifts of the volatility-curve, we
should make the trade as vega-neutral as possible. The correspondence between
the Call and the Put is usually not one-to-one.
Therefore calling V the vega, ∆’s the hedge-ratios for C the call and P the put
option, the hedged portfolio Π will be

Π = C(St,KC) − VC
VP

P (St,KP ) −
(

∆C − VC
VP

∆P

)
St

and the positions in the options should be dynamically adjusted in theory. How-
ever that would cause too much transaction cost and exposure to the bid-ask
spread.

As we shall see in the paragraph on “Exact Replication” there exist more elab-
orate strategies, better exploiting the third moment differences.

3.4.2 Kurtosis Trades

To capture an overvalued fourth moment, we need to use the “fat tails” of the
distribution. For this we can for instance sell ATM and far OTM options, and
buy close OTM options.

10As we will see further, we could unwind the deal prior to expiration. However we would
then be subject to the movements of options prices.
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3.4.3 Directional Risks

Despite the Delta-Hedging, the skewness trade applied to an undervalued third
moment has an exposure to the direction of the markets. A bullish market is
favorable to it, and a bearish one unfavorable.
The Kurtosis trade applied to an overvalued fourth moment generates a profit
if the market stays at one point and moves sideways but loses money if there
are large movements.

This exposure to market conditions is consistent with the Peso theory. The
Skewness and Kurtosis trading strategies above are profitable given the options
implied moments, unless the options were actually right in factoring in a large
and sudden downward movement. This also makes sense since the way the
options were priced changed only after the crash of 1987. Prior to that, the
volatility negative-skew was practically absent altogether. Figures 3.7 and 3.8
show generic examples of the strategies described above.

Note that as the skew formula in [69] shows, the volatility of volatility ξ af-
fects the skew as much as the correlation ρ does. This explains why sudden
upward movements can hurt us as well. If the overall correlation is negative
but there are large movements in both directions we will have large third (in
absolute value) and fourth moments, which would make the options expecta-
tions correct. Indeed as we will see in the following example, a large upward
movement can make us lose on our hedge account.

As many such as [32], [128] have mentioned, it is possible to interpret this
trade as an Insurance Selling strategy. The trade will generate moderate and
consistent profits if no crash happens. But if the crash does happen we could
suffer a large loss.

Skewness vs. Kurtosis

The Skewness Trade seems to be a simpler one and has a better chance to
be realized. Indeed in order to have a large negative skew, we need a large
volatility-of-volatility ξ (as we do for the kurtosis trade) and a large negative
correlation ρ.
In other words, if for a given stock time-series we have a large volatility-of-
volatility but a weak correlation, we will not have a kurtosis trade opportunity
but we will have a Skewness Trade opportunity. Indeed the historic skew will
be small and the historic kurtosis high.
Graphically we could have the following interpretation: For these assets, the
Historic distribution does have fat tails, but remains symmetric, While the Im-
plied distribution has a fatter left tail. This is why we have a Skewness Trade
opportunity, even if we do not have a Kurtosis trade opportunity.
Finally, as we previously mentioned the estimation of the skewness from a time-
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series is more reliable since it only depends on the product of the volatility-of-
volatility and the correlation.

3.4.4 An Exact Replication

These trading strategies can be refined using a Carr-Madan replication. Indeed
as explained in [50] we have for any payoff function f() the following identity

E[f(ST )] = f(F )+erT
∫ F

0

f
′′
(K)P (S0,K, t = 0, T )dK+erT

∫ +∞

F

f
′′
(K)C(S0,K, t = 0, T )dK

with F = S0e
rT the forward price.

In order to get the Das [69] skew and kurtosis calculations, we need to take
for the nth moment

f(ST ) = (ZT − E(ZT ))n

with
ZT = ln(ST /S0)

However this trade will clearly have a much higher transaction cost than the
one described in the previous paragraph.
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3.4.5 The Mirror Trades

Should we see the opposite conditions in the market, i.e. having the skew (in
absolute value) or kurtosis undervalued by the options given a historic path, we
could obviously put on the mirror trades.
The inverse of the Peso theory would be as follows: the stock in question has
already had a crash and the options are supposing there probably will not be
another one in the near future.
Setting up the overvalued kurtosis trade in the previous paragraph, we picked
up a premium and made an immediate profit and hoped that there would not
be a sudden movement.
Here we start by losing money and hope a crash will happen within the life of
the option so we can gnerate a profit. Jumps and crashes being rare by nature,
this trade does not seem very attractive.
What is more if there was a recent crash, the possibility of another one is indeed
reduced and we should believe the options prediction. However these mirror
trades could be considered as buying insurance and therefore as a protection
against a possible crash.
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3.4.6 An Example of the Skewness Trade

The algorithm is as follows:
For a given date t0 we have S0 and choose the closest maturity to T = t0 + 0.25
in order to have a three month trade, we then take the Call and Put Strikes KC

and KP as the closest ones to 1.10S0 and 0.90S0 respectively.
The original cost is therefore

options(0) = CallAsk(S0,KC, t0, T ) − PutBid(S0,KP , t0, T )

Indeed we buy a Call at the Offer price and sell the Put at the market Bid price.
At maturity, the position is worth

options(T ) = MAX(0, ST −KC) −MAX(0,KP − ST )

During the trade we have a Delta hedging cash-flow of

hedge = −
T−1∑

t=0

∆(St, t, T )(St+1 − St)

with

∆(St, t, T ) = ∆Call(St,KC, t, T, σimp(t0,KC))−∆Put(St,KP , t, T, σimp(t0,KP ))

where the above implied-volatilities used in the hedge-ratios are using the Mid
prices (between Bid and Ask prices).
as well as an interest-rate cash-flow of

interest =
T−1∑

t=0

∆(St, t, T )(ert∆t − 1)St

Our final profit or loss (PnL) is therefore

PnL = options(T ) − options(0) + hedge + interest

If the options implied skew is indeed higher than justified by the stock move-
ments, then this trade should be profitable. However in case of a sudden large
movement, this will not be true anymore.
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We consider the case of S&P500 between 20020404 and 20020622. At that
point in time S0 = 1126.34 USD, which means we can take KC = 1250 USD
and KP = 1050 USD.
We also have CallAsk(t0,K = 1250) = 3.20 USD and PutBid(t0,K = 1050) =
14.20 USD, as well as the mid implied volatilities of σimp(KC ) = 0.154 and
σimp(KP ) = 0.214.

As can be seen in figures 3.9 and 3.10, the sudden spot movements generate
most of the loss (for instance around day 50).
We have at the end of the trade in USD’s

ST = 989.14

hedge = 50.39

interest = 1.32

Therefore the final PnL in USD is11

PnL = [0 − (1050 − 989.14)] + (14.20− 3.20) + 50.39 + 1.32 = 1.85

As we can see, we hardly generated a profit, given the “jumps” occurring in the
middle of the trade.
Note that we generated a profit in the beginning by selling an OTM Put that
was more expensive than the OTM Call we bought. We lost a large amount
because the spot ended up below the Put strike. However we compensated that
via the hedge.

The Options Bid-Ask Spread

It is important to know where we are buying the Call and Selling the Put on
the start-date. Are we buying the Call at the Offer-price and selling the Put at
the Bid-Price? In which case we can lose the Bid-Ask spread, comparing to the
case where we would buy and sell both options at the Mid-Market. This spread
is in average around 1 USD for ten-percent OTM SPX options.

Early Termination

We also should consider an early unwinding of the trade: Indeed as we get
closer to maturity, our hedge-ratio might be close to one, which will make our
hedge-account extremely sensitive to adverse stock movements. In order to have
a smoother PnL, we can buy back the Put and sell the Call at a date (e.g. one

11Proprietary results generated within RBC Capital Markets.
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month) prior to maturity.
Again, it is important to know whether we are unwinding the trade by selling
the Call at the Bid and buying back the Put at the Offer? If so, we will have
suffered from the Bid-Ask spread twice: once on the start-date and once on the
unwinding (termination) date.
This is not just a small detail, indeed having the right execution (at mid-market)
can change the average sign of the PnL altogether.
What is more, regardless of the Bid-Ask spread, we are subject to the move-
ments of the options prices. Whereas if we hold the positions until expiration,
we will have a pure strategy between the original options prices and the spot
price movements.

Implied Volatility Term-Structure

Yet another issue to take into account is that in our back-testing, we used fixed
implied-volatilities in order to calculate the hedge-ratios during the life of the
trade.
In reality the implied-volatilities change every day even if we assume a Sticky-
Strike regime where the stock-price will not affect the implied-volatility level.
Indeed even if our Strikes are fixed, the time-to-maturities of the options de-
crease, and this will make the implied-volatilities vary.
For S&P500 the term-structure of implied-volatility is upward-sloping which
means that theoretically all implied-volatilities should come down from their
original levels at the unwinding date.

Which Hedge-Ratio should we use?

In the hedging of our skew portfolio, which ∆ should we apply? In other words,
the question is which implied-volatility we should use in the usual

e−q(T−t)N (d1(St,K, t, T, σimp))

If we believe that the volatility predicted by the options is wrong and the historic
levels are correct we should then use

σimpstocks(K,T ) = C−1
BS

(
Cmodel(S0, t0,K, T, Ψ̂stocks)

)

where
Ψ̂stocks = (ω̂opts, θ̂opts, ξ̂stocks, ρ̂stocks)

Note that this might give us a mismatch in terms of mark-to-market with the
existing option levels in the market. However if the Time-Series is really correct,
the skew should eventually collapse before the options mature.12 We should note

12Bates [29] suggests the use of an adjusted Delta as

∆ ≈ ∆BS −
K

S
V

∂σ

∂K



The Volatility Process 269

however that using the options implied volatilities makes better practical sense,
since those are the ones where the options are actually traded.

3.4.7 Multiple Trades

The next natural step would be to repeat the previous trade in order to see
whether the trade would be statistically profitable. We use SPX Puts and Calls
between 20020102 and 20030201 on the expiration month such that the original
life of the trade is around three months. We systematically unwind the trades
around 20 business days to expiration. Once again, we buy ten-percent OTM
Calls and we sell ten-percent OTM Puts.
We cover in this manner forty different cases. We calculate the PnL’s as previ-
ously described13 and take their average.

The results are mixed: If we put the trade on and unwind at the Bid and Ask
levels we will actually suffer a loss. However if we can execute at the Mid, then
we will generate a profit.

This shows a lack of decisive proof on an inconsistency between the options
and stock markets.14 Indeed we have used the PnL of this trade as a measure
of discrepancy.15

where V represents the option vega.
However as he points out, this is the hedge-ratio as perceived by the options market and this
perception could very well be wrong. After all this is what we are trying to take advantage
of: the mispricing of the skew by the options, supposing that the historic time-series has the
same dynamics as the future spot movements.

13Proprietary results generated within RBC Capital Markets.
14Note that this trade generates a regular and stable profit and sudden large losses. This

is in agreement with the interpretation of selling insurance and collecting the premiums. It
is very profitable until there is a “disaster”.

15There is a case where a skew trade should be considered. Even if we have an inefficient
estimate of ξ and ρ, we do have their Sampling Distributions, as seen in the previous chapter.
If for instance the average estimate of ξ is 0.03, supposing the lowest and highest estimates are
respectively −0.20 and 0.20, and if ξopt = 0.40 then there is an inconsistency in a conclusive
manner. Indeed we would then have our cross-sectional volatility-of-volatility far superior to
its highest possible time-series estimate.
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3.4.8 High Volatility-of-Volatility and High Correlation

As previously discussed many stocks do have a high historic volatility-of-volatility
ξ however given a weak (or even positive) spot-volatility correlation ρ, the his-
toric skew is still very low. This is specially true of “penny” stocks. Indeed
when these stocks increase in price, in some sense they “come back to life” and
therefore become more volatile. This means that the historic skew is actually
positive, which seems to indicate an even stronger case for a Skewness Trade.
However given that we are dealing with penny stocks the possibility of a crash
for these stocks is high and that is precisely what causes the negative option-
implied skew ! The stock GW (Grey Wolf Inc.) in figure 3.14 is a good example
for this case. This presents a trading opportunity as shown in figure 3.15.
On the other hand, there are cases such as MSFT (Microsoft) where we do have
a strong historic negative correlation as well as a high volatility-of-volatility. As
the stock price goes down, the asset becomes riskier and therefore more volatile.
We can see this in figure 3.16. This justifies the option-implied skew observable
in figure 3.17 and means there is no trade opportunity.
The safest trade therefore seems to be an Index Skewness Trade given that the
likelihood of a crash is lower thanks to the diversification effect.

Note that the strong negative historic skew is not limited to individual stocks.
Indeed taking the case of the NDX index in figures 3.18 and 3.19, we can see
that there is no trading opportunity available and the historic skewness is in
line with the one implied by the options prices.

There are therefore two different possible reasons16 why we may have a
Skewness Trade Opportunity:

1. Weak Historic Volatility-of-Volatility (e.g. SPX (S&P500) )

2. Weak Historic Correlation (e.g. GW (Grey Wolf Inc.) )

If none of the above is verified (e.g. NDX (Nasdaq) or MSFT (Microsoft) ) there
is no skew trading opportunity.

The graphical interpretation seen in the following figures is based upon the
comparison of the observable options-implied skew

σimpoptions(K,T ) = C−1
BS (Cmkt(S0, t0,K, T ))

and the skew implied from historic stock-price movements

σimpstocks(K,T ) = C−1
BS

(
Cmodel(S0, t0,K, T, Ψ̂stocks)

)

where CBS corresponds the usual Black-Scholes pricing function.

16These tests were performed around end of March 2003.
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Again, we use the option-implied volatility-drift parameters ω̂options, θ̂options in
Ψ̂stocks. The only assumption here would be that of Diffusion in the processes.
Indeed then according to the Girsanov theorem the volatility-of-volatility and
the correlation should be the same for the continuous statistical and risk-neutral
processes.
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Figure 3.13: A Weak Option-Implied Skew: Comparing CMI (Cummins Inc)
Cross-Sectional and Time-Series Volatility Smiles as of Mar 28 2003. The Spot
is at 24.59 USD.
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Figure 3.14: GW (Grey Wolf Inc.) Historic prices (20020331-20030331) show a
high volatility-of-volatility but a weak stock-volatility correlation. The resulting
negative skew is low.
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Figure 3.15: The Historic GW (Grey Wolf Inc.) Skew is low and not in agree-
ment with the options prices. There is a skew trading opportunity here.
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Figure 3.16: MSFT (Microsoft) Historic prices (20020331-20030331) show a high
volatility-of-volatility and a strong negative stock-volatility correlation. The
resulting negative skew is high.
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Figure 3.17: The Historic MSFT (Microsoft) Skew is high and in agreement
with the options prices. There is no skew trading opportunity here.
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Figure 3.18: NDX (Nasdaq) Historic prices (20020331-20030331) show a high
volatility-of-volatility and a strong negative stock-volatility correlation. The
resulting negative skew is high.
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Figure 3.19: The Historic NDX (Nasdaq) Skew is high and in agreement with
the options prices. There is no skew trading opportunity here.
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3.5 Non-Gaussian Case

As previously discussed, once we start dealing with some of the pure-jump
models such as VGG, we will not have the Girsanov theorem anymore and
cannot compare the parameters directly.
However, no matter what the arrival process is, we still have the VG parameters
(σ, ν, θ) as in

d lnSt = (µS + ω)dt+X(dt;σ, ν, θ)

where as before µS is the real-world statistical drift of the stock log-return and
ω = 1

ν
ln(1 − θν − σ2ν/2).

As for X(dt;σ, ν, θ) it has the following meaning:

X(dt;σ, ν, θ) = B(γ(dt, 1, ν); θ, σ)

where B(dt; θ, σ) would be a Brownian Motion with drift θ and volatility σ. In
other words

B(dt; θ, σ) = θdt+ σ
√
dtN (0, 1)

where N (0, 1) is a standard Gaussian realization.

What is more, we know what the centralized third and fourth moments (Skew-
ness and Kurtosis) are

skewness = (2θ3ν2 + 3σ2θν)t

kurtosis = (3σ4ν + 12σ2θ2ν2 + 6θ4ν3)t+ (3σ4 + 6σ2θ2ν + 3θ4ν2)t2

We therefore can always compare the skewness and kurtosis implied from time-
series with those implied from options. However a mismatch between the two
does not indicate an arbitrage opportunity since once again we are comparing
them under two different measures.
Having said this, the determination of the statistical density p() and the risk-
neutral density q() is still useful in the sense that it could allow us to determine
the optimal position we would take in the derivatives market given a Utility
function, as described in [52], [53].

Indeed having an increasing concave utility function U (), the idea is to find
the optimal payoff φ(S) maximizing the expected utility at a given horizon T ,
among all possible payoffs f(S)

φ = argmax

∫ +∞

0

U [f(ST )]p(ST )dST

In addition to this, we have the initial budget W0 which imposes a constraint:
the discounted risk-neutral expected value of the payoff cannot be greater than
this initial budget:

exp(−rT )
∫ +∞

0

f(ST )q(ST )dST ≤ W0
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This can be seen by using a “self-financing” portfolio argument as was done by
Black and Scholes.
Using the two equations above we can write the Lagrangian

L(f) =
∫ +∞

0

U [f(ST )]p(ST )dST − λ exp(−rT )
∫ +∞

0

f(ST )q(ST )dST

where λ is the Lagrange multiplier. We then can differentiate with respect to
the payoff f() and obtain the optimal payoff satisfying

exp(rT )
p(S)
q(S)

U ′[φ(S)] = λ

or equivalently

φ(S) = (U ′)−1

(
λ exp(−rT )

q(S)
p(S)

)

and the constant λ could be determined by a normalization such as

exp(−rT )
∫ +∞

0

(U ′)−1

(
λ exp(−rT )

q(S)
p(S)

)
q(ST )dST = W0

This would provide us with the optimal payoff function that we would need to
choose in the derivatives market, and therefore motivates the estimation of the
statistical and risk-neutral densities p and q even for the non-Gaussian case.

3.5.1 VGSA

Unlike VGG and many other pure-jump models, VGSA has a conditionally
Gaussian arrival rate. This means that the volatility of the arrival-rate λ should
remain the same under the statistical and risk-neutral measures.
We therefore do have an analog approach to the diffusion based models for
VGSA.

VGSA vs. VG

In their original paper [182] Carr, Madan and Chang find comparable results for
the VG model applied to S&P500 for 1992-1994. As previously discussed the
VG model has an integrated density and therefore the MLE could be performed
without any filtering.
The statistical (historical) parameters are

(σ = 0.117200, θ = 0.0056, ν = 0.002)

While their risk-neutral parameters are

(σ = 0.1213, θ = −0.1436, ν = 0.1686)
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Again we can see that the historical estimate for θ is close to zero, while the
risk-neutral one is significantly negative. This negative θ is what creates the
negative skewness observed in cross-sectional estimations.

We can try to reproduce the above parameters with the VGSA model. The
resulting time-series parameter-set is

(κ = 79.499687, η= 3.557702, λ= 0.000000)

(σ = 0.049656, θ = 0.006801, ν = 0.008660, µ= 0.030699)

Although the results seem to be very different, upon simulation we can see that
even if the resulting arrival-rates and Gamma variables are different, the Log
stock prices are close. This can be seen in Figures 3.20, 3.21 and 3.22.

An alternative would be to use the EPF algorithm with the VGSA model over
the same period, in which case we would obtain

(κ = 190.409721, η = 3.459288, λ= 5.430759)

(σ = 0.050243, θ = 0.002366, ν = 0.007945, µ= 0.032576)

Once again the most unstable parameters are (κ, η, λ) or the ones corresponding
to the arrival-rate. We have seen this many times, the estimation of the pa-
rameters affecting the noise is less reliable. This is in agreement with what we
had observed in the second chapter, and shows the limitations of these inference
tools.
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Figure 3.20: Arrival Rates for simulated SPX prices using Ψ = (κ = 0.0000, η =
0.0000, λ = 0.000000, σ = 0.117200, θ = 0.0056, ν = 0.002) and Ψ = (κ =
79.499687, η = 3.557702, λ = 0.000000, σ = 0.049656, θ = 0.006801, ν =
0.008660, µ= 0.030699). We can see that they are quite different.
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Figure 3.21: Gamma times for simulated SPX prices using Ψ = (κ = 0.0000, η =
0.0000, λ = 0.000000, σ = 0.117200, θ = 0.0056, ν = 0.002) and Ψ = (κ =
79.499687, η = 3.557702, λ = 0.000000, σ = 0.049656, θ = 0.006801, ν =
0.008660, µ= 0.030699).
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Figure 3.22: Log stock Prices for simulated SPX prices using Ψ = (κ =
0.0000, η = 0.0000, λ = 0.000000, σ = 0.117200, θ = 0.0056, ν = 0.002)
and Ψ = (κ = 79.499687, η = 3.557702, λ = 0.000000, σ = 0.049656, θ =
0.006801, ν = 0.008660, µ = 0.030699). Unlike arrival rates, the spot prices
are hard to distinguish. This is consistent with our previous observations.
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Cross-Sectional vs. Time-Series VGSA

Applying the Particle Filtering algorithm described in the previous chapter to
S&P500 we find for 2001-2003 the statistical parameter-set

(κ = 55.01778, η = 3.721583, λ= 8.666717, σ = 0.118637, θ = 0.060053, ν = 0.00103)

µS = −0.2910

and for the 1995-1999 time-period

(κ = 1.151952, η = 5.418226, λ= 2.840461, σ = 0.055811, θ = 0.008626, ν = 0.006021)

µS = 0.249051

A typical Cross-Sectional risk-neutral parameter-set

(κ = 2.72, η = 2.18, λ = 5.68, σ = 0.21, θ = −0.41, ν = 0.06)

As we can see the implied skew and kurtosis are stronger for the cross-sectional
method comparing to the statistical one. This is consistent with results ob-
served with other diffusion-based models.

We perform more recent parameter-estimations corresponding to 19990610-
20030610 and 19990910-20030910 (via PF based upon 1000 particles) for S&P500.
The results are reported in table 3.3. As we can see, the algorithm for the esti-
mation of the statistical parameters seems fairly stable provided that the initial
parameters are chosen sufficiently close to the optimal ones.

The cross-sectional results could be computed the same way as for diffusion
based models. Quoting the reults of Carr et al. [48] we have the table 3.4. As
we can see, for some periods the risk-neutral implied λ is much larger than the
statistical one. This implies the possibility of a Skewness Trade as previously
discussed.

period κ η λ σ θ ν

990910-030910 5.131967 6.499669 4.360002 0.087000 -0.024862 0.002000
990610-030610 6.514068 6.500001 4.360000 0.085000 -0.025000 0.001800

Table 3.3: VGSA statistical parameters estimated via PF. The stock-drifts µS
are −0.009999 and −0.010000 respectively.

It therefore seems that depending on the period, the statistical and risk-
neutral parameters λ may or may not be consistent.
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period κ η λ

Mar 2000 4.08 15.99 16.52
Jun 2000 7.24 32.15 24.81
Sep 2000 0.25 0.00 3.76
Dec 2000 2.18 5.71 5.67

Table 3.4: VGSA risk-neutral arrival-rate parameters estimated from Carr et
al. [48]

3.6 A Word of Caution

Accuracy issues of the Inference tools aside, there are practical considerations
we need to bear in mind.
We are applying basic models such as Heston or VGSA to a complex and con-
stantly changing market. Indeed the true dynamics of the stock and option
markets are unknown, and even if the above models approximate them fairly
well, there is no guarantee that there will not be a mutation in future dynamics.
The best we can do is to use the information hitherto available and hope that
the future behavior of the assets is not too different from the past one.
Needless to say, as time passes by and new information becomes available, we
need to update our models and parameter values. This could be done within
either a Bayesian or Classical framework.
Therefore detecting an inconsistency between the stock and option markets does
not allow us to make a riskless profit, since we simply do not know what the
future is reserving for us. Once again the Skewness Transaction described in
this chapter is more similar to Selling Insurance than an Arbitrage.
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[4] Äıt-Sahalia Y. (2002) “Maximum Likelihood Estimation of Discretely Sam-
pled Diffusions: A Closed-Form Approximation Approach” Econometrica,
Vol. 70, No. 1
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