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Résumé — Dans cette thèse, on s’intéresse aux tables de positionnement de haute précision. Il s’agit de

l’un des éléments essentiels des processus de fabrication de l’industrie du semi-conducteur. On aborde plus

précisément les deux problèmes suivants: la conception d’un algorithme d’initialisation pour les moteurs

synchrones sans balai, et la réalisation de correcteurs capables de rejeter les perturbations spécifiques de

ces systèmes.

Pour les moteurs synchrones, l’initialisation consiste à estimer la phase initiale du champ magnétique.

On considère que seules des mesures de déplacement sont disponibles, les mesures de courant n’étant pas

accessibles. On suppose par ailleurs que les frottements, la charge ainsi que les paramètres du moteur,

tel que son gain, ne sont pas connus. Compte tenu des frottements, la modélisation du système fait

intervenir une équation différentielle à second membre discontinu. On conçoit des entrées en boucle

ouverte adaptées pour obtenir la phase initiale en fonction de l’amplitude des déplacements mesurés

pendant l’initialisation. L’estimation est basée sur une classification complète des orbites périodiques du

modèle à second membre discontinu considéré, quelles que soient les valeurs des inconnues du problème.

Afin de faciliter l’implémentation de l’algorithme dans un environnement temps réel, on propose une

résolution approchée. On réalise alors une comparaison expérimentale de notre solution à une autre

méthode, implémentable dans les mêmes conditions.

On s’intéresse ensuite au rejet des perturbations affectant ces tables de positionnement de haute précision.

Il s’avère que ces systèmes présentent des perturbations périodiques en fonction de la position, et, que ces

perturbations empêchent d’obtenir les niveaux de précision requis en terme de suivi de trajectoires. Malgré

la nature non-linéaire de ce problème, on formule des conditions suffisantes à remplir par un contrôleur

linéaire instationnaire afin de complètement rejeter ces perturbations et ainsi assurer la convergence

asymptotique globale de l’erreur de suivi vers zéro. Ces conditions de stabilité sont obtenues par une

analyse de perturbations régulières tirant partie des propriétés des polynômes de Bell de second espèce.

A l’aide d’un observateur linéaire instationnaire ne nécessitant que des mesures de position, on conçoit

alors une loi de commande remplissant les conditions précédentes. Il est à noter que les équations

définissant l’observateur sont obtenues en évaluant les perturbations non pas le long des trajectoires

effectives, mais le long des trajectoires de référence. On utilise également le principe du modèle interne.

On montre que le réglage des gains de l’observateur peut être effectué par des optimisations sous con-

traintes LMI, lesquelles optimisations n’ont besoin d’être réalisées qu’une seule fois hors ligne. Il n’y a

que très peu de calculs à effectuer en ligne, notamment car le formalisme LMI permet d’aboutir à des

gains constants. On propose alors plusieurs résultats expérimentaux pour illustrer les performances de

notre méthode. On adresse plus particulièrement l’annulation du cogging, ainsi que le filtrage d’erreurs

de mesures, plus connues sous le nom d’erreurs d’interpolation.
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Abstract — In this work, our concern is the study of high-precision positioning systems. They are one

of the core elements entering the manufacturing processes of the semiconductor industry. We are more

specifically interested in two major issues: conceiving an initialization algorithm for brushless synchronous

motors and designing a control scheme to reject disturbances peculiar to these systems.

The previously mentioned initialization procedure consists in estimating the initial phase of the magnetic

field for brushless synchronous motors. Only displacement measurements are available (no current) while

friction, load and motor parameters are supposed to be unknown. Because of friction, the system is

modeled by a differential equation with a discontinuous right-hand side. Specific open-loop inputs are

designed to get the initial phase as a function of the magnitude of the displacements along the correspond-

ing trajectories. The estimation relies on a complete classification of the possible dynamical behaviors of

the considered discontinuous right-hand side system with periodic input, whatever values the unknown

parameters may take. For the sake of the online implementation, we propose an approximated formula of

the initial phase. Some experimental results are given, together with a comparison of our method to an

other technique that may be implemented in the same context.

We then move to the problem of rejecting a class of disturbances affecting the considered high-precision

positioning tables. These systems turn out to feature spatially periodic perturbations, preventing them

from achieving the required accuracy in terms of trajectory tracking. Despite the nonlinear nature of

this problem, we derive sufficient conditions for a linear time-varying controller to entirely get rid of

these disturbances and allow global asymptotic convergence of the tracking error to zero. Such stability

conditions result from a regular perturbation analysis, carried out with the use of the Bell polynomials of

the second kind.

We propose a linear time-varying observer-based controller that meets the previously mentioned stability

conditions and only relies on position measurements. It is quite noteworthy that the observer equations

are obtained by evaluating the spatially periodic perturbations along the desired trajectories, and not

along the actual positions. We make use of the LMI formalism to cast the observer gains tuning issue into

an optimization problem, subject to LMI constraints, carried out offline. Little computation is required

online as the observer gains are constant. We then provide several experimental results to exhibit the

performances of the proposed method. We namely address the experimental cancellation of cogging forces,

as well as position measurements errors, known as interpolation errors.
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Introduction

The products of the semiconductor industry take a larger and larger part in our everyday life. From

the laptop used to typeset this manuscript, to the microchips embedded in cellulars, to the flat screens

becoming more and more popular, we are clearly surrounded by this technology. Only a few initiated

consumers are aware of what is concealed behind the ever growing megapixels specifications of a brand

new digital camera for instance. Roughly speaking, these items are all manufactured in the same way,

and, the machines required for this process are by far more hi-tech than any of the consumer electronics

articles they produce. Given the growing demand for consumer electronics items with larger memory or

more powerful signal processing engines, these machines are expected to achieve more and more stringent

specifications. Our concern is to improve the behavior of such high-end machines tools. In some aspects,

our contribution may be regarded as a background study whose eventual goal is to fulfill the headlong

rush into ever more demanding megapixels, gigaoctets and gigahertz expectations.

These machines are for instance in charge of memory inspecting or wafer engraving. In the latter case,

these systems are made up of valuable elements such as pristine glass lenses in charge of focusing a laser

beam to engrave patterns on a silicon wafer. The wafer itself is mounted on a motorization device, namely

a positioning table, able to perform stringent accuracy positioning with respect to the laser beam, the

overall quality of the resulting chips is clearly at stake. To have a complete survey of this high technology

machine, note it is located inside a clean room, namely, sealed and free from the least dust particles.

This work aims at improving the previously mentioned positioning tables, especially regarding two major

technological issues: the initialization and the rejection of a class of disturbances.

A classical initialization procedure, whose most obvious advantage is its simplicity, is achieved with

constant electrical currents. In some situations, it generates large oscillations and takes a long time to

compete. Shaky motions of this kind may not be suitable for some sensitive elements embedded in these

systems. This point motivates the development of a new technique. The initialization algorithm we
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Introduction

propose generates imperceptible displacements, resulting from time-varying electrical currents. According

to the experiments carried out on the considered motors, our method takes less time to complete and

also offers a better accuracy than the classical procedure. Moreover, the proposed method enhances the

functioning of the considered positioning tables, from an energy point of view.

It is also rather classical to drive positioning tables with a PID controller, to have the system tracking a

reference trajectory. For technological reasons, existing disturbances are not entirely removed by a PID

controller. They may be attenuated by using elements, namely actuators and sensors, of the highest

quality. However, on the considered scale, the positioning tables still have a tendency to jerk along.

Though minimal for some applications, it may alter the accuracy of the manufacturing processes. To have

a good understanding of this phenomenon, and also to circumvent it, we model these perturbations as

state-periodic functions acting on both the actuators and the sensors of positioning tables. The resulting

modeling turns out to be nonlinear. Thanks to a regular perturbation analysis, we prove that an observer-

based controller may be designed via a linear approximation of the previous nonlinear modeling. This

control scheme allows the global stability of the tracking errors despite the perturbations and the proposed

approximation. Our method turns out to cancel their harmful effects to the positioning of wafers beneath

the laser beam. The performances of a least quality motor driven by this algorithm are close to the

performances of a high-end motor driven by a PID controller. The even more interesting point is when one

drives a high quality motor with this new control scheme, the solution performs upstream specifications,

not necessarily required yet.

The previously detailed solutions are constrained to be implemented within the existing hardware archi-

tecture, that may not be turned upside down. Not only is this point fulfilled, but, the effectiveness of

these algorithms is established via experiments carried out on production line systems. Note the proposed

solutions are protected by industrial patents [33, 32] and already marketed or about to get so. Let us

insist on the theoretical bases proving the results exposed hereafter and in [34, 35]. In view of an in-

dustrial use, it is particularly satisfactory to implement functions featuring theoretical justifications. We

have also endeavored to propose convenient ways of tuning these techniques, like, for instance, the LMI

optimization tools [10] used to determine some parameters.

This manuscript is organized as follows. In the chapter 1, we first give a detailed description of the

systems entering the design of the considered high-precision positioning tables. We more specifically

focus on the need for a performing initialization procedure, as well as on a description of the defects

peculiar to both the sensors and actuators. It is showed that they generate state-periodic perturbations.

The chapter 2 addresses the initial phase estimation problem for brushless synchronous motors. Only

displacement measurements are used (no current) and friction, load and motor parameters are assumed

unknown. Because of friction, the system is modeled by a differential equation with a discontinuous

right-hand side. Open-loop inputs are designed to get the initial phase as a function of the magnitude of

2



Introduction

the displacements along the corresponding trajectories. The estimation relies on a complete classification

of the possible dynamical behaviors of the considered discontinuous right-hand side system with periodic

input, whatever values the unknown parameters may take. We propose an estimation formula of the

initial phase. Some experimental results are given, together with a comparison of our method to the

preexisting procedure. In the chapter 3, we consider the integration of a linear system affected by state-

periodic disturbances. To exhibit the solution of the corresponding nonlinear differential equation, our

approach relies on the Bell polynomials of the second kind. They allow us to conduct a complete regular

perturbation analysis, and, the integration is done via a power series expansion. We also derive sufficient

conditions yielding global asymptotic stability of these systems. When these conditions are met, the state-

periodic perturbations do not affect the evolution of the system. We turn this result into best account

in the chapter 4, which addresses the high precision positioning of tables in presence of spatially periodic

perturbation forces and measurements errors, namely cogging forces and interpolation errors. Using an

internal model representation of these disturbances, an observer-based controller only relying on position

measurements is derived. The key point is the use of the regular perturbation analysis of the chapter 3

to obtain the observer equations. Our solution guarantees global asymptotic convergence of the tracking

errors to zero, although the observer is based on the first order approximation resulting from a regular

perturbation analysis. The control scheme we come up with enables extremely accurate trajectory tracking

by canceling the harmful effects of cogging forces and interpolation errors. The tuning of the observer

gains is cast into some LMI optimization problems, allowing to set the desired performances of the system

in closed loop. To assess the validity of our approach, experimental results conducted on production line

linear brushless motors are presented in the chapter 5. Finally, for the sake of clarity, some points are

presented in appendices. Some proofs required to the establish the orbits classification of the chapter 2

are presented in the appendix A. The appendix B defines the Bell polynomials of the second kind, and

lists some of their main properties. In the appendix C, a review of the main results on analytical functions

is drawn up.
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CHAPTER 1

High-Precision Positioning Systems Description

1.1 Introduction

This chapter aims at giving a quick overview of the positioning systems used in the semiconductor industry,

such as wafer-steppers for lithography process. These machines are intended to perform repetitive tasks

at a high pace as the throughputs of the wafer fabs where they are set up directly rely on them. As

illustrated hereafter, these cycles are typically made up of step-and-scan motion phases under stringent

accuracy requirements. For instance, a step motion consists in performing a 10mm displacement within

200ms to eventually lie within a precision window 0.1µm wide. During scanning phases, systems are

driven at constant speed, namely they have to track a reference trajectory moving as fast as 500mm/s

while the considered accuracy specifications are at least as low as 1µm. These considerations may be

interpreted through a more common example. According to stepping specifications, a commercial plane

leaving Paris and heading for New-York would be required to arrive right in the center of the landing

runaway. Now consider two planes (more presumably jet fighters) flying side by side at Mach 2, to have

them fulfilling scanning specifications, their relative lateral displacements may not be larger than 1mm.

The framework of this study is the one depicted by the control architecture of figure 1.1. For technological

reasons far beyond the scope of our work, the different algorithms proposed hereafter are constrained to

be implemented within the so-called position controller. As a consequence, throughout all this work, the

following assumptions remain true and they widely motivate most of our choices:

(i) We shall only assume relative position measurements available, and, even though technologically

present, electrical currents may not be accessed. Optical resolvers, or absolute position sensors, are

too expensive and hard to set up, we only consider optical incremental position sensors measuring

relative displacements around the initial position.
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Chapter 1. High-Precision Positioning Systems Description

(ii) Given the inner loop dedicated to current control, we shall hereafter suppose it is tuned in such a

way that electrical currents instantaneously reach their desired values.

The different solutions we arrive at in the following may therefore be regarded as thrust or force control

schemes for the systems depicted on figure 1.1 (by implicitly assuming currents to directly generate thrust).

Let’s now give a brief survey of the systems used in the design of high-precision positioning tables.

mechanicsactuatorscurrent controllers

observation,

control and estimation

algorithms

position sensors

current sensors

position controller high−precision positioning table

displacement

measurements

Figure 1.1: General context of the study.

1.2 Modeling of the systems used for high-precision positioning

1.2.1 Interpolation errors

Sticking to the assumptions mentioned in the introduction, a one-dimensional position sensor mounted on

a motor (see figures 1.2 or 1.3 for instance) yields measurements of its displacements, hereafter referred

to as d, around its initial position ξ0, namely the position of the motor when first turned on. Obviously,

if ξ is the actual position of the motor, the following relation holds:

ξ = ξ0 + d. (1.1)

Let’s assume an estimate of ξ0 is available and noted ξ̂0
1.

Denoting by y the displacement measurements, the following relation holds:

y = d + w(ξ, t), (1.2)

with w a periodic function of the absolute position ξ (as well as of the displacement itself) which is slowly

time-varying. The function w models a phenomenon known as the interpolation error, which may be

explained as follows by first giving a brief description of this sensor. Practically speaking, an optical scale

is mounted on the fixed part of the motor. This scale features patterns equally spaced along a grating of

period P ′ in the ξ-direction. On the moving part of the motor, an optical probe is in charge of counting

the number of previous patterns and interpolate within a period P ′. Its embedded electrical circuits

generate the two following signals:

y1 = a1 cos

(
2π

P ′
ξ

)
+ b1 and y2 = a2 cos

(
2π

P ′
ξ

)
+ b2. (1.3)

1Deriving such a value is addressed in the chapter 2.
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Chapter 1. High-Precision Positioning Systems Description

First, it is rather obvious that, at most, this sensor is able to measure ξ modulo P ′. Since the number

of periods P ′ may be counted during a travel, the displacements recorded since the machine is on are

obtained. The most basic way to process data resulting from (1.3) consists in computing the following

value:

η =
P ′

2π
atan

(
a1 (y2 − b2)

a2 (y1 − a1)

)
.

However, the magnitudes (a1 and a2) and biases (b1 and b2) are likely to be slowly position dependent

and time-varying. With no additional information, or corrupted values of a1, a2, b1 and b2, the equation

(1.2) is thus derived from:

η = ξ + w(ξ, t) mod P ′.

Remark 1.1 w is mainly made up of harmonic components of periods P ′ and
P ′

2
whose magnitudes are

usually a few dozens nanometers. Moreover, P ′ is only a couple microns large, usually 4µm, 10µm or

20µm.

1.2.2 Permanent magnet linear motors

When such stringent accuracy requirements are at stake, direct drive solutions are chosen to actuate these

machines. They are capable of providing sufficient precision levels and needed smoothness of motion by

getting rid of undesirable phenomena such as hysteresis, backlash or mechanical play. In the following,

we are more specifically concerned with the use of brushless synchronous motors. They are preferred to

other actuators such as DC motors, for, among other things, their longer life time, improved cleanliness of

operation and better resistance to wear and tear. Note that we mainly focus on the use of linear motors

even though our results may easily extend to rotary motors.

There are two kinds of permanent magnets linear motors, namely ironless (see figure 1.3 and picture 1.5)

and ironcore motors (see figure 1.2 and picture 1.4). While ironless motors feature two magnetic tracks,

made up of permanent magnets, ironcore motors trap and guide the magnetic field generated by only

one track in the vicinity of the rotor windings. This cost-effective design spares the use of expensive and

eventually superfluous rare earths magnets and yields more powerful motors. However, as we shall see

later this design generates perturbation forces called cogging that significantly affects their performances,

while, ironless motors, though much more expensive, turn out to be significantly less affected by cogging.

1.2.3 Thrust expression

Whatever motors we consider, the expressions of the force directly generated by the electrical currents

turn out to be the same. The modeling proposed hereafter, though pertaining to two-phase motors, may

extend to those with three-phase windings.

Referring to the figures 1.2 and 1.3, a track made up of permanent magnets creates a magnetic field

assumed to be sinusoidal with respect to the position. Respectively note B0 and P the magnitude and

7



Chapter 1. High-Precision Positioning Systems Description

spatial period of the magnetic field, and let l be the length of the active windings so that the electrical

phase #1 creates a force F1:

F1 = i1lB0 sin

(
2π

P
ξ

)
+ (−i1)lB0 sin

(
2π

P
(ξ −

P

2
)

)
= Ki1 sin

(
2π

P
(d + ξ0)

)
, (1.4)

with K = 2lB0 the motor gain, i1 the electrical current in phase #1, d the displacements around the

initial position ξ0 as given by the definition (1.1). By calculations similar to (1.4), the force created by

the second electrical phase is derived:

F2 = Ki2 cos

(
2π

P
(d + ξ0)

)
, (1.5)

with i2 the electrical current value in phase #2.

Thanks to the current controller, the currents are actually given by:

i1 = i∗1 + δi1 and i2 = i∗2 + δi2, (1.6)

where i∗1 and i∗2 are commands and δi1 and δi2 model time-varying currents offsets.

The field-oriented method consists in driving the currents according to:

i∗1 = I(t) sin

(
2π

P

(
d + ξ̂0

))
and i∗2 = I(t) cos

(
2π

P

(
d + ξ̂0

))
, (1.7)

P
2

P
4

i1
i2

0

ξ

l

P

Figure 1.2: Schematic view of a two-phase ironcore
motor.

P
2

P
4

i1
i2

0

ξ

P

l

Figure 1.3: Schematic view of a two-phase ironless
motor.

Figure 1.4: Picture of the considered two-phase
ironcore motor.

Figure 1.5: Picture of the considered two-phase
ironless motor.
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Chapter 1. High-Precision Positioning Systems Description

where I is the only input to the current controller and ξ̂0 + d matches (1.1) with the use of an available

estimate of the initial position. Combining the equation (1.7) together with (1.4) and (1.5) yields the

expression of the global thrust Fe caused by the currents:

Fe = F1 + F2 = K cos (ϕ0 − ϕ̂0) I + K sin

(
2π

P
ξ

)
δi1 + K cos

(
2π

P
ξ

)
δi2, (1.8)

where ϕ0, called the initial phase of the magnetic field seen by the rotor (initial phase in short), and ϕ̂0

an estimated value of ϕ0 are given by:

ϕ0 =
2π

P
ξ0 and ϕ̂0 =

2π

P
ξ̂0. (1.9)

Remark 1.2 Let’s now be more concrete in highlighting the need for a precise initial phase determination.

The controllable thrust created by the windings is expressed as:

K cos (ϕ0 − ϕ̂0) I,

and, thus, ϕ̂0 is different from ϕ0, the actual thrust is less than the expected one, KI. This may affect both

the stability and the optimal use of the motors from an energy point . For a given reference current I, as

soon as the estimation error ϕ0− ϕ̂0 is non-zero, the motor does not deliver the maximal accessible thrust.

To reach a desired power, the user may then have to require larger currents. The term cos (ϕ0 − ϕ̂0) is

called the efficiency of the motor. Once the estimation is carried out, the motor is intended to be controlled

in closed loop from the position measurements. It is then rather sensible to assume cos (ϕ0 − ϕ̂0) ≈ 1. If

the estimation error actually turns out to be greater than
π

2
, applying a negative feedback will jeopardize

the overall stability of the system.

Remark 1.3 For the experiments conducted hereafter, the magnetic pitch of the ironless motor is P =

42mm, while for the ironcore motor P = 24mm.

1.2.4 Cogging forces

Cogging forces are due to the interaction of the magnetic field with the ferromagnetic material of the

rotor. Allowing for the periodic layouts of both the magnets and slots where rotor windings are located,

cogging forces are shown to be spatially periodic perturbations, see [53, 54, 55]. If we denote by Fc(ξ) the

cogging forces, supposed to be periodic with respect to the position ξ, the global thrust F of the motor

is then given by F = Fe + Fc which may be rewritten in:

F = Km cos (ϕ0 − ϕ̂0) I + Γ(ξ, t), (1.10)

where Γ(ξ, t) = Fc(ξ) + δi1 sin

(
2π

P
ξ

)
+ δi2 cos

(
2π

P
ξ

)
is periodic with respect to ξ and slowly time-

varying. Roughly speaking, under the effects of both cogging and currents offsets, the considered motors

have a tendency to stabilize at specific positions so as to minimize magnetic energy.

9



Chapter 1. High-Precision Positioning Systems Description

Remark 1.4 The magnitude of the cogging force directly relies on the amount of ferromagnetic material

used to build the rotor. As illustrated on the figure 1.2, to trap the magnetic field, ironcore motors require

a lot of this material. This generates cogging forces much larger than witnessed for ironless motors.

Actually, the motors of the figure 1.3 are only affected by currents offsets and to a much more limited

extent by cogging.

Remark 1.5 Some studies emphasize the role of symmetry breakings in the appearance of cogging forces.

The finite length of the rotor as well as slots (see figure 1.2), where windings are embedded, are some of

the design parameters inducing cogging forces. Each of them yields position periodic forces with a specific

spatial period, which, in the case of the finite length of the rotor turns out to be
P

2
. Since P is usually a

few dozens millimeters large, cogging forces are slowly varying with respect to the position but may have

quite large magnitudes.

1.2.5 Mechanical description

We now move on to the mechanical modeling of the considered positioning devices. The equations pre-

sented hereafter are greatly inspired by [7, 6]. Despite their apparent simplicity, the convincing experi-

mental results presented in the chapter 5 are entirely based on these modelings. For some applications, it

may be necessary to allow for high frequency mechanical modes. For the considered experimental testbed,

interpolation errors and cogging forces turned out to be the most limiting disturbances, as a consequence,

these are the only disturbances taken into account. However, especially regarding the cancellation of

spatially periodic perturbations, the chapters 3 and 4 are presented in a very general way, so that other

modeling featuring additional mechanical defects may fall under the scope of the presented work.

Fixed base

Denote by m the moving mass attached to the motor. From the expression of the forces created by

the motor (see (1.10)), applying the well-known fundamental principle of mechanics yields the following

system with control I and measurement y:

ξ̈ = u + d(ξ, t) −
µ

m
ξ̇ −

f

m
sign

(
ξ̇
)

u =
K

m
cos (ϕ0 − ϕ̂0) I

y = ξ + w(ξ, t).

(1.11)

It is moreover assumed that the motor is attached to a fixed frame and:

• µ and f respectively model viscous and dry frictions,

• given the equation (1.10), d(ξ, t) = Γ(ξ, t)/m.

10
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xP xB

ξ

(ωB, ζB)

0 x

Figure 1.6: Linear motor mounter on a moving base.

Moving base

The systems to be considered now are represented on the figure 1.6. The motor is mounted on a moving

base of mass M , whose movements with respect to a fixed frame are modeled by a second order linear

system with pulsation ωB and damping ratio ζB . The thrust given by (1.10) both acts on the moving

part of the motor (+F ) and the moving base (−F ). If we use the previous notations, together with

ξ = xP − xB, the following equations model the system depicted on figure 1.6:




ξ̇

ξ̈

ẋB

ẍB




=




0 1 0 0

0 −
µ

m
ω2

B 2ζBωB

0 0 0 1

0 0 −ω2
B −2ζBωB







ξ

ξ̇

xB

ẋB




+




0

m + M

mM

0

−1

M




(
u + d(ξ, t) −

f

m
sign

(
ξ̇
))

u =
K

m
cos
(
ϕ0 − ϕ̂0

)
I

y = ξ + w(ξ, t).

(1.12)

The optical scale and the probe are respectively attached to the moving base and the rotor of the motor.

As a consequence, the available measurements y are the relative displacements of the motor above the

moving base.

Remark 1.6 Some representative values for the previous system are the following:

m = 10kg, M = 1000kg, ζB = 0.2, ωB = 2π × 5rads−1.
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CHAPTER 2

Brushless Synchronous Motors Initialization

2.1 Introduction

We are concerned with getting the electrical currents in phase with the position of the motor coils inside

the magnetic field while sticking to the framework presented in the chapter 1 (see the figure 1.1). For

DC motors (with brushes), current commutations, as well as initialization, are performed mechanically,

while, for brushless motors (without mechanical contact), additional measurements and an algorithm are

required for the currents and the magnetic field to be in phase. This is exactly the purpose of the so-

called initialization procedure without which the electrical currents may not be driven according to the

equation (1.7). Moreover, as underlined with the remark 1.2, this initialization has to performed very

accurately. The method proposed hereafter uses only displacement measurements to determine the initial

rotor position (modulo the magnetic pitch) for brushless synchronous motors.

When it comes to reducing the number of sensors for economical reasons, current sensors are usually

preferred to position encoders. Several papers address sensorless control of synchronous motors, namely

the determination of the initial rotor position from current measurements. Some existing techniques

consist in using an observer to estimate the back-electromotive force induced in the coils, see [18] and

[30] for example. Other approaches determine the motor windings inductance by injecting either specific

carrier-frequency signals ([39], [43] and [37]) or no signal at all ([27] and [38]). Both these techniques rely

on current measurements to determine an electrical variable in phase with the magnetic field.

As described in the chapter 1, for applications featuring very demanding positioning precision, incremental

position sensors are prevailing, they only provide relative displacements around the initial position. Ac-

cording to the general framework set by the figure 1.1, we propose a method that provides an autonomous

current controller (whose current measurements are not made available to the initialization algorithm)

with specific inputs computed offline and simply get the corresponding displacement measurements back

13



Chapter 2. Brushless Synchronous Motors Initialization

to estimate the initial rotor position. This estimation scheme spares the use of additional and eventually

unnecessary Hall effect sensors.

An existing solution, falling under the scope of this context, consists in maintaining the electrical current

to a constant value in an electrical phase, and wait for the mechanical equilibrium. The corresponding

position shift is then used to compute an estimate of the initial phase. Unfortunately, before stabilizing,

erratic oscillations around the equilibrium position are witnessed. These movements are as large as the

magnetic pitch (typically a couple of millimeters according to the remark 1.3) and cannot be avoided.

This behavior might not be suitable for the aforementioned high precision applications. From now on,

this method is referred to as the classical method.

The method to be presented can be tuned to generate arbitrarily small magnitude displacements (a

couple of microns). According to the framework 1.1, neither magnetic field nor currents have to be fed

to the algorithm and the motor parameters are unknown (gain, load and friction). In these conditions,

our method features an accurate initial phase estimation with little computation, which eases real-time

implementation.

In the following, we shall derive the relation between the initial phase, the other unknown parameters and

the magnitude of the displacements when the system is driven by a periodic and open-loop input. This

analysis entirely relies on an exhaustive classification of the periodic orbits of the considered motors under

forced oscillations (section 2). It is more precisely shown how the friction, modeled by a discontinuous

function of the speed (which gives rise to a discontinuous right-hand side system in the sense of Filippov,

see [22]), affects the trajectories followed by the system. The measured displacements are then compared

with those predicted by the classification, and, thanks to an approximation, the initial position is obtained

(section 3). In section 4, experimental results are provided to consolidate the different assumptions and

show that our initialization procedure outperforms the so-called classical method.

2.2 Periodic orbits and dry friction

Prior to addressing the estimation problem pointed out in the previous introduction, a much more theoret-

ical study is required. Throughout this section, we are concerned with integrating a parameter-dependent

system featuring a discontinuous right-hand side. The main difficulty arises from the possible sliding

motion on the discontinuity surface. As illustrated in the next section, when a brushless motor is driven

by a periodic input, by using appropriate changes of coordinates, this study is of prime interest to relate

the magnitude of the measured displacements to the magnetic field phase when its load and gain, as well

as friction are unknown.

2.2.1 Periodic orbits classification

We are concerned with the study of the following system:

y′′ = u − λsign (y′) , (2.1)
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where u is the command, λ a positive scalar, and, this system is furthermore assumed to be initially at

rest.

Let y0 and y1 be two scalars, we define the function yr by:

∀τ, 0 ≤ τ ≤ 1, yr(τ) = y0 + (y1 − y0)
(
6τ5 − 15τ4 + 10τ3

)
. (2.2)

Let u0 be given by:

∀τ, 0 ≤ τ ≤ 1, u0(τ) = y′′
r (τ)

/
y′′
max and y′′

max = max
0≤τ≤1

|y′′
r (τ)| . (2.3)

The command u is built by intervals of length 1 according to:

∀k ≥ 0, Ik = [k, k + 1] , ∀τ ∈ Ik, u(τ) = (−1)k u0(τ − k). (2.4)

This part aims at integrating the equation (2.1) driven by the command u for any λ > 0. Since this

system features a discontinuous right-hand side, one has to allow for two kinds of behaviors, according to

[22]:

• whenever y′ < 0 or y′ > 0, the sign function is constant,

• if y′ = 0, the system slides on the discontinuity surface y′ = 0 as long as |u(τ)| ≤ λ.

The command is bounded by 1. If λ ≥ 1, the system remains indefinitely at rest. The following theorem

completely classifies the periodic orbits of period 2 for any λ such that 0 ≤ λ ≤ 1.

Theorem 2.1

For any λ between 0 and 1, the system (2.1), initially at rest and driven by the command u defined

by the equation (2.4), features a unique attractive periodic orbit of period 2. There exist two scalars

λ1 and λ2 with 0 < λ1 ≤ λ2 ≤ 1, depending only on the expression of u0 given by (2.3). They define

three and only three possible behaviors:

(i) 0 ≤ λ ≤ λ1: The system asymptotically reaches an orbit along which no sliding motion on

y′ = 0 occurs (see simulation results on figure 2.1).

(ii) λ1 < λ ≤ λ2: Within a period, the system reaches a periodic orbit along which two sliding

motion phases occur (see simulation results on figure 2.2).

(iii) λ2 < λ ≤ 1: Within a period, the system reaches a periodic orbit along which four sliding

motion phases occur (see simulation results on figure 2.3).

The proof of this theorem requires several definitions and properties to be given. Each of the cases

enumerated in the theorem are then proved for the command u based on the polynomial function yr.

However, our findings are presented in a broad context, and, the proposed approach is likely to cope with

any other elementary function yr.
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Figure 2.1: Trajectories versus time and in the state-space domain for the system (2.1) with 0 ≤ λ ≤ λ1.
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Figure 2.2: Trajectories versus time and in the state-space domain for the system (2.1) with λ2 ≤ λ ≤ λ1.
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Figure 2.3: Trajectories versus time and in the state-space domain for the system (2.1) with λ2 ≤ λ ≤ 1.
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Figure 2.4: Plot of u and the roots α, β.
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Figure 2.5: Plot of v0 and τ∗.

2.2.2 Preliminaries

Let first give some definitions of crucial interest for the following.

Definition 2.1 As illustrated on the figure 2.4, for any λ lying between 0 and 1, let α and β be the roots

located in [0, 1/2] of the equation u0(τ) = λ .

Remark 2.1 Since u0 is antisymmetric with respect to 1/2, the following relation holds:

u0(1 − α) = u0(1 − β) = −λ.

Definition 2.2 We define v0 by integrating u0, more precisely v0(t) =

∫ t

0

u0(t
′)dt′. The function v0 is

plotted on the figure 2.5. It can be seen that v0 is symmetric with respect to 1/2, increasing on [0, 1/2]

and then decreasing on [1/2, 1]. Let vmax = v0(1/2) be its maximal value.

Definition 2.3 Let fλ, gλ and hλ be the following functions:

∀τ, 0 ≤ τ ≤ 1, fλ(τ) = v0(τ)−λτ, gλ(τ) = v0(τ)+λτ, hλ(τ) = −fλ(1−τ) = −v0(τ)−λτ +λ. (2.5)

Remark 2.2 We compute the derivatives of these functions with respect to τ :

f ′
λ(τ) = u0(τ) − λ, g′λ(τ) = u0(τ) + λ, h′

λ(τ) = −u0(τ) − λ.

According to the definitions of α and β together with the figure 2.4, the variations of these functions are

given by the figure 2.6.

Remark 2.3 For a different function yr, the same variations as those of the figure 2.6 would be derived

provided u0 were still antisymmetric with respect to 1/2 and there were only two roots α and β to the

equation u0(τ) = λ on [0, 1/2].
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Figure 2.6: Variations of the functions fλ, gλ and hλ.

Definition 2.4 If λ ≤ 2vmax, τ∗ is defined as the unique root lying between 1/2 and 1 of the equation

fλ(τ∗) = hλ(τ∗). Actually, τ∗ satisfies the relation:

1

2
≤ τ∗ ≤ 1, v0(τ

∗) =
λ

2
. (2.6)

Remark 2.4 Note that:

hλ(τ∗) = λ

(
1

2
− τ∗

)
≤ 0.

Since hλ is positive between 1−α and 1 (see figure 2.6), τ∗ may not be greater than 1−α. It results that

τ∗ is a decreasing function of λ (see figure 2.5) located between 1/2 and 1 − α.

We now set out two properties whose respective proofs are given by the figures 2.7 and 2.8. These plots are

specific to the polynomial function yr in the equation (2.2), however, the same curves could be obtained

for any other function yr.

Property 1 There exists a scalar λ1 > 0 such that if 0 ≤ λ ≤ λ1:

1 − β ≤ τ∗ ≤ 1 − α,

while, if λ1 < λ ≤ 2vmax:
1

2
≤ τ∗ < 1 − β.

For the function u0 defined by (2.3), λ1 = 0.58.

Property 2 There exists a scalar λ2 > 0 such that if 0 ≤ λ ≤ λ2:

fλ(α) + fλ(β) ≥ 0

while if λ2 < λ ≤ 1:

fλ(α) + fλ(β) < 0.

For the function u0 defined by (2.3), λ2 = 0.71.

In order to prove the theorem 2.1, we shall deal with the following issues:

• studying τ0 solving the equation fλ(τ0) = fλ(α),

• studying the mapping from x to y according to gλ(y) = gλ(x),
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• studying the mapping from x to y according to fλ(y) = hλ(x).

These points are discussed hereafter in several properties. The properties 1 and 2 entirely rely on the

expression of yr (equation (2.2)) to get the plots of the figures 2.7 and 2.8. From now, we give results as

general as possible in that they do not necessarily depend upon the function yr. In the end, the approach

we propose hereafter to integrate (2.1) may easily be carried out for any other yr. For simplicity’s sake,

the sometimes tedious proofs of these properties are reported in the appendix A.

Property 3 For all λ such that λ ≥ λ1, if τ0 > α solves the equation fλ(τ0) = fλ(α), then τ0 belongs to

the interval [β, 1 − β].

Property 4 For any λ such that λ ≤ λ1, if the relation fλ(α) ≥ fλ(τ∗) holds, one may build an interval

Iλ satisfying the properties:

(i) Iλ is included in [1 − β, 1 − α],

(ii) τ∗ (given by the equation (2.6)) belongs to Iλ,

(iii) for any x ∈ Iλ, the equation fλ(y) = hλ(x) admits a unique root y in the interval [0, 1], y belongs to

Iλ.

Property 5 For any λ such that λ ≤ λ1, we consider the intervals Iλ of the property 4 and we define

the series un by:

• u0 ∈ Iλ,

• ∀n ≥ 0, fλ(un+1) = hλ(un).

For all n ≥ 0, un ∈ Iλ and the numerical series un converges to τ∗, the root of the equation (2.6).

Property 6 For any λ between λ1 and λ2, the equation fλ(y) = hλ(1− β) has only one root, denoted by

y, in the interval [0, 1], moreover y belongs to [1 − β, β].
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Property 7 For any λ such that λ ≤ λ1, consider the intervals Iλ defined by the property 4, for all

x ∈ Iλ, the equation gλ(y) = gλ(x) has no root y in [x, 1].

Property 8 For any λ such that λ ≤ λ2, the equation gλ(y) = gλ(1 − β) has no root y in [1 − β, 1].

Property 9 For any λ ≥ λ2,

• If hλ(1 − β) ≤ 0, the equation fλ(y) = hλ(1 − β) has a unique root y in [0, α] while the equation

gλ(z) = gλ(1 − β) has no root z in [1 − β, 1].

• If hλ(1−β) ≥ 0, the equation gλ(z) = gλ(1−β) has a unique root z in [1−β, 1] while fλ(y) = hλ(1−β)

has no root y in [0, α].

2.2.3 Orbits of the first kind

On the figure 2.9 we can see that, for λ ≤ λ1, fλ(α) is greater than > fλ(τ∗). For the specific function

yr, we may then make use of the intervals Iλ defined by the property 4. We shall moreover be interested

in the series τn and τ ′
n that we define on each intervals In (given by (2.4)) as follows:

• the speed y′ of the system (2.1) vanishes in τ = nT + τn,

• the system (2.1) slides on the discontinuity surface y′ = 0 from nT + τn to nT + τ ′
n.
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Figure 2.9: Plots of fλ(α) and fλ(τ∗).

The proof of the lemma 2.1 is also the proof of the point (i) of the theorem 2.1.

Lemma 2.1 For any λ such that λ ≤ λ1, if the system (2.1), initially at rest, is driven by u (given by

(2.4)), for all n ≥ 1, τ ′
n = τn and τn converges to τ∗ defined by (2.6).

Proof:

According to the plot of the figure 2.4 and the definitions of α and β, the system leaves the discontinuity

surface in τ = α. Until the next cancellation of the speed supposed to happen in τ = τ0, it operates
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with positive velocity. As a consequence:

y′(τ0) − y′(α) = 0 =

∫ τ0

α

(u0(t
′) − λ) dt′ = fλ(τ0) − fλ(α). (2.7)

According to the property 3, two situations may occur:

• τ0 belongs to [β, 1−β]. In this case, when the velocity vanishes, the input is not large enough to

leave the discontinuity surface. Referring to the figure 2.4, a sliding motion phase happens until

τ ′
0 = 1 − β where u equals −λ.

• τ0 belongs to [1 − β, 1 − α] where the command u is larger than friction λ as depicted on the

figure 2.4. The system simply goes through the discontinuity surface and τ ′
0 = τ0.

The velocity y′ takes negative values until the next velocity cancellation, which may occur either

between τ ′
0 and 1 or for τ greater than 1. Consider the first case, we are looking for x, with τ ′

0 < x < 1,

such that:

y′(x) − y′(τ ′
0) = 0 =

∫ x

τ0

(u0(t
′) + λ) dt′ = gλ(x) − gλ(τ ′

0).

Using the property 7, since τ ′
0 ∈ Iλ, the previous equation has no root in [τ ′

0, 1]. The next time y′

vanishes necessarily happens for τ greater than 1. Suppose this is the case in 1 + τ1 with τ1 satisfying

the following relation:

y′(1 + τ1) − y′(τ ′
0) =

∫ 1+τ1

τ ′

0

u(t′)dt′ + λ(1 + τ1 − τ ′
0)

=

∫ 1

τ ′

0

u0(t
′)dt′ +

∫ τ

0

(−u0(t
′)) dt′ + λ(1 + τ1 − τ ′

0)

= hλ(τ ′
0) − fλ(τ1) = 0.

(2.8)

According to the property 4, there is a unique root τ1 fulfilling the equation (2.8), and τ1 belongs to

Iλ. Since Iλ is included in [1 − β, 1 − α], where |u| ≥ λ, we have τ ′
1 = τ1.

We shall now prove the following assumption by induction:

(Hn) τ ′
n−1 ∈ Iλ, fλ(τn) = hλ(τ ′

n−1)

We have already proved that H1 is valid. Suppose now that n = 2p and H2p is fulfilled. According

to the definition of the intervals Iλ (see property 4), if τ2p ∈ Iλ ⊂ [1 − β, 1 − α], the system simply

crosses the discontinuity surface in 2p+ τ2p and thus τ ′
2p = τ2p. The command u is built in such a way

that the velocity becomes negative in 2p + τ ′
2p. As previously discussed to derive τ1, the velocity may

either vanish between 2p + τ ′
2p and 2p+ 1 or beyond 2p+ 1. Consider the first case, we are looking for
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τ between τ2p and 1 solution of y′(2p + τ) = 0, τ is given by:

y′(2p + τ) − y′(2p + τ2p) =

∫ 2p+τ

2p+τ2p

(u(t′) + λ) dt′

=

∫ τ

τ2p

(−1)2pu0(t
′)dt′ + λ (τ − τ2p)

= gλ(τ) − gλ(τ2p) = 0.

We use the property 7 to conclude that, since τ2p ∈ Iλ, there is no root to the previous equation

between τ ′
2p and 1. The next time the velocity equals zero happens in 2p + 1 + τ2p+1 such that

y′ (2p + 1 + τ2p+1) − y′ (2p + τ2p) =

∫ 1

τ2p

(
(−1)2pu0(t

′) + λ
)
dt′ +

∫ τ2p+1

0

(
(−1)2p+1u0(t

′) + λ
)
dt′

= hλ(τ2p) − fλ(τ2p+1) = 0.
(2.9)

This proves the assumption (H2p+1). The same reasoning would apply for n = 2p + 1, except one

would replace λ by λ and u0 by −u0 whenever this quantity would be used. According to the property

5, since τ ′
1 = τ1 ∈ Iλ:

∀n ≥ 1, τ ′
n = τn, τn → τ∗. (2.10)

2.2.4 Orbits of the second kind

The series τn and τ ′
n still have the same meanings. The following lemma may be seen as the proof of the

point (ii) of the theorem 2.1.

Lemma 2.2 For any λ between λ1 and λ2, if the system (2.1) is initially at rest and driven by the

command u of the equation (2.4), for all n ≥ 1, τ ′
n = 1 − β and τn = τ the unique root on [0, 1] of the

equation fλ(τ) = hλ(1 − β).

Proof:

The property 3 ensures that τ0 belongs to the interval where u is smaller than friction λ. This implies

that sliding occurs until τ ′
0 = 1 − β. Let’s now find out whether the next speed cancellation happens

before or after 1. In the first case, this amounts to exhibiting τ between 1 − β and 1 such that

gλ(τ) = gλ(1 − β). The previous equation does not have any roots of this kind as suggested by the

property 8. Our task consists then in finding τ1 such that y′(1 + τ1) = 0, this boils down to solving

the following equation:

y′(1 + τ1) − y′(τ ′
0) =

∫ 1

τ ′

0

(u0(t
′) + λ) dt′ +

∫ τ1

0

(−u0(t
′) + λ) dt′ = fλ(τ1) − hλ(1 − β) = 0.

The unique root τ1 belongs to [β, 1 − β] as provided by the property 6. The system slides on the

discontinuity surface until 1+ τ ′
1, namely as long as |u| is smaller than λ. We basically have τ ′

1 = 1−β

and the situation is similar to the situation in τ ′
0 = 1−β, apart from the fact that u(1+ τ ′

1) = −u(τ ′
0).
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It is then obvious that:

0 ≤ τ ≤ 1
/

fλ(τ) = hλ(1 − β), τn = τ, τ ′
n = 1 − β, ∀n ≥ 0. (2.11)

2.2.5 Orbits of the third kind

The series τn and τ ′
n still bear the same meanings. Consider furthermore εn and ε′n defined by:

• the velocity of the system (2.1) is non zero from n + τ ′
n to (n + 1) + εn and from (n + 1) + ε′n+1 to

(n + 1) + τn+1,

• sliding on the discontinuity surface occurs between (n + 1) + εn and (n + 1) + ε′n+1.

As illustrated hereafter, εn may sometimes take negative values while ε′n is always greater than zero. The

following lemma may be regarded as the proof of the point (iii) of the theorem 2.1.

Lemma 2.3 For any λ such that λ ≥ λ2, if the system is initially at rest and driven by the command u

defined by the equation (2.4), for all n ≥ 0, ε′n = α, τ ′
n = 1 − β, τn = τ0 defined in the property 3 and εn

is derived from the unique root resulting from the property 9.

Proof:

In view of the property 3, τ0 belongs to [β, 1− β] and τ ′
0 = 1− β. We split this study according to the

two cases of the property 9:

• hλ(1−β) ≤ 0: Let τ be the next time the speed vanishes. If τ belonged to the interval [1−β, 1],

the equation gλ(x) = gλ(1 − β) would have a root in that interval. From the property 9, we

know that may not occur. Necessarily x ≥ 1, and we rewrite it into 1 + ε0 with ε0 solving

fλ(ε0) = gλ(1 − β). The smallest ε0 satisfying this equation belongs to [0, α] and is also unique

according to the property 9. The system may not leave the discontinuity surface before the

command becomes larger than friction. Basically, it happens in 1 + α and thus ε′1 = α. The

steady state is thus reached before τ = 2 and four sliding motion phases occur along the orbit:

0 ≤ ε ≤ α
/

fλ(ε) = hλ(1 − β), τn = τ0, τ ′
n = 1 − β, ε′n = α, εn = ε, ∀n ≥ 0. (2.12)

• hλ(1 − β) ≥ 0: The next speed cancellation occurs before 1. Actually, as suggested by the

property 9, the equation gλ(1 − β) = gλ(ε) may be solved for ε between 1 − α and 1, while

fλ(ε) = hλ(1− β) may no longer be solved on [0, α]. The system remains at rest until 1 + α. As

previously, the steady state is reached within one period and four sliding motion phases happen

along the orbit. Moreover, one defines:

1 − α ≤ ε ≤ 1
/

gλ(ε) = gλ(1 − β), τn = τ0, τ ′
n = 1 − β, ε′n = α, εn = ε − 1, ∀n ≥ 0.

(2.13)
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Figure 2.10: Magnitude of the displacements in steady state.

2.2.6 Integration despite dry friction

For any λ, the system reaches a periodic orbit. One may then integrate (2.1) twice to derive the maximal

magnitude of the displacements in steady state. Let ∆(λ) represent this quantity. For any λ, in steady

state, the velocity is less than zero before 2p+1+ τ2p+1, equals zero in 2p+1+ τ2p+1, remains constant at

zero until 2p+1+ τ ′
2p+1, and then, at least locally, becomes negative beyond 2p+1+ τ ′

2p+1. The position

thus reaches a local minimum in 2p + 1 + τ ′
2p+1. Using some rather similar considerations, one may show

that the position is locally maximal in 2p + 2 + τ2p+2.

∆(λ) = lim
n→∞

y(n + 1 + τn+1) − y(n + τ ′
n)

 = lim
p→∞

(
y(2p + 2 + τ2p+2) − y(2p + 1 + τ ′

2p+1)

)
. (2.14)

Note that for λ ≥ λ2, even if the velocity may equal zero between 2p + 2 + ε2p+1 and 2p + 2 + ε′2p+2,

its sign does not change. This is only an inflexion point, and the relation (2.14) is well valid for λ ≥ λ2.

In steady state, if we use the equations (2.10) for λ ≤ λ1, (2.11) for λ1 ≤ λ ≤ λ2 and the equations

(2.12) and (2.13) for λ2 ≤ λ ≤ 1, integrating (2.1) twice is easily conducted and the function ∆(λ) of the

equation (2.14) is plotted on the figure 2.10.

2.3 Estimation procedure

2.3.1 Brushless synchronous motors in steady state

From now on and until the end of this chapter, we consider that the mechanical behavior of the considered

motors is given by the very simplified modeling:

ξ̈ =
K

m
cos (ϕ0 − ϕ) I(t) −

f

m
sign

(
ξ̇
)

, (2.15)

that we have come up with according to the elements reported in the remark 2.5. The notations remain

the same as in the chapter 1, and, moreover I and ϕ may be set to any desired values. This chapter is
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intended to estimating ϕ0 from the only measurements of the displacements d = ξ − ξ0 around the initial

position.

In view of the equation (2.2), y0 and y1 > y0 are two scalars, and we also consider a length of time T > 0

so that the function I(t) is defined as follows:

∀k ≥ 0, ∀t, kT ≤ t ≤ (k + 1)T, I(t) = (−1)k yr

(
t − kT

T

)
m̂/K̂, (2.16)

where m̂ and K̂ are rough estimated values of respectively the mass and the gain of the motor. Let η be

the following rate η = Km̂
/(

K̂m
)
, measuring to what extent m̂ and K̂ are corrupted. The value of η is

thus supposed unknown.

Let δ be the magnitude of the displacements in steady state when the command given by the equation

(2.16) is applied to the motor (2.15). The following quantities will also be used in the following:

ξ̈max = y′′
max

/
T 2, µ = mη |cos (ϕ0 − ϕ)| ξ̈max

/
f, ε = sign (cos (ϕ0 − ϕ)) . (2.17)

The theorem to be proved hereafter states that, under the effect of the 2T -periodic function I(t), the

motor reaches a periodic orbit of period 2T and the expression of the displacements in steady state is

derived.

Theorem 2.2

The system (2.15) driven by the command given by the equation (2.16) reaches a 2T -periodic orbit

along which the magnitude of the displacements is given by:

δ = εη cos (ϕ0 − ϕ) y′′
max∆

(
1

µ

)
, (2.18)

with ∆ plotted on the figure 2.10.

Proof:

Let τ be the reduced time τ = t/T . The equation (2.15) may be written with respect to τ . Recalling

the definition of the interval I2p by the equation (2.4), if τ belongs to this interval, one has:

d′′ = η cos (ϕ0 − ϕ) y′′
r −

fT 2

m
sign (d′) ,

where d′ and d′′ stand for the first and second derivative of d(τT ) with respect to τ . We now divide

both sides of the previous equation by η |cos (ϕ0 − ϕ)| y′′
max and use the notations (2.17) at the same

time. The equation (2.15) is rewritten in:

y′′ = u − µ−1sign (y′) , (2.19)

where u defined by the equation (2.4) and y =
d

η |cos(ϕ0 − ϕ̂0)| y′′
max

. The theorem 2.1 classifies the
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periodic orbits of the system (2.19). The magnitude of y in steady state equals ∆(1/µ), represented

on the figure 2.10. Writing the system (2.19) back with time t, we arrive at the conclusion that

the commands (2.16) creates oscillations of period 2T . With δ the magnitude of the displacements

d = η |cos(ϕ0 − ϕ̂0)| y
′′
max in steady state. The following holds:

δ = η |cos (ϕ0 − ϕ)| y′′
max∆

(
1

µ

)
= εη cos (ϕ0 − ϕ) y′′

max∆

(
1

µ

)
.

Remark 2.5 In the chapter 1, to compute the thrust generated by the electrical currents (see (1.8)), we

assumed an estimate ϕ̂0 of the initial phase ϕ0 was available (as defined by the equation (1.9)). With

such a prerequisite, the electrical currents were driven according to the equation (1.7). This chapter is

dedicated to obtaining such an estimate with the only knowledge of the displacements d (defined by the

equation (1.1)). We may for instance feed the currents controllers with the following references:

i∗1 = I(t) sin

(
2π

P
d + ϕ

)
and i∗2 = I(t) cos

(
2π

P
d + ϕ

)
. (2.20)

Instead of the equation (1.8), we arrive at the following expression of the thrust:

Fe = K cos (ϕ0 − ϕ) I, (2.21)

where the currents offsets δi1 and δi2 (see equation (1.6)) are neglected. Let’s now use this expression

together with the mechanical description (1.11) of a motor mounted on a fixed frame where cogging forces,

as well as interpolation errors are also neglected. We arrive at the very simple modeling (2.15) used

throughout this chapter.

Remark 2.6 Let Γ(µ) be the following function:

Γ(µ) = y′′
max∆(1/µ)

/
(y1 − y0) , (2.22)

whose representation is given by the figure 2.11. Γ takes values between 0 and 1 and only depends on the

polynomial part of the equation (2.2) defining yr. From now on, we only consider the following expression

of δ:

δ = εη cos (ϕ0 − ϕ) (y1 − y0) Γ (µ) . (2.23)

Remark 2.7 Observer that δ can be measured and ε also, it is related to the direction in which the

system (2.15) initially leaves the discontinuity surface. By an appropriate choice of ϕ, our open goal now

consists in extracting ϕ0 from the relation (2.23) in spite of the lack of knowledge on the motor’s gain,

mass (parameter η) and friction (f). During the estimation procedure, the displacements magnitude is

controlled by tuning y1 and y0 so that the motor remains close to its initial position.
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Figure 2.11: Plot of the function Γ(µ).

2.3.2 Estimation formula

We consider a set of N real numbers ϕi, and, for each of them, we measure δi when applying the command

(2.16):

∀i , 1 ≤ i ≤ N, δi = ηεi cos(ϕ0 − ϕi) (y1 − y0) Γ(µi), (2.24)

where we furthermore note:

µ0 = mηξ̈max

/
f, ∀i, 1 ≤ i ≤ N, εi = sign (cos(ϕ0 − ϕi)) and µi = εiµ0 cos(ϕ0 − ϕi). (2.25)

According to the previous notations, picking up i and j between 1 and N with i 6= j, the following relation

holds:

δi µj Γ (µj) = δj µi Γ (µi) .

We define Jij (µ0 , ϕ0) by:

Jij (ϕ0 , µ0) =

(
δi µj ∆(µj) − δj µi ∆(µi)

)2

. (2.26)

Keep in mind that µi depends on both ϕ0 and µ0 as suggested by (2.25).

Estimating the initial phase eventually amounts to solving the following optimization problem:

(ϕ̂0 , µ̂0) = arg min
ϕ0∈R

µ0∈R
+



∑

i ,j
j>i

Jij (ϕ0 , µ0)


 (2.27)

2.3.3 Approximated solution

Solving the problem (2.27) may be undertaken by numerical iterative methods. We suggest to approximate

the original problem by another optimization problem whose resolution is rather straightforward. This

approach is best suited for the online implementation as it lightens the computation burden. The relevancy

of the approximation will be illustrated by experimental results.
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We shall derive an optimization problem close to (2.27) but whose resolution may be conducted analytically

rather than numerically. To this end, the function µΓ(µ) is linearized in the vicinity of 1 by assuming

there exists a scalar γ > 0 such that:

∀µ ≥ 1, µΓ(µ) ≈ γ(µ − 1). (2.28)

The previous approximation is illustrated on the figure 2.12 and is only valid for µ ≥ 1. The linearization

(2.28) may now be used to approximate Jij (ϕ0 µ0), previously defined by (2.26), into J∗
ij (ϕ0 µ0):

J∗
ij (ϕ0 µ0) = γ2 (δi (µj − 1) − δj (µi − 1))

2
= γ2

((
µi µj

)
Aij

(
µi

µj

)
+ bT

ij

(
µi

µj

)
+ c2

ij

)
, (2.29)

where the notations are the following, for all i and j satisfying i 6= j:

Aij =

(
δ2
j −δiδj

−δiδj δ2
i

)
, bT

ij = −2 (δi − δj)
(
−δj δi

)
, cij = (δi − δj)

2 . (2.30)

The index to minimize in (2.27) may also be approximated by J∗(ϕ0, µ0), a quadratic form in the vector

µ = (µ1 . . . µN )
T
:

J∗(ϕ0, µ0) = γ2
(
µT Aµ + bT µ + c

)
. (2.31)

A is a square matrix of size N , b is an N -dimensional column vector and c a scalar. We denote by A(i, j)

the elements of the matrix A, b(i) those of b, they are given by:

• ∀ (i, j) , A(i, i) =
∑

j 6=i

δ2
j and A(i, j) = A(j, i) = −δiδj , for j > i,

• ∀i, b(i) = 2
∑

j 6=i

(δj (δi − δj)) ,

• c =
∑

i,j

cij .

(2.32)
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Figure 2.12: Plot of the function µΓ(µ) and its approximation γ (µ − 1).
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Observe that the constant γ does not play any role on the minimization of J∗. To turn to best account

that J∗ is quadratic in µ, the µi’s are now expressed in cartesian coordinates:

µi = µ0

(
εi cos(ϕi) εi sin(ϕi)

) ( cos (ϕ0)
sin (ϕ0)

)
.

Let θ ∈ R
2 and M ∈ R

N×2 be defined as:

θ = µ0

(
cos (ϕ0)
sin (ϕ0)

)
and M =




ε1 cos(ϕ1) ε1 sin(ϕ1)
...

...
εN cos(ϕN ) εN sin(ϕN )


 ,

so that relation µ = Mθ holds and µ is linear in the new optimization variable θ. Note that ϕ0 is the

phase of θ and µ0 its norm. According to the previous change of coordinates, the original function to

minimize, J , admits the following approximation J̃(θ) = J∗ (ϕ0(θ) , µ0(θ)) explicitly given by::

J̃(θ) = θT MT AMθ + bT Mθ + c.

Since the linearization (2.28) is only valid for µ ≥ 1, the minimization of the quadratic form J̃(θ) has to

be carried out while simultaneously fulfilling the N constraints:

∀i, 1 ≤ i ≤ N, εi

(
cos(ϕi) sin(ϕi)

)
θ ≥ 1.

Let θ̂ be the solution of the optimization problem:


θ̂ = arg min
θ∈R2

J̃(θ)

subject to:

∀i, 1 ≤ i ≤ N, εi

(
cos(ϕi) sin(ϕi)

)
θ ≥ 1

(2.33)

θ̂ is obtained by writing the optimality conditions of Kuhn and Tucker, see [17]. The phase of the vector

θ̂ is the much-sought after ϕ̂0.

2.4 Experimental results

2.4.1 Classical method

We want to compare the previously presented method to the so-called classical method briefly exposed

hereafter. The context depicted by the figure 1.1 is still considered, namely the electrical currents are

controlled and only displacements around the initial position are measured. The currents are now driven

as follows:

i∗1 =
m̂

K̂
ξ̈0 and i∗2 = 0, (2.34)

where ξ̈0, constant and homogeneous to an acceleration, is set to any desired value while m̂ and K̂ are

still a priori estimates of the motor’s mass and gain. Rather than (2.15), the evolution of the system is

now given by:

ξ̈ = η sin

(
2π

P
d + ϕ0

)
ξ̈0 −

f

m
sign(ξ̇), (2.35)
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with η still bearing the same meaning as previously. In a way similar to (2.17), we define the parameter

µ′ by:

µ′ = mηξ̈0

/
f. (2.36)

As we shall show in the following, the effectiveness of this classical method may be determined from the

only value µ′.

The system (2.35) features damped oscillations approximately as large as the magnetic pitch P (several

millimeters as given by the remark 1.3) and, it eventually stabilizes under the effect of the friction. Note

d∞ the displacement from the initial position x0 =
P

2π
ϕ0 to the position at rest. Once the equilibrium is

reached, the magnitude of the friction is necessarily larger than the command:

sin

(
2π

P
d + ϕ0

)
≤

1

µ′
.

The corresponding set of possible values ϕ0 is thus given by:

−
2π

P
d∞ + kπ − arcsin

(
1

µ

)
≤ ϕ0 ≤ −

2π

P
d∞ + kπ + arcsin

(
1

µ

)
.

The equilibrium positions in the vicinity of points where the magnetic phase if (2p + 1)π are stable, while

those where the magnetic phase is close to 2pπ are unstable. If the system (2.35) is at rest, ϕ0 (module

2π) lies within an interval centered at π −
2πd∞

P
whose width equals 2arcsin

(
1

µ′

)
. Since µ′ is unknown,

the so-called classical method consists in estimating ϕ0 according to:

ϕ̂0 ≈ π −
2 π

P
d∞ mod 2 π. (2.37)

Actually, the smaller µ′, the larger the error on the estimate. The classical method is getting quite biased if

friction gets too large with respect to the magnitude of the command, namely ξ̈0. This may be interpreted

as the command (given by (2.34)), or this method more exactly, being not adapted to friction.

2.4.2 Results

We now illustrate the results of our method in comparison with the classical method. To this end, let’s

consider two brushless linear motors. The first of them is an ironless motor featuring high quality ball-

bearings, while the second is an ironcore motor known to present more important friction, even if, in

practice, this information is not used by the estimation algorithms. According to the previous notations,

for the first of them we note η1, m1, f1 and for the latter η2, m2 and f2.

The experiments presented hereafter are carried out while ensuring µ0 = µ′, which implies ξ̈0 = ξ̈max.

We are concerned with the average estimation error ϕ̂0 − ϕ0 when the initial phase ϕ0 is varied between

0 and 2π. The actual value of the initial phase is derived from complementary back-emf measurements

that are not presented here.

We consider the first motor to experimentally check out that the precision of the classical method worsens

as µ′ = η1m1ξ̈0/f1 decreases, while our solution does not depend upon µ0 = η1m1ξ̈max/f1. To this end,
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we consider the following two experimental setups. First, ξ̈0 = ξ̈max = 1000mm/s2 with the average

estimation error plotted on figure 2.13(a) and then ξ̈0 = ξ̈max = 500mm/s2 with the same data plotted

on the figure 2.13(b). For this motor, our procedure yields an angular precision better than 10◦, giving

an efficiency, such as defined in the remark 1.2, greater than 98%. For higher values of ξ̈0 and ξ̈max,

the classical method yields almost the same performances, though less accurate. However, keep in mind

that erratic and large magnitude (closely related to the magnetic picth P , namely several millimeters)

displacements are generated while our method is tuned to cause very small deviations (a couple microm-

eters) around the initial position by an appropriate choice of T , y0 and y1 in the equation (2.16). As

expected, when µ′ decreases (see figure 2.13(b)), the classical method exhibits an only 30◦ precision and a

corresponding efficiency of 87% while our method still offers the same 98% efficiency. For the motor with

little friction (figures 2.13(a) and 2.13(b)), the precision of our method does not depend on the unknown

motor parameters (µ0) and guarantees a substantially better energetic efficiency.

Let’s now move on to the second motor which features much friction, therefore the reference acceleration

has to be larger and is set to ξ̈max = ξ̈0 = 4000mm/s2. The average estimation error is given for both

methods on the figure 2.13(c). Our method turns out to be very robust to dry friction since the angular

precision remains close to 10◦ while the classical method does not perform that well.

As illustrated by these experimental results carried out on production line motors, our method turns

out to be independent of friction and a lack of knowledge on both the gain and the mass of the motor.

Whatever values these parameters may take, for the considered motor, our method outperforms the so-

called classical method and permanently achieves a 10◦ precision in estimating the initial magnetic phase.
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(a) Ironless motor, ξ̈0 = ξ̈max = 1000mm/s2.
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(b) Ironless motor, ξ̈0 = ξ̈max = 500mm/s2.
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(c) Ironcore motor, ξ̈max = ξ̈0 = 4000mm/s2.

Figure 2.13: Average estimation error ϕ̂0 −ϕ0 for different values of ϕ0. Our method (+) versus classical
methods (◦).
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CHAPTER 3

State-periodic Disturbances and Regular Perturbations

3.1 Introduction

3.1.1 Presentation

The different modelings provided by the chapter 1 underline the prevalence of perturbing phenomena

periodic with the position of the motors. On the top of cogging and interpolation errors, one may also

consider the perturbations caused by ball bearings or eccentricity for rotative systems. They also turn

out to be spatially periodic.

We are now exclusively interested in the more general case of state-periodic perturbations. They may

for instance arise in the analysis of the positioning systems used in the semi-conductor industry. These

machines usually result from a complex mechanical assembling of several motors. Through existing

couplings, the position-periodic perturbations pertaining to a given motor are likely to affect the evolution

of the other motors. In the end, the whole system features state-periodic perturbations.

These state-periodic phenomena clearly affect the performances of the considered systems, especially when

high precision trajectory tracking matters. In the following, we assume one may derive the equations of

the systems around the reference trajectories, and, our goal is twofold:

1. understanding to what extent and in which way the system deviates from the desired trajectories,

2. deriving conditions under which the system reaches the origin despite state-periodic perturbations.

To answer these questions, we carry out the integration of the differential equation modeling the considered

systems. We first make use of the Cauchy-Lipschitz theorem [15] to implicitly get the solutions. Even

if the differential equation cannot be straightforwardly solved, it may still be established that, under

some rather mild assumptions, the system only slightly deviates from its desired trajectory. This point is

discussed by exhibiting a small magnitude parameter in the considered differential equation.
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Hoping for the solution in closed form is unrealistic given the non-linear nature of the equations. The pre-

viously mentioned small parameter makes lean toward a regular perturbation analysis of these equations,

see for instance [3]. This technique is very informative and widely used in technical domains such as fluid

mechanics [52] or non linear oscillating systems [23]. The resulting expansion is usually truncated, either

because it is diverging or because the first order terms yield enough information.

An approximated solution does not match our needs. An infinite expansion may not be spared to derive

stability conditions. This is definitely unsatisfactory to conclude toward the convergence to zero concerning

only the first terms of the expansion. To our knowledge, Cauchy was the first to express the solutions of a

differential equation as a power series of a parameter. He stated that, if the right-hand side is analytical

in that parameter, so are the solutions. Both Poincaré and Lyapunov fruitfully turn to best account this

property in their respective studies on the stability of periodic orbits (in [41, 42]) and equilibrium points

(in [29]).

We apply the so-called Cauchy’s method to systems featuring state-periodic perturbations. Our main

contribution is the use of the Bell polynomials of the second kind (see [50, 16]) that enable to explicit

the terms of the resulting power series expansion. These polynomials are not widespread in the control

community, but they turn out of material interest to generalize the chain rules to higher orders. They also

offer nice properties, especially regarding homogeneity, which allow to compute the radius of convergence

of the expansion as well as the magnitudes of the successive approximations. What emerges from all

these considerations is that only the very first terms of the expansion have noticeable effects on the errors

generated around the origin.

Concerning the stability of the origin, we still take advantage of the properties of the Bell polynomials.

We eventually come up to the conclusion that the origin is globally asymptotically stable provided the

first term of the expansion converges to zero. Once more, the proof of this result is entirely based on the

nature of the Bell polynomials. Also observe that, in the same situation, the first Lyapunov method only

guarantees local stability of the origin.

Finally, we shall illustrate that expanding the whole state may sometimes be too conservative. Namely,

the convergence of the resulting expansion is guaranteed for slowly-varying and small-magnitude pertur-

bations. We shall see that it is possible to cope with a broader class of perturbations by only expanding

a subset of the state. The L1-norm of the transfer from the perturbations to those components is used to

perform such a regular perturbation analysis.

3.1.2 Example

Consider the following equation:

ξ̈ = −
µ

m
ξ̇ + u + λ sin (ωξ) , (3.1)

which falls under the scope of the equation (1.11) modeling the behavior of a motor mounted on fixed

frame, except dry friction is omitted for the purpose of this chapter. Suppose the command u is designed
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in order to get the position ξ tracking the reference trajectory ξ∗, but, assume both friction and periodic

perturbation unknown, the command does not allow for them and is actually given by the following PD

controller featuring a feedforward acceleration term:

u = ξ̈∗ − ω2
0 (ξ − ξ∗) − 2ζ0ω0

(
ξ̇ − ξ̇∗

)
.

Define e = ξ − ξ∗, the closed loop system is given by:

ë = −ω2
0e −

(
2ζ0ω0 +

µ

m

)
ė + λ sin (ωe + ωξ∗) −

µ

m
ξ̇∗. (3.2)

Let’s point out some remarkable facts:

• Without perturbations (friction and position periodic function), the tracking error is actually given

by:

ë = −2ζ0ω0ė − ω2
0e.

So, it asymptotically reaches zero thanks to the previous control law u.

• Provided it is possible to tune the previous controller to yield large enough ω0, the tracking error

gets only slightly altered by the perturbations even if λ and µ take large values.

• If for some technological reasons, it is not possible to have a large ω0, the state is subjected to small

deviations around the origin only if λ and µ are not too large with respect to ω0.

For this example,
1

ω0
represents the L2 input-output gain between the perturbations and the tracking

error. In the end, if both
λ

ω0
and

µ

ω0
are small enough, the system remains close to the nominal behavior

imposed by the command u. The goal of this chapter is to extend this discussion to much more general

systems perturbed by state-periodic functions. We shall see that the L1-norm is better suited to this

work.

3.1.3 Modeling

This study is dedicated to systems depicted on figure 3.1 and defined as follows:

Definition 3.1 Consider the following dynamical system:

ẋ = A(t)x + Λ(x, t) = A(t)x +

N∑

i=1

λibi(t) sin
(
ωici(t)x + ϕ∗

i (t)
)

+ λ0b0(t), (3.3)

according to the notations:

• let x ∈ R
n be the state vector, fulfilling the initial conditions x(0) = x0 at t = 0,

• let A(t) : R+ → R
n×n be a square matrix assumed both bounded and continuous with respect to time

t so that the following may be defined:

A⋆ = sup
t∈R+

‖A(t)‖ .
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ẋ = Ax +

N∑

i=0

biui

ei = cix, 1 ≤ i ≤ N

e1u1

λ1 sin (ω1ξ1 + ϕ1)
ξ∗1ξ1

eN

uN

λN sin (ωNξN + ϕN )
ξ∗NξN

u0 = λ0

Figure 3.1: State-periodic perturbations.

Moreover, if Φ(t, t′) : R+ × R+ → R
n×n is the transition matrix associated with A(t), it is assumed

that there exist K > 0 and α > 0 such that:

∀t ≥ 0, ∀t′ ≥ 0, ‖Φ(t, t′)‖ ≤ Ke−α(t−t′).

• let Λ(x, t) : R
n × R+ → R

n×1 be a periodic function of the state x and N ∈ N+ the number of

elementary harmonic components (supposed to be finite) such that, for all i, 1 ≤ i ≤ N :

– λi ∈ R+ and ωi ∈ R+ are respectively the magnitude and the spatial pulsation of the i-th

component (λ0 is a scalar), we furthermore assume ωi =
2π

Pi

, with Pi the state period associated

to ωi,

– ϕ∗
i (t) : R+ → R is a differentiable and bounded function of time whose derivative is also

bounded,

– bi(t) : R+ → R
n×1 and ci(t) : R+ → R

1×n are vectors whose entries are continuous and

bounded functions of time so that the following definitions make sense:

b⋆
i = sup

t∈R+

‖bi(t)‖ et c⋆
i = sup

t∈R+

‖ci(t)‖ .

Remark 3.1 In the introductory example, the equation modeling the closed loop system meets the previous

definition. Similarly to this example, some components of the state vector x may be viewed as errors

between physical variables (the position ξ in the example) and their desired trajectories (the function ξ∗).

This also explains the terms ϕ∗
i in equation (3.3), whose expression in the example would be given by ωξ∗.

Remark 3.2 The definition sets a framework wide enough to cope with situations definitely more complex

than the one considered in the introductory example. Let give some examples:
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• Consider a scalar function Λ(x, t) periodic with respect to only one function of the state x, say the

position, the vectors ci (respectively the bi) are all the same. The pulsations ωi are chosen to model

a periodic functions with several fundamental spatial periods. That is exactly the way cogging forces,

assumed periodic with respect to the position, are modeled.

• Move on to an even more complex system made up of two mechanically coupled motors, each of

them affected by a force periodic in its own position, and by another force depending on the position

of the other motor, as a consequence of the previously mentioned coupling. In such a situation, the

ci are split into two subsets, some of them giving the position of the first motor and the others the

position of the second motor. For the same reasons, the bi may model the input of either the first or

the second motor. No matter how complex this case may be, we eventually end up with an equation

similar to the definition (3.3).

Remark 3.3 The existence of the matrix Φ is due to the fact that A is a continuous function of time,

see [11]. We also assume that the system ẋ = A(t)x is exponentially stable with decay-rate to zero α.

This autonomous system represents the system without state-periodic perturbations. Assuming A models

a physical system driven by a controller, it is not too conservative to expect this controller to stabilize

the known part of the system (namely the matrix A) while the unknown perturbations actually force its

evolution around the origin.

Remark 3.4 Whenever possible, the dependencies of the previous functions with respect to time t are not

mentioned.

3.2 Qualitative study

3.2.1 Implicit solution

The solution of the system (3.3) is implicitly given by the following theorem.

Theorem 3.1

Let x : R+ → R
n be the solution of the differential equation (3.3) with initial conditions x(0) = x0.

Then x solves the following equation:

x(t) = Φ(t, 0)x0 +
N∑

i=1

λi

(∫ t

0

Φ(t, t′)bi(t
′) sin (ωici(t

′)x(t′) + ϕ∗
i (t

′)) dt′
)

+ λ0

∫ t

0

Φ(t, t′)b0(t
′)dt′

(3.4)

Proof:

Let’s recall that existence and uniqueness of x on R+ is a consequence of the global Cauchy-Lipschitz

37



Chapter 3. State-periodic Disturbances and Regular Perturbations

theorem (see [15]. The right-hand side of the equation (3.3) is obviously continuous, and, we shall

prove it is uniformly Lipschitz with respect to x and t:

∀(x, y) ∈ R
n × R

n, ∀t ≥ 0,

‖A(t)(x − y) + Λ(x, t) − Λ(y, t)‖ ≤ ‖A(t)‖ ‖x − y‖ + 2

N∑

i=1

λi ‖bi(t)‖ ‖sin (ωici(t)(x − y)/2)‖

≤

(
A⋆ +

N∑

i=1

λiωib
⋆
i c

⋆
i

)
‖x − y‖ ,

The first inequality is derived from:

sin(a) − sin(b) = 2 sin

(
a − b

2

)
cos

(
a + b

2

)
,

while the second one results from:

sin(a) ≤ a.

The only thing left to check is that the function defined by (3.4) satisfies the differential equation

(3.3). It is rather obvious for t = 0, then for t ≥ 0, we get:

ẋ(t) =
d

dt

(
Φ(t, 0)x0 +

N∑

i=1

λi

(∫ t

0

Φ(t, t′)bi(t
′) sin (ωici(t

′)x(t′) + ϕ∗
i (t

′)) dt′
)

+ λ0

∫ t

0

Φ(t, t′)b0(t
′)dt′

)

= A(t)

(
Φ(t, 0)x0 +

N∑

i=1

λi

(∫ t

0

Φ(t, t′)bi(t
′) sin (ωici(t

′)x(t′) + ϕ∗
i (t

′)) dt′
)

+ λ0

∫ t

0

Φ(t, t′)b0(t
′)dt′

)

+
N∑

i=1

λi (Φ(t, t)bi(t) sin (ωici(t)x(t) + ϕ∗
i (t))) + λ0Φ(t, t)b0(t)

= A(t)x +

N∑

i=1

λibi(t) sin (ωici(t)x(t) + ϕ∗
i (t)) + λ0b0(t),

which ends proving this theorem.

3.2.2 Qualitative analysis of the solutions

The equation (3.4) might be used to have a little bit more qualitative insight into the solution of the

system (3.3). To this end, we bound ‖x‖ from above by:

∀t ≥ 0, ‖x(t)‖ ≤ Ke−αt ‖x0‖ +

N∑

i=0

λi

∫ t

0

‖Φ(t, t′)bi(t
′)‖ dt′,

where the exponential stability of the matrix Φ is used to derive this equation. Note that every term of

the summation is bounded since:

∀i, 1 ≤ i ≤ N, ∀t ≥ 0,

∫ t

0

‖Φ(t, t′)bi(t
′)‖ dt′ ≤ Kb⋆

i

∫ t

0

e−α(t−t′)dt′ ≤ Kb⋆
i /α.
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It is relevant to give the following definitions:

∀i, 0 ≤ i ≤ N, βi = sup
t≥0

(∫ t

0

‖Φ(t, t′)bi(t
′)‖ dt′

)
, (3.5)

so that if ε is defined by:

ε = (N + 1) max
0≤i≤N

λiβi, (3.6)

the norm of the state vector x is eventually bounded from above by:

∀t ≥ 0, ‖x(t)‖ ≤ Ke−αt ‖x0‖ + ε. (3.7)

With the previous elements, the discussion initiated in the introductory example can be pursued by now

making use of the L1-norm. According to the expression (3.7), the solution is made up of two main

components. First, the influence of the initial conditions is exponentially vanishing as t is indefinitely

growing, while, second, the state-periodic perturbations persistently prevent the state from reaching the

origin. The asymptotic bound on ‖x‖ depends on two radically different kinds of physical parameters:

• the λi, the magnitudes of the components of the truncated Fourier series expansion of the function

Λ(x, t),

• the βi expressing the influence of the inputs on the whole state through the vectors bi, namely the

L1-norm of the transfer from the perturbation λi sin (ωicix + ϕ∗
i ) to the whole state.

From a practical point of view, the λi cannot be changed in any way, for they are directly related to

the considered perturbations. Nonetheless, if we suppose that the matrix A models the evolution of an

electrical motor in closed loop, namely driven by a given controller, it might be possible to design and tune

this controller to minimize the βi expressing the sensitivity of the state x to the different perturbations.

Under this assumption, the value of the parameter ε given by the equation (3.6) may be controlled to

some extend, and ε may take a small value. However, for some technological and physical reasons, some

βi cannot be changed by appropriate controller design and tuning. In such situations, provided the λi are

not too large, ε may still take a small value.

Under the conditions raised in the previous discussion, the origin is only slightly perturbed by the state-

periodic functions. They generate small magnitude deviations of the vector x. In the following, we address

the in-depth study of these particular situations where the parameter ε takes small value. Yet, the periodic

functions of the state play a significant role in that they make the system deviate from its desired state

(namely the origin) but they are not the more dominating for it. Let’s express the equation (3.3) in a

way that clearly suggests the dependency of the solution on ε. To this end, let’s first define:

∀i, 0 ≤ i ≤ N, b̄i = λibi

/(
(N + 1) max

0≤n≤N
βnλn

)
= λibi/ε, (3.8)

so that (3.3) is equivalently given by:

ẋ = Ax + ε

N∑

i=1

b̄i sin (ωicix + ϕ∗
i ) + εb̄0, (3.9)

which is the equation we propose to integrate in the following.
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3.3 Power series expansion of the state

The Cauchy theorem (presented in appendix C.1.1) claims the solution of the differential equation (3.9)

may be expressed as a convergent power series in ε. The so-called Cauchy method, exposed in the appendix

C.1.2, material in both Poincaré and Lyapunov work, is used to derive the different terms of such an

expansion, thus leading to the solution of (3.9). The main contribution of this part is the introduction

of the Bell polynomials of the second kind in this method. They are presented in the appendix appendix

B. They turn out to be a most appropriate tool to explicitly compute the terms of the expansion. They

are pretty useful to generalize the somehow tedious task of computing the n-th order derivative of the

composition of two functions. Since the terms of the expansion are nicely given in closed form, we estimate

their magnitudes through an extensive use of some properties of the Bell polynomials. It is showed that

a very accurate approximation of the solution is obtained by only allowing for the first components of the

expansion. Thanks to the analysis, one also estimates the maximum value of the small parameter for the

power series to converge. The bound we obtain is not conservative which highlights that the proposed

approach may cope with most physical situations where the origin is perturbed by state-periodic functions.

3.3.1 Cauchy method

Let’s define the following functions x(n) : R+ → R
n, of prime interest to integrate the equation (3.9):

ẋ(0) = Ax(0)

ẋ(1) = Ax(1) +

N∑

i=1

b̄i sin
(
ωicix

(0) + ϕ∗
i

)
+ b̄0

ẋ(n+1) = Ax(n+1) + (n + 1)

N∑

i=1

b̄i

(
n∑

r=1

Bn,r

(
cix

(1), . . . , cix
(n−r+1)

)
ωr

i sin
(
ωicix

(0) + ϕ∗
i +

rπ

2

))
.

(3.10)

For each of them, consider the following initial conditions:

x(0) = x0 and x(n) = 0, ∀n ≥ 1, (3.11)

The functions Bn,r in the equation (3.10) are the Bell polynomials of the second kind presented in appendix

B.1. We prove the following theorem.

Theorem 3.2

Considering the functions x(n) defined by (3.10), there exists ε∗ > 0 such that, if ε < ε∗, the

power series
∑

n≥0

x(n) εn

n!
converges and its limit is the solution of the differential equation (3.9). Let

ρ = max
1≤i≤N

(ωic
⋆
i ) and e the Neperian constant, the following relations hold:

ε∗ =
1

ρe
and ∀n ≥ 1,

wwwx(n)
www

∞

≤ (nρ)
n−1

. (3.12)
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Lemma 3.1 Given the functions x(n) defined by (3.10) and the initial conditions (3.11), the power series
∑

n≥0

x(n) ε
n

n!
converges and solves the equation (3.9) provided ε is small enough.

Proof:

The right-hand side of (3.9) is linear and thus analytical in ε. Moreover, the sine function is analytical,

thus the right-hand side of (3.9) is analytical in x for any time t. The Cauchy theorem given in appendix

C.1.1 guarantees the existence of functions x(n) (n ≥ 0) such that the following series
∑

n≥0

x(n) εn

n!
has

a non-zero radius of convergence and is the solution of the equation (3.9).

The functions x(n) are derived by applying the so-called Cauchy method (presented in appendix C.1.2)

which consists in first substituting x by
∑

n≥0

x(n) εn

n!
in equation (3.9) and then expanding the right-

hand side in power of ε. For none of the bi depends on the state x, only the following terms have to

be expanded:

∀i, 1 ≤ i ≤ N, si = sin



ωici

∑

n≥0

x(n) ε
n

n!
+ ϕ∗

i



 . (3.13)

If we use the Faa d̀ı Bruno formula (presented in the appendix C.2) to get the general term of the

composition of two power series expansions, the resulting expression depends on the Bell polynomials

of the second kind, indeed:

∀i, 1 ≤ i ≤ N, si = fi,0

(
cix

(0), t
)

+
∑

n≥1

(
n∑

r=1

Bn,r

(
cix

(1), . . . , cix
(n−r+1)

)
fi,r

(
cix

(0), t
)) εn

n!
,

(3.14)

where the functions fi,r are given by:

∀n ≥ 0, ∀i, 1 ≤ i ≤ N, fi,n(ξ0, t) = ωn
i sin

(
ωiξ0 + ϕ∗

i +
nπ

2

)
. (3.15)

To get the equation (3.14), observe that si results from the composition of the function fi:

∀i, 1 ≤ i ≤ N, fi (ξ, ξ0, t) = sin (ωiξ + ωiξ0 + ϕ∗
i ) , (3.16)

by
∑

n≥0

x(n) εn

n!
according to:

∀i, 1 ≤ i ≤ N, si = fi


ci

∑

n≥1

x(n) εn

n!
, cix

(0), t


 , (3.17)

with fi admitting the following expansion:

∀i, 1 ≤ i ≤ N, fi =
∑

n≥0

(
∂nfi

∂ξn

)
ξn

n!

=
∑

n≥0

ωn
i sin

(
ωiξ0 + ϕ∗

i +
nπ

2

) ξn

n!

=
∑

n≥0

fi,n(ξ0, t)
ξn

n!
,

(3.18)

The expression (3.14) is thus readily obtained by applying the Faa d̀ı Bruno formula (equation (C.6))

to the equation (3.17).
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Let finally use the equation (3.14) in (3.9) to get:

∑

n≥0

ẋ(n) εn

n!
=A

∑

n≥0

x(n) εn

n!
+ ε

(
N∑

i=1

b̄ifi,0

(
cix

(0), t
)

+ b̄0

)
+

ε
∑

n≥1

(
N∑

i=1

b̄i

n∑

r=1

Bn,r

(
cix

(1), . . . , cix
(n−r+1)

)
fi,r

(
cix

(0), t
)) εn

n!
.

(3.19)

If we identify the terms of the same order in ε for both sides of the previous expression, the set of

equations (3.10) is easily derived. The initial conditions x0 of the system (3.9) do not depend on ε,

thus, the relation (3.11) is an immediate consequence of (C.3) in appendix C.1.1.

Lemma 3.2 The functions x(n) given by (3.10) are bounded, and, the series {γn}n≥1 defined by:

γ1 = 1 and ∀n ≥ 1, γn+1 = (n + 1)

n∑

r=1

ρrBn,r (γ1, . . . , γn−r+1) , (3.20)

satisfies
wwwx(n)

www
∞

≤ γn, ∀n ≥ 1, where ρ is defined in theorem 3.2.

Proof:

Let’s prove this statement by induction. It is obvious that x(0) is bounded in virtue of the exponential

stability of the autonomous system ẋ = Ax. Let Hn be the following induction assumption:

(Hn)
For all integer k between 1 and n, the function x(k) defined by (3.10) is bounded

and
wwwx(k)

www
∞

satisfies
wwwx(k)

www
∞

≤ γk.

Proving H1 is carried out by first integrating the second line of (3.10). This is a casual linear system

whose input is known, and, given the initial conditions (3.11), one eventually gets (see [11]):

∀t ≥ 0, x(1) =

N∑

i=1

(∫ t

0

Φ(t, t′)b̄i(t
′) sin

(
ωicix

(0) + ϕ∗
i

)
dt′
)

+

∫ t

0

Φ(t, t′)b̄0(t
′)dt′,

which is bounded as follows:

wwwx(1)
www ≤

N∑

i=1

wwwsin
(
ωicix

(0) + ϕ∗
i

)www
∞

(∫ t

0

wwΦ(t, t′)b̄i(t
′)
ww dt′

)
+

∫ t

0

wwΦ(t, t′)b̄0(t
′)
ww dt′

≤
N∑

i=0

λiβi

/
ε ≤ 1.

(3.21)

Let’s now assume (Hn) is fulfilled, we have to prove (Hn+1). It simply amounts to proving

wwwx(n+1)
www

∞

≤ γn+1.

As previously, we integrate (3.10) and carry out computations similar to those necessary to prove (H1).

Let’s first note:

∀n ≥ 1, ∀t ≥ 0, x(n+1) = (n+1)

N∑

i=1

n∑

r=1

∫ t

0

Φ(t, t′)b̄i(t
′)Bn,r

(
cix

(1), . . . , cix
(n−r+1)

)
fi,r

(
cix

(0), t′
)

dt′.

(3.22)
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Given the definition (3.15) of the functions fi,r, the following hold:

• ∀i, 1 ≤ i ≤ N, ∀r ≥ 0,
wwwfi,r

(
cix

(0), t
)www

∞

≤ ωr
i ,

• ∀i, 1 ≤ i ≤ N, sup
t≥0

(∫ t

0

wwΦ(t, t′)b̄i(t
′)
ww dt′

)
≤ λiβi /ε ≤ 1 /(N + 1).

These relations are used in the equation (3.22), this leads us to ∀n ≥ 1 and ∀t ≥ 0:

wwwx(n+1)
www ≤

n + 1

N + 1

N∑

i=1

n∑

r=1

ωr
i

wwwBn,r

(
cix

(1), . . . , cix
(n−r+1)

)www
∞

. (3.23)

Let’s now make use of the different properties reported in appendix B.2 concerning the Bell polynomials

Bn,r. We particularly make the most of the polynomial Bn,r being homogeneous of degree r and having

only positive coefficients:

wwwBn,r

(
cix

(1), . . . , cix
(n−r+1)

)www
∞

≤ Bn,r

(wwwcix
(1)
www

∞

, . . . ,
wwwcix

(n−r+1)
www

∞

)

≤ Bn,r

(
c⋆
i

wwwx(1)
www

∞

, . . . , c⋆
i

wwwx(n−r+1)
www

∞

)

≤ (c⋆
i )

r
Bn,r

(wwwx(1)
www

∞

, . . . ,
wwwx(n−r+1)

www
∞

)

≤ (c⋆
i )

r
Bn,r (γ1, . . . , γn−r+1) ,

(3.24)

the last inequality resulting from the induction assumption (Hn). Let’s use (3.24) together with (3.23),

to get:
wwwx(n+1)

www
∞

≤
n + 1

N + 1

N∑

i=1

n∑

r=1

Bn,r (γ1, . . . , γn−r+1) (c⋆
i ωi)

r

≤ (n + 1)
n∑

r=1

ρrBn,r (γ1, . . . , γn−r+1) = γn+1,

which proves Hn+1.

Lemma 3.3 Let γn be defined by (3.20), the numerical series
∑

n≥1

γn

εn

n!
converges if ε is no larger than

ε∗ =
1

ρe
, moreover, γn is explicitly given by γn = (nρ)

n−1
, ∀n ≥ 1.

Proof:

We shall prove this lemma in two steps:

1. We assume that the series
∑

n≥0

γn

εn

n!
converges and show that its limit solves an algebraic equation

depending on ε.

2. The Lagrange inversion theorem presented in the appendix C.3 tells us that the equation we

arrived at in the previous step has a unique and analytical root which can be expanded in a
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power series of ε. The expression of ε∗ and γn can also be deduced from this theorem.

Suppose
∑

n≥1

γn

εn

n!
converges for some ε and let γ be its limit. If we multiply both sides of the equation

(3.20) by
εn+1

(n + 1)!
, we get:

∀n ≥ 1, γn+1
εn+1

(n + 1)!
= ε

(
n∑

r=1

ρrBn,r (γ1, . . . , γn−r+1)

)
εn

n!
(3.25)

Looking carefully at the right-hand side of this equation and keeping in mind the Faa d̀ı Bruno formula

(see equation (C.6) in the appendix), we recognize the n-th term of the power series expansion resulting

from the composition of the function:

h(y) = eρy

by the series y = γ =
∑

n≥1

γn

εn

n!
assumed convergent so far. Let’s detail this statement. Since h is

analytical on R, the following expansion is derived and valid for any y ∈ R:

h(y) = 1 +
∑

n≥1

ρn yn

n!

According to the Faa d̀ı Bruno formula:

h



∑

n≥1

γn

εn

n!


 = 1 +

∑

n≥1

(
n∑

r=1

ρrBn,r (γ1, . . . , γn−r+1)

)
εn

n!
.

If we use the equation (3.25) together with the previous relation where we multiply both sides by ε,

we eventually get:

ε h



∑

n≥1

γn

εn

n!


 = εγ1 +

∑

n≥1

γn+1
εn+1

(n + 1)!

=
∑

n≥1

γn

εn

n!
.

Therefore, if
∑

n≥1

γn

εn

n!
converges, its limit γ solves the following equation:

γ = εeργ . (3.26)

Let’s now move on to the second part of this proof. The right-hand side of the equation (3.26)

fulfills the prerequisites of the Lagrange inversion theorem reported in the appendix C.3. Since the

exponential function is analytical for any real number, the root γ of (3.26) may be expanded in power

of ε for ε no larger than:

x∗

supx=x∗ (N exp (ρx))
=

x∗

N exp ρx∗
, ∀x∗ > 0.

The maximum value of the previous quantity is derived by canceling the derivative of
x

N exp (ρx)
with

respect to x. This results in setting x∗ = 1/ρ. According to our approach, the largest ε for which the
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equation (3.26) has an analytical root is given by:

ε∗ = 1/ (ρe) .

As a consequence, the power series
∑

n≥1

γn

εn

n!
converges for ε < 1/ (ρe). Moreover, the Lagrange

inversion theorem makes it possible to explicitly compute the terms involved in the expansion of the

consider root, thus:

∀n ≥ 1, γn =
dn−1

dyn−1

(
exp (nρy)

)∣∣∣∣
y=0

= (nρ)
n−1

,

which ends the proof of this lemma.

Proof of the theorem 3.2:

The existence of a solution expressed as a power series expansion
∑

n≥0

x(n) ε
n

n!
is guaranteed by the

Cauchy theorem given in the appendix C.1.1, and, according to the lemma 3.1, an immediate conse-

quence of the Cauchy’s method is the definitions of the functions x(n) by the equation (3.10). Further-

more, the functions x(n) are bounded by γn (see lemma 3.2), the numerical series
∑

n≥1

γn

εn

n!
converges

when ε ≤
1

ρe
(see lemma 3.3), therefore the considered power series

∑

n≥0

x(n) εn

n!
also converges as soon

as ε ≤ ε∗ =
1

ρe
. The γn are recursively defined in the lemma 3.2 and the closed form is given in the

lemma 3.3.

Remark 3.5 The lemmas 3.1, 3.2 and 3.3 can be regarded in a slightly different way. In the previous

proof, the convergence of the series
∑

n≥0

x(n) ε
n

n!
was a direct consequence of the the Cauchy’s theorem and

method. Actually, the previous lemmas completely prove the Cauchy’s theorem for systems (3.9). Let’s

make this new interpretation according to the appendices C.1.2 and C.1.3.

According to the appendix C.1.2, suppose a power series
∑

n≥0

x(n) εn

n!
formally satisfies the equation (3.9),

the functions (3.10) are thus built. Part of the work left to do consists in checking that the previously

defined series is actually the solution of the differential equation (3.9) when ε is small enough. This

amounts to checking the different convergence assumptions reported in the appendix C.1.3.

According to the lemmas 3.2 and 3.3, the series
∑

n≥0

x(n) ε
n

n!
is normally and thus uniformly converging.

We furthermore use the equations (3.10), the relations
wwwx(n)

www
∞

≤ γn as well as some of the properties
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of the Bell polynomials of the second kind to conduct the following computations:

∀n ≥ 1,
wwwẋ(n+1)

www
∞

≤ A⋆
wwwx(n+1)

www
∞

+ (n + 1)

N∑

i=1

b̄⋆
i

(
n∑

r=1

Bn,r

(wwwx(1)
www

∞

, . . . ,
wwwx(n−r+1)

www
∞

)
(ωic

⋆
i )

r

)

≤ A⋆γn+1 + (n + 1)

(
n∑

r=1

ρrBn,r (γ1, . . . , γn−r+1)

)(
N∑

i=1

b̄⋆
i

)

≤

(
A⋆ +

N∑

i=1

b̄⋆
i

)
γn+1.

This ends proving that the series
∑

n≥0

ẋ(n) ε
n

n!
is also uniformly converging for ε <

1

ρe
and gives a construc-

tive proof of the Cauchy’s theorem at the same time.

3.3.2 Practical considerations

The set of equations (3.10) defining the solution of (3.3), though infinite, is still triangular. The zero

order term is computed by solving an autonomous linear differential equation, and is the only term of

the expansion to take the initial conditions x0 into account. Once x(0) is derived, the recursive process is

initiated and higher order terms can easily be computed. Actually, at each iteration, one has to solve a

first order linear system whose inputs are known since they only depend on lower order components.

The theorem 3.2 allows us to estimate the magnitudes of the successive approximations and also to

determine the maximum value of ε so that the expansion remains convergent. The smallness of the

parameter ε, required for the expansion to converge, may be expressed in terms of the physical variables

of the model (3.3). We now have a better understanding of the roles played by the magnitudes λi and

the pulsations ωi, namely through the following constraint:

max
1≤i≤N

(
ωic

⋆
i

)
max

0≤i≤N

(
λiβi

)
≤

1

(N + 1)e
. (3.27)

The discussion initiated in the section 3.2.2 can now be pursued and a little bit more detailed. We previ-

ously had no idea on the roles of the ωi. For a given system (3.3) with fixed βi, the power series expansion

of the solution remains valid for rapidly changing perturbations (large ωi) provided their magnitudes is

not too large. Conversely slowly varying (small ωi) periodic functions of the state may have quite large

magnitudes. From a technological point of view, this constraint is always satisfied. Actually, rapidly vary-

ing perturbations are mostly caused by interpolation errors with a couple microns spatial period while

the magnitude of this phenomenon is a dozen of nanometers (see the remark 1.1). Some perturbations

forces such as cogging have pretty significant magnitudes but they vary on larger scales, namely a couple

of millimeters (refer to the remark 1.5).

The theorem 3.2 is thus relevant as it copes with most physical situations involving state-periodic per-

turbations. It allows us to integrate the equation (3.3) with an infinite series expansion which one may

truncate as the magnitudes of the successive approximations rapidly tail away. Only the very first com-

ponents of the series bring substantial information. Neglect the initial conditions x0 only acting on x(0),
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Figure 3.2: Convergence to zero of the power series expansion components derived by the Cauchy’s
method.

each term of the series expansion may be bounded as follows:

∀n ≥ 1,
wwwx(n)

www
∞

εn

n!
≤ un =

ε (ερn)n−1

n!
.

The parameter ε is varied between 0 and ε∗ by setting ε = ηε∗ and 0 ≤ η ≤ 1. We focus on the convergence

speed to zero of the series un by plotting
un

u1
on figure 3.2. This rate emphasizes the relative magnitude of

the expansion terms with respect to the first order approximation. According to the figure 3.2, the smaller

ε, the more dominating the very first terms of the expansion as the norm
wwwx(n)

www
∞

fastly converges to

zero. It turns out that a pretty accurate approximation of the solution of (3.3) is obtained by summing

the very first terms that are simply given by:

ẋ(0) = Ax(0)

ẋ(1) = Ax(1) +

N∑

i=1

b̄i sin
(
ωcix

(0) + ϕ∗
i

)
+ b̄0

ẋ(2) = Ax(2) +

N∑

i=1

b̄i

(
ωicix

(1)
)

cos
(
ωicix

(0) + ϕ∗
i

)

ẋ(3) = Ax(3) +

N∑

i=1

b̄i

((
ωicix

(2)
)

cos
(
ωicix

(0) + ϕ∗
i

)
−
(
ωicix

(1)
)2

sin
(
ωicix

(0) + ϕ∗
i

))

(3.28)
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3.4 Global stability of the origin

3.4.1 Presentation

Thanks to the theorem 3.2, we found out to what extent the state-periodic perturbations cause deviations

of the state around the origin. We are now concerned with deriving sufficient conditions under which the

origin is stable in spite of the perturbations. A first approach consists in making use of the first Lyapunov

method [29]. Consider the following system where the evolution of the constant parameter ε is added:

ẋ = Ax + ε

N∑

i=1

b̄i sin (ωicix + ϕ∗
i ) + εb̄0

ε̇ = 0.

Linearizing this system around the origin x = 0 and ε = 0 yields:

ẋ = Ax + ε

N∑

i=1

b̄i sin (ϕ∗
i ) + εb̄0

ε̇ = 0,

or, in a more compact manner:

ẋ = Ax +

N∑

i=1

λibi sin (ϕ∗
i ) + λ0b0. (3.29)

If the first order linearized system is asymptotically stable, we can draw a conclusion toward the local

stability of the original system (3.9). In other words, both the initial conditions on the state x0 and the

parameter ε have to be small enough for the previous conclusion to apply.

3.4.2 Global stability of the origin

The previous result is not entirely satisfactory and we propose to derive conditions yielding global asymp-

totic stability of the origin for the system (3.9) despite the presence of the perturbations.

Theorem 3.3

If the solutions of the system (3.29) asymptotically converges to zero, the origin of the system (3.9)

is globally asymptotically stable for ε < ε∗.

Proof:

Let’s first show that, under the assumption of the theorem, the function x(1) given by (3.10) asymp-

totically reaches 0 as t goes to infinity irrespective of the initial conditions x0.

Denote by x∗ the solution of the system (3.29) and ∆ = x∗ − εx(1) so that:

∆̇ = A∆ + 2

N∑

i=1

λibi sin
(
ωicix

(0)/2
)

cos
(
ωicix

(0)/2 + ϕ∗
i

)
.
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Since the transition matrix Φ is exponentially stable, we know that x(0) goes to zero as t goes to

infinity for any initial conditions x0. Since ∆ is the solution of an exponentially stable linear system

with vanishing input, ∆ asymptotically converges to zero, see [11]. As a consequence, for any value

x0, the function x(1) = (x∗ − ∆) /ε also converges to zero.

According to the lemma 3.5, for any n ≥ 2, the n-th order components of the power series expansion

vanishes. Thus, for any n ≥ 0 and x0 ∈ R
n, x(n) asymptotically converges to zero. According to

lemma 3.4, it implies that the solution of the original system (3.3) is asymptotically stable whatever

value x0 may take, and, such a conclusion holds provided ε < ε∗.

Lemma 3.4 If, for all n ≥ 0, x(n), defined by (3.10), asymptotically converges to zero, the series
∑

n≥0

x(n) ε
n

n!
solution of (3.9) asymptotically tends to zero for ε ≤ ε∗.

Proof:

Define XM as the truncated series as follows:

XM =
M∑

m=0

x(m) ε
m

m!
.

Let’s prove that XM is normally converging. Actually, according to lemma 3.2:

∀M ≥ 1, ‖XM‖
∞
≤ K ‖x0‖ +

M∑

m=1

γm

εm

m!
,

and the series
∑

m≥1

γm

εm

m!
converges as suggested by lemma 3.3. As a conclusion, the series XM is

well normally and thus uniformly converging. For all M , using the assumption of this lemma, XM (t)

asymptotically tends to zero for t growing indefinitely. Thanks to the uniform convergence, inverting

the limit and summation operations is allowed for ε < ε∗. We have just proved that the solution of

(3.9), namely:
∑

n≥0

x(n) ε
n

n!
= lim

M→∞
XM

is asymptotically stable.

Lemma 3.5 Consider the functions x(n) defined by (3.10), if x(1) is asymptotically converging to zero,

for all n ≥ 2, x(n) is also asymptotically converging.

Proof:

Let’s prove this by induction, basing our reasoning on the following assumption:

(H′
n) For all integer k ≤ n, x(k) tends asymptotically towards zero.

Under the conditions of this lemma, the assumption H′
1 is obvious. Suppose H′

n valid, proving H′
n+1

boils down to showing that x(n+1) (equation (3.10)) tends towrds zero. For any r between 1 and

49



Chapter 3. State-periodic Disturbances and Regular Perturbations

n, Bn,r

(
cix

(1), . . . , cix
(n−r+1)

)
is a homogeneous polynomial with degree r, implying Bn,r has no

constant term. According to H′
n, Bn,r

(
cix

(1), . . . , cix
(n−r+1)

)
asymptotically tends to zero. The

input of the exponentially stable linear system defining x(n+1) is asymptotically converging to zero

since it results from the product of the previously mentioned polynomials and the bounded functions

sin
(
ωicix

(0) + ϕ∗
i +

rπ

2

)
. We thus check that x(n+1) is converging to zero (see [11]) which ends proving

H′
n+1.

3.5 Partial expansion of the state

So far, we have addressed the expansion of the whole state in a power series. We pointed out a parameter ε

which turns out to be small enough to guarantee the convergence of the expansion when the perturbations

only have limited effects on the entire state x. However, it may sometimes happen that perturbations

slightly affect only a partition of the state while the remaining components of the vector x are significantly

affected by these perturbations. In such a situation, the previously defined parameter ε may not take

arbitrarily small values. In this part, the expansion of the least perturbed components of the state is

solely undertaken. To this end, we define a better suited parameter in that it only reflects the effect

of the perturbations on the considered partition of the state. This newly defined parameter yields less

conservative convergence conditions in the considered applications.

3.5.1 Example

To illustrate this, we rewrite the introductory example (3.2) a in way similar to (3.3) while neglecting

viscous friction:

ẋ =

(
0 1

−ω2
0 −2ζ0ω0

)
x +

(
0
1

)
λ sin(ωcx) = Ax + bλ sin(ωcx + ωξ∗),

with c =
(
1 0

)
.

This is a stationary example, and the computation of β defined by (3.5) is doable. Setting ζ0 = 1 and

ω0 = 2π × 20rad/s, we find β ≈ 6e−3 which is neither more nor less than the L1-norm of the transfer

function (sI − A)
−1

b. Rewriting the equation (3.27) for this example, the theorems 3.2 and 3.3 may only

be applied if:

λ ≤
1

eωβ
≈

160

eω
. (3.30)

The input λ sin (ωcξ) does not have the same impact on the first component of x (the position tracking

error) as on its second component (the velocity tracking error). We compute the L1-norm of the associated

transfer functions, respectively noted H1(s) and H2(s) and defined as follows:

µ1 =
www
(
1 0

)
(sI − A)

−1
b
www

1
=

wwww
1

s2 + 2ξ0ω0s + ω2
0

wwww
1

= ‖H1(s)‖1 ≈ 6e−5

µ2 =
www
(
0 1

)
(sI − A)

−1
b
www

1
=

wwww
s

s2 + 2ξ0ω0s + ω2
0

wwww
1

= ‖H2(s)‖1 ≈ 6e−3

(3.31)
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The perturbation influences the position tracking error approximately one hundred times less than it

influences the velocity tracking error. Also note that β turns out to be large because of the effect of the

perturbation on the second component of x (compare β and µ2).

In this part, we shall expose the necessary elements to prove that the position tracking error may be

expanded in powers of µ1λ and the resulting series is converging if:

λ ≤
1

eωµ1
≈

16000

eω
, (3.32)

which enables this approach to cope with much larger perturbations when compared to (3.30). As gen-

eralized hereafter, the key point is the use of the L1-norm of the transfer from the perturbations to the

considered partition of the state.

3.5.2 Preliminaries

Let y =
(
y1, . . . , yN , yN+1, . . . , yM

)
∈ R

M be a function of the state x (see (3.3)) such as yi = cix with

the ci defined as follows:

• for i between 1 and N , ci is given by the definition 3.1,

• for i between N + 1 and M , ci is an arbitrary row vector of size n featuring the same properties as

the vector ci of the definition 3.1.

The row vector ci are stacked up in C =
(
cT
1 , . . . , cT

M

)T
and the definition C⋆ = sup

t≥0
‖C(t)‖ is relevant.

We now define the impulse responses hi from any of the scalar inputs to the output y = Cx as well as the

formal input-output operators Hi as follows:

∀i, 0 ≤ i ≤ N, hi(t, t
′) = C(t)Φ(t, t′)bi(t

′) and Hiu =

∫ t

0

hi(t, t
′)u(t′)dt′. (3.33)

We also define the L1-norm of the impulse responses hi(t, t
′) by:

∀i, 0 ≤ i ≤ N, ‖hi‖1 = sup
t≥0

(∫ t

0

‖hi(t, t
′)‖ dt′

)
. (3.34)

The previous parameter is well defined since the transition matrix is exponentially stable and the functions

bi and C are supposed to be bounded.

Using the previous definitions together with (3.4) yields an implicit equation for the output y:

y = CΦ(t, 0)x0 +

N∑

i=1

λiHi sin (ωiCiy + ϕ∗
i ) + λ0H0, (3.35)

with Ci an M -dimensional row vector whose i-th entry is the only non-zero element and equals 1. In a

way similar to (3.7), we also get:

∀t ≥ 0, ‖y(t)‖ ≤ KC⋆e−αt ‖x0‖ + µ, (3.36)

with µ given by:

µ = (N + 1) max
0≤i≤N

(λi ‖hi‖1) . (3.37)
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The parameter µ directly quantifies the effect of the perturbations on the output, and is strongly related

to the L1-norm of the transfer functions from the perturbations to y. In the following, the output y is

expressed as a power series
∑

n≥0

y(n) µ
n

n!
.

To this end, we first define the reduced input-output operators:

∀i, 0 ≤ i ≤ N, H̄i = λiHi/µ, (3.38)

and we rewrite (3.35) into:

y = CΦ(t, 0)x0 + µ

N∑

i=1

H̄i sin (ωiCiy + ϕ∗
i ) + µH̄0. (3.39)

We look for the solutions of the previous equation by formally replacing y by
∑

n≥0

y(n) µ
n

n!
.

3.5.3 Expansion and convergence towards zero of the output

Let’s still make use of the Bell polynomials of the second kind and define the functions y(n) by:

y(0) = CΦ(t, 0)x0

y(1) =

N∑

i=1

H̄i sin
(
ωiCiy

(0) + ϕ∗
i

)
+ H̄0

y(n+1) = (n + 1)

N∑

i=1

H̄i

(
n∑

r=1

Bn,r

(
Ciy

(1), . . . , Ciy
(n−r+1)

)
ωr

i sin
(
ωiCiy

(0) + ϕ∗
i +

rπ

2

))
.

(3.40)

This set of functions is used to adapt the results of the theorems 3.2 and 3.3 to te current study concerning

the output y. Given the different elements reported so far, the two following theorems are readily obtained.

Theorem 3.4

Given the functions y(n) defined by (3.40), there exists a scalar µ∗ > 0 such that, if µ ≤ µ∗, the

series
∑

n≥0

y(n) µ
n

n!
converges and its limit is the solution of the equation (3.35). Furthermore, if we

denote ω = max
1≤i≤N

ωi and e the Neperian constant:

µ∗ ≤
1

ωe
, and ∀n ≥ 1,

wwwy(n)
www

∞

≤ (ωn)
n−1

(3.41)

Proof:

We first formally replace y by
∑

n≥0

y(n) µ
n

n!
in (3.35). To expand the sine functions where y appears, we

simply use the equation (3.14) where we replace ci by Ci. By doing so, the equations (3.40) defining
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the y(n) are readily derived. According to the theorem 3.2 where the parameter ρ was used, let ω be:

ω = max
1≤i≤N

(ωiCi) thus ω = max
1≤i≤N

ωi

since the only non-zero entry of Ci equals 1. The equation (3.41) matches the equation (3.12). The

only thing left to prove is that the series we arrived at solves the equation (3.39). Let’s use the

functions fi,n (see equation (3.15)), the following relation holds:

∑

n≥0

y(n) µ
n

n!
= CΦ(t, 0)x0 + µH̄0+

µ

N∑

i=1


H̄ifi,0

(
Ciy

(0), t
)

+
∑

n≥1

H̄i

(
n∑

r=1

Bn,r

(
Ciy

(1), . . . , Ciy
(n−r+1)

)
fi,r

(
Ciy

(0), t
)) µn

n!


 .

(3.42)

By a reasoning similar to the proof of the lemma 3.3, the following series:

N∑

i=1

H̄i

(
n∑

r=1

Bn,r

(
Ciy

(1), . . . , Ciy
(n−r+1)

)
fi,r

(
Ciy

(0), t
)) µn

n!

is showed to be normally converging. Integration (operators H̄i) and series summation operators may

well be inverted in (3.42). Provided µ is small enough, the series
∑

n≥0

y(n) ε
n

n!
is the solution of (3.39).

Theorem 3.5

If the function y∗ defined by:

y∗ =

N∑

i=1

Hi sin (ϕ∗
i ) + H0 (3.43)

asymptotically tends to zero, the function y solution of (3.35) also converges to zero if µ ≤ µ∗

(defined by (3.41)) irrespective of the initial condition x0.

Proof:

If y∗ tends to zero, considering y∗ − µy(1), it can be showed that y(1) is asymptotically converging to

zero for any initial conditions x0. The Bell polynomials of the second kind are homogeneous of degree

r. When looking at (3.40), it is obvious to conclude that, for all n ≥ 2, the functions y(n) are also

vanishing. Note that y(0) is exponentially vanishing. Since the series
∑

n≥0

y(n) µ
n

n!
converges normally,

the output y, solving (3.39), turns out to be vanishing as t grows indefinitely.

Remark 3.6 The expression giving the expansion of the output y is quite similar to the one pertaining

to the expansion of the whole state x. Simply compare the equations (3.10) and (3.40). The practical

discussion of the section 3.3.2 may be adapted for the ongoing study, especially concerning the decay to
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zero of the terms of the series, namely

wwwy(n)
www

∞

µn

n!
≤

µ (µωn)n−1

n!
= vn.

By analogy with the approach of the section 3.3.2, suppose µ = ηµ∗ and 0 ≤ η ≤ 1. The plot of
vn

v1
as a

function of η is readily similar to the one of the figure 3.2.

The same conclusion may thus be drawn:

• The smaller µ, the faster the decay rate to zero of
wwwy(n)

www
∞

with respect to y(1).

• The required smallness of µ for the expansion to converge can be translated into physical considera-

tions. Namely:

max
1≤i≤N

(ωi) max
0≤i≤N

(λi ‖hi‖1) ≤
1

(N + 1)e
.

3.5.4 Conclusion

We now get back to the introductory example and end this study. According to the previous remark,

the convergence condition first exposed by the equation (3.32) is proved. The equation (3.31) defines

H1(s), the transfer function from the perturbation to the tracking error cx. In view of the undisputable

similarities between the expansion a sole output and of the whole state, we shall take advantage of the

first terms of the expansion of the latter. They are given by the equation (3.28). We also assume that the

steady state is reached, so that y(0) is neglected. We eventually get:

y(1) = H̄1(s) sin (ωξ∗)

y(2) = H̄1(s)
(
ωy(1)

)
cos (ωξ∗)

y(3) = H̄1(s)

((
ωy(2)

)
cos (ωξ∗) −

(
ωy(1)

)2

sin (ωξ∗)

)
,

(3.44)

where, according to the remark 3.1, ωξ∗ is the forcing phase to allow for, and is substituted to the ϕ∗
i .

We may pursue the calculations a little bit further to unveil an interesting structure when the system is

constrained to track a constant speed trajectory ξ∗ = ν∗t. We look for an explicit expression of the first

terms y(n) µ
n

n!
in steady state (y(0) → 0):

y(1)µ =

(
λH1(s)

)
sin (ων∗t)

y(2) µ
2

2!
=

(
λH1(s)

)2

ω sin (ων∗t) cos (ων∗t)
/
2

y(3) µ
3

3!
=

(
λH1(s)

)3

ω2

(
sin (ων∗t) cos2 (ων∗t) − sin3 (ων∗t)

)/
6.

(3.45)

The regular perturbation analysis is informative. It shows that, when a brushless motor is operated

at constant velocity, it oscillates around its desired trajectory. Several pulsations may be found even if

the perturbation force is purely sinusoidal with the position. The figure 3.3 illustrates this point when

54



Chapter 3. State-periodic Disturbances and Regular Perturbations

ν∗ = 100mm/s, ω =
2π

20
rad/mm and λ = 10e3mm/s2. The frequency peaks witnessed on this figure are

more specifically explained as follows:

• The first order term generates the frequency peak located at
ων∗

2π
= 5Hz and whose magnitude is

directly related to |H1(iων∗)|.

• The second order term generates the frequency peak located at
2ων∗

2π
= 10Hz and whose magnitude

is directly related to |H1(2iων∗)|2.

• The third order term brings the frequency peak located at
3ων∗

2π
= 15Hz and is even more attenuated

by |H1(s)|
3
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

tr
ac

ki
ng

 e
rr

or
 ξ

−
ξ*  (

m
m

)

(a) Tracking error.
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Figure 3.3: Simulation of the introductory example (3.1) with ξ∗ = 100t, λ = 1e4mm/s2 and ω =
2π

20
rad/mm.
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CHAPTER 4

An Observer-Based Control Scheme Including Perturbations

Modeling for High-Precision Trajectory Tracking

4.1 Presentation

This chapter is concerned with getting brushless motors tracking reference trajectories of any kind with

stringent accuracy specifications (related to the applications presented in chapter 1) in spite of cogging

forces and interpolation errors. The situation is illustrated by the figure 4.1.

Unperturbed system
MeasurementsCommandsReference

Trajectories

Periodic functions

Controller
Actual positions

Physical system to control

Periodic functions

Figure 4.1: Design of a controller for high-end trajectory tracking despite state-periodic perturbations.

Great technological efforts have been made to minimize the, though natural, limitations considered so far.

For cogging forces specifically pertaining to ironcore motors, the underlying idea consists in using the free

design parameters, like the shapes of the magnets, the spacing in between slots, or the length of the rotor

to analytically or numerically find out which configuration actually minimizes cogging forces. All these

techniques generally lead to very complex designs, such as skewed magnets layouts, which, in the end, do

not manage to completely get rid of cogging forces (see [25]). For ironless motors, despite the attention

paid to the design of the circuits in charge of producing the electrical currents, there always remain some

slowly time-varying offsets, responsible for cogging-like forces (see the equation (1.8)). The issue is similar
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for interpolation errors mainly due to the thermal drift of electrical circuits.

Driving a production model brushless motor with a PID controller yields satisfactory results for some

applications, but, when stringent accuracy specifications are at stake, a dedicated controller is required to

get rid of these residual state-periodic perturbations. It might be tempting to perform this cancellation

from a preliminary analytical or numerical analysis together with a feedforward compensation scheme.

However, note that modeling these perturbations turn out to be tough (see [25] for cogging forces). The

task is even more complicated in the case of interpolation errors. Imagine the huge amount of memory

required to get a mapping of an optical rule.

The previous analysis makes definitely lean toward an online identification and cancellation scheme. In

the existing literature, cogging forces and interpolation errors are not tackled simultaneously. Let’s give

a review of the existing solutions for cogging compensation. For repetitive tasks, it is possible to estimate

the cogging forces affecting the motion during one run, and, directly compensate for them during the next

run. This iterative method can obviously cope with perturbations of arbitrary shape and takes several

tries to yield satisfactory results. It is either referred to as learning feedforward [40] or iterative learning

control [51, 36, 12].

Some other existing solutions, dedicated to spatially periodic perturbations, express cogging forces as a

spatial Fourier series expansion. Adaptive controllers may be designed to estimate both the magnitude

and phase of each of the Fourier series expansion components and achieve position tracking thanks to

cogging compensation, see [1, 48] for instance. Observer-based controllers can also be derived considering

an extended system made up of the motor mechanics and the perturbations using an internal model.

In [13], this approach is implemented for mechanical pure sine perturbations and can be adapted to

remove the fundamental component of the cogging forces Fourier series, but the extension to higher order

harmonics does not seem to be straightforward.

Both adaptive and observer-based methods reported so far suppose the velocity available, either by direct

measurements or numerical differentiation of the position. For the high precision positioning applications

previously mentioned, assuming the position directly measured is rather sensible and common, but numer-

ical computation of the velocity may generate undesirable noise affecting the whole system performances.

The method central to the interpolation errors cancellation is known as the Heydemann’s correction

(see [24]). This approach was first intended to deal with interferometers, but, given the undisputable

similarities between the functioning of interferometers and optical position errors, the approach has widely

been extended to the latter. The core idea is to calibrate online the parameters of the sinusoidal pair

delivered by the sensor (see the equation (1.3)). Several implementations exist, in the end, they all boil

down to an online optimization either by classical iterative techniques [2] or, for example, neural networks

[49].

In this chapter, an observer-based controller only relying on position measurements is designed. The

framework is common to both cogging forces and interpolation errors. Our solution steers the tracking
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error to zero by canceling cogging forces and filtering the position measurements to access the actual

positions. These perturbations are defined by an arbitrary number of spatial periods, assumed known

throughout this chapter. This rather strong assumption is loosened in the chapter 5, where it is showed

that these parameters may be obtained from appropriate experiments.

As depicted on the figure 4.1, the proposed context generalizes the modelings of the equations (1.11) and

(1.12). Namely, we consider a linear MIMO system, which can be regarded as the unperturbed plant. Its

inputs can be viewed as forces, and, we suppose they are made up of commands and additive cogging

forces, obviously periodic with respect to some positions. Moreover, the outputs of the unperturbed

plant are assumed to be the considered tracking errors. The corresponding measurements are affected by

interpolation errors. Practically speaking, we do not have access to the actual values of the positions and,

perturbations are added to any commands computed by the controller.

After a part devoted to modeling, we derive the equations of the observer-based controller (section 2). The

novelty of our approach lies in the use of the regular perturbation expansion of the chapter 3 to build the

observer. We shall prove the relevancy of considering only the first-order approximation of the perturbed

system to design the observer. The great advantage of doing so is clear for the gains tuning issue. Despite

the nonlinearities of the plants (see figure 4.1), we eventually come up to a solution where the tuning

has to be performed for a linear system. We shall see that it can be cast into some LMI optimization

problems, see [10]. The final control architecture requires little online computation, especially since the

gains are constant and computed offline.

4.1.1 Modeling

The systems considered hereafter obey the following definition and are illustrated on figure 4.2.

Definition 4.1 Consider the system featuring p commands ui and q measured outputs yi such that:

ẋ = Ax +

p∑

i=1

bi


ui +

∑

j∈Ii

di,j (ξj)




yi = cix + wi (ξi) , 1 ≤ i ≤ q

(4.1)

with the following notations:

• x is an n-dimensional vector, A a square matrix of size n with constant entries. For all i between 1

and p, let bi be a constant n-dimensional column vector, and, for all j between 1 and q, cj a constant

n-dimensional row vector.

• cix is regarded as the tracking error between a spatial variable ξi and its reference trajectory ξ∗i :

∀i, 1 ≤ i ≤ q, ξi = cix + ξ∗i . (4.2)

• The sets Ij are made up of integers from 1 to q:

59



Chapter 4. Observer-based Controller

– The functions di,j are periodic with respect to the positions ξj and aim at modeling perturbation

forces:

∀i, 1 ≤ i ≤ p, ∀j ∈ Ii, di,j (ξj) =

Ni,j∑

n=1

λi,j,n sin (ωi,j,nξj + ϕi,j,n) . (4.3)

Note that the ωi,j,n are supposed known while the magnitudes λi,j,n and phases ϕi,j,n are not.

Let moreover Pi,j,n be the spatial period associated to ωi,j,n =
2π

Pi,j,n

.

– The functions wi are periodic with respect to the positions ξi and aim at modeling measurement

errors:

∀i, 1 ≤ i ≤ q, wi (ξi) =

Ni∑

n=1

λ′
i,n sin

(
ω′

i,nξi + ϕ′
i,n

)
. (4.4)

Note that the ω′
i,n are supposed to be known while the magnitudes λ′

i,n and phases ϕ′
i,n are not.

Let moreover P ′
i,n be the spatial period associated to ω′

i,n =
2π

P ′
i,n

.

Remark 4.1 As suggested on figure 4.2, the unperturbed part of (4.1) is described by a linear stationary

system with p inputs, comparable to torques or forces, and q outputs, regarded as tracking errors, such

that:

ẋ = Ax +

p∑

i=1

bivi

ei = cix, 1 ≤ i ≤ q.

(4.5)

Each input vj is affected by cogging forces periodic in certain positions ξi (collected in the set Ij). More-

over, the measurements of the deviations around the desired trajectories are corrupted by interpolation

errors.

ξi

ξi

ei

eiui

yi

vi

wi (ξi)

∑

j∈Ii

di,j (ξj)

ẋ = Ax +

p∑

i=1

bivi

ei = cix

ξ∗i

ξ∗i

Controller

Figure 4.2: Systems under spatially periodic disturbances.
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Remark 4.2 One may assume that the unperturbed system (4.5) is derived from a mechanical analysis,

it is justified to assume that the velocity tracking errors are present in the vector x, they are noted ėi = c′ix

with c′i an n-dimensional constant row vector. Let νi be the derivative of the position ξi and ν∗
i = ξ̇∗i the

corresponding reference velocity which is continuous and bounded. The following relations hold:

∀i, 1 ≤ i ≤ q, νi = c′ix + ν∗
i and νi ≤ ν∗

i ≤ νi, (4.6)

with ν∗
i (respectively ν∗

i ) the upper (respectively lower) bound on the reference velocity. The row vectors

c′i are collected in:

C′ =
(
(c′1)

T
. . .

(
c′q
)T)T

∈ R
q×n. (4.7)

To give a compact view of the system (4.1), we make use of the internal model principle to describe the

different perturbations (4.3) and (4.4). A sketch of this approach is given by the remarks 4.5 and 4.6. In

the end, we arrive at the following state-space equation:

χ̇ = A (ν1, . . . , νq)χ + Bu
y = Cχ

(4.8)

with the notations:

• Define χ =
(
xT zT

)T
with z defined by (4.20) (in remark 4.6). The dimension of the vector χ is

n′ = n + 2N , with N defined by (4.19).

• Let u and y be the vectors where the commands and measurements are collected:

u =
(

u1 . . . up

)T
, y =

(
y1 . . . yq

)T
. (4.9)

• The matrices B and C are defined as:

B =
(
b1 . . . bp

)
∈ R

n×p, C =
(
cT
1 . . . cT

q

)T
∈ R

q×n, (4.10)

and, using the elements of the remark 4.6, two matrices D ∈ R
p×2N and W ∈ R

q×2N may be found

such that: 


∑

j∈I1

d1,j(ξj)

...∑

j∈Ip

dp,j(ξj)




= Dz,




w1(ξ1)

...

wq(ξq)




= Wz. (4.11)

• A ∈ R
n′×n′

, B ∈ R
n′×p and C ∈ R

q×n′

are matrices defined as follows:

A (ν1, . . . , νq) =

(
A BD
0 M (ν1, . . . , νq)

)
, B =

(
B
0

)
, C =

(
C W

)
. (4.12)
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Remark 4.3 According to the regular perturbation expansions presented in chapter 3, the equations (4.1)

and (4.5) with the periodic functions di,j and wi evaluated along the reference trajectories ξ∗i will play a

role of prime interest in this chapter:

ẋ∗ = Ax∗ +

p∑

i=1

bi



u∗
i +

∑

j∈Ii

di,j

(
ξ∗j
)




y∗
i = cix

∗ + wi (ξ∗i ) ,

(4.13)

and
χ̇∗ = A

(
ν∗
1 , . . . , ν∗

q

)
χ∗ + Bu∗

y∗ = Cχ∗,
(4.14)

with χ∗ =
(
(x∗)T (z∗)T

)T
. The previous two systems represent the first order approximation (in view

of the theorem 3.2) of the system (4.1), though in open loop.

Remark 4.4 Since the matrix M (see equation (4.20)) is a linear function in the νi, the same result

holds for the matrix A (ν1, . . . , νq) that may be expressed as:

A (ν1, . . . , νq) = A0 +

q∑

i=1

νiAi =

(
A BD
0 0

)
+

q∑

i=1

νi

(
0 0

0 Mi

)
. (4.15)

Remark 4.5 Each of the periodic functions previously used may be described using the internal model

principle. To illustrate this, consider:

Λ(ξ) =

K∑

k=1

λk sin (ωkξ + ϕk) , (4.16)

If we call ν = ξ̇ and

ζk =
(
λk sin (ωkξ + ϕk) λk cos (ωkξ + ϕk)

)T
,

observe that:

ζ̇k = νωk

(
0 1
−1 0

)
ζk, (4.17)

Stacking up the ζk in ζ =
(
ζT
1 . . . ζT

K

)
, the function Λ is given as the output of the following dynamical

system:

ζ̇ = νΘζ
Λ = θζ,

(4.18)

with the notations:

• Θ is a block diagonal matrix, made up of the elementary matrices ωk

(
0 1
−1 0

)
for k varying from

1 to K,

• θ is a row vector of size 2K similar to
(
1 0 . . . 1 0

)
.
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Figure 4.3: First order approximation resulting from the regular perturbation analysis.

Remark 4.6 Let’s collect in z the vectors ζ obtained when applying the method of the remark 4.5 to each

periodic function (di,j or wi). If N denotes the number of elementary sine functions necessary to describe

all these functions, namely, given the definitions (4.3) and (4.4):

N =

q∑

i=1

Ni +

p∑

j=1

∑

i∈Ij

Nj,i, (4.19)

z is of size 2N and there exists a square matrix M (ν1, . . . , νq) of size 2N such that:

ż = M (ν1, . . . , νq) z. (4.20)

M is block diagonal, each of these blocks being similar to νΘ (see (4.18)). For this reason, M (ν1, . . . , νq)

is linear in the νi and may be expanded as:

M (ν1, . . . , νq) =

q∑

i=1

νiMi. (4.21)

4.2 Design of the control scheme

4.2.1 Presentation

Our goal is to design a command to get the tracking errors asymptotically converging to zero despite the

spatially periodic perturbations and irrespective of the initial conditions. For a given control architecture,

the analysis of the resulting closed loop may be undertaken performing the regular perturbation expansion

developed in the theorem 3.2. Moreover, the Lyapunov-like theorem 3.3 states that, if the first order

approximation of the closed loop is asymptotically stable, the tracking errors globally converge to zero. In

the following, we propose to conceive an observer-based controller. We shall prove it is sufficient to design
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the observer from the equations describing the first order approximation of the open loop (see (4.13) or

(4.14)). We eventually come up with a solution entirely based on the first order approximation, which is

definitely suited to cancel the effects of the perturbations for the original system. Controlling the latter

with this architecture yields global asymptotical stability of the origin.

A Luenberger-like observer for the system (4.14) requires a likely time dependent matrix K ∈ R
n′×q, such

that:
χ̂∗ = A

(
ν∗
1 , . . . , ν∗

q

)
χ̂ + Bu∗ −K (ŷ∗ − y∗)

ŷ∗ = Cχ̂∗.
(4.22)

The goal of the control law is twofold:

• canceling the effects of the perturbations z∗ altering the dynamics of the mechanical variables x∗,

• choosing the poles for x∗.

The following choice suits these expectations:

u∗ = −Lχ̂∗ = −Lx̂∗ − Dẑ∗. (4.23)

We denote the observation errors by χ̃∗ = χ̂∗ − χ∗. The first order approximation in closed loop, when

u∗ gets applied, admits the following representation:
(

ẋ∗

˙̃χ
∗

)
=

(
A − BL −BL

0 A
(
ν∗
1 , . . . , ν∗

q

)
−KC

)(
x∗

χ̃∗

)
. (4.24)

The matrices L and K may be tuned independently:

• If the pair (A, B) is assumed to be controllable, L is obviously tuned for the poles of A −BL to all

have negative real parts.

• K has to be such that A
(
ν∗
1 , . . . , ν∗

q

)
−KC defines an exponentially stable autonomous system.

By doing so, the origin of the first order approximation (see equation (4.14)) in closed loop is globally

exponentially stable. We shall show that if L and K are tuned according to the previous constraints, and,

if the observer (4.22) and the controller (4.23) are adapted to the original system (4.8), one eventually gets

an observer-based controller that globally asymptotically stabilizes the original nonlinear system (4.8).

4.2.2 Observer-based controller

The sole change to the equations (4.22) consists in feeding them with the actual measurements y defined

by (4.9). From now on, the observation are collected in the vector χ̂ computed as:

˙̂χ = A
(
ν∗
1 , . . . , ν∗

q

)
χ̂ + Bu −K (ŷ − y)

ŷ = Cχ̂.
(4.25)

Let’s mimic the equation (4.23). The command u is still designed to get rid of perturbations and place

the mechanical poles, thus:

u = −Lχ̂ = −Lx̂ − Dẑ. (4.26)
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We now look for a representation of the system (4.8) controlled by the command (4.26), itself resorting

to the observations (4.25). Let χ̃ = χ̂ − χ represent the observation errors such that:

χ̃ = A
(
ν∗
1 , . . . , ν∗

q

)
χ̂ −A (ν1, . . . , νq) χ −KCχ̃.

We turn to best account A (ν1, . . . , νq) being linear in each of its arguments (see (4.15)) together with the

equations (4.6):

A (ν1, . . . , νq) = A
(
ν∗
1 , . . . , ν∗

q

)
+ A

(
c′1x, . . . , c′qx

)
.

In the end, the observation errors are given by the following differential equation:

˙̃χ =
(
A
(
ν∗
1 , . . . , ν∗

q

)
−KC

)
χ̃ + F (x) , (4.27)

with the matrix F(x) given by:

F(x) = −

q∑

i=1

(c′ix)Ai. (4.28)

The system (4.8) in closed loop is actually described by:

(
ẋ

˙̃χ

)
=

(
A − BL −BL

0 A
(
ν∗
1 , . . . , ν∗

q

)
−KC

)(
x

χ̃

)
+

(
0

F(x)

)
, (4.29)

where the evolution of the non controllable part (namely the perturbation z) has been omitted. The

following theorem gives necessary conditions for the system (4.29) to be globally asymptotically stable.

Theorem 4.1

If the gain matrices K and L are tuned so that the system (4.24) is exponentially stable, the origin

of the system (4.29) is globally asymptotically stable.

Proof:

The proof is organized as follows:

1. we first define an auxiliary dynamical system for which the stability findings of the chapter 3

apply,

2. the stability of the origin of (4.29) is then deduced.

We shall make use of the first order approximation of the open loop given by (4.14) and the structure

of the matrix A in (4.12). Let’s use the following notations:

z̄ = ẑ − z∗, χ̄ =
(
x̃T z̄T

)T
X =

(
xT χ̄T

)T
.
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Studying the evolution of X defined by blocks yields:

ẋ = (A − BL)x − BLχ̄ − BD (z∗ − z)

˙̃x = Ax̃ + BDz̄ − KxCχ̄ + BD (z∗ − z) − KxW (z∗ − z)

˙̄z = M
(
ν∗
1 , . . . , ν∗

q

)
z̄ − KzCχ̄ − KzW (z∗ − z) .

The previous equations may be collected as follows:

Ẋ =

(
A − BL −BL

0 A
(
ν∗
1 , . . . , ν∗

q

)
)

X +

p∑

i=1

Si

∑

j∈Ii

(
di,j(ξj) − di,j(ξ

∗
j )
)

+

q∑

i=1

Ti (wi(ξi) − wi(ξ
∗
i )) ,

(4.30)

with:

• Si =
(

bT
i −bT

i 0
)T

, 1 ≤ i ≤ p,

• Ki is the i-th column of the observer gains matrix K,

• Ti =
(

0 −KT
i

)T
, 1 ≤ i ≤ q.

Let Φ(t, t′) be the transition matrix associated to (4.24), recall that such a matrix may be defined

since the right-hand side of the linear differential equation is a continuous function of time, see [11].

Moreover, the following quantities are well defined:

∀, 1 ≤ i ≤ p, σi = sup
t≥0

(∫ t

0

ww(C 0
)
Φ(t, t′)Si

ww dt′
)

, τi = sup
t≥0

(∫ t

0

ww(C 0
)
Φ(t, t′)Ti

ww dt′
)

.

(4.31)

Using the previous equation, if we keep in mind the definition of the functions di,j and wi (equations

(4.3) and (4.4)), let µ be defined by analogy with the equation (3.37):

µ = 2N max
(
σiλi,j,n, τiλ

′
i,n

)
(4.32)

If µ takes a sufficiently small value, the theorem 3.5 applies. Practically speaking, to know whether the

output Cx converges to zero, one has to evaluate the functions wi(ξi) and di,j(ξj) along the reference

trajectories, namely replacing ξi (respectively ξi,j) by ξ∗i (respectively ξ∗i,j) in the equation (4.30). By

doing so, the inputs of this system are canceled. Recall that this system is assumed exponentially

stable according to the theorem. The output Cx =
(
C 0

)
X of the system (4.30) asymptotically

converges to zero (see [11]), provided µ is small enough.

Since all the terms cix go to zero and that the functions di,j and wi are continuous, the following

relations hold:

lim
t→∞

(wi − w∗
i ) = lim

t→∞
(wi (ξ∗i + cix) − wi (ξ∗i )) = 0, ∀i, 1 ≤ i ≤ q,

lim
t→∞

(
di,j − d∗i,j

)
= lim

t→∞

(
di,j

(
ξ∗j + cjx

)
− di,j (ξj∗)

)
= 0, 1 ≤ i ≤ p, j ∈ Ii.

As an immediate consequence and according to the terms of the theorem, if µ is small enough, (4.30) is

an exponentially stable system with vanishing inputs. The whole state x converges to zero as t grows

indefinitely.
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The only thing left to do is proving that z̃ = z̄ + z∗ − z converges to zero. The vector z is made

up of blocks similar to (4.17), and z∗ features the same block structure apart from the fact that the

considered positions are replaced by their references. The conclusion is rather easily obtained by noting

that:

lim
t→∞

z̃ = lim
t→∞

z̄ + lim
t→∞

(z∗ − z) = lim
t→∞




...
λ sin (ωξ∗ + ϕ) − λ sin (ωξ∗ + ωcx + ϕ)
λ cos (ωξ∗ + ϕ) − λ cos (ωξ∗ + ωcx + ϕ)

...




=




0
...
...
0




,

with x → 0.

Remark 4.7 For the findings of this theorem to apply, the smallness of the parameter µ (defined by

(4.32)) has to be taken into account. This constraint is actually satisfied in most physical situations, as

discussed hereafter.

As previously suggested, the magnitudes λi,j,n of the perturbation forces di,j may take arbitrarily large

values. In the equation (4.31) defining µ, they are combined with σi which is neither more nor less than

the sensitivity of the closed to perturbations acting on the tracking errors from the input of the unperturbed

system (given by the equation (4.8)). Practically speaking, when the system (4.5) is driven by the observer-

based controller, making the first-order approximation (4.24) the faster yields sensitivities σi the smaller.

Given the context of high-precision and high performance positioning, such a tuning may be carried out.

As a result, the terms σiλi,j,n may be controlled and do not have much impact on the magnitude of µ.

Let’s move on the terms τiλ
′
i,n appearing in the equation (4.32). τi depicts the influence of the measurement

errors on the tracking error. This value is usually close to the unity while the corresponding λ′
i,n used in

the modeling of spatially periodic measurements errors are usually very small (a few dozens nanometers),

especially in our context where the resolutions of the sensors matter since the overall precision is at stake.

Remark 4.8 The previous proof relies on the regular perturbation analysis based on an input-output

description. An expansion of the whole state (through the theorem 3.3) would yield too conservative

results, namely such an expansion would only be valid for very small magnitude perturbations. Given the

structure of the equation (4.30), it is not conceivable to expect all the inputs to have only a slight influence

on the whole state X in the equation (4.30).

The theorem 3.5 is then best suited to have a converging expansion of the output despite significantly large

perturbations. Furthermore, the previously considered output y = Cχ = Cx is zero-state detectable. Its

convergence to zero implies the convergence of the whole state X toward zero. This property is mate-

rial to justify that the observation errors are also asymptotically reaching zero, and that the observation

scheme, initially designed for the first order approximation, is also suited for the observation of the original

nonlinear system.
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4.2.3 Interpretation

One has to keep in mind that the evolution of the observation errors is not autonomous (see (4.27)). This

is due to the fact that our observation scheme is suited to the first-order approximation and not to the

original system. To get these errors converging to zero, the system has to be driven by the observer-based

command u of the equation (4.26).

In view of the remark 4.7, we may from now on assume that the tuning of the observer-based controller

amounts to making the first-order approximation of the closed loop (the equation (4.24)) exponentially

stable. It is noteworthy that, given the block triangular structure of this system, the controller (L) and

observer (K) gains may be tuned independently even if the original system (4.1) is nonlinear. Replacing the

actual positions by their references allows us to get rid of the different loops involving periodic functions

of the actual positions. An immediate consequence is that we now have to deal with a linear time-varying

system to conduct gain tuning.

While the tuning of L for A − BL to be exponentially stable is rather obvious when the pair (A, B) is

controllable, one still has to find K for the following system:

˙̃χ
∗

=
(
A
(
ν∗
1 , . . . , ν∗

q

)
−KC

)
χ̃∗

to be exponentially stable. This task is far from being as straightforward as the tuning of L and we

suggest to address it in the following.

4.3 Observer gains tuning

This issue may be undertaken in different ways. First, imagine that the first-order approximation (see

figure 4.3) is observable [45], namely the observation matrix associated with the pair
(
A
(
ν∗
1 , . . . , ν∗

q

)
, C
)

is

invertible. A Lyapunov transformation may be found to rewrite the matrix A
(
ν∗
1 , . . . , ν∗

q

)
into canonical

phase-variable form (see [44, 56]). In this new base, the poles of the equivalent system may be set to

arbitrary constant values with negative real parts so as to satisfy a certain decay-rate to zero α. Rewriting

the system in the original base yields the corresponding observer gains. The decay-rate to zero of the

resulting autonomous system:

˙̃χ
∗

=
(
A
(
ν∗
1 , . . . , ν∗

q

)
−KC

)
χ̃∗

is also guaranteed to be α. By doing so, the observer gains are time-varying functions depending on the

reference velocities.

In this part, we propose a method yielding constant observer gains K. To this end, we use the very specific

structure of the matrix A
(
ν∗
1 , . . . , ν∗

q

)
. This matrix is linear with respect to the reference velocities ν∗

i

(see (4.15)) which are bounded functions of time (see (4.6)). When the ν∗
i vary in between their bounds,

the matrix A belongs to a polytope whose vertices are given by:

A =

{
A(i) ∈ R

n′×n′

, 1 ≤ i ≤ 2q

/
A(i) = A (x1, . . . , xq) , ∀j, 1 ≤ j ≤ q, xj = νj or νj

}
. (4.33)
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At any time, A
(
ν∗
1 , . . . , ν∗

q

)
belongs to the convex hull of the set whose vertices are the elements of A and

the following relation holds:

A
(
ν∗
1 (t), . . . , ν∗

q (t)
)

=
2q∑

i=1

µi(t)A
(i) and

2q∑

i=1

µi(t) = 1. (4.34)

The previous property is crucial for the proposed tuning method. One actually has to design an observer

for the polytopic system ˙̃χ = A
(
ν∗
1 , . . . , ν∗

q

)
χ̃ from the measurements Cχ, see [10]. We derive two LMI

problems in the following, the latter enabling to set the decay-rate to zero of both the positioning and

observations errors for the original nonlinear system in closed loop described by the equation (4.29).

Provided these LMI problems are feasible, the derived gains are constant and the LMI optimization phase

is carried out offline only once.

4.3.1 Quadratic stabilization

LMI formulation

The following theorem brings an answer to the question of tuning K for the matrix A
(
ν∗
1 , . . . , ν∗

q

)
− KC

to be exponentially stable.

Theorem 4.2

Given the definition of the matrices A(i) by (4.33), if there exist two matrices P ∈ R
n′×n′

and

Q ∈ R
n′×q such that:

(i) P = PT and P > 0,

(ii)
(
A(i)

)
P + P

(
A(i)

)T

− CTQT −QC + 2αP < 0, ∀i, 1 ≤ i ≤ 2q,

by setting K = P−1Q, the matrix A
(
ν∗
1 , . . . , ν∗

q

)
− KC defines an exponentially stable system with

decay-rate to zero at least α.

Proof:

Suppose the previous conditions (i) and (ii) are met, we first show that V (χ) = χTPχ is a Lyapunov

function for the system:

χ̇ =
(
A
(
ν∗
1 , . . . , ν∗

q

)
− P−1QC

)
χ.

In virtue of (i), this function is positive definite, let’s compute its derivative with respect to time:

V̇ (χ) = χ̇TPχ + χTPχ̇

= χT
((

A−P−1QC
)T

P + P
(
A−P−1QC

)
+ Ṗ

)
χ

= χT
(
ATP + PA− CQT −QC

)
χ
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As suggested by (4.34), since

2q∑

i=1

µi = 1, the last line together with the condition (ii) is rewritten in:

V̇ (χ) = χT

(
2q∑

i=1

µi

((
A(i)

)T

P + P
(
A(i)

))
− CTQT −QC

)
χ

= χT

(
2q∑

i=1

µi

((
A(i)

)T

P + P
(
A(i)

)
− CTQT −QC

))
χ

≤ −2αV (χ) .

This point guarantees the stability of the solutions whose decay-rate to zero may be bounded from

above as follows. Let’s first divide both sides of the previous equation by the strictly positive quantity

V (χ) if χ 6= 0:

V̇ (t)

V (t)
≤ −2α.

and integrate it from 0 to any t > 0:

V (χ) ≤ V (χ(0)) e−2αt.

Since P is strictly definite positive, there exists a constant value δ > 0 such that P ≥ δI. As a

consequence, ‖χ‖ ≤ V (χ(0)) e−αt
/
δ and the result of the theorem holds.

Interpretation

A quadratic Lyapunov function with a constant matrix P is obtained in the previous theorem. A more

general issue consists in finding a time-varying P such that:

ATP + PA− CQT −QC + Ṗ ≤ −2αP .

This is though an infinite dimensional problem, and the proposed theorem yields sufficient conditions in

finite dimension to this issue. The polytopic nature of the system allows to enforce negativity conditions

only on the vertices of the set described by the matrix A
(
ν∗
1 , . . . , ν∗

q

)
. One still has to keep in mind that

the number of constraints to fulfill is exponentially increasing with the number of outputs q, namely the

positions in which the perturbation are periodic.

Once the LMI problem given in the theorem 4.2 is solved, the theorem 4.1 allows to conclude to the global

asymptotic stability of the closed loop (4.29), but, nothing can be said regarding its decay-rate to zero.

However, if L is such that the poles of A − BL are located on the left of −α, the zero and first order

approximations of the system in closed loop have decay-rate to zero α. In the following, we propose a

slightly different LMI problem that endows all the terms of the regular perturbation analysis with the

same decay-rate to zero.
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4.3.2 Small gains theorem

General problem

Let’s have a closer look at the closed loop (4.29), and interpret it as the input-output interconnection of

two dynamical systems. The state of the first is x while the state of the second is χ̃:

ẋ = (A − BL)x − BLu1

z1 =

q∑

i=1

(c′ix)Aiχ,
(4.35)

and:
˙̃χ =

(
A
(
ν∗
1 , . . . , ν∗

q

)
−KC

)
χ̃ + u2

z2 = χ̃.
(4.36)

The equation modeling the system in closed loop is obtained by setting u1 = z2 and u2 = −z1. The follow-

ing theorem makes the most of this structure and establishes conditions under which this interconnection

is stable with decay-rate to zero α.

Theorem 4.3

Suppose there exist:

(i) a function V1 : x ∈ R
n → R+ strictly positive for x 6= 0, zero for x = 0, and a scalar γ1 > 0

such that:

V̇1 ≤ γ2
1uT

1 u1 − xT C′T C′x − 2αV1,

(ii) a function V2 : χ ∈ R
n′

→ R+ strictly positive for χ 6= 0, zero for χ = 0, and a scalar γ2 > 0

such that:

V̇2 ≤ γ2
1uT

2 u2 − χT χ − 2αV2,

then the solutions of the system (4.29) are exponentially converging to zero with decay-rate to zero

at least α if the following constraint holds:

γ1γ2 max
1≤i≤q





√√√√
Ni∑

n=1

(
λ′

i,nω′
i,n

)2
+

p∑

j=1

Nj,i∑

n=1

(λj,i,nωj,i,n)
2



 ≤ 1. (4.37)

Proof:

Let’s exhibit a scalar a > 0 for V = V1 + aV2 to be a Lyapunov function for the system defined by

(4.29). V satisfies all the basic assumptions of a Lyapunov function, we now compute its derivative
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with respect to time when u1 = z2 = χ and u2 = −z1 = −

q∑

i=1

(c′ix)Aiχ (see (4.28)):

V̇ ≤ γ1χ
T χ − xT C′T C′x + aγ2z

T
1 z1 − aχT χ − 2αV

If we denote by:

γ = max
1≤i≤q




√√√√
Ni∑

n=1

(
λ′

i,nω′
i,n

)2
+

p∑

j=1

Nj,i∑

n=1

(λj,i,nωj,i,n)
2


 , (4.38)

according to the lemma 4.1, we have:

zT
1 z1 ≤ γxT C′T C′x,

thus:

V̇ ≤ (γ1 − a)χT χ + (aγγ2 − 1)xT C′T C′x − 2αV.

Provided the condition (4.37) is satisfied, one may find a scalar a > 0 such that:

γ1 ≤ a ≤
1

γγ2
,

and, in these conditions, V̇ ≤ −2αV , which, according to the elements reported in the proof of the

theorem 4.2, yields the exponential convergence to zero with decay-rate at least α of both x and χ̃.

Lemma 4.1 The norm of the vector z1 defined by (4.35) is bounded by:

zT
1 z1 ≤



max
1≤i≤q

√√√√
Ni∑

n=1

(
λ′

i,nω′
i,n

)2
+

p∑

j=1

Nj,i∑

n=1

(λj,i,nωj,i,n)
2



 xT C′T C′x, (4.39)

with C′ given by the equation (4.6).

Proof:

Practically speaking, for i > 0, the terms Aiχ are given by:

Aiχ =

(
0 0

0 Mi

)(
x
z

)
=

(
0

Miz

)
,

where each Mi is a block diagonal matrix. These blocks are similar to the matrix appearing in (4.18)

and aim at modeling some functions periodic in the only position ξi. For i 6= j, the terms MT
i Mj

necessarily equal zero and thus:

zT
1 z1 =

(
q∑

i=1

(c′ix)Aiχ

)T ( q∑

i=1

(c′ix)Aiχ

)

=

q∑

i=1

q∑

j=1

(c′ix)
(
c′jx
)
χTAT

i Ajχ

=

q∑

i=1

(c′ix)
2
zT MT

i Miz.
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The non-zero terms of the vector Miz are of two kinds:

• some components are similar to:

λ′
i,nω′

i,n cos
(
ω′

i,nξi + ϕ′
i,n

)
and − λ′

i,nω′
i,n sin

(
ω′

i,nξi + ϕ′
i,n

)
,

for all n between 1 and Ni,

• when considering the system depicted on 4.2, for an input indexed by j (between 1 and p), if

the position indexed by i influences the system through the input j (namely if i ∈ Ij), some

non-zero components of Miz actually look like:

λj,i,nωj,i,n cos (ωj,i,nξi + ϕj,i,n) and − λj,i,nωj,i,n sin (ωj,i,nξi + ϕj,i,n) ,

for all n between 1 and Nj,i.

As a consequence, zT MT
i Miz is given by:

∀i, 1 ≤ i ≤ q, zT MT
i Miz =

Ni∑

n=1

(
λ′

i,nω′
i,n

)2
+

p∑

j=1




Nj,i∑

n=1
i∈Ij

(λj,i,nωj,i,n)
2


 (4.40)

and, in these conditions:

zT
1 z1 ≤ max

1≤i≤q

(
zT MT

i Miz
) q∑

i=1

(c′ix)
2

= max
1≤i≤q

(
zT MT

i Miz
)

xT C′T C′x,

which ends proving the equation (4.39).

LMI formulation

We still suppose L given by any a priori setting for which it is possible to compute the smallest γ1 such

that the condition (i) of the theorem 4.3 is fulfilled. From now on, we are solely concerned with computing

K to minimize γ2 according to the condition (ii) of the theorem 4.3. By doing so, for a predefined L, we

derive the observer gains for our control architecture to withstand the largest perturbations. As illustrated

by the following theorem, if the perturbations stick to a small gain condition, the system in closed loop

remains stable with decay-rate to zero α.

Theorem 4.4

Consider a scalar α > 0. Under the following conditions:

(i) Define H(s) = C′ (sI − (A − BL))
−1

BL the transfer function of the system (4.35), all its

poles are assumed to have negative real parts on the left of −α,
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(ii) Define the scalar γ∗
2 , the matrices P∗ and Q∗ solutions of the following optimization problem

under LMI constraints
(
(γ∗

2 )2 , P∗, Q∗
)

= arg min
γ2
2
,P,Q

γ2
2

Subject to:

• ∃P = PT > 0

• ∃Q

•




(
A(i)

)T

P + P
(
A(i)

)
− CTQT −QC + I + 2αP P

P −γ2
2I


 ≤ 0, ∀i, 1 ≤ i ≤ 2q,

(4.41)

by letting K = P−1Q, the closed loop system (4.29) is exponentially stable with decay-rate to zero α

if:

γ∗
2 ‖H(s − α)‖

∞
max
1≤i≤q




√√√√
Ni∑

n=1

(
λ′

i,nω′
i,n

)2
+

p∑

j=1

Nj,i∑

n=1

(λj,i,nωj,i,n)
2


 ≤ 1. (4.42)

Proof:

This theorem entirely relies on the following two lemmas and the theorem 4.3:

• According to the lemma 4.2, for a given L, the smallest scalar γ1, provable by quadratic stabi-

lization, satisfying the condition (i) of the theorem 4.3 is given by ‖H(s − α)‖
∞

,

• According to the lemma 4.3, solving the optimization problem (4.41) leads to the smallest value

γ∗
2 , provable by quadratic stabilization, so that the conditions (ii) of the theorem 4.3 are fulfilled.

Thanks to the small gain theorem 4.3, the closed loop is exponentially stable, the decay-rate to zero

of its solutions is α as long as the condition (4.42) holds.

Lemma 4.2 Under the assumptions (i) of the theorem 4.4, if γ∗
1 is the smallest value γ1 such that the

conditions (i) of the theorem 4.3 are satisfied, then:

γ∗
1 ≤ ‖H(s − α)‖

∞
. (4.43)

Proof:

Let’s look for a quadratic Lyapunov function satisfying the conditions (i) of the theorem 4.3. In other

words, a matrix P = PT > 0 defining V = xT Px. We are thus looking for γ1 and P such that:

xT
(
(A − BL))T P + P (A − BL) + 2αP + C′T C

)
x − xT (PBL)u1 − uT

1

(
LT BT P

)
x − γ2

1uT
1 u1 ≤ 0,
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which is equivalent to the following matrix being negative:




(A + αI − BL)T + (A + αI − BL)T + C′T C′ −PBL

− (PBL)
T

−γ2
1


 ≤ 0.

Minimizing γ1 while satisfying both the previous negativity condition and P = PT > 0 is an LMI

problem boiling down to computing the H∞ norm of the following transfer function:

C′ (sI − (A + αI − BL)
−1

BL = C′ ((s − α)I − (A − BL)
−1

BL = H(s − α).

If the poles of H(s) are all located to the left of −α, H(s − α) is stable, and ‖H(s − α)‖
∞

is well

defined, which ends proving this lemma.

Lemma 4.3 Given the notations of the theorem 4.4, if we let K = (P∗)
−1

Q∗, the quadratic function

V2 = χ̃TP∗χ̃ meets the requirements of the point (ii) of the theorem 4.3.

Proof:

The function V2 previously defined meets the basic requirements of a potential Lyapunov candidate

function. For the sake of clarity, we omit the dependencies of A
(
ν∗
1 , . . . , ν∗

q

)
on the ν∗

i and we compute

V̇2

V̇2 = χ̃T
(
ATP∗ + AP∗ − (Q∗C)

T
− (Q∗C)

)
χ̃ + χ̃TP∗u2 + uT

2 P
∗χ̃.

Recalling that A
(
ν∗
1 , . . . , ν∗

q

)
may be expressed as a function of the vertices A(i) (see the equation

(4.34)), we rewrite the previous equation into:

V̇2 =
2q∑

i=1

µi

(
χ̃T uT

2

)



(
A(i)

)T

P∗ +
(
A(i)

)
P∗ − (Q∗C)

T
− (Q∗C) P∗

P∗ 0







χ̃

u2




where we make use of the equality

2q∑

i=1

µi = 1. If we now use the LMI constraints appearing in the

optimization problem (4.41):

V̇2 ≤

2q∑

i=1

µi

(
χ̃T uT

2

)



I + 2αP∗ 0

0 − (γ∗
2 )2






χ̃

u2




≤ − (γ∗
2 )2 uT

2 u2 − χ̃T χ̃ − 2αV2,

which eventually proves the point (ii) of the theorem 4.3.
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CHAPTER 5

High-Precision Trajectory Tracking: Experimental Results

5.1 Introduction

We now move on to the implementation of the observer-based control scheme presented in chapter 4. We

provide experimental results that illustrate the performances of the previous design. Our work sets a

unified framework allowing to get rid of any of the state-periodic perturbations listed in the chapter 1,

thus yielding extremely accurate trajectory tracking compared to a casual PID controller. The following

figures 5.1(a), 5.1(b) and 5.1(c) illustrate this point, we shall anyway comment them later on.
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(a) Interpolation errors.
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(b) Forces created by currents offsets.
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(c) Cogging forces.

Figure 5.1: Tracking errors obtained with a PID controller and the observer-based design in presence of
miscellaneous state-periodic perturbations.

On the top of highlighting the efficiency of the method, we shall also give a technical answer to two

questions left open, so far. Namely, the determination of the spatial pulsations of the perturbations

(given in the equations (4.3) and (4.4)), as well as some hints to carry out the gains tuning through the

LMI optimization of the theorems 4.4 and 4.2.

These two issues are addressed by considering a brushless linear motor mounted on a fixed frame. We shall
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show that the estimations of the pulsations of the spatially periodic forces (ωi,j,n in the equation (4.3))

and the position measurements errors (ωi,n in the equation (4.4)) are derived from Fourier transforms

performed on experimental data. We also give a slightly modified version of the LMI optimization problem

of the equation (4.41) to enable rest to rest trajectories. We then give the experimental results related

to an ironless motor. The perturbation forces acting on this ironless motor clearly fulfill the truncated

Fourier series considered so far. We shall then consider an ironcore motor and see that cogging forces,

to which this motor is subjected, are far from being so close to the modeling. However, our method still

exhibits outstanding performances despite the context.

5.2 Observer-based controller tuning

5.2.1 Experimental setup

−

+
C(s) 1/s2x∗

s2

u x

y

w(x)

d(x)

Figure 5.2: Ironless motor driven by PID controller.

A brushless linear motor, whose load is much lighter than the base on which it is mounted, is modeled

by the equation (1.11). Furthermore assume that high quality ball bearings are used, viscous friction is

neglected and:

ξ̈ = u + d(ξ) −
f

m
sign

(
ξ̇
)

y = ξ + w(ξ),
(5.1)

with two ξ-periodic functions d and w respectively modeling forces and interpolation errors. According

to the chapter 4, suppose they are given by:

d(ξ) =
∑

λn sin (ωnξ + ϕn) and w(ξ) =
∑

λ′
n sin (ω′

nξ + ϕ′
n) . (5.2)

The magnitudes and phases are still unknown, and, from now on, so are the pulsations ωn and ω′
n.

Observe the same example was treated as an illustration throughout the chapter 3, except it was driven

by a PD controller and we only took into account a pure sine perturbation force. In the presence of

dry friction, it is though more suited to drive this motor with a casual PID controller together with a

feedforward term on the reference acceleration, as illustrated on the figure 5.2. Let ξ∗ denote the reference

trajectory, e = ξ−ξ∗ the tracking error and C(s) the transfer function of the PID controller, the command

u is given by:

u = C(s)(ξ∗ − y) + s2ξ∗ = C(s)(e + w) + s2ξ∗. (5.3)

78



Chapter 5. Experimental results

According to the figure 5.2, open the loops involving the nonlinear functions d and w, and, in these condi-

tions, one defines S (respectively T ) the transfer function from the output of the block d(ξ) (respectively

the block w(ξ)) to the tracking error e = ξ − ξ∗. In other words, S matches the sensitivity of the closed

loop to perturbation forces, and T the sensitivity to measurement errors:

S(s) =
1

s2 + C(s)
and T (s) =

C(s)

s2 + C(s)
. (5.4)

For a representative setting of the PID controller, the magnitudes of the transfer functions S and T are

plotted on figure 5.3.
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Figure 5.3: Magnitudes of S (a) and T (b) for a recommended setting Kp = 300e3, Ki = 10e6 and
Kd = 800.

5.2.2 Spatial pulsations estimation

As illustrated in the section 3.5.4, when the motor is required to track a constant velocity trajectory x∗ =

ν∗t, the spatially periodic functions generate oscillations around the desired trajectory. The corresponding

frequencies may be measured from Fourier transforms of the tracking error e, and the spatial pulsations

may thus be easily obtained. Let’s illustrate this point.

The tracking error e is the output of a system affected by two spatially periodic functions, as illustrated

on figure 5.2. We mimic the equation (3.35) and e solves the following formal relation:

e = S(s)d(ξ) + T (s)w(ξ),

We neglect the term allowing for the initial conditions in (3.35), which simply amounts to supposing the

system in steady state.

From the theorem 3.4, the first order term of the regular perturbation analysis is given by:

µe(1) = S(s)d(ξ∗) + T (s)w(ξ∗),

where we recall x∗ = νt.
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According to the bode’s diagrams of the figure 5.3, the perturbation force d is significantly softened by the

transfer function S. Moreover, as expected, the norm of T is close to 1, but w is a very small magnitude

function. Thus, the parameter µ (as defined by the equation (3.37)) takes a very small value in comparison

to its allowable upper value µ∗ (defined by (3.41)). The remark 3.3.2 together with the figure 3.2 allows

us to state that the high order terms of the expansion of the tracking error are probably insignificant

compared to the first. Once the system is in steady state, it pretty relevant (and convenient) to assume:

e ≈ µe(1) =
∑

|S(iωnν∗)| λn sin

(
ωnν∗t + ϕn + arg (S(iωnν))

)

+
∑

|T (iω′
nν∗)|λ′

n sin

(
ω′

nν∗t + ϕ′
n + arg (T (iω′

nν∗))

)
.

(5.5)

The pulsations of the force d and the measurement error w may be determined independently from each

other by two successive experiments:

• Set ν ≪ 1. Observe on the figure 5.3 that, no matter how small λ′
n is with respect to λn, in the

expression (5.5), if ν is set to a small enough value, the terms |T (iωnν∗)|λ′
n dominate the terms

|S(iωnν∗)|λn. We conclude that a Fourier transform of the tracking error at low speed allows to

estimate the ω′
n.

• Set ν ≫ 1. Since the ω′
n is approximately 1000 times larger than the ωn, when the velocity is set

to large values, the tracking error is mainly made up of components whose frequencies are located

at ωnν∗. For instance, as mentioned in the chapter 1, it is very representative to suppose:

ωn ≈
2π

10
rad/mm, λn ≈ 1000mm/s2 and ω′

n ≈
2π

10e−3
rad/mm, λ′

n ≈ 100e−6mm.

When ν is set to 100mm/s, we actually have:

|T (iω′
nν)|λ′

n ≈ 1nm and |S(iωnν)| λn ≈ 1µm.

Remark 5.1 The previous method yields satisfactory results in practice, however, when computing the

Fourier transform of the tracking error, the results have to be cautiously interpreted. Recall the equations

giving the first order approximations for a pure sine perturbation (see equation (3.45)). We may find a

frequency (first order approximation) and its double (second order approximation), even if the perturbation

features only one spectral component. If the perturbation has two components with pulsations ω and 2ω,

a Fourier transform also leads to the same interpretation, except both are obtained from the first order

term, and, none of them is significantly dominating the other.

5.2.3 Gains tuning

Our observer-based controller is of prime interest for scanning motion, when the motor has to track a

constant velocity trajectory. It enables to get rid of the undesirable oscillations highlighted in the section

3.5.4. Yet, this algorithm is also intended (and designed) to achieve precise trajectory tracking during
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acceleration and deceleration phases. The case where ν∗ is constant is solely interesting to determine the

spatial pulsations. From now on, we suppose that ν∗ is varying. To solve the LMI optimization problem

(4.41), some bounds on the reference velocity have to be given, namely to construct the matrices A(i)

defined by the equation (4.33).

According to the notations of the chapter 4 (see the equation (4.6)), a first attempt would be to set ν∗ to

zero and ν∗ to the desired scanning velocity. By doing so, the LMI optimization fails for it is unfeasible.

The pair made up of the matrix A(0) and C (both defined by (4.12)) is unobservable.

To circumvent this issue, ν∗ is set to a small value close to zero. The experimental results will illustrate

that no instability is witnessed when the reference speed varies from 0 to ν∗, although the stability is a

priori not guaranteed. Also note that it takes little time for the reference speed to vary from 0 to a small

ν∗ since the achievable acceleration are pretty high for the considered high-end motors.

To ease the LMI optimization, we also use the following hint. The pair (A(ν∗), C) is actually hardly

observable. It may lead to numerical difficulties to expect the system to have the same decay-rate to zero

for ν∗ = ν∗ and for ν∗ = ν∗. As a tentative explanation, consider linear stationary systems for which

unobservability means that the poles cannot be placed arbitrarily. In the end, we basically solve the

equation (4.41) by varying α according to the reference velocity. Indeed, for our example, for A(i) = A (ν∗),

replace α by a quite large value α, while, for A(i) = A (ν∗), α is set to a rather close to zero value α. By

doing so, the LMI formulation remains tractable and we also satisfies the implicit requirement of quickly

rallying the reference trajectory during the constant velocity scanning phases.

We are using The Yalmip interface [28] to code these LMI problems. The Yalmip formalism is pretty

convenient as it allows to test different LMI solvers, namely, we have tested CSDP [8, 9], DSDP [4, 5] and

SeDuMi [47]. They all seem to perform the same.

5.3 Experimental results

For a PID controller, we have showed that interpolation errors are limiting only at low speed (say <

10mm/s), whereas cogging forces are insignificant. The converse conclusion may be drawn for high

velocity (say > 100mm/s). We assume that it holds for the observer-based controller, which is tuned to

cancel either forces or measurement errors. The parameters used for the following experimental results

are listed in the tables 5.1(a) and 5.1(b).

5.3.1 Ironless motor

Interpolation errors cancellation

We first consider a low speed trajectory (plotted on figure 5.4(c)) to emphasize the efficiency of the

interpolation errors cancellation. Measurements of the true tracking error is required for the purpose of

this study. The motor is equipped with an external interferometer, while the standard optical scale is

used to control the motor (according to the context depicted in the chapter 1).
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motor setting
ν∗ bounds mm/s decay-rate spatial periods mm
ν∗ ν∗ α α P1 P2 P3 P ′

1 P ′
2

low velocity (a) 0.1 1 50 1 4e−3

ironless motor low velocity (b) 0.1 1 50 1 4e−3 2e−3

high velocity 300 10 20 0.1 42 21

ironcore motor high velocity 500 20 20 0.1 24 16 12

(a) Observer-based controller.

motor Kp Ki Kd

ironless motor 300e3 10e6 800

ironcore motor 120e3 15e6 800

(b) PID controller

Table 5.1: Controller parameters.

To determine the spatial periods of the interpolation error, on the figure 5.4(d), we plot the Fourier

transform of the tracking error during the constant velocity phase while the motor is controlled by a PID.

It seems there are two fundamental periods, namely P ′
1 = 4µm and P ′

2 = 2µm. It is also quite interesting

to note that some peaks around 1.3µm and 1µm are also present in this Fourier transform. So far, given

their magnitudes, it cannot be deduced whether they result from higher order terms of the expansion.

This point is discussed in the following.

When the motor is driven by the observer-based controller allowing for only one pulsation (P ′
1 = 4µm), a

Fourier transform of the resulting tracking error shows that the peak around (2µm) is not canceled (see

the figure 5.4(g)). This clearly confirms our first impression, P ′
2 = 2µm is well a fundamental period and

we move on to the observer-based setting of the table 5.1 allowing for both these fundamental periods.

As witnessed on the figures 5.4(g) and 5.4(h), our solution manages to entirely get rid of these two peaks,

while, looking at 5.4(f), the peak around 1.3µm remains. We thus have another fundamental period. Its

influence is not significant enough to tune our observer-based scheme to cancel it.

Let’s now have a look at the figure 5.4(a). The overall precision seen by the interferometer is dramatically

improved. This figure also shows that the system quickly rallies its reference trajectory, even within the

acceleration phase. On the detailed view of the figure 5.4(b), corresponding to he constant velocity phase,

the gain is even more obvious. The high frequency remaining in the red curve matches the interpolation

error of the interferometer itself. The command sent (figure 5.4(e)) is clearly filtered. It prevents the
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motor from heating by avoiding unnecessary high frequency current references. It also quite noticeably

removes the whistle sound caused by this motor at low speed.

Electrical currents offsets

The main state-periodic phenomenon affecting ironless motors operating at high velocity is generated

by the electrical offsets. The interpolation errors are small enough to be neglected, and the position

measurements are provided by the optical scale. There is no need for an interferometer.

For the reference trajectory presented on the figure 5.5(c), when using a PID controller, the resulting

tracking error and its Fourier transform are plotted on the figures 5.5(a) and 5.5(b). The two peaks

located at P1 = 42mm and P2 = 21mm are used to tune the observer gains. Note that these periods

are strongly related to the magnetic pitch (42mm) of this motor. Our solution clearly outperforms the

PID controller, during the constant velocity phase as well as during the acceleration phases. The tracking

error is ten times smaller than the one resulting from the use of the PID controller. Quite interestingly, at

first sight, the commands sent to the motor are almost identical (see the figure 5.5(d)). However, on the

figure 5.5(e), though slight, the phase difference of the signals generated by the observer-based controller

causes an important gain in terms of positioning precision.

5.3.2 Ironcore motor

We now move on to the control of an ironcore motor along a high speed trajectory (500mm/s). This

motor is pretty sturdy and may thus withstand higher velocity motion. The most striking fact on the

figure 5.6(a) is the pretty whimsical behavior of the tracking error when the motor is driven by the PID

controller. The spectral content of the tracking error is pretty intricate as depicted by the figure 5.6(b).

The oscillations generated by the electrical offsets were stationary, with constant magnitudes. We are

now facing a completely different situation. The Fourier transform suggest to use three periods to tune

the observer, namely P1 = 24mm, P2 = 12mm and P3 = 16mm. Note that the first two are once again

related to the magnetic pitch of this motor (24mm).

The robustness of our control scheme to perturbations that do not entirely comply with the position

periodic assumption is proved. The cogging forces are completely compensated for. The resulting tracking

error is measured to be 20 times smaller than with the PID.
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(a) Tracking error.
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(b) Detailed View of the figure 5.4(a).
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(c) Reference velocity (ν∗ = 1mm/s).
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(i) Plant sensitivity to perturbation
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Figure 5.4: Experimental results for the ironless motor at low speed (1mm/s), successively driven by a
PID controller (−), and the observer-based controller according to the low speed (a) (−) and low speed
(b) (−) settings of the table 5.1.
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(a) Tracking error.
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(b) Fourier transform wrt. spatial periods of the tracking
error in the constant velocity phase.
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(c) Reference velocity ν∗ = 300mm/s.
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(e) Detailed view of the figure 5.5(d)
during the constant velocity motion.
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(f) Plant sensitivity to perturbation forces during the con-
stant velocity phase.
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Figure 5.5: Experimental results for the ironless motor at high velocity (300mm/s) using a PID controller
(−) and the observer-based controller for spatially periodic forces cancellation (−).
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(b) Fourier transform wrt. spatial periods of the tracking
error in the constant velocity phase.
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(c) Reference velocity ν∗ = 500mm/s.
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(d) Plant sensitivity to perturbation forces during the con-
stant velocity phase.
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(e) Plant sensitivity to measurements errors during the con-
stant velocity phase.

Figure 5.6: Experimental results for the ironcore motor at high velocity (500mm/s) using a PID controller
(−) and the observer-based controller for spatially periodic forces cancellation (−).
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Conclusion

Our work contains contributions to theoretical issues, whose technical implications constitute consistent

solutions to several problems arising in the manufacturing machines used in the semiconductor industry.

Let’s draw up a conclusion in the same vein by first recalling the theoretical aspects and then their

applications. Consider the theorem 2.1. At first sight, the initial problem consists in integrating twice

a casual double integrator featuring dry friction and a periodic command. The study we carried out

unveils a very intricate situation. The system reaches periodic orbits that are quite unusual, since some

sliding motion phases may occur along them. The theorem states that the nature of the orbit depends

upon a single parameter. This is in practice central to accurately initialize brushless motors from the

only knowledge of the displacements. This is a material contribution to an unusual problem, as already

discussed in the chapter 2.

The chapter 3 also brings several key theoretical elements, particularly the theorem 3.2 that introduces

the Bell polynomials of the second kind. They are not so common in the control community, but they turn

out to be convenient to conduct a full regular perturbation analysis. Any term of the expansion is given

in closed form thanks to these polynomials, and, quite interestingly, the radius of convergence as well

as the truncation error are estimated. This full regular perturbation analysis allows to derive sufficient

conditions for the global asymptotic stability of the considered systems. For this reason, the theorem

3.3 may be seen as a generalization of the Lyapunov method for the systems altered by state-periodic

disturbances.

This analysis is fruitfully used in the chapter 4 to design an observer-based control scheme. The approach

is innovatory since the observer structure hinges upon the regular perturbation analysis. It is showed

to match the required expectations in terms of trajectory tracking by making use of the Lyapunov-like

theorem. The framework encompasses the cancellation of both measurements errors and perturbation

forces affecting the positioning systems used in the semiconductor industry. The results presented in the

chapter 5 clearly demonstrates the validity and the efficiency of the design.
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No matter how simplistic the modeling used for the gains tuning may seem, the method yields extremely

satisfactory results, as highlighted in the chapter 5. For slightly more complex systems, this rough

modeling prevents us from tuning the observer-based controller as aggressively and easily. Basically,

some unmodeled dynamics turn out to be limiting. For instance, when two linear motors are sandwiched

together to move on a horizontal plane, the coupling generates high frequency modes. When they are not

taken into account, it is not possible to hound the observer-based scheme into a corner. To circumvent this

issue, the modeling has to supplemented with this information. Practically speaking, recall we consider

plants made up of an unperturbed part on the one hand, and state-periodic perturbations on the other

hand. To extent the validity of the approach, some mechanical modes must be added to the unperturbed

part. It is noteworthy to point out that the LMI formalism is perfectly suited to cope with uncertain or

time-varying modes. In view of the mechanical sandwiched structure previously mentioned, the damping

ratio or, more presumably, the frequency of a given mode are likely to depend on the positions of the

motors. It is also unrealistic that these estimated values be not corrupted. The theorems 4.2 and 4.4

require some negativity conditions to be met on the vertices defined by the bounds on the reference

velocity. Thus, we may add new vertices depending on the frequencies of the modes. By doing so, the

modeling remains valid on a wider frequency domain, and the resulting tuning do not put the stability of

the closed into jeopardy.

Let’s return to an assumption made in the chapter 1 concerning the currents controller. We assume it

tuned in such a way that the currents perfectly rally their references. In practice [6, 7], it may be showed

that the electrical windings are affected by back electromotive voltages εξ̇ sin

(
2π

P
ξ + ϕ

)
. To get rid

of this voltage, one may design an observer-based controller, allowing for this voltage evaluated along

the reference trajectory ξ∗. A proof could rely on a regular perturbation analysis, close to the one done

in the chapter 3. However, this case is a little bit more complicated. To carry out a complete regular

perturbation analysis, the Bell polynomials of the second kind are still of prime interest to expand the

sine function of the position. The next step is to compute the Cauchy product of the previous expansion

with the velocity expressed as a power series. It is rather obvious that a fully dedicated study is required

given the noticeable complexity. Though, we think that an observer-based controller based on the first

order approximation of the back-emf voltages does the job. Namely, replace the actual expression of the

perturbation with εξ̇∗ sin

(
2π

P
ξ∗ + ϕ

)
to define the observer structure. Some slight technological changes

may be required to allow the autonomous currents controller to be fed with the reference trajectory. Note

the online computation burden is not that important.

As a concluding remark, we would like to lay the emphasis on some possible enhancements of the proposed

control architecture. First, our observer tuning boils down to some LMI optimization problems. Their

feasibility may be regarded as an observability test for the considered observation structure. They turn

out to be feasible in most of the situations we considered. However, it may be worth going deeper
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into this question, especially since some issues may arise when dealing with systems featuring several

mechanical modes, as previously discussed. The gains of the controller L were chosen according to some

settings known to yield satisfactory results. We simply supplement the control law with state-periodic

perturbations cancellation. Determining the controller gains according to some new criteria may also be

a fruitful avenue of research. Finally, the reference trajectory design is not addressed in our work. It

may be worth considering existing anti-vibratory techniques of this kind [31, 46]. Actually, the considered

motors are usually mounted on moving bases, it is possible to design reference trajectories taking this

information into account, and preventing the system from undesired trajectories. The framework of our

study allows to accurately track references of any kind. The overall performances may thus be improved

by a parallel use of our disturbances rejection method and the reported anti-vibratory trajectory design

techniques.
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[30] K.W. Lim, K.S. Low, and M.F. Rahman. Observers for sensorless control of permanent magnet

synchronous motor drive. In Proceedings of the IFAC World Congress, pages 431 – 434, Sydney,

Australia, 1993.
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[32] Jérémy Malaizé. Devices and methods for cogging force cancellation in linear motors, 2007.
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APPENDIX A

Periodic orbits classification

A.1 Proof of the property 3

We first show that τ0 is necessarily located between β and 1−α. Referring to the variations of the figure

2.6, fλ is strictly increasing from α to β, then strictly decreasing beyond β. The only chance to solve

fλ(τ0) = fλ(α) in τ0 is to have τ0 greater than β. On this domain, given the variations 2.6, showing that

τ0 < 1 − α is equivalent to proving fλ(τ0) − fλ(1 − α) > 0:

fλ(τ0) − fλ(1 − α) = fλ(α) − fλ(1 − α) = v0(α) − λα − v0(α) − λα + λ = λ(1 − 2α) > 0.

The previous inequality resulting from α ≤ 1/2, as witnessed on the figure 2.4.

For any x between β and 1−α, we compute the derivative of fλ(x)− fλ(α) with respect to λ. Recall that

α depends on λ, while x is a fixed value:

d

dλ
(fλ(x) − fλ(α)) = −x −

(
dα

dλ
(u0(α) − λ) − α

)
= −(x − α) < 0. (A.1)

We now have all the necessary elements to prove that τ0 is decreasing with λ. Consider two scalars λ′

and λ′′ > λ′, α′ and α′′ (respectively β′ and β′′) the corresponding values of α (respectively β). Suppose

also x′ and x′′ given by:

fλ′(x′) = fλ′(α′) and fλ′′(x′′) = fλ′′(α′′). (A.2)

Thanks to the equation (A.1), since fλ′(x′) − fλ′(α′) = 0, we eventually get:

fλ′′(x′) − fλ′′(α′′) ≤ 0. (A.3)

If we use the definitions (A.2), we arrive at fλ′′(x′) ≤ fλ′′(x′′). Since fλ′′ is decreasing, x′′ ≤ x′ and this

proves that τ0 is a decreasing function in λ.
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The property 1 states that for λ = λ1, the curves of fλ and hλ intersects in τ∗ = 1−β and so fλ(1−β) =

hλ(1 − β). Since λ1 ≤ λ2, according to the property 2, the relation hλ(1 − β) = −fλ(β) ≤ fλ(α) holds

and then:

fλ1
(1 − β) = hλ1

(1 − β) = −fλ1
(β) ≤ fλ1

(α) = fλ1
(τ0),

Since fλ is decreasing on [β, 1], for λ = λ1, τ0 < 1 − β. It can be checked on the figure 2.4 that 1 − β

is an increasing function of λ, and it has just been showed that τ0 is a decreasing function of λ. As a

consequence, τ0 remains in the interval [β, 1 − β] for all λ ≥ λ1.

A.2 Proof of the property 4

Checking that an interval Iλ = [a, b] meets the point (iii) comes down to the both following properties:

• the image of the interval [a, b] by the mapping hλ is included in the image of the same interval by

the mapping fλ, since on [1−β, 1−α], hλ is increasing and fλ decreasing, this is basically equivalent

to:

fλ(b) ≤ hλ(a) ≤ hλ(b) ≤ fλ(a), (A.4)

• the image of the set [0, a] ∪ [b, 1] by the mapping fλ does not intersect the image of [a, b] by the

mapping hλ.

Adopting the notations of the property 3, for λ ≤ λ1, τ0 may belong either to [1 − β, 1 − α] or [β, 1 − β].

These two cases are treated separately and depicted on the figure A.1:

• τ0 ≥ 1 − β: we have fλ(τ0) = fλ(α) ≥ fλ(τ∗) and since fλ is decreasing beyond β, τ0 is necessarily

smaller than τ∗. As a consequence, hλ(τ0) ≤ fλ(τ0), and according to the definition 2.3, we also

have:

fλ(τ0) = fλ(α) ≤ 0 ≤ −fλ(α) = hλ(1 − α).

Define a = τ0, there exists b between a and 1−α such that hλ(b) = fλ(a). The definition of b yields:

v0(a) + v0(b) = λ(1 + a − b).

To check that a and b satisfies the equation (A.4), we use the previous equation to study the sign

of fλ(b) − hλ(a):

fλ(b) − hλ(a) = v0(b) − λb + v0(a) + λa − λ = 2λ (a − b) < 0.

The inequality holds since b > a = τ0.

We now prove that the images of [a, b] by fλ and hλ do not intersect outside [a, b]. Consider any

y such that y < a = τ0. We have fλ(y) > fλ(α) = fλ(a) > hλ(b). The function hλ is increasing

for any x in [a, b], therefore fλ(y) > hλ(b) > hλ(x). Consider now any y such that y > b. We have
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fλ(y) < fλ(b) < hλ(a) < hλ(x) for all x in [a, b]. This ends proving the point (iii). Given the way the

interval Iλ is built, (i) is also verified. Concerning (ii), since fλ and hλ are respectively decreasing

and increasing, if the relations (A.4) are fulfilled, the plots of fλ and hλ necessarily intersects in

[a, b].

• τ0 ≤ 1 − β: define a = 1 − β. According to the property 1, fλ intersects hλ in τ∗ greater than

a = 1 − β. An immediate consequence is:

fλ(a) = fλ(1 − β) > hλ(1 − β) = hλ(a). (A.5)

Moreover, we have 1 − β = a > τ0 and fλ(τ0) = fλ(α) < 0. As fλ is decreasing, we also have:

fλ(a) < 0 < hλ(1 − α). (A.6)

If we combine (A.5) and (A.6), we show that there exists b > a between 1− β and 1− α (the point

(i) is then verified) such that hλ(b) = fλ(a). Since fλ and g are strictly monotone, we furthermore

show that τ∗ ∈ [a, b] ((ii) is also fulfilled). We check the conditions (A.4) by calculations similar to

the case τ0 > 1 − β. Finally, for any x in [a, b]:

∀y, 0 ≤ y ≤ α , fλ(y) ≥ fλ(α) = f(τ0) ≥ hλ(b) ≥ hλ(x)
∀y, α ≤ y ≤ a , fλ(y) ≥ fλ(a) ≥ hλ(b) ≥ hλ(x)
∀y, b ≤ y ≤ 1 , fλ(y) ≤ fλ(b) ≤ hλ(a) ≤ hλ(x),

which ends proving (iii).
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Figure A.1: Construction of the intervals Iλ.

A.3 Proof of the property 5

For λ ≤ λ1, the property 4 is used to show that for any un ∈ Iλ, one may find un+1 in the same interval

such that fλ(un+1) = hλ(un). This proves that if the first terms of the series belongs to Iλ, the next

terms remain within Iλ.
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For any interval Iλ defined by the property 4, the situation is similar to the one depicted on the figure

A.2. fλ is decreasing and hλ increasing on Iλ and they intersect in τ∗ ∈ Iλ. Thus, if un < τ∗, for any

u ∈ Iλ such that u < τ∗, fλ(u) > hλ(un), un+1 is necessarily greater than τ∗. Conversely, if un > τ∗, for

any u ∈ Iλ such u > τ∗, fλ(u) < hλ(un), un+1 is necessarily less than τ∗. The terms of the series un are

thus alternatively greater and less than τ∗.

Let’s define ṽn = v0(un) − v0(τ
∗). The relation fλ(un+1) = hλ(un) may also be expressed as:

v0(un+1) − λun+1 = −v0(un) − λun + λ.

According to the definition of τ∗ by the equation (2.6), the following substitution λ = 2v0(τ
∗) holds and

thus, the previous equation is rewritten into:

ṽn+1 = −ṽn + λ (un+1 − un) . (A.7)

Suppose un > τ∗ . Since v0 is decreasing on Iλ (see figure 2.5), we have v0(un) < v0(τ
∗) < v0(un+1).

Therefore ṽn < 0 < ṽn+1 and un+1 < un. The equation (A.7) may be rewritten in:

|ṽn+1| = ṽn+1 = −ṽn + λ (un+1 − un) = |ṽn| − λ|un+1 − un| < |ṽn|. (A.8)

Now suppose than un < τ∗. We now have v0(un) < v0(τ
∗) < v0(un+1). This now implies ṽn+1 < 0 < ṽn

and un+1 > un so that:

|ṽn+1| = −ṽn+1 = ṽn − λ (un+1 − un) = |ṽn| − λ|un+1 − un| < |ṽn|. (A.9)

We have just proved through the equations (A.8) and (A.9) that |ṽn| is decreasing. We also know that

|ṽn is bounded from below. It may be concluded that |ṽn converges. Since the un’s belong to Iλ where

v0 is continuous and strictly monotone, the series u2p and u2p+1 respectively converge to τ∗ + l+ and

τ∗ + l−. The recurrence equations fλ(u2p+1) = hλ(u2p) and fλ(u2p+2) = hλ(u2p+1) may now be rewritten

for p → ∞:

v0(τ
∗ + l−) − λ(τ∗ + l−) = −v0(τ

∗ + l+) − λ(τ∗ + l+) + λ (A.10)

v0(τ
∗ + l+) − λ(τ∗ + l+) = −v0(τ

∗ + l−) − λ(τ∗ + l−) + λ. (A.11)

Subtracting the equation (A.11) to (A.10) yields that l+ = l− = l. If we then add the equation (A.11) to

(A.10), l turns out to fulfill v0(τ
∗ + l) = λ/2. Necessarily l = 0 and un → τ∗.

A.4 Proof of the property 6

For any λ greater than λ1, fλ and hλ intersects within [β, 1 − β] and thus:

hλ(1 − β) > fλ(1 − β). (A.12)
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Appendix A. Periodic orbits classification

Moreover, when λ is less than λ2, from the property 2, it may be deduced that hλ(1 − β) ≤ fλ(α) ≤ 0 ≤

fλ(β) = −hλ(1 − β), or, more interestingly:

hλ(1 − β) < fλ(β). (A.13)

If we combine the equations (A.12) and (A.13) together with fλ being strictly monotone on [β, 1− β], we

conclude that the equation fλ(y) = hλ(1 − β) admits a unique roots y on the interval [β, 1 − β].

Moreover, for any y in [0, β], fλ(y) is greater than fλ(α), itself greater than hλ(1 − β) according to the

property 8. For any y in [1 − β, 1], fλ, as a decreasing function, is less than fλ(1 − β), the latter being

also less than hλ(1 − β) according to the property 7. This results into the equation fλ(y) = hλ(1 − β)

having only one root y on [0, 1] and y lies within [β, 1 − β].

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

h

(u0,fλ(u0))

(u0,hλ(u0)) (u1,fλ(u1))

(u1,gλ(u1))(u2,fλ(u2))

(u2,gλ(u2)) (u3,fλ(u3))

τ

fλ(τ)

Figure A.2: Convergence of the series un to τ∗.

A.5 Proof of the property 7

Since gλ is decreasing within [1 − β, 1 − α] and that Iλ lies within this interval, for any x ∈ Iλ and any

y ∈ [x, 1 − α], gλ(y) < gλ(x). If a solution y to the equation gλ(y) = gλ(x), y lies necessarily between

1 − α and 1. However, for any x ∈ Iλ:

gλ(x) = v0(x) + λx − λ + λ = −hλ(x) + gλ(1),

and Iλ is such that hλ(x) ≤ 0. This implies that gλ(x) > gλ(1), and thus, for any y between 1 − α and α

where gλ is increasing,

gλ(x) > gλ(1) > gλ(y),

which ends proving this property.
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A.6 Proof of the property 8

For the same reasons as previously, if gλ(y) = gλ(x) has a root y for any x ∈ Iλ, then y lies necessarily

within [1 − α, 1]. For λ ≤ λ2, according to the property 2 and the definitions of the functions fλ gλ and

hλ by (2.5), fλ(α) + fλ(β) = fλ(α) − hλ(1 − β) ≥ 0 and then:

gλ(1 − β) − gλ(1) = −hλ(1 − β) > −fλ(α) > 0.

We conclude than for any y in [1 − α, 1] where gλ is increasing, gλ(1 − β) > gλ(1) > gλ(y).

A.7 Proof of the property 9

Suppose first that hλ(1 − β) ≤ 0, since λ ≥ λ2, we get:

fλ(α) ≤ hλ(1 − β) ≤ 0 = fλ(0).

We conclude about the existence of a unique y in [0, α] such that fλ(y) = hλ(1−β). For reasons previously

mentioned in the proof of the property 8, if hλ(1 − β) ≤ 0, the equation gλ(z) = gλ(1 − β) has no root z

lying within [1 − β, 1].

Let’s suppose now that hλ(1 − β) > 0. For any y in [0, α], fλ(y) ≤ 0 ≤ hλ(1 − β), there is no root y in

[0, α] to the equation fλ(y) = hλ(1 − β). We still use hλ(1 − β) > 0 to get:

gλ(1) − gλ(1 − β) = hλ(1 − β) ≥ 0.

Moreover gλ(1− β) > gλ(1−α) since gλ is decreasing between 1− β and 1−α. Thus, we can find z lying

within [1 − α, 1] such that gλ(z) = gλ(1 − β).
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APPENDIX B

Bell polynomials of the second kind

B.1 Definition

Consider two integers n and r such that n ≥ 1 and 1 ≤ r ≤ n. The Bell polynomial of the second kind

Bn,r, sometimes referred to as the incomplete Bell polynomial, is given by [50, 16]:

Bn,r (x1, . . . , xn−r+1) =
∑ n!

j1! . . . jn−r+1!

(x1

1!

)j1

. . .

(
xn−r+1

(n − r + 1)!

)jn−r+1

, (B.1)

with the summation extending for all non negative integers ji such that:

j1 + . . . + jn−r+1 = r and j1 + 2j2 + . . . + (n − r + 1)jn−r+1 = n. (B.2)

For two given n and r, to construct this polynomial, one first has to list the different ways of splitting the

integer n into r non empty subsets. This yields a combination (j1, . . . , jn−r+1) to be used in (B.1).

For instance, consider the case n = 6 and r = 3. The different partitions of the integer 6 in 3 parts are

the followings:

• 6 = 4 + 1 + 1, and for this combination the only non-zero ji’s are j1 = 2 and j4 = 1,

• 6 = 3 + 2 + 1, and for this combination the only non-zero ji’s are j1 = 1, j2 = 1 and j3 = 1,

• 6 = 2 + 2 + 2, and for this combination the only non-zero ji is j2 = 3.

If we eventually apply the formula (B.1):

B6,3 (x1, x2, x3, x4) = 15x2
1x4 + 60x1x2x3 + 15x3

2.

The coefficients of the Bell polynomials of the second kind may be proved to bear a combinatorial meaning.

As can be checked on the previous example, the coefficient of the monomial xj1
1 xj2

2 . . . x
jn−r+1

n−r+1 corresponds
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Appendix B. Bell polynomials of the second kind

to the number of partitions of a set made up of n indistinguishable elements into r subsets with respectively

ji elements.

B.2 Properties

We now review some properties that do not depend on the choice of n and r:

1. Bn,r (x1, . . . , xn−r+1) is homogeneous of degree r in xi.

2. The coefficients of the different monomials are positive.

3. ∀α > 0, Bn,r (αx1, . . . , αxn−r+1) = αrBn,r (x1, . . . , xn−r+1).

4. ∀i, 1 ≤ i ≤ n − r + 1, 0 ≤ xi ≤ yi =⇒ Bn,r (x1, . . . , xn−r+1) ≤ Bn,r (y1, . . . , yn−r+1).

5. ‖Bn,r (x1, . . . , xn−r+1)‖ ≤ Bn,r (‖x1‖ , . . . , ‖xn−r+1‖).

For any given n and r, the summation appearing in (B.1) extends over all elements of the set defined by

(B.2), the property (i) is thus trivial. As an immediate consequence of (B.1), the coefficients of the mono-

mials are strictly positive which yields the property (ii). According to the combinatorial interpretation

previously mentioned, these coefficients can be proved to be integers. The property (iii) results from (i).

Considering (iv), if the xi’s are positive and bounded by yi, according to (ii), the conclusion is immediate.

The property (v) is implied by both the triangle inequality and the Bell polynomials of the second kind

having only positive coefficients.
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APPENDIX C

Some results on analytical functions

C.1 Analyticity of the solutions of a differential equation

In both Poincaré [41] and Lyapunov [29] seminal works, the following theorem on the analyticity of

the solution of a differential equation is attributed to Cauchy. It may be quite complicated to find some

references by Cauchy directly presenting it. See however [14] for a sketch of the proof. A complete, though

radically different, proof may be found in [15] and [20]. Note that these approaches are less informative

than the genuine one suggested by Cauchy. They completely rely on tools of the complex functions

analysis, and the expansion of the solution in power series is guaranteed by some high level theorems. On

the other hand, according to the Cauchy’s method, the series are directly showed to converge, almost by

hand.

C.1.1 Cauchy’s theorem

Theorem C.1: Let f(x, ε, t) : R
n × R × R+ → R

n be an analytical function with respect to x and ε for

all time t in [0, T ], and any T > 0. For any initial conditions x0 ∈ R
n in t = 0, the solution of the

following differential equation

ẋ = f(x, ε, t) (C.1)

can be expressed as a power series in ε for all t in [0, T ] and ε small enough.

This theorem states the existence of functions x(n) : R+ → R
n such that the solution x of the equation

(C.1) admits the following representation:

∀t, 0 ≤ t ≤ T, x(t) =
∑

n≥0

x(n)(t)
εn

n!
. (C.2)
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In order to fulfill the initial conditions, one gets:

∑

n≥0

xn(0)
εn

n!
= x0,

which, thanks to the uniqueness of power series expansions, readily yields

x(0)(0) = x0, ∀n ≥ 1, x(n)(0) = 0. (C.3)

We give a sketch of the corresponding proof:

1. Suppose that such functions x(n) exist, and that the series they define formally satisfies the equation

(C.1) with initial conditions (C.3). It is possible to exhibit an a priori expression of the x(n)’s.

2. One has to check afterward that the previously defined functions allow to build a power series

satisfying the differential equation (C.1).

This is a rather classical way of proving such a theorem and we suggest to illustrate it in the following.

C.1.2 Cauchy’s method

Suppose there exist some differentiable functions x(n) such that the series
∑

n≥0

x(n) ε
n

n!
formally satisfies

the equation (C.1). This means it is possible to invert the series summation and the derivation operators.

Basically, these assumptions have to be checked in a second time. Provided such a substitution may be

performed, one gets:

∀t, 0 ≤ t ≤ T,
∑

n≥0

ẋ(n) εn

n!
= f



∑

n≥0

x(n) εn

n!
, ε, t


 = f∗(ε, t).

The function f∗ results from the composition of two analytical functions. Therefore, f∗ is analytical with

respect to ε for any t and ε small enough. It may more precisely be showed that the following triangular

structure is obtained:

f∗(ε, t) =
∑

n≥0

fn

(
x(n), . . . , x(0), t

) εn

n!
. (C.4)

Combining the equation (C.4) with the differential equation (C.1), one eventually gets

∑

n≥0

ẋ(n) εn

n!
=
∑

n≥0

fn

(
x(n), . . . , x(0), t

) εn

n!
.

Using the uniqueness of the power series expansions yields:

ẋ(0) = f0

(
x(0), t

)

ẋ(1) = f1

(
x(1), x(0), t

)

ẋ(n) = fn

(
x(n), . . . , x(1), x(0), t

)
, ∀n ≥ 2,

(C.5)

together with the initial conditions (C.3).
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C.1.3 Validation

The functions given by (C.5) have to fulfill certain properties for the series they define to be the solution

of the equation (C.1). The initial conditions are obviously satisfied, but one needs some very strong

properties to invert series summation and differentiation. Namely the series
∑

n≥0

x(n) ε
n

n!
has to converge

and the series
∑

n≥0

ẋ(n) εn

n!
has to be uniformly converging. In these conditions:

∑

n≥0

ẋ(n) εn

n!
=

∑

n≥0

fn

(
x(n), . . . , x(0), t

) εn

n!

= f




∑

n≥0

x(n) ε
n

n!
, ε, t





=
d

dt



∑

n≥0

x(n) ε
n

n!


 ,

The last line is due to the uniform convergence of
∑

n≥0

ẋ(n) εn

n!
. This ends proving that, under these

assumptions related to series convergence, the series
∑

n≥0

x(n) εn

n!
solves equation (C.1).

C.2 Analytical functions composition

As previously mentioned, to compute the functions x(n), the composition of two analytical functions has

to be expressed in power series. This can be done using the Faa d̀ı Bruno formula [21], entirely based on

the Bell polynomials of the second kind discussed in the appendix B. A complete survey of the different

existing formulations may be found in [26].

Theorem C.2: Consider the two following analytical functions:

• f analytical with respect to x such that f(x) =
∑

n≥0

fn

xn

n!
,

• x analytical with respect to ε such that x(ε) =
∑

n≥1

xn

εn

n!
.

The function resulting from the composition f ◦x is analytical with respect to ε and, for ε small enough:

(f ◦ x) (ε) = f0 +
∑

n≥1

(
n∑

r=1

frBn,r (x1, . . . , xn−r+1)

)
εn

n!
, (C.6)

where the Bn,r’s are the Bell polynomials of the second kind given by (B.1).

C.3 Analyticity of the roots of an algebraic equation

We end this review with the expansion of the root of an algebraic equation in power series, namely the

Lagrange’s inversion theorem, that one may find in [19].
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Theorem C.3: Let f : R → R be a scalar function of x, analytical for |x| ≤ x∗ and M = sup
x=x∗

|f(x)|.

Thus, for all ε ∈ R such that |ε| ≤ ε∗ = x∗/M , the equation

x = εf(x)

has only one root x = h(ε), with h analytical for |ε| < ε∗. Moreover the following expansion is converging

for |ε| < ε∗:

∀ε, |ε| < ε∗, h(ε) =
∑

n≥1

εn

n!

(
dn−1

dxn−1
(f(x)n)

)

x=0

. (C.7)

108


