
HAL Id: pastel-00003806
https://pastel.hal.science/pastel-00003806

Submitted on 9 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed resource coallocation: architectures,
protocols, optimization

Antoine Pichot

To cite this version:
Antoine Pichot. Distributed resource coallocation: architectures, protocols, optimization. do-
main_other. Télécom ParisTech, 2008. English. �NNT : �. �pastel-00003806�

https://pastel.hal.science/pastel-00003806
https://hal.archives-ouvertes.fr

Thèse

présentée pour obtenir le grade de docteur

de l’Ecole Nationale Supérieure
des Télécommunications

Spécialité : Informatique et Réseaux

Antoine Pichot

Co-allocation de ressources distribuées:
architectures, protocoles, optimisation

Soutenue le 7 Avril 2008 devant le jury composé de

M. Philippe d’Anfray (CEA)
Prof. Bijan Jabbari (George Mason U.) Rapporteurs
Dr. Franck Cappello (INRIA Futurs) Président du Jury
M. Olivier Audouin (Alcatel-Lucent) Examinateur
Prof. Maurice GAGNAIRE (ENST) Directeur de thèse

Ecole Nationale Supérieure des Télécommunications

To my Parents
. . .

i

Acknowledgements

I would like to thank the Alcatel-Lucent Research&Innovation Packet Transport Infras-
tructure group for giving me the opportunity to conduct this research with such freedom.

I am grateful to Professor Maurice Gagnaire for having supervised this research. Al-
thought very busy, he answered all of my questions and provided me with his experience
and vast knowledge.

I also thank Olivier Audouin for being my tutor at Alcatel-Lucent, who followed this
research very closely. The many discussions we had helped me clarify, summarize and
move forward with my research.

I would also like to thank my colleagues at Alcatel-Lucent starting with my manager
Emmanuel Dotaro with whom I had many interesting discussions. He provided me with
guidance not only in technical matters but also in human relationships. I am also grateful
to my team members, Agostino Chiosi, Dominique Verchere and Bela Berde for creating
such a comfortable work environment. This great teamwork experience has given me the
skills to confront any kind of environment.

I would like to express my sincere thanks to Doctor Steven Pickering for being the
first to read (twice!), review and correct this document’s English. He has done a fantastic
job and greatly contributed to the clarity of the final result.

Last, but not least, I would like to deeply thank Matthieu Boulay for his friendship and
support. Also my family, my sister Laurence for her support and the so many conversations
we had. The authors of the SIP RFC and my brother-in-law Christophe’s patience without
whom those conversations would never have been possible. My sister Martine, my brother
Jeremie and my parents Colette and Jean-Claude for having supported my ups and downs
during the last three years.

ii Acknowledgements

iii

Résumé

Les applications de calcul intensif nécessitent de plus en plus de ressources. Pour des
raisons de sécurité, de consommation d’énergie et de passage à l’échelle, ces dernières
ne peuvent plus être localisées au sein d’un même bâtiment. L’utilisation de ressources
distribuées est une réalité à laquelle doivent faire face de nombreuses industries et centre de
recherche. Par exemple la collaboration entre laboratoires exige l’utilisation de ressources
hétérogènes telles des calculateurs et des espaces de stockage géographiquement distribués
pour résoudre des problèmes complexes. Ces ressources distribuées bien qu’appartenant
à des entités juridiques et administratives différentes doivent être associées logiquement
temporairement pour constituer une infrastructure virtuelle afin de résoudre un problème
scientifique ou fournir un service donné. Une telle infrastructure virtuelle et le réseau sous
jacent est appelée une grille.

Les modèles actuels d’exploitation des ressources telles le modèle ”overlay” où les ap-
plications exploitent le réseau comme une boite noire sans échange d’information de con-
trôle et de gestion ne permettent pas de réservation jointe de ces ressources à la demande:
réseaux, calculateurs et espaces de stockage. C’est pourquoi une nouvelle génération de
plan de contrôle et de gestion doivent être définis pour fournir un service de calcul à la
demande avec un niveau de qualité contractuel garanti prenant en compte l’utilisation du
réseau et des ressources de calcul.

Le but de cette thèse est de fournir une vision de l’état de l’art en matière de Co-
allocation. Dans ce but, différents environnements sont considérés: les systèmes de ges-
tion de ressources distribuées basés sur les Web Services (WS), l’architecture IP Multi-
media Subsystem (IMS) et Generalized Multi-protocol Label Switching (GMPLS). Des
extensions aux logiciels de gestion des grilles, aux Web Services, à l’IMS, et à GMPLS
sont proposées. Elles sont étudiées afin de discuter de leur pertinence, avantages et in-
convénients, puis comparées à d’autres alternatives. Une fois les architectures globales
décrites, nous étudions plus en détail le coeur du système de Co-allocation: le protocole
de communication entre l’ordonnanceur de la grille et les ordonnanceurs locaux. Le pro-
tocole de création de contrat de service (Service Level Agreement, SLA) WS-Agreement
est étendu afin de négocier dynamiquement l’accès aux ressources. Enfin, des algorithmes
modélisant l’utilisation des ressources de calcul et des ressources réseaux sont proposés
pour déterminer quel est la meilleure interaction possible entre le gestionnaire de ressource
réseau et celui des ressources de calcul. Un algorithme de Co-allocation est proposé pour
améliorer l’efficacité du système telle qu’elle est perçue par l’utilisateur. Un modèle an-
alytique est proposé pour prédire et comprendre les performances, des simulations ont
permis de vérifier la validité du modèle et des résultats.

Même si cette thèse porte essentiellement sur les ressources de calcul et réseau, il est

iv Résumé

possible de généraliser la plupart des résultats du chapitre architectural et protocolaire à
d’autres types de ressources.

v

Abstract

New computing applications require nowadays a physical distribution of computing re-
sources in order to mitigate power consumption, security policies and system scalability
problems. For instance, collaborations between research institutes require the use of sev-
eral heterogeneous computational and storage resources to solve complex problems. These
geographically distributed resources belonging to different organizations must be associ-
ated logically in order to solve cooperatively a given problem or to provide a given service.
The virtual infrastructure corresponding to the set of these distributed and remote re-
sources and to the inherent underlying networking facilities is called a Grid. Present
models where applications are overlaid onto networks without any management informa-
tion exchange do not enable network and other resources such as computing or storage to
be co-allocated on demand. Thus, new generation of control plane and of management
plane must be defined in order to provide on-demand cooperative computational services
with a service level agreement (SLA) including Quality of Service (QoS) guarantees taking
into account network and computing resources.

The aim of this thesis is first to provide a review of the state of the art on co-allocation.
For that purpose, various environments such as Web Services (WS) distributed resources
management systems, IP Multimedia Subsystem (IMS) and Generalized Multi-protocol
Label Switching architecture (GMPLS) are considered. We propose extensions to existing
Grid toolkits, WS, IMS and GMPLS for dynamic resource co-allocation provisioning. The
suitability of each of these approaches for Grid services provisioning is investigated and
compared to the other alternatives. We then analyze a WS based protocol between a global
resource coordinator (Grid Scheduler) and local resources managers (local schedulers).
The WS-Agreement protocol is extended in order to permit dynamic SLA negotiation.
Algorithms are proposed to model the possible interactions between the grid scheduler,
the network resource manager and the local schedulers. A co-allocation algorithm is
proposed to improve the efficiency as seen by the end user and the resource providers. An
analytical model is proposed to predict and understand the performance; simulations are
run to verify the validity of the model and the results.

Even though this thesis focuses on computational and network resources co-allocation,
most of the results presented in the architecture and protocol section can be applied to
any kind of resources.

vi Abstract

vii

Version Française

Introduction

De nombreux projets [39, 141, 121, 94] comme SETI@HOME [22, 40] nécessitent une
puissance de calcul et de stockage phénoménale, allant bien au delà de ce que peuvent
fournir les ordinateurs actuels. SETI@HOME analyse les signaux radios venant de toutes
les directions visibles de l’espace dans le but de découvrir des signaux émis par une source
intelligente extra-terrestre. La conception de super calculateurs pour résoudre de tels
problèmes n’est pas une option réaliste tant pour des raisons économiques que techniques:
manque d’espace, d’accès électriques, risque de sécurité (incendie). L’usage de centaines
ou de milliers de ressources de calcul distribuées est donc une réalité et une nécessité. Ces
architectures ainsi formées sont dites virtuelles, en ce sens elles fédèrent des ressources
appartenant à des entités administratives différentes. Elles rivalisent de puissance avec
les meilleurs super calculateurs au monde [39].

Les projets mentionnés ici, bien que d’une importance particulière sont hors du propos
de cette thèse car ils ne permettent pas de fournir de garantie de qualité de service (QoS)
aux utilisateurs. Cette thèse porte sur les infrastructures de calcul virtuelles fournissant
une qualité de service prenant en compte l’utilisation du réseau et des calculateurs. Les
utilisateurs de l’infrastructure peuvent bénéficier d’un contrat de service (Service Level
Agreement SLA) garantissant par exemple les temps de calcul en prenant en compte le
temps passé dans le réseau et le calculateur. Le mot “Grille” anglicisme issu de “Compu-
tational Grid [72, 70, 73]” lui même issu de “Power Grid”, c’est-à-dire réseau électrique
serait mieux traduit par réseau. Il désigne une fédération de ressources de stockage, de
calcul, réseau appartenant à des entités administratives différentes établies dans le but de
résoudre un même problème. Ces ressources sont caractérisées par leur hétérogénéité et
leur distribution géographique. Elles sont inter connectées par un réseau longue distance.
Le concept est né de la volonté de créer une infrastructure de calcul ou de stockage aussi
facile à utiliser que celle du réseau électrique. Il suffit de se brancher au réseau pour pou-
voir utiliser les ressources sans avoir à se soucier de leur localisation ou caractéristiques
techniques à l’instar du réseau électrique: personne ne sait si l’énergie utilisée à un mo-
ment donnée est issue d’une centrale nucléaire ou à vapeur. Cette abstraction s’appelle
la virtualisation des ressources.

Dans tous les domaines scientifiques et dans toutes les industries, de nombreuses appli-
cations nécessitent l’utilisation une forte puissance de calcul. L’émergence de ces besoins
est concourante à l’apparition de réseau ultra haut débit et de ces infrastructures de calcul
virtuelles. Toutefois de nouveaux modèles commerciaux de fourniture de service sont à

viii Version Française

envisager. Le modèle prédominant est la location de puissance de calcul proportionnelle-
ment à l’utilisation qui en est faite, par exemple un euro par heure par CPU (Central
Processing Unit). De même de nouvelles organisations sont nécessaires pour pouvoir
garantir la qualité de service. Cette thèse distingue les acteurs suivants: les propriétaires
exploitant la ressource de calcul, ceux exploitant la ressource réseau, les utilisateurs fin-
aux et le fournisseur du service de calcul virtualisé. Le fournisseur du service de calcul
virtualisé peut appartenir à la même entité juridique que l’opérateur réseau. L’opérateur
réseau jouerait donc un rôle d’intermédiaire entre les consommateurs de ressources et les
fournisseurs. Chacun des acteurs exploitera un logiciel (Grid toolkit) ou une partie du
logiciel de gestion et d’accès aux ressources de la grille. Le gestionnaire du réseau et celui
du ou des calculateurs devront communiquer avec le gestionnaire permettant la fourniture
du service de calcul. Bien que différents fournisseurs de ressources existent, ils présentent
une interface commune afin de faciliter la gestion de l’accès à ces ressources, c’est l’une
des fonctions principale du Grid toolkit.

Les relations commerciales entre ces différents acteurs sont régies par des contrats de
fourniture de service (SLA). La description du service, ses caractéristiques, ses contraintes,
ses garanties sont négociées par les deux parties: le fournisseur de service et le consom-
mateur. Ces contrats font l’objet d’une littérature abondante [21, 119, 80, 106, 105, 91,
101, 59].

Parmi les différents types de service qui peuvent être fournis, nous étudierons partic-
ulièrement les services de connectivité à la demande sous contrainte de bande passante ou
latence et un service de calcul intégré, c’est-à-dire intégrant la qualité de service réseau
dans l’offre de calcul. La bande passante et latence à la demande sont les deux services
réseaux fortement demandés [134] par la communauté développant les infrastructures pour
les applications fortement distribuées. La figure 1 à la page 5 illustre le schéma global
de fonctionnement d’un tel service et de ses interactions. Dans ce contexte différentes
approches [82, 124, 157, 86] d’optimisation cherche à maximiser l’utilisation qui est faite
des ressources réseaux seules, par exemple par la minimisation du nombre de requêtes re-
jetées. Cette thèse porte sur l’étude d’un service de calcul intégré qui prendrait en compte
l’optimisation des ressources de calcul et des ressources réseau. Dans ce cadre, de nom-
breux problèmes sont à résoudre: l’architecture, les protocoles, l’utilisation efficace des
ressources, l’hétérogénéité des ressources, le passage à l’échelle, les mécanismes de réali-
sation de la garantie de QoS, la tarification, etc. Cette thèse porte sur les trois premiers
problèmes: l’architecture, les protocoles et l’optimisation. Un des points clés de l’étude
porte sur la nature des informations échangées entre l’opérateur réseau et le fournisseur du
service de calcul intégré. Chaque gestionnaire de ressources ne souhaite pas diffuser des
informations jugées parfois comme stratégiques et confidentielles: la topologie du réseau,
l’état de réservation des liens, la localisation des pannes, la charge des processeurs. Ces
informations permettent une bien meilleure utilisation des ressources. Nous verrons dans
la suite quelles informations peuvent être communiquées et dans quel but.

La structure de la version française reflète l’organisation globale de la thèse. Dans un
premier temps une revue synthétique de l’état de l’art et des projets portant sur la co-
allocation de ressources est faite au chapitre 1. Les trois architectures et les contributions
architecturales de cette thèse sont présentées au chapitre 2. Nous étudions plus en détail
au chapitre 3 le mécanisme de co-allocation de ressource et le protocole d’établissement de

Version Française ix

SLA. Nous proposons des extensions au protocole d’établissement de SLA afin de mieux
négocier l’accès aux ressources puis nous étudions la performance de ces extensions. Enfin,
la contribution majeure de cette thèse est décrite au chapitre 4, nous étudions les opti-
misations possibles grâce à la co-allocation dans trois scénarios d’échanges d’information
entre le gestionnaire du réseau et celui de la grille. Nous proposons un modèle analytique
permettant de prédire les performances de la grille et nous validons ce modèle et nos
prédictions grace à des simulations. Nous concluons ce travail en donnant les pistes pour
poursuivre cette recherche qui ouvre les portes d’un domaine peu étudié d’optimisation
des ressources de calcul et des ressources réseau: l’optimisation croisée.

Contexte

Bien que des services commerciaux d’exploitation de ressources de calcul existent déjà [1,
2, 23, 4], ils ne permettent pas de réserver à la demande des ressources réseaux et des
ressources de calcul. Le temps potentiellement gagné en sélectionnant un ordinateur
puissant pour réaliser une tache complexe peut être perdu à cause de réseau qui relie
l’utilisateur au calculateur. Nous allons donc décrire dans cette section et au chapitre 1
les technologies qui permettent la gestion des ressources distribuées, les grid toolkits et
les projets dans lesquels ces logiciels interagissent avec le réseau pour assurer une certaine
qualité de service.

Parmi ces logiciels nous devons distinguer les logiciels libres Globus [69], Unicore [65,
66], G-Lite et les logiciels commerciaux Platform LSF [18], Altair PBS [19], Sun Grid
Engine [24], IBM LoadLeveler [26, 89], Datasynapse GridServer [6]. Quasiment tous ex-
ploitent fortement les technologies dites Web Services: SOAP [49] ou REST [67]. Les deux
toolkits principaux, Globus et Unicore présentent à peu près les mêmes fonctionnalités.
La figure 1.6 de la page 24 reprends les différents noms des modèles associés aux fonction-
nalités de gestion des tâches, d’ordonnancement, de transfert de données et de sécurité.
Ces logiciels ne sont pas encore complètement compatibles et c’est pour l’heure leur prin-
cipal défaut. Bien que des tentatives de standardisation sont en cours [74], leur évolution
reste très lente et l’adoption de ces standards limitée. Pourtant des tests d’interopérabilité
dans le cadre de la communauté libre sont réalisés [123, 122] et constituent une première
étape vers l’émergence d’un standard. Le chapitre 1 décrit plus en détail les principaux
toolkits et l’état de la standardisation.

Dans la section 1.5 (page 24) du chapitre 1, nous passons en revue les nombreux
projets exploitant à la fois le réseau et la ressource de calcul: Network Resource Schedul-
ing (NRS) [12], Globus Architecture for Reservation and Allocation (GARA) [7, 71],
GARA based DataTAG [57], User Controlled Light Paths (UCLP) [27], Internet2 QBone
Bandwidth Broker [20], EGEE Bandwidth Allocation and Reservation (BAR) [32], Dy-
namic Resource Allocation in Generalized Multi Protocol Label Switching GMPLS opti-
cal networks (DRAGON) [99], AkoGrimo [37], EuQoS [133], Phosphorus [104], Nortel’s
DRAC [16], VIOLA [28, 152], Enlightened [45], G-Lambda [146]. Tous ces projets pro-
posent des modèles et des techniques pour offrir une qualité de service réseau aux appli-
cations de la grille. La figure 1.23 de la page 43 reprends les caractéristiques de chacun
de ces projets. Les éléments différentiateurs sont les suivants: méthode pour offrir la QoS

x Version Française

(orienté paquet ou circuit), niveau de communication entre le réseau et les applications
(niveau applicatif ou réseau), prise en compte de plusieurs domaines réseaux ou non. Nous
avons regroupés ces projets en trois familles correspondant aux technologies sous jacentes
les plus utilisées: Web Service, GMPLS et IMS (IP Multimedia Subsystem). La section
suivante correspondant au chapitre 2 va décrire plus en détail ces architectures et les
contributions de cette thèse correspondant pour chacune.

Architectures

Cette section reprends les propositions majeures de cette thèse en matière d’architecture
des systèmes de co-allocation de ressources. Nous décrivons dans un premier temps les
extensions aux protocoles réseaux, puis à l’architecture IMS et enfin aux architectures
reposant sur les Web Services. Ces extensions ont fait l’objet de plusieurs brevets [111,
112, 114, 151] et publications [117, 118].

La fourniture d’un service de calcul offrant des garanties de qualité de service né-
cessite la réservation des ressources de calcul et réseau. Quand une tâche nécessite
plusieurs ressources différentes, la probabilité que deux fournisseurs soit en mesure de
fournir la ressource immédiatement est faible, elle diminue avec le nombre de ressources
qui doivent être disponible au même instant. Il est donc indispensable de pouvoir réserver
les ressources à l’avance afin de planifier leur utilisation. Avec l’émergence d’architectures
comme MPLS et GMPLS, il est désormais possible de réserver la ressource réseau afin de
garantir un débit ou une latence. Plus rapidement, on peut parler de réservation de bande
passante ou de bande passante à la demande. Toutefois, les mécanismes actuels ne perme-
ttent pas de réserver aujourd’hui de la bande passante pour une utilisation future. Il est
impossible avec GMPLS d’envoyer un message aux nœuds du réseau du type “Réserve une
connexion virtuelle qui sera exploitée demain entre 3h et 6h”. Cette fonctionnalité, aussi
appelée planification des ressources peut être réalisée de deux façons différentes. La pre-
mière consiste à ajouter cette fonctionnalité au sein du gestionnaire du réseau, la seconde
consiste à modifier les protocoles de contrôle actuels, RSVP-TE et OSPF-TE. Yong [36]
propose à l’Internet Engineering Task Force IETF d’ajouter au gestionnaire du réseau un
module permettant de recevoir les requêtes de connexion à la demande, de les traiter, de
gérer une base de donnée des requêtes et de l’état futur du réseau, de calculer les routage
futurs du réseau et de gérer l’allocation des ressources le moment venu. La figure 2.3 de la
page 55 décrit ce type d’architecture. Une autre approche consiste à modifier directement
le plan de contrôle afin d’intégrer les fonctionnalités voulues. Il est intéressant de modi-
fier le protocole de signalisation RSVP-TE, de routage [114] et l’architecture de calcul de
route Path Computing Element PCE [112] afin que tous trois prennent en compte l’état
futur du réseau et soient capable d’automatiser les demandes de connectivité futures.

La modification à apporter au protocole de signalisation consiste à rajouter les champs
décrivant les informations temporelles d’utilisation de la connexion. Ainsi modifié, RSVP-
TE pourrait comme faire suivre les requêtes futures comme les requêtes immédiates de
nœud en nœud. Chaque nœud traiterait les nouvelles requêtes en analysant une base de
données contenant l’état futur du réseau. Cette base pourrait avoir été construite à partir
du gestionnaire du réseau ou grâce à un protocole de routage modifié de façon à diffuser

Version Française xi

l’état futur du réseau décrit dans le brevet [114] ou encore à partir d’un système ad-hoc
de type météo du réseau.

Aujourd’hui, les solutions pour fournir une réservation à l’avance des ressources utilisent
une architecture centralisée. De plus, l’établissement d’une connexion future nécessite
une intervention humaine sur le gestionnaire de réseau afin de lancer l’optimisation future
du réseau et la configuration des liens. Une fois l’état futur du réseau déterminé il est
téléchargé dans chacun des nœuds. Ce processus est donc complètement manuel et pas
du tout automatisé. L’idée d’un protocole de routage comprenant les informations tem-
porelles permettrait de distribuer et d’automatiser le processus de calcul des routes futures
en diffusant l’état futur du réseau dans chaque nœud. Toutefois le plan de contrôle du
réseau transporterait des informations liées au futur, l’impact de ce surplus d’information
sur le dimensionnement du plan de contrôle est encore à étudier.

Le groupe de travail sur l’architecture d’éléments de calcul de route PCE a démarré
en 2004. L’idée de départ consiste à externaliser la fonctionnalité de calcul de route gour-
mande en ressource de calcul des routeurs et de la mettre dans un nouvel élément du
réseau: le PCE. La requête de calcul de route serait donc envoyé par un client, le Path
Computation Client PCC au Path Computation Element PCE. Des calculs de routes
récursifs peuvent ainsi se faire par le biais de cette communication entre éléments. Il de-
vient alors possible de calculer des routes inter domaines dans le but de faire de l’ingénierie
de trafic inter domaine. Une liste complète des avantages du PCE peut être trouvée dans
le document architectural [35]. Cette thèse propose [112] d’utiliser le PCE afin de calculer
les routes à l’avance dans le réseau et d’étendre les fonctionnalités du PCE à la planifi-
cation des routes dans le réseau. Une telle utilisation est décrite dans la figure 2.4 de la
page 57. Dans ce scénario les PCE sont utilisés pour établir une connexion inter domaine
dans le futur à la suite d’une demande de l’ordonnanceur de la grille. Dans le scénario le
plus simple, l’ordonnanceur n’a pas la connaissance du réseau sous jacent et ne connait
rien de la topologie ni de l’état des ressources réseaux. Il demande à un fournisseur de
connectivité l’établissement de la connexion entre le client et la ressource de calcul. Le
fournisseur de connectivité a besoin de connaitre la route à utiliser dans le futur. Il envoie
donc un message de calcul de route à son PCE. Ce message est traité par les différents
PCE du réseau, chacun calculant la route propre à son domaine de responsabilité. Ce
calcul est représenté par les flèches pleines sur la figure 2.4. Une fois la route future cal-
culée, il est nécessaire de réserver les ressources réseaux sur cette route, pour cela, il est
possible d’utiliser une extension du PCE comme le suggère la figure ou un protocole de
signalisation future comme décrit précédemment. L’utilisation du PCE pour réserver les
ressources (unsolicited mode) est possible, néanmoins des extensions sont nécessaires afin
de réserver des resources dans le futur. Dans ce mode, le calcul de route et la réserva-
tion dans le futur se feraient grace aux PCE, dès que les routeurs ont besoin de recevoir
l’information de réservation, le PCE ou le service de connectivité leur enverrait par le
biais d’une interface verticale (traits pointillés sur la figure 2.4).

GMPLS est une architecture qui comprend deux protocoles de contrôle du réseau: Un
pour diffuser l’état du réseau à l’ensemble des nœuds et un pour demander l’établissement
de connexions virtuelles par le biais de réservation de ressources. L’idée de GGMPLS [132,
34] Grid GMPLS consiste à réutiliser les mécanismes de GMPLS et de les étendre à
d’autres ressources comme le stockage ou le calcul. Un nouveau objet de type Opaque Link

xii Version Française

State Advertisment (Opaque LSA) est proposé pour les ressources de calcul et de stockage.
Ces objets sont des objets du protocole OSPF-TE conçus pour être transmis par tous les
routeurs. Seuls les routeurs possédant la fonction de traiter les nouveaux objets sauraient
interpréter ces messages. Il en serait ainsi des applications de la grille, des ressources de
stockage et de calcul et des routeurs GGMPLS. Les informations contenues dans cet objet
serait l’identifiant Grille, la puissance CPU maximum disponible, la puissance disponible
instantanée, l’espace de stockage disponible, etc. Ces extensions permettraient donc de
diffuser l’état de l’ensemble des ressources, calcul, stockage et réseau à l’ensemble des
routeurs et application connectées à ces routeurs. En plus de ces modifications à OSPF-
TE, des modifications seraient apportées au protocole de réservation des ressources réseau
afin d’étendre sa fonctionnalité à d’autres types de ressource. Ces idées regroupées sous le
titre Grid User to Network Inteface proposées en 2004 [135] mais non détaillées sont très
ambitieuses. Le projet Phosphorus [104] semble vouloir matérialiser cette interface. Les
fonctionnalités de l’interface sont très nombreuses: Gestion des jobs (soumission, suivi,
contrôle), Gestion de la sécurité, Représentation et Manipulation des états des ressources,
Notification, Allocation de bande passante flexible, établissement de connexion future,
détection des erreurs, protection, restauration, propagation des événements relative aux
serices, classification du trafic, etc. Les bénéfices d’étendre GMPLS à d’autres types de
ressource ne sont pas très clairs en dehors d’une “Intégration globale des ressources”. Un
des facteurs ayant menés à la création de standards comme MPLS ou GMPLS a été
que les coûts associés à la gestion de différentes technologies (IP, ATM, Frame Relay,
Ethernet) étaient supportés par une même entité: l’opérateur réseau. Aujourd’hui, des
entités différentes gèrent les ressources réseau et les ressource de stockage, le besoin n’est
donc pas de réduire les coûts de gestion en proposant une architecture unique commune,
mais de disposer de mécanismes de collaboration, de coordination et de co-allocation. De
plus, GMPLS gère des objets binaires et non textuels, la communauté de développeurs
ayant à maitriser GMPLS est très petite alors que celle ayant à maitriser les protocoles
de gestion des Grilles est énorme. Les protocoles binaires tel GMPLS sont plus durs
à concevoir, maitriser, dépanner. GMPLS est conçu par la communauté réseau qui ne
comprend pas toujours la communauté informatique. GMPLS n’a pas été conçu pour gérer
n’importe quel type de ressource et est prévu pour fonctionner dans un environnement
protégé, des fonctionnalités importantes de sécurité lui font défaut. Enfin, ce protocole
est prévu pour faire fonctionner des systèmes extrêmement stables qui doivent offrir un
niveau de fiabilité et de disponibilité incomparable. Toute modification du standard même
infime est très difficile à obtenir. Pour ces raisons, les développements des Grilles reposant
sur des modifications de GMPLS ont peu de chance d’être un jour standardisé. De plus,
des technologies alternatives existent et ne présentent pas ces défauts, ces technologies
reposent sur l’XML Extensible Markup Language. Par nature, elles sont conçues pour
supporter des innovations et des extensions facilement.

IP Multimedia Subsystem IMS [14] est l’architecture réseau de nouvelle génération
(Next Generation Network au sens de l’Union Internationale des Télécommunication).
Cette architecture est standardisée par le 3GPP [25]. Elle propose des éléments communs
pour fournir n’importe quel type de services multimédia à n’importe quel type de terminal.
A l’origine, les terminaux envisagés étaient des terminaux mobiles, néanmoins avec la
converge fixe mobile, l’architecture a évoluée pour fournir n’importe quel type de service à

Version Française xiii

n’importe quel type de terminal fixe ou mobile. L’architecture IMS distingue trois acteurs:
les utilisateurs finaux, l’opérateur réseau et les fournisseurs de services. Ces derniers sont
hébergés sur des serveurs applicatifs. L’architecture a été conçue pour permettre l’ajout
de nouveaux services à l’infrastructure réseau actuelle. Bien sûr, la notion de service dans
le contexte IMS vient du monde des télécommunications mobiles, les premiers services
envisagés sont des services de télécommunication, suivi d’appel, répondeur, vidéo, etc.
Néanmoins la flexibilité de l’infrastructure, l’existence de fonctions communes comme la
facturation, la gestion des utilisateurs, la sécurité en font un candidat important pour la
fourniture d’un service de calcul. L’emploi de l’architecture IMS dans le but de fournir
des services de calcul [117, 118] est l’une est contribution originale de cette thèse. Bien
que nous n’ayons pas pu implémenter nos propositions, l’utilisation du protocole Session
Initiation Protocol qui est au cœur de l’architecture IMS dans le cadre de service de calcul
a été réalisé par Campi [53, 54, 52, 54].

L’architecture IMS peut être vue comme une architecture en deux strates telle décrite
par le cadre NGN de l’ITU: une strate service et une strate transport (voir la figure 1.22
de la page 41). Chaque strate étant composée d’un plan usager, de contrôle et de ges-
tion. L’architecture IMS définie les fonctions et les interfaces entre les différents plans
de contrôle de façon à ce que les acteurs puissent jouer pleinement leur rôle. Les proto-
coles utilisés par l’IMS sont développés par l’IETF: IP, SIP, Session Description Protocol
SDP [85], Diameter. L’ensemble de l’architecture repose sur un paradigme de communi-
cation en mode connecté, c’est-à-dire que les communications se font dans le cadre d’un
appel ou d’une session entre participants. Il est donc nécessaire d’établir la session avant
que la communication ou l’échange de données puisse commencer. Les éléments qui vont
router les appels dans le réseau sont des contrôleurs de session, plus de détails sont don-
nés dans le chapitre 2. La base utilisateur est gérée par le Home Subscriber Server. Elle
contient toutes les informations relatives aux utilisateurs, les profiles, filtres et règles de
gestion. Les serveurs applicatifs hébergent les applications qui fourniront le service à
l’utilisateur, ils communiquent avec le reste de l’IMS par SIP.

La figure 2.5 de la page 63 décrit les extensions nécessaires pour fournir un service de
calcul. La figure 2.6 de la page 64 illustre les messages échangés et les étapes pour établir
une session de calcul avec une ressource de calcul. Nous allons prendre comme exemple un
utilisateur qui a besoin de traiter un énorme fichier vidéo qui réside sur le site de gauche
“Application” de la figure 2.5. Nous supposerons que les applications et les ressources
utilisent un grid toolkit fournissant les fonctionnalités de base de gestion de jobs, des
données et de suivi. Seulement quelques fonctions des toolkits doivent être modifiées pour
prendre en compte l’architecture IMS. Nous supposerons que le réseau est contrôlé par
(G)MPLS. Les deux boites orange représentent les contrôleurs de session de l’architecture
IMS. L’élément PDF Policy Decision Function fait le lien entre la réservation des ressources
de calcul et des ressources réseaux, c’est cet élément qui décide si l’utilisateur peut ou
non réserver des resources réseaux. Les différentes étapes du processus du traitement du
fichier vidéo sont maintenant décrites.

Le scénario commence par l’enregistrement dans le réseau des ressources de calcul, les
ressources à droite dans la figure 2.5 envoie un message SIP REGISTER multimediapro-
cess@serviceY.com à l’architecture IMS, ce message arrive jusqu’à l’annuaire IMS (SIP
registrar) étendu de nouvelles fonctionnalités représenté par l’élément ”Advance Regis-

xiv Version Française

trar”. Cette étape est réalisée une seule fois lors de l’activation des ressources, elle perme-
ttra à l’architecture IMS de faire le lien entre l’adresse logique IMS des ressources et leur
adresse physique IP. Une fois cette étape réalisée, les utilisateurs pourront avoir accès aux
ressources de calcul enregistrées. Quand ils arrivent sur le réseau, ils s’identifient eux aussi
par le biais du message SIP REGISTER qui parviendra jusqu’à l’annuaire. Ce processus
est aussi représenté dans la figure 2.6 de la page 64. Dans l’IMS, l’annuaire serait relié au
Home Subscriber Server.

Quand les utilisateurs souhaitent soumettre leurs jobs sur la grille, le grid toolkit
cherche à établir une session SIP avec les ressources de calcul. Il envoie un message
SIP INVITE à multimediaprocess@serviceY.com contenant la description du job. Ce
message est ensuite transmis de serveur relai en relai pour parvenir jusqu’à un service de
localisation des ressources avancé relié à l’annuaire. Ce service va alors pouvoir réaliser le
processus de sélection des ressources, c’est-à-dire choisir parmi les ressources disponibles
lesquelles répondent le mieux au besoin de l’utilisateur compte tenu de l’état du réseau et
des ressources. Cette sélection peut prendre en compte les règles de gestion des opérateurs,
les préférences de l’utilisateur et les critères de performance comme par exemple la vitesse
de traitement des machines, la capacité du réseau, la latence moyenne, etc. Etant fourni
par l’opérateur réseau, il accède au plus d’information possible, c’est lui qui porte la valeur
ajoutée de l’opérateur. Cette thèse propose d’adapter les mécanismes de ”SIP forking”
existant du type ”sonne tous les téléphones partageant la même adresse” à ”sonne tous
les téléphones partageant la même adresse et répondant aux objectifs d’optimisation et
aux règles de gestion”. Par exemple, un fournisseur de service souhaitant équilibrer la
charge entre deux fermes de calcul pourrait installer cette règle dans le registre avancé.
L’équilibrage de charge serait réalisé en prenant en compte la charge en temps réel et la
bande passante disponible entre les utilisateurs et les fermes.

Une fois que le site de calcul a reçu la requête SIP INVITE demandant l’établissement
de la session, les participants de la session doivent se mettre d’accord sur les ressources
réellement utilisées et les paramètres d’emploi de celles-ci. Cette étape est une étape de
négociation des caractéristiques de la session. Différents mécanismes SIP [129, 131, 130]
existent déjà pour réaliser cette étape: le modèle de communication offre/demande utilisé
par exemple dans la négociation de codec, les pré conditions de QoS. Ces mécanismes
peuvent être réutilisés pour négocier la présence de certaines bibliothèques de fonctions
ou d’exécutables sur la machine cible. A la fin du processus de négociation, un des
serveurs SIP demande la création d’un jeton dans l’élément de décision (PDF). Ce jeton
représente qu’un session SIP est sur le point de commencer que les participants sont
identifiées et autorisés et que les ressources applicatives sont prêtes. A priori les ressources
réseaux sont aussi disponibles à moins de n’avoir été préemptées par d’autres processus
entre temps. La réservation des ressources réseaux peut donc commencer, cette étape
est représentée dans la figure 2.6. Dans une première variante le grid toolkit possède
une implémentation du protocole RSVP-TE, dans une seconde variante, le contrôleur
de session à la périphérie du réseau (à gauche sur la figure) déclenche la signalisation
réseau dans le routeur de périphérie par le biais d’une interface verticale. Dans les deux
approches le message qui parvient au routeur de périphérie contient le jeton lui permettant
de vérifier si la source du message à le droit de d’initier une réservation réseau. Le routeur
interroge donc le PDF qui lui confirme ou rejette la validité du jeton. Dans le cas décrit

Version Française xv

ici, le jeton est validé et la réservation de ressource réseau peut se faire. Les services
multimédia prévu par l’IMS nécessitent une QoS, il en est de même pour les services
d’accès aux ressources de calcul ou de stockage. Les fonctions de contrôle d’admission pour
le réseau d’accès sont en cours de standardisation et doivent être étendue pour le réseau
de cœur. C’est un des objectifs de l’ETSI (European Telecommunication Standardisation
Institute) TISPAN (Telecommunications and Internet Converged Services and Protocols
for Advanced Networking).

L’architecture IMS possède des mécanismes pour prendre en compte la facturation de
chaque session. Ces mécanismes peuvent être complètement réutilisés dans le cadre de
la fourniture d’autres types de services. De plus, le protocole SIP permet la gestion de
message de suivi et de contrôle [127] qui sont nécessaire à la gestion d’une grille de calcul.

De nombreux développements dans l’architecture IMS et le protocole SIP constituent
les fonctions de base indispensables à une grille de calcul: l’authentification des utilisa-
teurs, l’autorisation d’accès, la facturation par utilisateur et par session, la négociation
des ressources, la qualité de service et la réservation des ressources. L’intégration de ces
fonctions entre les grilles et le réseau permettrait de générer de la valeur pour les opéra-
teurs réseaux, les utilisateurs de grille et les fournisseurs de ressources. Dans le cadre
des développements actuels d’un réseau pour tous les services, le développement paral-
lèle à l’IMS de l’ensemble des fonctionnalités de base en utilisant l’architecture orienté
service (SOA) pour fournir des services de calcul semble constituer un doublon inutile.
Cela illustre les difficultés de compréhension et de communication des deux communautés:
celle des télécommunications pour l’IMS et celle des informaticiens pour les architectures
SOA. Cette thèse propose aux gestionnaires de la grille et aux fournisseurs de ressource de
s’affranchir de la gestion de certaines fonctions en se reposant sur l’architecture envisagée
pour les réseaux de nouvelle génération. C’est le but d’une architecture Grille intégrée
aux réseaux de nouvelle génération. Toutefois des travaux supplémentaires concernant la
performance de cette architecture intégrée nécessite d’être réalisés.

Les Web Services reposent sur l’architecture orientée service (SOA), cela veut dire que
chaque fonction de l’architecture est réalisée par une entité cliente et une entité serveur
qui communiquent selon un modèle requête/réponse. D’autres types de communication ne
faisant pas partie de l’architecture SOA sont par exemple la signalisation telle qu’utilisée
dans les réseaux de télécommunications, d’autres encore comme la notification d’erreurs à
toutes les entités de gestion. L’avantage de cette architecture est qu’il facilite la réutilisa-
tion et la composition des fonctions de base pour construire des systèmes plus complexes
fournissant des services plus avancés. Le paragraphe suivant va décrire le fonctionnement
de base d’un service de calcul permettant à la co-allocation des ressources. Le projet VI-
OLA [28] (Vertically Integrated Optical Network for Large Application) sera pris en exem-
ple car représentatif de l’état de l’art. Nous nous focaliserons plus particulièrement sur le
fonctionnement de l’ordonnanceur de la grille appelé meta-scheduler [152] dans le projet.
VIOLA utilise le Grid toolkit Unicore [66], la figure 2.1 de la page 51 présente un schéma
global de l’architecture. Les éléments en violet font partie d’Unicore: Unicore client est
le client Unicore (voir figure 2.2 à la page 52), Unicore Gateway est l’application qui se
charge des problématiques de sécurité, NJS pour Network Job Supervisor se charge de la
gestion des jobs, TSI pour Target System Interface se charge de l’adaptation (au sens des
modèles de conception [76]) entre les fonctionnalités de gestion d’Unicore et celles offertes

xvi Version Française

par le gestionnaire installé sur le site de calcul. Les éléments RMS (Resource Management
Systems) désignent les gestionnaires de ressources sur les sites de calcul, ils incluent les
ordonnanceurs locaux. L’élément ARGON (Allocation and Reservation in Grid-enabled
Optic Networks) est l’adaptateur entre le gestionnaire du réseau et Unicore. L’élément
MSS (Meta-Scheduling service) est l’ordonnanceur de la grille. C’est lui qui va recevoir les
demandes de traitement des clients, sélectionner les ressources et soumettre les jobs sur
les ressources. Le fonctionnement global de l’architecture est simple: l’ordonnanceur de
la grille coordonne l’utilisation des ressources, il se charge de sélectionner quelles sont les
meilleures ressources à utiliser pour chaque job et planifie leur utilisation en les réservant.
Chaque élément décrit communique avec les autres par le biais d’interfaces Web Service
et de requêtes SOAP.

Cette section a décrit les principales architectures utilisées pour fournir un service de
calcul réservant les ressources réseaux et de calcul. Trois architectures ont été présentées:
GGMPLS reposant sur les protocoles purement réseau comme GMPLS et ses extensions,
IMS et Web Service. Des extensions permettant l’automatisation de la planification du
contrôle des ressources réseaux ont été proposées et constitue une contribution impor-
tante de cette thèse sous la forme de brevets [111, 112, 114]. L’utilisation de l’architecture
IMS pour fournir des services grille est une autre contribution originale de la thèse a été
décrite et fait l’objet de publications [117, 118]. L’avenir de l’architecture GGMPLS sem-
ble compromis quand on considère la petite communauté de développeurs maitrisant déjà
les bases de cette architecture: GMPLS. De plus, la complexité des protocoles GMPLS
et leur conception ne permettent d’être étendu avec la même facilité que les architectures
SOA. De trop nombreuses modifications seraient nécessaire à ces protocoles. L’approche
IMS bien qu’originale est tributaire du succès de l’IMS qui n’est pas encore assuré à l’heure
de rédaction de ces lignes. Reste l’architecture Web Service qui malgré ses défauts possède
une grande communauté d’utilisateurs. Elle offre par ailleurs un degré de flexibilité très
apprécié et permet de s’intégrer avec d’autres technologies, notamment GMPLS, le PCE
ou l’IMS. L’architecture du projet VIOLA présentée dans cette section est un exemple de
réussite d’intégration. La section suivante et le chapitre 3 se focalisent sur cette architec-
ture et approfondissent plus en détail le protocole de communication entre l’ordonnanceur
de la grille et les gestionnaires de ressources locaux pour permettre la co-allocation.

Protocoles

Cette section étudie plus en détail le protocole de co-allocation. Dans un premier temps
le rôle des SLA dynamiques est montré. Pour parvenir au degré de service décrit par ces
contrats, la co-allocation de ressource est la solution étudiée dans cette thèse. Les dif-
férentes étapes permettant celle-ci sont donc étudiées. Puis en prenant l’exemple du projet
VIOLA, nous étudierons et comparerons deux protocoles pour parvenir à la co-allocation.
WS-Agreement est un protocole permettant la création de SLA. Les innovations portée à
celui-ci ont fait l’objet des publications [119, 120].

Depuis longtemps déjà, les opérateurs de télécommunications utilisent les SLA avec
leurs clients. Ces contrats ont une durée de vie très longue et les changements des
paramètres régissant la qualité peuvent nécessiter plusieurs semaines de procédure. Les

Version Française xvii

applications distribuées envisagées ont des besoins en matière de ressource et de qualité
de service très variable. La fourniture d’un service d’accès à des ressources de calcul né-
cessite de pouvoir mettre en œuvre pendant une durée limitée des quantités de ressources
très variables selon les applications. Des contrats matérialisant l’utilisation temporaire
d’une quantité définie à la dernière minute de ressource par exemple dans un cadre com-
mercial de location à la demande de puissance de calcul conjointe à une bande passante
réseau sont nécessaires. De tels contrats ont une durée de vie limitée et sont créés à la
dernière minute: ce sont des SLA dynamiques. La création de SLA dynamiques et la
négociation des paramètres de ceux ci sont indispensables à la fourniture d’un service
de calcul garantissant une qualité de service. L’ordonnanceur de la grille après avoir
reçu la demande de traitement d’une tâche est chargé de trouver les ressources et de né-
gocier les SLA avec les différents fournisseurs. Les différentes étapes de traitement d’une
tâche par l’ordonnanceur de la grille avant l’exécution de celle-ci sont décrites dans la
figure 3.1 de la page 69. Schopf avait déjà décrit ces étapes dans [136]. A la réception
de la description de la tâche l’ordonnanceur commence par éliminer les ressources (étape
1) qui ne correspondent pas aux contraintes décrites dans la tâche qu’elles soient liées à
des informations statiques (Système d’exploitation, Vendeur, débit d’accès maximal...) ou
dynamique (charge disponible, en maintenance...). Une fois un premier jeu de fournisseurs
potentiels identifiés, la négociation peut commencer (étape 2). Le premier temps de la
négociation est la négociation à proprement parlé, il s’agit de savoir quels fournisseurs
peuvent réellement traiter la tâche demandée, une communication est nécessaire entre les
fournisseurs de ressource et l’ordonnanceur. Une fois ces fournisseurs identifiés, un choix
doit être fait selon des critères d’optimisation et les différentes règles de gestion. Une fois
le choix des fournisseurs et des ressources établis, la création des SLA peut commencer
(étape 3), celle-ci peut se faire en une phase ou deux phases. La dernière étape (étape 4)
est la soumission de la tâche aux différentes ressources et l’association entre la tâche et
les contrats établis par l’ordonnanceur au nom de l’origine de la tâche.

La négociation est un sujet de recherche à part entière [139, 50, 96, 95, 51]. La
négociation de SLA dynamiques doit être automatisée et la littérature sur ce sujet est
aussi très abondante [88, 140, 80, 58]. Cette thèse se focalise sur la négociation de contrats
bilatéraux, c’est-à-dire entre deux parties: l’ordonnanceur et le fournisseur de ressources.
Plusieurs contrats bilatéraux étant ensuite regroupés en un seul pour fournir le service
désiré. Les systèmes de base de donnée distribués ont été largement étudiés par le passé,
ils ont permis de mettre en évidence les mécanismes pour propager un état consistant
sur plusieurs machines. Les experts [47, 92, 110] ont proposés des protocoles permettant
de propager les changements d’états à l’ensemble des machines: ”commit protocols”. Les
protocoles principaux reposent sur deux étapes: une étape de demande de changement
d’état auprès de chacune des machines puis une demande de validation (commit) du nouvel
état.

Dans un système de création de SLA bilatéraux avec plusieurs fournisseurs dans le
but de réaliser une co-allocation, l’ensemble des SLA bilatéraux forme un tout logique.
Chacun des SLA bilatéraux n’a pas de raison d’être sans l’existence des autres. Leur
création doit donc être collective. Les travaux sur les systèmes distribués s’appliquent à
la création de SLA pour réaliser une co-allocation. A chaque demande de changement
d’état correspond une création de SLA bilatéral, la phase de validation est nécessaire

xviii Version Française

quand tous les SLA bilatéraux ont été créés. Si un SLA bilatéral n’a pu être créé, il est
nécessaire d’annuler les autres SLA bilatéraux. Pourtant le protocole WS-Agreement [41]
de création de SLA ne comporte pas de phase de confirmation de création de SLA. Nous
avons donc proposé [120, 119, 154] d’étendre le protocole actuel afin de permettre 1) la
création de SLA en deux phases, création et confirmation, et 2) de négocier l’accès aux
ressources.

Le fonctionnement de l’ordonnanceur de la grille du projet VIOLA est décrit à la
figure 3.3 de la page 76. Cette figure représente en bleu dans le cadre supérieur les
différentes étapes du processus de co-allocation au sein de l’ordonnanceur de la grille
(Grid scheduler process), dans le cadre du milieu en rose clair les étapes du processus
sur les gestionnaires de ressources locaux et en jaune clair dans le cadre inférieur les
ressources. Afin de permettre à l’ordonnanceur de la grille de communiquer de la même
façon avec n’importe quel type de ressources, des adaptateurs ont été implémentés au
dessus de chaque gestionnaire de ressource locale pour lui présenter toujours la même
interface et les mêmes fonctions. Ces fonctions sont les suivantes: CouldRunAt, Submit,
Cancel, State. CouldRunAt prend en paramètre une description de tâche à exécuter et une
date (date de décalage) avant laquelle l’execution ne peut pas commencer. Elle renvoie
la date à laquelle la tâche peut commencer son exécution au plus tôt sur la machine
donnée après la date de décalage. Submit soumet une tâche et renvoie une référence
vers la réservation. Cancel annule une réservation. State interroge l’adaptateur pour
connaitre l’état d’une réservation comme par exemple la date à laquelle la réservation est
effective. Pour co-allouer les ressources l’ordonnanceur commence d’abord par interroger
(Etape Create Resource List) les différentes ressources par le biais des adaptateurs en
appelant la fonction CouldRunAt avec pour date de départ la date présente. Il établit
alors une liste des ressources disponibles. Il cherche alors dans cette liste si les ressources
nécessaires par la tâche sont disponibles au même instant (Etape Calculate Timeslot).
Si les ressources sont disponibles au même instant il envoie le message submit (Etape
Schedule Resource) aux adaptateurs des ressources pour réserver, sinon il réitère l’étape
”Create Resource List”en envoyant un nouveau message CouldRunAt avec comme date de
décalage la plus grande des dates d’exécution au plus tôt, et ainsi de suite jusqu’à temps
qu’une des ressources soit disponible ou que l’on ait dépassé les contraintes d’exécution
de la tâche, auquel cas, la tâche est rejetée. Après avoir reçu la demande de réservation
de l’ordonnanceur de la grille, les adaptateurs locaux doivent demander aux gestionnaires
de ressources locaux la réservation des ressources pour la tâche. Ils renvoient un message
décrivant simplement si la réservation a réussi ou échoué. L’ordonnanceur de la grille
doit alors interroger les adaptateurs (Etape Get Reservation Properties) en envoyant un
message State pour connaitre la date à laquelle les ressources ont réellement pu être
réservées. Il doit ensuite s’assurer que la date de réservation de l’ensemble des ressources
nécessaires est bien la même (Etape Check Reservation), si oui, la co-allocation a réussi,
sinon elle a échoué, il faut alors annuler les réservations effectuées et itérer le processus.
Le problème vient du fait qu’après avoir réalisé l’étape de Négociation, ici l’état Create
Resource List, les ressources locales ont pu être utilisées par des utilisateurs locaux par
exemple et ne sont donc plus disponible au moment où le message de réservation (Submit)
est reçu. La figure 3.4 de la page 77 décrit ce processus. Ce que nous venons de décrire
est une version assez ancienne de VIOLA, toutefois des versions plus récentes exploitent

Version Française xix

les même mécanismes fournis par le protocole WS-Agreement. Ce protocole possède les
mêmes défauts.

Le fonctionnement de base de WS-Agreement est décrit dans la figure 3.5 de la page 78.
Le protocole a été créé pour demander la création d’un SLA entre deux parties. Une forme
de négociation ultra simplifiée est possible avec WS-Agreement, c’est une négociation en
une étape dans laquelle le contexte, l’objet et les contraintes du SLA sont définies. La
méthode getResourceProperties renvoie un ensemble de modèle de SLA que le fournisseur
du SLA est susceptible d’accepter. En aucun cas, le fournisseur du SLA ne s’engage à
accepter le modèle donné en réponse, néanmoins ce modèle peut contenir par exemple
les contraintes permettant d’exclure d’office certaines demandes de SLA. Par exemple,
ces contraintes peuvent être le nombre maximum de CPU qu’il peut offrir, ou la durée
minimum d’une exécution sur ses ressources, la mémoire disponible. L’autre interface
dans WS-Agreement permet la création du SLA: createAgreement. Toutefois la réponse
à cette fonction est un message disant si la réservation à réussi ou échouée. Si réussi
le contrat est créé. Il sera nécessaire de vérifier dans une seconde étape si ce contrat
correspond bien à ce qui avait été demandé, notamment en matière de date de début de
la réservation. Et de même que précédemment il sera nécessaire d’annuler le SLA si les
dates ne correspondent pas.

Compte tenu de l’absence de support natif pour négocier des SLA dans WS-Agreement,
et contrevenir à ce problème de devoir annuler un contrat si la réservation n’est pas bonne,
avec Wäldrich et Ziegler, cette thèse propose d’étendre WS-Agreement et d’ajouter une
phase de confirmation du SLA et de réaliser la négociation en trois étapes: négociation de
SLA, création de SLA, confirmation. Ces trois étapes sont représentées dans la figure 3.7
de la page 81. La suite de cette section va décrire un modèle d’évaluation de performance
et comparer celle du protocole de co-allocation en deux phases, négociation et création à
celle du protocole en trois phases, négociation, création et confirmation.

Une des critiques souvent formulée à l’encontre des architectures Web-Service est leur
problème de performance. Le traitement des messages XML introduit une latence dans
les architectures SOA. Nous avons voulu dans cette thèse étudier sommairement ce point
et construire un modèle nous permettant d’évaluer la performance du protocole de co-
allocation. Nous avons focalisé l’étude sur la comparais de la performance entre un pro-
tocole à 2 phases de négociation et un protocole à 3 phases. Afin de mener cette étude,
nous avons construit différents réseaux de file d’attente représentant chaque protocole.
Le modèle utilisé a été proposé pour la première fois par Gurbani [84] pour l’évaluation
de la performance d’un serveur SIP. Dans notre contexte, nous évaluons la performance
de l’ordonnanceur de la grille. Les indicateurs de performance que nous avons étudiés
sont les suivants: Délais total introduit par le processus de co-allocation, nombre de de-
mande de tâche traitées par seconde par l’ordonnanceur, besoin mémoire nécessaire par
l’ordonnanceur. Nous avons supposé que l’ordonnanceur maintient en mémoire un état
correspondant à chaque tâche en cours de co-allocation. Les clients du réseau de file
d’attente seront les requêtes de co-allocation contenant la description des tâches et des
ressources nécessaires. A chaque état au sein de l’ordonnanceur de la grille correspond
une file d’attente, le passage d’un état à un autre est conditionné par la réalisation de
certaines opérations qui nécessitent un certain temps. La théorie des réseaux de Jackson
est utilisée et les hypothèses classiques sont faites. Ainsi les temps de service des files sont

xx Version Française

exponentiellement distribués, les clients arrivent selon un processus poissonien, chaque file
contient un seul serveur. Nous pouvons donc appliquer les formules analytiques classiques
pour calculer les indicateurs de performance. Les hypothèses simplificatrices faites pour
pouvoir faire des calculs ne sont pas très réalistes, mais elles suffisent pour construire un
modèle cohérent, comparer les deux protocoles et avoir une intuition de la performance
globale de l’ordonnanceur.

Le réseau du haut dans la figure 3.8 de la page 87 décrit le modèle utilisée pour le
protocole à deux phases, alors que le protocole à trois phases est décrit par le réseau
inférieur. Chaque serveur de chaque file introduit systématiquement un temps de traite-
ment qui correspond à la réception d’un message, à son traitement par l’entité qui l’a
reçu et à la génération d’une réponse et son envoi à l’entité suivante. Les délais de prop-
agation ne sont pas pris en compte. Chaque file correspond un état dans l’ordonnanceur,
parmi ces états, certains états sont des états d’attente de réponse des adaptateurs. Une
file correspondant à cet état introduira donc le temps mis par l’adaptateur à recevoir le
message, à le traiter et à générer la réponse. La convention suivante à été adopté, la lettre
au dessus de la file décrit qu’elle entité doit recevoir le message, le nom du message est
indiqué sur la file, et le taux de service µ ou l’inverse du temps moyen de traitement est
dans le serveur. LS signifie Local Scheduler, MS Méta-Scheduler, A pour ARGON, c’est
à dire, l’adaptateur du gestionnaire du réseau. Prenons par exemple la première file, la
requête de co-allocation est dans un état initial ”non créé”, une fois le message ”CreateA-
greement” reçu par l’ordonnanceur de la grille, celui ci doit disséquer le message, identifier
le type de ressource nécessaire, et envoyer un message ”CouldRunAt” aux adaptateurs
locaux. Le temps moyen pour réaliser ces trois opérations est 1/µ1. Le client passe alors
dans la deuxième file qui correspond à l’état ”en attente de réponse des adaptateurs”.
La deuxième file introduit le temps passé dans cette état d’attente. Ce temps est égal
au temps nécessaire par les adaptateurs locaux pour recevoir le message ”CouldRunAt”,
le traiter et envoyer la réponse à l’ordonnanceur, il s’agit de 1/µ2. Les probabilités de
transition d’un état à un autre sont supposées constantes. Après avoir reçu la réponse
des tous les adaptateurs, l’ordonnanceur doit déterminer si les ressources nécessaires sont
disponible au même temps, la probabilité q est la probabilité d’échec et qu’il faille réitérer
le processus. p est la probabilité de devoir envoyer un message d’erreur à l’utilisateur
suite à l’impossibilité de co-allouer les ressources. m est la probabilité de trouvé un temps
commun à toutes les ressources, m + p + q = 1. La probabilité d’itération q dépends de
nombreux facteurs, la charge sur les ressources locales est un des plus important. Cette
charge est agrégée dans un facteur relativement abstrait q. C’est une des faiblesses de
cette modélisation. Nous la contournerons en étudiant l’ensemble des indicateurs de per-
formance comme des fonctionnelles de q. En résolvant le système linéaire associé à ce
réseau de jackson, nous pouvons calculer la charge maximale supportée par le système,
les charges internes à chaque file et calculer le nombre moyen de client dans le réseau.
Nous en déduisons les besoins mémoire de l’ordonnanceur. Quant au délai total moyen
pour réaliser la co-allocation il est déterminé à partir du nombre moyen de client dans le
système grâce à la formule de Little.

La figure 3.9 de la page 89 représente le débit maximum de nombre de requêtes pou-
vant être traitée par seconde par l’ordonnanceur de la grille en fonction du paramètre
q. La constatation principale est que la différence entre les deux protocoles est relative-

Version Française xxi

ment faible. La figure 3.11 de la page 90 représente le nombre moyen de requête dans
l’ordonnanceur en fonction du paramètre q. La première constatation est un effet de seuil,
c’est à dire au delà d’une certaine probabilité de bouclage le nombre de job dans le sys-
tème explose. La leçon à tirer consiste à mettre en place des mécanismes supplémentaires
dans le protocole de façon à ce que les messages qui restent trop longtemps dans un état
expirent et soient annulés. De plus, le seuil pour le protocole à deux phases est le même
que celui à trois phases. Le nombre de requêtes présentes dans l’ordonnanceur de la grille
étant proportionnel à la mémoire requise pour la co-allocation dans l’ordonnanceur. La
figure montre que dans un régime de fonctionnement proche du seuil, la quantité de mé-
moire nécessaire par le protocole à trois phases est le double de celle du protocole à deux
phases. L’ordre de grandeur du nombre de job traités à la seconde dans un régime de
fonctionnement normal est de 60 requêtes par secondes. Toutefois ces grandeurs n’ont pas
pu être comparées à des résultats expérimentaux et sont donc à prendre avec toutes les
précautions d’usage. Enfin, la figure 3.12 de la page 91 représente la pénalité qu’introduit
le protocole à 3 phases sur le nombre de client dans le système par rapport au protocole à
2 phases. Cette pénalité est étudiée pour différentes valeurs du taux d’arrivée des clients.
La conclusion a tiré est que le besoin en mémoire est globalement le double et que si le
débit d’arrivée est multiplié par 10, 10% de mémoire supplémentaire sont nécessaires. La
sensibilité par rapport à d’autres paramètres comme par exemple les temps de service a
été étudiée. Elle est relativement faible, inférieure à 10%.

Cette section a décrit brièvement les fonctionnalités pour coallouer les ressources: né-
gocier et créer les SLA. Les SLA sont une brique de base pour l’orchestration des ressources
dans les systèmes de gestion de ressources distribuées. Des innovations ont été proposées
au protocole WS-Agreement [119, 120] pour négocier dynamiquement les modèles de SLA.
Deux protocoles de co-allocation ont été présentés, lŠun exploitant 3 phasesă: négocia-
tion, création et confirmation, et l’autre similaire à l’existant 2 phasesă: négociation et
création. L’impact de performance du protocole en 3 phases a été étudié à l’aide d’un
modèle analytique. L’impact majeur est que la mémoire requise par l’ordonnanceur coal-
louant les ressources en 3 phases est deux fois plus importante que celui coallouant en 2
phases. Après avoir présenter les protocoles de co-allocation dans cette section, la sec-
tion suivante et le chapitre 4 présente, étudie et compare les techniques d’optimisation
de l’allocation des ressources. Plus particulièrement, un algorithme d’optimisation de
l’allocation des ressources réseaux et de calcul est présenté et évaluer par rapport aux
techniques actuelles de co-allocation.

Optimisation

Afin de fournir un service de calcul garantissant la qualité offerte, l’importance des
échanges entre le gestionnaire du réseau et de l’ordonnanceur des ressources est cruciale.
La co-allocation des ressources réseaux et de calcul permet de garantir cette qualité de
service. Cette section et le chapitre 4 qui lui est associé étudie les différents mécanismes
d’interactions possibles. A la situation actuelle où le réseau est considéré comme une boite
noire sont comparés le service de bande passante à la demande et le service d’optimisation
croisé. L’exemple de la bande passante à la demande est développé ici pour des raisons

xxii Version Française

pédagogiques, mais en réalité un service plus générique de connectivité à la demande
sous contraintes aurait pu être aussi considéré. Ce service nécessite que le réseau puisse
répondre automatiquement à des requêtes de bande passante et garantir la bande pas-
sante étant donné une topologie virtuelle donnée. Le service d’optimisation croisée XO
(pour Cross-Optimisation) est une des contribution de cette thèse, il propose de choisir
les ressources réseaux et de calcul de façon à minimiser le temps de traitement vu par
l’utilisateur des ressources. Il nécessite que le gestionnaire du réseau communique l’état
de bande passante disponible pour la réservation sur les liens à l’ordonnanceur de la grille.
Des améliorations de ce service respectant plus la confidentialité de cette information sont
imaginables mais non développées ici. Cette section présente donc dans un premier temps
la méthode que nous avons retenu pour comparer les trois modes d’interactions entre le
gestionnaire du réseau et l’ordonnanceur de la grille: boite noire Legacy, bande passante à
la demande BoD, optimisation croisée XO. Puis nous développons un modèle analytique
permettant de d’avoir une intuition de la performance. Enfin, nous décrivons les simula-
tions que nous avons menées pour comparer les trois services. Ces simulations valident les
résultats analytiques obtenus. Les résultats de ce chapitre font l’objet d’un article [116]
non encore publié à la date de rédaction de ces lignes et d’un brevet déposé [115].

Les problèmes de co-allocation qui prennent en compte le routage du réseau et les
ressources de calculs ont été très peu étudiés. Différentes formulations peuvent être
développées: sous la forme de problème d’ordonnancement ou sous la forme de prob-
lème de flot dans les graphes. Le début du chapitre 4 traite de la formulation sous forme
de problème de flot dans les graphes. L’annexe 4.6 décrit l’algorithme de co-allocation XO
proposé s’il devait être implémenté dans un ordonnanceur. Nous en avons étudiez le fonc-
tionnement dans un cadre simplifié décrit plus loin.

Dans le contexte industriel de cette thèse, la conception d’algorithmes permettant
l’optimisation de l’accès aux ressources doit répondre à certains critères de performance
excluant différentes techniques d’optimisation. L’algorithme doit être capable de traiter
les jobs à la volée, c’est à dire trouver une allocation des ressources à chaque arrivée de job,
sans remettre en question les choix fait précédemment. Par conséquent, l’optimisation ne
peut être parfaite, ni complètement équitable. Les techniques produisant des solutions ex-
actes comme la programmation linéaire ou les méta-heuristiques classiques, recuit simulé,
recherche tabou, algorithmes génétiques ont été éliminée à cause de leur lenteur. Les
tâches pouvant s’exécuter sur les ressources de calcul étant très différentes et ayant des
profils d’utilisation des ressources hétérogènes, nous ferons une hypothèse simplificatrice
et une représentation abstraite des taches. Nous supposerons que toutes les tâches peu-
vent se décomposer en une succession de transfert de fichiers et une exécution sur les
ressources de calcul, c’est à dire, d’abord une utilisation du réseau puis d’un calculateur.
Nous supposerons de plus que les tâches ne peuvent pas être retardées, elles sont ac-
ceptées immédiatement ou rejetées. Trois algorithmes seront proposés pour modéliser le
comportement de chacun des trois services: Legacy, BoD, XO. XO va chercher à minimiser
le temps de traitement vu par l’utilisateur, c’est à dire la somme du temps passé dans le
réseau et dans de calculateur. Nous avons voulu nous affranchir d’une topologie réseau
donnée et avons choisi un angle plus générique afin d’identifier les paramètres réseau perti-
nent. Nous avons donc étudié une famille de topologie aléatoire. L’objectif étant de mieux
comprendre les mécanismes d’optimisation dans la co-allocation et compte tenu du grand

Version Française xxiii

nombre de paramètres à gérer et à appréhender, nous avons préférer décomposée l’étude
en trois étapes: une étude analytique, simulateur simplifié et simulation à évènements
discret. Malheureusement, nous n’avons pas réalisé la simulation à événement discret,
nous avons simplement spécifié l’algorithme d’optimisation croisée dans ce cadre (voire
l’annexe 4.6). Le simulateur simplifié prends un nombre fixé de job comme paramètre
d’entrée et détermine l’allocation pour ces jobs des ressources. Les phénomènes prenant
en compte la libération des ressources et l’allocation de nouveaux jobs ne sont donc pas
pris en compte. Toutefois, l’intérêt de la co-allocation sera malgré tout démontré. De
plus, l’intérêt de cette démarche par étape nous permet une compréhension plus fine des
phénomènes et des paramètres clés. Enfin, les résultats mettent en évidence des indica-
teurs comme la capacité équivalente du réseau ouvrant la porte à d’autres types d’outil
d’optimisation comme les outils liés aux problèmes de capacité (sac à dos).

Nous allons maintenant décrire le modèle en détail, ensuite, nous présenterons les ré-
sultats des travaux analytiques et enfin des simulations. Nous allons décrire les choix faits
pour représenter les jobs, les ressources de calcul, le réseau et les différents algorithmes
d’allocation. La figure 4.3 et la figure 4.4 de la page 99 décrivent le modèle de tâche utilisé.
Nous supposons que toute tâche plus complexe soit décomposée en tâche élémentaire de
ce type: un transfert de fichier suivi d’un traitement. L’exemple le plus simple étant le
traitement de donnée. Si les données de sorties sont de taille négligeable par rapport aux
données d’entrée, le modèle correspond bien, sinon, nous devrons supposer que les taches
les plus complexes comme le transfert de donnée d’entrée suivi d’un traitement et du ren-
voi de donnée de sortie doivent être décomposées en deux dans notre modèle. La deuxième
tache étant l’envoi des données de sortie sans calcul à réaliser. Nous supposerons que les
deux taches sont de plus complètement indépendantes, c’est là une hypothèse simplifica-
trice discutable. Chaque job j partira d’un nœud source, il est décrit par une quantité de
donnée à transférer S(j) et une quantité d’instructions à exécuter D(j), un débit d’accès
Ar(j). La quantité d’instructions à exécuter peut se mesurer par une durée d’exécution
sur une machine de référence, elle peut aussi être une borne supérieure de la durée réelle
d’exécution. Cette information peut être obtenue pendant la phase d’installation du ser-
vice de calcul ou les tâches sont lancées sur la grille pour vérifier le bon fonctionnement du
système. En utilisant des benchmarks [61, 62, 63], il est possible de comparer la puissance
de différentes machines. Les variables S(j), D(j), Ar(j) sont aléatoires indépendantes et
identiquement distribuées. Nous avons choisi pour Ar(j) une distribution uniforme entre
10Mbit/s et 10Gbit/s pensant que cela représentent les débits d’accès futurs. Chaque
job nécessite un et un seul CPU. En pratique, dans les systèmes de calcul parallèle, les
jobs nécessitent plusieurs CPU, néanmoins le modèle peut s’étendre sans difficultés pour
prendre en compte ce type de jobs. Les distributions de S(j) et D(j) sont uniformes dont
les moyennes sont déterminées de façon à ce que le temps passé dans le réseau et dans le
calculateur sont du même ordre de grandeur. Le réseau est modélisé par un graphe généré
aléatoirement, c’est à dire un ensemble de nœuds et de liens. Les liens possèdent une
capacité exprimée en Gbit/s. La capacité sur chaque lien sera distribuée aléatoirement.
Elle peut être soit discrète soit uniforme. La figure 4.5 de la page 101 illustre le modèle
retenu pour le réseau. La génération aléatoire de topologie qui représente bien les réseaux
de télécommunications est un problème complexe qui a été largement étudié [64, 144, 48].
Les graphe de Waxman [155] forment une famille de graphe aléatoires qui modélisent

xxiv Version Française

bien les réseaux à l’intérieur d’un système autonome. L’idée consiste à fixer le nombre de
nœuds du réseau, puis de décider selon une loi binomiale si un lien doit être créer entre
deux nœuds. C’est à dire, que l’on décide avec la probabilité pij de créer un lien entre le
nœud i et le nœud j, et la probabilité 1 − pij de ne pas le créer. pij décroissant avec la
distance et déterminé par la formule 4.1 de la page 101. C’est à dire que plus les nœuds
sont éloignés les uns des autres, plus faible sera la probabilité de créer un lien entre eux.
Les paramètres α et β et le nombre de nœuds détermine [150, 109] le degré moyen de
chaque nœud (nombre de voisins). Ainsi il nous sera possible de générer un ensemble de
topologie aléatoires ayant un commun le nombre de nœuds et le degré moyen de chaque
nœud. La figure 4.6 de la page 101 donne un exemple de deux graphe de Waxman de
20 nœuds pour deux degrés moyens théoriques différents: 2,5 et 3. Plusieurs clusters de
CPU sont répartis dans le réseau, chacun rattaché à un nœud du réseau. Chaque cluster
possède un nombre de CPU déterminé de façon à ce que la somme des CPU sur le réseau
soit égale à un paramètre d’entrée de la simulation. Le nombre de CPU par cluster est
distribué uniformément. Au sein d’un même cluster tous les processeurs ont la même
puissance de calcul. La puissance de calcul de chaque CPU est une variable aléatoire
distribuée uniformément.

Trois algorithmes d’allocation modélisent les trois types d’interactions entre l’ordonnanceur
de la grille et le gestionnaire du réseau. Le premier algorithme Legacy alloue les jobs aux
ressources quand aucune interaction ne permet la réservation de ressource réseau. C’est
la situation actuelle quand des services de calcul sont utilisés sur Internet. Les jobs sont
d’abord alloués à la ressource de calcul par l’ordonnanceur puis transférer sur le réseau.
L’algorithme est décrit à la page 103: algorithmes 1 et 2. Son fonctionnement est le suiv-
ant. Les jobs sont traités dans un ordre donné, les CPU classés par ordre de puissance de
calcul décroissante. Le premier job est affecté au premier CPU, le second job au deuxième
CPU, et ainsi de suite. C’est à dire que les jobs sont affectés au processeur disponible le
plus puissant. Une fois l’ensemble des jobs affectés, il faut déterminer quelles ressources
réseaux vont être exploitées et comment celle-ci va être partagée entre les jobs. Nous avons
supposé un routage statique reposant soit sur une minimisation du nombre de hop soit
une maximisation de la bande passante pour chaque couple (source, destination). Deux
questions importantes doivent être traitées, comment la bande passante est partagée entre
les différents jobs et que se passe-t-il s’il y a ”congestion”? Nous avons apporté quelques
réponses afin de concevoir un algorithme d’allocation modélisant le comportant du réseau
tout en préservant la simplicité du modèle. De plus, il s’agit de l’algorithme modélisant le
comportement existant que nous savons a priori mauvais, nous avons parfois sur évaluer
son comportement. L’idée de l’algorithme une fois les CPU déterminés consiste à faire
passer les jobs sur le routage statique en partageant équitablement la bande passante tout
en prenant en compte les débits d’accès différents, tout en évitant de saturer les liens qui
appartiennent à deux routes différentes.

L’algorithme CCB ou BoD dit de connexion à la demande modélise l’allocation des jobs
aux ressources quand l’ordonnanceur de la grille peut envoyer des requêtes au gestionnaire
du réseau de type bande passante à la demande. Dans la variante CCB, si le gestionnaire
du réseau ne peut pas établir de connexion vers le site demandé, l’ordonnanceur de la grille
envoie une deuxième requête de connexion vers une autre destination pour tenter de traiter
le job en cours. C’est la variante ”CrankBack”. Dans la variante sans ”CrankBack”CnoCB,

Version Française xxv

l’ordonnanceur de la grille ne cherche pas à traiter le job sur une autre destination que celle
initialement prévu si le réseau ne peut pas établir de connexion. L’algorithme CCB est
décrit à la page 105. Le fonctionnement de l’algorithme est le suivant. Les jobs sont traités
séquentiellement, chaque job est affecté dans l’ordre au CPU le plus puissant disponible.
Une fois la localisation du CPU disponible le plus puissant est connue, l’ordonnanceur de
la grille demande au gestionnaire du réseau d’établir la connexion avec la bande passante
correspondant au débit d’accès du job. Si il est possible d’établir une connexion, le job est
alloué avec la bande passante maximum que le réseau peut établir vers cette destination.
Si le réseau ne peut établir de connexion, dans la variante Crankback, l’ordonnanceur de
la grille allouera le job au deuxième CPU le plus puissant et réitèrera le processus, dans
la variante no crankback, le job ne sera pas alloué et l’ordonnanceur de la grille passera à
l’allocation du job suivant.

Le dernier algorithme va allouer les ressources quand l’ordonnanceur de la grille accède
à un maximum d’information du réseau, c’est à dire ici l’état d’utilisation de la bande
passante sur chaque lien. Différentes fonctions objectives peuvent être considérées. Parmi
elle, la minimisation de la somme des temps de traitement sur l’ensemble des jobs serait
intéressante (voir l’équation 4.2 de la page 105). Ayant choisi de développer un algorithme
qui traite les jobs à la volée, et voulant démontrer dans un premier les bénéfices de la co-
allocation, nous avons choisi un objectif plus simple: minimiser le temps de traitement du
job en cours comme si il était seul à devoir être alloué. L’algorithme retenu est donc égöıste
et ne tiens pas en compte de l’équité entre les jobs, les premiers arrivés sont les premiers
servis. Les jobs sont traités de manière séquentielle, pour chaque jobs, l’ensemble des
destinations de traitement disponible sont déterminées, ensuite pour chaque destination
la route de bande passante maximale est déterminée. Ensuite, le temps de traitement que
le job mettrait s’il était alloué à chaque couple (cluster de destination, route de bande
passante maximale) est calculé et l’ordonnanceur sélectionne le couple de ressources qui
minimise le temps de traitement. Cette algorithme ne permet pas l’allocation de tous les
jobs, il est possible que certains n’aient plus de ressources disponible. Pour implémenter
efficacement cet algorithme, nous avons étendu le réseau tel décrit dans la figure 4.7 afin
de pouvoir utiliser des algorithmes de recherche de chemin de coût minimal classique.
L’implémentation réelle cherche la route de bande passante maximale, mais ce problème
peut être ramené à un problème classique de recherche de route de coût additif minimal
(il suffit valuer les liens par l’inverse de leur bande passante disponible). L’algorithme XO
porte le numéro 4, il est décrit à la page 107. Le lien entre l’algorithme proposé et
le routage multicritère est développé dans la thèse. L’algorithme XO réalise un routage
multicritère et détermine l’ensemble des routes optimales au sens de Pareto, la route finale
étant choisi selon la pondération donnée par chaque jobs.

L’ensemble du modèle est probabiliste, nous pouvons donc essayer de prédire la per-
formance de la co-allocation. Les deux critères de performance étudiés sont le nombre
de jobs alloués et le temps moyen de traitement d’un job. Dans un premier temps nous
allons essayer de déterminer le nombre moyen de job alloué. Imaginons un réseau réduit
à deux nœuds et un lien et les demandes de traitement réduites à des demandes de bande
passante. Soit C la variable aléatoire décrivant la capacité du lien, Ar(i) celle décrivant
la quantité de bande passante demandée par la requête i. Supposons que les Ar(i) sont
indépendants et identiquement distribués. Le nombre de requête qui peuvent être allouée

xxvi Version Française

sur le lien de capacité C est un nombre aléatoire. Si on note E(X) la valeur moyenne

de la variable aléatoire X. Le nombre moyen de requête acceptée sur le lien est d E(C)
E(Ar)

e.
C’est une application directe de l’identité de Wald [75] (page 233). Nous appellerons la

quantité E(C)
E(Ar)

capacité du lien normalisé. Le théorème 1 de la page 108 reprends l’énoncé

de l’identité de Wald appliquée au temps d’arrêt T (ω) = inf{n,
∑n

i=1Ar(i)(ω) > C(ω)}.
Quand le réseau est composé de deux nœuds et de plusieurs liens, le résultat ne change pas,
il suffit de remplacer C par pC où p est le nombre de liens. Quand le réseau est composé de
plusieurs nœuds et de plusieurs liens, le nombre de job que l’on peut allouer n’est pas aussi
facile à calculer, cela dépends beaucoup du nombre de nœuds, de liens, du degré moyen,
et de l’algorithme d’allocation. Le problème se complexifie encore si plusieurs sources et
destinations sont possibles. Toutefois, si nous restreignons notre étude à une source et
une destination et à un algorithme d’allocation qui utiliserait le routage déterminé par un
algorithme de recherche du flot maximum, nous pouvons calculer le nombre moyen de job
alloué dans le réseau. En effet, Lee [98] a étudié le problème du flot maximum dans un
graphe aléatoire de Waxman entre deux nœuds arbitraires. Plus précisément il a supposé
que les liens du graphes avait une capacité unitaire de 1 et qu’un flot pouvait soit utiliser la
totalité de la capacité du lien soit ne pas utiliser le lien. Le problème de recherche du flot
maximum est alors équivalent à rechercher le nombre de chemin disjoints entre la source
et la destination puisque deux chemins ne peuvent pas utiliser le même lien. Par ailleurs,
le théorème Max-Flot/Min-Cut nous dit que le flot maximum est égale à la capacité de
la coupe minimale, c’est à dire ici, au nombre de lien de la coupe minimale. Rappelons
qu’une coupe est une partition de l’ensemble des nœuds en deux (une sous partie devant
contenir la source et l’autre la destination) et que la capacité de la coupe est la somme
des capacités des liens joignant les deux sous ensembles de la coupe. Les résultats de
Lee sont résumé dans le théorème 2 de la page 109: ”Le flot maximal est en moyenne
proportionnel au minimum entre le degré de la source et de la destination”. Le résultat
de Lee a été prouvé expérimentalement sur les graphes de Waxman entre une source et
une destination. Nous pensons que ce résultat peut se généraliser selon la conjecture 1 de
la page 109 entre plusieurs sources, plusieurs destinations et étant donné un algorithme
d’allocation. Cette conjecture énonce que le nombre de job que l’on peut allouer est décrit
par l’équation 4.5 de la page 109, c’est à dire qu’il est proportionnel à la capacité normal-
isé des liens. De plus, si l’on note κ le coefficient de proportionnalité, on peut définir la
capacité équivalente du réseau comme étant κE(C) où C est la variable aléatoire donnant
la capacité d’un lien. La conjecture n’est prouvée que dans le cas où le réseau est composé
dŠune source et une destination et uniquement pour l’algorithme d’allocation utilisant le
routage de Max-Flot. En effet, en appliquant l’identité de Wald à la coupe minimale la
capacité de celle ci est en moyenne le produit du nombre moyen de lien la composant et
de la moyenne des capacités. Or la capacité de la coupe minimale permet d’obtenir le
nombre de job alloué qui utiliserait le routage de Max-Flot par application de l’identité
de Wald au temps d’arrêt donnant le nombre de job sur la coupe minimale. Il suffit de
remplacer C dans la formule par la capacité de la coupe minimale. Ainsi, on obtient que
le coefficient κ de Max-Flot de la conjecture est proportionnel au degré moyen du graphe.
La validité de la conjecture 1 sera vérifiée par des simulations pour les autres algorithmes
d’allocation. Le fait de ne pas avoir à traiter exactement des requêtes de bande passante à

Version Française xxvii

la demande mais plutôt des demande de transfert respectant le débit d’accès n’a pas une
importance significative compte tenu du fait que nous cherchons à allouer le maximum
de bande passante disponible. L’autre critère de performance est le temps de traitement
moyen d’un job. Si nous faisons quelques hypothèses sur les distributions des paramètres
des jobs allouées, notamment en supposant quŠelles sont les mêmes que celles des jobs
avant allocation, nous pouvons calculer analytiquement la valeur moyenne du temps de
traitement des jobs. En prenant des distributions uniformes, la formule 4.6 de la page 110
donne le résultat. Nous verrons par la suite que cette formule est proche de la réalité
quand on travaille dans des réseaux dont la capacité des liens est au moins 20 fois plus
grande en moyenne que le débit d’accès moyen.

Les travaux de simulation de cette thèse portent sur la vérification de la conjecture 1 de
la page 109. Nous vérifions que la capacité normalisée est bien le paramètres important
à prendre en compte. L’importance du nombre de CPU est ensuite étudié. Enfin, les
derniers travaux portent sur la vérification de la prédiction du temps de calcul moyen
donné dans la formule 4.6 de la page 110. La figure 4.8 de la page 111 illustre l’importance
de la capacité normalisé. Nous avons conduit différentes allocation de jobs en maintenant
constant le rapport E(Ar) sur E(C), le nombre de job alloué est resté le même. La
figure 4.9 de la page 112 trace le nombre de job accepté par chacun des trois algorithmes
en fonction de la capacité normalisée. Comme attendu par la conjecture 1, nous trouvons
une relation linéaire. Les courbes ont été obtenues pour différentes familles de réseau: 10,
20 et 30 nœuds en étudiant des degrés moyens de 2,5 et 3. Chaque point est obtenu avec
un intervalle de confiance de moins de 2%. 1000 jobs ont été soumis sur 2000 CPUs. Ce
graphe illustre donc ce qu’il se passe quand le réseau est le goulet d’étranglement. Des
courbes similaires ont été obtenues avec 1000 jobs soumis sur 1000 CPUs et 1000 jobs
soumis sur 500 CPUs. La différence entre les courbes tracée est donc la pente qui dépend
de l’algorithme d’allocation, du dégrée moyen, du nombre de nœuds, de la distribution
des capacité des liens, du ration nombre de job soumis sur nombre de CPU disponible.
La conclusion à tirer est que par rapport à un service de bande passante à la demande,
dans les réseaux de petite taille, l’algorithme d’optimisation XO proposé est trop simpliste
et ne permet pas de réaliser une optimisation croisée des ressources. En revanche pour
les réseaux plus gros, un gain d’environ 10% sur le nombre de job acceptés peut être
observé par rapport au service de bande passante à la demande. La figure 4.10 de la
page 113 trace le nombre de job alloué en fonction du ratio nombre de job soumis sur
nombre de CPU, à nouveau pour les 6 familles de topologies, et ce pour une capacité
normalisée de 16. Quand ces courbes sont plates, cela illustre que le réseau est le goulet
d’étranglement, quand elles croissent avant de s’aplatir, cela illustre qu’il existe un régime
(pendant la croissance) où le réseau n’est pas l’unique limitateur de performance. Les
courbes pour l’algorithme Legacy n’ont pas été tracée car par définition cet algorithme
accepte tous les jobs, l’impact de ce dernier est uniquement sur le temps de traitement qui
devient dramatiquement long. La figure 4.11 de la page 114 montre le temps de traitement
moyen des jobs pour les trois algorithmes en fonction de la capacité normalisée. La ligne
horizontale représente la valeur théorique. La précision de nos simulations de Monte-Carlo
ne permet pas d’avoir des intervalles de confiance suffisamment fin qui nous permettent
de comparer entre les trois algorithmes. Ce que nous pouvons bien sûr dire est que le
temps moyen de traitement des jobs alloué par l’algorithme Legacy est hors échelle par un

xxviii Version Française

facteur 100. La dernière partie des résultats des simulations discute une hypothèse faite
dans la partie analytique, l’hypothèse s’avère valide, nous ne reprenons pas la discussion
ici.

Un des objectifs de ces simulations était de démontrer l’avantage de l’optimisation
croisée par rapport aux systèmes de bande passante à la demande. Un des résultats
principaux est que pour les réseaux de petite taille, il n’est pas nécessaire d’aller plus
loin qu’un système de bande passante à la demande. Une autre conclusion serait de dire
que l’algorithme proposé est trop simpliste et ne permet pas de démontrer les bénéfices de
l’optimisation croisée. Un résultat majeur de cette thèse a été de montrer que le nombre de
jobs alloué dans le réseau pouvait être prévisible et suit une loi simple de proportionnalité
par rapport à la capacité normalisée. Une autre façon de voir ce résultat consiste à définir
la capacité équivalente du réseau en nombre de job. Ce résultat est important car un tel
indicateur permet de concevoir des algorithmes d’allocation en considérant directement
cet indicateur de performance. Une borne inférieure du temps moyen d’exécution peut
être calculée analytiquement. Quand la capacité normalisée augmente cette borne est
presque atteinte par les algorithmes d’allocation de type XO ou CCB. Le nombre de
job allouée est déterminé quand le réseau était initialement vide jusqu’à temps que les
ressources se remplissent et saturent. Il serait intéressant d’étendre l’étude menée ici dans
le cadre d’un simulateur à événement discret qui prendrait en compte la libération des
ressources par les jobs et l’arrivée de nouveaux jobs. La vérification de l’hypothèse suivante
serait intéressante: ”Dans le cadre d’une simulation à événement discret, le système est
équivalent à une file d’attente de longueur la capacité équivalente et de temps de service
moyen le délai moyen de traitement calculé analytiquement”.

Conclusion

La co-allocation de ressource réseau et de calcul n’est possible que si la technologie
du réseau est capable de réserver les ressources. Grace notamment à la réservation de
ressource, la garantie de qualité de service à été introduite progressivement dans les
réseaux IP. Suite aux travaux d’Intserv, l’architecture Diffserv a été un pas supplémen-
taire vers la garantie de QoS, sans fournir de réservation explicite. C’est uniquement avec
l’architecture MPLS et son extension GMPLS qu’une garantie de QoS peut être offerte
aujourd’hui par le biais de réservation de ressource explicite.

Les applications fonctionnant sur une Grille nécessitent une virtualisation des ressources.
Ces dix dernières années ont vu le nombre et la diversité des applications pouvant béné-
ficier de la virtualisation des ressources augmenté incroyablement. Si les premières études
dans le domaine ont été confinées au monde de la recherche scientifique, les prochaines
années verront sans doute de nombreuses applications commerciales. En ce sens les grilles
constituent un marché à fort potentiel pour les opérateurs de télécommunications. Une
nouvelle entité, le courtier en ressource, représente une opportunité commerciale impor-
tante tant pour les fournisseurs de services de télécommunication que de calcul. La virtu-
alisation garantissant de forte QoS ne peut être réalisée sans co-allocation. L’émergence
des standards comme GMPLS permettant cette QoS garantie et l’ingénierie de trafic ont
été un facteur clé de la co-allocation. Aujourd’hui, de nombreux problèmes encore sont

Version Française xxix

à résoudre pour exploiter GMPLS dans les grilles. Tout d’abord, il reste à déterminer
comment GMPLS peut être intégré aux systèmes de gestion des grilles. Un deuxième
problème est lié à la façon dont la garantie de QoS peut être fournie dynamiquement, ce
qui sort du contexte traditionnel d’utilisation de cette technologie. De plus, les grilles ont
aussi besoin de gérer efficacement les ressources de stockage et de calcul distribuées dans
le réseau. En dŠautres termes, les grilles nécessitent le développement d’outils permettant
une optimisation globale des ressources à la fois réseau de calcul et de stockage.

Des réponses à ces questions ont été fournies dans cette thèse. Dans le chapitre 1, nous
avons fourni une revue de l’état de l’art dans la matière. Nous avons décrit les principaux
projets de recherche portant sur la co-allocation entre 2004 et 2007. Le chapitre 2 a
présenté les principales architectures pour intégrer le réseau aux ressources de calcul. Les
approches existantes ont été étudiées: Web service et Grid GMPLS. Nous avons proposée
une nouvelle approche en utilisant l’architecture IMS et SIP. Nous avons proposée des
extensions au plan de contrôle réseau actuel pour prendre en compte les réservations de
ressources à l’avance. Deux publications [117, 118] et quatre brevets [111, 112, 114, 151]
ont été acceptés comme contribution.

Le chapitre 3 a étudié plus en détail les protocoles en cours de développement et
de standardisation pour fournir la co-allocation par le biais de SLA. Les protocoles de
négociation et de création de SLA en cours de développement ont été étudiés. Plus
particulièrement le protocole de création de SLA WS-Agreement proposé par l’Open Grid
Forum a été analysé. Avec Olivier Warldrich, nous avons proposé une extension de ce
protocole pour négocier les SLA. Ces travaux ont fait l’objet de deux publications [119,
120]. Cette thèse à proposé un modèle à base de file d’attente pour comparer les protocoles
de négociation actuelle avec nos extensions permettant une confirmation de la réservation.
Nous avons quantifié l’impact de nos extensions par rapport au protocole actuel et conclu
à un besoin en mémoire au niveau de l’ordonnanceur doublé.

Le chapitre 4 a analysé jusqu’où il est nécessaire d’aller dans l’interaction entre l’ordonnanceur
de la grille et le gestionnaire du réseau. Est-ce que les ressources seraient mieux utilisées
si l’ordonnanceur de la grille avait accès à des informations de topologie et de bande pas-
sante disponible sur les liens en temps réel? Nous avons proposé un modèle d’optimisation
croisée pour répondre à cette question. Nous avons développé un modèle analytique et des
simulations pour évaluer la performance de notre algorithme comparée à ceux modélisant
un service de bande passante à la demande et la situation actuelle où le réseau est une
boite noire sans fournir de réservation. Un des résultats principaux de ce chapitre est que
le nombre de job alloué dans le système est proportionnel à la capacité normalisée des
liens. Nous avons souligné qu’il est possible de définir une capacité système de la grille
en nombre de job ou d’une capacité réseau équivalente en Mbit/s. Un des autres résul-
tats principaux est que dans les réseaux de moins de vingt nœuds, il n’est pas nécessaire
d’aller plus loin qu’un service de bande passante à la demande. Toutefois dans les réseaux
plus gros, une optimisation croisée augmente le nombre de jobs accepté d’environ 20%.
Ces résultats de simulation ont permis de valider les résultats analytiques obtenus. La
capacité équivalente de la grille calculée dans le chapitre 4 permet de concevoir d’autres
types d’optimisation des ressources et d’imaginer d’autres heuristiques. Les résultats de
ce chapitre font l’objet d’une publication [116] et d’un brevet [115].

Les travaux futurs sur la cross optimisation sont encore à réaliser. Pour des raisons de

xxx Version Française

temps, nous n’avons pas pu vérifier notre modèle dans un environnement plus dynamique
reposant sur un simulateur à événements discrets. Cette thèse peut être considérée comme
un point de départ sur les travaux d’optimisation croisée dans les grilles.

xxxi

Contents

Acknowledgements i

Résumé iii

Abstract v

Version Française vii

Table of contents xxxiii

List of Figures xxxvi

Acronyms list xxxvii

Introduction 1

1 State-of-the Art 9
1.1 Introduction . 9
1.2 Business Models . 9

1.2.1 Different services . 10
1.2.2 Pricing, Payment . 11

1.3 Web services . 11
1.4 Distributed Resource Management Systems 13

1.4.1 Generic features . 13
1.4.2 Globus . 14
1.4.3 Unicore . 17
1.4.4 Sun N1 Grid Engine (SGE) . 19
1.4.5 Standard status . 20
1.4.6 Conclusion . 24

1.5 Grid Networks . 24
1.5.1 Network concepts . 25
1.5.2 Grid Resource Scheduling (NRS) 27
1.5.3 Globus Architecture for Reservation and Allocation (GARA) 28
1.5.4 GARA extensions . 29
1.5.5 User Controlled Light Paths . 29
1.5.6 Internet 2 Qbone Bandwidth Broker 30

xxxii CONTENTS

1.5.7 EGEE BAR . 30
1.5.8 DRAGON . 34
1.5.9 AkoGrimo . 35
1.5.10 EuQoS . 35
1.5.11 Phosphorus . 35
1.5.12 Nortel’s DRAC . 36
1.5.13 VIOLA . 37
1.5.14 Enlightened . 38
1.5.15 G-Lambda . 40

1.6 Conclusion . 41

2 Architectures 45
2.1 A unifying vision . 46

2.1.1 Introduction . 46
2.1.2 Network services . 46
2.1.3 Integrated Computing services . 48

2.2 WS approaches . 49
2.2.1 Introduction . 49
2.2.2 Architecture . 50
2.2.3 Components . 50
2.2.4 Future extensions . 54

2.3 Control plane time extensions . 54
2.3.1 Future Signaling . 55
2.3.2 Future Computation . 56
2.3.3 Future Routing . 57

2.4 Grid GMPLS . 58
2.5 IMS extensions . 60

2.5.1 IMS architecture . 61
2.5.2 Grid over IMS . 62
2.5.3 IMS extensions conclusion . 66

2.6 Conclusion . 66

3 Protocols 69
3.1 SLA Negotiation, SLA creation and commit protocols 70

3.1.1 Price consideration . 70
3.1.2 Automated Negotiation . 72
3.1.3 Commit protocols for distributed databases 73
3.1.4 Commit protocols for distributed resource management systems . . 74

3.2 VIOLA’s signalling Architecture . 76
3.2.1 Original VIOLA 2PNP . 76
3.2.2 Original WS-Agreement . 77
3.2.3 WS-Agreement 3PNP . 78
3.2.4 Negotiation of Agreement Templates 80
3.2.5 SLA creation . 82

3.3 Model description . 83

Table of contents xxxiii

3.3.1 Parameters value choice . 86
3.4 Results . 88

3.4.1 Arrival Rate . 88
3.4.2 Mean Nb of Jobs . 90
3.4.3 Conclusion . 91

3.5 Conclusion . 92

4 Algorithms 93
4.1 Introduction . 93
4.2 Related Work . 94

4.2.1 Basic Resource orchestration algorithm 95
4.2.2 Max Flow approaches . 95

4.3 Methodology . 98
4.3.1 Legacy . 102
4.3.2 Connection with CrankBack (CCB) 104
4.3.3 Cross Optimisation (XO) . 104

4.4 Analytical results . 107
4.5 Results . 110

4.5.1 Normalized link capacity . 110
4.5.2 Number of accepted Jobs . 110
4.5.3 Number of CPU influence . 111
4.5.4 Processing Time . 114
4.5.5 Validity of Hypothesis 1 . 114

4.6 Conclusions . 115

List of Patents and Publications 117

Conclusions and Future outlook 119

Annexe A – Planned job request cross optimization algorithm 121

Annexe B – Simulation tools 133

Bibliography 136

xxxiv Table of contents

xxxv

List of Figures

1 Connectivity on Demand . 5

1.1 Globus Toolkit . 15
1.2 Unicore architecture . 18
1.3 Unicore 6 & Globus . 19
1.4 Execution and Management Service . 22
1.5 Execution Scenario . 23
1.6 Toolkit comparison . 24
1.7 Coordinator Model . 27
1.8 Daisy Chain Model . 27
1.9 NRS . 27
1.10 EGEE BAR . 31
1.11 NSAP inter domain communication . 32
1.12 BAR Web Service . 33
1.13 NSAP Web Service . 33
1.14 DRAGON Control plane architecture . 34
1.15 Phosphorus Architecture . 36
1.16 Nortel DRAC . 36
1.17 VIOLA Architecture . 38
1.18 Enlightened Architecture . 39
1.19 HARC vs VIOLA . 39
1.20 Enlightened Domain Network Manager . 40
1.21 G-Lambda Architecture . 41
1.22 NGN Strata . 41
1.23 Survey summary . 43

2.1 VIOLA and the Meta-Scheduling service 51
2.2 Unicore Client . 52
2.3 Reservation service . 55
2.4 PCE used in a Grid . 57
2.5 Grid over SIP architecture . 63
2.6 Resource consumption scenario . 64

3.1 Resource selection & reservation . 69
3.2 Two phase commit slave’s FSM (left), three phase commit slave’s FSM

(middle), and SLA negotiation and creation resource provider’s FSM (right) 74

xxxvi List of Figures

3.3 Negotiation process . 76
3.4 2 Phase Negotiation process . 77
3.5 WS-Agreement one step negotiation . 78
3.6 3 Phase Negotiation process . 79
3.7 Extended WS-Agreement SLA negotiation 81
3.8 Parallel models . 87
3.9 Maximum arrival Rate . 89
3.10 Sequential vs Parallel . 89
3.11 Mean Number of Jobs . 90
3.12 Penalty sensitivity to the arrival rate . 91

4.1 Max Flow’s extended graph to handle multiple sources and destination . . 96
4.2 Max Flow [Number of Jobs] . 96
4.3 Resources use pattern . 99
4.4 Job schema . 100
4.5 Network model . 101
4.6 Waxman Graphs . 101
4.7 Extended Graph example . 106
4.8 Normalized link capacity is a key parameter 111
4.9 Number of accepted jobs . 112
4.10 Number of CPU influence . 113
4.11 Average processing time . 114
4.12 Approximation’s error . 115
13 Job Request . 122
14 Algorithm Output . 123
15 Topology model . 134
16 Mapping output model . 135
17 Simulation result file example . 136

xxxvii

Acronyms

2PNP 2 Phase Negotiation Protocol

3GPP 3rd Generation Partnership Project

3PNP 3 Phase Negotiation Protocol

ARGON Allocation and Reservation in Grid Optical Network

AS Autonomous System

ASP Application Service Provider

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

BoD Bandwidth On Demand

BR Border Router

CA Commit Agreement

CCB Connection with Crankback

CnoCB Connection without Crankback

CPU Central Processing Unit

DoIA Declaration of Intention Agreement

DOM Document Object Model

E() Mathematical Expectation

ETSI European Telecommunication Standardisation Institute

FSM Finite State Machine

GGMPLS Grid GMPLS

Globus Name of a grid toolkit

GMPLS Generalized Multi Protocol Label Switching

xxxviii Acronyms

GridEngine Name of a grid toolkit

GridFTP Name of a File transfer program

GridWay Name of a Grid scheduler

GUNI Grid User to Network Interface

I-CSCF Inter - Call/Session Control Function

IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

INPI Institut National de la Propriété Intelectuelle (French patent office)

IP Internet Protocol

ISP Internet Service Provider

IT Information Technology

LRMS Local Resource Manager

LSP Label Switched Path

MPLS Multi Protocol Label Switching

MSS Meta Scheduling System

NGN Next Generation Network

NJS Network Job Supervisor

NMS Network Management System

OEB Office Européen des Brevet (European Patent Office)

OGF Open Grid Forum

OGSA Open Grid Standard Architecture

OSPF Open Shortest Path First

OSS Operation Support Systems

PA Preparation Agreement

PCC Path Computing Client

PCE Path Computing Element

P-CSCF Proxy Call/Session Control Function

Acronyms xxxix

PDF Policy Decision Function

QoS Quality of Service

REST Representational State Transfer

RFC Request For Comment

RMS Resource Management System

RSVP Reservation Protocol

S-CSCF Server - Call/Session Control Function

SDP Session Description Protocol

SGE Sun Grid Engine

SIP Session Initiation Protocol

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TE Trafic Engineering

TEDB Trafic Engineering Database

TISPAN Telecommunications and Internet Converged Services and Protocols for
Advanced Networking

TSI Target System Interface

UNI User to Network Interface

Unicore Unform Interface to computing resource (it’s a Grid Toolkit)

VIOLA Vertically Integrated Optical Network for Large application

WS Web Service

XML Extensible Markup Language

XO Cross Optimisation

xl Acronyms

1

Introduction

Several experimentations such as the SETI@HOME [22, 40] program consisting in the in-
terpretation of cosmic radiations require huge memory space and computational resources.
The design of ad-hoc super-computers able to solve such problems is today unrealistic,
both for technical and economical reasons. This is why a great interest has been dedicated
these last ten years to distributed computing. Depending on the nature of the problem
to be solved and on the available budget of the end-users, distributed computing appears
in many cases as the only solution. Distributed computing may concern the federation
of tens, hundreds or even thousands computers either co-located on the same premises or
distributed at the regional scale or even at the national or international scale. Distributed
computing relies on the design of a virtual infrastructure to interconnect remote comput-
ers in order to provide in certain cases an alternative to the largest super-computers now
available on the market [39]. The examples of a massively distributed computing infras-
tructure are the most popular [141, 39]. Distributed computing may require the sharing
of different types of resources such as computing facilities, storage facilities [121, 94] and
networking facilities. Concerning the networking facilities, distributed computing may
rely on peer-to-peer connections (P2P).

All the distributed computing projects mentioned above, although of a great interest,
are not in the scope of this thesis since they do not offer any quality of service (QoS)
guarantees to the end-users. In this thesis, we investigate the problem of dynamic resource
co-allocation in distributed systems over long distance networks. The objective of dynamic
co-allocation is the provision of services requiring the satisfaction of QoS guarantees such
as minimum bandwidth, upper bounded end-to-end transit delay, residual bit error rate
or the respect of a given scheduling between the various elementary operations to be
carried out on the remote devices. Along this thesis, we outline how some of the sub-
problems inherent to distributed computing may be generalized in order to be adapted to
the provision of various types of service.

The term “Grid” has been introduced to describe an infrastructure integrating several
resources (computing, storage, network, ...) belonging to different administrative entities.
These resources can be spread across a wide area network and used cooperatively in
order to solve complex problems. The Grid concept [72, 70, 73] implies coordinated
resource sharing via multi-institutional virtual organizations. In this context, resource
sharing is not limited to file exchange but also concerns direct access to remote computers,

2 Introduction

software, data, storage and networking facilities. A wide range of collaborative problems
requiring very specific QoS guarantees may benefit of the Grid concept. A great variety of
industrial or academic sectors are directly concerned by Grids. For instance, in genomic
or in bio-technology, companies or laboratories expect that Grids will facilitate their
strong reactivity in a highly competitive research environment. Indeed, the design of new
molecules requires intensive computing and storage facilities. Such facilities are not in
general easily affordable for start-ups or SMEs (Small or Medium Enterprizes). Since
Grid services may require resources managed by different administrative entities, resource
providers as well as the end-users (the consumers of Grid services) must clearly define
which resources have to be shared, who is administratively responsible of resource sharing
and the conditions under which this sharing occurs. For that purpose, the establishment
of Virtual organizations (VO) including customers, network carriers and third parties
accepting to re-sell some of their computing and/or storage facilities is necessary. In
summary, a Grid is an infrastructure satisfying the following four characteristics:

• It is based on heterogeneous 1 resources.

• These resources are interconnected via a public network, either in the local loop or
at the metropolitan area level or via a core network.

• The resources belong in general to different institutions.

• These institutions must work cooperatively in order to solve a specific problem or
to provide a given service

From these four characteristics, we understand why a cluster of computers co-located
in the same private premises cannot be considered as a Grid. A“Grid toolkit” is a software
program that offers features and functionalities in order to build a virtual infrastructure
characterized by the four bullet points mentioned above. From a telecommunication
operator’s perspective, a computing service must satisfy the following requirements:

• Reliability

• Commercial viability

• Guaranteed Quality Of Service (including Network QoS)

• Security

Multiple examples of large computational problems may be found in the research, the
industrial and the financial environment. Scientific techniques like Monte-Carlo simu-
lations or parametric sweep simulations are now being used in production, design and
research environments, such as:

1. For example, computing resources with different processor architectures and vendors

Introduction 3

• Electronic design automation

• Bio-informatics and pharmaceuticals drug design

• Mechanical computer-aided engineering

• Computational fluid dynamics and finite element analysis

• Oil, gas and Seismic data analysis

• Financial analysis, real-time risk analysis, cash-flow analysis and Monte Carlo sim-
ulations

• Software development, code design, compilation and links

• Computer animation rendering and digital content creation

The emergence of these examples of applications requiring massive computing and
storage devices combined with the availability of high capacity networks requires the
conception of new services accessed via a carrier’s network. In practise, networks managed
by different operators may be implied in the provision of a Grid service. In general, Grid
services are referred as “computational services”. On one hand, these various applications
do not share the same characteristics. For instance, some of them require an almost
permanent bandwidth guarantee, whilst others only need to transfer a file as quickly as
possible. On the other hand, the common point between these applications is that for
each of them, the end users have a common economical interest in sharing both remote
computing and storage resources and network infrastructure costs. Doing so requires
the emergence of new business models. The predominant idea in this matter consists in
computing power rental, i.e. a user would rent access to a computing infrastructure and
pay proportionally according to its use ($/h/CPU).

Unifying frameworks

To provide computing (or storage) services that take into account network QoS, a
network operator must be involved in the service delivery process. Some operators might
choose to buy a computing infrastructure, whilst others might rent or lease it. Some com-
puting service providers may also want an operator to provide “Bandwidth on demand”
services or “QoS on-demand” services, limiting the role of the operator to a connectiv-
ity provider. All these scenarios can be unified if the following framework is considered:
telecommunications operators (or network operators) are composed of two departments,
a network department and a computing department. In practice, either the same car-
rier, or two distinct administrative entities manage these two departments. The network
department is in charge of maintaining the network and provides connectivity. The com-
puting department manages computing resources and provides computing services. The
network department’s customers can be either end users or the computing department.

4 Introduction

The computing department’s customers are always end users. Despite the existence of sev-
eral resource owners, the computing department provides a common interface to the end
users. The heterogeneity of the available resources is not visible by the end users. It runs
a what is called “Grid middleware” (or Grid toolkit). The term Resource Management
Software (RMS) will be preferred to the expression Grid middleware in the remaining of
this dissertation. Although in pratice, the network department may be a customer of the
computing department; this configuration will not be considered in the following. The
owners of the shared resources are the fourth and last administrative entity concerned
in the Grid unifying framework. They manage their own resources and facilities. They
provide an interface to their customers or partners, such as the computing department.
In summary, the four main actors considered by the unifying framework are:

• The end-users, mostly customer companies that ask for the resolution of a specific
computing problem.

• The network department within a telecommunication operator (or belonging to dif-
ferent operators in the case of multi-domain environment).

• The computing department within (or not) a telecommunication operator

• The resource providers.

Business relationships between the four actors listed at the end of the previous section
is materialized by service contracts between a service user and a service provider. Each
service’s description, terms, constraints and guarantees is described in a Service Level
Agreement (SLA) negotiated between the two parties. An SLA [21] is a formal negotiated
agreement between two parties. It is a contract that exists between customers and their
service provider, or between different service providers. It records the common under-
standing about services, priorities, responsibilities, guarantee, etc. with the main purpose
to agree on the level of service. For example, it may specify the levels of availability, ser-
viceability, performance, operation or other attributes of the service like billing and even
penalties in the case of violation of the SLA. Historically, fixed line telecom operators as
part of their contracts have used SLAs since the late 80’s with their corporate customers.
More recently, IT departments in larger companies have adopted the idea of using service
level agreements with their customers, i.e. users in other departments within the same
company. Such an approach facilitates the comparison between the expected QoS and the
effective provided QoS. Depending on the gap between these two, the alternative of out-
sourcing IT services to an external company may be then decided. An SLA is generally
business oriented and does not go into much technical detail. Its technical specifications
are commonly described through a Service Level Specification (SLS). SLAs have been
widely studied [119, ?, 106, 105, 91, 101, 59] in the context of both telecommunication
networks and Grid systems. The services that can be provided to the end user or to a
computing department are the following ones:

Introduction 5

• Connectivity on Demand with guarantees like Bandwidth on demand or low latency
connectivity

• Computing service on demand

• Integrated Computing Service

• Storage services on demand

• Resource orchestration services on demand

Main service types

• On-demand connectivity with SLA:

This service provides a guaranteed QoS connectivity. It encompasses Bandwidth on
demand or Low latency on demand that are requirements for most Grid applica-
tions [134]. The two most important features required to provide a computing service
are: advance reservation and SLA provisioning. Additional features such as security,
failure notification, resource monitoring can also be expected to be provided. Some
telecommunication equipment vendors are already selling such devices [16] (DRAC).
Diagram 1 shows the simplified architecture for such a system.

Figure 1: Connectivity on Demand

The main research problem in matter of on-demand connectivity with SLA refers
to the design of policies that maximize the utilization of network resources alone.
Such policies enable to minimize the number of rejected requests because of resource
shortages. Several investigations have tackled these issues [82, 124, 157, 86]. In this
thesis, we extend the problem of resources optimization in considering both network
and computing resources. Our objective is then to select network and computating
resources in order to minimize the overall processing time to provide the required
service.

• Computing service on demand:

6 Introduction

A computing service can provide access to resources at three different levels. At a
first level, a raw computational resource access under which the end users have to
provide information about the Operating-System and the running programs. The
Operating-System is loaded upon every new job request. The second level refers
to computational services. The end-users have in this case to provide the source
code or the binary code to be executed on a given platform. The third level refers
to application services. In that case, the end-users have to provide input files or
they simply interact directly with the application. The third category of users
can also interact with an intermediary who will then use services provided by the
computing department. In other words, operators should focus on satisfying the
first two categories of users, starting with the first one. Other actors will build on
top of these solutions to provide application access services. In other words, the role
of the computing department is as a wholesaler. However, several aspects remain
to be specified:

– Architecture

– Heterogeneity of computational resources providers

– Automatic discovery of resources

– Efficient use of resources

– Scalability with the number of resources and the number of users

– Network QoS guarantees

– SLA enforcement mechanisms

– Pricing of a bundle of multiple resources

Each of these problems is in itself quite complex. This is why this thesis focuses
mainly on architectural issues, on performance issues and on one aspect of the
efficient use of resources.

• Integrated Computing Service:

An integrated computing service is a computing serv ice that provides QoS guarantee
taking into account network and computing resources. Both network and computing
resources are bundled and proposed to the user.

• On-demand storage services :

Facing exceptional events as natural disasters, many companies wish to be able
to restore in very short delays the status of their data bases. For that purpose,
they use public storage services provided via carrier’s networks. The necessity to
restore in short delays huge amount of data stored at different sites via a networking
infrastructure may be seen as a specific version of Grid services. Although SAN
(Storage Area Network) services are comparable to Grid computing services, they
do not rely on the same type of background technologies. Storage services are out
of the scope of this thesis.

Introduction 7

• Resource orchestration services on demand:

This service aggregates network, storage and computational resources to provide
a resource orchestration service. The idea is that the user would simply describe
their resource requirement over time and the operator would have to find, select and
reserve them over time, to satisfy the user’s request.

This thesis deals with the problem of integrated computational service provisioning.
To achieve this, it is necessary to understand which type of information is exchanged
between the computing department, the network department and the resource owners.

Exchange information model

Computing service provisioning assumes an exchange of information between the var-
ious entities of the unifying framework described above. In this context, the fact that
each actor (the computing Dpt, the network Dpt and the resource owners) does not want
to provide detailed information about its own infrastructure or available resources is a
serious constraint. More generally, these actors do not want to disclose confidential in-
formation to their competitors, such as the quantity of a resource available, the average
load, or worse even the future estimated load. Such a problem is not technical but refers
to commercial business and organizational constraints.

Thesis structure

This thesis is organized as follows. Chapter 1 presents a state of the art of the essential
Grid and networking concepts and technologies used to provide integrated computing
services. Chapter 2 proposes some architectural solutions for integrated computing service
provisioning. Chapter 3 analyses the control mechanisms to reserve computational and
network resources. The performance of these control mechanisms are evaluated by means
of discrete time event simulation applied to a queueing model of the problem. Chapter 4
investigates and presents one aspect of efficient resources utilization. Finally, we conclude
this thesis in providing a few perspectives in the continuation of our work.

8 Introduction

9

Chapter 1

State-of-the Art

1.1 Introduction

This chapter will present a brief of the current ideas on business models, technologies and
architectures to provide computing services through a wide area network. Although some
examples of storage services will be shown and discussed, this chapter does not intend to
cover storage services.

The first section presents the business models, the second describes existing Grid
toolkits and their standardization status and the third describes how the network resources
are managed and taken into account in many recent Grid projects.

1.2 Business Models

Outsourcing today drives the service industry. More companies are focusing on their core
business and competencies, leaving other specialized firms to take over non-critical busi-
ness functions. Companies like Accenture or IBM manage for their customer’s business
functions such as payroll editing, procurements, etc... Those actors are combining re-
sources, employees and IT, to provide a common service to their customers. The benefits
for their customers are better-controlled costs, lower operating expenses (OPEX), more
qualified staff and higher utilization of resources... This outsourcing trend also applies for
computing services.

10 1. State-of-the Art

1.2.1 Different services

As described earlier, a computing service can be provided at three different levels:

• Raw computational resource access, the end users have to provide an image of an
Operating System and the running programs

• Computational service, the end users have to provide an image of the source or
binary to execute on a given platform

• Application service, the end users have to provide input files or they simply interact
directly with the application

On-line Application Rental

In this model, the service provider is an application provider. It leases access to an
application. Its customers access the application through the network. The application
interface can be via a web browser or a dedicated application (e.g. a Java application).
The application cannot work offline. Some examples of this kind of online application are
Google Docs, Calendar and Mail programs.

Raw computational resource Rental

In this model, the service provider provides access to a computational resource. The user
sends to the service provider an image file of a fully operational operating system and the
required application. The provider only executes the image. Some examples of this are
the Amazon Elastic Compute Cloud service [1, 2]. The Amazon computational service
works with the Amazon storage service. Through a Web Service interface 1, the user can
submit an image file and then run it.

Job execution service

In this model, the service is a job execution service. The user sends their jobs and its input
files to the service provider. The files must contain either a binary executable program
or a source code and an executable file to start it with. The files must be compatible
with the architecture of the service provider. Most of the time, the jobs are executed
on the same cluster. Examples of such services are Sun Grid Compute Utility [23] and
Cluster Computing on Demand provided by TTI [4]. In the Sun example, jobs are sent

1. SOAP and Query as of today

1.3. Web services 11

via archive files (.zip, .tar.gz), they must contain a binary executable and be compatible
with the Solaris 10 environment.

Storage services

Some Internet service providers are providing a storage service to their customers. A
simple example is Google’s “on line storage service”. Users can store their files via various
means: from a simple HTTP POST method, (i.e. a web page file upload), to an FTP
access or SFTP, or an application integrated to their operating system. The file retention
policies can vary: it can be based on inactivity or user class.

1.2.2 Pricing, Payment

Service presented above are priced in proportion of the use of the service: 0.8$/CPU/hour
or 0.15$/MB/Month, but other pricing framework can be used. Buyya [51] analyzed
several payment models: prepaid, pay as you go, postpaid. The pricing can be a flat
rate for unlimited use, or a variable rate for a price proportional to usage like before,
subscription rate or demand and supply based rate. All computing services presented
above are required to have a binary program compatible with each independent resource
provider. If a computing department of an operator wanted to provide a computing
service hiding the heterogeneity of the Operating system, local scheduler vendor, processor
architecture to its customers, it would need to use a Grid toolkit. Several Grid toolkits
will be presented in the next section.

These services, as they exist today suffer from the same problem. They do not guaran-
tee network QoS. Applications and services are overlaid on the network with no resource
management information exchanged. Furthermore, the network department of the oper-
ator does not interact with the service delivery, the traffic is not even QoS classified. As
a consequence, all these application suffer from poor, indeterministic and unreliable net-
work performance a majority of the time. Before going into more detail on how network
resources are taken into account by some recent Grid projects (as in section 1.5), the next
section describes the existing Grid Toolkits and their standardization status.

1.3 Web services

Web services typically refer to two technologies:

• REST, Representational State Transfer [67]

12 1. State-of-the Art

• SOAP, Simple Object Access Protocol [49]

Briefly, REST is an architecture that associates a resource to everything, via a unique
URL. Each resource can be retrieved, created, updated and deleted with the HTTP mes-
sages GET, PUT, POST and DELETE.

SOAP is a Remote Procedure Call protocol using XML as a standard way to trans-
port formatted data. Today’s Grid toolkits rely heavily on SOAP over HTTP, although
standards try to be independent of the underlying technology. Since HTTP is a stateless
protocol, and given that resources must manage states, a resource framework has been
added to the traditional web services. WSRF permits the management of stateful re-
sources, whose state now becomes available through classic SOAP calls. In the rest of
this thesis, WS will only refer to SOAP like web services.

Example of a SOAP request:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<getProductDetails xmlns="http://warehouse.example.com/ws">

<productID>827635</productID>

</getProductDetails>

</soap:Body>

</soap:Envelope>

And here is a possible response to the client request:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<getProductDetailsResponse xmlns="http://warehouse.example.com/ws">

<getProductDetailsResult>

<productName>Toptimate 3-Piece Set</productName>

<productID>827635</productID>

<description>3-Piece luggage set. Black Polyester.</description>

<price currency="NIS">96.50</price>

<inStock>true</inStock>

</getProductDetailsResult>

</getProductDetailsResponse>

</soap:Body>

</soap:Envelope>

WS Description Language (WSDL) is a way to standardize the description of the different
interfaces a web service can provide. It defines a language to describe a web service, its
interface, operations, input and output and error messages.

1.4. Distributed Resource Management Systems 13

1.4 Distributed Resource Management Systems

This section presents typical features of a Grid toolkit. A Grid toolkit is also called a
distributed resource management systems (DRM). Then, major toolkits are presented,
followed by a description of their current standardization status.

1.4.1 Generic features

Grid toolkits were originally developed to interconnect clusters belonging to different or-
ganizations. Each cluster has its own cluster management software also called a local
resource manager. These local resource management software tools often include a sched-
uler, sometimes they are only a scheduler. Examples of these are:

• Platform Load Sharing Facility (LSF) [18]

• Altair Portable Batch System (PBS) [19]

• Sun Grid engine (N1GE) [24]

• IBM LoadLeveler (LL) [26, 89]

• DataSynapse GridServer [6]

Of course, interconnecting clusters require having a global security infrastructure in
place. So, the most important features of a Grid toolkit are:

• Interoperability

• Security

• Job execution

• Data exchange

As a consequence, all Grid toolkits need to perform the same functions, authentication,
authorization, job execution and file transfer. They usually share the same components:

• An interface to adapt (An Adapter) to each local resource manager’s “language”
(LSF, PBS, N1GE, LL, ...)

• A security component, for authentication and authorization

14 1. State-of-the Art

• A job execution engine

• A user client

• A data management system, either via a “global” file-system or a file transfer pro-
gram

Basic Grid toolkits have all of these components. In many research projects a global file-
system provides the file management and interconnects between the sites. This solution
separates execution tasks from data transfers. This greatly simplifies the execution tasks.
Grid toolkits provide a simple job execution interface: all the user needs to do is to
submit an execution command specifying the name of the program to be executed and
the machine or cluster where it is supposed to run. If a global file-system is available,
the job submit command triggers the execution of the job on the remote machine, after
having performed security checks and translated the command in the remote machine’s
“language”. If no global file-system is available, the job submit command also triggers the
job transfer from the source machine to the remote.

A complete description of Global file-systems is out of the scope of this thesis. The
word global [10] file-system is misused here, its true meaning refers to a file-system that
makes files available through a global network (as opposed to a local area network) and
avoids host-dependent mount points (hence filenames). Strictly speaking, the following
list refers to some distributed file-systems used over global networks:

• Global File System [145, 9]

• Google file-system (Not freely available)

• zFS [128]

• and many more can be found on Wikipedia’s file-system list [15]

For a network operator to provide an integrated computing service, it can not assume
the existence of a global file-system. Although for simplicity, this chapter might assume
the presence of a global file-system as it is the case in many Grid projects when a dedicated
network interconnects sites.

Most Grid toolkits support plug-ins. Schedulers often use plug-ins to connect to other
software tools. A Grid scheduler [149, 152], or meta-scheduler, schedules jobs at the Grid
level by interacting with local schedulers.

1.4.2 Globus

Globus was amongst the first Grid toolkits. Created by Ian Foster [69], it is still widely
used. Version 4 is the last version released in 2007. It is fully WS based and was built

1.4. Distributed Resource Management Systems 15

around the WS Resource Framework (WSRF [43]).

Figure 1.1: Globus Toolkit

Globus functions are grouped within five domains:

• Security

• Data Management

• Execution Management

• Information Services

• Common Runtime

16 1. State-of-the Art

Information services

Information services in Globus 4 are provided by Monitoring and Discovery System 4,
MDS4. “Monitoring is the process of observing resources or services (e.g., computers and
schedulers), for such purposes as fixing problems and tracking usage. A user might use a
monitoring system to identify resources that are running low on disk space, in order to take
corrective action.” Discovery is the process of detecting resources and their configuration.

MDS4 is built with three modules. Together, they provide a directory service.

• Index service centralizes resource discovery and status messages.

• Trigger service permits to trigger messages when an event occur. For instance, it’s
possible to send an email when a storage area is full.

• Aggregator service permits the creation of groups of entities to multicast informa-
tion. (I.e. Disseminates information among a group of entities)

Execution management

Grid Resource Allocation Manager (WS-GRAM) is composed of a set of services that
enables localization, submission, monitoring of jobs on computing resources. It is not a
scheduler but a set of services and clients that communicates with local schedulers. WS-
GRAM manages submitted jobs, follows resource status, manages credentials and triggers
data stage in and out if necessary.

Community Scheduler Framework is a Grid scheduler framework. It is composed of
a job service that creates, submit, monitors jobs, a resource reservation service, a queue
management service. The project GridWay [108, 13] is a Grid scheduler for Globus.
Unicore’s meta-scheduler will be described in more detail. Both Grid schedulers have
similar functionality.

Data management

GridFTP is a data transfer program that is more efficient than the traditional FTP to
transfer huge files.

Reliable File Transfer RFT is a web service that supervises data transfer, resuming
interrupted transfers in case of failures. It can also execute post transfer actions and
broadcast failure notification messages.

1.4. Distributed Resource Management Systems 17

Replica Location Service is a service to manage replicas. It dissociates logical resources
from their physical location.

Security management

Welsh describes Globus Security Infrastructure in [156]. Credential management ser-
vices manage credentials. Furthermore, WS-Authentication and WS-Authorization pro-
vide sender authentication, message encryption, integrity verification and delivery ver-
ification. These two standards support different security architectures, Access Control
Lists, special authorizations and SAML protocol [55]. Delegation web service permits
authorization delegation as well as credential renewal. Community authorization service
centralizes credentials for a given VO.

1.4.3 Unicore

Unicore [65, 66] is an acronym that stands for uniform interface to computing resources. Its
development conception goes back to 1997, when German supercomputer centers wanted
to provide a seamless, secure and intuitive access to the heterogeneous computing resources
at their centers. The project was sponsored by the German Ministry for Education and
Research (BMBF) and had the following objectives:

• Hide the seams resulting from different hardware architectures, vendor specific op-
erating systems, incompatible batch systems, different application environments,
historically grown computer center practices, naming conventions, file-system struc-
tures and security policies, just to name the most obvious.

• Security was to be built into the design of Unicore from the start, relying on the
emerging X.509 standard for certificates authenticating servers, software and users
and encrypting the communication over the Internet.

• Finally, Unicore was to be usable by scientists and engineers without having to
study vendor or site specific documentation. A graphical user interface was to be
developed to assist the user in creating and managing jobs.

In addition several other conditions had to be met: Unicore had to support operating
systems and batch systems of all known vendors represented at the partner sites. It had
to be non-intrusive such that it does not require changes to computing center practices
especially for users and system administration. Besides, Unicore’s own security model site
specific security requirements had to be supported.

In 2007, Unicore released version 6. This version relies on WSRF and provides WS
interfaces. So far it is not fully interoperable with Globus 4, but interoperability tests

18 1. State-of-the Art

are to be performed, either by the Open Grid Forum [17] (see below) or the European
Telecommunication Standard Institute (ETSI).

Unicore Architecture

The article [107] briefly describes the main components of Unicore.

As shown in figure 1.2 Unicore introduces a three-tier Grid architecture
consisting of user, server and target system, an implementation of which is
realized entirely in Java 2. [65] provides a more extensive insight.

Figure 1.2: Unicore architecture

The user tier is represented by the Unicore Client, which provides a graph-
ical user interface to interact with the functionality offered by the server.
Sending and recieving Abstract Job Objects (AJO) via the Unicore Proto-
col layer to achieve this. The AJO is the implemetation of the job model and
central to Unicore’s philosophy of abstraction and seamless integration. It con-
tains platform and site neutral descriptions of computational and data related
tasks, resource information and workflow specifications along with user and
security information. AJOs are built within the user tier and sent formatted
as serialized and signed Java objects to the Gateway.

The Gateway is the secure entry point to a Unicore site, a Usite, which
authenticates user requests and transfers them to the Network Job Supervisor
(NJS). The NJS translates the abstract job into a target system specific one,
a process called Incarnation, making use of the Incarnation Database (IDB).
Furthermore the NJS contains a workflow engine which, amongst other tasks,

1.4. Distributed Resource Management Systems 19

performs pre and post-staging of computational data and authorizes the user
by contacting the Unicore User Database (UUDB). The Gateway and NJS
execute typically on dedicated secure systems behind a firewall.

Unicore’s communication endpoint is the Target System Interface (TSI), a
stateless daemon executing on the target system. It interfaces with the local
resource manager represented either by a batch system like LoadLeveler, a
batch system emulation on top of Linux (for example) or an entity capable of
providing access to Grid resources like Globus.

Permanent X.509 certificates are used to establish SSL connections between
Unicore components 4 (as shown in Diagram 1.2) and to sign Abstract Job
Objects (see [78] for a full analysis of Unicore’s security model).

Unicore version 6 is supposed to interoperate with Globus, the interaction will be done
following the architecture shown in figure 1.3. A Grid scheduler has been developed for

Figure 1.3: Unicore 6 & Globus

Unicore, see [152].

1.4.4 Sun N1 Grid Engine (SGE)

Sun has developed an independent Grid toolkit. Two versions are available, a freely
distributable version and a commercial version. SGE provides a policy based workload

20 1. State-of-the Art

manager. It includes a policy based scheduler and is composed of the following modules:

• A master daemon is responsible for the management of jobs on execution hosts.

• A Scheduler which is part of the master daemon, is responsible for the selection of
execution queues for each job.

• An execution daemon is responsible for the communication between an execution
host and the master. It receives job execution commands and provides feedback on
the load to the master in order to optimize the scheduling process.

SGE was installed, maintained and used during this thesis as the main tool to share
the workload of simulations of chapter 4.

1.4.5 Standard status

Grid technologies rely heavily on existing standards. The Grid community gathers two or
three times a year at the Open Grid Forum (OGF) to discuss them. The OGF resulted
from the merger of the Global Grid Forum and Enterprise Grid Alliance.

“The Open Grid Forum (OGF) is a community of users, developers and vendors leading
the global standardization effort for Grid computing. The OGF community consists of
thousands of individuals in industry and research, representing over 400 organizations in
more than 50 countries. The work of OGF is carried out through community initiated
working groups, which develop the standards and specifications.”

OGF tasks are divided in areas, where each area is composed of several working groups
or research groups. The main areas are Applications, Architecture, Compute, Data,
Infrastructure, Liaison Management and Security.

OGSA

OGF’s Open Grid Services Architecture [74] “does not define any standards or technical
recommendations”. It’s a service oriented architecture that can be used to describe the
main components of a Grid. The functions are handled by components, accessed using
a client/server communication model: functions become services. High level functions or
services are realized using lower level components. This way, a hierarchy of functions and
associated services is defined. OGSA describes six families of functions:

• Execution and Management

1.4. Distributed Resource Management Systems 21

• Data

• Resource management

• Security

• Self management

• Information

Job Execution and Management functions are related to instantiation, execution and
management of units of works. One of its most important functions is resource selection.
Data regroups functions used to move data to where it is needed, manage replicated copies,
run queries and updates and transform data into new formats. Resource management
functions are related to the management and control of resources, such as reservation,
monitoring, supervision, as well as management of other top-level components. Security
contains security and policy related functions, such as authentication, authorization, audit
and identity mapping. Self-management automates as many tasks as possible, such as
healing, configuration and optimization. Information refers to dynamic data or events
used for status monitoring, relatively static data used for discovery and any data that is
logged. Information services aim to efficiently access and manipulate information about
applications, resources and services.

The execution and management service described in OGSA and the computing area
will be described in more detail.

Execution and management services

According to OGSA, prior to the receipt of a job request by the Job manager, a service
container is created to represent the computational resources. This container communi-
cates with the information services (IS). The IS provides access to a directory of services
and resources.

If a user wants to run a job interacting with a portal or queue job manager,
there are four basic phases to starting the job:

• Job definition phase. What are the input files? What are the service
level requirements? E.g., job must complete by noon tomorrow. What
account will be billed for the job? Etc.

• Resource Discovery: Discover the resources available and select the re-
sources required to execute the job.

• Scheduling: Enact the schedule, e.g., provisioning of resources, account-
ing, etc.

22 1. State-of-the Art

Figure 1.4: Execution and Management Service

• Monitoring: Monitor the job through its lifetime(s). Depending on the
service level agreements the job may need to be restarted if it fails to
complete for any reason.

To realize this using Execution and Management Services, the Job Manager
(JM) creates a new job with the appropriate job description (e.g., written in
JSDL [42]). The JM then calls an Execution and Planning Service (EPS)
to get a schedule. The EPS in turn calls a Candidate Set Generator (CSG),
which queries information services (IS) to determine where the job can be
executed based on binary availability and policy settings. The EPS selects
a service container, after first checking with the service container (SC) that
the information is accurate. The EPS then returns the schedule to the JM.
The JM interacts (if necessary) with reservation, deployment and configuration
services to set up the job execution environment. This may involve interaction
with the data container as well. The service container is then invoked to start
the job. Logging services are used for accounting and the audit trail. When
the job terminates the job manager is notified by the container. If the job
terminates abnormally, the whole cycle may repeat again (see Figure 1.4).

The list of the different meaning of the acronyms used in figure 1.5 are:

• RS=Reservation Service

• SC=Service Container

1.4. Distributed Resource Management Systems 23

• IS=Information Service

• JM=Job Manager

• EPS=Execution and Planning

• CSG=Candidate Set Generator

• EPR=End Point Reference

• JSDL=Job Submission Desc Lang

• BES WG= Basic Execution Service Working Group

• WS=Web Service

• WSRF=WS Resource Framework

• UDDI=Universal Description Discovery Integration

• WS GRAM=Grid Res Alloc Mngr (not standard but WSRF based)

Figure 1.5: Execution Scenario

The OGF and Resource Selection Services working groups are defining protocols,
schemas for the candidate set generator and the execution and planning service. More
generally, OGF has an open policy towards OGF draft documents. OGSA does not set
any constraints on Grid toolkits to be “OGSA compatible”. The consequence is that most
of Grid projects have independent protocols that do not necessarily interoperate.

Furthermore, OGSA does not make any recommendations, it’s more like a vision of
the different functions required to manage a Grid. Each of the different OGF working
groups proposes some protocols and elements that interact to provide a high level service.
Defining compatible toolkits relies on the description of different services through profiles.
An approach to defining interoperability standards is emerging.

24 1. State-of-the Art

1.4.6 Conclusion

Figure 1.6: Toolkit comparison

The two major toolkits are very similar. Although Globus is older, both toolkits have
a huge set of extensions and user base. They could both claim to be “OGSA compatible”,
but OGSA is too general to guarantee real interoperability. So far, several initiatives exist
to provide real interoperability [123, 122]. ETSI has launched an initiatives to facilitate
interoperability tests.

“Diagram” 1.6 makes the mapping between Globus and Unicore components.

Current standards and toolkits do not support resource co-allocation. The next section
will describe a state of the art of network and computational resource co-allocation scheme.

1.5 Grid Networks

Grid Networks is a research domain going from “passive” networks to the integration of
network resource by Grid toolkits. “Passive” means that Grid applications are overlaid
on the network. I.e. there is no interaction between the network QoS mechanisms and its
applications, whether QoS mechanisms are per hop behavior like DiffServ or connection
oriented like (G)MPLS. In 2004, the overlay model was the predominant model in Grid
projects, where huge dedicated networks were built to run bandwidth greedy applications.
Other research projects not dedicated to Grid applications were focusing on network
control and management plane research. Before 2004 the Generalized Multi Protocol
Lavel Switching GMPLS [8] standard, as a connection oriented control plane for multiple
switching technology (packets, circuits, lambda, ports) emerged. In 2007, many research
Grid projects are integrating network resources, capable of using a guaranteed QoS service
(Bandwidth reservation) or premium IP service (DiffServ service). A book entitle “Grid
Networks” was published [148].

This section will briefly summarize a survey performed in 2004 by the EGEE [29, 33]
project adding more recent references.

The purpose of the survey was to provide an overview of the current technologies

1.5. Grid Networks 25

and to understand what can be learnt from these previous efforts in respect of interfaces,
architecture, design decisions, resource management, authentication, authorization and
multi domain aspects.

The following network resource management systems were considered in the survey:

• Network Resource Scheduling (NRS) [12]

• Globus Architecture for Reservation and Allocation (GARA) [7, 71]

• GARA based DataTAG [57]

• User Controlled Light Paths (UCLP) [27]

• Internet2 QBone Bandwidth Broker [20]

• EGEE Bandwidth Allocation and Reservation (BAR) [32]

• Dynamic Resource Allocation in GMPLS optical networks (DRAGON) [99]

• AkoGrimo [37]

• EuQoS [133]

• Phosphorus [104]

• Nortel’s DRAC [16]

• VIOLA [28, 152]

• Enlightened [45]

• G-Lambda [146]

The next section is a brief network refresher of basic networking concepts, before going
to the survey.

1.5.1 Network concepts

This section is not a networking course. It’s just a quick refresh of concepts commonly
used in the rest of the thesis.

26 1. State-of-the Art

Autonomous System

Networks like the Internet are hierarchical. Two levels must be distinguished: within
an autonomous system and between autonomous systems. An autonomous system is
composed of network nodes like routers and switches managed by a single administrative
entity. Internet’s inter AS routes are advertised with Border Gateway Protocol [125]
(BGP).

Traffic Engineering

Traffic engineering is the capability to allocate and manage network resources for a por-
tion of the traffic. It permits traffic prioritization and optimal resource allocation. Link’s
state traffic engineering extensions are stored in the traffic engineering database (TEDB).
This database is distributed by a TE extended routing protocol like OSPF-TE [90] (Open
Shortest Path First Traffic Engineering) or ISIS-TE [143] (Intermediate System to Inter-
mediate System Traffic Engineering). Information such as available bandwidth on each
link for reservation or reservable bandwidth is contained in this database.

Distributed control plane

The network control plane is the set of functions relating to the control of the network.
The two main functions are signaling and routing. The signaling functions in GMPLS
relies on Resource Reservation Protocol with Traffic Engeneering RSVP-TE [46], while
the routing function on OSPF-TE or ISIS-TE.

Inter-Domain LSP scheduling

For the immediate Label Switched Path, LSP set-up request, RSVP-TE is enough. How-
ever no inter domain TE routing information is propagated with GMPLS. Furthermore
the GMPLS control plane only works with immediate reservations and only propagates
immediate link state. Future link state information and future resource reservation can
not be done with GMPLS.

When an LSP set-up has to be done in the future, but the reservation of resource
should occur now, domains need to cooperate. They need to exchange signaling and
routing information. Two models permit an inter domain LSP set-up:

• Coordinated, see Diagram 1.7

• Daisy Chain, see Diagram 1.8

1.5. Grid Networks 27

Figure 1.7: Coordinator Model

Figure 1.8: Daisy Chain Model

In the coordinated framework an element part of a domain, the source domain for
instance communicates with all other domains to signal the LSP. While in the daisy chain
framework, each domain is responsible for its own and triggers the signaling in the next
domain.

In a very similar way, routing information could be theoretically centralized, but ac-
tually it is distributed across domains.

1.5.2 Grid Resource Scheduling (NRS)

Figure 1.9: NRS

The Grid Resource Scheduling project [12] has implemented a system to schedule ac-
cess to network resources at the edges of a single domain which is assumed to be “over

28 1. State-of-the Art

provisioned” internally. NRS is designed to control the access to the DiffServ Expedited
Forwarding service (EF). The principal NRS component is the Network Resource Schedul-
ing Entity (NRSE), which lies at the source and destination sites. An NRSE allocates
a portion of the DiffServ allocation to a user’s flow on demand. The main limitation of
NRS is that it is designed for a single network domain and has no mechanism for control
of flows that cross multiple network domains.

The NRSE provides a signaling protocol at the application stratum (see below NGN
model). This is an open, human readable protocol based on XML that enables users to
request that the NRSE add, modify and delete QoS reservations.

The NRSE also provides admission control. Each NRSE maintains a database of
reservations and only accepts a new reservation if it has sufficient bandwidth unallocated.
For non real-time requests, such as file transfers, it may suggest an alternative booking
that still results in the file being transferred before the user’s specified deadline. The NRSE
also has an inter-NRSE protocol. This is necessary because each site has its own NRSE
and admission control must be performed at both the source and destination networks for
bi-directional flows. (Having the client communicate with both local and remote NRSE
would not scale well, because every NRSE would need to be able to authenticate every
client.)

The project focuses on a DiffServ class of service, Expedited Forwarding and tries
to manage bandwidth with a per hop behavior without connections. The architecture
chapter will assume a network capable of reserving resources and establishing virtual
connections.

1.5.3 Globus Architecture for Reservation and Allocation
(GARA)

The Globus Project [69, 11] has been actively working on integrating QoS into Globus.
This is called Globus Architecture for Reservation and Allocation (GARA) [7, 71]. Al-
though the GARA work has been within the context of Globus, it only relies on Globus
slightly.

GARA provides QoS for different types of resources: networks, CPUs, batch job sched-
ulers, disks and graphic pipelines. It also provides mechanisms to allow both advance
reservations and immediate (“right now”) reservations for quality of service. It was one of
the first projects for resource co-allocation (network and CPU) in a Grid context.

A simple resource specification language (RSL) is used to describe a reservation. When
a reservation is created, a handle is provided to the application regardless of the type of
reservation it is (Network, CPU etc). Reservations can be created, modified and cancelled.
Reservations can be monitored, either through a polling mechanism or through callback

1.5. Grid Networks 29

functions.

Although initially designed for DiffServ, GARA has been extended to interact with
Multi Protocol Label Switching (MPLS) networks.

1.5.4 GARA extensions

The GARA based DataTAG Advance Reservation Architecture [57] is mainly the result of
the joint effort of the DataTAG project in order to extend GARA to support connection
oriented networks like MPLS. MPLS is a mechanism to switch packets through a network
based on a label. The support of DiffServ by MPLS is specified in RFC 3270. Indeed,
MPLS supports QoS but does not introduce any new QoS paradigms.

A “Path” defines the general network entity providing unidirectional connectivity be-
tween two network nodes. It can be end to end or per domain. It can be inter domain.
Each “Path” is managed by a specific Network Resource Manager, which depends on the
path type, and is associated to the authentication/authorization entity (a Gatekeeper
instance or Generic AAA server) for the user access control.

1.5.5 User Controlled Light Paths

The User Controlled Light Paths (UCLP) [27] software is a tool to partition an optical
SDH/SONET network providing end users with the ability to control, provision and con-
figure an optical VPN. Users in turn can hand off control and management of optical
network resources to other users. This approach provides end users with full control to
dynamically reconfigure the optical VPN without any intervention by the network oper-
ator. The UCLP software is now deployed across the CA*net 4 network [3], which is the
Canadian research network. Four software teams have been funded to develop different
versions of the software. Not all version share exactly the same features like multi-domain
for instance.

SDH point to point capacity is represented in the system as Light Path Objects
(LPOs). LPOs are under the control of a certain user. The user can use the LPOs
that are under their control to establish an end to end lightpath by concatenating LPOs.
The user can also use LPOs that are advertised by other users and lease them to gain
control on them. In addition, users can partition an LPO. This implies that for instance
a 10G SDH circuit can be represented as a single LPO with a capacity of 10G or as four
LPOs with a capacity of 2.5G each.

The inter domain component within the first domain is responsible for coordinating the
lightpath setup over the different involved domains. Note that this approach only requires

30 1. State-of-the Art

a full network topology overview within each network. No AS topology is maintained, only
the service locations (i.e. where the appropriate web services can be contacted) should be
known for each AS.

User management is an important concept in the UCLP system. Basically, there are
users and administrators. The latter can add/remove users as well as adding/removing
root LPOs, which represent SDH capacity between adjacent nodes.

UCLP is used in the production network of the Canadian NREN. UCLPv2 is be-
ing developed, it relies on Web Services, ontologies and WS workflow execution, BPEL,
(Business Process Execution Language).

1.5.6 Internet 2 Qbone Bandwidth Broker

The QBone initiative from Internet2 [20] has been active between 1998 and 2001. Their
aim was to design and implement an infrastructure to control DiffServ in the Abilene
backbone. The work consisted of two parts:

• Design of a Bandwidth Broker whose main purpose is to manage the Premium IP
resources in the network. It performs admission control to take care that the amount
of Premium IP traffic does not exceed a certain percentage of the link capacity. Each
domain has its own bandwidth broker.

• Signaling protocol SIBBS, to facilitate the inter domain communication between the
different bandwidth brokers (i.e. between different domains).

The bandwidth broker design included a clear split between inter domain and in-
tra domain functionality. This bandwidth broker was designed to setup Premium IP
reservations that possibly could span multiple administrative domains. The inter domain
signaling protocol SIBBS was designed for the communication between bandwidth brokers
of different domains. SIBBS is an application protocol that runs on top of TCP.

No implementations were produced.

1.5.7 EGEE BAR

The European Research Area is currently served by a set of NRENs linked via a high-
speed pan-European backbone, the GEANT network, built and operated by DANTE.
The EGEE Grid will use these networks to connect the providers of computing, storage,
instrumentation and applications resources with user virtual organizations. Grid demon-
stration projects have shown that Grid applications can generate very high volumes of

1.5. Grid Networks 31

network traffic that can exceed the current aggregate flows from non-Grid usage, and will
therefore demand new and innovative features of GEANT and the NRENs over and above
the current best efforts IP service.

EGEE is putting in place a web service to implement bandwidth allocation and reser-
vation [32] (BAR). This will allow the usage of the network to be controlled and balanced
and to categorize and prioritize traffic flows so that users and the layers of Grid middleware
receive the required level of service from the network.

BAR is the culminating product of EGEE after having analyzed all of the projects
described above. None of them provided all of the necessary requirements.

Architecture

Figure 1.10 shows how a BAR service interacts with a High Level Middleware (HLM)
(a.k.a. Grid toolkits) and network services (NSAP). There are three web services involved

Figure 1.10: EGEE BAR

in Bandwidth Allocation and Reservation: BAR, Network Service Access Point (NSAP)
and Local Network Service Access Point (L-NSAP).

• BAR receives the HLM request in a network-neutral language. It passes the request
on to its designated NSAP and L-NSAP for the configuration of the backbone and
local network respectively, and also to the BAR at the target destination. When
interacting with a NSAP and L-NSAP, BAR translates an HLM request into a
network oriented request.

• NSAP is present in the backbone (GEANT and NRENs). They are concerned
with the configuration of network equipment on the backbone. Their functionality
involves sending notification to the BAR of the success of the request. As explained

32 1. State-of-the Art

in [33], the NSAP abstracts the network specific services but still speaks a language
that is network oriented.

• L-NSAP is of equivalent functionality to the NSAPs but concerned with the config-
uration of equipment on the local network of the source and destination sites (last
mile problem).

The HLM and BAR entities belong to the EGEE administrative domain and as such
they are developed by EGEE. Network service providers are free to implement NSAP (and
L-NSAP) however they see fit.

GEANT2 proposed an implementation of NSAP called AMPS, Advance Multi-Domain
Provisioning Service [31]. L-NSAPs belong to the administrative domain of the end-
sites and the resulting diversity of local equipment and policies complicates the last mile
problem. Each AMPS communicates with their counterparts in other domains, as depicted
by figure 1.11.

Figure 1.11: NSAP inter domain communication

BAR

The HLM-BAR and BAR-NSAP interfaces are represented as web service interfaces, each
being composed of set of Port Types (PTs) showing the operations that can be performed.
BAR Web Service (figure 1.12) shows the BAR service interface that is exposed to the
HLM. The first version of the interface proposes different services: Bulk Transfer, Virtual
Leased Line, Video and Visualization. The framework is extensible as extra Port Types
can be added to support additional Service Types. It is also flexible since each service
type is free to define, if necessary, a completely different interface. That is, operations
and their signatures can be completely different from one service type to another. EGEE
BAR services require two phases: reservation and activation.

1.5. Grid Networks 33

Figure 1.12: BAR Web Service

NSAP

Figure 1.13: NSAP Web Service

The specification of the NSAP is outside the scope of EGEE, an overview of its func-
tionality is provided here. The NSAP specification, implementation and deployment is
currently ongoing work within the SA3 activity of the GEANT2 project.

BAR-NSAP interface and NSAP Web Service (Diagram 1.13) shows the interface ex-
posed by the NSAP Web Service. The interface is used by a BAR service to access network-
oriented services in order to fulfill HLM requests. The parts of the NSAP interface and
the parameters they accept are described in [33]. The port types RequestReservationPT,
ModifyReservationPT, CancelReservationPT, ReservationStatusPT and ReservationNo-
tificationPT correspond to the Request Network Service, Modify Network Service, Cancel
Network Service, Query Network Service Status and Network Service Notification.

Note that translation is necessary between the operations in the BAR service and the
ones in the NSAP service.

The NSAP-NSAP interface is not yet documented. But it must be composed of two
functions: routing and signaling. It needs to permit the discovery of topologies and to
forward reservation requests.

34 1. State-of-the Art

1.5.8 DRAGON

Dynamic resource allocation in GMPLS optical networks (DRAGON [99])
defines a research and experimental framework for high performance networks
required by Grid computing and e-science applications. The DRAGON project
is developing technologies and deploying network infra-structure that allows
dynamic provisioning of network resources in order to establish deterministic
paths in direct response to end-user requests. This includes multi-domain pro-
visioning of traffic engineering paths using a distributed control plane across
heterogeneous network technologies, while including mechanisms for authen-
tication, authorization, accounting (AAA) and scheduling. A reference im-
plementation of this framework has been instantiated in the Washington, DC
area and is being utilized to conduct research and development into the de-
ployment of optical networks technologies toward the satisfaction of very high
performance scientific application requirements.

Figure 1.14: DRAGON Control plane architecture

The DRAGON project provides a topology on demand service (ASTP, Application Specific
Topology Builder). It uses a Topology Description Language and interacts with a Network
Aware Resource Broker NARB to check if it’s possible to set-up the topology requested.
Inter-domain routing and path computation are done by NARB. DRAGON also developed
a Virtual Label Switch Router to propose an emulation for the GMPLS control plane in
a local area network.

To compare with the EGEE architecture, an NARB would be the equivalent of an
NSAP.

1.5. Grid Networks 35

1.5.9 AkoGrimo

Akogrimo [37] is a project funded by the EC under the FP6-IST program. The project
runs from July 2004 until September 2007. Among other objectives, the project aims to
bring Grid services to mobile users. To do so, an architecture combining a dual signaling
SIP and SOAP is used with signaling occurring in parallel.

QoS is provided in Akogrimo via a QoS broker. The application communicates with
the QoS broker via a SOAP/HTTP WS interface.

1.5.10 EuQoS

Although, applications targeted by this project are not“labeled as Grid aware” it proposes
an interesting framework for the interaction of applications and networks. Applications
in EuQoS [133] communicate with Session Initiation Protocol (SIP). A SIP proxy in
the network domain receiving the session creation message will trigger the provisioning
network resources. The project describes two important scenarios. The first scenario
involves two methods of signaling: the first signaling is an “application control signaling”
based on SIP, whereas the second is a network control signaling used to reserve network
resources based on RSVP-TE. All hosts know both protocols. The aim of the first signaling
is to negotiate codecs. Once codecs are negotiated, the bandwidth necessary for the
session is known by the source and the destination host, only then can network resource
reservation occur. Once network resources are available, ring notification occurs. The
second scenario tries to remove this dual signaling: the source host sends SIP messages
to its proxy, the proxy is then responsible to trigger network signaling. These scenarios
are also described in the IMS architecture, and called the push and the pull model.

A more detailed description of the application of these ideas in a Grid context is
described in chapter 2.

1.5.11 Phosphorus

Phosphorus [104] is an IST Grid project started in 2006. One of the objective of the
project is to implement a Grid enabled GMPLS control plane (GGMPLS). The idea is
to manage computing and storage resources within an extended GMPLS control plane.
This idea was investigated by Alcatel-Lucent in 2004. It will be discussed in more details
in chapter 2.

36 1. State-of-the Art

Figure 1.15: Phosphorus Architecture

1.5.12 Nortel’s DRAC

Nortel through Franco Travostino was one of the first equipment manufacturers supporting
Grid Networks. They launched the Dynamic Resource Allocation Controller (DRAC [16])
in 2004. It is used in SurfNet, the Dutch NREN.

Figure 1.16: Nortel DRAC

1.5. Grid Networks 37

DRAC provides a policy based engine to make the link between (Grid) applications
and network elements for provisioning, fault notification and abstract network and perfor-
mance view. DRAC has no inter domain capability and currently works only with Nortel
equipment.

1.5.13 VIOLA

Vertically Integrated Optical Network for Large Application [28] is a German research
project. They have implemented an optical testbed with the main goals:

• Test of advanced network equipment and architectures;

• Development and test of software tools for the user-driven dynamic provision of
bandwidth;

• Inter-operability of network equipment from different manufacturers;

• Enhancement and testing of new advanced applications (e.g. Grid, Virtual Reality);

• Co-operation with similar projects in Europe and elsewhere.

In this framework, a Meta-Scheduling Service (MSS) (a.k.a. Grid Scheduler) was
developed [152] to co-allocate network and computing resources.

The MSS is a Grid scheduler capable of orchestrating and co-allocating resources.
In order to co-allocate resources the MSS mediates between the Resource Management
Systems (RMS) involved. During this process, the MSS creates resource reservations,
which are coordinated in time.

The communication between MSS and the involved RMSs can either be done di-
rectly or through a standard Grid middleware system. At the moment the MSS supports
Unicore [66] as one Grid middleware. Unicore provides seamless and secure access to dis-
tributed resources and enables the MSS to access computational resources’ management
functions in a uniform way, even if the resources are located in different organizational
domains. However, since the MSS should be extensible for the future, the integration of
the MSS into Unicore was done using the adapter patterns [76]. This allows the MSS to
support different Grid middleware systems. Adapters have been developed for comput-
ing and network resources. ARGON, Allocation and Reservation in Grid-enabled Optic
Networks is the network manager’s adapter.

A more detailed description of VIOLA is done in chapter 2, while a performance
analysis and comparison of VIOLA’s co-allocation protocol is done in chapter 3.

38 1. State-of-the Art

Figure 1.17: VIOLA Architecture

NJS

TSI

Compute
Resource

RMS

Monitoring

NJS

TSI

Compute
Resource

RMS

Monitoring

NJS

TSI

Compute
Resource

RMS

Monitoring

UNICORE
Adapter

GLOBUS
Adapter

Usite A Usite B

UNICORE
Gatewy

UNICORE
Gatewy

UNICORE
Client

MSS

ARGON
Adapter

Network
Resources

ARGON

WS-Agreement
Interface

WS-Agreement
Interface

WS-Agreement
Interface

WS-Agreement
Interface

UPL

ArgonWS

1.5.14 Enlightened

Enlightened [45] is a seed funded NSF research project, which started in 2005. The project
has designed an architectural framework that allows Grid applications to dynamically
request (in-advance or on-demand) any type of Grid resource (computers, storage, network
paths and lightpaths). They are building a network that will interoperate with other major
research initiatives of this type, like Phosphorous, Geant 2, G-Lambda, ...

Its architecture is similar to the one proposed in chapter 2 section 2.4. Alcatel-Lucent
are currently developing ideas that are similar, although they have not yet fully specified
protocols for the Grid Network Interface.

Figure 1.18 shows Enlightened’s architecture. “The Grid application uses the Ap-
plication Launcher/Steerer to initiate its activities. The Application Launcher/Steerer
makes a reservation request for Grid resources from the Enlightened Resource Broker.
Enlightened Resource Broker queries its Resource Registry and the Discovery and Moni-
toring System and then chooses the appropriate resources. The Broker then contacts the
Highly Available Resource Co-allocator (HARC [102]), which attempts to co-allocate the
required resources for the selected time range by using the HARC’s Resource Managers
for network, compute, storage and instruments.” So far, the main focus of the project
team has been the design and development of the Domain Network Manager.

HARC is an extensible, open source co-allocation system that allows clients to book
multiple heterogeneous resources in a single transaction. HARC uses the Paxos Commit
protocol [79, 97]. The messages exchanged are XML over HTTP. The main difference with
the proposal of chapter 3 is that chapter 3’s proposal relies on WS-Agreement standard
while HARC uses its own proprietary protocol. Diagram 1.19 sums up the other main
differences between both approaches. In HARC, messages are plain XML messages sent

1.5. Grid Networks 39

Figure 1.18: Enlightened Architecture

directly over HTTPS (POST and GET). SOAP is not used. Some consider that the use
of POST to send information and GET to retrieve it is a REST like behavior, even if
HARC does not support DELETE and PUT.

Figure 1.19: HARC vs VIOLA

HARC is composed of clients, a set of replicated processes called acceptors that play
the role of the coordinator, resource managers that are like VIOLA’s adapters. Clients
first communicate with resource managers to get resource availability in the form of a
timetable, then to the coordinator for the reservation of resources. The coordinator is in
charge of creating the reservation with the different resource managers.

40 1. State-of-the Art

Figure 1.20: Enlightened Domain Network Manager

The Domain Network Manager controls all network resource allocations to dynamically
setup and delete dedicated circuits using GMPLS control plane signaling; see figure 1.20.
It does the resource scheduling (both links and wavelengths) and path computation within
an Administrative Domain. It also keeps the network reservation timetable. It obtains
network topology information and up to date status of the network resources from the
Discovery and Monitoring System. It uses its Resource Allocator to talk to the network
control plane to manage (setup/tear-down) the lightpaths. This implies a novel rela-
tionship between the middleware and the network control plane, as the Domain Network
Manager will be responsible for both path computation and resource allocation. In the
Enlightened testbed the resource allocation is done via TL1 by instantiating a GMPLS
RSVP-TE command. The resource scheduling and path computation component of the
Domain Network Manager supports in-advance reservations.

1.5.15 G-Lambda

G-Lambda [146] is a Japanese project which started in December 2004. The goal of
the project was to provide a standard interface between a Grid resource manager and a
network resource manager provided by a network operator: GNS-WSI. The latest version
as of 2007 (version 2) was developed with the WSRF. The G-Lambda interface, GNS-WSI
can be used for inter domain provisioning if used in conjunction with a coordinator, but
as is, there is no communication between two NRMs belonging to different operators.

G-Lambda and Enlightened conducted an interoperability test in 2006 to provision an

1.6. Conclusion 41

Figure 1.21: G-Lambda Architecture

inter domain label switch path (LSP).

1.6 Conclusion

Table 1.23 summarizes all of the project’s characteristics. Next Generation Network strata
were considered to classify the different types of signaling involved in these projects.
Diagram 1.22 illustrates the International Telecommunication Union NGN model. NGN

Figure 1.22: NGN Strata

is a model to deliver commercial services on any device, such as personal computers,
digital assistants, mobile phones connected to any access network, wired or wireless. This

42 1. State-of-the Art

model is composed of two strata: the service and the transport stratum. Each stratum
is composed of three planes: a user plane, a control plane and a management plane. The
user plane encompasses functions to transfer user data, the control plane encompasses
functions related to the instantiation of the service, such as set-up, execution, tear-down
for a given user session and the management plane encompasses functions related to
the billing and monitoring. OGSA functions belong to the service stratum and form its
control and management plane. Sometime also referred to as the application control and
management plane.

Before NGN, when an operator wanted to deploy a service, it had to build the corre-
sponding network. For instance to offer a telephone service, it deployed a fixed telecom-
munication network, a mobile telephony service, a mobile telecommunication network, an
Internet access or an Internet Protocol (IP) network. One of the NGN objectives was to
rationalize network deployment costs and have one network for all services. Most Grid
deployments over wide area networks have followed the traditional approach: sites are in-
terconnected by a dedicated network. They have not followed the NGN principles. Some
deployments are using the Internet, sacrificing performance over cost.

Given this model, application (or service) signaling can be distinguished from network
signaling, labelled respectively A and N in table 1.23. Signaling is a function of the
control plane to “alert” next elements that they should do something or react. The NGN
model distinguishes two level of signaling, network and application. Examples of network
signaling are network resource reservations like RSVP-TE, application signaling like SIP,
or the signaling inter bandwidth broker like SIBBS. It should be noted that DiffServ
doesn’t need signaling. So the signaling column of table 1.23 when QoS “Type” is PHB
(i.e. DiffServ) is necessarily an application signaling.

When the QoS “type” is connection oriented, it is assumed that a distributed control
plane like (G)MPLS is always used, except for GridJit [147]. In this case, if the originating
signaling node is a host, the signaling is end to end, if it’s a router in the operator’s
network, it’s edge to edge. Table 1.23 considers that there is Network signaling only
when it’s an end to end signaling. In the edge to edge case the LSP setup is triggered
by a vertical interface. Inter-domain TE routing and scheduling message exchange (like
DRAGON NARB) are not network signaling.

A connection oriented paradigm is the major concept being investigated. It is the
only way to really guarantee QoS and it does not preclude any per hop behaviour. Inter
domain traffic engineering routing issues were not considered in this thesis. The main focus
was once Grid resource management software manages network resources, how can the
Grid scheduling be improved? Chapter 2 presents the architectures proposed to integrate
network and computational resources. The architectures proposed in the context of this
thesis were proposed in parallel by other research projects during this period. Chapter 2
will detail the contribution made to the development of new technologies, as well as
describe in more detail the three major architectures:

1.6. Conclusion 43

Figure 1.23: Survey summary

• WS based (EGEE or VIOLA multi domain like),

• GMPLS based (Phosphorous),

• SIP based (EuQoS).

Chapter 3 will evaluate the performance of the protocol used for co-allocation in the
dominant solution (WS-based). Chapter 4 proposes a cross-optimization algorithm and
evaluates its benefits to better co-allocate network and computational resources.

44 1. State-of-the Art

45

Chapter 2

Architectures

The previous chapter presented different architectures to co-allocate network and compu-
tational resources. This chapter presents the architectural contributions developed during
this thesis.

Chapter 4 proposes new algorithms for Grid schedulers to better co-allocate resources,
minimizing a job completion time seen by the end-user. These algorithms provide what is
called “a cross-optimization” (XO). This chapter provides an answer to the question: “In
which architecture these new algorithms can be included?” But to do so, a review of the
services that are to be provided by the network operator is needed. Even when services
provided by the telecommunications company are well known, the survey conducted in
chapter 1 illustrated the number of potential architectural solutions. All these architec-
tures could be a target for XO algorithms. Section 2.1 provides a unifying vision of the
features and services that could be provided by a telecommunications company to support
or provide computational services. It will also describe how each project discussed in the
previous chapter can be included into this vision.

Section 2.2 details how XO is included into VIOLA.

Section 2.3 proposes some enhancements to network protocols to better support Grid
application’s needs and co-allocation. Those extensions were patented and are part of this
thesis contribution.

Section 2.4 describes in more detail a very network oriented architecture, GGMPLS,
to better support Grid applications. This idea was also patented. Sections of the research
community are currently heading in that direction.

Section 2.5 briefly describes IP Multimedia Subsystem architecture, the fixed/mobile
network architecture for service delivery and proposes some extensions to provide compu-
tational services. This section complements a published article I wrote.

46 2. Architectures

2.1 A unifying vision

2.1.1 Introduction

Grid doesn’t refer to any precise type of resource: Computational, Storage, Sensor, Instru-
ments, Captors... Whatever the service provided to the end user, it requires access to the
corresponding resources. Those resources will be heterogeneous and not collocated. The
service provider will have to aggregate the information coming from all of the resources
and make them seem to behave as if they were all similar: it will provide a virtualiza-
tion of the resources. For example a computational service will aggregate the computing
power of different clusters spread accross the network and provide a simple and common
interface to its customers.

As described in the general introduction, the telecommunications company Grid service
provider can be a new department, which will be a customer of the network department.
The introductory chapter contains some examples of different Grid services that can be
provided (computing at the three different level, storage, orchestration, ...). Section 2.1.3
explains the different features characterizing a computing service. Section 2.1.2 describes
services that can be provided by the network department to support the computing de-
partment. The interface between the two departments can authorize a different level of
information to be exchanged. It will provide structure to the different kind of interactions
between the network and the Grid infrastructure.

• A public interface discloses as little information as possible to the user

• A private interface discloses abstract network information to the user in order to
help them makes his decisions

This raises the question, what services should be provided through this interface ?

2.1.2 Network services

Network services can be classified by two types:

• Connectivity services provides connections (may be virtual) or QoS guarantees

• Publication services provides information about the network in an abstract form
preserving confidential information

Of course“Premium IP”services with DiffServ could also be provided but are not discussed
here. The focus is on signaling approaches like MPLS or GMPLS.

2.1. A unifying vision 47

Connectivity services

The questions a network operator must answer to provide such connectivity services are:

1. Will the QoS guarantee be end-to-end or edge-to-edge?

2. Will the QoS guarantee provided be inter-domain and involve multiple operators?

3. How much information should be provided to the users?

4. What is the correspondence between a QoS guarantee request and LSP provisioning?

The first question will distinguish architectures that require just a service signaling
from those that require a service and a network signaling (dual signaling). An example
of a dual signaling is detailed in section 2.5. If an LSP has to be set-up, according to
the policies, the edge-to-edge scenario does not require the network signaling to start
from the customer’s network. In this case, the LSP set-up trigger comes from a vertical
interface. The end-to-end scenario requires the network signaling to start from the source
router in the customer’s network. The operator must have security mechanisms in place to
check that a customer’s initiated network signaling is authorized. The second question is
crucial to determine whether the network operator has to be involved or not with others to
provide inter-domain QoS guarantees. Today, in public networks, only a limited number
of operators have agreements to treat QoS packet classifications. What is required by Grid
applications are on-demand in advance inter-domain LSP set-up. Only research networks
have been able to provide such services. Furthermore no TE BGP extensions have been
widely accepted. Only some of the solutions will be proposed to deal with the inter
domain scenario. It is thought that the network operators are not yet ready to collaborate,
delivering on demand QoS guarantees. (Despite initiatives like IPSphere and others) The
third question is very important to network operators. They are very secretive when it
comes to disclosing network information, but it’s an important discriminating factor in
the selection of an operator. Chapter 4 requires a private interface to have access to the
network topology and a known amount of reservable bandwidth. The last question is a
policy based decision that must be made by the network operator. Those policies are out
of the scope of this thesis.

The main Grid applications connectivity service requirements can be summed up by
two services [135]:

• a bandwidth on demand service

• a low-latency service

The bandwidth on-demand service provided by the network operator must guarantee
a requested throughput. The low-latency communication service provided by the net-
work operator must guarantee that packets are delivered within a delay boundary. Grid

48 2. Architectures

applications must be able to trigger those services without human interaction. Further-
more, these services must provide advance reservation capabilities: the ability to reserve
in advance network resources for a future use. For both of these services, protection and
restoration schemes should be offered. This will guarantee the reliability of the commu-
nication. Of course security of transmission is an important requirement, but not specific
to Grid applications.

Publication services

The main publication services requirements are:

• An abstract network topology

• Reservable Bandwidth or other performance related information

• Monitoring services

• Failure Notification

• Network service capabilities publication

The network service capabilities information is published and made available to the sub-
scriber of the service and is controlled by an authentication process. The two most
important requirements are monitoring and failure notification. Their importance is even
more critical if the network operator is not responsible for setting-up inter-domain LSPs.
Publishing an abstract network topology can be done at different levels: inter AS, ag-
gregated internal network view or full internal topology. The level of disclosure defines
whether the type of interface is public or private. AS availability information is the min-
imum needed by the Grid service provider if it is in charge of coordinating multiple LSP
setups in different networks (as explained in State of the art section 1.5.1). Additional
performance information can be published like the reservable bandwidth or average delay
towards each AS. The XO algorithm of chapter 4 requires the full internal topology and
the amount of reservable bandwidth on each link. Capabilities of the connectivity service
like the switching technology, the SLA template, or any additional useful information
should be provided in order to automate the process.

2.1.3 Integrated Computing services

To provide a integrated computing service, several functions have to cooperate: Resource
Discovery, Resource Selection, Resource Reservation & Execution. Examples of Grid
toolkits and their major components are given in chapter 1. The focus is on cross opti-
mization. What features are needed to provide a cross-optimization?

2.2. WS approaches 49

• Information Gathering about computing and network resource, static (topology,
location, Processor type...) and dynamic information (availability, reservable re-
sources, ...)

• Multi-criteria resource requirement description & selection

• Policing (by the Grid service provider, the resource provider, the user)

• Negotiation

• Optimal Resource Selection (with the XO algorithm for instance)

• Reservation

Not all of these features are mandatory. Section 2.2 describes the modifications needed
to existing toolkits to provide a cross optimization. These modifications do not provide all
policing features one could imagine. An architecture that could work has been proposed
but this ideal system hasn’t been designed or tested yet.

2.2 WS approaches

2.2.1 Introduction

This section has two objectives: To describe in more detail a Grid toolkit architecture
and to propose some extensions to embedded XO algorithm proposed in chapter 4.

As of 2007, most Grids used toolkits such as Globus, Unicore and maybe G-Lite. Sun
Grid Engine is more used as a cluster management software tool and not a Grid toolkit.
The main difference is that resources managed by SGE are usually located in one site and
belong to the same administrative domain.

Globus and Unicore in their basic versions have no Grid scheduler. Both basic toolkits
cannot interact with network connectivity services like Bandwidth on Demand services
or the publication services of sections 2.1.2 and 2.1.2. The focus of this section is on
the architectural aspects of co-allocation. The missing modules and interaction needed
to support co-allocation and cross optimization will be described. Differences between
execution management, resource discovery & monitoring, AAA 1 will not be discussed
more than they have already been in chapter 1.

Grid schedulers have been developed for both toolkits: GridWay [108] for Globus,
Meta-Scheduling Service [152] for Unicore. These Grid schedulers contain the scheduling

1. Authentication, Authorization and Accounting

50 2. Architectures

algorithm capable to optimize resource allocation. This is where XO algorithm should run.
The interaction between the Grid scheduler and the network connectivity and publication
service is described in the following.

2.2.2 Architecture

The architecture of VIOLA and its different components will be described to provide a
global overview of Grid schedulers.

This section focuses on VIOLA’s meta-scheduling service and architecture. How VI-
OLA provides support for Grid applications is explained (see also chapter 1). The VIOLA
project and its unique features will be placed in context with other major Grid projects.
VIOLA’s Grid support is provided by: Unicore, a Meta-scheduler and several adapters
for the communication with local resource management systems, such as local schedulers
and network management systems.

2.2.3 Components

VIOLA relies on the Unicore toolkit that has been described in section 1.4.3 in chapter 1.
One of the project’s objectives is to propose a Grid Scheduler (MSS in figure 2.1) that
is able to co-ordinate different types of resources, like network and computing. For each
job request, the Grid scheduler will reserve network and computational resources. The
Grid scheduler has to find a computing resource that is available at the same time as the
network resources. To do so, the Grid scheduler interacts with:

• A client that will send a job request, a Unicore client meta-scheduler plug-in

• A local resource management systems through different adapters

The role of the Grid scheduler is to find and reserve resources for the job request.
Once resources are identified and reserved, the unicore client is notified and can submit
the job to the relevant sites almost as if the Grid scheduler had never existed.

Client

The unicore client is a set of applications that enables an end-user to submit jobs on a
Grid. One of the client applications is a graphical user interface that enables the creation,
submission and monitoring of jobs. A job can be composed of several sub-jobs. The
MS is not part of the standard client, hence a job must be assigned to a resource. The

2.2. WS approaches 51

Figure 2.1: VIOLA and the Meta-Scheduling service

NJS

TSI

Compute
Resource

RMS

Monitoring

NJS

TSI

Compute
Resource

RMS

Monitoring

NJS

TSI

Compute
Resource

RMS

Monitoring

UNICORE
Adapter

GLOBUS
Adapter

Usite A Usite B

UNICORE
Gatewy

UNICORE
Gatewy

UNICORE
Client

MSS

ARGON
Adapter

Network
Resources

ARGON

WS-Agreement
Interface

WS-Agreement
Interface

WS-Agreement
Interface

WS-Agreement
Interface

UPL

ArgonWS

unicore client contains a list of the available resources. The client communicates with the
meta-scheduler through a plugin which is not represented in the previous diagram. The
plugin communicates with the MS using the WS-Agreement protocol (see chapter 3).

Grid scheduler

To achieve co-allocation [152] of resources managed by multiple, usually different schedul-
ing systems, the minimal requirement these systems have to fulfil is to provide functions
to

1. schedule a single reservation some time in the future (e.g. “from 5:00 pm to 8:00
pm tomorrow”)

2. give an aggregated overview of the usage of the managed resources between now
and a defined time in future.

Once a reservation is scheduled, the starting time is fixed, i.e. it may not change except
for the reservation being cancelled. This feature is called “advance reservation”. There
are at least two possibilities to create an advanced reservation. The first is to schedule a
reservation for a requested time, called “fixed time scheduling”. The second is to schedule
a reservation not before a given time, which means a scheduling system tries to place the
reservation at the requested time, otherwise it will be scheduled for the earliest possible
time after the requested time. This is referred to as first fit scheduling. The Grid scheduler
implemented interacts with first fit local schedulers but is not limited to these. The

52 2. Architectures

Figure 2.2: Unicore Client

main function of the Grid scheduler are to negotiate the reservation of network-accessible
resources that are managed by their respective local scheduling systems and to request
reservations. The goal of the negotiation is to determine a common time slot where all
required resources are available for the requested starting time of the job. The major
challenges are:

• to find Grid resources suitable for the user’s request,

• to take security issues like user authentication and authorization into account,

• to respect the autonomy of the sites offering the resources and

• to cope with the heterogeneity of the local scheduling systems.

As discussed earlier, the Grid scheduler should run an XO algorithm described at the end
of chapter 4.

The Grid scheduler negotiation mechanisms and protocol will be discussed in more
detail in chapter 3. The Grid scheduler communicates with the unicore client to receive
job requirements and with local resources through a common interface: the adapter.

2.2. WS approaches 53

Adapters

The adapter’s main function is to hide the local resource management system’s heterogene-
ity. It provides a common interface independent of the underlying resource, whether it’s
a computing or a network resource. The adapter interface provides 5 different functions:
couldRunAt(), submit(), cancel(), state() and bind(). The bind() function is specific to the
network adapter. These functions are implemented using web service interface (SOAP).
Following are their prototypes, brief descriptions and sample code:

CouldRunAt Date CouldRunAt(Job job_description)

returns the earliest possible runtime for a job, the job_description can contain a
minimum starting time offset.

Submit String submit(Job job_description)

submits a job to a local scheduler. The submit() call results in an advance reser-
vation being requested on the specified resource. The string returned is a unique
reserved job id.

Cancel Boolean cancel(String job_id)

cancels a previously made reservation.

State Job state(String job_id)

provides the state information relating to the reservation, including the scheduled
start time.

Bind Boolean bind(AddressList addresslist)

Bind effectively maps reserved resources with real IP addresses and ports, because
the ports are not known during the reservation. They are only known once the job
execution starts. The return value is a success or failure indicator.

In VIOLA, the network is managed almost like any other resource on the Grid. A special
network adapter has been developed to provide the interfaces described above: ARGON,
Allocation and Reservation in Grid enabled Network [44]. ARGON provides one interface
to the Grid scheduler and another to the real network resource management system. The
network adapter must contain at least the following components: Future TEDB, Network
Topology and Policy Repository. The future TEDB is the database containing the amount
of bandwidth available for reservation on each link in the future. Amongst many other
internal functions, the most important ones are:

• The ability to reserve a connection giving a source-destination node pair, start time
and duration

• The ability to cancel a connection given a connection reference

54 2. Architectures

• The ability to find the first available time slot where there is a path available for a
given source-destination node pair and duration.

ARGON’s internal functions and external interface are similar to those that should be
provided by a connectivity service network management extension module.

An example of algorithms to find the first available time slot where there is a path
available is given at the end of chapter 4.

In a very similar way as ARGON, adapters for computing resources have been devel-
oped but won’t be discussed here.

One could extend this interface to provide a cross optimization. XO requires the full
topology with the reservable bandwidth on each link to better select network and compu-
tational resources. This network information should be published through an interface’s
extension. Such interface could be implemented using an XML representation of the net-
work topology and link state. The information could be adhering to a publish/subcribe
communication model with WS-Notification for instance.

2.2.4 Future extensions

OGF is working on inter scheduler protocols and architecture, to build a distributed
scheduling architecture. Today, the Grid scheduler communicates with the network and
computing scheduler in a hierarchical way. Leaving each scheduler its autonomy, i.e. the
ability for local users to submit network request and jobs on their respective schedulers.

VIOLA is not capable of automatic discovery of resources. These mechanisms should
be developed and applied to computing and network resources.

2.3 Control plane time extensions

Co-allocation requires the network to be able to reserve in advance network resource.
Today’s network control protocols cannot do it. The simplest way to provide this service
would be to develop a module on top of the network management system that would
receive all network reservation request, answer them and provision the network accord-
ingly. Such ideas are being proposed at IETF by Yong [36]. Such modules would need to
perform the following functions:

• Provide a network reservation interface

2.3. Control plane time extensions 55

• Use a network provisioning interface

• Maintain a database of network resource affected over time

• Maintain a database of network resource reservations over time

• Allocate network resources to network reservations through an enhanced routing
algorithm for planned requests

Figure 2.3: Reservation service

Operations Support System (OSS) includes the network management systems, billing
systems and required business operations functions.

Other approaches require “Future” extensions to existing protocols:

• Future Signaling (RSVP-TE extensions)

• Future Computation (PCE)

• Future Routing (OSPF-TE)

Those extensions were already subject to patents written in the last few years held by
Antoine Pichot and Alcatel.

2.3.1 Future Signaling

Instead of building a box on top of the network that will use a network management in-
terface to trigger the provisioning of network resources, it’s possible to extend the existing
control plane to include new functionalities, like advance signaling. To do so, a change

56 2. Architectures

in network resource reservation protocol (RSVP-TE) is needed to support advance reser-
vation. This modification simply requires RSVP-TE to include two new fields: a start
date/time and a termination date/time.

When a node needs to reserve resources in advance, the head node forms the RSVP-
TE PATH message, with unmodified fields as before and new fields with the date of
the reservation start and end time. The tail node forms the RESV message with the new
fields. The same mechanisms apply except that the computed route is based on the future
network contained in the Future TEDB. This new database is a prediction of the TEDB.
It can be populated by the network management plane or distributed by a future routing
protocol (see below) or populated by a dedicated service, like a network weather service.
Such network weather services could aggregate all future network reservation requests
and be a policy decision point for future request. One could imagine that all in-advance
reservation requests could trigger a request to this element by a policy.

2.3.2 Future Computation

The Path Computing Element PCE activity at the IETF has started in 2004. The PCE
is a “method” to “externalise” the path computation function from the network node.
It standardizes the communication protocol between a Path Computation Client (PCC)
and a Path Computation Element (PCE). Recursive computation can be done and a
communication protocol inter-PCE is also being standardized. The advantages of this
architecture are:

• Reduced node controller load from CPU intensive path computations

• Permit the path computation if a client has only partial visibility on the network

• Compute when nodes are outside the network domain

• Facilitate inter-domain TE path computation

The entire list of advantages can be found in the architecture RFC [35].

It was proposed to rely on PCE to compute the advance route in the network. A
connectivity service could then be able to provide an inter-domain connectivity service
relying on the PCE.

Diagram 2.4 shows an example of such an architecture. A client initially submits a job
request to the Grid scheduler. In the simplest case, the Grid scheduler does not know the
network topology or anything about the network resources, it must request a connectivity
provider to reserve future virtual connections. To do so, it asks the connectivity service
to reserve resources. The connectivity service must compute the future path. The plain

2.3. Control plane time extensions 57

Figure 2.4: PCE used in a Grid

arrows in diagram 2.4 show these steps. Once the path computation is performed and
the connectivity service knows which path will be used by the inter-domain connection,
it must reserve in advance resources. To do so, it can use an inter-domain reservation
mechanism, which could be an extension of the PCE as the diagram suggests or a future
signaling as explained above. Using the PCE (in the unsolicited mode) to reserve resources
is a possible use of the PCE that is not currently standardized and needs extensions to
support in advance reservations. In this mode, inter-PCE communication should compute
the path and reserve network resources and then when the resources are really needed the
network signaling can be triggered (dotted lines). The network signaling must contain a
token identifying that the resource had been previously reserved. In the later case, when
the PCE cannot reserve the resources in advance, a future signaling message must be sent
along the path to reserve the resources.

2.3.3 Future Routing

An important element to provide advance reservation is to rely on the future network state.
Today’s solutions use a centralized architecture, which has the knowledge of present and
future use of the network. This centralized architecture has access to future connectivity
requests between every point in the network and the future network’s topology. When a
new route needs to be set up for a future use, a human being launches an optimization
algorithm on a network’s manager station. This algorithm computes future routes in the
network to satisfy new connectivity requests. Once new routes are computed, they are

58 2. Architectures

downloaded to every node in the network, but only when these new routes are needed.

This centralized architecture forces a central server to administer and collect con-
nectivity requests and to perform all route computations for every node in the network.
Furthermore, there is no global architecture that automates the whole process: future
connection request expression, network’s weather forecast service and future routes com-
putation. Currently, planning involves a human being, making the process not automated.
The idea of future routing is to distribute the network forecast service in every node in
the network, so that every node has the knowledge of the future network’s state, more
precisely, the future link’s state prediction. As a consequence, every node would be able
to perform future route computation.

Today’s signaling and routing protocols enable an approximately immediate reserva-
tion and routing of connectivity requests. OSPF-TE protocol contains and diffuses link’s
state information on the present use of the network. Signaling protocol, RSVP-TE, en-
ables a connection to be “instantly” set up to reach a given destination. When an ingress
node receives a connection request it computes an Explicit Route Object that represent
the path to reach the destination. The signaling protocol then reserves resources on every
link along the path. These two protocols work well for immediate requests. The idea of
future routing is to add time information into OSPF’s Link State Advertisement messages
to indicate that the state advertised corresponds to the state predicted for the time period
given in the message. This time information could be stored in a new OSPF-TE’s link
sub TLV 2. Every node would then flood the network of future link’s state prediction, in
order to build the future link state database. Then, when an ingress node receives a new
connection request for future use, it has the ability to compute a future path for that
destination.

The new link state advertisement messages generates traffic on the network control
plane. This increase in the control plane traffic must be carefully controled in order to
avoid flooding the control plane and undermining its reliability. This problem has not
been studied in detail and is left for further analysis.

2.4 Grid GMPLS

GMPLS is a set of control protocols to advertise and propagate the network’s state
(TEDB) and reserve network resources. The idea of GGMPLS [132, 34] is to re-use
these protocols (RSVP-TE) and (OSPF-TE) to advertise and reserve other resources, like
computational and storage.

A new type of Opaque Link State Advertisement (LSA) object is proposed for the
computational and storage resources. Opaque LSA are OSPF-TE objects conceived for

2. OSPF-TE object, (Type, Length, Value)

2.4. Grid GMPLS 59

future use. The new Opaque LSA would be advertised by the resource and propagated in
the network by other routers as all Opaque LSA. Only Grid applications, other resources
and GGMPLS routers would be capable of understanding the new Opaque LSA. Informa-
tion in the Opaque LSA could support service Grid ID, Maximum CPU power, available
CPU power, Maximum storage capacity, available storage capacity, ...

In parallel to the routing extensions, resource reservation extensions are proposed
to support computational and storage resource reservation. The new RSVP-TE would
include new fields such as Grid service ID, Max CPU power utilization, data storage
utilization, or any other Grid service parameters.

In 2004, these ideas have already been proposed [135] but not detailed. The interface
built on top of GMPLS is called Grid User to Network interface (GUNI). It’s capabilities
are very ambitious:

• Job Management (Job request, submission, monitoring, control)

• Resource Management (Reservation, Brokering, Scheduling, Monitoring, Aggrega-
tion)

• Provide Grid Security Services

• State Representation and Manipulation

• Ability to access and manage the state

• Notification

• Flexible Bandwidth Allocation

• Support for claiming existing agreements

• Automatic and timely light-path setup

• Fault detection, protection and restoration

• Propagation of service and agreement related events

• Traffic classification, grooming, shaping and transmission entity construction

The benefits of extending GMPLS mechanisms are never given besides a “global inte-
gration of network resource and other resources”. In the last years, network have seen
the emergence of MPLS and GMPLS as a common control plane supporting different
protocols (IP, ATM, Frame Relay, Ethernet) and integrating the control of all switching
capabilities. This trend was driven by the huge costs operators were facing managing
all these technologies simultaneously. One operator had to manage and have dedicated
equipment for every technology. When resources are managed by different organizations,

60 2. Architectures

having an integrated systems is not always a benefit. What is required is co-ordination,
collaboration, co-allocation mechanisms but not necessarily with the same technology.
Furthermore, GMPLS manage binary objects, not textual objects. This heavily slows
down all development processes on top of this technology.

GMPLS is being standardized by the network community that do not necessarily
understand the IT community. This will make all extension standardization if not im-
possible, very slow. GMPLS was never developed to manage another type of resource
and contains some inherent missing features (security, refresh intervals, ...) GMPLS is
running in very reliable, stable and highly availability environments, any modification to
the standard (in terms of refresh interval for resource status) is likely to generate traffic
on network controllers whose reliability could not be put at risk. This will make operators
very reluctant to deploy this kind of architecture. In parallel to these very slow develop-
ments of GMPLS, existing toolkits and functions already exist to manage Grid resources.
They use protocols which are very easy to manipulate as a developer as they are XML
based. They are also extensible and easily reused (service oriented architectures).

This integrated architecture may provide no additional benefit, because in one respect,
drivers for such an integrated architecture are not clearly defined and in the other, making
modifications to GMPLS is a very slow process while existing toolkits already do the job.

2.5 IMS extensions

IP Multimedia Sub-system (IMS) [14] is the network architecture for NGN being stan-
dardized by the 3rd Generation Partnership Project (3GPP) [25], it proposes a common
architecture to deliver multimedia services: voice and video through any kind of device.
Additional services related to multimedia are also supported by the IMS architecture.
Actors of the IMS business models are end-users, network operators and service providers
hosted on application servers. One of the main IMS objectives is to propose a network
architecture to efficiently deliver services to any kind of terminal and to ease the integra-
tion of 3rd party services to the existing network infrastructure. IMS is flexible enough to
support different charging schemes, pay as you go, prepaid, flat rate and content/context
based. Although originally designed to support multimedia services, this architecture to
support Grid services is one of this thesis contribution.

The idea to use SIP to deliver resource access services has been implemented by
Campi [53, 54, 52, 54].

2.5. IMS extensions 61

2.5.1 IMS architecture

IMS architectures can be seen as a two strata architecture as described by the ITU NGN
framework: a service stratum and a transport stratum, each stratum decomposed in a user
plane, control plane and management plane. IMS architecture identifies functions and in-
terfaces that need to be standardized in each stratum/plane so that the network operator,
the service provider and the end-user could play their respective role. As a consequence,
protocol choices and functions grouping were made. IMS protocols are developed by
the IETF, they include IP, Session Initiation Protocol (SIP), Session Description Proto-
col (SDP) [85] for the application control plane and Diameter for the management plane.
The transport stratum relies on the Internet Protocol and its associated control protocols.
As [103] discussed, a simplified IMS architecture will be proposed.

P-CSCF

The first entry point of an IMS terminal in the network is handled by the proxy call session
control function, P-CSCF. It is discovered by a terminal using Dynamic Host Configu-
ration Protocol or DNS SRV [83] mechanisms. It’s a server in the visited network that
acts as a SIP proxy, by forwarding messages to the correct next control node, either an
I-CSCF or S-CSCF. It performs the following functions: charging support, QoS manage-
ment and authorization of users to request for a QoS level, monitoring and identification
of the I-CSCF.

I-CSCF

The interrogating call session control function is the contact point for roaming users in a
visited network and for external users accessing a IMS network. It assigns an S-CSCF to
users performing a SIP registration and route SIP requests coming from external networks
to the right S-CSCF. It is the inter-operator entry point in the IMS network.

S-CSCF

Whereas P-CSCF and I-CSCF assure functions related to application control and network
control interactions, the serving call session control function is an intermediary to access
service platforms. An S-CSCF can be a SIP registrar, to locate end-users; it can behave
like another SIP proxy to forward messages to the right CSCF or application server.

62 2. Architectures

Multimedia resources Functions

These functions in the IMS architecture operate on the multimedia flow. They are decom-
posed into gateway processing and gateway control functions. The processing functions
is a media gateway, convert media streams (for example audio encoding, media analysis),
multiplex streams and create new streams (for announcement). The control functions
control the processing function and are an intermediary with other CSCF. The protocol
between the processing function and the control function is H.248 or the gateway con-
trol protocol [81]. SIP is used to communicate between CSCF and the gateway control
function.

Home Subscriber Server

The home subscriber server is the central repository containing user information, profiles,
policies, filters and is part of the management system. It is accessed by CSCF via the
Diameter protocol.

Application Servers

Application servers host service execution logic in the IMS architecture. They commu-
nicate with the rest of the IMS control plane through SIP. The IMS service architecture
Open Service Access (IMS OSA) provides an API based on Web services: Parlay X R2 [30].

2.5.2 Grid over IMS

It was proposed to build a Grid architecture on top of the IMS architecture. Business
actors in a Grid, resource providers, resource consumer, Grid application vendors, could
all be considered as IMS users. Indeed, all of them would be identified on the IMS net-
work by a SIP identifier and sessions could be established between them using the IMS.
For instance, all storage facilities of a storage area provider X could be reached as stor-
age@providerX.com and a Grid application vendor serviceY.com whose main function is to
convert multimedia files could be reached via multimediaprocess@serviceY.com to convert
multimedia files. ServiceY.com could use storage resources provided by providerX.com.
Users willing to convert a multimedia file would use an application developed by ser-
viceY.com, this application would setup a session with multimediaprocess@serviceY.com
to process files.

To understand this proposal, an example of a user willing to process huge video files
by a very specific application will be given. Diagram 2.6 represents this scenario. We’ll

2.5. IMS extensions 63

Figure 2.5: Grid over SIP architecture

consider that the processing application and its input files are tasks spawned by users
residing on the “application” site on the left of Diagram 2.5.

Integration with existing OGSA components

It is assumed that applications running on each host on both sides of Diagram 2.5 have
various software components that form the application control plane. Part of this control
plane is composed of the SIP protocol and extensions. For instance, some OGSA functions
such as workflow management, data functions, self-management functions, are running
on hosts. Only a few functions of OGSA need to be modified to integrate them with the
control of network resources.

Network operator’s architecture

Diagram 2.5 represents an example (G)MPLS network architecture. The two boxes rep-
resent application control functions; the box on the left could be a P-CSCF (other CSCF
are not represented). Two routers are represented below those boxes. Links represent
signaling at the application control layer using SIP and at the network control layer using
RSVP-TE for instance. The box labeled PDF at the entrance of the network is a policy
decision function. It’s the entity that decides whether or not to authorize a user to re-
serve network resources, according to various policies. Policies will be enforced in a policy
enforcement point: the router on the left in the example.

64 2. Architectures

Figure 2.6: Resource consumption scenario

User authentication

The scenario begins when resources on the right hand side host of the network register as
potential processing resources that can be reached at multimediaprocess@serviceY.com.
The first action of our consumer is to authenticate itself on the network, to do so, it
sends a SIP REGISTER message to the network. The application control plane handles
this message and the operator can authenticate the user. It is the authentication process
described in diagram 2.6. The process used here for users and resources is the same as
that used for IMS users. Like in IMS, it could be controlled by CSCF and the Home
Subscriber Server.

Resource selection

When the user wants to submit their tasks on the Grid, an application on its behalf starts a
SIP session. It sends a SIP INVITE message to multimediaprocess@serviceY.com with the
description of the task. This message is forwarded from SIP proxies to other SIP proxies
until it reaches the enhanced registrar. The registrar knows the location of hosts that can
provide this service. It is the enhanced location service box represented in diagram 2.5.
It has to select which hosts will receive the SIP INVITE message. The selection takes
into account: user’s preferences, hosts performance criteria such as average number of
instructions per seconds and current load, current network traffic, network QoS criteria,
such as available bandwidth or average delay between the user and potential destination
hosts, network routes availability and operator’s and resource provider’s serviceY.com
policies.

2.5. IMS extensions 65

This enhanced location service is provided by the network operator, this element brings
the added value of the network operator.

It is proposed to adapt the basic SIP forking mechanism implemented in registrars:
from “ring all device that share the same address”, to a more intelligent resource selection,
such as “ring devices that share the same destination address and meets given policies and
optimization objectives”. For instance a service provider willing to balance load between
two server farms would like the network operator to implement this policy in its enhanced
registrar. Load balancing could be achieved taking into account servers current load and
available bandwidth between a consumer and the two server farms.

Features negotiation

Once the destination’s processing site has received the SIP INVITE message, the session
participants are identified and the features negotiation process starts. It is proposed
proposed to rely on and eventually extend various SIP mechanisms to create a generalized
feature negotiation process. These basics mechanisms are the offer/answer [129] model for
a multimedia session described by SDP and also those described in [131, 130]. For instance
the offer/answer model is used in IMS networks for codec negotiation. QoS preconditions
and this offer/answer model could be used for processing host features negotiation, such
as availability of certain libraries or executables could be checked using this mechanism.

QoS support

Once features are negotiated and capabilities verified, network resources need to be pro-
visioned. Participant of the session need to initiate the network signaling. For instance,
for the tasks sent by the user to the processing site, the user’s application sends the first
RSVP-TE message, this message contains a reference and a token to the ongoing SIP
session. This token has been created by the PDF upon a request of the first SIP proxy
during the exchange of the first SIP messages. This token represents that an authenti-
cated user is starting a session. When the ingress router receives the signaling request to
reserve resources, it asks the PDF to validate the authenticity of the token and to approve
the reservation of network resources. The framework described here is similar to what
was called dual signaling in chapter 1. Extensions to support advance reservation have
not been described here.

Multimedia services in an IMS network require strong QoS support, as well as Grid
services. However Grid services for corporate users require much more bandwidth than
traditional multimedia service. Admission control functions currently being standardized
for the access part of the network will need to be extended for the Core part of the
network. It will be in the scope of TISPAN Release 2. Scalability of existing signaling
approaches have to be further studied within the perspective of Grid services.

66 2. Architectures

Per user/session charging

Multimedia services in an IMS network require a per-user and per-session specific charging.
As a consequence, a common charging and billing support framework is developed for IMS
services. A Grid service also shares this requirement; it could rely on all these existing
mechanisms.

Supervision environment

Furthermore, Grids require a supervision environment. A monitor must receive messages
(alerts, notifications, etc.) published by its monitored entities. SIP is capable [127] of
satisfying this requirement.

Many developments in the IMS architecture and in SIP protocols propose the basics
for many functions required in a Grid. With the current development of one converged
network for all services, Grid architectures could rely on this application control plane
and interoperate with it instead of proposing a complete redesign of functions to be
fully compliant with an SOA approach. This proposal frees Grid application vendors
and resource providers from the management of certain functions. It proposes a Grid
architecture integrated to the next generation network architecture. Further work to
assess performance of this proposed architecture still needs to be performed.

2.5.3 IMS extensions conclusion

A comparative study of Grid network architecture with the prospect to deploy Grid ser-
vices as utility services over the Internet was performed. It was shown that the SIP
protocol and the IMS architecture provide the basics for important Grid functions: user
authentication, authorization, per user/session billing, feature negotiation, QoS support
and resource selection. The integration of these functions with the network architecture
would generate value for network operators, Grid users and Grid vendors. The NGN IMS
architecture can be relied upon to deliver Grid services, although it might require some
modifications to existing protocols and architectures. It will benefit from next generation
network deployments in the next few years and increase the possibility of seeing a Grid
utility service becoming readily available.

2.6 Conclusion

This chapter has presented three main approaches to support an integrated computing
service based on the web services, IMS and GMPLS. It also presented time extensions

2.6. Conclusion 67

to the network control plane to distribute network planning. The web service approach
is the most commonly used today. It has already been implemented in several projects
(see chapter 1). The GMPLS approach does not seem realistic as too many modification
to the existing control plane needs to be made and alternatives already exists. The IMS
approach could be interesting if IMS deployments become more commonplace.

Time extensions of the control plane are seen by more people as being needed. PCE
time extensions are realistic but routing time extension’s scalability issues have to be
analyzed and solved.

My architectural contribution was to propose the IMS based architecture for Grids,
the PCE and OSPF-TE time extensions and the SIP extensions containing network in-
formation.

The next chapter (3) will focus on the protocol between the Grid scheduler and
local schedulers and the network manager for co-allocation. It focuses on the web service
approach as it will be probably the most deployed architecture in the future. It describes
the negotiation process and proposes an extension to the existing standard WS-Agreement
for negotiation and analyses the performance of the SLA negotiation and creation protocol.

Chapter 4 studies the cross optimization algorithm. This algorithm and the results of
this chapter is independent of the future architecture.

68 2. Architectures

69

Chapter 3

Protocols

In previous chapters, different high-level architectures to provide Grid services have been
discussed. The following chapters will describe in more detail the architecture and per-
formance of the resource selection process. The two main topics that will be discussed
are: 1) the performance evaluation of protocols(this chapter) used by the Grid scheduler
to negotiate and select the best resources 2) the algorithms and performance seen by the
end-user (chapter 4). Section 3.1 is a qualitative comparison of the different “negotiation”
protocols. The detailed mechanism used by VIOLA’s Grid scheduler will be described in
section 3.2 in order to evaluate and compare VIOLA’s current Grid scheduler performance
against potential improvements. Section 3.3 describes the model used and section 3.4 gives
the main results.

The Grid scheduler is the component that has to negotiate, select and schedule re-
sources in order to execute a user’s job and fulfil its requirements. As can be seen,
co-ordinating the access to multiple resources at the same time requires specific protocol
features that negotiation and agreement protocols do not necessarily have. Schopf [136]
already described the different actions to be performed for job scheduling. Diagram 3.1
describes the different steps performed by a Grid scheduler to co-allocate resources: Re-
source filtering, SLA negotiation, SLA creation, Job submission.

Figure 3.1: Resource selection & reservation

70 3. Protocols

To run a job that requires several resources, like networking and computational re-
sources, managed by different resource management systems (RMS), several steps must
be performed by a Grid scheduler. Upon receipt of the job request, the scheduler starts
the first phase: resource filtering based on static information and dynamic information.
Static information does not change over time: number of CPUs, operating system, lo-
cation, etc. Dynamic information changes over time: availability, load, etc. The second
phase is the negotiation process and results in the selection of resources that can satisfy
the job request. The third phase is the SLA creation phase concluded by the commitment
of all service providers (or local RMS) involved leading to a reservation of the negotiated
resources as described in the SLA. The last phase is the job submission followed by the
execution. Monitoring tasks and reporting to the end user are two of the functions that
could be transferred to another component, like job execution and/or monitoring service.
Once a job has been submitted to the Grid scheduler and all resource reservation have
been made, the Grid scheduler can transfer the job to an execution and monitoring service
(EMS). This service then sends back to the end-user enough information to communicate
with the EMS. The EMS will be in charge of the job execution, eventual cancellation
and monitoring on behalf of the end-user. Said differently, the Grid scheduler finds and
schedule access to resources for each job and the EMS controls the jobs on those resources.

3.1 SLA Negotiation, SLA creation and commit pro-

tocols

Negotiation is a widely studied topic and there are numerous publications addressing
different aspects, e.g. [139] is a general purpose negotiation journal, [50] is a survey
about negotiation in distributed resource management systems, while [96] and [95] discuss
aspects of service negotiation in the Grid. In this context and in the simplest case, a
user’s job has to be executed and the Grid scheduler has to select between different target
systems. If all systems are identical and only one parameter influences the selection, i.e.
price, this case is similar to a typical business negotiation between one buyer and several
sellers. An auctioning mechanism like the ones described in [51] can be used. The point
of view of an end user is adopted, but from a resource provider’s point of view, several
jobs compete for one resource, i.e. several buyers and one seller. From the scheduler’s
point of view, many jobs compete for several resources, i.e. many buyers and many sellers.
Buyya [51] (page 36) also surveyed several distributed resource management systems based
on price.

3.1.1 Price consideration

“English Auction (first-price open cry) all bidders are free to increase their bids ex-
ceeding other offers. When none of the bidders are willing to raise the price anymore,
the auction ends and the highest bidder wins the item at the price of his bid. [...]

3.1. SLA Negotiation, SLA creation and commit protocols 71

First-price sealed-bid auction each bidder submits one bid without knowing the oth-
ers’ bids. The highest bidder wins the item at the price of his bid. In this case
a bidder’s strategy is a function of the private value and the prior beliefs of other
bidders’ valuations. The best strategy is to bid less than its true valuation and it
might still win the bid, but it all depends on what the others bid.

Vickrey (Second-price sealed-bid) auction each bidder submits one bid without
knowing the others’ bids. The highest bidder wins the item at the price of the
second highest bidder. [...]

Dutch Auction the auctioneer starts with a high bid/price and continuously lowers the
price until one of the bidders takes the item at the current price. It is similar to
a first-price sealed-bid auction, because in both cases the bid matters only if it
is the highest, and no relevant information is revealed during the auction process.
From the broker’s bidding strategic point of view, a Dutch auction is similar to an
English (first-price sealed-bid auction). The key difference between them is that in
an English auction bid starts with a low opening price and increases progressively
until demand falls, whereas in a Dutch auction bids start with a high opening price
and decrease progressively until demand rises to match supply. The interaction
protocols for a Dutch auction are as follows: the auction attempts to find the market
price for goods and services by starting at a price much higher than the expected
market value, then progressively reducing the price until one of the buyers accepts
the price. The rate of reduction in price is up to the auctioneer and they may have
a reserve price not to go below. If the auction reduces the price to the reserve price
with no buyers, the auction terminates. In terms of real time, a Dutch auction is
much more efficient as the auctioneer can decrease the price at a strategic rate and
the first higher bidder wins. In an Internet wide auction, it is appealing in terms
of automating the process wherein all parties can define their strategies for agents
that can participate in multiple auctions, to optimize their objective functions.

Double Auction This is one of the most common exchange institutions in the market-
place, whose roots go back to ancient Egypt and Mesopotamia [126]. In fact, it is
the primary economic model for trading of equities, commodities and derivatives in
stock markets (e.g., NASDAQ). In the double auction model, buy orders (bids) and
sell orders (asks) may be submitted at anytime during the trading period. If at any
time there are open bids and asks that match or are compatible in terms of price
and requirements (e.g., quantity of goods or shares), a trade is executed immedi-
ately. In this auction, orders are ranked highest to lowest to generate demand and
supply profiles. From the profiles, the maximum quantity exchanged can be deter-
mined by matching asks (starting with lowest price and moving up) with demand
bids (starting with highest price and moving down). Researchers have developed
software-based agent mechanisms to automate a double auction for stock trading
with or without human interaction [60]. The double auction model has the highest
potential benefit for Grid computing. [...]

72 3. Protocols

All of the above auctions differ in terms of whether they are performed as open or closed
auctions and the offer price for the highest bidder. In open auctions, bidding agents can
know the bid value of other agents and will have an opportunity to offer competitive
bids. In closed auctions, the participants’ bids are not disclosed to others. Auctions can
suffer from collusion (if bidders coordinate their bid prices so that the bids stay artificially
low), deceptive auctioneers in the case of a Vickrey auction (auctioneer may overstate the
second highest bid to the highest bidder unless that bidder can vary it), deceptive bidders,
counter speculation, etc.”

However in the current state of development of Grid systems, price is not the only dif-
ferentiating factor. Just like for financial products [87], before one could trade derivatives
on an open exchange market, computational products and storage products have to be
well defined and standardized. For instance, a future contract on corn specifies the type
of product, its quality, the delivery date, delivery methods, payment arrangements, etc.
Products or services negotiated on an open market must be very well defined. Actually,
what is being exchanged are contracts and not just a product. To apply such mechanisms
to Grids, a pre-requisite would be to standardize Service Level Agreements and their
terms. In this way, resource owners would not sell a product or a service on the market,
but an SLA. However, the market is not mature enough for such approaches to emerge,
in the meantime automatic SLA negotiation systems automate the process, while price
and real automated business transactions are left behind.

3.1.2 Automated Negotiation

Automatic negotiation of SLAs is a complex and time consuming process [88, 140, 80],
when even two users have to find an agreement on multiple criteria. Imagine how difficult
the problem becomes when multiple entities have to reach an agreement [58]. When at
least two resources are needed at the same time to run a job, e.g. a network connection and
a processing resource, several steps have to be performed before reaching an agreement
between the resource providers and the consumer. Green [80] cites two main frameworks
for automatic negotiation: ontologies and web services. He states that automated nego-
tiation has three main considerations: The negotiation protocol, the negotiation objects
and the decision-making models. He considers two current options in order to achieve this
type of negotiation. One option is for the originating agent to negotiate separately with
each Autonomous System (AS) along each potential path to ensure that an end-to-end
path is available. The dominant choice however, is to use a cascaded approach where each
AS is responsible for the entire path downstream of itself. This approach enhances agent
autonomy as it is only responsible for its immediate links. The autonomy of the cascaded
approach struggles however with the issue of price. In a cascading scenario an intelligent
agent would need to know the utility functions of all the downstream domains if the best
price combination is to be determined, which is private information. In contrast, in this
chapter the scope was limited to protocols that permit the negotiation of agreements be-
tween two parties based on WS-Agreement [41] rather than tackling the full complexity

3.1. SLA Negotiation, SLA creation and commit protocols 73

of automated negotiation. These bi-lateral agreements might then be combined into one
single agreement

3.1.3 Commit protocols for distributed databases

Distributed transactional systems have been widely studied. One of their objectives is to
propagate a consistent state across several systems, in a way that at any time all systems
can show a consistent state to users. The consistent state or consistent view maintains and
propagates between systems a logical coherent state. To provide crash recovery, several
operations are logically grouped into transactions. Those transactions permit the change
from one consistent view to another. For instance, you do not credit a bank account
if you have not debited another bank account. However, these are two independent
operations. A bank’s distributed database system must group these two operations in one
transaction. Thus it permits the change from one consistent state “before the transfer”
to another “after the transfer”. Database state changes are visible by other users once
a transaction is committed to the system. In distributed systems, each transaction can
impact several different systems not co-located. Thus distributed database experts have
developed commit protocols [47, 92, 110]. As Skeen described in [142], “The processing
of a single transaction is viewed as follows. At some time during its execution, a commit
point is reached where the site decides to commit or to abort the transaction. A commit
is an unconditional guarantee to execute the transaction to completion, even in the event
of multiple failures. Similarly, an abort is an unconditional guarantee to “back out” of the
transaction so that none of its results persist. If a failure occurs before the commit point
is reached, then immediately upon recovering the site will abort the transaction. Commit
and abort are irreversible.”

When a user needs to make a change in a distributed database, a coordinator will
propagate this change on all systems. As Skeen explains, upon receipt of a change request
the coordinator forwards it to all distributed systems. Upon the change request receipt,
all slaves go to the wait state. Then they can decide whether or not to accept this
change, and send their response. The coordinator collects all responses to the change
request, if one of them is negative, it goes in the abort state and sends an “abort” to
all systems, if all responses are positive, then the coordinator goes in the commit state
and sends a “Commit” to all systems. Upon receiving a “Commit”/“Abort” all systems
must commit/ abort the change request. Diagram 3.2 (left) represents a slave’s two
phase commit protocol finite state machine (FSM). This process is the two phase commit
process, supported by a two phase commit protocol.

The problem with this process is in the case of a system failure. It’s impossible to know
whether the transaction was committed or aborted. The wait state leads to both commit
and abort state. For instance, when the coordinator fails after having sent a “commit”
to some slaves but not all, the remaining slaves can not know whether the transaction
should be aborted or cancelled. The two phase commit protocol is an example of a

74 3. Protocols

Figure 3.2: Two phase commit slave’s FSM (left), three phase commit slave’s FSM (mid-
dle), and SLA negotiation and creation resource provider’s FSM (right)

blocking protocol.

To provide crash recovery, and avoid blocking problems, Skeen introduced a three
phase commit protocol. He added an intermediary state before the commitment as shown
in Diagram 3.2 (middle). This state corresponds to a prepare to commit. It’s impossible
to jump from this state to an abort state. He proved that if a state transition was
possible between the prepare and the abort state, the protocol would be blocking. As a
consequence, from any state on the slave’s finite state machine it is possible to determine
whether the transaction should be committed or aborted in case of failure. In case of
failure a slave in the “Wait” state must abort, while a slave in the “Prepare” state must
commit.

3.1.4 Commit protocols for distributed resource management
systems

In an environment with distributed RMS providing guarantees on resource usage, a Grid
scheduler may create SLAs with its users. In a co-allocation use case, this SLA takes into
account several resources coming from several resource providers. With each independent
resource provider a bilateral SLA has to be negotiated and created. A Grid scheduler has
to create these bilateral SLAs on behalf of its users. For instance, in VIOLA, users may
request network and computational resources with a dedicated QoS. The Grid scheduler
has to orchestrate the individual reservation of network and computational resources.
These two reservations are realised as two bilateral SLAs.

The essence of a distributed databases’ commit protocol is the transaction: a group
of individual operations, logically linked. In a distributed resource management system,
co-allocation requires multiple bilateral SLAs. For a user or a particular service requiring
multiple resources, either all of the individual bilateral SLA must be created, or none. The
user SLA creation process is a transaction composed of multiple bilateral SLA creation.

3.1. SLA Negotiation, SLA creation and commit protocols 75

Before reaching an agreement, two steps must be performed: negotiation and cre-
ation. The negotiation process can involve all resource providers. Its results are input
to a resource provider selection process. When two resources are needed, e.g. network
and computing, even if the negotiation involves many compute resource providers, only
one computational resource will be selected. For many resources offered, the negotiation
process does not lead to an SLA creation process. This is the main reason why negotiation
must neither obligate the provider nor the consumer of the SLA. However, the SLA nego-
tiation and creation process should minimize the number of discarded agreement creation
requests when it has been previously negotiated. This should occur only when there is
a race condition: when two or more users are competing simultaneously for the same re-
source at the same time. The separation of agreement negotiation and agreement creation
process and minimising the number of discarded agreement creations after negotiation are
conflicting objectives.

One way to observe atomicity of the SLA creation is to use a transaction and to rely
on a two phase commit protocol. Once resources have been negotiated, the orchestra-
tor starts the SLA creation process by sending an SLA creation request to the selected
resource providers. Then each resource provider responds to the request with yes or a
counter offer. If all providers agree, the orchestrator sends a commit reservation to all
systems. Upon receipt of this message, the reservation is committed and the SLA created.
Diagram 3.2 (right) shows this process.

When the resource provider receives an SLA negotiation offer, its state changes from
“Start” to “Nego”. It then answers the negotiation offer by either accepting it or making a
counter offer. In the case of a counter offer, it stays in the “Nego” state. It can also abort
the negotiation and proceed to the “Abort” state. Once the orchestrator decides to start
the SLA creation process, upon receipt of the SLA creation request, the resource provider’s
state changes to the “Crea” state. It stays there if it accepts the reservation otherwise it
goes to the“Abort”state. The final“Commit”state is reached when it receives a“Commit”
message from the orchestrator and that resources are reserved and made unavailable to
the rest of the world. As mentioned above, this simple two phase commit scenario can
lead to a race condition during the SLA creation process. While the resource provider is
in the “Crea” state, other users see the previous consistent state where resources are still
available. To prevent this, the “Crea” state could imply “locking” resources thus providing
a pre-reservation for the transaction lifetime. This prevents other users from reserving
the same resource at the same time. In case of a lock request, second users’ transaction
must wait for the lock to be released. Although the FSMs shown in the middle and on
the right-hand side of Diagram 3.2 look similar, the SLA negotiation and creation process
is not a three phase commit. It is a blocking protocol as described by Skeen [142] and it
does not provide any guarantees against crashes. One could still imagine a non blocking
SLA creation protocol relying on a three phase commit providing crash recovery. The
negotiation process has now been described in detail. Following is a description of how
VIOLA works, before explaining the model used to analyse its performance.

76 3. Protocols

3.2 VIOLA’s signalling Architecture

Chapter 2 and 1 already described VIOLA’s architecture and components. Section 3.2.1
describes VIOLA’s “old” negotiation process.

Figure 3.3: Negotiation process

3.2.1 Original VIOLA 2PNP

To achieve the co-allocation of different resources, the Grid scheduler communicates with
the selected resource management systems (RMS) through a set of adapters. These
adapters provide a uniform interface to the Grid scheduler and may implement miss-
ing functionalities of the RMS. At the first step of the co-allocation process the Grid
scheduler queries the adapters of the selected RMS to get the earliest time the requested
resources will be available. This time possibly has to be after an offset specified by the
user. The adapters acquire a preview of the local resource availability from the individual
scheduling systems. Such a preview comprises a list of time frames during which the
requested resources (e.g. a fixed number of nodes) can be provided. It is possible that the
preview contains only one entry or even zero entries if the resource is fully booked within
the preview’s time frame. Based on the preview the adapter calculates the next possible
start-time.

These start times are sent back to the Grid scheduler. If the individual start times
match, the Grid scheduler will try to reserve the resources at the computed start time
via the adapters, making use of the advance reservation capability of the local RMS. If
the individual start times do not match, the Grid scheduler uses the latest possible start
time indicated by the RMS as start time for the next scheduling iteration. The process
is repeated until a common time frame is found or the end of the preview period for at
least one of the RMS is reached. The latter case generates an error condition. In case
the Grid scheduler was able to find a common timeslot and reserve the resources, it later
checks the scheduled start times of each reservation. This step is necessary because after

3.2. VIOLA’s signalling Architecture 77

Figure 3.4: 2 Phase Negotiation process

negotiating the common start time, other reservations may be submitted by other users or
processes to the local RMS, preventing the scheduling of the reservation at the requested
time. If the Grid scheduler detects one or more reservations that are not scheduled at
the requested time, all reservations will be cancelled. The latest effective start time of all
reservations will be used as the earliest start time for the co-allocation attempt and the
Grid scheduler will try again to negotiate of a common timeslot as described.

3.2.2 Original WS-Agreement

Resource negotiation and reservation is the scope of the Grid Resource Allocation and
Agreement Protocol (GRAAP) working group at the OGF. The group was created in
2002. Initially this working group planned to develop one protocol for the negotiation
and reservation of resources. This protocol was developed to be used for communication
between a Grid scheduler and other resources, computing and network. Building one
protocol for negotiation and reservation proved too difficult, so negotiation features were
removed in 2004 from the scope of the WS-Agreement protocol.

In order to co-allocate different types of resources and/or resources from different
domains, a Grid scheduler has to negotiate SLAs for the required resources. The easiest
way of SLA negotiation is a one step process, where the context, subject and constraints
of the negotiation problem are defined. The WS-Agreement protocol natively supports
this kind of negotiation by the getResourceProperties method. This method returns a
set of agreement templates representing acceptable agreement offers for an agreement
provider. These agreement templates only provide hints on agreement offers which might
be accepted by an agreement provider. They do not guarantee the agreement will be
accepted. An agreement template defines one ore more services that are specified by
their Service Description Terms (SDT), their Service Property Terms (SPT) and their
Guarantee Terms (GT). Additionally an agreement provider can constrain the possible
values within the SDTs, SPTs and GTs by defining appropriate creation constraints within
the templates.

78 3. Protocols

AgreementIntiator AgreementResponder:
AgreementFactory

getResourceProperty

getResourceProperty : AgreementTemplates

createAgreement (InitiatorAgreementEPR, AgrementOffer)

createAgreement (-,-) : CreatedAgreementEPR

Figure 3.5: WS-Agreement one step negotiation

The creation constraints in an agreement template can be static or dynamic. Typi-
cal examples of a static creation constraints are the minimum and maximum numbers of
CPU, nodes or memory. As these are properties of computing systems that are not likely
to change frequently agreement templates that only contain static information usually are
not restricted in their lifetime. Agreement templates can also contain more dynamic infor-
mation. Such dynamic information can be used to e.g. restrict the guaranteed execution
time of a given service based on the current resource availability. Since the availability of
resources is likely to change frequently, templates that contain such dynamic components
have a short lifetime. A Grid scheduler can use these dynamic templates to efficiently
find suitable time slots in order to e.g. co-allocate resources. However, it is not always
desired to expose availability information, or sometimes it is even not possible to do this
in a convenient way. A typical example for this is the creation of an SLA in the network
domain. Here, it is simply not possible to include the availability information for all
possible network paths in a domain within one single SLA template. This would make
the templates far to complex and therefore practically unusable. Therefore, the efficient
agreement on time constraints in SLAs in only one phase is simply not feasible in this
case. More advanced multi-step negotiations are needed to solve this problem.

3.2.3 WS-Agreement 3PNP

Due to the lack of native support for negotiation in WS-Agreement, Wäldrich and Ziegler
proposed a simple three phase negotiation protocol based on WS-Agreement [154]. In
order to negotiate co-allocation of resources effectively and efficiently, a Grid scheduler
must be able to (i) identify a common timeslot, and (ii) to allocate resources at a spec-
ified time. The identification of a common timeslot can already be done by using WS-
Agreement templates for publishing the availability of local resources. Furthermore, it
seems to be feasible that agreements can be created while specifying a start time for
a resource usage within an agreement offer. However, since WS-Agreement only allows
creating agreements within one step (createAgreement), one can not be sure whether the
creation of an agreement on multiple sites succeeds or not. Additionally, penalties may
be associated with an agreement, preventing a broker to simply terminate all agreements
and re-negotiate, if one site fails to create an agreement at the proper time.

3.2. VIOLA’s signalling Architecture 79

To overcome these problems, the creation of different types of agreements within a
negotiation process was proposed. These types are a Declaration of Intention Agreement,
a Preparation Agreement and a Commitment Agreement. All of these agreements are
normal WS-Agreements as specified in [41], following a certain naming convention. Sub-
sequent agreements (Declaration of Intention Agreement, Preparation Agreement; Com-
mitment Agreement) reference the prior created agreement using wsag:Service Reference,
which contains an EndpointReference (sort of URL) of the related agreement. The nego-
tiation process is described in diagram 3.6.

Figure 3.6: 3 Phase Negotiation process

Declaration of Intention (DoI Agreement)

A Declaration of Intention (DoI) indicates whether a service provider is able to accept
the agreement offer or not. This declares at least that an agreement responder is willing
to provide resources according to an agreement offer. The decision, whether to accept a
DoI offer or not, depends e.g. on the requested resources (can the requested resources be
provided), the requested QoS levels (can the requested guarantees be fulfilled), and the
requested start time (are the resource available at the requested time). If an agreement
responder is able to deliver the specified service with the appropriate QoS, but not at
the specified time, the agreement responder may accept the DoI offer with a changed
start time (normally the next time after the requested the service could be provided).
An agreement responder can query the DoI agreement and check, whether it fulfills his
requirements or not. This enables an agreement initiator to negotiate a common timeslot
for a resource usage as described in [153]. Since a DoI Agreement only declares the general
intention to provide resources at a specified time, normally no costs and penalties will be
associated with a DoI-Agreement. Therefore an agreement initiator may terminate a DoI
agreement without any penalties.

80 3. Protocols

Preparation Agreement

The main purpose of a Preparation Agreement (PA) is to provide a pre-reservation of
resources (with defined QoS) for a specified time. This pre-reservation has a defined
lifetime (pre-reservation duration), in which an agreement initiator can choose whether
the specified resources will be used or not. If an agreement initiator chooses to use the pre-
reserved resources, a subsequent Commit Agreement has to be created that references the
PA using the wsag:ServiceReference. If no subsequent Commit Agreement was created
within the pre-reservation duration, the PA expires and the reservation is deleted, in
order to have the resources freed. After a PA has expired, the agreement initiator can not
reference it anymore to create a subsequent Commit Agreement. Since resources will be
reserved when establishing a PA (at least for a defined time), this agreement may or may
not be associated with any costs or penalties, in case of canceling the PA. This depends
on the local charging model, which should be published in the Agreement Template.

Commit Agreement

A Commit Agreement (CA) is a final outcome of a negotiation process. A CA references
a PA in order to indicate that an agreement initiator definitely wants to use the resources
reserved with the PA. This is the final contract between the agreement initiator and the
agreement responder. On acceptance of a CA, all of the defined costs, penalties and
reward defined in the agreement become effective.

3.2.4 Negotiation of Agreement Templates

Negotiation requires an iterative process between the parties involved. To rely on WS-
Agreement and minimize the extensions to the proposed standard, it was suggested not
to directly negotiate SLAs but instead negotiate SLA templates that will then be used to
create an SLA. Here, the focus is on the bilateral negotiation of agreement templates.

In the following scenario how an agreement initiator (e.g. the Grid scheduler) nego-
tiates agreement templates with two agreement provider (e.g. a network scheduler and
a CPU scheduler) will be described. A simple offer/counter offer model is proposed. In
order to use this model in the WS-Agreement protocol, a new function negotiateTemplate
is used. This function takes one template as input (offer) and returns zero or more tem-
plates (counter offer). The negotiation itself is an iterative process. The following scenario
describes a simple negotiation process. During the negotiation process, the agreement ini-
tiator (e.g. a Grid scheduler) is called ’negotiation initiator’. Accordingly the agreement
providers (e.g. the resource providers) are refered as ’negotiation responders’.

1. Initialization of the negotiation process

3.2. VIOLA’s signalling Architecture 81

First, the negotiation initiator initialises the process by querying a set of SLA tem-
plates from agreement providers. To do so, it sends a standard WS-Agreement
message, getResourceProperty request, to agreement providers (not shown in Dia-
gram 3.7). From this templates, the initiator chooses the most suitable one as a
starting point for the negotiation process. This template defines the context of the
subsequent iterations. All subsequent offers must refer to this agreement template.
This is required in order to enable an agreement provider to validate the creation
constraints of the original template during the negotiation process, and therefore
the validity of an offer.

Grid Scheduler CPU Scheduler Network Scheduler

negotiateTemplate

negotiateTemplate

commit

commit

prepareAgreement

prepareAgreement : EPR

prepareAgreement

prepareAgreement : EPR

Figure 3.7: Extended WS-Agreement SLA negotiation

2. Negotiation of the template

After the negotiation initiator has chosen an agreement template, it will create a
new agreement template based on the chosen one. The newly created template must
contain a reference to the originating template within its context. Furthermore,
the agreement initiator may adjust the content of the created template, namely
the content of the service description terms, the service property terms and the
guarantee terms. These changes must be done according to the creation constraints
defined in the original template. Additionally, the negotiation initiator may also
include creation constraints within the new created template. These constraints
provide hints for the negotiation responder, within which limits the negotiation
initiator is willing to create an agreement. For instance, the initial CPU scheduler
template can contain “any number of 2GHz x586 CPU between 5pm to 6pm”. And
the initiator can request “at least 5 1GHz x586 CPU anytime”. After the initiator
created the new agreement template according to its requirements, the template is
sent to responders via a negotiateTemplate message (as shown in Diagram 3.7)

When a responder has received a negotiateTemplate nessage, it must first check the
validity of the input document (refined template). This step includes (i) retrieving
the original agreement template that was used to create the input document, (ii)
validating the structure of the input document with respect to the originating tem-
plate, and (iii) validating the changes of the content in the input document with

82 3. Protocols

respect to the creation constraints defined in the originating template.

Once this is done, the agreement provider now checks whether the service defined
in the request could be provided or not. In our example, it’s only then that the
CPU scheduler decides that 5 1GHz x586 CPUs can be provided. If the service can
be provided, it just returns the agreement template to the client, indicating that an
offer based on that template will potentially be accepted. Otherwise, the provider
employs some strategy to create reasonable counter offers. During this process
the agreement provider should take into account the constraints of the negotiation
initiator. Counter offers are basically a set of new agreement templates that base
on the template received from the negotiation initiator. The relationship between
dynamic created templates and original ones must be reflected by updating the
context of the new templates accordingly. After creating the counter offers the
provider sends them back to the negotiation initiator (negotiateTemplate response).

3. Post-processing of the templates

After the negotiation initiator received the counter offers from the negotiation re-
sponder, it checks whether one or more meets its requirements. If there is no such
template, the initiator can either stop the negotiation process, or start again from
step 1. If there is an applicable template, the initiator validates whether there is
need for an additional negotiation step or not. If yes, the initiator uses the selected
template and proceeds with step 2, otherwise the selected template is used to create
a new SLA.

3.2.5 SLA creation

After the negotiation of an agreement template acceptable for both parties, the initiator
needs to create the agreement. At this point, a problem similar to the transaction problem
of distributed database systems arises. The goal of a Grid scheduler is to create a set
of SLAs with different resource providers in order to provide co-allocation. Therefore,
the scheduler first negotiates a set of templates with the providers, which identify the
possible provisioning times of the required resources. However, it must not be forgotten
that templates only provide hints of what SLAs an agreement provider might accept.
There is no guarantee associated with a template. This means that a strategy to create
all SLAs or none is needed. In principle there are two major strategies to achieve this:

1. to use transactions to create the SLAs, or

2. to create each SLA within one step, applying policies to the SLA.

The usage of transaction mechanisms to create distributed SLAs, namely the usage
of the two phase commit protocol, was already discussed in this chapter. Since there
is no support for a two phase commit in today’s WS-Agreement requires a extension

3.3. Model description 83

to the standard to address this problem. This process has been started recently in the
OGF working group that created WS-Agreement. A solution exists by adding a type
of agreement that must be created in two phases: the first phase is a creation of the
agreement triggered by a new prepareAgreement message and the second with a new
non-standard Commit message as shown in diagram 3.7.

The other approach is to create an SLA in one step using today’s WS-Agreement
functionalities, cancellation mechanisms and incentives. However, it is not very obvious
how the co-allocation problem can be solved with this approach. In order to achieve this,
the content of an SLA must be investigated. On one hand, an SLA describes the service
and its properties. On the other hand, it specifies the guarantees for a specific service.
In a co-allocation scenario, where a Grid scheduler uses SLAs to coordinate e.g. network
and computational resources, it employs execution guarantees in order to assure that the
different services are provided at the same time. These guarantees may also include costs
that are associated with the service if it is provided successfully, as well as penalties that
arise when a guarantee is violated. However, an SLA might be prematurely terminated
by the agreement initiator, before the service is actually provided. In fact, this is a
cancellation of an SLA. When a service provider guarantees a certain execution time for
a service, this normally comprises resource reservations. Therefore, the resource provider
wants to prevent the termination of an existing SLA. This can be achieved by including
a basic payment within the SLA. The basic payment is potentially a very small amount
of money that is even charged if the SLA is terminated by the agreement initiator before
the service was actually provided. It is therefore a termination penalty and represents
the costs for the overhead produced by the resource reservation. In order to enable the
Grid scheduler to efficiently negotiate and create SLAs, there could be a certain time
period in which the SLA can be terminated without penalty. The duration of this period
can dynamically be specified during the negotiation process. The Agreement provider
could use a certain trust index in order to determine the maximum length of this period.
For example, such a trust index could be computed by the ratio of successful created
agreements and prematurely terminated agreements. This offers a feasible solution for
the orchestration of multiple resources using the current one-step SLA creation of WS-
Agreement.

3.3 Model description

One of the driving focuses of the VIOLA architecture is that it’s a good representation of
the current state of the art of Grid systems interacting with network resources. VIOLA
uses web services that are often criticized for their poor performance. It is often said
that XML processing introduces a big latency in the control system and that text-based
representation of information is a waste of memory and bandwidth. One of the reasons
for this analysis is to be able to quantify latency introduced by the Grid scheduler and its
memory requirements. The comparison of the performance of a three phase negotiation

84 3. Protocols

protocol with a two phase was required.

To conduct these analyses an analytical approach based on queuing network’s theory
was adopted. The model is similar from the one developed by Gurbani [84] for evaluating
a SIP proxy’s performance. The difference is that a Grid scheduler’s performance will
be evaluated here. These analyses have been conducted in collaboration with Alejandro
Gaspar. The remaining sections will present the model used and analytical results.

Four models were built, two for the two phase negotiation protocol, a sequential and a
parallel and two for the three phase negotiation protocol, again a sequential and a parallel.

Sequential 2PNP This model represents a sequential implementation of a two phase
negotiation protocol. The term sequential refers here to the programming frame-
work used to communicate with remote entities. In a sequential implementation,
after having sent a message to a remote entity, the Grid scheduler waits to receive
an answer from that remote entity before sending another message, or performing
another action.

Parallel 2PNP This model represents a parallel implementation of a two phase nego-
tiation protocol. Compared to the sequential implementation, after having sent a
first message to a remote entity, a parallel implementation does not wait to receive a
response before begining to communicate with other entities or to perform the next
action.

Sequential 3PNP This model represents a sequential implementation of a three phase
negotiation protocol.

Parallel 3PNP This model represents a parallel implementation of a three phase nego-
tiation protocol.

The objective of the model is to evaluate a Grid scheduler’s performance taking into
account the negotiation protocol and its implementation variant (sequential or parallel).
Interesting properties to compute, would be:

• the average total delay introduced by the Grid scheduling process described in sec-
tion 3.2.1,

• the maximum number of job requests per second a Grid scheduler can support,

• the amount of memory required by the Grid scheduler.

To do so, it is assumed that the Grid scheduler receives a job request and maintains a
state in memory for each job that represent the processing state of this job request. For
instance, the Grid scheduler might have received a job request, performed some actions,

3.3. Model description 85

sent an intermediary message to a remote entity and be waiting for a response. To model
this, two queues are used: the first introduces the Grid scheduler’s job request processing
time, while the second queue introduces the waiting time for the response. It will be
assumed that the waiting time for the response equals the remote entity’s processing time
of the intermediary message and generation of the response. Transfer delays will not be
taken into account.

Jackson’s network theory will be used. One of its limitation is that each queue’s
processing time distribution must be exponentially distributed for the analytical formulas
to be correct, which is obviously not a realistic assumption. However, this theory produces
quick and simple results. As for every Jackson network model, the input parameters of
our model are: the job request arrival rate and distribution, each queue’s service time
distribution and average service rate, probabilities for a job request to switch from one
queue to another, i.e. from one state to another. A job request needs two resources:
network and computing. The stationary solution of each model, that is a solution that
represents a network at “equilibrium” is computed.

The upper part of diagram 3.8 is the queuing network model for the two phase negotia-
tion protocol described in 3.2.1. In this diagram, the following notation was used: a queue
is represented with a message name M, a letter X above it, and a letter µ encircled. µ is
a processing rate, i.e. here the inverse of a processing time. X refers to an entity, it can
be M for the Grid scheduler (a.k.a. Meta-scheduler), LS for a local-scheduler’s adapter or
A for the network adapter, ARGON. Each server in this queuing network introduces the
processing time taken by entity X to receive a message M, process it, generate a response
and send it to the relevant entity. To be more precise, when the entity X is not a Grid
scheduler, the server includes the Grid scheduler’s waiting time, which equals the process-
ing time spent by entity X, to receive M, process it, generate a response and send it to
the next relevant entity. Job requests are clients of this queuing network whose arrival
time follows a poisson distribution, which is a good model for independent job requests
triggered by human behaviour. When a client changes queues, it models a state change
of this job request inside the Grid scheduler, the duration of this state corresponds to the
time spent in the corresponding queue. Some examples are listed below:

In queue 1, the job request is in the “NotCreated” state, once it has been processed, it
moves directly to the second queue, and to the “Waiting for LS&A CouldRunAtResponse”
state. The first server intoduces the time needed by the Grid scheduler to receive, process
the “createAgreement” message and sent two “CouldRunAt” messages to ARGON and
the first LS’s adapter. 1/µ2 is the average time taken by ARGON and the first LS’s
adapter to receive the “CouldRunAt” message, process it and send the response back to
the Grid scheduler. It is assumed that that these two operations are done in parallel by
two different entities and that only one queue is needed. The next two queues model the
treatment of the two responses by the Grid scheduler and the time needed to generate
the next “CouldRunAt” messages for ARGON and the second LS’s adapter.

It is assumed that transition probabilities are constant. Having sent and received

86 3. Protocols

“couldRunAt” messages to all adapters, q is defined as the loop probability, i.e. the
probability that there is no common timeslot between ARGON and an LS after having
queried all adapters once. p is the probability of never finding a common timeslot and
sending back an error message to the user. m is the probability of finding a common
timeslot after a loop. By deduction, m + p + q = 1. The loop probability q depends on
many factors, notably the load on each local-scheduler. To simplify, this model assumed
it is constant. This probability represents the impact the real user-load has on the Grid
scheduler. It is the impact the “user plane” has on the “control plane”. The following
sections will refer to this probability as the loop probability. Since it is not computed, all
results will be functions of it, hence the x-axis of all graphs.

Existence of a stationary solution gives the maximum job request arrival rate each
model can acheive. In all models, the Grid scheduler must cycle if there is no common
timeslot found. As a consequence, it’s easy to see on all equations that under “realistic”
parameter assumptions the loopback queue k0 is always a bottleneck. In diagram 3.8,
k0 = 2. That is to say, its internal load ρk0 is the biggest internal load. The maximum
job request is given by ρk0 < 1, where for the three phase parallel model

ρk0 =
λ/µk0

1− (q + (m(a+ cb)))

The stationary solution of these models enables us to compute the mean number of
jobs N in the system.

N =
∑

k∈Queues

ρk

1− ρk

Calculating the memory requirement is equivalent to calculating the mean number of jobs
in the system and the total delay introduced by the Grid scheduler T is equivalent to the
mean number of jobs N in the system according to Little’s formula N = λT where λ is
the job request arrival rate. Hence the problem reduces to computing the mean number
of jobs and the maximum arrival rate.

3.3.1 Parameters value choice

Input service rates for each queue were taken from real measurements of the time re-
quired to process job requests. The parsing time of a JSDL (Job Submission Description
Language [42]) file was measured and used for the corresponding queue’s main average
service time. Values ranging from 1.7ms to 4.7ms were used for the average time needed
to receive an XML message, check its validity and parse it, depending on the entity who
receives the message and the size of the message. These values do not take into account
the time delay introduced by Apache, Tomcat, Axis and SOAP processing. This delay
could be taken into account to improve absolute values obtained by the model. However,
it is only of little interest since the focus is on relative performance gains or penalties.

3.3. Model description 87

Figure 3.8: Parallel models

88 3. Protocols

All four models take into account fixed probabilities. In the parallel three phase
negotiation protocol model: p, q, m, a, b, c and d. m is the probability to find a common
timeslot between the network and the computing resources. q is the probability of looping
after having sent one “couldRunAt” or “CreateDoIA” to all adapters because there is no
common timeslot. p = 1−m− q is the probability of getting an error while searching for
a common timeslot, it includes the probability of never finding one. a is the probability
of rejection of the Preparation Agreement by local adapters. It can happen when the
resource has been reserved between the “CreateDoIA” response and the receipt of the
“CreatePA”. b = 1− a is the probability that the “CreatePA” response is positive. c is the
probability that the Commit Agreement is rejected, for instance it can occur when the
time taken by the Grid scheduler to send the commit agreement is larger than the pre-
reservation lifetime, and d = 1− c is the probability the commit agreement succeeds. To
generate the results, p = a = c = 10% was chosen for the parallel three phase negotiation
protocol model.

The 2PNP model uses less probabilities: p, m, q, a and b. p, m, q are the same as in
the parallel three phase. b is simply 1 − a, where a is the probability that the network
and CPU reserved times do not match even if the couldRunAt response said they do. To
get the results p = a = 10% was chosen for the parallel 2PNP model. Doing so, the three
phase protocol was penalised because of the 10% commit agreement rejection rate. This
assumption is a reasonable starting point to compute a worst case scenario penalty of
3PNP over 2PNP.

3.4 Results

Parallel models’ performance is expected to be better than sequential models and three
phase negotiation protocols to be less efficient than two phase negotiation protocols. The
remaining question is: by how much?

3.4.1 Arrival Rate

The results show that it’s always the same queue that is limiting the system’s maximum
arrival rate. It is, the queue at the entrance of the main loop (second queue on the
diagrams included).

Since the probability of not finding a common timeslot q can not be really approx-
imated, results are plotted as a function of the probability of not finding a common
timeslot. Hence the x axis of our diagrams is the probability of not finding a common
timeslot q. When the y axis is a gain, it’s computed with ∆P/P . The first observation
is the order of magnitude of the maximum arrival rate supported by the Grid sched-
uler, between 30 jobs per second to 150 jobs per second, depending on the probability of

3.4. Results 89

Figure 3.9: Maximum arrival Rate

not finding a common timeslot. In the worst case, the Grid scheduler supports 30 jobs
per second. To better understand this diagram, a SIP proxy supports the forwarding of
approximately 300 calls per second.

Figure 3.10: Sequential vs Parallel

A second comment is that the penalty on the maximum arrival rate of a 3PNP has over
a 2PNP is small (less than 10%) for parallel models: almost all curves are supper-imposed.
The penalty is bigger for sequential models. A third point, although very predictable is
that a parallel implementation of the Grid scheduler is far superior than a sequential
implementation. The performance gain on the maximum arrival rate varies from 20% to
50% for the three phase negotiation protocol. The gain is slightly less for the two phase
negotiation protocol: from 10% to 30%.

The main conclusion from these two graphs are that the implementation should be
parallel and that the maximum arrival rate penalty a 3PNP has over a 2PNP is less than
10%.

90 3. Protocols

3.4.2 Mean Nb of Jobs

The mean number of jobs in the Grid scheduler for the four different models is computed
by fixing a common arrival rate. The next diagram shows that when the arrival rate is
set close to the maximum: 90% of the max arrival rate when q = 50%, λ = 63job/s. A
big difference in the mean number of jobs N in the Grid scheduler is observed between
the four models. The job request processing delay is proportional to the mean number
of jobs Delay = N/λ and the memory requirement is the product of N by the memory
footprint of one job request.

Figure 3.11: Mean Number of Jobs

The first result is that, when the arrival rate is fixed, the probability of not finding
a common timeslot greatly influence the mean number of jobs in the system. Above a
certain threshold, the system becomes unstable. There is a clear need to control the
“loop” probability to provide performance guarantees like a boundary in the job request
processing delay. A second result is that the 3PNP penalty is not that large.

Diagram 3.11 shows that for a fixed arrival rate λ = 63job/s, the penalty varies from
10% to 100%, which represent a factor two in terms of memory requirement or total
processing delays.

The sensitivity of this penalty to the arrival rate was computed. Diagram 3.12 shows
curves representing the penalty function of the “loop” probability for different values of
the job request arrival rate (in Job/s): λ ∈ {5, 8, 12, 15, 19, 32, 44, 57}. The result is that

3.4. Results 91

the penalty difference between all these curves is less than 10% for a ten times increase
in the arrival rate.

Figure 3.12: Penalty sensitivity to the arrival rate

The consequence of this result, is that for a given arrival rate, the memory requirement
of the three phase negotiation protocol is roughly twice more than for the two phase. And
if the arrival rate was multiplied by 10, one would only need an extra 10% of memory.
However, the performance penalty on the total job request processing delay D greatly
depends on the arrival rate: according to Little’s formula D = N/λ, the job request
processing delay is inversely proportional to the arrival rate. In the worst case, the
processing delay for a 3PNP is twice that for a 2PNP.

The influence of other parameters on the mean number of jobs and the maximum
arrival rate was analysed. The sensitivy to other service rate is very small whenever they
vary in reasonable ranges. The impact of having over-estimated the commit agreement
rejection rate is less than 10% on the mean number of jobs.

3.4.3 Conclusion

To conclude, there is a clear need to implement the Grid scheduler with parallel com-
munication mechanisms with other adapters. The order of magnitude of the number of
jobs per second a Grid scheduler can support is around 30 jobs/second. And the total
job processing delay at this rate introduced is 200ms. When the Grid scheduler is im-
plemented with parallel communications mechanisms, a three phase negotiation protocol
does not penalise the maximum arrival rate supported by the system compared with a
two phase negotiation protocol. However there is a clear need to control the number of
loops the Grid scheduler will do for each job and reduce it as much as possible. The

92 3. Protocols

Grid scheduler should be designed taking into account that on average a probability of
not finding a common timeslot after one pass for each job higher than 60%, will make the
Grid scheduler unstable. 3PNP memory requirement and processing delay are at worst
twice bigger than for a 2PNP.

3.5 Conclusion

This chapter discussed basic functionality for resource orchestration in Grids, namely
mechanisms to dynamically negotiate and create service level agreements using WS-
Agreement. Inovations proposed to the WS-Agreement standard have been the object of
a publication [119, 120]. SLAs are a basic building blocks for Grid resource orchestration
and distributed resource management. Some WS-Agreement extensions were proposed
to dynamically negotiate SLA templates: NegotiateTemplate was a method to support a
simple offer/counter-offer model. The second relevant part of the resource orchestration
process is the creation of distributed SLAs. Two different strategies to co-allocate SLAs in
the Grid were proposed: one using a two phase commit with an WS-Agreement Commit
extension and one using a single phase commit with SLA cancellation and incentives. The
performance of the two phase commit approach has been evaluated. Once that resources
can be efficiently co-allocated, the next chapter will investigate which information should
be exchanged to provide a co-allocation. It will study resource cross optimization.

93

Chapter 4

Algorithms

The previous chapters show that interactions between a Grid scheduler and network man-
agement systems have increased in several Grid projects. The aim is to provide resource
co-allocation, reserving processing and network resources simultaneously.

How many jobs can we allocate on the Grid? Is it necessary to go beyond a bandwidth
on demand service? Should the network operator communicate more information like
topology and reservable bandwidth about the network? This increased interaction would
permit a Grid scheduler to better optimize resource allocation process.

This chapter briefly describes the general problem recalling Max Flow based tech-
niques. Then the methodology developed during this thesis is exposed. A cross optimizing
algorithm is proposed and evaluated. Appendix 4.6 describes an extension of this algo-
rithm and appendix 4.6 describes in more details the tools that were built. An analytical
approach gives a formula to estimate the number of jobs accepted in a network. This
formula is verified and the previous questions are answered in the last section.

4.1 Introduction

One of the motivating ideas for this thesis was: if computing resources are managed
with network resources, what could be done? When a user wants to execute a job, if he
is interested in having the results as fast as possible, he does not want the network to
be a bottleneck. So, with no exchange of information between the network department
and the computing department, the computing department selects a processing site with
enough network resource to reach it and enough processing power to execute the job.
The computing department can only make an estimate of the network performance using
unreliable estimations. If the computing department had enough information, it could
select a computing site and a network path to reach it. So that according to the user’s

94 4. Algorithms

job, “network power” could compensate “computing power”. This is the idea of cross
optimization.

The Grid scheduler must select resources to execute each jobs. Today, this selection
process is based on the computing server parameters: liveliness, load, speed, etc. One of
objective of this thesis was to also consider network parameters in this selection process:
reachability, maximum bandwidth, average bandwidth, latency, jitter, as well as other
constraints. Taking into account network parameters will reduce the overall processing
time. For example: a slower server with more bandwidth available could be a better
selection than the fastest server with almost no bandwidth available.

Furthermore, jobs express their resource requirements with time constraints. So the
Grid scheduler has to select:

• Which resource to use, (e.g. the network path, the processing site)

• The amount of resource to use (e.g. the amount of bandwidth, the number of CPU)

• Resource consumption start times (e.g. start time to use the network and start time
on the execution site)

This leads to several parameters that have to be determined for each job and offers a
larger number of combinations. Of course, the computing department can try to achieve
several optimization objectives. In the most complex case, the computing department
is able to propose a routing depending on the job characteristic. So a routing problem
as well as and end-resource selection problem have to be solved simultaneously. Both
problems are time dependent, the complexity of the problem to solve is at least larger
than the complexity of problems taken independently.

The focus is on applications that can benefit from a cross optimization. Some appli-
cations simply requires resource x,y,z, starting from a moment the resource orchestrator
has to determine. For instance, a streaming problem requires the network resource at
the same time as the network resource. Such a problem is of very little interest because
there is no cross-optimization possible, a streaming has to occur at a given precise rate,
a processing unit powerful enough has to be available. The selection mechanism is overly
simplistic.

4.2 Related Work

All techniques related to optimizing data location like [100] in order to minimize the access
delay will not be discussed.

4.2. Related Work 95

4.2.1 Basic Resource orchestration algorithm

Suppose a resource orchestrator has to be built. The aim of the orchestrator is to find a
time when all resources requested by a job will be available to process the job. Here a job
is composed of several tasks that are dependent on one another, each task must use one
or several resources. Each task must start at a precise time after the start of the job, each
task has a certain duration known beforehand. Suppose that a resource is either available
or not and there is no compromise that can be made on the quantity of resource. Either
it is available or not. For this kind of non tolerant jobs, a basic resource orchestration
algorithm is obvious. All resources are scanned, the first set of resource available that
match the request are allocated to the job.

4.2.2 Max Flow approaches

One of the first ideas to approach the job allocation problem is the maximum flow formu-
lation [38, 77]. The objective could be to process as many jobs as possible.

Ford and Fulkerson [68] were the first to provide an efficient solution to the maximum
flow problem. Before them, Integer Linear Programming techniques and the Simplex
algorithm could have been used to find the maximum flow. Schrijver [137] gives a complete
description of the history of the algorithm. From Kantorovich in 1939 to the US Army’s
formulation leading to Ford and Fulkerson’s work, until recent development concerning
its complexity.

In their first report on maximum flow, Maximal Flow through a Network, Ford
and Fulkerson mentioned that the maximum flow problem was formulated by
T.E. Harris as follows:

Consider a rail network connecting two cities by way of a number
of intermediate cities, where each link of the network has a number
assigned to it representing its capacity. Assuming a steady state
condition, find a maximal flow from one given city to the other.

The mathematical formulation of Max Flow can be found in [77, 138] or any good graph
theory textbook. The idea is to find the amount of maximum flow one can achieve between
a source node and a destination node through a network, whose links have been assigned
a capacity. To find this maximum flow, one has to identify the flow unit or the link
capacity unit. Is it similar to the amount of goods in a transportation network or cars
per second in an automobile network? Furthermore, the first max flow problem has been
widely studied between one source and one destination. It’s well known that finding the
maximum flow in a network between several sources and several destinations is a problem

96 4. Algorithms

Figure 4.1: Max Flow’s extended graph to handle multiple sources and destination

equivalent to finding the maximum flow between one source and one destination in an
extended network. Diagram 4.1 shows how to build the extended network.

Suppose a network as described by diagram 4.2. The first row is the source nodes
and the last row is composed of CPUs (destination nodes). One job and only one per
CPU. Links capacity is expressed in number of jobs. The link capacity could be expressed
in number of jobs if each job requires a fixed amount of bandwidth. This formulation

Figure 4.2: Max Flow [Number of Jobs]

D

S

1 2 3 4 5

6 7 8 9 10 11

12

15 16 17 18

19 20 21

5
10 7 15

30

8

15

30 20 12
2 6

15 30
8

determines the maximum number of jobs that can be allocated in the system composed of
networks and CPUs. This number of jobs should be compared to the number of accepted
jobs determined by the methodology developed in this thesis (see section 4.5.2).

4.2. Related Work 97

A variant of the previous model can be developed with the flow unit expressed in
job per seconds. Link capacity should also be expressed in jobs per second, taking into
account a fixed amount of data to transfer for each job. This model is not the way to
solve the job placement problem, however it could give some interesting results in terms
of the maximum job processing rate achievable by the system. This number could be a
performance upper bound interesting for a job scheduler’s design. Such problems would
have the drawback that some source nodes will not necessarily have a route towards a
processing location. In order to make the algorithm compute a route from each potential
source location to a computing location, this model could be extended by a compatible
maximum flow search algorithm. This algorithm, although not really seen in the literature
is very simple, it is just a compatible flow search, followed by the ford-Fulkerson algorithm
that searches for the augmenting path as long as the augmenting path respects the flow
compatibility constraint. The flow compatibility constraint in max flow is that on each
link the flow must be lower than the link capacity, in the compatible flow search, the flow
on each link must be lower than the link capacity and bigger than a lower bound. Using
this technique, one could add a lower bound on each link between the super-source and job
location node, this lower bound would be equal to its upper bound, it would correspond
to the real job arrival rate. A compatible max flow search would solve the limitation that
some jobs locations have no route towards a processing location. This approach could be
used for:

• Getting an upper bound performance indicator for a job scheduler

• Getting a routing for a job placement problem, if the distribution of job follows
the same repartitioning among nodes than the job emission rate, Maxflow applied
to this model would give a routing of jobs. The job placement problem is solved,
but it might assign more jobs to a CPU location than it can support, even if this
placement is derived from a correct job rate flow. Of course, bandwidth can not be
guaranteed in this placement, because when jobs are processed, the number of jobs
that will come from this location is not known. But this allocation could be used
for comparison purposes when other job placement techniques will be studied.

• Furthermore, maximizing the job-processing rate is not equivalent to minimizing
the overall job processing time.

Because of these limitations, multi capacity links are interesting. I.e. capacity expressed
in multiple dimensions, for instance, one dimension for the number of jobs supported by
the link and one dimension for the link bandwidth.

A last variant of these Max flow models is the multi constrained. The algorithm used
here could be a modified version of the compatible max flow search, because the second
dimension of the flow needs to be taken into account. Firstly, the idea is to maximize the
number of jobs processed and in the set of solutions that maximize the number of jobs
processed, minimize the overall processing time or maximize the bandwidth flow. Here

98 4. Algorithms

Table 4.1: Max Flow Multi-constraints
Model Flow is a job rate, its unit is job per second

One node per job
One node per CPU
One node per network node
One link per network link, its capacity is expressed in
Mbit/s and in maximum number of job, saying for instance
that each job must receive one Mbit/s
One link between job i and the super-source (S). This link
capacity is the job maximum bit rate, and 1 for the job
dimension
One link between CPU j and the super-destination (D).
This link capacity is CPU network maximum bit rate and
1 for the CPU dimension.

Underlying hypothesis Only one job can run on a CPU, no more. As a conse-
quence a CPU is either busy with one job, or idle
All CPUs are the same
When the first dimension of the flow is non null, the second
dimension is non null
All jobs are the same

minimizing the overall processing time is equivalent to maximizing the bandwidth because
all jobs are equal.

These approaches are interesting for comparison purposes. The requirement that jobs
must be handled one after the other (on line algorithm), implies that it is not possible to
optimize the allocation as if all jobs requests were known in advance. So the algorithm
proposed will be the simplest cross optimization algorithm one can think of: “Select
as much as processing and network resource as possible in order to minimize the job’s
processing time”.

4.3 Methodology

The objective in an industrial context is to implement an optimizing algorithm that can
handle all situations. In this context, such an algorithm must be able to determine resource
scheduling for the jobs on the fly. I.e determine when and which resources should be used
by each job. The objective of such an algorithm would be to minimize the overall job
processing time and/or the job rejection rate. Classical techniques to handle this kind of
problem can be applied to produce different results. Exact results could be produced with
an Integer Linear Programming formulation, approximate results with meta-heuristics.
Heuristic techniques will be used, although the optimum found is not the best one, their
simplicity and speed of execution make them ideal candidates for an implementation

4.3. Methodology 99

in an industrial product. This chapter studies the benefit of the interaction between a
Grid scheduler and an NMS to co-allocate resource for jobs. Jobs are composed of a
data transfer and a computing task. This chapter limits its study to jobs that can not
be delayed: either they are accepted and they start immediately or they are rejected.
A cross optimization algorithm XO for Grid schedulers to better co-allocate resources
minimizing the job completion time seen by the end-user is proposed. The objective is
to evaluate the impact of this XO on the total job processing time and compare it with
an algorithm that models a simple bandwidth on demand service. An extension of the
algorithm proposed could be implemented for planned jobs request, i.e. jobs that can
wait before their execution start. Appendix 4.6 is a description of this extension. The
Grid scheduler has to select for each job a computing node and network resources. Three
solutions are proposed: Legacy, CCB, XO. The legacy solution is the overlaid solution: the
network is used without reservation, with the best-effort service class. CCB is Connection
with crank-back, it means that the Grid scheduler does not have the knowledge of the
network (virtual) topology nor the amount of reservable bandwidth on each link, it only
interacts with a bandwidth on demand service provided by the network operator. When
a computing site can not be reached, another request is sent until an available computing
site is found and reachable.

To simplify the complexity of comparing and evaluating the performance of each al-
gorithm and yet to evaluate the effect of cross optimization, the simulation tools will
not rely on a discrete event based simulator. Instead, a tool that would compute the
number of accepted jobs and the average processing time for each algorithm was built.
This tool takes a fixed number of jobs as an input parameter. As a consequence it was
possible to compute the number of accepted jobs leaving time dependent parameters for
a second study. The complexity of the problem and the number of parameters in the
model requires this step by step approach. In order to better identify the impact of each
parameter taken independently and to understand more deeply the overall system. These
first results should be used to design and propose a more complex solution.

Jobs

Figure 4.3: Resources use pattern

Jobs are a sequence of two sub-tasks: a data transfer and an execution of some code
contained in the data transfer. To evaluate the benefit of XO, these simple tasks seem to
be a good representation of basic batch job execution processes. A job request j will be
characterized by a source node, an amount of data to transfer S(j), an execution duration

100 4. Algorithms

estimation on a reference machine D(j), an access rate Ar(j) independent and identically
distributed (i.i.d.) random variable. The distribution of Ar is uniform between between
10Mbit/s and 10Gbit/s. Each job requires one and only one CPU. The amount of data to
transfer (resp. execution time estimation) is an independent and identically distributed
(i.i.d.) variable following a uniform distribution. Jobs will be modelled by the coupled

Figure 4.4: Job schema

file size and execution time. It requires the user to have an estimate of its job execution
time. Such information can be easily obtained after having run the program a few times.
Runtime on different machine can be estimated using benchmarks [61, 62, 63]. Otherwise,
it is also possible to consider that the time given by the user in the job description, is an
upper boundary of the execution time. Incentive mechanisms could be used the make the
user improve its job execution duration estimation. The model described here implies a
job composed of two sub tasks. A job composed of more sub tasks like stage-in, execution,
stage-out will be treated as two independent jobs: the first job would be composed of the
stage-in and execution sub tasks and the second job of the stage-out sub task. In parallel
computing jobs require more than one CPU. They are composed of at least several threads
or process that work together in parallel. A job description [42] can contain explicitly the
number of CPU required for its execution. The model described could be easily extended
to take it into account. Job’s characteristics, i.e. file size, duration, access rate will be
generated according to different distributions.

Network

The network will be modelled by a graph composed of nodes and links. Links will be given
a capacity following two distributions: uniform or discrete. The discrete law is obtained by
a discretization of a positive Gaussian at 2.5Gbit/s, 10Gbit/s, n x10Gbit/s. Diagram 4.5
shows the network data model. Generating random topologies that model current existing
network is a complex problem by itself and has been studied [64, 144, 48] for a long time.
Waxman [155] random graphs will be used to generate topologies. Kuipers [93] explains
very well the class of Waxman graphs. “The class of Waxman graphs belongs to the class

4.3. Methodology 101

Figure 4.5: Network model

of random graphs, where the probability of existence of a link between two nodes decays
exponentially with the geographic distance between those two nodes. Such graphs are
often chosen because of their resemblance to actual network topologies.” More formally,
the probability pij to have a link between node i and node j, is a function of the distance
given by the following formula. The probability of not having a link between those two
nodes is 1− pij. The probability of link appearance follows a binomial law of parameter
pij.

pij = αe−
d(i,j)
β (4.1)

“The idea of relating the probability of a link between node i and node j to some func-
tion of the distance between those nodes stems from the correspondence with realistic
telecommunication networks.” The farther two nodes lie separated, the smaller the need
for a direct link between them. Parameters α and β influences the average node de-
gree [150, 109] and density. Diagram 4.6 gives an example of two Waxman graphs of
different theoritical average degree for a 20 node network. To generate a Waxman graph

Average Degree=2,5 Average Degree=3

Figure 4.6: Waxman Graphs

102 4. Algorithms

of n nodes, first nodes are geographically uniformly distributed in a plane. Then, pij is
computed and links are created according to a binomial random variable of parameter pij.

Clusters

Several clusters spread across the network are attached to one network node. Each cluster
has a given number of processing units (CPU). Each processing unit can be allocated to
no more than one job. Within a cluster, all processing units have the same processing
power. CPU processing power is uniformly distributed amongst clusters.

The remaining paragraphs briefly describe the algorithms used to model the three
different interactions between the NMS and the Grid scheduler.

4.3.1 Legacy

This allocation algorithm models no interaction between the Grid scheduler and the NMS.
It considers a network with no reservation capability and no admission control. All jobs
are accepted in the network as long as they have been allocated a computing resource.
The purpose of this model is to represent an today’s most frequent situation. The idea
of the algorithm is very simple: jobs are processed in a given order; CPUs are ordered by
their decreasing processing power. The first job is assigned to the first CPU and so on. As
a result, each job is assigned to the first available CPU ordered by decreasing processing
power. Once the execution site for each job is known, the traffic matrix of the network
can be determined. For each couple (source, destination) the number of jobs that has to
flow in the network is known. The network routing is assumed to be static: a route is
predetermined before all jobs arrive in the network and this route will not change during
the whole execution of the algorithm. Two variants will be investigated; the first variant is
when the routing is either a MinHop or MaxBW routing. MinHop (resp MaxBW) routing
is a routing that minimize the number of hops (resp maximize the bandwidth) between
each couple (source, destination). Problems that it raises are:

• How is the bandwidth going to be shared on a route between different jobs?

• What happens if congestion occurs?

To answer the first question, suppose that each job is entitled to an equal amount of the
available bandwidth. So if a route of capacity C must share C between p jobs, each jobs
is entitled to C/p. However, not all jobs are capable of emitting at the rate C/p. So
slow emitting rate jobs should free some bandwidth for the fast emitting rate jobs. The
residual bandwidth should be shared equally among jobs that are not running at their
maximum emitting rate. However, some links are shared between two or more routes, so it

4.3. Methodology 103

is possible to have congestion on shared links. If congestion occurs, the access rate of jobs
is decreased by a multiplicative factor (less than 1) and this mechanism is iterated until
no link is overloaded. However the network shall not be under-utilized, so the decreasing
factor should be choosen in order to reduce congestion but not too fast. Algorithm 1
and 2 determine the CPU, the network path and the amount of bandwidth for each job.

Algorithm 1: Legacy allocation algorithm

Require: A network graph G
Require: Set of clusters C
Require: Set of jobs J

1: Let rij be the route between node i and j
2: Let nij be the number of jobs on rij

3: ∀(i, j)nij = 0
4: Sort clusters C by decreasing processing power
5: for all jobs J of J do
6: Assign one processing unit of the first element c of C
7: if c has no more available processing unit then
8: Remove c from C
9: end if

10: Let i be the source node of J
11: Let j be the attached node of c
12: Let R(J) = rij be the route of J
13: nij = nij + 1
14: end for
15: repeat
16: R = DetermineBW(J , r, n)
17: Let MaxLoad be the load of the most congested link l
18: for all jobs J using l do
19: Reduce J ’s maximum emitting rate of 80%
20: end for
21: until MaxLoad > 1

Once CPUs have been assigned to each jobs, the number of jobs each route must
support is known. For each route, the bandwidth each job can use is computed according
to the mechanism described earlier. Then the most congested link is detected and the
congestion avoidance mechanism is applied to jobs that use this link. It means that the
access rate of these jobs is reduced and the whole process is iterated with new emitting
rates for these jobs until no link is congested. The congestion avoidance mechanism
described here is not the one used in TCP, it will be discussed in the next section. The
impact of the decreasing factor on the utilization ratio of the network could also be studied.
What is the ideal decreasing factor? What is the impact on the most loaded link? Does
this algorithm manage to get a network with the most loaded link load close to 1? After
several tests, 80% seemed to be a good factor. Results of these tests are not shown here.

104 4. Algorithms

Algorithm 2: Job’s used bandwidth determination

Require: Set of jobs J
Require: Routing table R
Require: Allocation table n

1: for all Routes r of R, nij > 0 do
2: let Jr be the jobs using r
3: Let Fair be r’s capacity divided by nij

4: repeat
5: Allocate Fair to jobs of Jr with undetermined bandwidth
6: if Some jobs can’t use Fair because of their maximum emitting rate then
7: Allocate them their maximum emitting rate
8: Share the remaining capacity Capa among the remaining jobs Others
9: Fair = Capa/Others

10: end if
11: until all jobs of Jr’s bandwidth is determined
12: end for

4.3.2 Connection with CrankBack (CCB)

In this model, the fact that the NMS will not provide any information regarding network
current utilization is taken into account. The Grid scheduler can only use a bandwidth on
demand service provided by the network operator. Furthermore, this model will take into
account or not a crank-back mechanism. In the no crank-back variant, if it is impossible
to reach the best available CPU for a given job, then the job will not be processed. The
algorithm will skip to the next one. In the crank-back variant, if it is impossible to reach
the best available CPU for a given job, then the algorithm will try to reach the second
best CPU and so on until a CPU is reached, or none.

The algorithm is very simple, it will process all jobs sequentially. For each job, it will
select the most powerful CPU. Then it will request the NMS to set up a connectivity of the
maximum bandwidth available respecting its emitting rate limit. If no path is available,
then, the computing department will skip to the next job and loop. The algorithm just
described is the no crank-back variant, because a very simple “cross-optimization” could
be to try to set up a connexion with the second best processing site and so on until a it
is possible to set up a connection towards a processing site, or none. It’s the crank-back
variant.

4.3.3 Cross Optimisation (XO)

One of the objective would be to minimize the sum of all processing times for all jobs,
where processing time is given by Equation 4.2. Our final objective is to have an in-
line algorithm. Meta-heuristics will not be used here to find a global optimum, nor any

4.3. Methodology 105

Algorithm 3: CCB

Require: A network graph G
Require: Set of clusters C
Require: Set of jobs J

1: Extend G to include job nodes and clusters nodes
2: for all Job J of J do
3: Sort C by decreasing power
4: for all Cluster c of C do
5: if a CPU is available on c then
6: Let i be the source node of J
7: Let j be the attached node of c
8: Let rij be the set of maximum Bandwidth routes between i and j
9: if rij is empty then

10: Do Nothing and skip to the next job (no crank-back variant)
11: Do Nothing and skip to the next cluster (crank-back variant)
12: else
13: Allocate J on the first element of rij

14: end if
15: end if
16: end for
17: end for

feedback based ideas. The algorithm proposed will not minimize the average waiting time.
Instead it minimizes the job’s waiting time without taking into account other jobs, but
using as many resources as possible among available ones. So for each job resources will
be selected in order to minimize its processing time, as given by Equation 4.2.∑

j∈Jobs

Sj

BWj

+
Dj

POWj

(4.2)

Where Sj is the size in Mbit to transfer in the network of job j, BWj is the reserved
bandwidth for job j, Dj is the expected duration of job j on a reference machine, POWj

is the power factor of the CPU allocated for j. In other words, this algorithm models a
computing service with objectives such as “get this done as soon as possible”. To perform
this optimization, this algorithm requires a deep exchange of information between the
Grid scheduler and the NMS.

The algorithm handles jobs sequentially. Each job is characterized by its file size and
its execution time. First all potential execution destinations are found, those are the
destination where there is still a CPU available. Then for each of these destinations, the
available routes that maximize the bandwidth between the source (taking into account its
access rate) and the destination are found. Then for each destination cluster, the time it
would take to run the job on this cluster via the best available route is computed. And
the cluster and the route that minimize this time are selected. If several route are possible
the route that also minimize the number of hops is selected. Once the best route and the

106 4. Algorithms

best cpu for a job are found, network and computing resources are reserved and the next
job is processed. Obviously, it is possible that some jobs will not be processed, it will
happen when there is not enough resources whether network or processing. To implement

Figure 4.7: Extended Graph example

this algorithm, an extended network graph is used to take into account jobs and clusters.
Ie. New links and new nodes will be added to the original network topology to model a
job, its access rate and a cluster. More precisely, a new node and a new link between the
new node and the source node of the job will be added. The link capacity will be the
maximum emitting rate of the job. A similar approach is used for clusters. Furthermore,
a super source node connected to all new job nodes and a super sink node connected to
all new cluster node can be created. The capacity of links connected to the super source
or the super sink is infinite. Diagram 4.7 shows an example of an Extended Graph.

It should be noted that the following code is pseudo-code, it differs from the real
implementation. To simplify notations and avoid technical programming details, two
global variables, routeOfJob[Job i] and ClusterOfJob[Job i] which are two tables
containing the route and the cluster of Job i will be used. A route will be implemented
as an object that has a list of edges and a capacity.

Step 1 is important because new created link’s capacity are set to the job’s maximum
emitting rate.

Links with Multi-criteria routing (Pareto set) RMB1C Let’s first recall the def-
inition of the Pareto optimality. In a set S = ai = (x, y)i = (xi, yi) of elements ai. aj

dominates ai if equation 4.3 holds.

ai ≤ aj <=> xi ≤ xjandyi ≤ yj (4.3)

The Pareto set is the set of elements ai that are not dominated.

4.4. Analytical results 107

Algorithm 4: XO

Require: A network graph G
Require: Set of clusters C
Require: Set of jobs J

1: Extend G to include job nodes and clusters nodes
2: for all Job J of J do
3: Let RJ the set of maximum bandwith routes towards the super sink
4: for all Route r of RJ do
5: Compute the execution time of J if it were allocated on r
6: end for
7: Allocate J on the route of minimum execution time
8: end for

There is a link between XO and multi-criteria routing. The objective of the multi-
criteria routing is to find the Pareto set of optimal routes between a source and a desti-
nation. Once this set of optimal routes is computed, a route is chosen is the set according
to some criteria, e.g. by computing a weighted average on the different components of
the route. XO is computing a weighted average except that weights are not defined to
meet the network operator’s objectives, but are dependent on the user’s job character-
istics. And the weights will vary from one job to the other. Finding all Pareto optimal
routes between the super source and the super sink is equivalent to step 3, that is to
say selecting all potential destination and maximum bandwidth routes towards each one
of them. Selecting the best route according to a weighting function among the Pareto
optimal routes is equivalent to step 7, the one that will minimize the job processing time.

4.4 Analytical results

All scenarios are run on a random topology. This section tries to predict performance
results of the different algorithms. The first question is how many jobs can be allocated
in the system composed of network and clusters? The second question is what is the
average job processing time?

Nb Job and routing coefficient

First, the simplest case when the “network” is composed of just one link and two nodes
and that jobs are not file transfer but bandwidth requests is considered. Let C be the
random variable (r.v.) of the link capacity, Ar the r.v. of the bandwidth request (Access

Rate). The number of satisfied bandwidth requests on that link is given by d E(C)
E(Ar)

e. It’s

an application of Wald’s identity [75] (page 233). Note that the last bandwidth request

might be granted the remaining bandwidth and not Ar. The quantity E(C)
E(Ar)

is called

108 4. Algorithms

the normalized link capacity. When the p links are available between the two nodes, the
same results applies except that C is replaced by pC. A proof of that is given here, let’s
recall Wald’s identity. Wald’s identity is applied with the stopping time N defined by the
number of jobs on one link.

Theorem 1 (Wald identity) Let (Xi) a family of i.i.d. real r.v. such as E(X1) < ∞
and T a stopping time for the σ-field Fn = σ(Xi; i ≤ n). If E(T) < ∞ the following
equation holds

E(

T (ω)∑
i=1

Xi) = E(X1)E(T)

The number of jobs is the minimum between the number of CPU and the number of
jobs the network can support. The following will consider that the number of jobs is not
limited by the number of CPU.

Proposition 1 (The Number of jobs is a stopping time) Let C be the capacity of
the link. C is a random variable. The number of jobs N , XO, CCB and CnoCB can
allocate on the link is solution of

N∑
k=1

Ark > C and
N−1∑
k=1

Ark < C (4.4)

Said differently N is a stopping time, it is the first entrance time for random variable∑n
k=1Ark − C in the interval]0,+∞[.

Indeed, the reserved bandwidth for the N−1 jobs allocated will be equal to the maximum
emitting rate, it is only the last job that will reserve the residual capacity of the link which
is by definition of the last allocated job, smaller or equal to ArN .

When the network composed of several links and several nodes, the number of satisfied
bandwidth requests between two nodes is less obvious to compute. It depends highly on
the number of nodes, the number of links, the routing algorithm and the node degree.
The problem is even more complex if job requests have different origins and potentially
different destinations.

Lee [98] studied the maximum flow problem on random graph between two arbitrary
nodes, i.e. between one source and one destination. Actually he studied the maximum
flow along links of unit capacity (called maximum unitary flow), as a consequence he
really studied the number of link disjoint paths p between two nodes. Thanks to the
max-flow/Min-cut theorem, the maximum unitary flow equals the number of links p of
the minimum cut. Lee’s result can be summarized by the following Theorem.

4.4. Analytical results 109

Theorem 2 (Lee’s law) Average maximum unitary flow is proportional to the smallest
of source’s degree and destination’s degree.

This result is true for the max flow routing and is just an application of Max-flow/Min-cut
to Lee’s results and Wald’s identity. It could be interesting to generalize Lee’s results and
thus his law for s sources and d destinations and to any routing algorithm. This is the
tentative of the following conjecture.

Conjecture 1 Given a random graph G, a routing algorithm X, the number of bandwidth
requests satisfied between s sources and d destinations is proportional to the normalized
link capacity. The proportionality coefficient is called the routing coefficient of X between
s sources and d destinations in G. i.e.

N = κXsd
(G)d E(C)

E(Ar)
e (4.5)

If this is true, the equivalent capacity expressed in Mbit/s of an allocation algorithm X
between s sources and d destinations can be defined as κXsd

(G)E(C). While N is the
equivalent capacity expressed in bandwidth requests units. If Wald’s identity is applied
to the minimum cut and Lee’s law. It’s the proof that the routing coefficient of the
allocation given by MaxFlow between one source and one destination is the minimum of
the source and the destination’s degree. Another study shall be done to decouple in the
routing coefficient the influence of a structure coefficient and of the allocation algorithm.
The next section will verify if Conjecture 1 is true for XO, CCB and CnoCB when job
request can be considered equal to bandwidth requests of bandwidth Ar. This second
assumption is hypothesis 1.

Hypothesis 1 Satisfied job request’s reserved bandwidth distribution for XO, CCB and
CnoCB is equal to Ar’s distribution.

Job processing time

If

1. hypothesis 1 holds,

2. on the set of accepted jobs the job computation duration’s distribution is the same
as the distribution of all of the job requests

3. and the transfer size follows the same distribution as the job request’s in general

4. the allocated CPU processing power follows the same distribution as the CPU pro-
cessing power in general

110 4. Algorithms

then, the job processing time is given by:

Proposition 2 when (S,D,BW,POW) follows a continuous uniform distribution,

E(T) =
mS

lBW

ln
BWmax

BWmin

+
mD

lPOW

ln
POWmax

POWmin

(4.6)

where mX = E(X) = (Xmin +Xmax)/2 and lX = Xmax −Xmin.

The computation of the average of the job processing time T = S/BW +D/POW when
(S,D,BW,POW) follows a continuous uniform distribution gives the result. It should be
noted that assumptions made do not differentiate allocation algorithms. This model was
used to formalize the difference between the different algorithm, but it cannot be solved
analytically and the formulation does not give any interesting results.

4.5 Results

This section will presents the main results on cross optimization. First the normalized
link capacity is verified to be an important parameter. Then conjecture 1 is verified.
The influence of the number of CPU is then analyzed. Once the number of accepted
jobs is known, the last sections verifies the average processing time prediction given by
formula 4.6.

4.5.1 Normalized link capacity

The main performance measure for an allocation algorithm is the number of jobs it can
allocate on resources. Of course, the more resources that are available the bigger the
number of accepted jobs is. The less resources jobs require, the more that are accepted.
So the number of accepted jobs increases with the average link capacity, number of CPU
but decrease with the access rate. The previous section showed the importance on one
link of the normalized link capacity. Several simulations were conducted to show that it
is also the key parameter in a network. Leaving all other parameters unmodified, varying
E(Ar) and E(C) while keeping a constant ratio, it was observed that the mean number
of accepted jobs was the same. Diagram 4.8 illustrate this.

4.5.2 Number of accepted Jobs

Diagram 4.9 shows the impact of the number of network resources on the number of ac-
cepted jobs. It also shows the influence of the number of node and average node degree.

4.5. Results 111

40

50

60

70
N

b
 A

cc
e

p
te

d
 j

o
b

s

Normalized link capacity is the key indicator
Number of submitted jobs = 200

0

10

20

30

40

A B C D E

N
b

 A
cc

e
p

te
d

 j
o

b
s

Different simulations with constant Normalized link capacity

XO

CCB

CnoCB

Precision 4%

Figure 4.8: Normalized link capacity is a key parameter

It was obtained submitting 1000 jobs in 10, 20 and 30 node networks for two average
degree 2.5 and 3. The precision of these graphs is given by the relative confidence interval
size: 2%. The total number of CPU is 2000, i.e. the ratio number of CPU to number
over submitted jobs is 2. So in this graph, the network is the bottleneck resource. Similar
curves were obtained for CPU ratio of 1 and 0.5. Although these curves were plotted
for constant network link capacity, similar curves were also obtained for the discrete link
capacity distribution. The main difference between all curves is that the routing coeffi-
cient varies either because of the allocation algorithm or because of structure parameters
(degree, number of nodes, link distribution, CPU ratio). A more precise analysis should
be conducted to evaluate the impact of the number of node, the average node degree, the
number of clusters in the network, the number of source nodes, the repartition of jobs
among source nodes and the repartition of CPUs among clusters. Results shown here
were obtained when all jobs (resp CPUs) are uniformly distributed among source nodes
(resp clusters). A network node that is not attached to a cluster is a source node.

The main finding is that the benefit of XO over CCB is negligible, it is below the
precision of these graphs roughly 2% and that conjecture 1 clearly holds.

4.5.3 Number of CPU influence

Diagram 4.10 shows the influence of the total number of CPU on the number of accepted
jobs. It was obtained for a normalized link capacity of 16.

112 4. Algorithms

Figure 4.9: Number of accepted jobs

All curves were plotted with the same average link capacity and same access rate dis-
tribution. The CPUs’ power is uniformly distributed amongst the clusters but constant
within a given cluster. Similar curves were obtained when the network link capacity is
distributed. It was observed that the number of accepted jobs is smaller than when net-
work link capacity is constant. This is natural: the distribution increases the asymmetry
of the link capacity and induces a penalty because a route’s bandwidth is the minimum
of its links’ capacity. So the equivalent capacity in Mbit/s will be smaller.

XO ’s number of accepted jobs is bigger than CCB ’s and CnoCB ’s but it is only
slightly better than CCB. XO allocates jobs based on the set of network resources and
processing resources that minimize each job’s total processing time. There is absolutely no
reason that would make XO select the same resources for two consecutive jobs. So, XO ’s
utilization of resources is better. It balances load more efficiently than CCB and CnoCB.
“Connexion without Crankback” or CnoCB first selects the best processing site, then
tries to see if network resources are available towards this processing site. If no network
resources are available to reach a site, it stops. It does not use all available resources
like CCB does by selecting the second best processing site and so on. As a consequence,
CCB ’s number of accepted jobs is much bigger than CnoCB ’s. CCB and CnoCB perform
similarly when all CPUs are identical because processing sites are assigned jobs one after
the other in the same order for both algorithms. XO and CCB ’s curves are either constant
or they saturate. Constant curves are obtained when there is not enough network resources
and saturating curves are obtained when first the CPUs and then the network are limiting
the number of accepted jobs. In the diagram, small networks can not accept more than
200 jobs whatever the normalized link capacity (see Diagram 4.9). This is reflected in
Diagram 4.10 by the constant curves for 10 and 20 nodes networks. The 30 node network

4.5. Results 113

Figure 4.10: Number of CPU influence

These curves were obtained with the following parameters:
Number of Nodes 10, 20 and 30
Average Degree 2.5 and 3 (for all node number)
Average Link capacity 80Gbit/s
Number of Jobs 1000
Average Job Size 50Gb
Job size span 10Gb
Average Duration 5000s
Duration span 1000s
Number of Processing Sites 3, 6 and 9 (respectively)
Total number of CPU 1000x
Average CPU Power Coefficient 1000
CPU Power Coefficient Span 500
Access Rate minimum value 10Mbit/s
Access Rate maximum value 10Gbit/s
Link capacity Distribution Type Constant
Other distribution type Uniform

of average degree 3 of normalized capacity 16 accepts more than 300 jobs when there are
enough CPUs but less than 300 when the number of CPUs is limiting.

114 4. Algorithms

Figure 4.11: Average processing time

4.5.4 Processing Time

Diagram 4.11 shows the average processing time for allocated jobs for the three different
algorithms as a function of the normalized link capacity. Curves LegacyMaxBW and Lega-
cyMinHop are not plotted. They are way outside of the scope, more than a factor 100. It
clearly shows the benefit of reservations (XO, CCB and CnoCB) over the best effort ap-
proach on the average processing time. LegacyMaxBW and LegacyMinHop produces the
same results, but of course, reservations limit the number of accepted jobs. The difference
between XO and CCB is negligible. The accuracy of these plots is 15%. Although not
plotted here, the order of job processing impacts the average processing time, although
the difference is less than the accuracy of the graphs. All curves seem to converge towards
the predicted value. Their shape can be partly explained because of the validity of the
approximation of hypothesis 1.

4.5.5 Validity of Hypothesis 1

For both link capacity distributions, the approximation is more valid when the normalized
link capacity increases. The error is less than 8% in volume for the discrete distribution
and less than 4% for the constant link distribution. The idea behind this is that the
number of jobs that can not use the maximum emitting rate is proportional to the number

4.6. Conclusions 115

of link disjoint paths and is dependent on the structure of the network graph and the
allocation algorithm. In a way similar to [98] although no study has been conducted to
prove it, but curves plotted in 4.12 show the dependence on the normalized link capacity
is inversely proportional, which is the expected trend shape.

Figure 4.12: Approximation’s error

4.6 Conclusions

One of the objective of these simulations was to determine the benefit of a cross opti-
mization over a traditional Bandwidth on Demand service. The key finding is that on
networks composed of less than 20 nodes, there is no need to go beyond a bandwidth on
demand service, communicating the network topology and reservable bandwidth is not
necessary. However, for bigger networks in nodes and link capacity, a cross optimization
increases the number of accepted jobs by 20%. A side result, but important one, was to
verify that the number of accepted jobs in a network is proportional to the normalized link
capacity. The proportionality coefficient was called the routing coefficient and depends on
the allocation algorithm, the routing algorithm and structure parameters. A lower bound
of the average processing time can be analytically computed. When the normalized link
capacity increases, the observed average processing time converges towards the computed
lower bound.

The number of jobs computed here is when the network was initially empty and jobs are
added until the network is full. A time based discrete event simulation was not conducted,
i.e. a simulation such as when jobs are computed, they free resources that can be used by
new jobs. Now that the system’s equivalent capacity and average job processing time can
be computed, future work could try to generalize the results to estimate the performance
of an on-line system with a discrete event simulation. An interesting study would be to

116 4. Algorithms

check the following statement: the overall system is equivalent to a queuing system of
length the computed equivalent capacity and average service time the average job request
processing time.

4.6. Conclusions 117

List of Patents and Publications

The following is a list of articles where I am the first author:

• “Grid services over IMS”[117], Broadnets 2006 proceedings published by IEEE Com-
munication Society

• “Grid services over IMS” [118], Published by International Engineering Consortium
(IEC) in the report “Business Models and Drivers for Next-Generation IMS Ser-
vices”, 2007

• “Dynamic SLA Negotiation with WS-Agreement” [119], published by the Network
of Excelence COREGRID in the Technical Report 82

• “Dynamic SLA Negotiation with WS-Agreement” [120], published in the proceedings
of Web Information Systems and Technologies (WEBIST 2008) conference, Best
papers will be published in Springer’s Lecture Notes in Computer Science

• “Co-allocation & cross optimization of network and computing resources for dis-
tributed applications”, to submit [116]

• “Performance comparison of negotiation protocol”, to submit

The following is a list of patents where I am the first author:

• “Dispositif de contrôle de l’établissement de sessions” [111], patent No EP1845693

• “Elément de type PCE pour le calcul de chemins de connexion prévisionnels dans
un réseau de transport” [112, 113], patent No FR2895625

• “Noeud de réseau de transport, à adjonction de données temporelles à des données
d’ingénierie de trafic” [114], patent No EP1802076

• “Procédé d’allocation de ressources pour un logiciel de gestion de ressources dis-
tribuées” [115], INPI patent application No 0756827

Patent application where I am co-author:

• “Method of providing a gird network application over a transport network” [151],
OEB patent application No 07290821.3-1525

118 4. Algorithms

119

Conclusions and Future work

Co-allocation of network and computing resources is possible only if network technology
is capable of providing some sort of resource reservation. Inherent to resource reservation,
the concept of guaranteed QoS has been progressively introduced in IP networks. Follow-
ing the failure of the IntServ approach, the DiffServ approach has been a second attempt
in this direction but without explicit resource reservation. It is only with MPLS and its
successive extensions (MPλS and GMPLS) that guaranteed QoS may be provided today
by means of explicit resource reservation.

Grid applications require resource virtualization. During these last ten years, the
number and the variety of applications that could benefit of resource virtualization has
grown-up dramatically. If the first investigations in this matter have been applied to very
prospective domains limited to the research community, resource virtualization will cer-
tainly be in the next decade at the heart of numerous advanced commercial applications.
In that sense, Grids constitute a huge potential market for telecom operators. A new
type of entity known as the Resource Broker will also provide new business opportuni-
ties for both the computing and the telecom industry. Virtualization satisfying strong
QoS guarantees cannot be achieved without co-allocation. The emergence of (G)MPLS
standards enabling guaranteed QoS and traffic engineering has been a key factor for re-
source co-allocation. Today, several problems remain to be solved for the application of
GMPLS to Grid services, that is to resource virtualization. First, we have to determine
how GMPLS can be integrated to the Grid Resource Management systems. A second
problem is related to the QoS guarantees provisioning which is not limited to an efficient
management of network resources like in traditional networks. Grid services also need an
efficient management of computing and storage resources distributed over the network.
In other terms, Grids require the development of new cross optimization tools applied to
both the network, the computing and the networking resources.

These questions have been addressed in the context of this thesis. In Chapter 1, we
have provided a state of the art in this domain. Thus, we have described most important
research projects between 2004 and 2007 to tackle the co-allocation problem. In Chapter 2,
we have presented the main architectures to integrate network and computing resources.
Existing approaches have been described: Web service and Grid GMPLS. We proposed a
new approach based on IMS and SIP. We also proposed some extensions to the existing
control plane to take into account time based reservation. Two publications [117, 118]

120 Conclusions and Future work

and four patents [111, 112, 114, 151] have been accepted for the contributions.

In Chapter 3, we have studied the protocols under development and standardization
in order to provide QoS guarantees under both computing and networking resources op-
timization. More specifically, the protocols for the SLA negotiation and creation have
been analyzed. The SLA creation protocol, “WS-Agreement” proposed by the Open Grid
Forum (OGF) has been presented and analysed. With O. Waldrich, we proposed an
SLA negotiation protocol based on WS-Agreement. We have proposed two phase commit
extensions that are required by some applications. This was described in a Technical
Report of the Network of Excellence CoreGrid [119] and in a conference paper[120]. We
have proposed a queueing model to evaluate the performance of these extensions and we
have conducted several discrete time simulations to compare the performance of a two
phase commit protocol with the legacy protocol. We have shown that for a given rate
of generated job requests, the two phase commit extensions needs to double the memory
required by the Grid scheduler.

In Chapter 4, wa have analyzed how far should the exchange of information go between
the Grid scheduler and the NMS. Would resources be better utilized, would jobs be
executed faster if the Grid scheduler had access to the network’s topology and to the
available bandwidth on each link? We proposed a cross optimizing algorithm to answer
this question. We developed a simulation model to evaluate the performance of our
algorithm compared to the one achieved by a bandwidth on-demand service. One of
the main original results of this chapter is the fact that the number of jobs accepted in
the system is proportional to the normalized link capacity. We have underlined that it
is possible to define the system equivalent capacity expressed in number of jobs, or the
network equivalent capacity expressed in Mbit/s. The other finding is that on networks
composed of less than 20 nodes, there is no need to go beyond a bandwidth on demand
service, communicating the network topology and reservable bandwidth is not necessary.
However, for bigger networks in nodes and link capacity, a cross optimization increases the
number of accepted jobs by 20%. These analytical results have been validated by means
of computer simulations. The system’s equivalent capacity determined in chapter 4 may
facilitate the design of new cross optimizing heuristics. The results presented in this last
chapter of the thesis are at the origin of one publication [116] and of one patent [115].

Future work on cross optimization could be done. Due to time constraints, we could
not verify in a more dynamic environment that the Grid composed is equivalent to a
queue of length the equivalent capacity and average service time the average job request
processing time. Furthermore the structure coefficient that appear in the equivalent ca-
pacity dependence on the average node degree could be analyzed when multiple sources
are involved. This thesis can be viewed as a first step towards cross-optimization in Grid
environment.

121

Annexe A – Planned job request
cross optimizer

The idea of the proposed algorithm is to be able to allocate network resources and com-
puting resources in a way that minimize the completion time of each job. The main
difference with the previous sections is that job request are planned job requests. For
each job, computational and network resources will be used in the future. In other words,
the algorithm proposed is a cross-optimizing algorithm for planned jobs requests. The
algorithm takes as input a job request and processes each job request sequentially. For
each job request, the algorithm selects network and computational resources and decides
when they would be reserved. The algorithm supports several variants in order to broaden
its applicability and improve its efficiency. The main idea is that within job requests con-
staints, it’s possible to reduce the completion time by compensating the “power” of the
network with the “power” of computational resources.

A job request is composed of a job description and job constraints, see diagram 13.
Several job description are possible, the algorithm described below takes as input the
following parameters. The algorithm can be extended to take into account additional
constraints, see section 4.6. Most complex problems can be reduced to the algorithm but
with additional constraints.

Input parameters

Diagram 13 uses the following convention, Dx for a duration corresponding to x, i.e. Dn

is the duration of the network use, Ty for a time, i.e. Ts is the desired start time, Cxm for
a lower bound constraint (minimum), CxM for an upper bound constraints (Maximum).

The Job description contains (refer to fig 13):

• Source Node s

• Start Time Offset or Offset Duration, Doffset. Hence the minimum starting time

122 Annexe A – Planned job request cross optimizer

Figure 13: Job Request

would be Tsm = now +Doffset

• Required Bandwidth BWreq

• Transfer Duration or Dn, the transfer time required if the bandwidth required is
provided

• Required Waiting Delay or Dw, the delay the job must wait between the computing
task and the transfer task

• Required Number of CPU or k, the number of CPU required by the job

• Required Processing power Powreq

• Processing duration orDc, the processing duration if the number of CPUs is provided
on a machine of the required processing power

One of the variants describes how to handle a job description which does not require an
explicit bandwidth but simply an amount of data to transfer.

The job constraints contains:

• Start Time Constraints Tsm and TsM

• End Time Constraints or Completion Time Constraints, Cem and CeM

• Bandwidth Constraints or BWm and BWM

• Power Constraints or Powm and PowM

Annexe A – Planned job request cross optimizer 123

• Number of CPU constraints although today there is no use for such constraints,
Maybe in the future such constraints would be used

• Delay constraints

Output parameters

The output parameters are given in bold in diagram 14. The letter E used as a prefix in
variable name stands for Estimated or Effective time and the letter R for Reserved.

Figure 14: Algorithm Output

• Network resources identification

• Processing resources identification

• Reserved Bandwidth BWr = Rbw

• Estimated start time ETs

• Effective transfer Duration EDn , n stands for network

• Effective Waiting Delay EDw

• Reserved Power Rpow

• Effective computation Duration EDc

• Estimated End Time ETe

124 Annexe A – Planned job request cross optimizer

Main Algorithm

The algorithm will process job requests one after the other, each job request has a de-
scription and constraints as in the paragraph above. For all jobs the algorithm returns a
mapping job request - resources as described in the paragraph above. The algorithm cy-
cles continuously whilst it waits to receive another job request. The algorithm maintains
a sorted list L that contains all start and end times of all reservations on all resources.
In other words, every instant a resource is reserved or freed is in L. At the origin, L is
empty, meaning that all resources are freed. For all elements ti of L, the algorithm keeps
in memory a resource availability map M that contains the amount of available network
and processing resources during the slot [ti, ti+1] or [ti,∞[(if there is just one element in
L. I.e. the amount of available bandwidth on each link and available number of CPU on
each processing site and of the processing power unit.

Once resources have been selected, times ETs , ETs + EDn , ETs + EDn + EDw and ETe

must be inserted in L and the new amount of available resources at these times must be
updated.

The algorithm Routes builder finds destinations and routes in a graph G ′ between a
source node given in the job description and all the destinations. The initial destinations
are all network nodes linked to a processing site.

If a processing site is able to move a job from one CPU to another (within its domain),
it has no impact on this algorithm.

Architectural options

The proposed algorithm and variants (see below) can be implemented in at least two
different kind of architectures. The first architecture communicates at frequent interval
with resources to build and maintain M, while the second architecture communicates
when needed with the processing sites. For instance, instead of calling CouldFinishAtSite,
the main algorithm could send a CouldFinishAtSite request to the processing site site.
It would then be the responsability of the processing site to answer with the soonest
processing starting time. Both architectures can be combined to manage processing sites
that communicates resources availability and those that do not.

Annexe A – Planned job request cross optimizer 125

Algorithm 5: Planned job request cross-optimiser: First Transfer Then Compute

Require: A job request composed of its description and constraints J = (D, C)
Require: A network graph G
Require: A list of Processing sites P
Require: A list L of all start and end times of all reservations on all resources

1: Ts ← now +Doffset {now is the current time}
2: Find the slot Ss of L that contains Ts

3: repeat
4: Remove from G links that don’t satisfy bandwidth requirements for the required

duration
G ′ = TrimGraph(G, Ts, Ts +Dn, BWreq)

5: Let’s build the list of routes towards potential destinations, starting from node s

(Routes,Dest)← RoutesBuilder(G ′,J)

6: if Routes is Not empty then
7: for all route of Routes do
8: Let BWr be the bandwidth reserved for this route {It can be different from

BWreq in the variants of the algorithm}
9: for all Processing sites site attached to a destination of Dest do

10: Compute the estimated termination time ETe if the job were executed on
site using formula: ETe = CouldFinishAtSite(Ts +Dn

BWreq

BWr
+Dw, site,J)

11: end for
12: end for
13: Return the route and the site whose estimated termination time ETe is the

smallest satisfying constraints
14: else {Routes is empty}
15: Move Ss to the next slot, and Let Ts be the begining of the new slot
16: end if
17: until a start time is found or Ts is outside constraints {Ts < Tsm or Ts > TsM}

Variants

Bandwidth constraints

One of the main variants of the algorithm is to be able to find resources when the
job request has bandwidth constraints. I.e. A bandwidth BWreq is specified but
also BWm and BWM . In this situation, line 4 of algorithm 5 must be replaced
by:

Let G ′ = TrimGraph(G, Ts, Ts +Dn
BWreq

BWm
, BWm)

126 Annexe A – Planned job request cross optimizer

Algorithm 6: Routes Builder

Require: A set Dest of potential destinations {In the worst case Dest contains all
destinations}

Require: A network graph G ′
Require: A job request J

1: Let Routes the list of potential routes assotiated to these destinations
2: for all Destination d of Dest do
3: Add to Routes one route among the routes of maximum bandwidth between s

and d in G ′
4: if No route is found between s and d then
5: Remove d from Dest
6: end if
7: end for
8: Returns (Routes,Dest)

Algorithm 7: CouldFinishAtSite

Require: A processing site site
Require: A job request J
Require: A minimum starting time Ts { The input parameter Ts should be used

instead of information derived from J }
1: Let Pow be the processing power of the CPUs of site
2: Find the slot Scs of L that contains Ts

3: repeat
4: Find the first element tk of L bigger or equal than ETe = Ts +Dc

Powreq
Pow

5: Let Sce be the slot that contains tk and ETe or the slot just before tk if they are
equal

6: if For all Slots between Scs and Sce The number of CPU available is bigger than
the number required by J then

7: Returns ETe

8: end if
9: Make Scs be the next slot in L, and Let Ts be the begining of that slot

10: until a start time is found or Ts is outside constraints {Ts < Tsm or Ts > TsM}

Of course, in line 3 of algorithm 6, the selected route’s bandwidth must not exceed BWM .
If that is the case, the reserved bandwidth on this route will be BWr = BWM .

Transfer x Mbit rather than get y Mbit/s

The algorithm could be further extended to take into account job requests that do not
specify a bandwidth requirement but simply an amount of data to transfer Qtransfer.
Said differently, the algorithm can be extended to handle elastic job requests. An elastic

Annexe A – Planned job request cross optimizer 127

Algorithm 8: TrimGraph

Require: A network graph G
Require: A starting time Ts and a termination time Te

Require: A trimming threshold BWtrim

1: Find the slot Ss of L that contains Ts

2: Let Sne be the slot that contains Te or the last slot
3: Create a graph G ′ ← G
4: for all slots between Ss and Sne and links do
5: if Available bandwidth on a link is lower than BWtrim then
6: Remove the link from G ′
7: end if
8: end for
9: Return G ′

job request is a job request without specifying BWreq and bandwidth constraints. The
following argues that designing a planned job request scheduler for elastic job requests is
equivalent to the bandwidth constrained problem.

Indeed, all jobs can not be transfered beyond the access rate of their originating
network, which gives an upper bound to the bandwidth. A lower bound to the bandwidth
is given by the job time constraints. The idea is to be able to estimate the transfer
termination time constraint CtM . Starting from the job termination time constraint,
CeM and doing a retro planning such that whatever the processing resource selected, the
termination time constraint will be satisfied. To do so, we have to assume the slowest
processing resource is selected, let Powslowest be its processing power. Then,

CtM = CeM −
Powreq

Powslowest

Dc −Dw

And the minimum bandwidth required to finish the transfer at CtM is:

BWm =
Qtransfer

CtM − Tsm

Of course, as time elapses, the minimum bandwidth required to finish the transfer in-
creases. This is what happens during the execution of the algorithm, as the algorithm
walks through L, the required bandwidth to respect the deadline increases.

So elastic job requests can be handled by algorithm 9. The purpose of this algorithm
is to create an equivalent job request based on the elastic job request modifying BWreq

and job constraints, as explained before.

128 Annexe A – Planned job request cross optimizer

Algorithm 9: Planned Elastic Job request cross-optimizer

Require: An elastic job request J
Require: Same input as algorithm 5 “Planned job request cross-optimizer”

1: Let Powslowest be the processing power of the slowest computational resource
2: Compute the termination time constraint CtM with:

CtM = CeM −
Powreq

Powslowest

Dc −Dw

3: Create a new job J ′ = J
4: Modify J ′’s minimum bandwidth required with:

BWm(J ′) =
Qtransfer

CtM − Tsm

5: Let BWreq(J ′) = BWm(J ′)
6: Call algorithm 5 with J ′ for input

Compute first, transfer second

The job described in diagram 13 is composed of two tasks: first a transfer task followed
by a computing task. If those tasks were inversed, i.e. first a computing task followed by
a transfer task, a variant (see algorithm 10) of algorithm 5 should be used to provide the
cross optimisation. First the job description is slightly changed to include a destination
site d. Instead of trying to find first potential routes and then computing the estimated job
termination time, the algorithm should try to estimate when the processing task can be
terminated as soon as possible and then see when the network can terminate the transfer.

Of course, if we want to take into account bandwidth constraints (and elastic job
requests), line 3 of algorithm 11 must be modified like line 4 of algorithm 5.

How to take into account the number of CPU constraints?

If the job requires a number of CPUs, the function CouldFinishAtSite must be modified
to take into account a filtering based on the number of CPUs. To do it, the map M has
to take into account the number of available CPUs.

Annexe A – Planned job request cross optimizer 129

Algorithm 10: Planned job request cross-optimiser: First Compute Then Transfer

Require: A job request composed of its description and constraints J = (D, C)
Require: A network graph G
Require: A list of Processing sites P
Require: A list L of all start and end times of all reservations on all resources

1: Ts ← now +Doffset {now is the current time}
2: for all Processing sites site do
3: Compute the estimated computing termination time ETce if the job were executed

on site:
ETce(site) = CouldFinishAtSite(Ts, site,J)

4: Compute the estimated termination time ETe and memorize the route used for the
transfer

(ETce(site), Route(site)) = CouldFinishTransfer(ETce(site) +Dw, s, d,J ,G)

5: end for
6: return the processing site and the route that have the smallest ETce(site)

Algorithm 11: CouldFinishTransfer

Require: A start time Ts

Require: A source and destination node pair (s, d)
Require: A job J
Require: A graph G

1: Find the slot Ss of L that contains Ts

2: repeat
3: Let G ′ = TrimGraph(G, Ts, Ts +Dn, BWreq)
4: In the graph G ′ find a route between s and d using a maximum bandwidth route

algorithm
5: if A route is found then
6: Let BWr be the reserved bandwidth on the route
7: Return Ts +Dn

BWreq

BWr
and the route selected

8: else
9: Move Ss to the next slot, and Let Ts be the beginning of the new slot

10: end if
11: until a start time is found or Ts is outside constraints {Ts < Tsm or Ts > TsM}

How to take into account delay constraints?

Once the transfer is realized, the job has to wait for Dw on the processing site. The first
thing to do it to make sure the processing site has sufficient local storage capability for

130 Annexe A – Planned job request cross optimizer

the waiting duration plus the processing duration, i.e.

Dw +Dc
Powreq

Powr

Additional storage requirement could also be taken into account in the job description.

How to minimize the search time inside L?

L could be split in several lists, one for each resource, hence reducing the number of entries
per individual list. These lists should be stored as hashtables to reduce the search time.

How to improve the list of potential destinations?

First the list of potential destination is the list of all destinations attached to a processing
site.

How to customize the routing algorithm?

This route can be either, the shortest path between s and d, satisfying BWreq or the
maximum bandwidth route between s and d or any route satisfying at least BWreq selected
taking into account load-balancing constraints. Such load-balancing constraints could be
used in the following way: selecting a random route of bandwidth BWreq among routes
satisfying at least BWreq, or selecting a random route of a random bandwidth between
bandwidth constraints among routes satisfying bandwidth constraints. To do so, line 3
must be replaced by

Add to Routes the routes selected by the Traffic Engineering routing algorithm (TE-
Algo)

Such TE-Algo is not specified here.

How to improve algorithm speed when Routes is empty?

When Routes is empty, it means the network is not connected anymore. The next Ts

time to investigate is the end time of the slot that makes the network graph between the
source s and all potential destinations not connected.

Annexe A – Planned job request cross optimizer 131

How to take into account path switching capability?

Already described in [56].

132 Annexe A – Planned job request cross optimizer

133

Annexe B – Simulation tools

The simulator to evaluate and compare the performance of various algorithms is composed
of several programs. Most programs were written in C++, several shell scripts, several
VBA programs and a few XSLT programs. All C++ programs are multi-platform, they
were compiled with Eclipse and MS VC++, they run on both platforms.

TopologyGenerator

The first program is a topology generator. Since we are working with random graphs, we
need a random topology generator. The topology will be composed of the network graph,
several jobs and clusters. The program takes model parameters as input and writes one
or several topologies according to the model. The output is one or several XML files.
The data model for the XML file is represented in diagram 15. An XML document is
automatically parsed by a DOM parser and automatically represented as an C++ class
using an XML-C++ data binding tool [5].

The simulator generates a waxman graph but it excludes all graphs that are not
connected [109].

CreateMapping

CreateMapping is a program that takes as input a topology and computes the different
mapping, i.e. the resource allocation for each algorithm mentioned in chapter 4. A
mapping has the following XML data model. To each job, it associates a route. The
route number is the same as the job number. I.e. route 92 is the route used by job 92.
The mapping data model is shown in diagram 16.

Diagram 17 shows an example simulation result file.

We used C++ programming techniques like templates and some design patterns [76].

134 Annexe B – Simulation tools

Figure 15: Topology model

We used four templates one for each algorithm: XO, Connection with CranckBack, Con-
nection without CranckBack, LegacyMaxBW and LegacyMinHop. The template param-
eter is an iterator describing how to walk through the jobs.

Annexe B – Simulation tools 135

Figure 16: Mapping output model

Topology Visualization tool

We wrote a simple XSLT stylesheet to transform our XML file representing our graphs to
convert it to a GraphML compliant file. This way, we could automatically visualize the
topology generated with any GraphML editor.

136 Annexe B – Simulation tools

Figure 17: Simulation result file example

Data Aggregation & Analysis

We decided not to embed a stop test in our simulation to get our results but to compute
confidence interval a posteriori. That is to say, we simulated a fixed number of topologies,
then we computed confidence intervals, and we iterated when needed.

137

Bibliography

[1] Amazon elastic compute cloud. aws.amazon.com/ec2. (document), 1.2.1

[2] Amazon elastic compute cloud api reference. http://docs.amazonwebservices.

com/AmazonEC2/gsg/2007-01-19/. (document), 1.2.1

[3] Canet 4. http://www.canarie.ca/canet4. 1.5.5

[4] Cluster computing on demand. http://clusterondemand.com. (document), 1.2.1

[5] Codalogic lmx. www.tech-know-ware.com/lmx/. 4.6

[6] Datasynapse. http://www.datasynapse.com. (document), 1.4.1

[7] Gara project. http://datatag.web.cern.ch/datatag/. (document), 1.5, 1.5.3

[8] Generalized multi-protocol label switching (gmpls) architecture. Technical report.
1.5

[9] Global file system. http://en.wikipedia.org/wiki/Global_File_System. 1.4.1

[10] Global file systems. http://en.wikipedia.org/wiki/Global_filesystem. 1.4.1

[11] Globus project. http://www.globus.org. 1.5.3

[12] Grid resource scheduler project. http://www.cs.ucl.ac.uk/staff/S.Bhatti/

grs/index.html. (document), 1.5, 1.5.2

[13] Gridway. http://www.gridway.org/. 1.4.2

[14] Ip multimedia subsystem (ims); stage 2. TS 23.228. (document), 2.5

[15] List of file systems. http://en.wikipedia.org/wiki/List_of_file_systems.
1.4.1

[16] Nortel drac. http://www.nortel.com/drac. (document), 1.5, 1.5.12

[17] Open grid forum. http://www.ogf.org. 1.4.3

[18] Platform lsf. http://www.platform.com. (document), 1.4.1

aws.amazon.com/ec2
http://docs.amazonwebservices.com/AmazonEC2/gsg/2007-01-19/
http://docs.amazonwebservices.com/AmazonEC2/gsg/2007-01-19/
http://www.canarie.ca/canet4
http://clusterondemand.com
www.tech-know-ware.com/lmx/
http://www.datasynapse.com
http://datatag.web.cern.ch/datatag/
http://en.wikipedia.org/wiki/Global_File_System
http://en.wikipedia.org/wiki/Global_filesystem
http://www.globus.org
http://www.cs.ucl.ac.uk/staff/S.Bhatti/grs/index.html
http://www.cs.ucl.ac.uk/staff/S.Bhatti/grs/index.html
http://www.gridway.org/
http://en.wikipedia.org/wiki/List_of_file_systems
http://www.nortel.com/drac
http://www.ogf.org
http://www.platform.com

138 BIBLIOGRAPHY

[19] Portable batch system. http://www.pbsgridworks.com. (document), 1.4.1

[20] Qbone bandwdith broker. http://qbone.internet2.edu/bb/bboutline2.html.
(document), 1.5, 1.5.6

[21] Service level agreement. http://en.wikipedia.org/wiki/Service_Level_

Agreement. (document)

[22] Seti@home. http://setiathome.berkeley.edu/. (document)

[23] Sun grid compute utility. http://www.network.com/. (document), 1.2.1

[24] Sun n1 grid engine. http://www.sun.com/software/gridware/. (document), 1.4.1

[25] Third generation partnership project. http://www.3gpp.org/. (document), 2.5

[26] Tivoli workload scheduler loadleveler. http://www-03.ibm.com/systems/

clusters/software/loadleveler.html. (document), 1.4.1

[27] User controlled light paths (uclp). http://www.canarie.ca/canet4/uclp/. (doc-
ument), 1.5, 1.5.5

[28] Viola. http://www.viola-testbed.de/. (document), 1.5, 1.5.13

[29] Network resource reservation software and interfaces: a state of the art survey. EU
Deliverable DJRA4.1 Addendum, EGEE, 2004. 1.5

[30] Open service access (osa); parlay x web services. ES 202-391, March 2005. 2.5.1

[31] Amps - design specification. Technical Report GN2-04-153v4, GEANT2, 2006. 1.5.7

[32] End-to-end specification for bandwidth allocation and reservation. EU Deliverable
Draft MJRA4.5, EGEE, 2006. (document), 1.5, 1.5.7

[33] Specification of interfaces for bandwidth reservation service. EU Deliverable
DJRA4.1, EGEE, 2006. 1.5, 1.5.7, 1.5.7

[34] Grid optical user network interface (g.ouni). GHPN Draft version 0.4, 2007. (doc-
ument), 2.4

[35] A path computation element (pce)-based architecture. RFC 4655, August 2006.
(document), 2.3.2

[36] Ason/gmpls extension for reservation and time based automatic bandwidth service.
expired draft draft-yong-ccamp-ason-gmpls-autobw-service-00.txt, November 2006.
(document), 2.3

[37] I. Akogrimo. Project. Akogrimo– Access to Knowledge through the Grid in a mobile
World. http://www.mobilegrids.org. (document), 1.5, 1.5.9

http://www.pbsgridworks.com
http://qbone.internet2.edu/bb/bboutline2.html
http://en.wikipedia.org/wiki/Service_Level_Agreement
http://en.wikipedia.org/wiki/Service_Level_Agreement
http://setiathome.berkeley.edu/
http://www.network.com/
http://www.sun.com/software/gridware/
http://www.3gpp.org/
http://www-03.ibm.com/systems/clusters/software/loadleveler.html
http://www-03.ibm.com/systems/clusters/software/loadleveler.html
http://www.canarie.ca/canet4/uclp/
http://www.viola-testbed.de/
http://www.mobilegrids.org

BIBLIOGRAPHY 139

[38] A. Amoroso and K. Marzullo. Multiple job scheduling in a connection-limited data
parallel system. Parallel and Distributed Systems, IEEE Transactions on, 17(2):125–
134, 2006. 4.2.2

[39] D. Anderson. BOINC: a system for public-resource computing and storage. Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages
4–10, 2004. (document)

[40] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@
home: an experiment in public-resource computing. Communications of the ACM,
45(11):56–61, 2002. (document)

[41] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-
Agreement). GWD-R (Proposed Recommendation), Open Grid Forum, 2007. (doc-
ument), 3.1.2, 3.2.3

[42] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pul-
sipher, and A. Savva. Job Submission Description Language (JSDL) Specification
V1. 0. Grid Forum Document GFD, 56, 2005. 1.4.5, 3.3.1, 4.3

[43] T. Banks. Web Services Resource Framework (WSRF) - v1. 2. OASIS Specification,
2006. 1.4.2

[44] C. Barz, F. Hommes, W. Moll, M. Pilz, C. Rosche, and J. Schon. ARGON -
Allocation and reservation in Grid-enabled optic networks, VIOLA Bericht B2.4.1.
Bonn University, Bonn, Germany, August 2005. 2.2.3

[45] L. Battestilli, A. Hutanu, G. Karmous-Edwards, D. S. Katz, J. MacLaren, J. Mam-
bretti, J. H. Moore, S.-J. Park, H. G. Perros, K. Syam Sundar, S. Tanwir, S. R.
Thorpe, and Y. Xin. Enlightened computing: An architecture for co-scheduling and
co-allocating network, comput, and other grid resources for high-end applications.
(document), 1.5, 1.5.14

[46] L. Berger et al. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Re-
source ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions. Technical
report, RFC 3473, January 2003, 2003. 1.5.1

[47] B. Bhargava. Concurrency and Reliability in Distributed Database Systems. Van
Nostrand Reinhold, 1987. (document), 3.1.3

[48] B. Bollobás. Random Graphs. Cambridge University Press, 2001. (document), 4.3

[49] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocl (SOAP) 1.1. (document),
1.3

140 BIBLIOGRAPHY

[50] C. Briquet and P.-A. de Marneffe. Grid resource negotiation: survey with a machine
learning perspective. In PDCN’06: Proceedings of the 24th IASTED international
conference on Parallel and distributed computing and networks, pages 17–22, Ana-
heim, CA, USA, 2006. ACTA Press. (document), 3.1

[51] R. Buyya. Economic-based Distributed Resource Management and Scheduling for
Grid Computing, PhD Thesis. Monash University, Melbourne, Australia, 2002.
(document), 1.2.2, 3.1

[52] F. Callegati, W. Cerroni, A. Campi, G. Zervas, R. Nejabati, and D. Simeonidou.
Application Aware Optical Burst Switching Test-bed with SIP Based Session Con-
trol. Testbeds and Research Infrastructure for the Development of Networks and
Communities, 2007. TridentCom 2007. 3rd International Conference on, pages 1–6,
2007. (document), 2.5

[53] A. Campi. Sip for grid networks, presentation, 2007. (document), 2.5

[54] A. Campi, W. Cerroni, F. Callegati, G. Zervas, R. Nejabati, and D. Simeonidou.
SIP Based OBS Networks for Grid Computing. Conference on Optical Network
Design and Modelling, ONDM, Athens, Greece, May, 2007. (document), 2.5

[55] S. Cantor, I. Kemp, N. Philpott, and E. Maler. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2. 0. Committee Draft, 4:14,
2005. 1.4.2

[56] R. Cohan, N. Fazlollahi, and D. Starobinski. Graded channel reservation with path
switching in ultra high capacity networks. In GridNets 2006. 3rd international
workshop on networks for grid applications. Broadnets Proceedings. IEEE, 2006. 4.6

[57] C. Curti, T. Ferrari, L. Gommans, S. van Oudenaarde, E. Ronchieri, F. Giacomini,
and C. Vistoli. On advance reservation of heterogeneous network paths. Future
Generation Computer Systems, 21(4):525–538, 2005. (document), 1.5, 1.5.4

[58] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. Snap : A protocol
for negotiation of service level agreements and coordinated resource management in
distributed systems. In Proceedings of the 8th Workshop on Job Scheduling Strategies
for Parallel Processing, Edinburgh, Scotland, July 2002. (document), 3.1.2

[59] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP: A Pro-
tocol for Negotiating Service Level Agreements and Coordinating Resource Man-
agement in Distributed Systems. 8th Workshop on Job Scheduling Strategies for
Parallel Processing, 2002. (document)

[60] R. Das, J. Hanson, J. Kephart, and G. Tesauro. Agent-human interactions in the
continuous double auction. Proceedings of the International Joint Conferences on
Artificial Intelligence (IJCAI), August, pages 4–10, 2001. 3.1.1

[61] J. Dongarra. The LINPACK Benchmark: An Explanation. Proceedings of the 1st
International Conference on Supercomputing, pages 456–474, 1987. (document), 4.3

BIBLIOGRAPHY 141

[62] J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark: past, present
and future. Concurrency and Computation Practice and Experience, 15(9):803–820,
2003. (document), 4.3

[63] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. Stewart. LINPACK Users’ Guide.
1979. (document), 4.3

[64] P. Erdos and A. Renyi. On random graphs. Publ. Math. Debrecen, 6(290), 1959.
(document), 4.3

[65] D. Erwin. Unicore: a grid computing environment. Concurrency and Computation:
Practice and Experience, 14(13-15):1395–1410, 2002. (document), 1.4.3, 1.4.3

[66] D. Erwin. UNICORE Plus Final Report-Uniform Interface to Computing Resources.
UNICORE Forum eV, pages 3–00, 2003. (document), 1.4.3, 1.5.13

[67] R. Fielding. Representational state transfer (REST). Chapter 5 in Architectural
Styles and the Design of Networkbased Software Architectures. PhD thesis, Ph. D.
Thesis, University of California, Irvine, CA, 2000. (document), 1.3

[68] L. Ford and D. Fulkerson. Flows in networks. Princeton University Press Princeton,
NJ, 1962. 4.2.2

[69] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. Journal
of Computer Science and Technology, 21(4):513–520, 2006. (document), 1.4.2, 1.5.3

[70] I. Foster and C. Kesselman. The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1998. (document)

[71] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A dis-
tributed resource management architecture that supportsadvance reservations and
co-allocation. Quality of Service, 1999. IWQoS’99. 1999 Seventh International
Workshop on, pages 27–36, 1999. (document), 1.5, 1.5.3

[72] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG, Global Grid Forum, June, 22:2002, 2002. (document)

[73] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications, 15(3):200, 2001. (document)

[74] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, et al. The Open Grid Services Architec-
ture. Global Grid Forum, GFD-I.030. (document), 1.4.5

[75] R. Gallagher. Discrete Stochastic Processes. Springer, 1996. (document), 4.4

142 BIBLIOGRAPHY

[76] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software (Addison-Wesley Professional Computing Se-
ries). Addison-Wesley Professional, 1995. (document), 1.5.13, 4.6

[77] M. Gondran and M. Minoux. Graphes et algorithmes. Collection de la Direction
des Études et Recherches dŠÉlectricité de France,, 1995. 4.2.2

[78] T. Goss-Walter, R. Letz, T. Kentemich, H. Hoppe, and P. Wieder. An Analysis of
the UNICORE Security Model. Global Grid Forum. 1.4.3

[79] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions on
Database Systems (TODS), 31(1):133–160, 2006. 1.5.14

[80] L. Green. Service level negotiation in a heterogeneous telecommunication environ-
ment. In Proceeding International Conference on Computing, Communications and
Control Technologies (CCCT04), Austin, TX, USA, August 2004. (document), 3.1.2

[81] C. Groves, M. Pantaleo, T. Anderson, and T. Taylor. RFC3525: Gateway Control
Protocol Version 1. Internet RFCs, 2003. 2.5.1

[82] R. Guerin and A. Orda. Networks with advance reservations: the routing perspec-
tive. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 1, pages 118–127
vol.1, 2000. (document)

[83] A. Gulbrandsen, P. Vixie, and L. Esibov. RFC2782: A DNS RR for specifying the
location of services (DNS SRV). Internet RFCs, 2000. 2.5.1

[84] V. Gurbani, L. Jagadeesan, and V. Mendiratta. Characterizing session initiation
protocol (sip) network performance and reliability. In Proceedings of International
service availability symposium, April 2005. (document), 3.3

[85] M. Handley and V. Jacobson. SDP: Session Description Protocol, RFC 2327. In-
ternet Engineering Task Force, 1998. (document), 2.5.1

[86] E. He, X. Wang, and J. Leigh. A Flexible Advance Reservation Model for Multi-
Domain WDM Optical Networks. IEEE GRIDNETS, 2006. (document)

[87] J. C. Hull. Options, Futures and Other Derivatives (6th Edition). Prentice Hall,
2005. 3.1.1

[88] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge.
Automated negotiation: Prospects, methods and challenges. Group Decision and
Negotiation, 10(2), March 2001. (document), 3.1.2

[89] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. Skovira. Workload manage-
ment with loadleveler. IBM International Technical Support Organization, Novem-
ber, 2001. (document), 1.4.1

BIBLIOGRAPHY 143

[90] D. Katz, K. Kompella, and D. Yeung. RFC3630: Traffic Engineering (TE) Exten-
sions to OSPF Version 2. Internet RFCs, 2003. 1.5.1

[91] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. Journal of Network and Systems Man-
agement, 11(1):57–81, 2003. (document)

[92] W. Kohler. A survey of techniques for synchronization and recovery in decentralized
computer systems. ACM Computing Surveys, 13(2), June 1981. (document), 3.1.3

[93] F. Kuipers. Quality of Service Routing in the Internet: Theory, Complexity and
Algorithms. Delft University Press, 2004. 4.3

[94] Y. Kulbak and D. Bickson. The eMule Protocol Specification. eMule project, http:
// sourceforge. net . (document)

[95] D. Kuo, M. Parkin, and J. Brooke. A framework & negotiation protocol for service
contracts. In Proceedings of the 2006 IEEE International Conference on Services
Computing (SCC 2006), pages 253–256, 2006. (document), 3.1

[96] D. Kuo, M. Parkin, and J. Brooke. Negotiating contracts on the grid. In Exploiting
the Knowledge Economy - Issues, Applications, Case Studies, Volume 3, Proceedings
of the eChallenges 2006 (e-2006) Conference. IOS Press, 2006. (document), 3.1

[97] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001. 1.5.14

[98] D. Lee and H. Rieger. Maximum flow and topological structure of complex networks.
EUROPHYSICS LETTERS, 73(3):471–477, 2006. (document), 4.4, 4.5.5

[99] T. Lehman, J. Sobieski, and B. Jabbari. DRAGON: A framework for service
provisioning in heterogeneous grid networks. Communications Magazine, IEEE,
44(3):84–90, 2006. (document), 1.5, 1.5.8

[100] M. Lei, S. Vrbsky, and X. Hong. A dynamic data grid replication strategy to min-
imize the data missed. In GridNets 2006. 3rd international workshop on networks
for grid applications. Broadnets Proceedings. IEEE, 2006. 4.2

[101] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web Service Level Agreement
(WSLA) Language Specification. IBM Corporation, 2002. (document)

[102] J. MacLaren, B. Rouge, and M. Mc Keown. HARC: A Highly-Available Robust Co-
scheduler. e-print http: // www. realitygrid. org/ publications/ HARC. pdf .
1.5.14

[103] T. Magedanz, D. Witaszek, and K. Knuettel. The IMS Playground@ Fokus-An
Open Testebed for Next Generation Network Multimedia Services. Proceedings
of First International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TRIDENTCOM’05), IEEE Computer
Society, Feb, pages 2–11, 2005. 2.5.1

http://sourceforge.net
http://sourceforge.net
http://www.realitygrid.org/publications/HARC.pdf

144 BIBLIOGRAPHY

[104] G. Markidis, A. Tzanakaki, N. Ciulli, G. Carrozzo, D. Simeonidou, R. Nejabati, and
G. Zervas. EU Integrated Project PHOSPHORUS: Grid-GMPLS Control Plane
for the Support of Grid Network Services. Transparent Optical Networks, 2007.
ICTON’07. 9th International Conference on, 3, 2007. (document), 1.5, 1.5.11

[105] D. Menasce and E. Casalicchio. A framework for resource allocation in grid com-
puting. Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems, 2004.(MASCOTS 2004). Proceedings. The IEEE Computer Society’s 12th
Annual International Symposium on, pages 259–267, 2004. (document)

[106] D. Menasce and E. Casalicchio. QoS in grid computing. Internet Computing, IEEE,
8(4):85–87, 2004. (document)

[107] R. Menday and P. Wieder. GRIP: The Evolution of UNICORE towards a Service-
Oriented Grid. Proc. of the 3rd Cracow Grid Workshop (CGWŠ03), pages 142–150,
2003. 1.4.3

[108] R. Montero, E. Huedo, and I. Llorente. Grid Scheduling Infrastructures based on
the GridWay Meta-scheduler. TCSC Newsletter, 8(2), 2006. 1.4.2, 2.2.1

[109] M. Naldi. Connectivity of Waxman topology models. Computer Communications,
29(1):24–31, 2005. (document), 4.3, 4.6

[110] M. Oszu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, 1991. (document), 3.1.3

[111] A. Pichot. Dispositif de contrôle de l’établissement de sessions. Technical report,
European Patent Office. (document), 4.6, 4.6

[112] A. Pichot. Elément de type pce pour le calcul de chemins de connexion previsionnels
dans un réseau de transport. Technical report, INPI. (document), 4.6, 4.6

[113] A. Pichot. Elément de type pce pour le calcul de chemins de connexion prevision-
nels dans un réseau de transport. Technical report, World Intellectual Property
Organization. 4.6

[114] A. Pichot. Noeud de réseau de transport, à adjonction de données temporelles
à des données d’ingénierie de trafic. Technical report, European Patent Office.
(document), 4.6, 4.6

[115] A. Pichot. Procédé d’allocation de ressources pour un logiciel de gestion de
ressources distribuées. Technical report, INPI. (document), 4.6, 4.6

[116] A. Pichot. Co-allocation & cross optimization of network and computing resources
for distributed applications. to submit, 2008. (document), 4.6, 4.6

[117] A. Pichot and O. Audouin. Grid services over IP Multimedia Subsystem. Broadband
Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd Interna-
tional Conference on, pages 1–7, 2006. (document), 4.6, 4.6

BIBLIOGRAPHY 145

[118] A. Pichot and O. Audouin. Grid over ip multimedia subsystem. Business Models
and Drivers for Next-Generation IMS Services, 2007. (document), 4.6, 4.6

[119] A. Pichot, P. Wieder, O. Wäldrich, and W. Ziegler. Dynamic sla-negotiation based
on ws-agreement. Technical Report, TR 82, CoreGrid, 2007. (document), 3.5, 4.6,
4.6

[120] A. Pichot, P. Wieder, O. Wäldrich, and W. Ziegler. Dynamic sla negotiation based
on ws-agreement. In Proceedings of the 4th International conference on Web In-
formation Systems and Technologies (WEBIST 2008), May 2008. (document), 3.5,
4.6, 4.6

[121] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The bittorrent p2p file-sharing
system: Measurements and analysis. International Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2005. (document)

[122] M. Rambadt and P. Wieder. UNICORE–Globus Interoperability: Getting the Best
of Both Worlds. Proc. of, 11. (document), 1.4.6

[123] M. Rambadt and P. Wieder. UNICORE–Globus: Interoperability of Grid Infras-
tructures. Cray User Group Summit 2002 Proceedings, 2002. (document), 1.4.6

[124] W. Reinhardt. Advance Resource Reservation and its Impact on Reservation Pro-
tocols. Proceedings of Broadband Island, 95:28–35, 1995. (document)

[125] Y. Rekhter, T. Li, et al. A Border Gateway Protocol 4 (BGP-4). Technical report,
RFC 1771, March 1995. 1.5.1

[126] K. Reynolds. The Double Auction. Agorics, Inc, 1996. 3.1.1

[127] A. Roach. RFC 3265: Session Initiation Protocol (SIP)-Specific Event Notification.
dynamicsoft, June 2002. Standards Track. (document), 2.5.2

[128] O. Rodeh and A. Teperman. zFS-a scalable distributed file system using object
disks. Mass Storage Systems and Technologies, 2003.(MSST 2003). Proceedings.
20th IEEE/11th NASA Goddard Conference on, pages 207–218, 2003. 1.4.1

[129] J. Rosenberg and H. Schulzrinne. RFC3264: An Offer/Answer Model with Session
Description Protocol (SDP). Internet RFCs, 2002. (document), 2.5.2

[130] J. Rosenberg, H. Schulzrinne, and P. Kyzivat. Caller Preferences for the Session
Initiation Protocol (SIP) RFC 3841. IETF, Aug, 2004. (document), 2.5.2

[131] J. Rosenberg, H. Schulzrinne, and P. Kyzivat. Indicating user agent capabilities in
the session initiation protocol (SIP). Internet Engineering Task Force. Technical
report, RFC 3840 (Aug.), 2004. (document), 2.5.2

[132] L. Sadeghioon, R. Nejabati, and D. Simeonidou. GMPLS Extensions for a User-
Centric and Grid Enabled Optical Network Control Plane. Transparent Optical
Networks, 2006 International Conference on, 3, 2006. (document), 2.4

146 BIBLIOGRAPHY

[133] S. Salsano. Sip based qos negotiation protocol. Online proceedings of EEQoSŠ05,
2005. (document), 1.5, 1.5.10

[134] V. Sander. Networking issues for grid infrastructure. GFD 37, 2004. (document)

[135] V. Sander. Networking issues for grid infrastructure. GFD 37, November 2004.
(document), 2.1.2, 2.4

[136] J. M. Schopf. Ten actions when Grid scheduling: the user as a Grid scheduler, pages
15–23. Kluwer Academic Publishers, Norwell, MA, USA, 2004. (document), 3

[137] A. Schrijver. On the history of the transportation and maximum flow problems.
Mathematical Programming, 91(3):437–445, 2002. 4.2.2

[138] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-
Verlag, 2003. 4.2.2

[139] M. Shakun, editor. Group Decision and Negotiation. Springer Netherlands, 2002.
(document), 3.1

[140] W. Shen, H. H. Ghenniwa, and C. Wang. Adaptive negotiation for agent-based grid
computing. In Proceedings of AAMAS2002 workshop on agentcities: Challenges in
Open Agent Environments, pages 32–36, Bologna, Italy, 2002. (document), 3.1.2

[141] M. Shirts, C. Snow, E. Sorin, and B. Zagrovic. Atomistic Protein Folding Simula-
tions on the Submillisecond Time Scale Using Worldwide Distributed Computing.
Biopolymers, 68:91–109, 2003. (document)

[142] D. Skeen. Nonblocking commit protocols. In Proceedings of ACM SIGMOD Int’l
Conf. Management of Data, June 1981. 3.1.3, 3.1.4

[143] H. Smit and T. Li. Intermediate System to Intermediate System (ISIS) Extensions
for Traffic Engineering (TE). Internet Engineering Task Force, RFC3784, May,
2004. 1.5.1

[144] R. Solomonoff and A. Rapoport. Connectivity of random nets. Bulletin of Mathe-
matical Biology, 13(2):107–117, 1951. (document), 4.3

[145] S. Soltis, G. Erickson, K. Preslan, M. OŠKeefe, and T. Ruwart. The Global File
System: A File System for Shared Disk Storage. IEEE Transactions on Parallel
and Distributed Systems, 1997. 1.4.1

[146] A. Takefusa, M. Hayashi, N. Nagatsu, H. Nakada, T. Kudoh, T. Miyamoto,
T. Otani, H. Tanaka, M. Suzuki, Y. Sameshima, et al. G-lambda: Coordination
of a Grid scheduler and lambda path service over GMPLS. Future Generation
Computer Systems, 22(8):868–875, 2006. (document), 1.5, 1.5.15

[147] S. Thorpe, D. Stevenson, and G. Edwards. Using Just-in-Time to Enable Optical
Networking for Grids. Proceedings of Broadnets, 2004. 1.6

BIBLIOGRAPHY 147

[148] F. Travostino, J. Mambretti, and G. Karmous-Edwards. Grid Networks: Enabling
Grids with Advanced Communication Technology. Wiley, 2006. 1.5

[149] S. Vadhiyar and J. Dongarra. A metascheduler for the Grid. High Performance
Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International
Symposium on, pages 343–351, 2002. 1.4.1

[150] P. Van Mieghem. PATHS IN THE SIMPLE RANDOM GRAPH AND THE
WAXMAN GRAPH. Probability in the Engineering and Informational Sciences,
15(04):535–555, 2002. (document), 4.3

[151] D. Verchere, A. Pichot, B. Bela, O. Audouin, and al. Method of providing a gird
network application over a transport network. Technical report, European Patent
Office. (document), 4.6, 4.6

[152] O. Waldrich, P. Wieder, and W. Ziegler. A Meta-scheduling Service for Co-allocating
Arbitrary Types of Resources. Parallel Processing and Applied Mathematics, LNCS,
3911:782–791. (document), 1.4.1, 1.4.3, 1.5, 1.5.13, 2.2.1, 2.2.3

[153] O. Wäldrich, P. Wieder, and W. Ziegler. A meta-scheduling service for co-allocating
arbitrary types of resources. In R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Was-
niewski, editors, Proceedings of the Second Grid Resource Management Workshop
(GRMWS 05) in conjunction with Parallel Processing and Applied Mathematics: 6th
International Conference (PPAM 2005), volume 3911 of Lecture Notes in Computer
Science, pages 782–791. Springer, 2005. ISBN: 3-540-34141-2. 3.2.3

[154] O. Wäldrich and W. Ziegler. A ws-agreement based negotiation protocol. In Draft
paper published for Open Grid Forum 18 GRAAP-WG, September 2006. (docu-
ment), 3.2.3

[155] B. Waxman. Routing of multipoint connections. Selected Areas in Communications,
IEEE Journal on, 6(9):1617–1622, 1988. (document), 4.3

[156] V. Welch et al. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards
Perspective, 2004. 1.4.2

[157] L. Wolf, L. Delgrossi, R. Steinmetz, S. Schaller, and H. Wittig. Issues of reserving
resources in advance. Proceedings of NOSSDAV, Lecture Notes in Computer Science,
pages 27–37. (document)

148 BIBLIOGRAPHY

	Acknowledgements
	Résumé
	Abstract
	Version Française
	Table of contents
	List of Figures
	Acronyms list
	Introduction
	State-of-the Art
	Introduction
	Business Models
	Different services
	Pricing, Payment

	Web services
	Distributed Resource Management Systems
	Generic features
	Globus
	Unicore
	Sun N1 Grid Engine (SGE)
	Standard status
	Conclusion

	Grid Networks
	Network concepts
	Grid Resource Scheduling (NRS)
	Globus Architecture for Reservation and Allocation (GARA)
	GARA extensions
	User Controlled Light Paths
	Internet 2 Qbone Bandwidth Broker
	EGEE BAR
	DRAGON
	AkoGrimo
	EuQoS
	Phosphorus
	Nortel's DRAC
	VIOLA
	Enlightened
	G-Lambda

	Conclusion

	Architectures
	A unifying vision
	Introduction
	Network services
	Integrated Computing services

	WS approaches
	Introduction
	Architecture
	Components
	Future extensions

	Control plane time extensions
	Future Signaling
	Future Computation
	Future Routing

	Grid GMPLS
	IMS extensions
	IMS architecture
	Grid over IMS
	IMS extensions conclusion

	Conclusion

	Protocols
	SLA Negotiation, SLA creation and commit protocols
	Price consideration
	Automated Negotiation
	Commit protocols for distributed databases
	Commit protocols for distributed resource management systems

	VIOLA's signalling Architecture
	Original VIOLA 2PNP
	Original WS-Agreement
	WS-Agreement 3PNP
	Negotiation of Agreement Templates
	SLA creation

	Model description
	Parameters value choice

	Results
	Arrival Rate
	Mean Nb of Jobs
	Conclusion

	Conclusion

	Algorithms
	Introduction
	Related Work
	Basic Resource orchestration algorithm
	Max Flow approaches

	Methodology
	Legacy
	Connection with CrankBack (CCB)
	Cross Optimisation (XO)

	Analytical results
	Results
	Normalized link capacity
	Number of accepted Jobs
	Number of CPU influence
	Processing Time
	Validity of Hypothesis 1

	Conclusions

	List of Patents and Publications
	Conclusions and Future outlook
	Annexe A -- Planned job request cross optimization algorithm
	Annexe B -- Simulation tools
	Bibliography

