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Abstract

The main topic of this thesis is to segment brain tumors, their components (edema and
necrosis) and internal structures of the brain in 3D MR images. For tumor segmenta-
tion we propose a framework that is a combination of region-based and boundary-based
paradigms. In this framework, we first segment the brain using a method adapted for
pathological cases and extract some global information on the tumor by symmetry-
based histogram analysis. The second step segments the tumor and its components.
For this, we propose a new and original method that combines region and bound-
ary information in two phases: initialization and refinement. For initialization, which
is mostly region-based, we present two new methods. The first one is a new fuzzy
classification method which combines the membership, typicality and neighborhood
information of the voxels. The second one relies on symmetry-based histogram analy-
sis. The initial segmentation of the tumor is refined relying on boundary information
of the image. This method is a deformable model constrained by spatial relations.
The spatial relations are obtained based on the initial segmentation and surrounded
tissues of the tumor. The proposed method can be used for a large class of tumors in
any modality of MR images. To segment a tumor and its components full automati-
cally the proposed framework needs only a contrast enhanced T1-weighted image and
a FLAIR image. In the case of a contrast enhanced T1-weighted image only, some
user interaction will be needed.

We evaluated this method on a data set of 20 contrast enhanced T1-weighted and
10 FLAIR images with different types of tumors.

Another aim of this thesis is the segmentation of internal brain structures in the
presence of a tumor. For this, a priori knowledge about the anatomy and the spatial
organization of the structures is provided by an ontology. To segment each structure,
we first exploit its relative spatial position from a priori knowledge. We then select
the spatial relations which remain consistent using the information on the segmented
tumor. These spatial relations are then fuzzified and fused in a framework proposed
by our group. As for the tumor, the segmentation process of each structure has
two steps. In the first step we search the initial segmentation of the structure in a
globally segmented brain. The search process is done in the region of interest (ROI)
provided by the fused spatial relations. To globally segment the brain structures we
use two methods, the first one is the proposed fuzzy classification and the second one
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is a multiphase level sets. To refine the initial segmentation, we use a deformable
model which is again constrained by the fused spatial relations of the structure. This
method was also evaluated on 10 contrast enhanced T1-weighted images to segment
the ventricles, caudate nucleus and thalamus.
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Résumé

Le sujet principal de cette thèse est la segmentation 3D de tumeurs du cerveau et de
leurs différentes composantes (oedème et nécrose), ainsi que de structures internes du
cerveau en IRM. Pour la segmentation de tumeurs nous proposons un cadre général
qui est une combinaison des paradigmes fondés sur les régions et les contours. Dans
ce cadre, nous segmentons d’abord le cerveau en utilisant une méthode adaptée aux
cas pathologiques et extrayons des informations globales sur la tumeur par analyse de
symétrie. La deuxième étape segmente la tumeur et ses composantes. Pour cela, nous
proposons une méthode nouvelle et originale qui combine l’information de régions et
de contours en deux phases. Pour la première, l’initialisation, nous présentons deux
nouvelles méthodes. La première est une nouvelle méthode de classification floue qui
exploite à la fois l’information des voxels et leurs voisinages (inspirés des champs
Markov (MRF)), l’appartenance et la typicalité. La seconde se fonde sur l’analyse de
la symétrie. La segmentation initiale de la tumeur est raffinée dans la deuxième phase
par un modèle déformable contraint par des relations spatiales. Les relations spatiales
sont obtenues en utilisant la segmentation initiale et les tissus environnant la tumeur.
La méthode proposée peut être employée pour une grande classe de tumeurs dans
n’importe quelle modalité en IRM. Pour segmenter une tumeur et ses composantes
automatiquement, le cadre proposé a besoin seulement d’une image CE-T1w (con-
trast enhanced T1-weighted) et d’une image FLAIR. Dans le cas d’une image CE-T1w
seulement, l’interaction de l’utilisateur peut être nécessaire. Nous avons évalué cette
méthode sur une base de données de 20 images CE-T1w et 10 images FLAIR avec
différents types de tumeurs.

Un autre but de cette thèse est la segmentation de structures internes du cerveau
en présence d’une tumeur. Pour cela, une connaissance a priori sur l’anatomie et
l’organisation spatiale des structures est fournie par une ontologie. Pour segmenter
chaque structure, nous exploitons ses relations spatiales par rapport à d’autres struc-
tures, selon la connaissance a priori. Nous choisissons alors les relations spatiales qui
sont valables en fonction de la tumeur segmentée. Ces relations spatiales sont alors
modélisées dans un cadre flou proposé par notre groupe. Comme pour la tumeur,
la procédure de segmentation de chaque structure comporte deux étapes. Dans la
première étape nous recherchons la segmentation initiale de la structure dans le cerveau
globalement segmenté. Le processus de recherche est fait dans la région d’intérêt
fournie par la fusion des relations spatiales. Pour segmenter globalement les structures
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du cerveau nous employons deux méthodes. La première est la classification floue pro-
posée et la seconde repose sur les ensembles de niveaux multi-phases. Pour raffiner
la segmentation initiale, nous employons un modèle déformable qui est contraint par
les relations spatiales de la structure. Cette méthode a été également évaluée sur 10
images CE-T1w pour segmenter les ventricules, les noyaux caudés et les thalami.
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Résumé en français

Introduction

A des fins aussi diverses que l’aide au diagnostic, le suivi et la planification thérapeutiques,
le support à l’enseignement, le raisonnement à partir de cas, l’indexation et la fouille de
données, il est primordial de disposer d’une description intégrant, dans la modélisation
du cerveau humain, la localisation de la tumeur, son type, sa segmentation, son po-
sitionnement anatomo-fonctionnel, la description des structures environnantes et de
leurs relations spatiales. Si la littérature est riche en travaux sur la segmentation
des structures cérébrales et celle de pathologies, ces deux composantes sont rarement
intégrées, et la description de la pathologie via ses relations spatiales aux structures
normales a connu peu de développements en traitement d’images. De plus les méthodes
dédiées à la segmentation des pathologies tumorales souffrent d’un manque de ro-
bustesse, de précision et sont dans la plupart des cas supervisées. Elles sont ainsi
difficilement généralisables à divers types de tumeurs.

Dans cette thèse, nous avons d’abord étudié les caractéristiques et les apparences
de différents types de tumeurs dans les images médicales et nous avons proposé trois
classifications différentes des types de tumeurs. En utilisant ces classifications nous
présentons une méthode originale de segmentation 3D de tumeurs cérébrales en im-
agerie par résonance magnétique (IRM), ainsi que leur intégration dans un modèle
anatomique du cerveau construit à partir de la segmentation et la reconnaissance de
structures normales dans l’image IRM. Le modèle proposé est donc spécifique et adapté
au cas individuel traité.

L’approche globale suit le schéma suivant (figure 1) :

• Détection et segmentation de la pathologie tumorale : cette étape repose
sur une méthode de segmentation originale en deux étapes : une segmentation
initiale est réalisée par deux méthodes : une méthode de classification floue et
une méthode d’analyse de symétrie ; puis la segmentation est raffinée par un
modèle déformable paramétrique utilisant le flux de vecteur gradient généralisé.

• Segmentation des structures cérébrales internes : cette partie s’appuie
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sur une méthode développée pour les images normales. Il s’agit d’une approche
contextuelle de la segmentation s’appuyant sur des descriptions structurelles (es-
sentiellement des relations spatiales) décrites dans des manuels d’anatomie. La
méthode s’appuie sur la fusion de contraintes ou connaissances a priori modélisées
par des ensembles flous et leur intégration dans un modèle déformable comme
une force externe supplémentaire. Dans le cadre des images pathologiques, nous
montrons que la méthode reste robuste pour certaines structures internes.

Figure 1: Schéma général de la méthode proposée pour la segmentation de tumeurs et
de structures internes du cerveau.

Segmentation automatique de tumeurs cérébrales

En général, le but le plus important de l’analyse d’images médicales, et en particulier
l’analyse de l’IRM du cerveau, est l’extraction de l’information clinique qui permet le
diagnostic et le traitement de la maladie. Les tumeurs du cerveau sont une maladie
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grave, ce qui nécessite la détection et la segmentation de tumeurs du cerveau dans les
IRM pour le diagnostic médical.

La littérature en traitement d’images est riche en méthodes de segmentation de
structures cérébrales normales, mais peu de méthodes concernent les pathologies. Force
est de constater que ces méthodes, initialement conçues pour les structures saines,
trouvent leurs limites dès qu’une pathologie vient désorganiser l’agencement structurel
et altérer les valeurs radiométriques des tissus cérébraux. Les méthodes dédiées à la
détection de tumeurs cérébrales en sont encore à un stade exploratoire, et les quelques
techniques publiées à ce jour souffrent d’un manque de robustesse, de précision, et
nécessitent dans leur majorité une interaction manuelle.

Les méthodes traitant de la segmentation de tumeurs cérébrales se divisent en
trois classes : les approches par régions, les approches par contours et les approches
combinant une approche par régions et une approche par contours. La figure 2 présente
une classification des méthodes existantes pour la segmentation de tumeurs cérébrales.

Le cadre général de la segmentation de tumeurs du cerveau que nous avons développé
comprend deux composantes principales : prétraitement et segmentation, comme il-
lustré dans la figure 3. Les entrées de ce système sont deux modalités différentes
d’IRM : CE-T1w (contrast enhanced T1-weighted) et FLAIR. Nous pensons qu’elles
sont suffisantes pour la segmentation de tumeurs du cerveau. L’étape de prétraitement
comprend les opérations de réduction d’hétérogénéité d’intensité et de variation d’intensité
inter-coupes des images, de recalage des images d’entrée, de segmentation du cerveau
et le calcul du plan de symétrie inter-hémisphérique.

L’étape de segmentation, fondée sur les informations fournies à l’issue du prétraitement,
est divisée en deux branches. Dans le cas d’une tumeur qui ne prend pas de con-
traste en CE-T1w (non-enhanced), sans œdème et sans nécrose, nous segmentons la
tumeur dans l’image FLAIR avec une nouvelle méthode de segmentation. Dans le cas
d’une tumeur qui prend le contraste (enhanced), on constate souvent la présence d’un
œdème et d’une partie nécrotique. Nous les segmentons en CE-T1w et FLAIR avec
la méthode de segmentation. Ce système peut également effectuer la segmentation
en utilisant seulement une image CE-T1w, mais parfois (particulièrement pour des
petites tumeurs) l’interaction de l’utilisateur (un clic dans la tumeur) est nécessaire.

La méthode automatique de segmentation que nous avons développée se com-
pose de deux phases : initialisation et raffinement, comme nous le montrons dans
le schéma 4. Dans la première phase, nous détectons et segmentons initialement la
tumeur ou l’œdème. Pour cette opération, la tumeur ou l’oedème est détecté et seg-
menté en utilisant une méthode de classification floue ou une méthode fondée sur
l’analyse de symétrie et quelques opérations morphologiques. La première méthode
s’appuie sur l’hypothèse que la tumeur ou l’œdème apparâıt dans l’image avec des
niveaux gris spécifiques, correspondant à une classe supplémentaire. La deuxième
méthode est fondée sur l’hypothèse que la forme du cerveau est approximativement
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Figure 2: Méthodes existantes pour la segmentation de tumeurs cérébrales.
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Figure 3: Cadre général proposé pour la segmentation de tumeurs du cerveau.
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symétrique, et que la tumeur peut changer la symétrie. Elle peut donc être détectée
par l’analyse d’asymétries. Cette détection fournit l’initialisation pour une segmenta-
tion plus précise en utilisant un modèle déformable paramétrique contr aint par des
relations spatiales.

Figure 4: Schéma général de la méthode proposée pour la segmentation automatique
de tumeurs.

Segmentation initiale

Détection par MPFCM

L’algorithme PFCM (Possibilistic fuzzy C-means) a été introduit par [Pal et al., 2005].
C’est une combinaison entre des algorithmes de classification possibiliste (PCM, possi-
bilistic C-means) et de classification floue (FCM, fuzzy C-means). Cette combinaison
permet de prendre en considération à la fois le degré d’appartenance et le degré de typ-
icalité des données, ces deux aspects étant importants en classification. L’algorithme
PFCM a été conçu dans ce sens.
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La fonction objectif de PFCM s’écrit :

Jm,η(U, T, V ; X) =

c
∑

i=1

n
∑
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(aum
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η
ik)Dik +

c
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γi

n
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k=1

(1 − tik)
η (1)

où
∑c

i=1 uik = 1, ∀k, 0 ≤ uik, tik ≤ 1 et a > 0, b > 0, γi > 0, m > 1, η > 1 sont
des constantes. Le degré d’appartenance uik (comme dans FCM) et la typicalité tik
(comme dans PCM) sont pondérés dans la fonction objectif par les constantes a et b.
Si a = 1, b = 0 et γi = 0, ∀i, PFCM se réduit à FCM et si a = 0 et b = 1, il se réduit
à PCM.

L’équation (1) montre que la fonction objectif de PFCM ne prend en compte aucune
information spatiale. Par conséquent, elle est sensible à l’hétérogénéité d’intensité et
au bruit, et son application pour la classification d’images IRM est très limitée.

Ici nous proposons un nouvel algorithme (MPFCM, PFCM modifié) qui exploite à
la fois l’information des voxels et leurs voisinages (inspirés des champs Markov (MRF)),
l’appartenance et la typicalité. Nous modifions l’équation (1) en ajoutant un terme qui
permet à l’étiquetage d’un voxel d’être influencé par son voisinage immédiat [Ahmed
et al., 2002] :

Jm,η(U, T, V ; X) =

c
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n
∑
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ik)Dik+
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c
∑
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η
ik)Sik

(2)

Ici Sik =
∑nw

w=1 ‖xw − vi‖
2 et xw est un pixel/voxel voisin de xk dans une fenêtre

autour de xk et nw est le nombre des pixels/voxels voisins. L’importance relative du
terme ajouté (effet de voisinage) est contrôlé par β.

Afin de détecter et d’étiqueter la tumeur, nous effectuons une classification en
cinq (ou six) classes [Khotanlou et al., 2005] : le liquide céphalo-rachidien (LCR),
la matière grise (MG), la matière blanche (MB), la tumeur (et l’œdème) et le fond.
Puisque les pathologies tumorales que nous traitons présentent une hyper-intensité,
elles portent, après classification, l’étiquette la plus élevée. Par la suite, des opérations
morphologiques sont appliquées à l’image résultat pour corriger les erreurs éventuelles
de classification (ouverture et sélection de composantes connexes). La figure 5 montre
un exemple de la détection d’une tumeur par MPFCM.

Détection par analyse de symétrie

Pour résoudre le manque de généralité de la méthode précédente, nous suggérons une
autre approche, à l’aide du plan de symétrie approximatif [Khotanlou et al., 2007c;b].
Le plan de symétrie du cerveau est une bonne approximation du plan moyen-sagittal,
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(a) (b) (c) (d) (e)

Figure 5: Détection d’une tumeur par MPFCM : (a) image originale, (b) classification
par MPFCM, (c) classe de la tumeur, (d) composantes connexes de la classe de la
tumeur et (e) tumeur détectée.

qui réalise la meilleure séparation des hémisphères. La détection automatique de
ce plan dans l’image du cerveau est très utile. Ici nous l’utilisons pour détecter des
tumeurs du cerveau. Le calcul du plan de symétrie approximatif du cerveau est exécuté
selon une méthode proposé par [Tuzikov et al., 2003], qui est fondée sur la maximisation
d’une mesure de similarité.

Le plan de symétrie de l’image en niveaux de gris et celui du masque binaire
du cerveau segmenté dans le cas normal sont approximativement égaux. Pour aug-
menter l’exactitude et pour accélérer l’algorithme dans les cas pathologiques nous
calculons donc le plan de symétrie sur le masque binaire du cerveau segmenté. Main-
tenant des tumeurs peuvent être détectées en évaluant les asymétries éventuelles.
Nous supposons que les tumeurs sont localisées dans seulement un hémisphère ou ne
sont pas symétriques. Notons Hn(x) l’histogramme de l’hémisphère normal et Hp(x)
l’histogramme de l’hémisphère pathologique. La différence Hs(x) = Hp(x) − Hn(x)
entre les histogrammes fournit des informations sur de nouvelles classes d’intensités
induites par la tumeur comme le montrent les figures 6, 7, 8 et 9.

Ici nous classifions les tumeurs à partir de leur apparence dans l’image CE-T1w en
4 classes [Khotanlou et al., 2007b] :

• tumeur qui ne prend pas de contraste (NEN) : la tumeur est plus foncée que la
matière grise (MG) dans l’image CE-T1w (figure 6) ;

• tumeur qui prend le contraste et sans œdème (FEN) : les voxels de la tumeur sont
hyperintenses (plus clairs que la matière blanche (MB)) dans l’image CE-T1w
(figure 7) ;

• tumeur qui prend le contraste et avec œdème (FEN), où la partie qui prend le
contraste est hyperintense en CE-T1w et l’œdème environnant est plus foncé que
la MG (figure 8) ;
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• tumeur qui prend le contraste partiellement (REN), qui a trois parties : une
partie centrale, la nécrose, plus foncée que MG, une partie qui entoure la nécrose
et apparâıt hyperintense, et l’œdème environnant qui est plus foncé que MG
dans l’image CE-T1w (figure 9).

Dans le cas d’une tumeur NEN, il y a un pic positif entre LCR et MG dans Hs

qui montre la gamme d’intensités de la tumeur (figure 6), tandis que dans le cas
d’une tumeur FEN sans œdème il y a un pic positif après MB dans Hs qui montre la
gamme de la tumeur (figure 7). Quand une tumeur FEN avec œdème (figure 8) ou
une tumeur REN (figure 9) existe dans l’image, nous avons deux pics positifs dans Hs,
où le premier pic montre la gamme d’intensités de l’œdème et le deuxième pic montre
la gamme d’intensités de la tumeur (figures 8 et 9), parce que l’intensité de l’œdème
est toujours inférieure à celle de la tumeur.

Pour extraire la tumeur nous employons d’abord un seuillage avec des valeurs dans
la gamme du pic de la tumeur. Quelques voxels mal classifiés sont enlevés en utilisant
des opérations morphologiques. D’abord une ouverture est employée pour déconnecter
les composantes. La plus grande composante connexe est alors choisie puisqu’elle cor-
respond à la tumeur. Pour obtenir les tissus environnants de la tumeur, nous devons
distinguer deux cas : les tumeurs avec œdème et les tumeurs sans œdème. Dans
le cas d’une tumeur avec œdème le pic positif précédant le pic de la tumeur corre-
spond à l’œdème et il peut être extrait par seuillage en utilisant la gamme d’intensités
de l’œdème (figures 8 et 9). Dans le cas d’une tumeur sans œdème le pic négatif
observé dans Hs correspond aux tissus normaux autour de la tumeur. Ces tissus peu-
vent également être obtenus par seuillage (figures 6 e t 7). Ils seront employés pour
représenter des relations spatiales dans la prochaine section.

Nous pouvons appliquer cette méthode pour détecter et extraire des anomalies dans
tous les types d’images du cerveau telles que T2-weighted, FLAIR, PD-weighted, CT
et PET. Ici nous employons cette méthode pour détecter et extraire des tumeurs dans
les images FLAIR. Puisque les tumeurs dans les images FLAIR apparaissent comme
des tissus hyperintenses, un pic positif qui correspond à la tumeur se produira dans
Hs(x) après le pic de MB comme illustré dans la figure 10.

Raffinement

Le résultat de la segmentation des tumeurs par analyse de symétrie et classification
par MPFCM n’est pas assez précis, en particulier sur les bords des tumeurs. Nous
avons donc besoin d’une méthode pour raffiner la segmentation. Pour cela, un modèle
déformable contraint spatialement est employé.
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(a)
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Figure 6: (a) Graphes de Hs, Hn et Hp pour une tumeur NEN. (b) Plan de symétrie
superposé sur le masque du cerveau. (c) Plan de symétrie superposé sur le cerveau
segmenté. (d) Tumeur détectée. (e) Tissus environnants.

Modèle déformable contraint spatialement

Notre méthode de raffinement de la segmentation repose sur la combinaison d’un
modèle déformable et de relations spatiales entre des objets [Colliot et al., 2006]. Dans
le cas de la détection de tumeurs par analyse de symétrie, deux types d’informations
sont disponibles : la détection initiale et les tissus environnants. Par conséquent nous
employons la distance à la tumeur segmentée initialement, et aux tissus environnants.
L’idée est que les contours de la tumeur devraient être situés entre la frontière de la
détection initiale et la frontière des tissus environnants. Ces relations spatiales sont
représentées par des sous-ensembles flous de l’espace de l’image [Bloch, 2005].

Leur intégration dans le schéma d’évolution du modèle déformable repose sur
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Figure 7: (a) Graphes de Hs, Hn et Hp pour une tumeur FEN sans œdème. (b) Plan
de symétrie superposé sur le masque du cerveau. (c) Plan de symétrie superposé sur
le cerveau segmenté. (d) Tumeur détectée. (e) Tissus environnants.

l’introduction d’une nouvelle force calculée à partir d’un ensemble flou. Cette force
permet de contraindre le modèle déformable à vérifier les relations spatiales décrivant
l’objet cible et améliore significativement la segmentation des objets aux frontières mal
définies [Colliot et al., 2006].

L’évolution du modèle déformable est décrite par l’équation dynamique de forces
suivante [Kass et al., 1988 ; Xu et al., 2000] :

γ
∂X

∂t
= Fint(X) + Fext(X) (3)

où Fint est la force interne et Fext la force externe.

Cependant, au lieu de correspondre uniquement à l’attache aux données, comme
c’est classiquement le cas, la force externe Fext contient également un terme décrivant
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Figure 8: (a) Graphes de Hs, Hn et Hp pour une tumeur FEN avec œdème. (b)
Plan de symétrie superposé sur le cerveau segmenté. (c) Tumeur détectée. (d) Tissus
environnants.

les relations spatiales :

Fext = λFC + νFR (4)

où λ et ν sont des coefficients de pondération, FC est un terme classique d’attache
aux données et FR est une force associée aux relations spatiales.

Plusieurs méthodes de construction de FR ont été proposées dans [Colliot et al.,
2006]. Une de ces approches consiste en la création d’un potentiel d’énergie par pro-
longation de l’ensemble flou en dehors de son support :

PR(P ) = 1 − µR(P ) + dsupp(R)(P ) (5)

où µR est la fonction d’appartenance à l’ensemble flou R représentant une relation
spatiale et dsupp(R) est la distance au support de R. La force FR est dérivée du potentiel
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Figure 9: (a) Graphes de Hs, Hn et Hp pour une tumeur NEN. (b) Plan de symétrie
superposé sur le masque du cerveau. (c) Plan de symétrie superposé sur le cerveau
segmenté. (d) Tumeur détectée. (e) Tissus environnants.

PR et normalisée par :

FR(P ) = −(1 − µR(P ))
∇PR(P )

‖∇PR(P )‖
(6)

Résultats

Nous avons appliqué les méthodes proposées à 30 jeux de données d’IRM avec des
tumeurs cérébrales. Les résultats pour deux images sont illustrés dans les figures 16 et
17. Pour évaluer les méthodes nous avons fourni des résultats quantitatifs pour chaque
méthode en comparant les résultats et segmentations manuelles en utilisant les mesures
de volume et de surface. Les segmentations manuelles sont fournies par les experts
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Figure 10: (a) Graphes de Hs, Hn et Hp pour une tumeur dans une image FLAIR. (b)
Plan de symétrie superposé sur le masque du cerveau. (c) Plan de symétrie superposé
sur le cerveau segmenté. (d) Tumeur détectée. (e) Tissus environnants.

(a) (b) (c)

Figure 11: Relations spatiales utilisées pour raffiner la segmentation de la tumeur
détectée dans la figure 8 (les valeurs les plus élevées de niveaux gris correspondent aux
régions où la relation spatiale est mieux satisfaite). (a) Près de la tumeur. (b) Relation
fournie par les tissus environnants de la tumeur. (c) Fusion des deux relations.
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(a) (b)

Figure 12: Force externe FR calculée pour un sous-ensemble flou µR correspondant
à la relation spatiale R. (a) Force FR calculée pour µR pour la relation “près de la
tumeur” (figure 11). (b) Force calculée pour la fusion des deux relations de la figure 11
(pour la visualisation un sous-échantillonnage a été effectué).

médicaux. Nous montrons quelques graphes qui comparent les résultats quantitatifs
des méthodes. Le premier graphe (figure 13) montre les moyennes et les écarts-types
des métriques de volume et de surface pour 10 tumeurs FEN en CE - T1w. On peut
observer que les mesures de volume de segmentation initiale et finale par MPFCM
et analyse de symétrie (raffinés par le modèle déformable) sont approximativement
égales. En conclusion, on peut observer que les relations spatiales ont le potentiel d’
améliorer les résultats. En employant le modèle déformable contraint par des relations
spatiales, on améliore les métriques de surface et de volume en comparaison à un
modèle déformable simple.

Le deuxième graphe (figure 14) compare les résultats quantitatifs sur les tumeurs
NEN en CE-T1w par analyse de symétrie. Là encore on peut observer que le modèle
déformable avec et sans des relations spatiales peut améliorer les résultats de la seg-
mentation initiale. La comparaison de ce graphe et du précédent prouve également que
la qualité de segmentation pour les tumeurs FEN est meilleure que pour les tumeurs
NEN en raison de leurs bords bien définis. L’amélioration de la méthode pour seg-
menter les tumeurs NEN peut encore être utile.

Le dernier graphe (figure 15) illustre les résultats quantitatifs pour la segmenta-
tion de tumeurs sur les images FLAIR. Il prouve que l’amélioration par le modèle
déformable ne mène pas à une amélioration considérable des métriques de volume. Il
améliore les mesures de surface plus que les mesures de volume.

Pour conclure, nous avons développé une méthode hybride de segmentation qui
exploite l’information de contour et de région de l’image pour segmenter la tumeur
et ses composantes. Nous avons comparé une méthode de classification floue et une
méthode d’analyse de symétrie pour détecter les tumeurs et nous avons employé un
modèle déformable contraint par des relations spatiales pour l’amélioration de la seg-
mentation. Ce travail prouve que le plan de symétrie est très utile pour la détection de
tumeurs. Nous avons également présenté une nouvelle méthode de classification floue
qui peut être employée pour le traitement des images médicales. En comparaison à
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d’autres méthodes, notre approche a certains avantages tels que son aspect automa-
tique et son caractère plus général. Notre méthode peut également segmenter les
composantes des tumeurs telles que l’œdème et la nécrose. Nous prévoyons également
qu’elle sera applicable à n’importe quel type d’image du cerveau comme FLAIR, T2-we
ighted, CT, etc.

Une limite de notre approche par symétrie est que l’analyse de symétrie peut
échouer dans le cas d’une tumeur symétrique par rapport au plan moyen-sagittal.
Cependant ce cas est très rare. Les travaux futurs visent à déterminer le type de
tumeur à partir d’une ontologie des tumeurs. Nos résultats peuvent également servir
d’étape préliminaire à la segmentation des structures environnantes dans la prochaine
section en employant des relations spatiales floues définies selon le type des tumeurs.

(a) (b)

Figure 13: Graphe des résultats quantitatifs pour les tumeurs FEN sur 10 images CE-
T1w. (a) Moyenne et écart-type des mesures de volume. (b) Moyenne et écart-type
des mesures de surface. Ici, MPFCM, MPFCM-DM, SYMM, SYMM-DM et SYMM-
DMSR désignent respectivement la méthode de MPFCM, MPFCM raffinée par le
modèle déformable, la méthode d’analyse de symétrie, l’analyse de symétrie raffinée
par le modèle déformable et l’analyse de symétrie raffinée par le modèle déformable
avec des relations spatiales.

Segmentation des structures internes en présence

d’une pathologie tumorale

Nous présentons dans cette section une extension originale d’un cadre de segmentation,
dédié initialement aux structures internes du cerveau normal, aux cas pathologiques.
En oncologie du cerveau, il est souhaitable d’avoir un modèle humain descriptif du
cerveau qui peut intégrer l’information de tumeur extraite à partir des données IRM
telles que sa localisation, son type, sa forme, son positionnement anatomo-fonctionnel,
ainsi que son influence sur les structures environnantes du cerveau (par exemple leurs
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(a) (b)

Figure 14: Graphe des résultats quantitatifs pour les tumeurs NEN sur 10 images
CE-T1w. (a) Moyenne et écart-type des mesures de volume. (b) Moyenne et écart-
type des mesures de surface. Ici, SYMM, SYMM-DM et SYMM-DMSR désignent
respectivement la méthode d’analyse de symétrie, l’analyse de symétrie raffinée par le
modèle déformable et l’analyse de symétrie raffinée par le modèle déformable avec des
relations spatiales.

(a) (b)

Figure 15: Graphe des résultats quantitatifs pour les tumeurs NEN sur 10 images
FLAIR. (a) Moyenne et écart-type des mesures de volume. (b) Moyenne et écart-type
des mesures de surface. Ici, MPFCM, MPFCM-DM, SYMM, SYMM-DM et SYMM-
DMSR désignent la méthode de MPFCM, MPFCM raffiné par le modèle déformable, la
méthode d’analyse de symétrie, l’analyse de symétrie raffinée par le modèle déformable
et l’analyse de symétrie raffinée par le modèle déformable avec des relations spatiales.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16: Comparaison des segmentations manuelle et automatique obtenues en util-
isant l’analyse de symétrie et MPFCM pour une tumeur REN dans une image CE-
T1w. (a) Image originale. (b) Segmentation manuelle. (c) Segmentation initiale par
MPFCM. (d) Segmentation raffinée de MPFCM. (e) Résultat superposé à l’image
originale. (f) Segmentation initiale par analyse de symétrie. (g) Segmentation raffinée
d’analyse de symétrie par le modèle déformable sans relations spatiales. (h) Résultat
superposé à l’image originale. (i) Segmentation raffinée d’analyse de symétrie par
le modèle déformable avec des relations spatiales. (j) Résultat superposé à l’image
originale.

relations spatiales). Il y a une grande littérature rapportant des travaux sur la seg-
mentation des structures cérébrales ou des tumeurs mais rarement de toutes les deux
en même temps. Cette thèse essaye de remplir cet espace, en traitant le problème de
la segmentation des structures internes du cerveau en présence d’une tumeur.

En raison du manque de bords clairement définis dus à l’hétérogénéité d’intensités,
aux effets de volume partiel et au bruit, la segmentation des structures du cerveau est
une tâche difficile qui ne sera pas accomplie par les algorithmes qui s’appuient seule-
ment sur l’information présente dans l’image. Par conséquent la plupart des méthodes
récentes emploient des informations a priori. Ici nous avons divisé les méthodes exis-
tantes fondées sur le type d’information a priori. Nous pouvons distinguer trois types
principaux de méthodes : les méthodes utilisant un atlas, les méthodes utilisant des
patrons déformables et les méthodes utilisant des relations spatiales.

Peu de méthodes existantes pour la segmentation de structures du cerveau sont
adaptées aux cas pathologiques. La plupart des méthodes présentées utilisent un
atlas comme information a priori et une technique de recalage [Kyriacou et al., 1999 ;
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17: Comparaison des segmentations manuelle et automatique obtenue en util-
isant l’analyse de symétrie et MPFCM pour une tumeur dans une image FLAIR. (a)
Image originale. (b) Segmentation manuelle. (c) Segmentation initiale par MPFCM.
(d) Segmentation raffinée de MPFCM. (e) Résultat superposé à l’image originale. (f)
Segmentation initiale par analyse de symétrie. (g) Segmentation raffinée d’analyse de
symétrie par le modèle déformable sans relations spatiales. (h) Résultat superposé
à l’image originale. (i) Segmentation raffinée d’analyse de symétrie par le modèle
déformable avec des relations spatiales. (j) Résultat superposé à l’image originale.

Nowinski and Belov, 2005 ; Bach Cuadra et al., 2004].

Le paradigme computationnel proposé dans notre méthode est fondé sur les travaux
précédents [Colliot et al., 2006] en présentant un cadre pour l’intégration des rela-
tions spatiales dans un modèle déformable, pour segmenter les structures normales
du cerveau dans des données IRM. Les relations spatiales, telles que des directions et
des distances, sont représentées par des sous-ensembles flous de l’espace de l’image et
incorporées à un modèle déformable en tant que forces externes. Dans cette section
nous étendons ce cadre aux cas pathologiques, où la présence d’une tumeur peut in-
duire des changements importants des caractéristiques iconiques et morphométriques
des structures environnantes. En analysant le comportement spatial de la tumeur et
son incidence sur les structures environnantes (petites ou grandes déformations), nous
discutons la conservation de quelques relations spatiales utilisées pour la segmentation.

Comme illustré sur le schéma 18, le cadre proposé repose sur une base de connais-
sances qui est constituée d’une ontologie de tumeurs, d’une ontologie de l’anatomie
du cerveau, d’une ontologie de relations spatiales et des descriptions de structures du
cerveau. En utilisant l’information de la tumeur segmentée et de ses composantes,
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nous choisissons les relations spatiales correspondant à la structure d’intérêt qui sont
valables. Puis la fuzzification et la fusion des relations spatiales choisies, en utilisant
le cadre flou proposé par [Bloch, 2005 ; Colliot et al., 2006], sont réalisées. Nous
employons alors les relations spatiales fusionnées pour guider la segmentation de la
structure par un modèle déformable. Cette procédure peut être répétée pour d’autres
structures et finalement les résultats de la segmentation (tumeur et structures) peuvent
être intégrés dans un modèle individuel du cerveau.

Figure 18: Schéma général de la méthode proposée pour la segmentation de structures
internes du cerveau.

Connaissances a priori

Ici notre but est de relier une ontologie contenant la connaissance anatomique avec
une ontologie des relations spatiales afin de représenter les relations spatiales entre les
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structures anatomiques du cerveau.

Un exemple d’ontologie de référence en informatique biomédicale est le modèle fon-
damental de l’anatomie (FMA) [Rosse and Mejino, 2003]. Le FMA est concerné par la
représentation des entités et des relations nécessaires pour modéliser de manière sym-
bolique des structures du corps humain sous une forme numérique qui est également
significative pour des humains. Dans le FMA, les relations spatiales entre les structures
anatomiques sont représentées implicitement. Ici nous devons représenter les relations
spatiales explicitement. Par conséquent nous représentons d’abord une ontologie des
relations spatiales et nous la relions alors au FMA pour représenter les relations spa-
tiales de chaque structure explicitement comme proposé dans [Hudelot et al., 2007].
Récemment notre groupe a développé une ontologie de relations spatiales générique
[Hudelot et al., 2007] (figure 19).

Figure 19: Une partie de l’ontologie du FMA, l’ontologie de relations spatiales et le
lien entre elles (visualisées par Protégé [Protégé, 2007].
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Représentation des relations spatiales

Notre but ici est d’intégrer les relations spatiales dans un modèle déformable, qui est
nécessaire pour fournir une représentation numérique des relations. Ici, nous con-
sidérons les relations spatiales qui définissent la position d’un objet cible par rapport
à un objet de référence. Les ensembles flous dans le domaine spatial sont appropriés
pour ce cas. Dans ce type de représentation, la valeur d’appartenance de chaque point
représente le degré avec lequel la relation est satisfaite. La représentation des relations
spatiales est fondée sur un cadre présenté par [Bloch, 2005 ; Colliot et al., 2006]. Dans
la figure 20 la répresentation de la relation “à droite de” est illustrée.

(a) (b)

Figure 20: Représentation d’une relation directionnelle par ensemble flou. (a) Élément
structurant flou représentant “à droite de”. (b) Dilatation floue du ventricule latéral
par l’élément structurant correspondant.

Adaptation aux cas pathologiques

L’adaptation du cadre développé précédemment pour les images normales aux cas
pathologiques exige de répondre à la question fondamentale : en présence d’une
pathologie, quels types de relations spatiales restent valables ? La réponse dépend
du type de tumeur.

Nous considérons dans ce travail une classification des tumeurs du cerveau selon
leurs caractéristiques spatiales et la nature des changements potentiels de l’organisation
structurelle du cerveau qu’elles induisent. Nous distinguons deux types principaux de
tumeurs : peu déformantes et induisant de grandes déformations. L’identification
du type de tumeur est fondée sur les résultats de segmentation. Pour réaliser cette
classification, nous avons développé une ontologie simple qui classifie la tumeur en
utilisant l’information extraite à partir des résultats de segmentation. L’ontologie de
la classification de tumeurs a été développée avec Protégé [Protégé, 2007].

Quelques relations spatiales sont plus stables que d’autres en présence d’une tumeur.
Intuitivement, les relations topologiques impliquent moins d’instabilité que les relations
métriques. Le choix d’écarter ou de maintenir une relation spatiale en présence d’une
tumeur est d’abord motivé par les considérations cliniques, à savoir la localisation, la
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taille et le type de la tumeur. Le tableau 1 montre notre liste courante de relations
spatiales spécifiques à chaque type de tumeurs [Khotanlou et al., 2007a ; Atif et al.,
2006a].

Figure 21: Une partie de l’ontologie de tumeurs visualisée par Protégé [Protégé, 2007].

Caractéristiques spatiales Relations spatiales

de tumeurs préservées

Induisant de grandes Adjacence, Direction,
déformations (LD) Distance (loin, près)

Peu déformantes (SD) Périphériques Adjacence, Direction,
(SD-P) Symétrie, Distance

Sous-corticales Adjacence, Direction,
(SD-SC) Distance (loin, près)

Table 1: Relations spatiales spécifiques à chaque type de tumeurs.
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Algorithme de segmentation

La méthode proposée pour la segmentation de structures internes du cerveau, comme
pour les tumeurs, a deux phases : initialisation et raffinement. En d’autres termes,
nous segmentons d’abord les tissus du cerveau (comprenant les structures internes du
cerveau) et puisque cette segmentation pour les structures internes de cerveau n’est pas
assez fine, nous les raffinons alors en employant l’information a priori. Pour exécuter
ces deux phases, la procédure de segmentation comprend les étapes suivantes :

1. segmentation initiale du cerveau,

2. requête des relations spatiales que doit satisfaire la structure recherchée par
rapport à des structures déjà segmentées et reconnues,

3. sélection des relations spatiales valables,

4. fuzzification et fusion des relations spatiales pour fournir une ROI (region d’intérêt),

5. recherche d’une segmentation initiale d’une structure,

6. raffinement de la segmentation initiale,

7. répétition de l’algorithme pour d’autres structures.

Résultats et conclusion

La méthode proposée a été appliquée sur 10 jeux de données cliniques d’IRM de
diverses origines et types pour segmenter les ventricules, les noyaux caudés et les
thalami. Nous illustrons les résultats sur quatre cas aux figures 22 et 23. L’évaluation
des résultats de segmentation a été réalisée par des comparaisons quantitatives avec
les segmentations manuelles, en utilisant des mesures de volume et de surface.

Partant de travaux antérieurs sur la segmentation des structures internes, nous
avons montré que la méthode reste adaptée à la présence de pathologies, grâce à
l’utilisation de relations spatiales stables. L’introduction de ces relations pour con-
traindre la segmentation est donc un point fort de la méthodologie. Là encore, de
bons résultats ont été obtenus sur des cas très différents, tant par la localisation, la
forme et la taille de la tumeur, que par les déformations qu’elle induit sur les structures
normales.
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(a) (b) (c) (d)

Figure 22: Résultats de segmentation. (a) Une coupe axiale de l’image originale. (b)
Segmentation manuelle. (c) Segmentation initiale. (d) Superposition des résultats sur
la coupe axiale.
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Figure 23: Vue 3D des structures, de la tumeur, de l’œdème et de la nécrose segmentés
pour un cas.

Conclusion et perspectives

La méthode proposée pour la segmentation de tumeurs du cerveau utilise une image
CE-T1w et une image FLAIR. Elle se compose de deux étapes : prétraitement et seg-
mentation. Dans l’étape de prétraitement, nous avons proposé une nouvelle méthode
adaptée aux cas pathologiques pour la segmentation correcte et robuste du cerveau.
On a proposé une nouvelle analyse d’histogramme fondée sur la symétrie qui peut
détecter automatiquement le type de tumeur et l’hémisphère pathologique. Pour la
segmentation, la méthode proposée combine des informations de contours et de régions.
L’approche proposée essaye de combiner ces deux types de méthodes pour repousser
leurs limites en utilisant les avantages de chacune. La méthode hybride proposée a
deux phases principales : initialisation par une méthode de régions et raffinement par
une méthode de contours.

Pour l’initialisation nous avons proposé deux méthodes originales et nouvelles. La
première est une classification floue non-supervisée. Cette méthode est une approche
générale de classification et elle peut être employée afin de détecter et segmenter
des tumeurs du cerveau. Cette méthode est une combinaison de FCM, PCM et des
contraintes spatiales de régularisation. La seconde méthode se fonde sur l’asymétrie
du cerveau pathologique. Nous avons proposé une nouvelle méthode spécifiquement
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pour la détection de tumeurs. Elle est fondée sur la détection d’asymétrie dans les
histogrammes des hémisphères du cerveau. Elle peut détecter une grande classe de
tumeurs dans plusieurs modalités d’imagerie médicale.

La deuxième phase raffine la segmentation initiale en utilisant l’information de
contours. Nous employons un modèle classique de modèle déformable 3D qui est
initialisé par la surface de la tumeur détectée. Pour résoudre quelques problèmes et
guider l’évolution de la surface, nous contraignons le modèle par des relations spatiales
entre la tumeur détectée et les tissus environnant la tumeur.

La segmentation de structures internes du cerveau est une autre contribution de
cette thèse. La segmentation des structures pathologiques du cerveau est une tâche
difficile en raison des différents effets des différentes tumeurs. Nous avons proposé une
nouvelle méthode, qui, en plus de l’information de la région et de contours, utilise
des informations a priori. Les relations spatiales entre les structures est l’information
a priori utilisée dans cette méthode. Ici nous traitons trois problèmes principaux :
représentation explicite des relations spatiales pour chaque structure, adaptation des
relations spatiales pour des cas pathologiques et méthode de segmentation.

La représentation des relations spatiales en général et leurs représentations ex-
plicites pour chaque structure en particulier sont mises en application à l’aide d’outils
ontologiques. Un lien entre l’ontologie des relations spatiales et l’ontologie de FMA
a fourni une représentation explicite des relations spatiales entre les structures. Pour
l’adaptation des relations spatiales pour des cas pathologiques, nous avons employé
l’information de la tumeur segmentée. Nous classifions la tumeur en fonction de son
influence sur les autres structures. Pour cela nous avons développé une ontologie
simple. Nous décidons alors de maintenir ou pas les relations en utilisant cette classi-
fication. Pour la segmentation nous avons utilisé une méthode qui intègre une fusion
des relations spatiales pour guider la segmentation en phase d’initialisation et de raf-
finement. C’est une méthode séquentielle et elle est répétée pour toutes les structures
dans un ordre défini par l’utilisateur. Cette méthode em ploie les relations spatiales fu-
sionnées (ROI) pour rechercher la segmentation initiale d’une structure et pour guider
un modèle déformable pour raffiner cette segmentation initiale.

La comparaison des résultats quantitatifs de la segmentation des tumeurs prouve
que la qualité de la segmentation pour les tumeurs FEN est meilleure que pour les
tumeurs NEN en raison de leurs contours bien définis. L’amélioration de la méthode
pour segmenter les tumeurs NEN peut encore être utile. Une future direction peut
employer des cartes de probabilités pour améliorer la méthode de détection de contours,
comme proposé dans [Colliot et al., 2006] pour les structures du cerveau. Dans la
méthode d’analyse de symétrie nous pouvons adapter un modèle gaussien au pic de la
tumeur. Nous pouvons ensuite calculer la carte de probabilités puis calculer la carte
de contours de cette carte de probabilités.

Pour l’amélioration de la segmentation par un modèle déformable, le réglage des
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paramètres est très important. Notre expérience prouve qu’il y a une relation entre
les paramètres et le volume de la segmentation initiale. Comme travaux futurs, définir
une relation pour calculer les paramètres peut être utile.

L’interprétation ou la classification des tumeurs établie par l’OMS (Organisation
Mondiale de Santé) est importante dans des applications cliniques. A ce moment elle
est faite manuellement en utilisant les diagnostics histopathologiques [Julià-Sapé et al.,
206]. Comme rapporté dans [Julià-Sapé et al., 206], l’information fournie par l’IRM
permet de classer les tumeurs dans les classes de l’OMS avec 90% de bons résultats.
En étendant l’ontologie proposée, en employant d’autres informations sur le patient et
la segmentation obtenue, il serait donc possible de fournir une méthode automatique
pour interpréter et classifier la tumeur détectée et segmentée.

Un avantage des modèles déformables géométriques est la capacité de manipuler
automatiquement les changements de topologie. Pour segmenter deux tumeurs ou plus
dans un cerveau, il convient d’employer un modèle déformable géométrique pour raf-
finer la segmentation. Ainsi, développer un modèle déformable géométrique contraint
par des relations spatiales, telles que dans [Atif et al., 2006b], pour raffiner la segmen-
tation est une autre future direction. La comparaison entre les résultats du modèle
déformable paramétrique et du modèle déformable géométrique peut également être
faite.

Nous avons proposé une nouvelle classification des tumeurs fondée sur l’influence
de la tumeur et nous choisissons les relations spatiales stables en utilisant cette classifi-
cation. Pour une future direction nous pouvons la prolonger pour classifier les tumeurs
plus précisement.

Dans la méthode proposée, la détermination de la classe de la taille des tumeurs
(petit, moyen et grand) et de la classe de la position de la tumeur est encore faite
manuellement. Ainsi en prolongeant l’ontologie nous pouvons effectuer la classification
automatiquement.

Nous avons employé une méthode simple pour apprendre les paramètres des rela-
tions spatiales en utilisant tous les types de tumeurs. Une apprentissage spécifique à
chaque type de tumeurs peut être l’objet d’autres travaux futurs.

La recherche des relations spatiales d’une structure est fondée sur le type de tumeur.
La méthode proposée peut également être intégrée dans la méthode actuellement
développée par [Nempont et al., 2007] pour guider le choix des relations spatiales
à employer pour segmenter chaque structure et pour définir des régions d’intérêt, car-
actérisant la nécessité et la possibilité de position des structures.

La méthode proposée pour la segmentation des structures internes du cerveau
est une méthode séquentielle et doit être répétée pour chaque structure. Comme
nouvelle méthode nous pouvons segmenter les structures simultanément. Ici nous
avons employé les ensembles de niveaux multi-phases comme approche de segmentation
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initiale qui peut segmenter plusieurs régions en même temps. Comme un travail futur
nous pouvons intégrer des relations spatiales dans les ensembles de niveaux multi-
phases pour la segmentation des structures internes simultanément.
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Introduction

Tumor is one of the most common brain diseases, so its diagnosis and treatment
have a vital importance for more than 400000 persons per year in the world (based
on the World Health Organization (WHO) estimates). On the other hand, in recent
years, developments in medical imaging techniques allow us to use them in several
domains of medicine, for example, computer aided pathologies diagnosis, follow-up
of these pathologies, surgical planning, surgical guidance, statistical and time series
(longitudinal) analysis. Among all the medical image modalities, Magnetic Resonance
Imaging (MRI) is the most frequently used imaging technique in neuroscience and
neurosurgery for these applications. MRI creates a 3D image which perfectly visualizes
anatomic structures of the brain such as deep structures and tissues of the brain, as
well as the pathologies.

Segmentation of objects, mainly anatomical structures and pathologies from MR
images is a fundamental task, since the results often become the basis for other appli-
cations. Methods for performing segmentation vary widely depending on the specific
application and image modality. Moreover, the segmentation of medical images is a
challenging task, because they usually involve a large amount of data, they have some-
times some artifacts due to patient’s motion or limited acquisition time and soft tissue
boundaries are usually not well defined.

When dealing with brain tumors, other problems arise, which make their segmenta-
tion more difficult. There is a large class of tumor types which have a variety of shapes
and sizes. They may appear at any location and in different image intensities. Some
of them may also deform the surrounding structures or may be associated to edema
or necrosis that change the image intensities around the tumor. In addition, the exis-
tence of several MR acquisition protocols provides different information on the brain.
Each image usually highlights a particular region of the tumor. Thus, automated
segmentation with prior models or using prior knowledge is difficult to implement.

The accurate segmentation of internal structures of the brain is of great interest
for the study and the treatment of tumors. It aims at reducing the mortality and
improving the surgical or radiotherapeutic management of tumors. In brain oncology
it is also desirable to have a descriptive human brain model that can integrate tumor
information extracted from MRI data such as its localization, its type, its shape, its
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anatomo-functional positioning, as well as its influence on other brain structures.

Despite numerous efforts and promising results in the medical imaging community,
accurate and reproducible segmentation and characterization of abnormalities are still
a challenging and difficult task. Existing methods leave significant room for increased
automation, applicability and accuracy.

Objectives and contributions In this context, the first aim of this work is to
develop a framework for a robust and accurate segmentation of a large class of brain
tumors in MR images. Most existing methods are region-based. They have several
advantages, but line and edge information in computer vision systems are also impor-
tant. The proposed method tries to combine region and edge information, thus taking
advantage of both approaches while cancelling their drawbacks. 3D contrast enhanced
T1-weighted and FLAIR images are the inputs to perform an automatic segmentation
of the solid part of tumor and the potential associated edema and necrosis.

For this, we first segment the brain to remove non-brain data. However, in patho-
logical cases, standard segmentation methods fail, in particular when the tumor is
located very close to the brain surface. Therefore we propose an improved segmen-
tation method, relying on the approximate symmetry plane. Then we developed two
new and original methods to detect and initially segment brain tumors. The first one
is a fuzzy classification method which combines membership, typicality and neighbor-
hood information. The second one relies on a symmetry-based histogram analysis.
The approximate sagittal symmetry plane is first computed, and the tumor is then
extracted by comparing the histograms of the two cerebral hemispheres. To refine
the initial segmentation, which is not accurate enough, we use edge information. A
deformable model constrained by spatial relations is applied for this purpose.

Segmentation of internal structures of the pathological brain is another aim of
this thesis. The use of prior knowledge can guide the segmentation task in medical
imaging. Due to the existence of different types of tumors and consequently different
effects on the brain structures, segmentation using prior knowledge such as an atlas is
a difficult task. In this work we use another type of prior knowledge which preserves
its properties in pathological cases.

The prior information used in our method consists of the spatial relationships be-
tween structures which are more consistent than properties of the structures themselves
(such as size or shape) in the presence of pathologies. To generalize prior information
we use ontologies for knowledge representation. Several types of spatial relations are
considered to fully assess the structure of a given scene. Based on the tumor type, its
location and size, we select the spatial relations which remain consistent. A fusion of
these spatial relations provides a region of interest (ROI). In the first step the ROI
is used to search the initial segmentation in a globally segmented image. The initial
segmentation is not fine enough, so it is then refined using a deformable model which is
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constrained by the fused spatial relations. This process is repeated for other structures
in a sequential scheme.

Finally, the results of segmentation are integrated as a labeled image or they can
be used to make an individual model of the patient.

The general diagram of the proposed methods, summarizing the work developed
in this thesis, is shown in Figure 24.

Figure 24: Diagram of the proposed methods for tumor and brain structures segmen-
tation.

Organization of the document This dissertation is organized as follow. Chapter
1 presents the medical and medical imaging background. An overview of the brain
anatomy, brain tumors imaging, characteristics and classifications are given in this
chapter.

In Chapter 2, we review the existing methods for brain tumor segmentation in
three categories, including: region-based, boundary-based and combination of region-
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and boundary-based methods.

In Chapter 3 a general framework for brain tumor segmentation is presented. The
proposed framework consists of two main parts: preprocessing and segmentation. The
preprocessing operations are explained in this chapter.

Chapter 4 presents the second part, i.e. a new segmentation method which com-
bines edge and region information to segment objects. The application of the proposed
method for tumor segmentation and its validation are also discussed in this chapter.

The segmentation of brain structures in pathological cases is described in Chapter
5. It consists of a brief survey of existing methods, description of the structure of a
priori knowledge using ontologies and the method of segmentation.

Finally, Chapter 6 gives some general conclusions and perspectives for future works.
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C H A P T E R 1

Brain tumor classification

1.1 Introduction

In this chapter we review some of the brain and tumor characteristics that are useful for
the detection, segmentation and interpretation of brain tumors and their surrounding
structures in magnetic resonance (MR) images. This chapter starts with an overview
of brain anatomy and the magnetic resonance imaging in brain tumors. Section 1.4
gives a definition of brain tumor and its accompanied components. In Section 1.5 brain
tumors classification will be presented and Section 1.6 will describe the characteris-
tics of most brain tumors. We will present a classification of tumors based on their
location, their radiologic appearance and their alteration on surrounding structures in
Sections 1.7, 1.8 and 1.9. Finally in Section 1.11 some conclusions are given.

1.2 Anatomy of the brain

The nervous system is commonly divided into the central nervous system (CNS) and
the peripheral nervous system. The CNS is made up of the brain, its cranial nerves and
the spinal cord [Waxman, 1999]. In this section we briefly study the cell structures
and anatomical components of the brain. The brain consists mainly of two tissue
types: gray matter (GM) and white matter (WM) as shown in Figure 1.1. Gray
matter is made of neuronal and glial cells, also known as neuroglia or glia that control
brain activity, while the cortex is a coat of gray matter that covers the brain and the
basal nuclei are the gray matter nuclei located deep within the white matter. The
basal nuclei include: caudate nucleus, putamen, pallidum and claustrum (as shown
in Figure 1.1). White matter fibers are myelinated axons which connect the cerebral
cortex with other brain regions. The corpus callosum, a thick band of white matter
fibers, connects the left and right hemispheres of the brain [Waxman, 1999]. The
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1.3 Magnetic resonance imaging (MRI) of brain tumors

cerebrospinal fluid (CSF) is also found within the brain and in the spinal cord that
surrounds the brain and the spinal cord. The CSF consists of glucose, salts, enzymes
and white blood cells. This fluid circulates through channels (ventricles) around the
spinal cord and the brain to protect them from injury [T. Woolsey and Gado, 2003].
Between the skull and the brain there is another tissue, that is called the meninges.
The meninges consist of three layers that protect the brain and spinal cord.

Anatomically the brain is composed of the cerebrum, the cerebellum and the brain-
stem (Figure 1.2). The cerebrum, which forms the major part of the brain, is divided
into two major parts by the longitudinal fissure: the right and left cerebral hemi-
spheres. Each hemisphere is divided into 4 lobes or areas: the frontal lobe in the
front of the brain, the parietal lobe behind the frontal lobe, the temporal lobe on
each side of the brain and the occipital lobe at the back of the brain as illustrated in
Figure 1.2 [Waxman, 1999].

The cerebellum is located at the back of the brain below the occipital lobes. It is
separated from the cerebrum by tentorium (fold of dura). Like the cerebrum, it has
a thin outer cortex of gray matter, internal white matter and small, deeply situated
masses of gray matter. The brainstem is the lower extension of the brain, located in
front of the cerebellum and connected to the spinal cord. It consists of gray matter
surrounded by white matter fiber tracts. It has three structures: the midbrain, pons
and medulla oblongata. The midbrain is located below the hypothalamus, the pons
serves as a bridge between the medulla and midbrain, and the medulla is interconnected
with the spinal cord as shown in Figure 1.2.

The central structures of the brain, i.e. the diencephalon, include the thalamus,
hypothalamus and pituitary gland. The ventricular system that provides the CSF is
divided into four cavities called ventricles, which are connected by a series of holes
referred to as foramen, and tubes. Two ventricles enclosed in the cerebral hemispheres
are called the lateral ventricles (first and second). They communicate with the third
ventricle. The third ventricle is in the center of the brain, and its walls are made
up of the thalamus and hypothalamus. The third ventricle connects with the fourth
ventricle through a long tube [Waxman, 1999 ; T. Woolsey and Gado, 2003].

1.3 Magnetic resonance imaging (MRI) of brain tu-

mors

For the treatment of patients with brain tumors, imaging of the brain is often indicated
at different stages and usually has a significant role in each of them. Several stages of
management may be considered:

• detection or confirmation that a structural abnormality is present,
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Brain tumor classification

Figure 1.1: Some brain structures illustrated on a schematic drawing (left) and on a
slice of a MR image (right) (reproduced from [Marieb, 2000]).

Figure 1.2: Anatomy of the brain (reproduced from [Marieb, 2000]).

• localization and assessment of the extent of any abnormality,

• characterization of the abnormality,
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1.3 Magnetic resonance imaging (MRI) of brain tumors

• assessment of the nature of a tumor,

• facilitation of additional diagnosis procedures, and planning for surgery or other
types of therapy,

• intraoperative control of rejection progress,

• monitoring of response to therapy.

A variety of imaging techniques are used to study brain tumors, including com-
puted tomography (CT), magnetic resonance (MR) imaging, single photon emission
computed tomographic (SPECT) imaging, positron emission tomographic (PET) scan-
ning, and cerebral angiography. At this moment, CT and MR imaging are the most
widely used techniques, because of their widespread availability and their ability to
produce high resolution images of normal anatomic structures and pathological tis-
sues. CT is the fastest modality, making it the preferred examination for imaging
critically ill or medically unstable patients. SPECT and PET imaging serve smaller
roles, although their ability to provide information on tissue biology and physiology
can be greatly helpful. PET scanning is also used to evaluate tumor grade.

1.3.1 Pros and cons of MRI

MRI is the most frequently used neuroimaging technique for the evaluation and follow-
up review of patients with brain tumors for many reasons. It does not use ionizing
radiation like CT, SPECT, and PET studies. Its contrast resolution is higher than the
other techniques, making it preferable for detecting small lesions and isodense lesions
on unenhanced CT. Also, it is more sensitive than CT to detect lesion enhancement.
The ability of MRI devices to generate images in the sagittal, axial and coronal planes
provides better localization of a lesion in the 3D space of the brain and allows structures
involved by the tumor to be more clearly delineated. Finally, MR imaging eliminates
the beam-hardening artifact produced by the skull base on CT, making it better for
evaluating lesions in the posterior fossa and in the inferior frontal and temporal lobes.
In addition to these well-known advantages, the development of MR spectroscopy,
MR diffusion imaging, and MR perfusion imaging now permits evaluation of tumor
biophysiology with MR scanners. The acquisition of both functional and anatomical
information about the tumor during the same scan may be the most important benefit
of MR imaging [Ricci and Dungan, 2001].

There are several limitations to MR imaging that must be recognized. Perhaps the
most important is a lack of specificity. Multiple pathologic lesions appear hypointense
on T1-weighted (T1w) images and hyperintense on T2-weighted (T2w) images. The
MRI differential diagnosis for intracranial neoplasms includes infarcts, demyelinating
lesions, radiation necrosis, infections, and other inflammatory processes [Kufe et al.,
2003]. Although, enhancement does not always correspond to histologic tumor grade,
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in general, higher grade tumors will frequently show enhancement on MR imaging.
However, an exception to this rule is seen in a very slow-growing tumor such as ju-
venile pilocytic astrocytoma (JPA), which will frequently show contrast enhancement
areas within the tumor. Similarly, some higher grade tumors will not enhance [Kufe
et al., 2003]. Hence, although MR features of a lesion can be helpful, but sometimes
histologic verification is necessary to establish a diagnosis. MR imaging is also not
able to distinguish the edge of a tumor, or determine the full extent of disease. Viable
tumor cells are known to exist beyond the borders of abnormal contrast enhancement
[Kufe et al., 2003]. Imaging abnormalities seen following treatment are sometimes
nonspecific. Radiation injury, including radiation necrosis, is virtually indifferentiable
from tumor regrowth. Hence, MRI alone cannot be applied to determine whether
tumor is present or not following such a therapy.

In spite of these limitations, MRI remains the standard imaging method in neuro-
oncology. Specific imaging characteristics of each tumor type will be presented in the
following sections.

1.3.2 MRI physics

Here we do not focus on MRI physics, but in brief, the patient is placed in a strong
magnetic field, which causes the protons in the water molecules of the body to align in
either a parallel or anti-parallel orientation with the magnetic field. A radiofrequency
pulse is introduced, causing the spinning protons to move out of alignment. When
the pulse is stopped, the protons realign and emit radiofrequency energy, a signal that
is localized by magnetic fields which are spatially varied and rapidly turned on and
off. A radio antenna (or coil) within the scanner detects the signal and creates the
image. More information about the physics of MRI can be found in [Bushberg et al.,
2002], [Brown and Semelka, 2003], [Haacke et al., 1999], [Stark and Bradley, 1999]
and [Tofts, 2002].

1.3.3 MRI modalities

The variable behavior of protons within different tissues leads to differences in tissue
appearance. The amount of signal produced by specific tissue types is determined by
their number of mobile hydrogen protons, the speed at which they are moving, and
the tissue’s T1 and T2 relaxation times [Armstrong et al., 2004], [Lee et al., 2004]
(Table 1.1 summarizes the terms used to describe MRI techniques). As T1 and T2
relaxation times are time dependent, the timing of the RF pulse and the reading of the
radiated RF energy change the appearance of the image. The repetition time (TR)
describes the time between successive applications of RF pulse sequences. The echo
time (TE) describes the delay before the RF energy radiated by the tissue in question
is measured. The pulse sequence, which is described by the TR and TE and indicates
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the technique used to administer the RF energy, can be chosen to maximize the effect
of differences in T1 or T2. This gives rise to the description of an MRI image as T1
or T2 weighted [Stark and Bradley, 1999].

The standard MRI pulse sequence for anatomic and pathologic detail is a spin echo
sequence. T1-weighted images (short TR, short TE) provide better anatomic detail,
while T2 weighted images (long TR, long TE), which are more sensitive to water
content, are more sensitive to pathology. The intermediate or proton density images
(long TR, short TE) provide improved contrast between lesions and cerebrospinal fluid.

Fluid-attenuated inversion recovery (FLAIR) image is another pulse sequence that
is useful in detecting low contrast lesions. With FLAIR (long T1, long TR, and vari-
able TE), the CSF signal is nulled, enabling pathology adjacent to the CSF to be
seen more clearly, i.e. FLAIR sequence produces heavily T2-weighted and CSF-nulled
MR image. Many reports confirm the superiority of the FLAIR sequence over con-
ventional spin-echo (SE) sequences with respect to disease [Saleh et al., 2004]. This
technique has assumed an important role in routine brain imaging because of its pre-
sumed ability to enhance the visibility of brain lesions compared with that of proton
density weighted and of T2-weighted spin-echo sequences [Herskovits et al., 2001].
FLAIR images increase detection accuracy for cortical, subcortical and periventricu-
lar lesions, and allow more efficient review, compared with T2-weighted images. In
FLAIR images, edema is often delineated from tumor, and CSF is distinguished from
a cystic or necrotic component, better than T2-weighted and proton density-weighted
images [Tsuchiya et al., 1996].

In brain tumors, T1 is proportional to edema. However, a change in oxygen partial
pressure is sufficient to alter T1 significantly, hence T1-weighted imaging will not be
adequate for accurate quantification of tumor edema. The findings on T2-weighted
(also FLAIR) MR images also correlate directly with extracellular water volume and
total water content, and inversely with intracellular water content in several tumors.
Therefore T2-weighted (also FLAIR) MR images are actually imaging edema [Steen,
1992].

Paramagnetic contrast agents, such as gadolinium, may be administered during
MRI acquisitions to highlight regions of abnormality. After injection, the gadolinium
remains in the vascular system of the brain, except where the blood-brain barrier has
been interrupted. A variety of processes can disrupt the blood-brain barrier, ranging
from head trauma to brain tumors [Armstrong et al., 2004]. Certain structures within
the brain, such as the pituitary gland, pineal gland, pituitary infundibulum, choroids
plexus, and veins, in which the blood-brain barrier is not intact, normally display con-
trast enhancement. Thus, contrast enhanced T1-weighted (CE-T1w) images provide
anatomic details of the brain and distinguish tumor from edema. Figure 1.3 includes
an example of T1-weighted, contrast enhanced T1-weighted, FLAIR, and T2-weighted
images of a high grade glioma.
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Distinguishing low grade from malignant lesions is one of the most important roles
of tumor imaging. Unfortunately, something neither MR nor CT does it well [Kufe
et al., 2003]. Lesion enhancement by contrast agent is probably the most commonly
cited reason for suggesting a tumor is malignant. Histologically, enhancement corre-
lates with areas of increased cellularity and mitotic activity. As a rule, lesions that
do not enhance tend to be low grade, whereas enhanced lesions are more likely to be
malignant. However, so many exceptions exist (e.g. pilocytic astrocytomas enhance
and gliomatosis cerebri often do not), that extreme caution must be exercised when
using enhancement as the sole basis for determining the grade of tumors [Ricci and
Dungan, 2001].

Term Description

T1 The time needed for the protons within the tissue to
return to their original state of magnetization

T2 The time required for the protons perturbed into
coherent oscillation by the radiofrequency pulse
to loose this coherence

TR Repetition time: the time between successive
applications of radiofrequency pulse sequences

TE Echo time: the delay before the radiofrequency energy
radiated by the tissue in question is measured

T1-weighted image Short TR, short TE. Provides better anatomic detail

T2-weighted image Long TR, short TE. More sensitive to water
content and as a result, more sensitive to pathology

FLAIR image Long TR, short TE. Improved contrast between lesions
and cerebrospinal fluid

Table 1.1: Some terms used to describe magnetic resonance imaging techniques [Arm-
strong et al., 2004].

MRI is evolving rapidly and newer imaging sequences, such as echoplanar MRI, are
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being developed, reducing scan times and improving the information obtained from
the images [Wen et al., 2001]. Echoplanar MRI can scan images in less than 100
milliseconds and provides information on tumor diffusion and perfusion. Diffusion-
weighted MR imaging permits the assessment of the mobility of water molecules and
may be useful in helping to distinguish tumor from edema, cystic changes, and normal
white matter.

Magnetic resonance spectroscopy (MRS) is a non-invasive method which allows
direct investigation of tumor metabolism and provides information on the composition
and spatial distribution of cellular metabolites. There is currently a great interest in
evaluating the usefulness of MRS for non-invasive diagnosis of tumors, determining
tumor grade, and differentiating tumor from radiation effects [Wen et al., 2001].

Functional Magnetic Resonance Imaging (fMRI) is used to visualize brain function
by recording changes in the chemical composition of areas of the brain caused by
changes in blood flow that occur over intervals of seconds to minutes. This technique,
which provides both an anatomic and functional view of the brain, is currently being
used for surgical planning for the removal of lesions that impinge on visual or speech
areas of the brain [Armstrong et al., 2004].

MR angiography (MRA) provides a means of displaying blood vessels in the brain
in a non-invasive manner. It is increasingly being used in preference to conventional
angiography, although angiography has better resolution and is still necessary in cer-
tain situations [Wen et al., 2001].

Based on this review and our knowledge, it seems that the CE-T1w and FLAIR
images are sufficient for detection and segmentation of the majority of brain tumors
and its components such as edema and necrosis. Hence in our proposed system for
brain tumor segmentation in Chapters 3 and 4, the CE-T1w and FLAIR images are
the inputs of the system.

1.4 Brain tumors

A brain tumor is an intracranial mass produced by an uncontrolled growth of cells
either normally found in the brain such as neurons, lymphatic tissue, glial cells, blood
vessels, pituitary and pineal gland, skull, or spread from cancers primarily located in
other organs. Brain tumors are classified based on the type of tissue involved, the
location of the tumor, whether it is benign or malignant, and other considerations.

Primary (true) brain tumors are the tumors that originated in the brain and are
named for the cell types from which they originated. They can be benign (non cancer-
ous), meaning that they do not spread elsewhere or invade surrounding tissues. They
can also be malignant and invasive (spreading to neighboring area). Secondary or
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(a) (b)

(c) (d)

Figure 1.3: MRI of brain. (a) T1-weighted image without contrast enhancement. (b)
T1-weighted image with contrast enhancement. (c) T2-weighted image. (d) FLAIR
image [Armstrong et al., 2004].

metastasis brain tumors take their origin from tumor cells which spread to the brain
from another location in the body. Most often cancers that spread to the brain to cause
secondary brain tumors originate in the lumy, breast, kidney or from melanomas in
the skin.

Each primary brain tumor, in addition to the solid portion of the tumor, may have
other associated parts such as edema and necrosis as in Figures 1.3 and 1.4. Edema is
one of the most important factors leading to mortality associated with brain tumors.
By definition, brain edema is an increase in brain volume resulting from increased
sodium and water content and results from local disruption of the blood brain barrier
(BBB). Edema appears around the tumor mainly in white matter regions [Prastawa
et al., 2005]. Tumor associated edema is visible in MRI, as either hypointense (darker
than brain tissue) or rarely isointense (same intensity as brain tissue) in T1-weighted
scans, or hyperintense (brighter than brain tissue) in T2-weighted and FLAIR MRI
(Figure 1.4). Necrosis is composed of dead cells in the middle of the brain tumor and
are seen hypointense in T1-weighted images (Figure 1.4). A brain tumor may also
infiltrate the surrounding tissues or deform the surrounding structures.

In this text we study primary brain tumors and we consider the brain tumor as
the primary brain tumor.
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Figure 1.4: One axial slice of a MR image of the brain showing tumor areas [Mahmoud-
Ghoneima et al., 2003].

1.5 Classification of brain tumors

The classification of primary brain tumors is usually based on the tissue of origin, and
occasionally on tumor location. The degree of tumor malignancy is determined by
the tumor’s histopathologic features. Because of the substantial variety and unusual
biology of brain tumors, it has been extremely difficult to develop a widely accepted
histological classification system [Doolittle, 2004].

The earliest brain tumor classifications were provided by Bailey and Cushing in
1926 [Doolittle, 2004]. Their classification scheme proposed 14 brain tumor types,
directed important attention to the process of cell differentiation, and dominated
views of gliomas until 1949 when a new system was introduced by Kernohan and
Sayre [Doolittle, 2004]. Kernohan and Sayre made the important realization that dif-
ferent histopathologic appearances may not represent separate tumor types but rather
different degrees of differentiation of one tumor type. They classified tumors into five
subtypes: astrocytoma, oligodendroglioma, ependymoma, gangliocytoma, and medul-
loblastoma and very importantly added a four-level grading system for astrocytomas.
The grading system was based on increasing malignancy and decreasing differentiation
with increasing tumor grade. The addition of a grading system was a very important
advance in classifying brain tumors, and provided information not only regarding tu-
mors’ biologic behavior but also information that could be used to guide treatment
decisions.

Russell and Rubinstein [Russel and Rubinstein, 1971], Kernohan et al. [Kernohan
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et al., 1949], Ringertz [Ringertz, 1950] and Daumas-Duport et al. [Daumas-Duport
et al., 200] contributed significantly to the advances in brain tumor classification.
Daumas-Duport et al. developed a discrete variable classification system whereby
tumors are graded based on the presence or absence of four cellular features: nu-
clear atypia, mitoses, endothelial cell proliferation, and necrosis. For example, grade I
brain tumors have none of the four cellular features, grade II tumors have one of the
features, grade III tumors have two features, and grade IV tumors have three or four
features. The Daumas-Duport scheme has become known as the St-Anne classification
system. Under the supports of the World Health Organization (WHO) (Table 1.2),
neuropathologists met in the 1970s to develop a new brain tumor classification sys-
tem. The WHO system uses a grading system with continuous variables based on sur-
vival and histopathological features [Smirniotopoulos, 1999]. The Kernohan [Kernohan
et al., 1949], Ringertz [Ringertz, 1950], WHO [Smirniotopoulos, 1999], and St-Anne
systems [Daumas-Duport et al., 200] have contributed to advancing the knowledge
base and remain widely used brain tumor classification systems internationally.

The classification based on radiologic appearance and location of tumors can also be
useful for tumor detection and segmentation, that we will explain in the next section.
Based on the alteration of other structures due to the tumor, we will propose another
classification of tumors that will be used for the segmentation of the internal brain
structures in Chapter 5.

In the next section we review some of WHO system tumors and their radiological
characteristics and based on this review, we then classify the tumors based on location,
radiological characteristics and effects over other brain structures.

1.6 The tumors of WHO classification

Here we review the properties and characteristics of most common tumors of WHO
classification. In this review we focus on the appearance of tumors in MRI images
(T1w, CE-T1w, T2w and FLAIR images), the grade of tumors and some general
information which will be useful in the detection, segmentation and interpretation of
brain tumors in 3D MRI.

1.6.1 Gliomas

A brain tumor that develops from glial cells is called a glioma. About half of all
primary brain tumors and one-fifth of all primary spinal cord tumors form from glial
cells. Gliomas tend to grow in the cerebral hemispheres, but may also occur in the brain
stem, optic nerves, spinal cord, and cerebellum. Gliomas are divided into subgroups
depending on the origin of the glial cells. There are several types of gliomas, categorized
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Histology % of Reported Brain Tumors

Tumors of neuroepithelial tissue 48.1
Pilocytic astrocytoma 2.1
Diffuse astrocytoma (protoplasmic,fibrillary) 1.0
Anaplastic astrocytoma 3.7
Unique astrocytoma variants 0.5
Astrocytoma, NOS (Not Otherwise Specified) 4.2
Glioblastoma 23.0
Oligodendroglioma 2.9
Anaplastic oligodendroglioma 1.1
Ependymoma/anaplastic ependymoma 1.8
Ependymoma variants 0.4
Mixed glioma 1.0
Glioma malignant, NOS 2.7
Choroid plexus 0.2
Neuroepithelial 0.1
Benign and malignant neuronal/glial 1.3
Pineal parenchyma 0.2
Embryonal/primitive/medulloblastoma 1.9

Tumors of the meninges 28.7
Meningioma 27.4
Other mesenchymal, benign, and malignant 0.3
Hemangioblastoma 0.9

Lymphomas and hematopoietic neoplasms 2.7
Lymphoma 2.7

Germ cell tumors and cysts 0.5
Germ cell tumors, cysts, and heterotopias 0.5

Tumors of the sellar region 7.4
Pituitary 6.6
Craniopharyngioma 0.8

Local extensions from regional tumors 0.2
Chordoma/chondrosarcoma 0.2

Unclassified tumors 5.0
Hemangioma 0.4
Neoplasm, unspecified 4.5
All other 0.1

Table 1.2: Primary (malignant and non-malignant) brain and central nervous sys-
tem (CNS) tumors (simplified WHO classification) and percent of reported [Doolittle,
2004].
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by where they are found, and the type of cells that originated the tumor. Here we
review astrocytoma, ganglioglioma, oligodendroglioma and ependymoma that are the
most common types of gliomas.

Astrocytoma

Astrocytomas are primary brain tumors derived from connective tissue cells called
astrocytes, which are star-shaped glial cell. They are the most common type of the
brain tumors and account about 40% of all primary brain tumors. Astrocytomas are
included in the category of malignant tumors, WHO and St-Anne grading system
grade them based on the appearance of certain characteristics: atypia, mitoses, en-
dothelial proliferation, and necrosis [Daumas-Duport, 1992], [Daumas-Duport et al.,
200], [Lopes and Laws, 2002], [Smirniotopoulos, 1999]. These features reflect the ma-
lignant potential of the tumor in terms of invasion and growth rate. Tumors without
any of these features are grade I, and those with one of these features (usually atypia)
are grade II, tumors with 2 criteria and tumors with 3 or 4 criteria are WHO grades
III and IV, respectively. Thus, the low grade group of astrocytomas are grades I and
II and high grade astrocytomas are grade III and IV.

• Low grade astrocytoma (grades I and II)

Tumors of this type are well differentiated and grow relatively slow but can
spread to neighboring tissue. In general, low grade gliomas cause less mass effect
than high grade astrocytomas, because they grow more slowly and incite little
vasogenic edema. The location of these tumors is the cerebral hemisphere (oc-
curs often in the frontal region or the subcortical white matter), the cerebellum
or brainstem. Most common tumors of this type are pilocytic astrocytoma and
diffuse astrocytoma which occur mostly in children and young adults [Henson
et al., 2005], [Wen et al., 2001], [Emedicine, 2005]. Both CT scan and MRI can
help in the diagnosis of low grade astrocytoma. Generally, MRI is considered
the study of choice. In MRI, low grade gliomas show decreased signal relative to
surrounding brain on T1 sequences (Figure 1.5). In T2 sequences and FLAIR,
higher signal reflects both the tumor and surrounding edema (if exist) (Fig-
ure 1.6). Pilocytic astrocytomas are often associated with a cyst, which may
be particularly prominent on T2-weighted sequences. There is usually little or
no contrast enhancement in MRI (Figure 1.6) [Daumas-Duport, 1992], [Henson
et al., 2005], [Kantor et al., 2001], [Wen et al., 2001].

• High grade astrocytoma (grades III and IV)

Anaplastic astrocytoma and glioblastoma multiform (GBM) are most common
tumors of this type and account approximately 30% of all primary brain tumors.
These tumors grow more rapidly and infiltrate other nearby healthy cells. They
are not well differentiated. Both types of high grade astrocytomas have similar
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(a) (b) (c)

Figure 1.5: Low grade astrocytoma. a) An axial slice of a T1-weighted image. b)
An axial slice of a T2-weighted image. c) A sagittal slice of a contrast enhanced
T1-weighted image [Emedicine, 2005].

presentation features. In general they tend to be less circumscribed than low
grade astrocytomas and surrounded with more edema. The difference between
anaplastic astrocytomas and GBMs is in appearance of necrosis in GBMs. High
grade astrocytomas have a variable radiographic appearance. Anaplastic astro-
cytomas may appear as low density lesions or inhomogeneous lesions, with areas
of both high and low density within the same lesion. Unlike low grade lesions,
partial contrast enhancement is common. GBM is the most common and most
malignant of the glial tumors. Composed of poorly differentiated neoplastic as-
trocytes, GBMs primarily affect adults, and they are located preferentially in
the cerebral hemispheres. Much less commonly, GBMs can affect the brain stem
in children and the spinal cord. These tumors may develop from lower-grade as-
trocytomas (grade II) or anaplastic astrocytomas (grade III) [Mahesh and Tse,
2004], [Wen et al., 2001].

These tumors and surrounding edema have low signal intensity in T1-weighted
and high signal intensity in T2-weighted MR images and enhancement is common
(Figure 1.7). Hemorrhage may be present but calcification is uncommon unless
the tumor arose from a pre-existing lower grade lesion. These tumors tend to
infiltrate along white matter tracts (Figure 1.7) and frequently involve and cross
the corpus callosum.

GBMs typically have an enhancing ring observed in T1-weighted images (Fig-
ure 1.8) and a broad surrounding zone of edema apparent in T2-weighted images.
The central hypodense core represents necrosis, the contrast-enhancing ring is
composed of highly dense neoplastic cells with abnormal vessels permeable to
contrast agents, and the peripheral zone of nonenhancing low attenuation is
vasogenic edema containing varying numbers of invasive tumor cells. Several
pathological studies have clearly shown that the area of enhancement does not
represent the outer tumor border because infiltrating glioma cells can be identi-
fied easily within a 2cm margin [Kantor et al., 2001], [Emedicine, 2005].
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(a) (b)

Figure 1.6: Diffuse low grade astrocytoma (Grade II). a) Coronal slice of contrast
enhanced T1-weighted image. No enhancement is present with contrast enhance-
ment. b) Axial slice of T2-weighted image of the same tumor without surrounding
edema [Emedicine, 2005].

(a) (b) (c)

(d) (e) (f)

Figure 1.7: Glioblastoma multiform. a) Axial slice of T1-weighted image without
contrast enhancement. b) Same slice with contrast enhancement. c) Sagittal view of
this tumor. d) T2-weighted image of the same tumor with surrounding edema. e)
FLAIR image. f) Coronal slice of T1-weighted image [Emedicine, 2005].

19



1.6 The tumors of WHO classification

(a) (b)

Figure 1.8: Glioblastoma multiform. a) Contrast enhanced axial T1-weighted of a ring
enhanced tumor (necrotic). b) Axial T2-weighted image of the same tumor showing
the surrounding edema [Wen et al., 2001].

Ganglioglioma

Gangliogliomas are slowly growing tumors occurring in children and young adults.
Temporal lobes and cerebellar hemispheres are the most common locations for this
type of tumors. In this type of tumors no surrounding edema is seen (Figure 1.9),
but typically they are accompanied with cyst. The radiological appearance is non-
specific. The tumors resemble oligodendrogliomas and appear hypointense (darker
than GM and brighter than CSF) in T1-weighted images and hyperintense in T2-
weighted images with variable enhancement (Figure 1.9) [Wen et al., 2001]. They do
not enhance in contrast enhanced T1-weighted images.

(a) (b)

Figure 1.9: Ganglioglioma. (a) contrast enhanced axial T1-weighted MRI showing
non-enhancing hypointense frontal tumor. (b) The same lesion appears hyperintense
on T2-weighted MRI [Wen et al., 2001].
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Oligodendroglioma

Oligodendrogliomas are the other most common type of glioma, traditionally thought
to comprise 2% to 5% of primary brain tumors and 4% to 15% of gliomas. It is believed
that, in the past, many tumors that were actually oligodendrogliomas were diagnosed
to be various types of astrocytomas. Also, with the improved brain imaging provided
by MRI, gliomas are being diagnosed more correctly than in the past. They are
generally slowly growing tumors and are frequently located within the frontal, temporal
or parietal lobes. Cystic degeneration is common but hemorrhage and edema are
uncommon. Oligodendrogliomas are distinctive, consisting of homogeneous, compact,
rounded cells with distinct borders and clear cytoplasm surrounding a dense central
nucleus, giving them a “fried egg” appearance (Figures 1.10 and 1.11). Within the
tumor, branching blood vessels are characteristics and divide the cells into discrete
clusters. Based on St-Anne grading system, there are grade A and grade B of these
tumors. In grade A contrast enhancement and necrosis can not be seen (Figure 1.10)
but in grade B nodular contrast enhancement and necrosis are seen (Figure 1.12).
The tumor is typically located in the cortex and white matter, and infiltration of the
overlying leptomeninges may be seen [Engelhard et al., 2003].

MRI (with and without gadolinium) is the preferred modality. T1-weighted images
generally demonstrate a hypointense mass (Figures 1.10 and 1.11). T2-weighted images
show a hyperintense mass with surrounding edema (Figures 1.10 and 1.11).

(a) (b) (c)

Figure 1.10: Low grade oligodendroglioma. a) Non enhanced tumor in axial slice of
contrast enhanced T1-weighted image. b) Same tumor on FLAIR. c) Sagittal view of
the tumor [Emedicine, 2005].

Ependymoma

Ependymomas are glial tumors that arise from ependymal cells within the brain. This
tumor is histologically benign but behaves malignantly. Intracranial lesions usually
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(a) (b) (c)

Figure 1.11: A cystic oligodendroglioma. a) Axial T1-weighted, showing varying de-
grees of hypointensity. b) T2-weighted image showing hyperintensity, especially of the
central cyst. c) Contrast enhanced T1-weighted image showing ring formation at both
the tumor-cyst, and tumor-brain interfaces. [Engelhard et al., 2003].

(a) (b)

Figure 1.12: High grade oligodendroglioma. a) Contrast enhanced T1-weighted im-
age. b) T2-weighted image from the same patient, showing isointense to hyperintense
appearance of the mass [Engelhard et al., 2003].

arise from the roof of the fourth ventricle in children, while spinal ependymomas
typically occur in adults. Here we review the intracranial ependymoma.

The presence of edema is uncommon and polar cysts may be seen. With the
administration of contrast material, the tumors usually enhance strongly and homo-
geneously. Ependymomas appear hypointense in T1-weighted and hyperintense in
FLAIR images. Since this tumor is connected to ventricles, to distinguish the tumor
from ventricles, FLAIR images are used. Ependymomas are usually hyperintense on
T2-weighted sequences. In some cases, contrast enhancement of a cystic ependymoma
may be minimal. In these cases, distinguishing these tumors from intramedullary
astrocytomas is difficult [Henson et al., 2005], [Wen et al., 2001].
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(a) (b)

Figure 1.13: Ependymoma. a) Axial view of contrast enhanced T1-weighted image.
b) T2-weighted image of the same tumor [Maksoud et al., 2002].

1.6.2 Medulloblastoma (Primitive Neuroectodermal Tumor (PNET))

In the brain, medulloblastoma most often arises in the posterior fossa. The tumor
has the potential of spreading throughout the CNS. Cysts, areas of necrosis, and
calcification are rare but edema is common. Adults, more frequently than children, can
have the desmoplastic variant of medulloblastoma. This form of the tumor is situated
laterally in the hemisphere with indistinct borders and small cystic or necrotic areas
[Emedicine, 2005].

MRI with the administration of gadolinium is the diagnosis test of choice for medul-
loblastoma. Tumors appear hypointense on T1-weighted images, usually seen expand-
ing to the fourth ventricle. The brain stem is compressed and shifted ventrally. By
administration of gadolinium in children, homogeneous enhancement commonly oc-
curs, whereas in adults, a more heterogeneous pattern is usually seen (Figure 1.14).
T2-weighted and FLAIR images display a hyperintense mass with a surrounding area
of edema (Figure 1.14). MRI can help differentiating medulloblastoma from ependy-
moma: the latter extends further into the lateral recess of the fourth ventricle. MRI
can also help distinguishing between medulloblastoma and exophytic brainstem glioma
(the latter having a broader attachment to the floor of the fourth ventricle) [Wen et al.,
2001].

1.6.3 Lymphoma

Lymphomas typically develop in the subcortical and subependymal white matter.
Within the brain substance, the irregular tumor edge extends along perivascular
spaces. The spinal cord is frequently affected in secondary lymphoma. Lymphoma
tumors are often multiple with central necrosis in AIDS. Tumor lesions can cross the
midline and may appear as a butterfly tumor involving both cerebral hemispheres.
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(a) (b)

Figure 1.14: Medulloblastoma. a) Contrast enhanced axial T1-weighted image showing
irregularly enhancing tumor in the cerebellar vermis. b) Axial T2-weighted MRI of
the same patient showing increased signal in the tumor [Wen et al., 2001].

Involvement of the perivascular spaces with contrast enhancement or of the corpus
callosum (glioma or metastatic neoplasm must be differentiated) is strongly suggestive
of CNS lymphoma [Plotkin and Batchelor, 2001].

The classic appearance of lymphoma is an hypointense nodule or mass on T1-
weighted images and hyperintense on corresponding T2-weighted images. On contrast
enhanced T1-weighted MRI, lymphoma tends to enhance intensely and diffusely. A
ring like enhancing pattern is seen most often in patients with AIDS (Figure 1.15). Of-
ten, little or no surrounding vasogenic edema is demonstrated [Plotkin and Batchelor,
2001], [Wen et al., 2001].

(a) (b)

Figure 1.15: Lymphoma tumor. a) Axial contrast enhanced T1-weighted image shows
ring enhanced tumor. b) Sagittal view of the same patient. [Emedicine, 2005].
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1.6.4 Meningioma

Meningiomas are the most common benign tumors, accounting for 25-30% of all pri-
mary brain tumors. They are most commonly located in the para-sagittal region.
They are more common in women (3:1) and occur in middle-aged and elderly pa-
tients. Although meningiomas are benign tumors, they are often accompanied by
edema [Engelhard, 2001].

On T1-weighted images, most meningiomas are well-circumscribed extra-axial masses,
which are usually isointense with gray matter. Other meningiomas are slightly hy-
pointense to gray matter. Because of this, they may be hard to appreciate on T1-
weighted images. On T2-weighted images, meningiomas have a more variable appear-
ance (Figure 1.16), which seems to relate to the consistency of the tumor. Rapid
growth may cause areas of central necrosis, which are hypointense on T1-weighted
and hyperintense on T2-weighted images. Cyst formation and hemorrhage may occur
in meningiomas, but are relatively rare [Engelhard, 2001], [Wen et al., 2001].

With gadolinium contrast agent, meningiomas usually show a marked, homoge-
neous enhancement pattern on T1-weighted images (Figure 1.16). When gadolinium
is used, the improved resolution of the newer MR scanners allows better delineation
of the extent of tumor spread into dura adjacent to the tumor and the degree of
tumor invasion into the dural sinuses. Edema from a meningioma may produce a
surrounding lower intensity (darker) signal on T1-weighted images, but is better seen
as a higher intensity (whiter) signal on the T2-weighted and FLAIR images. It has
been stated that 70% of patients with meningiomas have at least some degree of per-
itumoral edema. [Lobato et al., 1996] reported that meningiomas located along the
frontal convexity or middle third of the falx were most likely to be associated with
edema formation. The presence and duration of symptoms, tumor size, and degree
of cortical damage (or invasion) are other factors that have been found to correlate
with the formation of edema adjacent to meningiomas. FLAIR images can be used to
better delineate meningioma from surrounding cerebrospinal fluid [Engelhard, 2001].

1.6.5 Craniopharyngioma

Craniopharyngiomas develop in the area of the brain called the hypothalamus, which
is close to the pituitary gland. It is usually found in children or young adults and
accounts for around 1% of all brain tumours.

The mixed solid and cystic nature of the tumor is clear on MR images. By MRI
examination, the tumor is of variable T1 signal, often hyperintense. The T1 hyper-
intensity is usually secondary to high protein content in the cyst fluid (Figure 1.17).
On T2-weighted sequences, including FLAIR, the solid portion is again usually het-
erogeneous, whereas the cysts are invariably hyperintense. Following contrast agent,
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(a) (b) (c)

Figure 1.16: Meningioma tumor. a) Axial slice of T1-weighted image. b) The same
tumor on contrast enhanced T1-weighted image. c) Coronal view of T2-weighted
image [Emedicine, 2005].

there is almost invariable enhancement of the solid portion and the peripheral rim of
the cystic portion on MR image. The enhancement of the solid portion may be either
uniform or heterogeneous [Curran and O’connor, 2005].

(a) (b)

Figure 1.17: Craniopharyngioma. a) Coronal contrast enhanced T1-weighted image
showing an enhanced solid portion of the tumor together with a hypodense cystic
component on the right side of the tumor. b) Sagittal view of the same tumor [Wen
et al., 2001].

1.6.6 Pituitary adenoma

Pituitary adenomas comprise about 7% of primary brain tumors. They arise from
the anterior lobe of the pituitary gland. MRI is the imaging modality of choice.
Microadenomas (< 1cm diameter) appear as low intensity lesions on T1-weighted
scans. Gadolinium enhances the normal gland adjacent to the adenoma and highlights
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the lesion (Figure 1.18). Macroadenomas are usually isointense on T1-weighted images
and enhance homogeneously with gadolinium (Figure 1.18). They appear hyperintense
in FLAIR and T2-weighted images. The multiplanar capability of MRI enables the
full extent of larger lesions to be visualized [Bonneville et al., 2005].

(a) (b) (c)

Figure 1.18: Pituitary adenoma. a) Coronal T1-weighted MRI showing a large pi-
tuitary macroadenoma. b) Coronal MRI showing the same tumor enhancing with
contrast enhancement. c) T2-weighted image of the same patient [Emedicine, 2005].

1.6.7 Summary

In this section we reviewed some tumors of brain that constitute about 90% of all
primary brain tumors. In Table 1.3 we summarize the characteristics of these tumors.

Tumor WHO T1w FLAIR CE-T1w Location Edema Necr. Cyst
Name Grade App. App. Enhance

Astr.(LG) I&II Hypo Hyper no CR,CL,BS no no yes
Astr.(HG) III Hypo Hyper yes CR,CL,BS yes no no
Astr.(HG) IIII Hypo Hyper yes CR,CL,BS yes yes no
Gang. Hypo Hyper no CR no no yes
Olig.(LG) II Hypo Hyper no CR no no no
Olig.(HG) III Hypo Hyper yes CR yes yes yes
Epen. Hypo Hyper yes CR no no yes
PNET Hypo Hyper yes CL yes no no
Lymp. Hypo Hyper yes CR no no no
Meni. Hypo Var. yes CR yes no no
Cran. Hypo Hyper yes CR no yes yes
Pitu. Hypo Hyper yes CR no no no

Table 1.3: Brain tumors properties. Here CR denotes as cerebral hemisphere, CL as
cerebellum, BS as brain stem. For the tumor name, the four first characters have been
chosen.
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1.7 Classification of tumors based on their location

Basically, all brain tumors are considered localized unless they cross the midline or
the tentorium or unless they are described as having “drop” metastases in the spinal
cord [Seer, 2007]. We can classify tumors by their location into 3 classes: local tumors,
regional tumors and distant tumors. Local tumors confined to one hemisphere in one
part of brain, meninges and ventricular system as illustrated in Figure 1.19. Regional
tumors cross midline or tentorium invades bone, blood vessel, nerves and spinal cord.
Distant tumors are extend to nasal cavity, nasopharynx, posterior pharynx and outside
the CNS. In this thesis we consider local tumors.

Figure 1.19: Various types of brain tumors in various places in the central nervous
system
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1.8 Classification of tumors based on their radiologic

appearance

Based on radiologic appearance of tumors in contrast enhanced T1-weighted (Ta-
ble 1.3) and without considering the histology of tumors we can classify the brain
tumors into 4 classes: non-enhanced, full-enhanced without edema, full-enhanced with
edema and ring-enhanced tumors.

1.8.1 Non-enhanced tumors

The tumors of this type do not take contrast agent and appear hypointense (darker
than GM) in contrast enhanced T1-weighted and T1-weighted images (Figure 1.20).
They are usually without edema or little edema. In FLAIR and T2-weighted images,
they appear as hyperintense (Figure 1.20). Low grade astrocytomas, gangliogliomas
and oligodendrogliomas are most common tumors of this type.

(a) (b) (c)

Figure 1.20: A non-enhanced tumor. a) Axial slice of T1-weighted. b) The same slice
of contrast enhanced T1-weighted. c) FLAIR image.

1.8.2 Full-enhanced tumors without edema

These tumors enhance with contrast administration in T1w images and approximately
all voxels of the tumor appear hyperintense in CE-T1w (Figure 1.21). These tumors are
without edema and appear hypointense in T1-weighted images and hyperintense in T2-
weighted and FLAIR images (Figure 1.23). Meningimoas (some types), ependymomas,
lymphomas, craniopharyngiomas and pituitary adenomas are in this category.
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(a) (b) (c)

Figure 1.21: A full-enhanced tumor without edema. a) Axial slice of T1-weighted
image. b) The same slice of contrast enhanced T1-weighted image. c) T2-weighted
image.

1.8.3 Full-enhanced tumors with edema

These tumors have two sections, the solid section and edema. The solid section takes
contrast agent and appears hyperintense in contrast enhanced T1-weighted images
and hypointense in T1-weighted images, while the edema appears hypointense in T1-
weighted images and contrast enhanced T1-weighted images (Figure 1.22). In FLAIR
and T2-weighted images both sections of the tumor appear hyperintense (Figure 1.22).
Anaplastic astrocytomas (high grade), high grade oligodendrogliomas, PNETs and
some type of meningiomas can be included in this category.

(a) (b) (c)

Figure 1.22: A full-enhanced tumor with edema. a) Axial slice of T1-weighted image.
b) The same slice of contrast enhanced T1-weighted image. c) FLAIR image.

1.8.4 Ring-enhanced tumors

These tumors have 3 sections. The central section is necrosis and appears hypointense
in contrast enhanced T1-weighted and T1-weighted images. The solid section sur-
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rounds the necrosis and takes contrast agent, hence appears hyperintense in contrast
enhanced T1-weighted images and hypointense in T1-weighted images (Figure 1.23).
The third section is the edema which surrounds the solid section. The edema ap-
pears hypointense in both T1-weighted and contrast enhanced T1-weighted images.
In T1-weighted images the solid section, edema and necrosis are hypointense, while
the necrosis is darker than the other sections. FLAIR images show the edema and
solid section as hyperintense signal, while the necrosis section appears hypointense
(Figure 1.23). GBMs and high grade oligodendrogliomas have these characteristics.

(a) (b) (c)

Figure 1.23: A ring-enhanced tumor. a) Axial slice of T1-weighted image. b) The
same slice of contrast enhanced T1-weighted image. c) FLAIR image

1.9 Classification of tumors based on their alter-

ations

As an alternative classification, we consider here a classification of brain tumors ac-
cording to their spatial characteristics and the nature of the potential alterations of the
brain structural organization they induce (location, infiltration, destruction, edema...).

1.9.1 Small deforming tumors (SD)

In this category we include tumors that are principally infiltrating or non-enhanced
without necrosis or small necrotic tumors. The whole structural brain arrangement
is not significantly altered. A further distinction is made, into subcortical (SD-SC)
(Figure 1.24 (b)) or peripheral (SD-P) tumors (Figure 1.24 (a)), according to their
sizes, their distance to the inter-hemispheric plane and depending on whether they
involve deep gray nuclei or not.
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1.9.2 Large deforming tumors (LD)

Tumors and lesions in this class significantly alter the surrounding brain structure
arrangement. These tumors are necrotic and can be surrounded by a lot of edema
(Figure 1.24 (c)). These tumors usually take contrast agent and are malignant.

(a) (b) (c)

Figure 1.24: Classification based on the tumor alterations. a) Axial slice of a SD-P
tumor. b) SD-SC tumor. c) LD tumor.

1.10 Evaluation data set

In this thesis we use different images to evaluate the proposed approaches. The images
were acquired on a 1.5T (General Electric Medical System) scanner (in different hos-
pitals) using an axial 3D IR-SPGR T1w sequence with contrast agent and a FLAIR
sequence. These images contain tumors with different sizes, intensities, shapes and
locations (10 CE-T1w images with enhanced tumors (full and ring), 10 CE-T1w im-
ages with non-enhanced tumors and 14 FLAIR images). The complete specifications
of these images are summarized in Tables 1.4 and 1.5.

1.11 Conclusion

In this chapter we first reviewed the anatomy of brain, brain tumor imaging and brain
tumor classification. The main result of this section is that the enhancement of tumors
in contrast enhanced T1-weighted images is a main parameter for malignant tumors.
Also the T1-weighted image is not a proper modality for accurate edema segmen-
tation, while T2-weighted or FLAIR images are more adequate for accurate edema
segmentation. Based on these results and tumors characteristics review, we decided to
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Data Resolution Voxel size Hospital Tumor Ede. Nec. FLAIR
name (mm3) Type

TE1 256 × 256 × 124 1.02 × 1.02 × 1.4 Val-de-Grâce Enhan. Yes No No
TE2 256 × 256 × 22 1.0 × 1.0 × 1.0 IBSR 1 Enhan. No No No
TE3 256 × 256 × 124 0.94 × 0.94 × 0.5 Salpêtrièr2 Enhan. Yes No No
TE4 256 × 256 × 124 1.0 × 1.0 × 1.1 Val-de-Grâce Enhan. Yes No No
TE5 256 × 256 × 124 1.0 × 1.0 × 1.2 Val-de-Grâce Enhan. Yes No No
TR1 256 × 256 × 232 0.94 × 0.94 × 0.7 St-Anne Ring-En. Yes Yes Yes(F12)
TR2 256 × 256 × 232 0.94 × 0.94 × 0.7 St-Anne Ring-En. Yes Yes Yes(F13)
TR3 256 × 256 × 232 0.94 × 0.94 × 0.7 St-Anne Ring-En. Yes Yes Yes(F14)
TR4 256 × 256 × 120 1.02 × 1.02 × 1.4 Salpêtrière Ring-En. Yes Yes No
TR5 256 × 256 × 112 1.02 × 1.02 × 1.6 Lariboisière Ring-En. Yes Yes No
TNE1 256 × 256 × 102 0.50 × 0.65 × 1.1 Salpêtrière Non-En. No No No
TNE2 256 × 256 × 118 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F5)
TNE3 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No No
TNE4 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F6)
TNE5 256 × 256 × 124 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F11)
TNE6 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No No
TNE7 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F8)
TNE8 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F7)
TNE9 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F9)
TNE10 256 × 256 × 116 0.94 × 0.94 × 1.5 Salpêtrière Non-En. No No Yes(F10)

Table 1.4: Specifications of the CE-T1w images in our data set (Ede. indicates the
presence of edema, and Nec. of a necrotic part).

use the contrast enhanced T1-weighted and FLAIR images for brain tumors detection
and segmentation. We then studied the characteristics of brain tumors based on their
classification in WHO systems. We summarized the radiological characteristics of tu-
mors to distinguish them in MR images. We then proposed three new classifications
of brain tumors based on location, appearance in MR images and alteration of sur-
rounding structures. We will use these classifications to propose a general framework
for segmentation of brain tumors and internal brain structures and interpretation of
brain tumors.

1www.cma.mgh.harvard.edu/ibsr
2Pitié-Salpêtrière
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Data name Resolution Voxel size(mm3) Hospital

F1 512 × 512 × 20 0.47 × 0.47 × 6.45 Salpêtrière
F2 512 × 512 × 22 0.47 × 0.47 × 6.49 Salpêtrière
F3 256 × 256 × 20 0.94 × 0.94 × 6.5 St-Anne
F4 256 × 256 × 20 0.94 × 0.94 × 6.5 St-Anne
F5 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F6 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F7 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F8 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F9 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F10 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F11 256 × 256 × 20 0.94 × 0.94 × 6.5 Salpêtrière
F12 256 × 256 × 20 0.94 × 0.94 × 6.5 St-Anne
F13 256 × 256 × 20 0.94 × 0.94 × 6.5 St-Anne
F14 256 × 256 × 20 0.94 × 0.94 × 6.5 St-Anne

Table 1.5: Specifications of the FLAIR images in our data set.
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C H A P T E R 2

Tumor segmentation methods: a

survey

2.1 Introduction

The most important aim of medical image analysis in general, and brain magnetic reso-
nance image (MRI) analysis in particular, is to extract clinical information that would
improve diagnosis and treatment of disease. Brain tumors are one of the most common
brain disease, so detection and segmentation of brain tumors in MRI are important in
medical diagnosis. The aim is to provide information associated to anatomical struc-
tures as well as potential abnormal tissues necessary to treatment planning and patient
follow-up. The segmentation of brain tumors can also be helpful for general modeling
of pathological brains and the construction of pathological brain atlases [W.Toga et al.,
2001].

Despite numerous efforts and promising results in the medical imaging community,
accurate and reproducible segmentation and characterization of abnormalities are still
a challenging and difficult task because of the variety of the possible shapes, locations
and image intensities of various types of tumors. Some of them may also deform the
surrounding structures or may be associated to edema or necrosis that change the
image intensity around the tumor (see Chapter 1). Existing methods leave significant
room for increased automation, applicability and accuracy. In this chapter we classify
and study the existing methods for detection and segmentation of brain tumors in MR
images.

Conventionally, simple thresholding or morphological techniques have been used on
each image to segment the tissue or region of interest for diagnosis, treatment planning,
and follow-up of the patients. These methods are unable to exploit all information
provided by MRI. Advanced image analysis techniques have been and still are being
developed to optimally use MRI data and solve the problems associated with previous
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2.2 Region-based methods

techniques. Most of the methods presented for tumor detection and segmentation
have used several techniques and we cannot make a clear division between them but
in general, as classically done in image segmentation, we can divide the methods into
three groups: region-based, contour-based and fusion of region- and boundary-based
method.

Region-based methods seek out clusters of voxels that share some measure of sim-
ilarity. These methods reduce operator interaction by automating some aspects of
applying the low level operations, such as threshold selection, histogram analysis,
classification, etc. They can be supervised or non-supervised.

Boundary-based methods rely on the evolution of a curve, based on internal forces
(e.g. curvature) and external forces, such as image gradient, to delineate the bound-
ary of brain structure or pathology. These methods can also be supervised or non-
supervised. They can be further classified into two classes: (1) parametric deformable
model (classical snake) and (2) geometric deformable model (level sets).

The third core class of tumor segmentation methods is the fusion of region- with
boundary-based methods. This class has been the most successful, as this technique
uses information from two different sources: region and boundary. Due to its large
success, it has recently received much attention.

In the remaining of this chapter, we review the existing methods for segmentation
of brain tumors in MR images based on the proposed classification as summarized in
Figure 2.1 and Tables 2.1 and 2.2.

2.2 Region-based methods

In region-based methods, an algorithm usually searches for connected regions of pix-
els/voxels with some similar features such as brightness, texture pattern, etc. Thresh-
olding, region growing and classification are the famous algorithms of this type but
applying these methods only cannot solve the problem of tumor detection and segmen-
tation. In recent years, researchers have developed advanced and mixed region based
methods for tumor detection and segmentation. Here we further classify region-based
methods into the following categories: (1) classification-based; (2) clustering-based; (3)
morphology-based; (4) atlas-based (5) prior knowledge-based; (6) texture-based; (7)
feature extraction-based; (8) fusion-based; (9) neural network-based; (10) fuzzy-based;
and (11) fractal-based method.

Sometimes we cannot make a clear division between the methods to classify in
these categories, because most of methods have the same nature. To clarify this
classification, we present very brief definitions of these distinctive classes.

Classification-based methods are those that assign a pixel to a class and are su-
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Figure 2.1: Classification of existing tumor segmentation methods.
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Reference Subclass

[Vinitski et al., 1997] x KNN

[Kaus et al., 1999; 2001] x KNN+Regist.

[Warfield et al., 2000] x KNN+Regist.

[Corso et al., 2006] x Bays.

[Moon et al., 2002] x EM+Atlas

[Prastawa et al., 2004] x EM+Atlas

[Gering, 2003] x MRF+EM

[Solomon et al., 2006] x MRF+EM

[Zhang et al., 2004] x SVM

[Zhou et al., 2005] x SVM

[Ruan et al., 2007] x SVM

[Garcia and Moreno, 2004] x SVM

[Lee et al., 2005] x SVM+MRF

[Phillips et al., 1995] x FCM

[Masulli and Schenone, 1999] x PNFCM

[Shen et al., 2003] x AFCM

[Gibbs et al., 1996] x Region grow.

[Letteboer et al., 2004] x Watershed

[Mancas and Gosselin, 2004] x Watershed

[Rexilius et al., 2007] x Region grow.

[Kyriacou et al., 1999] x Biomech. model

[Dawant et al., 2002] x Optical flow

[Bach Cuadra et al., 2004] x Tumor growth

[Clark et al., 1998] x FCM+Know.

[Busch, 1997] x Text.+Clas.

[Herlidou-Meme et al., 2003] x Text.+Clas.

[Zizzari et al., 2001] x COM

[Soltanian-Zadeh et al., 1996a] x Linear Tran.

[Soltanian-Zadeh et al., 2001] x Non-linear Tran.

[Dickson et al., 1997] x ANN+Clas.

[Chaplot et al., 2006] x ANN+Feau.

[Wasserman et al., 1995] x Fuzzy

[Capelle et al., 2004] x Belief Func.

[Dou et al., 2007] x Fuzzy

[Moonis et al., 2002] x Connectedness

[Hata et al., 2005] x Connectedness

[Liu et al., 2005] x Connectedness

[Uemura et al., 2000] x

[Iftekharuddin et al., 2003] x

Table 2.1: Region-based methods in the literature.
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Reference Subclass

[Luo et al., 2003] x GVF+Balloon

[Jiang et al., 2004] x Gradient

[Droske et al., 2001] x Fast marching

[Lefohn et al., 2003] x Threshold speed fun.

[Cates et al., 2004] x Threshold speed fun.

[Xie et al., 2005] x HLS

[Zhu and Yang, 1997] x Sankes+ANN

[Law et al., 2001] x FCM+Snakes

[Chen and Metaxas, 2003] x Gibbs+Snakes

[Ho et al., 2002] x FCM+Level sets

[Taheri et al., 2007] x Threshold+Level sets

Table 2.2: Boundary-based and fusion of region- and boundary-based methods in the
literature.

pervised. These methods use a statistical-based method. Clustering-based techniques
are those that use the fuzzy membership methods for segmenting brain tumors and
are unsupervised classification. Mathematical morphology-based methods are those
that use the features of mathematical morphology, such as structuring elements (SE)
or masks or kernels as templates to convolve with the image, followed by binarisation
using a given function or use gradient-dependent diffusion followed by linking. Atlas-
based techniques perform the segmentation by registering and deforming the brain
atlases over patient images. Prior knowledge-based methods use prior knowledge of
different structures, tissues and tumors of the brain to segment tumors. Texture-based
techniques use statistical methods to compute textural features to distinguish brain
tissues for segmentation of tumors. Feature extraction methods use a technique for
extracting other features from patient images and they make a classification based on
these features. Neural network-based methods are those that use an artificial neu-
ral network (ANN) to learn classification parameters (using test MR data sets), this
learned classification is then used to segment the patient images. Fusion-based meth-
ods use a fusion technique to combine the information of multimodality images (one
device or multiple devices) for classification or clustering. Fuzzy methods are those
that use fuzzy logic theory for segmentation. This class may has overlap with other
classes and here we consider the fuzzy connectedness methods. Fractal-based methods
use fractal concept to detect brain tumors in MR images.
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2.2.1 Classification-based

In the image segmentation domain, classification algorithms are either supervised, or
unsupervised. A supervised classifier requires input from the user, typically a set of
class samples, for determination of the data structures. Unsupervised classification
(clustering) on the other hand relies on cluster analysis to drive the natural structures
of the data from the data themselves. Here we review tumor segmentation methods
based on supervised classification techniques and unsupervised methods will be studied
in the clustering-based section. We can distinguish five classes of methods based on
supervised classification:

• K-nearest neighbors (KNN),

• Bayesian approach,

• expectation maximization (EM),

• Markov random field,

• support vector machine (SVM).

Here we will briefly explain the fundamentals, advantages and disadvantages of each
class of methods specifically for brain tumor segmentation.

Tumor segmentation using K-nearest neighbor (KNN)

There are a number of ways in which training data can be applied in classifier methods.
A simple classifier is the KNN classifier, where each pixel or voxel is classified in
the same class as the training data with the closest intensity. The KNN classifier is
considered a non-parametric classifier since it makes no underlying assumption about
the statistical structure of the data.

[Vinitski et al., 1997] have developed a method which used patient-specific train-
ing to classify the T1-weighted, T2-weighted and PD-weighted images into 10 tissue
classes. The used classifier was a KNN classifier, that assigns labels to pixels based
on the most frequent label among the K closest training points under a distance met-
ric applied to the features. The KNN algorithm is a simple and effective method for
multi-class classification, that is able to model non-linear distributions. This is the
first method which segments all components of the tumor (solid, edema and necrosis
sections). This method did not include any spatial regularization, so it is very sensitive
to noise and inhomogeneity of tumors.

[Kaus et al., 1999; 2001 ; Warfield et al., 2000] have proposed an automatic method
for segmentation of homogeneous brain tumors in MR images that used a manually
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segmented atlas as spatial information to correct the KNN classification results. This
method incorporated both supervised KNN classification and template registration.
The method used the KNN algorithm for classifying an image into different tissue
classes based on intensity using the patient-specific training data (the initialization
of the classifier is performed by a selection of several points of each tissue by the
user). For resolving misclassification problems because of the intensity distributions
overlapping of different tissues, a non-linear atlas registration is used. The digital atlas
has been manually segmented by an expert. The KNN classification and registration of
anatomical brain atlas are then iterated to improve the result of classification. At final,
for removing classification artifacts, morphological erosion and dilation were used. This
system provides good results for small tumors but in the case of large deformations
in the brain it will fail. This method also needs much calculation by repeating the
classification and registration, therefore it is relatively slow. This algorithm fails in
cases where the intensity distribution in the tumor is highly inhomogeneous and shows
large spectral overlap with brain tissues.

In general, disadvantages of the KNN algorithm include the dependence on the
parameter K, large storage requirements (for training points), sensitivity to noise in
the training data, and the undesirable behavior that can occur in cases where a class
is under-represented in the training data, which make it unsuitable for brain tumor
segmentation in MRI.

Tumor segmentation using Bayesian approach

In this supervised and parametric approach, the data are assumed to follow a multi-
variate normal (Gaussian) distribution, where mean and covariance are estimated from
the training data set. The goal is to estimate the class labels by maximizing the a
posteriori probability P (C|X) where X is the observed data and C is the class. Based

on the Bayes rule we have: P (C|X) = P (X|C)P (C)
P (X)

where P (X|C) is the likelihood

function, P (C) is the a priori probability of the class C which is computed using the
distribution of different tissue types and P (X) is the probability of pixel/voxel.

Recently, [Corso et al., 2006] have proposed a new method based on a combi-
nation of Bayesian model and graph-based affinity for segmenting brain tumors and
edema. Four classes (non-data, brain matter, tumor and edema) are modeled by Gaus-
sian distributions with full-covariance giving 9 parameters, which are learned from
the manually segmented data. The voxels-classes likelihood, P (X|C) are computed
directly from these Gaussian models. To integrate the Bayesian model-based into
neighborhood voxels affinity, the affinity between two nodes (voxels) has been defined
to be the probability P (Xuv|u, v) =

∑

Cu

∑

Cv

P (Xuv|u, v, Cu, Cv)P (u|Cu)p(v|Cv)p(Cu, Cv)

of the binary event Xuv between two voxels u and v in the two classes Cu and Cv.
Here P (Xuv|u, v, Cu, Cv) = exp(−D(u, v; θ[Cu, Cv])) and is a model-aware affinity, and
θ[cu, cv] is defined manually between the classes. Finally a multilevel segmentation al-
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gorithm (SWA [Sharon et al., 2001]) was used to segment the image, while in the first
level each node is a voxel. This method is applied for segmentation of GBM tumors
using T1-weighted, contrast enhanced T1-weighted and FLAIR images.

This method combines a graph-based algorithm and Bayesian model and segments
the edema in addition. Also it can be extended to vectorial variables to operate on
multi-modality images. But it is relatively slow and can only segment full-enhanced
tumors such as GBM. The other problem of this method is the modeling of the tumor
by a Gaussian model, since the probability of tumor and edema do not always follow
Gaussian distributions.

Tumor segmentation by expectation maximization (EM)

The EM algorithm has been developed by [Moon, 1996] and [Ambroise et al., 1995] and
is achieved in two steps iteratively. The expectation (E) step computes the posterior

probability P (Ci|xj) =
Pi(xj)P (xj |Ci)

P

j

Pi(xj)P (xj |Ci)
that the voxel xj belong to the i’th class and

with the latest estimates (from previous repetition or initial values) of Pi(xj), µi and
σi. In the maximization (M) step, the following parameters are computed: Pi(xj) =
1
N

∑

j

P (Ci|xj), µi = 1
NPi(xj)

∑

j

P (Ci|xj)x and σ2
i = 1

NPi(xj)

∑

j

P (Ci|xj)(xj − µi). The

E and M steps are iterated until the parameter estimates become stable.

[Moon et al., 2002 ; Prastawa et al., 2003] was the first group to adapt the EM
algorithm to brain tumor segmentation. This method has been developed based on the
work of [Leemput et al., 2001] for normal brain segmentation. The prior probabilities
for the normal tissue classes (WM, GM and CSF) are defined by the registered spatial
atlas to the patient images and the tumor spatial prior is calculated from the T1-
weighted and contrast enhanced T1-weighted difference image (the difference image
is converted to probability values through histogram analysis). In this approach the
edema class prior has been assumed a fraction of the white matter spatial prior (20%).
This method segments only the full-enhanced tumors and in the case of the presence a
large deformations in the brain it fails. The deformations of the brain should be small
enough so that they are embodied in the probabilistic brain atlas. In the case of edema,
the authors have assumed a fraction of white matter probability for edema, although
we cannot always consider this fraction. In addition the probability distribution of
tumor and edema has been assumed to be a normal distribution and it is not correct
in the all cases.

Recently this group has presented a more general approach based on EM algorithm
in [Prastawa et al., 2004]. In this approach the abnormal pixels are considered as
outliers from three normal classes. This method has 3 steps: first the abnormality
region is determined, using the EM algorithm and that the spatial priors for WM,
GM, CSF and non-brain classes are corresponding to a registered spatial atlas to
patient image. For abnormal class a fraction of the sum of the white matter and the
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gray matter probabilities of atlas has been used. Bias correction is also done in this
step. Edema is not always present when tumor is present, therefore it is necessary to
test the presence of edema. For detecting edema, an unsupervised clustering in the T2-
weighted image is done next. Finally a reclassification is performed with spatial and
geometric constraints, because of some misclassifications of step 2. Step 1 and 2 rely on
intensity information and atlas priors and the final step relies on geometry and spatial
information based on prior knowledge about tumor and edema. This method detects
edema and does not use contrast enhanced image, but as in the previous method it fails
in the case of large deformations. The spatial priors limit the segmentation quality
because the segmentation output can not differ greatly from the atlas. Also the method
used for detection and segmentation of edema is not robust enough (k-means method).

Tumor segmentation based on Markov random fields

Markov random fields (MRF) models are widely applied to various problems arising in
image processing. MRF is a statistical model which can be used within segmentation
methods. A natural way to incorporate spatial correlations into a segmentation process
is to use Markov random fields [Held et al., 1997] as a priori models. MRF model spatial
interactions between neighboring or nearby pixels. These local correlations provide a
mechanism for modeling a variety of image properties. In medical imaging, they are
typically used to take into account the fact that most pixels belong to the same class
as their neighboring pixels.

In the brain tumor segmentation domain, MRFs have been used in some works to
refine the results of the EM segmentation such as in [Gering, 2003]. This approach
refined the EM results using a MRF, incorporated a structure to boundary constraint
using a multi layer MRF, and presented a way to discriminate partial volume pix-
els from tumor pixels by creating an adaptive spatial prior for pixels that are at the
boundaries of normal structures. These three constraint addition to the Expectation
Maximization algorithm are combined into a structured Contextual-Dependency Net-
work for the segmentation of brain tumors from T1-weighted images. The multi layer
Markov Random Field in particular addressed a major weakness of the Expectation
Maximization methods since it allows the identification of tumor structures that have
normal intensities but are too thick to be normal. Unfortunately, this is only appli-
cable to tumors that are homogeneous enough to be segmented into a single normal
tissue class, and therefore is not generally applicable to heterogeneous tumors.

Recently [Solomon et al., 2006] have proposed a tumor segmentation method using
MRF. An additional MRF model (implemented as a Gibbs distribution) has been
included into the EM context to improve the segmentation process. This method
segments full-enhanced tumors and did not consider other components such as edema
and necrosis.
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SVM-based tumor segmentation

In the recent years, SVM algorithm has attracted much attention. The SVM is the
most recent classifier in machine learning, it was proposed by Vapnik [Vapnik, 1999]
and is based on statistical learning theory. The SVM approach is considered as a good
candidate due to high generalization performance, especially when the dimension of
the feature space is very high. The SVM uses the following idea: it maps the input
vector x into a high-dimensional feature space Z through some non-linear mapping,
chosen a priori. In this space, an optimal separating hyperplane is constructed. In
the pattern recognition cases, SVMs classify two point classes by finding a decision
surface determined by certain points of the training set, named support vectors. More
information on SVM in classification problem can be found in [Vapnik, 1999 ; Burges,
1998 ; Cortes and Vapnik, 1995].

[Zhang et al., 2004 ; Zhou et al., 2005] proposed a simple system for the segmen-
tation of brain tumors. This approach used a SVM classification to classify the brain
into the tumor and non-tumor classes using T1-weighted and contrast enhanced T1-
weighted images. Following the classification, some morphological operations have
been used to remove the classification errors. This system used patient-specific train-
ing and compared two different types of SVM, the standard 2-class method and the
more recent 1-class method. However, the advantage of using a 1-class method was a
reduction in the manual time needed to perform patient specific training, since only
training examples for the tumor class were needed. These methods perform the seg-
mentation in one slice (2D) and cannot segment other components.

[Garcia and Moreno, 2004] proposed another approach for automatic brain tumor
segmentation using SVM. This method first performed an initial classification of pixels
in 2D slices using patient specific training (by the Adatron algorithm [Anlauf and Biehl,
1989]) and the intensities of the neighbor pixels. The initial classifier is a 2-class SVM.
A 1-class SVM has then been used to construct a 3D tumor model from the initial
classification of pixels. In fact, in this method the classification is performed in 2D
and it does not use the spatial information of pixels in 3D.

Recently [Lee et al., 2005] have used a combination of MRF and SVM for brain
tumor segmentation. Since SVM assumes that voxels are independent and identically
distributed, it is very sensitive to noise. A combination of SVM and MRF can solve
this problem. Their system used T1-weighted, T2-weighted and contrast enhanced
T1-weighted images to segment the solid portion and edema of GBM tumors. This
system also used a patient-specific training where the training data for the classifier
are obtained from the patient images. This group [Schmidt et al., 2005] also proposed
a method using SVM and alignment-based features for segmentation of GBM tumors.
More recently, [Ruan et al., 2007] proposed a method based on SVM classification
from multispectral (T1w, T2w, PDw and FLAIR) MR images. The learning is done
on T2 image and to reduce the computation time the SVM classification is performed
in two scales. In the low scale a classification is done on the divided image into a set
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of windows, and the result is then refined in the high scale (voxel level).

Although the SVM method has the advantage of generalization and working in
high dimensional feature space, it assumes that data are independently and identically
distributed which is not appropriate for tasks such as segmenting medical images with
inhomogeneity and noise and so it must be combined with other methods to consider
spatial information. In addition the problem of patient-specific learning and storage
must be added to the disadvantage of SVM-based methods.

2.2.2 Clustering-based

Clustering consists of unsupervised classification of patterns (observations, data items,
or feature vectors) into groups (clusters).The clustering algorithms essentially work
such as classification methods without use of training data set [Jain et al., 1999]. Two
commonly used clustering algorithms are the k-means or ISODATA algorithm and the
fuzzy c-means (FCM) algorithm. The k-means clustering algorithm clusters data by
iteratively computing a mean intensity for each class and segmenting the image by
classifying each pixel/voxel in the class with the closest mean. The fuzzy c-means
algorithm generalizes the k-means algorithm, allowing for soft segmentations based on
fuzzy set theory. It should be mentioned that the membership functions to classes have
a counter intuitive shape, which limits their use. This is improved in the possibilistic
c-means (PCM) algorithm [Krishnapuram and Keller, 1993].

[Phillips et al., 1995] have used the FCM algorithm for GBM brain tumors seg-
mentation. Their system used T1-weighed, T2-weighted and PD-weighted MRI with
a vectorial FCM to segment the pathological brain to WM, GM, CSF, tumor and
edema. Although the FCM algorithm is simple, fast and unsupervised, it cannot seg-
ment the tumor and edema accurately because of the intensity overlapping of tissues.
In addition FCM is very sensitive to noise and initialization values. This method was
not validated and only tested for one case.

Another FCM based brain tumor segmentation has been presented in [Masulli and
Schenone, 1999]. This possibilistic neuro fuzzy c-means (PNFCM) algorithm combines
a bootstrap based on the capture effect model (CENN) [Firenze and Morasso, 1993]
with the second version of the PCM-II [Krishnapuram and Keller, 1996]. The CENN
avoids the estimation of the fuzzification parameter m and gives a robust estimation
of the class numbers c and of their centers. This method has been applied to segment
full-enhanced tumors (such as meningioma) using T1-weighted, T2-weighted and PD
MR images. Although this method is fast and fully automatic, it is very sensitive to
noise and heterogeneity.

In the previous FCM-based methods the spatial information of pixels were not
considered, so that they are very sensitive to noise. To solve this problem, [Shen
et al., 2003] have proposed a more recent system, which incorporated intensity stan-
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dardization (using the pixel histograms) as a preprocessing step, and a modified FCM
algorithm which involves dependencies between neighbor pixels. This method is more
robust to noise and provides a better segmentation quality in comparison with the
other FCM based approaches.

2.2.3 Morphology-based

Mathematical morphology [Serra, 1982] refers to a branch of nonlinear image process-
ing and analysis that concentrates on the geometric structure of objects or regions
within images. The basic concept is to search an image with a structuring element
and to quantify the manner in which the structuring element fits within the image.

[Gibbs et al., 1996] has presented the first morphology-based approach for the
segmentation of full-enhanced brain tumors in T1-weighted post-contrast MR images.
This method first applies an intensity threshold (the value of threshold is determined
by the user) to a manually selected region of interest (ROI). A region growing algorithm
is then used to expand the thresholded regions up to the edges defined by a Sobel filter.
The region growing result was refined through iterations of dilation and erosion. These
two operations change the labels assigned to individual pixels by examining the labels
of neighboring pixels. This method represents an approach for segmenting image
objects that are different in intensity from their surrounding tissues. The primary
disadvantage is that it requires manual interaction to select the ROI and threshold
value. Region growing can also be sensitive to noise, causing extracted regions to have
holes or even become disconnected. Also the major problems of the region growing
is the leakage of the segmented volume into adjacent structures because of the weak
border of tumor.

Recently several works are published in [Letteboer et al., 2004 ; Dam and Letteboer,
2004 ; Mancas and Gosselin, 2004] for brain tumor segmentation based on watershed
transform. All of these methods are semi-automatic and a lot of user interactions are
needed to have an accurate segmentation. In addition these methods segment only the
solid section of the tumor and segmentation of the other components of tumor such
as edema and necrosis were not considered.

A recent approach using morphological operations has been presented in [Rexilius
et al., 2007]. This method has two steps, in the first step an initial segmentation is
performed based on the histogram analysis of multi-spectral images (contrast enhanced
T1-weighted, T2-weighted and FLAIR). The histogram analysis is performed by a
histogram matching over probabilistic models generated in a multi-spectral histogram
feature space. This step is then followed by a local refinement based on a progressive
morphological region growing. In this method, in addition to the region growing
problems such as leakage to other regions, the histogram model was trained for the
full-enhanced tumors and it is very difficult to generalize this model to segment other
types of tumors. Also this method needs a lot of user interaction for brain segmentation
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and final threshold adaptation in the region growing algorithm.

2.2.4 Atlas-based

In the domain of brain MR image segmentation, one type of prior information which
has been largely used is the atlas. This atlas is created by manual segmentation or by
other semi-automatic segmentation methods. Atlas can capture spatial, intensity and
shape distributions of the anatomical structures of interest. This atlas is then used
as a reference frame for segmenting new images. First of all, a global transformation
or registration technique is used to align the atlas to the new image that will be
segmented and then the atlas information will be applied to refine the segmentation or
to detect abnormalities in the image. Therefore these types of segmentation deal also
with registration problems and the quality of segmentation depends on the registration
method.

In general (in normal and pathological cases), depending on the type of atlas in-
formation, there are mainly two classes of atlas driven segmentation methods [Pham
et al., 2000],[Pohl et al., 2004], [Grimson and Golland, 2005]. One class of methods
uses probabilistic atlases, modeling inter-subject variability. In these methods after
aligning the atlas to the new image, the atlas information is used as prior probabil-
ities information, which enables the use of both intensity and spatial information in
the segmentation framework. In this type of atlas the appearance and distribution of
intensity are an explicit part of the statistical model or atlas. In Section 2.2.1 several
methods, which use this type of atlas, were studied [Prastawa et al., 2004 ; Moon et al.,
2002 ; Prastawa et al., 2003 ; Kaus et al., 1999; 2001 ; Warfield et al., 2000].

The second class relies on deformable atlases which can be defined by one single
individual atlas or by various individual atlases or by an average shape atlas structures
[Rohlfing et al., 2004]. In general in this class, an atlas incorporates the locations and
shapes of anatomical structures, and the spatial relationships between them in an
implicit representation. The methods in this class seek to induce a segmentation of a
new image by deforming a given segmented atlas image to the new grayscale image and
by mapping its coordinate space to that of the atlas in an anatomically correct way (i.e.
a registration process). Labeling an image by mapping it to an atlas is consequently
known as atlas-based segmentation, or registration-based segmentation. In the case
of the presence of a tumor or lesion, it is segmented after the registration, using a
model of tumor growth. This technique converts the segmentation of MR images into
a non-rigid registration problem between the MR images of the patient and the MR
images used to create the brain atlas. When large space-occupying tumors or lesions
alter shape and position of brain structures, these methods have been of limited use.
In this section we study the application of this type of approaches to the segmentation
of tumors.

The first approach for registering the anatomical atlas to pathological brains was
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presented by [Kyriacou et al., 1999]. The proposed method used a biomechanical
model of tumor growth and brain. First, an estimate of the anatomy prior to the
tumor growth is obtained through a simulated contraction of the tumor region, using
finite-elements and knowing the position of the skull, the ventricles, and the falx and
tentorium. A normal to normal atlas registration is then applied between an atlas
and the estimation of the healthy patient using an elastic deformable model. Finally,
the estimation of the tumor growth process is applied to the registered atlas. This
method presents good results, but has some drawbacks. The model for tumor growth
has a tendency to uniform growth and does not take into account infiltration models.
Also, it requires the previous accurate segmentation of many structures in order to
perform the linear regression estimation. Finally, it is comparatively slow due to
much computational requirements for mesh generation and visualization, so that its
implementation in 3D is a very time consuming operation.

Another atlas-based segmentation of pathological brains was introduced by [Dawant
et al., 2002]. Their method consists of a simple approach relying on an optical-flow
based technique. This registration technique is a modification of the demons algo-
rithm [Thirion, 1998], but introducing a lesion template. This introduction of the
new template is completely necessary because the demons algorithm is really useful
to warp healthy brains, with the atlas structures overlapped with the same structures
in the patient, but not so effective when large anatomical differences exist between
the images to match. The demons algorithm works poorly in this case because the
assumption of small displacement is violated. Moreover, if a lesion template is not ap-
plied into the model, some healthy parts from the brain could warp to the lesion and
produce wrong results. The proposed solution is to place a small seed with the same
intensity properties as the lesion and then apply the demons algorithm. This method
succeeds in lesion growth, but has an important drawback because the seed must has
a considerable size to obtain good growth in the tumor. Also, the seed deformation is
strongly dependent on both the number of iterations and the elasticity parameters.

[Bach Cuadra et al., 2004] have recently published a new atlas-based segmentation
of pathological MR brain images using a new model of lesion growth. Following an
affine registration, the registered atlas is seeded manually by selecting a voxel of lesion
regions. A non-rigid deformation method at this point is performed in order to match
the patient image and seeded atlas. This deformation is performed in two areas,
outside of tumor or lesion and inside of tumor or lesion. Outside the lesion, a demons
force [Thirion, 1998] is applied and inside the lesion a prior model of tumor growth
is used. Finally structures and substructures from the brain atlas are projected onto
the patient’s image. This method segments only the tumors that have a radial growth
model (such as meningioma) and in the case of other types of tumor or infiltration it
will fail.
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2.2.5 Knowledge based

In the domain of MRI volumes, there are two primary sources of knowledge avail-
able. The first is pixel intensity in feature space, which describes tissue characteristics
within the MR imaging system and the second is image/anatomical space and includes
expected shapes and placements of certain tissues within the MR image [Clark, 1997].
The methods which use this information to build an expert system or knowledge-based
(rule-based) system to guide the segmentation process are referred to as knowledge-
based methods. For example, [Clark et al., 1998] have proposed an automatic tu-
mor segmentation that used a knowledge-based system for correcting results provided
by FCM clustering. First, using a FCM multispectral clustering algorithm, pixels
are divided into groups with similar multispectral intensities (contrast enhanced T1-
weighted, T2-weighted and PD-weighted images). Then with an expert system which
is a set of intensity and anatomical rules, normal clusters are removed. Then the
remaining voxels are reclustered and the segmentation is refined using other rules.
The system evolves from clustering the entire image to clustering very specific areas,
while the rules are used to remove the clusters that do not have tumor properties.
[Fletcher-Heath et al., 2001] have later developed this algorithm for segmentation of
non-enhanced brain tumors in MRI by changing the rules of the expert system.

One drawback of this type of approach is that the rules may not be robust to non-
standard intensity and the errors can propagate if the assumptions of early rules in
the sequence are violated. Another disadvantage of this approach is the considerable
manual engineering requirement. This is due to the difficulty of translating complex
anatomic knowledge and visual analysis into sequential low-level operations and rules.
Also in the case of heterogeneous tumor or noise, the rules may not work correctly.

2.2.6 Texture-based

Texture analysis is an important task in image analysis for classification, detection and
segmentation of images. Textures are replications, symmetries and combinations of
various basic patterns, usually with some random variation. In texture segmentation
the goal is to assign an unknown sample image to one of a set of known texture
classes [Jiji and Ganesan, 2005]. Texture segmentation process involves two phases:
the learning phase and the recognition phase. In the learning phase, the target is
to build a model for each the texture content. The texture content of the training
images is captured with the chosen texture analysis method, which yields a set of
textural features for each image. These features, which can be scalar numbers or
discrete histograms or empirical distributions, characterize given textural properties
of the images, such as spatial structure, contrast, roughness, orientation, etc. In the
recognition phase the texture content of the unknown sample is first described with the
same texture analysis method. Then the textural features of the sample are compared
to those of the training images with a classification algorithm, and the sample is
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assigned to the category with the best match.

In the domain of brain tumor segmentation in MR images using texture analysis,
[Lerski et al., 1993 ; Schad et al., 1993 ; Kjaer et al., 1995] have published the first
works. These works showed that texture analysis is an interesting tool to characterize
brain tissues and tumors such as glioblastoma and metastases in their general as-
pect (contrast, intensity, homogeneity) or their different constituents (micro or macro
textures). These methods used T1w and T2w calculated images (a combined Carr-
Purcell/Carr-Purcell-Meiboom-Gill (CP/CPMG) multiecho, multislice sequence was
used to measure T1 and T2 in each pixel with an uncertainty not exceeding 10%) of
metastases and heterogeneous brain tumors such as glioblastoma.

Recently [Herlidou-Meme et al., 2003] have evaluated the usefulness of texture anal-
ysis to characterize healthy and pathologic human brain tissues (white matter, gray
matter, cerebrospinal fluid, tumors and edema) in a larger data set. Each selected ROI
was characterized by both its mean gray level values and several texture parameters
and a multivariate statistical analysis was then applied in order to discriminate each
brain tissue type represented by its own set of texture parameters. Four statistical
texture analysis methods were used: histogram, co-occurrence matrix, gradient matrix
and run-length matrix and they were previously performed on test objects to evaluate
the method dependence on acquisition parameters and consequently the interest of a
multicenter evaluation. The results show that there is a relatively good discrimina-
tion between the tumor and its surrounding edema but no discrimination was made
between solid part and cystic or necrotic parts.

[Busch, 1997] presented another texture-based method to segment a specific type
of non-enhanced homogeneous tumor (low-grade astrocytomas) in T1-weighted, T2-
weighted, and co-registered CT images. This method used five texture extraction
methods to compute features. The results of the 5 classifiers were weighted and com-
bined. Finally a knowledge-based post processing using morphological operations was
used to remove the misclassified voxels and to refine the result. The use of multiple
classifiers allowed a more robust classification than the individual classifiers. Second-
order (spatial co-occurrence) textures provided the worst classification performance
among the five texture extraction methods.

[Zizzari et al., 2001 ; Mahmoud-Ghoneima et al., 2003] have proposed a new ap-
proach of texture analysis using co-occurrence Matrix (COM) for brain tumor detection
and segmentation. [Mahmoud-Ghoneima et al., 2003] have extended the 2D method
to 3D and showed that 3D-COM method applied on T1-weighted, T2-weighted, and
contrast enhanced T1-weighted images can enhance the result of tumor segmentation.

As a result, like supervised methods, texture based methods need a learning pro-
cedure and can segment particular types of tumor. Generalization of these methods
to more types of tumors is difficult. In addition it seems that these methods cannot
segment all components of the tumor and are sensitive to noise and inhomogeneity.
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2.2.7 Feature extraction

Quantitative analysis of MRI data is usually done using just the pixel intensities of
the acquired images. Features can be pixel intensities themselves, features calculated
from the pixel intensities, or edge and texture features. Methods of feature extraction
in MRI can be classified into three categories: (1) calculation of tissue parameters; (2)
linear transformations (e.g. principal component analysis (PCA)); and (3) non-linear
transformation [Soltanian-Zadeh et al., 1996b].

In the domain of brain tumor segmentation in MRI, [Soltanian-Zadeh et al., 1996a]
have proposed an optimal linear transformation for feature extraction. This paper
presents development and application of a feature extraction method for magnetic
resonance imaging (MRI), without explicit calculation of tissue parameters. A three-
dimensional (3-D) feature space representation of the data is generated in which normal
tissues are clustered around pre-specified target positions and abnormalities are clus-
tered elsewhere. This is accomplished by using a linear minimum mean square error
transformation of categorical data to target positions. From the 3-D histogram (cluster
plot) of the transformed data, clusters are identified and regions of interest (ROIs) for
normal and abnormal tissues are defined. These ROIs are used to estimate signature
(feature) vectors for each tissue type which in turn are used to segment the MRI scene.
The proposed feature space is compared to those generated tissue-parameter-weighted
images, principal component images, and angle images, demonstrating its superiority
for feature extraction. The method and its performance are illustrated using MRI
images of an egg phantom and a human brain.

[Soltanian-Zadeh et al., 2001] have also published another paper based on transfor-
mations. They have presented a non-linear (polynomial) transformation to minimize
scattering of data points around normal tissue clusters in a normalized MRI feature
space, in which normal tissues are clustered around pre-specified target positions. This
transformation is motivated by non-linear relationships between MRI pixel intensities
and intrinsic tissue parameters (e.g., T1-weighted, T2-weighted, and PD-weighted).
The transformation has been found by minimizing the scattering amount. Then a 3D
visualization of the MRI feature space was generated and regions of interest (ROI’s)
on clusters seen for normal and abnormal tissues were defined. These ROI’s were
used to estimate signature vectors. Finally, the signature vectors have been used for
segmenting and characterizing tissues.

Although the proposed methods reduce the dimensionality of data while improving
clustering properties, the quality of the MRI images and the number of images in the
sequence affect the results. It is therefore crucial to avoid artifacts, correct for nonuni-
formities, suppress the noise, and optimize MRI data acquisition protocols, that are
very difficult to perform on real data. Another drawback of these methods is that they
detect abnormal region from normal tissues and cannot segment the abnormal region
into its components. In addition these methods are used to visualize the abnormal
region and they are not really a segmentation method.
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2.2.8 Neural network-based

Artificial neural networks (ANNs) are massively parallel networks of processing ele-
ments or nodes that simulate biological learning. Each node in an ANNs is capable
of performing elementary computations. Learning is achieved through the adapta-
tion of weights assigned to the connections between nodes [Pham et al., 2000]. ANNs
widely used in medical imaging as a classifier, where the weights are determined using
training data [Hall et al., 1992 ; Reddick et al., 1998]. Because of the many intercon-
nections used in neural networks, spatial information can easily be incorporated into
its classification procedures.

[Dickson et al., 1997] have developed a method using neural networks to segment
acoustic neuromas tumors. Their system has two ANNs. The first one was used
to perform an initial segmentation. A database of MR images from 50 patients (with
manually labeled of acoustic neuromas) has been provided, and using these data, neural
networks (multilayer perceptron (MLP)) have been developed to classify the images at
the pixel level. The features used in this system are the pixel and neighboring pixels
intensity. The initial pixel level segmentation was then refined by a combined method
of edge-region based and morphological operation. The initial segmentation produces
clusters of adjacent regions, which are considered to be candidate tumor regions. For
each possible combination of these regions, features are measured and presented to a
second neural network which has been trained to identify structures corresponding to
acoustic neuromas. This system did not use patient-specific training, but it is relatively
slow and can segment a specific type of tumors (acoustic neuromas).

Another recent published work using ANN can be found in [Chaplot et al., 2006].
This method used wavelet transform for feature extraction. The result of wavelet
transform is the input to a self-organizing map (SOM). SOM is an unsupervised neural
network which has advantages over other networks, it can form similarity diagrams
automatically, and can produce abstractions. This method was used to classify T2-
weighted images into normal and abnormal. A comparison between SVM and ANN
has been done that has shown that the SVM provide better results than ANN.

Neural networks perform very well on difficult, multivariate non-linear domains,
such as tumor segmentation where it becomes more difficult to use decision trees, or
rule-based systems. They also perform slightly better on noisy domains and there is
no need to assume an underlying data distribution such as usually done in statistical
modeling. But there are several disadvantages in using neural networks for tumor
segmentation. Usually they need a patient-specific learning which is a very time con-
suming process. Another disadvantage is that neural networks do not give explicit
knowledge representation in the form of rules, or some other easily interpretable form.
The model is implicit, hidden in the network structure and optimized weights, between
the nodes (black box).
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2.2.9 Fusion-based

Data fusion is a growing research field, and the goal of data fusion is to obtain an infor-
mation synthesis by combining different data. Data coming from different sources and
techniques are usually redundant but also complementary. The usual characteristics of
the data is that they are imprecise, uncertain and incomplete. In such a context, the
aim of fusion process is to synthesize a more reliable and elaborated information and
thus, to improve the decision [Capelle et al., 2004]. Fusion techniques are based on
various theories such as probabilistic and Bayesian fusion, fuzzy set theory, possibility
and belief functions theory. Since a tumor consists of different biological tissues, one
type of MRI cannot give complete information about abnormal tissues. Therefore,
different MRI modalities information of a patient is combined to take a decision on
the location, extension, prognosis and diagnosis of the tumors [Ruan et al., 2007].

In [Wasserman et al., 1995] the proposed method uses data fusion theory for tumor
segmentation. In this algorithm inputs of the system are CT, PET and MR images.
Fuzzy edge derived from MRI and CT are fused using a fuzzy method to form an
integrated edge map which is employed in conjunction with region based analysis of
the PET scan to guide the evolution of tumor segmentation model. The resulting
edge map can be used as an external force in deformable models. The authors have
compared the result of the fusion technique (MRI, CT and PET) and non fusion
technique (PET only) as external force in deformable models and have concluded that
the segmentation based on fusion is better than the non-fusion technique. This system
uses different images from different machines, therefore it is more expensive than fusion
system based on several images from the same acquisition device. Another problem
concerns the necessary registration between CT, PET and MR images which is a very
difficult task.

Recently [Capelle et al., 2004] have proposed an algorithm for brain tumor seg-
mentation based on data fusion using belief functions. The inputs of the system
are multi-echo MR images (such as T1-weighted, T2-weighted and contrast enhanced
T1-weighted). First, data are modeled according to an evidential parametric model
(Denoeux’s model, Shafer’s model or Appriou’s model). To estimate the parameters of
the model, a Gaussian Mixture Model has been used (the parameters of the Gaussian
Mixture Model were estimated by EM algorithm). Spatial information (in this case
spatial neighborhood information) was then used by a weighted Dempster’s combina-
tion rule. The authors have concluded that Denoeux’s model provides better detection
rates and operates better than the other models. Also adding spatial information pro-
vides a better segmentation and reduces the sensitivity to noise but it has several
problems. The data are modeled using Gaussian distributions, although this assump-
tion does not hold for all type of tumors and edema. This method can be applied for
segmentation of homogeneous full enhanced tumors. Another disadvantage is the use
of the EM algorithm for estimating the parameters of the Gaussian Mixture Model,
while the EM method is very sensitive to initialization.
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[Dou et al., 2007] have published a more recent approach for tumor segmentation
using fuzzy fusion. By combining information from a priori knowledge (some rules
about tumor intensity in MRI modalities) and image intensities, a fuzzy membership
function to the tumor is defined for each modality image. A fuzzy fusion using op-
erators such as t-norm or average operators was performed to fuse the membership
functions. Finally a fuzzy region growing is used to refine the final result. This method
uses the fused information of several MRI types to segment the tumor automatically
and is very fast to detect and segment the tumors.

2.2.10 Fuzzy methods

Fuzzy theory and algorithms were used in brain tumor segmentation methods in several
published works. Some of them were classified and reviewed in the previous sections,
such as FCM algorithm and fuzzy fusion. In this section we review other fuzzy based
methods.

One of these methods is the fuzzy connectedness [Udupa and Samarasekera, 1996 ;
Saha and Udupa, 2001] which was successfully applied for segmentation of healthy
and pathological brain. The authors define a local fuzzy relation k called affinity and
the strength of this relation between two pixels c and d denoted by µk(c, d), which is
a fuzzy membership function. This function is zero for non adjacent pixels, one for
the same pixels and in the other cases, it is calculated based on the intensity of the
pixels. A path is simply a sequence of nearby voxels starting from v1 and ending on
v2. Each path has a strength of connectedness associated with it that is determined by
examining successive pairs of voxels along the path. The affinity of each pair of nearby
voxels is calculated along the path. The strength assigned to a path is the smallest
affinity of pairwise elements along the path. The strength of connectedness between
any two elements v1 and v2 is the strength of the strongest of all paths between v1 and
v2. To compute a fuzzy-connected object, the strength of connectedness between all
possible pairs of voxels in the image must be determined.

A semiautomatic tumor segmentation by fuzzy connectedness is proposed by [Moo-
nis et al., 2002 ; Hata et al., 2005]. In this algorithm, the user must select the region
of the tumor, and the calculation of connectedness is achieved in this region. Then
several seed points in the tumor region are specified by the user and the tumor is
delineated in 3D as a fuzzy connected 3D object containing the specified seed points.
Finally the user deletes the false points and regions from the segmented tumor. T1-
weighted, contrast enhanced T1-weighted and FLAIR images are inputs of the system.
In this method the user must be an expert because he has to decide about the final
result. Also it needs much calculation time for calculating the connectedness of a path
and therefore the algorithm is relatively slow. Later [Liu et al., 2005] have developed
this system to segment enhanced and non-enhanced tumors and the potential edema.
The system has been validated using 10 patient images for its precision, accuracy, and
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efficiency.

2.2.11 Fractal-based

The fractal concept developed by Mandelbrot [Mandelbrot, 1982], provides a useful
tool for representing a variety of naturally occurring phenomena. A fractal is an
irregular geometric object with an infinite nesting of structures at all scales. Some
of the most important properties of fractals are self-similarity, chaos, and non-integer
fractal dimension (FD). Mathematically, a fractal structure is defined as a set that
has a fractal dimension exceeding its topological one. FD serves as an index of the
morphometric complexity and variability of the object being studied.

The fractal model has also been proved to be useful in analyzing a wide variety of
medical images [Iftekharuddin et al., 2003]. MRI is candidate for characterization using
fractal analysis because of its highly complex structure. Although fractal research
on the brain MRI has been ongoing, little work has been done on the brain tumor
segmentation in MRI.

[Uemura et al., 2000] developed four methods to generate a FD image and have
applied them to brain MRI. Conventional count boxing, overlapping, symmetric and
folded overlapping methods have been developed to estimate the fractal dimension,
where the folded overlapping method is able to detect the edge of narrow regions.
They have introduced this method as a new edge enhancing filter which can be
used for brain tumor segmentation in T1-weighted images. In [Iftekharuddin et al.,
2003] three methods have been improved to estimate FD in the MR images such as
piecewise-threshold box-counting (PTBC), piecewise-modified-box-counting (PMBC)
and piecewise-triangular-prism-surface-area (PTPSA). In these algorithms, the patient
image is first divided into subimages and the FD of each subimage is calculated. Fi-
nally the FD of the patient image is compared with the FD of the reference image.
If the FD difference between the patient image and difference image is greater than a
threshold value, it shows the presence of the tumor and with plotting the FD difference
image the location of tumor can be modified. [Zooka and Iftekharuddin, 2005] have
recently validated the capability of their method to detect the location of tumors using
80 MR and CT images of patients with tumors.

The proposed methods for tumor detection are in the preliminary steps and there
are many problems to be solved in the future. For example the size of sub images is a
problem, because different sub image sizes result in different FD. The second problem
is the selection of reference images, because the MR images have different sizes and
different parameters and for tumor detection it is required to have a reference image
similar to the patient image.
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2.2.12 Summary of region-based methods

This section surveyed the main region based methods for brain tumor segmentation in
MRI. They have been classified into 11 classes, each class has been reviewed in a sub-
section. Most proposed methods of this type have focused solely on the segmentation
of enhanced tumors which is a simpler task than the segmentation of non-enhanced or
ring-enhanced tumors. Also, most of these methods focused on the segmentation of the
solid section of tumors, only few of them segmented the edema and only one method
has segmented the necrosis [Vinitski et al., 1997]. In clinical applications, all of the tu-
mor components are important for diagnosis, treatment and follow-up. Approximately
all methods (except the work of [Gering, 2003]) have used the multimodality MRI. It
seems that in order to segment accurately all parts of the tumor, it is necessary to use
T1-weighted or contrast enhanced T1-weighted images with FLAIR or T2-weighted
images. The automation level in these methods is relatively high but in some of the
methods the user interaction is needed. Unfortunately there is not a standard method
to validate segmentation methods but a few methods have used manual segmentation
of tumors to this aim.

The main problem of these methods is the quality of the segmentation in the border
of tumors. Due to the partial volume effect the region-based techniques suffer from
misclassification of voxels and hence, it is difficult to have a crisp region of tumor.
Most of the time, some kind of postprocessing step, such as morphological operations,
user interaction and knowledge based operations were used to remove invalid objects
or misclassified pixels/voxels from segmentation results but these operations could not
solve this problem completely. Another problem is the segmentation of heterogeneous
tumors and it remains an unsolved problem in these methods. Finally most of these
methods segment a specific type of tumors and generalization of a method to large
types of tumor also remains unsolved.

2.3 Boundary-based methods

In order to overcome some of the limitations of region-based methods for segmentation,
boundary-based methods are used to look for explicit or implicit boundaries between
regions corresponding to different tissue types. In this method an algorithm searches
for pixels/voxels with high gradient values that are usually edge pixels/voxels and then
tries to connect them to produce a curve which represents a boundary of the object. In
the recent years deformable models, one of the most popular boundary-based methods,
have been widely used in image segmentation. The idea behind deformable models
is quite simple. The user determine an initial guess for the contour, which is then
deformed by image driven forces to the boundaries of the desired objects. In these
models, two types of forces are considered. The internal forces, defined within the
curve, are designed to keep the model smooth during the deformation process. The
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external forces, which are computed from the image data, are defined to move the
model toward an object boundary.

There are basically two types of deformable models: parametric deformable models,
also referred to as snakes, and geometric deformable models. Parametric deformable
models represent curves and surfaces explicitly in their parametric forms during defor-
mation. This representation allows a direct interaction with the model and can lead to
a compact representation for fast real-time implementations. Adaptation of the model
topology during the deformation can be difficult using these models [Xu et al., 2000].

Geometric deformable models also called level sets, on the other hand, can handle
topological changes naturally. These models, based on the theory of curve evolution
and the level sets method, represent curves and surfaces implicitly as a level set of a
higher-dimensional scalar function. Their parameterizations are computed only after
complete deformation, thereby allowing topological adaptivity to be easily accommo-
dated. Despite this fundamental difference, the underlying principles of both methods
are very similar.

Deformable models have been extensively studied and widely used in medical image
segmentation. In the case of pathology segmentation in MRI the literature is poor and
only a few papers deal with the segmentation of tumors.

2.3.1 Parametric deformable models (snakes)

The parametric deformable models that have attracted the most attention to date is
popularly known as snakes [Kass et al., 1988]. Snakes or active contours is a special case
of the general multidimensional deformable model theory presented by [Terzopoulos,
1987]. Mathematically, a deformable contour is a curve X which moves through the
spatial domain of an image to minimize this energy function: E(X) = Fint(X) +
Fext(X) where Fint is the internal force that constrains the regularity of the curve and
Fext is the external force. The internal force is usually defined as: Fint = α∇2X −
β∇2(∇2X) where α and β respectively control the curve tension and rigidity.

For the brain tumor segmentation, [Luo et al., 2003] proposed a method which
used two external forces in classical snakes. The adaptive balloon force has been
used to increase the capture range of gradient vector flow (GVF) [Xu and Prince,
1998]. This balloon force also increases the speed of the model convergence. The
initialization of this method is done manually and in the case of 3D application it
needs considerable user operation. The input of the system consists of a T1-weighted
image and it segments the solid section of tumor.

[Jiang et al., 2004] have published another method for segmentation and quan-
tification of brain tumors. The gradient magnitude is selected as external force that
is computed by the derivative of a Gaussian filter. The initial snake or surface is
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provided manually by the user inside or outside of the tumor region. This method
cannot segment smooth tumors perfectly and in 3D cases a lot of manual operations
are needed for determining the initial surface.

Parametric contour based methods detect tumor boundaries better than region-
based methods but they have two main limitations. First, when the initial model and
the desired object boundary differ largely in size and shape, the model must be re-
parameterized to fully recover the object boundary. Methods for re-parameterization
require moderate computational time [Niu, 2006]. Hence, in the proposed methods,
to have a good initialization, the initial contour has been manually generated, which
needs a lot of user interaction. The second limitation with the parametric approach is
that it has difficulty dealing with topological adaptation such as splitting or merging
model parts [Xu et al., 2000]. Finally, classical snakes that use the gradient magnitude
as image force often have the leakage problem when the boundary of the object to be
segmented is ill-defined.

2.3.2 Geometric deformable model

Geometric deformable models, proposed independently by [Caselles et al., 1993] and
[Malladi et al., 1995] provide a solution to address the limitations of parametric de-
formable models (especially for topological adaptation). Geometric deformable models
are based on the theory of curve evolution and are implemented using the level sets
[Osher and Sethian, 1988] numerical method. In particular, curves and surfaces are
evolved using only geometric measures, resulting in an evolution that is independent
of the parameterization. As in parametric deformable models, the evolution is coupled
with the image data to recover object boundaries. Since the evolution is independent
of the parameterization, the evolving curves and surfaces can be represented implicitly
as a level set of a higher-dimensional function. As a result, topology changes can be
handled automatically [Xu et al., 2000]. The mathematical form of level sets scheme

is given as:
∂φ

∂t
= V (k)|∇φ| where V (k) is called speed function, k is curvature and φ

is the level sets function.

The use of level sets has been widely documented in the medical imaging litera-
ture and several works have been published about segmentation of normal brain and
pathological brain in MRI. For example, a semi-automatic method based on level sets
for segmentation of glioma of grades II and III was proposed in [Droske et al., 2001].
This approach segments the tumor region in each 2D slice independently and finally it
renders 2D segmented tumor in each slice to have a 3D result of segmentation. In each
slice, the user selects initially the tumor region. A fast marching level set is used to
deform the initial segmentation toward the borders of the tumor. The manually seg-
mented region was used to estimate the parameters of the speed function. Finally the
user selects correct segmented slices to generate a 3D mesh of the segmented tumor.
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Another semiautomatic method based on level sets for brain tumor segmentation
is proposed in [Cates et al., 2004 ; Lefohn et al., 2003]. The speed function D(I) =
ǫ− |I − T | was used in level set evolution where I is the intensity value of each point.
Here T controls the brightness of the region to be segmented and ǫ controls the range
of grayscale values around T that could be considered inside the object. Thus when
the model lies on a voxel with a grayscale level between T − ǫ and T + ǫ, the model
expands and otherwise it contracts. To exceed the speed of level set implementation
a graphics processing unit (GPU) was designed in this system. To segment a tumor,
the user selects a region of tumor in one slice or several slices, and the mean value and
variance of this region are calculated. The other parameter ǫ of the speed function
is also determined by the user. The level set is initialized by the selected region of
tumor. To have a good result, the user can repeat the level set evolution by changing
the parameters and selected region. This system was evaluated for tumor segmentation
in contrast enhanced T1-weighted image (only the enhanced section of tumor).

Recently another semi-automatic tumor segmentation using levels set was pro-
posed by [Xie et al., 2005]. In this system the initialization is also achieved manually.
The method is evaluated by comparing the results of 10 non-enhanced tumors in T1-
weighted images with a manual segmentation.

The topological adaptation can be useful in many applications, but it sometimes
lead to undesirable results. Geometric deformable models, when applied to noisy
images with ill-defined boundary, may produce shapes that have inconsistent topology
with respect to the actual object [Xu et al., 2000]. In these cases, the significance
of ensuring a correct topology is often a necessary condition for many subsequent
applications, while in the case of tumor segmentation it is very difficult or impossible.
Another drawback of the level sets is its relatively low speed of computation in 3D
processing which makes it unsuitable for real time applications.

2.3.3 Summary of boundary-based methods

This section reviewed methods based on parametric and geometric deformable mod-
els to segment brain tumors in MRI. Although deformable methods have been used
to overcome some limitations of region-based methods, it is clear that they cannot
solve solely brain tumor segmentation problems. The first problem is the automation
of methods. All reviewed methods were initialized manually and need a lot of user
interaction specially in 3D applications. Hence these methods cannot operate auto-
matically and need to be combined with region-based methods to have this property.
Another problem concerns the heterogeneous tumors, noise and segmentation of the
other components of tumor.

Some region-based methods are more robust in dealing with noise and heteroge-
neous tumors and can be combined with deformable models to yield a good result. In
the case of a weak border or a gap in the border of the tumor, the contour or surface
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may leak to other regions. Using the region information or global information on the
tumor may overcome this problem. The next section will survey several methods based
on combination of region-based and boundary-based methods.

2.4 Fusion of region and boundary-based methods

Looking at the advantages of boundary-based and region-based methods, the third
class of brain tumor segmentation approaches was designed, which is the fusion of
region- with boundary-based techniques. This class has been the most successful,
as this technique uses information from two different sources: boundary and region.
These methods take advantage of the local and global shape information for deforming
the boundaries to capture the topology of tumor areas in the parametric or geometric
deformable models. Due to its success, it has recently received much attention and
here we review this type of methods in two categories: combination of region-based
methods with snake and region-based methods with level sets.

2.4.1 Combination of region-based methods with snakes

The first approach of this type was presented in [Zhu and Yang, 1997]. In this work,
for providing an initial contour, a slice that has best intensity contrast is selected as
the first slice. Then, by thresholding and some morphological operations, the tumor is
initially segmented in this slice. The threshold value has been considered above white
matter gray level. The boundary of the extracted tumor is considered as the initial
contour for this slice. A Hopfield network was designed to solve the energy optimiza-
tion problem in classical snakes where the image gradient (edge map is calculated by
Sobel filter) as external force. The final contour of each slice is considered as initial
contour for neighborhood slices. This method is not really a 3D method and segments
the tumor in each slice separately. Contrast enhanced T1-weighted image is the in-
put of system, and this system can segment full-enhanced tumors. The region-based
method for initial segmentation of tumor is not robust enough and works in the case
of homogeneous tumors with a good enhancement in contrast enhanced T1-weighted
image. Also because of the slice by slice segmentation, in the case of contour leakage in
a slice, this error is propagated to all other remaining slices and the final segmentation
will not be correct.

[Law et al., 2001] proposed another method by combining FCM clustering and
classical snakes. This method is a semi-automatic method that begins by selecting
one of the slices containing the tumor. This 2D slice is clustered by FCM algorithm
in two steps, followed by several morphological operations to extract the tumor. This
initial segmentation of the tumor is then refined by a parametric deformable model
which uses the image gradient (edge map is calculated by derivatives of a Gaussian
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filter) as external force. The result of each slice is used as initial contour for neighbor
slices in a deformable model. In another work [Law et al., 2002] have used the GVF as
external force, which provides better results. This method is not a really 3D method
and operates in 2D. FCM is very sensitive to noise and initial values of cluster centers,
hence it can detect and initially segment full-enhanced homogeneous tumors.

Recently in [Chen and Metaxas, 2003] a new hybrid framework by integrating
Gibbs model, marching cubes and parametric deformable models has been proposed
for brain tumor segmentation (as in Figure 2.2). This method used an individual 2D
Gibbs prior model with default parameters for each slice to initially segment the tumor.
The result is converted to a 3D mesh using the marching cubes algorithm. This initial
segmented surface is refined by a parametric deformable model which used GVF and
balloon force as external forces. The parameters of Gibbs model are recalculated in
the segmented region and the segmentation process is repeated until the segmented
region remains stable. The presented method for initial segmentation is more robust
in comparison to the earlier methods, but it operates in 2D and does not use all spatial
information about the tumor. In this method for each slice a different Gibbs model
was used and it is the main drawback of this system. As we know the resolution of
images, the size of head and intensity of each slice largely varies in patients and using
this method to segment different types of tumors in different types of images is very
difficult.

Figure 2.2: Block diagram of the method proposed by [Chen and Metaxas, 2003]
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2.4.2 Combination of region-based methods with level sets

[Ho et al., 2002] have proposed a method for automatic 3D segmentation of brain
tumors by combining level sets and fuzzy clustering. First a fuzzy clustering method
classifies the contrast enhanced T1-weighted with image into tumor and background
classes. By calculating the difference image of T1-weighed images with and without
contrast enhancement, analyzing of the histogram and using the clustered image, a
probability map of tumor is obtained. This initial map is then used to derive an
automatic initialization of the surface and to locally guide the level set surface. This
initial map prevents the level set from leakage to other regions. Also image forces are
balanced with global smoothness constraints to converge stably to a smooth blobby
tumor segmentation of arbitrary topology. The method segments enhanced tumors
with high accuracy, is full automatic and does not leak to other regions but it has some
drawbacks. Because of misclassification in initial clustering, the final segmentation
contains the other regions which are enhanced with contrast agent (such as vessels).
This method only segments the enhanced section of tumors in contrast enhanced T1-
weighted image while a large types of tumors, edema and necrosis remain without
enhancement in this type of MRI.

A more recent approach was presented in [Taheri et al., 2007], combining the
threshold-based method and level sets. This method is similar to the method of [Chen
and Metaxas, 2003] but it works in 3D and uses a threshold method to construct the
speed function in level sets. The algorithm is started by selecting one or several ROI
in the tumor region. An initial threshold value is calculated using these ROIs and a
level set with the proposed threshold-based speed function is deformed using ROI(s) as
zero level set. The threshold value is updated by this equation: Ti+1 = µi − kσi where
µi and σi are mean and variance values of the segmented region and k is a parameter
modified by the user. This process is repeated, upon reaching the tumor boundary.
Because of the contrast between tumor and non-tumor intensities, the variation of the
threshold declines so that the process stops. Here, authors have assumed that the
histogram of tumor and non-tumor regions are slightly overlapped while a few tumors
have this condition. Also this method is very sensitive to the initial threshold value
which is calculated from selected ROI and the parameter k in threshold updating
equation.

2.4.3 Summary of fusion of region and boundary

This section surveyed the methods which combine region and boundary information to
segment brain tumors in MRI. Most of these methods are fully automatic because they
use region-based methods and the quality of segmentation in the borders of tumor is
relatively good because of using boundary information. All proposed methods segment
enhanced tumors in contrast enhanced T1-weighted images and segmentation of non-
enhanced tumors, edema and necrosis are not achieved with this type of methods.
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However it seems that these methods have the ability of solving the problem of tumor
segmentation in a large range of tumor types by developing the region based method
for initial segmentation, using multimodality images and improving the deformable
model method.

2.5 Conclusion

This chapter surveyed existing methods for brain tumor segmentation in MRI. The
methods have been reviewed in three core classes: region-based, boundary-based and
fusion of region and boundary-based method. The region-based methods segment dif-
ficult cases of tumors with high level of automation but they have a main drawback
at the boundary of tumors. Due to the partial volume effect the region-based tech-
niques suffer from misclassification of voxels and hence, it is difficult to have a crisp
region of tumor. The boundary-based methods were proposed to solve this problem
but they also suffer from initialization problems. To obtain a good result they must be
well initialized. Initialization has been performed manually which needs a lot of user
interaction. The third core class of methods used the advantage of boundary-based
and region-based methods to overcome the problems of each type. They have used
the capability of automatization of region-based methods to initialize automatically
the boundary-based methods and used the good segmentation properties of boundary-
based methods to overcome the problem of misclassification at the border of tumors.

Unfortunately, a general framework using combination of boundary and region
information has not been presented to segment a large range of tumors (non-enhanced,
ring-enhanced and full-enhanced), edema and necrosis. In the next two chapters, a
more general method based on combination of region and boundary information to
segment a large type of tumors, edema and necrosis will be presented.
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C H A P T E R 3

Brain tumor segmentation: part I,

preprocessing

3.1 Introduction

Despite numerous efforts and promising results in the medical imaging community,
accurate and reproducible segmentation and characterization of abnormalities are still
a challenging and difficult task because of the variety of the possible shapes, locations
and image intensities of various types of tumors. Some of them may also deform the
surrounding structures or may be associated to edema or necrosis that change the
image intensity around the tumor. As we surveyed in the previous chapter, existing
methods leave significant room for increased automation, applicability and accuracy.
Most of them are usually dedicated to full-enhanced tumors or specific types of tumors,
and do not extent easily to more general types.

The aim of this chapter and the next one is to contribute to this domain, by
proposing an original method, which is general enough to address a large class of
tumor types. We propose a framework that is a combination of region-based and
contour-based paradigms. This framework has two main components as illustrated
in Figure 3.1: preprocessing and segmentation. Contrast enhanced T1-weighted (CE-
T1w) and FLAIR images, two different modalities of MRI, are inputs of the system.
In this chapter we explain the preprocessing section of the framework which performs
some preprocessing to reduce the noise, intensity inhomogeneity and interslice intensity
variation. Segmentation of the brain to remove non-brain data (skull, fat, skin, muscle)
from the image is the next step. However, in pathological cases, standard segmentation
methods fail, in particular when the tumor is located very close to the brain surface.
Therefore we propose an improved segmentation method, relying on the approximate
symmetry plane. To provide some useful information for the next steps and to detect
the pathological hemisphere of the brain, we propose a new method relying on a
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symmetry-based histogram analysis.

The next chapter will present the segmentation section. Two methods are presented
for this aim. The first one is a fuzzy classification method while the second one is
based on symmetry analysis. In the segmentation step we first make a decision based
on the information that we extracted by the symmetry-based histogram analysis. If
the tumor is non-enhanced we continue to initially segment the tumor in FLAIR image
by symmetry analysis or using the fuzzy method. Otherwise we initially segment the
enhanced section of tumor in the CE-T1w image and edema in the FLAIR image. Also
the segmentation of necrosis is done in the CE-T1w and FLAIR images. The initial
segmentation of the tumor or its components does not provide an accurate estimation
of its boundaries and we therefore propose a refinement step. This is achieved through
a parametric deformable model constrained by spatial relations.

This chapter is organized as follows: in Section 3.2 we provide an overview of the
proposed system. Section 3.3 describes the segmentation preprocessing operations.
Finally in Section 3.4 some conclusions are given.

3.2 Method overview

The automated brain tumor segmentation method that we have developed consists of
two main components: preprocessing and segmentation as illustrated in Figure 3.1.
The inputs of this system are two different modalities of MR images: CE-T1w and
FLAIR that we believe are sufficient for brain tumor segmentation. In the segmenta-
tion preprocessing section, operations such as: reduction of intensity inhomogeneity
and inter-slice intensity variation of images, spatial registration (alignment) of the
input images, segmentation of the brain, computation of the approximate symmetry
plane and histogram analysis based on symmetry plane are performed. This section
prepares images and some global information on tumor and tumor components to be
used in the segmentation section. In the segmentation section, based on the informa-
tion provided in the preprocessing section, the algorithm is continued in two branches.
In the case of a non-enhanced tumor in CE-T1w, the tumor is not accompanied with
edema and necrosis and we segment the tumor (in this case tumor is infiltrating)
in FLAIR image with a new proposed segmentation method. In the case of a full-
enhanced or partially-enhanced tumor, it is with edema and probably with necrosis
and we segment them in CE-T1w and FLAIR images with the proposed method. This
system can also perform the segmentation using only the CE-T1w image but some-
times (especially for small tumors) user interaction (one click over the tumor) will be
required and the quality of segmentation for non-enhanced tumors and edema will be
reduced slightly. In the next section the preprocessing operations will be presented.
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Figure 3.1: Block diagram of the proposed framework for brain tumor segmentation.
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3.3 Preprocessing

In the real MRI data there are some problems that have to be first solved before any
segmentation operation. Therefore we first try to reduce the intensity inhomogeneity
and interslice intensity variations, two main problems of MRI data, in the input im-
ages. Our system uses two different modalities of MRI, usually not spatially aligned
and often having different resolutions. Hence it is required to add a registration and
interpolation step. The brain is then segmented by a combination of histogram anal-
ysis, morphological operations and symmetry analysis. In this step we compute the
approximate symmetry plane that will be used in the segmentation and sometimes to
correct the brain segmentation result. Finally we analyze the histograms of the right
and left hemispheres to detect the pathological hemisphere and the type of tumor.

3.3.1 Image preprocessing

Two main problems of MR images are intensity inhomogeneity, or bias field and inter-
slice intensity variation which are caused by the limitations of the current MRI equip-
ments (the main factors are RF excitation field inhomogeneity, non-uniform reception
coil sensitivity, eddy currents driven by field gradients, RF penetration and standing
wave effects) [Sled and Pike, 1998]. In today MR images, the bias field is not always
visible to the human observer, but it causes significant tissue misclassification problems
when intensity-based segmentation is used. Therefore, it is required to correct inten-
sity inhomogeneity in the image volume. Here an automatic method based on entropy
minimization introduced by [Mangin, 2000] is used (as seen in Figure 3.2). In addition
to a smoothly varying field inhomogeneity, two-dimensional multislice sequence MR
images, which are acquired in an interleaved way, are typically also corrupted with a
slice by slice constant intensity offset. This is usually due to gradient eddy currents
and crosstalk between slices. Hence, it is required to normalize interslice intensity
to have a correct 3D segmentation. Here a method based on scale-space analysis of
histogram, presented in [Dauguet et al., 2004], is used.

3.3.2 Registration and spatial interpolation

Image registration is the operation of aligning images in order to relate corresponding
features. For most kinds of image processing on two or more images, it is required
that the images are aligned, so that one voxel position represents the same anatomical
position in all images. This step allows the use of modalities that are not in perfect
alignment.

An image registration program has typically four modules: the transformation
model, feature extraction, similarity measure, and an optimization method. In our
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(a) (b) (c)

Figure 3.2: Bias field correction. (a) An axial slice of the original image. (b) Same
bias field corrected slice. (c) Applied bias field.

system, the CE-T1w image is used as reference or target image (R) and the FLAIR
image as test or source image (T ).

Several transformation models can be used to transform the test image T , such as
rigid, affine, projection and curved transformations. Here, the registration concerns
3D head images from the same person, which makes it reasonable to assume that the
head will not be deformed, and thus can be considered a rigid body. Hence, the rigid
transformation model (rotation and translation) is therefore sufficient for our purpose.
By using a rigid transformation, we are assuming that the two images can be aligned
using a parameterization with 6 degrees of freedom.

Here we restrict ourselves to methods that use directly the intensity images as
features, thus avoiding the preliminary extraction of corresponding features in the two
images.

To find the transformation parameter that best aligns two images we need a func-
tion that measures the similarity between the two images. This measure is a scalar
function S : R

6 7→ R designed so that higher values of S correspond to better matches.
Again, since the correct mapping is not known, S can only be a more or less suitable
approximation to the true correctness. The registration is performed by finding the
parameter vector p that maximizes S. Many similarity measures have been proposed,
for example [Woods et al., 1993] generated a ratio image and used the uniformity
of the intensity values in this image as a measure of similarity, [Hajnal et al., 1995]
used a least-square approach and [Roche et al., 1998] presented correlation ratio as a
similarity measure for image registration.

Another similarity measure, that has been applied to both intra- and multi-modality
image registration, is mutual information (MI) [Maintz and Viergever, 1998]. MI, or
relative entropy is based on the information-theoretic entropy concept and is defined
as: MI(R, T ) = H(R) + H(T ) − H(R, T ) where H(R) is the entropy of image R,
H(T ) is the entropy of image T , and H(R, T ) is the joint entropy of corresponding
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voxel pairs between the two images. One problem of the Mutual Information metric
is that in special cases it can decrease with increasing misalignment when images only
partially overlap [Studholme et al., 1998]. In order to overcome this problem, the
Normalized Mutual Information (NMI) measure was proposed in [Studholme et al.,

1998]: NMI(R, T ) = H(R)+H(T )
H(R,T )

. This measure offers improved results over Mutual
Information based registration, and is the measure we use for image registration in
our system.

Digital 3D MR images are sampled at discrete grid points, while translating an
image causes the transformed image’s grid points do not coincide with the original
grid points, hence spatial interpolation is applied after linear registration and is used
to compute the locations and intensity values of the pixels in the transformed image
volume. The choice of an effective interpolation algorithm is important, since some
methods will introduce more interpolation artifacts into the image than others. There
are many different interpolation methods available, of which four are frequently used
in medical image registration, namely trilinear, nearest-neighbor, sinc and β-spline
interpolation. As in many other applications, we have to choose between computa-
tional speed and accuracy when we decide upon which interpolation method to use.
[Meijering, 2002] references a large number of comparative studies of different methods
for medical image interpolation. The conclusion drawn based on these evaluations is
thatβ-spline kernels are in general the most appropriate interpolator, but it is rela-
tively slow (see Figure 3.3). Therefore, with our experience and based on an objective
comparison of results we chose to use a trilinear interpolation which is sufficiently
accurate and rapid for our application.

To register the images, we use FSL [Smith et al., 2004] software package, where we
choose the rigid six degree transformation, trilinear interpolation and NMI similarity
function. The registration tools of this package use a local-global optimization method
presented in [Jenkinson et al., 2002]. The results of registration with several methods
are shown in Figure 3.3. Here we compared visually the results obtained by correlation
ratio, least square, normalized correlation and NMI similarity measure and trilinear,
β-spline, cubic lagrangian and sinc windowed interpolation method. The results show
that each registered slice by using NMI similarity measure and trilinear interpolation
is more similar to the corresponding slice of original FLAIR and T1-weighted image
(as seen in the first image of the last row in Figure 3.3 for one slice).

3.3.3 Symmetry plane computation

Normal human brains possess a high degree of bilateral symmetry although they are
not perfectly symmetrical. The symmetry plane of the brain is a good approxima-
tion of the mid-sagittal plane, which is defined as the plane that best separates the
hemispheres. The automatic detection of this plane in brain images is a useful task
and here we will use it to segment the brain and to detect the brain tumors. The
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(a) (b) (c) (d)

Figure 3.3: Result of rigid registration methods. First row (a) is one axial slice of the
original CE-T1w image and (b) is the corresponding slice of FLAIR image. In 2nd, 3rd,
4th and 5th rows the similarity measures are correlation ratio, least square, normalized
correlation and NMI, respectively. In the column (a), (b), (c) and (d) the interpolation
methods are trilinear, β-spline, cubic Lagrangian and sinc windowed. The results of the
5th row (NMI) is closer to the original image. The time of registration for the 5th row is
1, 12.5, 1.5 and 4.5 minutes from left to right. By comparing the interpolation results,
it seems that NMI with trilinear interpolation is the best choice for our application.
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computation of the approximate brain symmetry plane is performed according to a
method proposed in [Tuzikov et al., 2003], which is based on the maximization of a
symmetry measure. Let us briefly describe it here.

Let u be a unit vector in R
3 and Πu,d a plane in R

3 orthogonal to the vector u
and passing at the distance d from the coordinate origin. We denote by eu,d(f) the
reflection of image f with respect to the plane Πu,d: eu,d(f)(x, y, z) = f(eu,d(x, y, z)).
An image f is called reflection symmetrical if there exists a reflection plane Πu,d such
that eu,d(f) = f . Since there is not an exact symmetry in the brain, we consider a
degree of symmetry defined as the similarity between eu,d(f) and f :

µu,d(f) = 1 −
||f − eu,d(f)||2

2||f ||2
.

The idea is to compute the symmetry measure µu,d(f) of the image f with respect
to an arbitrary reflection plane Πu,d, and to find the plane leading to the maximal
symmetry degree and the corresponding value of symmetry measure µ(f):

µ(f) = max
u∈S2, d∈R+

µu,d(f). (3.1)

First, an initial symmetry plane is estimated based on the ellipsoid of inertia of the
image f . The three major planes of the ellipsoid of inertia are computed and the plane
for which the symmetry measure is maximum is chosen as an initial plane. Then, the
orientation and the position of the plane are improved by optimizing in the 3D space
the reflection plane parameters. This leads to an optimum of the proposed similarity
measure, and is considered as the approximate symmetry plane.

In the normal brain the symmetry plane of the head in MRI is approximately equal
to the symmetry plane of the segmented brain. Although the internal structure of a
pathologic brain may depart from its normal bilateral symmetry, the ideal imaginary
symmetry plane remains invariant [Liu et al., 1996]. Therefore in the refinement
process of the brain segmentation we can use the symmetry plane of the head instead
of the symmetry plane of the segmented brain. In the normal brain, it has also been
observed that the symmetry plane of the gray level brain image and the one of the
segmented brain are approximately equal. Since pathological brains are usually not
symmetric when considering the gray level images, we can compute the symmetry
plane of the segmented brain, which exhibits more symmetry and the computation
time is shorter. Applying this method to images containing tumors provides a good
approximation of the mid-sagittal plane, despite the asymmetry induced by the tumors.
This is illustrated in Figure 3.4 for a normal brain and for different types of tumors.
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(a) (b) (c) (d)

Figure 3.4: Symmetry plane computation. The first row shows the symmetry plane of
the head (red line) and brain (blue line) superimposed on the head image (the symme-
try plane is black when they coincide). The second row shows the symmetry plane of
the head and brain superimposed on the segmented brain. (a) Normal brain. (b) Non-
enhanced tumor. (c) Full-enhanced tumor. (d) Ring-enhanced tumor. These images
show that the symmetry plane of the head and segmented brain are approximately
equal.

3.3.4 Brain segmentation

The next step of preprocessing consists of brain segmentation. Several methods have
been proposed to perform this operation (see e.g. [Mangin et al., 1998 ; Shattuck
et al., 2001 ; Smith, 2002]) and some of them are available in softwares such as Brain-
Visa [Cointepas et al., 2001], FSL [Smith et al., 2001] and Brainsuite [Shattuck and
Leahy, 2002]. Unfortunately most of them fail in the case of the presence of a tumor
in the brain, especially if located on the border of the brain (Figure 3.5).

To solve this problem, we propose to perform a symmetry analysis, based on the
assumption that tumors are generally not symmetrically placed in both hemispheres,
while the whole brain is approximately symmetrical.

First we segment the brain using histogram analysis and morphological operations,
similarly as in [Mangin et al., 1998]. This leads to a partial segmentation, where a
part corresponding to the tumor may be missing. The algorithm summarized in Sec-
tion 3.3.3 is applied on the gray level image of the head to compute the approximate
symmetry plane, because the segmented brain is not symmetric. The computed sym-
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(a) (b) (c) (d)

Figure 3.5: Pathological brain segmentation using existing methods. (a) One slice
of the original image on two examples. (b) Segmented brain by histogram analysis
and morphological operations [Mangin et al., 1998] using BrainVisa [Cointepas et al.,
2001]. (c) Segmented brain by BET [Smith, 2002] using FSL [Smith et al., 2001]. (d)
Segmented brain by BSE [Shattuck et al., 2001] using Brainsuite [Shattuck and Leahy,
2002].

metry planes of the head and of the segmented brain in normal cases are approximately
equal and this approximation is acceptable in pathological cases for tumor detection
purpose. We then compute the reflected brain with respect to the symmetry plane
(Figure 3.6). By calculating the difference between the reflected brain mask and the
brain mask in the unsigned 8 bit format (the images have two levels 0 and 255 and
after subtraction we select the level 255) we obtain an image which contains the re-
moved section of the tumor and other small objects. To select the component which
corresponds to the tumor, first we use a morphological opening to disconnect the com-
ponents. We then select the largest connected component since it corresponds to the
removed section of the tumor, as confirmed by all our experiments (in the case of
small tumors, a single clicking over the tumor or using the FLAIR image can help to
select the tumor component (tumors in the FLAIR images correspond to hyperintense
regions)). Here, the elementary neighborhood of the morphological operations corre-
sponds to 6-connectivity. The result can only be considered as an approximation in
the tumor area, but it is accurate enough for tumor detection in the next step. Finally
we add this result to the segmented brain. The main steps of this method and its
results are illustrated on two examples in Figure 3.6. They correspond to the desired
whole brain, including the pathological areas.
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(a) (b) (c) (d) (e) (f)

Figure 3.6: The proposed algorithm for pathological brain segmentation (same exam-
ples as in Figure 3.5). (a) Segmented brain by histogram analysis. (b) Reflected brain
with respect to the approximate symmetry plane. (c) Difference image of (b) and (a)
(bounded difference). (d) Removed section of the tumor obtained by morphological
operations from image (c). (e) Final segmented brain. (f) Final gray level segmented
brain.

3.3.5 Symmetry-based histogram analysis

In this step we need to extract some information from the brain image histogram which
will be needed in the next steps. We first need to find the pathological hemisphere or
the hemisphere which has the most part of pathology. Also to decide the type of the
segmentation in the next step, it is necessary to know whether the tumor is enhanced
or non-enhanced in CE-T1w image.

To extract this information and to provide an initial segmentation of the tumor in
the next step, we propose a symmetry-based histogram analysis. As mentioned in Sec-
tion 3.3.3, since the symmetry plane of the gray level image and the one of the binary
mask of the segmented brain in the normal case are approximately equal, to increase
the accuracy and to speed-up the algorithm in the pathological case we compute the
symmetry plane on the binary mask of the segmented brain (if the symmetry plane
has been calculated in the brain segmentation step we use that symmetry plane).

Now the tumor type (enhanced or non-enhanced), tumor global information and
the pathological hemisphere can be detected by evaluating this asymmetry with respect
to the obtained plane. We assume that tumors are localized in only one hemisphere or
are not symmetric. Using the calculated symmetry plane we first obtain the reflection
of the brain mask and then provide the intersection of the brain mask and its reflection.
This operation is required to equalize the volume of hemispheres. We then calculate
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Figure 3.7: (a) One axial slice of a pathological MR image with symmetry plane. (b)
Histograms of the brain (H), right hemisphere (Hr) and left hemisphere (Hl).

the right and left hemispheres of the brain gray level image (which is obtained using
the intersection mask). The histograms in the left and right hemispheres are then
calculated (as seen in Figure 3.7). To remove noise we filter the histograms with
an anisotropic diffusion filter. We then calculate the difference of the right and left
histograms and detect its peaks (changes). To analyze and interpret these peaks we
estimate the radiometric characteristics of the brain tissues.

Histogram filtering

As seen in Figures 3.7 and 3.9 the histograms are corrupted with different levels of
noise. Therefore we first need to achieve a preprocessing step to smooth noise while
meaningful structures are preserved. One of the best candidate filters for histogram
smoothing is the anisotropic diffusion filter [Perona and Malik, 1990].

By linking the diffusion coefficient c(x, σ) of the filter to the gradient ▽I(x, σ) of
the histogram convolved with a Gaussian of variance, the smoothing process could be
confined to relatively homogeneous regions, while no smoothing would be carried out
in the regions with strong gradients [Aurdal, 1997]. Different functions can be used for

c. The two more common choices are c(x, σ) = e(−(‖▽I‖/K)2) and c(x, σ) = 1

1+( ‖▽I‖
K )

2 .

The results generated by these two functions are different, the first one privileges
high value points over low value ones, the second privileges wide regions over smaller
regions.

We have experimented with both coefficient diffusion functions. The second one
provides better results for our application. In order to determine the value of K,
such that small local differences will be removed while keeping large differences, we
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Figure 3.8: (a) Original and filtered histogram of a pathological MR image with low
noise. (b) Plot of sorted difference values of original histogram. Here K = 120 was
selected based on this sorted list.

calculate the absolute difference values of neighbor gray levels in the original histogram
according to: dn = |H(n) − H(n + 1)|. We then sort these difference values. In this
sorted list, there will be relatively many occurrences of small differences and fewer
large differences. Here we choose K as the difference value that corresponds to the
median of differences (without zero differences), that satisfy our condition of keeping
the meaningful structures in the histogram [Aurdal, 1997]. In Figure 3.8 the result of
applying the anisotropic filtering to one of the histograms of Figure 3.7 (a low noisy
histogram) and the plot of the sorted difference values are shown. Figure 3.9 illustrates
the result of applying the anisotropic filter to a highly noisy histogram.

Peak detection in the difference of histograms

Let H(x) denote the histogram of gray levels in the whole brain (x denotes the gray
level), Hl(x) the histogram in the left hemisphere and Hr(x) the histogram in the
right hemisphere. The difference of histograms:

Hsrl(x) = Hr(x) −Hl(x) (3.2)

provides useful information about new intensity classes induced by the tumor. To
extract and analyze this information we first need to detect the peaks (changes) in
Hsrl(x). The tumor influence over the brain tissues is to decrease the volume of
healthy tissues (GM and WM) and increase the volume of gray levels corresponding
to the tumor tissue (before GM and after WM) in the pathological hemisphere. Since
the volume of tissues in the normal hemisphere remain almost constant, some negative
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(a) (b)

Figure 3.9: (a) Original and filtered histogram of a pathological MR image with high
noise. (b) Plot of sorted difference values of original histogram. Here K = 1970 was
selected based on this sorted list.

and positive peaks appear in Hsrl(x). The zero-crossing of Hsrl(x) will indicate the
location of the occurred peaks (as seen in Figure 3.10). The following rules are applied
to detect the start, end and maximum or minimum of the peaks:

• a zero-crossing to positive values (positive crossover) indicates the start of a
positive peak and/or the end of a negative peak,

• a zero-crossing to negative values (negative crossover) indicates the end of a
positive peak and/or the start of a negative peak,

• the point at which we have a maximum between a positive and a negative
crossover indicates the maximum of a positive peak,

• the point at which we have a minimum between a negative and a positive
crossover indicates the maximum of a positive peak,

• the point which divides the number of voxels of a peak by two is the middle of
this peak (the occurred peaks have not always a normal distribution).

Therefore each detected peak Pi has 4 values, Spi
, EPi

, MPi
and DPi

which are the
start, end, maximum/minimum and middle gray levels respectively and H(MPi

) is the
maximum/minimum value of the peak Pi. To compute DPi

we minimize the following
equation:

F (DPi
) =

∣

∣

∣

∣

∣

∣





DPi
∑

j=SPi

|Hsrl(j)|



−





EPi
∑

k=DPi

|Hsrl(k)|





∣

∣

∣

∣

∣

∣

, SPi
< DPi

< EPi
(3.3)
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Figure 3.10: Histograms difference. (a),(c) An axial slice of an enhanced tumor and the
graph of the right hemisphere histogram, left hemisphere histogram and the difference
of histograms (for visualization purposes Hsrl is multiplied by 2). (b),(d) An axial
slice of a non-enhanced tumor and the graph of the right hemisphere histogram, left
hemisphere histogram and difference of histograms.

Estimation of radiometric characteristics of brain tissues

To analyze and interpret the detected peaks in Hsrl(x), it is required to find the
radiometric characteristics (mean and standard deviation) of brain tissues (CSF, GM
and WM). Using these parameters we can determine in which tissue each peak (or
change) in Hsrl(x) has appeared.

Let Mc and σc denote the mean and variance of CSF, Mg and σg the mean and
variance of GM and Mw and σw the mean and variance of WM. To estimate these
parameters (or modes of CSF, GM and WM), various approaches have been proposed,
including K-means [Kruggel and Lohmann, 1997], fit with a Gaussian mixture model
(GMM) [Peng et al., 2005 ; Schroeter et al., 1998], using a priori models [Verard et al.,
1997] or based on histogram scale-space analysis [Mangin et al., 1998]. Here, we use the
last one which is based on Gaussian scale-space analysis. This method is very fast and
robust and we also applied it for brain segmentation in Section 3.3.4. Although this
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3.3 Preprocessing

method has been proposed for normal cases, based on our experience and verification,
it correctly operates in tumoral cases (the precision of estimation for our application
is sufficient). We apply this method to estimate the modes of CSF, GM and WM
before the segmentation of the brain. In Figure 3.11 the extrema of a pathological
brain histogram (D0) and its two first derivatives (D1 and D2) in the scale-space are
shown. The signatures and scale selections of background, CSF, GM and WM modes
for the same histogram are provided in Figure 3.12.

Figure 3.11: The extrema of a pathological brain (Figure 3.10 (a)) histogram (D0)
and its two first derivatives (D1 and D2) in the scale-space. DiM denotes a maximum
while Dim denotes a minimum.

Detection of the tumor type and the pathological hemisphere

Now, using the detected peaks in Hsrl(x) and the radioparametric characteristics we
can determine the type of tumor (enhanced or non-enhanced) and the pathological
hemisphere in CE-T1w. We apply the following rules for determining the type of
tumor, based on the characteristics of tumors:

• if there is a peak Pi where DPi
> Mw + 2σw then the tumor is enhanced. If

Hsrl(MPi
) is negative then the pathological hemisphere is the left one, else it is

the right one,

• if there is a peak Pi where Mc < DPi
≤ Mg and there is not a peak Pj where

DPj
> Mw + 2σw then the tumor is non-enhanced. If Hsrl(MPi

) is negative then
the pathological hemisphere is the left one, else it is the right one.
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Brain tumor segmentation: part I, preprocessing

Figure 3.12: The signatures and scale selections of gray and white matter modes for a
pathological brain (Figure 3.10 (a)).

To remove the noise effects, we consider the peaks with NPi
> ǫP , where Npi

is the
number of voxels in Pi and ǫP is a user defined constant.

This method can also be applied to detect the pathological hemisphere in FLAIR
images (tumor type detection in FLAIR image is not possible because all tumors
have hyperintense appearance). We use the following rule to detect the pathological
hemisphere:

• if there is a peak Pi where DPi
> Mw + 2σw then a tumor exists. If Hsrl(MPi

) is
negative then the pathological hemisphere is the left one, else it is the right one.

Evaluation

We have applied the proposed method to MR data from 20 patients with cerebral
tumors (see Tables 1.4 and 1.5). These images contain tumors with different sizes,
intensities, shapes and locations (10 CE-T1w images with enhanced tumors (full and
ring) and 10 CE-T1w images with non-enhanced tumors). These images contain tu-
mors with different sizes, intensities, shapes and locations. This allows us to illustrate
the large field of application of our method. Two of them are shown in Figures 3.13
and 3.14. The detection results for all cases are also summarized in Table 3.1. In
all cases, ǫp = 500, hence our method can detect the tumors greater than 500 voxels
or about 0.8 × 0.8 × 0.8cm. This table shows that the detection of tumor type and
pathological hemisphere in all 20 cases is correct.
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3.4 Conclusion

We applied the proposed method to detect the pathological hemisphere in 10
FLAIR images. For these images the volume dimension is 256 × 256 × 20 and the
voxel size is about 1 × 1 × 1 × 6.5mm3. One of them is shown in Figure 3.15 and
the detection results for all images are summarized in Table 3.2. This table illustrates
that the detection of pathological hemisphere in all cases is correct.
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Figure 3.13: Detection of tumor type and pathological hemisphere for an enhanced
tumor (Figure 3.10 (a)) in a contrast enhanced T1-weighted image. Here Mg = 63,
σg = 5, Mw = 78, σw =, SP = 89, EP = 130 and DP = 102. The detected tumor
type is enhanced and the pathological hemisphere is the right one (for visualization
purposes Hslr is multiplied by 2).

3.4 Conclusion

In the preprocessing section we perform some steps which are required before the
segmentation. Noise and inhomogeneity reduction, image registration, brain segmen-
tation and tumor type and pathological hemisphere detection are the preprocessing
operations in our system.

In this chapter we showed that the sagittal symmetry plane can be helpful in the
brain image processing. We proposed a new method for brain segmentation which
relies on symmetry plane. In this method we used the symmetry plane to correct the
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Data Type Volume Hem Mg σg Mw σw Sp Ep Dp Type Hem
Set (voxel) Det. Det.

TE1 En 10131.6 R 59 5 67 4 80 102 89 En R

TE2 En 42365.5 R 25 5 35 4 43 65 53 En R

TE3 En 19248.8 R 36 4 41 4 51 80 62 En R

TE4 En 39578.5 R 25 8 34 7 45 72 57 En R

TE5 En 11118.0 R 51 5 68 4 76 125 90 En R

TE6 En 13629.2 L 31 4 45 4 53 70 61 En L

TE7 En 5776.1 L 43 5 50 4 55 76 59 EN L

TE8 En 24550.9 R 28 4 36 4 45 76 57 En R

TE9 En 2312.0 R 65 7 79 4 83 95 90 En R

TE10 En 63118.8 R 63 5 78 5 89 130 102 En R

TNE1 NEn 842823.7 L 56 9 70 8 39 61 50 NEn L

TNE2 NEn 53885.3 L 38 7 59 6 12 30 21 NEn L

TNE3 NEn 19472.0 L 24 4 41 4 11 18 15 NEn L

TNE4 NEn 61121.7 R 38 8 63 6 18 29 25 NEn R

TNE5 NEn 55248.1 L 33 5 54 5 5 35 19 NEn L

TNE6 NEN 9554.1 R 31 5 48 5 3 34 19 NEn R

TNE7 NEn 66221.8 R 39 13 59 11 23 41 34 NEn R

TNE8 NEn 34021.5 L 38 5 60 5 25 54 34 NEn L

TNE9 NEn 35763.2 R 44 7 74 7 26 50 42 NEn R

TNE10 NEn 38672.8 R 41 6 64 4 33 44 38 NEn R

Table 3.1: Result of tumor type and pathological hemisphere detection in CE-T1w
images. Here NEn, En, R and L denote non-enhanced, enhanced, right and left re-
spectively.
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Figure 3.14: Detection of tumor type and pathological hemisphere for a non-enhanced
tumor (Figure 3.10 (b)) in a contrast enhanced T1-weighted image. Here Mg = 38,
σg = 8, Mw = 63, σw = 6, SP = 19, EP = 29 and DP = 25. The detected tumor type
is non-enhanced and the pathological hemisphere is the right one (for visualization
purposes Hslr is multiplied by 2).

brain segmentation in the presence of a tumor especially on the border of the brain.
We proposed a new method relying on symmetry analysis for the detection of tumor
types and the pathological hemisphere in CE-T1w and FLAIR images. This method
can be applied for other types of brain images. We applied the proposed method to
20 CE-T1w and 10 FLAIR images with different tumor sizes, at different locations
and with different shapes. In all cases, it detects the tumor type and pathological
hemisphere correctly.

Now, the system can use the processed images and the extracted information to
segment the tumor and its components. In the next chapter we propose a new method
for brain tumor segmentation using region and border information.
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Figure 3.15: Detection of pathological hemisphere in a FLAIR image. Here Mg = 49,
σg = 7, Mw = 61, σw = 4, SP = 70, EP = 144 and DP = 104 (for visualization
purposes Hslr is multiplied by 2).
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Data Volume Hemi. Mg σg Mw σw Sp Ep Dp Hemi.
Set (voxel) Detected.

F1 25499.5 R 56 12 67 4 66 151 88 R

F2 17564.8 L 56 9 66 4 73 111 87 L

F3 133545.0 R 52 8 65 7 66 146 83 R

F4 110847.0 R 45 7 55 7 66 108 81 R

F5 53885.2 L 58 5 64 5 91 149 113 L

F6 48046.7 R 49 7 61 4 70 144 104 R

F7 34021.5 L 47 4 55 4 53 130 68 L

F8 76638.8 R 30 8 52 7 72 139 104 R

F9 38672.7 R 56 10 76 8 91 170 136 R

F10 55379.0 R 46 4 61 4 73 151 118 R

Table 3.2: Result of pathological hemisphere detection in FLAIR images. Here R and
L denote right and left respectively.
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C H A P T E R 4

Brain tumor segmentation: part II,

segmentation

4.1 Introduction

The second section of our framework is the segmentation. The input consists of the
preprocessed images (reduced noise, registered and segmented brain) and some infor-
mation on the tumor provided by the preprocessing section.

As we surveyed in Chapter 2, region-based methods exploit only local information
for each voxel and do not incorporate global shape and boundary constraints. But
they have a high level of automation. On the other hand, boundary-based models
suffer from the difficulty of determining the initial contour, tuning the parameters and
leakage in ill-defined edges. But they perform a good segmentation in the border of
objects. In this chapter we propose a method that is a combination of region-based
and contour-based paradigms. It works in 3D and is generally enough to segment a
large range of tumors in any modality of MR images. To provide an initial detection
of the tumor we propose two methods. The first one is a fuzzy classification method
that is applicable to hyperintense tumors while the second one is based on symmetry
analysis and applies to any type of tumor. The aim of the detection approach is to
roughly locate the tumor automatically. This does not provide an accurate estimation
of its boundaries and we therefore propose a refinement step. This is achieved through
a parametric deformable model constrained by spatial relations.

This chapter is organized as follows: in Section 4.2 we provide an overview of the
proposed method. Section 4.3 describes two new methods for detection and initial
segmentation of tumors. In Section 4.4 a method to refine the segmentation using
edge information and constrained by spatial relations is presented. Segmentation of
edema and necrosis are explained in Section 4.5. Section 4.6 presents some results
and discussions and finally in Section 4.7 some conclusions are given.
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4.2 Method overview

4.2 Method overview

The automated segmentation method that we have developed is composed of two
phases: initialization and refinement, as shown in Figure 4.1. In the first phase, we
detect and initially segment the tumor or edema. To perform this operation, within
the brain, the tumor or edema is detected and initially segmented using a fuzzy clas-
sification method or symmetry analysis and some morphological operations. The first
method relies on the assumption that the tumor or edema appears in the image with
specific gray levels, corresponding to an additional class. The second method relies
on the assumption that the brain is roughly symmetrical in shape, and that tumors
or edemas can be detected as areas that deviate from the symmetry assumption when
looking at gray levels. This detection provides the initialization for a more precise seg-
mentation step, performed in the second stage, using a parametric deformable model
constrained by fuzzy spatial relations. This allows representing explicitly relations
between the tumor or edema and surrounding tissues, thus reinforcing the robustness
of the method.

Figure 4.1: The segmentation method diagram.

Several sources of imprecision are taken into account in the proposed method.
Imprecision is inherently present in the images, due to the observed phenomenon itself
(imprecise limits of pathological areas for instance), to the acquisition system and
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the numerical reconstruction process (leading to spatial and intensity imprecisions).
Moreover, available knowledge is also prone to imprecision. For instance we exploit
the constant order of the gray levels of the main brain tissues, but the exact range of
values of each tissue is imprecise. We will also make use of spatial relations, expressed
in linguistic form, such as “near the tumor”, which cannot be modeled in a precise
way. All these reasons justify the use of fuzzy models in several steps of the proposed
approach (fuzzy classification based on gray levels, models of spatial relations).

4.3 Detection and initial segmentation

We now describe the initial segmentation of the tumor, for which we propose two
methods: the first one relies on a fuzzy classification and the second one is based on
symmetry analysis.

4.3.1 Detection by modified PFCM

Here, our aim is to propose an automatic method for detection and initial segmenta-
tion of brain tumors. The proposed method is based on an unsupervised classification
(clustering), because this type of classification does not require user interaction, learn-
ing or prior models and hence it can be automated easily. The proposed method uses
membership, possibility (typicality) and neighborhood information to classify each
pixel/voxel by combining the fuzzy c-mean (FCM), possibilistic c-mean (PCM) and
mean filter algorithms.

Classification by membership and typicality

Clustering is the partitioning of unlabeled data set X = {x1, x2, ..., xn} ⊂ R
p into

1 < c < n classes, by assigning labels to the vectors in X. A c-partition of X is a set
of (cn) values uik that can be represented as a (c × n) matrix U = [uik] [Pal et al.,
2005]. The value uik denotes the membership degree of sample xk to class i.

One of the most widely used clustering methods is the FCM algorithm. The FCM
algorithm assigns memberships to xk which are related to the relative distance of xk

to the c points prototypes V = {vi} that are class centers in the FCM.

FCM algorithm has some problems that have limited its application. The main one
is that the membership functions are not decreasing with respect to the distance to the
class center. To overcome this problem, a new clustering method named possibilistic c-
mean (PCM) was proposed by [Krishnapuram and Keller, 1993]. In this algorithm the
objective function is modified and the normalization constraint,

∑c
i=1 uik = 1, ∀k, is
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not considered and each element of k’th column can be any number between 0 and 1 (at
least one of them is non zero). The authors named the value uik as typicality (typicality
of xk relative to cluster i). In fact each row of U is a possibility distribution over X.
However this algorithm also has some problems. It is very sensitive to initialization and
sometimes coincident clusters will occur. In addition it is very sensitive to additional
parameters in this model.

To address the problems of FCM and PCM a new fuzzy possibilistic c-mean
(FPCM) algorithm was proposed in [Pal et al., 1997] by combining these two al-
gorithms. In data classification, both membership and typicality are mandatory for
data structures interpretation and FPCM computes these two factors simultaneously.
FPCM solves the noise sensitivity defect of FCM and overcomes the problem of coin-
cident clusters of PCM. The objective function of FPCM is written as:

Jm,η(U, T, V ; X) =
c
∑

i=1

n
∑

k=1

(um
ik + t

η
ik)Dik (4.1)

where m > 1, η > 1, 0 ≤ uik ≤ 1, 0 ≤ tik ≤ 1,
∑c

i=1 uik = 1, ∀k,
∑n

k=1 tik = 1, ∀i

and Dik = ‖xk − vi‖
2 (‖.‖ is any inner product norm). Here T = [tik] is the typicality

matrix.

Although FPCM is less prone to the problems of FCM and PCM, in the case of
a large data set this algorithm does not work properly (it operates such as FCM),
because FPCM normalizes the possibility values, so that the sum of typicality of all
data points in each row of U is one. Hence the typicality values are very small in large
data sets.

PFCM

[Pal et al., 2005] proposed a new algorithm for data clustering that is named possi-
bilistic fuzzy c-mean (PFCM). In this algorithm the constraint of the typicality values
(
∑n

k=1 tik = 1, ∀i) has been relaxed to overcome the problem of FPCM. The objective
function of PFCM is written as:

Jm,η(U, T, V ; X) =
c
∑

i=1

n
∑

k=1

(aum
ik + bt

η
ik)Dik +

c
∑

i=1

γi

n
∑

k=1

(1 − tik)
η (4.2)

where
∑c

i=1 uik = 1, ∀k, 0 ≤ uik, tik ≤ 1 and a > 0, b > 0, γi > 0, m > 1, η > 1 are
user defined constants. The relative importance of fuzzy membership uik (as in FCM)
and typicality tik (as in PCM) in the objective function are defined by the constants
a and b. If a = 1, b = 0 and γi = 0, ∀i, PFCM reduces to FCM and if a = 0 and
b = 1, it reduces to PCM. In [Krishnapuram and Keller, 1993] the following equation
is suggested to compute γi:
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γi = K

∑n
k=1 Dik

∑n
k=1 um

ik

, K > 1 (4.3)

PFCM algorithm overcomes the problems of PCM and FCM and functions properly
on large data sets. It can easily be seen from Equation (4.2) that the objective function
of PFCM does not take into account any spatial information. Hence, it is sensitive to
noise and intensity inhomogeneity, and its application for real MR image classification
is very limited.

MPFCM

Recently, approaches have been proposed by modifying the objective function to in-
crease the robustness of FCM to noise [Liew and H. Yan, 2003], [Pham, 2001], [Ma
and Staunton, 2007], [Ahmed et al., 2002], [Feng and Chen, 2004] and [Shen et al.,
2005].

In [Liew and H. Yan, 2003] the distance is weighted by a term based on the dif-
ference between the membership values of pixels in the neighborhood of the pixel.
[Pham, 2001] modified the objective function to discourage undesirable configurations
according to the neighborhood of the pixels. In [Ahmed et al., 2002], [Shen et al., 2005]
and [Ma and Staunton, 2007] a term is added to the objective function that allows the
labeling of a pixel to be influenced by the labels in its immediate neighborhood. In
the proposed methods the objective function is modified to make the algorithm to be
indirectly similar to the Markov random field (MRF). [Feng and Chen, 2004] proposed
a modified FCM based on Markov and Gibbs random field theory. A spatial context
constraint based on Gibbs random field is added to the objective function.

Here we propose a new algorithm (modified PFCM (MPFCM)) which uses both
the information of voxels and their neighborhoods (inspired from Markov Random
Fields (MRF)), membership and typicality for classification. We modify Equation
(4.2) by adding a term that allows the labeling of a data point being influenced by its
immediate neighborhood. The added neighborhood term is similar to the one which is
used in modified FCM (MFCM) [Ahmed et al., 2002] to incorporate the neighborhood
effects in the classic FCM (similar terms are also used in [Ma and Staunton, 2007] and
[Shen et al., 2005]):

c
∑

i=1

n
∑

k=1

(aum
ik + bt

η
ik)Sik (4.4)

Here Sik =
∑nw

w=1 ‖xw − vi‖
2 where xw is a neighbor pixel/voxel of xk in a window

around xk and nw is the number of neighbors in this window.

The sum of Equations (4.2) and (4.4) is the objective function of the proposed
method:
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Jm,η(U, T, V ; X) =

c
∑

i=1

n
∑

k=1

(aum
ik+bt

η
ik)Dik+

c
∑

i=1

γi

n
∑

k=1

(1−tik)
η+β

c
∑

i=1

n
∑

k=1

(aum
ik+bt

η
ik)Sik

(4.5)

The relative importance of the added term (neighborhood effect) is controlled by
β (β can be written as α

nw
). If m > 1 and η > 1 then the objective function will be

minimized for (the proof can be found in Appendix A):

uik =
c
∑

j=1

(

Dik + βSik

Djk + βSjk

)
1

1−m

, 1 ≤ i ≤ c, 1 ≤ k ≤ n (4.6)

tik =
1

1 +
(

b
γi

Dik + βSik

)1/(η−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ n (4.7)

vi =

∑n
k=1 (aum

ik + bt
η
ik) (xk + βRk)

(1 + α)
∑n

k=1 (aum
ik + bt

η
ik)

, 1 ≤ i ≤ c (4.8)

where Rk =
∑nw

w=1 xw.

In summary, the MPFCM algorithm can be written as:

1. select initial prototypes V = {vi}
c
i=1

2. update the membership matrix using Equation (4.6).

3. update Γ = {γi}
c
i=1 using Equation (4.3).

4. update the typicality matrix using Equation (4.7).

5. update the prototypes using Equation (4.8).

6. repeat 2-5 until termination. The termination criterion is as follows:

‖Vnew − Vold < ‖ǫ (4.9)

where ‖.‖ is the Euclidean distance norm and ǫ is a small number, to be set by
the user.
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Evaluation of MPFCM

We have applied the proposed method to 3D simulated T1-weighted MR data with
different levels of Gaussian noise [Cocosco et al., 1997]. The volume dimension is
181 × 217 × 181 and the voxel size is 1 × 1 × 1mm3.

The classification results into 4 classes (background, CSF, WM, GM) obtained
by FCM, FPCM, PFCM, MFCM (the neighborhood term is added to FCM [Ahmed
et al., 2002]) and the proposed MPFCM are shown in Figure 4.2. The used image
was corrupted with 9% Gaussian noise. The results can be compared with the ref-
erence segmented image that was obtained from a non noise corrupted image. In all
algorithms, the initial values of prototypes are the same. These images show that the
proposed method removes the noise and classifies the voxels correctly. In comparison
with MFCM, our algorithm performs better, especially at the border of tissues.

The evaluation of the classification results was performed through a quantitative
comparison with the results of the reference segmented image. We used the classifica-
tion accuracy measure to evaluate the results, which is:

CA =
Nc

Nt
× 100% (4.10)

where Nc is the number of correct classified voxels and Nt is the total number of voxels.

The quantitative results obtained with different algorithms are provided in Ta-
ble 4.1 for four images with different levels of Gaussian noise. As seen in Table 4.1
and Figure 4.3 when the noise is low, the difference between the classification accuracies
of the algorithms is low. When the noise increases, the difference between classification
accuracies is increased, and the MFCM and MPFCM perform better than the other
algorithms. For example the difference between the CA of FCM and MPFCM in the
image with 3% noise is about 1, while for the image with 9% noise, it is about 10.
Also when the noise is increased MPFCM performs better than MFCM. This shows
that in addition to membership and neighborhood information, the typicality is also
important and can improve the accuracy of classification.

Figure 4.4 shows the comparison of iteration convergence of FCM, MFCM and
MPFCM. It shows that MFCM converges faster than FCM because of neighborhood
information and MPFCM converges faster than these two algorithms because of the
typicality and neighborhood information. The computation time for segmentation of a
3D simulated image for FCM, MFCM and MPFCM algorithms is about 30 second, 11
minutes and 6.5 minutes respectively (on a PC Pentium IV 2 MHz). If we change the
initialization method, for example by using the final result of FCM or by predicting
the class centers by histogram analysis, the computation time will be decreased to
about 1 minute for MPFCM algorithm.

Setting the parameters of MPFCM (a, b, β) with proper values is important. The
parameter β controls the neighborhood effect and it should be selected high enough
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Comparison of classification results (into 4 classes) on a 3D simulated MR
image corrupted with 9% Gaussian noise. (a) One axial slice of the original image
with 9% Gaussian noise. (b) Original image without noise. (c) Reference segmented
image. (d) Result of the FCM algorithm. (e) Result of FPCM. (f) Result of PFCM
classification. (g) Classification by MFCM. (h) Result of proposed MPFCM algorithm.
Here we set the parameters α = 0.85 (such as in [Ahmed et al., 2002]), m = 1.5 and
nw = 27 for MFCM algorithm and a = 5, b = 3, β = α

nw
= 0.1, m = 1.5 and η = 2 for

MPFCM algorithm. All algorithms were initialized with the same class centers.

for very noisy images. A small value of β converts the MPFCM algorithm to PFCM
algorithm. Here we obtained the best results with β = 0.2 for T1-weighted images
and β = 0.1 for FLAIR images. The parameter a controls the effect of membership
and b the effect of typicality. Setting these parameters depends on the type of images
and the number of classes. Setting b with a high value compared to a causes the
centroid be more influenced by the typicality values than the membership values and
a coincidence problem may occur. Conversely using a high value of a with a high value
compared to b causes the centroids be more influenced by membership values and it
may generate the FCM problems (for the parameters m and η similar effects can also
be obtained). In the classification of medical images (T1-weighted and FLAIR) into 5
and 6 classes with a = 5 and b = 3 we obtained the best results and in the all cases
the algorithm converged, but further investigation is required for other images and
different numbers of classes.

94



Brain tumor segmentation: part II, segmentation

3 4 5 6 7 8 9
86

88

90

92

94

96

98

100

C
A

% of Gaussian noise

FCM
FPCM
PFCM
MFCM
MPFCM

Figure 4.3: Comparison of classification accuracy (CA) of algorithms.
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Figure 4.4: Comparison of the convergence of classification algorithms when applied
to the simulated 3D MR image without noise (all algorithms were initialized with the
same class centers).

95



4.3 Detection and initial segmentation

Gaussian noise
Algorithm

3% 5% 7% 9%

FCM 97.21 94.36 91.73 86.42

FPCM 97.49 95.02 92.28 88.41

PFCM 97.75 95.26 92.53 88.67

MFCM 97.84 96.30 94.78 93.78

MPFCM 98.34 97.25 96.42 95.96

Table 4.1: Quantitative comparison of classification results obtained by different al-
gorithms. The values in the table are the ratio of correct classified voxels (CA) in 3D
simulated MR images with different levels of Gaussian noise.

In summary we have developed a new method for classification of MR images that
uses the membership, typicality and neighborhood information. The results show that
this method performs better than the other fuzzy clustering algorithms such as FCM,
FPCM, PFCM and MFCM and can be a good candidate for detection and initial
segmentation of brain tumors in MR images. In the next section we describe how we
use this method towards this aim.

MPFCM and tumor detection

To detect tumors, we consider two types of tumors on contrast enhanced T1-weighted
images: enhanced (full-enhanced with and without edema and ring-enhanced) and
non-enhanced tumors.

In the case of an enhanced tumor we classify the extracted brain into six classes:
CSF, WM, GM, edema, tumor and background. To obtain the initial values of the
class centers, we use the results of the histogram analysis [Mangin et al., 1998] in
the brain extraction step: we define them as the average gray level values of the CSF,
WM and GM (mC, mW and mG, respectively). For the background, the value zero
is used. To select the tumor class we assume that the tumor has the highest intensity
among the five classes and for edema classes we select a value between CSF and GM
(usually edema is hypointense, darker than WM and brighter than CSF) [Khotanlou
et al., 2005]. Our proposed method is not very sensitive to initial values and selecting
good values for class centers will reduce the computation time.

We applied the MPFCM method to classify contrast enhanced T1-weighted images
with enhanced tumor at different locations, with different sizes and shapes. In Figure
4.5, the classification result (into 6 classes) obtained by MPFCM for a relatively large
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tumor is compared with FCM, FPCM and MFCM results. In Figure 4.6 and Figure
4.7 the results for a relatively small tumor and a ring enhanced tumor are shown.

(a)

(b) (c) (d) (e)

Figure 4.5: Comparison of classification results (6 classes) obtained by FCM, FPCM,
MFCM and MPFCM for a large full-enhanced tumor. (a) One axial slice of the original
contrast enhanced T1-weighted image. (b) Result of FCM classification. (c) Result of
FPCM. (d) Result of MFCM. (e) Result of MPFCM. Here a = 5, b = 3, β = 0.2 and
nw = 27 for the MPFCM algorithm.

Because of some classification errors (some other components of brain may take
contrast agent (such as vessels) and be seen as hyperintense structures on contrast
enhanced T1-weighted images), there are undesired additional voxels in the tumor
class. To remove these missclassified components, a connected component analysis is
performed, using the 6-connectivity. In the case of a large tumor, the largest compo-
nent is the tumor but in the case of a small tumor the largest component is not always
the tumor. To address this problem, we use the FLAIR image when it is available.
Since all tumors appear as hyperintense structures on FLAIR images and other com-
ponents, which take contrast agent, appear as hypointense ones, we can detect the
tumor among the components with a simple comparison with corresponding compo-
nents in the FLAIR image. In this case we select the regions corresponding to the
components from the FLAIR image and calculate the mean intensity of each region.
The region which has the maximum mean intensity corresponds to the tumor.

In the case of a non-enhanced tumor, because of a large overlapping between tumor
and brain tissues, a correct detection of the tumor is a difficult task. As seen in Figure
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(a)

(b) (c) (d) (e)

Figure 4.6: Comparison of classification results obtained by FCM, FPCM, MFCM
and MPFCM for a small tumor. (a) One axial slice of the original contrast enhanced
T1-weighted image. (b) Result of FCM classification. (c) Result of FPCM. (d) Result
of MFCM. (e) MPFCM result. Here a = 5, b = 3, β = 0.2 and nw = 27 for the
MPFCM algorithm.

4.8 the tumor class has a large overlap with GM and CSF classes even with the
MPFCM classification method (note that this image is a good image with low noise).
To overcome this problem we can use the FLAIR image. Since non-enhanced tumors
have hyperintense appearance on FLAIR images and they have no other components
(such as edema and necrosis), we perform the detection step on FLAIR images if
available. We classify the FLAIR image into 5 classes (background, CSF, GM, WM
and tumor). To initialize the MPFCM algorithm we use the final result of FPCM.
In Figure 4.9 a comparison of classification results in a FLAIR image obtained by
FCM, FPCM, MFCM and MPFCM is shown. These results show that the MPFCM
algorithm can be a good candidate for FLAIR image classification.

Such as in enhanced tumor detection, because of some classification errors there are
undesired additional voxels in the tumor class. Again a connected component analysis
allows removing these voxels. In the FLAIR image the tumor is large enough and we
select the largest component which always coresponds to the tumor.
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(a)

(b) (c) (d) (e)

Figure 4.7: Comparison of classification results (6 classes) obtained by FCM, FPCM,
MFCM and MPFCM for a ring-enhanced tumor. (a) One axial slice of the original
contrast enhanced T1-weighted image. (b) Result of FCM classification. (c) Result of
FPCM. (d) Result of MFCM. (e) Result of MPFCM. Here a = 5, b = 3, β = 0.2 and
nw = 27 for the MPFCM algorithm.

Evaluation of tumor detection

We have applied this method to 10 3D contrast enhanced T1-weighted images with
enhanced tumor at different locations and with different sizes and shapes. The results
for 3 images are shown in Figures 4.10, 4.11 and 4.12.

The evaluation of the initial segmentation results was performed through a quan-
titative comparison with the results of a manual segmentation. Let us denote by M

the manually segmented tumor and A the segmented tumor by our method. We used
five measures to evaluate the results which are:

• ratio of correct detection: Tp =
NTp

NM
∗ 100%, where NTp

is the number of true
positive voxels and NM is the cardinality of M ;
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(a)

(b) (c) (d) (e)

Figure 4.8: Comparison of classification results obtained by FCM, FPCM, MFCM and
MPFCM for a non-enhanced tumor on contrast enhanced T1-weighted image. (a) One
axial slice of the original contrast enhanced T1-weighted image. (b) Result of FCM
classification into 5 classes. (c) Result of FPCM. (d) Result of MFCM. (e) Result of
MPFCM. Here a = 5, b = 3, β = 0.2 and nw = 27 for the MPFCM algorithm.

• ratio of false detection: Fp =
NFp

NA
∗ 100%, where NFp

is the number of false
positive and NA is the cardinality of A;

• similarity index: Si =
2NTp

NM +NA
∗ 100%;

• Jaccard index: Ji =
NTp

NA+NM +NTp
∗ 100%;

• Hausdorff distance between A and M , defined as DH = max(h(M, A), h(A, M))
where h(M, A) = maxm∈M mina∈A d(m, a), and d(m, a) denotes the Euclidean
distance between m and a (m and a are points of M and A respectively);

• average distance (Dm) between the surfaces of M and A.

The Tp value indicates how much of the actual tumor has been correctly detected,
while Fp indicates how much of the detected tumor is wrong. The similarity index Si

and Jaccard index are more sensitive to differences in location. For example, if region A

completely includes region M , while M is one half of A, then the Tp value is 100% while
the Si value is 67% an Ji is 50%. Since usually most errors are located at the boundary
of the segmented regions, small regions will have smaller S and Tp values than large
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(a)

(b) (c) (d) (e)

Figure 4.9: Comparison of classification results obtained by FCM, FPCM, MFCM
and MPFCM for a non-enhanced tumor on FLAIR image. (a) One axial slice of the
original FLAIR image. (b) Result of FCM classification into 5 classes. (c) Result of
FPCM. (d) Result MFCM. (e) Result of MPFCM. Here a = 5, b = 3, β = 0.1 and
nw = 27 for the MPFCM algorithm.

(a) (b) (c)

Figure 4.10: Tumor detection result for a relatively large full-enhanced tumor (Figure
4.5). (a) One axial slice of the selected tumor class. (b) Connected components of the
tumor class (the tumor is the largest component). (c) Detected tumor.
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(a) (b) (c)

Figure 4.11: Tumor detection result for a small full-enhanced tumor (Figure 4.6). (a)
One axial slice of the selected tumor class. (b) Connected components of the tumor
class (here the tumor is the second largest component). (c) Detected tumor.

(a) (b) (c)

Figure 4.12: Tumor detection result for a ring-enhanced tumor (Figure 4.7. (a) One
axial slice of the selected tumor class. (b) Connected components of the tumor class
(here the tumor is the largest component). (c) Detected tumor.

regions. Therefore we also use the average distance and the Hausdorff distance that
do not depend on the region size. More details about comparative measures can be
found in Appendix B.

The quantitative results obtained by comparing the automatic segmentations with
the available manual segmentations are provided in Table 4.2 for 10 cases with en-
hanced tumor (5 ring-enhanced and 5 full-enhanced). As seen in Table 4.2, the tumor
size varies from 2366 mm3 to 65864 mm3. The similarity index varies from 75% to 87%
with a mean of 80%. The Jaccard index varies from 60% to 78% with a mean of 67%
and the correct detection ratio is between 62%-78% with a mean of 68%. The false
detection ratio ranges between 0% and 4.7% with an average of 1.3%. To compare the
results with other methods, there is not a gold standard, however in comparison with
recent works such as [Dou et al., 2007], [Corso et al., 2006], [Prastawa et al., 2004] and
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[Cai et al., 2007], where a quantitative evaluation has been done, our results are better
than or equal to the ones reported in these works. The false detection ratio illustrates
that approximately all of the detected tumor is located within the true tumor and
on the other hand the correct detection ratio shows that about 30% of the tumor
volume has been not detected. Therefore we can improve the results with deforming
the detected tumor toward the true borders of the tumor. This deformation will also
improve the surface measures that depend on the quality of the segmentation at the
borders. The Hausdorff distance, that is a maximum distance and therefore a particu-
larly severe evaluation, varies from 4.5 mm to 17.4 mm with a mean of 8.1 mm. The
mean value of the average distance is about 1.27 mm which is about one voxel.

In the comparison between the full-enhanced and ring-enhanced tumors, it can be
observed that the results of full-enhanced tumors are better, because the ring-enhanced
tumors have two surfaces (external and internal) and the errors are summed over the
two borders.

We believe that the result of initial segmentations can be improved by using a
boundary-based method, which will be discussed in the next sections.

(a) (b) (c)

Figure 4.13: Tumor detection result for a non-enhanced tumor in a FLAIR image
(Figure 4.9). (a) One axial slice of the selected tumor class. (b) Connected components
of the tumor class (the tumor is the largest component). (c) Detected tumor.

We applied the MPFCM algorithm to 10 FLAIR images (with a non-enhanced
tumor on CE-T1w image). One of them is illustrated in Figure 4.13. For the FLAIR
images the quantitative results also obtained by comparing the automatic segmenta-
tions with the available manual segmentations are provided in Table 4.3 for 10 cases.
This table shows good results especially in volume metrics but the surface metrics
values show that the border of segmentation requires to be improved.
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

TE1 10518.7 84.0 72.2 72.5 0.3 9.24 1.60

TE2 11524.0 87.3 77.5 77.5 0.0 5.83 0.91

TE3 4643.6 75.1 60.1 62.0 4.7 7.61 0.94

TE4 2366.1 76.2 61.6 62.1 1.4 4.56 1.16

TE5 65846.4 84.6 73.3 74.5 2.1 17.37 2.03

Ave. 18979.8 81.5 69.0 69.7 1.7 8.32 1.32

TRE1 43259.5 77.9 63.8 64.1 0.7 10.50 1.35

TRE2 19437.1 75.1 60.2 60.6 1.1 8.50 1.53

TRE3 41833.4 76.7 62.2 62.4 0.5 8.87 1.28

TRE4 13629.2 80.1 67.4 67.8 0.8 5.13 1.12

TRE5 26777.3 83.8 72.1 73.0 1.6 6.60 1.03

Ave. 28987.3 78.7 65.1 65.6 0.9 7.92 1.26

Ave. total 23983.6 80.1 67.1 67.7 1.3 8.12 1.29

Table 4.2: Evaluation of the initial segmentation results of enhanced tumors (full and
ring) by MPFCM on a few 3D CE-T1w images for which a manual segmentation was
available (M denotes the manually segmented tumor, TE the full-enhanced and TRE
the ring-enhanced tumor).

Summary

Here we proposed a new and automatic method for classification and segmentation
of medical images relying on fuzzy sets theory which uses membership, typicality
and neighborhood information. We then applied it to detect and segment tumors
on CE-T1w and FLAIR images. The quantitative results illustrate that this method
performs relatively well, but it can be improved by refining the results at the border
of the segmented objects. In the next section we present a boundary based method to
improve and refine the results.
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

F1 22851.7 79.5 65.9 67.0 2.3 8.00 0.90

F2 25499.5 81.7 69.1 70.2 2.2 7.76 1.00

F3 110338.0 82.8 70.6 71.3 1.3 18.00 2.28

F4 119415.6 82.8 70.7 71.7 2.0 14.03 1.53

F5 57634.7 84.7 73.5 77.0 5.9 10.87 1.40

F6 47342.3 87.4 77.6 80.7 4.6 13.44 1.53

F7 41378.0 92.1 85.4 89.8 5.4 6.50 0.80

F8 78887.0 84.0 72.4 74.5 3.7 14.04 1.66

F9 37971.4 86.3 75.9 77.2 2.1 13.19 1.73

F10 57769.2 87.9 78.5 78.8 0.6 14.74 1.65

Ave. 59908.8 85.0 74.0 75.8 3.0 14.51 1.45

Table 4.3: Evaluation of the segmentation results of tumors by MPFCM on a few
3D FLAIR images for which a manual segmentation was available (M denotes the
manually segmented tumor).

4.3.2 Tumor detection by symmetry analysis

To overcome the lack of generality of the previous method in tumor segmentation, we
suggest another approach, using the approximate symmetry plane [Khotanlou et al.,
2007b;c]. In Section 3.3.5 we used this method to extract some information on image
and tumor, here we use it to detect and segment tumors in any type of MR image
modalities. First of all we explain the method for detection on contrast enhanced
T1-weighted images and we will then extend it to other types of images.

Let Hn(x) denote the histogram of gray levels in the normal hemisphere and Hp(x)
the histogram in the pathological hemisphere. The histogram difference Hs(x) =
Hp(x)−Hn(x) provides useful information about new intensity classes induced by the
tumor. By detecting, analyzing and interpreting the occurred peaks in Hs(x) we can
extract the tumor from the brain.

To detect the peaks we apply the algorithm presented in Section 4.3.2 and to
analyze and interpret the peaks, we consider the proposed classification of tumors in
Chapter 1: non-enhanced tumors, full-enhanced tumors without edema, full-enhanced
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tumors with edema and ring enhanced tumors.

Non-enhanced tumors

In the case of a non-enhanced tumor (as in Figures 4.14 and 4.15) a positive peak can
be observed between CSF and GM in Hs(x) that shows the tumor intensity range.
In this case the tumor naturally decreases the volume of the GM and WM, hence a
negative peak can be seen after the tumor peak. When the tumor moves the ventricles
toward the normal hemisphere or is located in the border of the brain, a negative peak
will be observed before the tumor peak (in CSF), as illustrated in Figure 4.15. To
extract the tumor from the brain we use a simple thresholding. We set the low value
of threshold to Tl = SPt

and the high value to Th = EPt
, where Pt represents the

tumor peak. When an overlap exists between the tumor peak and the GM mode or
CSF mode, i.e EPt

> Mg −
1
2
σg or SPt

< Mc + 1
2
σc, the extraction will be difficult. To

address this problem we limit the threshold values according to:

• if EPt
> Mg then Th = Mg − (1

2
σg)

• if SPt
< Mc then Tl = Mc + (1

2
σc)

These limitations may cause some tumor voxels be removed but in the refinement
step they will be added again.

To illustrate the influence of a non-enhanced tumor on the histogram of the normal
hemisphere, pathological hemisphere and the difference of histograms, we added a
simulated tumor in the right hemisphere of a normal image. Figure 4.14 shows the
result for this simulation.

The negative peak can also provide some information about the tumor which can
be used in the segmentation process. Since the presence of a tumor decreases the
volume of tissues in which the tumor is located, hence the negative peak illustrates
the tissues which surround the tumor. Thus with a thresholding we can obtain the
tissues around the tumor as seen in Figure 4.15.

Full-enhanced tumors without edema

In this case a peak appears after the WM mode. The tumor usually decreases the WM
and GM volumes and consequently a negative peak will appear within the WM and
GM modes. When the tumor deforms the structures largely and moves the ventricles
or appears at the border of the brain, a negative peak will also be created in the
CSF mode. To extract the tumor from the brain, a thresholding, with Tl = SPt

and
Th = EPt

, is used. An overlap between the tumor peak and the WM mode can be
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Figure 4.14: (a),(c) A normal image and the graph of Hsrl, Hl, Hr, WM, GM and
CSF for this image. (b),(d) A pathological image (a non enhanced tumor about 8000
voxels (2 × 2 × 2 ×cm), which has a normal distribution of gray levels (45 ± 4), has
been added to the normal image) and the graph of Hs, Hn, Hp, WM, GM and CSF
for

(a) (b) (c) (d)

Figure 4.15: (a) Symmetry plane superimposed on the brain mask. (b) Symmetry
plane superimposed on the segmented brain. (c) Extracted tumor after morphological
operations. (d) Tissues around the tumor (graph of Hs, Hn and Hp are shown in
Figure 3.14).
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observed. Although this rarely occurs, to overcome this problem we apply the following
limitation:

• if SPt
< Mw + 2σw then Tl = Mw + 2σw

We also threshold the negative peak gray levels range to extract the tissues around
the tumor.
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Figure 4.16: (a) Graph of Hs, Hn and Hp for a full-enhanced tumor without edema. (b)
Symmetry plane superimposed on the brain mask. (c) Symmetry plane superimposed
on the segmented brain. (d) Extracted tumor after morphological operations. (e)
Tissues around the tumor.

Ring enhanced and full-enhanced tumors with edema

When a full-enhanced tumor with edema (as in Figure 4.17 for a simulated tumor
and Figure 4.18 for a real tumor) or ring enhanced tumor (as in Figure 4.19) exists
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in the image, we have two positive peaks in Hs(x), where the first peak shows the
edema intensity range and the second one shows the tumor intensity range, because the
intensity of edema is always between CSF and GM. Since these types of tumors usually
deform the brain structures and move the ventricles toward the normal hemisphere, a
negative peak can be observed in the range of the CSF mode (as in Figures 4.18 and
4.19).

To demonstrate the effects of a full-enhanced tumor on the histograms of the normal
and pathological hemispheres and the difference of histograms, we added a simulated
tumor in the right hemisphere of a normal image. Figure 4.17 shows the result for this
simulation.

The extraction of the tumor is the same as for the full-enhanced tumors without
edema. Since in these cases edema surrounds the tumor, to obtain the surrounding
tissues, we apply a thresholding using the range of the edema peak.
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Figure 4.17: (a),(c) A normal image and the graph of Hsrl, Hl, Hr, WM, GM and
CSF for this image. (b),(d) A pathological image (a full-enhanced tumor (about 6000
voxels) with edema (about 12000 voxels) which has a normal distribution of gray levels
(75 ± 5 for tumor and 38 ± 5 for the edema), has been added to the normal image)
and the graph of Hs, Hn, Hp, WM, GM and CSF for this image.
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(a) (b) (c) (d)

Figure 4.18: a) Symmetry plane superimposed on the brain mask. (b) Symmetry
plane superimposed on the segmented brain. (c) Extracted tumor after morphological
operations. (d) Tissues around the tumor (graph of Hs, Hn and Hp are shown in
Figure 3.13).

Extraction of tumors on FLAIR images

We can apply this method to detect and extract anomalies in all types of brain images
such as T2-weighted, PD-weighted, CT and PET images. Here we use this method to
detect and extract tumors on FLAIR images. Since tumors on FLAIR images appear
as hyperintense tissues a positive peak, which corresponds to the tumor, will occur in
Hs(x) after the WM mode as illustrated in Figure 4.20. Due to the tumor influence
over the WM and GM tissues, a negative peak can be seen in the range of WM and
GM gray levels in Hs(x). To extract the tumor we make a threshold in the range of
Tl = SPt

and Th = EPt
. When the tumor peak and WM mode overlap, we use the

same limitation as for the enhanced tumors.

Initial segmentation

To extract the tumor we first use a thresholding with tumor peak range values. Some
misclassified voxels are removed using morphological operations. An opening is first
used to disconnect the components. The largest connected component is then selected
since it corresponds to the tumor (as seen in Figures 4.15, 4.16, 4.18 and 4.19).
In some cases on CE-T1w images the largest components may not correspond to the
tumor (especially for small tumors). In these cases when the FLAIR image exists, it
helps us to detect the component which corresponds to the tumor (as we explained in
Section 3.3.4), otherwise with a simple click by the user the tumor component can be
detected.
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Figure 4.19: (a) Graph of Hs, Hn and Hp for a ring-enhanced tumor with edema
(image (c)) (for visualization purposes Hs is multiplied by 2). (b) Symmetry plane
superimposed on the brain mask. (c) Symmetry plane superimposed on the segmented
brain. (d) Extracted tumor after morphological operations. (e) Tissues around the
tumor.

Evaluation

We applied the method to 20 cases with different tumor types, at different locations
and with different intensities on CE-T1w images and 10 cases on FLAIR images.
In all cases it detects and initially segments the tumors as illustrated for 5 cases in
Figures 4.15, 4.16, 4.18, 4.19 and 4.20.

In Table 4.4 the quantitative results are obtained by comparing the automatic
segmentations with the available manual segmentations for 20 cases (10 enhanced and
10 non-enhanced tumors) on CE-T1w images. As observed in Table 4.4, for enhanced
tumors, the similarity index varies from 74% to 87% with a mean of 81% and the
Jaccard index and correct detection ratio are between 60%-78% with a mean of 69%.
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Figure 4.20: (a) Graph of Hs, Hn and Hp for a non-enhanced tumor in a FLAIR image
(image (c)) (for visualization purposes Hs is multiplied by 2). (b) Symmetry plane
superimposed on the brain mask. (c) Symmetry plane superimposed on the segmented
brain. (d) Extracted tumor after morphological operations. (e) Tissues around the
tumor.

The false detection ratio has also a mean about 0.6%. In comparison with the MPFCM
method, the results are very close and we obtain approximately the same results. As
in the MPFCM method, the false detection ratio is very small since all voxels of
the segmented tumor are located within the true tumor. Thus we can deform this
initial segmented tumor toward the true border of the tumor to improve the quality
of segmentation.

Analyzing the results of Table 4.4 for the non-enhanced tumors gives the same
results as for the enhanced tumors on volume metrics. But the surface measures show
that the segmentation quality of the non-enhanced tumors is worse than the one of
enhanced tumors due to ill-defined borders.

Table 4.5 represents the quantitative results obtained on FLAIR images. The simi-
larity index, which varies from 75% to 93% with a mean of 86%, and correct detection
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ratio, which varies from 62% to 89% with a mean of 77%, show a good matching
between volumes of automatic and manual segmentation. The surface metrics also
illustrate a relatively good segmentation, but the results can be improved on the bor-
ders. These results also illustrate that the initial segmentation on FLAIR images is
better than on CE-T1w images due to well-distinguished intensity of tumors on FLAIR
images.

Summary

Here we developed a new and general method for detection and initial segmentation of
brain tumors that can be used in any type of brain images. We applied successfully this
method to detect and segment tumors on CE-T1w and FLAIR images. The volume
metrics of the quantitative evaluation show that it performs a good segmentation but
the surface metrics illustrate that the borders of the segmented objects should be
improved. In the next section we present a boundary-based method to improve the
results of the initial segmentation.

4.4 Segmentation refinement

The result of tumor segmentation by symmetry analysis and MPFCM classification is
not accurate enough especially at the border of tumors, therefore we need a method to
refine the segmentation. To obtain an accurate segmentation, a parametric deformable
model, that has been applied successfully to segment the internal brain structures
[Colliot et al., 2006], is used.

4.4.1 Deformable model

The segmentation obtained from the previous processing is transformed into a trian-
gulation using an isosurface algorithm [Piquet et al., 1996] based on tetrahedra and is
decimated and converted into a simplex mesh, denoted by X [Delingette, 1999].

The evolution of our deformable model is described by the following usual dynamic
force equation [Kass et al., 1988 ; Xu et al., 2000]:

γ
∂X

∂t
= Fint(X) + Fext(X),

where X is the deformable surface, Fint = α∇2X − β∇2(∇2X) is the internal force
that constrains the regularity of the surface and Fext is the external force. In our case,
the external force is composed of two terms. The first one is classically derived from
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

TE1 10518.7 82.9 70.8 70.8 0.1 5.36 1.25

TE2 11524.0 86.7 76.5 76.5 0.0 5.83 0.93

TE3 4643.6 83.5 71.6 72.1 0.8 7.55 0.70

TE4 2366.1 87.8 78.2 78.8 0.8 2.57 0.65

TE5 65846.4 77.5 63.2 63.8 1.4 15.93 2.26

Ave. 18979.8 83.7 72.1 72.4 0.6 7.44 1.15

TRE1 43259.5 75.4 60.5 60.9 0.9 9.64 1.48

TRE2 19437.1 75.5 60.6 60.7 0.2 8.07 1.18

TRE3 41833.4 82.7 70.5 70.5 0.0 7.44 1.16

TRE4 13629.2 74.3 59.2 59.3 0.3 5.74 1.33

TRE5 26777.3 83.7 72.1 72.9 1.5 6.28 1.02

Ave. 28987.3 78.3 64.6 64.9 0.6 7.43 1.23

Ave. 23983.5 81.0 68.4 68.7 0.6 7.44 1.19

TNE1 107177.1 79.3 65.6 66.4 0.2 13.69 3.00

TNE2 50870.2 72.4 56.7 56.8 0.2 10.78 2.49

TNE3 15285.9 89.4 80.9 83.1 3.2 8.59 0.97

TNE4 50093.7 81.2 68.3 69.3 2.1 8.94 2.07

TNE5 59990.6 84.8 73.6 75.5 3.3 10.00 1.65

TNE6 14355.6 72.5 56.9 60.5 9.5 13.51 2.24

TNE7 74292.2 70.4 54.3 57.3 8.7 13.18 2.56

TNE8 16635.1 82.9 70.8 71.3 1.0 6.88 1.39

TNE9 38380.1 85.5 74.6 77.6 5.0 8.65 1.55

TNE10 60652.4 76.8 62.3 63.0 1.5 10.75 2.49

Ave. 48773.3 79.5 66.4 68.1 3.5 10.50 2.04

Ave. total 36378.5 80.3 67.4 68.4 2.1 8.97 1.62

Table 4.4: Evaluation of the initial segmentation results of enhanced and non-enhanced
tumors by symmetry analysis on a few 3D CE-T1w images for which a manual seg-
mentation was available (M denotes the manually segmented tumor).
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

F1 22851.7 75.1 60.1 62.0 4.6 8.38 1.20

F2 25499.5 85.8 75.1 77.6 4.0 7.32 0.73

F3 110338.2 91.1 83.7 86.0 3.1 8.0 1.10

F4 119415.6 84.4 73.0 74.1 2.0 9.60 1.40

F5 57634.7 83.3 71.4 75.3 6.7 10.30 1.45

F6 47342.3 85.0 73.9 74.0 0.2 6.80 1.77

F7 41378.0 84.7 73.5 74.1 1.2 6.0 1.43

F8 78887.9 87.3 77.5 79.5 3.1 7.47 1.39

F9 37971.4 88.9 80.0 82.4 3.4 9.51 1.23

F10 57769.2 92.6 86.2 89.1 3.6 9.50 1.05

Ave. 59908.8 85.8 75.4 77.4 3.2 8.29 1.27

Table 4.5: Evaluation of the initial segmentation results of tumors by symmetry anal-
ysis on a few 3D FLAIR images for which a manual segmentation was available (M
denotes the manually segmented tumor).

image edges, and is denoted by FC . It can be written as:

FC = v(x, y, z)

where v is a Generalized Gradient Vector Flow (GGVF) field introduced by Xu et
al. [Xu and Prince, 1998]. A GGVF field v is computed by diffusion of the gradient
vector of a given edge map and is defined as the equilibrium solution of the following
diffusion equation:

∂v

∂t
= g(‖∇f‖)∇2v − h(‖∇f‖)(v −∇f) (4.11)

v(x, y, z, 0) = ∇f(x, y, z) (4.12)

where f is an edge map and the functions g and h are weighting functions which can
be chosen as follows:

{

g(r) = e−
r
κ

2

h(r) = 1 − g(r)
(4.13)

To compute the edge map, we applied the Canny-Deriche edge detector.

The second term of Fext is derived from spatial relations and is described next.
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4.4 Segmentation refinement

We applied this approach to refine the results of initial segmentation by MPFCM
and symmetry analysis on CE-T1w images. In all cases we set k=0.01. Properly setting
the parameters of the internal force, i.e. α and β, in this model is very important.
Unfortunately there is not a general rule to set these parameters. We believe that a
relation between the initial surface and these parameters can be established that could
be done in future works. Here we set α and β with 3 different values: 0.2 for large
volume (> 30000mm3), 0.1 for middle volume (between 10000-30000mm3) and 0.05
for small volume (< 10000mm3). It should be noted that the results with these values
are not the optimum for some cases and by changing the parameters it is possible to
obtain better results. The results of 7 cases are shown in Figures 4.29-4.35.

The quantitative results obtained by comparing the refined segmentation with man-
ual segmentation on CE-T1w images are provided in Tables 4.6 and 4.7. By comparing
Table 4.6 with 4.2 and Table 4.7 with Table 4.4, it can be observed that the refinement
step improves the segmentation quality. For example for the MPFCM method, it in-
creases the average of Si about 7, Ji about 11 and Tp about 13 unit. It also improves
the surface metrics by reducing the average of DH by about 2 mm and Dm by about
0.5 mm. On the other hand, the average of Fp (error) was increased about 1.5 unit,
which is a small value, compared with other metrics improvement is a small value. For
the symmetry analysis method the refinement results are approximately the same as
for the MPFCM method.

We also refined the initial segmentation on FLAIR images by this model. Since the
resolution of FLAIR images (about 20 slices and the thickness of each slice is about
6.5mm) is usually lower than CE-T1w images (about 120 slices and the thickness of
each slice is about 1.3mm), the neighborhood slices are very different. Hence applying
a 3D deformable model on FLAIR images will not give a good result. To address this
problem when the CE-T1w image exists we register the FLAIR image with it, else we
increase the number of slices to about 120 and then interpolate the gray level values
by a trilinear method. The results of the segmentation refinement for 2 cases are
shown in Figures 4.36 and 4.37. We also provide the quantitative results in Tables 4.8
and 4.9. The comparison of these results with the initial segmentation shows that the
refinement phase improves the volume and surface metrics. But the improvement is
smaller than the one observed on CE-T1w images, because the initial segmentation on
FLAIR images is already better than in CE-T1w images due to their well-distinguished
boundaries and the low inhomogeneity.

4.4.2 Deformable model constrained by spatial relations

Spatial relations are useful to guide the recognition of objects in images since they pro-
vide an important information about the spatial organization of these objects. Two
main classes of spatial relations can be considered: topological relations, such as inclu-
sion, exclusion and adjacency, and metric relations such as distances and orientations.
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

TE1 10518.7 92.1 85.4 87.0 2.1 3.14 0.62

TE2 11524.0 92.4 86.0 86.3 0.5 5.19 0.55

TE3 4643.6 84.2 72.8 76.5 6.3 6.07 0.69

TE4 2366.1 91.0 83.4 85.6 2.9 2.48 0.49

TE5 65846.4 93.3 87.5 90.7 3.9 6.00 0.92

Ave. 18979.8 90.5 83.7 86.3 3.4 4.58 0.65

TRE1 43259.5 85.2 74.2 75.0 1.4 10.79 1.29

TRE2 19437.1 84.3 72.9 75.5 4.6 8.50 0.75

TRE3 41833.4 83.0 70.9 72.0 1.9 8.06 1.13

TRE4 13629.2 82.5 70.2 71.8 3.1 6.55 1.05

TRE5 26777.3 86.4 76.0 77.7 2.7 4.80 0.85

Ave. 28987.3 84.3 72.9 74.4 2.7 7.74 1.01

Ave. total 23983.6 87.4 78.3 80.4 3.0 6.16 0.83

Table 4.6: Evaluation of the refined segmentation results by deformable model which
is initialized by the MPFCM method on a few CE-T1w images.

Here we use a combination of topological and distance information. The evolution
process of the deformable model can be guided by a combination of such relations, via
information fusion tools.

In the case of tumor detection by symmetry analysis, two types of information
are available: the initial detection and the surrounding tissues. Therefore we use
(i) the distance from the initial segmented tumor, and (ii) the tissues around the
tumor which were obtained in the previous step (as in Figure 4.22). The idea is that
the contour of the tumor should be situated somewhere in between the boundary of
the initial detection and the boundary of the tumor around tissues (excluding the
background). This constraint also prevents the deformable model from leakage in the
weak boundaries.

For distance relations such as “near the initial segmented tumor”, we define a
fuzzy interval f of trapezoidal shape on the set of distances R

+ (Figure 4.21). The
kernel of f is defined as [0, n1] and its support as [n1, n2]. Here n1 and n2 are defined
according to the largest distance between the initial segmentation of the tumor and its
surrounding tissues. To obtain a fuzzy subset of the image space, f is combined with
a distance map dA to the reference object A: d(P ) = f(dA(P )) where P is a point of
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Tumor M Si ji Tp Fp DH Dm

type mm3 % % % % mm mm

TE1 10518.7 91.9 85.0 86.6 2.1 3.04 0.65

TE2 11524.0 91.8 84.8 85.0 0.2 4.89 0.62

TE3 4643.6 85.5 74.9 76.3 2.4 6.76 0.69

TE4 2366.1 92.8 86.7 90.0 3.8 2.41 0.38

TE5 65846.4 92.9 86.5 89.2 3.3 6.50 0.96

Ave. 18979.8 91.0 83.6 85.4 2.36 4.72 0.66

TRE1 43259.5 84.6 73.3 74.2 1.6 10.6 1.25

TRE2 19437.1 83.4 71.4 73.5 3.8 8.28 0.91

TRE3 41833.4 87.1 77.1 79.2 3.3 6.62 0.92

TRE4 13629.2 82.4 70.0 71.0 1.8 7.86 1.25

TRE5 26777.3 85.3 74.1 75.6 2.2 5.31 0.88

Ave. 28987.3 84.6 73.2 74.7 2.5 7.73 1.04

Ave. 23983.6 87.8 78.4 80.1 2.4 6.23 0.85

TNE1 107177.1 82.1 70.1 71.9 4.2 12.45 2.51

TNE2 50870.2 82.3 70.0 72.1 4.0 10.81 1.72

TNE3 15285.9 93.8 88.4 93.4 5.6 3.04 0.56

TNE4 50093.7 90.7 83.0 87.1 5.3 9.37 1.13

TNE5 59990.6 91.3 84.4 90.7 7.5 6.67 0.97

TNE6 14355.6 80.2 66.9 70.0 6.1 9.60 1.51

TNE7 74292.2 75.2 60.2 69.1 17.6 13.01 2.27

TNE8 16635.1 90.7 82.9 88.4 6.8 4.51 0.84

TNE9 38380.1 87.0 77.0 81.8 7.1 7.70 1.49

TNE10 60652.4 83.3 71.3 74.7 5.9 11.76 2.00

Ave. 48773.3 85.7 75.4 80.0 7.0 8.69 1.50

Ave. total 36378.5 86.8 76.9 80.1 4.7 7.46 1.17

Table 4.7: Evaluation of the refined segmentation results by deformable model which
is initialized by the symmetry analysis method on a few CE-T1w images.
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

F1 22851.7 81.3 68.4 71.6 6.0 7.90 0.85

F2 25499.5 85.1 74.0 77.3 5.3 7.40 1.12

F3 110338.0 91.0 83.5 85.6 2.9 13.72 1.14

F4 119415.6 84.6 73.3 75.1 3.1 12.20 1.41

F5 57634.7 87.7 78.1 84.5 8.8 7.50 1.21

F6 47342.3 86.9 76.8 78.1 2.0 7.82 1.60

F7 41378.0 85.9 75.3 78.6 5.3 5.93 1.38

F8 78887.9 86.1 75.6 78.5 4.6 9.56 1.56

F9 37971.4 90.0 81.8 84.7 4.0 11.78 1.27

F10 57769.2 89.2 80.5 81.8 1.9 8.13 1.38

Ave. 59908.8 86.8 76.7 79.6 4.4 9.19 1.29

Table 4.8: Evaluation of the refined segmentation results by deformable model which
is initialized by the MPFCM method on a few 3D FLAIR images.

the space.

Figure 4.21: Fuzzy interval on the set of distances corresponding to the relation “near”.

The relation “near the tissues surrounding the tumor” is modeled in a similar way.
These two relations are represented as fuzzy sets in the image space (as shown in
Figure 4.22).

These relations are combined using a conjunctive fusion operator (a t-norm such as
minimum), leading to a fuzzy set µR. The resulting fuzzy set provides high values in
the region where both relations are satisfied, and lower elsewhere. As shown in Figure
4.22, this result is a good region of interest for the contour to be detected.
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Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

F1 22851.7 78.1 64.0 65.5 3.3 7.58 0.95

F2 25499.5 85.9 75.3 77.5 3.7 7.44 0.81

F3 110338.0 91.8 84.9 87.1 3.0 8.58 1.05

F4 119415.6 86.2 75.8 77.9 3.5 8.74 1.31

F5 57634.7 87.0 77.0 82.7 8.2 8.43 1.24

F6 47342.3 88.6 79.6 81.1 2.3 6.98 1.32

F7 41378.0 83.0 71.0 74.2 5.8 9.09 1.66

F8 78887.9 87.9 78.4 81.8 5.0 7.59 1.33

F9 37971.4 90.1 82.0 85.4 4.7 11.59 1.12

F10 57769.2 90.0 81.8 83.2 2.0 6.50 1.38

Ave. 59908.8 86.9 77.0 79.7 4.2 7.95 1.21

Table 4.9: Evaluation of the refined segmentation results which is initialized by the
symmetry analysis method on a few 3D FLAIR images.

(a) (b) (c)

Figure 4.22: Spatial relations used for segmenting the tumor detected in Figure 4.18
(highest gray level values correspond to regions where the spatial relation is best
satisfied). (a) Near the tumor. (b) Relation provided by the tissues surrounding the
tumor. (c) Fusion of the two relations.
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In [Colliot et al., 2006], several methods to compute the force from a fuzzy set µR

were proposed. For instance, if µR(x) denotes the degree of satisfaction of the fuzzy
relation at point x, and supp(R) the support of µR, then we can derive the following
potential:

PR(x) = 1 − µR(x) + dsupp(R)(x),

where dsupp(R) is the distance to the support of µR, used to have a non-zero force outside
the support. The force FR associated with the potential PR is derived as follows:

FR(x) = −(1 − µR(x))
∇PR(x)

‖∇PR(x)‖
.

This force is combined to the classical external force derived from edge information
FC :

Fext = λFC + νFR (4.14)

where λ and ν are weighting coefficients. The role of FR is to force the deformable
model to stay within regions where specific spatial relations are fulfilled. Figure 4.23
shows examples of two spatial relations and their corresponding forces.

(a) (b)

Figure 4.23: External force FR computed from a fuzzy subset µR corresponding to
a spatial relation R. (a) The force FR computed from µR for the relation “near the
tumor” in Figure 4.22(a). (b) The force computed from the fusion of the two relations
of Figure 4.22(c) (for visualization purposes an under-sampling has been performed).

This model is applied to refine the initial segmentation of tumors by symmetry
analysis on CE-T1w images, 7 of them being shown in Figures 4.29-4.35. The pa-
rameters λ and ν are set to one and the other parameters are set to the previous
values. The quantitative results are provided in Table 4.10. This table illustrates that
constraining deformable model with spatial relations improves the correct detection
ratio and reduce the false detection voxels. This model also improves the quality of
the segmentation at the border of the tumor by decreasing surface metrics.

We applied this model to refine the results of segmentation on FLAIR images. Two
of them are illustrated in Figures 4.36 and 4.37. The provided quantitative results in
Table 4.11 illustrate that the usage of spatial relations can also improve the results of
segmentation on FLAIR images. This model has increased the average values of Si, Ji

and Tp about 4, 5 and 5 units without increasing the value of Fp in comparison with
the model without spatial relations.
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Tumor M Si ji Tp Fp DH Dm

type mm3 % % % % mm mm

TE1 10518.7 93.3 87.4 89.8 3.1 2.80 0.59

TE2 11524.0 92.7 86.4 87.0 0.8 4.89 0.53

TE3 4643.6 90.4 82.5 82.8 0.5 6.70 0.47

TE4 2366.1 94.3 89.3 94.2 5.5 1.49 0.32

TE5 65846.4 96.1 92.4 95.2 3.0 7.00 0.60

Ave. 18979.8 93.4 87.6 89.8 2.6 4.58 0.50

TRE1 43259.5 86.7 76.5 77.4 1.5 8.49 1.08

TRE2 19437.1 88.6 80.0 81.9 3.5 8.01 0.69

TRE3 41833.4 90.2 82.1 83.8 2.4 5.87 0.75

TRE4 13629.2 85.8 75.2 77.9 4.1 5.26 0.88

TRE5 26777.3 88.1 78.7 80.0 1.7 4.28 0.78

Ave. 28987.3 87.9 78.5 80.2 2.6 6.38 0.83

Ave. 23983.6 90.7 83.1 85.0 2.6 5.48 0.67

TNE1 107177.1 86.5 76.2 78.9 2.7 13.33 1.94

TNE2 50870.2 87.4 77.6 79.7 3.1 8.79 1.20

TNE3 15285.9 94.5 89.7 94.1 5.0 3.86 0.48

TNE4 50093.7 92.2 85.6 88.2 3.3 6.50 0.95

TNE5 59990.6 91.8 84.8 89.7 5.9 6.40 0.93

TNE6 14355.6 82.1 70.0 76.5 11.2 6.23 1.26

TNE7 74292.2 78.5 64.6 71.0 12.2 11.18 2.05

TNE8 16635.1 91.7 84.7 89.9 6.3 5.22 0.76

TNE9 38380.1 88.1 78.7 83.5 6.8 6.64 1.38

TNE10 60652.4 86.3 76.0 79.4 5.3 9.12 1.69

Ave. 48773.3 87.9 80.8 83.1 6.2 7.72 1.26

Ave. total 36378.5 89.3 82.0 84.1 4.4 6.6 0.97

Table 4.10: Evaluation of the refined segmentation results of enhanced and non-
enhanced tumors by deformable model constrained by spatial relations (initialized
by symmetry analysis) on a few 3D CE-T1w images.

122



Brain tumor segmentation: part II, segmentation

Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

F1 22851.7 82.0 69.5 72.5 5.6 7.58 0.77

F2 25499.5 90.3 82.3 87.0 6.1 6.55 0.46

F3 110338.2 92.1 85.4 87.3 2.5 8.08 1.00

F4 119415.6 91.3 84.0 87.3 4.3 8.45 0.90

F5 57634.7 89.6 81.2 84.5 4.6 7.70 1.00

F6 47342.3 94.3 89.2 90.5 1.5 4.28 0.73

F7 41378.0 91.0 83.5 85.5 2.7 4.92 0.96

F8 78887.9 90.6 82.8 86.5 4.9 7.13 1.07

F9 37971.4 92.5 86.0 90.0 4.8 10.00 0.95

F10 57769.2 93.4 87.6 92.2 5.3 6.00 0.86

Ave. 599908.8 90.7 83.2 86.3 4.2 7.07 0.87

Table 4.11: Evaluation of the refined segmentation results of tumors by deformable
model constrained by spatial relations (initialized by symmetry analysis) on a few 3D
FLAIR images.

4.5 Segmentation of edema and necrosis

The segmentation of edema and necrosis is important in the treatment of tumors.
As we surveyed in Chapter 2, a few methods segment tumor, edema and necrosis
altogether.

To segment edema in a CE-T1w image we use the symmetry analysis method. As
commented in Chapter 1, edema appears in the case of enhanced tumors. Hence a
positive peak is observed in Hp between GM and CSF which corresponds to the gray
levels range of edema (as seen in Figures 4.17 and 4.19). Because edema is usually
darker than GM and brighter than CSF. Therefore, the procedure of non-enhanced
tumor segmentation can be applied to segment edema. We first apply a threshold in
the range of Tl = SPe

and Th = EPe
, where Pe represents the edema peak. When an

overlap exists between the edema peak and the GM mode or CSF mode we use the
same limitation as for the non-enhanced tumor (see Section 4.3.2). An opening is used
to disconnect the components and the largest connected component is then selected
as the initial segmentation. Some times because of overlapping between edema and
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4.5 Segmentation of edema and necrosis

GM tissues, disconnecting edema from GM tissues by morphological operation is not
possible. Hence we disconnect non-edema components manually. Finally we refine the
initial segmentation by a deformable model constrained by spatial relations.

Segmentation of edema on FLAIR image can be performed automatically by both
proposed algorithms (MPFCM and symmetry analysis). We can use the same proce-
dure as for the non-enhanced tumor segmentation on FLAIR images to segment edema
(for both methods).

Figures 4.24 and 4.25 show the results of edema segmentation on CE-T1w and
FLAIR images for two cases. To evaluate the method, we provide quantitative results
in Table 4.12 by comparing the results with manual segmentation. It can be observed
that the segmentation of edema on FLAIR images is more accurate. The false detection
ratio is about 2 times less than on CE-T1w image. This is because edema tissues are
well-distinguished on FLAIR images and have little overlapping with other tissues.

Necrosis is the central section of tumors which appears darker than edema. Here
to obtain the necrosis in the case of a ring enhanced tumor we select the connected
component in the complement of the tumor which is inside the tumor (as illustrated
in Figures 4.24 and 4.25).

Tumor M Si Ji Tp Fp DH Dm

type mm3 % % % % mm mm

ET1 81680.2 87.8 78.3 86.5 10.7 9.38 1.65

EF1 81680.2 91.0 83.5 86.4 3.8 7.83 1.10

ET2 104146.2 88.2 78.9 86.4 10.0 9.00 1.81

EF2 104146.2 91.6 84.5 91.0 8.5 9.83 1.21

Ave.ET 92913.2 88.0 78.6 86.5 10.35 9.19 1.73

Ave.EF 92913.2 91.3 84.0 88.7 6.1 8.83 1.15

Table 4.12: Evaluation of the segmentation results of edema on two FLAIR and CE-
T1w images. The FLAIR image is registerd to CE-T1w image. Here ET and EF
represent edema on CE-T1w and edema on FLAIR image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.24: Segmentation of edema (an axial and a coronal slice). (a) Original CE-
T1w image. (b) Segmented edema on the CE-T1w image. (c) Result superimposed
on the original image. (d) Manually segmented edema. (e) Original FLAIR image.
(f) Segmented edema on the FLAIR image. (g) Result superimposed on the original
image. (h) Result of the tumor, edema and necrosis segmentation superimposed on
the original image. Red, blue and green area represent necrosis, tumor and edema
repectively.
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Figure 4.25: Segmentation of edema (an axial and a coronal slice). (a) Original CE-
T1w image. (b) Segmented edema on the CE-T1w image. (c) Result superimposed
on the original image. (d) Manually segmented edema. (e) Original FLAIR image.
(f) Segmented edema on the FLAIR image. (g) Result superimposed on the original
image. (h) Result of the tumor, edema and necrosis segmentation superimposed on
the original image. Red, blue and green area represent necrosis, tumor and edema
repectively.

4.6 Results and discussion

We have applied the proposed methods to 30 MR data with cerebral tumors (see Tables
1.4 and 1.5 for specifications). The segmentation results for 9 cases which are initially
segmented by symmetry analysis and refined by deformable model and constrained
deformable model are shown in Figures 4.29-4.40. The results can be compared with
manually segmented tumors. The 5 first figures are full- and ring-enhanced tumors
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while the 4 last tumors are non-enhanced tumors on CE-T1w and FLAIR images. In all
cases, the initial detection based on symmetry analysis or MPFCM only provides a part
of the tumor. The whole tumor is successfully recovered by the second segmentation
step using the deformable model and the spatial relations.

To evaluate the methods we have provided quantitative results for each method by
comparing the segmentation results with manual segmentations. The manual segmen-
tations are provided by medical experts.

We provide some graphs which compare the quantitative results of the methods.
The first graph (Figure 4.26) shows the averages and standard deviations of volume and
surface metrics for 10 enhanced tumors on CE-T1w image. It can be observed that the
volume measures of initial and final segmentation by MPFCM and symmetry analysis
(refined by deformable model) are approximately equal. Symmetry analysis has better
surface measures in initial segmentation but the results of refined segmentation for the
both method are approximately equal. This comparison shows that the MPFCM and
symmetry analysis methods (refined by deformable model) segment enhanced tumors
approximately equally well. Finally, it can be observed that the spatial relations
have the potential of improving the results. Refinement using the deformable model
constrained by spatial relations improves the surface and volume metrics in comparison
with a simple deformable model.

The second graph (Figure 4.27) compares the quantitative results on non-enhanced
tumors on CE-T1w images by symmetry analysis. Again it can be observed that the
deformable model with and without spatial relations can improve the results of the
initial segmentation. Although the deformable model ameliorates the volume and
surface metrics, on the other hand it increases the false detection ratio due to ill
defined borders. But the use of spatial relations reduces the ratio of false detection,
because they prevent the leakage of contours in the ill defined borders.

The comparison of this graph and the previous one also shows that the quality
of the segmention for enhanced tumors is better than for the non-enhanced tumors
because of their well-defined boundaries. Improvement of the method for segmenting
non-enhanced tumors could still be useful.

The last graph (Figure 4.28) illustrates the quantitative results for non-enhanced
tumor segmentation on FLAIR images. It shows that the refinement by deformable
model does not lead to a considerable improvement of volume metrics. It amelio-
rates the surface measures more than volume measures. This graph shows that the
deformable model does not increase the false detection ratio, because on the FLAIR
images the borders are often well-defined.

Unfortunately there is not a gold standard to compare quantitatively the method
with existing methods. In comparison with recent works, such as Dou et al. [Dou
et al., 2007] (reported Fp=5% an Tp=96% for 4 cases), Corso et al. [Corso et al., 2006]
(reported Ji=56% for 30 cases) and Prastawa et al. [Prastawa et al., 2004] (reported
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Si=73% and DH=15 mm for 4 cases), our results are better than or equal to the ones
reported in these works.

The computation time for segmenting (preprocessing and segmenting) a tumor by
MPFCM method on a standard computer (Pentium IV 2GHz) is about 4.5 minutes,
by symmetry analysis method without spatial relations it is about 2.5 minutes and
with spatial relations it is about 3 minutes.

(a) (b)

Figure 4.26: Graph of the quantitative results for enhanced tumors on 10 CE-T1w im-
ages. (a) Average and standard deviation of volume measures. (b) Average and stan-
dard deviation of surface measures. Here, MPFCM, MPFCM-DM, SYMM, SYMM-
DM and SYMM-DMSR denote the MPFCM method, MPFCM refined by deformable
model, the symmetry analysis method, symmetry analysis refined by deformable model
and symmetry analysis refined by deformable model with spatial relations respectively.

(a) (b)

Figure 4.27: Graph of the quantitative results for non-enhanced tumors on 10 CE-T1w
images. (a) Average value of volume measures. (b) Average value of surface measures.
Here, SYMM, SYMM-DM and SYMM-DMSR denote the symmetry analysis method,
symmetry analysis refined by deformable model and symmetry analysis refined by
deformable model with spatial relations respectively.
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(a) (b)

Figure 4.28: Graph of the quantitative results for non-enhanced tumors on 10 FLAIR
images. (a) Average value of volume measures. (b) Average value of surface mea-
sures. Here, MPFCM, MPFCM-DM, SYMM, SYMM-DM and SYMM-DMSR denote
the MPFCM method, MPFCM refined by deformable model, the symmetry analy-
sis method, symmetry analysis refined by deformable model and symmetry analysis
defined by deformable model with spatial relations respectively.

4.7 Conclusion

We have developed a hybrid segmentation method that uses both region and boundary
information of the image to segment the tumor and its components. We compared a
fuzzy classification method and a symmetry analysis method to detect the tumors and
we have used a deformable model constrained by spatial relations for segmentation
refinement. This work shows that the symmetry plane is a useful feature for tumor
detection. We also presented a new fuzzy classification method which can be used in
medical imaging applications. In comparison with other methods, our approach has
some advantages such as automation and more generality with respect to the wide
range of tumors. Our method can also segment the tumor components such as edema
and necrosis. We also anticipate that it is applicable to any type of image such as
T2-weighted, PD, etc.

A limit of our symmetry based approach is that the symmetry analysis may fail in
the case of a symmetrical tumor across the mid-sagittal plane. However this case is
very rare.

Future work aims at determining the type of tumor based on an ontology of tumors.
Our results can also serve as a preliminary step for segmenting surrounding structures
in the next chapter by using fuzzy spatial relations defined according to the type of
the tumors.
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Figure 4.29: Comparison of manual and automatic segmentation results using sym-
metry analysis and MPFCM for a relatively large full-enhanced tumor on a CE-T1w
image (an axial and a coronal slice). (a) Original image. (b) Manual segmentation.
(c) Initial segmentation by MPFCM. (d) Refined segmentation of MPFCM. (e) Result
superimposed on the original image. (f) Initial segmentation by symmetry analysis.
(g) Refined segmentation of symmetry analysis by deformable model without spatial
relations. (h) Result superimposed on the original image. (i) Refined segmentation
of symmetry analysis by deformable model with spatial relations. (j) Result superim-
posed on the original image.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.30: Comparison of manual and automatic segmentation results using symme-
try analysis and MPFCM for a relatively medium full-enhanced tumor on a CE-T1w
image (an axial and a coronal slice). (a) Original image. (b) Manual segmentation.
(c) Initial segmentation by MPFCM. (d) Refined segmentation of MPFCM. (e) Result
superimposed on the original image.(f) Initial segmentation by symmetry analysis.
(g) Refined segmentation of symmetry analysis by deformable model without spatial
relations. (h) Result superimposed on the original image. (i) Refined segmentation
of symmetry analysis by deformable model with spatial relations. (j) Result superim-
posed on the original image.
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Figure 4.31: Comparison of manual and automatic segmentation results using sym-
metry analysis and MPFCM for a relatively small full-enhanced tumor on a CE-T1w
image (an axial and a coronal slice). (a) Original image. (b) Manual segmentation.
(c) Initial segmentation by MPFCM. (d) Refined segmentation of MPFCM. (e) Result
superimposed on the original image. (f) Initial segmentation by symmetry analysis.
(g) Refined segmentation of symmetry analysis by deformable model without spatial
relations. (h) Result superimposed on the original image. (i) Refined segmentation
of symmetry analysis by deformable model with spatial relations. (j) Result superim-
posed on the original image.
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Figure 4.32: Comparison of manual and automatic segmentation results using sym-
metry analysis and MPFCM for a ring-enhanced tumor on a CE-T1w image (an axial
and a coronal slice). (a) Original image. (b) Manual segmentation. (c) Initial segmen-
tation by MPFCM. (d) Refined segmentation of MPFCM. (e) Result superimposed on
the original image. (f) Initial segmentation by symmetry analysis. (g) Refined seg-
mentation of symmetry analysis by deformable model without spatial relations. (h)
Result superimposed on the original image. (i) Refined segmentation of symmetry
analysis by deformable model with spatial relations. (j) Result superimposed on the
original image.
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Figure 4.33: Comparison of manual and automatic segmentation results using sym-
metry analysis and MPFCM for a ring-enhanced tumor on a CE-T1w image (an axial
and a coronal slice). (a) Original image. (b) Manual segmentation. (c) Initial segmen-
tation by MPFCM. (d) Refined segmentation of MPFCM. (e) Result superimposed on
the original image. (f) Initial segmentation by symmetry analysis. (g) Refined seg-
mentation of symmetry analysis by deformable model without spatial relations. (h)
Result superimposed on the original image. (i) Refined segmentation of symmetry
analysis by deformable model with spatial relations. (j) Result superimposed on the
original image.
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Figure 4.34: Comparison of manual and automatic segmentation results using sym-
metry analysis for a non-enhanced tumor on a CE-T1w image (an axial and a coronal
slice). (a) Original image. (b) Manual segmentation. (c) Initial segmentation by sym-
metry analysis. (d) Refined segmentation of symmetry analysis by deformable model
without spatial relations. (e) Result superimposed on the original image. (f) Refined
segmentation of symmetry analysis by deformable model with spatial relations. (g)
Result superimposed on the original image.
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Figure 4.35: Comparison of manual and automatic segmentation results using sym-
metry analysis for a non-enhanced tumor on a CE-T1w image (an axial and a coronal
slice). (a) Original image. (b) Manual segmentation. (c) Initial segmentation by sym-
metry analysis. (d) Refined segmentation of symmetry analysis by deformable model
without spatial relations. (e) Result superimposed on the original image. (f) Refined
segmentation of symmetry analysis by deformable model with spatial relations. (g)
Result superimposed on the original image.
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Figure 4.36: Comparison of manual and automatic segmentation results using symme-
try analysis and MPFCM for a tumor on a FLAIR image (an axial and a coronal slice).
(a) Original image. (b) Manual segmentation. (c) Initial segmentation by MPFCM.
(d) Refined segmentation of MPFCM. (e) Result superimposed on the original image.
(f) Initial segmentation by symmetry analysis. (g) Refined segmentation of symme-
try analysis by deformable model without spatial relations. (h) Result superimposed
on the original image. (i) Refined segmentation of symmetry analysis by deformable
model with spatial relations. (j) Result superimposed on the original image.
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Figure 4.37: Comparison of manual and automatic segmentation results using symme-
try analysis and MPFCM for a tumor on a FLAIR image (an axial and a coronal slice).
(a) Original image. (b) Manual segmentation. (c) Initial segmentation by MPFCM.
(d) Refined segmentation of MPFCM. (e) Result superimposed on the original image.
(f) Initial segmentation by symmetry analysis. (g) Refined segmentation of symme-
try analysis by deformable model without spatial relations. (h) Result superimposed
on the original image. (i) Refined segmentation of symmetry analysis by deformable
model with spatial relations. (j) Result superimposed on the original image.
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Figure 4.38: Axial and coronal slices of a segmented tumor (full-enhanced) in a CE-
T1w image by symmetry analysis and deformable model constrained by spatial rela-
tions.
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Figure 4.39: Axial and coronal slices of a segmented tumor (non-enhanced) in a CE-
T1w image by symmetry analysis and deformable model constrained by spatial rela-
tions.

140



Brain tumor segmentation: part II, segmentation

Figure 4.40: Axial and coronal slices of a segmented tumor in a FLAIR image by
symmetry analysis and deformable model constrained by spatial relations.
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C H A P T E R 5

Segmentation of Internal Brain

Structures

5.1 Introduction

We present in this chapter an original extension of a segmentation framework based on
prior spatial relations, initially derived for normal internal brain structures, to cases
with brain tumors. In brain oncology, especially when dealing with brain tumors,
it is desirable to have a descriptive human brain model that can integrate tumor
information extracted from MRI data such as its localization, its type, its shape, its
anatomo-functional positioning, as well as its influence over the surrounding brain
structures (through their spatial relations for example). There is a large literature
reporting works on segmentation of either cerebral structures or tumors but rarely
both at the same time. This chapter tries to fill this gap, by addressing the problem
of segmenting internal brain structures in the presence of a tumor, via the modeling
of its influence on the spatial relations between surrounding structures.

This chapter is organized as follows: in Section 5.2 we briefly review the presented
methods for brain structures segmentation in normal and pathological cases. Sec-
tion 5.3 provides an overview of the proposed method. In Section 5.4 we describe the
structure of a priori knowledge which is used in our system. Fuzzification of spatial
relations are presented in Section 5.5. In Section 5.6 we describe how to classify the
tumors and determine the spatial relations that remain useful for each class of tumors.
Section 5.7 describes the segmentation method. In Section 5.8 evaluation and results
are presented. Finally in Section 5.9 some conclusions are given.
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5.2 Brain structures segmentation: a survey

As we surveyed in Chapter 2, a large amount of methods have been proposed for brain
tumor segmentation. In the literature a lot of approaches have been also introduced
for segmenting the brain structures. But only a few methods have been proposed
for segmenting both at the same time. In this section we briefly review the existing
methods for segmentation of brain structures in normal cases and we then survey the
methods for pathological cases.

Because of the lack of clearly defined edges due to intensity inhomogeneity, partial
volume effects and noise, the brain structures segmentation is a challenging task that
will not be accomplished by algorithms that rely solely on information present in
the image. Hence most recent methods use prior information and we restrict our
presentation to these approaches. This prior information can be explicit or implicit.
Here we partition the existing methods based on the type of prior information. We
can distinguish three main types of methods: atlas based, template based and spatial
relation based.

Atlas based

Atlas information is an important type of prior information which is widely used in
brain MRI segmentation. In Section 2.2.4 we presented the principal and different
types of atlas-based segmentation and here we review the existing methods for the
brain structures segmentation.

[Collins, 1994] used a non-linear registration relying on the local correlation of gra-
dients. The atlas is created from the mean of 305 brain images. [Iosifescu et al., 1997]
performed tissue classification by separating voxels into white matter, cerebrospinal
fluid, subcortical and non-subcortical gray matter. A manually delineated digital at-
las was then warped to the classified image using an inelastic registration followed by
an elastic registration. This method was applied to segment the thalamus, caudate
and putamen. [Geraud, 1998] presented another method using sequential registration.
First, one of the structures whose segmentation is easy (for example lateral ventricle)
is segmented. The deformation field between the atlas and the target image is then
calculated by registering the segmented structure and its corresponding structure in
the atlas. Using the information of atlas (anatomical and morphological) and the ra-
diometric characteristics, a new interesting structure is segmented in its ROI. The ROI
is obtained by dilating the corresponding structure in the atlas on the image space.
The deformation field is then updated. This procedure is repeated for other structures.

A global-local registration procedure was proposed by [Dawant et al., 1999a]. A
global registration using mutual information maximization and a local non-linear reg-
istration with demons method [Thirion, 1998] are used to match the structures of atlas
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and target image. [Bach Cuadra et al., 2001] proposed a similar method using an opti-
cal flow algorithm for local deformations. A level sets method which is initialized by an
atlas (the atlas is registered by a dense registration to the target image) was proposed
by [Baillard et al., 2001]. This method was then extended by [Ciofolo et al., 2004] with
an automated tuning of the parameters using a fuzzy control approach. [Xue et al.,
2001] used the Talairach stereotaxic atlas registration followed by a genetic algorithm
to label the brain structures. [Magnotta et al., 2003] proposed a registration method
which uses 35 identified cortical and cerebellar landmarks by experts, subcortical and
cerebellar structures defined semi-automatically by an artificial neural network, clas-
sified images (generated using a discriminant analysis of T1, T2, and PD images to
distinguish the main tissues) and an intensity normalized image. These four groups are
co-registered to the target image by inverse-consistent linear elastic registration. [Lin-
guraru et al., 2007] proposed an approach which is a combination of rigid, affine and
non-rigid registration, segmentation of the key anatomical landmarks and propagation
of the information of the atlas to detect the internal brain structures.

These methods have typically a high level of automation and provide a good quality
of segmentation. The main drawback is the computation time which limits their
application domain. Another problem is the segmentation of small structures. In
these methods the accuracy of segmentation for small structures is lower and often a
little deformation in the brain structures will lead to a wrong result. The adaptation
of these methods to segment pathological brains is also very difficult, because a large
deformation of the brain due to a pathology influences the segmentation which may
then fail.

Template based

These methods use a deformable model while a priori knowledge about the shape, the
location or the appearance of the target structure can be used to guide the deformation
process. They differ in the type of deformable model, the parameters of the shape
model and the learning method of the parameters. Based on the type of knowledge,
the methods can be partitioned into explicit or implicit ones.

[Poupon et al., 1998] proposed the use of 3D moment invariants as a way to em-
bed shape distribution in deformable templates. Their approach is able to deal with
several simultaneously deforming templates. The aim of the method is dedicated to
the segmentation of the brain deep nuclei in normal 3D MR images.

[Cootes et al., 1995] developed active shape models which restrict the possible
deformations using the statistics of training samples. Object shapes are described by
the point distribution model (PDM) which represents the object outline by a subset
of boundary points and a series of relationships established between these points from
different instances of the training set. The basis for the statistical analysis of the object
shape deformations is provided by normalization with respect to size, orientation, and
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position. The variation modes and positions of mean point are used to constrain
the object deformations to an acceptable linear subspace of the complete parameter
space. To characterize the anatomical shape variability, principal component analysis
(PCA) has also been used. Many variants of active shape models have been presented
in the literature. For example [Duta and Sonka, 1998] used the intensity, contours
and mean position to describe the objects. The shape statistics are learned from 8
images. [Kelemen et al., 1999] used a hierarchical parametric object description by
a series of spherical harmonics rather than a point distribution model. [Nain et al.,
2007] proposed a similar method using a spherical wavelet shape representation. [Shen
et al., 2001] attached an attribute vector to each point of the model to incorporate
geometric as well as statistical information about the shapes of interest. It is used to
characterize the geometric structure of the model around that point, from a local to a
global scale.

In [Pitiot et al., 2002] a template is modeled by using a parameterized curve whose
coefficients are iteratively updated to minimize an objective function. The match
between the deformed template and a modified edge image, and the elastic deformation
energy (required in the warping process) are measured by this function.

[Belitz et al., 2006] proposed an approach which combines a deformable model
using topological constraints for automated segmentation of subcortical structures. A
coarse shape description generated from a digital atlas is used in this approach.

In [Yang et al., 2004] a 3D segmentation method with joint shape-intensity prior
models using level sets is developed. These models are based on the maximum a
posteriori (MAP) estimation whose accuracy depends on the chosen probability density
function, and the shape-model parameters are optimized using a gradient descent
search algorithm.

[Hu and Collins, 2007] developed similar work which handles topological changes
during the level set curve evolution and takes advantage of intensity and texture in-
formation using prior training data. The actual segmentation is controlled by a set of
model parameters, adjusted during a search optimization procedure, that minimizes
the difference between any test image and the one synthesized from the shape and
appearance modeling.

[Taron et al., 2005a] introduced a new technique using higher order implicit poly-
nomials to represent shapes. First uncertainties on the registered shapes are estimated
according to the covariance matrix of the correspondences at the zero isosurface. These
measures are then used with a variable bandwidth kernel-based nonparametric density
estimation process to model prior knowledge about the object of interest. Such a non-
linear model is integrated with an adaptive visual-driven data term to segment the
object of interest. This method was then applied for the segmentation of the corpus
callosum in MR mid-sagittal brain slices [Taron et al., 2005b].

Although these methods take into account the variability of anatomical structures,
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their adaptation to pathological cases is still difficult. The learning of the shape param-
eters is another problem of these methods. This phase usually needs a segmentation
by experts and takes a lot of time.

Spatial relation based

This category includes the methods which use spatial relations to guide the recognition
and segmentation process. Spatial relations constitute the basic elements contained
in linguistic descriptions of spatial configurations and describe the organization of
the different objects in an image. These relations are usually classified into different
types including topological, distance and directional relations [Freeman, 1975]. These
relations provide structural knowledge in image analysis. Their ability to describe
scenes makes them potentially useful for a wide range of imaging applications.

The idea of using spatial relations for brain structures segmentation is first in-
troduced by [Geraud, 1998 ; Bloch et al., 2003]. [Bloch, 2005 ; Colliot et al., 2006]
proposed a fuzzy framework to model the spatial relations. Since they correspond to
linguistic propositions, spatial relations are often intrinsically imprecise and fuzzy sets
allow modeling this imprecision . The satisfaction of a given relation will be defined
as a matter of degree rather than in an “all-or-nothing” manner. Moreover, fuzzy sets
provide a common framework to represent different types of individual spatial relations
and the relations can be easily combined using fuzzy fusion operators [Bloch, 2005].

[Geraud, 1998] proposed a method for cerebral structures segmentation which com-
bines the spatial relations to a possibilistic clustering approach using a fusion frame-
work. This method uses spatial relations for high-level tasks (recognition) and is not
directly integrated in the segmentation itself which is based only on image charac-
teristics. However, spatial relations could be helpful to find the contours of poorly
contrasted objects, with ill-defined boundaries or sharing similar intensities with their
neighbors.

Several segmentation approaches implicitly integrate the spatial relationships be-
tween the objects of a scene. [Barra and Boire, 2001] used a similar method to segment
the brain structures. In this method the relations are solely fused with the results of
a possibilistic classification.

Recently [Colliot et al., 2006] have developed a new method which combines spatial
relations and deformable models for pattern recognition purposes. Although in some
methods in atlas based category such as [Dawant et al., 1999a] and in template based
methods such as [Cootes et al., 1995] (and the variants of these methods) spatial
relations are used, in these approaches the spatial relations are defined implicitly
in either the template or the training set and are not specified individually. The
method of [Colliot et al., 2006] integrates explicitly individual spatial relations in the
segmentation process. This allows to model more directly expert knowledge expressed
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as linguistic descriptions and to explicitly choose the constraints which will be included
in the segmentation, for example keeping only the relations which are anatomically
meaningful. This method provides very good and precise results for the segmentation
of the internal structures in normal case.

Our proposed method for segmentation of brain structures in the presence of a
tumor is based on the method of [Colliot et al., 2006] and we will explain this approach
in more details in the next sections [Khotanlou et al., 2006; 2007a].

Other methods

In addition to the three reviewed categories, there are some other methods which use
a priori information for segmentation.

[Worth et al., 1998 ; Fischl et al., 2002] proposed histogram-based methods to
segment the brain structures. The former method involves choosing intensity thresh-
olds by using anatomical information and by locating peaks in histograms. The later
method uses a space-varying classification procedure (class statistics are tabulated
regionally throughout an atlas space by a linear registration) and prior probabilities
which are computed via a frequency histogram in the atlas space for segmentation.
Because of intensity overlapping between brain structures in real images, generaliza-
tion of these methods is very difficult. In addition, in pathological cases the histogram
will be modified and the segmentation procedure will fail.

[Sonka et al., 1996] proposed a method based on a hypothesize-and-verify principle.
The method begins with a primary segmentation step that divides the image into a
large number of primary regions. A primary region adjacency graph is then constructed
that describes the properties of each primary region. Finally a genetic algorithm is
applied to generate a population of image interpretation hypotheses. It then decides
to retain good hypotheses and eliminate poor hypotheses so that over a series of
iterations the process converges to the optimal image interpretation. This method
requires a learning procedure and can perform a segmentation in normal cases.

[Algorri and Flores-Mangas, 2004] presented an algorithm which uses a knowledge
base taken from a small subset of semi-automatically classified images and a set of
fuzzy indices. The fuzzy indices are tissue and position specific, in order to consider
the biological variations in the tissues and the acquisition inhomogeneities through the
image set. The algorithm uses low-level image processing techniques on a pixel basis
for the segmentation, then corrects the segmentation by the set of fuzzy indices.

Several methods are proposed based on neural networks. For example [Shichun
et al., 2005] used a fuzzy multi-layer perceptron (MLP) which allows to learn anatom-
ical knowledge from a sample of brain scans. [Powell et al., 2008] performed a direct
comparison between template, probability, artificial neural network and support vec-
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tor machine (SVM) based segmentation methods. In addition to known problems of
ANN, their adaptation to pathological cases is very difficult.

These methods are presented for segmentation in normal cases and most of them are
validated on simulated images. Extractions to real images and especially pathological
cases require to consider a lot of parameters and variables. Hence, application of these
methods to pathological cases is difficult.

Pathological brain structures segmentation

A few of existing methods for brain structures segmentation are adapted to patho-
logical cases. We have surveyed some of them in Section 2.2.4 when dealing with
tumor segmentation. Here we briefly study them with respect to brain structures seg-
mentation. All presented methods use the atlas prior information and a registration
technique.

One of the first methods was proposed by [Kyriacou et al., 1999] in 2D. A biome-
chanical model of the brain is presented, using a finite-element formulation. The
soft-tissue deformations induced by the growth of tumors is modeled and the model
is applied to the registration of anatomical atlases with images from patients. First,
based on the tumor growth model an estimate of the anatomy is obtained. A normal
atlas registration to this estimated without-tumor anatomy is then applied. Finally
the registered atlas is modified by applying the deformation from the tumor growth
model. The resulting atlas is then fully registered to the patient image. The tu-
mor growth is modeled in a non-linear optimization framework, which is driven by
anatomical features such as boundaries of brain structures. The deformation of the
surrounding tissues is estimated using a nonlinear elastic model of soft tissues under
boundary conditions imposed by the skull, ventricles, and the falx and tentorium. This
method was later improved by [Mohamed et al., 2005] for 3D cases by optimizing the
computation time.

This method has several limitations. The biomechanical characteristics of normal
tissues are required for the modeling step while they are unknown for an actual patient.
In addition, mechanical properties of the tumors are generally unknown, and we can-
not measure them for the patient. The second drawback comes from the fact that the
method has not accounted for tumor infiltration and edema. This method is designed
for mass-effect tumors. The factors that are not mechanical in nature (tumor infiltra-
tion and edema spread), may also play a role in determining the tumor shape and may
cause it to deviate from radial symmetry. Another complication associated with the
deformable registration is the significant signal changes associated with edema in MR
images. Edema typically causes hypointensity changes in T1-weighted images, which
makes it difficult to discern cortical sulci in the affected brain regions. It is therefore
not possible to obtain an accurate deformable registration in these regions based on
image matching alone. Finally, calculations may take a few hours depending on reso-
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lution and accuracy without a guarantee for the algorithm convergence [Nowinski and
Belov, 2005].

[Dawant et al., 1999b; 2002] adapted their method for normal cases [Dawant et al.,
1999a] to pathological brains by adding the seeded atlas deformation (SAD) technique.
In this method after the global registration, the user places a small seed in the lesion
region with the same intensity. Then the demons algorithm is applied to deform the
seed toward the boundary of the lesion. This approach has some limitations. First, the
consistency of the deformation field is controlled by a smoothing filter, and if it is not
chosen correctly, the resulting transformation can be wrong. The lack of an explicit
underlying mathematical model is also the potential weakness of this approach. As for
the previous method, this approach performs well in the cases of mass-effect tumors.
In the presence of a large deformation of brain structures, it will also fail. Finally, it
requires to use a large seed that masks atlas structures, potentially leading to wrong
results.

Based on the method of [Dawant et al., 1999a] several approaches are presented.
[Bach Cuadra et al., 2004] and [Pollo et al., 2005] developed a method using an a
priori model of tumor growth inside the tumor area (which assumes that the tumor has
grown radially from a single voxel seed) instead of applying the nonlinear registration
algorithm to the whole image. Compared to the previous approach, this minimizes the
amount of atlas information that is masked by the tumor seed. An explicit model of
tumor growth (MLG) into the seeded atlas deformation (SAD) algorithm is introduced.

The main limitation of this method is the assumption of radially expansion of the
lesion, while only a few classes of tumors have a radial expansion. The deformation ac-
curacy of surrounding brain structures depends on the placement of the tumor seeding
point. Generalization of this method is impossible because considering all the possible
space-occupying lesions in a unified framework is almost impossible. Here also the in-
filtration and edema have not been considered and computation time is also relatively
high.

[Nowinski and Belov, 2005] presented a fast method that uses a region growing
method for tumor segmentation. First the Talairach landmarks are set in the image
and the standard Talairach transformation is performed. The tumor is then segmented
based on its radiological (intensity) characteristics by a region growing algorithm (it
requires a click over the tumor). Finally it warps the atlas against the tumor nonlin-
early.

The advantage of this approach is that it warps the atlas non-linearly in three
dimensions very fast. But this method has also several limitations. First of all the
accuracy of tumor segmentation depends on the position of the selected point. The
region growing can segment only homogeneous tumors. Finally, the effect of edema
and infiltration over the structures is not taken into account.

In summary, a few methods have been proposed for segmentation of tumor and
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brain structures simultaneously, all based on atlas registration and implicitly use the
spatial relations between the structures. These methods have several common limita-
tion. In all of them, edema and infiltrating tumors have been not considered, hence the
segmentation of the structures around the tumor will not be correct. Another problem
is the computation time. Registration and modeling the tumor both require a large
amount of computation, therefore their application is limited. Finally, in the case of
a large deformation of the brain structures these methods do not perform correctly.

In the remaining of this chapter we propose a method for segmentation of the brain
structures which uses the spatial relations between the structures in an explicit form.

5.3 Method overview

The computational paradigm proposed in our method is based on previous work by
[Colliot et al., 2006] introducing a framework for the integration of spatial relations
into a deformable model, to segment normal brain structures in MRI data. Spatial
relations, such as directions and distances, were represented as fuzzy subsets of the
image space and incorporated into a deformable model as external forces. In this
chapter we extend this framework to pathological cases, where the presence of a tumor
may induce important alterations of the iconic and morphometric characteristics of the
surrounding structures. By understanding the spatial behavior of the tumor and its
incidence on the surrounding structures (small or large deformations), we discuss the
preservation of some spatial relations used for recognition and segmentation tasks.

As illustrated in Figure 5.1, the proposed framework relies on a knowledge base
that is constituted of a tumor ontology, a brain anatomy ontology, a spatial relation
ontology and brain structures descriptions. Using the information on the segmented
tumor and its components we select the spatial relations corresponding to the structure
of interest which have remained consistent. In the next step the fuzzification and fusion
of the selected spatial relations, using the fuzzy framework proposed by [Bloch, 2005 ;
Colliot et al., 2006], are performed. We then use the fused spatial relation to guide
the segmentation of the interesting structure by a deformable model. This procedure
can be repeated for other structures and finally we integrate or model the results of
the segmentation (tumor and structures). This part of our work has been developed
in collaboration with Jamal Atif and Céline Hudelot during their post doctoral stay
at ENST.
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Figure 5.1: The segmentation method diagram.

5.4 A priori knowledge

5.4.1 Ontological engineering

The idea of representing knowledge in a structured manner is at least as old as Aristole,
who tried in a systematic method to represent the structure of reality. In recent years
ontology has become a common systematic method to represent knowledge. Within
the artificial intelligence domain, [Gruber, 1993] has given the first definition of the
notion ontology as: “an ontology is an explicit specification of a conceptualization”.
An ontology is a representation of concepts and relations between them. Ontology
engineering is a set of operations that concern the ontology development process, the
ontology life cycle, the methods for building ontologies, and the tools and languages
that support them [Gomez-Perez et al., 2004]. Here we do not focus on the ontology

152



Segmentation of Internal Brain Structures

engineering and more information can be found in [Gomez-Perez et al., 2004 ; Cristani
and Cuel, 2005 ; Corcho et al., 2003].

Ontologies have some advantages which make them interesting in knowledge rep-
resentation. Sharing common understanding of the structure of information, enabling
reuse of domain knowledge, making explicit domain assumption and separating the
domain knowledge from the operational knowledge are some of these advantages. In
recent years, ontologies have been widely used in several domains for knowledge rep-
resentation. In the medical domain, for formalization of anatomical or pathological
knowledge, several works can be found in [Dameron et al., 2004 ; Donnelly et al.,
2006 ; Schulz et al., 2000 ; Marquet et al., 2007 ; Tolksdorf and Bontas, 2004]. Some
interesting works on spatial ontologies can also be found in Geographic Information
Systems (GIS) [Casati et al., 2003 ; Klien and Lutz, 2005] and in robotics [Dominey
et al., 2004].

In the domain of image analysis and pattern recognition, ontologies are increasingly
used. For example [Dasiopoulou et al., 2005] proposed an approach for video object
detection based on a multimedia ontology. In this method semantic concepts in the
context of the examined domain are defined in an ontology with qualitative attributes
(color homogeneity), low-level features (color model components distribution), object
spatial relations, and multimedia processing methods. [Han et al., 2005] developed
a generic ontology of objects. Objects are represented as sets of functional features
and their spatial relations. They have also developed a generic geometric shape based
object recognition. [Maillot and Thonnat, 2007] proposed an ontology-based object
recognition which uses a priori knowledge consisting of a visual concept ontology,
a texture concept ontology, a color concept ontology and a spatial relation concept
ontology. [Nientiedt, 2007] presented a framework to examine the semantics of land-
use and land-cover change. The proposed method uses the semantic description of
spatial entities as well as the entity of change. A multi-level concept of action-driven
ontologies and notions from an image ontology were adapted to the use case of land-
use pattern change. Recently [Hudelot et al., 2007] presented a fuzzy spatial relation
ontology for medical image segmentation.

Here our aim is to link an ontology containing anatomical knowledge with an ontol-
ogy of spatial relations in order to represent the spatial relationships of each anatomical
structure of the brain to other ones. In the next section we explain the anatomical
and spatial relation ontologies in our prior knowledge representation system.

5.4.2 The reference ontology for biomedical informatics (FMA)

Domain reference ontologies represent knowledge about a particular part of the world
in a way that is independent from specific objectives, through a theory of the domain
[Burgun, 2006]. An example of the reference ontology in biomedical informatics is
the Foundational Model of Anatomy (FMA) [Rosse and Mejino, 2003]. The FMA
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is concerned with the representation of entities and relationships necessary for the
symbolic modeling of the structure of the human body in a numerical form that is also
meaningful for humans. The FMA includes an anatomy taxonomy, which specifies
the subsumption relationships of anatomical entities, and an anatomical structural
abstraction, which specifies the spatial relationships of the anatomical entities. The
ontology is implemented in a frame-based system and is stored in a relational database.
The FMA is intended as a reusable and generalizable resource of deep anatomical
knowledge, which can be filtered to meet the needs of any knowledge-based application
that requires structural information. It is distinct from application ontologies in that
it is not intended as an end-user application and does not target the needs of any
particular user group. Figure 5.2 illustrates a part of the FMA which was visualized
by Protégé [Protégé, 2007].

In the FMA, spatial relations between anatomical structures are represented im-
plicitly. Here we need to represent the spatial relations explicitly. Hence we first
represent a spatial relation ontology and we then link it to the FMA to represent the
spatial relations of each structure explicitly as proposed in [Hudelot et al., 2007].

Figure 5.2: A part of the FMA ontology [Rosse and Mejino, 2003] visualized by Protégé
[Protégé, 2007].
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5.4.3 Spatial relation ontology

Spatial relations between objects play a main role for analysis and recognition in
a scene or image, especially in a complex environment like in medical images. To
represent explicitly the spatial relations of an anatomical structure we need to integrate
an ontology of spatial relations into the FMA. Recently our group has developed a
generic spatial relation ontology [Hudelot et al., 2007]. It is a spatial ontology which
represents topological and metric relations based on a reference object. An excerpt of
the hierarchical organization of spatial relations is illustrated in Figure 5.3.

Figure 5.3: Excerpt of the hierarchical organization of spatial relations in the ontology
of spatial relations. Regenerated from [Hudelot et al., 2007].

The ontology of spatial relations has been developed with the software Protégé
OWL and has the following entities (illustrated in Figure 5.4 as a Venn diagram) :

• SpatialObject is the main entity of the ontology and refers to the set of spatial
objects.

• SpatialRelation is subsumed by the general concept Relation . It is defined
according to a ReferenceSystem . In this ontology a spatial relation is not
considered as a role (property) between two spatial objects but as a concept on
its own (SpatialRelation).

• SpatialRelationWith refers to the set of spatial relations which are defined
according to at least one or more reference spatial objects.
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• SpatiallyRelatedObject refers to the set of spatial objects which have at least
one spatial relation with another spatial object.

• DefinedSpatialRelation represents the set of spatial relations for which target
and reference objects are defined.

Figure 5.4: Main concepts of the spatial relation ontology. This diagram represent
the main concepts and their relations. For example “A” is a SpatialObject , it is
the ReferenceObject of the SpatialRelationWith concept “RightOf A”. “D” is
a SpatialObject which has the property of having as SpatialRelation the relation
“RightOf A” [Hudelot et al., 2007].

To link the FMA with the spatial relation ontology, we consider that each physical
anatomical component is a spatial object. Spatial relations between these different
spatial objects are then described by using the spatial relation ontology. One example
of this link for the left caudate nucleus and the right thalamus is illustrated in Figure
5.5.

5.5 Spatial relations representation

Our aim here is to integrate spatial relations in a deformable model, so it requires
to provide a computational representation of the relations. As seen in Section 5.4.3
making spatial relations explicit, in particular metric relations, requires a reference
system. So, we consider spatial relations that define the position of a target object
with respect to a reference object. Fuzzy sets in the spatial domain are appropriate
for this case. In these representations, the membership value at each point represents
the degree to which the relation is satisfied. The following representations of spatial
relations are based on a framework presented by [Bloch, 2005 ; Colliot et al., 2006].

A spatial fuzzy set is a fuzzy set defined on the image space, denoted by S, S
being Z

2 or Z
3 for 2D or 3D images. Its membership function µ (defined from S into

[0, 1]) represents the imprecision on the spatial definition of the object (its position,
size, shape, boundaries, etc.). For each point P of S (pixel or voxel), µ(P ) represents
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Figure 5.5: A part of the FMA ontology, the spatial relation ontology and the link
between them (the concepts of the FMA and spatial relation ontology are prefixed by
fma and J.0 ).

the degree to which P belongs to the fuzzy object. Objects defined as classical crisp
sets are particular cases, where µ takes only values 0 and 1.

Topological relations Binary topological relations between two objects are based
on notions of intersection, interior, exterior. Relations such as “intersects” (connection
relation of the mereotopology), “in the interior of” (inclusion), “exterior to” (exclusion)
can be simply defined from fuzzy set theoretical concepts (complementation c, t-norms
t, t-conorms T [Dubois and Prade, 1980]). For example, it is possible to define the
degree to which a fuzzy object ν is included in another one µ by [Bloch, 2005]:

inf
x∈S

T (c(ν(x)), µ(x)).
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(a) (b) (c) (d)

Figure 5.6: Fuzzy set representing a directional relation. (a) Fuzzy structuring ele-
ment representing “to the right of”. (b) Fuzzy dilation of the lateral ventricle by the
corresponding structuring element. (c) Fuzzy subset representing “right of the lateral
ventricle”. (d) Trapezoidal interval of the relation (c). (In all the images the brighter
areas correspond to higher satisfaction degrees).

Directional relations The most used relations are related to three axes of refer-
ences: “To the right of”, “To the left of”, “Above”,“Below”, “In front of” and “Be-
hind”. We consider a reference object R and a directional relation to be evaluated. A
fuzzy “landscape” is defined around the reference object R as a fuzzy set such that
the membership value of each point corresponds to the degree of satisfaction of the
considered spatial relation. This is formally defined by a fuzzy dilation of R by a fuzzy
structuring element representing the desired relation with respect to the origin (Figure
5.6).

Let u be a unit vector corresponding to the direction under consideration, P be a
point of space, Q a point of reference object R and β(P, Q) the angle between vectors
QP and u computed in [0, π]. For every point P the following function is defined
[Bloch, 1999a]:

βmin(P ) = min
Q∈R

β(P, Q)

and:
µα(P ) = g(βmin(P ))

is a fuzzy subset of the image space representing the relation (g is a decreasing function
from [0, π] to [0, 1]). Bloch in [Bloch, 1999a] has shown that µα(p) is equal to a fuzzy
dilation of the reference object by a structuring element defined as:

∀P ∈ S, ν(P ) = g(βmin(O, P )), (5.1)

where O is the center of the structuring element. A common choice for g can be a
trapezoidal interval (Figure 5.6 (d)). In Figure 5.6 the representation and fuzzification
of the relation “right of the lateral ventricle” is illustrated.

Distances Distances are also very commonly used to describe the spatial arrange-
ment of objects such as “At a distance approximately of”, “Close to” and “Far from”.
To represent these relations by fuzzy sets, we use a fuzzy interval f of trapezoidal
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(a) (b) (c) (d)

Figure 5.7: Fuzzy set representing a distance relation. (a),(b) Fuzzy interval on the set
of distances corresponding to relations “close to” and “far from”. (c) Distance map
of the lateral ventricle (this map is obtained by a fuzzy dilation using the distance
structuring element). (d) Fuzzy subset representing “close to lateral ventricle” (here
n3 = 10 and n4 = 20).

shape on the set of distances R
+ [Bloch, 1999b] (Figure 5.7). The kernel of f is [n2, n3]

and its support is [n1, n4], where 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4. For example for the
“Close to” relation n1 = n2 = 0 and n3 and n4 are defined based on the minimum and
maximum distances between target and reference objects where n3 > dmin(A, R) and
n4 > dmax(A, R). To obtain a fuzzy subset of the image space, f is combined with a
distance map dR:

µd(P ) = f(dR(P )).

Parameter learning For a given spatial relation, the parameters should be set so
that the corresponding fuzzy set enclose the target object. In the case of the fuzzy
intervals of trapezoidal shape, their kernel and their support are defined based on the
maximum (or minimum) distance or angle. For the distance relation “Close to”, the
training consists in the computation of the maximum distance from a point P of the
target object A to the reference object R. Similarly, for the relation “far from”, the
minimum distance is computed. For directions, the maximum value of βmin(P ) for
points P in the target object A is calculated. The parameters are learned from an
image data base where anatomical structures have been segmented. The mean m and
standard deviation σ of maximum (or minimum) distance or βmin(P ) of the training
set (computed from segmented image database) are computed. Fuzzy intervals are
then chosen with kernel [0, m] and support [0, m + 2σ] [Colliot et al., 2006].

5.6 Tumor-specific spatial relations

The adaptation of the framework developed previously for normal images to patholog-
ical cases requires addressing the fundamental question: given a pathology, what kinds
of spatial relations do remain consistent, with respect to the set of relevant relations
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defined for normal cases? The answer depends on the type of tumor. In addition,
learning the parameters for spatial relations is depended on the tumor type.

5.6.1 Tumor classification

We consider in this work a classification of brain tumors according to their spatial
characteristics and the nature of the potential alterations of the brain structural orga-
nization they induce. We distinguish two main types tumors as explained in Section
1.9: small deforming tumors and large deforming tumors. Identifying the type of the
tumor is based on the segmentation result.

For this purpose, we developed a simple ontology which allows classifying the tumor
based on the information extracted from the segmentation results. The ontology of
tumor classification has been developed with the software Protégé OWL and has the
following entities (illustrated in Figure 5.8 as a Venn diagram):

• Disease which refers to the type of disease. Here we have a subclass Brain-

Tumor .

• Behavior refers to the behavior of disease. This class consists of the Infiltrat-

ing and Non-infiltrating subclasses.

• Location refers to the anatomical location of disease. We add the anatomical
locations as the subclasses to this class.

• Appearance refers to the visual appearance of tumors on the contrast enhanced
MR images. This class consists of 3 subclasses: Enhanced , Ring-Enhanced

and Non-Enhanced .

• Component refers to the components of disease such as edema and necrosis .

• Size refers to the size of tumor. Here we define three subclasses: SmallSize,
MiddleSize and BigSize. The classification of tumor to one of these classes
can be done by the user or by a learning method.

• SignalIntensity refers to the signal intensity of tumor in medical imaging such
as Hypointense and Hyperintense.

To link these concepts to the tumor classification we define another class Alteration

which refers to the type of tumor alteration on internal structures of the brain. This
class has two subclasses: SmallDeforming and LargeDeforming . We use the
following properties to link the classes:

• has for location,
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• has for behavior,

• has for component,

• has for size,

• has for signal intensity,

• has for enhancement.

A part of this ontology can be seen in Figure 5.9.

Figure 5.8: Main concepts of the tumor ontology. This diagram represents the main
concepts and their relations. For example “Large Deforming” is a Alteration , it
has the “Big” Size, it has the “Enhanced” Appearance and it has the “Cerebral”
Location .

5.6.2 Stable spatial relations

Some spatial relations are more stable than others in the presence of a tumor. In-
tuitively, topological relations imply less instability than metric ones. For example,
an adjacency relation can be preserved even if large deformations are considered in a
given structural organization; on the contrary metric relations, even if formulated with
fuzzy sets, are prone to significant modifications in case of large tumors and should
therefore be avoided or manipulated with great care. Reasoning about distances re-
quires to take into account the granularity level of the relation expression. For example
the distance predicates “far from” and “close to” are naturally more vague than the
predicate “at a distance of about 1cm”, which makes them more stable. In the case
of tumor-specific spatial relations, if the tumor is large deforming, only relations such
as “far from” and “close to” are retained. The choice of cancelling or maintaining a
spatial relation in the presence of a tumor is first motivated by clinical considerations,
namely the localization, size and type of the tumor.
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Figure 5.9: A part of the tumor ontology visualized by Protégé.

Table 5.1 summarizes our current list of tumor-based spatial relations [Khotanlou
et al., 2007a ; Atif et al., 2006a].

Spatial characteristics Spatial relations

of tumors preserved

Large deforming (LD) Adjacency, Direction,
Distance (far, near)

Small deforming (SD) Peripheral Adjacency, Direction,
(SD-P) Symmetry, Distance

Subcortical Adjacency, Direction,
(SD-SC) Distance (far, near)

Table 5.1: Spatial relations for internal brain structures depending on the tumor’s type.
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5.7 Structure segmentation

The proposed method for internal brain structures segmentation, such as for tumors,
has two phases: initialization and refinement. In other words, we first segment the
brain tissues (consequently the internal structures of the brain) and since this segmen-
tation for internal brain structures is not fine enough, we then refine them one by one
using prior information. To perform these two phases, the segmentation procedure
consists of the following steps:

1. global segmentation of the brain,

2. retrieving spatial relations,

3. selecting the valid spatial relations,

4. fuzzification and fusion of relations and providing the ROI,

5. searching the initial segmentation of structure,

6. refining the initial segmentation,

7. repeating from step 2 for other structures.

Global segmentation of the brain To segment the brain tissues and its structures
we use two methods, the first one is the MPFCM method and the second one is the
multiphase level sets.

In the MPFCM method we classify the segmented brain into 5 or 6 classes based
on the tumor type (as explained in Section 4.3.1 and if the MPFCM method is applied
for tumor segmentation, the same result is used). The internal structures of the brain
are partially classified into the gray matter class as seen for one case in Figures 5.11(b)
and 5.13(b).

As an alternative method we use the multiphase level sets introduced by [Vese
and Chan, 2002]. Our final aim is to integrate the spatial relations to this method to
segment the brain structures simultaneously in future works, but here we use it as a
classification method. The detail of the method can be found in Appendix C. Here we
use a 4-phase level sets and classify the segmented brain (without tumor and edema)
into: background, CSF, GM and WM. Such as for the MPFCM method, the internal
brain structures are classified partially into the GM class. One example is shown in
Figure 5.10.

Retrieving spatial relations In this step we extract information from prior knowl-
edge by querying our ontologies. The goal of the query is to find the spatial relations
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(a) (b)

(c) (d) (e) (f)

Figure 5.10: Segmentation by multiphase level sets. (a) One axial slice of the original
image. (b) Initial level set superimposed on the original image. (c) CSF class. (d)
WM class. (e) GM class. (f) Background (the tumor and edema are excluded from
the brain). These results are obtained with ν = 0.00001, h = 1 and n = 1000 (see
Appendix C).

involving the corresponding structure. Several query languages have been developed,
such as SPARQL by Protégé and nRQL by RACER [Haarslev and Moller, 2001]. Here
we use nRQL and a request for the spatial relations of the right thalamus is:

(tbox-retrieve (?x)(and
(?y Right thalamus)
(?y ?x hasSpatialRelation)))

The query (tbox-retrieve) means that we request the concepts and not instances
of these concepts. In a knowledge base the conceptual knowledge is represented in
the T-box and the knowledge about the instances of a domain is represented in the
A-box. An answer to this query is: Right Of Third ventricle, Close To Third ventricle
and Above Of Right Interventricular foramen.

The answer consists of all the spatial relations of the right thalamus without con-
sidering the reference object. We can also retrieve the spatial relations based on a
reference object. For example the following query will give the spatial relations based
on the third ventricle:

(tbox-retrieve (?x)(and
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(?y Right thalamus)
(?y ?x hasSpatialRelation)
(?z Third ventricle)
(?x ?z hasReferenceObject)))

and the answer is: Right Of Third ventricle and Close To Third ventricle.

Selecting the valid spatial relations This step selects the spatial relations which
remain stable. Based on the information provided by the tumor segmentation, con-
sisting of size, location, appearance, components and behavior, we classify the tumor.
We use the developed tumor ontology for this purpose. An example of query by nRQL
is:

(tbox-retrieve (?x)(and
(?a Enhanced)
(?b Peripheral)
(?c SmallSize)
(?d Edema)
(?e Infiltrating)
(?x ?a has for enhancement)
(?x ?b has for location)
(?x ?c has for size)
(?x ?d has for component)
(?x ?e has for behavior)))

the answer to this query is SD P infiltrating.

We then select the stable spatial relations based on the result of the query (see
Table 5.1).

Fuzzification and fusion of the relations and providing the ROI In this step,
a region of interest is constructed to restrict the search of the structure and also to
be used in the refinement step to constrain a deformable model. This ROI is defined
by the fuzzy set corresponding to the relations that should be satisfied by the target
structure. So we first fuzzify the selected relations with the extracted parameters
using the methods described in Section 5.5. If a single relation is involved in the
description of the structure, the ROI is defined by the fuzzy set corresponding to
this relation. When several spatial relations are involved, the ROI corresponds to the
fusion of the fuzzy sets representing these relations. These relations are combined
using a conjunctive fusion operator (a t-norm such as minimum). Eight examples of
the relations fusion are illustrated in Figures 5.11-5.14 for the right and left caudate
nucleus and the right and left thalamus.
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 5.11: Segmentation of the right and the left caudate nucleus (axial and coro-
nal views). (a) Original image. (b) MPFCM classification. (c) Computed ROI. (d)
Selected region by the ROI. (e) Initial segmentation. (f) Final result superimposed
on the orignal image. Here the reference object is the lateral ventricle and it was
segmented before the caudate nuclei.
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Segmentation of the right and the left caudate nucleus (axial and coro-
nal views). (a) Original image. (b) MPFCM classification. (c) Computed ROI. (d)
Selected region by the ROI. (e) Initial segmentation. (f) Final result superimposed
on the orignal image. Here the reference object is the lateral ventricle and it was
segmented before the caudate nuclei.
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 5.13: Segmentation of the right and the left thalamus (axial and coronal views).
(a) Original image. (b) MPFCM classification. (c) Computed ROI. (d) Selected region
by the ROI. (e) Initial segmentation. (f) Final result superimposed on the orignal
image. Here the reference objects are the third ventricle and the interventricular
foramen and they were segmented before the thalamus.
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 5.14: Segmentation of the right and the left thalamus (axial and coronal views).
(a) Original image. (b) MPFCM classification. (c) Computed ROI. (d) Selected region
by the ROI. (e) Initial segmentation. (f) Final result superimposed on the orignal
image. Here the reference objects are the third ventricle and the interventricular
foramen and they were segmented before the thalamus.
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Searching the initial segmentation Now, we can search the initial segmentation
of a structure in the globally segmented image. We first select the region of globally
segmented image by the corresponding ROI. We then need to separate the different
selected objects and to select the one we want to segment. To this purpose, we
use a morphological opening, whose optimal size is found iteratively. Openings of
increasing size are computed successively until a connected component matching the
characteristics of the object is found. At each step, an opening of a given size is
performed and the connected components are extracted. If one of the components
matches the characteristics of the target object, this component is chosen. If none of
the components verifies this condition, the process is iterated with a larger opening.
The sizes of the openings are successively defined by using: 6-, 18-, 26-connectivity
structuring elements. The characteristics which are used to select the components are
composed of the spatial relations associated to the target object as well as its size
and position. Finally, possible holes in the previous results are filled and we obtain
the initial segmentation. This segmentation is then transformed into a triangulation
using an isosurface algorithm based on tetrahedra. It is decimated and converted to a
simplex mesh by the dual operation. This simplex mesh is used as the starting point
of the deformable model. The initial segmentations for four structures (the right and
left caudate nucleus and the right and left thalamus for two patient) are illustrated in
Figures 5.11-5.14

Refining the initial segmentation To refine the initial segmentation we use the
proposed method in [Colliot et al., 2006] that was described in Section 5.5. To compute
FR (spatial relation force) to constrain the deformable model we use the computed
fuzzy ROI in the previous steps. In Figures 5.11 and 5.13 all steps of the segmentation
of four structures for one case are shown.

Initialization and repeating This algorithm is repeated for all the internal struc-
tures and the order is provided by the user, considering that the lateral ventricle,
third ventricle and interventricular foramen should be segmented firstly, because we
use them as reference objects for other structures, and in addition their segmenta-
tion is easier than the other ones. The spatial relation which is used for segmenting
them is “Far from the brain surface”. The ventricular initial segmentation has proved
sufficient for our purpose and we do not refine it by deformable model. In Figure
5.15 the segmentation of ventricular structures for one case is shown. Recent work by
[Fouquier et al., 2007] could also be used to decide automatically the order in which
the structures should be segmented.
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(a) (b) (c) (d) (e)

Figure 5.15: Ventricular segmentation. (a) MPFCM classification. (b) Relation “Far
from the brain surface”. (c) Selected class by the ROI. (d) Segmented lateral ventricle.
(e) Segmented third ventricle and interventricular foramen.

5.8 Evaluation and results

The proposed method was applied to 10 clinical MRI datasets of various origins and
types. We illustrate the results on four cases, for which manual segmentation of sev-
eral structures was available, and which exhibit tumors with different shapes, locations,
sizes, intensities and contrasts. Evaluation of the segmentation results was performed
through quantitative comparisons with manual segmentations, using volume and sur-
face measures. Segmentation results are illustrated for ten cases in Figures 5.16-5.19
and quantitative evaluations are provided in Tables 5.2-5.5 showing high accuracy.
The voxel size is typically 1 × 1 × 1.3 mm3, so that the average error is less than one
voxel. The Hausdorff distance represents the error for the worst point, which explains
its higher values. Although the segmented structures are relatively small (about 4000
m3), the volume metrics shows good results. For the similarity index measures, values
above 70% are satisfactory [Zijdenbos et al., 1994]. The results show that the seg-
mentation of caudate nuclei is better than thalamus due to their well defined borders.
The comparison of the results obtained using the initial segmentation of MPFCM and
multiphase level sets illustrates that there is not a large difference between them. But
the MPFCM method is faster than the multiphase level sets method.

5.9 Conclusion

Here we proposed a new method for segmentation of pathological brain structures.
This method combines prior information of structures and image information (region
and edge) for segmentation. To represent the prior information we used ontological
engineering tools. We also proposed a simple ontology for a specific classification
of tumors and it can be extended for other classification of tumors (such as tumor
grading).

The proposed segmentation framework, based on tumor-dependent preserved spa-
tial relations, is able to incorporate some knowledge on tumoral physiology in a new
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Dataset Tumor Structure M Si Ji Tp Fp DH Dm

Type mm3 % % % % mm mm

TNE1 SD-SC CR 4198.8 86.7 76.9 84.9 11.5 3.55 0.52
TNE1 SD-SC CL 4661.4 88.8 80.0 85.3 7.4 4.33 0.39

TRE2 LD CR 3712.9 85.3 74.3 83.1 12.4 6.17 0.66
TRE2 LD CL 4208.8 82.4 70.1 7.9 12.4 8.4 0.74

TE5 LD CR 3990.0 85.6 74.8 78.3 5.7 4.29 0.64
TE5 LD CL 4264.8 83.6 71.8 76.5 7.8 3.80 0.74

TNE3 SD-P CR 3699.3 88.1 78.8 89.0 12.7 2.96 0.53
TNE3 SD-P CL 3745.4 88.8 79.8 85.9 8.1 2.81 0.51

TNE8 SD-SC CR 4910.9 90.5 82.7 86.1 4.5 3.86 0.43
TNE8 SD-SC CL 4945.2 89.2 80.5 91.6 13.0 3.53 0.49

TNE2 SD-SC CR 4634.0 89.4 80.8 86.8 7.8 3.86 0.50
TNE2 SD-SC CL 4340.0 90.8 83.2 89.6 7.9 3.18 0.41

TNE4 SD-P CR 4547.0 89.1 80.3 88.4 10.1 5.46 0.49
TNE4 SD-P CL 4506.2 88.3 79.0 87.7 11.1 3.32 0.51

TNE7 SD-SC CR 4689.8 81.1 68.2 75.1 11.8 6.95 0.85
TNE7 SD-SC CL 4384.9 89.2 80.5 91.6 13.0 4.45 0.48

TNE9 SD-P CR 4146.2 82.9 70.8 76.6 9.5 7.26 0.81
TNE9 SD-P CL 4520.7 80.1 67.7 73.2 10.1 7.87 0.88

TRE5 LD CR 2843.6 84.2 72.6 78.3 9.0 4.81 0.53
TRE5 LD CL 3866.8 89.3 80.6 85.5 6.6 3.58 0.45

Ave. 4240.7 86.7 76.7 83.6 9.6 4.72 0.58

Table 5.2: Evaluation of segmentation result of the caudate nuclei (initially segmented
by MPFCM) on ten 3D MR datasets (CR and CL denote the right and the left caudate
nucleus and for the tumor type see Table 5.1).
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Dataset Tumor Structure M Si Ji Tp Fp DH Dm

Type mm3 % % % % mm mm

TNE1 SD-SC TR 6832.2 90.2 82.1 92.4 11.9 3.74 0.57
TNE1 SD-SC TL 8546.8 85.4 74.4 79.7 8.1 5.64 0.93

TRE2 LD TR 8311.2 84.8 73.6 78.1 7.3 4.86 0.99
TRE2 LD TL 9002.1 90.5 82.6 85.8 4.2 3.92 0.68

TE5 LD TR 9885 88.5 79.3 90.0 13.0 4.00 0.86
TE5 LD TL 9310.8 87.8 78.2 85.5 9.7 4.23 0.83

TNE3 SD-P TR 8394.3 90.8 83.1 86.2 4.2 4.03 0.64
TNE3 SD-P TL 8298.1 82.0 69.5 80.9 16.8 5.56 1.16

TNE8 SD-SC TR 7825.8 88.5 79.4 88.3 11.3 4.92 0.72
TNE8 SD-SC TL 8135.6 88.0 78.5 87.1 11.1 3.66 0.76

TNE2 SD-SC TR 8065.7 88.5 79.4 85.5 8.2 4.14 0.78
TNE2 SD-SC TL 8444.1 88.4 79.2 85.7 8.8 8.79 0.88

TNE4 SD-P TR 6734.2 89.0 80.2 92.3 14.1 3.66 0.70
TNE4 SD-P TL 6535.1 86.9 76.8 80.1 5.0 4.19 0.72

TNE7 SD-SC TR 7825.8 86.7 76.4 87.1 13.8 6.11 0.87
TNE7 SD-SC TL 7597.7 83.6 71.8 78.2 10.3 4.92 0.95

TNE9 SD-P TR 7682.1 88.0 78.6 90.3 14.1 5.22 0.79
TNE9 SD-P TL 6860.7 84.1 72.6 76.0 5.3 4.11 0.91

TRE5 LD TR 6898.6 86.3 76.0 89.9 16.9 3.66 0.84
TRE5 LD TL 7248.4 77.5 63.2 71.7 15.8 6.50 1.35

Ave. 7921.8 86.8 76.8 84.5 10.5 4.79 0.85

Table 5.3: Evaluation of segmentation result of the thalamus (initially segmented by
MPFCM) on ten 3D MR datasets (CR and CL denote the right and the left caudate
nucleus and for the tumor type see Table 5.1).
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Dataset Tumor Structure M Si Ji Tp Fp DH Dm

Type mm3 % % % % mm mm

TNE1 SD-SC CR 4198.8 85.5 74.6 79.9 8.1 12.75 0.75
TNE1 SD-SC CL 4661.4 84.9 73.8 80.6 10.3 6.71 0.60

TRE2 LD CR 3712.9 87.0 77.0 84.8 10.7 6.74 0.60
TRE2 LD CL 4208.8 82.8 70.1 75.2 7.8 7.6 0.64

TE5 LD CR 3990.0 86.1 75.6 84.1 11.8 4.17 0.63
TE5 LD CL 4264.8 84.9 73.7 80.9.5 10.7 3.80 0.70

TNE3 SD-P CR 3699.3 86.2 75.7 81.4 16.5 6.49 0.70
TNE3 SD-P CL 3745.4 88.2 78.8 84.3 7.5 5.64 0.57

TNE8 SD-SC CR 4910.9 88.1 78.8 82.2 5.0 6.71 0.60
TNE8 SD-SC CL 4945.2 90.1 83.5 88.7 6.6 3.32 0.48

TNE2 SD-SC CR 4634.0 89.5 81.1 86.9 7.6 3.18 0.50
TNE2 SD-SC CL 4340.0 89.4 80.8 84.8 5.5 4.14 0.48

TNE4 SD-P CR 4547.0 89.4 80.9 87.5 8.6 6.82 0.50
TNE4 SD-P CL 4506.2 86.0 75.4 83.3 11.1 4.68 0.68

TNE7 SD-SC CR 4689.8 77.9 63.8 70.5 12.9 6.46 0.87
TNE7 SD-SC CL 4384.9 89.0 80.2 88.3 10.2 8.14 0.54

TNE9 SD-P CR 4146.2 84.0 72.3 80.8 12.7 3.97 0.73
TNE9 SD-P CL 4520.7 84.4 72.9 80.0 10.1 5.01 0.72

TRE5 LD CR 2843.6 76.8 62.2 66.7 9.6 11.5 1.53
TRE5 LD CL 3866.8 91.0 83.6 87.0 4.5 6.09 0.41

Ave 4240.7 86.1 75.7 81.9 8.9 6.20 0.66

Table 5.4: Evaluation of segmentation result of the caudate nuclei (initially segmented
by multiphase level sets) on ten 3D MR datasets (TR and TL denote the right and
the left thalamus and for the tumor type see Table 5.1).
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Dataset Tumor Structure M Si Ji Tp Fp DH Dm

Type mm3 % % % % mm mm

TNE1 SD-SC TR 6832.2 72.6 57.0 60.4 9.0 6.06 1.49
TNE1 SD-SC TL 8546.8 82.7 70.6 74.1 6.4 7.15 1.05

TRE2 LD TR 8311.2 86.2 75.7 80.4 7.2 3.49 0.92
TRE2 LD TL 9002.1 86.8 76.6 83.0 9.1 4.38 0.93

TE5 LD TR 9885 84.1 72.6 83.0 14.8 5.83 1.20
TE5 LD TL 9310.8 88.4 79.2 87.5 10.7 5.95 0.81

TNE3 SD-P TR 8394.3 91.0 83.5 91.3 9.2 3.14 0.64
TNE3 SD-P TL 8298.1 87.6 78.0 86.5 11.2 6.64 0.87

TNE8 SD-SC TR 7825.8 89.4 80.7 87.4 8.6 3.69 0.73
TNE8 SD-SC TL 8135.6 81.8 69.3 72.3 5.8 7.29 1.18

TNE2 SD-SC TR 8065.7 87.5 77.8 82.3 6.6 3.53 0.84
TNE2 SD-SC TL 8444.1 87.9 78.4 81.5 4.5 3.14 0.82

TNE4 SD-P TR 6734.2 86.6 76.4 86.5 13.3 4.92 0.87
TNE4 SD-P TL 6535.1 90.1 81.9 86.4 5.9 4.03 0.62

TNE7 SD-SC TR 7825.8 84.5 73.1 77.3 6.9 6.49 1.04
TNE7 SD-SC TL 7597.7 82.3 70.0 72.3 4.5 5.62 1.06

TNE9 SD-P TR 7682.1 83.7 72.0 76.8 7.6 4.68 1.04
TNE9 SD-P TL 6860.7 85.7 74.9 80.5 8.3 3.18 0.85

TRE5 LD TR 6898.6 86.5 76.2 87.1 14.0 8.37 0.97
TRE5 LD TL 7248.4 85.5 74.7 80.6 8.8 4.86 0.94

Ave. 7921.8 85.6 75.0 80.1 8.62 5.12 0.94

Table 5.5: Evaluation of segmentation result of the thalamus (initially segmented by
multiphase level sets) on ten 3D MR datasets (TR and TL denote the right and the
left thalamus and for the tumor type see Table 5.1).
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(a) (b) (c) (d)

Figure 5.16: Segmentation results. (a) Axial slices from the original MRI data sets. (b)
Manual segmentation. (c) Initial segmentation. (d) Superimposition of results on axial slices.
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(a) (b) (c) (d)

Figure 5.17: Segmentation results. (a) Axial slices from the original MRI data sets. (b)
Manual segmentation. (c) Initial segmentation. (d) Superimposition of results on axial slices.
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(a) (b) (c) (d)

Figure 5.18: Segmentation results. (a) Axial slices from the original MRI data sets. (b)
Manual segmentation. (c) Initial segmentation. (d) Superimposition of results on axial slices.

and original way. For example, several teams have recently introduced biomathemat-
ical models to quantitatively describe the growth rates of gliomas visualized radio-
logically [Swanson et al., 2003 ; Clatz et al., 2005]. The model in [Swanson et al.,
2003] takes into account the two major biological phenomena underlying the growth
of gliomas at the cellular scale: proliferation and migration. Initially, this model was
suggested for high-grade gliomas. Most of these anaplastic tumors have an important
proliferation index, inducing a mass effect on the normal brain structures, especially
in cases of large space-occupying lesions. Thus, internal cerebral structures can be dis-
torted, with a preservation of their spatial relations despite mechanical deformations.
In the event of necrosis, very frequent in WHO grade IV gliomas (glioblastomas),
it is possible that normal brain tissue is destroyed and not only distorted, eliciting
neurological deficit: in these cases, topology may be modified.
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Figure 5.19: 3D view of the segmented structures, tumor, edema and necrosis for one
case.
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C H A P T E R 6

Conclusion

6.1 Review of the contributions

In this thesis we deal with 3D MR images in order to segment brain tumors and
internal brain structures for the applications such as treatment and follow-up, surgery,
individual modeling, etc. In this chapter we first review the discussed topics and the
contributions and following this we discuss possible future directions.

Brain tumor segmentation The proposed method uses contrast enhanced T1-
weighted and FLAIR images for segmentation and it consists of two steps: prepro-
cessing and segmentation. In the preprocessing step, in addition to use the classical
methods for reducing the noise and inhomogeneity and registration, we proposed a new
adapted method for correct and robust brain segmentation. The brain is segmented
by a combination of histogram analysis, morphological operations and symmetry anal-
ysis. A new symmetry-based histogram analysis was proposed that is able to detect
automatically the tumor type and the pathological hemisphere.

For the segmentation, the proposed method combines the information of edge and
of region. Region-based methods segment difficult cases of tumors with a high level
of automation but they have a main drawback at the boundary of tumors. Due to
the partial volume effect the region-based techniques suffer from misclassification of
voxels and hence, it is difficult to have a crisp region of tumor. On the other hand
boundary-based methods were proposed to solve this problem but they also suffer
from initialization problems. To obtain a good result they must be well initialized.
The proposed approach tries to combine these two types of methods to remove the
problems using the capabilities of each one. For example a region-based method can
solve the problem of the initialization of a boundary-based method and a boundary-
based method is able to improve the quality of region-based segmentation at the border
of objects. So the proposed hybrid method has two main phases: initialization which is
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done by a region-based method and refinement that is performed by a boundary-based
method.

For initialization we can use any full-automatic approach and here we proposed
two new and original methods. The first one is an unsupervised fuzzy classification.
This method is a general classification approach and it can be used in order to detect
and initially segment brain tumors. This method is a combination of fuzzy c-mean,
possibilistic c-mean and spatial regularization constraints. In other words it uses the
membership, the typicality and the neighborhood information for data classification.

The second one relies on the asymmetry of pathological brains. We proposed a
new method specifically for tumor detection. It is based on the asymmetry detection
in the image histogram of the brain hemispheres. It is able to detect a large class of
tumors in several brain medical imaging modalities.

The second phase of the segmentation refines the initial segmentation based on edge
information. We use a classical 3D snake model which is initialized by the surface of the
detected tumor. To address some problems of deformable model such as the leakage
at the ill-defined borders and to guide the evolution of surface, we constrain the model
by the spatial relationships between the detected tumor and the tumor surrounding
tissues.

Internal brain structures segmentation Another contribution of this thesis is
the segmentation of internal brain structures. The segmentation of the pathological
brain structures is a difficult task due to the different effects of the different tumors.
Using prior information such as an atlas or adapting it to guide the segmentation is
also difficult because of these different effects.

We proposed a new method, that in addition to region and edge information, uses
a type of prior information which is more consistent in pathological cases. The spatial
relations between structures is the prior information used in this method. Here we deal
with three main problems: explicit representation of spatial relations for each struc-
ture, adaptation of spatial relations for pathological cases and segmentation method.

The representation of the spatial relations in general and explicit representations
of spatial relations for each structure in particular are implemented using the ontology
engineering tools. Knowledge representation using ontologies is a powerful method
that is easy to extend, easy to use and reusable by other researchers (as we used
the FMA ontology developed by another group). A link between the spatial rela-
tions ontology and the FMA ontology provided an explicit representation of spatial
relationships between structures.

For adaptation of spatial relations for pathological cases, we used the segmented
tumor information. We classify the tumor based on its impact on the other structures.
For this we developed a simple ontology. We then decide to retain the spatial relations
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which remain stable based on the classification result.

For segmentation we developed a method that integrates a fusion of spatial relations
to guide the segmentation in initial and refinement phases. It is a sequential method
and is repeated for all the structures in an order defined by the user. This method
uses the fused spatial relations (ROI) to search the initial segmentation of a structure
and to guide a deformable model to refine this initial segmentation.

6.2 Future work

Brain tumor

The comparison of the quantitative results of tumor segmentation shows that the
quality of the segmentation for enhanced tumors is better than for the non-enhanced
tumors (especially for the false detection ratio) because of their well-defined bound-
aries. Improvement of the method for segmenting non-enhanced tumors could still be
useful. One of the future directions can be using the probability map, as proposed in
[Colliot et al., 2006] for brain structures, to improve the edge detection method. In
the symmetry analysis method we can fit a Gaussian model to the tumor peak to find
the mean and variance of tumor gray levels. We can then compute the probability
map and compute the edge map of this probability map.

For segmentation refinement by a deformable model, the parameters tuning is very
important (α and β). Our experience shows that there is a relation between the
parameters and the volume of the initial segmentation. As a future work, finding the
relation to compute the parameters can be useful.

Interpretation or WHO classification of the tumor is important in clinical applica-
tions. At this moment it is done manually using histopathological diagnoses [Julià-Sapé
et al., 206]. As reported in [Julià-Sapé et al., 206] using the MR imaging information
to classify tumors to WHO classes is correct up to 90%. So by extending the proposed
ontology in Section 5.6 and using other information about the patient such as clinical
and symptom information as well as the obtained segmentation, it would be possible
to provide an automatic method to interpret and classify the detected and segmented
tumor.

As noted in Chapter 2, an advantage of geometric deformable models is the ability
to automatically handle topology changes (merging or splitting). To segment two or
more tumors in a brain (or when a tumor has two sections in the initial segmentation
result) it is suitable to use a geometric deformable model to refine the segmentation.
So, developing a geometric deformable model constrained by spatial relations, such as
in [Atif et al., 2006b], to refine the segmentation is another future direction. Compar-
ison between the results of parametric deformable model and geometric deformable
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model can also be done.

Brain structures

In Section 1.9 we proposed a new tumor classification based on the tumor alteration
and we select the stable spatial relations using this classification. For a future direction
we can extend it to classify the tumors more precisely. For example we can separate the
pathological and normal hemisphere and we then use the normal spatial relations in
the normal hemispheres and adapted relations in the pathological one. The extension
of the proposed ontology is also another future direction. In the proposed method
determining the class of tumor size (small, middle and big) and the class of tumor
location is still done manually. So by extending the ontology and adding some learning,
we can perform the classification automatically.

We used a simple method for learning the spatial relation parameters. This learning
is done using all types of tumors. A tumor-specific learning could be another future
work. For each class of tumors a learning process can be performed. The results of
learning are registered in the spatial relation ontology using a XML Schema datatype.
Retrieving the spatial relations of a structure is performed based on the tumor type.

The proposed ontology-based method, associated to the learning procedure, could
also be integrated in the method currently developed by O. Nempont et al. [Nempont
et al., 2007] to guide the selection of spatial relations to be used for segmenting each
structure and to define fuzzy regions of interest, characterizing necessity and possibility
of locations of structures.

The proposed method for internal brain structures segmentation is a sequential
method and should be repeated for each structure. As a new method we can segment
the structures simultaneously. In section 5.7 we used multiphase level sets as an initial
segmentation approach which is able to segment several regions at the same time.
Future works are expected to integrate the spatial relations in multiphase level sets
for segmentation of the internal structures simultaneously.
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A P P E N D I X A

MPFCM objective function solving

A.1 Membership

The problem of minimization of the MPFCM objective function:

Jm,η(U, T, V ; X) =
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∑c
j=1 um

jk = 1, ∀k will be solved using one Lagrange multiplier:

Fm =
c
∑

i=1

n
∑

k=1

(aum
ik+bt

η
ik)Dik+

c
∑

i=1

γi

n
∑

k=1

(1−tik)
η+β

c
∑

i=1

n
∑

k=1

(aum
ik+bt

η
ik)Sik+λ

(

1 −
c
∑

i=1

um
ik

)

(A.2)

If we take the derivative of Fm with respect to uik and set it to zero we have:

∂Fm

∂uik

= maum−1
ik Dik + βmaum−1

ik Sik − λ = 0 (A.3)

By solving Equation (A.3) for uik we get:

uik =
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)
1
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(A.4)

Using the condition
∑c

j=1 ujk = 1, ∀k, we have:
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Combining Equations (A.4) and (A.7) leads to:
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, 1 ≤ i ≤ c, 1 ≤ k ≤ n (A.8)

A.2 Typicality

The typicality equation can be obtained by taking the derivative of Equation (A.2)
with respect to tik and setting it to zero:
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By solving this equation we have:
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A.3 Class centers

If we use the standard Euclidean distance and take the derivative of Fm with respect
to vi and setting it to zero we get:
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where xw is a neighbor pixel of xk in a window around xk and nw is the number of
neighbors in this window.

By solving Equation (A.13) we get:
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and:
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and:
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where Rk =
∑nw

w=1 xw and α = βnw.

The convergence theory of the FCM algorithm family was initially studied in
[Bezdek., 1981 ; Bezdek et al., 1984] and later improved in [Bezdek et al., 1987 ;
Sabin, 1987 ; Hoppner, 2003] and it has been shown that the objective function of
FCM family is a descent function. So, to minimize the objective function we can set
its derivative to zero.
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Evaluation of segmentation

Characterizing the performance of image segmentation methods is a challenge in image
analysis. An important difficulty we have to face in developing segmentation meth-
ods is the lack of a gold standard for their evaluation. Accuracy of a segmentation
technique refers to the degree to which the segmentation results agree with the true
segmentation. Although physical or digital phantoms can provide a level of known
“ground truth”, they are still unable to reproduce the full range of imaging character-
istics and normal and abnormal anatomical variability observed in clinical data.

Manual segmentation of desired objects by domain experts can be considered as an
acceptable approach (it still suffers from inter-expert and intra-expert variability). The
result of an automated method is then compared to the manually segmented object
by an expert or a group of experts, and if the algorithm generates segmentations
sufficiently similar to the ones provided by the experts, it is accepted. A number
of metrics have been proposed to measure the similarity between the segmentations,
including volume measures and surface measures.

B.1 Volume metrics

A feature most easily accessible is the total volume of a structure. For binary segmen-
tations, we calculate the number of voxels adjusted by the voxel volume. Comparing
volumes of segmented structures does not take into account any regional differences
and does not give an answer to the question where differences occur. We can de-
fine several measures to compare the volumes of two segmented objects. First let A

and M denote the filled volume of the automatically and manually (“ground truth”)
segmented objects and |x| represents the cardinality of the set of voxels x. In the
following equations Tp = M ∩ A, Fp = A − M and Fn = M − A denote to the “true
positive”, “false positive” and “false negative” respectively [Udupa et al., 2002] (as
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B.1 Volume metrics

seen in Figure B.1)

Figure B.1: Representation of M , A, Tp, Fp and Fn as a Venn diagram.

• Similarity index

The similarity index (also known as Kappa) between two volumes is calculated
by the following equation:

Si(A, M) =
2 |A ∩ M |

|A| + |M |
∗ 100% =

2 |Tp|

|M | + |A|
∗ 100% (B.1)

The similarity index is sensitive to both differences in size and location. For
example, the similarity index of two equally sized regions that overlap each
other with half of their area results in 50% similarity, and a region completely
overlapping a smaller one of half its size yields Si = 67% . This example shows
that, for the similarity index, differences in location are more strongly reflected
than differences in size (as illustrated in Figure B.2) and Si > 70% indicates a
good agreement [Zijdenbos et al., 1994].

Figure B.2: Illustrative examples for similarity index. In the left image A and M have
equal size and the overlap is the half of each one. Here the similarity index is 50%. In
the right image A is the half of M and the similarity index is about 67%.

• Jaccard index
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Evaluation of segmentation

The Jaccard index between two volumes is represented as follow:

Ji(A, M) =
|A ∩ M |

|A ∪ M |
∗ 100% =

|Tp|

|Tp| + |Fn| + |Fp|
∗ 100% (B.2)

This metric is more sensitive to differences since both denominator and numer-
ator change with increasing or decreasing overlap.

• Correct detection ratio

The correct detection ratio (sensitivity) is defined by the following equation:

Tp =
|A ∩ M |

|M |
∗ 100% =

|Tp|

|M |
∗ 100% (B.3)

This metric indicates the correct detection volume normalized by the reference
volume and is not sensitive to size. For example, if M is covered by A, Tp

is 100% whatever the size of A (as shown in Figure B.3). Therefore Tp solely
cannot indicate the similarity and should be used with false detection ratio or
other volume metrics.

Figure B.3: Illustrative example for correct detection ratio. Here M is covered by A

and Tp is 100% whatever the size of A.

• False detection ratio

The false detection ratio is defined by the following equation:

Fp =
|A − M |

|A|
∗ 100% =

|Fp|

|A|
∗ 100% (B.4)

This metric shows the error of the segmentation and indicates the volume that is
not located in the true segmentation. Using this metric with the correct detection
ratio can give a good evaluation of the segmentation.

However, the overlap measure depends on the size and the shape complexity of the
object and is related to the image sampling. Assuming that most of the errors occur
at the boundary of objects, small objects are penalized and get a much lower score
than large objects [Gerig et al., 2001].
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B.2 Surface or distance-based metrics

For some segmentation tasks (such as the tumor segmentation), the delineation of
the boundary is critical and is the main objective of the segmentation. In these
situations, surface-based metrics are important. They measure the distance between
the segmentation boundary and the true boundary.

• Hausdorff distance

This metric defines the largest difference between two surfaces. Let M and A

denote the surfaces of segmented objects. The Hausdorff distance between M

and A can be calculated using the following equation:

DH(M, A) = max(h(M, A), h(A, M)) (B.5)

where h(M, A) = maxm∈M mina∈A d(m, a), and d(m, a) denotes the Euclidean
distance between m and a (m and a are points of M and A respectively)

Given two surfaces M and A, we first calculate for each point m on M the
minimal distance to all the points on surface A. We calculate this minimal
distance for each surface point and take the maximum minimal distance as the
worst case distance. The Hausdorff metric calculation is computationally very
expensive, as we need to compare each surface point to all the other ones. It
can be computed in a more efficient way by computing a distance map using the
chamfer algorithm.

• Mean absolute surface distance

The mean absolute surface distance illustrates how much on average the two
surfaces differ. This measure integrates over both over- and under-estimation of
a surface. The calculation is not straightforward if point to point correspondence
on two surfaces is not available. We use a similar strategy as for the Hausdorff
distance computation. We calculate the average distance between A and M and
inversely between M and A. We then calculate a common average by combining
the two averages. This calculation can be formulated as follow:

Dm(M, a) =
1

2
[dmean(M, A) + dmean(A, M)] (B.6)

where:

dmean(M, A) =
1

NM

∑

m∈M

D(m, A) (B.7)

and D(m, A) = [mina∈Ad(m, a)].

The Hausdorff distance and mean absolute distance, as opposed to volume metrics,
are independent of the object size and show the quality of the segmentation at the
border of the objects.
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Evaluation of segmentation

As a result, the selection of a metric in order to compare two objects depends
on the application of the segmentation. The volume metrics solely cannot show the
quality of the segmentation and have to be completed with surface metrics.
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A P P E N D I X C

Multiphase level sets segmentation

[Vese and Chan, 2002] introduced a segmentation method which uses a particular
case of the Mumford-Shah functional known as “The minimal partition problem” that
restricts the problem to piecewise constant functions. This method uses a procedure of
energy minimization allowing to detect objects whose boundaries are not necessarily
defined by gradient. In addition, this model avoids the typical problems of edge
stopping functions that are never exactly zero at the edges, with the negative result
that the curve may eventually pass through object boundaries. It is important to
note that with this algorithm the contours are automatically detected, and the initial
curve can be anywhere in the image. The multiphase model of this method allows
to handle complex topologies and multiple individual segments, avoiding the problem
of vacuum and overlap. In particular the multiphase segmentation method may be
initialized with m level set functions allowing to detect m2 different regions (phases or
segments).

C.1 Multiphase level sets model

Let us consider m = log n level sets function φi : Ω → R. Let also Φ = (φ1, ..., φm)
represent the “vector level sets” and H(Φ) = (H(φ1), ..., H(φm)) the “vector Heaviside
function” (components of H are only 0 or 1). The segments or phases in the domain Ω
are the pixels (or voxels) which have the same value of the Heaviside function, i.e two
pixels (x1, y1) and (x2, y2) belong to the same class if H(Φ(x1, y1)) = H(Φ(x2, y2)).
There are up to n = 2m possibilities for the vector values in the image of H(Φ), i.e
we can define up to 2m phases or classes in the domain Ω. The set of curves C is
represented by the union of the zero level sets of the functions φi.

The simplified Mumford-Shah energy function was defined by [Vese and Chan,
2002] as:
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C.1 Multiphase level sets model

Fn(c, Φ) =
∑

1≤I≤n=2m

∫

Ω

(u0 − cI)
2χIdxdy +

∑

1≤i≤m

ν

∫

Ω

|∇H(φi)|

where classes are labeled by I and with characteristic function χI , u0 : Ω → R is a
given bounded image-function and c = (c1, ..., cn) is a constant vector of averages and
cI = mean(u0). For n = 4 phases or classes the energy function is:

F4(c, Φ) =

∫

Ω

(u0 − c11)
2H(φ1)H(φ2)dxdy

+

∫

Ω

(u0 − c10)
2H(φ1)(1 − H(φ2))dxdy

+

∫

Ω

(u0 − c01)
2(1 − H(φ1))H(φ2)dxdy

+

∫

Ω

(u0 − c00)
2(1 − H(φ1))(1 − H(φ2))dxdy

+ν

∫

|∇H(φ1)|dxdy + ν

∫

|∇H(φ2)|dxdy (C.1)

where c = (c11, c10, c01, c00) and Φ = (φ1, φ2).

With this notation, the image function u can be written as:

u = c11H(φ1)H(φ2)

+c10H(φ1)(1 − H(φ2))

+c01(1 − H(φ1))H(φ2)

+c00(1 − H(φ1))(1 − H(φ2)) (C.2)

By minimizing the energy function, the following Euler-Lagrange equations with
respect to c and Φ are resulted:

c11(Φ) = mean(u0) in {(x, y) : φ1(t, x, y) > 0, φ2(t, x, y) > 0},

c10(Φ) = mean(u0) in {(x, y) : φ1(t, x, y) > 0, φ2(t, x, y) < 0},

c01(Φ) = mean(u0) in {(x, y) : φ1(t, x, y) < 0, φ2(t, x, y) > 0},

c00(Φ) = mean(u0) in {(x, y) : φ1(t, x, y) < 0, φ2(t, x, y) < 0},

(C.3)

(if we consider φ1(0, x, y) = φ1,0(x, y), φ2(0, x, y) = φ2,0(x, y)).
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Multiphase level sets segmentation

and:

∂φ1

∂t
= δε(φ1){νdiv

(

∇φ1

|∇φ1|

)

−[((u0 − c11)
2 − (u0 − c01)

2)H(φ2)

+((u0 − c10)
2 − (u0 − c00)

2)(1 − H(φ2))]}, (C.4)

∂φ1

∂t
= δε(φ2){νdiv

(

∇φ2

|∇φ2|

)

−[((u0 − c11)
2 − (u0 − c10)

2)H(φ1) + ((u0 − c01)
2

+(u0 − c00)
2)(1 − H(φ1))]} (C.5)

where δε = H ′
ε is a smooth approximation of the Dirac delta function δ0,

∇φ
|∇φ|

represents

the unit normal to a level curve of φ at every point and div( ∇φ
|∇φ|

) represents the
curvature of the level curve.

C.2 3D 4-phase level sets numerical algorithm

Here we extend the presented numerical algorithm by [Vese and Chan, 2002] to the
3D case. Let h = ∆x = ∆y = ∆z denote the space steps, ∆t the time step, ε =
h, (xi, yi, zi) = (ih, jh, kh) the discrete points, for 1 ≤ i, j, k ≤ M and u0,i,j,k ≈
u0(xi, yi, zi), φ

n
i,j,k ≈ φ(n∆t, xi, yi, zi), with n ≥ 0.

We compute the Hε and δε using the following equations:

Hε(x) =
1

2

[

1 +
2

π
arctan

(x

ε

)

]

,

δε(x) = H ′
2,ε(x) =

1

π

ε

ε2 + x2
(C.6)

The algorithm consists of the following steps:

1. Initialization: Set n = 0 and φ0
1,i,j,k, φ

0
1,i,j,k with the set of initial contours.

2. Computing the averages cn
11, cn

10, cn
01 and cn

00 with the following equations:

c11 =

∫

Ω
u0Hε(φ1)Hε(φ2)dxdydz
∫

Ω
Hε(φ1)Hε(φ2)dxdydz

(C.7)
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C.2 3D 4-phase level sets numerical algorithm

c10 =

∫

Ω
u0Hε(φ1)(1 − Hε(φ2))dxdydz
∫

Ω
Hε(φ1)(1 − Hε(φ2))dxdydz

(C.8)

c01 =

∫

Ω
u0(1 − Hε(φ1))Hε(φ2)dxdydz
∫

Ω
(1 − Hε(φ1))Hε(φ2)dxdydz

(C.9)

c00 =

∫

Ω
u0(1 − Hε(φ1))(1 − Hε(φ2))dxdydz
∫

Ω
(1 − Hε(φ1))(1 − Hε(φ2))dxdydz

(C.10)

3. Computing φn+1
1,i,j,k by the following equations (the equations are obtained by

solving the calculated Euler-Lagrange equations):

C1 =
1

√

(

φn
1,i+1,j,k − φn

1,i,j,k

h

)2

+

(

φn
1,i,j+1,k − φn

1,i,j−1,k

2h

)2

+

(

φn
1,i,j,k+1

− φn
1,i,j,k−1

2h

)2

C2 =
1

√

(

φn
1,i,j,k − φn

1,i−1,j,k

h

)2

+

(

φn
1,i−1,j+1,k−1 − φn

1,i−1,j−1,k−1

2h

)2

+

(

φn
1,i−1,j−1,k+1 − φn

1,i−1,j−1,k−1

2h

)2

C3 =
1

√

(

φn
1,i+1,j,k − φn

1,i−1,j,k

2h

)2

+

(

φn
1,i,j+1,k − φn

1,i,j,k

h

)2

+

(

φn
1,i,j,k+1

− φn
1,i,j,k−1

2h

)2

C4 =
1

√

(

φn
1,i+1,j−1,k−1

− φn
1,i−1,j−1,k−1

2h

)2

+

(

φn
1,i,j,k − φn

1,i,j−1,k

h

)2

+

(

φn
1,i−1,j−1,k+1

− φn
1,i−1,j−1,k−1

2h

)2

C5 =
1

√

(

φn
1,i+1,j,k − φn

1,i−1,j,k

2h

)2

+

(

φn
1,i,j+1,k − φn

1,i,j−1,k

2h

)2

+

(

φn
1,i,j,k+1 − φn

1,i,j,k

h

)2

C6 =
1

√

(

φn
1,i+1,j−1,k−1

− φn
1,i−1,j−1,k−1

2h

)2

+

(

φn
1,i−1,j+1,k−1

− φn
1,i−1,j−1,k−1

2h

)2

+

(

φn
1,i,j,k − φn

1,i,j,k−1

h

)2

Let:

P =
∆t

h2
δε(φ1,i,j,k)ν, C = 1 + P (C1 + C2 + C3 + C4 + C5 + C6)
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Multiphase level sets segmentation

then:

φn+1
1,i,j,k =

1

C
[φn

1,i,j,k

+P (C1φ
n
1,i+1,j,k + C2φ

n
1,i−1,j,k + C3φ

n
1,i,j+1,k

+C4φ
n
1,i,j−1,k + C5φ

n
1,i,j,k+1 + C6φ

n
1,i,j,k−1)

+∆tδε(φ1,i,j,k)

(−(u0,i,j,k − cn
11)

2Hε(φ
n
2,i,j,k)

−(u0,i,j,k − cn
10)

2(1 − Hε(φ
n
2,i,j,k))

+(u0,i,j,k − cn
01)

2Hε(φ
n
2,i,j,k)

+(u0,i,j,k − cn
00)

2(1 − Hε(φ
n
2,i,j,k)))] (C.11)

4. Computing φn+1
2,i,j,k using the following equations:

D1 =
1

√

(

φn
2,i+1,j,k − φn

2,i,j,k

h

)2

+

(

φn
2,i,j+1,k − φn

2,i,j−1,k

2h

)2

+

(

φn
2,i,j,k+1

− φn
2,i,j,k−1

2h

)2

D2 =
1

√

(

φn
2,i,j,k − φn

2,i−1,j,k

h

)2

+

(

φn
2,i−1,j+1,k−1 − φn

2,i−1,j−1,k−1

2h

)2

+

(

φn
2,i−1,j−1,k+1 − φn

2,i−1,j−1,k−1

2h

)2

D3 =
1

√

(

φn
2,i+1,j,k − φn

2,i−1,j,k

2h

)2

+

(

φn
2,i,j+1,k − φn

2,i,j,k

h

)2

+

(

φn
2,i,j,k+1

− φn
2,i,j,k−1

2h

)2

D4 =
1

√

(

φn
2,i+1,j−1,k−1 − φn

2,i−1,j−1,k−1

2h

)2

+

(

φn
2,i,j,k − φn

2,i,j−1,k

h

)2

+

(

φn
2,i−1,j−1,k+1 − φn

2,i−1,j−1,k−1

2h

)2

D5 =
1

√

(

φn
2,i+1,j,k − φn

2,i−1,j,k

2h

)2

+

(

φn
2,i,j+1,k − φn

2,i,j−1,k

2h

)2

+

(

φn
2,i,j,k+1 − φn

2,i,j,k

h

)2

D6 =
1

√

(

φn
2,i+1,j−1,k−1

− φn
2,i−1,j−1,k−1

2h

)2

+

(

φn
2,i−1,j+1,k−1

− φn
2,i−1,j−1,k−1

2h

)2

+

(

φn
2,i,j,k − φn

2,i,j,k−1

h

)2

Let:

Q =
∆t

h2
δε(φ2,i,j,k)ν, D = 1 + Q(D1 + D2 + D3 + D4 + D5 + D6)
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then:

φn+1
2,i,j,k =

1

D
[φn

2,i,j,k

+Q(D1φ
n
2,i+1,j,k + D2φ

n
2,i−1,j,k + D3φ

n
2,i,j+1,k

+D4φ
n
2,i,j−1,k + D5φ

n
2,i,j,k+1 + D6φ

n
2,i,j,k−1)

+∆tδε(φ2,i,j,k)

(−(u0,i,j,k − cn
11)

2Hε(φ
n
1,i,j,k)

−(u0,i,j,k − cn
10)

2(1 − Hε(φ
n
1,i,j,k))

+(u0,i,j,k − cn
01)

2Hε(φ
n
1,i,j,k)

+(u0,i,j,k − cn
00)

2(1 − Hε(φ
n
1,i,j,k)))] (C.12)

5. Repeating from step 1 until steady state. The stability is checked in this way: for
each i, j, k an error is computed as |φn

t,i,j,k − φn+1
t,i,j,k| and the algorithm is stopped

when the max(error) ≤ ǫ (ǫ is defined by the user).
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