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Abstract

Image segmentation with shape priors has received a lot of attention over the past
few years. Most existing work focuses on a linearized shape space with small de-
formation modes around a mean shape, which is only relevant when considering
similar shapes. In this thesis, we introduce a new framework that can handle more
general shape priors.

We model a category of shapes as a finite dimensional manifold, the shape prior
manifold, which we analyze from the shape samples using dimensionality reduc-
tion techniques such as diffusion maps. An embedding function is then learned
from the manifold. Unfortunately, this model does not provide an explicit projec-
tion operator onto the underlying shape manifold, and therefore, our work tackles
this problem.

Our solution is threefold.

First, we propose different solutions to the out-of-sample problem and define three
attracting forces directed towards the manifold. These forces can be used as pro-
jection operators onto the manifold:

• Projection towards the closest point

• Projection with the same embedding

• Projection at constant embedding

Next, we introduce a shape prior term for the active contours/regions framework
through a non-linear energy term designed to attract shapes towards the manifold.

Finally, we describe a variational framework for manifold denoising.

Results with real objects such as car silhouettes or anatomical structures show the
potential of our method.
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Resumé

La segmentation d’image avec a priori de forme a fait l’objet d’une attention par-
ticulière ces dernières années. La plupart des travaux existants reposent sur des
espaces de formes linéarisés avec de petits modes de déformations autour d’une
forme moyenne. Cette approche n’est pertinente que lorsque les formes sont rel-
ativement similaires. Dans cette thèse, nous introduisons un nouveau cadre dans
lequel il est possible de manipuler des a priori de formes plus généraux.

Nous modélisons une catégorie de formes comme une variété de dimension finie,
la variété des formes a priori, que nous analysons à l’aide d’échantillons de formes
en utilisant des techniques de réduction de dimension telles que les diffusion maps.
Un plongement dans un espace réduit est alors appris à partir des échantillons.
Cependant, ce modèle ne fournit pas d’opérateur de projection explicite sur la var-
iété sous-jacente et nous nous attaquons à ce problème.

Les contributions de ce travail se divisent en trois parties.

Tout d’abord, nous proposons différentes solutions au problème des "out-of-sample"
et nous définissons trois forces attirantes dirigées vers la variété.

• Projection vers le point le plus proche;

• Projection ayant la même valeur de plongement;

• Projection à valeur de plongement constant.

Ensuite, nous introduisons un terme d’a-priori de formes pour les coutours/régions
actifs/ves. Un terme d’énergie non-linéaire est alors construit pour attirer les formes
vers la variété.

Enfin, nous décrivons un cadre variationnel pour le debruitage de variété.

Des résultats sur des objets réels tels que des silhouettes de voitures ou des struc-
tures anatomiques montrent les possibilités de notre méthode.
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1.1 Context

1.1.1 On the image side

Image analysis has enjoyed an increasing demand from the medical imaging field
for a few years, since computer aided diagnostics rely mainly on image processing
and computer vision techniques. Furthermore, images have now a predominant
place in our daily life since camera devices appear everywhere. Cell phones all
have one or two cameras embedded and the smallness constraint implies lower
quality of optics and sensors, which is offset by an extensive use of image pro-
cessing (image enhancements such as noise removal, automatic contrast balance
etc.). Regular digital cameras have even real time face detectors to optimize the
auto focus mode. Surveillance cameras in buildings, cities and highways have
been considerably growing in number for the last two decades. In view of the huge
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amount of video sequences produced, computer vision techniques can make the
surveillance operations [semi-]automatic instead of costly numerous surveillance
operators.

Image processing and computer vision are the sciences that analyze and ex-
tract useful information from digital images and videos. An image is basically a
n-dimensional array (in general, n = 2 or possibly n = 3. n is the dimension of
the image domain) of which the values are quantified within a given range. Such
values may be of dimension 1 (black and white images), 3 (color images) or even
higher. Image processing is related to low-level vision tasks such as edge and con-
tour extraction, noise removal, deblurring etc; while computer vision is related to
higher level tasks such as object tracking in video, event detection in video, 3D
reconstruction from 2D images, shape recognition etc. The latter relies of course
on the former.

Researchers and manufacturers have been developing these techniques since
the emergence of computers in the seventies. At that time, the techniques proposed
were mainly low level based. Nevertheless, the core idea of image analysis has
remained the same since its beginnings. Algorithms mostly attempt to partition
images into components or areas of interest in order to do some kind of high level
“intelligent process”. For example, edge detection algorithms partition an image
into edge pixels and non edge pixels, shape recognition extracts an area of the
image domain within a given range of shapes, object tracking does the same in
video sequences etc. All these processes can be called image segmentation in the
broad sense of the word. In this thesis, we will be focusing on application on
active contour segmentation — i.e. extraction of objects in images by detecting
their closed contour — and unless specified, we will implicitly refer to that kind
of segmentation.

1.1.2 On the statistical learning side

As the number of computers over the planet and their storage capacity have con-
siderably increased, they produce more and more data, which enable the devel-
opment of huge database. Management, organization and understanding of such
amounts of data cause many challenging problems to tackle. Statistical approaches
are commonly used when dealing with such databases, particularly in the fields of
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classification and dimensionality reduction.

Classification is the science that classifies data into two or more clusters. First,
it extracts features from data with some invariant characteristics. A classification
function is then learned from a set of training samples and its capacity to generalize
to new samples is assessed using a test set ( of course with distinct samples from
the training set). An efficient learning algorithm for classification should minimize
two different errors called learning error and generalization error. The former is
the error made on the training set while the latter is the error made on the test set.
The more complex the function is, the less the learning error is, but the more the
generalization error might be. A trade-off between the two errors should then be
determined.

Dimensionality reduction techniques deal with high dimensional data and aim
to represent them in a lower dimensional space to have a better understanding
of their intrinsic characteristics, ideally to recover their intrinsic parametrization.
They typically build a mapping from the original space into the lower dimensional
space. The premises date back to the beginning of the twentieth century when
Kenneth Pearson introduced the Principal Component Analysis technique (PCA)
[151] in 1901. PCA assumes that data lie on a linear subspace under a Gaus-
sian distribution. Multi-Dimensional Scaling (MDS) is another linear technique
related to PCA, based on pair-wise distance in the dataset [216, 201, 51]. For the
last decade, dimensionality reduction has received interest because many problems
cannot be modeled using linear models. A non linear version of PCA was proposed
in [180] by using kernel methods. In addition, a series of recent techniques relies
explicitly on the assumption that data lie on a (non linear) smooth manifold. These
approaches, which are particularly successful because of their well-posedness, are
also known as manifold learning techniques. Among the most popular techniques
are Locally Linear Embedding (LLE) [166], Laplacian Eigenmaps [99] and Dif-
fusion maps [117]. These methods are able to output a low dimensional global
representation of high dimensional data lying on a non linear manifold by preserv-
ing the local neighborhood information, and can be possibly extended to new data.

In both cases, the learning function should be estimated from a training set of
limited size and should have good generalization capacities.
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Figure 1.1: Non linear manifold learning techniques build an embedding function
f that represents the data in a lower dimensional space. Red points sample a non
linear manifold. Linear models such as PCA or MDS cannot be applied to such
non linear datasets as explained in chapter 5.

1.2 Image segmentation and statistical learning

The goal of image segmentation is basically to partition the image domain into N

disjoint regions that usually correspond to part or complete objects in the scene.
In earlier approaches, image segmentation methods delineated objects by using
only their edges, which are identified by higher gradient values in the target im-
age. Regions of the image domain can also, for instance, be guessed according to
given pixel grouping constraints (uniformity, statistical properties etc., within the
regions).
In this work, we are limited to two regions separated by a boundary contour. With-
out loss of generality, many approaches define a curve denoted S which minimizes
a given energy functional. For example, graph cuts find the curve that has the
global minimum of the energy. In this thesis, we focus on gradient descent ap-
proaches in order to minimize the target energy functional: the curve S evolves on
the image domain according to the minimization of a variational energy E. An en-
ergy Edata is usually designed to attract the curve S toward the edges of the object
to segment. Edata can also, for example, be designed regarding the statistical prop-
erties inside and outside the curve S. See section (4.3.3) for region-based active
contour segmentation.

E1(S) = Edata(S) (1.1)
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Edges may be badly defined due to blur, noise, or occlusion and a smoothness
constraint Esmooth along the curve S must be added to equation (2.1) to overcome
such difficulties. Nevertheless, it is not sufficient and an a-priori knowledge on the
possible shapes must also be introduced. Statistical learning is extensively used in
computer vision in order to introduce an a-priori knowledge, particularly in image
segmentation processes. In this work, we focus on shape priors learned from a
given training set. Segmentation with shape priors is expressed using a model
similar to equation (2.1), but new energies Ea-priori and Esmooth are added. Ea-priori,
built from the training set, constrains the curve within a given range of shapes,
while Esmooth constrains the curve to be smooth.

E2(S) = Edata(S) + αEsmooth(S) + βEa-priori(S) (1.2)

where α and β are parameters set to quantify the influence of the a-priori knowl-
edge and the smoothness of the curve in the final result. To our best knowledge,
the work by Daniel Cremers, Cristoph Schnörr, Joachim Weickert and Christian
Schellewald on Diffusion Snakes [58, 57] was the first to combine a generic seg-
mentation method with an added energy.

1.3 Goal and organization of this dissertation

There are many attempts in literature to embed a-priori knowledge in segmenta-
tion tasks notably by using dimensionality reduction techniques, as in the work
of Michael Leventon, Eric Grimson and Olivier Faugeras in [122] but also in
[165, 42, 203, 40] to cite a few. These approaches assume that data lie on a linear
subspace under a Gaussian distribution.

In this work, we want to depart from such assumptions in order to handle more
general non linear shape priors. We model a category of shape — e.g. the category
of fish shapes — as a smooth non linear finite dimensional manifold that we call
the shape prior manifold. In this context, our view is that the shape priors is a
force directed toward the shape prior manifolds. An important related work was
proposed by Daniel Cremers, Timo Kohlberger and Christoph Schnörr in [53]. The
authors introduce non linear shape priors by using a probabilistic version of Kernel
PCA (KPCA). Note that we aim to handle more general cases.
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Although we are driven by applications for image segmentation with shape pri-
ors in this work, we will endeavor to present our contribution in a generic form. The
purpose of this dissertation is to extend cutting edge manifold learning techniques
such as diffusion maps to design a force that attracts data toward the manifold. The
force should be designed to be usable in the context of image segmentation. An
overview of the concept is presented in figure (2.2).

This thesis is organized as follow.

Chapter 3: Shapes

This chapter provides the reader with all the necessary background about shapes.
In particular, we define the concept of shape and detail some of their possible
representations. We also introduce the notion of distance between shapes. Finally,
we explain how to interpolate between shapes by using for instance Karcher means
[107] and how to model a shape manifold from a finite shape set.

Chapter 4: Image segmentation

In this chapter, we briefly review the techniques of image segmentation in the broad
sense of the word. Since we are driven by applications in image segmentation, we
give the context to show how our approach crosses over a new step in the state of
the art.

Chapter 5: Dimensionality reduction and non linear manifold learning

In our work, we aim to learn shape priors from a category of shapes lying on a non-
linear smooth manifold. Chapter 5 focuses on the statistical learning side and on
dimensionality reduction techniques, which define an embedding into the reduced
space. This chapter is organized to emphasize the needs and the importance of
non linear models. We present and illustrate the most popular methods from basic
linear models such as PCA [151] or MDS [201, 202, 51] to cutting edge non linear
manifold learning techniques such as Laplacian eigenmaps [15] and diffusion maps
[117].
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Chapter 6 - Application I: Interactive image retrieval

Since our work relies mainly on manifold learning techniques, we focus on an
application of graph Laplacian/diffusion maps to interactive image retrieval based
on relevance feedback techniques. In these approaches, the system attempts to
build a metric and/or a decision rule that reflects the user’s intention based on not
only the data he labeled but also the others (usually the user does a binary labeling).
Indeed, data are supposed to lie on a smooth manifold and diffusion maps are used
to learn this manifold and diffuse the labels (this process is known as transductive
learning). An interaction between the system and the users is then created in order
to refine the response by proposing new unlabeled data to the user. Finally, the
system outputs a class of images supposed to reply to a query defined by the user’s
mind.

Publications related to this chapter

Hichem Sahbi, Patrick Etyngier, and Jean-Yves Audibert and Renaud Keriven.
Graph Laplacian for Interactive Image Retrieval. ICASSP’ 08: In proceedings of
the International Conference on Acoustics, Speech, and Signal Processing, Las Ve-
gas, April 2008.

Hichem Sahbi, Patrick Etyngier, and Jean-Yves Audibert and Renaud Keriven.
Manifold Learning using Robust Graph Laplacian for Interactive Image Retrieval.
CVPR’ 08: In proceedings of the IEEE International Conference on Computer Vi-
sion and Pattern Recognition, Anchorage, Alaska, June 2008.

Chapter 7: Extensions and attracting forces

This chapter contains the main contributions of this dissertation. Our approach
relies on a manifold learning techniques called diffusion maps, that builds an em-
bedding function into a low dimensional representation of data. This mapping is
defined only on the training samples. Chapter 7 starts by pointing out extensions of
the embedding to any new point — i.e. outside the training set — that comes into
the process. Such extensions avoid recalculating embedding values from scratch.

Our goal is to design a force applied to data, directed toward the learned mani-
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fold. A natural idea is to design a projection operator onto the manifold in order to
obtain an attracting force.

We propose three different attracting forces in this chapter. The first one is
based on a projection minimizing the distance to the manifold. Next, the second
force relies on a projection having the same embedding value. We finally define
a third attracting force toward the manifold, which preserves the embedding con-
stant. This latter approach, which relies on diffusion maps [117] and the Nyström
extension [145], is well posed and natural.

Again, since the tools developed in this work can be applied to any kind of data
lying in a space equipped with a differentiable distance, we endeavor to present
this chapter in a generic form.

Publications related to this chapter

Patrick Etyngier, Renaud Keriven, and Jean-Philippe Pons. Towards segmentation
based on a shape prior manifold SSVM’ 07: In proceedings of the 1st International
Conference on Scale Space and Variational Methods in Computer Vision Ishia,
Italy, May 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Projection Onto a Shape
Manifold for Image Segmentation with Prior. ICIP’ 07: In proceedings of the 14th
IEEE International Conference on Image Processing, San Antonio, Texas, USA,
September 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Shape priors using Man-
ifold Learning Techniques. ICCV’ 07: In proceedings of the 11th IEEE Interna-
tional Conference on Computer Vision, Rio de Janeiro, Brazil, October, 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Active-Contour-Based
Image Segmentation using Machine Learning Techniques. MICCAI’ 07: In pro-
ceedings of the 10th International Conference on Medical Image Computing and
Computer Assisted Intervention, Brisbane, Australia, October, 2007
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Chapter 8 - Application II: Manifold denoising and image segmentation
with general non linear shape priors

The tools developed in chapters 5 and 7 of this dissertation are successfully applied
to manifold denoising and image segmentation with non linear shape priors. In
particular, chapter 8 illustrates results obtained on various 2D and 3D examples
corresponding to different shape manifolds: fishes, cars and anatomical structures.

Publications related to this chapter

Patrick Etyngier, Renaud Keriven, and Jean-Philippe Pons. Towards segmentation
based on a shape prior manifold SSVM’ 07: In proceedings of the 1st International
Conference on Scale Space and Variational Methods in Computer Vision Ishia,
Italy, May 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Projection Onto a Shape
Manifold for Image Segmentation with Prior. ICIP’ 07: In proceedings of the 14th
IEEE International Conference on Image Processing, San Antonio, Texas, USA,
September 2007

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Shape priors using Man-
ifold Learning Techniques. ICCV’ 07: In proceedings of the 11th IEEE Interna-
tional Conference on Computer Vision, Rio de Janeiro, Brazil, October, 2007

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Active-Contour-Based
Image Segmentation using Machine Learning Techniques. MICCAI’ 07: In pro-
ceedings of the 10th International Conference on Medical Image Computing and
Computer Assisted Intervention, Brisbane, Australia, October, 2007.

Appendix A: Radon/Hough space for pose estimation

In this appendix, we present a learning based approach to one shot camera cali-
bration. First, features based on the Radon/Hough transform are learned while 3D
reconstruction of a given indoor scene is achieved. An inference step then deter-
mines the position of a one-shot image from its features and the 3D reconstruction.
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Publication related to this chapter

Patrick Etyngier, Nikos Paragios, Renaud Keriven, Yakup Genc and Jean-Yves Au-
dibert. Radon space and Adaboost for Pose Estimation. ICPR’ 06: In proceedings
of the 18th International Conference on Pattern Recognition Hong-Kong, August
2006.
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Figure 1.2: Overview and goal of this dissertation: a category of shapes — e.g.
the fish shapes — is represented as a finite dimensional manifold. The shape prior
term is a force directed toward the manifold and combined with a data term force
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2.1 Contexte

2.1.1 L’image comme point de départ

Depuis quelques années, l’analyse d’image est de plus en plus sollicitée par les
applications d’imagerie médicale, puisque les diagnostics médicaux assistés par
ordinateur reposent principalement sur les techniques de traitement d’image et de
vision par ordinateur.
Par ailleurs, les images numériques ont pris une place prédominante dans notre
vie quotidienne où les caméras vidéo et appareils photos deviennent omniprésents.
Les téléphones portables intègrent tous une voire deux capteurs. La contrainte de
taille entraîne une qualité amoindrie des optiques et des capteurs, compensée par
l’utilisation intensive de traitement d’image (amélioration de l’image tel que la
réduction du bruit, réglage automatique du contraste etc. ). Désormais, même les
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appareils photos non professionnels ont des détecteurs de visage en temps réel pour
optimiser l’autofocus.

Aussi, le nombre de caméras de surveillance a explosé depuis les vingt der-
nières années dans les bâtiments publics et privés, dans les villes, sur les auto-
routes etc. . . Face à la quantité de séquences vidéo produite quotidiennement, les
techniques de vision par ordinateurs peuvent rendre les opérations de surveillance
beaucoup moins coûteuses, en réduisant par exemple le nombre d’opérateurs né-
cessaires grâce à l’automatisation des processus.

Le traitement d’image et la vision par ordinateur sont les sciences qui ana-
lysent et extraient des informations utiles des images et vidéo numériques. Une
image est un tableau de dimension n (en général, n = 2 ou parfois n = 3. n est la
dimension du domaine de l’image), dont les valeurs sont quantifiées dans un inter-
valle borné. Ces valeurs peuvent être de dimension 1 (images en “noir et blanc”),
3 (image en “couleur”) ou parfois de dimension supérieure.

Le traitement d’image est un ensemble de techniques qui réalisent des tâches
de vision bas niveau tels que l’extraction de bords et de contours, la réduction
de bruit, le défloutage etc, tandis que la vision par ordinateur est un ensemble de
techniques qui réalisent des tâches de vision de niveau plus élevé, telles que le suivi
d’objet et la détection d’événements dans les vidéo, la reconstruction 3D à partir
d’images 2D, la reconnaissance de formes etc. . . . La vision par ordinateur repose
naturellement sur les techniques de traitement d’images.

Les chercheurs et industriels ont développé ces techniques depuis l’émergence
des ordinateurs dans les années 70. A cette époque, les techniques étaient princi-
palement de bas niveau. Cependant, l’idée de base de l’analyse d’image est restée
inchangée depuis ses débuts. Les algorithmes tentent, pour la plupart, de morceler
le domaine de l’image en composantes ou régions d’intérêt, afin de réaliser des
“processus intelligents” de haut niveau. Par exemple, les algorithmes de détection
des bords séparent les pixels appartenant aux bords et les autres, les algorithmes
de reconnaissance de forme extraient une région de l’image contrainte dans un en-
semble donné de formes, le suivi d’objet a les mêmes objectifs dans les séquences
vidéo etc. Tous ces processus sont appelés segmentation d’image au sens large du
terme. Dans cette thèse, nous nous concentrerons sur la segmentation par contours
actifs — i.e. l’extraction d’objets dans les images en utilisant leur contour — et
sauf mention contraire, nous ferons implicitement référence à ce type de segmen-
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tation.

2.1.2 L’apprentissage statistique comme point de départ

Alors que le nombre d’ordinateurs sur la planète et leur capacité de stockage
ont considérablement augmenté, de plus en plus de données nourrissent des bases
de données énormes. La gestion, l’organisation et la compréhension de telles quan-
tités de données suscitent des nouveaux défis à relever, particulièrement dans les
domaines de la classification et de la réduction de dimension.

La classification est la science qui classe les données en deux (ou plus) en-
sembles. D’abord, des caractéristiques invariantes sont extraites des données. Une
fonction de classification est alors apprise à partir d’un ensemble d’apprentissage
et sa capacité à généraliser à de nouveaux échantillons est évaluée au moyen d’un
ensemble test (dont les échantillons sont évidemment distincts de ceux contenus
dans l’ensemble d’apprentissage). Un algorithme d’apprentissage efficace pour la
classification doit minimiser deux erreurs appelées erreur d’apprentissage et erreur
de généralisation. L’erreur d’apprentissage est l’erreur faite sur l’ensemble d’ap-
prentissage tandis que l’erreur de généralisation est l’erreur faite sur l’ensemble de
test. Plus la fonction de classification est complexe, plus l’erreur d’apprentissage
est petite, mais plus l’erreur de généralisation est importante. Un compromis entre
les deux erreurs doit donc être trouvé.

Les techniques de réduction de dimension ont pour objectif de représenter des
données de grande dimension dans un espace de plus petite dimension, afin de
d’en extraire des caractéristiques intrinsèques, idéalement pour retrouver leur pa-
ramétrisation intrinsèque. Pour cela, il faut construire une application de l’espace
original des données vers un espace de plus petite dimension. Les prémisses re-
montent au début du vingtième siècle avec l’analyse en composante principales
(ACP) introduite par Kenneth Pearson en 1901 [151]. L’utilisation de l’ACP sup-
pose que les données analysées sont sur un sous-espace linéaire selon une distri-
bution gaussienne. Il existe également une autre approche linéaire, sous le nom de
Multi-Dimensional Scaling (MDS), proche de l’analyse en composante principale
mais qui construit une application dans un espace de plus petite dimension à par-
tir des distances entre les points uniquement [216, 201, 51]. Depuis une dizaine
d’années, la réduction de dimension a connu un regain d’intêret car beaucoup de
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problèmes ne peuvent être résolus à l’aide des méthodes linéaires. Une version non
linéaire de l’analyse en composante principale a été proposée en utilisant les mé-
thodes à noyaux : l’analyse en composante principale à noyau [180]. Par ailleurs,
une série de techniques récentes reposent explicitement sur l’hypothèse que les
données échantillonnent une variété différentiable (non linéaire). Parmi ces mé-
thodes, on trouve : Linear Embedding (LLE) [166], Laplacian Eigenmaps [99] et
Diffusion maps [117]. Ces méthodes sont capables de représenter globalement des
données de grande dimension échantillonnant une variété différentielle, en pré-
servant uniquement l’information locale de voisinage. L’extension aux nouveaux
points est possible.

Dans les deux cas, la fonction d’apprentissage doit être estimée à partir d’un
ensemble de points (ensemble d’apprentissage) de taille limitée et doit avoir de
bonnes capacités de généralisation.

FIG. 2.1 – Les techniques d’apprentissage non linéaire de variété construisent
un plongement f qui représente les données dans un espace de plus petite dimen-
sion. Sur la figure ci-dessus, les points rouges échantillonnent une variété (non
linéaire). Les modèles linéaires tels que ACP ou MDS ne peuvent pas être utilisés
pour analyser de manière fiable les ensembles non linéaires (Cf chapitre 5).

2.2 Segmentation d’image et apprentissage statistique

Le but de la segmentation est de diviser le domaine d’une image en N régions
disjointes qui correspondent, en général, à des objets partiels ou complets.
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Historiquement, la segmentation d’image délimitait les objets en utilisant uni-
quement leurs bords, où les valeurs du gradient de l’image sont maximales. Les
régions du domaines de l’image peuvent aussi, par exemple, être détectées selon
des contraintes de regroupements de pixels (uniformité, propriétés statistiques etc
. . . à l’intérieur de la région).
Dans ce travail, nous nous limitons à deux régions séparées par un contour. Beau-
coup d’approches définissent une courbe, notée S, qui minimise une énergie. Par
exemple, les graph cuts trouvent la courbe qui a le minimum global de l’énergie.
Dans cette thèse, nous nous utiliserons principalement des approches variation-
nelles par descente de gradient afin de minimiser une fonctionnelle d’énergie : on
fait évoluer la courbe S sur le domaine de l’image de manière à minimiser une
énergie variationelle E. En général, on écrit une énergie Edata qui attire la courbe
S vers les bords de l’objet à segmenter. Les propriétés statistiques à l’intérieur ou
à l’extérieur de la courbe peuvent également être utilisées pour décrire l’énergie
Edata. Voir la section (4.3.3) pour la segmentation par contour actifs basée sur les
régions.

E1(S) = Edata(S) (2.1)

Les bords dans images sont parfois mal définis car flous, bruités ou recouverts
par d’autres objets. Une contrainte de lissage Esmooth s’impose alors le long de
la courbe. Cependant, une telle contrainte n’est en général pas suffisante et un a
priori sur les formes possible doit être introduit. L’apprentissage statistique est
utilisé de manière intensive en vision par ordinateur pour introduire des a priori,
particulièrement dans les processus de segmentation d’image.

Dans ce travail, nous nous concentrons sur l’apprentissage d’a priori de formes
à partir d’un ensemble de formes. La segmentation avec a priori de formes s’écrit
mathématiquement à l’aide d’un modèle similaire, mais avec l’ajout d’une nou-
velle énergie Ea priori. Ea priori, construite à partir d’un ensemble d’apprentissage,
contraint la courbe dans un ensemble de formes possibles.

E2(C) = Edata(C) + λEa priori(C) (2.2)

où λ est un paramètre qui quantifie l’influence ou la contribution de l’a priori
dans le résultat final de segmentation. A notre connaissance, les travaux de Da-
niel Cremers, Cristoph Schnörr, Joachim Weickert et Christian Schellewald sur les
Diffusion Snakes [58, 57] sont les premiers à combiner une segmentation avec un
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terme d’énergie supplémentaire.

2.3 But et organisation de ce manuscrit

De nombreux articles en segmentation d’image utilisent des a priori de forme
à l’aide de techniques de réduction de dimensions. On trouve par exemple les tra-
vaux de Michael Leventon, Eric Grimson et Olivier Faugeras in [122], mais aussi
[165, 42, 203, 40]. Cependant, ces approches supposent que les données sont sur
un sous-espace linéaire selon une distribution gaussienne.

Dans ce travail, nous voulons sortir de l’hypothèse gaussienne afin d’obtenir
des a priori de formes plus généraux, non linéaires. En particulier, nous modélisons
une catégorie de formes — e.g. la catégorie des formes de poissons — comme une
variété différentielle de dimension finie, non linéaire, que nous appelons la variété
des formes a priori. Dans ce contexte, nous considérons que l’a priori de formes
est une force dirigée vers la variété des formes a priori.

Bien que nous souhaitions manipuler des cas plus généraux, nous attirons l’at-
tention du lecteur sur des travaux connexes proposés par Daniel Cremers, Timo
Kohlberger et Christoph Schnörr [53]. Les auteurs introduisent des a priori de
forme non linéaires en utilisant une version probabilistique de l’ACP à noyaux
(KPCA).

L’objectif de cette thèse est d’étendre les techniques d’apprentissage de variété
tels que les diffusion maps, et de créer une force qui attire des points vers la variété.
Cette force doit être conçue pour être utilisable dans le contexte de la segmentation
d’image. La contribution de cette thèse sera présentée dans une forme générique
alors que les applications gardent une place importante. Notre approche est illus-
trée sous la forme d’un schéma, en figure 2.2.

Dans la suite, nous décrivons l’organisation de cette thèse.

Chapitre 3

Ce chapitre donne au lecteur les connaissances de base pour travailler avec
des formes. En particulier, nous définissons le concept de forme et nous détaillons
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quelques représentations possibles. Nous introduisons également la notion de dis-
tance entre formes. Enfin, nous expliquons comment interpoler entre les formes en
utilisant des moyennes pondérées de forme.

Chapitre 4

Dans ce chapitre, nous passons en revue les techniques de segmentation d’image,
au sens large du terme. Puisque les contributions de cette thèse ont été guidées
par des applications en segmentation d’image, nous présentons le contexte et nous
montrons comment notre approche franchit une nouvelle étape dans l’état de l’art.

Chapitre 5

Dans ce travail, l’objectif est d’apprendre des a priori de forme non linéaires
à partir d’une catégorie de formes situées sur une variété différentielle. Le cha-
pitre 5 se concentre sur l’apprentissage statistique, en particulier les méthodes de
réduction de dimensions. L’organisation de chapitre est conçue pour souligner les
besoins et l’importance de modèles non linéaires. Nous présentons et illustrons les
méthodes les plus populaires depuis l’analyse en composante principales [151] ou
le Multi-dimensional Scaling [201, 202, 51] jusqu’aux dernières techniques d’ap-
prentissage non-linéaire de variétés, telle que les Laplacian maps [15] et diffusion
maps [117].

Chapter 6 - Application I : Extraction intéractif d’image

Cette thèse repose principalement sur les techniques d’apprentissage de va-
riété. Nous proposons donc une application des Laplaciens de graphe / diffusion
maps, l’extraction intéractive d’images dans le cadre des techniques de relevance
feedback. Dans ces approches, le système construit une métrique / règle de déci-
sion qui reflète les intentions de l’utilisateur, à partir de données étiquetées ou non
(en général, l’utilisateur étiquette quelques données de manière binaire). En effet,
nous supposons que les données échantillonnent une variété différentielle et les
diffusion maps sont utilisés pour apprendre cette variété et diffuser les étiquettes
(ce processus porte le nom d’apprentissage transductif). Une intéraction entre le
système et l’utilisateur est alors créée afin de raffiner la réponse en proposant de
nouveaux points non étiquetées à l’utilisateur. Finalement, le système renvoie une
classe d’image censée répondre à la requête formulée dans l’esprit de l’utilisateur.
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Publications liées à ce chapitre

Hichem Sahbi, Patrick Etyngier, and Jean-Yves Audibert and Renaud Keriven.
Graph Laplacian for Interactive Image Retrieval. ICASSP’ 08 : In proceedings of
the International Conference on Acoustics, Speech, and Signal Processing, Las Ve-
gas, April 2008.

Hichem Sahbi, Patrick Etyngier, and Jean-Yves Audibert and Renaud Keriven. Ma-
nifold Learning using Robust Graph Laplacian for Interactive Image Retrieval. CV-
PR’ 08 : In proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition, Anchorage, Alaska, June 2008.

Chapitre 7 :

Ce chapitre contient nos principales contributions. Notre approche repose sur
une technique d’apprentissage de variété, les diffusion maps, qui construisent un
plongement (i.e. une application) vers une représentation des données dans un es-
pace de plus petite dimension. Le plongement, est défini seulement sur les échan-
tillons de l’ensemble d’apprentissage. Le chapitre 5 présente d’abord les possibili-
tés d’extension du plongement aux nouveaux points —i.e. en dehors de l’ensemble
d’apprentissage. Ces extensions évitent de recalculer toute l’application plonge-
ment.

Notre but est de construire une force appliquée aux données, dirigée vers la
variété apprise. L’idée naturelle est de construire un opérateur de projection pour
obtenir une cible.

Nous proposons trois forces attractives dans ce chapitre. La première repose
sur une projection minimisant la distance à la variété. Ensuite, la deuxième force
repose sur une projection ayant la même valeur de plongement. Nous définissons
enfin une troisième force attractive dirigée vers la variété qui préserve le plonge-
ment constant. Cette dernière approche, qui repose sur les diffusion maps [117] et
l’extention de Nyström [145], est bien posée et naturelle.

Puisque les outils développés dans ce travail peuvent être appliqués à toute
sorte de données équipées d’une distance différentiable, nous nous efforcerons de
présenter ce chapitre dans une forme générique.
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Publications liées à ce chapitre

Patrick Etyngier, Renaud Keriven, and Jean-Philippe Pons. Towards segmentation
based on a shape prior manifold SSVM’ 07 : In proceedings of the 1st Internatio-
nal Conference on Scale Space and Variational Methods in Computer Vision Ishia,
Italy, May 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Projection Onto a Shape
Manifold for Image Segmentation with Prior. ICIP’ 07 : In proceedings of the 14th
IEEE International Conference on Image Processing, San Antonio, Texas, USA,
September 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Shape priors using Mani-
fold Learning Techniques. ICCV’ 07 : In proceedings of the 11th IEEE Internatio-
nal Conference on Computer Vision, Rio de Janeiro, Brazil, October, 2007.

Patrick Etyngier, Renaud Keriven and Florent Ségonne. Active-Contour-Based Image
Segmentation using Machine Learning Techniques. MICCAI’ 07 : In proceedings
of the 10th International Conference on Medical Image Computing and Computer
Assisted Intervention, Brisbane, Australia, October, 2007

Chapitre 8

Les outils développés dans cette thèse sont appliqués avec succès à la segmen-
tation d’image avec a priori de formes non linéaires, ainsi qu’au débruitage de va-
riétés. En particulier, le chapitre 8 illustre les résultats obtenus sur des exemples 2D
et 3D de variétés de formes a priori dans différents contextes : poissons, voitures
et même dans le domaine de l’imagerie médicale avec des ventricules.
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FIG. 2.2 – Vue d’ensemble de notre approche et but cette thèse : une catégorie
de formes — e.g. les formes de poissons — est représentée comme une variété
différentielle de dimension finie. L’a priori de forme est une force dirigée vers la
variété et est combiné avec une force d’attache aux données



Chapter 3

Shapes

Abstract

In this chapter, we give the reader the very basic knowledge about shapes. We be-
gin defining shapes and the shape space S following definitions given in Guillaume
Charpiat’s work [39] and in a book written by Michel Delfour and Jean-Paul
Zolesio [62].
Then, we discuss shape representations in practice and outline some of them, which
are commonly used in computer vision literature. We also tackle the question of
comparing shapes and specifying a topology in the shape space.
Finally, we provide the reader with the notion of shape gradient and Karcher mean
shapes, which we use to interpolate the shape space between shape samples.
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Key points & Original contributions

We provide the reader with the necessary background about shapes.

We propose weighted Karcher means of shapes as a way to interpolate
locally shape manifolds.
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3.1 Basic definitions for shapes

In this first section, we define the basics, in particular we introduce shape spaces
by using definitions taken from [62].

Definition 1 (Shape) Let D ⊂ Rn be a domain of interest, also named the image
domain. A shape S is a bounded closed subset of D and we denote S the space of
such shapes.

The set of shape S is too large for our purpose and we need to restrict it. We
construct a new shape space following Guillaume Charpiat’s work [39] based on
two subsets of the shape space S; the first being limited to shapes of which the
boundary is smooth, the second to shapes that have limited S-curving along the
boundary, below a given scale. We need some more definitions to specify properly
these subsets.

Definition 2 (Distance function and oriented distance function) The distance func-
tion dS(x) to a shape is denoted dS(x)

dS(x) = inf
y∈S

d(x, y) = inf
y∈S

|x− y|

We also denote {S the complementary of shape S in D and define the oriented
distance function to a shape S (considered as a bounded region, subset of Rn)

bS(x) = dS(x)− d{S
(x) (3.1)

Definition 3 (Projection) Given S ⊂ D, S 6= ∅, the set of projection of x ∈ D on
S is given by:

ΠS(x)
def
=

{
p ∈ S : |p− x| = dS(x)

}

Definition 4 (h-tubular neighborhood) Given S ⊂ D, S 6= ∅, and a real number
h > 0, the h-tubular neighborhood of S is defined as

Uh(S)
def
= {y ∈ D : dS(y) < h}

We can now define the two following sets used to build the set of shapes of interest.
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Definition 5 (Set of smooth shapes) The set C0 (resp C1, C2) of smooth shapes is
the set of subset of D whose boundary is non-empty and can be locally represented
as the graph of a C0 (resp. C1, C2) function.

Definition 6 (Set F of shapes of positive reach - h0-Federer’s sets) A non empty
subset S of D is said to have positive reach if there exists h > 0 such that ΠS(x)
and Π{S

(x) are a singleton for every x ∈ Uh(S). The maximum h for which the
property holds is called the reach of S and is denoted reach(S)
The h0-Federer’s set [86] Fh0 is the subset of F such that reach(S) > h0 for all
S ∈ Fh0 .

Definition 7 (Set of shapes S) The set, denoted S, of shapes of interest is the sub-
set of C2 whose elements are also in h0-Federer’s set for a given and fixed h0 > 0.

S def
= C2 ∩ Fh0

Note that the notation S should indicate the dimension of the domain D, but we
skip it in the text for the sake of clarity since it can be easily deduced from the
context.

Shape spaces such as S are of particular interest due to their inherent properties
and complexities. They are indeed neither vector spaces since 2 shapes cannot be
added, nor finite dimensional spaces since infinite degrees of freedom in such shape
spaces exist. Nevertheless, they can be assumed to be differentiable manifolds
equipped with a Riemannian metric [138].

3.2 Shape representations in practice

3.2.1 Introduction

In practice, there are many ways to tackle the problem of representing shapes.
A first approach is to consider a shape as a simple (i.e. non-intersecting) closed
curve, surface or hypersurface lying in a larger dimensional space, in other words
by the contour of the object of interest. We denote such representations as bound-
ary shapes. Alternatively, a second aspect is to comprehend a shape as a closed
bounded region of the domain space; the shape is the region itself and full shape
stands for such representations. Full shapes are found for instance in Marcin
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Iwanowski’s [105] or Jan Erik Solem’s works [191, 190]. Note that the links be-
tween both representations is beyond the scope of this thesis and we will equally
switch from one representation to the other.

Geometrical representations of shapes by their boundaries have received a lot
of attention in the computer vision and graphics literatures, and many models of
deformable surfaces have emerged. For a complete review, the reader is referred to
[141]. Among the continuous models, we can roughly divide these representations
into two classes, and we outline a very limited number of them. On the one hand,
the first strategy consists in coding explicitly the boundary shape by means of con-
trol points and splines, parameterized hypersurfaces or meshes. On the other hand,
the second representation codes the boundary implicitly as the isolevel of a scalar
function of higher dimension.

In variational approaches, the curve S deforms and evolves by applying defor-
mation fields, which lie on the tangent bundle of the shape space S. In addition, an
objective functional E is minimized and a gradient descent is used. Without loss of
generality, the gradient of energy E(S), denoted ∇SE, is a deformation field and
the scheme is given as follow (See section (3.4.2) and Guillaume Charpiat’s PhD
dissertation for the definition of ∇SE(S) [39]).





S(t) = S0

∂S

∂t
= −∇SE

(3.2)

where S0 is a given initial curve and t is the time variable. This will be detailed in
the sequel.

3.2.2 Explicit form

Parametrized representations

Most explicit methods require a parametrization of the hypersurface (B-splines
[174] , Fourrier harmonics [193], parametric equations such as superquadrics in
[197] to cite a few).

We now focus on planar curves. Let S(q) : [0, 1] −→ R2 be a parameterized
curve. Michael Kass, Andrew Witkin and Dimitri Terzopoulos [108] firstly pro-
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posed in a seminal work an active contour model called the snakes model. It is
based on a parameterized curve S(q) associated with an energy designed for image
segmentation. This energy will be described in the following chapter.

B-splines are used, for instance, by Daniel Cremers, Timo Kohlberger and
Christoph Schnörr in the context of image segmentation with shape priors [53]. B-
splines (B stands for basis) form a basis B1(q), . . . , BN (q), q ∈ [0, 1] of which the
elements are minimal support functions with respect to a given domain partition,
degree and smoothness. Shapes are then approximated by piecewise polynomial
parametric curves, and represented by a linear combination of B-splines using a set
of control points z = x1, y1, . . . , xN , yN .

Sz(q) [0, 1] → Ω ⊂ R2

s 7→ Sz(q) =
∑N

n=1

(
xn

yn

)
Bn(q)

(3.3)

The main drawback of parameterized curves is that the energy minimization
depends on the parametrization. Indeed, let Ea(s) denote an arbitrary energy of a
parameterized curve S(q) of the following form.

Ea(S) =
∫ 1

0
f (S(q)) dq (3.4)

where f is a function R2 −→ R. We now define a new parametrization of the
curve, via q = η(r), η : [c, d] −→ [0, 1], η′ > 0, which leads to a new energy
Eb(S).

Eb(S) =
∫ d

c
f (S(q ◦ η(r)))

∂η

∂r
(r)dr (3.5)

Thus, the energy can arbitrarily be changed by choosing a new parametrization
not intrinsic to the curve. We will detail in the sequel how to evolve a curve by
minimizing this kind of energy in the variational framework. Accordingly, it means
that this shape representation should not be employed because their evolution might
depend on the parametrization q.

Furthermore, explicit methods do not allow topology change during the evolu-
tion. Note that one can, however, find some attempts to design explicit methods
with topology changes. For example, François Leitner and Philippe Cinquin [121]
build B-splines with basic topology changes.
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Figure 3.1: Example of mesh for a half cylinder surface

Non-parameterized representations

Meshes are explicit but not parameterized representations of surfaces. A mesh in
computer graphics is a collection of vertex points sampling a hypersurface, and
connected by edges, faces or hyperfaces (depending on the dimension). For an
introduction to algorithmic geometry, please refer to Jean-Daniel Boissonnat’s and
Mariette Yvinec’s textbook [25].

Deformable surfaces represented by meshes cannot basically change their topol-
ogy during the evolution, unlike the Level Set method. The authors in [129, 130]
propose however topology adaptive meshes, named T-snakes and T-surface, which
consists in resampling periodically the curve or the surface. The method has se-
rious drawbacks such as fixing a uniform spatial distribution, and the curve has
limited admissible motions.
Note that some methods have been proposed to handle topological changes in
meshes [116, 63, 64] but they are computationally expensive. Nevertheless, a very
recent work by Jean-Philippe Pons and Jean-Daniel Boissonnat [157] introduces
a new efficient method to deal with general topological changes during surface
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Figure 3.2: Representation of the unit circle as the isolevel (in red) of a scalar
function (in grey)

evolutions. Although the Level Set technique (see below) is well established in
computer vision, new advances in algorithmic geometry might give serious com-
petitive advantages to meshes.

3.2.3 Implicit functions and distance functions

Implicit methods represent shape boundaries as the isolevel of a scalar function of
higher dimension. We illustrate this idea with a very basic example, the unit circle
in the plane R2. Consider for instance the function f defined by:

f : R2 → R
(x, y) 7→ f(x, y) = x2 + y2 − 1

(3.6)

The implicit representation of the unit circle is then given by the 0-isolevel of f

i.e. the set of points {(x, y), f(x, y) = 0}. In other words, the shape of the unit
circle in the plane R2 is implicitly represented by the codimension 1 isolevel of a
3 dimensional surface defined on a domain D ⊂ R2 (Fig. 3.2). Generalization to
higher dimension is straight; indeed a p dimensional shape is seen as the isolevel of
a n dimensional surface, with n ≥ p+1. Different forms of parametric functions f

are found in literature ( algebraic surfaces [92], superquadrics [13], hyperquadrics
[46] ) but applications are limited to a small family of shapes.

A very popular and well established technique, called Level Set, uses implicit
representations. It was sketched by Alain Dervieux and François Thomasset [67]
and developed by Stanley Osher and James Sethian [147, 185, 146]. The Level Set
technique is of particular importance since it handles complex geometries, useful
in many applications (it will be detailed in the image segmentation framework in
section (4.3.3)). In this method, the 0-level of the signed distance function bS(x)
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to the boundary ∂S is often used to represent the shape S. Thus, the function f is
not explicitly expressed (Eq. 3.7).

f(x) = bS(x)s (3.7)

Many methods exist to calculate the distance function b∂S(x) over a domain D.
Among the basic methods in literature, we find Per-Erik Danielson’s algorithm
[61], chamfer distances [198, 88]. See also [59, 26].
A more elaborate means of obtaining the distance function b∂S(x), is to solve the
following partial differential equation (PDE) [183] on an implicit function (the
reader is also referred to [11])





∂f

∂t
+ sign (f (x, t0)) (|∇f | − 1) = 0

f (x, 0) = g (x, t0)
(3.8)

where g is an initial estimate of which the zero level set represents the shape. At
convergence, f is a signed distance function.
Finally, Fast Marching methods by James Sethian [184] [194], are the most effi-
cient way to compute distance functions in speed.

3.3 Shape space, topology and distances

3.3.1 Distances between shapes

The notion of regularity involved by the manifold viewpoint requires a definition
which shapes are close and which shapes are far apart. However, there is no agree-
ment in computer vision literature on the right way of measuring shape similarity.
Many different definitions of the distance between two shapes have been proposed,
depending on the shape representation.

Symmetric difference

One classic choice is the area of the symmetric difference between the regions
bounded by two shapes S1 and S2:

dSD(S1, S2) =
1
2

∫ ∣∣χInt(S1) − χInt(S2)

∣∣ (3.9)

where χΩ is the characteristic function over the domain Ω. This distance was
proposed by Daniel Cremers, Stanley Osher and Stefano Soatto in [54].
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Hausdorff distance

Another classic definition of distance between shapes is the Hausdorff distance,
appearing in the context of shape analysis in image processing in the works of Jean
Serra [182], in the context of mathematical morphology.

dH(S1, S2) = max

{
sup
x∈S1

inf
y∈S2

‖x− y‖ , sup
y∈S2

inf
x∈S1

‖x− y‖
}

. (3.10)

Guillaume Charpiat, Olivier Faugeras and Renaud Keriven propose also in [40] a
boundary-based Hausdorff distance dH(∂S1, ∂S2). A comparison between both
approaches can be found in Guillaume Charpiat’s PhD dissertation [39]. Note
that the Hausdorff distance is not continuous for the Hausdorff topology, while
it is essential when using variational methods. To overcome such a limitation, the
authors in [39] define a smooth differentiable approximation of the boundary-based
Hausdorff distance.

Level-set based distance

Another definition, based on the Level Set representation, has been proposed in
[122, 165, 40]. In this context, the distance between two shapes can be defined
as the L2-norm or the Sobolev W 1,2-norm of the difference between their signed
distance functions. Let us recall that W 1,2(Ω) is the space of square integrable
functions over Ω with square integrable derivatives:

dL2(S1, S2)2 = ||D̄S1 − D̄S2 ||2L2(Ω,R) , (3.11)

dW 1,2(S1, S2)2 = ||D̄S1 − D̄S2 ||2L2(Ω,R) + ||∇D̄S1 −∇D̄S2 ||2L2(Ω,Rn) , (3.12)

where D̄Si denotes the signed distance function of shape Si (i = 1, 2), and ∇D̄Si

its gradient.
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3.4 Smooth deformation, shape [sub-]manifolds, & inter-
polation in the shape space

3.4.1 Introduction

The question of how to “deform smoothly” a shape into another is central in many
applications of computer vision or medical imaging, but is very complex due to
the particular properties of the space S. In the previous section, we supposed that
the shape space S can be seen as a differentiable manifold. Once this assumption
is established, one can construct geodesics in the shape space based on suitably
chosen metrics [132, 138].

In this work, we also model a category of shapes as a finite dimensional sub-
manifold lying in S, that we name shape manifold in the sequel. Note that we will
not be parameterizing shape manifolds. Instead, we assume that they can be learnt
from a set of sample shapes by using manifold learning techniques, as carried out
in chapter 5. This view leads to the problem of extending shape manifolds out of
the samples by using interpolation. In our context, the underlying idea of building
geodesics is indeed to interpolate between shapes in the space S. Further in the
text, we also propose a “simple interpolation” between several shapes based on
Karcher means [107].

3.4.2 Shape gradient & Gâteaux derivatives

In order to deform shapes, we need to define the notions of normal deformation
field and functional derivative, in particular in the shape space. Indeed, we are
driven by variational approaches and energy minimization methods based on gra-
dient descent. Smooth shape deformation is achieved by applying successively
small normal deformation fields to the evolving shape. Shape gradients are de-
formation fields calculated from the gradient of a given energy with regards to the
evolving shape. In this work, shape gradient will be normal deformation fields (See
extended gradients in [39] for details)

Applying a normal deformation field to a shape

Since the shape space S is considered as a smooth Riemannian manifold, any shape
S ∈ S has a tangent space denoted TS . TS is seen as a vector space, and its
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elements define normal deformation fields US ∈ TS . Let S be parameterized as
S : [0, 1] −→ R2 with a corresponding normal unit at p denoted n(p). We denote
then normal deformation fields by ∀p ∈ [0, 1], US = US(p)n(p). For the sake of
clarity, we will not be specifying the parametrization p in the sequel.
S + US is not in the shape space S in general. Nevertheless, if US is smooth
enough (i.e. it is C2), and ε ∈ R is small enough too, then S + εUS remains in S
[39].

Functional derivative: the Gâteaux derivative

The shape gradient relies on the Gâteaux derivative, which is a generalization of
the usual derivative to more general spaces such as some functional spaces. Let V
and W be locally convex topological vector spaces (Banach spaces for example).
We also define the mapping E : V −→ W . In our context, V = TS , W = R
and the above hypotheses are assumed to be verified [39]. Now, let US 6= 0 be an
element of TS . The Gâteaux derivative dE(S,US) of S in the “direction” of the
deformation field US is defined as follow.

dE(S,US) = lim
ε→0

E(S + εUS)−E(S)
ε

(3.13)

=
d

dε
E(S + εUS)

∣∣∣∣
ε=0

(3.14)

Note that we have E(S, +εUS) ≈ E(S) + εdE(S,US).

Variational approach and energy minimization for smooth shape deformation

The mapping US −→ dE(S,US) defines a linear continuous form in TS and, as
such, the Riez representation theorem is employed: a deformation field denoted
∇SE(S) and named the shape gradient of the energy E exists such that

∀US , dE(S,US) =< ∇SE(S),US > (3.15)

where the scalar product < ·, · >, is implicitly supposed to be the standard Hilbert
scalar product < f, g >=

∫
f(x) · g(x)dx. The direction of steepest descent is

given by U = −∇SE(S). Generalized gradients have been proposed in [40], in
order to overcome local minimums in the energy landscape and favor rigid motion
by modifying the standard product to more generalized ones. The question of the
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action of group transformations on shapes arises and the reader is referred for ex-
ample to [139, 215, 195].

Given an initial shape S(0), we want to establish a family of shapes S(t), t > 0
such that E(S(t + 1)) ≤ E(S(t)). The shapes S(0), S(1), . . . actually sample a
“path” of smooth deformation until a minimum of energy E is reached, and is
obtained using a gradient descent approach. We finally obtain the following partial
differential equation (PDE).

∂S

∂t
= −∇SE(S)

S(0) = S0

(3.16)

Example of shape deformation within the Level Set framework

We briefly outline evolutions of curves within the Level Set framework. First, the
gradient of the distance function gives the direction of the normal at any point of
the shape. Let N be the outward unit normal and φ be a distance function. Within
the Level Set framework, N is expressed in equation (3.17).

N =
∇φ

|∇φ| (3.17)

Given a deformation field v, the evolution is implemented with the following Par-
tial Differential Equation (PDE).

∂φ

∂t
= −v · ∇φ (3.18)

Note that only the normal component of v is considered.
One can easily show that (Eq. 3.18) is equivalent to ∂S/∂t = v for the 0-isolevel.
Yet, shape S corresponds to the 0-isolevel of the distance function φ and we have
a straight correspondence between ∂S/∂t and ∂φ/∂t. We now link (Eq. 3.18)
with (Eq. 3.16). Equation (3.18) says that each level of φ evolves according to the
deformation field v, usually a shape gradient, in the normal direction of the curve.
Equation (3.16) says similarly that shape S evolves according to a shape gradient.

φt should be regularly reinitialized, for instance to a distance function, to make
sure that the gradient descent does not become unstable. Note that specific imple-
mentations may impose φt to remain a distance function while iterating over the
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time index t [97].

Mean Curvature Motion [82] is an example of shape deformation that min-
imizes the length of a closed curve (or the area of a closed surface) by mov-
ing its points in the normal direction with a velocity proportional to its curva-
ture. For the sake of completeness, we start by defining a parameterized curve
S(q) : [0, 1] −→ R2. Let us also define the energy El(S) which calculates the
length of S.

El(S) =
∫ 1

0

∣∣∣∣
∂S(q)

∂q

∣∣∣∣ dq (3.19)

As previously mentioned, the energy El(S) might be changed by choosing a new
parametrization not intrinsic to the curve. To overcome such limitation, we choose
the curvilinear abscissa as intrinsic parametrization of the curve S. Note that when
the curvilinear abscissa parametrization is chosen, we can write ds = |∂S(q)/∂q|dq

and express Eq. (3.19) depending on the length L(S) of the curve.

El(S) =
∫ L(S)

0
ds (3.20)

where ds is the Euclidian metric. We solve the Euler-Lagrange equation by using
the Gâteaux derivative of energy El(S), which gives the heat equation. This can
be easily generalized to higher dimensions (surfaces, hypersurfaces).

∂S

∂t
= ∇SEl(S) = −κN (3.21)

where κN = ∂2S/∂q2 is the curvature.
Even when the parametrization is intrinsic (by means of curvilinear abscissa), the
evolution is not guaranteed to be causal and the curve should be reparameterized
after each step to have a stable evolution. The Level Set implementation of equation
(3.21) avoids such a process. The curvature κ within the Level Set framework is
given by equation (3.22).

κ = div
( ∇φ

|∇φ|
)

(3.22)

The PDE is then given as follows, and figure (3.3) illustrates the evolution.

∂φ(x, y)
∂t

= −κ (φ (x, y)) |∇φ(x, y)| (3.23)

During the evolution, the shape becomes convex and then disappears into a “circle
point” in a finite time.
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Figure 3.3: Mean Curvature Motion: Evolution of curves in the Level Set
framework following equation (3.23): the shape becomes convex and then dis-
appears into a “circle point” in a finite time

3.4.3 Shape manifold interpolation

Introduction & assumptions

In this work, shape manifolds are learnt from a finite set of training samples using
dimensionality reduction techniques, as previously mentioned. Basically, these
techniques build a mapping to a low dimensional space that preserves the local
neighborhood information, based on a neighborhood graph (see chapter 5). In-
between shapes on shape manifolds remain however unknown. In this section, we
tackle such a problem, provide simple approaches to interpolate in the shape space
and propose a solution to the interpolation of shape manifolds.

How to interpolate in the shape space ?

First, the minimization scheme presented in the previous section is used to interpo-
late between two shapes. Indeed, any differentiable distance such as the Sobolev
distance or the smooth differentiable approximation of the Hausdorff distance can
be employed as energy E. Given two shapes S1 and S2, we build a smooth defor-
mation path S1 → S2 by minimizing d(S, S2) with S1 as initial shape. Neverthe-
less, the paths S1 → S2 and S2 → S1 are not symmetrical in general, and cannot
be used to parameterize locally the shape space. Furthermore, it cannot be easily
extended to more shapes when n > 2.

Inspired by H. Karcher [107], Guillaume Charpiat, Olivier Faugeras and Re-
naud Keriven [40] propose to use a mean of n shapes S1, · · · , Sn, the shape S̄
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given by:

S̄ = arg min
S

n∑

i=1

d (Si, S)2

Following the same path, we propose to build weighted Karcher means to interpo-
late between n sample shapes S1, . . . , Sn.

Definition 8 (Weighted means between n shapes)
Let S1, · · · , Sn ∈ S be n shapes and Λ = {λ1, · · ·λn} be n respective weights such

that

{ ∑
i λi = 1

∀i ∈ 1, · · ·n λi ≥ 0
. The weighted mean shape is given as follows.

S̄(Λ) = arg min
S

n∑

i=1

λid (Si, S)2 (3.24)

As in [40], the weighted mean S̄(Λ) is obtained by a gradient descent, a shape S

evolving according to a gradient flow:

−
∑

i

λid (Si, S)∇d (Si, S) (3.25)

We now briefly detail the case n = 2, where Λ = {λ1, λ2} with λ1 = 1− λ2 = λ

and build an interpolation path of which the shapes correspond to the values of λ

in the unit segment [0, 1].
Let λ(1), . . . , λ(p) be a uniform discretization of the unit segment [0, 1] such that
λ(1) = 0 and λ(p) = 1. The Karcher mean shapes S̄(Λ(1)), . . . , S̄(Λ(p)) that
correspond to λ(1), . . . , λ(p) represent a discretization of the interpolation path
we aim to build (∀i ∈ {1, . . . p}, Λ(i) = {λ1(i) = λ(i), λ2(i) = 1− λ(i)}). Note
that S̄(Λ(1)) = S1 and S̄(Λ(p)) = S2. In order to avoid local minima, we proceed
iteratively: ∀i = 2, . . . , p, the shape S̄(Λ(i)) is calculated by solving equation
(3.24) with the initial shape S̄(Λ(i− 1)).
Figure (3.4) shows an example of interpolation path between a bird and rabbit, by
using Karcher means. Although it involves two shapes only, it should be noted
that: (i) the number of shapes is not limited to n = 2, and (ii) even when n = 2,
the path defined by the weighted means is neither a geodesic for some distance,
nor a straight gradient descent from S1 to S2.
Nevertheless, the uniqueness of the means is not proved and we still cannot ensure
that the path is completely symmetrical.
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Figure 3.4: Interpolation in the shape space between two points (a bird and a
rabbit) using six weighted means.λ = 0, 0.2, 0.4, 0.6, 0.8 and 1

To cope with this non uniqueness issue, we also tried to develop another idea,
based on the works of Fernand Meyer [136], Jean Serra [182] and Serge Beucher
[18]. The authors all build shape geodesics in the context of mathematical mor-
phology.
Given two shapes S1, S2 and an evolving intermediate shape S, the sum d(S, S1)+
d(S, S2) should remain constant equal to d(S1, S2). Such a condition is necessary
but not sufficient to build geodesic path (see the proof in [39]). We design the fol-
lowing energy based on this idea and mean shapes, the parameter λi being used to
parameterize intermediate shapes.

min
S

n∑

i=1

(vi(S)− λiv)2 with
n∑

i=1

λi = 1 (3.26)

where v is the hypervolume formed by the n + 1 shapes, vi(S) is the ith hypervol-
ume formed by n shapes and the shape S. When n = 2, it has the simple following
form.

min
S

[d (A, S)− λd (A, B)]2 + [d (B, S)− (1− λ) d (A,B)]2
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The implementation is however not straight when n > 2 and experiments with
n = 2 and different distances have not shown to be better in general.

zoom

S1

S2

S0

S0

S2

S1

shape nodes
M

Figure 3.5: Local interpolation of the shape manifold M of dimension n:
weighted mean shapes are used to locally interpolate M within a given n dimen-
sional simplex (in red), that linearly and locally approximates M

Local interpolation of shape manifolds

Let M be a n dimensional shape manifold sampled by p shapes. We assume that
the p samples are the nodes of a n-dimensional mesh lying in the shape space and
forming n dimensional simplexes (and so convexes). The construction of such
meshes will be detailed in the sequel using the Delaunay triangulation and the dif-
fusion maps technique [117] (see chapter 5). Since a category of shape is seen as
a smooth manifold (a shape manifold), we also suppose that simplexes are good
local linear approximations of the shape manifold. Now, the question is how to
build intermediate shape within a given simplex made of n + 1 shape nodes ?

We suppose that Karcher mean shapes can roughly locally interpolate in S a
n dimensional shape manifold between n + 1 shape node S0, · · · , Sn forming a
simplex N. Λ can be viewed as a local parametrization of the shape manifold M
within the simplex N. The set covered by S̄N(Λ) for all the possible values of Λ
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provides a continuous approximation of the manifold within simplex N. This is
illustrated in figure (3.5).
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Chapter 4

Image segmentation

Abstract

Although the contributions of this thesis are primarily presented in a generic form
(see chapter 7 ), we are driven by applications in image segmentation. We then
carefully pay attention to highlight how our work fits in with the context of prior
advances in this field of computer vision.

61
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Key points

We give a short review of the state-of-the-art techniques in image segmenta-
tion.



4.1. INTRODUCTION 63

4.1 Introduction

Image segmentation is a manual or automated task that achieves a partition of an
image domain into disjoint sub-regions of interest. Basically, its goal is to distin-
guish objects from background in two or three dimensional images as illustrated in
figure (4.4). Segmentation is a central problem in computer vision and has many
application fields such as medical imaging or [semi-]automatic surveillance, for
recognition, identification and detection. Nevertheless, it still remains an ill-posed
problem due to various perturbing factors such as noise, occlusions, missing parts,
cluttered data, etc.

The image segmentation problem can be approached from two opposite sides,
by considering discontinuities or regions in images. On the one hand, disconti-
nuities are detected to highlight edges in the image, pixels are classified into two
groups: edge pixels and non-edge pixels. These methods date back to the be-
ginnings of image processing [161, 158, 35, 65] to cite earlier works. On the
other hand, regions with a given statistical property (often uniform regions) are
extracted. Theses techniques were introduced latterly in literature as in [33, 142,
20, 152, 220, 125, 187] to cite a few. Most image segmentation techniques rely on
these two views and some more recent methods use advantages of both. Roughly,
edge-based methods have better detection precision and are easier to implement
while region-based are more robust but less precise on edges.

The rest of this chapter is organized as follows. In section 4.2, we introduce
fundamentals of image segmentation based on low level vision operators and in
the broad sense. We then focus on active contour segmentation in section 4.3 and
finally review image segmentation with shape priors in section 4.4.

4.2 Image segmentation

4.2.1 Edge detection

At the lowest level of image analysis, segmentation attempts to extract edge pixels
which consist of high variations of image intensity that delineate uniform sub-
regions. Let I be an image defined on a domain D as I : D ⊂ R2 −→ R and ∇I
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its gradient.

D ⊂ R2 : −→ R2 (4.1)

(x, y) 7−→ ∇I =

[
∂I/∂x

∂I/∂y

]

Basics of edge detection rely on local derivative operators such as the gradient of
which the norm ||∇I|| is used to measure the variability of the image around a
given pixel. Among the most popular edge detectors based on local operators are
the Canny filter [35], the Sobel filter and the Deriche filter[65], but also the Robert
filter [161], the Prewitt filter [158] etc. Robert’s, Prewitt’s and Sobel’s operator
are a discrete approximation of the gradient (Eq. 4.1). Pixels are then classified as
edges or non edges by means of a single threshold.
Canny’s operator seeks to extract edges with reliable detection, accurate localiza-
tion and unique response. By using calculus of variation, John Canny found an
“optimal” linear operator, which approximates the first derivative of the Gaussian
operator applied to the image. The Gaussian operator smooths the image to remove
noise. For one dimensional signals, the filter is given by the following function
f(x), and the output is then thresholded.

fCanny(x) = Axe−
x2

2σ2 (4.2)

Deriche’s edge detector is another “optimal” filter close to the Canny’s operator. It
can however be implemented very efficiently by using a recursive filter.

fDeriche(x) = Axe−
|x|
σ (4.3)

Hysteresis thresholding is employed right after applying the Canny or Deriche filter
to the image. It consists in removing non maxima in the direction of the gradient
from the filter response by setting two thresholds, tl (low) and th (high) such that
tl < th. Pixels with value higher than th are classified as edge and lower than tl as
non-edge. Both Canny and Deriche filters involve directional informations, which
is used to trace edges and determine the state of pixels with intermediate values,
higher than tl and lower that th. Then, in-between pixels can still be identified as
edges if they are neighbors of edge pixels. This process produces a binary image
and allows us to mark out strong edges while weak edges are maintained and noise
is reduced.
In order to extract closed edge paths, second order derivative operators have been
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developed in literature (detection is achieved by finding the zero-crossing of the
second derivative). Among the most common filters are Laplacian operator, Lapla-
cian of Gaussian operator and difference of Gaussian. For a more complete review
and recent developments of edge detection, the reader is referred to [125].
We illustrate the results of four common operators (Sobel, Laplacian of Gaussian
Canny and Deriche) in figure (4.1).

4.2.2 Region-based / Pixel-grouping methods

Introduction

Another point of view to image segmentation is to search for uniform sub-regions.
Formally, region based methods divide the image domain D into N regions {D1, . . . ,

DN} such that D =
⋃N

i=1 Di and ∀i 6= j Di ∩Dj = ∅, regions Di being “uni-
form”. In a very early work by Claude Brice and Claude Fennema in 1970 [33]
region-based segmentation is introduced by using a region growing algorithm,
which aggregates new pixels to a given region. The authors even use simple gram-
mar rules for basic object recognition. Region growing has been also developed
latterly in [1].

The Mumford-Shah energy

Smoothing images while preserving edges is the core idea of region-based seg-
mentation. Edges preserving smoothing can be achieved using different techniques
such as Markov Random Field [14] (commonly denominated MRF, seminal work
by Donald Geman and Stuart Geman in [96]). Global optimization of a variational
energy based on piece-wise representations is proposed by David Mumford and
Jayant Shah in [142, 143]. The Mumford-Shah functional energy is a very popular
model and extensively used in computer vision. It is described as follows: Given
an image g and a resulting image f , the objective function should:

• smooth the image f : It involves a term of the following form
∫∫

D |∇f |2

• keep the image f closed to g: The square difference should be simply min-
imized

∫∫
D (f − g)2

• allow discontinuities along edges and regularize the contours The con-
tours are grouped into a set C, and the above smoothing term is modified
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Figure 4.1: Edge detectors - First Column: filter response Second Column:
Thresholded filter response (thresholds automatically estimated) First row: So-
bel operator, which estimates the gradient of the image. Single threshold: 11.11
Second row: Laplacian of Gaussian operator, detection of zero crossing. Sin-
gle threshold: 0.43 Third row: Canny operator. Hysteresis thresholding, low
threshold: 0.018, high threshold: 0.046 Fourth row: Deriche operator. Hysteresis
thresholding, low threshold: 0.012 , high threshold: 0.031

into
∫∫

D\C |∇f |2, and the length |C| of the contours should be minimized.
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This leads to the following resulting energy functional.

E (f, C) =
∫∫

D
(f − g) dxdy + λ2

∫∫

D\C
‖∇f‖2 dxdy + α |C| (4.4)

where λ and α are parameters that balance the influence of different terms. Several
techniques have been proposed in literature to minimize the so-called Mumford-
Shah energy. Andrew Blake and Andrew Zisserman describe an algorithm in [23,
24] that searches for a minimum by means of a discrete form of (Eq. 4.4) as
follows.

Ed(u,C) =
N∑

i,j=1

(dij − uij)
2 + λ

∑

i,j

Gij (1− lij) + α
∑

i,j

lij (4.5)

where C is the discrete set of contour edges, d is the discrete image, u is the
resulting image, G is the image gradient, ·ij is the index of the image pixel at
coordinates i and j and lij is given by

lij =

{
1 if (i, j) ∈ C

0 if (i, j) /∈ C
(4.6)

In order to implement this energy such that it depends only on u, the set C is
clarified and a discontinuity is made explicit when the gradient is beyond a given
value, leading to a new formulation.

End(u) =
N∑

i,j=1

(dij − uij)
2 +

N∑

i,j=1

gα,λ (Gij) (4.7)

where

gα,λ (G) =

{
λ2G2 if λ2G2 ≤ α

α else
(4.8)

The energy is then minimized by gradient descent with u = d as initialization. The
Blake-Zisserman algorithm outlined above, is actually more developed in order to
overcome local minimum. Basically, they approximate gα,λ to insure End(u) to be
convex, and then build a series of functions gp

α,λ that approach the function gα,λ.
This is known as the Graduated non convexity (GNC) algorithm [23, 24].
Many other methods exist to minimize the Mumford-Shah functional energy such
as Mean Field Analysis (MFA) [22], which is a faster approximation of the simu-
lated annealing technique [112].
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The region merging [20] and region competition [220] algorithms merge regions
from smaller ones, given a criterion involving the uniformity of region and/or
sharpness of boundaries. Note that these approaches can also be employed to min-
imize the Mumford-Shah energy.

Diffusion

A similar concept but with a different approach based on the well known heat
diffusion is suggested by Pietro Perona and Jitendra Malik in [152]. The heat
diffusion is implemented by the following partial differential equation (PDE).





I(0) = I0

∂I

∂t
= ∇ · ∇I

(4.9)

Perona-Malik diffusion is a non linear process build to avoid diffusing over discon-
tinuities and is given by the following PDE.





I(0) = I0

∂I

∂t
= div (g(∇I)∇I)

(4.10)

where g(x) is a decreasing function of the gradient intensity such as g1 or g2: the
diffusion is stopped where the gradient intensity is high.

g1(x) =
1

1 +
( x

K

)2 (4.11)

g2(x) = exp
(
−

( x

K

)2
)

(4.12)

Perona-Malik diffusion is illustrated by figure (4.2). Although the process tends to
partition the image into uniform regions, diffusion over weak edges may happen.

Other approaches

Recent developments of graph-based methods include spectral methods by Jianbo
Shi and Jitendra Malik [187], maximum network flow [30], semidefinite program-
ming techniques by Jens Keuchel et al. [110], Semi supervised graph cut Seg-
mentation by Yuri Boykov and Marie-Pierre Joly [29] (see also [28]), random walk
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Figure 4.2: Perona-Malik diffusion: from left to right, original image, after 50
iterations and after 200 iterations

/ potential theory by Leo Grady [98], Minimum Ratio Cycles (MRC) on product
graphs [177] by Thomas Schoenemann and Daniel Cremers. Note that shape priors
are also incorporated in graph-based methods. For instance, Thomas Schoenemann
and Daniel Cremers employ MRC to find a global optimal image segmentation with
elastic shape prior [176], or Ali Kemal Sinop and Leo Grady use ratios to infer ba-
sic shape priors [188]
The watershed algorithm [19, 134, 135] comes from a topographical notion and
was proposed in the context of image segmentation by Serge Beucher and Christian
Lantuejoul in 1979 [19]. The image is seen as a topographical landscape flooded
by water. The watershed is the set of point such that a drop of water can end up in
two different regional minimum. It can be theoretically related to graph-cut tech-
niques [5].
Recently, some techniques based on perception (colors, textures, Gestalt cues such
as continuity etc.) have been developed to generate perceptual grouping or vi-
sually pleasing segmentation results. In [205], Zhuowen Tu and Song-Chun Zhu
combine bottom up and data driven techniques with high level prior knowledge
such as colors, texture and boundary continuity hypotheses. Gestalt cues, texture,
brightness and good continuation are used by Xiofeng Ren and Jitendra Malik in
[160]. In [109], John Kaufhold and Anthony Hoogs learn boundary edges. First,
they densely segment the images and then each edge is classified into boundary /
non boundary using a classifier trained on a ground true. The authors use percep-
tion hypothesis and perceptual rules during the process. In [211] segmentation is
directly used for object recognition. The image is also over-segmented and a bot-
tom up MCMC (Markov Chain Monte Carlo) mechanism is used to group regions
by image information and shape similarity constraints (shape priors).
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4.3 Segmentation with active contours

4.3.1 Introduction

Segmentation algorithms cited previously all have in common the fact that they are
pixel-wise at local or global scale. In this section, a different approach to image
segmentation is introduced. Basically, a curve evolves in the image domain by ex-
pansions and shrinkages according to constraints defined by the image. In the final
stage of the segmentation process, the curve is supposed to delimit a region defined
by the object of interest. Note that the region is not necessarily connected. These
methods mostly make a curve evolve, according to a partial differential equation
(PDE) as previously described in chapter 3. In the sequel, we will refer only to that
kind of segmentation.

4.3.2 Active contours: Snakes

In [108], Michael Kass, Andrew Witkin and Demetri Terzopoulos published a sem-
inal paper on a new approach to image segmentation called snakes, based on an
active contour model. Let S(q) : q −→ R2 be a parametrized curve.

Es(S) = ν1

∫
|∂S

∂q
|2dq + ν2

∫
|∂

2S

∂q2
|2dq − ν3

∫
|∇I(S)|2dq (4.13)

The first two terms are called internal energies, i.e. they depends only on the curve.
∂S/∂q controls the elasticity or tension of the curve and make the curve behave as
membrane while ∂2S/∂s2 controls its stiffness and make the curve behave as a thin
plate. The last term is called external energy i.e. it depends on a potential scalar
energy such as the gradient in (Eq. 4.13). Note that a prior term can be added
to Es. In practice, the snakes model consists of a set of point sampling the curve
associated to a discretized version of the energy Es. Snakes are illustrated in figure
(4.3) where the internal energy enforces the snake to segment a large circle.
This method, which results in closed contour segmentation with high precision
edge detection, has however important drawbacks as mentioned in chapter 3. In-
deed, we recall that the shape representation

1. requires a reparametrization during the evolution, since it is based on an
explicit representation (in order to have a stable evolution)

2. is difficult to extend to higher dimensions
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3. cannot be easily extended to other criteria and
4. does not have an intrinsic parametrization
5. cannot a-priori deal with topological changes.

Concerning the last point, note that some topology adaptive meshes (T-snakes and
T-surface) have been introduced in [129, 130]. Level set implementation mostly
overcomes these limitations.

Figure 4.3: Active snakes contours: from left to right, initialization of a snake,
after convergence (original image), after convergence (norm of intensity gradient
image)

4.3.3 Within the Level Set framework

Introduction

The Level set representation has been commonly accepted and employed in the
computer vision community because it has many advantages (see chapter 3) such
as allowing topological changes. The methods presented in this section are all
implemented within the Level Set framework, though other techniques could be
used to minimize the proposed objective functions. Level set based segmentation
can be classified into two categories, edges-based [43, 36, 128, 37, 111] and region-
based [38, 149, 204, 214, 148, 150].

Edge-based methods

The methods in the first category rely on local filtering techniques and gradient-
based operators used by edge operators. Edge-based methods have low computa-
tional costs compared to region based approaches (see further in the text). Shape
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variation are also naturally handled. Finally, they are also insensitive to global il-
lumination changes, since edge detection is based on relative illumination changes.

Geometric active contours [36], introduced by Vincent Caselles, Francine Catté,
Tomeu Coll and Françoise Dibos, are described by the evolution equation (4.16)
[147]. Basically, it relies on the Mean Curvature Motion previously mentioned
(Eq. 3.21, p. 54). Contrary to the snake model, it is based on a curvilinear abscissa
parametrization and can then be advantageously implemented within the Level Set
framework. The model is built from the evolution equation (3.21) and is completed
by a stopping function g and a constant velocity ν in order to detect objects.

∂S

∂t
= −g(∇Î) (κ + ν)N (4.14)

where κ is the curvature and Î is a smoothed version of image I . The term κ

enforces the curve to shrink accordingly to the curvature while ν ensures the curve
to evolve into the normal direction at a minimum constant speed and allows us
to detect non-convex objects. Both terms, κ and ν, are weighted by the stopping
function g which blocks the evolution along edges. g is a decreasing function of the
gradient that slows or stops the evolution as the gradient become higher. Equation
(4.15) is an example of stopping function.

g(x) =
1

1 + ||x||n , n = 1, . . . (4.15)

Note the similarity with non linear diffusion presented above. See (Eq. 4.10). The
Level Set evolution equation is then given by

∂φ(x, y)
∂t

= −g
(
∇Î(x, y)

)
(κ(φ(x, y)) + ν) |∇φ(x, y)| (4.16)

The reader is also referred to similar works [128, 43].

Latterly, Vincent Caselles, Ron Kimmel and Guillermo Sapiro present the geodesic
active contours [37], which is similar in spirit to the geometric active contour. Con-
trary to geometric active contour model, the energy minimized is explicitly known
and is expressed in a closed form (from the snake contour model). Indeed, it can be
advantageously interpreted as the length of a contour in a Riemannian space with a
metric induced by image intensity. Yet, when the curvilinear abscissa parametriza-
tion is chosen, the energy is expressed depending on the length L(S) of the curve.
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Figure 4.4: Geometric active contours: Evolution in the level set framework
following (Eq. 4.16). Bottom right image represents the function g. Here g(x) =
1/1 + ||x||2

Eg(S) =
∫ L(S)

0
g(∇Î)ds (4.17)

where ds =
∣∣∣∂S(q)

∂q

∣∣∣ dq is the Euclidean metric. Equation (4.17) is compared to the
length of a curve (Eq. 3.20, p. 54). The new length of the curve S is obtained
by weighting the Euclidean element of length ds by g(∇Î), which contains edge
information (hence the name geodesic active contour).
The Euler-Lagrange equation is solved to obtain the evolution equation.

∂S

∂t
= −

(
g(∇Î)κN− (∇g ·N)N

)
(4.18)

We also compare the new evolution equation (4.18) with (Eq. 4.14). In the old
model (Eq. 4.14), the curve stops only when g = 0 which occurs only on ideal
edges. In real images the gradient intensity varies along the boundaries notably
when edges are badly defined and ideal edges are rare. We notice that this situation
is naturally handled by the term ∇g ·N embedded in the new model (Eq. 4.18).
This term still attracts the curve toward the boundaries of the object. A second
advantage of geodesic active contours is that the velocity term ν is removed, since
extra parameters are usually unwanted properties.
Equation (4.18) is easily implemented in the Level Set framework.

∂φ(x, y)
∂t

= g(∇Î(x, y)|∇φ(x, y)|κ(φ(x, y))+∇g(∇Î(x, y)) ·∇φ(x, y) (4.19)
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The reader is also referred to [111].

In [7], Ben Appleton and Hugues Talbot introduce a graph based technique
called Globally Optimal Geodesic Active Contour (GOGAC), that searches for
minimal cycles in weighted graphs.

Region-based methods

In spite of their advantages, edges-based Level Set techniques remain very sensitive
to noise and robustness to noise is hardly satisfied. To cope with such limitation,
region-based approaches have been developed.

For example, Nikos Paragios and Rachid Deriche propose geodesic active re-
gions [148, 149, 150] still implemented in the Level Set framework. The curve
evolves according to a statistical analysis based on the maximum likelihood princi-
ple for the observed density functions e.g. an image histogram, within the regions
partitioning the image domain. A boundary term is modeled in this framework as
well.

EGAR(S) = α

∫ L(S)

0
g (pS(I(S(q)))) ds

+ (1− α)
∫

RA

g (pA(I(x, y))) dxdy

+ (1− α)
∫

RB

g (pB(I(x, y))) dxdy

(4.20)

where RA, RB are the regions defined by the partitioning curve. pA(I(S(q)),
pB(I(S(q)) are conditional intensity density functions with respect to segmenta-
tion hypotheses.The first term (boundary term) imposes regularity, minimal length
of the curve and attracts toward edges. The others are region terms. The reader is
also referred to [214, 204]

In [38], the Chan-Vese’s model solves the minimization problem by deriving
the Mumford-Shah energy in the Level Set framework and leads to the following
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evolution equation.

∂φ(x, y)
∂t

= δε (φ(x, y))
{

ακ(φ(x, y))− ν

−
[
(I(x, y)− µo)

2 − (I(x, y)− µb)
2
]} (4.21)

where δε is a smooth approximation of the Dirac function.
The image is supposed to be segmented into two regions, the object and the back-
ground. Each region can be approximated as a piecewise constant intensity func-
tion with an associated intensity value: µo and µb one for each region. In other
words, the object can be approximated by the mean value µo and the background
by the mean value µb. The evolution seeks to minimize the difference between the
mean values inside/outside the curve and the given values µo and µb.
Note that a discussion on the accuracy and limitations of edge-based approaches
compared to region-based approaches can be found in Daniel Cremers’ PhD dis-
sertation [52].

A recent review on image segmentation by Daniel Cremers, Michael Rousson
and Rachid Deriche is available in [56]. The reader is also referred to [119] for
completeness.

4.4 Incorporating shape priors in active contours

4.4.1 Introduction

When dealing with complex images, some prior shape knowledge may be nec-
essary to remove any ambiguity in the segmentation process. The use of such
prior information in the deformable models framework has long been limited to a
smoothness assumption or to simple parametric families of shapes.

4.4.2 Learning linear shape priors

A recent and important trend in this domain is the development of deformable
models integrating more elaborate prior shape information. An important work
in this direction is the active shape model by Timothy Cootes, Christopher Taylor
and David Cooper [48]. This approach performs a principal component analysis
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(PCA) on the position of some landmark points placed in a coherent way on all the
training contours. The number of degrees of freedom of the model is reduced by
considering only the principal modes of variation. The active shape model is quite
general and has been successfully applied to various types of shapes (hands, faces,
organs). However, the reliance on a parameterized representation and the manual
positioning of the landmarks, particularly tedious in 3D images, somehow limits it
applicability.

Michael Leventon, Eric Grimson and Olivier Faugeras [122] circumvent these
limitations by computing parameterization-independent shape statistics within the
Level Set representation [147, 185, 146]. Basically, they perform a PCA on the
signed distance functions of the training shapes, and the resulting statistical model
is integrated into a geodesic active contours framework. The evolution equation
contains a term which attracts the model toward an optimal prior shape. The lat-
ter is a combination of the mean shape and of the principal modes of variation.
The coefficients of the different modes and the pose parameters are updated by
a secondary optimization process. The work by Daniel Cremers, Stanley Osher
and Stefano Soatto [55] is is the first, to our knowledge, to introduce a Bayesian
formulation on the space of level set functions and to model an arbitrary a priori
probability distribution by kernel density estimates. Note that several improve-
ments to such approaches have been proposed [165, 42, 203], and in particular an
elegant integration of the statistical shape model into a unique MAP Bayesian op-
timization. The authors in [95], Muriel Gastaud and Michel Barlaud, define the
shape prior as a functional of the distance between the active contour and a contour
of reference.

Performing PCA on distance functions might be problematic since they do not
define a vector space. To cope with this limitation, Guillaume Charpiat, Olivier
Faugeras and Renaud Keriven [40] proposed shape statistics based on differentiable
approximations of the Hausdorff distance. However, their work is limited to a lin-
earized shape space with small deformation modes around a mean shape. Such an
approach is relevant only when the learning set is composed of very similar shapes.
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4.4.3 Non linear shape priors

In order to deal with non linear shape priors, kernel approaches are used to map data
in higher dimensional linear feature space. (See chapter 5). Daniel Cremers, Tomi
Kohlberger and Christoph Schnörr proposed in [53] another neat Bayesian prior
shape formulation based on a B-spline representation and a probabilistic version
of KPCA (Kernel Principal Component Analysis, see chapter 5). In this model,
shapes are represented by a linear combination of B-splines using a set of control
points z. A shape prior energy, which is calculated in the feature space from z

by using KPCA-like approach (Eq. 3.3), minimizes both the distance in feature
space and the distance from the feature space (that is equivalent to minimizing a
reconstruction error).

Let us also mention [162, 206] which are other KPCA-based approaches in the
statistical shape framework.
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Chapter 5

Dimensionality reduction &
manifold learning techniques

Abstract

Many problems of computer vision involve challenging data, due to their high —
sometime infinite — dimensionality. In this chapter, we review common methods
used to represent data in a space of reduced dimension from the well-established
principal component analysis technique (PCA) to more recent ones such as diffu-
sion maps (DFM).
In this work, we divide dimensionality reduction methods into three categories.
First, we begin with a presentation of the popular PCA and its extension KPCA
(Kernel PCA) to non linear data. Basically, these techniques attempt to recover
orthogonal directions of largest variance, which requires a large sample set. Next,
we outline some methods based on the distance between data points only. Usu-
ally, such methods are employed when the data dimension is very high compared
to the number of samples in the dataset. Finally, the most recent techniques as-
sume that data have a structure of low dimensional manifold embedded in a higher
dimensional space. These methods are theoretically well-founded, and for these
reasons, there is a clear trend toward their use in computer vision. Those are
Laplacian-based methods since their core relies on discrete approximations of the
Laplace-Beltrami operator. Last but not least, we highlight links between the meth-
ods presented in this chapter.

79
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Key points & Original contributions

We present the most popular dimensionality reduction techniques: Prin-
cipal Component Analysis (PCA), Kernel Principal Component Analysis
(KPCA), Multi-Dimensional Scaling (MDS), Isomap, Laplacian eigenmaps
(LEM) and diffusion maps (DFM).

We emphasize the links between these methods.
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5.1 Maximum variance based methods

5.1.1 PCA - Principal Component Analysis

Principal component analysis (PCA) is a technique introduced by Kenneth Pearson
[151] to explain the dispersion of a point cloud by projecting data onto a carefully
chosen linear subspace. If, for example, the linear subspace is of dimension 1, it is
chosen such that the data projection should have the maximum variance. Note that
one can capture the dispersion in linear subspaces of higher dimension, by build-
ing an orthonormal basis such that the projection along each axis has a decreasing
maximum variance. In other words, PCA reduces the dimensionality of the point
cloud while keeping the maximum of variance information. Schematically, PCA
projects data onto a lower dimensional space in order to uncorrelated them. PCA
has many applications, in visualization of high dimensional data, in denoising and
in classification.

We outline the PCA algorithm in Rn using a prediction linear model. We
consider p points Γ = {x1, . . . ,xp} of dimension n drawn from a random variable
~X and arrange these samples in a (n× p) matrix, denoted X. We also assume
that the p samples are centered and their number is far superior to the dimension n

(p >> n). Let u = {u1, . . . ,um} be a m dimensional orthonormal basis. Let also
P( ~X,u) denotes the projection of ~X:

P
(

~X,u
)

=
m∑

k=1

uk〈uk, ~X〉 (5.1)

We are looking for u∗ such that

~X = P
(

~X,u∗
)

+ ~W (5.2)

where ~W is the residual noise. The choice of the basis u should minimize ~W . This
prediction model (5.2) is supported by a theorem of Konstantinos Diamantaras and
Sun Yan Kung, which states that minimizing the reconstruction error is equivalent
to maximizing the variance of the projection along the axis u1, . . . ,um [69]. We
now detail the reconstruction error [U ~X(u)] and the maximum variance [I ~X(u)]
below.
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U ~X (u) = E
{∥∥∥ ~X − P

(
~X,u

)∥∥∥
2
}

(5.3)

I ~X (u) = E
{[
P

(
~X,u

)
− E

{
P

(
~X,u

)}]2
}

= var
{
P

(
~X,u

)}
(5.4)

Yet again, PCA maximizes an objective function I ~X(u) (Eq. 5.4) that describes
the inertia of the point cloud projected in the subspace spanned by u, which is
equivalent to minimizing the objective function U ~X(u) (Eq. 5.3):

û = arg min
u

U ~X (u) = arg max
u

I ~X (u) (5.5)

The dataset is supposed to be centered, i.e.
∑p

i=1 xi = 0. Let CPCA = 1
pXXT

be the covariance matrix. To simplify the notations, we will be using matrix
C = XXT in the sequel. Since PCA searches for a basis u that uncorrelated
the variables, we diagonalize the covariance matrix C (Eq. 5.6 by solving the
eigenproblem (Eq. 5.7)) [69]: the basis u is formed by the m first eigenvectors of
C, also named the principal axes. Note that we will be skipping the notation ·̂ in
the sequel.

C = UΛUT =
(
U
√

Λ
)(

U
√

Λ
)T

(5.6)

CU = UΛ (5.7)

where U = [u1, . . . ,un] and Λ = diag (λ1, . . . , λn) are the decreasing eigenval-
ues corresponding to the right eigenvectors u1, . . . ,un. The so-called principal
components XTU correspond to the projection of the dataset onto the principal
axes. We also define matrix V such that

V = XTU
(√

Λ
)−1

(5.8)

where in detail V = [v1, . . . ,vn] and ∀k = 1, . . . , n vk = λkXTuk. This choice
will be becoming clear in the sequel since it will be highlighting the relationship
between the different method presented in this chapter. Note that the principal
components are calculated with a change basis through matrix U and, as such,
PCA is a simple linear transformation. Then, we denote the mapping ΦPCA that
projects the p points x1, . . . ,xp into a m dimensional subspace and then defines
the m first principal components of the point cloud.

ΦPCA : Γ ⊂ Rn −→ Rm

xi 7−→ {√
λ1 (v1)i , . . . ,

√
λm (vm)i

} (5.9)
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where (a)i denotes the ith component of vector a.

We now focus on the extension of the analysis to a given new point x. Since
PCA is a linear transformation, point x is straightforwardly projected onto the kth

principal axis uk through the scalar operation 〈x,uk〉, which allows us to define
the mapping Φ̃PCA

Φ̃PCA : Rn −→ Rm

x 7−→
(
Φ̃PCA

1 , . . . , Φ̃PCA
m

) (5.10)

where
∀k = 1, . . . , p Φ̃PCA

k (x) = 〈uk,x〉 =
(
UTx

)
k

(5.11)

We go further in the analysis because we aim to link PCA with further methods
presented in this chapter. By using equations (5.7) and (5.8), we deduce that XV =
UΛ and

U = XV
(√

Λ
)−1

(5.12)

We merge (Eq. 5.10) with (Eq. 5.12) and obtain

∀k = 1, . . . ,m Φ̃PCA
k (x) =

(
Λ−1/2 VTXTx

)
k

=
(
Λ−1/2 VT 〈X,x〉)

k

(5.13)

5.1.2 KPCA - Kernel Principal Component Analysis

In the previous section, PCA’s goal was simply to express the data in a new orthog-
onal basis by means of a linear transformation. This detail is of particular impor-
tance since PCA is efficient only if the data lie on a linear subspace up to residual
noise, more precisely, if the dataset is “homogeneously” distributed around a given
mean. Nevertheless, data sets used in real problems mostly have non-linear fea-
tures and PCA cannot be applied (as, for instance, exemplified in figure (5.2)). To
cope with this situation, kernel methods first map data into a higher dimensional
space –possibly an infinite dimensional space– and then force them to lie into a
linear subspace. This technique relies on the well known kernel trick.

The kernel trick

The kernel trick is a technique which was primarily used in classification of clus-
tered data separated with non linear boundaries. Since details of KPCA is beyond
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Figure 5.1: Example of PCA in 2 dimensions

the scope this thesis, we only outline the kernel trick using a toy example. Assume
that a dataset in an input space X = R2 is compounded of two labeled clusters and
separated by a circle boundary as represented in figure 5.3. Common classification
methods, such as PCA, are linear and cannot deal with this situation. However, a
mapping ϕ into a higher dimensional Hilbert space Y , called feature space in our
context, can be constructed so that the data become linearly separable (see figure
5.3)

ϕ : R2 → R3

x = (a, b) 7→ (
a2,

√
2ab, b2

) (5.14)

We denote by K : X ×X → R, the inner product in the feature space Y . By doing
a simple calculation, we find that it can be expressed by means of the inner product
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Figure 5.2: PCA fails with “non linear data”: Black points are the data to be
analyzed. The color code represents the values of the point projection onto the
principal axes. Top: PCA Values on the first (left) and second (right) principal
axis. Bottom: KPCA values on the first (left) and second (right) principal axis

in the input space X .

K(xi,xj) = 〈ϕ(xi), ϕ(xj)〉Y (5.15)

= (〈xi,xj〉)2 (5.16)

where 〈·, ·〉Y is the scalar product in the feature space Y . K is called the Mercer
kernel and matrix K = (Ki,j)1≤i,j≤p (Ki,j = K(xi,xj)) is called the Graam
matrix.

The mapping ϕ cannot always be explicitly expressed. Nevertheless, the Mer-
cer’s theorem [133] states that: Any symmetric positive semi-definite continuous
kernel function K can be expressed as a dot product in a higher dimensional space
K(·, ·) is often the Gaussian kernel
In kernel methods, Y is a reproducing kernel Hilbert space (RKHS) [9] and we
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have ∀f : X −→ Y
f(x) = 〈K(x, ·), f〉Y (5.17)

and the Mercer’s kernel defines an integral operator

(Kf)(x) =
∫

K(x, y)f(y)dy (5.18)

Figure 5.3: The kernel trick: data mapping (from left to right) following ϕ(a, b) =(
a2,

√
2ab, b2

)

Non-linear PCA in a higher dimensional space

The Kernel Principal Component Analysis (KPCA, or Kernel PCA) was introduced
by Bernhard Schölkopf, Alexander Smola and Klaus-Robert Müller in [180] to
compute a “PCA” for data lying in non-linear subspaces. It uses the kernel trick to
map in a higher linear space. KPCA assumes implicitly that data have a Gaussian
distribution (or at least “close to”) in the feature space.

We denote Φ = [ϕ(x1), . . . , ϕ(xp)] and assume temporarily that data are
centered in the feature space. Note that we can form the kernel matrix K =
K(xi,xj)1≤i,j≤p such that K = ΦTΦ. Similarly to the linear case, the KPCA
aims at computing the eigenvectors of the covariance matrix CKPCA

fs in the feature
space.

CKPCA
fs =

1
p

p∑

i=1

φ(xi)φ(xi)T =
1
p
ΦΦT (5.19)
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in the feature space. Again, to simplify the notation, we will be using Cfs = ΦΦT

in the sequel.
Roughly, the following derivations are similar to those of PCA, X being replaced
by Φ (we abuse somehow the matrix notation)

CfsU = UΛ (5.20)

where U = [u1, . . . ,up] are the eigenvectors or principal axes, and Λ = [λ1, . . . , λp]
the corresponding eigenvalues. The principal components in the feature space are

given by ΦTU. Let denote V = ΦTU
(√

Λ
)−1

= [v1, . . . ,vp].
Now, from (Eq. 5.20) we deduce the following derivation.

ΦTΦΦT U = ΦTUΛ (5.21)

KΦTU
(√

Λ
)−1

= ΦTU
√

Λ (5.22)

KV = VΛ (5.23)

K = VΛVT =
(
V
√

Λ
)(

V
√

Λ
)T

(5.24)

As in PCA, we denote the mapping ΦKPCA that projects the points in a m dimen-
sional subspace and then defines the m first principal components in the feature
space (m ≤ p).

ΦKPCA : Γ ⊂ Rn −→ Rm

xi 7−→ {√
λ1 (v1)i , . . . ,

√
λm (vm)i

} (5.25)

Again, we focus on the extension of the analysis to a new given point x and define
the mapping Φ̃KPCA

k that projects point x onto the kth principal axis uk in the feature
space. Note that it relies on the Mercer theorem [133] and the RKHS theory [9].

Φ̃KPCA : Rn −→ Rm

x 7−→
(
Φ̃KPCA

1 (x) , . . . , Φ̃KPCA
m (x)

) (5.26)

where:
∀k = 1, . . . , p Φ̃KPCA

k (x) = 〈uk, ϕ(x)〉Y = UT ϕ(x) (5.27)

Following the same path as PCA and using the above derivations we easily find
that

U = ΦV
(√

Λ
)−1

(5.28)
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Again, by merging equations (5.29) and (5.28) we obtain

Φ̃KPCA
k (x) =

(
Λ−1/2 VTK(x, ·)

)
k

=
(
Λ−1/2 VT 〈Φ,x〉Y

)
k

(5.29)

where K(x, ·) = 〈Φ,x〉Y = [K(x,x1), . . . , K(x,xp)]T

Note that in the previous derivations, we assume that data were centered in the
feature space. Centering data in the feature space can be achieved by using a matrix
H = I− p−111T [180] and consider a new matrix K̃ defined as follows.

K̃ = HKH = ŨΛ̃ŨT (5.30)

5.2 Distance-based methods

In this section, we focus on two popular methods to achieve dimensionality reduc-
tion, based on the distance between points within a dataset. The first method, the
Multi-Dimensional Scaling, is a PCA-like technique used when PCA itself cannot
be applied. Such a situation occurs if the covariance matrix cannot be calculated
from the dataset, when data are, for instance, qualitative or infinite dimensional,
when only a point-wise distance is known or also when the size p of the sample set
is lower than the dimension of data. Note that we choose to present Isomap in this
section as an extension of the Multi-Dimensional Scaling method.

5.2.1 MDS - Multi-Dimensional Scaling

Introduction

The Multi-Dimensional Scaling (MDS) method has roots in psychometrics; a first
step toward MDS appeared in the journal Psychometrika in 1941 [216]. Torgeson,
W.S. also proposed in [201] a MDS method to explain psychometric experiments
on people’s perception of the similarities inside classes of objects. MDS [51] is a
technique to represent sets of general objects, equipped with a notion of compara-
tive distances, into a low dimensional Euclidean space that best approximates the
dissimilarities between the objects.
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Algorithm outline

For the sake of clarity, we detail the MDS algorithm with objects represented by
points in Rn. Yet, it can be used with more general data by using an adapted
similarity measure between objects. Let o1, . . . ,op be a set of p objects and D =
(Dij)1≤i,j≤p be a matrix of squared distances: Dij = d(oi,oj)2 is the squared
distance or similarity between objects oi and oj . A dissimilarity matrix S is easily
obtained from the distance matrix by means of a centering matrix H = I−p−111T :

S = HDH (5.31)

The matrix S is proved to be an inner product matrix [201], whether the distance
d is Euclidean or not. S is also symmetric semi-positive definite and of rank p. In
other words, there exists a (p × p)matrix X such that S = XTX = (Sij)1≤i,j≤p,
with Sij = xT

i xj (Torgerson equalities, see [202]). Note that X is a centered
matrix. Thus, we can write the spectral decomposition of S and infer the matrix
X:

S = XTX = VΛVT (5.32)

X =
√

ΛVT (5.33)

where Λ = diag(λ1, . . . , λp) is the diagonal matrix of eigenvalues λ1, . . . , λp and
Λ

1
2 = diag(

√
λ1, . . . ,

√
λp). As previously, we can define a mapping ΦMDS from

the data in the original space into the reduced space of dimension m:

ΦMDS : Γ ⊂ Rn −→ Rm

xi 7−→ {√
λ1 (v1)i , . . . ,

√
λm (vm)i

} (5.34)

Link with PCA

MDS is closely related to PCA. Let X = [x1, . . . ,xp] be p centered points in Rn

(PCA advantageously requires a centered dataset) such that p > n.
U = [u1, . . . ,up] are the eigenvectors (principal axes) of the covariance matrix
XXT , and λ1, . . . , λp are the corresponding decreasing eigenvalues.

XXTU = UΛ (5.35)

where Λ = diag([λ1, . . . , λp]).

We define V = XTU
(√

Λ
)−1

and multiply equation (5.35) by XT . Thus, we
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find the following derivation.

XTX
(
XTU

)
=

(
XTU

)
Λ (5.36)

S
(
XTU

)
=

(
XTU

)
Λ (5.37)

SV
(√

Λ
)−1

= V
√

Λ (5.38)

S = VΛVT =
(
V
√

Λ
)(

V
√

Λ
)T

(5.39)

The relation between (Eq. 5.38) and (Eq. 5.32) is clearly highlighted.
V appears to be the eigenvector of the inner product matrix S. We can then deduce
straightforwardly the mapping Φ̃MDS(x)

Φ̃MDS : Rn −→ Rm

x 7−→
(
Φ̃MDS

1 (x) , . . . , Φ̃MDS
m (x)

) (5.40)

∀k = 1, . . . , m Φ̃MDS
k (x) projects a new point x onto the kth principal axis uk.

∀k = 1, . . . ,m Φ̃MDS
k = Φ̃PCA

k (x) =
(
Λ−1/2VT 〈X,x〉

)
k

(5.41)

Link with KPCA: MDS as a particular case of KPCA

By comparing the derivations (Eq. 5.21), (Eq. 5.22), (Eq. 5.23), (Eq. 5.24) and
(Eq. 5.36), (Eq. 5.37), (Eq. 5.38), (Eq. 5.39), MDS can be straighforwardly seen
as the special case of KPCA such that the mapping ϕ is identity.

ϕ(x) = x (5.42)

5.2.2 Isomap

MDS is limited to data lying on a linear subspace and for instance, cannot be ap-
plied to the swiss roll example as explained by figure 5.4. Joshua Tenenbaum, Vin
de Silva and John Langford recently proposed in Science [196] an extended ver-
sion of MDS, named Isomap, for data lying on smooth non-linear manifold. Note
that most of recent dimensionality reduction methods (see section 5.3) rely on such
assumptions. This was a major advance in the state of the art at that time.

The difference between MDS and Isomap lies in the calculation of the distance
matrix. Indeed, only the distances between closed points on the manifold can be
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approximated by the distance in the data space. Far apart points on the manifold
can be very close in the data space and these distances should be carefully calcu-
lated (see figure 5.4). Isomap calculate approximations of geodesic path along the
manifold between all pairs of points. The Isomap method can be summed up in
three steps. First, we consider a distance d(x,y) in the data space, between points
x and y. The algorithm builds a neighborhood graph based on a ε-neighborhood or
k nearest neighbor points whose weights are set to Dij = d(xi,xj) if an edge link
exists between points xi and xj , otherwiseDij = ∞. The distance between all pair
of points is then calculated using a Dijkstra-like algorithm in the graph, and thus
the distance matrix D can be updated. Note that if the graph is fully connected, no
infinite distance should remain in matrix D. Finally, the MDS can be applied as
previously detailed.

Figure 5.4: Multi-Dimensional Scaling - On the left: Distance between two
points using a distance in the data space. Applying MDS with such a distance
would produce unexpected results. On the right: Distance between two points
using an approximated geodesic path.
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5.3 Laplacian-based methods: Data space as a smooth
manifold

Although some of the previous methods such as KPCA can recover the non-linear
structure of data, they mostly do not consider explicitly that the data may lie
on a low dimensional manifold (except Isomap). On the contrary, recent tech-
niques for dimensionality reduction assume that data have a structure of low di-
mensional manifold embedded in a higher dimensional space. They construct
maps into a low dimensional space preserving the local neighborhood topology.
In the beginning of this section, we explain how this idea is related to the Laplace-
Beltrami operator in the continous context. Among the most recent and popular
Laplacian-based techniques are the Locally Linear Embedding (LLE) [166], Lapla-
cian eigenmaps (LEM) [15] Locally Preserving Projections (LPP) [99], diffusion
maps (DFM) [117] and maximum variance unfolding (MVU) [212]. Dimension-
ality reduction with minimal local distortion is achieved using spectral methods,
through an analysis of the eigen-structure of some matrices derived from the adja-
cency graph. We give outlines of these latest techniques named Laplacian-based
methods.

5.3.1 Dimensionality reduction and Laplace-Beltrami operator on man-
ifolds

We denote M a manifold of dimension m lying in Rn with n >> m. Basically,
dimensionality reduction techniques attempt to construct a mapping f : M −→
Rm called an embedding, such that if two points x and z are close in M, then
also are f(x) and f(z). See figure 5.5. This idea can be easily expressed [15] for
m = 1 (further generalization to m > 1 is actually straightforward):

|f(z)− f(x)| ≤ distM (x, z) ||∇f(x)||+ o(distM (x, z)) (5.43)

where distM(x, z) is the geodesic distance on the manifold between points x and
z. In order to obtain a map that preserves the locality on average,

∫
M ||∇f(x)||2

should be minimized under the constraint ||f ||L2(M) = 1 that avoid the trivial
solution f = 0. We denote 〈f, g〉M =

∫
M f · g for any function f ,g defined on

M. By using the Stoke’s theorem 1and a Lagrange multiplier µ, we rewrite the
1The Stoke’s theorem on Riemannian manifolds results in∫

M
〈X,∇f〉 =

∫

M
div (X) (5.44)
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Figure 5.5: Dimensionality reduction - the embedding f preserves the local in-
formation of the manifold M

unconstrained functional energy G(f) to be minimized:

G(f) = 〈L(f), f〉M + µ (1− 〈f, f〉M) (5.45)

where Lf = −div (∇f) is the Laplace-Beltrami operator. The minimization of
G(f) is achieved when L(f) = µf . Therefore, the optimal mapping f∗ is given by
the eigenfunction of the Laplace-Beltrami operator corresponding to the smallest
non-zero eigenvalue. Note that a m dimensional embedding is usually built from
the eigenfunctions corresponding to the m non-zero smallest eigenvalues

In practice, a discrete counterpart to this continuous formulation must be used
since we only have access to a discrete and finite set of example data points. We
will assume that this set constitutes a “good” sampling of the manifold, where
“good” stands for “exhaustive” and “sufficiently dense” in a sense that will be
clarified below [101].

5.3.2 Discrete Laplace-Beltrami Operator

In the previous section, we emphasized the importance of the Laplace-Beltrami
operator in dimensionality reduction techniques. Its discrete counterpart is the
Laplacian operator of a graph ([45]) built from p sample points Γ = {x1 · · ·xp ∈
Rn} of the m dimensional manifold M.

In the discrete framework, we construct a neighborhood graph using the sample
set Γ = {x1, . . . ,xp} and a decreasing function w(xi,xj) of the distance between

with f a function and X a vector field
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data points xi and xj . In this work, we use the Gaussian kernel

w(xi,xj) = exp
(−d2(xi,xj)

2σ2

)
(5.46)

Let NNΓ(x) denote the nearest neighbor of point x in the set Γ. In practice, σ is,
for instance, chosen by (Eq. 5.47) or (Eq. 5.48)

σ1 = mean
xi∈Γ

{d (xi,NNΓ(xi))} =
1
p

p∑

i=0

d (xi, NNΓ(xi)) (5.47)

σ2 = median
xi∈Γ

{d (xi,NNΓ(xi))} (5.48)

The discrete formulation implies that a distance d(xi,xj) is indeed defined be-
tween two data points in the ambient space.

Two slightly different approaches are to be considered to build the neighbor-
hood graph:

ε-neighborhoods: Two nodes xi and xj ( i 6= j) are connected in the graph if
d (xi,xj) < ε, for some well-chosen constant ε > 0.

k nearest neighbors: Two nodes xi and xj are connected in the graph if node xj

is among the k nearest neighbors of xi, or conversely, for some constant
integer k.

The study of advantages and disadvantages of both approaches is beyond the scope
of this work. An adjacency matrix W = (Wi,j)i,j∈1,...,p is then constructed, the
coefficients of which measure the strength of the different edges in the adjacency
graph and the k nearest neighbor graph is used.

Wi,j = w(xi,xj) if xj is among the k nearest neighbors of xi

= 0 otherwise
(5.49)

A Laplacian matrix, a discrete form of the Laplace-Beltrami operator, is finally
built from the adjacency matrix. There are however at least three ways to define the
Laplacian matrix in the literature [45, 101]. Following [101], we denote the three
Laplacian matrices as follows. Lu stands for unnormalized, Ln, for normalized,
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Lr for random walk Laplacian matrix. Finally, we detail the three forms below

Lu = D−W, (Luf) (i) = dif(i)− 1
n

∑n
j=1 w(xi,xj)f(j)

Ln = D− 1
2 (D−W)D− 1

2 , (Lnf) (i) = f(i)− 1
n

∑n
j=1

w(xi,xj)√
di

√
dj

f(j)

Lr = I−D−1W, (Lrf) (j) = f(i)− 1
di

1
n

∑n
j=1 w(xi,xj)f(j)

where (Lf) (i) = (Lf) (xi) is the value of the Laplacian at point xi, and
D = (Di,j)1≤i,j≤p is a degree matrix given by equation (5.50)

D = diag(d1, . . . , dp) with di = Di,i =
p∑

k=1

Wii,k (5.50)

di = Dii is the degree of node i and D−1W is a probability transition matrix
between sample points x1, . . . ,xp.

5.3.3 Normalization & convergence

Nevertheless, none of these three graph Laplacian converge to the Laplace-Beltrami
operator while the number of sample p increases and the size of the kernel diame-
ter σ decreases at the same time. Instead, following Matthias Hein and Jean-Yves
Audibert and Ulrike von Luxburg [101], we build three new Laplacian matrices
that converge to the weighed Laplace-Beltrami operator, which is in other words
"the generalization of the Laplace-Beltrami operator ∆s

2 for a Riemannian mani-
fold equipped with a non-uniform probability measure p(·)" [101]. In practice p(·)
represents the density of the manifold sampling (p(·) should not be confused with
the number of samples p).

∆s =
1
ps

div (ps grad) (5.52)

Now, consider that the p sample points Γ = {x1 · · ·xp ∈ Rn} of the m dimen-
sional manifold M are sampled under an unknown density p(·) (m ≤ p).

2Note that the following equality still applies similarly to equation (5.44):
∫

M
g ((∆sf) ps = −

∫

M
〈∇g,∇f〉ps (5.51)
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In order to construct an approximation of the Laplace-Beltrami operator that is
independent of the unknown density p(·), we re-normalize the adjacency matrix
(Wi,j). Briefly, we form the new adjacency matrix W̃ =

(
W̃i,j

)
1≤i,j≤p

with

W̃i,j = w̃β(xi,xj)

w̃β(xi,xj) =
w(xi,xj)

(q(xi)q(xj))
β

(5.53)

where q(x) =
∑

y∈Γ w(x, y) is the Nadaraya-Watson estimate of the density p(·)
at location x (up to a normalization factor) [117, 101]. β and s are linked: β =
1 − s/2. The density independent Laplacian matrices L̃u, L̃r and L̃r are built
following (Eq. 5.50), by using the renormalized adjacency matrix. Convergence
results found in [101] are reproduced below.

(
L̃rf

)
(x) Ã − (

∆2(1−β)f
)
(x)

(
L̃uf

)
(x) Ã −p(x)1−2β

(
∆2(1−β)f

)
(x)

(
L̃nf

)
(x) Ã −p(x)

1
2
−β∆2(1−β)

(
f

p
1
2−β

)
(x)

where (L̃rf)(x), (L̃uf)(x) and (L̃nf)(x) are extensions reproducing respectively
(L̃rf)(i), (L̃uf)(i) and (L̃nf)(i) and Ã stands for “converge almost surely when
the number of samples p increase and the size of the kernel decreases to 0”. The
convergence results show that the parameter β plays an important role in estimating
the Laplace-Beltrami operator. It determines how to calculate density independent
graph Laplacian as shown by equation (5.53) and the above convergence results.
Indeed, when β = 1

2 , the three graph Laplacian converge to the Laplace-Beltrami
operator and are density independent. Only the normalized random walk Laplacian
graph converges to the weighed Laplace-Beltrami operator for any β (since s =
2(1− β)).

5.3.4 LEM - Laplacian Eigenmaps

Laplacian eigenmaps (LEM) were introduced by Mikhail Belkin and Partha Niyogi
in [15], and used in various applications of computer vision. In the continuous
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framework, the solution is simply given by f LEM:

f LEM : M −→ Rm

x 7−→




f∗1 (x)
· · ·

f∗m(x)


 (5.54)

where f∗i are the eigenfunctions of the Laplace-Beltrami operator.
Laplacian eigenmaps are designed to be applied to a discrete set of data. Let

denote y = [y(1), . . . , y(p)]T such that y(i) = f(xi) The authors minimize a
discrete form of equation (5.45).

GLEM(y) = 〈Lny,y〉M + µ (1− 〈y,y〉M )

where 〈x,y〉 = yTx. Note that the normalized adjacency matrix W̃ is not used.
As mentioned in the previous section, the choice of the Laplacian Ln is relevant
only when the density qM is uniform over the manifold. In addition, the embed-
ding space is not equipped with an explicit metric. The Diffusion maps technique
alleviates these limitations.

5.3.5 DFM - Diffusion Maps

Introduction

The major goal of Diffusion maps (DFM) is to define a metric, named the diffu-
sion distance, that measures the connectivity between points in an arbitrary set.
Interestingly, the diffusion distance is effectively calculated with the eigenvector
of the random walk matrix or its tth iterate built from the data set. The Diffusion
maps technique is actually fully connected to the Laplacian eigenmaps and the
Laplacian-based framework.

The DFM Kernel

The Diffusion maps technique defines an anisotropic transition matrix P = (Pi,j)i,j∈1,...,p

such that Pij is a kernel defined by

Pij = p(xj |xi) =
w̃β(xi,xj)

q̃(xi)
(5.55)
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with q̃(xi) =
∑

xj∈Γ

w̃β(xi,xj)

Alternatively, we have
P = D̃−1W̃ (5.56)

where D̃ = diag(d̃1, . . . , d̃p) with ∀i = 1, . . . , p, d̃i =
p∑

k=1

W̃i,k

For the sake of clarity, we also write Pij = p(xi,xj) = p(xj |xi). Yet again,
p(· |· ) (or p(· , · )) denotes a transition probability between two states, and should
neither be confused with the number of samples p nor with the density manifold
sampling p(· ). The diffusion maps kernel is clearly related to the previously de-
fined random walk matrix L̃r = I − P, which is a density-independent approx-
imation of the generalized Laplace-Beltrami operator ∆s (with s = 2(1 − β))
[47, 101]. Both have the same eigenvectors and their eigen-spectrum is similar, up
to an additive constant and a scalar.
We now briefly explain in two points why the diffusion distance is of particular
interest.

The diffusion distance

Let pt(xi,xj) denote the elements of the matrix Pt, the tth iterate of P. We recall
that pt(xi,xj) represents the probability of going from xi to xj in t steps. The
connectivity of any point xi with regards to others in the graphs is characterized
by the conditional probabilities pt(·|xi). By comparing the conditional probabili-
ties pt(·|xi) and pt(·|xj), the diffusion distance, denoted Dt(xi,xj) measures the
difference of connectivity between xi and xj ; it is more robust to outliers than the
geodesic distances. Many distances can be used between these two probability dis-
tributions (Kullback Leibler, L1, L2, etc.), but a weighed L2 is chosen by Lafon,
Stéphane and Coifman, Ronald because it can be easily calculated by means of the
eigenvectors of the matrix Pt, see the second point below. The reader is referred to
[117] for details about the weighed L2 distance.

Calculating the diffusion distance

Let (λi)i∈1,...,p with λ0 = 1 ≥ λ1 ≥ · · · ≥ 0 and (Ψi)i∈1,...,p be respectively the
eigenvalues and the associated eigenvectors of P.

P = D̃−1W̃ = ΨΛΨ−1 (5.57)
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where Ψ = [Ψ1, . . . ,Ψp], Λ = diag(λ1, . . . , λp) and ∀i, λi = 1− µi

The diffusion distance D2
t (xi,xj) is expressed as an Euclidean distance in the

space spanned by the eigenvectors of P:

D2
t (xi,xj) =

p∑

k=1

λ2t
k (Ψk(xi)−Ψk(xj))

2 (5.58)

where Ψk(xi) = (Ψk)i. Furthermore, the diffusion distance is well approximated
depending on the decay of the eigenvalues λk, by keeping only the first Q terms of
the sum in equation (5.58). The choice of Q is also related to the dimension of the
manifold M

D2
t (xi,xj) ≈

Q∑

k

λ2t
k (Ψk(xi)−Ψk(xj))

2 (5.59)

Embedding data

A mapping ΦDFM that embeds the data into the Euclidean space Rm quasi isomet-
rically3 with respect to a diffusion distance in the original space can be constructed
as:

ΦDFM : Γ ⊂M → Rm

xi 7→ (
λt

1 (Ψ1)i , ..., λ
t
m (Ψm)i

) (5.60)

Link with the continuous context

Ψ1, . . .Ψm solve the minimization of GDFM defined below:

GDFM(y) =
(〈

L̃ry,y
〉)

+ µ (1− 〈y,y〉) (5.61)

In other words, the embedding in the continuous context is given as:

fDFM : M −→ Rm

x 7−→ fDFM
t (x) =




(1− λ1)
t f∗1 (x)

· · ·
(1− λm)t f∗m(x)


 (5.62)

3it is an isometry when m = p
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General remarks

Diffusion distance reflects the intrinsic geometry of the data set defined via the
adjacency graph in a diffusion process (the anisotropic kernel (Pi,j) being seen as
a transition matrix in a random walk process). In this formulation, t is a parameter
controlling the diffusivity of the adjacency graph and can be chosen arbitrarily. We
used t = 1 for our experiments. Diffusion distance was shown to be more robust
to outliers than geodesic distances [47], thereby motivating its use to estimate the
embedding (Fig. 5.6). Accordingly, in the remainder of this text, the notion of
proximity in the original shape space (e.g. the “closest” neighbors of a given shape)
is based on the diffusion distance. Since the embedding Φ is an isometry, proximity
is advantageously deduced in the Euclidean reduced space. See (Fig. 5.6)

Figure 5.6: Diffusion maps - The diffusion distance D2
t (x, y) is approximated by

the Euclidean distance in the reduced space

Link with KPCA

DFM can be related 4 to KPCA by comparing the mappings (Eq. 5.25) and (Eq.
5.60). Both techniques are very similar in spirit. Indeed, both mappings are of the

4For the sake of clarity, the link between KPCA and DFM is detailed only when KPCA data are
supposed to be already centered in the feature space. The general case of non centered data can be
processed following the same path
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following form.

ΦGM : Γ ⊂ Rn −→ Rm

xi 7−→ {
λt

1 (z1)i , . . . , λ
t
m (zm)i

} (5.63)

where z1, . . . , zm are the eigenvectors of a kernel matrix M such that M = ZΛZ−1,
with Z = [z1, . . . , zp]. Now, we have:

KPCA case: M = K = W with t = 1/2
DFM case: M = P = D̃−1W̃

(5.64)

Clearly, both techniques diagonalize the same matrix up to a normalization. Nev-
ertheless, KPCA implicitly assumes uniform density on the manifold while most
of application with real data often imply non-uniform data. KPCA depends on the
sampling density on the manifold but DFM estimates its density before capturing
its intrinsic geometry.

On the face of it the Diffusion maps technique does not define projections of
new data onto “principal axes” as in (Eq. 5.29). However, a technique introduced
by E. Nyström [145] and presented in the following chapter allows us to extend the
eigenvectors of a linear operator to eigenfunction in the entire space. The Nyström
extension can be proposed to calculate the embedding of a new point. In the sequel,
we will highlight the link between the Nyström extension and the KPCA extension
(7.1.3).

5.4 Other manifold learning methods

Many other techniques exist in literature to reduce the dimensionality of a point
cloud, and most of them are related to Laplacian based methods. One can cite,
for instance, Locally Linear Embedding (LLE) introduced by Sam Roweis and
Lawrence Saul [166]. Note that LLE and Isomap [196] appeared in the same vol-
ume of Science. Briefly, LLE calculates the eigenfunction of the iterated Laplace-
Beltrami operator L2(f) [15], which coincide with those of L(f). Nevertheless,
the algorithm does not search explicitly for any discrete approximation of the
Laplace-Beltrami operator.
Maximum Variance Unfolding (MVU) [212] is another recent dimensionality re-
duction technique that makes the links with most of Laplacian-based methods such
as LEM, LLE and Isomap.
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One can also cite other approaches such as Tangent alignment[217] or Hessian
eigenmaps [70]. The former represents tangent spaces learned by fitting an affine
subspace in a neighborhood of each data point. Tangent spaces are then aligned to
calculate a global parametrization of the data. Hessian eigenmaps derive from the
LLE framework and is able to handle a wider class of situations, in particular when
the underlying embedding is not convex. Let also mention the work on “Manifold
Charting” [31] and “Minimax Embeddings” [32] proposed by Matthew Brand, the
work entitled “Manifold Analysis by Topologically Constrained Isometric Embed-
ding” [164] by Guy Rosman, Alexander Bronstein Michael Bronstein and Ron
Kimmel and finally the work on “Manifold Sculpting” [94] by Mike Gashler, Dan
Ventura, and Tony Martinez.

Many extensions of the techniques presented in this document can be found in
the computer vision or learning literatures.

5.5 Estimating the dimension of the manifold

The dimension of a manifold is also known as its intrinsic dimension. It is sim-
ply the minimal number of parameters necessary to represent the variability of
a data set. When linear methods such as PCA or MDS are used, the dimension
is very often estimated by observing the eigenspectrum i.e. the spectrum of the
eigenvalues output by the PCA. Indeed, the useful information is supposed to be
represented in a given percentage x of the total variance. If we consider the eigen-
values λ1, . . . , λp sorted in decreasing order and their corresponding eigenvectors
u1, . . . ,up, the dimension m∗ is often estimated as follows.

m∗ = arg min
m

∣∣∣∣∣∣∣∣∣∣

m∑

i=1

λi

p∑

i=1

λi

− x

∣∣∣∣∣∣∣∣∣∣

(5.65)

m∗ is referred as the minimal number of principal axes needed to represent the data
in a lower dimensional basis. Nevertheless, this method still relies on the arbitrary
fixed value x.
Let also mention an important work by Thomas Minka [140] which comprehends
the PCA as density estimation. The true dimensionality of the data is estimated
by approximating a maximum likelihood estimator and by achieving a Bayesian
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model selection.

When data lie on a smooth manifold, finding out the intrinsic dimension of the
dimension estimation might become a very complex problem. One approach to
estimate the dimensionality of the data is to select the dimension that minimizes a
given prediction error as proposed by François Meyer and Greg Stephens in [137].
Nevertheless, the problem of estimating the dimension of a general point cloud is
still an open problem in the learning community. For more details and reference,
the reader is referred for example to [91, 153, 123, 100, 49].

Although existing techniques could be used to determine the dimension of our
manifold, we mostly set it as a parameter. In one application on brain ventricle, we
propose however a simple data dependent methodology to figure out the intrinsic
dimension of the manifold (see sec. 8.3.3).
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Chapter 6

Application of graph Laplacian to
Interactive Image Retrieval

Abstract

Interactive image search or relevance feedback is the process which helps a user
refining his query and finding difficult target categories. This consists in partially
labeling a very small fraction of an image database and iteratively refining a deci-
sion rule using both the labeled and unlabeled data. Training of this decision rule
is referred to as transductive learning.

In this chapter, we present an original approach for relevance feedback based
on Graph Laplacian. A modified Graph Laplacian is introduced to make a robust
learning of the embedding, via diffusion maps, possible. The contribution is three-
fold: it allows us (i) to integrate all the unlabeled images in the decision process
(ii) to robustly capture the topology of the image set and (iii) to perform the search
process within the manifold. Relevance feedback experiments were conducted on
simple databases including Olivetti and Swedish as well as challenging and large
scale databases including Corel. Comparisons show clear and consistent gain, of
our graph Laplacian method, over state-of-the art relevance feedback approaches.
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Original contributions

We design a relevance feedback system that integrates unlabeled data in the
training process.

We introduce a new robust graph Laplacian operator.
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6.1 Introduction

At least two interrogation modes are known in content based image retrieval (CBIR);
the query by example and relevance feedback (RF). In the first mode the user sub-
mits a query image as an example of his “class of interest” and the system displays
the closest image(s) using a feature space and a suitable metric [27, 189]. A slight
variant is category retrieval which consists in displaying images belonging to the
“class of the query”. In the second category (see the pioneering works [114, 155])
the user labels a subset of images as positive and/or negative according to an un-
known metric defined in “his mind” and the CBIR system refines a metric and/or a
decision rule and displays another set of images hopefully closing the gap between
the user’s intention and the response(s) of the CBIR system [218, 50, 168, 219].
This process is repeated until the system converges to the user’s class of interest.
The performance of an RF system is usually measured as the expectation of the
number of user’s responses (or iterations) necessary to focus on the targeted class.
This performance depends on the capacity of an RF system (i) to generalize well
on the set of unlabeled images using the labeled ones, (ii) to ask the most infor-
mative questions to the user (see for instance [200]) and (iii) the consistency and
self-consistency of the user’s responses. Points (i)–(ii) are respectively referred to
as the transduction and the display models. Point (iii) assumes that different users
have statistically the same answers according to an existing but unknown model
referred to as the user model.

6.1.1 Related Work

Different schemes exist in literature for the purpose of RF [168, 219], which are
either based on

• density estimation [131, 104] when they model the distribution and the pos-
itive / the (possibly) negative labeled images or on

• discriminative training [200], when they build a decision function which
classifies the unlabeled data.

In the first category, different density estimation methods are used in RF includ-
ing non parametric Parzen windows [131], Gaussian mixture models [50], logistic
regression [34] and novelty detectors [41, 179]. In [50, 83], the authors introduced
the notion of relative judgment of the user, i.e. the response is not binary but a
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relative number measuring the relevance of a displayed set of images. The user’s
response is assumed as a sigmoid function of the distance, so images close to the
highly numbered set are more likely to be the target than the others. The authors in
[50] used Gaussian mixture models and a Bayesian framework in order to estimate
(and update) a distribution through all images and display those with the highest
probability. The proposed approach in [83] defines a criterion based on the mutual
information between the user’s responses and all the possible target images in the
database and display those which maximize this criterion.

In the second family, discriminative methods learn from the aggregated set of
positive and negative labeled images how to classify the unlabeled ones. Exist-
ing RF methods use support vector machines [200, 200, 87], decision trees [127],
boosting [199] and Bayesian classifiers [87, 209, 50]. The RF method in [200] is
of particular interest due to its important gain in the convergence speed when using
active learning [178, 12].

6.1.2 Motivation and Contribution

The success of relevance feedback is largely dependent on how much (1) the image
description (feature+similarity) fits (2) the semantic wanted by the user. The gap
between (1) and (2) is referred to as the semantic gap. The reduction of this gap
basically requires adapting the decision rule (as discussed earlier) and the features
to the user’s feedback. Many works (see, for instance [168]) consider features as
a weighted combination of simple sub-features, each sub-feature capturing a par-
ticular characteristic. The weight of each sub-feature and hence the structure of
the underlying embedding is adapted by taking into account the variance of the
labeled set, so relevance feedback will pay more attention to the sub-features with
high variances. Put differently, adapting features might be explicitly achieved as
in [168] or implicitly as a part of the decision rule training (as discussed in Sec-
tion 6.1.1).

When the original sub-features are highly correlated, it is difficult to find dimen-
sions, in the original feature space, which are clearly discriminant according to the
user’s feedback. This happens when the Gaussian assumption (about the distri-
bution of the data) does not hold, when the data in original feature space form a
non-linear manifold, which implies that the classes become extremely not separa-
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ble (see Figure 6.1, on the top). Therefore, further processing is required in order
to extract dimensions with high intrinsic variances. A didactic example, shown in
Figure (6.1), (the application is the search of faces by identity), follows the state-
ment in [2]: the variance due to the intra-class variability (pose, illumination, etc.)
is larger than the inter-class variability (identity). Figure (6.1) illustrates this prin-
ciple where clearly the intra-class variance estimated through the original feature
space (resp. the intrinsic dimensions of the manifold enclosing the data) is larger
(resp. smaller) than the inter-class variance. Clearly, searching those faces through
the intrinsic dimensions of the manifold is easier than in the original space. Hence,
learning the manifold enclosing the data is crucial in order to capture the actual
structure of the data.

In this chapter, we introduce a new relevance feedback scheme based on graph
Laplacian[16]. We first model the topology of the image database, including the
unlabeled images, using an eigen approximation of the graph Laplacian, then we
propagate the labels by projecting the whole dataset using a linear operator learned
on both the labeled and the unlabeled sets. The main contributions of this work
are:

• In contrast to existing relevance feedback methods which only rely on the la-
beled set of images, our approach integrates the unlabeled data in the training
process through the cluster assumption [181] (as discussed in Section 6.3.1).
These unlabeled data turn out to be very useful when only few labeled im-
ages are available since it allows us to favor decision boundaries located in
low density regions of the image database, which are often encountered in
practice. Although the approach proved to work in the particular task of rele-
vance feedback, it can be easily extended to other transductive learning tasks
such as database categorization.

• In the second main contribution of this work, we derive a new operator from
the graph Laplacian which makes it possible to embed the dataset in a robust
way. This graph Laplacian, based on diffusion map, captures the conditional
probabilities of transition from one sample to another with a path of given
length. Its main particularity is to consider the intermediate paths with high
transition likelihoods only (see Section 6.3.2).

• For numerical and practical matters, we show in Section (6.4) an extension
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Figure 6.1: Top: the distribution of two classes corresponding to two indi-
viduals. It is clear that the intra class variance is larger than the inter class one.
Bottom: the distribution of the same classes inside the manifold trained using
graph Laplacian. It is clear that the converse is now true and the classification
task is easier in the embedding space.
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of the method in order to handle large scale databases using Nyström inter-
polation.

In the remainder of this chapter, we consider the following notation. z is a ran-
dom variable standing for a training sample taken from Z and q its class label in
{+1,−1} (q = 1 if the sample z belongs to the targeted class and −1 otherwise).
G = 〈V, E〉 denotes a graph where V is a set of vertices and E are weighted edges.
We use also l, t as indices for iterations. Among terminologies a display is a set
of images taken from the database which are shown to the user at iteration t. The
chapter is organized as follows: Section 6.2 introduces the overall architecture of
the RF process. Section 6.3 describes our RF model based on the s-weighted ro-
bust graph Laplacian and the display model. Section 6.4 provides an extension
of the embedding method in order to handle large scale databases which are very
often encountered in practice, using the Nyström operator. Section 6.5 provides
an extensive experimental study using different databases including specific ones;
face databases and also generic databases. We discuss the method and conclude in
Section 6.6.

6.2 Overview of the Search Process

LetP = {z1, ..., zp},Q = {q1, ...,qp} denote respectively a training set of images
and the underlying unknown ground truth. Here qi is equal +1 if the image zi

belongs to the user’s “class of interest” and qi = −1 otherwise. Let us consider
Dt ⊂ P as a display shown at iteration t and Qt the labels of Dt. Our interaction
consists in asking the user questions such that his/her responses make it possible to
reduce the semantic gap according to the following steps:

• “Page Zero”: Select a display D1 which might be a random set of images or
the prototypes found after applying clustering or Voronoi subdivision.

• Reduce the “semantic gap” iteratively (t = 1,..., T ):

(1) Label the set Dt using a (possibly stochastic) known-only-by-the-user
function Qt ← L (Dt). Here L is referred to as the user model which,
given a display Dt, provides the labelsQt. When the ground truth is unique,
this function is consistent (through different users) and self-consistent (with
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respect to the same user) so the user’s answer is coherent and objective, oth-
erwise the labeling function becomes stochastic. The coherence issue is not
in the scope of this chapter (see [83] for a comprehensive study), so we only
consider consistent and self-consistent users.

(2) Train a decision function gt : Z → {−1, +1} on the (so far) labeled
training set Tt =

⋃t
l=1(Dl,Ql) and the unlabeled set of imagesP−∪t

l=1Dl.
The transduction model discussed in (6.3.1) is the one used for this training.
At iteration t, the target is to efficiently use both labeled and unlabeled data
in order to estimate the actual decision function,

argmin
f :Z→{+1;−1}

P [g (z) 6= q] . (6.1)

where P [x] is the probability that x happens. In our setting, it is important
to generalize well even when the size of the labeled training set is small.
This is why this step should use transductive methods which implicitly as-
sume that the topology of the decision boundary depends on the unlabeled
setP−∪t

k=1Dk as shown in (6.3). More precisely, the clustering assumption
implicitly made is the following: the decision boundary is likely to be in low
density regions of the input space Z [144].

(3) Select the next display Dt+1 ⊂ P −⋃t
k=1Dk. The convergence of the

RF model to the actual decision boundary is very dependent on the amount
of information provided by the user. As P (.) is unknown and the whole pro-
cess is computationally expensive, the display model considers a sampling
strategy which selects a collection of images that improves our current es-
timate of the “class of interest” (see Section 6.3.3). This can be achieved
by showing samples of difficult-to-classify images such as those close to the
decision boundary. Given the labeled set Tt, and let gD be a classifier trained
on Tt and a display D. The issue of selecting Dt+1 can be formulated at
iteration t + 1 as:

Dt+1 ← argmin
D

P [gD(z) 6= q]

s.t. Dt+1
⋂

(
⋃t

l=1Dl) = ∅
(6.2)
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6.3 Graph Laplacian and Relevance Feedback

Graph Laplacian methods emerged recently as one of the most successful in trans-
ductive inference [16], (spectral) clustering [192] and dimensionality reduction
[15]. The underlying assumption is: the probability distribution generating the
(input) data admits a density with respect to the canonical measure on a sub-
manifold of the Euclidean input space. Let M denotes this sub-manifold and p

the probability distribution of the input space with respect to the canonical mea-
sure onM (i.e. the one associated with the natural volume element dV ). Note that
M can be all the Euclidean space (or a subset of it of the same dimension) so that
p can simply be viewed as a density with respect to the Lebesgue measure on the
Euclidean space.

6.3.1 s-Weighted Transductive Learner

In transductive inference, one searches for a smooth function g : Z → Q from the
input feature space into the output space such that g(zi) is close to the associated
output qi on the training set and such that the function is allowed to vary only on
low density regions of the input space. Let s ≥ 0 be a parameter characterizing
how low the density should be to allow large variations of g (see (6.3)). Depend-
ing on the confidence we assign to the training outputs, we obtain the following
optimization problem:

min
f

p∑

i=1

ci [qi − g(zi)]2

+
∫

M
‖∇g‖2 ps dV,

(6.3)

where the ci’s are positive coefficients measuring how much we want to fit the
training point (zi,qi). We recognize the generalized Laplace Beltrami operator in
the second term. Please note the difference between p the size of the training set
and p(· ) the density probability on the manifold.) Typically, ci = +∞ imposes a
hard constraint on the function g so that g(zi) = qi. By the law of large numbers,
the integral in (6.3) can then be approximated by

1
n

n∑

i=1

g(zi)∆sg(zi)ps−1(zi). (6.4)

Unfortunately, the direct computation of ∆sg(zi) for every possible function g is
not possible and solving (6.3) is intractable. The discrete approximation of the s-th
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weighted Laplacian operator, is an alternative to this problem. See chapter 5 for
details. Accordingly, we solve its discrete counterpart:

min
F∈Rn

(F−Q)tC(F−Q) + FT L̇F,

whose solutions are those of the linear system

(L̇ + C)F = CQ. (6.5)

where L̇ = D̃s−1L̃r in view of (6.4). Here C is the diagonal p × p matrix for
which the i-th diagonal element is ci for a labeled point, and 0 for an unlabeled
point, and similarly, Q is the p-dimensional vector for which the i-th element is qi

for a labeled point, and 0 for an unlabeled point.

6.3.2 A Robust k-step random walk matrix

As previously mentioned, we focus on the random walk matrix P instead of the
graph Laplacian matrix I−P since they have the same eigenvectors and the same
eigenvalue up to a scalar and a constant value. When embedding a dataset using the
one step random walk matrix P, the main drawback is its sensitivity to noise. This
comes from “short-cuts”, when building the adjacency graph (or estimating the
scale parameter of the Gaussian kernel). In such cases, the actual topology of the
manifold M is lost (see. Figure 6.2, top). In [118], the authors consider instead an
iterated random walk matrix P(k) (denoted also Pk), here Pk = Pk−1 × P. The
latter models a Markovian process where the conditional k-step transition likeli-
hood (between two data zi and zj) is the sum of the conditional likelihoods of all
the possible (k-1)-steps linking zi and zj . This results in low transition probabil-
ities in low density areas. Nevertheless, when those areas are noisy, the method
fails to capture the correct topology (cf. Figure 6.2, middle).

A k-step random walk matrix: the above limitation motivates the introduction
of a new (called robust) graph Laplacian, recursively defined as

Pk = [P
1
α
k−1 ×P

1
α ]α, 1/α ∈ [1,+∞[ (6.6)

Let P (i, j)
1
α denotes the jth column of the ith row of P

1
α . Again, P is the one

step random walk matrix where each entry P (i, j) corresponds to the probability of
a walk from zi to zj in one step, also denoted P1(j|i). This quantity characterizes
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Figure 6.2: Top: samples taken from the Swiss roll. On the left: A short cut
makes the random walk Laplacian embedding very noise sensitive, clearly the
variation of the color map does not follow the intrinsic dimension of the actual
manifold. In the middle: when using the diffusion map, noisy paths affect
the estimation of the conditional probabilities. On the right: when using the
robust diffusion map, the color map varies following the intrinsic dimension.

the first order neighborhood structure of the graph G. In the context of diffusion
maps [118], the idea is to represent higher order neighborhood by taking powers
of the matrix P, so Pk(i, j) = Pk(j|i) is the probability of a walk from zi to zj

in k steps. Here k acts as a scale factor and makes it possible to increase the local
influence of each node in the graph G. Matrix Pk can be inferred from matrix
Pk−1 and matrix P by summing the conditional probabilities over different paths,
i.e.

[Pk(j|i)]
1
α =

n∑

l=1

[Pk−1(l|i)]
1
α [P1(j|l)]

1
α (6.7)

We refer to a k-path as any path of k steps in the graph G. Depending on α

the general form of the random walk matrix Pk implements the following random
walks:

• α → 1: [Pk(j|i)]1 is the average transition probability of the k-paths linking
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zi to zj . So Pk implements exactly the one in [118].

• α → 0: it is easy to see that [Pk(j|i)]
1
α converges to max

l

{
[Pk−1(l|i)]

1
α ,

[P (j|l)] 1
α

}
, so Pk(i, j) corresponds to the most likely transition probability

of k-steps.

• α ∈]0, 1[: [Pk(j|i)]
1
α is dominated by the largest terms in

{
[Pk−1(l|i)]

1
α ,

[P (j|l)] 1
α

}
. The effect of noisy terms is then reduced.

Figure (6.2, on the left) shows the application of (6.6) to the embedding of the
Swiss roll data (k = 10 and α = 0.2). Clearly, the topology of the data is now
preserved. Figure (6.3) shows the robustness of the method to different amount of
noise (again k = 10 and α = 0.2).

6.3.3 Display Model

The data in P are mapped into a manifoldM such that any two elements zi and zj

in P with close conditional probabilities {Pk(i|.)} and {Pk(j|.)} will also be close
in M. We use the mapping defined in equation 5.60. The diffusion distance plays
a key role in propagating the labels from the labeled to unlabeled data following
the shortest path or the average path (depending on the setting of α).

We define a probabilistic framework which, given a subset of displayed images
D1,...,Dt until iteration t, makes it possible to explore the manifold M in order
to propose a subset of images Dt+1. When we use the unlabeled data by using a
transductive algorithm, the heuristics still rely on the following basic assumption:
at each iteration, one can select the display in order to refine the current estimate of
the decision boundary or one can select the display in order to find uncharted ter-
ritories in which the actual decision boundary is present. The first display strategy
exploits our knowledge of the likely position of the decision boundary while the
second one explores new regions. We believe that any good CBIR system should
find the correct balance between exploration and exploitation.

Exploitation: let D ⊂ P and D′ = {z ∈ D, gt(z) > 0}, (6.2) is equivalent to :

Dt+1 ← arg max
D′

P (D′ | Dt, ...,D1) (6.8)
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Figure 6.3: Robustness of the embedding with respect to uniform noise through-
out the curvilinear abscissa of the Swiss roll. From top to bottom, the noise is 0%,
15% and 40%.
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Assuming the data in Dt+1 are chosen independently :

P (D′ | Dt, ...,D1) =
∏

zj∈D′
P (zj | Dt, ...,D1)

P (zj | Dt, ...,D1) ∝ max
zi ∈ Tt

qi = +1

1/DM(zi, zj)∑
l 1/DM(zi, zl)

,
(6.9)

Exploration: equivalently, the criteria is similar to (6.8) but:

P (zj | Dt, ...,D1) ∝ min
zi ∈ Tt

qi = +1

1/DM(zi, zj)∑
l 1/DM(zi, zl)

, (6.10)

We consider in this work a mixture between the two above strategies where at each
iteration t of the interaction process, half of the display (of size 8 in practice) is
taken from exploitation and the other set taken from exploration.

6.4 Nyström Extension

Relevance feedback usually involves databases ranging from many thousands to
millions of images. The complexity of solving Pk = ΨTΛΨ grows in O(p3) and
on those databases, the problem gets quickly out of hand. For instance, for the
Corel database (p = 9.000) it took about 15 hours to solve the eigenproblem on a
standard 64 bits AMD processor of 1.8 GHz. Clearly this limits the applicability
of the method for large scale databases.

Consider P ′ = {zi}p′
1 as a subset of P (p′ ¿ p), p′ is chosen so that the

above eigenproblem is numerically tractable. The Nyström extension (see details
in section 7.1.3) will then be applied in order to extend the eigen-solution on the
whole set P:

Φ̃DFM
k (z) = λ

p′∑

i=1

p(z, zi)Ψk(zi) (6.11)

In order to show the precision of (6.11), we randomly select P ′ from Corel (see
Section 6.5) with different sizes p′ = 500, 1.000, 2.000 and 3.000. For a fixed
p′, we consider 15 different sampling of P , and for each one, we estimate the
embedding of P ′ using graph Laplacian and we extend on bothP ′, P\P ′ using the
Nyström interpolation. The results reported in Figure (6.4), report two measures
of error:
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1. The curve in green shows the expectations of the interpolation error between
(i) graph Laplacian embedding and (ii) Nystrom̈ interpolation, both on P ′.

2. The curve in blue shows the same measures but on P \ P ′.
In both (1) and (2) the two errors decrease as n′ increases and asymptotically con-
verge to the same curve. This clearly corroborates the theoretical statement in
[210], proving that the eigenvector-expansion of the Graph Laplacian converges to
the eigenfunctions of the Laplace-Beltrami operator.
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Figure 6.4: Means of interpolation error using the Nyström extension. In green:
errors on P ′. In blue: errors on P \ P ′.

6.5 Performances

In this section, we demonstrate the validity of relevance feedback using our graph
Laplacian. We compare it to popular state-of-the-art methods including support
vector machines, Bayesian inference and closely related methods, i.e. graph-cuts.
The effectiveness is measured by the expected number of images per class which
are displayed to the user or equivalently the average number of iterations necessary
in order to show a fraction of images per class.

6.5.1 Databases

Experiments were conducted on simple databases (Olivetti and Swedish) as well
as more difficult ones (Corel). The Olivetti face database contains 40 people each
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Figure 6.5: On the top: These figures show the recall for Orl, Swedish and Corel
databases for different graph Laplacians. On the Bottom: Comparison of Graph
Laplacian with respect to SVM, Parzen and Graph-cuts.

one of them being represented by 10 faces. Each face is processed using histogram
equalization and encoded using kernel principal component analysis (KPCA) re-
sulting into 20 coefficients. The Swedish set contains 15 categories of leaf sil-
houettes each one represented by 75 contours. Each contour C is encoded using
14 coefficients corresponding to the eigenvalues of KPCA on C [169]. The Corel
database contains 90 categories each one represented by 100 images. This database
is generic and images range from simple objects to natural scenes with complex
background. Each image in this database is encoded simply using a 3D RGB color
histogram of 125 dimensions. In this dataset, the classes are spread out so the rel-
evance feedback task is more challenging. For all those databases the ground truth
is provided.

6.5.2 Benchmarking

We evaluate the performance of our RF scheme using the recall that we define in
the sequel. Let Rt be a random variable standing for the total number of relevant
images returned by the CBIR system until iteration t, i.e., those belonging to the
user’s “class of interest”. The recall is defined as E(Rt) =

∑
r rP (Rt = r), here

the randomness and the expectation of Rt is to be taken through different classes of
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interest. Figures (6.5, top) show the recall for different graph Laplacians including
the standard random walk (RW) and the robust random walk (R RW) for different
values of α. The recall reported for the three databases (ORL, Swedish and Corel)
show clearly that when α ¿ 1 (in practice α = .5 and α = .2), the embedding
generated using the graph Laplacian is more robust and captures the topology of
the data better, and hence the performance follow. Nevertheless, when α → 0 (in
practice α = .01), the performances degrade as the underlying graph Laplacian
implements the most likely path which is more noise-sensitive (see Section 6.3.2).
In all the experiments, the path length k is chosen large enough in order to make
the approach robust to noise. In practice and after cross validation, we set k = 10.

6.5.3 Comparison

We compared our method to standard representative relevance feedback tools in-
cluding inductive methods: support vector machines (SVMs), Bayesian inference
(based on Parzen windows) and transductive one such as Graph cuts [170]. In
all these methods, we use the same display strategy (i.e., combined exploration
exploitation). We train the SVMs and Parzen classifiers using the triangular ker-
nel since the extensive study in [87] showed that SVM based relevance feed-
back using the triangular kernel achieved far better results than other kernels.
Thus, we limit our comparison to SVM and Parzen using this kernel only. Again,
for graph Laplacian, the scale parameter of the Gaussian kernel is set as σ =
Ez,z′∈Nm(z){‖z − z′‖}, here Nm(z) denotes the set of m nearest neighbors of
z (in practice m = 10). The results reported in Figure (6.5, bottom), show that
in almost all cases, the recall performances of relevance feedback (using graph-
Laplacian) are better than SVMs, Parzen and Graph cuts based RF. Clearly, the use
of unlabeled data as a part of transductive learning (in graph Laplacian and graph
cuts), makes it possible to improve the performance substantially. Furthermore,
the embedding of the data through graph Laplacian makes it possible to capture
the topology of the data, so learning the decision rule becomes easier.

6.6 Conclusion

In this work, we introduced an original approach for relevance feedback based on
transductive learning using graph Laplacian. This work clearly demonstrates the
advantages of semi supervised learning: it is effective in the sense that it (1) handles
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transductive learning (in contrast to inductive learning), via the robust s-weighted
graph Laplacian which implements the clustering assumption and uses the unla-
beled data as a part of the training process (2) it captures the topology of the data
so that the similarity measure and the propagation of the labels to unlabeled data is
done through the manifold enclosing the data (3) it achieves a clear and consistent
improvement with respect to the most powerful and used techniques in relevance
feedback including SVMs, Parzen windows and graph cuts. We also showed the
efficiency of this approach to handle large scale databases using the Nyström ex-
tension. The experiments reported in this chapter confirm the superiority of our
approach.



Chapter 7

Dealing with new points and
attracting forces of manifolds

Abstract

We introduce techniques which are natural extensions of manifold learning meth-
ods previously presented in this dissertation. Indeed, manifold learning is achieved
given a collection of data and may imply large computational costs to embed data
in a low dimensional representation. Thus, while new points are to be processed on
line, it is extremely desirable to calculate the embedding of these points only, not
starting from scratch with the entire collection of data plus the new points. This
chapter tackles such extensions and further proposes different projection operators
of data onto manifolds, which are the core of our contribution. Most importantly,
this chapter provides a sound operator that attracts data toward the manifold, and
that draws the contours of a new shape prior term used for image segmentation in
chapter 8.
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Original contributions

We introduce two extensions of the embedding to new points in the case
of diffusion maps: a naive embedding regularization and the well known
Nyström extension.

We design 3 attracting forces that attract points toward the manifold.

1. Closest projection force. Related publication: SSVM’07 [75]

2. Same embedding force. Related publication: ICIP’07 [76]

3. Constant embedding force. Related publications: ICCV’07 [81],
MICCAI’07 [80]
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7.1 Out-of-sample problem

7.1.1 Introduction

The mapping ΦDFM (or ΦLEM) often denoted Φ in the sequel is only defined on
the training samples. In this approach we propose two techniques to calculate the
embedding of a new point x, given the embedding of the points x1, . . . ,xp. The
first technique calculates a function regression in the discrete embedding space.
The second one, the Nyström method, is a popular technique employed to extend
empirical functions from the training set Γ = {x1, . . . ,xp} to new samples, i.e.
the out of sample problem [17, 8]. Furthermore, a link with the KPCA extension
(Eq. 5.29) can be pointed out.

7.1.2 First approach: embedding regularization

Let Ψ be a p × m matrix of which the column vectors are Ψ1, . . . ,Ψm, the m

eigenvectors of matrix P, the matrix built from the DFM kernel (Eq. 5.56). Let us
also denote M the analyzed manifold. Without loss of generality, we have from
equation (5.61) and a slight generalization to m dimensions:

Ψ = arg min
Y

G′(Y) (7.1)

G′(Y) = Tr (〈PY,Y〉) + Λ (I− 〈Y,Y〉) (7.2)

where Y is a p×m matrix and Λ is the diagonal matrix: Λ = diag(λ1, . . . , λm).

Our goal is now to calculate the embedding of a new point x, also denoted
xp+1, and some properties are required. First, x may not belong to the manifold
(x /∈ M) and so, the relative embedding values of points x1, . . . ,xp previously
computed should not change. Then, even if x belongs to the manifold, it is neither
desirable nor efficient to calculate again the embedding from points x1, . . . ,xp+1.
Let p(·,x) and p(x,·) be respectively defined by

p(·,x) = [p(x1,x), · · · ,p(xp,x)]T (7.3)

p(x, ·) = [p(x,x1), · · · ,p(x,xp)]T (7.4)

where p(xi,x)i=1,...,p and p(x,xi)i=1,...,p can be easily deduced from equation
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(5.55):

∀ i = 1, . . . , p, p(xi,x) =
w(xi,x)

∑

b∈Γ

q(x)
q(xb)

w(xi,xb)

∀ i = 1, . . . , p, p(x,xi) =
w(x,xi)

∑

b∈Γ

q(xi)
q(xb)

w(x,xb)

(7.5)

We finally define PNEW as:

PNEW =

[
Ṗ p(·,x)

p(x, ·)T p(x,x)

]
(7.6)

Following equation (7.1), the unconstrained energy to minimize can then be writ-
ten:

G′′(Z) = Tr (〈PNEWZ,Z〉) + Λ (I− 〈Z,Z〉) (7.7)

Since the embeddings of the p points x1, . . . ,xp are fixed, we add the following
constrained problem:

z∗p+1 = arg min
zp+1

G′′(Z) s.t. Z =

[
Ψ

zp+1

]
(7.8)

Deriving equation (7.8) leads to the mapping ẑ : Rn −→ Rm

ẑ(x) =
[p(·,x) + p(x, ·)]T Ψ

2p(x,x)
(7.9)

The results pointed out in equation (7.9) are of particular interest since the solution
is expressed by means of the Nadaraya-Watson estimator widely used in the sta-
tistical learning literature. The function ẑ(x) can be seen as a regression function
estimating the continuous embedding. However, all the embedding is regularized,
including the values ẑ1, . . . , ẑp.

7.1.3 Nyström Extensions

The Nyström extension is a popular method that consists in extending the eigen-
vectors of an operator to all the space. Noticing that every training sample verifies:

∀xi ∈ Γ ∀k ∈ 1, . . . , p
∑

xj∈Γ

p(xi,xj)Ψk(xj) = λkΨk(xi),
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the embedding of new data points located outside the set Γ can similarly be com-
puted by a smooth extension Φ̃DFM of Φ

Φ̃DFM : Rn → Rm

x 7→ (Φ̃1(x), . . . , Φ̃m(x))
(7.10)

where

∀k ∈ 1, . . . , m Φ̃DFM
k (x) = λt−1

k

∑
xj∈Γ p(x,xj)Ψk(xj)

=
(
Λt−1ΨTP (x, · ))

k

(7.11)

with P(x, ·) = [p(x,x1), . . . , p(x,xp)]T .

The Nyström extension happens to be more interesting than the previous ap-
proach regularizing the embedding. First, it avoids the regularization of the em-
bedding values, as in the previous approach. Then, following section (5.3.5), we
emphasis the links between the Nyström extension (Eq. 7.11) and the KPCA pro-
jection (Eq. 5.29). First, we recall and complete the link between KPCA and DFM
introduced in section (5.3.5). We compare the mappings (5.25) (KPCA) and (5.60)
(DFM) and notice that they are similar in spirit. Indeed, both mappings are of the
following form.

ΦGM : Γ ⊂ Rn −→ Rm

xi 7−→ {
λt

1 (z1)i , . . . , λ
t
m (zm)i

} (7.12)

where z1, . . . , zm are the eigenvectors of a kernel matrix M such that M = ZΛZ−1,
with Z = [z1, . . . , zp]. Now, we have:

KPCA case: M = K = W with t = 1/2
DFM case: M = P = D̃−1W̃

(7.13)

We also compare the projection of a new point x onto principal axes in KPCA and
the Nyström extension used with DFM. Both approaches are similar in spirit as
well ( (Eq. 5.29) and (Eq. 7.11)):

∀k = 1, . . . ,m ΦGM
k (x) =

(
Λt−1ZTM (x, · ))

k
(7.14)

where M(x, · ) = [M(x,x1), . . . , M(x,xp)] Now, we have:

KPCA / Projection case: Z = V & M (x, · ) = K (x, · )
DFM / Nytröm case: Z = Ψ & M (x, · ) = P (x, · ) (7.15)
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where K(x, ·) is calculated following the Mercer’s theorem and the RKHS theory,
P(x, ·) is straightforwardly obtained from the DFM kernel and t = 1/2 in the
KPCA / projection case.

7.2 Pre-image problem

Up till now, we have worked with data lying in Rn. Henceforth, data belongs
generically to a space X , provided a differentiable distance exists in such space.
Given a point in the reduced space y ∈ Rm, we endeavor to find the point x =
Φ̃−1
|M(y) in the manifold M such that Φ̃(x) = y, i.e. the pre-image of x [115, 8,

60]. As noted by Pablo Arias, Gregory Randall and Guillermo Sapiro in [8] where
X = S is the shape space, such a point x — i.e. a shape in their work — might
not exist since the pre-image problem is ill-posed. To circumvent this problem,
they search for the shape that optimizes a given optimality criterion in the reduced
space.

7.3 Attracting forces toward a manifold

7.3.1 Introduction

As previously introduced, our goal is to build a sound non-linear shape prior based
on a category of shapes modeled as a shape manifold. A prior term energy used in
segmentation tasks should intuitively attract the shape toward the shape manifold.
As a first step, it is therefore natural to construct a projection operator onto man-
ifold, which is detailed in the sequel. Note that we deliberately give formulations
applicable to general data in this section and keep applications to shapes and image
segmentations for chapter 8.
The first projection operator was proposed in [75] in the context of shapes. We sim-
ply determine the point on the manifold that minimizes the distance to the point to
project and give an iterative algorithm that best approximates the projection. A
second projection operator [76] , faster and simpler in nature, is also described.
Nevertheless, in some applications such as in image segmentation, the minimizing
path to the projection onto the manifold is particularly more important than the
projection itself. Thus, we provide a sound efficient operator [80, 81] that attracts
data toward the manifold at a given constant embedding.
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7.3.2 General assumptions and Delaunay triangulation

In this work, we are interested in interpolating the manifoldM between “neighbor-
ing” training samples. Therefore, we assume that the point y ∈ Rm falls inside the
convex-hull of the training samples in the reduced space (where the point x ∈ Rm

is outside, we would consider instead its orthogonal projection on the convex-hull).
In this sense, the set of training samples must be exhaustive enough to capture the
limits of the manifold M.

We also assume that any point x belonging to the manifold M, can be ex-
pressed as a weighted mean (also known as the Karcher mean) that interpolates
between “neighboring” samples for the diffusion distance. (This hypothesis is ap-
plicable, for example, in the case of shape manifolds [40]). To this end, we exploit
the Euclidean nature of the reduced spaceRm to determine the m+1 closest neigh-
bors of x (note that if the point y ∈ Rm is located outside the convex-hull, then
only m neighbors are identified.). In this sense, the set of training samples must be
sufficiently dense for the interpolation to be meaningful.

We compute a Delaunay triangulationDM in the reduced space of the training
data and identify the m + 1 closest neighbors of x as the m + 1-Delaunay simplex
that x belongs to. This m-dimensional simplex is formed by m + 1 points that
correspond to the image by Φ̃ of the m + 1 closest neighbors N = (x0, ...,xm) of
x in X for the diffusion metric [47].

7.3.3 Attracting force #1: closest projection

Image segmentation methods that take shape priors into account, generally require
the projection (in some sense) of a shape candidate onto the set of shape samples.
As previously mentioned, this projection is often just the mean of the samples, and
sometimes a variation of this mean according to deformation modes [122, 165, 40].
Here, we propose a projection based on our local interpolation (see chapter 3):

Solution 1 (Minimizing the distance to the projection)

Let M be a finite m dimensional smooth manifold lying on X.

Let Γ = x1, . . . ,xp be p points sampling the manifold M.
Let x be a point of X.
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Let N(x) = (xj0 , · · · ,xjm) (∀k = 0, . . . , m xjk
∈ Γ) be a neighborhood

system of M close to x chosen based on the Delaunay triangulation of the re-
duced space obtained by Diffusion maps, and Θ = {θ1, . . . , θm} their associated
barycentric weights
We define the local projection ΠM(x) of x ontoM to be the interpolation accord-
ing to N(x) that is the closest to x :

ΠM(x) = X̄N(x)(ΘΠ)

with ΘΠ = arg min
Θ

d(x, X̄N(x)(Θ)) (7.16)

where X̄N(x)(Θ) is a weighted mean interpolation of the manifoldM between the
points of N(x) defined by the following equation (please also refer to equation
(3.24))

X̄N(x)(Θ) = arg min
X

m∑

k=0

θkd (xjk
, X)2 (7.17)

While such a projection is clearly better than choosing the nearest neighbor,
the energy involved in equation (7.16) cannot be minimized easily. The variations
with respect to Θ of the distance d(x, S̄N(x)(Θ)) between the interpolation and
shape x are intricate. The gradient of this distance could be written, but, involving
second order shape derivatives, it yields a complex minimization scheme that might
not be useful for our purpose. Keeping shape priors in mind, it appears that an
approximation of the projection ΠM(x) is sufficient.

Many algorithms might be designed to get an approximate solution to (7.16).
We suggest an iterative scheme illustrated figure 7.1 that we call the snail algo-
rithm. Although it is not guaranteed to converge, it is proved to give good ap-
proximations of the projection of a candidate shape onto the shape prior manifold,
in only a few iterations. Actually, we investigated more extensive searches of the
minimum of (7.16) without any significant improvement. The snail algorithm is
defined by:

Solution 2 (Approximation of minimization (7.16)) Let M, x and N(x) be de-
fined as in solution 1. The snail algorithm proceeds as follows:

1. Initialization: choose the shapes of the neighborhood system as initial guesses.

For i = 0, · · · ,m, let Θi = (θi
0, · · · , θi

m) be defined by θi
j = δij
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Figure 7.1: The Snail algorithm: steps are indexed 1, 2, . . . , if

2. Iterations: look for a better projection between the latest estimate and the
one computed m + 1 steps before.

For i = m,m + 1, · · · until convergence, estimate:

Θi+1 = αiΘi + (1− αi)Θi−m

with αi = arg min
0≤α≤1

d(x, X̄N(x)(αΘi + (1− α)Θi−m)) (7.18)

3. Exit:

Let if be the index of last iteration. Approximate the projection
by:

Π1
M(x) = X̄N(x)(Θ

if )

Note that we still need to design a minimization scheme to estimate the op-
timal α in (7.18). Again, a variational method is both too slow for our purpose
and useless for an approximation. Computing a small number of interpolations
and keeping the best one turns out to be satisfactory. Moreover, because these
interpolations are obtained through a gradient descent (see [40]), estimating the in-
terpolations for a series of α is efficient, each interpolation being the initial guess
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for the next one.

We finally define the attracting force #1 as follows.

The attracting force #1 is a force denoted ~F1 that attracts a point x /∈
M toward its projection Π1

M(x) (Fig. 7.5).
~F1 is called closest projection force.

In the context of image segmentation, the distance d(x,Π1
M(x)) constitutes the

shape prior term.

7.3.4 Attracting force #2: same embedding

The previous projection may be too long too compute and may not be easily in-
tegrated into a segmentation process. In order to overcome this limitation, we
introduce a second attracting force and we define the projection Π2

M(x) of point x
onto the manifold M

Let us denote y = Φ̃(x). Having identified the neighborhoodN(x) = (xj0 , ...,xjm)
of x, we search for a Karcher mean of N(x) such that its embedding is Φ̃(x). The
projection is then given by:

Π2
M(x) = arg min

Θ

∥∥∥y − Φ̃
(
X̄N(x) (Θ)

)∥∥∥ (7.19)

The process is initialized by using the barycentric coordinates of Φ̃(x) within the
simplex formed by {Φ̃(xj0), . . . ,Φ(xjm)} Figure 7.2 illustrates our projection op-
erator on a 2 dimensional manifold lying in R3. Note that we do not try to estimate
the manifold outside of its limits, as the ones defined by the convex hull of the train-
ing points in the reduced space. As a consequence, projection of a point located
outside the manifold will belong to the border of the manifold.
We finally define the attracting force #2 as follows.

The attracting force #2 is a force denoted ~F2 that attracts a point x /∈
M toward its projection Π2

M(x) (Fig. 7.5).
~F2 is called same embedding force.
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This low computational force however not relevant in the framework of image seg-
mentation. In our model, the final segmentation result is indeed a trade-off between
the shape prior term and the data term, which is not necessarily on the shape mani-
fold. Then, the path toward the manifold becomes of particular importance, as well
as the direction of the force in the context of image segmentation.

7.3.5 Attracting force #3: constant embedding

In the previous section, we defined a projection of a point x onto the manifold that
has the same embedding. The resulting attracting force however does not keep
the embedding constant. We propose a more elegant force that preserves the em-
bedding along the entire evolution path. Diffusion maps create a diffusion process
along and outside the manifold (it is based on an approximation of the Laplace-
Beltrami operator). In figure 7.3, we represent the embedding values using the
Nyström extension, “around” the 1-D swiss roll manifold. We see that attracting
point x toward M while keeping a constant embedding is a natural idea.

Let S be the iso-level set of contant embedding points around x.

S = {x′ ∈ X, Φ̃(x′) = Φ̃(x)}. (7.20)

The problem is now the following: considering S, we have to let x evolve on S
towardM as fast as possible. To do so, we choose Π2

M(x) as a target point and let
evolve x toward Π2

M(x) at constant embedding.

Deformation space preserving the embedding

Each point x ∈ X has its associated deformation space, the tangent space denoted
Tx. For instance, when X is the shape space, Tx corresponds to normal defor-
mation fields that can be applied to shape x. We define Ex the space spanned by
A = {~a1, · · ·~am} where ∀k ∈ {1, · · · ,m} ~ak = ∇Φ̃k(x). See equations (7.10)
& (7.11). The space Ex is intuitively the space of deformations at x that maximally
modify the embedding. On the opposite side, the space denoted E⊥

x , orthogonal
to Ex, corresponds to the deformations that have a minimal influence on the em-
bedding value. We then write the deformation space at x by using the direct sum
symbol ⊕, Ex and E⊥

x :
Tx = Ex ⊕E⊥

x (7.21)
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We finally calculate from A an orthonormal basis B = {~b1, · · · ,~bm} of Ex

using the orthogonalization Gram-Schmidt process . In order to preserve the em-
bedding during the evolution, we define the projection of any velocity field ~w onto
the space E⊥

x :

ΠE⊥
x

(~w) = ~w −
m∑

k=1

〈~w,~bk〉~bk (7.22)

We finally define the attracting force #3 as follows.

The attracting force #3 is a force denoted ~F3 that attracts a point
x /∈M toward its projection Π2

M(x) such that the embedding value is
preserved (Fig. 7.5).
~F3 is called constant embedding force.

~F3 (x) = ΠE⊥
x

(
~F2 (x)

)
(7.23)

We have defined a projection that attracts a point toward the manifold at constant
embedding. This projection will be used in chapter 8 to achieve manifold denois-
ing, and will be employed as a shape prior term in segmentation tasks.

Gradient of the embedding function

In the following lines, we detail the gradient of the embedding function Φ̃(x) (in
the DFM case). The gradient is expressed as follows.

∇xΦ̃k(x) =
∑

i

∇xp(x,xi)Ψk(xi) (7.24)

We have

p(xi,xj) =
w̃(xi,xj)

q̃(xi)
with q̃(xi) =

∑

xj∈Γ

w̃(xi,xj) (7.25)

which gives

p(x,xj) =
w (x,xj)∑

b Kjbw (x,xb)
with Kjb =

∑
a w (xa,xj)∑
d w (xd,xb)

(7.26)
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Lastly, we have

∇xp(x,xj) =
1

(
∑

b Kjbw(x,xb))
2

(
∇xw(x,xj)

∑

b

Kjbw(x,xb)

− w(x,xj)
∑

b

Kjb∇xw(x,xb)

)
(7.27)

Implementation

Equation (7.27) can be easily implemented but its calculation should be as fast as
possible. In order to accelerate the process, we write the∇xΦ̃k(x) in the following
matrix form and use an optimized matrix library to calculate the gradient.

∇xΦ̃k(x) = V (x) (I + B(x)A(x))A(x)Ψ (7.28)

where :

V (x) = [~v1, . . . , ~vp] with ∀ i = 1, . . . , p ~vi = ∇xw(x,xj)

A(x) = diag
([

1
α1

, . . . ,
1
αp

])
with ∀ i = 1, . . . , p αi =

∑

b

Kibw(x,xb)

B(x) =

[∑

b

β1b, . . . ,
∑

b

βpb

]
with ∀ i = 1, . . . , p βib = −w(x,xi)Kib

Ψ = [Ψ1, . . . , Ψm]

7.4 Conclusion

In this chapter, we introduced three possible forces to attract points toward the
manifolds (Fig. 7.5).

• Closest projection force: the target is defined by Π1
M(x), the closest point

of M to x. Resulting force: ~F1

• Same embedding force: the target is defined by Π2
M(x), the point of M

having the same embedding as x. Resulting force: ~F2

• Constant embedding force: the target is also defined by Π2
M(x), but only

the components of ~F2 that preserve the embedding are kept. Resulting
force: ~F3

These forces will be illustrated in experiments presented in chapter 8.
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Figure 7.2: Projection onto the manifold: attracting forces # 2 & # 3 - a) Set
of point samples lying on the surface given by the equation f(x, y) = x2 + y2. b)
The reduced space and the Delaunay triangulation. c) Steepest descent evolution
toward the weighted mean Π2

M(x) (in blue) and at constant embedding (in red).
The Delaunay triangulation is represented in the original space. d) Values of the
embedding during the two evolutions
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Figure 7.3: Being attracted toward the manifold (here, black dots) at constant
embedding The color code represents the embedding value (also visualized along
the z-axis on the right). The force #3 enforces the point to be evolved toward the
manifold by preserving the embedding value.

Part of the manifold

zoom

~F3 (x) = ΠE⊥
x

(

~F2 (x)

)

E
⊥

x

Ex : B = {b1}

~F2

x

S = {x′ ∈ X, Φ̃(x′) = Φ(x)}

Embedding preserved along the line

Figure 7.4: Evolution toward the manifold at constant embedding value On
the left: Sampled manifold (black dots) and visualization of the embedding value
(color code). On the right: schematic detail. The blue line represents the set of
point having the same embedding value as x. The force #2 modifies the embedding
value during the evolution. The force #3 (red arrow in the tangent direction of the
blue line) enforces the point x to evolve at constant embedding value.
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~F1

~F2

~F3

x

Π1

M(x) Π2

M(x)

M

S =

{

x
′, Φ̃(x′) = Φ̃(x)

}

Figure 7.5: Three forces to attract points toward the manifold M - 1. ~F1:
force directed toward the closest point ofM to x 2. ~F2: force directed toward the
point of M having the same embedding as x 3. ~F3: force at constant embedding
toward M



Chapter 8

Applications of attracting forces
to manifold denoising and image
segmentation with priors

Abstract

The tools developed in chapters 5 and 7 of this dissertation are successfully ap-
plied to manifold denoising and image segmentation with non linear shape priors.
In particular, this chapter provides results obtained on various 2D and 3D exam-
ples corresponding to different shape prior manifold: fish shapes, cars shapes and
anatomical structures.
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Original contributions

We design a new approach to manifold denoising, which relies on the
constant embedding force.
Related publication: ICCV’07 [81].

We project shapes onto shape manifolds using attracting forces ~F1 (closest
projection force), ~F2 (same embedding force) and ~F3 (constant embedding
force).
Related publications: SSVM’07 [75], ICIP’07 [76], ICCV’07 [81].

We achieve image segmentation with non linear shape priors using attracting
forces ~F2 (same embedding force) and ~F3 (constant embedding force).
Related publications: ICIP’07 [76], ICCV’07 [81], MICCAI’07 [80].



8.1. MANIFOLD DENOISING 141

8.1 Manifold Denoising

In section 7.3.4, we estimate the manifold M by interpolating between training
shape samples (i.e. by minimization of an energy functional) subject to constant
embedding constraints (Eq. 7.19). As such, the manifold M is assumed to go
through every training sample. Unfortunately, this implies that our manifold recon-
struction is sensitive to outliers that are mapped among other training samples into
the reduced space through the embedding Φ̃ (Fig 8.1-a). To alleviate this problem,
we propose to use the mapping Φ̃ and the Euclidean nature of the reduced space to
design a denoising functional Edenoising.

Figure 8.1: Manifold Denoising - a) The set of point sample with the iso-level
set of the one dimensional embedding. b) After 5 iterations of denoising. Smaller
points correspond to original data, bigger to denoised data. The black lines are the
paths of some randomly points during the evolution c) Final result.

The embedding Φ̃ captures the intrinsic geometry of the manifold M by map-
ping training samples into Rm isometrically with respect to a diffusion distance in
the original shape space. It is useful to interpret the mapping as a smoothing filter
that absorbs the “noise components orthogonal to the manifold” and maps outliers
among valid training samples. In light of this, we propose to use the connectedness
of the Delaunay triangulation DM in the reduced space to infer connectedness of
the training samples in the original space X. For each training sample xi ∈ Γ, we
identify its set Ni = N(xi) of adjacent neighbors that are connected in the Delau-
nay triangulation DM (see section 7.3.2). We then define the denoising functional
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over all training samples:

Edenoising(Γ) =
∑

xi∈Γ

∑

xi,k∈Ni

d2(xi,xi,k), (8.1)

The functional Edenoising is minimized by gradient descent with the additional con-
straints of preserving the embedding. To do so, we enforce the additional constraint
∀xi ∈ Γ Φ̃(xi) = constant, which can be expressed by m × p orthogonality con-
straints in the tangent space as presented in the previous chapter (sec 7.3.5).

Minimization of the functional Edenoising implements the well-known umbrella-
operator, which is a linear approximation of the Laplacian operator [68]. As such,
our denoising framework acts as a diffusion process, attracting every shape sample
toward the mean shape of its neighbors. In spirit, it is similar to the approach
proposed by Hein and Maier in [102]. Yet, it is different in two essential aspects.
First, the diffusion process is based on the diffusion distance, which is more robust
to outliers than geodesic distance. The connectivity of the manifold M is directly
derived from the Delaunay triangulationDM. Also, during the evolution, we avoid
the time consuming procedure which consists of updating the whole connectivity
graph, since we enforce the embedding to remain the same. Finally, as noted in [68,
102], a trade-off between reducing the noise and smoothing the manifold exists.
Minimization of the energy (Eq. 8.1) leads to a global flow which smooths the
manifold via mean curvature.

8.2 Projections and shapes

Introduction

In this section, we fulfil the purposes and initial goals of this dissertation. The
shape deformation framework and manifold learning techniques such as DFM are
finally employed together in order to design attractive forces toward shape man-
ifolds. In this context, the main tools developed in this thesis — i.e. the three
attracting forces — are successfully applied to various shapes in the rest of this
section. We provide illustrations for each force, using shape manifolds (with syn-
thetic and real shapes: rectangles, crosses, fishes, and even 3D brain ventricles).
As previously mentioned, our approach is neither built on a particular shape rep-
resentation, nor a particular shape distance. The method only requires a shape
representation endowed with a differentiable distance.
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8.2.1 Attracting force #1, rectangle shape manifold & fish shape man-
ifold

Synthetic example

In this example, the shape manifold is a set of rectangles (orientation between −π
6

and π
6 , length between 2 and 4 times the width). The training set corresponds to

shapes randomly sampled such that the distribution of their corners is the uniform
law in an authorized area . In order to show the robustness of the method, we
constructed deformed shapes and computed their projection. To do so, we extract
the neighbor system defined above The dimension of the shape manifold is 2 and
thus interpolation is obviously involves 3 shapes. A rectangle is chosen to lie be-
tween two angular positions and two different sizes, and is then altered by slightly
deforming the shape (so it does not belong to the shape manifold anymore). We
show in Figure 8.2 the altered shape, the neighbor system chosen and its projection
following the snail algorithm presented in section (Eq. 7.3.3).

Real shapes : fishes

We provide also prominent results with a fish manifold built from the SQUID1

database. We have strongly deformed a fish shape S: the head is deformed and
the shape suffers from many occlusions. Of course, such a shape does not belong
to the set used to build the graph Laplacian. Then, we determined the neighbor
system S0, . . . S3 and the projection Π1

M(S) onto the shape prior manifold. Such
a projection, which is clearly better than the nearest neighbor, is able to handle
shape occlusions and great deformations as it recovers most of the original shape
(Fig. 8.3).

8.2.2 Attracting force #2, cross shape manifold

The snail algorithm used in the previous examples gives interesting results but this
approach has some serious drawbacks. Convergence of the target shape should
be achieved before designing any attractive force toward the manifold. Such a
process cannot be easily integrated into a segmentation task. Consequently, the
second force is designed to overcome such limitations and can be jointly used with
the embedding regularization (Sec. 7.1.2) or the Nyström extension (Sec. 7.1.3)

1SQUID: Shape Queries Using Image Databases. SQUID was used for MPEG-7 evaluation of
shape descriptors.
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Figure 8.2: Projection onto the rectangle manifold using the snail algorithm
(attracting force #1 - direct projection): {S0, S1, S2} is the neighborhood system

to solve the pre-image problem. In this experiment, the training set consists of
105 crosses, whose arms, although of various sizes, maintain the horizontal and
vertical symmetry of the shape. Figure 8.4 (above) illustrates the shape manifold
represented in a 2 dimensional reduced space. Note that, the dimension is deduced
straightforwardly from the construction of the manifold itself. As previously, a
cross S is modified by slightly deforming the shape. Figure 8.4 (below) shows the
altered shape, the neighborhood system chosen ({S0, S1, S2}), and its projection
by using the same embedding force and an embedding regularization (sec. 7.1.2).
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Figure 8.3: Projection onto the fish manifold using the snail algorithm (attracting
force #1 - closest projection): {S0, S1, S2, S3} is the neighborhood system

8.2.3 Attracting force #3, ventricle shape manifold

In this subsection, we apply the third force and compare it to the second one. We
recall that the third attracting force is a force that attracts points toward the mani-
fold at constant embedding, and has better signification as shown in the following
lines.

We use a dataset of 39 ventricle nuclei from Magnetic Resonance Imaging
(MRI). The shapes are aligned using their principal moment before computing their
diffusion coordinates. In this experiment, we compare the projection at constant
embedding, the neighbors in the Delaunay triangulation of the reduced space and
the mean shape obtained from these neighbors. Our deformation surface is imple-
mented in the Level Set framework: the distance functions of the ventricle shapes
are encoded in 140 × 75 × 60 images. To perform the projection, we start from an
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ellipsoid aligned on the 3D shape set. Its embedding is indicated by the black point
in Figure 8.5. The nearest shapes in the corresponding Delaunay triangle are easily
identified in order to compute the mean shape target and the projection at constant
embedding . The projection at constant embedding captures details (on the right
side of the ventricle) of closest shapes (38 & 22) that the mean shape loses due to
its smoothing properties.

8.3 Image segmentation with general non linear shape pri-
ors

8.3.1 Fish shapes, attracting force #2

We propose to apply the method presented in section 7.3.4 in the context of image
segmentation with shape priors. Without loss of generality, the method is stated
as a variational problem attempting to minimize the energy ET (S) of an evolving
curve S.

ET (S) = Eac(S) + αEp(S) (8.2)

Ea(S) is the common energy used in the active contour framework. Ep(S) is
the prior term that attracts the evolving shape toward the shape prior manifold
according to Π2

M(·).
Ep(S) = d

(
S, Π2

M(S)
)2 (8.3)

α is a weighting parameter that influences the importance of the prior term. The
energy ET (S) is minimized using the calculus of variations. Results are presented
in Figures 8.6 (embedding of the shape manifold) 8.7 (segmentation of an occluded
fish).

8.3.2 Surveillance : Cars, attracting force #3

In this example, we illustrate the attracting force #3 (as a shape prior term) in
segmentation tasks of 2D car shapes. We are aiming at segmenting partly occluded
cars. In this experiment, the non-linear prior is the manifold of the 2D shapes
observed while turning around different cars. The dataset used is made up of 17
cars whose shapes are quite different : Audi A3, Audi TT, BMW Z4, Citroën C3,
Chrysler Sebring, Honda Civic, Renault Clio, Delorean DMC-12, Ford Mustang
Coupe, Lincoln MKZ, Mercedes S-Class, Lada Oka, Fiat Palio, Nissan 200sx ,
Nissan Primera , Hyundai Santa Fe and Subaru Forester. For each car, we extracted
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12 shapes from the projection of the 3D CAD2 model (Fig. 8.8 forming a dataset of
204 shape samples). The shapes are finally stored in the form of distance functions
by means of a 160×120 image domain. In the learning stage, the embedding of the
car shape manifold is estimated using diffusion maps over the dataset. Note that
cars are registered under an affine transformation. In Figure 8.9 b, we represented
the first two dimensions of the diffusion coordinates, which constitute the reduced
space, and the corresponding Delaunay triangulation. Note that the car shapes have
a coherent spatial organization in the reduced space.

Without loss of generality, we implement our surface deformation in the Level
Set framework. We use a simple data term designed to attract the curve toward
image edges [146], which gives the following evolution equation:

∂φ(x, y)
∂t

= g
(
∇x,y,z Î(x, y)

)
[εκ(φ(x, y) + ν] |∇φ(x, y)|

−α−→v sp · D̄S(x, τ)

(8.4)

where φ is the signed distance function of the evolving contour. κ = div
(
∇φ
|∇φ|

)
,

I(x, y) and ν are respectively the mean curvature, the image intensity at location
(x, y) and a constant speed term to push or pull the contour. g(−→z ) = 1

1+||−→z ||2 is a
stopping function used to extract edges.

In order to demonstrate the influence of our shape prior, we segment partly
occluded cars which are not in the initial data set. We also choose images with
different points of view. We initialize the contour with an ellipse around the car to
segment and report the evolution in both cases, with and without our shape prior.
The final results are presented in Figure 8.10. Without the shape prior, the energy
is obviously minimized on the image edges. However, when the shape prior is
incorporated, the new energy overcomes local minima of the data term energy and
finally gives a “better” segmentation.

8.3.3 Bio Medical Imaging : Ventricle Nuclei, attracting force #3

We illustrate the potential benefits of our approach on another simple segmentation
task, the segmentation of the ventricle nucleus from Magnetic Resonance Imag-
ing (MRI). The shape priors term is built from the attracting force #3. Training

2CAD: Computed Assisted Design
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shape samples were obtained from 39 manually segmented images of 10 young, 9
middle-aged, 9 old normal controls and 11 demented adults (Fig. 8.11). 39 data
points probably form an insufficiently small data set and more shape samples are
desirable to recover a satisfactory embedding. Note also that the artificial nature
of the proposed segmentation task is only dedicated to reveal the influence of the
shape prior term.

Estimating the dimension of the shape prior manifold

The dimension m of the reduced space is usually estimated from the profile of
the eigenspectrum (Fig. 8.11-a), which is not always justified. However, there
is not always an obvious choice (especially when the number of data points is
insufficient). In our case, m = 2, m = 3, or m = 4 appear to be a realistic
guess. Nevertheless, in the case of labeled data, one can disambiguate this choice
by also requiring the embedding Φ̃t to separate/cluster “well” the different groups.
We simply define the degree of separability di,j between two groups i and j by the
distance di,j = ‖µi−µj‖√

σ2
i +σ2

j

, where µi and σ2
i are the mean and variance in Rm of data

points corresponding to group #i. The degree of separability of the mapping Φ̃t

is then
∑

i,j di,j . Note that this method can also be used to determine an optimal
value for the parameter t. Finally, on this unsatisfactory small data set, we find that
the optimal mapping requires m = 2 (Fig. 8.11-a,b).

Closest neighbors

Diffusion maps embed advantageously the data set in the Euclidean space Rm iso-
metrically with respect to a Diffusion distance in S. This distance was shown to
be more robust to outliers than geodesic distances [47]. To illustrate this point, we
show in Fig. 8.11-c a manually altered shape with its two closest neighbors in S
and Rm. At least visually, the identified shapes in Rm appear more similar to the
altered shape than the ones in S.
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Ventricle nucleus segmentation from MRI with occlusion

We consider a simple segmentation task which consists of segmenting the ventricle
nucleus from an MRI that was modified by adding a white noise and degraded with
an artificial occlusion (clearly visible in Fig. 8.12). Motivated by our choice of
representing a shape S by its signed distance function D̄S , our surface deformation
is implemented in the Level Set framework. The Level Set evolution is guided by
a simple intensity-based velocity term, a curvature term, and the non-linear shape
prior term:

∂φ(x, y, z)
∂t

= [β (I(x, y, z)− T (x, y, z))− κ] |∇φ(x, y, z)|

−α−→v sp · ∇φ(x, y, z)

(8.5)

where I(x, y, z) and κ represent respectively the image intensity and mean curva-
ture respectively at location (x, y, z), T is a threshold computed locally from image
intensities, β and α two weighting coefficients equal to β = 0.1 and α = 0.1. Fig-
ure 8.12 displays our segmentation results. Despite the artificial occlusion, the
shape prior term was able to recover the correct shape by attracting the shape onto
the shape prior manifold. Yet, the final surface is geometrically-accurate because
the active contour can evolve freely inside the manifold M subject to the image
term. The red-cross in Fig. 8.11 locates the final segmented shape in the embed-
ding. Finally, note that, in practice, the shape prior term is not used during the first
steps of the evolution since a robust alignment is impossible.
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Figure 8.4: Projection onto the cross manifold using the same embedding force
(attracting force #2): On the top: Reduced space. The black points is the em-
bedding of the altered shape. On the bottom: Corrupted shape, its neighborhood
system {S0, S1, S2}, and its projection.
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Figure 8.5: The ventricle manifold: Comparison of the evolution toward the
Karcher mean shape Π2

M(· ) (in blue) and the evolution at constant embedding(in
red). The plane is represents the embedding coordinates of the 1st and the 2nd axes.
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Figure 8.6: The fish embedding: 2-dimensional representation of 150 fishes
[SQUID database]
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Figure 8.7: Fish segmentation - attracting force # 2 1: initial contour 2: active
contour without shape prior 3: active contour with shape prior 4: reprojection of
the final result on the shape manifold
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Figure 8.8: Training set of the car manifold is made of 192 car shapes. It is
comprised of 17 different cars (1 row ↔ 1 car ) : Audi A3, Audi TT, BMW Z4,
Citroën C3, Chrysler Sebring, Honda Civic, Renault Clio, Delorean DMC-12, Ford
Mustang Coupe, Lincoln MKZ, Mercedes S-Class, Lada Oka, Fiat Palio, Nissan
200sx , Nissan Primera , Hyundai Santa Fe and Subaru Forester. For each car,
12 views are taken while turning around (1 column ↔ 1 view). Although we do
complete a full turn, the manifold does not result in a spherical topology.
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Figure 8.9: Reduced space of the car data set and its Delaunay triangulation.
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Figure 8.10: Segmentation with shape priors (car manifold), attracting force
# 3 - Segmentation of a Peugeot 206 (left) and a Suzuki Swift (right). First row:
Segmentation with data term only. Second row: segmentation with our shape prior.
The embedding of the final shape is denoted by a blue cross and a green cross
respectively for the Peugeot 206 and the Suzuki Swift in Figure 8.9
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Figure 8.11: Segmentation with shape priors (ventricle manifold), attracting
force # 3, 1/2 - a) Eigenspectrum profile and degree of separability: on this re-
stricted data set with 39 shapes only, m = 2 appears to be the optimal dimension.
b) The two-dimensional embedding partitioned by a Delaunay triangulation. c) A
manually altered shape and its two closest neighbors in S and in the reduced space:
visually, the ones in the reduced space appear more similar.
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Figure 8.12: Segmentation with shape priors (ventricle manifold), attracting
force # 3, 2/2 - a) Coronal, horizontal, and sagital slices of the MRI volume with
the final segmentations without (top) and with (bottom) the shape prior. b) Some
snapshots of the shape evolution - the shape prior term was not used during the first
steps. c) The closest neighbors of the final surface.



Chapter 9

Conclusion

In this work, not only do we fulfill our initial goal of designing non-linear shape
priors for image segmentations, but we also proposed a manifold denoising algo-
rithm. In addition, we developed a new approach to the problem of interactive
image retrieval.

More precisely, we introduced a framework to work on general shapes in the
context of manifold learning techniques and provided a solution to the interpolation
problem between shape samples. We introduced three forces with different prop-
erties, designed to attract shapes toward shape manifolds. We formulated these
forces in a generic framework since it can be applied to more general data than
shapes. We sum up the three attracting forces:

• Closest projection force: We defined a projection operator onto the shape
manifold and suggested estimating the projection of a random shape by
means of an efficient iterative process.
The projection onto the manifold minimizes the distance to the random ini-
tial shape. It is finally used as a target while evolving toward the shape
manifold, resulting in the closest projection force.

• Same embedding force: the attracting force #2 calculates a local weighted
Karcher mean shape that has the same embedding of the random initial
shape. Again, the projection is used as a target to attract shapes of a given
embedding, resulting in the same embedding forces. This low computational
force is however not relevant in the image segmentation framework.
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• Constant embedding force: This is an elegant formulation to attract shapes
toward a shape manifold. Our prior is fully integrated into the Deformable
model framework. Based on diffusion maps, the Nyström extension and a
Delaunay partition in the reduced space, this force deforms the shape toward
the manifold at constant embedding value.

We have also proposed a new deformable model framework for image seg-
mentation that incorporates general non-linear shape priors by learning a shape
prior manifold and by modeling the attracting force #3 . Our approach carefully
exploits the properties of diffusion maps to derive an innovative shape prior term
designed to attract an active contour toward the shape manifold. We demonstrated
the strength of our approach by applying these ideas in different experiments (chap-
ter 8) either with synthetic or real data, including in segmentation tasks.

We stress the fact that the proposed method is general and is not necessar-
ily restricted to specific shape representations or 2D/3D-dimensional segmentation
tasks. In particular, the only requirement is a differentiable distance (and differ-
entiable kernel). Our approach can be applied to more general data sets, such as
diffusion weighted images as well as combined anatomical and functional Mag-
netic Resonance Imaging (MRI) in medical imaging.

Finally, we described a variational solution for manifold denoising as illustrated
in section 8.1 (fig. 8.1) based on the attracting force #3. Some simple experiments
demonstrated the potential of our approach, although more experiments are re-
quired.

The research presented in this dissertation introduces a new general framework
to deal with projections onto manifolds, based on dimensionality reduction tech-
niques, and their applications to image segmentation with general non linear shape
priors. However, note that our approach is limited to open manifolds and further
research on this topic should alleviate this problem. Future works may also in-
clude new applications, not limited to segmentation tasks, that exploit the concepts
presented in this dissertation. Yet again, it is expected to use more general data
since the only requirement to apply our method is a differentiable distance. Fi-
nally, a promising direction would be to achieve non rigid registration in the shape
manifold.



Chapitre 10

Conclusion (Version Française)

Dans ce travail, nous avons atteint notre objectif initial de construire des a
priori non linéaires pour la segmentation d’images, mais nous avons aussi intro-
duit un algorithme de débruitage de variétés. Nous avons également été impliqué
dans le développement d’une nouvelle méthode de contrôle de pertinence en re-
cherche d’image

Plus précisément, nous avons introduit un nouveau cadre pour utiliser des formes
dans le contexte des techniques d’apprentissages de variétés et nous proposons une
solution pour interpoler entre les échantillons de forme. Trois forces avec diffé-
rentes propriétés, ont été construites pour attirer les formes vers les variétés de
formes. Ces forces sont formulées dans un cadre générique puisque elles peuvent
être appliquée à des types de données plus généraux. Nous résumons ces trois
forces :

– Force vers la projection la plus proche Nous avons défini un opérateur de
projection sur la variété des formes a priori et suggéré son estimation rapide
au moyen d’un processus itératif.
La projection minimise la distance à la forme corrompue, et peut être utilisé
en tant que cible pendant l’évolution vers la variété des formes.

– Force vers la projection de même valeur de plongement La force attrac-
tive #2 calcule une moyenne locale pondérée de Karcher de forme qui a la
même valeur de plongement que la forme initiale à projeter. La projection
est de nouveau utiliser comme une cible pour attirer l’ensemble des formes
ayant une valeur de plongement donnée. Cette force ayant un faible coût
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n’est cependant pas pertinente dans le cadre de la segmentation d’image.
– Force à plongement constant Il s’agit d’une formulation élégante pour at-

tirer les formes vers la la variété des formes a priori. En particulier, cette
approche qui est complètement intégrée à la technique des diffusions maps
(DFM), repose sur l’extension de Nyström et une partition de Delaunay.
Cette force #3 assure que l’évolution se fait à valeur de plongement constant.

Nous avons également proposé un nouveau cadre de modèle déformable pour
la segmentation d’image avec des a priori de forme. Pour cela, la variété des formes
a priori est apprise et la force attractive #3 est utilisée comme un terme d’énergie
d’a priori de forme. Notre approche exploite soigneusement les propriétés des dif-
fusion maps afin de construire un terme d’a priori de forme innovant, qui attire un
contour actif vers la variété des formes a priori. Nous avons démontré la force de
notre approche en appliquant ces idées dans différentes expériences (chapitre 8),
avec des données synthétiques ou réelles, y compris dans des tâches de segmenta-
tion.

Nous insistons sur le fait que la méthode proposée est générale et n’est pas né-
cessairement restreinte à des représentations spécifiques de forme ou à des tâches
de segmentation en dimension 2D/3D. En particulier, seulement une distance et
un noyau différentiable sont nécessaires. Notre approche peut être appliquée à des
données plus générales telles que les images de diffusion pondérées ou IRMf (Ima-
gerie de Résonance Magnétique fonctionnelle) en imagerie médicale.

Enfin, nous avons décrit une solution variationnelle pour le débruitage de va-
riété comme illustré en section 8.1 (fig. 8.1) reposant sur la force attractive #3.
Quelques expériences basiques ont montré le potentiel de notre approche, bien que
d’autres seraient nécessaires.

Les recherches présentées dans ce manuscrit introduisent un nouveau cadre gé-
néral pour projeter des données sur des variétés, reposant sur des techniques de ré-
duction de dimension, et les applications qui en découlent en segmentation d’image
avec des a priori de forme non linéaire généraux. Cependant, notre approche est li-
mitée à des variétés ouvertes et d’autres recherches sont nécessaires pour résoudre
ce problème. Des recherches futures pourraient s’orienter vers de nouvelles appli-
cations, non limitées à des tâches de segmentation, qui exploitent les concepts pré-



163

sentés dans cette thèse. De nouveau, le prochain objectif est d’utiliser des données
plus générales puisque seulement un noyau différentiable est nécessaire. Finale-
ment, une direction de recherche prometteuse serait de développer une méthode de
recalage non rigide dans une variété de forme apprise à l’aide d’un échantillon de
formes.
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Appendix A

Radon/Hough space for pose
estimation

Nota Bene: This work was achieved during my thesis under the supervision of
Nikos Paragios when he was at Ecole des Ponts (CERTIS Lab.) and with the partial
collaboration of Yakup Genc, Program manager at Siemens Corporate Research in
Princeton New-Jersey, USA. It is about 3D reconstruction and camera calibration,
which is not the main topic of this dissertation. However, since this project relies
on machine learning and was my first step using these techniques , it seems natural
to include it for the sake of completeness.

Abstract

In this chapter, we present a method for camera pose estimation from one single
image in a known environment. This method comprises two stages, a learning step
and an inference stage where given a new image we recover the exact camera po-
sition. We focus on lines and the Radon/Hough transform to model features. The
question to be answered is what can be learnt from lines in order to estimate the
camera position ?.

Lines that are recovered in the Radon space consist of our feature space. Such
features are associated with [AdaBoost] learners that capture the wide image fea-
ture spectrum of a given 3D line. Such a framework is used through inference
for pose estimation. Given a new image, we extract features which are consis-
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tent with the ones learnt, and we associate such features with a number of lines
in the 3D plane that are pruned through the use of geometric constraints. Once
correspondence between lines has been established, pose estimation is done in a
straightforward fashion. Promising experimental results based on a real case are
presented in this chapter.
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A.1 Introduction

Pose estimation has been extensively studied in the past years. Nevertheless, it is
still an open problem particularly in the context of real time vision. Robot naviga-
tion, autonomous systems and self-localization are some of the domains in com-
putational vision where pose estimation is important. One can also cite a number
of applications in augmented and mixed reality where a solution to this problem is
critical. In prior literature pose estimation methods are either feature-driven [167]
or geometry-driven [4, 71, 154, 44].

The solution proposed aims to combine feature-based methods and geometry-
driven approaches. To this end, we consider geometric elements such as lines to be
the most appropriate feature space. Such a selection is motivated from a number of
reasons. Lines are simple geometric structures that refer to a compact representa-
tion of the scene, while at the same time one can determine angles and orientations
that relate their relative positions. Parallel to that, in the image projection space ap-
propriate feature spaces (Hough [72, 207], Radon [207]) and methods exist for fast
extraction and tracking [66] of such geometric elements with important precision.

A promising solution is both feature-and-geometry driven. Lines are character-
ized by their projection in the Radon space, forming a feature space. In addition,
the geometry of 2D-line configuration can be easily recovered through a 3D recon-
struction of the scene. The scheme of our method is thus to reconstruct line while
their geometry and features are learnt. Once this is done, a simple line detector
coupled with the information previously learnt can be implemented in order to in-
fer the pose estimation from a single view. We are aiming at real-time applications
such as augmented reality based on a head mounted device or robot navigation.

The remainder of the document is organized in the following way. In section
A.2, we present basics of line detection based on the Hough and Radon transform.
A matching and tracking process are also presented in section A.2.3. Then, sec-
tion A.3 details our approach, the feature space being based on the Radon space.
Experimental results and discussion are finally presented in the last section.
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A.2 Feature detection, matching & tracking

The detection of primitives in images is a recurrent problem in computer vision,
particularly for points and lines. Feature detection is a key point of our approach
and we will only be interested in line extraction in the sequel. In this section,
we present one of the most powerful tools to robustly detect lines in images, the
Hough transform. Nevertheless, the voting space of the Hough transform has some
discretization defects that might be unsatisfactory.To cope with such limitations,
the Radon transform may be employed. We also point out the links between the
Hough transform and the Radon transform up.

A.2.1 The Hough transform

The Hough transform, which has been the purpose of a lot of research since the
60’s, is a method capable of finding parameterized shapes in images. The idea of
this transform is to express a mapping between an image space and a parameter
space which constitutes a dual space. Obviously, the parameter space depends on
the shape of the primitive we work on. In its initial forms, the Hough transform
[103, 163] was designed to detect only 2-lines1 in binary images (A binary image
is, for instance, obtained from the edge map of a given image, see (sec. 4.2.1)).
Paul V.C Hough [103] chose the slope and the intercept as parameters of the line.
We will be using the projective representation in the rest. Let a be the slope and b

be the intercept of a given line whose projective representation is l = [a, 1,−b]T .
Also, let p = [x, y, 1]T be a point. The method relies on the principle of duality in
projective geometry.

lT p = 0 (A.1)

Equation (A.1) has two dual interpretations [85]:

1. line l goes through point p if equation (A.1) is verified

2. point p belongs to line l if equation (A.1) is verified

Finally, let I ⊆ R2 be the image space, P ⊆ R2 be the parameter space (for in-
stance, the x-axis represents the slope and the y-axis represents the intercept). By
using the duality principle, we see that a point in I corresponds to a line in P . We
also notice that the set of points belonging to a given line l∗ = [a∗, 1,−b∗]T in the

1n-line: line in a n dimensional space
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x
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ρ

θ

Figure A.1: Parametrization of the Hough space

image space I corresponds to the set of lines intersecting at the coordinates (a∗, b∗)
in the parameter space P .
In practice, an accumulator array of the size of the parameter space is set up to zero
and each point p in the image space votes for the cells corresponding the lines going
through p. The line detection is finally achieved by fixing a [detection] threshold
in the accumulator array.
More recently, A. S. Aguado, E. Montiel and M. S. Nixon [3, 21] have formalized
and generalized the relationship between the principle of duality and the Hough
transform, not only to projective geometry.

The line slope parametrization is not optimal because both parameters are not
bounded. Richard O. Duda and Peter E. Hart [73] proposed a commonly accepted
line parametrization, which circumvents such a limitation. The authors wrote the
line l as

l = {(x, y) , x cos(θ) + y sin(θ)− ρ} (A.2)

where the two parameters θ and ρ are respectively the angle of its normal and the
distance to the origin of l as represented in figure (A.1). If we choose to restrict
θ to [0, π], ρ is an algebraic distance, otherwise, θ ∈ [0, 2π] and ρ is an absolute
distance. This parametrization, which is unique, maps a point in image space to
a sinusoid in the parameter space. Figure (A.2) shows an example of the Hough
transform on a very simple example.

The Hough transform as described so far is known as the Standard Hough
Transform (SHT) and belongs to a classification called one to many (1 → m).
Each point produces indeed a bench of points in the parameter space. Although the
Hough transform is robust, it is very costing from a computational point of view,
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Figure A.2: Example of Hough Transform: Image space on the left, parameter
space on the right. The three highest values of the parameter space represented by
an accumulator give the parametrization of the 3 lines in the image space

particularly when the dataset of points in the image space is large. In order to re-
duce the time of detection, N. Kiryati and Y. Eldar and A. M. Bruckstein [113] have
proposed the Probabilistic Hough Transform (PHT) that selects a poll of sample in
the image space . They speed up the process by using probabilities and by achiev-
ing a kind of "coarse to fine" Hough transform. This idea has been extended in [93].

Another classification, called many to one (m → 1), was introduced by Lei
Xu and Erkkii Oja: the Randomized Hough Transform (RHT) [213]. Rather than
taking a single point in the image space, the authors prefer to compute only one
point in the parameter space by taking randomly several points in the image space.
For the case of a line, two random points define a line and so, vote for one point
in the parameter space. When a threshold is reached in the parameter space, the
corresponding line is detected and masked out of the image space. The algorithm
starts again until it does not find any line after a certain number of polls.
The PHT and RHT have been unified later by H. Kalviainen, N. Kiryati and S.
Alaoutinen in [106]. The reader is also referred to [124, 186] for more details.
Note that the Hough transform has been widely extended to more general shapes,
even in higher dimensions.
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Figure A.3: Discretization defects using standard Hough transform between the
two red lines

Unfortunately, the SHT parameter space has discretization defects as shown in
figure (A.3) in the stripe between the two red lines. The Radon transform [159]
does not suffer from such a defect and can be efficiently implemented by using the
Fourier Transform. Both transformations, Hough transform and Radon transform
are derived from the same concept and the output spaces are the same when the
Radon space is computed on the edge map.

A.2.2 The Radon transform

Let g be a mapping defining an image over a domain space U such that:

g : U 7−→ R
u −→ g(u)

and let fp(u) = 0 define a shape described by the vector parameter p. The Radon
transform of g regarding the shape fp(u) = 0 is given by:

R(g)(p) =
∫

U
g(x)δ [fp(x)] du (A.3)

where δ(.) is the Delta-Dirac function. The discrete form of the Radon transform is
extensively used in tomography image reconstruction but it can also be very useful



A.2. FEATURE DETECTION, MATCHING & TRACKING 173

for line detection.
In that particular case, U = R2 ie u = (x, y) and let p = (ρ, θ) such that:

fp=(ρ,θ)(x, y) = ρ− x cos(θ)− y sin(θ) (A.4)

and thus, equation (A.3) can written as follows.

R(I)(ρ, θ) =
∫∫

R
I(x, y)δ (ρ− x cos(θ)− y sin(θ)) dxdy (A.5)

where g = I is the transformed image.
Finally, local maxima are thresholded by using the median value of neighboring
pixels.

A.2.3 Tracking / Matching lines in the Radon space

Basic image to image tracking

Local maxima in the parameter space correspond to lines in the image space and
can be extracted in a straightforward fashion. The Radon transform is a global
transformation that encodes the entire line structure in a compact fashion. It is
capable of accounting for occlusions, local and global changes of the illumination
as well as strong presence of noise.

Figure A.4: Line signature in the Radon space for a given number of consecutive
images.

Tracking lines is a feasible task by capturing the line displacement from one im-
age to the next in the parameter space. The problem is indeed simplified due to the
constraint that lines correspond to local maxima — in the parameter space — and
therefore simple comparison between local Radon patches could provide explicit
correspondences between lines. To this end, we consider simple normalized cor-
relation criteria. We seek to recover the optimal displacement du = (dx, dy) be-
tween two Radon images such that the distance between the corresponding patches
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is minimal. Basically, the algorithm works with the Radon spaces (R1 & R2) of
two successive images (I1 & I2) and for each local maximum detected previously
in R1 - i.e. a line in I1 - it searches for the 2D-dimensional shift in R2 such that
an energy E is minimized:

min
(dx,dy)∈
Ω(X,Y )

E(dx, dy) (A.6)

where Ω(X, Y ) is the neighborhood of (X, Y ).
The search can be constrained on local maximums of R2 but experiments show
that a free shift search is preferred. We assume that the transformation between
Radon spaces R1 and R2 corresponding to two consecutive images I1 and I2 is
slight. Thus, we simply chose to compute a cross normalized sum of differences:

E(dx, dy) =

∑
u,v

[
(WX,Y {I1} (u, v))

(WX′,Y ′ {I2} (u, v)
)]2

∑
u,v

[WX,Y {I1} (u, v)]2
∑
u,v

[WX′,Y ′ {I2} (u, v)
]2

(A.7)

where X ′ = X + dx, Y ′ = Y + dy, WX,Y is a designed window centered in
(X, Y ) such that the values WX,Y (u, v) are centered (the mean over the windows
is subtracted).
Note that the particular structure of the Radon space, which folds up, is taken into
consideration. We tried other forms of similar energy (correlation etc.) but none
showed real improvements.

Tracking over a sequence

In the previous lines, we presented a simple image to image line tracking. We are
however interested in tracking lines over a video sequence. Thus, dying lines —
i.e. lines that are not present anymore in an image — and new line detection should
be taken into consideration. Without loss of generality, algorithm (1) outlines the
procedure implemented to achieve such a task. It is based on three main functions:
image to image line detection, new line detection and outgoing line detection.
The former has been described previously. Then, the algorithm tries to keep up
to Nmax

l during the tracking within N seq images. New line detection has been
already detailed and is used to maintain the number of lines tracked in the current
image (up to Nmax

l ). The last function, outgoing line detection , ensures that a



A.2. FEATURE DETECTION, MATCHING & TRACKING 175

line will not be tracked if it is not anymore in the current image. In order to decide
if a line should be tracked in the following images, the algorithm analyses with
the help of variance the patches over N images. It avoids removing and detecting
again continuously the same line along the tracking within the video sequence.

Algorithm 1 Tracking lines in a video sequence
INPUTS: N , N seq,Nmax

l be initialized
Initialize O = ∅, N = ∅, t ← 0
while t + N <= N seq do

for all line ∈ O do
Trackline(line,t + N − 2,t + N − 1);

end for
n ← Nmax

l − |O| {number of lines to detect in image}
N ← detect n new lines in image t

for all line ∈ N do
Trackline(line,{t, . . . , t + N − 1});

end for
O ← O ∩N
for all line ∈ O do

OutGoing_Detection(line,t,{t, . . . , t + N − 1});
end for
t ← t + 1

end while

Trackline(l,{a, . . . , b}) is the basic tracking function of the line l between images
a and b, in the corresponding Radon/Hough spaces (see A.2.3).

OutGoing_Detection(l,t,{t, . . . , t + N − 1}) is the procedure that detects if the
tracking of the line l should be stopped or not. (see A.2.3).

Conclusion

We have presented an efficient method for line tracking in the Radon space based
on correlation patches. Note that the correlation patches in the Radon space can
also be used in order to improve semi-automatic line matching in a sequence of
images.
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Figure A.5: Tracking lines in the Radon space and their projections in the corre-
sponding image space. Results are presented in raster-scan format.
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A.3 Inference from complete Hough/Radon space

A.3.1 Objectives & Problem formulation

Our method consists of a learning and an inference step. During the learning stage,
the scene is learnt from an image sequence and its corresponding 3D reconstruc-
tion. A geometry-based learning is achieved by recovering geometric relations be-
tween lines and consequently between their projections. In parallel to the feature-
based learning, 3D lines are associated through AdaBoost learners with their 2D
projection in the Radon space (local maxima). Such an information space is used
within a matching process to recover the camera’s pose from a new image. Match-
ing between plausible line candidates in a new image dictates multiple correspon-
dences between the 2D new image lines and the 3D reconstructed lines. The most
probable configuration in terms of appearance while satisfying geometric consis-
tency constraints provides the camera position. The overview of such an approach
is shown in [Fig. (A.6)].

Let us consider a centered coordinate system that is defined with the camera
lens center or with the observer located at the origin. The view axis is supposed to
be colinear to the z axis and perpendicular to the image plane. Using the perspec-
tive model, the image of any point in space is equal to the intersection of the image
plane and the line joining the point to the center of the camera lens.

The main stream of research in 3D reconstruction and pose estimation has been

Figure A.6: Overview of the proposed pose estimation approach where both
learning and estimation steps are delineated.
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devoted to point correspondence [84, 156, 167]. Line correspondences could be an
efficient alternative to such an approach [126, 120]. Such a feature space inherits
the advantage of being more robust than point correspondences as well as more
global. On the other hand, line tracking algorithms are computationally intensive
and low sampling frequency and long time delays can therefore be expected. Such
a limitation can be addressed using image transformations like the Hough [72] and
the Radon space [207] which projects images into convenient line spaces.

The remainder of the current section is organized in the following way: Sec-
tion (A.2.3) described our approach toward line tracking. Since lines are tracked
through a video sequence, their 3D information is recovered and the 3D-2D re-
lation can be indirectly learned by a boosting algorithm as presented in section
(A.3.2). Section (A.3.3) is devoted to inference and pose estimation and finally a
discussion for this approach is given in the conclusion of this appendix in section
(A.4).

A.3.2 3D-2D Line Relation through Boosting

As previously mentionned, the first step is to compute a three dimensional model of
the scene and more particularly the lines. 3D reconstruction from image sequences
of video sequence has been widely studied in the past years. Figure (A.7) is a 3D
reconstruction of an indoor scene based on lines. Once the scene and 3D lines have
been reconstructed (Fig. A.7), one would like to establish a connection between
such 3D lines and their corresponding projections. Since our approach is both
features and geometric-based, we aim at learning both kinds of constraints.

First, geometrical constraints can be straight and naturally deduced from the
3D reconstructed scene implying 2D constraints on the projected lines. Since ex-
traction of the relative geometry is not critical —once 3D reconstruction has been
completed— more attention is to be paid to feature extraction, learning and mod-
eling.

Let us consider that our feature learning stage consists of L = {l1, l2, ..., ln}
3D lines, and our training consists of c images. Without loss of generality we
assume that such geometric elements were successfully detected within these c

images. Let Pk = {p1
k, p

2
k, ..., p

c
k} being the projections in the radon space of line

lk at these c images. Such projections correspond to the 2D local radon patches
represented as d-dimensional vectors.

Traditional statistical inference techniques can be used to recover a distribu-
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Figure A.7: 3D reconstruction of an indoor scene
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tion of such d-dimensional vectors. To this end, one can consider simple Gaussian
assumptions and classic dimensionality reduction techniques like principal com-
ponent analysis. Such a selection could fail to account for the highly no-linear
structure of the Radon space and so of the corresponding features. Furthermore,
since recovering a training shots from all possible virtual positions of the observer
is almost impossible, one should also account for sparse observations and learning
from small training sets. Therefore, more advanced classification techniques are to
be considered which are able to cope with some of the above limitations.

Our basic classifier consists of: given two classes C1 and C2 find an appropriate
transformation/function F that can measure the distance between a sample p and
these classes F (Ck, p). To this end, within the context of our application one can
consider n bin classification problems Fk,

Fk(p) =

{
1, p ∈ Ck

0, p ∈ Cj , j 6= k

In other words, we are looking for a way to compute the boundary of a binary
partition between the features corresponding to line lk versus the others. Stump
classification can deal with this problem: it tests binary partitions along all the d

dimensions and all possible thresholds. The model is given by:

R ={α01xj<τ + α11xj≥τ : j ∈ 1, . . . , d, τ ∈ R,

α0 ∈ [0; 1], α1 ∈ [0; 1]} (A.8)

The threshold τ∗ and the dimension j∗ that minimizes the desired criteria W(j, τ)
are kept to form the partition parameters. The reader can refer to [10] to get further
details about stumps and more particularly about the criteria W we used.

Consequently, stump classification returns a function fm that defines a partition
of the space according to a hyperplane which is orthogonal to the canonical basis
of X :

fm = fm,<1x∈X<
j,τ

+ fm,≥1x∈X≥j,τ

Stumps were implemented and tested with a synthetic data set formed with a
video sequence of a basic 3D structure. Towards producing a realistic test case, a
set of perturbations (random lines) are introduced in the 3D scene [Fig. (A.10)].
In order to account for possible sensor noise, the corresponding video images are
convolved with a Gaussian operator (white noise), and additional lines are also
added in the observation set. Radon transformations of such images are used to
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recover local patches that guide the learning step while a test set is also created.
The classification error for all experiments which were conducted was close to 0.5.
Therefore, one can conclude that bin classification on such a space induces a high
risk in pose estimation.

One can overcome such a limitation through the transformation of the stump
classifier into a "weak" learner. In addition, the learning algorithm should deter-
mine the origin of the sample as accurate as possible by the use of a multitude of
"weak" learners. AdaBoost [89, 90] is one of the most prominent techniques to
address such a task among others such as neural networks [72] and support vector
machines [208]. Boosting improves significantly the accuracy of any given learn-
ing algorithm, even in the case of a "weak" learner. Such techniques have a number
of interesting empirical properties. It has been shown [90] that boosting does not
perfom an overfit to the training data.

The general idea of boosting is to 1- repeatedly use a "weak" learner [stumps
returning a regression function fm in our case] with some weights wm

i on the train-
ing data - m being the iteration index - 2- focus on misclassified data from one
iteration to the next through the update of wm

i :

wm
i =

wm−1
i e−Yifm(Xi)

K
∀i∈{1,...,N}
K: normalizing constant (A.9)

where Yi is the classication corresponding to the feature Xi, (Xi, Yi) being an
element of the learning and N its size.

Then, at each step a weight cm associated with the current learner is deter-
mined according to the corresponding classification performance. The final classi-
fication is given by the thresholded regression function 1GM (x)>T , GM (x) being
the weighted combination of the "weak" learners:

GM (x) =
M∑

m=1

cmfm (A.10)

This is a slightly modified version of the "real AdaBoost algorithm" [175, 10]
presented in figure (A.8). Indeed, at the end of the "real" AdaBoost algorithm, the
decision is based on 1GM (x)≥ 1

2
implying implicitly a fixed threshold on the regres-

sion function GM (x) =
∑M

i=1 cifi. Instead of doing this and since GM (x) is by
definition piece-wise constant, we preferred to choose dynamically the threshold
T among the finite set of possible values so that the error can be decreased.
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Finally, the feature learning stage outputs n classifiers

Sn = {1G1
M (x)>T1

, . . . ,1Gk
M (x)>Tk

, . . .1Gn
M (x)>Tn

}
-one for each line- that are going to be used for line inference and pose estimation.

(X, Y ) forms the learning set, X ∈ X = Rd is a feature and Y the corresponding
true classification decision
Start with weights w0

i = 1
N for any i ∈ {1, . . . , N}.

For m = 1 to M do

• Determine j ∈ {1, . . . , N} and τ ∈ R minimizing Wwm−1(j, τ).

• Choose fm = fm,<1x∈X<
j,τ

+ fm,≥1x∈X≥j,τ
where





fm,< , 1
2 log

(
Pwm−1 (Y =1;X∈X<

j,τ )+β

Pwm−1 (Y =0;X∈X<
j,τ )+β

)

fm,≥ , 1
2 log

(
Pwm−1 (Y =1;X∈X≥j,τ )+β

Pwm−1 (Y =0;X∈X≥j,τ )+β

)

and β = 1
4N

• Set wm
i = wm−1

i e−Yifm(Xi)

Cst for any i ∈ {1, . . . , N}, where Cst is the nor-
malizing constant.

EndFor

• Output the classifier 1GM (x)≥ 1
2

= 1+sign[GM (x)]
2 where GM (x) =

M∑

i=1

cifi

Figure A.8: "Real" AdaBoost [175] using stumps as defined in [10]

A.3.3 Line Inference & Pose estimation

Line inference consists of recovering the most probable 2D patches-to-3D lines
configuration using the set of classifiers

Sn =
{
1G1

M (x)>T1
, . . . ,1Gk

M (x)>Tk
, . . .1Gn

M (x)>Tn

}
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. In this section, we first explore the straighforward solution and then we propose
an objective function that couples the outcome of the weak learners with geometric
constraints inherited from the learning stage. Such an objective function also solves
pose estimation since the optimal camera parameters refer to its lowest potential.

In order to validate the performance of the AdaBoost classifier, we have cre-
ated a realistic synthetic environment where inference results can be compared
with the true configuration. The feature vector for one-preselected line has been
learnt, and the corresponding classifier was tested with new images. Results for
the 30 first iterations of the real AdaBoost are presented in [Fig. (A.9)]. We can
clearly make several observations. First, learning error converges to zero while the
error of the classification in the test remains stable. Such a remark is consistent
with the expected behavior of the classifier; boosting does not overfit as previously
mentioned. Then, samples from Class II are almost never misclassified while clas-
sification error of Class I is very important and therefore direct pose estimation
is almost impossible. On top of that, one can claim that the lines that are visible
change from one image to the next; therefore pose is ill-posed. Such a limitation
can be dealt with the use of geometrical constraints encoded in the learning state
during the 3D reconstruction step. Such an assumption could allow us to relax
the AdaBoost, since classification errors become less significant once geometry is
introduced.

A modified classification model is now constructed based on the previous oberser-
vations. Let j be a new image outside the vido sequence. Any sample p such that(
Gk

M (p) > Tk

)
(Class I) is a potential match. Moreover, classification confidence

depends on the distance of the data to be classified from the the boundary and so
on the value of sdk(x) = Gk

M (x) − Tk: the greater is |sdk(x)| the more confident
is the classification. Thus, the easiest classification choice is:

arg max
i ∈ {1, . . . , n}

st:Gk
M (pj

i ) > Tk

Gk
M (pj

i )− Tk (A.11)

The correspondance expressed in eqn. (A.11) is not sufficient since the most
important value does not necessarily correspond to the real match. Let us assume
for a line k, we are interested in the B best potential matches {pn1 [k], . . . , pnB [k]}.
Such candidates are determined through the eqn. (A.11). If less than B lines verify
the constraint Gk

M (pi[k])) > Tk ∀i, then it is "relaxed" as explained earlier. In
other words, lines misclassified are authorized to be taken into consideration by
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removing the constraint in eqn. (A.11). A weighting function h(.) is also used to
influence the importance of a potential match based on the quantity sdk(.).

Actually we want to express a geometrical constraint GC between the projec-
tions of C lines {ls1 , . . . , lsc , . . . , lsC} (C < B). For each line sc we keep the B

best potential matches {pn1 [sc], . . . , pnb
[sc], . . . , pnB [sc]}. Finally, the energy to

be minimized is given by:

min
(i1 . . . ßC) ∈
(A1, . . . ,AC)

C∑

c=1

h(sdic(pic [sc])) subject to GC(pi1 [s1], . . . , piC [sC ])

(A.12)
where:

• Ac is the indice set of potential matches with line lsc

• h(x) is as in our implementation inversely proportional to x. More complex
models can however be imagined.

with GC being the geometric constraint. One can recover the lowest potential of
such a cost function using classical optimization methods but at the sight of the
small number of lines detected, we consider an exhaustive search approach. Nu-
merous formulations can be considered for the GC term. Corners are prominent
characteristics of 3D scenes. Therefore, 3D lines going through the same point
(that can also define an orthogonal basis) is a straighforward geometry-driven con-
straint. One can use such an assumption to define constraints in their projection
space; that is:

GC(l1, l2, l3) = |(l1 × l2)T l3| (A.13)

where× is the cross product of 2 projective points/lines and T is the transpose sign.
Such a term takes into account the scene context. Offices, buildings, etc. are

scenes where the use of such a constraint is mostly justified (corners, vanishing
points etc.). For example in figure (A.11), the learning step of lines 1,2 and 3
gives a set

{
1

G1
M

(x)>T1
,1

G2
M

(x)>T2
,1

G3
M

(x)>T3

}
. If only feature constraint is used

through eqn. (A.11), only line 2 is well matched. However, by using relaxation and
the geometrical constraint associated to these lines, the algorithm retrieves good
matching. In more complex scenes, more advanced terms can be considered to
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Figure A.10: Example of learning results on synthetic data. Red lines: matching
of 3 lines using geometrical constraint

improve the robustness of the method. Once the line correspondence problem has
been solved, the pose parameters of the camera can be determined using a number
of methods [71, 154, 44], but we choose to implement a fast efficient linear method
presented in [6].

A.4 Conclusion & Discussion

We have proposed a new technique for one shot pose estimation from images in
known environments, which gives promising results. Several experiments were
conducted to determine the performance of the method. To this end, first a video
stream along with the corresponding 3D geometry [that can be recovered by us-
ing standard reconstruction techniques] of the scene were used to learn the model.
Such a model refers to n classifiers with their features space being patches of the
Radon transformation of the original image. Then, new images of the same scene
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Figure A.11: Final calibration: the image to be calibrated is overlaid by the edge
map (in white) and the 3D line reprojection (in red)
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were considered and self-localization of the observer based on 2D-3D line match-
ing [Fig. (A.10) & (A.11)] was performed.

Our method comprises a learning step where a direct association between 3D
lines and Radon patches is obtained. Boosting is used to model statistical character-
istics of these patches and weak classifiers are used to determine the most optimal
match for a given observation. Such a classification process provides multiple pos-
sible matches for a given line and therefore a fast pruning technique that encodes
geometric consistency in the process is proposed. Such additional constraints over-
come the limitation of classification errors and increase the performance of the
method.

Better classification and more appropriate statistical models of lines in Radon
space is the most promising direction. The use of Radon patches encodes some
extended clutter and therefore separating lines from irrelevant information could
improve the performance of the method. Better tracking of lines through linear
prediction techniques such as Kalman filter could improve the learning stage and
make the method more appropriate for real-time autonomous systems. Last, but
not least, representing the camera’s pose parameters using non-parametric kernel-
based statistical models seems to be more suitable terms to further develop the
inference process.
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