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Abstract

This thesis is devoted to image enhancement and texture preservation issues. This task involves an
image model that describes the characteristics of the recovered signal. Such a model is based on
the definition of the pixels interaction that is often characterized by two aspects (i) the photometric
similarity between pixels (ii) the spatial distance between them that can be compared to a given
scale. The first part of the thesis, introduces novel non-parametric image models towards more
appropriate and adaptive image description using variable bandwidth approximations driven from
a soft classification in the image. The second part introduces alternative means to model obser-
vations dependencies from geometric point of view. This is done through statistical modeling of
co-occurrence between observations and the use of multiple hypotheses testing and particle filters.
The last part is devoted to novel adaptive means for spatial bandwidth selection and more efficient
tools to capture photometric relationships between observations. The thesis concludes with pro-
viding other application fields of the last technique towards proving its flexibility toward various
problem requirements.





Résumé

Cette thèse s’intéresse aux problèmes de restauration d’images et de préservation de textures. Cette
tache nécessite un modèle image qui permet de caractériser le signal qu’on doit obtenir. Un tel
model s’appuie sur la définition de l’interaction entre les pixels et qui est caractérisé par deux
aspects : (i) la similarité photométrique entre les pixels (ii) la distance spatiale entre les pixels qui
peut être comparée à une grandeur d’échelle. La première partie de la thèse introduit un nouveau
modèle non paramétrique d’image. Ce modèle permet d’obtenir une description adaptative de
l’image en utilisant des noyaux de taille variable obtenue à partir d’une étape de classification
effectuée au préalable. La deuxième partie introduit une autre approche pour décrire la dépendance
entre pixels d’un point de vue géométrique. Ceci est effectué à l’aide d’un modèle statistique de
la co-occurrence entre les observations de point de vue géométrique. La dernière partie est une
nouvelle technique de sélection automatique (pour chaque pixel) de la taille des noyaux utilisé
au cours du filtrage. Cette thèse est conclue avec l’application de cette dernière approche dans
différents contextes de filtrage ce qui montre sa flexibilité vis-à-vis des contraintes liées aux divers
problèmes traités.
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Chapter 1

Introduction en Français

La restauration est l’un des composantes fondamentales du traitement des images. Cela consiste à
déterminer une image sans bruit à partir d’une observation corrompue. Dans ce contexte, on doit
considérer trois aspects importants qui sont (i) une modélisation adéquate de l’image et du bruit
(ii) une modélisation de la géométrie de l’image et des interactions entre les pixels (iii) la sélection
de la fonctionnelle qui encode les modèles image et bruit ainsi que les interactions entre pixels afin
de calculer l’image débruitée. Dans la suite nous présenterons le contexte de ce travail ainsi que
les motivations et les principales contributions.

1.1 Présentation du problème et Motivations

On assiste de nos jours à une prolifération d’images numériques dans la vie de tous les jours à
travers de nombreuses applications telles que la photographie, l’imagerie médicale, la vidéo sur-
veillance, la navigation et le contrôle industriel, etc. Malgré le progrès important réalisé durant les
dernières années par les constructeurs de caméras au niveau de la qualité des images, ces dernières
ont besoin d’une étape de prétraitement avant son exploitation. Le besoin d’un compromis entre
la qualité de l’image et le prix des caméras, ainsi que le renforcement de la concurrence entre les
constructeurs pour produire des caméras à moindre coût rendent les solutions logicielles attrac-
tives. Ainsi, les applications de restauration des images telles que le débruitage le déflouage et
le inpainting ont attiré beaucoup d’attention dans la communauté de la vision par ordinateur et le
traitement des images. Parmi les différents types de dégradations, nous allons particulièrement
nous intéresser à la suppression de bruit.
Pour un capteur standard et pour chaque pixel de l’image observée, l’intensité corresponds au



22 Chapter 1

nombre de photons qui atteint un élément de capteur ou photosite durant une période T. Le bruit
correspond alors à la fluctuation du nombre de photons par rapport à la moyenne qui correspond
à la vraie intensité. La chaleur dégagée par le dispositif électronique est une source de bruit
supplémentaire en générant des photons qui affectent chaque photosite et produisent le ”bruit
d’obscurité”. D’autre part, chaque photosite génère du bruit qui peut contaminer les pixels voisins.
Plus généralement, on peut approximer la relation entre l’image observée I qui est mesurée par le
capteur et l’image sans bruit U pour chaque pixel x par

I(x) = U(x) + n(x) (1.1)

où n est un bruit qui dépend du pixel et qu’on assume blanc et de moyenne nulle. Le bruit blanc
est caractérisé par l’indépendance entre ses différentes réalisations.
Ainsi, le débruitage est l’estimation de l’image U à partir d’une observation bruitée I et de certaines
hypothèses sur le modèle de bruit. Pour résoudre ce problème, diverses méthodes ont été proposées
au cours des cinq dernières décennies. Malgré les progrès importants réalisés de nombreux défis
doivent encore être soulevés. L’efficacité d’un algorithme de débruitage est liée à sa capacité de
préserver les informations incluses dans l’image tels que les bords, la texture et les petits détails.
Alors que la contrainte de préservation du contour a été respectée par la plupart des algorithmes
non linéaires de débruitage, un effort doit encore être consacré au débruitage de la texture. Cela
est dû au fait que la plupart des algorithmes de débruitage supposent que l’image est constante par
morceaux. Une telle hypothèse n’est pas adéquate avec les caractéristiques des images naturelles
qui peuvent contenir certaines structures aussi oscillantes que le bruit. De nombreuses recherches
pour la modélisation de la texture ont été menées, mais leur efficacité est dépendante de la taille
de la texture ainsi que de sa structure. Ce dernier point rend pertinents les efforts consentis afin de
trouver des modèles d’image plus réalistes et des algorithmes de débruitage qui préservent mieux
la texture.

1.2 Les Contributions

Le travail présenté dans cette thèse est un pas vers une meilleure compréhension des images et
de la texture dans le but de déruitage. L’objectif principal est d’adapter au contenu de l’image
les modèles utilisés dans la restauration. Dans cette dissertation, nous présenterons des modèles
mathématiques et les solutions numériques qui utilisent l’information appris à partir de l’image
observée afin de construire une approche appropriée de débruitage. Notre principale motivation
est de concevoir une technique qui utilise des modèles d’images différents selon le contexte local.
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Cette thèse présente de nouvelles approches théoriques dans le but de débruiter des images tout en
préservant la texture. Dans un premier temps, nous nous intéresserons aux aspects photométriques
du problème dans le but de définir des modèles appropriés capables de décrire l’observation et
l’échelle des interactions photométriques entre les pixels. Ensuite, nous allons étudier l’importance
de la géométrie dans la définition des dépendances entre les pixels et par conséquents dans les
interactions spatiales ente eux. Le dernier volet de la thèse consiste en deux contributions, un
terme de régularisation plus général qui permet de prendre en compte la complexité de l’image
ainsi qu’une méthode automatique de sélection de la taille de la bande passante spatiale. Dans
cette dernière partie nous nous intéresserons également à la définition des poids qui régissent les
interactions entre les pixels en fonction du contenu de l’image.

Notre première contribution consiste à introduire la notion de classification dans le processus
de débruitage en utilisant des descripteurs locaux. Plusieurs techniques cherchent à s’adapter au
contenu de l’image en prenant en compte les caractéristiques de chaque pixel pendant le débruitage.
Mais, certaines textures ont les caractéristiques similaires au bruit ce qui empêche l’algorithme de
restauration de les détecter. Pour cette raison, nous pensons qu’une étape de pre classification
qui fourni un outil plus robuste pour identifier les zones texturées dans l’image est nécessaire.
Cette classification consiste à partitionner l’image en des régions localement lisses, des régions
texturées et des contours. Ceci est effectué à l’aide d’une classification dans un espace engendré
par les caractéristiques locaux qui permettent de décrire les zones homogènes, la texture et les
contours. La projection des observations de cet espace dans un autre sous espace est modélisée
par une mixture de Gaussienne où chaque composante est associée à chaque classe de pixels. Par
la suite, le résultat de l’étape de classification sera intégré dans l’algorithme de débruitage. La
technique de filtrage s’appuie sur une technique non paramétrique avec des noyaux afin d’estimer
le modèle image. Dans ce contexte, nous allons proposer une méthode automatique de sélection
de la taille de ces noyaux qui dépend du résultat de l’étape de classification. En effet, dans le
processus de filtrage nous traitons les pixels différemment selon leur degré d’appartenance à l’une
des trois composantes de l’image. Ce dernier point est la contribution majeure par rapport aux
techniques déjà existante et qui utilisent pour modéliser l’image des techniques non paramétrique
d’estimation de densité de probabilité [118, 10]. Contrairement à ces méthodes, nous utilisons des
noyaux de tailles variables qui dépendent des propriétés locales du pixel.

La deuxième approche étudiée dans cette thèse est basée sur les marches aléatoires. Notre
méthode explore plusieurs ensembles de voisins (ou hypothèses) qui peuvent être utilisés pour le
débruitage d’un pixel, à travers une approche de filtrage des particules. L’objectif est de proposer
une méthode de sélection des pixels de l’image les plus pertinents qui vont être mis en jeu pour
l’estimation de l’intensité d’un pixel donné. En s’appuyant sur une technique de filtre à particules,
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la sélection des pixels se fait d’une manière progressive. Nous considérons d’abord un voisinage
de taille petite puis on ajoute de plus en plus de pixels en explorant le domaine de l’image tout
en étant dirigé par les structures. Contrairement aux filtres de voisinage classiques, le domaine
considéré lors du filtrage est adapté à chaque pixel. Le processus de filtrage met en jeu un nombre
de particules qui explorent le domaine de l’image en utilisant une distribution statistique qui décrit
la géométrie de l’image ainsi l’état d’une particule se réfère à l’état du processus de reconstruction
de l’image.

Les deux méthodes précédentes permettent de restaurer l’image pixel par pixel. Bien qu’il
s’agisse d’un moyen simple de restauration, un processus d’homogénéisation global où toute
l’image est itérativement mise à jour doit être envisagé. De plus, ces deux techniques incluent
deux étapes : la caractérisation de la texture et le filtrage. Pour faire face à cette limitation, nous
allons considérer un modèle d’image global qui encode implicitement la structure de l’image. Le
débruitage sera donc effectué à l’aide de la minimisation d’une fonctionnelle quadratique et con-
vexe qui implique aussi des noyaux à taille variable. Ces noyaux sont utilisés dans le calcul de
similarités spatiales et photométriques entre les pixels. Afin de préserver la texture et améliorer la
qualité de l’estimation, nous allons considérer que l’échelle des interactions spatiales est variable
en fonction du pixel. Ceci permettra de l’adapter au contenu de l’image et à l’échelle de sa texture.
La définition d’une mesure de similarité appropriée qui soit plus robuste au bruit que la distance L2

entre les patches a été également étudiée dans cette dissertation. Cette distance est calculée entre
les vecteurs caractéristiques qui sont obtenus par projection des patches de l’image dans un autre
sous-espace permettant une meilleure description de la structure des patchs de l’image. De plus,
nous avons proposé une nouvelle définition de poids qui est plus cohérente avec la distribution
statistique de la distance L2 entre les patchs de l’image.

Nous avons présenté dans cette thèse plusieurs extensions de la technique de filtrage en min-
imisant une fonctionnelle d’énergie convexe à d’autres types de bruit et de donnée afin de montrer
sa flexibilité. Cette extension concerne (i) la restauration des images en couleur où on doit prendre
en considération les propriétés du bruit relatif aux appareils photo numériques (ii) l’estimation et
la régularisation des tenseurs de diffusion où les tenseurs doivent être définis positifs (iii) filtrage
des séquences Ultrasonores où on adapte la formulation d’énergie à la nature du bruit multiplicatif.

1.3 Plan de la thèse

Cette thèse est organisée comme suit: Le deuxième chapitre est dédié aux modèles non paramétriques
d’estimation de densité de probabilité ainsi qu’aux techniques de partition de l’image. Au début,
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nous allons présenter un travail lié à cette technique qui est un filtre adaptatif non supervisé
(UINTA) et nous pointerons les différences avec ce filtre. Par la suite, nous allons décrire notre ap-
proche de partition de l’image en trois classes ”régions homogènes”, ”régions texturées” et ”con-
tours”. Cette partition s’appuie sur le calcul de descripteurs locaux et la classification à l’aide
de mixture de Gaussienne. Après l’étape de classification nous allons nous concentrer sur le
débruitage. Nous allons passer en revue la théorie de la décision Bayesienne et les différents
types d’estimateurs. Ensuite, nous allons présenter notre technique de débruitage utilisant une
technique de Maximum a Posteriori Marginal (MPM) où on estime cette loi a posteriori à l’aide
d’une approche non paramétriques. Par la suite, nous nous intéresserons à la sélection de la taille
du noyau et au processus de l’optimisation. L’évaluation des performances sera présentée à la fin
du chapitre.

Le troisième chapitre sera dédié aux filtres de voisinage et nous utiliserons une stratégie basée
sur les marches aléatoires et les filtres à particule afin de sélectionner l’ensemble de pixel le plus
adapté pour débruiter un pixel donné. Au début, nous allons présenter un modèle statistique qui
permet de décrire la géométrie de l’image et les relations spatiales entre les pixels similaires.
Un tel modèle sera utilisé dans le contexte du filtre à particules afin de guider l’évolution de ces
dernières. Par la suite, nous présenterons une description brève des techniques des filtres à par-
ticules. Nous allons également appliquer cette technique d’estimation pour restaurer des images
aussi bien dans le cas de bruit additif que multiplicatif. Nous allons conclure cette section par la
validation expérimentale de cette technique.

Dans le quatrième chapitre on va présenter une technique de régularisation qui consiste à min-
imiser une fonction d’énergie convexe. Au début, on va commencer par présenter l’état de l’art des
techniques variationelle. Ensuite, nous allons nous intéresser à la description du modèle que nous
utiliserons ainsi que le processus de diffusion sous-jacent. Après la définition du modèle, notre
objectif sera la définition des interactions entre les pixels. Cette interaction est régie à l’aide d’une
fonction de poids définie par deux noyaux : un qui pénalise la distance spatiale entre les pixels et
l’autre la distance photométrique. Dans ce contexte nous avons essayé d’améliorer la définition
des poids en optimisant la sélection de la taille du noyau spatial (celui qui gère les interaction
spatiales entre les pixels) et en l’adaptant à chaque pixel. Nous nous sommes également intéressés
aux similarités photométriques entre les pixels et nous avons proposé deux nouvelles définitions de
mesures. La première s’appuie sur une meilleure caractérisation des pixels et la deuxième exploite
les propriétés statistiques de la distance L2 entre patches. Finalement, nous conclurons ce chapitre
avec les résultats expérimentaux.

Dans le cinquième chapitre, nous allons étudier plusieurs types de problèmes de régularisation
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autres que le problème classique du bruit additif Gaussien et les images de niveau de gris. Au
début nous allons considérer le problème de filtrage des images en couleur corrompues par le bruit
des appareils photo numériques. Pour cette application, nous allons discuter le modèle de bruit
et proposer une technique non paramétrique d’estimation de la fonction de bruit. Cette fonction
décrit l’évolution de la variance de bruit en fonction de l’intensité. Par la suite, nous introduirons
la procédure de débruitage des images en couleur à l’aide de la minimisation sous contraintes
de la fonction d’énergie présentée dans le chapitre précédent. La deuxième application concerne
des données de plus grandes dimensions sur des manifolds tels que l’exemple de l’imagerie des
tenseurs de diffusion. L’objectif est d’estimer et de régulariser simultanément les tenseurs des
diffusions à partir d’images IRM. Les performances de cette méthode ainsi que son impact sur la
classification des différents muscles seront évalués. La dernière section est dédiée à la suppres-
sion du Speckle dans des séquences ultrasons. Pour atteindre cet objectif nous avons adapté le
terme d’attache aux données ainsi que la définition des poids au modèle du bruit. Les validations
expérimentales de cette technique seront fournies a la fin de ce chapitre.

La conclusion et la discussion seront présentées dans la dernière partie de ce document. Nous
parlerons des limitations des différentes approches proposées ainsi que les perspectives futures de
ce travail.

Pour conclure, cette thèse s’articule autour la modélisation des images et du bruit dans le con-
texte de la restauration des images dans le domaine de la photographie numérique ou l’imagerie
médical. Cette thèse a produit (jusqu’a maintenant), un chapitre de livre [109] quatres articles dans
des conférences internationales de référence [12, 15, 13, 11] deux articles dans des workshops
[14, 110], et des articles de revue en cours (International Journal of Computer Vision, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Journal of Mathematical Imaging) ainsi
qu’une implication dans un brevet français [30].
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Introduction

Image restoration is one of the most fundamental components of image processing. It consists of
recovering a noise-free signal from corrupted observations. Such a problem arises in a number of
fields and has been heavily studied in the past decades. In such a context, one has to address three
critical aspects, that are (i) appropriate modeling of the image towards understanding the noise
level, (ii) appropriate modeling of the geometric dependencies between observations in the image
domain and (iii) appropriate selection of a functional that encodes the previously mentioned com-
ponents towards recovering the noise-free signal. In this chapter, we review the most representative
techniques of the field, discuss their strength as well as their limitations in particular with respect
to the above mentioned components.

2.1 Problem Statement and motivation

We witness currently the proliferation of digital images in every day life as well as in a number of
industrial domains like photography, medical imaging, video surveillance, navigation, industrial
inspection etc. Despite important progress made over the past decades from camera manufacturers
on the quality of acquisition, these images need often a preprocessing step to be exploitable in a
number of fields due to the need of a compromise cost versus quality. This is amplified due to
the competition towards providing low cost cameras. Based on the assumption that conventional
hardware sensors have reached a certain maturity, the investment needed to improve the quality of
the images is disproportional to that improvement. This context favoured the emergence of soft-
ware/algorithmic approaches toward image quality improvements. Therefore, image restoration
application such as denoising, deblurring and inpainting gained a lot of attention from the com-
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puter vision and image processing community. Among all types of image degradations, we will
focus in this thesis particularly on the noise suppression.
Let us introduce the problem using some standard conventions. Using conventional sensors, the
observed image intensity for a given pixel corresponds to the number of photons that reach a cell of
the light sensors matrix (called photosite) during a period T . The noise then refers to a fluctuation
in the number of photons with respect to a mean value that is the actual intensity of the pixel. The
heat generated by the electronic device is an additional noise source; it frees electrons that affects
each photosite and gives rise to the ”dark noise”. On the other hand each photosite itself generates
electrical noise that can contaminate its neighbor. In the most general case, one can approximate
the relation between the observed image I measured by the sensor and the noise-free image U for
each pixel x by

I(x) = U(x) + n(x) (2.1)

Where n is a pixel dependent additive noise that is often assumed to be white and of zero mean. The
white noise is characterized by the independence between the random variables that correspond to
noise realizations for two different pixels.
Hence, denoising refers to estimating the image U given the corrupted observation I and certain
assumptions on the noise model. To address this problem various methods were proposed for the
past five decades and despite important progress made many challenges are still to be dealt with.
The efficiency of a denoising algorithm is related to its ability to preserve image content such as
edges, texture and other fine details. While the contour preserving constraint was respected for the
most non linear denoising algorithm, some effort has still to be devoted to texture denoising. This
is due to the fact that most denoising algorithms are based on mathematical models describing
the image as smooth or piecewise smooth. Such an assumption does not comply with natural
image characteristics that may contain some structures that are as oscillatory as noise. Many
research were also carried toward texture modeling but their efficiency depends on the scale of
the texture and on its structure. The latter point makes relevant the effort dedicated to consider
more realistic models and to design texture preserving denoising approaches. In this introduction
we will briefly review the state of the art in the field and describe their underlying concepts. This
review encompass neighborhood filters, Partial derivative, equation based regularization, sparse
image representation, and Markov random fields models.
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2.2 State of the Art

Image processing and computer vision literature includes different kinds of algorithms to address
image enhancement. To this end, a wide variety of mathematical tools was considered such as:
signal approximation in sub-spaces, variational calculus, partial derivative equation, probability
and statistics, information theory, etc. The definition of frontiers between the different available
methods is not straightfoward. In many cases, one can find eminent links between different con-
cepts like PDE’s based approaches and total variation minimization or neighborhood filters and
wavelet thresholding with the Bayesian decision theory etc. Nevertheless we consider four cate-
gories for image restoration techniques : (i) methods related to neighborhood filtering that consists
in performing a weighted averaging (ii) PDE’s based approaches that are iterative techniques that
yield a smoother version of the image with time. (iii) the sparse image representation and do-
main transforms techniques which decompose the image into a sub-space where the image can
be approximated by a few number of coefficients (iv) statistical methods and mainly the Markov
Random Fields based approaches.
In order to introduce these methods, some basic definitions of the the underlying image repre-
sentation are to be considered. We can find in the litterature three distinct forms to represent an
image.

• Continuous model where the image is a function defined on a subset Ω ⊂ R2 called the
image domain and associates to each element of Ω a value in the set {0 . . . 255} for gray
level images quantified and coded on 8 bits. In this case the pixel x ∈ R2 is characterized by
the couple of its real coordinates.

• Discrete model where the image is defined on a discrete grid Ω ⊂ Z2 called the image do-
main and with values from the set {0 . . . 255} for gray level images quantified and coded on
8 bits. In this case the pixel x ∈ Z2 is characterized by the couple of its integer coordinates.

• Stochastic model where the image is assumed to be a sample of a random variable U =

{U(xk)}1≤k≤|Ω|. U(xk) is a random variable that takes values in {0 . . . 255} and describes
the intensity observed at a pixel xk.

Using these definitions let us now proceed with a brief review of the state of the art.
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2.2.1 Averaging Based Filters

Averaging based filtering approaches are among the most primitive and the most widely used
techniques in the field. The central idea is to reduce noise in the image by performing a weighted
average of the other pixels in the image. A general formulation of such a filter is

U(x) =

∫

D
h(x,y)I(y)dy and

∫

D
h(x,y)dy = 1 (2.2)

Where D is the domain where the averaging is computed. It can be a local neighborhood of x or
the entire image domain.
The selection of the function h is fundamental for the filtering process. The well known Gaussian
filter is derived if h is a Gaussian function depending on the spatial distance between pixels. It is
well known that the Gaussian filter and other linear ones result in blurred edges and fine details
suppression. For this reason, non linear and data driven weighting functions were proposed to
ensure better restoration. The underlying concept of these filters is to go further than the spatial
distance between pixels to include other image features such as intensity. Despite an enormous
volume of research literature in this field, we will focus on the most representative ones:

• The neighborhood filter
These filters performs a weighted average over a local neighborhood of x (noted Πx) where
the contribution of each pixel is dependent on the similarity between pixels. Earlier approach
refers to the sigma filter [92] where a threshold on the intensity difference between neigh-
boring pixel is considered to discard the irrelevant ones. In [153] a similar idea is expressed
through the definition of weights coefficients depending on the gray level difference between
pixels. The estimated intensity is written as

U(x) =
1

Z(x)

∫

Πx

I(y)e
− |I(x)−I(y)|2

σ2
ph dy Z(x) =

∫

Πx

e
− |I(x)−I(y)|2

σ2
ph dy (2.3)

σph is a parameter that controls the smoothing amount of the filter. Such a definition would
preserve edges and other details since the neighboring pixels with an important intensity
difference do not contribute in the reconstruction process (when compared with the σph).
One can see a direct equivalence between this filter and the gaussian filter when σph value
are important.
Recent equivalent formulations of this filter are the SUSAN Filter [127] and the Bilateral
Filter [134, 112] that combine the spatial distance as well as photometric distance to compute
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the weights. These filters are defined as follows

U(x) =
1

Z(x)

∫

Ω

I(y)e
− ‖x−y‖2

σ2
s e

− |I(x)−I(y)|2
σ2

ph dy Z(x) =

∫

Ω

e
− ‖x−y‖2

σ2
s e

− |I(x)−I(y)|2
σ2

ph dy (2.4)

σs is a spatial parameter that defines the radius of the neighborhood considered for denois-
ing. As in the former case, when σph is high this filter is equivalent to the Gaussian kernel
smoothing.
This class of approaches combines computational efficiency (local operations) with satis-
factory results. The main challenge refers to the appropriate definition of their parameters
while at the same time, the computation of weights might be problematic when the images
are heavily corrupted. This is due to the fact that simple pair-wise image intensities cannot
encode the relation between the local observations. This was addressed by the NL-means
algorithm.

• The Non Local means filter (NL-means) [26, 25]
The NL-means is an algorithm that takes advantage of the redundancy and similarity inside
an image to perform denoising. Exploiting this natural image property was first used in
case of texture synthesis in [51]. Based on this observation, the NL-mean weight function
relies on a similarity measure that goes beyond pixel-wise resemblance and is determined
through comparison of local image patches. Since similar patches can be found everywhere
in the image (long edges, large textured regions with repetitive patterns), the spatial distance
between pixels is neglected when considering the definition of the weight. The restored
intensity obtained using the NL-means algorithm is given by the following expression

U(x) =
1

Z(x)

∫

Ω

I(y)e
− d(x,y)

σ2
ph dy Z(x) =

∫

Ω

e
− d(x,y)

σ2
ph dy (2.5)

d(x,y) =

∫

R2

Gα(t) |I(x + t)− I(y + t)|2 dt (2.6)

Where Gα is a Gaussian kernel of bandwidth α that defines the size of the window (or
image patch) taken for pixel comparison while σph plays the same role as in the previously
cited filters. The discrete formulation of the NL-means filter requires the definition of a
neighborhood Nx and INx the observed intensities within this neighborhood.

U(x) =
1

Z(x)

∑
y∈Ω

I(y)e
−‖INx

−INy‖2

2
σ2

ph Z(x) =
∑
y∈Ω

e
−‖INx

−INy‖2

2
σ2

ph (2.7)

With this definition the NL-means acts as a basic averaging with equal weights in flat re-
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gions, while performing anisotropic filtering for edges or texture.
The computational cost is a serious limitation for the NL-means algorithm, and this was
addressed in [98]. Despite the excellent performance of this filter, the selection of the filter-
ing window (pixels contribution in the process), as well as the similarity measure between
patches (both in terms of the choice of the metric and the contributing content) are two
open issues. This was partially addressed in [76] where the idea of adaptive/variable filter
bandwidth was considered.

• Variable neighborhood size filters
These are algorithms where the size of the domain D over which the mean is computed
depends on the pixel position. The optimal window size is determined according to a trade
off between variance and bias of the intensity estimator using local averaging [52, 117, 93,
76]. The most recent contribution in this area was presented in [76]. The authors suggest
an alternative approach to the NL-means algorithm where the optimal filter bandwidth is
computed for each pixel. To give an overview of this method, let us consider a local or
semi-local version of the NL-means algorithm. The estimated intensity for a given pixel x is

Û(x) =
∑
y∈Dx

I(y)wxy with wxy =
e
− d2(INx

,INy
)

σ2
ph

∑
y∈Dx

e
− d2(INx

,INy
)

σ2
ph

(2.8)

d2(INx , INy) is the L2 distance between patches.
Now if one considers the error expectation between the estimated intensity and the actual
noise free one, the following relation is obtained

E
[
(Û(x)− U(x))2

]
= b2

x + v2
x (2.9)

with bx
1 being the bias of the estimator that characterizes the accuracy of the approximation

of the image at the pixel x using the local neighborhood Dx. The variance of the estimator
vx corresponds to the amount of fluctuation around the mean value of the estimator.
Ideally the perfect estimator is the one that minimizes both bias and variance which are com-
peting variables. Assuming that the bias is increasing with the size of Dx and the variance is
decreasing, there exists an optimal size of Dx for which a balance between the variance and
bias is reached. A direct estimation for this optimal size is not possible since the bias is not
available. As an alternative, the author introduced in [76] a data driven window size selector.
The underlying key idea is the following : if one considers Ûp(x) and Û q(x) two estimates

1 bx = U(x)− E(Û(x)) ≈ U(x)−∑
y∈Dx

U(y)wxy
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of U(x) using two windows Dp
x and Dq

x of size p and q respectively (p < q) smaller than the
optimal size value, then it was proved in [75] that

∣∣∣Ûp(x)− Û q(x)
∣∣∣ ≤ κvp

x (2.10)

This observation provides an automatic technique to determine the optimal window size that
is defined as:

Argmaxq

{
q = |Dq

x| such that
∣∣∣Ûp(x)− Û q(x)

∣∣∣ ≤ (2γ + κ)vp
x ∀ 1 ≤ p ≤ q

}
(2.11)

The optimal window is the largest one such that the estimators Ûp(x) and Û q(x) are not too
different, for all 1 ≤ p ≤ q . Hence, if an estimated intensity using a given window size is
far from the intensity value provided by a smaller one, this means that the bias is already too
large. In this case a smaller size has to be selected.
A crucial parameter for this method is the threshold κ because a large value of κ yields a
large window size when small values favor small windows. For the selection of this para-
meter the authors use a prior on the image and design their selection process such that high
κ values are set for smooth area and smaller one when discontinuities are observed. This
algorithm improves substantially the performance of the basic NL-means.

To conclude, we can say that these methods are attractive and simple to implement. Nevertheless
one can seek further improvements by adapting in an automatic fashion the shape of the domain D
as well as its size.

2.2.2 PDE’s and Energy Based Image Restoration

Over the past decades the image analysis field has seen the emergence of several PDE based mod-
els. Image regularization is a field that has largely benefited from these techniques. In such a
context, images are considered as evolving functions of time. Within this framework, the final
solution of the enhancement process will correspond to the steady-state of the PDE. Such partial
differential equations can be either determined through certain expected geometric constraints or
can be the outcome of the minimization of a specifically designed cost function. In this section we
will review the most classical ones.
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• Geometric Flows and Image Enhancement or axiomatic PDE’s
The earlier contributions in this field were linear PDE’s where the blurring is spatially in-
variant [151, 85]. For instance, the heat equation is an isotropic filtering and is defined as

∂U

∂t
= c∆U (2.12)

Where c is a constant and ∆ is the Laplacian operator. In [85] it was proved that performing
an isotropic diffusion with c = 1 amounts to applying a convolution with a Gaussian kernel
Gσ = 1

2πσ
exp(−‖x‖2

2σ2 ) with a standard deviation σ =
√

2t. The isotropic diffusion blurs the
image little by little which is a major drawback in denoising applications.
This issue was partially addressed by anisotropic diffusion, that is an alternative PDE’s based
formulation aiming at preserving edges being present in the image. In [115] a paradigm
that respects image discontinuities by considering a spatial varying c function instead of the
constant one is presented. The underlying PDE is defined using the divergence operator

∂U

∂t
= div(c(x, t)∇U) (2.13)

To preserve discontinuities the diffusion is conditioned by an appropriate choice regarding
the c function. Such a function should favour diffusion in smooth regions and stop it near
image boundaries. The use of a function that is decreasing with respect to the norm of the
image gradient is a natural selection. In this context, two functions with similar properties
and performance were proposed: c1(|∇U |) = exp(− |∇U |2

K2 ) and c2(|∇U |) = 1

1+
|∇U|2

K2

with

K a constant that can be assimilated to a gradient threshold. In [22], the author proposed
several choices of the c function inspired by the robust estimation framework and discussed
the difference between them. An interesting method to understand the behavior of a given
PDE is to consider its effect on the gradient direction η = ∇U

|∇U | as well as the tangential
direction noted ξ. In [87], the authors provided some constraints on the diffusion along
these two direction toward better edge preserving. Based on the same observation, other non
linear PDE’s that aim to restrict the diffusion process only along the tangential direction to
the gradient and tuned by the gradient magnitude were suggested [5, 78, 108]. For instance,
in [5] a model that considers rather a smoothed version of the image gradient was considered.

∂U

∂t
= g (|G ∗ ∇U |) |∇U | div

∇U

|∇U | = g (|G ∗ ∇U |) Uξξ (2.14)

Where g is a positive decreasing function and Uξξ is the second derivative of the image in
the direction ξ. Such a model respects better the image features because it involves larger
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neighborhood while performing the diffusion along the tangential direction.
Other group of PDE operators are those that act directly on the level line of the image.
The curvature motion is an interesting example of diffusion where the contrast invariance
requirement is ensured [4, 155, 101]. The associated PDE is

∂U

∂t
= F (curv(U), t) |∇U | (2.15)

Where curv(U) = div ∇U
|∇U | refers to the curvature of the level line of U and F is an increasing

function with respect to the first argument. The diffusion is performed along the normal
direction to the level line and modulated by the curvature which leads to a curve shortening.
Diffusion tensors (i.e. symmetric and positive definite 2× 2 matrices) based formalism,
provides more generic framework. These formulations rely on the definition of a tensor field
that imposes the direction of the smoothing. A general form of such a technique is presented
in [145, 146, 149] where the evolution defined by a tensor D is

∂U

∂t
= div(D∇U) (2.16)

The authors set the diffusion tensor to the structure matrix defined as D = (∇U∇UT ) ∗ Gσ.
The diffusion is done according to the eigenvectors of the matrix D. For homogeneous
regions this tensor is isotropic which yields a smoothing in all directions. Along image
contours the diffusion is directed by the eigenvector that corresponds to the contour direction.
Notice that considering a non local gradient direction estimation maintains coherence in the
gradient direction for neighboring pixels which is an important issue in case of noisy images.
Another unifying formulation of common diffusion equations that is based on the definition
of diffusion tensors was proposed in [135, 137, 48]. It is based on the trace operator and the
Hessian matrix H and is expressed as

∂U

∂t
= trace(DH) (2.17)

this formalism allows the design of a specific smoothing that respects better the natural
regularization properties than the divergence based model. The strength of tensor diffusion
based formalism lies in the fact that it separates the design of the diffusion tensors from
the smoothing process itself. Based on this property, one can retrieve the geometry of the
structure in the image and then perform smoothing based on the computed tensor field.

• Energy-based Approaches
Some PDE based regularization techniques have their roots in functional minimization frame-
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work. A smooth version of a noisy image is obtained by minimizing a cost function that
penalizes the amount of variation in the image [86, 148, 122]. Earlier work refers to the total
variational minimization that was first introduced by Rudin, Osher and Fatemi [122, 121].
They provided an edge preserving restoration approach by minimizing the L1 norm of the
magnitude of the image gradient. This problem is defined in the space of bounded varia-
tions functions in Ω (BV (Ω) =

{
f ∈ L1(Ω)| ∫

Ω
|∇f | < ∞}

). The interesting aspect of the
proposed regularization is the fact that discontinuous and non smooth solutions are possible.
The classical formulation of the ROF model is

Uopt = Argmin
∫

Ω

|∇U | dx (2.18)

Subject to ∫

Ω

(U − I)2dx = σ2
n and

∫

Ω

(U − I)dx = 0 (2.19)

The estimated image has to be smooth while its difference with observed image (called
residual) must have the same properties as noise : zero mean and same variance σ2

n. One
can relax these two constraints and consider instead this unconstrained problem where the
minimizer of the following energy function is an estimate of the noise free image.

E(U) =

∫

Ω

|∇U | dx + λ

∫

Ω

(U − I)2dx (2.20)

The second component of the energy is the fidelity term and it constrains the solution to be
similar to the observed image I while λ is a parameter that controls the trade off between
smoothness and fidelity to the observations. For a given λ value the constraint (2.19) is not
necessarily verified unless one devotes special effort to compute λ as done in [74, 122]. The
functional (2.20) is strictly convex and in [33] the authors provided a proof of the existence
and the uniqueness of the solution. The Euler Lagrange equation associated to this energy is
the following:

div
( ∇U

|∇U |
)

+ λ(U − I) = 0 (2.21)

To solve this equation the authors proposed in [122] the use of artificial time marching which
is equivalent to the steepest gradient descent of the energy function. The image is considered
as a function of space and time and one has to find the steady state solution for the equation

∂U

∂t
= div

( ∇U

|∇U |
)

+ λ(I − U) (2.22)

with div
(
∇U
|∇U |

)
= curv(U) where curv(U) is the curvature of the level line of U [122].
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Based on this flow, the amount of the smoothing applied to an observation is related to the
curvature of the level line passing through it. The edges are preserved because they have
small curvature. Nevertheless details and other oscillatory components different from noise
may also be suppressed.
A more general formulation for the total variation minimization can be expressed if one
considers only the regularization flow as follows :

Û = ArgminU

(∫

Ω

Φ(|∇U |)dx
)

(2.23)

where Φ is a positive and increasing function defined on R. We recall that the connection of
this formulation with PDE’s is established by the Euler-Lagrange equation and the introduc-
tion of an artificial time parameter so that at the convergence the energy gradient is equal to
zero. The resultant PDE to problem (2.23) is of the form

∂U

∂t
= div

[
Φ′ (|∇U |)
|∇U | ∇U

]
(2.24)

Hence, for a particular choice of the Φ function, we find again some models introduced
above. The isotropic diffusion is obtained when Φ(s) = s2 [133], The Perona Malik cor-
responds to Φ(s) = 1 − exp(− s2

K2 ) and the Rudin Osher Fatemi model discussed above is
defined by Φ(s) = s. Contrarely to axiomatic PDE’s where one can enforce the diffusion
only on the tangential direction of the gradient, the functional minimization is less flexible.
More explicitly, when considering the decomposition of the diffusion process according to
the gradient direction and the tangential one, we can notice that the coefficients are depen-
dent. To this end, a careful choice of the Φ function to favour diffusion on the tangential
direction with respect to the normal one has to be made.
Total variation minimizing based approaches are among the most popular denoising tech-
niques that gained a lot of attention and were extended over the years to address many image
processing problems such as deblurring, inpainting, optical flow estimation, stereo recon-
struction, etc. For a more comprehensive theoretical analysis of total variational minimizing
using PDE’s we refer the reader to [86].

• The Beltrami Flow
The Beltrami flow is another tool towards image analysis and regularization which relies
on representing the image as a 2D surface in the 3D space for gray scale image and higher
dimensional spaces for multi valued images [80, 82, 81, 129]. Thus considering the image
as an embedding map M : x → (x, U(x)), the authors propose to minimize with respect to
U a measure of this map which is defined by the generic Polyakov measure. This measure
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corresponds to the image surface and in case of gray scale images it could simply be written
as

Û = ArgminU

(
E(U) =

∫

Ω

d2σ

√
1 + |∇U |2

)
(2.25)

Performing a gradient descent for the area of the graph representing U leads to the following
diffusion equation where each point of the image is moving according to the normal of the
surface which enables image edges preservation

∂U

∂t
= div


 ∇U√

1 + |∇U |2


 (2.26)

In [129] the author provided a general framework that uses measures on maps between Rie-
mannian manifolds and showed the connections between this approach and other anisotropic
diffusion PDE’s.
At the end of this overview we want to point out that this is not an exhaustive presentation
of PDE’s based image analysis and other interesting work can be found in [31, 135]. Multi-
valued images and constrained PDE are also an active research area and one can refer to
[135, 48] for a review of these approaches.

Finally to conclude we can say that PDE’s are an interesting tools for image analysis able of extract
image content at different scales. Nevertheless, as far as denoising application is concerned their
performance is limited. This is due to the presence of fine texture and structure in the image that has
similar scale to the noise and cannot, in the most general case, be characterized by a simple feature
as gradient direction or other limited local interactions. One can overcome this limitation through
the introduction of more global methods, like for example image decomposition/representation in
sub-spaces.

2.2.3 Image Transform and Compact Representation

Image decomposition on a specific basis or dictionary offers powerfull tool used in many image
processing applications (compression, restoration, inpainting etc). Their aim to provide a compact
image model where an image can be reconstructed using few number of elements. In this section
we will present two main approaches

• Image transform and wavelet basis
Several image transforms was proposed in the litterature [57, 102, 37, 41] toward image fea-
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ture extraction and modelling. Denoising is among the applications that could take advantage
of this representation. The first attempts in this direction were presented in [152] where the
spectral image content is analyzed in a local window ( Discrete Cosine Transform or local
Discrete Fourier Transform) then modified and the inverse transform gives an estimate of the
noise free intensity.The major breakthrough in this direction came with the introduction of
the wavelet decomposition. Wavelet transform provides a signal representation that encodes
space and frequency. Moreover, it has a high capacity of approximating a given signal by a
small set of coefficients. It refers to an image decomposition on a set of functions composed
of shifted and dilated versions of the wavelet noted ψ. A wavelet is a function in L2(R2)

localized in space and that satisfies
∫
R2 ψ(x)dx = 0 and ‖ψ‖ = 1. Hence, if we note ψv,s

the wavelet obtained after a shift v and dilation s, the definition of the wavelet coefficients
of I is

Iw(v, s) = 〈I, ψv,s〉 =

∫

R2

I(x)ψv,s(x)dx where ψv,s(x) =
1√
s
ψ

(
x− v

s

)
(2.27)

A particular and interesting case of wavelets are the orthogonal wavelets that form an or-
thogonal basis of L2(R2) defined as

{
ψn,j = 1√

2j
ψ

(
x−2jn

2j

)}
j∈Z,n∈Z2

. Since the image is

defined on a finite domain, it can be expressed through an orthogonal basis using a finite
set of coefficients [103]. The image is projected on two orthogonal subspaces, the first one
corresponds to the details of the image at different scales, the second to the lower resolution
of the image. This decomposition is expressed as follows

I =
J∑

j=L+1

∑

n∈[0,2−j ]2

〈I, ψn,j〉ψn,j +
∑

n∈[0,2−J ]2

〈I, φn,j〉φn,j (2.28)

This decomposition involves two main terms the first refers to the detail being present in
the image at different scales while the second corresponds to a coarse version of the image
represented by the basis vector {φn,j}n.
Since the wavelet transform concentrates a lot of energy on few coefficients that correspond
to the useful information in the image while the noise is represented by small wavelet coeffi-
cients, a natural way to perform denoising in the wavelet domain is to perform a thresholding
[103]. An estimate of U can be expressed as

Û =
J∑

j=L+1

∑

n∈[0,2−j ]2

ρT (〈I, ψn,j〉) ψn,j +
∑

n∈[0,2−J ]2

ρT (〈I, φn,j〉) φn,j (2.29)

Where ρT is the thresholding function and it could be a hard thresholding or soft thresh-
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olding. While the hard thresholding technique causes small oscillation near the edges of
the reconstructed image (Ringing effect), the soft one reduces considerably this artefact.
The threshold value T is a critical parameter for the denoising process and it must be care-
fully selected to reach a balance between details preservation and noise suppression. In [45]
through the minimization of a quadratic Bayesian risk function, the author showed that the
optimal threshold that minimizes the upper bound of the risk is T = σn

√
2 log N where N

is the number of wavelet coefficients.
Notice that this threshold value as well as the reconstruction process based on thresholding
holds for any other decomposition on orthogonal basis different from wavelets and for an
extensive review and details the reader can refer to [103]. The wavelet basis is particularly
attractive because of its ability to encode an important amount of energy through few coeffi-
cients. Nevertheless the wavelet decomposition reaches its limits when dealing with textured
images where small coefficients correspond also to texture. To overcome this limitation an
adaptive basis selection based on wavelet packet decomposition was presented in [88]. In
addition to that a lot of attention was devoted to sparse image representation using alterna-
tive choice of basis like bandelet, contourlet etc [90, 130] during the past year. However,
these methods fail to account for textured image content because they are more adapted to
a geometric description of the image than to texture description. Furthermore, despite the
fact that such an approach comes with a rather powerful representation, choosing a specific
wavelet function able to capture the wide variability of natural images is a rather challeng-
ing task. The use of image-driven sparse representations can address the above mentionned
limitation.

• Image-driven dictionary and sparse representations
These techniques aim at determining the optimal image representation (sub-space) through
a direct analysis of the image content [123, 94, 24]. In order to facilitate the introduction of
the method, let us consider an overcomplete dictionary matrix D of size L ×K containing
K columns that refer to the dictionary elements or ”atoms”. A sparse representation of a
vector v (of size L) is a linear combination of a few number of the atoms {di}1≤i≤K . Using
such a basis, one would like to be able to optimally reconstruct the image using the smallest
possible set of atoms. This amounts to solving the following problem

mina ‖a‖0 subject to ‖v −Da‖2 ≤ ε (2.30)

Where ‖a‖0 refers to the number of non zero entries of a vector.
The most recent work in this area refers to the K-SVD algorithms for designing dictionaries
and sparse representations [3]. The K-SVD algorithm aims at finding simultaneously the
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dictionary D and the coefficient vector a. This is achieved using a set of training samples
containing several vectors {vp}1≤p≤M and by minimizing the following objective function

minD,A ‖V −DA‖F subject to ∀ 1 ≤ p ≤ M, ‖ap‖0 ≤ T (2.31)

Where ap is a K element vector associated to the coefficients of vp, V is a L ×M matrix
with vector column vp and A is a K × M matrix with vector column ap. The Frobenius
norm is denoted ‖.‖F . Computing the solution of the problem (2.31) is achieved in two
steps: sparse coding and dictionary update. The sparse coding refers to finding the optimal
coefficient ap for each signal given the dictionary and is performed using matching pursuit
algorithms [19]. The dictionary optimization is done one atom at a time assuming the other
atoms constant. Each atom is obtained through a Singular Value Decomposition (SVD) of a
matrix that corresponds to the approximation error when this atom is removed [3].
This concept was considered to address denoising in [53, 100, 99] where the undelying idea
was to design a dictionary specific for each image based on observed noisy patch. More
explicitly they assume that image patches can be approximated by a sparse representation.
The denoising problem in [53] is formulated as follows

minax,U,D

{
λ ‖U − I‖2 +

∑
x∈Ω

µx ‖ax‖0 +
∑
x∈Ω

‖Dax −RxU‖2

}
(2.32)

where RxU is the image transform that extracts an image patch at location x.
The first term is a fidelity to data term that constraint the restored image to be close to the
observed one. The second term is the sparseness constraint that imposes to each coefficients
vector ax to be sparse. The third term refers to the decomposition of the image patches on
the designed dictionary D. The solution of the problem is obtained in iterative fashion by
fixing two variables and optimizing with respect to the third one. Numerous extensions of
this concept were reported recently in the literature like for example color image denoising
as well as restoration based on multi-scale image representation [100, 99].

The use of sparse sub-space representations carries certain strengths as well as certain limitations.
If we recall the three aspects being associated with the denoising problem, then for example it
is hard to imagine how one can encode prior knowledge on the noise model in the process. In
a number of applications (like for example in medical), such a knowledge is available and could
be used to improve the performance of the process. Statistical methods are a convenient tool to
include such a prior.
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2.2.4 Statistical Models and Image Denoising

The central idea behind such a concept is to reformulate image reconstruction as a statistical es-
timation problem over a random variable. In such a context, based on certain assumptions on the
properties of this variable, the task of enhancement consists in recovering the noise-free image
that minimizes a cost function given the observed sample. Different models can be considered
regarding this density with the most popular ones being exposed in the remainder of this section.

• The Wiener filter
The Wiener filter is the optimal linear filter, noted Û , that minimizes the quadratic Bayesian
risk function defined as

R(V ) = E
(‖U − V ‖2

2

)
(2.33)

The orthogonality principle states [103] that a Wiener estimate verifies

E
[
(Û − U)IT

]
= 0 (2.34)

Now if we assume that the Wiener estimate can be expressed as Û = WI and that U and n

are independent, based on equation (2.34), the linear filter matrix can be expressed as

W = RU(RU + Rn)−1 (2.35)

with RU = E
(
[U − E(U)] [U − E(U)]T

)
the covariance matrix of U while Rn is the one

relative to noise.
Now in order to compute the Wiener filter on the discrete Fourier basis, the covariance matrix
must verify

E[U(i)U(j)] = RU(i− j) and E[n(i)n(j)] = Rn(i− j) (2.36)

Where RU and Rn are periodically extended. This constraint means that the correlation
between the variables U(i) and U(j) only depends on distance between them. Now we will
consider the discrete Fourier transform of the RU and Rn which refers to the power spectrum
noted SU and Sn = σ2

n (in the case of a white Gaussian noise). Hence, the coefficients of the
optimal filter in the transform domain are expressed as

WF (m) =
SU(m)

SU(m) + σ2
n

(2.37)

In the frequencies domain the Wiener filter attenuates each element of the Fourier transform
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of the Image I by a coefficient that depends on the signal to noise ratio. The attenuation is
stronger when the noise amount is important with respect to the signal.

• Maximum a Posteriori estimation and Markov Random Fields
The Maximum a Posteriori estimation is among the most popular statistical tools used in
image restoration problems. The Maximum a Posteriori estimator refers to computing an
image Û that maximizes the conditional probability P (U |I). Using the Bayes rule the pos-
terior probability can be expressed as

P (U |I) = P (I|U)P (U) (2.38)

P (I|U) refers to observing the noisy image given the true image, this posterior corresponds
to the noise model. Thus under the assumption of white noise where each pixel is affected
independently from the others, the conditional probability of the noisy image is

P (U |I) =
∏
x∈Ω

P (I(x)|U(x)) =
∏
x∈Ω

P (n(x)) (2.39)

Once noise model is defined the MAP estimation relies on the knowledge of the prior prob-
ability P (U) which refers also to the image model. A direct estimation of this probability is
intractable because of the enormous dimensionality of the image space which is equal to the
number of the pixel in this image. Toward reducing the complexity of the problem, many
researchers considered lower dimension probability density functions to model the statisti-
cal dependence between pixels which is restricted to be local. For instance, Markov random
fields (MRFs) are stochastic models that characterize the local spatial interactions in data.
They were used to compute prior image models [58]. Within this framework the image is
assumed to be a Markov field and verifies two constraints:

P (U) > 0 (2.40)

P
(
U(x)| {U(y)}y∈Ω\x

)
= P

(
U(x)| {U(y)}y∈Nx

)
(2.41)

The second constraint amounts to say that the conditional probability of an intensity at a
given pixel x given the whole image does only depend on the set of observation in a lo-
cal Neighborhood of x (noted Nx). The strength of the Markovian models relies on the
Hammersely-Clifford theorem that establishes the equivalence between Markov random
field and Gibbs random fields (GRF) [71]. The definition of a GRF requires the notion
of a clique. A clique C, associated with a neighborhood system N , is a subset of pixels
where each pixel is the neighbor of every other pixel according to the neighborhood system
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Fig. 2.1: Neighborhhod system and its associated cliques

N . An illustration of the clique definition and neighborhood system is presented in figure
[Fig.(2.1)]. Now a Gibbs random field is characterized by its joint probability defined as

P (U) =
1

Z
exp(−E(U)

τ
) with E(U) =

∑
c∈C

Ec(U) (2.42)

Where Z =
∑

I∈Γ exp(−E(I)
τ

) is a normalization constant computed on the space of all
possible configurations of the random field associated to the image. E is the energy function
that is the sum of local energy functions or the clique-potential while τ is the temperature
parameter that comes from the analogy with statistical physics. Many efforts were devoted
to define appropriate energy functions towards accurate natural image modeling. The first
image model comes from statistical physics field and is associated to binary images and
known as the Ising Model. The extension of the Ising model to an image with more then
two gray level is The Pott model which is generally used in segmentation. As far as image
regularization is concerened very basic potential definition is the quadratic Gaussian model
where the clique potential is defined by intensity difference between neighboring pixels

E(U) = β
∑

c2=(x,y)

(U(x)− U(y))2 (2.43)

Based on this energy formulation the most probable images are those having a low intensity
difference between neighboring pixels which is a reasonable assumption for natural images.
Notice here that one can establish a connection between this model and the minimization
of the L2 norm of the image gradient introduced in the previous section. These models are
fairly simple and involve a small number of parameters. However they are not able to model
texture like image content. This limitation is due to the small clique size that can hardly
capture the image structure at relatively large scale. Furthermore, the prior probability has a
pre-specified form that do not comply with the reality unless some training is performed.
In this context, MRF models that are based on more global image priors and computed based
on parameter learning from a training sample set, are alternative approaches that offer a more
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realistic image representation. One of these approaches is the FRAME (Filter, Random field,
And Minimax Entropy) model [157] designed for texture description and analysis. This ap-
proach aims at characterizing the ensemble of images U with the same texture appearance by
a probability distribution P (U) by making inference using a set of observed texture samples.
This is performed in two steps: (1) A set of filters is applied to the texture samples to capture
their features, then histograms of the filtered images are computed. These histograms are
viewed as estimates of the marginal distributions of P (U) (2) The maximum entropy prin-
ciple is employed to derive an estimate of P (U) noted P̂ (U) and which is restricted to have
the same marginal distribution. The FRAME model is a step toward texture modeling but
as it was stated by the author this approach is efficient for building models based on texture
similar in appearance. Its limited ability for generalization makes it more appropriate for
texture synthesis than denoising. More data driven approaches where all the parameters of
the potential function is learned during the training set is the Fields of Experts model [120].
Contrarily to the FRAME model the linear filters involved in this framework are computed
during the training process. This approach bears similarities with the sparse image coding
and relies on a training step where the filters are the element of the dictionary. The ability
of this approach to model various data types is conditioned by the size of the neighborhood
system used in the definition of the image potential and considering large neighborhood will
increase the complexity level of the approach.
Multiscale random fields are powerful techniques to provide image models. This framework
relies on a multiresolution image representation where image sites at given scale are condi-
tionally independent given the immediate coarser level. This yields a scale-recursive models
that are more efficient computationally on one hand and provide multiscale models that are
more interesting then conventional MRF models when dealing with texture [97]. Multiscale
image representations were also used jointly with Gaussian scale mixture [119, 141] toward
image restoration and texture preservation. Before concluding we want to refer to [114, 95]
where the reader can find extended reviews of Markovian approaches toward image restora-
tion and to [150] for multiscale Markov models and their applications.

Image models are critical components of the denoising process, in particular when referring to
texture. For instance, texture can either refer to micro or macro-patterns and therefore can some-
times be considered as noise. For this reason, one should be able to account for varying degrees of
complexity in the observed content and be able to adjust the denoising process according to it. The
most prominent aspects to be considered mainly are : the definitions of the interaction between
pixels and the scale or the extent of these interactions. In this thesis we would like to address the
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above concerns

2.3 Main Contributions

The work carried in this thesis is a step toward better natural image and texture understanding
and hence denoising. Our main focus was to adapt the image models inherent to the restoration
process to the image content. In this dissertation we present mathematical models and their com-
putational solutions that learn from the image itself to build an appropriate denoising approach.
Our main motivation was to design a technique that uses different image models according to the
local context. This thesis introduces novel theoretical approaches to deal with image enhancement
and texture preservation. First, we focus on the photometric aspect of the problem towards defining
appropriate image models to express the observations or the photometric scale. Then, we study the
importance of geometry towards capturing co-dependencies between observations and therefore
defining the most appropriate spatial scale. The last theoretical component of the thesis consists
in two contributions, a more general regularization term which can encode complex interactions
between observations and a unified framework that involves the optimal automatic selection of
spatial bandwidth as well as more appropriate definitions of photometric component.

Our first contribution consists in introducing the notion of classification in the process of de-
noising using filter operators. Several techniques are based on models that aim to cope with image
structure implicitly by considering some features during the denoising process. Unfortunately,
some texture exhibit similar behavior to the noise so that the restoration algorithm fails to detect
them. For this reason we believe that a pre classification step provides a more robust tool toward
textured region identification. This classification consists in an image partition to locally smooth
area, edges and texture. This is done through a soft classification on a feature space that can en-
code edgeness, texturness and smoothness. The projection of this feature space to an appropriate
sub-space yields a Gaussian mixture model of observations where each component corresponds to
one of the above hypotheses. Once the classification step is achieved, its result is encoded in the
denoising algorithm. The filtering technique is based a non parametric density estimation of image
priors. In this context, we propose an automatic kernel bandwidth selection that relies on the image
partition previously done. Hence, in the filtering process we process pixels differently according
to their membership to one of three image components. The latter point is the major contribution
with respect to prior technique using non parametric density estimation [118, 10]. Contrarily to
these methods, we use variable bandwidth kernels that depends on local pixel’s properties.
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The second approach studied in this thesis is based on random walks. Our method explores
multiple neighbor sets (or hypotheses) that can be used for pixel denoising, through a particle
filtering approach. Our objective was to provide a selection method of the relevant pixels partic-
ipating in intensity estimation of a given one. Based on particle filtering techniques, this is done
in a progressive and sequential manner by considering a very small and local neighborhood and
going further and further while being guided by the image geometry. Contrarily to classical neigh-
borhood filters, the domain on which we perform filtering is adapted to each pixel. The filtering
process involves a number of particles that explore the image domain using a statistical distribu-
tion that describes the image geometry and the state of a particle refers to the state of the image
reconstruction process.

The two previous methods restore the image pixel by pixel. Although it is a simple way for
restoration, a global homogenization process where the whole image is iteratively updated to obtain
the restored image should be considered. Moreover these techniques are composed of two steps:
texture characterizing and then filtering. To overcome this limitation, we will consider a global
image model where image structure is encoded implicitly. Hence in this chapter we will perform
denoising through the minimization of a quadratic functional that involves variable bandwidth
kernels. These kernels reflect spatial and photometric similarities between pixels. Toward texture
preservation and estimation accuracy improvement, we considered a spatial bandwidth dependent
on the pixel position to adapt the interaction between pixels to the local scale. The definition
of an appropriate similarity measure more robust to noise than the L2 distance between patches
was also addressed in this dissertation. This measure is computed between pixel features that
are determined after the projection of image patches on another sub-space that encodes better the
image content. In addition to that, we proposed a weight definition that is more coherent with the
statistical distribution of the L2 distance between patches.

We presented in this thesis several extensions of the convex functional minimization frame-
work to other noise types or data types to show its flexibility. These extensions concern : (i) color
image restoration where we take into consideration the actual noise properties in digital cameras
(ii) diffusion tensor field estimation and regularization where the constraint of being definite pos-
itive have to be verified by these tensors. (iii) ultrasound sequences filtering where the energy
formulation was adapted to the address the multiplicative noise model.
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2.4 Thesis Outline

The thesis is organized as follows: The second chapter is dedicated to the non parametric models
based estimation and to the image partition technique. In the beginning we will give an overview
of a closely related work that is the unsupervised information-theoretic adaptive filter and we point
out the difference with this algorithm. Next, we will describe our strategy toward image partition
to three main classes ”smooth regions”, ”textured regions”’ and ”edges”. This partition involves
feature extraction and clustering through Gaussian mixture models. Once the classification step
is performed we will focus on the denoising scheme. We will briefly review the Bayesian deci-
sion theory and the various estimators’ types. Next we will present our denoising technique based
on Marginal Posterior Maximizing where this posterior is estimated using non parametric den-
sity estimation techniques. Then we discuss the kernel bandwidth selection and we describe the
optimization process. The performance evaluation is presented at the end of the chapter.

The third chapter is devoted to the neighborhood filtering technique and the use of random
walks and particle filtering strategy to select the most appropriate domain and the set of pixels to
denoise a given one. In the beginning, we will present a statistical model that aims to describe the
geometry of the image and the spatial relationships between similar pixels. Such a model will be
used in the context of multiple hypotheses testing to guide the particle evolution. then, we will
provide a brief overview of particle filter techniques , and amend this statistical estimation tool to
image denoising in the case of additive noise as well as multiplicative one. We will conclude this
section with the experimental validation of this technique.

In the fourth chapter we will present the technique that refers to functional minimizing based
regularization. In the beginning we will start by a review of the state of the art for total variation
minimization techniques. Then we focus on the model description and we provide the inherent
diffusion process. Once the model is established we will be concerned by the interaction between
pixels within this model. This interaction is governed by weights defined by two kernels one that
penalizes spatial distance between pixels, the other the photometric difference. In this context, we
tried to improve the weight definition by optimizing the selection of the spatial kernel bandwidth
and adapting it to each pixel position. We focused also on the definition of new photometric
similarity measures between pixels. In this context, two new weight definitions were suggested at
the end of the section: one based on better feature extraction the second based on the statistical
properties of the L2 distance between patches. Finally we will conclude this chapter with the
experimental results.

In the fifth chapter we will study the various types of regularization problems beyond the clas-



2. INTRODUCTION 49

sical additive Gaussian noise on gray scale images. In the beginning we will focus on the problem
of color image corrupted by real digital camera noise. To this end we discuss the noise model
and we provide a non parametric technique to estimate the noise function that is the evolution of
the noise variance with respect to the intensity. After that, we will present a procedure of color
image denoising based on minimizing under several constraints the functional presented in chapter
4. The second application concerns data in higher dimension/defined on constrained manifolds
like for example the case of diffusion tensors in DTI imaging. The goal is to jointly estimate and
regularize the diffusion tensors using several observed diffusion weighted MRI images. The per-
formance of this method as well as its impact on tensor classification was evaluated. The final
section, was dedicated to speckle suppression in ultrasound sequences. To achieve this objective
an adequate fidelity to data term as well as an appropriate weight definition were introduced. The
experimental validation of this technique is provided at the end of the chapter.

Conclusions and discussions are part of the last section of the document presenting the main
shortcomings and limitations of the approaches as well as the potential future perspectives of this
work.

To conclude, this thesis evolves around image/noise modeling in the context of reconstruction
and image inference from corrupted data as well as their applications in digital photography and
medical image analysis. It has produced (up to now), one book chapter [109] three major confer-
ence publications [12, 15, 13, 11], two major workshop papers [14, 110] and has pending journal
submissions (International Journal of Computer Vision, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Journal of Mathematical Imaging) as well as an involvement in a Frecnch
patent [30].
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MPM Adaptive Denoising

The selection of a statistical model towards explaining the observations and recovering the noise-

free signal is critical in the image restoration process. Conventional approaches often considered

local parametric models exploiting the local smoothness assumption that fails in case of texture. In

this chapter, we introduce a novel approach where the approximation makes no assumption on the

nature of distributions and is determined from the data itself. To compute our observation model,

we consider a variable bandwidth non-parametric approach to better reflect data variability when

considering observations related with texture. The bandwidth selection is done according to a

soft classification through a conventional mixture model. Such a classification is performed on

image pixels based on their features vector that characterizes textureness. The outcome of this

modeling is used within an MPM (Marginal Posterior Maximum) estimation framework, with aim

to restore each pixel’s intensity given the noisy image. This results in a novel approach for image

enhancement towards better texture preservation. Promising results demonstrate the potentials of

the proposed framework.

3.1 Introduction

Texture restoration is a key feature for image denoising and the challenge is the trade off between
noise suppression and fine details and texture preservation. State of the art techniques rely on
various image priors and parametric models with various complexity [122, 156, 120, 58]. The
majority of such methods assume a static prior that is not adapted to the different components of
an image. Natural images often consist of smooth, textured regions and contours. These elements
have different properties and a unique prior that models in the same fashion all these element is
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inaccurate.
Many algorithms provided satisfactory restoration quality [26, 76, 10, 53, 100, 88, 45], but their
performance depends mainly on the texture present on the image. In other words some texture
patterns can be efficiently and easily restored because they correspond to patterns where structure,
orientation and scale could be detected. Other texture types are more difficult to recover because
their properties are close to the noise ones. An example of such texture is given in figure [Fig. 3.1].
This figure shows that there are not major differences between the skin texture and noise at least in
terms of variance.
In order to handle properly the texture in the image one should identify regions that correspond
to noise and those to the texture and structure. Such a separation could be useful to many image
processing applications such as compression, demosaicing, deblurring etc. Indeed, it provides
a tool for parameters selection and offers the possibility to use different image priors for each
region. Under the assumption that the textured and texture-free regions have been identified, we
can design an adaptive algorithm for denoising which takes into account the particularities of the
textured regions in the image toward better preserving them. In order to address the above demand
one should be able to answer the following fundamental questions:

• is it possible to create a soft image partition into smooth regions edges and textures ?

• if such partition is available, What is the appropriate way to encode such prior into a denois-
ing algorithm towards better image reconstruction?

First, we introduce a soft-classification technique based on the analysis of local features under the
assumption that the image consists of three classes: (i) smooth regions, (ii) edges (iii) textured
regions. Such classification is the outcome of a Gaussian mixture model where the observations
are the projection of the local features on a convenient sub-space. Therefore, it assigns to each
pixel a probability measure that reflects its membership degree to each class.
As far as denoising is concerned, we adopt an MPM (Marginal Posterior Mode) estimation based
technique. This technique aims to maximize the probability of observing a particular intensity
value U(x) given the noisy image I . The posterior is computed using a non parametric image
model where the bandwidth of the selected Gaussian kernel depends on the classification result
and in particular is a function of membership probabilities. The central idea is to consider Kernels
with small bandwidth/variance in texture and edges while augment their bandwidth when referring
to smooth regions.
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(a) (b) (c)

Fig. 3.1: Example of confusing case for texture: (b) The skin texture (c) A noise patch.

The chapter is organized as follows: In section 2 we briefly review related work that is based
on modeling patch distribution using non parametric density estimation. Section 3 is devoted to
pixels classification. In section 4, our new non-parametric image model toward adaptive denoising
is detailed.

3.2 Unsupervised Information-Theoretic Adaptive Filter

Statistical image model is a fundamental component of various types of image processing appli-
cations. To this end many models was provided in the literature such as MRF based techniques
[120, 156, 58] and generalized Laplacian distributions that describe the joint intensity statistical
distribution [91, 68] or the joint distribution of wavelet coefficients [126]. Some of these models
describe interaction between pixels at very local scale and would therefore fail to catch texture
properties. Furthermore, the cited models are parametric they require a training step for parameter
selection. Non parametric models are an alternative solution toward image content modeling. This
technique was recently considered in [10]. The unsupervised information-theoretic adaptive filter
(UINTA) for image relies on high dimension statistical distribution of the image patches. Under
the assumption that the noise increases the randomness of the signal, the UINTA strategy of reg-
ularization consists in minimizing the entropy of the image pattern distribution. Let us consider
a random variable Z that corresponds to the image patch realization. Then in order to perform



54 Chapter 3

denoising, one has to estimate the probability density function relative to Z in order to compute
the entropy. To this end, the authors define a set of observations S = {UNx x ∈ A} where A is
a region of Ω (the image domain), UNx is a noise-free patch relative to x. These observations can
be used to determine an approximation of the patch distribution using a non parametric density
estimator (that will be developed in section 3.4.2). The kernels used are Gaussian and isotropic
where the covariance matrix is proportional to the identity matrix with diagonal elements equal to
σ. Hence an estimate of p(Z) is

p(Z) =
1

|A|
∑
x∈A

Gσ(Z − UNx) Gσ(X) =
1√

2π
d
σd

exp

(
−‖X‖

2

2σ2

)
(3.1)

where d is the cardinality of the patch (number of observations). Assuming such distribution/image
model, one can address denoising through the minimization of the disorder of the system that
is equivalent to the entropy. Knowing that the entropy is the expectation of the negative log-
probability, it can be approximated by the mean of log probability of the samples

H(Z) = − 1

|Ω|
∑
y∈Ω

log


 1

|Ay|
∑
x∈Ay

Gσ(UNy − UNx)


 (3.2)

where Ay is a region in the image containing the image patches where the probability density of
the patch UNy is computed. Towards the lowest potential of the entropy, the image is updated
according to a gradient descent method.
The expression of H indicates that the UINTA algorithm enforces the similarity between group
of patches with the same content in the observed image. Such a method is global, where all the
patches are updated at the same time and experimental results show its efficiency. Nevertheless,
the selection of the kernel bandwidth is critical, because it determines the ability of the model to
preserve data variability. For instance high σ values will reduce the number of modes in the distri-
bution to be approximated and this leads to loss of details for patches observed less frequently in
the image.
Motivated by the ability of the non parametric density estimation to model image patches distri-
bution, we adopted this tool to compute the pdf underlying to our denoising technique. But for
our approach, we used spatially varying kernel bandwidth to account for the variability of the data.
Therefore appropriate importance can be also given to patches that arise less frequently (like edges)
or being present in the image in a non-uniform distribution (like textures). The soft classification
of the image content provides us with an efficient tool for the bandwidth selection. We have also
to emphasize that our technique involves a local cost function. For this reason, the optimization
process is simpler because each pixel is updated independently from the others.
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3.3 Unsupervised Classification of Image Pixels

Image/texture segmentation/classification is an on-going research area from the very early years
of computer vision fields. The aim is to attribute to the observations labels which create some
consistency on a predefined feature space that can be intensities, color or texture. Such a process
involves two aspects: (i) the selection of the feature space, and (ii) the selection of the classification
method which is seeking for statistical separation of the features. We should recall that the aim of
this process in the context of our research is to not to provide a texture classification technique, but
an indicator on the membership of pixel to edges, textured regions and smooth regions.

3.3.1 Texture Feature Extraction

Texture analysis and characterization are active research topics in computer vision where a big ef-
fort was devoted to provide models toward texture segmentation or synthesis. The most prominent
wok in this direction refers to features extraction using various types of methods that will be briefly
reviewed here

• Transform analysis: The human visual system analyzes the textured images by decomposing
them into a frequency and an orientation component [69]. These properties inspired many
methods that are based on analyzing the orientation and frequency component of texture
elements. Early approaches have focused on energy distribution using the Fourier trans-
form [16] but the need for localized information resulted in the emergence of local analysis
technique. Gabor filters [57, 23, 50] are frequency and orientation selective filters widely
used in texture analysis. Wavelet transform and filter banks [37, 41, 66, 102] provide also
a multiresolution representation that offers local measure of energy toward specific texture
representation.

• Model Based methods: the aim of such approaches is to provide an image model useful not
only to describe texture but also to synthesize it. In this category one can refer to statistical
models used in the design of a probability distribution functions to characterize texture such
as Markov random fields (MRF). MRF do depend on a potential function that defines the
interaction between a pixel and its neighborhood. The design of such a potential must satisfy
a good balance between simplicity and generalization ability. Simple models include small
parameters number and limited clique size [58]. Sophisticated ones include more parameters
and large clique size to adequately describe texture of rich content [156]. Multiresolution
statistical description are proposed in [150]. Other methods that describe interaction between
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pixels are the Grey Level Co-occurrence Matrix [54], second order statistics [35] and linear
transformation [139].

The characterization of texture using such complex methods is important when seeking for a high-
level understanding of the image content. Texture classification often relies on these representa-
tions. Since in our case, the objective is to perform a classification into textured regions, smooth
regions and edges, one can consider simple representations as well as descriptors determined from
the observed image without going through the complex process of texture characterization. In
other words, if we consider a single pixel and the local observation being associated with it (a
local image patch), we want to know whether it corresponds to a textured pattern, to a uniform one
corrupted by noise or to a part of an edge. Statistical moments are well established indicators for
texture characterization and therefore, one can consider a classification that relies on fairly simple
local image statistics. We considered statistical descriptors rather than filter response to character-
ize the texture because some textures have random structure and geometric descriptor can fail to
describe it. Hence we will consider a pixel x, a neighborhood Nx relative x of size wp×wp and the
patch INx (resp UNx) which is the restriction of the observed image I (resp U) to Nx. Considering
the intensity inside a patch as a random variable we can compute

• Entropy which is a measure of uncertainty of a distribution. If we call GL the set of observed
intensities inside the patch INx the entropy is defined as eI(x) = −∑

i∈GL pi log2(pi). pi is
the probability of observing the intensity i in the patch INx . In the case of additive Gaussian
noise the entropy of a noisy homogeneous patch is equivalent to the entropy of the Gaussian
noise. We assume that a patch belonging to a smooth region in the noise free image has
almost constant intensity and the only source of variation is the noise. Therefore, we expect
that all pixels belonging to smooth regions have similar local entropy.

• Variance which is a measure of dispersion of random variable or a distribution with respect
to the mean. For the patch INx the variance is defined as vI(x) = 1

w2
p

∑
y∈Nx

[I(y)−mI(x)]2

with mI(x) = 1
w2

p

∑
y∈Nx

I(y). The noise being independent from signal, the variance inside
a noisy patch INx is the sum of the noise variance and the variance of the noise free one UNx .
One can conclude that the variance inside a noisy textured patch is more important than the
variance inside a noisy smooth patch.

• Skewness is the ratio between the third moment and the second moment of a distribution. It
is an indicator of the symmetry of a given distribution an estimator of the skewness inside a
that patch Nx is defined as sI(x) =

P
y∈Nx

[I(y)−m(x)]3

v(x)
3
2

. This criterion could be discriminatory
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because the noise distribution is symmetric while the distribution of pixels intensities inside
patches belonging to image texture does not obey to any symmetry constraints.

Based on these local descriptors we can discriminate noisy patches textured noisy one and those
corresponds to image structure and edges. The choice of these features is motivated by the fact
that the only available information about the noise is its statistical model. The image patches that
belong to smooth noisy regions have variance, entropy and skewness values close to those of the
noise. On the other hand the patches relative to image texture or structure have richer content and
will exhibit more variability in their statistical behavior. In figure [Fig.(3.2),Fig.(3.3)] is repre-
sented the joint distribution of the couple (entropy, variance) (variance, skewness) and (skewness,
entropy) for two different images one corrupted by synthetic Gaussian noise and the other by real
digital camera noise.
Once the feature space has been determined and a feature vector was computed for every image
pixel, the classification consists in assigning to each pixel a probability value measuring its mem-
bership to a textured pattern a uniform one or other image structure. For this purpose, we have to
find a statistical model that is able to describe the distribution of the observations (feature vector
of all image pixels) and provides an automatic classification tool of them. Let us consider that
the three hypotheses (smooth, edges, texture) are independent and normally distributed. Then, the
observed density on joint space should form three clusters describing the different properties of
the different classes. In such a context, one can deduce from the global distribution the behavior
of the individual components using a mixture model. Under this assumption, we can consider that
each component can be characterized using a single Gaussian model. Given that condition and
the fact that statistical inference in the original 3D space (entropy, variance, skewness) involves
important correlation between the distributions, we first proceed with a dimensionality reduction
of the problem. The idea is to consider a projection into a subspace where the separation between
classes could be easily done.

3.3.2 Dimensionality Reduction

Principal component analysis (PCA) is a tool of describing data structure and its dispersion in
specific directions. It provides an orthonormal basis where the projection of the data set on the
basis vectors has a decreasing variance. When considering, the projection of an observation on
a sub-space formed by the directions relative to the most prominent variance, the PCA refers to
a dimensionality reduction technique. For instance, one can retain a small subset of projections
according to the importance of the corresponding direction towards describing the data. Hence, the
PCA reduces the dimensionality of the data set or observed samples while keeping the maximum
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(a) (b)

(c) (d)

Fig. 3.2: Example of feature distribution for a an image corrupted by Gaussian synthetics noise of standard
deviation 20 (b) Joint distribution (skewness, entropy) (c) Joint distribution (entropy, variance) (d)
(b) Joint distribution (skewness, variance)

(a) (b)

(c) (d)

Fig. 3.3: Example of feature distribution for a an image corrupted by real digital camera noise (b) Joint
distribution (skewness, entropy) (c) Joint distribution (entropy, variance) (d) (b) Joint distribution
(skewness, variance)
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of variance information. This is a desirable property when performing classification since it leads
to a tractable problem in comparison with higher dimension original one under the condition that
the retain directions form well separated clusters.
Now to describe PCA we will consider the specific case of pixel classification the set of observation
corresponds toF = {fx ∈ R3}x∈Ω and fx is the feature vector described in the previous paragraph.
In order to build the sub-space that optimally describes the data variation, we first have to arrange
these observations on a matrix M of dimension |Ω|×3 where each line of the matrix corresponds to
a feature vector. Hence as proved in [44], the most prominent directions of projection corresponds
to the eigenvectors of the covariance matrix of the column vector of M. Thus if we note the column
vectors {Mi}1≤i≤3, the covariance matrix C defined as

C(i, j) = cov(Mi,Mj)

cov(Mi,Mj) = E
[(

Mi − M̄j
) (

Mj − M̄j
)]

M̄j = E
[
Mj

]

The eigenvectors of the matrix C form an orthonormal basis and the associated eigenvalues are the
variance of the observation when projected on these eigenvectors. Note also that the projection of
the data set on each direction of the new basis is uncorrelated. Hence for our classification process,
we considered the first principle component since it describes better the data point distribution and
preserves their variability. Such a choice allows us to reduce the problem dimensionality which can
speed up the classification process and makes it simpler. Using the projection on the first principle
component (noted e1) we associate to each pixel x a feature ox = 〈fx, e1〉.
Now, once the set of observations determined, we will present the classification framework.

3.3.3 Application to Pixels Classification

After the feature extraction step, our aim is to perform a soft classification of the different image
pixels. Knowing that a natural image is composed of three main components that are: edges texture
and smooth regions, we will consider a Gaussian mixture models. Gaussian mixture models are
examples of multi-modal densities that make the assumption that the probability density function of
observed samples is a sum a Gaussian distributions [49]. They have been used in clustering where
one makes the assumption that the distribution inside each class is a Gaussian distribution. In this
context we will associate a Gaussian for each class: texture, smooth region, and edges. To present
the classification process, let us introduce O = {ox}x∈Ω the set of N unlabeled observations
corresponding to the feature vectors of the image pixels and C = {smooth, edge, tex} the set of
the clusters being present in the image. Thus, using the empirical distribution of these observations,
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we can consider the following model

p(ox|Θ) =
∑

k∈C
πkG(ox, µk, σ

2
k)

G(ox, µk, σ
2
k) =

1√
2πσk

exp
−‖ox−µk‖2

2σ2
k and

∑

k∈C
πk = 1 (3.3)

with Θ = {πk, µk, σk, }|Ω|k=1 is the set of parameters defining the mixture model. Each cluster k is
defined by three parameters: πk the a priori probability of the cluster, µk and σk are respectively
the mean and standard deviation of the Gaussian distribution (G) they represent the center of the
cluster k as well as a measure of its spread. An illustration of the approximation of the empiri-
cal distribution with Gaussian mixtures is presented in [Fig.(3.4)]. The estimation of the model’s
parameters is done through a Maximum Likelihood approach. Then assuming that the set of ob-
servations O was generated using the model (3.3) then the likelihood of drawing these samples
is

L(O|Θ) = log

[∏
x∈Ω

∑

k∈C
πkG(ox, µk, σ

2
k)

]
(3.4)

and an optimal estimation of the parameter vector assuming no prior knowledge or constraints will
be the one that maximizes the likelihood of the observations, given the model parameters,

Θ̂ = ArgmaxΘL(O|Θ) (3.5)

Many algorithms can be used to compute the maximum likelihood estimate of Θ, it was shown
that the Expectation Maximization based approach is well adapted to solve this problem[106, 42]
. The derivative of the likelihood function with respect to the model parameters is defined as:

∂L(O|Θ)

∂µk

=
∑
x∈Ω

p(k|ox)

σ2
k

(µk − ox) (3.6)

∂L(O|Θ)

∂σk

=
∑
x∈Ω

p(k|ox)

(
−D

σk

+
‖µk − ox‖

σ3
k

)
(3.7)

p(k|ox) =
πkG(ox, µk, σ

2
k)∑

i∈C πiG(ox, µi, σ2
i )

(3.8)

p(k|ox) is the conditional probability of selecting the cluster k given the observation ox.
As far as the a priori cluster probability πk is concerned, it must verify two constraints that are:
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πk ≥ 0 and
∑M

k=1 πk = 1. In order to impose these constraints one can set:

πk =
eλk

∑
k∈C eλk

In this case
∂L(O|Θ)

∂λk

=
∑
x∈Ω

(p(k|ox)− πk) (3.9)

Setting the derivative of the likelihood function to zero, results in the following equations for the
Gaussian mixture model

µk =

∑
x∈Ω p(k|ox)ox∑
x∈Ω p(k|ox)

(3.10)

σ2
k =

∑
x∈Ω p(k|ox) ‖ox − µk‖∑

x∈Ω p(k|ox)
(3.11)

πk =
1

|Ω|
∑
x∈Ω

p(k|ox) (3.12)

These expressions demonstrate that µk and σk are respectively the conditional mean and standard
deviation of the samples with respect to the cluster k. These equations are dependent to each other
and it is not possible to find an exact, solution when seeking model’s parameters estimation. There-
fore, the most common approach to overcome this constraint is through an iterative optimization
process. Thus starting from an initial guess π0

k,µ0
k,σ0

k, one have to perform iteratively the update
using the equations (3.10)( 3.11)(3.12). It is important to note that assuming the number of com-
ponents known, the initial conditions of the system play an important role to the quality of the final
approximation when using the EM approach.
Starting from the set of observations and using the expectation maximization algorithm we were
able to determine the parameters of the model. Therefore one question remains: which Gaussian
for which class. It is important to point out that we perform a fully unsupervised classification.
In other words, at the end of our classification process, we have three Gaussians modeling three
data clusters but we ignore which Gaussian corresponds to texture and which ones represent the
smooth regions or edges. Therefore, a label has to be assigned to each Gaussian. To address this
issue inference based labeling was adopted. Under the assumption that an image consists mostly of
smooth regions we can use the prior density of each class to assign labels to them according to the
following relation πsmooth > πtex > πedge. Parallel to that, knowing that pixels that belong to uni-
form noisy patches have similar descriptor we expect that the Gaussian that represents the cluster
of smooth regions will have a small variance compared to the others, an assumption that has been
validated by experimental results. For the example shown in [Fig.(3.5)], the Gaussian component
with the smallest variance and its dominance over the other hypotheses corresponds to the column
(b). It is clear that this component refers to the class describing the uniform assumption with noise.
The classification result presented in image [Fig.(3.6)] show that texture and structure clusters can
be mixed together. Since we process the edges and the texture in the same fashion misclassifica-
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(a) (b)

Fig. 3.4: Histogram of the projection of the features vector on the first principle component (red) and their
approximation with Gaussian mixture models (blue) for (a) Old man image with real camera noise
(b) Barbara image

tion wont have a great impact on the algorithm. Once the classification of image pixels performed,
we will be concerned with the use of such information to build an adaptive denoising technique
where particular attention is paid on how we treat texture and edges. The detailed description of
the proposed algorithm will be focus of the next section.

3.4 Non Parametric Model and Adaptive Denoising

3.4.1 Bayesian Formulation of the Problem

As stated before the Bayesian formulation is a classical tool in image restoration problems. The
use of a specific estimator depends on the cost function that one aims to minimize as well as the
application. To introduce our denoising method, we will assume that I , U and n are three random
variables defined on a discrete partition Ω ∈ Z2. We recall that n is an additive noise independent
from the signal, I is the observed noisy image and U is the noise-free image. To estimate the
noise-free image, one needs to define a decision function that associates to the noisy observation
the image that can be considered as the noise-free one. Such a function is noted ΦI and defined
on the space Γ that corresponds to all possible image realizations. Note that for gray scale images
where the gray level ranges between 0 and 255 the set Γ contains 256|Ω| elements. To evaluate the
pertinence of the decision ΦI , one has also to define a loss function that evaluates a risk when a
decision is taken. Hence to introduce the Bayesian risk and the decision function we will consider
a loss function L defined on Γ× Γ and having values in R+. To compute an estimate of the noise-
free image U given the noisy observations, one has to minimize a Bayesian risk that is the posterior
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(a) (b)

(c) (d)

Fig. 3.5: Results of an image partition: (a) original image, and conditional probability function relative to
(b) ”smooth component” p(ox|smooth) , (c) ”texture” p(ox|tex) and (d) ”edges” p(ox|edge)
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(a) (b)

(c) (d)

Fig. 3.6: Results of an image partition: (a) original noisy image (σn=20), and conditional probability func-
tion relative to (b) ”smooth component” p(ox|smooth) , (c) ”texture” p(ox|tex) and (d) ”edges”
p(ox|edge)
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expected value of a loss function and defined as

R(ΦI) = E [L(J, ΦI)|I] =
∑
J∈Γ

L(J, ΦI)p(J |I) (3.13)

In the Bayesian decision theory, three types of loss functions and therefore three estimators are
considered.

• Maximum a Posteriori Estimator (MAP)
The Maximum a Posteriori estimator is associated to a global loss function L defined as

L(I1, I2) = 1 if I1 = I2 and L(I1, I2) = 0 otherwise

In this case
R(ΦI) = E [L(J, ΦI)|I] = 1− p(J = ΦI |I)

Consequently the optimal estimator ΦI corresponds the image that maximizes the posterior
probability p(J |I). Such an estimate relies on the appropriate definition of the posterior
probability that involves knowledge about the noise model and the natural image model. As
we pointed out in the first chapter the image model can refer to MRF’s based parametric
models [58, 156, 120, 97, 119] or non parametric ones [10, 77].

• Maximum Posterior Mode estimator (MPM)
The Maximum Posterior Mode estimator is associated to the following local loss function

L(I1, I2) =
∑
x∈Ω

l(I1(x), I2(x)) =
∑
x∈Ω

1{I1(x) 6=I1(x)}

The Bayes risk in this case corresponds to

R(ΦI) = E [L(J, ΦI)|I] =
∑
J∈Γ

(∑
x∈Ω

l(J(x), ΦI(x))

)
p(J |I)

=
∑
x∈Ω

∑
J∈Γ

l(J(x), ΦI(x))p(J |I)

=
∑
x∈Ω

E [l(J(x), ΦI(x))|I] (3.14)

The Bayes risk is the sum of the conditional expectation of the local cost function. The
criteria to be minimized is sum of independent positive terms thus the optimal estimator
is the one that minimizes each term E [l(J(x), ΦI(x))| I]. This result is valid for any loss
function defined as the sum of local loss functions. In the particular case of the loss function
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introduced before

E [l(J(x), ΦI(x))|I] = 1− p(J(x) = ΦI(x)|I)

In such a case the optimal estimator is the one that is defined as ΦI(x) = ArgmaxJ(x)p(J(x)|I).
Thus for each pixel in the image, one has to compute the most probable intensity given the
noisy observation I . This can be achieved through the definition of an appropriate posterior
density. The definition of such a posterior will be addressed in the next section.

• Conditional Mean Estimator
The associated loss function is also local and defined as

L(I1, I2) =
∑
x∈Ω

‖I1(x)− I2(x)‖2

using the result obtained in equation (3.14)

R(ΦI) = E [L(J, ΦI)|I] =
∑
x∈Ω

E
[
(J(x)− ΦI(x))2|I]

(3.15)

With this local formulation of the estimator, one has to minimize each term of the sum
to obtain the optimal estimator. By introducing mx = E [p(J(x)|I)] and considering the
relation

E
[
(J(x)− ΦI(x))2|I]

=
∑

J(x)∈E

(J(x)−mx)
2p(J(x)|I) (3.16)

+
∑

J(x)∈E

(ΦI(x)−mx)
2p(J(x)|I)

= Cte + (ΦI(x)−mx)
2 (3.17)

The minimum of the risk where the estimate value relative to x is defined as

ΦI(x) = E [p(J(x)|I)] (3.18)

In the context of image restoration the MAP estimator is a very popular tool to estimate the noise
free image that relies on global models. The MPM and conditional mean estimators are local
and estimate the image pixels in an independent fashion. Regarding their loss functions, the MPM
estimator penalizes the number of differences between the images regardless their values contrarily
to the conditional mean estimator. In [25], a proof that the earlier presented NL-means algorithm
is consistent with the conditional mean estimator is presented. In the present work we consider the
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MPM estimator because its loss function is more restrictive for each pixel. Further more it allows
us to define local image models, according to the soft classification results. Based on the MPM
estimation technique, the restoration process consists in computing the intensity for each pixel in
the image by maximizing the conditional marginal posterior probability. Thus, the estimate Û(x)

of the original observation at a given position x satisfies,

Û(x) = ArgmaxU(x) [p (U(x)|I)]

To estimate the marginal posterior, we will make the hypothesis that the observation U(x) is con-
ditioned on image observations defined at a restricted neighborhood of the image. Without loss
of generality such assumption is valid for natural images where image content is independent at
a large scale. Thus, if we introduce Nx, a wp × wp square neighborhood of x and INx the set of
intensity observed within the neighborhood, the marginal posterior is defined as:

p (U(x)|I) ≈ p (U(x)|INx) =
p (U(x), INx)

p (INx)
(3.19)

p (INx) being constant, one has to determine a model relative to the joint probability p (U(x), INx).
In the absence of a prior on the noise free image we can not obtain a direct estimate of the joint
probability. The only available information being the observed image I , one have to exploit the
fact that natural images are redundant which means that an image could contain several copy of the
same patch [26]. This suggests that one can use the different noisy patches in the image to build
a statistical model [77, 10]. For our case, to estimate the joint probability p (U(x), INx) we will
consider the following set of samples

S =
{
[I(y), INy ] where y ∈ Rx

}
(3.20)

with Rx is the domain where is selected the set of samples patches used to estimate the joint
probability. This domain can be the whole image domain or just a rectangular window centered on
x and of size wR × wR. Once the sample set is defined, the joint probability can be approximated
using non parametric density function estimation technique.

3.4.2 Non Parametric Density Estimation

The non parametric density function estimation is a technique that aims at finding the pdf associ-
ated to a random variable V (defined on Rd) given an arbitrary set of observations {Vi}M

i=1. Since
parametric density functions such as Gaussian or Laplacian distributions are restrictive and make
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explicit assumptions on the expected distribution of the observed samples, more general techniques
have been considered [113, 70]. The most intuitive tool is the histogram based estimation. How-
ever, this approach is highly sensitive to the selection of the bins, while being discontinuous with
derivatives ill-defined, etc. An alternative to the histogram and a generalization of it are the kernel
based estimators which can model arbitrary distribution and are defined as the following

f(V) =
1

M

M∑
i=1

KH (V −Vi) (3.21)

Such an approach associates to each observation a continuous estimator (kernel) centered on it.
Then, it approximates the probability of a sample by measuring the distance from each continuous
estimator. The advantages of such a method are explicit use of observations, and certain continuity
properties in terms of low and higher order derivatives. The kernel KH is a function defined on
Rd that must satisfy certain properties so that f can be considered as a probability density function
and provides a good estimation of the actual distribution. These properties are:

∫

Rd

KH(V)dV = 1

∫

Rd

VKH(V)dV = 0

∫

Rd

V.VTKH(V)dV = Id (3.22)

Id is the d× d identity matrix. H is the bandwidth of the kernel it controls the smoothness degree
of the estimation and the efficiency of the method is highly dependent on the selection of this
parameter as well as the kernel expression. Various types of kernels can be used such as the
uniform kernel that refers also to Parzen window, the Epanechnikov kernels and Gaussian kernels.
For our application we selected an isotropic Gaussian kernel with bandwidth defined as H = hId

(where h is a positive scalar). Our choice of the Gaussian kernel is motivated by its nice properties
of continuity and derivability that are also inherited by the estimated density function.

KH(u) =
1

hd
√

(2π)d
exp

(
−‖u‖

2

2h2

)

The quality of the kernel density estimator is measured by the mean squared error between the
actual density function and its estimate. As far as the point wise error is concerned, it is defined by

MSE(V) = E
[
f̂(V)− f(V)

]2

= var
(
f̂(V)

)
+

[
E

(
f̂(V)

)
− f(V)

]2

(3.23)

= var
(
f̂(V)

)
+

[
Bias

(
f̂(V)

)]2

The bias of the estimator gives an indicator of the closeness of the mean of the estimate to the real
distribution and the variance is a measure of how precise is the estimator. Ideal estimator is the one
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who reaches a balance between variance and bias.
In [142], it was shown that the bias and variance could be approximated by

Bias
(
f̂(V)

)
≈ Ah2∆f(V) and var

(
f̂(V)

)
≈ Bh−df(V) (3.24)

This relation show that there exists a trade off between variance and bias: small bandwidth value
will result in less biased estimator however it will affect its accuracy. In practice, it is not possible
to directly compute the optimal value of the bandwidth because the lower bound of the square
error depends on the unknown density distribution. To address this limitation, many data driven
approaches was proposed such as the plug in rule [125]. These methods rely on a fixed bandwidth
kernel and are based on a smoothness assumption of the underlying density. Their main limitation
is that an over-smoothing is often observed in particular for the peaks of the density. Variable
bandwidth is an alternative when the data exhibit scale variations.

3.4.3 Variable Bandwidth Selection

We recall that our purpose is to estimate a probability density function of patches distribution on the
observed noisy image. This is done through non parametric density estimation technique involving
isotropic Gaussian kernels. In this context, the estimation process depends only on one parameter
that is h. The effect of broadening the kernel (high value of h) will result in a loss of resolution
by merging multiple modes, that may represent some data properties. On the other hand, small
values of h may decrease contribution of the neighboring samples and lead to a rather inaccurate
probability density estimate. To reflect the data diversity and the variability of concentration of
observations, we have to associate to each data point Vi a differently scaled kernels hi. Under
these considerations the formulation of the non parametric density estimator is:

f(V) =
1

M

M∑
i=1

1

hd
i

√
(2π)d

exp

(
−‖V −Vi‖2

2h2
i

)
(3.25)

As far as our application is concerned, the observation set S is composed of image patches as
defined in (3.20). We can assume that image patches belonging to smooth regions does not exhibit
high amount of variability. Hence towards decreasing the importance of variation in the distrib-
ution when referring to homogeneous patches, we have to increase the bandwidth values. Thus,
all the samples will inherit equal importance with such a selection during the pdf approximation
process. Regarding, the image patches belonging to various types of texture and other structure be-
ing present in the image, the choice of a high bandwidth value will results in a probability density
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function that don’t take into account data diversity. Using such an estimate will affect the quality
of restoration leading to over smoothed images. In this case, small bandwidth values should be
considered in order to obtain multi-modal probability density functions. Furthermore, the selec-
tion of small bandwidth is equivalent to be restrictive on the choice of samples to be used for the
density estimation and hence for the pixel intensity restoration. So, for a given pixel, only pixels
having high amount of photometric similarity with it will be considered in the denoising process.
To sum up and in order to have a probability density function of the image patches distribution
(3.19), we need to define an appropriate bandwidth function to take into account data diversity. To
this end, we exploit the result of the pixels classification step presented in the previous section to
build a pixel-specific bandwidth. Since the bandwidth values must be small for textured patches
and high for the homogeneous one, the bandwidth function should be decreasing with respect to
the conditional probability relative to textured region or edges and increasing for homogeneous
patches. Therefore for a given observation y in S we associate a bandwidth value hy that can be
defined using the following function

hy = σ0

(
psmooth(oy)

ptex(oy) + pedge(oy) + 1
+ c

)
(3.26)

pk(oy) = G(oy, µk, σ
2
k) for k ∈ {smooth, tex, edge}

(3.27)

We recall that oy is the feature vector in the position y and G a Gaussian distribution, while
psmooth,ptex and pedge are respectively the conditional probability for oy to be in a noisy smooth
region, textured region or edges. σ0 and c are parameters to be fixed according to noise level. With
such a choice, we adopt for pixels that belong to smooth regions with high value of psmooth, high
kernel bandwidth. For image component identified as texture or edges, psmooth tends to be close
to zero and implies smaller bandwidth values. An example of such bandwidth estimation is shown
in [Fig.(3.8-b),Fig.(3.9-b)] where clearly texture regions are associated with low bandwidth which
produces a density that preserves image structure.

3.4.4 Marginal Posterior Maximizing

Let us recall that our denoising consists in computing an estimate of the pixel intensity that maxi-
mizes the conditional posterior defined in equation (3.19). It amounts also to maximizing a func-
tion E(U(x)) that corresponds to the joint probability p (U(x), INx). Based on the set S of patches
observed in the noisy image and by applying the sample based density estimation technique using
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variable bandwidth Gaussian kernels an estimate of p (U(x), INx) is

p (U(x), INx) = E(U(x)) (3.28)

=
1

|Rx|
∑
y∈Rx

1

(hy

√
2π)d

exp−
(∥∥[U(x), INx ]−

[
I(y), INy

]∥∥
2

2hy
2

)

=
1

|Rx|
∑
y∈Rx

1

(hy

√
2π)d

exp−
(∥∥INx − INy

∥∥
2

2hy
2

)
exp−

(
[U(x)− I(y)]2

2hy
2

)
(3.29)

d is the dimension of vector in the set of sample S defined in (3.20) and |Rx| refers to the cardi-
nality of Rx. The bandwidth of the isotropic Gaussian kernel depends on the image content and is
defined by equation (3.27). Let us introduce now the variable wxy defined by

wxy =
1

(hy

√
2π)d

exp−
(∥∥INx − INy

∥∥
2

2hy
2

)
(3.30)

Equation (3.29) becomes

E(U(x)) =
1

|Rx|
∑
y∈Rx

wxy exp−
(

[U(x)− I(y)]2

2hy
2

)
(3.31)

We have to point out that the coefficients wxy express the photometric similarity between the
neighborhood relative to x and y. This shows that the contribution of any sample patch centered
on y in the set S is proportional to its similarity to the observed patch centered on x. In order to
minimize the expression (3.31), we have to compute its derivative with respect to U(x)

dE

dU(x)
=

1

|Rx|
∑
y∈Rx

wxy

hy
2 [I(y)− U(y)] exp−

(
[U(x)− I(y)]2

2hy
2

)
(3.32)

Accessing a direct value of the optimal value of U(x) that verifies ∂E
∂U(x)

= 0 is not feasible. Hence,
the gradient ascent algorithm was chosen to detect the optimal intensity which corresponds to the
mode of the distribution. Starting from an initial observation U0(x) = I(x) the update of intensity
is done according to

U t+1(x) = U t(x) + dt
∑
y∈Rx

wxy

hy
2

[
I(y)− U t(x)

]
exp−

(
[U t(x)− I(y)]

2

2hy
2

)
(3.33)

We have to precise that the gradient ascent algorithm provides local maximum. The pixel intensity
is attracted by the closest mode of the distribution p (U(x), INx). We have to point out that the
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convergence to local maximum is not a major drawback of the algorithm since it consider the
closest intensity to the observed one leading to better preserving to image details and texture.
Note that maximizing the function E is equivalent to the mean shift based mode detection [36, 38,
39]. To introduce this technique let us consider the derivative expression (3.32) that is equivalent
to

dE

dU(x)
=

1

|Rx|

[ ∑
y∈Rx

wxy

hy
2 exp−

(
[U(x)− I(y)]2

2hy
2

)]
(3.34)

×



∑
y∈Rx

wxy

hy
2 I(y) exp−

(
[U(x)−I(y)]2

2hy
2

)

∑
y∈Rx

wxy

hy
2 exp−

(
[U(x)−I(y)]2

2hy
2

) − U(x)




The derivative is equal to zero when the second term in the product is equal to zero. Thus the
optimal estimate of U(x) is the one that verifies

∑
y∈Rx

wxy

hy
2 I(y) exp−

(
[U(x)−I(y)]2

2hy
2

)

∑
y∈Rx

wxy

hy
2 exp−

(
[U(x)−I(y)]2

2hy
2

) − U(x) = 0 (3.35)

When considering the sequence {U t(x)}t=0,2.. defined as

U t+1(x) =

∑
y∈Rx

wxy

hy
2 I(y) exp−

(
[Ut(x)−I(y)]

2

2hy
2

)

∑
y∈Rx

wxy

hy
2 exp−

(
[Ut(x)−I(y)]2

2hy
2

) (3.36)

A convergence proof of the following sequence was provided in [38] if the used kernel is convex
and has monotically decreasing profile which is the case of a Gaussian kernel.
Our denoising algorithm bears some similarities with the well known mean shift filtering algorithm.
The main difference between our approach and the mean shift filtering consists in the mean shift
computation where we take into account the similarity measure between local patches. Therefore,
we are able to improve the performance in the case of textured regions because the process goes
beyond simple pixel-wise comparisons between pixels to be extended to local neighborhood.

3.5 Experimental Results

The efficiency of denoising technique is related to its ability to remove noise while preserving the
details and being as close as possible to the original noise-free image. Hence, to assess the quality
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of a technique we consider two criteria

• Subjective criteria that refer to the visual quality of the restored image like absence of arti-
facts and detail preservation. One can also compute the residual image that is the difference
between the noisy image and the restored one. Ideally this image corresponds to the noise
added to the original image. Thus the residual should not exhibit image structure.

• Objective criteria that refer to the degree of similarity between the restored image and the
noise free one. To evaluate this, several measures were considered such as the Mean Square
Error, the Mean Absolute Error, The Signal to Noise Ratio, and the Peak Signal to Noise
ratio. The computation of one of these criteria is possible when the noise free image is
available. Hence, the objective evaluation is only possible for synthetic noise. In this thesis
we considered the PSNR criterion that is defined as

PSNR = 10log10
2552

MSE
with MSE =

1

|Ω|
∑
x∈Ω

(U(x)− Û(x))2 (3.37)

We recall that U is the noise free image and Û is its estimation by the denoising method.

To evaluate the performance of our method, comparisons with two state-of-the art techniques are
presented. The first is the NL-means algorithm [25] because it also aims at reducing the quadratic
Bayes risk (3.18) using a different cost function when compared to the MPM estimator that we
used. The second is the unsupervised information-theoretic adaptive filter (UINTA) [10] that relies
also on non parametric kernel based probability density estimation. We considered the fixed band-
width kernel-estimator (MPMfix) as well towards evaluating the importance of soft classification
and non-parametric density approximation driven from the image content.
To this end we considered a set of images frequently used in the context of restoration and we
added to them a synthetic Gaussian noise of known standard variation (σn = 20). The parameter
setting was selected to insure a good balance between noise suppression and details preserving.
For instance the NL-means filter 1 was used with σ = 15, the patch size used for comparison is
7 × 7 and the weighted average was computed over a local neighborhood. Our tests proved that a
non local smoothing is not necessary the most efficient technique regarding texture preservation.
The size of the window that provides better results is dependent on the choice of σph and in this
particular case we computed the weighted average on a local window of size 11 × 11. For the
UINTA algorithm, we considered the set of parameters provided by the author in [10] as well as
his MATLAB implementation. Parameters that are involved in our denoising approach are the size

1 using our implementation
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Barbara Boat Fingerprint House Lena Baboon
MPM-Fix 29.18 28.84 26.38 31.16 31.19 25.26
MPM-var 28.9 29.11 26.68 31.02 31.25 25.39
UINTA [10] 29.53 28.66 26.59 31.85 30.82 24.09
NL-mean 28.78 28.92 26.45 30.86 31.13 25.18

Tab. 3.1: PSNR values for denoised image (The PSNR of the image corrupted by Gaussian noise of std=20
is equal to 22.15)

of the two neighborhoods Rx and Nx as well as the bandwidth of the kernels that are selected ac-
cording to expression (3.27). Rx is the size of the neighborhood used for the posterior estimation.
Using an important size of Rx allows a better estimation, but it is computationally complex. In this
experiments we selected a 19× 19 neighborhood size. Nx is the size of the noisy patch around the
pixel that we want to recover, in our experiments we selected a 7 × 7 patch size. Regarding the
choice of the photometric bandwidth, it is dependent on noise level. In case of additive Gaussian
noise with standard deviation σn = 20, we considered this couple of parameter ( σ0 = 4 and
c = 4). Regarding computation time we implemented our algorithm using C++ and for these set of
parameter it takes 4 minutes to process a 512 × 512 image on a Pentium IV -2GHz machine (1mn
for classification and 3 mn for the denoising) . We reported in table (Tab.3.1) the PSNR values
of each method. We can notice that our approach outperforms the two other algorithms in terms
of PSNR. As far visual quality is concerned, we present in figure [Fig.(3.7] a zoom of a textured
part in Barbara image as well as the associated residual. These images show that in terms of detail
preservation the three approaches are equivalent. Nevertheless, the UINTA result provides more
pleasant visual results and better texture reconstruction. This is natural outcome because it is a
global homogenization algorithm where all the image pixels are updated at the same time which
enforces consistency between them contrarily to our algorithm. The later aspect makes also this
algorithm more complex and computationally inefficient. The comparison with the NL-means re-
sult show that in case of additive Gaussian noise, there an assessment regarding the selection of the
estimator that can be used in denoising is not straightforward. For instance, the MPM estimator
and the TPM one can yield to comparable results.
Now if we consider the impact of using a variable kernel size according to the pixel position,
we can notice that it preserves more details even though the textured part contains some times
more noise. The tests carried on images corrupted by real camera noise and illustrated in figures
[Fig.(3.8),Fig.(3.9),Fig.(3.10)] show the advantage of using a variable bandwidth since yields more
natural aspect of the texture than the fixed one.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.7: Zoom on a detail in the Barbara image (a) original image (b) noisy image (c) restoration results
using our technique with variable bandwidth kernels (d) restoration results using our technique
with fixed bandwidth kernels (e) restoration result obtained with NL-means algorithm (f)restoration
result obtained with UINTA algorithm
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(a) (b)

(c) (d)

Fig. 3.8: Results of our proposed denoising method on real digital camera Noise, (a) original image (b)
variable bandwidth function (low intensity (hy=2), high intensity (hy=4)) (c)MPMfix denoising,
(d) MPMvar denoising.



3. MPM ADAPTIVE DENOISING 77

(a) (b)

(c) (d)

Fig. 3.9: Results of our proposed denoising method on real digital camera Noise, (a) original image (b)
variable bandwidth function (low intensity (hy=2), high intensity (hy=4)), (c)MPMfix denoising,
(d) MPMvar denoising.
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(a) (b)

(c)

Fig. 3.10: Results of our proposed denoising method on real digital camera Noise, (a) original image
(b)MPMfix denoising, (c) MPMvar denoising.
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3.6 Conclusion

In this chapter we have mostly focused on deriving appropriate local image models towards ex-
pressing the observed density. This model, aims to express the co-dependencies of the observations
at fixed geometric scale. The algorithm is composed of two steps :

• image partition to identify the smooth regions and the others containing texture or details

• denoising using an MPM (maximum posterior mode) estimator

In this chapter our main contribution was providing an automatic tool for soft classification using
Gaussian Mixture model where observations are combination of simple statistical descriptor of
local patches. In addition to that, a new formulation of the denoising problem using MPM estimator
was considered. The posterior marginal pdf was approximated through non parametric density
estimation techniques based on variable bandwidth kernels. Based, on the observation that the
kernel bandwidth is playing a key role in the accuracy of the model we designed a bandwidth
function that takes advantage from the classification step to better reflect the data variability. The
experimental results and comparison with state of the art techniques demonstrated the efficiency of
this method in the denoising. Further improvement can be gained using other priors on the image
content. Eventually the use of more complex non-linear functions to determine the bandwidth of
the kernels according to the soft classification probabilities is also a promising direction.

Improving the image approximation model is a critical aspect in image restoration. Another im-
portant component of the process is the geometric model used to determine the image description.
The spatial bandwidth of the kernel and the photometric one are two critical components in the
process. Therefore, adopting proper geometric models to guide interactions between observations
will be the focus of our next chapter.





Chapter 4

Image Reconstruction Using Particle Filters

Exploiting geometric image structure is a promising direction towards better reconstruction. In this

chapter, we introduce a reconstruction framework that explicitly accounts for image geometry when

defining the spatial interaction between pixels in the filtering process. To this end, image structure

is captured using local co-occurrence statistics and is incorporated to the enhancement algorithm

in a sequential fashion using the particle filtering technique. In this context, the reconstruction

process is modeled using a dynamical system where its evolution is guided by the prior density

describing the image structure. Towards optimal exploration of the image geometry, an evaluation

process of the state of the system is performed at each iteration. Promising results using additive

and multiplicative noise models demonstrate the potentials of such an explicit modeling of the

geometry.

4.1 Introduction

Let us recall that the core components of an image enhancement approach consist in: (i) the selec-
tion of the bandwidth or the scale of interaction between pixels, (ii) the selection of the weights
contributing to the reconstruction. These issues were the focus of some averaging based filters
that consist in performing a weighted sum of noisy pixels over a domain (filtering window). Lo-
cal methods include the sigma filter [92], the bilateral filter [134]. Non local approaches refer
to the Non Local mean algorithm [26]. Such methods use a fixed size as well as a fixed shape
neighborhood for restoration and do not take into account the image structure in the selection of
the neighborhood. For some of them, this is done implicitly through the weight definition, but
adapting the window where one can search for the candidate pixel is as important as a good weight
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definition.
Examples of variable size filtering windows are introduced [76, 52, 117] where the authors propose
an iterative algorithm to select the most appropriate bandwidth for each pixel. Their experimental
results show that adapting the bandwidth for each pixel improves the quality of restoration com-
pared to a fixed size window.
The use of non-parametric densities with variable bandwidth being a function of the textureness
of the pixel, earlier presented in this thesis, addresses mostly the selection of bandwidth relative to
gray level similarity. A step further in this direction consists of defining more appropriate means
for selecting the spatial scale of interaction between pixels. In the context of this chapter, we would
like to study the geometric structure of the image and if possible define novel mechanisms for pix-
els selection that explicitly account for the observed image structure. Such a process involves two
steps, (i) a learning stage where the image structure is modeled, and (ii) a reconstruction step that
consists of a novel mathematical approach to encode measurements driven by the geometric image
model. In this chapter, we will focus on making the best possible selection of pixels contributing
to the reconstruction process through exploring the observed image geometry. Such geometry is
expected to be anisotropic. More explicitly, we take into account the image structure to retrieve
similar pixels to a reference one (that we want to reconstruct) without any exhaustive scan of the
image domain. To this end, the reconstruction is done in a sequential fashion using notions of dy-
namical systems evolution. The idea is to consider multiple random walks/trajectories as different
candidates for the filtering window and evaluate the pertinence of each trajectory. Such a process
involves two aspects, (i) the selection of the trajectory, (ii) and the evaluation of the trajectory
appropriateness. Each walk is composed of a number of possible neighboring sites/pixels in the
image which are determined according to the observed image structure. Towards optimizing the
selection of candidate pixels within a walk as well as the overall performance of the method, image
structure at local scale is considered through a learning stage. It consists in computing a probability
density function that describes the spatial relation between similar image patches in a local scale.
Random perturbations according to these densities guide the ”trajectories” of a discrete number of
walkers, while a weighted integration of the weighted ”average” values of these walks leads to the
image reconstruction. Image similarities, geometric smoothness as well photometric consistency
for the samples are the criteria used to determine the quality of a given walk. The overview of our
method is presented in [Fig.(4.1)].

The remainder of the chapter is organized as follows: in section 2 we present the learning of
image structure at a local scale. Random walks and particle filters are presented in section 3. The
section 4 is devoted to the application of the particle filtering to image denoising for the case of
additive Gaussian noise. In section 5, we present experimental results and comparisons with other
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Fig. 4.1: Overview of ”Random Walks” based image enhancement.

filtering methods.

4.2 Statistical Description of Image Structure

A constant effort was devoted to provide an efficient tool towards characterization of natural images
content. In the context of computer vision and in particular image reconstruction, the performance
of the designed solutions is highly dependent on the accuracy of such models. Image models
can be either global or local. Global models focus on the statistics over the entire domain, while
local ones aim to capture the local co-dependencies within the observed image structure. The most
popular work in this field refers to the generalized Laplacian distribution of the wavelet coefficients
distribution [102] as well as the joint statistics of pairs or triplets of pixels in the wavelet domain
[91, 126, 68]. These statistical models are generic for all natural images but they are global and
they do not give specific information on how the information is spatially distributed in the image.
The Gray Level Co-occurrence Matrix (GLCM) [65] is a similar tool for statistical description and
characterization of texture. It is defined for a displacement vector d = (dx,dy) by the G × G

matrix Md (where G is the number of gray levels in the image). The coefficient Md(I1, I2) is the
number of occurrence of the pair of gray level I1 and I2 after a displacement d. In other words,
it is proportional to the joint probability of the intensity of two pixels that are separated by the
displacement vector d

Md(I1, I2) = |{x ∈ Ω such that I(x) = I1, I(x + d) = I2}| (4.1)

I is the observed image, Ω the spatial domain and |.| refers to the number of elements in a set.
This matrix is of significant importance since implicitly it provides information on the geometric
structure of the image.
As far as our denoising algorithm is concerned, we aim to find a description of the spatial rela-
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tionship between similar pixels belonging to the same structure in the image. Incorporating such
information will help the algorithm to cope with different image components leading to an adapted
filtering window. More explicitly, given the position of an observation, our objective is to know
what is the most likely pixel position in the vicinity of the observation with similar image content.
This could help to define the transitions on the image lattice toward finding similar pixels within a
window of a fixed radius s. Such a move is by definition anisotropic and is deduced from the ob-
servations. For this purpose, we introduce a probability function with respect to the displacement
vector d ∈ R2. For a given intensity I0 it is defined as

pI0(d) ∝ |{x ∈ Ω such that, I(x) = I(x + d) = I0}| (4.2)

which corresponds to the probability of observing the intensity I0 at the position (x + d) knowing
that I(x) = I0. Such co-occurrences will likely be sensitive to noise and therefore, the constraint
of exact matching could be relaxed, leading to:

pI0(d) ∝ |{x ∈ Ω such that, I(x) = I0 and |I(x)− I (x + d)| < ε}| (4.3)

with ε a constant determined according to the observed noise level.
With this formulation, and for each gray level in the image we associate to each spatial transition
d the probability of leading to the similar pixels. It is important to note that this probability
measure relies only on gray level similarity which is not sufficient to characterize image structure
especially in the presence of noise. Based on this, we will rather consider the local mean instead
of the intensity at a pixel level. Furthermore, we can find in an image different structures with
the same gray level. Therefore, we need an additional constraint such as the local variance which
is a simple primitive capable to describe texture at local scale. Considering both local mean µ

and local variance σ, would result in a more specific pdf describing spatial relation only between
patches having close mean intensity and variance. The probability measure that describes the
spatial relationship between similar patches knowing their local mean and variance is then

pµ,σ(d) ∝ |{x ∈ Ω such that m(x) = µ |m(x)−m (x + d)| < ε1 (4.4)

and std(x) = σ |std(x)− std(x + d)| < ε2}|

where m(.) (resp std(.)) corresponds to the function that computes the local mean (resp local
standard deviation) in a given position. ε1, ε2 are constants to be fixed according to the noise level.
We must point out that we compute the probabilities of displacement values included in a window
of radius s which corresponds to the local scale. The selection of such a parameter is important
and must be adapted to the image content. Choosing a high value for s increases computation
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Fig. 4.2: Two pdf distributions pµ,σ(d) for different values of µ and σ (top (µ = 39, σ = 11.67), bottom
(µ = 96, σ = 3.55), and sample generation according to these pdf (red pixel) for two different
positions

complexity while a small value for the scale parameter would result in a less accurate description
of the structure.
The outcome of this process consists in a probability density function pµ,σ(d) that aims to find
a spatial representation of different structures through the computation of the relative position of
similar patches. It is obvious that such a density is far from being parametric due to the randomness
of the observed image geometry. In practice the estimation of the pdf is based on a non-parametric
kernel density approximation [142] like Parzen windows.
Let Ωµσ = {x ∈ Ω,m(x) = µ, σ(x) = σ} and V(x) = [m(x), std(x)]. Then, the probability
density function estimator is given by the following expression

p̂µ,σ(d) =
1

|Ωµσ|
∑

x∈Ωµσ

KH (V(x)−V(x + d)) (4.5)

with H being a symmetric definite positive kernel. Gaussian kernels are the most common se-
lection of such an approach and they were considered in our case to approximate pµ,σ(d). The
bandwidth H is a diagonal matrix with coefficients equal to ε1 = 3 and ε2 = 1.5. In terms of the
mean and variance quantization values, we considered a quantification step q = 2. Examples of
these densities are shown in [Fig. (4.2)]
Once the structural model has been constructed from the image, we are able starting from a given
image position x characterized by the couple (µ,σ) to sample using the learned density a number
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of displacement vectors towards the pixels that belong to the same structure as x. This property is
illustrated in [Fig.(4.2)] where several positions (in green) similar to the origin (in red) are drawn
without scanning its entire neighborhood. The displacements with important probability are those
that guarantee local statistics preservation in terms of appearance. We recall that the learning of
the probability density function that describes the spatial interactions between similar pixels was
restricted to a local neighborhood of size s. The generalization to larger scale will be done in a
sequential fashion and this will be explained in the following section.
In the context of denoising with explicit geometric modeling of the spatial relationships between
observations, our aim is to determine the most appropriate set of neighbors to estimate the noise-
free intensity of a given pixel without an exhaustive scan of a large image domain. To this end, one
needs to define a strategy to generate neighborhood candidate windows that takes into account the
image content. In the present work, this is done through particle filters technique and this will be
the focus of the following section.

4.3 Overview of Particle Filtering Technique

As stated before, our purpose is to determine the most appropriate window or neighborhood shape
and size to estimate the image intensity in a given position. One attempt to do that was presented in
[128] where the authors perform filtering by selecting the neighboring pixels in a random fashion
but without taking image structure into account. The image lattice is represented using a graph
where the weights of vertices encode the gray level difference between pixels. The transition of
a walker to another is based only on these weights without considering the previous positions or
local image statistics. In our algorithm, we explore the image domain using a sequential procedure
taking into account the image structure as well as the previous observation and positions. To this
end, we will consider the trajectory of a particle that starts from the pixel that we want to recover
and moves to other neighboring ones. Each trajectory corresponds to a statistical hypothesis and
will result in a reconstructed value. One should address two aspects in such a context: (i) the
trajectories themselves or transitions between stages, and (ii) the ”appropriateness” of each trajec-
tory given the origin and the associated observations. Such appropriateness should depend on the
consistency of the observations, the ability to encode local image structure and the relationship
between the origin value and the contributing pixels. Toward optimizing this motion, we have to
estimate the probability density function of visiting a position x at time t knowing all the past ob-
servations that refer to the intensities relative to the previously visited positions. This pdf is noted
p(xt|z1:t).
In order to estimate such a pdf, we use particle filtering techniques that are an efficient sequential
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Monte-Carlo methods introduced in [64]. We will give a brief overview of the use of particle fil-
tering as a way of sequential estimation of posterior pdf and focus on the Sequential Importance
Resampling technique. For an extended review the reader can refer to [6, 47, 46].

4.3.1 Preliminaries

Let us introduce first the problem of Bayesian filtering where one has to estimate the evolution
of a hidden state of a system given a set of observations. Such a system involves a function that
relates states with observations and a function that relates the present state with the past ones. To
introduce this notion, let us note (x1:k) the state sequence and (z1:k) the sequence of measurements
that verify

xk = fk(xk−1,mk−1)

zk = hk(xk, nk)

where fk : Rnx ×Rnv → Rnx is the transition function, hk : Rnx ×Rnn → Rnz is the observation
function while (m1:k) and (n1:k) are independent and identically distributed noise sequences.
Filtering is then equivalent to determine an estimation of the state vector xk knowing the set of
all available observations (z1:k). In the Bayesian framework, one has to compute the posterior pdf
p(xk|z1:k) which can be obtained recursively in two stages: prediction and update. The main idea
is to suppose that the pdf p(xk−1|z1:k−1) is available and calculate p(xk|z1:k) via the Bayes rule
(4.6)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4.6)

where the prior pdf is computed via the Chapman-Kolmogorov equation

p(xk|z1:k−1) =

∫
p(xk|x1:k−1)p(xk−1|z1:k−1)dxk−1 (4.7)

where p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk , p(zk|xk) is defined by the observation model
and p(xk|xk−1) by the transition model. One has then to evaluate the expression (4.7) in order to
determine the probability of having the state xk given the observations (z1:k). The recursive com-
putation of the prior and the posterior pdf leads to the exact computation of the posterior density.
Nevertheless, in practice, it is impossible to compute explicitly the posterior pdf p(xk|z1:k), and
therefore an approximation method needs to be introduced.
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4.3.2 Sampling Importance Resampling Filter (SIR)

The key idea is to approximate the posterior pdf by Np random state samples {xm
k ,m = 1..Np}

with Np associated weights {wm
k ,m = 1..Np} that reflect the importance of the associated sample

in the pdf. Thus the posterior pdf can be approximated by a discrete weighted sum:

p(xk|z1:k) ≈
Np∑

m=1

wm
k δ(xk − xm

k ) and
Np∑

m=1

wm
k = 1

where δ is the Kronecker Delta function defined as δ(x) = 1 if x = 0 and δ(x) = 0 if x 6= 0.
The generation of the samples is done through the principle of Importance Sampling [20, 46]. This
concept relies on the use of another density function (q) called the proposal and from which it’s
easier to draw samples than the posterior p. In this case and if we assume that the samples xm

0:k are
generated from the Importance density q, we have:

wm
k =

p(xm
0:k)

q(xm
0:k)

(4.8)

Returning to the posterior pdf and using the Bayes rule for each particle one can obtain

p(xm
0:k|zm

1:k) =
p(zm

k |xm
k )p(xm

k |xm
k−1)

p(zm
k |zm

1:k−1)
p(xm

0:k−1|zm
0:k−1) (4.9)

By substituting (4.8) in (4.9) and in case of choosing a proposal that can be factorized as

q(xm
0:k|zm

1:k) = q(xm
k |xm

0:k−1, z
m
1:k)q(x

m
0:k−1|zm

1:k)

the weight update equation is

wm
k ∝ p(zm

k |xm
k )p(xm

k |xm
k−1)p(xm

0:k−1|zm
0:k−1)

q(xm
k |xm

0:k−1, z
m
1:k)q(x

m
0:k−1|zm

1:k)
(4.10)

= wm
k−1

p(zm
k |xm

k )p(xm
k |xm

k−1)

q(xm
k |xm

0:k−1, z
m
1:k)

(4.11)

Now if we consider a proposal that depends only on xm
k−1 and zm

k such that

q(xm
k |xm

0:k−1, z
m
1:k) = q(xm

k |xm
k−1, z

m
1:k)
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the modified weight for the particle generated from the proposal q is then equal to

wm
k = wm

k−1

p(zm
k |xm

k )p(xm
k |xm

k−1)

q(xm
k |xm

k−1, z
m
1:k)

(4.12)

This equation shows that particle weights are updated using two main information: the observation
pdf which reflects the likelihood of having an observation zk knowing the state xk and the transition
model which controls the evolution of a particle state.
The choice of the proposal is important for the efficiency of the algorithm and we can find in the
literature various Importance Sampling functions. A simple and efficient choice is proposed in the
Sampling Importance Resampling (SIR) algorithm where the proposal q(xk|xm

1:k, zk) is equal to
the prior density p(xk|xk−1). In this case, equation (4.12) becomes simply

wm
k ∝ wm

k−1p(zk|xm
k ), (4.13)

To summarize, the concept of particle filtering consists of three main steps:

• hypothesis generation according to the transition law p(xm
k |xm

k−1)

• computation of the likelihood of observations generated by this hypothesis p(zm
k |xm

k )

• weight updating according to wm
k ∝ wm

k−1p(zk|xm
k )

A common problem in this estimation strategy is the samples degeneration, where many particles
carry on less information and the variance in the weight increases. In such a situation, many par-
ticles have their weight close to zero and do not contribute to the approximation of p(xk|z1:k).
To overcome this problem, a resampling step is necessary. The basic idea is to eliminate the
particles that have limited capacity to approximate the density and focus on the ones which sub-
stantially contribute to the reconstruction of the density (important weights). The resampling
refers to the generation of a new set of samples

{
yj

k

}
that approximates the pdf p(xk|z1:k) so

that P (yj
k = xi

k) = wi
k which means that the resulting samples are identically distributed and so

the weights are reset to wj
k = 1

Np
. Many algorithms were proposed to perform particle selection.

In the present work, we considered the systematic resampling scheme [84] which consists in elim-
inating particle with small weight and making several copies of the other particles according to
their weight. In figure [Fig.(4.3)], an illustration of the idea of resampling as well as a detailed
description of this process are presented.
Now towards the application of such an algorithm in the context of image denoising we have to

define the following elements
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Fig. 4.3: Illustration of systematic resampling scheme

• A state vector xk at a given time k that refers to the state of the reconstruction process. It
corresponds to the position of the new pixel added to the filtering window, as well as the
currently reconstructed value.

• An observation which corresponds to local image statistics (patch, local mean, local standard
deviation) relative to a new candidate pixel to the current state vector.

• A measure that evaluates the contribution of each new candidate pixel to the estimation
process.

• A systematic way of generating new samples given the existing ones able to account for the
expected image geometry.

4.4 Application to image restoration

Thus, given an origin pixel (x0) the process aims to recover a number of ”random” positions
W (x0) = (x0,x1, ...,xT ) with similar properties to x0 to reconstruct the corrupted origin value
I(x0). To this end we have to estimate in a sequential fashion the posterior p(xk|z1:k−1) using the
previously described algorithm. One can imagine multiple particles that are moving randomly on
the image domain. The path (or random walk) of a particle corresponds to a candidate filtering
window. The weighted mean of the intensities along a given particle trajectory is used to restore
the intensity of x0. As far as observations are concerned, they correspond to the local patch around
the pixel x0 and around the candidate xk. To perform filtering, our approach requires the definition
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of a perturbation model as well as a likelihood measure that reflects the contribution of a trajectory
to the denoising process.

4.4.1 Transition Model

An important issue for the proposed algorithm consists in defining an appropriate strategy for
samples perturbation. An intuitive solution is to perform Gaussian perturbations. Such a choice,
suggests an isotropic way for particle transitions which can be justified in the case of homogeneous
regions but not in the presence of some texture or edges.
An efficient manner to adapt the particle transition to the image content is to rely on the statistical
model for image structure introduced in the section (4.2). The distribution pµ,σ determines the
transition model between particle at position xk and xk+1. We recall that pµ,σ(d) is a probability
density function that indicates for a pixel xk(whose local mean and variance are equal to µ and
σ) the probability that the destination position xk+1 according to the transition vector d has close
local statistics to xk. This pdf is computed in the beginning of the process for each couple (mean,
variance). We recall here its definition when considering local statistics of xk. Using Ωµσ =

{x ∈ Ω,m(x) = m(xk) = µ, σ(x) = σ(xk) = σ} and V(x) = [m(x), std(x)], transition model
is

p̂µ,σ(d) =
1

|Ωµσ|
∑

x∈Ωµσ

KH (V(x)−V(x + d)) (4.14)

Thus making transitions according to this pdf guarantees that a maximum number of particles
will explore sites that are similar to the origin pixel x0. Such a strategy makes possible the use
of a reduced number of particles and could also prevent their degeneration. The essence of the
proposed algorithm is to explore the image domain in a random fashion and to find the maximum
number of similar sites to the origin one. A way to do that is to use an important number of
particles which is equivalent to examine all the pixels situated on a circle around xk, nevertheless
it is computationally expensive. With a reduced number of particles we have to explore the image
domain with a smart fashion such that particles trajectories follow image structure without an
exhaustive scan of the pixel neighborhood. In this context, the statistical structural description of
the image geometry is a convenient transition model. Once such transitions have been identified,
the next step consists of defining a likelihood measure for each particle based on its trajectory and
the intensity observation relative to the particle position.
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4.4.2 Likelihood Measure

Within the proposed approach, the random walk that is the set of the image sites contributing to
the reconstruction of a given pixel is determined using a sequential approach. To evaluate the
relevance of a new particle state, a likelihood measure must be introduced. This measure evaluates
the added value of a new position. The first criterion that is considered is the similarity between the
image content observed in the origin pixel x0 and the current path position xk. We adopt the image
patches comparison, motivated by the fact that measuring similarities between image patches is
an efficient and popular metric used in many computer vision tasks such as texture synthesis,
restoration etc [51, 26]. In such a context we define the observation model as

• The L2 distance between the local patch around the origin pixel x0 and the one corresponding
to a current particle position xk. Thus if we call Dsk this similarity measure, we have

Dsk =

∑
v∈[−W,W ]2 |I(x0 + v)− I(xk + v)|2

(2W + 1)2
(4.15)

where W is the bandwidth which must be carefully selected to get a reliable measure of
similarity while being computationally efficient.

• Another alternative to the L2 distance is the Sobolev distance between patches defined as:

Dsk =

∑
v∈[−W,W ]2 |I(x0 + v)− I(xk + v)|2

(2W + 1)2
(4.16)

+

∑
v∈[−W,W ]2 ‖∇I(x0 + v)−∇I(xk + v)‖2

(2W + 1)2

Such a distance accounts also for the image gradient which is an important information on
image structures and their orientation. Thus similar patch have to be similar both in sense of
their intensity and their gradient.

In addition to the measure of the quality of a new position in the particle walk, we consider a
measure of its consistency within the whole trajectory. This measure is the intra-variability of
intensities in the different positions visited by the particle during its walk. This constraint gives
more importance in the filtering process to the pixel set composed of element having homogeneous
properties. This is mainly interesting in the case of edges or other linear structures in the image,
where walks that follow exactly the structures would be favored compared to other trajectories
that fail to take into consideration this structure during their evolution. This feature can enhance
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in an efficient manner image structures. Hence, in order to account for the intra-variability of the
trajectories, we consider as an observation the walk variance, with respect to the origin value.

Dvk =
1

k

k∑
p=0

(I(xp)− I(x0))
2 (4.17)

Note that such an observation provides a measure of the ”uniformity” of the trajectory and could
also be determined within a larger neighborhood (not at the pixel level).
Finally, the importance of a new sample given the prior state of the walk and the observation that
is the patch around x0 is then defined as an exponential function of the two metrics.

wk = e
−(

Dsk
2σ2

g
+

Dvk
2σ2

v
)

(4.18)

where σg and σv are constants that determine the bandwidth of the weight computation function.
The choice of these values depends on the noise level of the image. High values of σg and σv would
relax the constraints on trajectories evolution and would therefore result in a loss of image details.

4.4.3 Intensity Reconstruction

After having defined the transition model as well as the observation model, we focus on the inten-
sity reconstruction process. To this end, for each pixel x0 of the image, we generate Np particles by
applying Np perturbations starting from the initial position x0 and according to the transition law
pµ,σ [µ = m(x0) , σ = std(x0)]. Iterating the transition process k time for each particle m yields
a walk that is the set of successive positions of the particle

{
xm

0 ,xm
1 . . .xm

k−1

}
. We define then the

walk value Îm
k (x) as the average weighted value along the walk. It corresponds to the value used

to reconstruct the original pixel according to the walk of the particle m :

Ûm
k (x) =

1

k

k∑
p=0

I(xm
p ) (4.19)

As we discussed above the pertinence of a walk as well as the associated reconstructed value is
computed using the likelihood measure wm

k defined in expression (4.18). Once the weights of
all the particles are determined, we normalize them so that their sum is equal to one. Next, we
perform resampling in order to discard the particles with insignificant weights. These particles are
not consistent with the reference pixel x0 and using them will introduce a bias in the reconstruction
process. Finally, the reconstructed value is a weighted average of the mean intensity of each walk
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Fig. 4.4: Example of three particles walks (red pixel) starting from the same origin position (green pixel),
the walks follow image structure.

for a pixel x0

compute local mean µ and local standard deviation σ
determine structural model pµ,σ(d)
for m = 1 : Np set xm

0 = x0

for k = 0 : T − 1
generate Np transition samples dm

k from the pdf pµ,σ(d)
set xm

k+1 = xm
k + dm

k

compute an intensity for each walk according to equation(4.19)
compute the weight of each particle according to equation (4.18)
normalize the weight of the particle by setting wm

k =
wm

kPNp
m=1 wm

k

compute the estimated intensity Îk(x) using expression (4.20)
perform resampling according to the algorithm described in [Fig.(4.4)]{
xm

k+1

}
1≤m≤Np

= Resampling
({

xm
k+1

}
1≤m≤Np

,
{
wm

k+1

}
1≤m≤Np

)

end for
The final pixel intensity is defined as ÎT−1(x)(4.20)

end for

Tab. 4.1: Description of the proposed denoising algorithm

and defined as

Ûk(x) =

Np∑
m=0

wm
k Ûm

k (x) (4.20)

The whole process (transition, weight computation, and resampling) is repeated (T) times. An
example of particle walks is shown in [Fig. (4.4)], where the pixel in green refers to the origin
pixel we want to denoise and each trajectory is a candidate filtering window. In practice we use
(Np=60) particles, with (T=6) pixels contributing to each walk. To illustrate the random walks
filtering an overview of the whole process is presented in [Fig.(4.1)] and the denoising algorithm
is given in table (Tab.4.1).

The model described above and mainly the likelihood measure assumes an additive zero mean
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noise model, but this framework can be used with different noise models. The extension of the
method to cope with different noise models should involve both the statistical modeling of co-
dependencies between pixels as well as the likelihood used to determine the importance of a new
sample. In order to show how such an approach can be generalized, we will consider the case of
multiplicative white noise.

4.4.4 Extension to Multiplicative Noise Model

In the computer vision field many images are rather corrupted by multiplicative noise called
speckle. This is the case of ultrasound images or Synthetic Aperture Radar(SAR) ones. The in-
terpretation and exploitation of such images require a pre-processing step that consists in speckle
removal. In the literature we can find various types of speckle models and we will focus in this
section on the case of SAR images. The classical modeling in this case is I = U × n. The speckle
n has a mean equal to one and follows a Gamma distribution defined as [138]

GL(n(x)) =
LL

Γ(L)
n(x)L−1e−Ln(x)

Based on this noise model we have to determine the appropriate transition function as well as the
likelihood definition in case of multiplicative noise.

• The transition model is based on the structural model presented in the first section. This
model can also be retained in case of multiplicative noise. If we consider two similar
patches in the original image with the same mean and variance their local statistics (mean
and variance) remain close to each other when corrupted by noise. To justify this choice,
we will call (µ,σ2) the mean and variance of two similar patches in the noise free image and
(µn = 1,σ2

n)are those relative to noise. The resulting noisy patch will have local mean and
local variance that can be approximated by µ and σ2σ2

n + µ2σ2
n + µ2

nσ2 respectively.

• As far as likelihood measure is concerned we cannot use the same similarity definition as the
additive one. The difference between pixels intensities ranges in an interval that is propor-
tional to the real intensity observation. That is not the case for the additive noise where the
difference is only dependent on the noise model. To prove our statement, let us consider the
L2 distance between two patches centered in x0 and xk in the noisy image I

d(x0,xk) =
∑

v∈[−W,W ]2

(I(x0 + v)− I(xk + v))2
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In case the observed patches are derived form the same patch in the noise free image noted
U , we can write:

d(x0,xk) =
∑

v∈[−W,W ]2

U2(x0 + v) [n(x0 + v)− n(xk + v)]2

This shows that the L2 distance is not relevant in the case of multiplicative noise because it is
not only dependent on the noise model but also on pixels intensities. Thus, a new expression
of distance between patches has to be introduced to deal with this issue:

d(x0,xk) =
∑

v∈[−W,W ]2

[I(x0 + v)− I(xk + v)]2

U(x0 + v)U(xk + v)

This similarity measure involves the noise free observations that can be approximated by a
local average of the noisy observations over a neighborhood of size (2W + 1)× (2W + 1).
Furthermore the distance has to be symmetric. In this context, we selected the following
distance definition between two image patches around x0 and xk

Dsk =

∑
v∈[−W,W ]2 |I(x0 + v)− I(xk + v)|2(∑

v∈[−W,W ]2 I(x0 + v)
)(∑

v∈[−W,W ]2 I(xk + v)
) . (4.21)

Following the same idea, the trajectory’s variability in this case is expressed as

Dvk =
1

k

k∑
p=0

[I(xp)− I(x0)]
2

I(x0)I(xp)
(4.22)

Finally we keep the same choice of weight particle computation as defined in equation (4.18).
Once the transition model and the likelihood measure are defined for the particular case of speckle
noise, we perform denoising as described in table (Tab.4.1).

4.5 Experimental Results

In order to evaluate the performance of the proposed framework, the cases of additive and mul-
tiplicative noise were considered and compared with some of the state of the art methods with
assumptions/aims similar to the ones of our approach.
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4.5.1 Additive Noise

In order to evaluate the performance of the proposed algorithm, we consider the same validation
procedure used in the previous chapter. This evaluation will be based on a quantitative criterion (the
PSNR defined in 3.37) and a qualitative one (visual assessment). The latter quantifies the ability of
the algorithm to suppress noise while preserving image details. In terms of competitive approaches
we have considered filters that encode implicitly the image structure through the definition of the
weights (bilateral [134] , NL-means [26]). Furthermore we have considered an approach that also
performs bandwidth selection [76]. Our simulation consists in adding a synthetic white Gaussian
noise of known standard deviation σn = 20 to the set of images frequently adopted by the image
restoration community for validation. Their parameters were tuned manually to achieve optimal
performance in terms of PSNR and visual quality. Regarding our approach, each walk consists of 6
steps and for each pixel we have considered 60 particles (T=6, Np = 60). Given this choice we are
able to explore 6× 60 positions in the image for each pixel. The radius of the explored region is of
the order T × s where s is the maximum distance that a particle can achieve in a transition (in our
case s = 8). The window size used for likelihood computation is 7 × 7 (W = 3) the parameters
of the Gaussian used for likelihood computation (4.18) are set to σg = σv = 15. The same set
of parameters was considered when the Sobolev distance between patches was used. We have to
precise that in this case, we estimated the image gradient on a smoothed version of the image by
a Gaussian kernel. For the bilateral filter, the parameters are σs = 3 and σph = 20. The NL-
means filter was used with σph = 15, the patch size used for comparison is 7× 7 and the weighted
average was computed over a local neighborhood of size 11 × 11. The processing time for these
experiments is around 2mn for 512 × 512 images using a C++ program and a Pentium IV-2GHz
machine. As far as the variable bandwidth method is concerned, the results were provided by the
authors and one can find more details in [76]. In table (Tab.4.2), we provided the PSNR values
relative to each method. From this table we can conclude that in general, computing similarity on
image patches is better than the pixel-wise comparison. The approach we presented and the NL-
mean algorithm have about the same performance, while the method presented in [76] outperforms
all the others which is natural since the underlying idea of this approach is to minimize a bound
of the quadratic error mean. Moreover, our algorithm selects the patches for comparison randomly
while being guided at the same time by the image structure. The number of pixels contributing to
the walks has a tremendous impact on the performance of the method. When only a few samples
have an important weight in the filtering process, it produces under smoothing in homogeneous
areas and fails to recover texture. These problems are not observed when considering the variable
bandwidth approach [76] since it involves all the pixels within a neighborhood in the filtering
process while we can miss some relevant ones. In terms of photometric distance comparison, one
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Bilateral NLmean R.Walks (L2) R.Walks (sob) KB06 [76]
Barbara 26.75 28.78 29.29 29.4 30.37
Boat 27.82 28.92 28.72 28.93 30.12
Fingerprint 24.12 26.45 26.4 26.96 28.16
House 29.18 30.86 31.28 31.53 32.90
Lena 29.28 31.18 30.7 31.07 32.64
Baboon 24.95 25.18 25.51 25.45 26.29

Tab. 4.2: PSNR values for the denoised images (The PSNR of the image corrupted by additive Gaussian
noise of std=20 is equal to 22.15)

can observe that the Sobolev norm has a slightly better performance than the L2 distance because
it involves other features than the image intensity. The qualitative results presented in figures
[Fig.(4.5),Fig.(4.6),Fig.(4.7)] show that the restoration quality of our algorithm when compared to
the one using an adaptive window size as well as the NL-means algorithm is quite satisfactory.
In figure [Fig.(4.8)], are presented restoration results emphasizing an area with a very fine texture
scale. This figure (as well as [Fig.(4.7)-c]) shows the presence of some artifacts in the denoised
image using [76] due to over smoothing. Such a result is due to the large window size selected
in this region that reduced excessively the variance of the estimator. This is not the case for our
algorithm, as it yields results with a more natural aspect even though the fine texture in the face
is not completely recovered. In terms of qualitative results, our approach does equally well if
compared to the NL-mean algorithm. Note that in case of important noise level the efficiency of
the learning step of the image structures is compromised. In such a situation the transition model is
not too robust with respect to noise. Considering such a model for sampling new particle positions
could result in small numbers of relevant pixels which may not be sufficient for the restoration of
some structures. The figure [Fig.4.9] shows another example where similar interpretation of the
results can be deduced.

4.5.2 Multiplicative Noise

In order to test performance with respect to multiplicative noise, the same examples were used
and we corrupted them by a synthetic speckle. The speckle signal has a Gamma distribution and
two variants have been considered. Both of them have a mean equal to 1, and different standard
deviation values: σn = 0.1 and σn = 0.25. We compared our approach to the one presented in [7]
where a new variational formulation adapted to multiplicative noise like speckle was introduced.
In this model the regularization term is inspired by the TV model [122] while the data term was
modified in order to cope with the nature of the corruption. Regarding the parameters of our
method, as in the case of additive noise, 60 particles per pixel were considered and their evolution
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(a) (b)

(c) (d)

Fig. 4.5: (a) Noise free image (b)Image corrupted with Gaussian noise σn = 20 (c) Bilateral filter restoration
(d) Residual of the bilateral filter.
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(a) (b)

(c) (d)

Fig. 4.6: (a) Restoration result obtained with NL-means algorithm (b) NL-mean residual (c) Restoration
result obtained with random walks algorithm (L2 distance) (d) Residual of the random walk based
approach



4. IMAGE RECONSTRUCTION USING PARTICLE FILTERS 101

(a) (b)

(c) (d)

Fig. 4.7: (a) Restoration result obtained with random walks algorithm (Sobolev distance) (b) Residual of
the random walk based approach (c) Restoration result obtained with KB06 [76] (d) KB06 [76]
residual
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Fig. 4.8: Zoom on the Baboon image (a) Original image (b) Noisy image (c) Bilateral filter restoration (d)
NL-Means restoration (e) Random walk restoration (f) Adaptive window size restoration.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.9: Zoom on the fingerprint image (a) Original image (b) Noisy image (c) Bilateral filter restoration
(d) NL-Means restoration (e)Adaptive window size restoration (f) Random walk restoration.
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Barbara Boat Fingerprint Baboon Lena
σn 0.1 0.25 0.1 0.25 0.1 0.25 0.1 0.25 0.1 0.25

Noisy 25.93 18.51 25.37 17.73 24.76 17.58 25.43 17.86 25.66 18.15
R. Walks 31.09 25.95 30.66 25.97 28.45 22.84 27.51 22.95 33.35 27.54
TV [7] 29.27 24.31 31.06 26.73 28.22 23.72 27.85 22.90 32.75 28.69

Tab. 4.3: PSNR values for the denoising of images corrupted by multiplicative noise

involves 6 steps (T = 6, Np = 60). The weight computation was done using the following
set of parameters: (σv = σg = 0.2) for the case of noise variance equal to σn = 0.25, while
(σv = σg = 0.1) for the noise variance equal to σn = 0.1 which are values of the same range as the
noise standard deviation. In table (Tab.4.3), we report comparative experimental results. Based on
these results, we can conclude that the proposed approach can handle efficiently images corrupted
by multiplicative noise regardless its model. If we consider comparison with the TV based model
in terms of PSNR we can say that globally they are equivalent. Nevertheless, restoration results
in [Fig.(6)] show that our method provides better image quality and is able to preserve texture
and fine details. The variational approach is based on the piecewise smooth image model for the
regularization term which is not very efficient in texture restoration and creates some artifacts like
the spurious edges.

4.6 Conclusion

In this chapter, we introduced a new denoising technique that explicitly accounts for geometric
relationships of image content towards anisotropic filtering domain. This was achieved using par-
ticle filters technique with the perturbation model being determined from the image. The structural
model of the image was learned in a first step in order to guide the particle evolution toward image
structure such as edges. Based on such a model, the approach acts like an isotropic filter when con-
sidering smooth areas, and anisotropic when dealing with edges. Besides, when we consider the
case of regular texture with a repetitive pattern, the presented technique is able to recover similar
patches in a large neighborhood using a small number of particles while visiting a limited number
of positions using a learning step at local scale (section 4.2). However, in the case of random
texture, generalizing at larger scale the spatial relationship between similar pixels learned at local
scale is not obvious. In such a case the evolution of particles is not optimal and a bigger number of
particles is needed. However, both the theoretical framework and the experimental validation sug-
gest that the use of the image structure to determine the perturbation model and the consideration
of multiple hypotheses testing can yield interesting results. We have also shown that our method
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(a) (b)

(c) (d)

Fig. 4.10: (a) Original Lena image (b) image corrupted by speckle noise with variance σn = 0.025 (c)
Random walk based restoration result (d) Total variation minimizing based restoration [7]
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Fig. 4.11: (a) Original Baboon image (b) image corrupted by speckle noise with variance σn = 0.025 (c)
Random walk based restoration result (d) Total variation minimizing based restoration [7]
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is flexible with respect to the choice of the similarity measure between image patches. Besides, it
can handle other types of noise models than the additive Gaussian one.

Improving the learning stage of the image structural model and guiding the particles to the
most appropriate directions could be a step toward increasing the efficiency of particle transitions.
On the other hand, an automatic technique to capture the scale of texture should be considered. It
enables to determine the patch size considered when computing the likelihood of a new particle
state on one hand and the size of the maximum radius of transitions on the other hand. The
likelihood measure could be also modified to be more specific to each noise distribution and more
robust.

The neighborhood size as well as the appropriate weight definition are issues that will be ad-
dressed in the next chapter





Chapter 5

TV Based Variable Bandwidth Image Denoising

Image denoising is often addressed through the optimization of specifically designed objective

functions. Such functions consists of two terms, a regularization and a data fidelity one. The reg-

ularization component corresponds to the image model that defines the interactions between the

image pixels through the selection of a bandwidth (spatial and photometric). In this chapter, in-

spired from the Total Variation approach we consider a regularization approach that can better

express image complexity. Furthermore, we investigate new means of defining appropriate photo-

metric distances that account to certain extent for the properties of the noise model. Last, but not

least we introduce the notion of automatic spatial bandwidth selection towards better capturing

the image structure. The outcome consists of a natural way of building image models based on the

noisy observation. Promising quantitative and qualitative results as well as comparisons with the

state of the art methods demonstrate the potentials of the proposed framework.

5.1 Introduction

Our contributions up to now consists of (i) a novel approach to determine the interaction between
pixels contributing to the reconstruction using non-parametric density models. The bandwidth of
these densities is defined using a soft-classification between texture and non-texture with aim to be
very selective when referring to texture. The second contribution (ii) refers to a novel approach of
explicit modeling for the geometric dependencies between image content towards more selective
contribution of observations in the reconstruction process. It is natural to consider that an inte-
grated approach that addresses both tasks at the same time could have extreme potentials. In other
words, one should (i) be able to model either explicitly or implicitly the geometric dependencies
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between observations through the definition of the most appropriate distance between observations,
while (ii) having a mean of automatic selection for the filter bandwidth according to the observed
image content. To this end, we have to design an appropriate cost function where a global im-
age model that reflects the structure of the observed image is used. Such an idea can be found in
the total variation minimization based approaches which are a dominant formulation in the field
[122, 121]. The underlying assumption of such modals is that the image is piece-wise constant, a
condition that cannot be satisfied in the context of texture images. Therefore, one has to consider
an appropriate regularization functional that is more realistic in this context when compared with
the piecewise smoothness assumption used in total variational approaches. The underlying image
model assumes linear relations between pixels with interactions that are governed by weights re-
flecting photometric similarities and geometric distances. The proper definition of these weights
allows the implicit modeling of geometry subject to the constraint that insignificant weights are
assigned to pixels with irrelevant content. For photometric similarity, the classical L2 distance
between patches is a very popular measure, Nevertheless it is computed on the noisy image and
did not take into account the actual statistical distribution of the L2 distance. As an alternative,
we will present two methods for similarity computation between patches. The first one relies on
a projection of the observations into a dictionary/subspace (principal component analysis). The
second is based on the statistical distribution of the L2 distance between patches. Regarding the
spatial interactions between pixels, we considered for the weight definition a variable spatial ker-
nel bandwidth. Such a choice is motivated by the works that demonstrate the necessity of varying
the neighborhood size in the filtering process. In other words, the filter domain depends on the
pixel location and is also a variable of the objective function to be minimized. In this context, we
propose an automatic technique to select the level of direct interaction (bandwidth) between pixels.
Such bandwidth definition aims to optimally encode local relations of the image content while at
the same it is constrained to be spatially smooth.

The present chapter will be organized as follows: in the second section we will briefly review
some recent denoising approaches based on total variational minimization. The variable bandwidth
denoising approach will be the topic of the third section. Next, we will present the new similarity
measure definition. The last section will be devoted to the experimental results.

5.2 Related Work - Extensions of the TV Model

As we stated before, total variation minimization based approaches provided elegant mathematical
tool toward image restoration. However, these methods have serious limitation to deal with tex-
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tured images. For this reason, many variants were proposed in order to overcome the limitations of
this model. Spatially varying constraints were proposed in [62] to better preserve texture. The data
fidelity and its impact on better texture model were the focus of many researchers [140, 9]. Non
local regularization functional were also considered as an alternative to the classical L1 gradient
norm [60, 61, 59].

5.2.1 Texture Preserving Denoising Using Spatially Varying Constraints

The idea of imposing local constraints was introduced in [121]. In this section we will present
a recent approach to texture preservation that is based on spatially varying denoising parameters
[62]. The basis idea of this technique is imposing local constraints to the difference between the
observed image and the restored one instead of the global one (eq 2.19). The drawback of a global
constraint is the difficulty to reach a compromise between textured image part and cartoon image
part in terms of denoising quality. The denoising problem is formulated in the following manner:

Uopt = Argmin
(∫

Ω

Φ(|∇U |)dx
)

Subject to PR(x) = S(x) (5.1)

Φ is an increasing function defined on R. PR(x) is a local measure of power (energy) of the
residual image IR = I − U and defined as follows

PR(x) =
1

‖Ω‖
∫

Ω

[IR(x1)− µ(IR)]2 wx(x1)dx1 (5.2)

where wx(x1) = w (‖x1 − x‖) is a normalized radial smoothing kernel. µ(IR) is the expected
value. S(x) is a positive function that depends on the prior and have an influence on the degree of
smoothness of the final image.
The problem (5.1) is solved using Lagrange multipliers leading to the following energy to be
minimized

E =

∫

Ω

Φ(|∇U |) + λ(x)PR(x)dx (5.3)

The derivative of E with respect to U is

λ̄(x)(U − I)− div
(

Φ′ ∇U

|∇U |
)

= 0 with λ̄(x) =

∫

Ω

λ(x1)wx(x1)dx1 (5.4)

The equation is solved in an alternative manner: using a gradient descent algorithm to compute
U , then the λ function is updated using the new value of U . After multiplying equation (5.4) by
(U − I) and taking into account the constraint of the problem, the following relations of λ(x) can
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be obtained
∫

Ω

[λ(x)S(x)−Q(x)] dx = 0 Q(x) = (U − I)div
(

Φ′ ∇I

|∇U |
)

(5.5)

A sufficient condition for λ(x) to satisfy (5.5) is λ(x) = Q(x)
S(x)

. Given that textured images will be
degraded with high denoising level ( small λ(x) values), the variance or power of the residual in
textured regions will be important. An appropriate choice of the prior function should take into
account this observation and assign high values of S(x) if x is a pixel that belongs to the cartoon
part (homogeneous regions) of the image and low S(x) values for pixels belonging to the non
cartoon part (refers to texture and details). To capture a measure about the textureness of a pixel,
the authors considered a residual image IR0 that is the difference between the observed image
and the reconstructed one using fixed and small λ value so that enough information on the image
content can be found on IR0 . Given the residual image IR0 , the author proposed as prior function
S(x) = σ4

n

PR0
(x)

. With such a choice of the prior, the parameter λ(x) is proportional to PR0(x)

leading to more or less smoothing according to the image content. Thus for two pixels x in the
cartoon part of the image and y in a textured region they satisfy S(x) > S(y) which is equivalent
to less smoothing of the texture.
This algorithm, while being able to outperform the ROF model, presents a major limitation. Con-
sidering the piecewise smooth image model as a prior could result in a loss of texture even though
local constraints are applied. The considered criterion for texture and cartoon part detection that
is local variance is not a robust one when handling fine structure that cannot be detected in the
residual image.
A more elegant approach to image restoration based on total variation minimizing consists of sep-
arating the image into three components: cartoon part (piecewise constant), the texture and the
noise. The theoretical framework will be briefly described in the following section.

5.2.2 Image Decomposition Models

Texture modeling and image decomposition into cartoon and oscillatory part gained lot of attention
during the last years. The first work in this direction was introduced in [107] where a new space
was proposed to model oscillating patterns toward decomposing an image into smooth regions and
oscillatory component that correspond to texture (or noise). This space is noted G and is the dual
space of the bounded variation functions space. The formal definition of the G space is

G =
{
V such that ∃ g1, g2 ∈ L∞(R2) | V = ∂xg1 + ∂yg2

}
(5.6)
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The norm associated to the space G is noted ‖.‖∗ and is defined as

‖V ‖∗ = infg=(g1,g2)

{∥∥∥∥
√

g2
1 + g2

2

∥∥∥∥
L∞

| V = ∂xg1 + ∂yg2

}
(5.7)

It has been shown that oscillatory patterns have smaller ‖.‖∗ then the classical L2 used to measure
the variations of the oscillatory signal in the classical ROF model [107, 9]. Hence using such
a norm in a minimization functional process would help to capture the textured content of an
image. The first contributions using the introduced norm [140] focused mainly on separating
the oscillatory component from the piecewise constant one. These models are not efficient when
used for denoising because the noise and the texture will belong to the same component. Such
a limitation is addressed in [9] where the authors propose to decompose the image into three
components I = U + V + W that correspond to: the cartoon component, the texture and the noise
ones. To this end three spaces were considered the Bounded Variation space for image structure
, the G space for texture and a dual space to the Besov one which is more adapted to noise. The
model formulation is stated as following

inf(U,V,W )E =

∫

Ω

|∇U |+ J∗(
V

µ
) + B∗(

W

δ
) +

1

2λ
‖I − U − V −W‖2 (5.8)

where B∗(W
δ

) = χ {‖W‖E ≤ δ} and J∗(V
µ
) = χ {‖V ‖∗ ≤ µ}. χ being the indicator function

(0 if the condition is satisfied ∞ if not). The parameters µ and δ correspond to the maximum
value of the norms of the extracted components. The norm ‖.‖E is the norm associated to the
dual space of Besov. The objective function consists of four terms (i) a regularization term on
the cartoon component, (ii) a term that restrains the norm ‖‖∗ of the texture component to be
smaller then a given threshold (iii) a constraint on the norm associated to the noise component (iv)
a fidelity term that aims to minimize the distance between the observation and the decomposition
(cartoon+texture+noise). The minimization problem can be solved by an alternate minimization
with respect to each variable

• with V and W fixed U = ArgminU∈L1(Ω)

(
J(u) + 1

2λ
‖I − U − V −W‖2)

• with U and W fixed V = ArgminV ∈µBG
‖I − U − V −W‖2 where µBG = {‖V ‖∗ ≤ µ}

• with U and V fixed W = ArgminV ∈δBE
‖I − U − V −W‖2 where δBE = {‖W‖E ≤ δ}

In the absence of an explicit expression for the E norm as well as the norm *, the author proved that
this problem can be solved using orthogonal projection technique. For all implementation details
and proofs the reader can refer to [9, 8]. For denoising application, the extraction of the component
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W is of particular interest. The main idea behind the process is that the noise component is obtained
by a soft thresholding of the wavelet coefficients of the residual image I − U − V that contains a
mixture of noise and details. The efficiency of the technique is then highly dependent on wavelet
basis and the threshold choice. Many experimental results show the potential of this decomposition
method, nevertheless its performance in terms of texture and noise separation depends on the noise
model and the texture nature.

5.2.3 Non Local Functional Based Regularization

In the context of image restoration the regularization term plays a key role since it corresponds to
the image model. Non local extensions of the classical TV formulation gained a lot of interest and
were introduced few years ago in [83, 59, 61]. The most recent work in this direction is [59, 61]
where a convex functional was studied. The corresponding regularization function is a weighted
sum of the difference between pixels.

Ereg(U) =

∫

Ω×Ω

Φ [|U(x)− U(y)|] wxydxdy (5.9)

Where Φ is a convex positive function defined on R that verifies Φ(0) = 0. wxy are positives and
symmetric weights wxy = wyx depending on the image features and corresponding to similarity
between pixels x and y. The weights definition is based on an L2 distance between features (but
various definitions of features can be considered and some examples were provided in [60]).
In the context of denoising application, one have to add the constraint ‖U − I‖2 = |Ω|σ2

n, so that
the equivalent unconstrained problem is

E(U) =

∫

Ω×Ω

Φ [|U(x)− U(y)|] wxydxdy + λ ‖U − I‖2 (5.10)

The corresponding Euler Lagrange descent flow and using an artificial time variable is

∂U

∂t
=

∫

Ω

Φ′ [|U(x)− U(y)|] U(x)− U(y)

|U(x)− U(y)|dy − λ(U − I) (5.11)

like the basic TV formulation the parameter λ can be viewed as fixed parameter and thus the
optimal solution does not obey necessarily the constraint. It can be viewed as the Lagrangian
multiplier in this case the optimal λ have to be estimated as in [122, 74, 59].
We will give in this section an overview of the particular case where Φ is a quadratic function
(Φ(s) = s2) studied in [60]. For this model, the regularization flow amounts to applying a linear



5. TV BASED VARIABLE BANDWIDTH IMAGE DENOISING 115

operator LU defined as

LU =
∂U

∂t
=

∫

Ω

[U(x)− U(y)] wxydy (5.12)

This equation can be seen as a diffusion equation on weighted graph, where the nodes are the
image pixel and the vertices are weighted by wxy [60, 132]. The operator LU satisfies also basic
properties that show its effectiveness toward noise suppression. If we note U t the image obtained
at time t starting from the observed image I = U0, the following properties hold

• mean preserving
∫

Ω
U t(x)dx =

∫
Ω

I(x)dx

• the extremum principle holds minx(I(x)) ≤ U t(x) ≤ maxx(I(x)) ∀x ∈ Ω ∀t ≥ 0

• Under the constraint that zero is an eigenvalue of multiplicity one of the linear operator LU ,
U(x, t →∞) = const =

∫
Ω

I(x)dx

• The L2 norm of U t(x) is decreasing with time.

Numerical scheme and experimental results was provided in [60] using the same weights defin-
ition as the NL-means algorithm. The authors show that their quadratic non local regularization
functional is an efficient tool for image restoration when compared to the ROF model and the
NL-means algorithm. This is not surprising because the TV based flow is local and relies on the
assumption of spatial piecewise smoothness which is not necessarily verified for textured image.
In the following we will focus on the analysis of another quadratic functional toward regularization
that relies on a different assumption about the image.

5.3 Variable Bandwidth Denoising Using Semi Local Quadratic Functional

5.3.1 Analysis of the Denoising Model

The previously presented methods consider the same image prior which is piecewise smoothness.
The classical TV formulation prior suggests that the image is piecewise constant at local scale.
Opposite to that, the non local models tend to minimize the intensity difference between similar
pixels which assumes certain constancy for similar pixels regardless their position. In the presented
approach we will consider a different prior that suggests that the image verifies the mean property
(a property verified by harmonic functions). This model assumes that a pixel can be approximated
by a weighted average of other image pixels. Therefore the regularization term based on this prior
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is defined as:

Ereg(U) =

∫

Ω

([
1

Z(x)

∫

Ω

wxyU(y)dy

]
− U(x)

)2

dx (5.13)

where, wxy are the weighted mean coefficients and Z(x) =
∫
Ω

w(x,y)dy is a normalization coef-
ficient.
The definition of the weights wxy is crucial for the model because it refers to the interactions
between pixels. A possible choice could be the linear model where the weights are a Gaussian
function of the spatial distance between pixels. Such a definition does not take into account the
image content and could result in a loss of image details because photometric consistency between
pixels is not considered. For this reason we consider a non linear weighted average, that encodes
both similarity between pixels and the spatial distance between them. A possible choice for the
similarity measure is the L2 distance between image patches. Thus the weight definition is

wxy = exp

(
−

∥∥UNx − UNy

∥∥2

2σ2
ph

)
exp

(
−‖x− y‖2

2σ2
s

)
(5.14)

The parameter σph and σs are variables that determine the bandwidth of the range (photometric)
kernel and the spatial one. The spatial bandwidth determines the radius of interaction between
pixels and the selection of this parameter will be the focus of the section (5.3.2) Such an image
model is more accurate then the piecewise constant one, because first it relies on a prior where
interaction between pixel goes beyond a local neighborhood traditionally considered in the basic
TV formulation. Furthermore, the image model that we considered is more general and could be a
further step toward modeling image complexity.
This regularization term can be jointly considered with a data-fidelity term that aims to preserve the
distance between the observed and the reconstructed image. To this end we consider the classical
L2 distance between the noisy observation and the restored one. The denoising is based on the
minimization of the following cost function

E(U) =

∫

Ω

([
1

Z(x)

∫

Ω

wxyU(y)dy

]
− U(x)

)2

dx + λ

∫

Ω

(I(x)− U(x))2 dx (5.15)

λ is a coefficient that controls the trade off between the fidelity to data component and the regular-
ization one.
The dependence of wxy on U makes the minimization of the function (5.15) intractable because
it is a non convex function. To address this difficulty we consider an alternative weights defini-
tion.. Assuming that the structure of the noise-free image is preserved in the noisy version we can
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compute the weights on the noisy image so that

wxy = exp

(
−

∥∥INx − INy

∥∥2

2σ2
ph

)
exp

(
−‖x− y‖2

2σ2
s

)
(5.16)

With such a definition, we obtain a quadratic and thus convex cost function. This regularization
expression was also considered in [28] in the context of image deblurring but without a spatial
distance constraint. This method combines the reverse heat equation with an additional term to
preserve more details. In this dissertation we present further analysis of the model and we will
propose a different numerical scheme then the one used in [28]. Besides we provide an automatic
technique to select the spatial bandwidth.
This cost function admits a unique minimum that could be obtained using a gradient descent algo-
rithm starting from the noisy observation U0 = I .

U t+1 = U t − dt∇E (5.17)

where

∇Ex = 2

∫

Ω

(∫

Ω

wyz

Z(z)
U(y)dy − U(z)

)
wxz

Z(z)
dz

+ 2

(
U(x)−

∫

Ω

wxy

Z(x)
U(y)dy

)
+ 2λ(U(x)− I(x)) (5.18)

The derivative expression shows the fundamental difference with the model presented in [60]. To
fix the idea, we will call residual the term Rx = 1

Z(x)

[∫
Ω

wxyU(y)dy
] − U(x). Contrarily to the

model in [60], the regularization flow goes beyond the residual information at given position to
include neighboring residual values and this enforces the coherence of neighboring pixels. Now if
we consider the case where σph = ∞, thus the residual is consistent with the Laplacian operator,
and the regularization flow can be written as:

∂U

∂t
= ∆U − G ∗∆U (5.19)

G is a Gaussian kernel with standard deviation σs. This expression shows that the regularization
flow is a combination of two processes: (i) regularization based on the first term that corresponds
to the heat equation) (ii) sharpening based on the second term which is the filtered Laplacian value.
Now we will present a matrix formulation of the problem where the images U and I are presented
by an array of size |Ω| × 1. We will introduce the weight matrix Σ of size |Ω| × |Ω| that is defined
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as
Σ(i, j) =

wxixj∑
j wxixj

Σ(i, i) = −1

The restoration problem is equivalent to

E(U) = ‖ΣU‖2 + λ ‖U − I‖2 = UT ΣT ΣU + λ(UT − IT )(U − I) (5.20)

∇E = ΣT ΣU + λ(U − I) =
(
ΣT Σ + λId

)
U + λI (5.21)

ΣT Σ is a symmetric positive matrix thus the matrix ΣT Σ + λId can be inverted. An explicit
expression of the optimal solution of the problem (5.15) given a fixed λ is

Uλ
opt =

(
ΣT Σ + λId

)−1
λI (5.22)

Furthermore, by introducing an artificial time variable we can obtain the following regularization
flow

∂U

∂t
= − (

ΣT Σ
)
U (5.23)

Starting from the observed image U0 = I , the associated numerical scheme is

U t+1 = U t − dtΣT ΣU t =
(
Id − dtΣT Σ

)
U t =

(
Id − dtΣT Σ

)t
I (5.24)

which satisfies certain desirable properties:

• The mean of the image U is constant where the variance is decreasing with time:
An estimate of the mean of the image mU is

mU =
1

|Ω| 〈C, U〉 with C = (1, 1, . . . 1)T

Thus
∂mU

∂t
=

1

|Ω|
〈

C,
∂U

∂t

〉
=

1

|Ω|
〈
C,−ΣT ΣU

〉
= − 1

|Ω|C
T ΣT ΣU = 0

CT ΣT = 0 because the sum of the columns of Σ are equal to zero.

∂ ‖U‖2

∂t
=

∂

∂t
〈U,U〉 =

〈
U,

∂U

∂t

〉
=

〈
U,−ΣT ΣU

〉 ≤ 0 (5.25)

The variance of the image is defined as VU = ‖U‖2−m2
U , and therefore with the above min-

imization schema, we can conclude that the variance of the image is decreasing with time.
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• For the convergence of such a scheme the time step have to be chosen such that the eigen-
values of the matrix

(
Id − dtΣT Σ

)
have an absolute value smaller than one. If we note

(µi)1≤i≤|Ω| the eigenvalues, then such condition is satisfied when dt ≤ 2
max(µi)

.

• The schema converges to the constant image if Σ is not decomposable into blocks.
The constant vector is an eigenvector associated to the zero eigenvalue of the matrix Σ. The
matrix ΣtΣ have the same eigenvectors set associated to zero eigenvalue as Σ. To prove this,
let V such that ΣtΣV = 0 then 〈ΣtΣV, V 〉 = 0 = 〈ΣV, ΣV 〉 = ‖ΣV ‖ thus V is also an
eigenvalue of Σ. Hence, the constant eigenvector associated to eigenvalue zero of the matrix
ΣtΣ is unique if the matrix Σ is not a block decomposable which mean that there exists a
path between two pixels x and y (Perron-Frobenius theorem).

• Relation between the regularization flow and the exact solution given in equation (5.22).
To this end, we will consider the projection of the image I on the orthogonal basis (Vi)1≤i≤|Ω|
composed of the eigenvectors of the matrix ΣT Σ.
The optimal solution (5.22) can be written as

Uλ
opt =

|Ω|∑
i=1

λ

λ + µi

αiVi with I =

|Ω|∑
i=1

αiVi (5.26)

While considering only the regularization flow we have

U t =

|Ω|∑
i=1

(1− dtµi)
tαiVi ≈

|Ω|∑
i=1

(1− tdtµi)αiVi (if dt small) (5.27)

Therefore, when t0 ≈ 1
dt(λ+µi)

an approximation of the exact solution Uλ
opt can be provided

by U t0

5.3.2 Bandwidth Computation

Our model involves weights that reflect the similarity between ”neighborhood” pixels and the
interaction between them. The selection of the spatial bandwidth is crucial in the regularization
process. In [76], it has been proved using a statistical estimation technique that the choice of the
convolution kernel bandwidth is important for the accuracy of the intensity estimation in case of
NL-means algorithm [26]. The selection of the neighborhood size during the filtering process has
been also studies in a number of papers [52, 117]. In general, increasing the kernel size reduces
the variance of the estimator while increasing its bias.
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In the context of our estimation framework, an expression of the bias and variance of the estimator
is not straightforward. Besides, the notion of image-based variable bandwidth is very interesting
and promising idea towards improving the performance of the method. An intuitive motivation
for that is the following: for a fixed value of σph, large spatial kernels will result in an integration
domain that involves an extended neighborhood a nice property when considering smooth areas.
On the other hand, the same bandwidth could lead to texture over smoothing. Therefore, kernel
bandwidth needs to be adapted to each pixel in the image in order to obtain an optimal balance
between noise suppression and details preserving. The most natural approach to account for the
above mentioned requirements is to introduce the bandwidth selection in the optimization process.
In other words, we would like to replace the constant σs value by a pixel dependent one σs(x),
and minimizing the cost function (5.15) with respect to the spatial bandwidth. Besides, under the
assumption that image content at the very local scale is coherent, one can also suppose that the
spatial bandwidth function is smooth. For this reason we consider an additional smoothness term
(the L2 norm of the gradient magnitude of σs(x)) during the estimation of the bandwidth σs(x).
The objective function to be minimized with respect to σs(x) is

E(U, σs) =

∫

Ω

([
1

Z(x)

∫

Ω

wxy(σs(x))U(y)dy

]
− U(x)

)2

dx

+ λ

∫

Ω

(I(x)− U(x))2 dx + µ

∫

Ω

‖∇σs(x)‖2 dx

with µ is a parameter that controls the trade-off between the smoothness of the bandwidth and the
constraint that have to be verified. The minimum of this cost function is computed using a gradient
descent algorithm. The gradient of the energy E with respect to σs is

∇E|σs(x) =

(
1

Z(x)

∫

Ω

w(x,y)I(y)dy − I(x)

)
G(x) + µ∆σs (5.28)

with G(x) being,

G(x) =
∂

∂σs

[
1

Z(x)

∫

Ω

w(x,y, σs)I(y)dy − I(x)

]

=

[∫
Ω
‖x− y‖2 wxy(σs(x))U(y)dy

] [∫
Ω

wxy(σs(x))dy
]

σ3
s

[∫
Ω

wxy(σs(x))dy
]2

−
[∫

Ω
w(x,y)U(y)dy

] [∫
Ω
‖x− y‖2 wxy(σs(x))dy

]

σ3
s

[∫
Ω

wxy(σs(x))dy
]2 (5.29)
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(a) (b)

Fig. 5.1: (a) Original image (b) The bandwidth value associated to it

Starting from a fixed bandwidth value σs = 3Id, the bandwidth function is updated according to

σt+1
s (x) = σt

s(x)− dt∇E|σs(x) (5.30)

The function E is non convex with respect to σ, the algorithm will then converge to a local min-
imum. When σ is close to infinity the energy function is still well defined and has a finite value.
Contrarily to that when σs(x) is close to zero, Z(x) → 0. Thus it is appropriate to impose a min-
imum value to σs(x). This is done by stopping σs(x) evolution when it becomes smaller than a
critique value σinf = 1.
Image denoising and bandwidth selection are addressed in an iterative fashion through an alterna-
tion of the minimization processes with respect to U then with respect to σs. However, in practice
and due to computational complexity we perform the bandwidth optimization once on a smoothed
version of the image. An example of bandwidth selection is shown in [Fig. (5.1)] where certain
qualitative interpretation regarding the behavior of the process can be extracted. Scale selection in
edges and texture regions refer to lower values than smooth regions which is a natural outcome.
Given such a general framework, one has to still address the task of distance selection towards
capturing implicitly the image structure.

5.4 On the similarity measure between patches

The definition of the photometric similarity between pixels is also important. In the following
section, we provide some ideas in order to improve this measure using other image feature or a new
statistical measure. The distance between image patches is a very common choice towards defining
photometric pixel interactions. However, the weight definition based on this distance (5.16) is
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rather heuristic. Hence, when specific information about the noise model is available, one can
design an alternative weight definition based on the statistical distribution of the distance between
patches. Furthermore, this distance is computed on the observed image its appropriateness could
be questioned in particular when the noise level is important. This limitation could be improved by
considering an alternative set of features to characterize a given pixel. The basic idea is to consider
a subspace and the projection of the observations on this subspace forming a feature vector. This
vector could better describe the data structure if the subspace is powerful enough while being
robust to noise (due to the projection).

5.4.1 New Statistical Similarity Measure Between Patches

In this section, we will focus on the statistical distribution of the L2 distance between patches.
To this end, let us consider two patches INx and INy (of size d) that correspond to two different
observations of the noise free patch UNx then

d2(INx , INy) =
d∑

i=1

(INx(i)− INy(i))
2 =

d∑
i=1

(UNx(i) + n(i)− UNx(i)− n(j))2 (5.31)

=
d∑

i=1

(nx(i)− ny(i))2

nx (resp ny) refers to the noise patch associated to x (resp y). In case of Gaussian noise [nx(i) −
ny(i)] follows a Gaussian distribution of Zero mean and variance 2σ2

n. Now if we consider the
following distance

dxy =
d2(INx , INy)

2σ2
n

=
d∑

i=1

(nx(i)− ny(i))2

2σ2
n

(5.32)

Given that the sum of the square of d random variables having a normal distribution is distributed
according to a χ2 law with mean equal to d and variance equal to 2d, we can conclude that,
dxy follows χ2 distribution. Based on this assumption, a new similarity measure that depends
only on the noise variance information can be introduced. Unlike the similarity value relative
to photometric consistency introduced in (5.16), where one have to tune the parameter σph this
measure is automatic.
The χ2 distribution can be approximated by a Gaussian one with the same mean and variance when
d is high. We will assume that for patches larger than 5 × 5, dxy has a Gaussian distribution of
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mean d and variance 2d. The similarity measure can be expressed as

wxy =
1

2
√

dπ
exp−

(
(dxy − d)2

4d

)
exp

(
−‖x− y‖2

2σ2
s

)
(5.33)

To understand the impact of the choice of the patch size d on the quality of restoration, we will
consider the mean square distance between patches d̄xy = 1

d
dxy. ≈ In case dxy has a Gaussian

distribution, d̄xy has also a Gaussian distribution of constant mean (equal to one) and variance
equal to 2

d
. This result provides us with an interpretation of the link between the size of patches

considered for comparison and the amount of regularization. When considering patches of large
size, the weight decrease is fast because the Gaussian variance is inversely proportional to the patch
size. This is synonymous of better selection of similar patches and also small amount of smoothing
(for a given x several y have weights close to zero). Contrarily to that, when considering small d

values the weights have a smaller decrease rate and several pixels y in the neighborhood of x have
a considerable weight which leads to high level of noise reduction. Based on these observations
one understands why the Non Local mean filter acts better than the bilateral filter in texture de-
noising. Beyond the new weights definition different from the one traditionally used in similarity
computation, one can also use different patch size for comparison according to the image context.
A possible way to do that is to consider the pre-classification step introduced in chapter 2 and
assign a high patch size to pixels belonging to the texture and smaller one for those belonging to
the smooth area.
In figure [Fig.(5.2)], an example of weight values reflecting the similarity between a textured patch
and the remaining patches in the image is given. We considered for weights computation only the
photometric distance between patches. This experiment shows that the new definition provides
weights with more disparity than the classical definition which is equivalent to better patches se-
lection. The effect of the patch size is illustrated in [Fig.(5.2-d),Fig.(5.2-e)]. Considering large
patches for comparison ensures better texture preservation.

5.4.2 PCA Based Dictionary

Image decomposition in subspaces, like wavelets, Fourier, etc. reduces the dimensionality of the
problem and often associate noise to the least important components. The central idea of our
approach is to decompose image content into a dictionary, or a subspace and then use this subspace
(in particular the projection of the image patch into the subspace) to define the distance between
pixels. One can claim that such an image representation will remove certain amount of noise,
which is critical when determining similarities between observations of neighborhood pixels.
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(a) (b)

(c) (d) (e)

Fig. 5.2: (a) Example of texture (b) Texture corrupted by Gaussian noise σ2
n = 20 – Similarity measure

between the central pixel (Red) and the other one using : (c) Using definition (5.16) and the noisy
image (d) Using definition (5.33) and the noisy image (patch size d = 81) (e) Using definition
(5.33) and the noisy image (patch size d = 25)

Several image filters can be used to perform local features extraction of the image mainly filter
banks [57, 102, 66]. In this work, we preferred a data driven approach that consists in analyzing
the image patches and to provide a reliable description of them.
A simple way to perform image patches description is principle component analysis (PCA) which
is a powerful tool that provides a compact representation of the most prominent element in the
image. We will then consider the set of all image patches present in the image and using PCA,
we will identify the principle directions of the data variation which correspond to the relevant
information about the image. It is important to note that we do not make an explicit assumption on
the linearity of the image model and the PCA is just considered to produce a projection subspace.
Let us now introduce INx which is a one dimensional vector composed of the pixels intensities
observed in a patch around x and noted as INx = {INx(i)}1≤i≤d . The patch width is wp and the
dimension of the associated vector is d = wp × wp. The principle component analysis will be
applied on the observations set relative to all patches within the image S = {INx x ∈ Ω}. First
we have to define the matrix of observations M of size |Ω| × d where each row correspond to the
observation vector INx . The principle component analysis is performed through the eigenvectors
and eigenvalues computation of the d× d covariance matrix Cr that is defined as follows

Cr(i, j) = cov(Vi, Vj) Vj is the jth colon vector of the matrix M (5.34)

cov(Vi, Vj) =

|Ω|∑

k=1

(Vi(k)− V̄i)(Vj(k)− V̄j) and V̄i =
1

|Ω|
|Ω|∑

k=1

Vi(k)
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The principle components correspond to the eigenvectors noted {ek}1≤k≤d of the matrix Cr the
variance of the data according to each direction is given by the eigenvalues {λk}1≤k≤d . Hence, we
obtain an orthonormal basis on which we can decompose the image to generate a new set of fea-
tures. The projection of the observations set on the most prominent direction allows the extraction
of smooth image content as well as texture and edges. The remaining components that correspond
to small amount of variability contain limited information about the image structure due to the
dominance of the noise component.
The eigenvectors can be interpreted as a dictionary where the elements correspond to image char-
acteristics (cf figure [Fig.(5.3)]). The projection of the set of observations in S on each vector on
the new basis is equivalent to a correlation between an image patch and an element of the dictionary
learned using PCA. The projection on some principle components is illustrated in figure [Fig.(5.4-
a),Fig.(5.4-b),Fig.(5.4-c)]. We can notice that the first principle component acts as a low pass filter
that captures all smooth contents of the image. The projection on other components extracts the
texture and small details in the image. It’s important also to point out that vectors associated to
small eigenvalues that are close to the noise variance emphasize the random component introduced
by noise.
A natural choice for computing a new set of features for each image pixel is to perform the projec-
tion of the image patch on the new orthonormal basis provided by PCA. Nevertheless, considering
the entire basis is not relevant because the L2 distance between the new features vectors remains
unchanged. On top of that, the main argument for subspace consideration is to discard the direc-
tions of the projection where the noise variance is higher than the signal variance. Knowing that
the projection of an image patch that is corrupted by a Gaussian noise of variance σ2

n, on an ortho-
normal basis will result in feature vector corrupted by a Gaussian noise with the same variance,
the signal to noise ratio for a given direction of projection k is defined by λk

σ2
n

. To select the direc-
tions of projection that are reliable for feature vector computation, a threshold for the SNR could
be considered. Taking into consideration that λ1 ≥ λ2 ≥ . . . ≥ λd, we will restrain the patches
projection to the subspace Eq generated by the first q vector (el)1≤k≤q such that λk

σ2
n

> T for all
1 ≤ k ≤ q. Under these considerations, we will measure the similarity between pixels in the new
subspace (Eq) of dimension q ≤ d.
Finally, if we note Fx the new feature vector obtained by the projection of INx on the subspace Eq

, where

Fx(k) =
d∑

i=1

INx(i)ek(i) 1 ≤ k ≤ q (5.35)
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Fig. 5.3: Eigenvectors obtained through PCA decomposition of Barbara image corrupted by Gaussian noise
(σn = 10) (patch size 15× 15) (Only the first 22 component are significant if T=3)

The definition of the similarity measure between two pixels x and y is defined as

wxy = exp

(
−‖Fx − Fy‖2

2σ2
ph

)
exp

(
−‖x− y‖2

2σ2
s

)
(5.36)

Some idea on the appropriateness of this weight definition is given in [Fig.(5.5)] where the simi-
larity measure between the central pixel (in Red) and the other pixels in the case of noisy texture
is represented. Two weight definitions were considered, one based on the L2 distance between
patches the other on the new set of features computed using PCA. On the other hand, we computed
the weight based on the L2 distance between noise free image patches. It is clear that the new
similarity measure is better selective toward pixels and closer to the one obtained using a noise
free image.
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(a) (b) (c)

Fig. 5.4: (a) Projection of the observations set on the first eigenvector of Barbara image (b) Projection of the
observation set on the 17th eigenvector (c) Projection of the observations set on the Last eigenvector
(49th)

(a) (b)

(c) (d) (e)

Fig. 5.5: (a) Example of texture (b) Texture corrupted by Gaussian noise σ2
n = 40 – Similarity measure

between the central pixel (Red) and the other one using : (c) the L2 distance between patches (d)
feature set based on PCA (e)the L2 distance between patches using the noise free image
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5.5 Experimental Results

We will focus on performance evaluation of the method that we presented in this chapter. In this
context, we will consider the case of synthetic additive white Gaussian noise with known standard
deviation (σn = 20). For comparison, we have considered the following methods

• Total variation minimizing [122] with data term λ = 0.1

• Anisotropic diffusion [115] with an edge stopping function (1 + |∇I|2 /K2)−1 (K = 5)

• Total variational with local constraints on the residual variance introduced in [62]1.

• Non local extension of the TV model [60] 2 using λ = 0.1. The weights considered in this
functional are computed according to expression (5.16) using patches of size 7 × 7, σs = 4

and σph = 15 (We did not use a fully non local version of this algorithm using).

In terms of variants of our method, we have considered one with fixed bandwidth and one with
variable bandwidth selection through optimization. In terms of parameters, the following set was
used to compute the weights according to (5.16): patch size 7 × 7, σph = 15 and σs = 4. The
same set of parameters was used for the variable bandwidth (σs was updated for each pixel). The
coefficient that controls the balance between the regularization and the fidelity to data was set to
λ = 0.1. Regarding time computation using this set of parameters is 5 mn to minimize the energy
with respect to U and 1mn to compute the optimal spatial bandwidth. The convergence is obtained
after few iterations. We used a C++ code and Pentium IV-2GHz machine. The time computation
is a limitation of our method but optimizing the code would reduce considerably the computation
time.
In table (Tab.5.1), the PSNR values show that the regularization model that we presented outper-
forms all the other techniques. The total variation minimization, the anisotropic diffusion and the
total variation with local constraints are local methods based on the image gradient. They rely
on a piecewise constant image model and it is known that such an assumption is a not realistic
for natural images. The figure [Fig.(5.7), Fig.(5.9)] provides certain visual evidence for this claim
since the TV based approaches creates some spurious contours inside homogeneous regions while
the anisotropic diffusion yields to many flat area and destroys completely the texture in the image.
Note also that our approach yields better results than the non local extension of the total variation
[60] defined by the equation (5.9). In addition to PSNR values, figures [Fig. (5.6),Fig. (5.8)] as

1 We used the Matlab implementation of the author
2 Using our implementation
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Barbara Boat Fingerprint House Lena Baboon Peppers
ourMethod-Fix 30.19 29.76 27.99 32.11 31.95 26.33 30.51
ourMethod-Var 30.46 29.94 27.65 32.34 32.12 26.02 30.67
Method in [60] 29.01 28.75 26.95 31.12 30.82 25.72 29.41
TV-ROF [122] 26.18 27.72 26.08 28.43 28.45 25.18 28.51
TV-Adaptive [62] 27.20 28.79 26.34 30.92 30.64 25.53 29.49
Anis Diff [115] 26.45 28.06 24.81 29.41 29.27 23.68 -

Tab. 5.1: PSNR values for denoised image (The PSNR of the image corrupted by gaussian noise of std=20
is equal to 22.15)

well as residual images [Fig. (5.10)] show that our regularization process (fixed or variable band-
width) performs better in terms of fine details preservation. We recall that our regularization flow
had an additional term that can be seen as a sharpening term that involves a weighted average of
the other ”residual” values. This term enforces the coherence between neighboring pixels.
Now if we consider the performance of the variable bandwidth version with respect to the fixed
one, we can notice certain improvement in image details preservation (see for example the figure
[Fig. (5.8)] that contains details in Lena’s hat). Nevertheless, for some images the fixed bandwidth
performs better than the variable one. These images are composed mainly of textured content and
the majority of pixels have similar local properties for this reason considering the same spatial
bandwidth for all of them could be more interesting. On top of that, the term considered for the
bandwidth optimization is not convex with respect to σs and therefore, the estimation cannot be
optimal.

5.5.1 On the weight selection

The selection of the photometric distance is a crucial component of our approach and in this chapter
we have introduced novel means of defining this distance. In order to evaluate their impact on
the process we will compare three distance definitions: (i) the L2 distance between patches 5.16
(ii) distance between new feature vector computed using PCA and threshold value T = 1.5 (iii)
The normalized L2 distance between patches by the noise variance and using the observation that
this distance follows a χ2 distribution (5.33). The PSNR values in table (Tab.5.3) show that the
three weight definition are equivalent. Therefore, the proposed approach is not too sensitive to the
weight definition as far as they reflect faithfully the image structure. Figures [(Fig.5.11),(Fig.5.12)]
confirm visually this observation, where we can see, for both examples, equivalent amount of
details in the three images.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.6: Zoom on the Barbara image (a) Original image, (b) Noisy image (c) Our method using fixed
bandwidth (d) Our method using variable bandwidth (e) Non local functional minimizing (5.9) (f)
Total variation minimizing with variable local constraint
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(a) (b)

Fig. 5.7: Zoom on the Barbara image (a) Total variation (b) Anisotropic Diffusion

Barbara Boat Fingerprint House Lena Baboon Peppers
ourMethod (L2) 30.19 29.76 27.99 32.11 31.95 26.33 30.51
ourMethod (PCA) 30.05 29.70 27.8 32.34 31.6 26.08 30.54
ourMethod (χ2) 30.07 29.61 27.14 32.34 31.8 26.19 30.61

Tab. 5.2: PSNR values for denoised image (The PSNR of the image corrupted by gaussian noise of std=20
is equal to 22.15)

We will perform the same test with respect to the NL-means algorithm. To perform com-
parison, we selected the following set of parameters: σph = σn = 20, σs = ∞, and a patch
sizeof 5 × 5 to perform the PCA. The local filtering window was set to 11 × 11. The PSNR
values in table (Tab.5.4) show that using the new set of features for pixels comparison improves
the performance of the NL-means algorithm. This is illustrated by the residual images in figures
[Fig.(5.13),Fig.(5.14)] that contains less structure (mainly stripes in the pants and scarf). On the
other hand a zoom on the image detail in [Fig.(5.15)] show that texture is better reconstructed.
The NL-means algorithm is simple but it is very sensitive to the parameters selection. Hence, an
accurate measure of similarity between pixels insures better quality restoration. The impact of the
parameter q which is the number of retained PCA components is illustrated in figure [Fig.(5.16)].
This graph shows that the performance depends on the number of components considered in the
feature vector computation. One can claim that few principal directions are not sufficient to in-
corporate local image information in pixel characteristics vector. On the other hand, retaining an
important number of directions will impact the amount of noise being considered in the recon-
struction. Consequently, the accuracy of the similarity computation will decrease. The automatic
selection of the optimal q value was not addressed in this thesis but could be an interesting issue.
Now if we compare the original NL-means algorithm and the modified version using the weight
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8: Zoom on the Lena image (a) Original image, (b) Noisy image (c) Our method using fixed band-
width (d) Our method using variable bandwidth (e) Non local functional minimizing (5.9) (f) Total
variation minimizing with variable local constraint
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(a) (b)

Fig. 5.9: Zoom on the Lena image (a) Total variation (b) Anisotropic Diffusion

Barbara Boat Fingerprint House Lena Baboon Peppers
ourMethod (L2) 30.19 29.76 27.99 32.11 31.95 26.33 30.51
ourMethod (χ2) 30.07 29.61 27.14 32.34 31.8 26.19 30.61
NL-Means (L2) 28.73 28.49 26.27 31.37 30.95 24.5 29.94
NL-Means (χ2) 29.33 28.9 26.04 31.64 31.29 23.99 29.68

Tab. 5.3: PSNR values for denoised image (The PSNR of the image corrupted by gaussian noise of std=20
is equal to 22.15)

definition (5.33), we can notice that we also obtain better results. Furthermore, the visual results
show that details are better preserved when considering the actual distribution of the L2 distance
between patches. This weight definition is particularly attractive when the noise variance is known
so one can simply select σph = σn without any further tuning of the parameter σph. This is not the
case with the classical weight definition used in the NL-means algorithm, which seems to be quite
sensitive to the selection of parameters. This experimental conclusion is supported from some the-
oretical insights presented in [76]. In particular, it was proven that the computation of a weighted
mean over a very large neighborhoods does not insure a high quality restoration unless σph is care-
fully selected. Contrarily to that considering the actual distribution of the distance between patches
in case of additive Gaussian noise allows an automatic selection of σph. Besides, its performance
is not too sensitive to the selection of the window size used for computing the weighted average.
These observations are illustrated by the graph in figure [Fig.(5.17)] that represents the PSNR evo-
lution of the NL-means algorithm with the size (equal to 2Tf +1× 2Tf + 1) of the domain used to
perform the weighted average. We recall that we selected σph = σn = 20, σs = ∞ and 5× 5 patch
size for weight computation. With the classical weights definition the performance drops rapidly
when the window size becomes bigger then the optimal one. This is not the case when considering
the actual distribution of the normalized L2 distance between patches where the performance in-
creases with the window size. Furthermore, after reaching an optimal window the decrease of the
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(a) (b)

(c) (d)

Fig. 5.10: (a) Residual of the Barbara image using the non local convex functional 5.9 (b) Residual of the
Barbara image using our approach with fixed bandwidth (c) Residual of the Lena image using
the non local convex functional 5.9 (d) Residual of the Lena image using our approach with fixed
bandwidth
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(a) (b)

(c)

Fig. 5.11: Zoom on Barbara image and result of our method using different weights definition and fixed
bandwidth (a) using distance between pixels features using PCA (b) using the statistical distri-
bution of the L2 distance between patches and expression (5.33) (c) using L2 distance between
patches and expression

PSNR is slow.

5.6 Conclusion

In this chapter, we were interested in total variational methods and their extensions. Our contribu-
tion consists in considering new local quadratic regularization energy in the context of denoising.
The underlying image model is more realistic than the piecewise smooth one and the solution is
easily tractable. The experimental results showed that the regularization based on this energy out-
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(a) (b)

(c)

Fig. 5.12: Zoom on Lena image and Result of our method using different weight definition and fixed band-
width (a) using distance between pixels features using PCA (b) using the statistical distribution
of the L2 distance between patches and expression (5.33) (c) using L2 distance between patches

performs all the other techniques based on total variation minimization and anisotropic diffusion

The interaction between pixels and new weight definition were also the focus of this chapter.
First, an effort was devoted to compute an adapted spatial bandwidth for each pixel. Contrarily
to non local approaches, our approach entails the spatial distance which is as important as pho-
tometric one. In natural image similar patches are more likely to be found in local or semi local
neighborhood. The function being minimized with respect the spatial bandwidth is not convex
further improvement can be achieved by using appropriate optimization technique toward finding
global minimum. In addition to that, including a prior on the spatial bandwidth could improve the

Barbara Boat Fingerprint House Lena baboon Peppers
NL-Means (L2) 28.73 28.49 26.27 31.37 30.95 24.5 29.94
NL-mean (PCA) 29.83 29.29 27.09 31.87 31.71 25.56 30.41
NL-Means (χ2) 29.33 28.9 26.04 31.64 31.29 23.99 29.68

Tab. 5.4: PSNR values for denoised image (The PSNR of the image corrupted by Gaussian noise of std=20
is equal to 22.15)



5. TV BASED VARIABLE BANDWIDTH IMAGE DENOISING 137

(a) (b)

(c) (d)

Fig. 5.13: Results using NL-means algorithm (a) Original image (b) Noisy image (c) using the statistical
distribution of the L2 distance between patches and expression (5.33) (d) The corresponding
residual image
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(a) (b)

(c) (d)

Fig. 5.14: Results using NL-means algorithm (a) using L2 distance between patches (b) Its corresponding
residual image (c) using distance between pixels features using PCA (d) Its corresponding residual
image
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(a) (b)

(c) (d

(e)

Fig. 5.15: (a) original image (b) Noisy image. Results using NL-means algorithm (c) using L2 distance
between patches (d) using distance between pixels features using PCA (e) using the statistical
distribution of the L2 distance between patches and expression (5.33)
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Fig. 5.16: Evolution of the PSNR value with respect to the retained number of principle component

Fig. 5.17: Evolution of the PSNR with respect to the window radius : blue curve corresponds to the classical
weight definition (5.16) , the red curve corresponds to the new definition (5.33)
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performance of the approach.

As far as photometric similarity is concerned, we proposed new weights definition one based
on PCA analysis of image patches the other based on the statistical behavior of the L2 distance
between noisy patches. These weights definitions are designed to better reflect similarity between
pixels which is very crucial in the denoising process. For the statistical new measure the choice of
the patch size is important and an automatic selection of this parameter should be addressed.

In the following chapter we will consider different context and other applications for the pre-
sented total variation approach mainly for real digital camera noise and medical imaging applica-
tion.





Chapter 6

Applications

The proliferation of image sensors has led to an explosion of the nature of images to be consid-
ered either in terms of lower or higher level tasks. Denoising is among the most fundamental with
great importance in a number of fields where either the sensors are not so well developed or a
compromise is to be find between cost and acquisition quality. In this chapter, we show that the
convex functional minimizing framework that we presented can tackle other different restoration
problem and can deal with both scalar and vectorial observations. First, we addressed RGB images
denoising using more realistic noise models towards defining more appropriate data-fidelity terms.
Next, we extend our framework to non-linear manifolds that is the case of semi-definite positive
matrices explaining the diffusion of water in human skeletal muscle as determined from DTI im-
ages. Last but not least, we are concerned with speckle reduction in ultrasound images with aim to
facilitate the process of automatic organ delineation. The variety of fields, noise models and image
properties demonstrate the potentials of the convex functional minimizing approach presented in
this thesis.

6.1 Color Image Denoising

Classical denoising approaches assume that images are corrupted by an additive white Gaussian
noise with a fixed variance. In this section, we will show that such an assumption is unrealistic for
digital camera noise. Furthermore, we will introduce an extension of the previous total variation
based approach for color images that is based on realistic noise assumptions. To this end, we
will focus on analyzing the noise produced by the digital camera. In this context, we provide an
empirical and non parametric estimation technique for the evolution of the noise variance with
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respect to the intensity. Finally, denoising is performed by minimizing a regularization function
under a set of constraints derived from the noise model.

6.1.1 Noise Properties from Raw to RGB Images

The raw image is the one obtained from the impact of light photons on the camera sensor. It is
a one channel image composed of color filter arrays (Bayer pattern). A given pixel in the image
corresponds to a color filter cell, while its intensity refers to the intensity of the color associated to
it. An example of a raw image is shown in figure [Fig.(6.2)]. The observed image is corrupted by
noise due to three perturbation sources [143]: the photon noise, the dark noise and the spatial noise.
The photon noise refers to the fluctuation of the number of photons that reache the sensor and its
variance is a linear function of this number and thus linear with respect to the pixel intensity. The
dark noise is generated by the leakage current and independent on the pixel intensity. The spatial
noise has a quadratic dependency on the pixel intensity and its existence is due to the fact that pixels
are not perfectly similar and behave in a different fashion. Under all these considerations, the noise
model can be approximated by a Gaussian noise with a variance that is a quadratic function of the
intensity. Thus if we note Ir (respectively U r) the observed raw image (respectively the noise
free-image), the noise variance for a given pixel depends on its intensity U r(x)

σ2
n(x) = α(U r(x))2 + βU r(x) + γ (6.1)

Starting from the raw observations, the final RGB image is obtained after a processing chain com-
posed of different low level vision algorithms. These algorithms will impact the noise distribution
as well as its variance behavior. Let us consider the noise-model observed at the RAW space and
try to understand how it propagates through the processing chain that entails three major steps

• White Balance Correction
It consists in multiplying each pixel in the raw image by a constant coefficient according to
its color (Red, Green or Blue) to homogenize intensity in gray regions. We will define Iw

the image obtained after white balance correction, thus for a given pixel x that corresponds
to a color c ∈ {R, G, B} the intensity and the noise variance are modified as

Iw
c (x) = αcI

r(x) and σ2
n,w(x) = α2

cσ
2
n(x)

After this step, the noise variance depends not only on the intensity value of the pixel but also
on its color. More explicitly, two pixels having the same intensity and same variance before
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white balance application will have different variance if they represent different colors in the
Bayer pattern.

• Demosaicing
The demosaicing step consists in recovering the missing color information for each pixel.
It computes a three-channel image (RGB) starting from a one channel image composed of
the Bayer pattern. If one takes the example of a green pixel, the corresponding red and blue
intensities must be interpolated. Demosaicing is also a challenging low-level vision task and
some interpolation artifacts have to be addressed. To this end a lot of effort was devoted
to design efficient algorithms that could preserve high frequencies and avoid color artifacts
[79, 18, 29]. A general expression of the interpolation of the missing color value is

Id
c (x) =

∫

Ωc

wxyIw(y)dy (6.2)

where Id
c refers to the channel c of the image Id obtained after demosaicing, Ωc is the set of

pixels where the intensity associated to the color c is available and measured by the sensor,
and wxy are weights that depend on the demoisaicing algorithm that is not necessarily linear.
The equation (6.2) shows that after the demosaicing step, the noise variance depends also
on pixel position and the interpolation coefficients. The demosaicing introduces a spatial
correlation in the noise model. An exact noise model is therefore intractable unless one uses
a linear algorithm of demosaicing which is not the case in practice.

• Color transform and contrast enhancement
The color transform is applied to the image in order to obtain a color rendering close to the
photographed scene. This transform is linear and consists in multiplying each vector Vx =

(Id
R(x), Id

G(x), Id
B(x))T by a 3× 3 color matrix M. Thus the covariance matrix associated to

the noise affecting a given pixel x is

Σn(x) = M · Σd
n(x) ·MT Σd

n(x) =




σ2
n,R(x) 0 0

0 σ2
n,G(x) 0

0 0 σ2
n,B(x)


 (6.3)

Where σ2
n,R(x), σ2

n,G(x), σ2
n,B(x) are the noise variance relative to each color channel in the

pixel x. Σd
n is a diagonal matrix because we assume that in the raw image neighboring pixels

( and thus color) are independent, which is a reasonable assumption in practice. Neverthe-
less, the resultant covariance matrix is not diagonal which means that the color transform
introduces inter channel correlation between noise components.
The final processing step is the Gamma correction to map the histogram of the image and
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enhance the contrast mainly in dark regions. This is a non linear transform that adds a com-
plexity level to the noise model.

The description of elementary steps in the image chain shows that the noise model is far from being
additive white Gaussian. This hypothesis holds in the raw space, which makes it the ideal space
to perform denoising. Nevertheless, the raw image as well as the transformation process are not
always available and one has to find the noise model relying on the RGB image.

6.1.2 Noise Model Estimation

To perform a denoising task one needs a prior knowledge about the noise model. Among various
research work toward noise modeling, we can cite as examples [96, 56] where the noise level
function was computed based on one image. The noise level function associates to each intensity
value the corresponding noise variance. The problem of noise estimation based on RGB images
was addressed in [96] where a learning step using several camera transfer functions is performed
to describe the space of noise level functions. This is done through a PCA analysis to determine
an orthogonal basis of the space of noise level functions. To estimate the noise model, the image
is divided into segments and for each segment the mean and the variance are computed to obtain
a sample set of couples (intensity, variance). Next, based on these samples a maximum likelihood
technique is used to estimate the coefficients of the noise level function in the learned basis. The
experimental validation shows the potential of such an approach, nevertheless the estimation is
reliable if the color distribution spans the full range of the spectrum and the image is composed of
piecewise constant regions without textured content.
In our application, we propose a simpler approach that involves a weak calibration stage. To this
end, we assume that some information on the image acquisition parameters is available (basically
the camera gain value). The process consists in shooting the Macbeth Color Checker [Fig.(6.1)]
that is composed of rectangular homogeneous regions with various colors and intensities. The
obtained calibration image is composed of 24 patches corresponding to 24 different intensities
per channel. For each calibration pattern the mean and the variance are computed. Contrarily
to a natural image, finding the segment is a very simple task. Furthermore, the segment has a
constant intensity and the only source of variation is the noise. An accurate estimation of the
variance is thus possible mainly in case of patches of big size (about 100×100 pixel in practice).
Using this image, one has 24 samples of the noise level function for each channel. To derive the
missing noise variance relative to all possible intensities in the range [0..255], an interpolation
has to be performed. An example of the noise level function relative to the Canon 10D digital
camera is provided for each channel in [Fig. (6.1)]. Note that the used technique for noise function
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(a) (b)

Fig. 6.1: (a) Macbeth Color Checkers (b) Curve corresponding to the evolution of the standard deviation of
the noise with respect to the intensity for each channel Red ,Green and Blue

Fig. 6.2: Example of a raw Image with the Bayer Pattern

estimation requires only little knowledge about shooting conditions. Also, it does not require
information about the camera transfer function which makes it more flexible.

6.1.3 The Denoising Algorithm

In this section, we assume that the image U and I are RGB images composed of 3 channels that
are respectively (UR, UG, UB) and (IR, IG, IB). The regularization process is formulated in the
following fashion

Ereg(U) =

∫

Ω

∥∥∥∥
[

1

Z(x)

∫

Ω

wxyU(y)dy

]
− U(x)

∥∥∥∥
2

dx (6.4)
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Ereg(U) =

∫

Ω

([
1

Z(x)

∫

Ω

wxyUR(y)dy

]
− UR(x)

)2

dx

+

∫

Ω

([
1

Z(x)

∫

Ω

wxyUG(y)dy

]
− UG(x)

)2

dx

+

∫

Ω

([
1

Z(x)

∫

Ω

wxyUB(y)dy

]
− UB(x)

)2

dx (6.5)

The fidelity to data is ensured by imposing a constraint during the regularization process. This
constraint relies on the non-parametric noise model that we estimated for each channel. Thus for
any color channel c ∈ {R, G,B}, the constraints are

∫

Γc(GL)

(Ic(x)− Uc(x))2dx = σ2
n(GL) (6.6)

Where GL is a gray level that ranges between 0 and 255, Γc(GL) is the level line of the image
Uc associated to the intensity GL, and wxy are weights that are computed on the luminance image
Y = 0.3IR + 0.6IG + 0.1IB and defined in (5.16). The choice of the luminance image to compute
the weights is motivated by the fact that the most important image content and structure is present
in this component.
The equivalent Euler Lagrange formulation using the Lagrange multipliers λi

EU = EReg(U) +
∑

c∈{R,G,B}

255∑
i=0

λc
i

∫

Γc(i)

(Ic(x)− Uc(x))2dx (6.7)

This energy formulation can be split in three independent terms (one for each color channel).
Therefore we have three identical constrained optimization problems that are solved in an iterative
fashion. Now if we consider a particular channel Uc (c ∈ {R, G, B}), and a set of {λc

i}0≤i≤255, the
optimal image is the one that corresponds to the steady state of the following PDE :

∂Uc

∂t
(x) = ∇Ec

Reg(x) +
255∑
i=0

λc
iδ(Uc(x)− i) [Uc(x)− Ic(x)] (6.8)

Where δ is Kronecker Delta function that is defined as δ(x) = 1 if x = 0 δ(x) = 0 otherwise.
The gradient of the regularization term in the direction Uc(x) is defined as

∇Ec
Reg(x) = 2

∫

Ω

(∫

Ω

wyz

Z(z)
Uc(y)dy − Uc(z)

)
wxz

Z(z)
dz + 2

(
Uc(x)−

∫

Ω

wxy

Z(x)
Uc(y)dy

)

Now in order to impose the constraint (6.6) on the final solution we have to update each λc
i value

using the same technique used in [122, 62]. To this end we consider the steady state of equation
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(6.8) where the following is verified

∇Ec
Reg(x) +

255∑
i=0

λc
iδ(Uc(x)− i) [Uc(x)− I(x)] = 0

[Uc(x)− Ic(x)]∇Ec
Reg(x) +

255∑
i=0

λc
iδ(Uc(x)− i) [Uc(x)− Ic(x)]2 = 0

∫

Γc(k)

[Uc(x)− Ic(x)]∇Ec
Reg(x)dx + λc

k

∫

Γc(k)

[Uc(x)− Ic(x)]2 dx = 0

λc
k is then updated according to

λc
k =

∫
x∈Γc(k)

[Ic(x)− k]∇Ec
Reg(x)dx

2σ2
n(k)

(6.9)

The data-fidelity term depends on the intensity and inversely proportional to the noise standard de-
viation. This is coherent with the idea that content with high noise level require more regularization
than the one with small variance.

6.1.4 Experimental Results

In order to evaluate the performance of our method when applied to real digital camera noise, we
have considered examples of noisy images produced by different digital cameras. The denoising
process consists in alternating two steps: (i) minimizing the energy (6.7) using a gradient descent
(ii) updating the λi values according to (6.9). The following set of parameters was selected for
denoising : the time step for the gradient descent algorithm was set to dt = 0.01 and for each
0 ≤ i ≤ 255, λi = 0.05. The weight definition is the distance between patches defined in (5.16)
with a patch size wp = 5, a fixed spatial bandwidth σs = 3, and σph = 3.
We compared the result of the proposed method with the NLmean algorithm. For the RGB im-
ages, each color vector is restored by a weighted averaging of the neighboring ones using weights
computed on the luminance image. For the weight computation, we considered the same definition
and parameters used for our algorithm. Due to computational complexity, the neighborhood size
was restrained to a 15× 15 window. We must note that the parameters setting of each method was
fixed in order to suppress the maximum amount of noise while preserving details and texture. For
comparison, we considered also the result of our proposed approach for the unconstrained formu-
lation (without updating the values of λi).
In figure [Fig.(6.3), Fig.(6.4)], we can see that the fixed noise parameter approach results on an
oversmoothing the white texture as shown by the details present in the residual image [(6.4)]. Such



150 Chapter 6

a limitation is dealt with when considering the noise variation with respect to the intensity. The
NLmean restoration result is not homogeneous: some texture regions are well preserved but other
are not. Other examples were presented in figure [Fig.(6.5), Fig.(6.6)] with a different camera
(Nikon D70). We noticed that with a variable noise variance, the textured white strips in the image
are preserved. This behavior is related to expression (6.9) where λi values are inversely propor-
tional to the noise standard deviation. This confirms that a better denoising must take into account
the evolution of noise with image intensity.

6.1.5 Discussion

In this section, it was shown that the denoising formulation presented in chapter (5) can be extended
to deal with more realistic noise characteristics. Considering the appropriate noise variance ensures
better details and texture preservation. We did not consider a variable bandwidth kernel for weight
computation due to computational complexity. Investigating alternative color spaces and color
representations like the YCrCb to account for correlation between channels instead of treating
them in an independent manner is a promising direction. Furthermore, such an approach would
naturally deal with color artifacts. As far as noise properties are concerned, considering other
statistics like the autocorrelation function could bring an important added value to the denoising
process.

6.2 Application to DTI estimation and regularization

6.2.1 Introduction

Diffusion tensor imaging (DTI) is an emerging non-invasive modality allowing the quantitative
investigation of water protons diffusion within biologic tissues. Since diffusion is sensitive to the
presence of organized structures, DTI is used mostly in brain studies and has become a tool to infer
white matter connectivity [89]. Such a modality offers measurements of the amount of diffusion
of water molecules in several different directions. One then can infer the estimation of a tensor
which is a 3× 3 symmetric positive definite matrix representing the uncertainty on the position of
water protons with a Gaussian model of displacement. The (DTI) imaging protocol produces 3D
weighted images for different gradient directions and based on these image one can estimate the
underlying diffusion tensors. The DTI experimental protocol yields noisy observations due to the
diffusion-sensitizing magnetic gradient. Furthermore, the clinical protocols refer to relatively low
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(a) (b)

(c) (d)

Fig. 6.3: (a) Original noisy image (b) Image restored using our method with fixed noise variance (c) Image
restored using the NLmean algorithm (d) Image restored using our method with variable noise
variance
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(a) (b)

(c)

Fig. 6.4: Difference between the noisy image and the restored one using (a) our method with fixed noise
variance (b) Image restored using the NLmean algorithm (c) Image restored using our method with
variable noise variance
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(a) (b)

(c) (d)

Fig. 6.5: (a) Original noisy image (b) Image restored using our method with fixed noise variance (c) Image
restored using the NLmean algorithm (d) Image restored using our method with variable noise
variance
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(a) (b)

(c)

Fig. 6.6: Difference between the noisy image and the restored one using (a) our method with fixed noise
variance (b) Image restored using the NLmean algorithm (c) Image restored using our method with
variable noise variance
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magnet strength, or a rather low signal-to-noise ratio. Therefore, signal reconstruction is crucial
to obtain an appropriate estimate of the tensor field and for subsequent use of this estimate in
applications like fiber tractography.

Several methods have been proposed to address diffusion tensor regularization. In [40], a two-
step regularization was proposed consisting of the restoration of the principal diffusion directions
using a total variation-model followed by the smoothing of the eigenvalues using an anisotropic
tensor-driven formulation. In [17], the maximization of a log-posterior probability based on the
Rician noise model is considered to smooth directly the diffusion-weighted images. A Bayesian
model based on a Gaussian Markov Random Field was used in [105] to smooth the diffusion
tensors. In [32], the authors consider the tensors as lying on a Riemannian manifold and use
the corresponding distance to derive a local weighted averaging for DTI denoising. Tensors are
assumed to be positive-definite matrices which was taken into account in [43] where an anisotropic
filtering of the L2 norm of the gradient of the diffusion tensor was considered and their proposed
PDE scheme constrains the estimation to lie on this space. Such a concept was further developed
in [144] where a variational method was proposed that aimed to minimize the Lp norm of the
spatial gradient of the diffusion tensor under a constraint involving the non-linear form of Stejskal-
Tanner equation. A non linear diffusion scheme is described in [147] where smoothing is made
direction-dependent using a diffusion matrix in the PDE system. More recently, in [55] a joint
reconstruction and regularization was proposed in the context of an energy minimization in a Log-
Euclidean framework.
The existing variational methods and PDE based ones, involve regularization term that is a function
of the norm of the gradient, which limits their ability to detect efficiently data structure and to
preserve its variability. Besides, some of the methods above cited perform only regularization
while it is interesting estimate and regularize tensors simultaneously. Furthermore, some of the
proposed cost functional are non-convex which entails a preliminary initialization step.

In this section we propose an approach to jointly estimate and regularize diffusion tensor fields.
We use a convex energy functional which combines the linearized form of Stejskal-Tanner equation
as a data fidelity term. The regularization term is the one introduced in chapter (5) but we will
provide the appropriate weights definition. The experimental results presented in this part on
synthetic datasets as well as on real diffusion weighted images show the potential of the proposed
method.
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6.2.2 DTI Estimation and Regularization

Let us assume that n DTI acquisitions (Sk)k=1...n with respect to different magnetic gradient di-
rections (gk)k=1...n are available. Ideally, the expected signal at a voxel x for the direction k as
explained in [131] should respect the following condition

Sk(x) = S0(x) exp
(− bgt

kD(x)gk

)
(6.10)

with the tensor D being the unknown variable and b is a constant value that depends on the acqui-
sition settings. The estimation of the tensors in the volume domain Ω can be done through direct
inference (6 acquisitions are at least available), which is equivalent to minimizing:

Edata(D) =

∫

Ω

n∑

k=1

(
log

(
Sk(x)/S0(x)

)
+ bgt

kD(x)gk

)2

dx (6.11)

This energy is based on the linearized diffusion tensor model which is reasonable for moderate val-
ues of SNR [124]. Such a direct estimation is quite sensitive to noise, on the other hand, it refers
to a convex term, which is rather convenient when seeking its lowest potential. The most common
approach to account for noise is through the use of an additional regularization term which con-
strains the estimation of D to be locally smooth. Like the natural image case we assume that, the
tensor can be expressed as a linear combination of the tensors lying in its neighborhood since they
are likely to represent the same population of fibers. This assumption still holds at the boundaries
between different groups of fibers as long as the linear combination is thoroughly chosen to ensure
that the contribution of tensors belonging to a different fiber population is negligible. This leads us
to define the following regularization component:

EReg(D) =

∫

Ω

∣∣∣∣
∣∣∣∣D(x)− 1

Z(x)

∫

y∈Nx

wxyD(y)dy

∣∣∣∣
∣∣∣∣
2

F

dx (6.12)

where wxy reflects the similarity between tensors D(x) and D(y), ||A||F being the Frobenius
norm ||A||F =

√
tr(AtA) and Z(x) is a normalization factor, i.e Z(x) =

∫
y∈Nx

wxydy. The most
critical aspect of such an approximation model is the definition of weights, measuring the similarity
between tensors within the local neighborhood. The use of Gaussian weights is a common weight’s

selection, i.e
[
wxy = e

−d2(D(x),D(y))

2σ2

]
, where d(.; .) is a distance between tensors and σ a scale

factor.
Therefore, in order to perform a joint estimation and regularization of the tensors filed one has to
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minimize the following energy function

E = EReg + λEdata (6.13)

In the context of direct estimation and regularization it is more appropriate to define similarities
directly on the observation space rather than the estimation space. Such a choice will lead to a
tractable estimation, while preserving the convexity of the cost function. Our distance definition as
well as our minimization step are based on the representation of symmetric positive semi-definite
matrices S3

+ as a convex closed cone in the Hilbert space of symmetric matrices S3, where the stan-
dard scalar product is defined by 〈A,B〉F = tr(AtB) which induces the corresponding Frobenius
norm.

Measuring Similarities from diffusion weighted images

We aim at simultaneously estimating and smoothing the tensor field, therefore the weights w(x,y)

in Esmooth should be precalculated using the raw data. The most straightforward estimation of the
distances can be done through the algebric distance between the log(Sk/S0) for two neighborhood
voxels in any direction

d
(
D(x),D(y)

)
=

1

b

√√√√
N∑

k=1

(
log

(
Sk(x)/S0(x)

)− log
(
Sk(y)/S0(y)

))2

(6.14)

One can easily show that such an expression does not reflect similarity between tensors according
to the norm ||.||F . In fact, this leads to

d
(
D(x),D(y)

)
=

√√√√
N∑

k=1

(
gt

k

(
D(x)−D(y)

)
gk

)2

=

√√√√
N∑

k=1

< D(x)−D(y),Gk >2
F (6.15)

where {Gk = gkg
t
k}1≤k≤N do not form necessarily an orthonormal basis. We use a Gram-Schmidt

orthogonalization scheme to calculate an orthonormal basis
{
G̃k

}
1≤k≤N

such that G̃k =
∑

l αklGl

(each new vector of the new basis is a linear combination of the vectors of the initial basis). This
procedure allows us to have an approximation of ||D(x)−D(y)||F directly from the raw data Sk
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and S0 as follows

||D(x)−D(y)||F =

√√√√
N∑

k=1

< D(x)−D(y), G̃k >2
F (6.16)

=
1

b

√√√√
N∑

k=1

( ∑

l

αkl(log
(
Sk(x)/S0(x)

)− log
(
Sk(y)/S0(y))

))2

Semi-Definite Positive Gradient Descent

One now can seek the lowest potential of the cost function towards recovering the optimal solution
on the tensor space. The present framework consists of a convex energy with a unique minimum
which can be reached using a projected gradient descent on the space of semi-definitive positive
matrices. The projection from S3 onto S3

+ denoted by ΠS3
+

is well defined and has an explicit
expression. Indeed, projecting M amounts to replacing the negative eigenvalues in its spectral de-
composition by 0 [136, 67]. Note that we minimize over the set of semi-definite positive matrices
because it is topologically closed, as opposed to the set of definite positive matrices. In the current
setting, the problem is well posed and the projected gradient descent algorithm is convergent for a
suitable choice of the time step dt. The gradient descent can be expressed as the following equation

Dt+1(x) = ΠS3
+

(
Dt(x)− dt

∂E

∂D(x)
(Dt)

)
(6.17)

= ΠS3
+

(
Dt(x)− dt

∂Esmooth

∂D(x)
(Dt)− dtλ

∂Edata

∂D(x)
(Dt)

)
(6.18)

where

∂EReg

∂D(x)
(D) = 2D(x)− 2

∫

y∈Nx

wxy

Z(x)
D(y)dy

− 2

∫

y∈Nx

wxy

Z(y)

(
D(y)−

∫

z∈Ny

wyz

Z(y)
D(z)dz

)
dy (6.19)

∂Edata

∂D(x)
(D) = 2b

N∑

k=1

(
log

(
Sk(x)/S0(x)

)
+ bgt

kD(x)gk

)
Gk (6.20)

Let us define the norm ||.||TF over the whole tensor field D as ||D||TF =
∫

Ω
||D(x)||F dx.

Considering two tensor fields D1 and D2, we show in the following that the gradient of our energy
functional is L-Lipschitz. The constant L will allow us to choose automatically a time step that
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insures the convergence of the algorithm.

∥∥∥∥
∂Edata

∂D(x)
(D1)− ∂Edata

∂D(x)
(D2)

∥∥∥∥
F

=

∥∥∥∥∥2b2

N∑

k=1

[
gt

k (D1(x)−D2(x))gk

]
Gk

∥∥∥∥∥
F

≤ 2b2

N∑

k=1

‖< Gk,D1(x)−D2(x) >F Gk‖F

≤ 2b2

N∑

k=1

|< Gk,D1(x)−D2(x) >F | ‖Gk‖F

≤ 2b2

N∑

k=1

||Gk||2F ||D1(x)−D2(x)||F (6.21)

Therefore ‖∇Edata(D1)−∇Edata(D2)‖TF ≤ 2b2
∑N

k=1 ||Gk||2F ||D1 −D2||TF . Besides, we can
easily show the following inequality

‖∇EReg(D1)−∇EReg(D2)‖TF ≤ 2(1 + 2|Nx|+ |Nx|2)||D1 −D2||TF

where |Nx| is the number of the considered neighbors. Thus the gradient of the objective function is
L-Lipschitz with L = 2λb2

∑N
k=1 ||Gk||2F +2(|Nx|+1)2. Choosing 0 < dt < 1

λb2
PN

k=1 ||Gk||2F +(|Nx|+1)2

makes the projected gradient descent convergent [21].

We can give an interpretation of our regularization energy in terms of diffusion-weighted im-
ages smoothing. It can be easily verified that for each direction k

∫

Ω

< D(x)−
∫

y∈Nx

wxy

Z(x)
D(y)dy,Gk >2

F dx =

1

b2

∫

Ω

[
log

(Sk(x)

S0(x)

)
− log

( ∏
y∈Nx

(Sk(y)

S0(y)

) wxy
Z(x)

)]2

dx
(6.22)

Using Cauchy-Schwartz inequality we obtain :

1

b2

∫

Ω

[
log

(Sk(x)

S0(x)

)
− log

( ∏
y∈Nx

(Sk(y)

S0(y)

) wxy
Z(x)

)]2

dx ≤ EReg||Gk||2F

We can see that minimizing Esmooth has a direct implication on the normalized diffusion weighted
images Sk

S0
. Reconstructing the tensors using a linear combination of the tensors in its neighborhood

leads to the reconstruction of the normalized signals using a weighted geometric mean of the
neighboring signals where the weights are not calculated only with a single volume Sk but also
with the volumes obtained from the other magnetic gradient directions.
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6.2.3 Experimental Validation

In order to validate the performance of the method we (i) have generated artificial tensor volumes
corrupted with synthetic noise, (ii) used manual segmentation on T1 muscle images and tried to
improve the separability of classes in the DTI space after regularization.

Artificially Corrupted Tensors

Let us consider two volumes. One is a 20×20×20 lattice that consists of two homogeneous tensor
fields. For this volume, the tensor fields for each region are

D1 = 0.001×




1 0 0

0 0.5 0

0 0 0.5


 D2 = 0.001×




0.2 0 0

0 0.4 0

0 0 0.2




The second data set is a helix in which the internal voxels are anisotropic and the external ones are
spherical [Fig.6.8-b]. We considered for both datasets a field strength b = 700 s.mm−2, a constant
value S0 = 60 for all volume voxels. The diffusion gradient directions, which are used to generate
the DTI volume corresponding to the described tensors are the columns of the following matrix

G =




1 1 1 1 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
0.41 −0.41 −0.41 0.41 0.41 1 1 0.41 −0.41 −1 −1 −0.41
−0.41 −0.41 0.41 0.41 1 0.41 −0.41 −1 −1 −0.41 0.41 1




The images were generated according to the Stejskal-Tanner equation (6.10) and then corrupted
with a white zero-mean Gaussian noise forming a data set where ground-truth on the tensor are
available.
For comparison we considered the regularization algorithm presented in [34] on noisy tensors that
were estimated by minimizing Edata defined in (6.11). This approach is based on a variational
formulation where a classical anisotropic Φ-function of the spatial gradient of the tensor field is
used as a smoothing term. It is minimized using coupled and constrained PDE’s with an adequate
gradient flow that respects the geometry of the manifold of symmetric positive definite matrices.
The flow considered for comparison is the rank preserving flow that imposes the definite positive-
ness on the tensors. The parameters of the method were tuned to obtain an optimal performance.
As far as our method is concerned, the following parameters were used: λ = 50, Nx = 3× 3× 3,
dt = 10−7. To evaluate the performance of these methods, we considered the average sum of
squared differences (SSD) between the regularized tensors and ground truth ones. Table (6.1)
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demonstrates that our estimation and regularization approach achieves better results in terms of
(SSD) than the approach presented in [34] mainly when the noise variance is important. The de-
finition of the weights ensures a better interaction between tensors and preserves their variability.
Indeed, the estimation of a noise free tensor involves only similar neighboring tensors. On the
other hand, the anisotropic diffusion regularization relies on gradient information which is not ro-
bust when the noise variance is important with respect to the gradient magnitude.
In order to assess qualitatively our algorithm, we reported in [Fig.(6.7), Fig.( 6.8)] the resulting

Helix dataset Homogeneous regions
σn 0.5 1.2 3 1.5 4 9
Noisy tensor 1.08 6.24 39.54 9.82 71.25 393.38
Method in [34] 0.33 1.60 10.57 3.32 22.47 120.70
Our Method 0.41 1.38 3.78 0.44 4.23 18.30

Tab. 6.1: Average Sum of Square Differences (SSD)×104. Comparisons between our method and the one
in [43]

tensors using our regularization method and the constrained anisotropic one. We can observe that
our method achieves a better restoration, even in the presence of a high noise level.

DTI towards Understanding the Human Skeletal Muscle

In order to perform validation on real data, the following experiment was considered. DTI acquisi-
tions of human skeletal muscle (calf) using 12 directions were carried out on a 1.5 T MRI scanner
with b = 700 s.mm−2. In order to improve the signal-to-noise ratio, the acquisition was repeated
thirteen times (one can use the average of the measurements) while a high resolution T1-weighted
volume was also obtained and manually segmented [Fig.( 6.9)].

In order to proceed with an evaluation of the proposed method, we consider the classification
result on the regularized tensors and we compare it to the ground truth provided by the manual
segmentation on the T1-weighted volume. The muscles that were considered in our experiments
are the soleus (SOL), lateral gastrocnemius (LG) and the medial gastrocnemius (MG). The clas-
sification process is based on weak linear classifiers (in our case a multi-class linear SVM [73])
separating each class of muscle versus all others. Then, the success rate (percentage of voxels
being attributed to the right class) from the classifier with respect to the ground truth was deter-
mined. In our validation process, we have performed the classification test thirteen times (for each
volume) on the tensors computed using : (i) direct estimation without any regularization (DE), (ii)
direct estimation and regularization (DER). An average correct classification rate was computed
for the thirteen experiences for noisy tensors as well as regularized ones. Besides, we performed
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(a) (b)

(c) (d)

Fig. 6.7: Tensors on a volume slice (Homogeneous tensor field): (a) Noisy tensors (b) Ground-truth (c)
Result obtained with [43] (d) Result obtained with our method
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(a) (b)

(c) (d)

Fig. 6.8: Tensors on a volume slice (helix): (a) Noisy tensors (b) Ground-truth (c) Result obtained with [43]
(d) Result obtained with our method
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Fig. 6.9: A slice of the T1-weighted volume, different muscle groups segmented manually

classification using tensor field estimated on the average of the thirteen acquisitions (ADE). One
would expect that since muscles consist of myo-fibers of the same nature, the classification should
be improved if the estimation of the tensors is properly done, i.e. with appropriate regularization.
In [Table 6.2], we present quantitative validation of the present framework for the considered
muscles. One can see that our method improves in the correct classification rates with respect to a
plain direct estimation. We also obtain better results when compared to the averaging+estimation
method. We also show the result of our regularization on a slice of the volume in [Fig. ( 6.10)].

Fig. 6.10: Estimated tensors without regularization, tensors obtained with our method

6.2.4 Discussion

We proposed an approach to direct estimation and regularization of diffusion tensor images. The
contribution was the regularization term that assumes linear approximation of neighborhood ten-
sors as well as the definition of the similarity measure between tensors. The convex nature of
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Overall MG LG SOL
DE 78.1% 86.16% 51.1 % 84.43%

ADE 84.46% 90.47% 65.72% 88.43%
DER 86.45% 91.82% 69.76% 89.97%

Tab. 6.2: Correct classification rates for the different methods and for each muscle group. The first and third
row show the average correct classification rates for the set of 13 volumes

the proposed cost function which can be easily optimized is an attractive aspect of our method.
Our algorithm was compared and outperformed the anisotropic constrained regularization using
generated data with known noise model, and significantly improved human skeletal muscle seg-
mentation/classification through DTI using real data. Another possible extension of this work is to
replace the Frobenius norm in the energy functional by the Riemannian distance [32] or the Log-
Euclidean distance [55]. However this will be done at the expense of the convexity of the function
and the computational time.

6.3 Speckle suppression in ultrasound sequences

6.3.1 Introduction

Ultrasound imaging is a popular non invasive and low cost technique to observe the dynamical
behavior of organs. Unfortunately the produced images are corrupted by a multiplicative noise
(speckle) that affects their quality and complicates the diagnosis task. Therefore, speckle removal
could provide better images while preserving image details is fundamental before exploiting the
data.

In the literature, numerous methods for speckle suppression were proposed. Some of them
transform the multiplicative noise problem into an additive one by considering the logarithm of
the image and assume that the noise is Gaussian [72, 2]. The limitation of such a method lies in
the fact that the logarithm function reduces the contrast in the image and makes the task of denois-
ing more complex. Other techniques based on total variation minimization in the wavelet domain
[111] fail to preserve image details since they rely on the piecewise smoothness assumption. The
anisotropic diffusion [154] relies on the gradient information which is not robust when dealing
with high noise levels. We want to point out also that these methods, consider only fixed images
and not sequences. The temporal aspect was addressed in [63, 1] using temporal averaging. This
technique is efficient tool of speckle removal but due to motion, fine details can be blurred unless
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an appropriate weight definition is done. Techniques that aim to perform signal correction through
motion correction were also investigated [104]. The main challenge of these methods refers to the
reliable estimation of the motion fields, a difficult task due to presence of speckle.
In this section, we will introduce a speckle suppression approach for ultrasound sequences. The
regularization model (5.13) will be extended to temporal sequences as well. The interactions be-
tween pixels are determined by weights that reflect the similarity in the temporal and the spatial
domain with implicit constraints imposing motion consistency. As far as fidelity to data term is
considered, we will adapt it to the noise model.

6.3.2 Problem Statement

Let us consider two image sequences U and I defined on T × Ω where T is the length of the
sequence and Ω refers to a frame spatial domain. These two sequences are related according to
I = U ∗ n with n being a noise sequence that follows a Rayleigh distribution.

r(n) =
n

σ2
exp(− n2

2σ2
)

In order to recover the noise free sequence U we have to minimize a cost function that insures
smoothness while imposing a fidelity constraint, to the observed sequence.
To define the fidelity to data term, we will consider the link between the Maximum a Posteriori
(MAP) estimation framework and the total variation formulation. We recall The MAP estimator
amounts to minimizing an energy composed of two terms : the image model that is the regulariza-
tion term and the noise model that corresponds to the fidelity to data term (second part of (2.2.4)).
Hence, the observed noise likelihood can be chosen as a data term. Explicitly for a frame Ut

Edata(Ut) = −log(P (It|Ut)) = −log(P (nt))
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Under the assumption that (i) the noise observations are independent and (ii) identically distributed,
and (iii) U and I have non zero intensity for each pixel in the sequence, then we can write:

Edata(ut) = − log




|Ω|∏
i=1

r(nt(i))


 = −

|Ω|∑
i=1

log (r(nt(i)))

=

|Ω|∑
i=1

[
−log

(
nt(i)

σ2

)
+

nt(i)
2

2σ2

]

=

|Ω|∑
i=1

[
− log

(
It(i)

σ2Ut(i)

)
+

I2
t (i)

2σ2U2
t (i)

]

The continuous formulation for the data energy is

Edata(Ut) =

∫

Ω

[
− log

(
It(x)

σ2Ut(x)

)
+

I2
t (x)

2σ2U2
t (x)

]
dx (6.23)

=

∫

Ω

[
log (Ut(x)) +

I2
t (x)

2σ2U2
t (x)

+ Cte

]
dx (6.24)

Now, if we consider the function f(x) = log(x) + 1
2σ2

I2
t (x)

x2 , it can be easily shown that the second
derivative of f is positive for x ≤

√
6It(x)
2σ2 . This function is convex on the interval ]0, 255] if√

6It(x)
2σ2 > 255 for any intensity value It(x). For

(
σ2 ≤

√
6×Inf(It)
2×255

)
the function f is convex. In

practice it is verified when (σ ≤ 0.1) which is equivalent to small noise amount. We can then
conclude that Edata is a convex function for low values of σ.
As far as the regularization term is concerned, we select the model introduced in the previous
chapter that leads to a smooth sequence where each pixel is expressed as a weighted mean of
the remaining pixels of the sequence. This model is more relevant for natural images than the
piecewise constant one. For this application, we will consider the extension of this formulation to
ultrasound sequences to account for the time dimension and to perform temporal filtering as well
as spatial filtering. In this case Ereg is defined as

Ereg(U) =

∫∫

T×Ω

(LUt(x)− Ut(x))2 dxdt (6.25)

LUt(x) =

∫∫
T×Ω

w(x, t,y, t1)Ut1(y)dydt1∫∫
T×Ω

w(x, t,y, t1)dydt1
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where w(x, t,y, t1) is a similarity measure between two pixels x and y observed on the frame t and
t1. Finally, we define the global cost function that is minimized to estimate the noise free image as

E(u) = Ereg(U) + λ

∫ T

0

Edata(Ut)dt (6.26)

where λ is a trade-off parameter between the regularization and the fidelity to data term.
Finally the estimation of the noise free ultrasound sequence is obtained through minimizing the
cost function given in equation (6.26). The minimization is done through a gradient descent
scheme. Starting from the noisy observation U0 = I , the restored image is obtained at the conver-
gence of the sequence Uk

t

Uk+1
t (x) = Uk

t (x)− dt

[
∂Ereg

∂Ut(x)
+ λ

(
1

Ut(x)
− 1

σ2

It(x)

Ut(x)3

)]
(6.27)

In order to decrease the computation cost we will restrict the interaction between pixels to a local
neighborhood domain and not the whole image. Therefore, we note : Πx the spatial neighborhood
centered on a pixel x and Tw the size of the temporal window (the number of frames that interact
directly with a given frame). In this case, the derivative of the regularization term is equal to

∂Ereg

∂Ut(x)
= 2

∫

Πx

∫ t+Tw

t−Tw

(
Ut1(z)−

∫

Πz

∫ t1+Tw

t1−Tw

w(z, t1,y, t2)
Z(z, t1)

Ut2(y)dydt2

)
w(z, t1,x, t)

Z(z, t1)
dzdt1

+ 2
(

Ut(x)−
∫

Πx

∫ t+Tw

t−Tw

w(x, t,y, t1)
Z(x, t)

Ut1(y)dydt1

)
(6.28)

with Z(x, t) =
∫

Πx

∫ t+Tw

t−Tw
w(x, t,y, t1)dydt1 the normalization coefficient. Note that such a deriv-

ative formulation assumes that the weights are independent from the image U which is a valid as-
sumption because weights are calculated in the beginning of the process on the noisy observations.

6.3.3 Weights Computation

In our algorithm we combine spatial and temporal filtering. Therefore, a robust weight definition is
crucial to avoid details blurring due to motion. More explicitly, with a good definition of weights
there is no need to estimate the motion of the organ. In the context of video denoising corrupted
by additive Gaussian noise [27], the authors provided a similarity measure to perform a weighted
average based denoising without any motion compensation. In this work, we will suggest a suit-
able definition of the weights in the case of multiplicative Rayleigh noise. In particular, we will
consider a distance based on the spatial information as well as the temporal one. Hence, we will
consider patch based similarity toward weight computation. We recall that this measure relies on
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the assumption that an image is stationary (at least at local scale), and redundant which means that
a given patch has several copies in the entire ultrasound sequence.

Let us characterize a pixel x at the frame Ut by the set of neighboring pixels in the same frame.
Let us consider now the L2 distance between two patches of size (2p + 1)× (2p + 1) centered on
x and y in two different frames Ut1 and Ut2 in the sequence.

ds(x, t1,y, t2) =
∑

z∈[−p,p]2

(It1(x + z)− It2(y + z))2

=
∑

z∈[−p,p]2

(Ut1(x + z)nt1(x + z)− Ut2(y + z)nt2(y + z))2

In case the observed patches are derived from the same speckle free patch, we can write:

ds(x, t1,y, t2) =
∑

z∈[−p,p]2

U2
t1
(x + z)(nt1(x + z)− nt2(y + z))2

This equation shows that contrarily to additive noise, the L2 distance is not only dependent on
noise distribution but also on the noise image intensity. To overcome this dependence one can
compute

ds(x, t1,y, t2) =
∑

z∈[−p,p]2

(It1(x + z)− It2(y + z))2

U2
t1(x + z)

To determine the distance ds(x, t1,y, t2), one needs an estimation of Ut1(x). A simple way to do
that is to compute the average of It1 over the patch around x. Furthermore, in order to obtain a
symmetric distance with respect to t1 and t2 we will consider U2

t1
= Ut1 ∗Ut2 . Thus, we obtain the

following distance definition

ds(x, t1,y, t2) =
∑

z∈[−p,p]2

(It1(x + z)− It2(y + z))2

Ũt1(x + z)Ũt2(y + z)
(6.29)

Ũt1(x) =
1

(2p + 1)2

∑

z∈[−p,p]2

It1(x + z) (6.30)

Now if we consider the temporal aspect of the sequence, we can assume that two similar pixels that
belong to the same structure have similar displacement vectors. Thus, in addition to the distance
between patches, the variation of pixel intensity over time should be taken into account. To this
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end, we consider temporal windows of size (2tc+1) and similarly to the spatial distance, we define

dt(x,y, t1, t2) =
tc∑

k=−tc

[It1+k(x)− It2+k(y)]2

Ut1+k(x)Ut2+k(y)
(6.31)

In this case we will also replace the actual intensity Ut(x) for a given frame t by its approximation
Ũt(x) defined in (6.30) so that

dt(x,y, t1, t2) =
tc∑

k=−tc

[It1+k(x)− It2+k(y)]2

Ũt1+k(x)Ũt2+k(y)
(6.32)

Finally we define the similarity measure between x and y belonging to two different frames as a
decreasing function of the distances ds(x,y, t1, t2) and dt(x,y, t1, t2). A possible weight definition
is

w(x, t1,y, t2) = exp

(
−ds(x, t1,y, t2)

2h2
s

)
exp

(
−dt(x, t1,y, t2)

2h2
t

)
(6.33)

hs and ht are parameters that have an impact on the selection degree of pixels that interact together.
They have an influence on the smoothness of the final result.
To summarize, the proposed weights are designed to take into account the noise properties, mainly
the fact that it is multiplicative. With such definition, we restrict interactions between pixels only
to similar ones in order to preserve details in each frame. We take also into account motion con-
sistency by computing similarity measure on temporal windows.

6.3.4 Experimental Results

In the present section we will focus on the experimental validation of the proposed method. To
this end we used both synthetic and real data. In the first experiment, we used synthetic images
with artificial speckle. The speckle is simulated by low pass filtering a complex Gaussian random
field and computing its magnitude [2]. We compared our algorithm to the anisotropic diffusion al-
gorithm proposed in [154] and a wavelet based technique proposed in [116]. We have to point out
that we used the Matlab implementation provided by the authors, and the parameters were selected
in order to achieve the optimal performance of each algorithm. Regarding our algorithm we con-
sidered 11×11 window size for Πx while λ = 0.05. For weight computation the parameters setting
is: hs = σn

5
and a 3×3 patch size. We did not consider the temporal aspect for this experiment

because the synthetic data are single images and not sequences. For an evaluation we considered
the PSNR of the reconstructed images Û that is a function of the mean square error with respect to
the ground truth image.
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Sythetic1 [116] Synthetic2
σn 1 0.5 0.25 1 0.5 0.25
Corrupted image 22.20 27.93 33.95 20.44 26.47 32.62
OurMethod 29.16 37.32 38.01 33.88 38.89 43.53
SRAD[154] 24.88 33.09 40.95 31.55 38.36 46.15
wav [116] 29.14 35.48 41.69 31.06 35.85 39.75

Tab. 6.3: PSNR values for denoised image corrupted by Speckle

PSNR = 10log10
2552

MSE
MSE =

T∑

t=0

∑

x∈Ω

(Ut(x)− Ût(x))2

In table (6.3) we reported the SNR value for the different methods and with different noise vari-
ance. This results show that our method achieve high performance when the noise variance is
important. Such a behavior is justified by the fact that we consider large spatial neighborhood (Πx)
for filtering which reduces considerably the variance inside each region. The anisotropic diffusion
algorithm (SRAD)[154] is more local and its numerical scheme is based on interactions between
pixels at local scale when compared to our algorithm. Besides, the gradient information is not re-
liable in case of high level noise. The approach presented in [116] and the choice of the parameter
of threshold used in this algorithm to compute the noise free wavelet coefficients is critical to in-
sure the balance between edge preserving and noise suppression. In figure [Fig.(6.11)] one can see
the restoration results for the synthetic image using the different methods and different variance.
The method based on the wavelet transform provides images with sharp contours but the noise
remains in homogeneous regions. The anisotropic diffusion results in blurry edges while smooth-
ing the homogeneous areas. Our algorithm reaches an optimal balance where the obtained images
are completely smoothed inside each region while the edges being sharp. As we stated before we
consider large neighborhood size to remove the speckle, while encoding the image structure in our
weight definition to preserve image discontinuities and details. This figure show that our method
preserves the image discontinuities and contrast between regions better than the two other algo-
rithms. As far as real data are concerned we considered an ultrasound sequence of the left ventricle
on which we applied our speckle removal algorithm. The parameters used for this experiment are:
a 7×7 window size for Πx, λ = 0.5 and Tw = 5. The weight computation was performed using
3×3 patch size, a temporal window for comparison of size tc = 2 and hs = ht = 0.05. In figure
[Fig.(6.12)] we reported the restoration result on one frame of an ultrasound sequence. To evalu-
ate the quality of restoration, we extracted the boundaries of the ventricle, using a level set based
technique. The contours obtained using our method are smooth and the structure being present
in the image were preserved. The contour extracted in the frame restored using our approach is
similar to the one associated to the anisotropic diffusion, but this method yields piecewise smooth
images. Regarding the wavelet based technique, it produces image with sharp details but the con-



172 Chapter 6

(a-1) (b) (c) (d)

(a-2) (b) (c) (d)

Fig. 6.11: (a-1) Image (Sythetic1) corrupted by the speckle σn = 0.5 (a-2) Image (Sythetic2) corrupted by
the speckle σn = 1 (b) Result using the anisotropic diffusion [154] (c) Result using the wavelet
based technique [116] (d) Result using our algorithm

tours are not smooth. To evaluate the impact of the time component we compared the algorithm
performance by processing the whole sequence using Tw = 2 and by processing it frame by frame
(Tw = 0). and the obtained results are shown in figure [Fig.(6.13)]. One can see that using a tem-
poral window is more efficient for speckle reduction and this is illustrated by the residual images
[Fig.(6.13-c),Fig.(6.13-e)](difference between the filtered image and the observed one). Besides,
we notice that considering the time component don’t introduce a blur on the images because our
weight definition is robust enough to compensate the effect of motion. To conclude we can say
that the experimental results show that our method can deal with correlated speckle even though
we make the assumption of independence between pixels. We have to point out that the proposed
speckle removal approach is flexible with the selection of the scale of interaction between pixels
contrarily to the PDE based technique presented in [154]

6.3.5 Discussion

In this section we addressed the problem of speckle removal in ultrasound sequence. It was shown
that the underlying linear image model is a good assumption even in the case of multiplicative
noise. The similarity measure between patches was modified to fit the noise model because the ba-
sic L2 distance between patches has a distribution that depends on the actual intensity of the pixel.
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(a) (b) (c) (d)

Fig. 6.12: Results of restoration on real ultrasound frames. (a) Observed image (b) Result using algorithm
[116] (c) Anisotropic diffusion [154] (d) Results of our algorithm

(a) (b) (c)

(d) (e)

Fig. 6.13: Results of filtering real ultrasound frames (a) Observed image (b) Result of our algorithm with-
out temporal component (Tw = 0) (frame by frame filtering) (c) Result of our algorithm using
temporal filtering (Tw = 2) (d) Residual obtained with our algorithm without temporal compo-
nent (Tw = 0) (frame by frame filtering)(e) Residual obtained with our algorithm using temporal
filtering (Tw = 2)
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Further improvement can be considered like selecting a more appropriate optimization technique
to avoid local minima. A weight definition that is specific to the Rayleigh distribution can also be
explored.

6.4 Conclusion

In this chapter, we demonstrated that the regularization model proposed in the previous chapter can
be successfully exploited in order to tackle other signal reconstruction problems with different data
and noise models. We demonstrated how we can adapt this model to address signal reconstruction
for more complex scenarios. We demonstrated how one can incorporate more appropriate image-
driven noise-models, as well as how to deal with complex signal perturbations. Last, but not least
we show how such a model can be extended to address the case of constrained manifolds. Finally
the experimental results demonstrated the flexibility and the accuracy of such model.
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Conclusion

In this thesis we studied the problem of image denoising and texture preservation, as well as their

applications in a number of fields. We have introduced certain novel ideas that incorporate image

structure in the denoising process. Towards better preservation of fine details and texture, we

considered data driven image models. These ideas were explored using appropriate mathematical

formulations and have been considered to address complex real scenarios. Promising qualitative

results, as well as comparisons with the state of the art methods demonstrated the potentials of our

contributions.

In this document, we focused on image enhancement with main aim being textured image
restoration. An efficient regularization process must involve an appropriate definition of the inter-
action between pixels that have to be consistent with the image content. This is the issue that we
addressed during the thesis and our main contributions are

• Addressing the limitation of conventional approaches, that often consider global parametric
models without adapting them to local image context, through (i) introducing the notion of
soft classification in the denoising process (ii) considering kernel based non parametric im-
age model exploiting the available noisy observations. In order to reflect the data variability
and mainly to account for the difference between patches distribution in textured and smooth
regions, we considered variable bandwidth kernels. The result of the soft classification step
was used for the bandwidth selection. This model was considered in an MPM estimation
framework to determine the noise-free intensity. The novel proposed approach is able to
better preserve texture and experimental results demonstrated its potential

• Introducing random walks and particle filtering technique that aims to adapt the filtering do-
main to image geometry. To this end, image structure is captured using local co-occurrence
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statistics and is considered in the enhancement algorithm. The reconstruction process is
modeled using a dynamical system where a number of particles are exploring the image do-
main to recover the most appropriate observations to be considered to estimate the intensity
of a given noisy observation. Toward optimal exploration of the image (i) we defined the
particle evolution using the prior learning of the co-occurrence between observations (ii)
and considered likelihood function to evaluate the relevance of the state of a particle and
its consistency with the observation to be recovered. Promising results using additive and
multiplicative noise models demonstrate the efficiency of such a technique.

• Considering a global image model and a convex functional to be minimized. This functional
relies on linear image model instead of the constant smooth one classically used in the TV
based formulation. Within the proposed framework, the interaction between pixels describes
better the image complexity. These interactions are expressed through weights that reflect
the photometric distance between pixels as well as the spatial one. Regarding the photo-
metric distance, we investigated new means of defining it (i) using an alternative features
vector to describe pixels based on projection on subspaces of image patches (ii) taking into
consideration the noise distribution and its impact on the distribution of the distance between
patches. Finally, we introduced the notion of automatic spatial bandwidth selection to better
capture the image structure. Such formulation provides a simple way to model natural im-
age complexity. Comparison with state of the art methods shows interesting quantitative and
qualitative results that reflect the potentials of the proposed framework.

• Investigating the use of the variational technique proposed in this thesis towards addressing
applications with specific signal properties. First, we addressed the RGB image enhance-
ment issue including more realistic noise properties. Next, we were concerned with speckle
reduction in ultrasound images by defining appropriate data term consistent with the noise
model. Last but not least, we extended our framework to Diffusion tensors estimation and
regularization. The variety of fields, noise models and image properties demonstrate the
flexibility and the efficiency of the proposed technique.

The different components introduced in this thesis carry on certain strengths as well as some lim-
itations. It is natural, to asses a comparison between the three different methods. Like in the
previous examples, the PSNR values are presented in table 7.1. They show that the functional min-
imization approach is the most efficient one. This confirms the observation that considering global
cost function is better then the local ones since it enforces coherence of the denoising process for
neighboring pixels. Furthermore, the underlying image model and the variable bandwidth kernel
are more realistic. The images presented in figure [Fig. (7.1), Fig. (7.2)] proved that better image



7. CONCLUSION 177

Barbara Boat Fingerprint House Lena Baboon
MPM-var 28.9 29.11 26.68 31.02 31.25 25.39
Random-walk 29.29 28.72 26.4 31.53 31.07 25.51
Convex-Min 30.46 29.94 27.65 32.34 32.12 26.02

Tab. 7.1: PSNR values for denoised image (The PSNR of the image corrupted by gaussian noise of std=20
is equal to 22.15)

quality is obtained with the third approach.

Perspectives

In this thesis our objective was to provide some answers to the problem of natural images denois-
ing and texture restoration. Nevertheless, many questions remain open. This concerns mainly the
definition of capturing photometric correlation between pixels. The definition of new set of fea-
tures is an interesting direction but the selection of the most appropriate features that have to be
considered could bring further improvement. As we pointed out when we discussed the distrib-
ution of the distance between patches, the size of the patches considered for comparing pixels is
important. Hence, more generally adapting the scale of the features considered when comparing
pixels to the texture scale is a prominent issue. Regarding the spatial bandwidth of the filter addi-
tional constraints based on some prior knowledge on the image could be pertinent information to
determine the optimal spatial bandwidth at each position. The automatic recognition of oscillations
due to noise and other related to texture is a challenging question that was addressed in the second
chapter of this thesis. Nevertheless, improving the classification outcome by considering other lo-
cal descriptors is a direction to be explored. For instance such a classification could be integrated
as prior information in different image processing tasks ( demosaicing, inpainting, denoising ...).
Extensive validation using a larger image database and a comparison with commercial denoising
software could lead to better assessment of the performance of the proposed methods. Decreasing
the computational complexity is also a task to be considered. As far as noise model is considered,
we have shown in the previous chapter that the noise model is far from being white noise since
we observe an inter-channel and intra-channel correlation between noise samples. Including more
realistic noise models where the correlations between pixels are taken into account is an interesting
direction to deal with.
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(a) (b)

(c)

Fig. 7.1: Results of Barbara image restoration (a) using Random walks (b) using MPM estimation with vari-
able kernels bandwidth (c) using functional minimization based approach with variable bandwidth
spatial kernel
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(a) (b)

(c)

Fig. 7.2: Results of Baboon image restoration (a) using Random walks (b) using MPM estimation with vari-
able kernels bandwidth (c) using functional minimization based approach with variable bandwidth
spatial kernel
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Conclusion en Français

Au cours de cette thèse nous avons étudié les techniques de débruitage des images et la préservation

de la texture. Nous avons introduit quelques idées nouvelles pour incorporer la structure de

l’image dans le processus de filtrage. Pour une meilleure préservation des détails et de la tex-

ture, nous avons considéré des modèles construits à partir de l’observation bruitée. Cette idée a

été mise en place à l’aide de formulation mathématique où on a essayé de prendre en considération

des scénarios plus complexes. Des résultats qualitatifs prometteurs et des comparaisons avec l’état

de l’art ont démontré le potentiel de nos contributions.

Dans ce document, nous nous somme intéressés à la restauration des images avec un objectif
de préservation de texture. Un processus de régularisation efficace dépend de la définition des
interactions entre les pixels qui doit être cohérente avec le contenu de l’image. Ceci est le problème
que nous avons traité dans cette thèse et nos plus importantes contributions sont

• Proposer une alternative aux approches conventionnelles qui considèrent souvent des modèles
globaux et paramétriques qui ne sont pas adaptés au contexte local du pixel et ceci à travers
(i) l’introduction de la notion de classification dans le processus de débruitage (ii) considérer
des modèles d’image non paramétriques en exploitant l’observation bruitée. Afin de refléter
la variabilité des données et tenir compte de la différence dans la distribution des patches
entre les zones texturées et les zones homogènes, nous avons considéré des noyaux de taille
variable. Le résultat de l’étape de classification a été utilisé pour la sélection de la taille du
noyau. Ce modèle a été considéré dans le cadre d’une estimation MPM afin de déterminer
l’intensité sans bruit. Cette approche nouvelle permet une meilleure préservation de la tex-
ture et les résultats expérimentaux ont démontré son potentiel.

• Introduire les marches aléatoires et les filtres à particules dans le but d’adapter le domaine de
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filtrage à la géométrie de l’image. Pour cette raison, nous allons proposer une caractérisation
statistique de la structure de l’image (inspirée de la matrice de co-occurrence) et l’utiliser
dans l’algorithme de débruitage. Le processus de reconstruction est modélisé à l’aide d’un
système dynamique où un nombre de particules est entrain d’explorer le domaine de l’image.
Ceci permettra de trouver les observations les plus pertinentes qui seront considérées pour
estimer l’intensité d’une observation bruitée. Pour une exploration optimale du domaine de
l’image (i) nous avons défini l’évolution des particules en utilisant une information à priori
en considérant la co-occurrence entre les observations (ii) nous avons considéré une fonction
de vraisemblance afin d’évaluer la pertinence de l’état d’une particule et sa cohérence avec
l’observation qu’on veut reconstruire. Des résultats expérimentaux prometteurs pour le cas
du bruit multiplicatif et additif démontrent l’efficacité de cette technique.

• Considérer un modèle d’image global et une fonctionnelle convexe à minimiser. Cette fonc-
tionnelle s’appuie sur un modèle d’image linéaire contrairement aux formulations varia-
tionelles classiques qui supposent que l’image est constante par morceaux. Avec l’approche
que nous avons adoptée les interactions entre les pixels décrivent mieux la complexité de
l’image. Ces interactions sont exprimées à travers la fonction de poids qui reflètent la sim-
ilarité photométrique et spatiale entre les pixels. Concernant la similarité photométrique,
nous avons exploré d’autres moyens pour l’exprimer (i) en utilisant un nouveau vecteur car-
actéristique pour décrire les pixels par projection des patches de l’image dans un autre sous
espace (ii) prendre en considération la distribution du bruit et son impact sur la distribution
de la distance entre les patches. Finalement, nous avons introduit la notion de la sélection au-
tomatique de la taille du noyau spatial afin de mieux intégrer la structure de l’image dans le
filtrage. Cette formulation donne un moyen simple pour modéliser la complexité des images
naturelles. La comparaison avec l’état de l’art montre des résultats quantitatifs et qualitatifs
intéressants qui reflètent les potentiels de cette technique.

• Appliquer la technique de minimisation d’une fonction d’énergie proposée dans cette thèse
à d’autres problèmes et l’adapter aux spécifications de ces derniers. Au début, nous avons
étudié le problème de la restauration des images RGB tout en considérant des propriétés de
bruit plus réelles. Ensuite, nous avons étendu cette formulation au problème d’estimation
et régularisation des tenseurs de diffusion. Finalement, nous nous sommes intéressés à
la réduction du Speckle dans des séquences d’images ultrasons en définissant un terme
d’attache aux données plus adapté au modèle de bruit.

Les différentes idées exposées au cours de cette thèse présentent des éléments de réponse au
problème de filtrage mais ont aussi leurs limitations. Pour procéder à une comparaison entre les
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Barbara Boat Fingerprint House Lena Baboon
MPM-var 28.9 29.11 26.68 31.02 31.25 25.39
Random-walk 29.29 28.72 26.4 31.53 31.07 25.51
Convex-Min 30.46 29.94 27.65 32.34 32.12 26.02

Tab. 8.1: PSNR des images débruitées par les différentes méthodes ( le PSNR des images corrompue par
un bruit additif Gaussien d’écart type std=20 est égal à 22.15)

différentes méthodes, nous avons présenté les valeurs de PSNR pour la série d’images test dans le
tableau (8.1). Ces résultats montrent que l’approche basée sur la minimisation de fonctionnelles
est l’approche la plus efficace. Ceci est un argument en faveur de l’usage des fonctions de coût
globales puisque cela renforce la cohérence du processus de débruitage pour tous les pixels voisins.
De plus, le modèle sous-jacent ainsi que le choix des noyaux de taille variable sont plus proches de
la réalité. Les images présentées dans les figure [Fig. (8.1), Fig. (8.2)] prouvent que une meilleure
restauration des images en utilisant la dernière approche.

8.1 Perspectives

Au cours de cette thèse notre objectif était de fournir quelques éléments de réponse au problème
de la restauration des images et principalement la texture. Toutefois plusieurs questions restent ou-
vertes. Ceci concerne principalement la définition de la corrélation photométrique entre les pixels.
La définition appropriée d’un vecteur caractéristique est une direction intéressante et peut apporter
des améliorations. Comme nous l’avons signalé quand nous avons discuté de la distribution statis-
tique de la distance entre patches, la taille du patch à considérer est importante. Ainsi, adapter la
taille des patches et plus généralement l’échelle des descripteurs à l’échelle de la texture est une
question qui mérite d’être étudiée. Considérant les interactions spatiale entre les pixel et la taille
du noyau, l’ajout de contraintes supplémentaires ainsi qu’une connaissance à priori sur l’image
pourrait être une information pertinente afin de déterminer la taille du noyau optimal pour chaque
pixel. La reconnaissance des oscillations qui sont dûes au bruit et celles liées à la texture présente
encore un défi et cette question a été étudiée dans le deuxième chapitre de cette thèse. Cependant,
l’amélioration des résultats de la classification en considérant d’autres descripteurs locaux est une
direction qui peut être explorée davantage. En effet, cette classification peut être intégrée en tant
q’information à priori dans plusieurs applications de traitement des images (dématriçage, inpaint-
ing, débruitage,...). Une validation extensive en utilisant une base d’images plus large ainsi qu’une
comparaison avec des logiciels commerciaux de filtrage d’image peut être effectuée afin de mieux
évaluer les performances des méthodes proposées dans ce travail. Réduire le temps de calcul est
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(a) (b)

(c)

Fig. 8.1: Résultat de la restoration de l’image Barbara (a) En utilisant les marches aléatoires (b) En utilisant
l’estimation MPM et les noyaux de taille variable (c) Minimisation de fonctionnelle en utilisant
des noyaux de taille variable
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(a) (b)

(c)

Fig. 8.2: Résultat de la restoration de l’image Baboon (a) En utilisant les marches aléatoires (b) En utilisant
l’estimation MPM et les noyaux de taille variable (c) Minimisation de fonctionnelle en utilisant
des noyaux de taille variable
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aussi une tâche à accomplir dans le futur. En ce qui concerne le modèle du bruit nous avons montré
dans le chapitre 4 que le bruit n’est pas blanc étant donné qu’on observe une corrélation aussi bien
dans un canal que entre les canaux. Pour cette raison, inclure des modèles de bruit plus complexes
où on tient compte de cette corrélation est une direction qui mérité d’être considérée.
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