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Introduction (Version Française)

La plupart des organismes vivants sont munis de centre de perception visuelle de plus ou moins
grande complexité leur permettant d’interagir avec leur environnement immédiat. Le but princi-
pal de la vision par ordinateur consisterait donc à extraire et comprendre le contenu d’images afin
de reproduire artificiellement cette capacité d’interaction à l’aide de robots ou de bras motorisés.
Cependant l’interaction physique n’est pas essentielle, un but annexe tend à utiliser ces techniques
afin d’améliorer la qualité des liens homme/ordinateurs avec des applications liées au traitement
des images, des flux vidéo (surveillance, suivi d’objets et structures. . . ) ou encore l’aide au diag-
nostic dans le milieu médical. Cette problématique d’interprétation des images fait donc appel à
plusieurs domaines de recherche tels que la reconnaissance de structures, intelligence artificielle,
vision par ordinateur, traitement des images, apprentissage, etc. Plus récemment l’analyse des
images médicales est apparue comme un axe de recherche important faisant appel à plusieurs des
branches précédemment évoquées. Depuis quarante ans les travaux de recherche sur ces sujets sont
nombreux et touchent des domaines scientifiques aussi vaste que les mathématiques appliquées,
l’informatique, la mécanique, la physiologie, biologie et l’anatomie.

Supposant que le système visuel de l’être humain est le plus performant (en termes d’acquisition
et de traitement), de nombreux travaux ont été effectués afin d’en comprendre son fonctionnement
et de pouvoir le reproduire en partie. Pourtant l’état de l’art sur la compréhension du système
humain découlant des théories de David Marr, reste insuffisant pour pouvoir être appliqué di-
rectement et l’essentiel des recherches applicatives de la vision par ordinateur vont principalement
se focaliser sur différentes techniques issues des mathématiques appliquées. De telles approches
nécessitent la sélection d’un modèle (représentation paramétrique du problème) établissant un lien
avec les observations (images, données médicales, sorties de systèmes stéréoscopiques ou multi
vues, etc.) ainsi que l’utilisation de techniques efficaces pour estimer les paramètres du modèle. Il
existe donc une infinité d’approches possibles pour résoudre un problème de perception visuelle.
Par ailleurs ces problèmes sont très souvent mal posés car les dépendances existant entre observa-
tions et modèle sont non linéaires, faiblement contraintes et donc difficiles à optimiser.
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Par ailleurs, le choix de l’approche utilisée pour résoudre un problème lié à la perception vi-
suelle est largement justifié par le domaine d’application. Par exemple, le positionnement automa-
tique et la localisation d’obstacles seront considérés en robotique, l’estimation des déplacements
et le suivi d’objets sont utilisés pour traiter les flux vidéos et les techniques de reconstruction ou
d’estimation de la position d’objets tridimensionnels sont étudiés lorsque des systèmes stéréoscopique
ou monoculaire sont utilisés. Enfin, des modèles statistiques seront souvent utilisés en traitement
des images médicales.

Durant les deux dernières décennies, nous avons pu observer d’importants progrès dans les
techniques permettant d’examiner les tissus biologiques de façon non invasive. Les dernières
générations de scanners fournissent des informations anatomiques et physiologiques ainsi qu’un
faisceau de données liées à certaines pathologies pouvant être exploitées pour un diagnostic précoce
et suivies de mesures thérapeutiques adaptées. La généralisation des techniques d’imageries médicales,
l’amélioration de la qualité des images et l’introduction de nouvelles modalités ont contribué à pro-
duire une large quantité de données devant être analysées. Ceci a rendu à la fois indispensable et
réalisable les techniques automatiques de prétraitement et autres outils d’évaluation assistés par
ordinateur sur les images.

L’imagerie médicale fait référence à un ensemble de modalités décrivant l’état des tissus et des
os, ainsi que diverse informations physiologiques. Les différentes techniques d’acquisitions parmi
lesquelles comptent les Rayons X, Scanner, Imagerie à résonance magnétique, échographie, im-
agerie à tenseur de diffusion, tomographie à émissions de positrons etc. présentent des propriétés
complémentaires. L’exploitation des informations issues de ces modalités constitue un défi mod-
erne pour comprendre l’anatomie, les structures biologiques et les effets des pathologies sur ce
qui est visualisable de leur fonctionnement (au travers des déplacements, diffusions de molécules
marquées, flux sanguin, activité neuronale etc.) Finalement, l’aide au diagnostic médical peut être
résumé par le traitement de ces signaux multidimensionnels structurés permettant de comprendre
l’état des organes étudiés. Une telle problématique est clairement pluridisciplinaire et fait appel à
des domaines scientifiques allant de la biologie aux mathématiques.

Contexte et Motivations

La modélisation de structures anatomiques complexes se décompose généralement en trois
étapes: (i) déterminer un ensemble de mesures anatomiques et pathologiques obtenues grâce au
traitement et l’exploitation des différentes modalités d’imagerie médicales. (ii) proposer un modèle
paramétrique en accord avec les indices anatomiques capable de décrire l’ensemble des variations
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de l’organe considéré; (iii) les paramètres de ce modèle sont estimés afin de reproduire le comporte-
ment d’une nouvelle observation sur laquelle les mêmes indices anatomiques et/ou pathologiques
sont présents. On peut alors comparer cette nouvelle observation avec celle d’un cas de référence,
sain, afin d’obtenir des indications aidant au diagnostic. Ce procédé est généralement accom-
pagné par l’étude d’un modèle statistique décrivant les variations de l’organe, construit à partir
d’individus sains et malades afin de le comparer plus efficacement à une nouvelle observation.

Les techniques de représentation de formes et l’étude de leurs variations pour des objets appar-
tenant à la même classe ou a des classes différentes sont des problèmes universels aux applications
multiples. Les principales applications sont la segmentation avec a priori statistique de formes
(l’extraction de structures particulières sur des images), le ’tracking’ (suivi d’objets, l’obtention
des positions et déformations successives d’une structure dans une séquence d’images), la recon-
naissance d’objets (classification permettant de décider si un certain type d’objet est présent dans
une image), etc. L’extraction des informations caractérisant l’état d’un organe reste un objectif
ambitieux. Il s’agit d’abord d’interpréter les données en provenance des signaux source, et d’en
fusionner les informations. Ces informations peuvent prendre la forme de signaux discrets tels que
des images, volumes 3D ou 4D, sur lesquels les signaux présentent un certain degré de corrélation
à différentes échelles. Retrouver le contenu sémantique d’une image consiste alors en la descrip-
tion de ces mesures à l’aide d’un modèle mathématique simple dont on estimera les paramètres.
Si un tel procédé peut sembler simpliste, il faut en mesurer la complexité au regard des organes
à modéliser, pour lesquels la sélection d’un modèle mathématique résulte d’un compromis en-
tre complexité et faisabilité. D’une part, on cherchera à créer un modèle capable d’exprimer les
différents états de l’organe étudié; et d’autre part, on déterminera les valeurs des paramètres de ce
modèle uniquement à partir de nouvelles mesures pouvant s’avérer incomplètes. Considérons un
exemple simple tiré du cycle cardiaque. Le coeur est un muscle possédant deux ventricules. Le
ventricule gauche, le plus gros et le plus important agit comme une pompe et envoie le sang enrichi
en oxygène vers tous les tissus et organes. Le cycle cardiaque présente deux états essentiels: La fin
de la diastole, correspondant à l’instant où les ventricules sont le plus dilatés, et la fin de la systole,
l’instant où le coeur est le plus contracté. La différence entre les deux volumes ventriculaires à ces
deux instants est un indice physiologique important sur le fonctionnement cardiaque. Dans cette
optique, l’extraction de données fait référence à l’obtention du volume de la cavité du ventricule
gauche donc à sa segmentation.

Dès lors que ces informations ont été extraites des images, l’étape suivante résidera dans la
sélection du modèle en vue de la séparation entre les cas normaux et les cas affectés par diverses
pathologies. Ceci est généralement effectué via un modèle statistique décrivant les différentes
populations. Cette idée relativement simple suppose qu’un ensemble de mesures ont été extraites
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sur différents individus et étudie les différences existant entre ces mesures. L’objectif de la phase
de modélisation est de retrouver des comportements analogues entre des individus, qui pourront
ensuite être utilisés comme autant de références dans l’étude de nouveaux cas. Ceci reste une vue
simpliste de la tâche à effectuer ; dans la pratique des modèles plus complexes provenant de la
théorie de l’estimation où des statistiques seront utilisés. Par ailleurs, l’ensemble des observations
est contraint par le modèle anatomique choisi. Si on considère encore une fois l’exemple du cœur
et de la fraction d’éjection, on utilisera le fait que cette quantité pour un cœur sain est d’environ 60

Dès lors que ces modèles ont été déterminés et que leurs statistiques ont été estimées/apprises
à partir des observations, le diagnostic est le résultat de la comparaison entre les mesures ef-
fectuées sur un nouveau cas et les comportements théoriques appris à partir de l’ensemble des cas
de référence. Cette étape nécessite encore une fois l’extraction d’informations à partir d’image
médicale et a pour objectif d’informer des risques potentiels encourus par le patient. Il faut
néanmoins être conscient que le développement de telles technologies n’a pas pour but de rem-
placer ou marginaliser le rôle du médecin : le traitement des images médicales, pour l’aide au
diagnostic, doit se limiter à fournir au médecin un panel d’outils appropriés lui permettant de faire
un diagnostic plus précis, prendre des décisions plus rapidement tout en minimisant le risque pour
le patient.

Parmi l’ensemble des étapes présentées précédemment pour l’aide au diagnostic, la plus com-
plexe est la construction du modèle mathématique de l’organe étudié. Cette étape a d’ailleurs un
impact important sur les autres composantes du processus. Tout d’abord ce modèle est utilisé pour
aider à l’extraction de l’organe à partir des images biomédicales ; ensuite, ce modèle constitue
la base des comparaisons entre les sujets sains et malades. Les méthodes présentées dans l’état
de l’art, séparent généralement les étapes de modélisation d’un organe et l’étape d’extraction de
cet organe dans les images. En d’autres termes, ces méthodes considèrent que l’on dispose d’un
ensemble d’apprentissages et d’un modèle statistique dont les paramètres sont alors estimés. Par
ailleurs, le recalage constitue aussi un élément déterminant (le recalage est l’étape durant laquelle
tous les éléments de l’ensemble d’apprentissages sont transformés pour pouvoir être représentés
dans le même référentiel). Le recalage pouvant aussi être l’objet d’erreurs importantes, il donne
lieu à des modèles de formes erronés pour lesquels les erreurs d’alignement se sont propagées. La
sélection d’un modèle pour les déformations est aussi déterminante, il s’agit de créer un modèle
suffisamment simple pour pouvoir en estimer les paramètres de façon robuste, et suffisamment
complexe pour représenter l’ensemble des déformations possibles, qu’ils correspondent à des cas
normaux (sains) ou anormaux (ayant subi diverses affections). Enfin ce modèle statistique sera con-
sidéré pour aider au processus de segmentation, dans les cas où les informations contenues dans
les images médicales ne sont pas suffisantes pour réaliser une segmentation précise. L’utilisation
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d’un tel modèle dans le processus de segmentation est la pierre angulaire de l’aide au diagnostic
médical.

Contributions

Cette thèse a permis de traiter les problèmes essentiels de la vision par ordinateur que constitue
le recalage des surfaces (global et local), la modélisation de formes, et la segmentation avec a priori
de forme. Dans cette optique nous avons considéré une technique de représentation de la forme
basée sur le calcul de cartes de distances. Cette technique bénéficie de nombreux avantages tant
géométriques que mathématiques et sera utilisé tout au long de la chaı̂ne de raisonnement.

Le recalage de formes ou de surfaces, est un problème central de la vision par ordinateur, objet
de nombreuses études et souvent utilisé dans le traitement des images médicales. Ce problème se
résume à déterminer une déformation particulière permettant d’établir l’ensemble des correspon-
dances entre deux formes ou deux ensembles de caractéristiques extraites sur des images. Ces deux
objets étant respectivement nommés la ’source’ (pouvant être déformée) et la ’cible’ sur laquelle
la source est déformée, Dans le cadre de notre étude, les ensembles considérés seront des formes
représentés à l’aide de cartes de distance. La contribution la plus importante de nos travaux réside
dans l’introduction et l’utilisation des incertitudes dans le processus de recalage. Ainsi, l’action
d’aligner deux surfaces n’est plus considéré comme un problème à solution unique, mais comme
ayant une infinité de solutions dont la distribution pourrait être représentée par une densité de prob-
abilité multimodale, dans un espace de grande dimension. Une telle approche considérée au niveau
local, dans un voisinage de la solution de recalage obtenue, fournit une information quantitative
sur la qualité du résultat. En d’autres termes, si on considère une surface source alignée sur une
surface cible de façon globale, le recalage local permet d’établir un ensemble de correspondances
entre les surfaces, et les incertitudes d’introduire un ensemble de matrices de covariance indiquant
le degré de confiance pouvant être donné à ces correspondances. Le problème de recalage a été
formulé de façon très générique, afin de le réaliser nous avons considéré dans un premier temps
une classe de déformations libres (FFD, ” Free Form Deformations ” ou déformations de formes li-
bres) permettant de représenter une déformation de l’espace ambiant indépendamment de la forme
ou surface considérée. Dans un second temps les déformations de plaques minces ont été con-
sidérées (TPS, ” Thin Plate Spline ”, ou déformations des plaques minces), elles permettent une
déformation des surfaces et induit une déformation de tout l’espace, la particularité réside dans
la position des poignées contrôlant la déformation (ou points de contrôle), placées à la surface de
l’organe ce qui en fait une transformation dépendant spécifiquement de l’organe, mais ayant une
plus faible dimension que les déformations libres pour une précision équivalente. Ces transfor-
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mations permettent de représenter indifféremment des transformations locales ou globales, nous
proposons donc d’en séparer la composante rigide indispensable dans la phase de modélisation.

Dès lors que le problème du recalage a été réglé, il s’agit de modéliser les variations présentes
dans un ensemble d’apprentissages. Concrètement, il faut déterminer une densité de probabilité
pouvant représenter ces variations. Notre seconde principale contribution réside dans l’approche
utilisée pour propager les incertitudes évaluées pendant le recalage dans la phase de modélisation.
Nous avons développé deux approches indépendantes. La première génère un modèle de faible
dimension utilisant les techniques développées pour l’analyse en composante indépendante (ACI)
et adapté à la modélisation des déformations. Cette approche est utilisée et hérite de l’information
provenant des incertitudes. Pour cela, l’ensemble d’apprentissages est utilisé comme une base pour
générer de nombreux nouveaux échantillons, de sorte que les exemples avec une forte variance
seront plus largement dispersés, donnant un plus faible degré de confiance à ces variations. Le
calcul de l’analyse en composante indépendante avec les incertitudes est un modèle efficace si
les variations des échantillons présentent des variations indépendantes pouvant s’exprimer comme
des mixtures de Gaussiennes. Pourtant une telle contrainte n’est pas systématiquement réalisée sur
des cas pratiques ; afin de pallier ce défaut, nous avons proposé une approche non paramétrique
utilisant des noyaux avec une covariance variable afin de modéliser les variations des échantillons.
L’idée essentielle considérera que les échantillons les plus représentatifs seront associés à des
variables aléatoires Gaussienne dans l’espace des déformations, centrées sur la déformation et
donc la matrice de covariance dépend de l’incertitude locale de l’échantillon considéré.

Ayant ainsi construit deux modèles statistiques pour ces déformations, ils seront utilisés pour
effectuer une segmentation des organes sur des images médicales avec un a priori de forme. Pour
cela, nous combinons une représentation implicite des formes (avec des ensembles de niveaux ou
level sets), avec des déformations paramétriques basées sur un ensemble de points de contrôle. Les
points de contrôle pourront être localisés sur une grille régulière (déformation de formes libres,
FFD) ou sur une surface (déformation de plaques minces, TPS). Le modèle de moindre com-
plexité utilise conjointement les TPS et l’analyse en composante indépendante pour la segmen-
tation du ventricule gauche en imagerie scanner tridimensionnelle. Pour modéliser des organes
qui présentent des variations plus importantes ne montrant pas de structure et de régularité, nous
avons utilisé l’approche non paramétrique à noyaux de taille variable associée aux déformations
de formes libres (FFD). Le corps calleux a été utilisé comme exemple test pour cette approche,
la segmentation étant considérée sur des vues sagittales en imagerie à résonance magnétique.
Dans les deux cas considérés, le résultat final de la segmentation a une interprétation qualitative
et quantitative. Ainsi, le recalage tout comme la segmentation sont vues comme des problèmes
d’estimation, les incertitudes apportant des informations relatives aux données disponibles pour
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effectuer cette tâche (support visuel des images en segmentation et bruit inhérent aux formes et
surfaces pour le recalage). Enfin, ces mesures d’incertitudes contribuent à la segmentation, dans
une approche indépendante du choix des paramètres et permettant de retrouver d’importantes vari-
ations de formes.

La thèse suit ce schéma et est découpée en trois grands chapitres. D’abord le recalage, intro-
duisant la technique de représentation des formes, les différentes transformations, les techniques
d’optimisation et d’évaluation des résultats. Ce chapitre introduit donc les mesures d’incertitudes
en proposant deux approches complémentaires. Le second chapitre touche à la modélisation des
formes, introduisant les modèles paramétriques et non paramétriques et l’usage des incertitudes
dans ces modèles. Le troisième chapitre décrit l’utilisation de ces méthodes pour la segmenta-
tion et introduit les incertitudes dans le schéma d’évolution du modèle déformable ainsi introduit.
Le dernier chapitre clos la thèse en introduisant une série de directions à venir que peut prendre
ces travaux. Enfin les appendices successivement le calcul des dérivées utilisées dans la phase
de segmentation puis une application important du modèle statistique pour une application non
médicale.





Chapter 1

Introduction

Visual perception is a central component for most biological organisms. Despite an important de-
gree of variation between natural organisms, even the most primitive element has some abilities
to sense the environment through visual sensors. Understanding and extracting content from im-
ages and reproducing this ability in artificial environments like intelligent robots, robotic arms,
computer aided interpretation of images and video, human computer interaction, computer aided
diagnosis, etc. is the primary goal of computer vision. Statistical pattern recognition, artificial
intelligence robotics, computer vision as well as image processing and more recently medical im-
age analysis are research domains which related visual perception to image understanding. These
domains have gained significant attention from the scientific community in the past four decades
and now are established and well represented research areas in applied mathematics, computer and
engineering sciences, physiology, biology and neurology. One can observe an interdisciplinary
effort from scientists with diverse scientific backgrounds towards visual perception.

Under the certitude that the human vision system (acquisition as well as processing) is the most
efficient visual perception system, recent efforts in the above mentioned vision related areas aim to
reproduce human visual system. However, the current state of understanding of the human brain
is far from being reproducible. Therefore, the available knowledge is not sufficient to replicate
it, through the aid of sensors and computers complex biological vision systems. The main stream
of research over the past decades in the area of computer vision lies mostly in the use of applied
mathematics and engineering. In such a context, research scientists have abandoned David Marr’s
theories and introduced parametric mathematical inference problem for specific tasks of visual
perception, where the set of optimal parameters corresponds to the answer of visual perception.
This process requires the selection of a model (parametric representation of the problem), the es-
tablishment of a connection between the model and the observations (images, medical data, video,
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stereo data, etc.) and the use of efficient strategies to recover the model parameters. One should
point out that such strategies have an infinite number of possible solutions since one can formalize
the same perception tasks with numerous mathematical models, use various means of introduc-
ing the model to data dependencies as well as different techniques exist for the optimization of
these dependencies. Furthermore, most of these approaches are ill-posed due to the non-linearity
of the dependencies between parameters and observations, as well as due to the lack of sufficient
constraints to guide the estimation problem.

Therefore, the definition of a universal solution to the visual perception problem is rather chal-
lenging and strongly depends on the task to be accomplished. The task definition is also strongly
related to the application area. For example, self-localization and obstacle avoidance are prob-
lems often considered in robotics, motion estimation and tracking are studied in video processing,
stereo reconstruction and 3D inference are investigated in computer vision, statistical modeling of
samples and segmentation at looked at in medical image analysis.

In the recent years, we have observed a revolution on how human and biological tissues can
be imaged in non-invasive ways. The latest generation of medical hardware provides anatomical,
physiological and pathological data which can be used to perform early diagnosis, follow up and
evaluation of therapeutic strategies. Constant improvements on the image quality as well as the
introduction of new image modalities have generated an enormous amount of data to be analized.
In such a context, the use of computer aided-techniques has emerged as an efficient pre-screening
procedure with applications to diagnosis and post-treatment evaluation.

Medical images refer to a set of modalities describing the status of human tissues, bones and
physiological information. This may refer to simple or very complex measurements and can be
acquired in a number of ways. X-rays, Magnetic Resonance, Computer Tomography, Positron
Emission Tomography, Diffusion Tensor Imaging are examples of acquisitions with varying and
complementary properties. The exploitation of such an information space is a great challenge of
our days and consists of understanding the anatomical structure of biological systems and in par-
ticular the effect of pathologies on their complex mechanisms of operation. The task of computer
aided diagnosis can be reformulated as follows: processing these n-dimensional signals in order to
understand the current state of an organ of interest. Such in-depth modeling and understanding of
complex biological systems is an interdisciplinary effort which involves researchers with different
scientific backgrounds including physiology, biology, neurobiology, mathematics and engineering.
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1.1 Context and Motivations

Modeling complex anatomical structures often consists of three steps; (i) A set of measures, of
anatomical and pathological indices are recovered through the processing, understanding and ex-
ploitation of medical image modalities, (ii) A (parametric) mathematical model that is consistent
with the anatomy is proposed, it is capable of describing the operation (i.e. the statistical variation)
of the organ or structure under consideration, and (iii) estimating the parameters of the model so
that it can reproduce the behavior observed through the use of anatomical and pathological indices.
Then one may compare this behavior with a reference, healthy behavior, to make a soft diagno-
sis. Such a task is achieved through a statistical comparison between the model built to describe
healthy individuals and the measurements obtained for the subject under consideration.

Shape representation and modeling of its variations inter and intra-class is considered to be a
universal problem with applications to knowledge-based segmentation (extraction from images of
a particular structure), tracking (recovering successive positions and deformations of a structure in
a number of consecutive images), recognition (classification decision for the presence or not of a
class of objects in an observed image), etc. Extraction of information regarding the state of an organ
from biomedical images is a challenging task. One has to deal first with content interpretation
from sparse local signals and then with the fusion problem. Images, volumes, 4D volumes etc.
correspond to sampled continuous functions where measurements are only correlated at a local
scale, therefore recovering content often consists of describing the measurements using a simple
mathematical model and then estimating the parameters of this model using the measurements.
While such a process seems very trivial, given the complexity of biological systems the selection
of a model which is a compromise between complexity and tractability is not straightforward. On
one hand, one would like a model that is capable of explaining the state of the organ; on the other
hand, one should be able to determine the parameters of this model from sparse signals. Let us
consider a ”simple” example: the heart cycle and in particular the cycle of the left ventricle which
pumps oxygenated blood to all human tissues (including the most distant one). The cardiac cycle
contains two important phases alternating contraction and dilatation. End-systole and end-diastole
are the instants where the ventricle has its lowest and its highest volume. The relative volumetric
difference between these instants (called ejection fraction) is a reliable indicator about the heart
function. In such a context the task of content extraction refers to the recovery of the volume of
the left ventricle.

Once information has been determined from images, the next step consists of determining ap-
propriate means to model this information and being able to separate the diseased from the normal
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cases. This is often done through statistical modeling of populations. The idea is fairly simple:
assuming a set of measurements from different individuals, study how different these measure-
ments are. The aim of modeling is to recover a common pattern of behavior for the observations
between subjects which then can be used as a gold standard to compare with new cases. This
is a rather simplistic representation of the task. In practice complex mathematical models from
estimation theory as well as statistical inference are considered to construct these models. The
observations are constrained from known anatomical models. In order to demonstrate this task, let
us again consider the heart operation. It is known and will be confirmed that the ejection fraction
should be about 60%, which means that the blood leaving the heart in every cardiac cycle is about
60% of the end-diastolic left ventricle volume. Eventually this is a rather simplistic example since
the measurements refer to a single dimension, while in the most general case one can imagine
measurements of high dimension with many indices to be statistically modeled.

Once models have been determined and have been estimated from observations, diagnosis
refers to the task of comparing the measurement of the new subject with the expected theoreti-
cal behavior of the model. This task involves again content extraction from biomedical images
and aims to produce an indicator of whether the subject under consideration has a potential risk.
One should have in mind that this technology does not aim to replace or marginalize the role of
physicians. The task of computer aided diagnosis consists in providing more appropriate means
of content interpretation in medical images, which will allow faster and more accurate diagnosis,
while producing new means for treatment and therapy evaluation.

Efficient mathematical organ representation is among the most challenging problems of the
above mentioned processing chain because it has a large impact on all other components of the
process. In particular it can be used as an aid to improve organ extraction from images, and also
is the base of comparison between healthy and unhealthy subjects. State of the art methods often
dis-associate the problem of organ modeling with organ extraction. In other words, given a set of
training examples and a choice of the statistical model, they infer the model parameters. Registra-
tion itself (bringing all examples of the training set in the same parameter space) is challenging and
often erroneous, resulting in models where alignment errors have been propagated. Furthermore,
the selection of a mathematical model to account for the variation of samples is also critical. First,
one would like a simple mathematical model where robust parameter estimation is feasible. Fur-
thermore, a need exists for a model capable of accommodating the variation of all samples while
being able to cope with abnormal samples. Last, but not least these models should be considered
efficiently to aid the segmentation process if the data support is not available and provide efficient
diagnosis.
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1.2 Contributions

In this thesis we aim to address the challenges that are surface registration (global and local), mod-
eling shape variations (parametric and non parametric models) and knowledge-based segmenta-
tion. To this end, we consider a state-of-the art shape/surface representation (distance transforms)
with numerous desirable geometrical and mathematical properties which is then used along the
proposed chain.

Shape/surface registration is a well studied problem in computer vision, computational geome-
try and medical image analysis. The definition of the problem consists of deriving a transformation,
which given a source and a target feature space, establishes correspondences between them. In the
context of our research, feature spaces correspond to 2D curves and 3D shapes, represented using
distance transforms. The main contribution of our work consists of the introduction of uncertain-
ties in the registration process. Therefore, the transformation aligning the two surfaces becomes
a multi-modal high-dimensional density function with both quantitative and qualitative expression
of the process. In other words, given a source and a target representation as well as an initial global
alignment between them, we are able to determine the set of correspondences and also associate
the result with covariance matrices which indicate the amount of confidence for the obtained re-
sult. In order to address generic surface registration this concept is customized for the case of free
form deformations (FFD) which is a shape/surface free (domain-defined) representation of dense
displacements. Next, we propose a similar estimation of a multivariate deformation density for
the case of thin plate splines representations (TPS). This is an organ specific, low-dimensional
transformation with control-points being defined on the surface. In order to account for the in-
tegrated nature of this transformation (the global and the local are not separable), we propose a
rigid-invariant form.

Once the registration problem has been addressed, the next task consists of modeling the vari-
ations of the training set, or determining a continuous probabilistic representation of the observed
density. The main contribution of our work consists of presenting two alternatives on propagat-
ing registration uncertainties to the statistical model describing shape variations. The first con-
sists of generating a reduced model that uses independent component analysis (ICA) to model the
computed class of transformations. The traditional independent component analysis approach is
improved and inherits the registration uncertainties through the augmentation of the sample set
according to the observed uncertainties. Therefore, samples with high variance are dispersed and
produce statistical shape models which are less confident in these areas. The uncertainty-driven
ICA is an efficient computational statistical model if samples can be expressed as a mixture of
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Gaussians. However, there are cases where imposing such a parametric constraint is not natural
and the observed shape variation cannot be quantified using these models. In order to overcome
this limitation, we propose a variable-bandwidth non-parametric approximation of the samples.
The central idea behind such an approach is to consider the most representative examples in the
training set and associate them with continuous Gaussian densities centered at the deformation
with a covariance matrix that depends on the local uncertainty of the considered sample.

With these statistical models in hand, the next task to be addressed is knowledge-based segmen-
tation and shape-based classification. Both statistical models are used to impose prior knowledge
on the segmentation. We efficiently combine implicit parameter-free representations (level sets),
with parametric control-point based deformations either defined on a regular grid (FFD) or con-
sidered on a surface grid (TPS). The model with the least complexity associates thin plate splines
deformations and independent component analysis and is used to segment the left ventricle in
cardiac computer tomography and magnetic resonance images. For organs with larger shape vari-
ations we propose the variable bandwidth non-parametric (VBD) approach associated with free
form deformations (FFD). The Corpus Callosum is used as a test a case for shape-driven segmen-
tation. In both cases, the final segmentation result has a qualitative and a quantitative interpretation.
Segmentation like registration is viewed as a statistical estimation problem where uncertainties can
be determined which encode both the amount of support from the prior model as well as the local
image support. Last, but not least in order to improve classification, both the deformation and the
uncertainty are considered in such a statistical model which is relatively parameter-free and can
capture important variations of the training examples.

The remainder of this document is organized in three main chapters, a registration one, a sta-
tistical modeling one, and a segmentation one. Conclusions are part of that last section while
non-related medical applications are presented in the appendix along with derivations of cost func-
tions which were presented in the main document.

1.3 Thesis Plan

Chapter 2 is dedicated to shape registration which involves three aspects, Shape representations,
nature and type of transformations and optimization strategies. We first review the most widely
used shape representations and motivate our selection to use distance functions. Once the represen-
tation has been established, we discuss/review the nature of deformations in particular focusing on
dense parametric registration models. Two models are presented in details: free form deformations
and thin plate spline deformations. Then, we briefly review the state-of-the art point-based regis-
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tration methods (Iterated Closed Point, Shape Context, and Robust-Point-Matching) and introduce
our approach on the space of implicit functions focusing on the explicit estimation of uncertainties
which is the main contribution of this chapter for both deformations models being considered.

In the next chapter we first present the state of the art in modeling shape variations which of-
ten requires the selection of the parametric model and the estimation of its parameters from the
data. In particular we briefly review simple models like principal component analysis, mixture of
Gaussians and kernel principal component analysis among others. Then we present in details the
independent component analysis approach and then non-parametric density approximations with
fixed and variable bandwidths. These models are then modified and enriched with the uncertainty-
driven registration results presented earlier leading to more efficient representations of densities
which can better capture the samples variation and can perform more efficient samples discrimina-
tion/classification.

The last main chapter of the thesis is dedicated to knowledge-based image segmentation. First,
we review model-free and model-based image segmentation as well as their applications to com-
puter vision. In particular we focus on level-set based methods, as well as active shape models
which are the most closely related with our approach. Then we introduce two novel prior models,
one based on uncertainty-driven independent component analysis and one on variable metric ker-
nels. For both models we consider a state-of-the-art image term which can be adjusted according
to the application setting and explicitly determine segmentation uncertainties. The proposed meth-
ods outperform complex approaches based on level sets as well as the ones with limited statistical
capture (Gaussian assumptions) like active shape and appearance models. We demonstrate the per-
formance of these methods using two applications, namely the segmentation of the left ventricle in
cardiac images and the segmentation of the corpus callosum in brain images.

Conclusions and discussions are part of the last section of the document presenting first the
main shortcoming and limitations of the approaches and then potential future perspectives. The
document also contains an appendix where some of the contributions of the thesis are put in ev-
idence for other application domains like statistical character recognition, facial animations and
image morphing.

To conclude, this thesis evolves around shape, representation, registration, modeling, and
image-based shape inference with constraints and well as primarily their applications in medical
image analysis. It has produced (up to now), one major journal publication [185], one book chapter
[136] two major conference publications [182, 181], two major workshop papers [184, 183] and
three US patents (pending).
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Shape Registration

Abstract – Shape registration consists of recovering a transformation that establishes certain correspondence between

two structures (curves/surfaces/etc.). The problem is often ill posed because (i) the structures of interest can be repre-

sented in various ways, (ii) the set of allowable transformations is infinite, and (iii) the similarity between registered

structures can be defined using various metrics. These 3 aspects of the registration problem are often treated as a

whole, because the definition of shape takes multiple aspects in the state of the art and may carry deformations.

This chapter will propose a definition of shape that meets the requirements of most of the descriptions and representa-

tions that will be reviewed. Then we will show the advantage of using an implicit shape representation with a distance

transform as an implicit deformable template for registration. The chapter will then present the class of parametric

deformations used in the registration process. Finally we will introduce the uncertainty on the registration results as a

way of expressing the variability on the retrieved deformation field.
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2.1 Introduction

The problem of shape registration can be simply defined as follows: given two instances of the
same object, find a transformation that will align them according to some similarity measure. It
has been a problem widely studied over the past decades with many related applications. The
above-mentioned definition involves three terms, shape instance, shape transformation and shape
similarity/disimilarity. Shape model or shape parameterization is often the term used to describe
the mathematical model behind the physical object. Such a model aims to capture certain math-
ematical properties and often provides a continuous reconstruction. Transformation is the class
of plausible geometric deformations which can be applied to the source shape towards improving
the alignment of its transformed variant and the target shape. Last, but not least similarity is a
mathematical term which defines measures of comparison between the transformed source shape
and the target one.

The problem of efficient shape representations arises in numerous scientific domains like com-
putational geometry, computer vision, graphics and animations, pattern recognition, computational
and molecular biology, etc. The main aim is to determine an efficient mathematical model with nice
computational properties which can be easily extracted and interpreted from a computer. These two
desirable properties are often conflicting. Existing representations of shapes can be roughly clas-
sified in three categories which are representations of increasing complexity: (i) moments-based,
(ii) discrete models, and (iii) continuous models [121]. Moment-based representations focus on the
observed local structure of the shape [101]. In such a context one seeks for moments (preferably
invariants) which can be either extracted from the object silhouette or from the object area. These
moments encode the local characteristics of the shape and do not always retain the global structure.
Therefore they are efficient for shape matching, recognition, etc. but have little success when con-
sidered for either registration or segmentation due to the fact that the inverse projection between
these moments and the original shape is usually not trivial [215]. Discrete approaches exploit shape
representations through a limited number of control points and some interpolation strategies, to-
wards a complete geometric representation. One can then extract continuous geometric variables
from this representation. The use of dense sampling leads to models of finer and finer precision that
decreases the importance of the triangulation process, a widely considered technique to link control
points. Subdivision surfaces are another example where the same concept is used. The main limi-
tation of these representations lies in the fact that for the case of a finite number of control points,
an important cross-dependency exists between the reconstructed shape and the sampling rule used
to determine the positions of these points [206]. Furthermore, determining the geometric/physical
properties of the shape either at a global or a local scale is far from trivial. Continuous models
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are a geometric alternative to discrete models where one can recover a continuous/differentiable
shape form through the use of interpolation functions. One can differentiate explicit from implicit
representations in this category. In the former case, shapes are represented using either a num-
ber of control points and a continuous interpolation function or through a linear composition of a
set of orthogonal features [37]. These methods are a reasonable compromise between complexity
and geometric efficiency, but they suffer from their inability to describe forms with multiple non-
connected components. Implicit representations are a useful set of alternatives, where a shape is
represented using the zero-level set of a continuous function. These representations inherit some
nice invariance properties, are geometrically efficient but computationally expensive [16].

The transformation that relates two instances is in general unrelated to the parameterization
that was considered to represent the source and the target shape. In general, one can decompose
prior art in global registration and dense alignment [167, 197]. Global registration assumes that
all shape elements (point clouds, control points, triangulated surfaces) are transformed with the
same parametric model, which in most of the cases is customized to them by being a function of
their position. Translation or more complex models like rigid, similarity, affine or homographic are
examples of global models [88]. The estimation of the transformation parameters is often a well-
posed problem due to its over-constrained nature. Each shape element will provide a constraint
while the same unknown transformation parameters are to be determined from all constraints. On
the other hand these models fail to capture local deformations and they can be very imprecise
if large local changes are observed between the two shape instances. Local deformation models
are the most appropriate tools for local alignment. These models assume that either points move
individually (extreme case), or they undergo a rich deformation according to a predefined mathe-
matical model [191, 172]. In the former case the estimation of the individual deformations is rather
ill-posed and therefore additional regularization constraints are to be considered for the recovery
of a meaningful solution. Continuous deformation models are an alternative to point-based dense
registration. With spline-based deformation, the transformation is expressed as a combination of
a limited number of basis functions. In order to account for local consistency, these models also
inherit some elasticity properties leading to continuous deformation models [58]. Examples of
these models are free form deformations, thin plate splines, finite elements, etc. These models
offer a compromise between global and dense registration with the estimation of their parameters
being a tractable computational problem. However, one should note that their performance heavily
depends on whether or not the selected continuous model is capable of expressing the observed
deformation. In particular the use of elasticity constraints which is required towards recovering a
geometrically meaningful solution could have an important impact on the quality of the obtained
result [209].
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The definition of a similarity/dissimilarity metric is strongly related to both the shape param-
eterization as well as the nature of the transformation. The Euclidean distance is the most natural
metric when considering clouds of points independently of the nature of the transformation [208].
More advanced geometric features including normal, curvature or other higher order moments be-
tween shapes can be used when a continuous representation is assumed independently from the
nature of the transformation [5]. These methods often decompose the estimation process in two
stages, first correspondences between shapes is retrieved and then the transformation that aligns
them is estimated [217]. The correspondences are often recovered on an expanded feature space
(local curvature, etc.) while the alignment is done using geometric distances. The iterated closest
point, the robust point matching and the dual-bootstrap iterated closest point are examples of such
methods [13, 175]. Implicit representations of shapes offer natural ways to define similarities di-
rectly on this space [109]. Then the need of recovering correspondences is implicitly addressed.
In such a context, well known metrics from the space of images have been adopted, like the sum
of squared differences criterion, the normalized cross correlation, the mutual information, etc.
Furthermore, numerous techniques can be used for optimizing these cost functions, like gradient
descent, relation, combinatorial optimization, etc. Most of these methods are quite sensitive to the
initial conditions and have no guarantee of convergence to the optimal solution if the deformation
model is too dense (two many parameters to be determined).

The review of existing work in the area of shape registration shows that the representation
problem is quite well addressed, which is also the case for the deformation models. On the other
hand, defining appropriate metric functions that measures the similarities between shapes is still
an open problem. The choice of a proper metric is related to every aspect of image registration,
that are representation, registration model and similarity. However, it seems that the choice of im-
plicit representations can provide enough freedom on exploring various metrics as well as various
deformations models. In terms of optimization, all methods presented in the literature are to a
certain degree sensitive to noise. Moreover when solving mathematical inference and imposing
geometric consistency even the optimal solution to the problem cannot guarantee that the obtained
correspondences are the right anatomical ones. One can overcome this limitation through means
of providing quantitative and qualitative registration results. In such a context we view registra-
tion as a statistical estimation problem when one aims to recover the mean solution and the local
uncertainty.

The remainder of this chapter is organized as follows. In section 2 we review shape representa-
tions, while in section 3 we discuss prior art on global and local registration. The last introductory
section of this chapter describes the state of the art in optimization techniques. Then, we introduce
our general registration approach that involves a global and a local component focusing on the in-
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troduction of uncertainties. This model is customized to deal with organ-specific problems through
the use of a TPS deformation model, as well as generic deformation models through an FFD.

2.2 Shape Definition and its Relation to Deformation

Contours, surfaces, boundaries and their mathematical descriptors often called shape are the key
to our world as they are the most important visual features for the identification of most objects. In
the scientific literature, various definitions of the term shape exist. All of them agree to limit the
shape to the geometry, subtract any color or illumination information and therefore differentiate
it from the ’appearance’. A simple definition of the space of surfaces and volumes considers a
measurable subset of R2 or R3. However this is too generic, and not efficient from a computational
perspective, therefore more specific subsets should be considered in computer vision. The work of
Delfour and Zolesio [54] and Charpiat [27] add some constraints to this basic definition to create
the set of ’shape of interest’. These definitions are implicitly used in most of the state of the art,
but require an explicit and somehow restrictive form to prove the equivalence between common
distance functions defined in this manifold.

Let S represent a measurable subset of R2, contained in a ’hold all’ open bounded domain also
called the ’image domain’ Ω. It is possible from this point to define the set of smooth shapes C0

(resp. C1, C2). For any x on the boundary of S (∂S) there exist a neighborhood N and a C0 (resp.
C1, C2) scalar function (f) such that ∂S ∩ N can be represented as the epigraph of f :

∂Ω ∩N = {x ∈ Ω|f(x) <= 0}.

This definition implies that the boundary of a C1 or C2 cannot have multiple points and is repre-
sented by a simple regular curve (or surface in the 3D case). Restricting the shape of interest to
the set of smooth shapes is usually considered in most of the literature as it is compatible with
the discrete computer world. However considering smooth shapes in the continuous space Rn is
not sufficient as one can design sequences of shapes with constant area and perimeter diverging to
infinity. This kind of paradox was formally removed by introducing a constraint on the maximum
curvature of the boundary ∂S . This constraint may be released on a finite set of points to allow
shapes with sharp angles. From this formal definition, one can extract two particular subsets full

shapes and boundary shapes, which are a practical way to classify the descriptors:

• The full shapes F are defined as the subset of S that satisfy that the closure of their interior

is themselves (F = {Ω ⊂ D :
Ω̊
= Ω}).
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• The boundary shape B is the subset of S such that the shape is equal to its boundary (B =

{Ω ⊂ D : ∂Ω = Ω}).

A slightly different approach to the concept of shape relates it directly with its object counter-
part which can be presented under several poses and therefore present certain variability. Kendall
in 1977 [94], and Dryden and Mardia in 1988 [112] proposed a simple shape representation that
consisted of points sets and defined the resulting shape as whatever remains once a simple groups
of transformations such as similarity (translation, rotation and scaling) is factored out. Therefore a
shape can be defined as the equivalence classes of object views according to such group of transfor-
mations. However there is at least three reasons that make the task of identifying shape according
to the former definition challenging: (i) 2D images are the representations of objects from the real
3D world, so the 2D problem would take advantage of considering the projective transform rather
than similarity. Furthermore, occlusions and degenerative views (different 3D views producing
the same 2D projections) make the shape definition non-unique.. (ii) Two shapes perturbed due to
noise should present minor local differences and have to be identified as identical. This introduces
robustness in the representation and the importance of it also depends on the application. (iii) Re-
covering the geometric properties of the shape (not only the representation) is critical since such
properties are the core features to registration. This definition of shape plus deformation find its
foundation in [193], where the process of identifying similar shapes using deformable grids was
introduced. In such a way one can say that the concept of deformable template was born 90 years
ago. This idea was then formalised in the 80’s introducing the group action defining the variability
within object class in the General Pattern Theory as introduced by Grenander in [75].

It is clear that many tasks in computer vision have to do with the comparison of shapes, having
two different shapes, one should be able to say whether these come from the same object. Therefore
we denote two categories of shape representations which are used in computer vision:

• Moments also known as descriptors transform a shape into a set of features or 1D functions.
These features are often designed to carry invariant properties with respect to some group
of spatial transformation and therefore offer some robustness in identification and shape
comparison tasks.

• Geometric Models present a set of features or usually scalars or functional that are used to
reconstruct a unique shape in a continuous manner. For identification purpose, these types
of representation are closely related to shape registration. Geometric models are twofold:

Discrete Geometric Models: A shape is represented with a finite set of scalars, a contin-
uous shape may be reconstructed given a interpolation framework between the scalar infor-
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mations.

Continuous Geometric Models: The shape interior or boundary is directly represented
with the use of an explicit of implicit function. Continuity and smoothness are directly
enclosed in the properties of the function.

2.2.1 Shape Representation with Moments

Shape moments generally look for effective and perceptually important features on either shape
boundaries or inner regions defined by them. One of the most desirable property of a shape de-
scriptor is that two different shapes should have distinct descriptors, and respectively perceptually
similar shapes should have similar descriptors. These properties do depend upon the definition of
shape (including or not the group invariance), and the amount of precision/discriminative power
required by the application. Most often, once shape description is defined, the next task to be ad-
dressed is shape matching, ie. determine whether two objects belong to the same class. We refer
to [215] for an extended review on shape descriptors.

Having the outline of a continuous shape defined (boundary shape), including the interior re-
gion of it one now can proceed to a finer classification of descriptors according to their definition
domain. Several descriptors have been considered in the literature. Simple shape descriptors as
area, circularity, convexity, principal axis ratio have been studied in [141].
A well known shape descriptor named shape context [10] for discretized contours builds for each
of the N contour points, N histograms of the segments links to every other point on the contour,
represented in polar coordinates. These histograms are concatenated in one large vector describing
the shape in a translation and rotation invariant fashion. The shape context was generalized to
surfaces in 3D, but 3D rotation invariance proved difficult to ensure and other approaches simply
use a cylindrical parameterisation of the histograms [97].
Shape signature is a class of descriptors that represents a 2D shape with a 1D function. This can
be centroidal profile, tangent angle, curvature, or chord length. However these methods are not ef-
ficient for matching because they involves 1D or 2D matching in the feature space. Consequently
moments are used to reduce the dimensionality of the shape signature [170].
Another class of methods used to describe shapes relies on linear scale space: Asada and Brady
[5] considered tracking inflection points on a parameterized curve if it is submitted to the heat
equation. The shape becomes smoother and at certain particular scales, inflections points disap-
pear one by one. This results in an interval tree, that is the diagram representing the curve abscissa
of a disappearing inflection point, and the scale at which this inflection point disappears. This tree
is used for matching and often combined with other curvature based information.
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Region descriptors are based on full shapes, and therefore less sensitive to noise and local
variations of the shape boundary. Computation of geometric moments has been very attractive
because combination of low order moments leads to similarity invariant descriptors [11]. On the
other hand this method considers few invariants to describe a shape and therefore is not precise
and is too sensitive to small variations. Also orthogonal moments have been introduced, weighted
with a set of orthogonal functions as Legendre, Zernike and pseudo Zernike polynomials. In [68]
these moments are combined into similarity invariant descriptors at any order, and proved robust to
noise [101]. More recently integral invariants signature were introduced which share an invariant
property of the boundary curvature [110, 109]: by considering the surface (resp. volume) of the
shape located within a certain radius of any boundary point, one can build a descriptor invariant
under any rigid transformation. Varying the radius size also shows a multiscale approach that has
been used for shape matching.
Different approaches to region based descriptors are defining the structure of the surface. One
is based on the convex hull, defined as the smallest convex shape which encompasses the shape
under study. The difference between the two convex hulls and the shape defines a set of smaller
non-convex shapes. In an iterative manner, the convex hull of every shape is extracted, until the
original shape can be written as the sums and differences of convex elements. This descriptor can
be presented as a tree where every son node is a convex hull added or removed from the parent node
[51, 170]. Another approach makes use of the medial axis or skeleton, defined as the loci of the
centers of all the bitangent circles to the boundary of the shape [14]. This representation is trans-
posed to a graph for matching purposes and extensive work has been carried on this representation
both in 2D and 3D to improve noise robustness.

Moment-based shape representations are quite efficient for recognition purposes but is not
well-adapted to registration applications. This is due to the fact that such models have limited
representation of the local geometry. Discrete geometric models is the simplest possible represen-
tation which can account for the geometry.

2.2.2 Shape Representations with Discrete Geometric Models

Discrete representation allows to represent the evolution of shape directly with an explicit nu-
merical scheme on the surface control points. Limiting the deformations to prevent topological
problems is necessary and one has to add local regularization constraints. Discrete contour and
triangulation methods represent the model as a set of points (vertices) with a neighborhood re-
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lationship [206]. Also these deformable models are combined with a discrete scheme to append
vertices to the triangulation [61] or update the topology via Delaunay based remeshing [144].
Delingette in 1994 introduced Simplex meshes [55], presenting a constant vertex connectivity:
each vertex is connected to exactly 3 others. This model is extensively used in medical imaging
for segmentation and tracking [120].
Physical models based on masses and springs were also proposed in [199, 145] to create adaptive
meshes and in [125] where the spring model is combined with modal analysis to reduce the com-
plexity. A different physics based deformable model relies on a set of particles evolving according
to the Newton dynamics laws [179]. In order for the particles to model 3D surfaces, each parti-
cle represents a surface element and carry a normal vector. One has to design an internal energy
between particles, favoring co-planarity and co-circularity that tends to organize them into regular
surfaces.

Fig. 2.1: From left to right, Delaunay Remeshing [144], Simplex representation [120], Mass Spring model
[145].

Another kind of discrete models is creating a continuous and differentiable interpolation be-
tween control points. This is the case of a parametric contour using cubic B-spline interpolation
between control points called B-snake [117], taking advantage of both local control and continuity.
It may also handle sharp edges by increasing the number of control points. The method was also
adapted to medical imaging for contour tracking [76]. Spline based methods have shown many
evolution also for 3D surface representation with NURBS, commonly used in CAD applications
[100] and surface extraction from images [192].
B-spline is just one kind of polynomial representation that is related to a general case following
from the finite element theory: If contours or surfaces need to be expressed in an explicit way, and
are related to an energy minimization scheme, it can be shown that using finite elements methods
for the minimization can lead to different representations [37, 142]. Indeed, this discretization pro-
cess requires the solution to be expressed in a finite dimensional vector space. Then, by choosing
an appropriate base of piecewise polynomial functions with compact support satisfying continuity
and differentiation conditions. Optimization of the geometric model with respect to its parameters
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ends up in a linear system of the coefficients of these polynomials.

Seeking representations which can encode shape variability among training examples was the
next challenge. The m-reps rely on a skeleton graph [143], extracted from the medial representation
of a reference shape and subdivided into a regular lattice. The nodes of the medial representation
are linked to the surface with a set of segments. Variations of the shape induced by the deformations
of the skeleton and the continuous surface are reconstructed with a subdivision algorithm (Catmull-
Clark).

Discrete models refer to a reasonable compromise betweeen complexity and geometric correct-
ness. Their main limitation is the lack of explicit method to determine the local geometry of the
shape and the associated geometric properties.

Fig. 2.2: Examples of Continuous Models representation. From Left to Right, B-spline curve fitting [76],
Fourier surface Representation [171], m-reps [143]

2.2.3 Shape Representations with Continuous Geometric Models

Among all shapes representations, geometric models have probably been the most explored as their
capability of evolving in time is particularly adapted to registration and segmentation purposes.
Therefore in the literature, they are often bounded to an evolution model related to the particular
application. This section however will strictly focus on the representations. Geometric models can
be represented by the boundary of the shape of interest (either closed or open). The full shape
can also be represented in an implicit manner and will be developed in the next section. A more
extended review on geometric models can be found in [121].

Continuous models refer to shapes where geometric derivatives can be computed at any point
on the boundary (contour or surface). Discretization occurs in a subsequent step for implemen-
tation purposes. The most widely referred deformable models were introduced by Terzopoulos
and Kass around 1987 [189, 93]. The so called snakes simply use a geometric representation as a
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parametric curve C:
C : s ∈ [0, 1] → (x(s),y(s))R2.

This curve was designed to minimize an energy functional E(C) depending upon a regularity and
a matching criteria. C can be transformed into an evolving contour by using gradient based mini-
mization methods. The representation was rapidly adapted to 3D [190] with curves and surfaces:

A : s ∈ [0, 1] → (x(s),y(s), z(s))R3.

S : (r, s) ∈ [0, 1]2 → (x(r, s),y(r, s), z(r, s))R3.

The representation was largely used for medical imaging purposes [115, 38]. One may notice that
this representation requires additional conditions on the boundary of the parameters set defining
the topology of the shape (for instance C(0) = C(1) defining a circular contour). Snakes and
deformable surfaces are consequently discretized on a regular grid and simply represented by a
structured set of points. Discretization of the snake or deformable surface is natural when mini-
mizing the energy functional using finite difference methods.

A different type of parametric representations does not rely on a structural decomposition of
the contour or surface as previously but on global components acting on the entire model in a linear
manner. The so-called modal decompositions are split in two categories:

• Fixed modes decomposition represents a closed contour decomposing its polar representation
in Fourier basis [171], while evolution of the same idea made use of wavelets thus adding
locality and scale [213]. The method was also extended to 3D surfaces using the spherical
harmonic basis [178]. A different approach was introduced in [140] where ’free vibrating’
modes of the contour were computed relying on a physical modeling of the surface.

• Eigen modes decomposition relies on a training sample. The representation directly depends
on the application and is also limited to a linear combination of eigen-modes modeling con-
tour deformations. This method was initiated by Cootes, starting in 1993 [43], using princi-
pal component analysis in combination with point distribution models.

While these geometric models are mostly defining the boundary shape and therefore evolution
is always directly related to the parameterization, a different class of representation only requires
discretization of the shape boundary for display purposes. These models are a trade-off between
continuous and discrete models since the underlying representation depends on the discretization
of the model. They fail to describe shapes with multiple non-connected components and require
frequent reparametrization to determine the local geometric properties.
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2.2.4 Implicit Representations

Implicit shape representation is actually one of the most natural as it directly refers to the definition
of subset we have presented in section 2.2. Referring to a scalar function defined in Ω, it represents
any shape S as:

S = {x ∈ Rn : f(x) <= 0}

This representation is also commonly used to represent closed contours or surfaces (Bf = {x ∈
Rn : f(x) = 0}). This representation augments the representation space. In 3D for instance
surfaces are a 2D manifold as the implicit representation is lying in a functional vector space.
Therefore constraints are added to f to avoid computation on every point of the 3D space and
regain part of the efficiency of the explicit models.

Algebraic surfaces is a class of implicit representation where f is a polynomial function. These
representations have been used to reconstruct continuous surfaces from 3D unstructured sets of
points [187]. The representation shows similarity invariants and interpretable coefficients [180].
Most of the theoretical work is oriented to design polynomials that preserve the stability of the
shape with respect to the coefficients of the high order polynomials [186].

Superquadrics and hyperquadrics are two particular classes of algebraic surfaces that constrain
the family of shapes represented. Superquadrics were used in medical imaging as their small
number of parameters has shown a certain robustness to noisy data [8]. Also hyperquadrics are
defined as an extension of superquadrics. The implicit equation is written as:

fp,d(x) =
n∑

j=1

| pj.x + dj |εj − 1 = 0,

where {pj} is a set of vectors, {dj, εj} a set of scalars with εj > 0 and n an integer larger than 3.
These shapes are bounded and convex. Additional terms were added to the implicit form in order
to represent concavities [35].

Shape Representation based on kernels is using for f a finite dimensional Reproducing Kernel
Hilbert Space. It is constrained to a general expression with the form:

f(x) =
N∑

i=1

αiK(pi,x),

with K being the reproducing kernel. It was used in [3] with an elegant statistical continuous
framework modeling both template and deformations with Gaussian kernels. This approach to
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implicit representation was also frequently used to infer a full shape only based on a finite sam-
pling of points in space [204]. This approach is therefore closely related to radial basis function
interpolation that will be further explained in the next section.

These parametric approaches can be limited to describe more complex structures than closed
contours and surfaces. A general implicit representation is based on Euclidean distance map and
may represent visual structures of any dimension.

(a) (b) (c)

Fig. 2.3: Implicit representation: (a-top) superquadrics [8] (a-bottom) hyperquadrics [35], (b) topology
change on level-set representation, (c) phase field toppology change [148].

Distance Transform

The signed distance function of any shape lying in the image domain is expressed with the follow-
ing expression:

φS(x) =

{
dΩ(x) = ED(x,S) = infy∈S ‖y − x‖, x ∈ CS
−dCS(x) = −ED(x, CS) = − infy∈CS ‖y − x‖, x ∈ S (2.1)

= χS(x).ED(x,S)− (1− χS(x)).ED(x, CS) (2.2)

where CS represent the complement of S in the image domain Ω, ED the Euclidean point to shape
distance and χS the characteristic function of the shape S.

This representation is also the cement of a surface evolution technique named Level sets. Level
sets have been widely used as an alternative to explicit contour and surface representations as they
are based on an equivalence between the motion of a contour along its normal and the global defor-
mation of an associated implicit deformation. Introduced by Dervieux and Thomasset in the field
of fluid dynamics [56, 57], it first came to computer vision with the work of Osher and Sethian
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[127]. Introduced in medical imaging by Malladi in [108] this technique lead to many different
applications [126]. Level set techniques do not require parameterization and allows topological
changes of the shape. Many evolutions were carried to improve speed and preserve distance con-
straints during evolution. The distance is a Lipschitz function with coefficient 1 and its gradient
is defined almost everywhere except on the skeleton and has unit norm. This representation can
be used to represent any mixture of full and boundary shapes. In the case of a shape lying in the
boundary set B, the distance is always positive and its gradient is also undefined on the shape itself.

The representation is invariant under a rigid transformation and can be slightly modified to
account for a similarity transform. Consider L = (s, R, T ) a similarity transform, Let the shape S ′
be the transformation by L of the shape S, then the relation φS(x) = φS′(L(x)) holds everywhere,
and can be proven:

ED(x′,S ′) = inf
y′∈S′

‖y′ − x′‖
= inf

y′∈S′
‖y′ − (s.R.x + T )‖

= inf
L−1(y′)inL−1(S′)

‖y′ − (s.R.x + T )‖
= inf

y∈S
‖s.R(x− y)‖

= s. inf
y∈S

‖x− y‖
= s.ED(x,S)

This proves that the representation is invariant under rotation and translation and can be easily
modified to account for scaling factor. If one calls DT the manifold of distance transforms, and
augments this space by including scaling, then DT ′ = {sφ|φ ∈ DT & s ∈ R}. Considering the
equivalence relation on the set DS ′ : φS1 ∼ φS2 ↔ ∃s ∈ R, φS1 = s.φS2 , such representation
is invariant under similarity when considered in the quotient space DT ′/R. The stability of the
distance with respect to small perturbation has been shown in [220]. Indeed small variations of a
shape within a certain radius induce bounded variation of the sum squared difference of the distance
transforms, and therefore proves that a registration problem stated using distance transform is well-
posed.

Also this representation proved efficient for shape matching using calculus of variations as the
non-zero iso-level provides additional support for optimization. One should note that the non-zero
level set provides a simpler representation of the shape: The r > 0 level sets correspond to the
boundary of the shape dilated with a ball with radius r. Therefore any concavity of the shape with
curvature smaller than r are smoothed out (Fig. 2.4).



Shape Registration 45

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

Fig. 2.4: Displaying zero and non-zero iso-contour of the distance transform extracted from a sample shape
of plane.

Most of the representation techniques presented above were associated to evolution schemes
able to perform either registration or deformation. A different approach would consider the rep-
resentation as being fixed frame and applying a subsequent regular transformation. This is the
key idea of a deformable template, and therefore we need to review part of the state of the art on
classical transformations.

2.3 Spatial Transformations

As previously stated the shape registration process is directly related to the choice of a transfor-
mation that is usually unrelated to the choice of the representation considered for the shapes. We
will now introducing notations that will be used in the remaining of the chapter. Let us consider S
a source shape that is to be transformed, and T the target shape onto which S has to be deformed
and aligned. We will denote by L a transformation on the entire domain Ω and restrict ourselves
to parametric deformation so that Θ refers to a vector of scalar parameters:

L : Rn × Ω → Ω

(Θ,x) 7→ y = L(Θ,x)
(2.3)

Then the transformation of S under L(Θ, .) can be considered and will be refered as S ′

S ′ = L(Θ,S) ⇔ S ′ = {x′ = L(Θ,x)|x ∈ S}

Hence if we denote by R the shape representation process, and Edata the similarity/dissimilarity
metric defined in the space of representations, the registration process can be simply rewritten as:

Θmin = arg min
Θ

Edata(R(L(Θ,S)),R(T )) (2.4)
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The scope of a spatial transformation refers to the influence of the elements of the vector Θ. A
transformation is called global if the whole domain is transformed when modifying any parameter
of Θ. On the other hand it will be considered as local if the modification of a parameter affects the
domain locally. In this latter case, the vector of parameters will be associated to a set of particular
points of the domain.

2.3.1 Global Deformations

Global deformation may only be used to change the pose of a shape. In the context of shape regis-
tration it performs a rough registration as a necessary step before considering local deformations.

The simplest transformation is rigid, also called Euclidean transformation and can be expressed
in the two dimensional case with the expression:

[
x′

y′

]
=

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
.

[
x− Cx

y − Cy

]
+

[
tx + Cx

ty + Cy

]
,

where (Cx, Cy) represents a fixed point chosen as the center of rotation, θ is the angle of rota-
tion and (tx, ty) the translation vector. Choosing the center of the object of interest for (Cx, Cy)

is essential for the convergence of the registration process. The degree of freedom of a linear
2D transformation can be augmented to obtain separately the 6 degrees of freedom of an affine
transformation. However we use a specific form that allows to control separately the physical
deformation of the domain:

[
x′

y′

]
= s.

[
a b

0 1/a

]
.

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
.

[
x′ − Cx

y′ − Cy

]
+

[
tx + Cx

ty + Cy

]
,

where s is the scaling factor and represents the global change of volume, a the anisotropic dilations
along the two axes and b the shearing factor.

In the 3D case rotation could be explained with the composition of 3 successive and orthogonal
planar rotations (through the Euler angles). However the resulting expression is rather expensive
and the three angles are inter-dependant. Therefore a vectorial expression using the exponential
form is preferred. Considering the vector ω = θ.ω0 = (rx.θ, ry.θ, rz.θ) representing the rotation
of angle θ around axis (rx, ry, rz) with unit norm, the rotation matrix associated with the vector ω
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is:

Rω = exp


θ.




0 −rz ry

rz 0 −rx

−ry rx 0





 = exp(θ.ω̂0) = exp(ω̂)

Developing this expression with Taylor expansion leads to a matrix form of the Rodrigues’s fo-
mula:

Rω = I + ω̂0. sin(θ) + ω̂0
2.(cos(θ)− 1)

Finally transforming this expression simply using the rotation vector ω:

Rω = I + ω̂.
sin(‖ω‖)
‖ω‖ + ω̂2.

cos(‖ω‖)− 1

‖ω‖2

Computation of derivative on this expression is more efficient and does not favor any direction. An
expression including rotation center, scaling and translation is used to represent a 3D similarity
transform (x′ = sR(x− c) + T + c).

One may also mention perspective transform. Such transformation makes use of the homoge-
neous coordinates, that is obtained embedding the d-dimensional space in a d dimensional manifold
called projective cone and defined as follows in the 2D case [80]:

[x, y, ω] ∼ [x′, y′, ω′] ⇔ ∃λ ∈ R|x′ = λ.x, y′ = λ.y, ω′ = λ.ω

Then any 2D point (x, y) of the space is embedded into the projective space with homogeneous
coordinates [x, y, 1]. Using these coordinates allow to define an homography (Fig. 2.5), that is
a perspective transform describing the change in aspect of a planar object under different camera
views. Considering such transformation can be of primary interest when the registration applica-
tion is related to image views of objects like surveillance. It can be expressed as a simple linear
transform in the projective space:




x′

y′

ω′


 = A3,3.




x

y

ω


 =




a00 a01 a02

a10 a11 a12

a20 a21 a22


 .




x

y

ω




A few more complex global transformations have been considered in the literature. A quadratic
transform for instance was used for retinal image registration, as a fair approximation of the defor-
mation of the curved retinal surface under different views [21].

The estimation of the parameters of any global registration problem is using all the features
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Fig. 2.5: Classic global transformations. From left to right, identity, rotation+scaling, affine, perspective
transformation

of the shape representation which makes it an overconstrained problem. Therefore the problem of
global registration is often well posed although optimization is not trivial. In particular unique-
ness of the solution is not guaranteed and the performance heavily depends on whether or not the
considered transformation can express the relationship between the two examples. Also the match
between the transformed source shape S ′ and the target shape T is rough and does not allow to cre-
ate one to one correspondence between shapes. Recovering local correspondences is an important
task in shape analysis with application to numerous domains like biometric or medical imaging.
Therefore we introduce a set of local deformations able to perform a better approximation towards
shape warping.

2.3.2 Local Deformations

The simplest way to model local deformations is based on optical flow used for image registration
[81]. It defines a continuous field of displacement (u, v) vectors on the whole image. Optical flow
is a very well known ill posed problem: due to the aperture problem, only the normal component
of the local displacements can be determined accurately. Therefore an additional constraint is
imposed that forces smooth variation in the flow across the image and is used to constrain the
tangential component of the displacement vectors:

Esmooth(L) =

∫

Ω

‖JL(x)− I‖2
F dx =

∫∫ (
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

dxdy,

where L is the transformation associated to the deformation field, JL its Jacobian matrix and ‖; ‖F

the Froebenius norm. Continuous deformations were also used for shape registration in [135] along
with the same smoothness term. However such a large deformation field proved very expensive to
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optimize, and difficult to regularize. Indeed, smoothness constraints need to be added on the whole
image domain to preserve an invertible transformation and therefore preserve the topology of the
transformed shape.

Many other popular non-rigid deformation are parametric and based on a set of control points.
A control point is a fixed point of the domain whose displacement will induce a local deformation
of the domain. These points shall be located either on a regular grid or scattered in the whole
domain. These transformations actually find their foundations in the regularization and neural
network theory [71]. The aim of this theory is to approximate an unknown function (in our case,
deformation) with the knowledge of its value on a finite set of points in a d-dimensional space.
The following framework was initially presented for the approximation of scalar functions. It can
easily be extended to vector functions taking values in the same d-dimensional space, therefore
defining a spatial deformation. Consider a set of control points {Pi}n

i=1, with associated deformed
point {P ′

i}n
i=1. Let L be the approximation of the unknown deformation field. This problem is

underconstrained and a unique deformation L may be defined on the entire domain with the use of
a smoothness or regularizing functional criterion Esmooth(L). L is defined with the minimization
of the functional:

H(L) =
N∑

i=1

‖L(Pi)− P ′
i‖2

2 + λEsmooth(L)

The smoothness term refers to the oscillatory behavior of the function. Therefore the ESmooth term
will take a higher value if the deformation L shows high frequency when expressed in the Fourier
domain. A common choice for the smoothness term therefore refers to the energy of L after the
application of a high pass filter:

Esmooth(L) =

∫

Rd

ds
‖L̃(s)‖2

2

G̃(s)

where L̃ and G̃ indicates the Fourier transform of L and G. G̃ is a symmetric positive function
that tends to zero as ‖s‖ goes to infinity. Using such a form for the smoothness and matching
term, allows to separate the output components of the deformation L. This proves that the vectorial
problem stated here is a direct consequence of the scalar approximation problem commonly treated
in the literature of regularization theory. This case is of particular interest as the optimum of the
functional admits an exact solution of the form [106]:

L(x) =
N∑

i=1

wiG(x− Pi) +
k∑

α=1

dαψα(x)
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where {ψα}k
α=1 is a basis of the k dimensional null space of the smoothing term and ({Pi}N

i=1, {dα}k
α=1)

are two sets of d-dimensional vectors defining the transformation. Using a matrix form, one can
express the unknown parameters ({Pi}N

i=1, {dα}k
α=1) of the transformation as follows:

(G + λI)w + ψTd = P ′

ψP = 0
(2.5)

where I is the identity matrix and other terms are matrices defined by:

(P ′)ij = (P ′
i )j, (w)ij = (wi)j, (d)αj = (dα)j

(G)ij = G(Pi − Pj), (ψ)αj = ψα(Pi),
c

In the limit case where λ tends to zero, the match is exact (L(Pi) = P ′
i ) and the deformation L is

then called an interpolating function. Very different forms have been proposed for the smoothing
term, leading to gridded or scattered spatial deformations. Some of them are object dependent
while more generic ones are object dependent. In the scope of our work we have investigated both.

Free Form Deformations

This technique explicitly states the continuity and locality of the deformation. Free Form Deforma-
tion (FFD) relies on a set of control points which have to be located on a regular rectangular lattice.
Spatial deformation is expressed as the tensorial product of deformation along each orthogonal di-
rection. It was introduced in 1986 in [162] to deform computer graphic models. Consequently it
was also used in the field of medical imaging [157, 20] for multimodal image registration.

Let us first introduce its relation to the general approximation theory and consider a regular-
ization function that can be written in the frequency domain as a tensor product along different
coordinates. As a consequence, regularization will be :

G̃(s) = Πd
j=1g̃(si)

Applying the inverse Fourier transform, leads in the spatial domain to a basis function of the form:

G(x) = Πd
j=1g(xi)

Also the solution of the regularization problem in Rd can be decomposed independently with d

regularization problems in R.
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However the true essence of FFD does not lie in the regularization as the form of the basis
function will depend on the spacing between control points. Still the expression of the deformation
will be expressed in a linear form. The two principal interests of FFD reside in the design of the
basis function, not directly related to its Fourier form, it is built using a piecewise polynomial
function with compact support and C2 continuity.

Consider a finite sequence of points in R: S = (x1, x2, . . . , xN) regularly spaced with distance
lS (xi − xi−1 = ls). Then a regular grid in Rd is built as the direct product of d sets of points Si

regularly spaced along each dimension, each of them containing Ni points spaced with distance
lSi

. Consider the multi-index α = (α1, . . . αd) with 0 ≤ αi < Ni. The initial d-dimensional grid
of control points is represented with the set of {Pα} and their new position as {P ′

α}. Then the
deformation of any spatial point will be decomposed along each direction and expressed linearly
with respect to the position of the points of P ′

L(x) =
∑

α

(
Πd

i=iχSi,αi
(xi)

)
P ′

α , (2.6)

summing on all multi-index α where χSi,j refers to the jth B-spline basis function for the sequence
Si.

A B-spline basis of order n is a set of polynomials functions verifying
∑

j χS,j = 1 with
continuity Cn−1. These basis function are defined recursively on the order n with the Cox-de
Boor recursion formula. It was built as an extension to the Bezier Spline, based on Bernstein
polynomials [53], as a B-spline has by construction a compact support. The most commonly used
are cubic-B-Spline (n = 3) also in use to compute FFD, and shows C2-continuity everywhere.

χS,j(x) =





1
6
(u)3 with u = (x− xj−2)/lS if x ∈ [xj−2; xj−1)

1
6
(−3u3 + 3u2 + 3u + 1) with u = (x− xj−1)/lS if x ∈ [xj−1; xj)

1
6
(3u3 − 6u2 + 4) with u = (x− xj)/lS if x ∈ [xj; xj+1)

1
6
(1− u)3 with u = (x− xj+1)/lS if x ∈ [xj+1; xj+2)

0 elsewhere

(2.7)

One can see from this basis function that χS,j is non-zero only in the space separating 4 control
points. Therefore, at most 4 basis functions will be non-zero for any point in R. As a conse-
quence in the d-dimensional space, the deformation of any point x in space will only depend on
the displacement of its 4d neighboring points.

A Free Form Deformation is not an interpolation scheme as it does not verify L(Pα) = P ′
α.

However optimization can be performed with respect to the position of the displaced control points.
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Setting the generic vector of parameters with the position of control points : Θ = {P ′
α, αi = 1..Ni}

in a
(
Πd

i=iNi × d
)
, the transformation in eq.2.6 can be written in a rather compact form:

L(Θ,x) = x + X (x).Θ, (2.8)

with X (x) a (1× Πd
i=iNi) matrix depending non linearly on the location x and the initial position

of the control points.

As registration is performed with a variational framework, the minimization in equation 2.4 is
leading to an evolution scheme for the vector Θ converging to the minimum of the functional. Us-
ing FFD, one cannot guarantee that the resulting transformation is invertible and therefore satisfies
the desirable diffeomorphic constraint. To prevent such unwanted transformation to appear both
an additional smoothing constraint, along with a coarse to fine approach on the number of control
points in the grid have been introduced. Smoothing constraint is an energy term which increases
singularly as the transformation is less regular. Ideally, this energy term should diverge to infinity
as the associated transformation is not invertible. Defining a proper criterion for regularity that
can be expressed in the parameters of the transformation is not straightforward. Therefore builds
a criterion that will express the distance of the current transformation to a class of basic transfor-
mations associated to a 0 cost. We have added a second order smoothness constraint on the whole
deformation that favors affine transformations. Its expression on the domain Ω can be expressed
with the Froebenius norm of the Hessian matrix of the transformation:

Esmooth(L) =

∫

Ω

d∑
µ=1

‖H(Lµ(x))‖2
F dx,

where Lµ is the µ-th component of the transformation L. This expression is exactly the Thin-Plate-
Spline energy that will be explored in the next section for scattered data interpolation. Restricting
the domain Ω to the portion of the space covered by the grid of control points, given the polynomial
form of the basis function, the substitution of equation 2.8 in this expression leads to a closed form
expression acting directly on the displacement of the control points as a quadratic form:

Esmooth(Θ) = ΘCΘ,

where C is a symmetric positive matrix. Consequently the optimization criterion is including both
a similarity and a smoothing term, equation 2.4 can be rewritten:

Θmin = arg min
Θ

(1− β)Edata(L(Θ,S), T ) + βEsmooth(Θ),
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where β is a positive constant that balances the contribution of the two terms (0 ≤ β ≤ 1). Given
the form of the smoothing term and its local influence on the whole transformation, its value will
be chosen according to the refinement of the grid. A larger value of β will be preferred at finer
scale to prevent the apparition of local folding.

Refining Free-Form Deformations has been explored previously. In [162], different FFD were
applied in a piecewise manner with adjacent grids, adding particular continuity constraints on the
boundaries of the grid. Also refinements methods have been considered in the field of medical im-
ages [210], where FFD grids with different scale are superimposed at different locations, allowing
a finer registration in certain areas. However the global deformation is explained as a sum of all
the transformations at different scales. Our framework dedicated to shape learning, required the
explanation of the whole transformation on a single grid. Therefore we have used a different ap-
proach capable of refining the grid on the whole domain. The solution to the refinement problem is
not exact and requires an approximation technique to retrieve the best transformation at finer scale
as the best estimate of the transformation at coarser scale. Consider a set of points located on the
boundary of the shape to be registered (PS,i), a transformation at a coarse scale L1 and a transfor-
mation parameter vector Θ1. Consider a transformation at a finer scale L2, we try to retrieve the
best parameter vector Θ2 minimizing the quadratic criterion:

Θ2 = arg min
Θ

‖L1(Θ1,PS,i)− L2(Θ,PS,i)‖2

The transformation being linear in the parameter Θ, this problem admits a closed form solution.

Fig. 2.6: Example of Free Form Deformations. (middle) deformations using a 6×10. (right) grid refinement
with the same transformation and a 11× 20 grid.

The principal drawbacks of free form deformations lie in the constraint on the location of the
control points:

• Using a square grid to model deformation of non-square shapes gives very different impor-
tance to the control points. Control points located far from the shape boundary have very
little influence and therefore may show a very high variability in their final position.
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• Using control points located on a square grid with sufficient control on the whole shape leads
to a high number of points especially if registration is performed in dimension 3.

It was necessary to adopt a different model for the local deformations that gives equal importance
to the control points while using a smaller number of points to reach similar precision of the
registration.

Thin Plate Splines

Thin Plate Spline (TPS) is a direct application of the approximation framework earlier introduced.
A popular kind of smoothness function is invariant under a rotation (Esmooth(L) = Esmooth(L ◦R)),
and corresponds to radial basis functions (RBF) of the form G(‖x‖) . Many different kinds of
RBF coexists and have been used for data interpolation such as Gaussian (G(x) = e−β‖x‖2) ,
multiquadric (G(x) =

√
‖x‖2 + c2), inverse multiquadric, etc...

The most widely used was developed by Duchon [62] and considers the smoothness term:

Esmooth(L) =

∫

Rd

ds‖s‖2m
2 ‖L̃(s)‖2

2 (2.9)

We will focus on the interpolation case (λ = 0) with m = 2 also known as Thin Plate Spline
because it has a physical meaning and corresponds to the deformation of a thin sheet of metal
(uniform elastic material) subject to a set of orthogonal displacement. This type of smoothness
constraint was first introduced to model deformations in computer vision by Bookstein in [15] and
applied to the warping of sets of points with an increasing number of control points. The thin plate
spline smoothness term can be expressed in the spatial domain with the Froebenius norm of the
Hessian matrix of the transformation:

Esmooth(L) =

∫

Rd

d∑
µ=1

‖H(Lµ(x))‖2
F dx =

∫

Rd

d∑
µ=1

tr(H(Lµ(x))H(Lµ(x))T )dx,

The null space of the smoothness terms corresponds to the polynomials of degree one, that is affine
transformation. Therefore the solution of the interpolation problem can be explained with the form:

x′ = L(A, T, Vi,x) = A.x + T +
N∑

i=1

wiG(‖Pi − x‖), (2.10)

where A.x + T represents the affine part of the transformation and the set of vectors {Vi}n
i=1 the
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weights of the non affine warping. The associated radial basis function G(x) admits an explicit
form depending upon the dimension of the problem:

G(x) =

{
‖x‖2 log(‖x‖2) d = 2
‖x‖ d = 3

Following equation 2.5 with λ = 0, the unknown parameters are the solution of the following
linear problem: 


G P T 1N

P

1N
T

0d+1,d+1







W T

AT

T T


 =




P ′T

0d,d

01,d


 , (2.11)

where Gi,j = U(‖Pi − Pj‖), P = (P1, . . . PN),W = (w1, . . .wn), and 1n,03 are columns vector
of 1 and 0. Let L be the ((N + d + 1)× (N + d + 1)) matrix in the left part of the equation.

In the present case we are interested in transforming any 3D point x into x′ with respect to the
displacement of the control points. This is known as the dual form of the interpolation problem.
Expressing equation 2.10 in its matrix form:

x′ = [W,A, T ].[B,xT , 1]T ,

where B = (B1, . . . BN) and Bj = U(‖Pj − x‖). Combining this equation with equation 2.11
writes the displacement of any point as the linear combination of the new position of control points:

x′ = [P ′, 0d,d+1].L
−1.[B,xT , 1]T .

Therefore the deformation of any x point can be expressed as a linear combination of the displace-
ment of the control points. The non linear part only depends upon the initial position of x and
control points {Pi}.

Similar to FFD, the TPS transformation is optimized in a variational framework on the position
of the control points and therefore does not guarantee an invertible transformation. We adopt both
a regularization and coarse to fine strategy to address this issue.

Regularization is based on the smoothing term of the thin plate spline Esmooth(L). From the
proof on general form of solution of the regularization problem [71], one can easily show that this
energy is directly related to the position of the control points:

Esmoooth(Θ) = ‖W.G.W T‖2
F = ‖P ′.LN .P ′T‖2

F ,
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where LN is the submatrix of L, formed by the rows and columns (1..N). Consequently the
optimization criterion is including both a similarity and a smoothing term, equation 2.4 can be
rewritten as:

Θmin = arg min
Θ

(1− β)Edata(L(Θ,S), T ) + βEsmooth(Θ),

where β is a positive constant that balances the contribution of the two terms (0 ≤ β ≤ 1). Given
the form of the smoothing term and its local influence on the whole transformation, its value will
be chosen according to the number of control points. Larger value of β will be preferred when
increasing the locality of the transformation.

In the case of TPS, as the transformation is an interpolation scheme, going from a scale to the
next is simply performed by applying the previously retrieved transformation to the larger set of
new control points. Formally, consider two sets of control points used for two successive scales
S1 = {Pi, i = 1..N1} and S2 = {Pi, i = 1..N2} with N1 > N2. Suppose that the optimum
transformation has been obtained for the set S1:

Θ1,min = arg min
Θ

Edata(L1(Θ,S), T )

Then the initial position of the transformation having S2 as control points is obtained by:

Θ2,init = {L1(Θ1,min, Pi), Pi ∈ S2}

There is no previous study of the appropriate position of the control points. In practice control
points are placed manually following these two basic rules, taking into account the application to
shape registration:
(i) TPS being an interpolation scheme, the area of influence of a control point is limited to a
restricted area in its neighborhood. In order to have better local control on the shape, every control
points will be located on the shape boundary.
(ii) Control points are spaced evenly on the shape boundary, however when increasing the number
of control, additional points will be located at the positions where the registration error is locally
maximum.

Regarding optimization, we will use approaches which require fast computation of the trans-
formation and its first order derivatives. Under particular conditions, all non-linear terms can be
pre-computed so that the cost of a transformation is linear in the number of control points:

• A fixed set of control points is sufficient to determine the matrix L, its inverse may be pre-



Shape Registration 57

computed.

• A fixed set of source points to be transformed (belongs to the source shape domain) is suffi-
cient to determine the vector B. The product L−1.[B,x′, 1] may be pre-computed.

As a consequence, the computation of the deformation of a set of points under variations of the
transformation parameter Θ is performed in linear time.

Fig. 2.7: Example of TPS Transformation of the right ventricle. From left to right: initial model with 4
control points; 4-points 3D TPS transform (equivalent to an affine transformation); Refinement of
the transformation with 25 control points; TPS transform with 25 control points

Extracting Similarity transform from Thin Plate Spline

TPS is expressed as the sum of an affine transformation and local deformation under the constraint
that local deformation minimize the smoothness energy in equation 2.9. The transformation be-
ing linear to vector of parameters, applying an affine transformation to a transformed point x′ is
equivalent to applying the affine transformation to the control points P′ or to the affine and weight
coefficients of the TPS:

Ãx′ + T̃ = ÃA.x + Ã(T + T̃ ) +
N∑

i=1

ÃwiG(‖Pi − x‖), (2.12)

Choosing Ã = A−1 and T̃ = −T can be used to remove the affine transform from the TPS and
create a model invariant under pose parameters. Also one can use this affine transform to estimate
the ‘closest’ similarity transform so as to remove the pose parameters from the deformations. To
address this issue, we have minimized the Froebenius norm ‖A− sR‖F with respect to a rotation
R matrix and a scaling factor s. This minimization problem admits a closed form solution [72].
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Consider the SVD decomposition of the affine matrix A = V.D.W T , the closest similarity is:

S = s.R with R = V.WT and s = trace(D)/3 (2.13)

We consequently use Ã = S and T̃ = −T to remove the similarity from the TPS transform. In
order to obtain an efficient approximation of the similarity transform, it is is necessary to locate
the center of rotation at the center point of the initial shape.

Fig. 2.8: TPS transformation with 25 control points (Right) and its best affine approximation (middle) and
best similarity transform approximation (right)

2.4 Optimization

Optimization defines the process used to perform registration. In the present case, the retrieval
of the best parametric transformation relies on the choice of a similarity measure between shapes
and a minimization scheme. It can be directly related to the representation technique and different
approaches are adopted. In most cases it can be independent of the considered transformation.
Existing methods often decompose the process in two steps. First correspondences between the
source and the target are established and then the transformation parameters for known correspon-
dences are recovered.

Iterative closest point is a widely used technique to register shapes represented by sets of points
along with a parametric transformation. Consider two sets of points P = {pi} from the source
shape boundary and Q = {qi} from the target shape boundary. Consider a certain parametric
transformation T (Θ, .), the problem is to find the transformation parameters Θ, and associate a set
of correspondences C ⊂ P × Q, that minimize an appropriate error distance. A general objective
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function can be written as:

E(Θ, C) =
∑

(pi,qj)∈C
ρ(d(L(Θ;pi),qj)), (2.14)

where d(L(Θ;pi),qj) is a distance between a transformed source point and its corresponding
target point and ρ is a loss function. Euclidean distance is a common choice for d [13].

A common evolution is assuming a point to curve distance following two different approaches.
On the one hand it is assuming that the set of the model points P is provided with normal informa-
tion (pi ↔ ηi), this was developped in [30]. On the other hand it may be assumed that the set of
data pointsQ is sampled from a smooth interface and provided with normal information (qj ↔ ηj)

[173]:
d(M(Θ;pi),qj) = |d(M(Θ;pi)− qj)

T .ηj|. (2.15)

A usual choice for ρ is leading to the mean square error (ρ(u) = u2), whose minimization has a
closed form solution. However more robust approach were used to reject or at least weaken the
influence of mismatched points using M-estimators [85]. Standard ICP is considering a certain
class of transformation and distance functions, and iteratively minimizes the above functional with
respect to the parameters for a fixed set of correspondences, and estimating point correspondence
for a given transformation.

More evolved techniques address the issues of robustness using more complex transformations
to improve the quality of the correspondences. Softassign techniques introduced in [146] allow
to relax the correspondence problem by introducing a double stochastic matrix M . The above
distance is then computed for all couples of points in P ×Q:

E(Θ) =
∑

(pi,qj)∈P×Q
Mi,jρ(d(T (Θ;pi),qj)) + F (M)/T, (2.16)

where Mi,j correspond to the weight associated to the correspondence of the points (pi,qj) and
summing to 1 along the both index i and j (

∑
i Mi,j = 1 and

∑
i Mi,j = 1). F is an entropy

term (F (M) =
∑

i,j Mi,jlog(Mi,j)) which preserves positive coefficients for M and enforces the
matrix to contains uniquely 0 and 1 (minimal entropy) in a particular framework inspired from
simulated annealing when the “temperature” T goes to 0. In the case of a quadratic distance, this
approach sums up to the registration of each point on the source shape pi to a weighted sum of the
target points (

∑
αjqj) where the coefficients αi are a function of the distance d(M(Θ;pi) − qj)

and the temperature Temp. This is of particular interest if the points qj are extracted from a
continuous interface as interpolated points will be located approximately on the interface. This
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approach was also combined with a thin plate spline transformation in [34] where the source data
points pi are chosen as control points, and the coarse to fine approach in the degree of freedom
of the transformation is uniquely provided by the regularization term (section 2.3.2). The main
limitation of these methods refers to the decomposition of the process in two steps and the explicit
need of recovering correspondences. Following a very different approach, shape registration based
on distance transform was introduced by Rousson and Paragios in [134], having in mind that
this approach would consists of registering different iso-level of both source and target shape.
Therefore the energy can be formulated with the general functional:

E(Θ,S, T ) = Edata(φS(.), φT ◦ L(Θ, .)), (2.17)

where Edata refers to a similarity measure between distance functions, φS and φT the distance func-
tions to respectively S and T . This approach is reverse: instead of minimizing a criterion between
the transformed source (L(Θ,S)) and the target T , we are considering the distance transformed
φT ◦ L(Θ, .), that implicitly use the inverse of the transformation:

φT ◦ L(Θ,x) = 0 ⇔ L(Θ,x) ∈ δT (2.18)

⇔ x ∈ L−1(Θ, T ) (2.19)

Therefore this approach is comparing the inverse transform of T with the source shape S. The
initial approach in [134, 135] makes use of L2 distance on the distance functions, and optimizes
with respect to a similarity transform and an unconstrained non-rigid deformation. Using a general
loss function ρ on R, the energy is generalized as:

E(Θ,S, T ) =

∫

Ω

ρ(φS(x)− φT (L(Θ,x)))dx, (2.20)

bringing two additional modifications:

• similarity transform : the energy is modified to preserve the distance constraint on the trans-
formed target distance function φT ◦T following the approach demonstrated in section 2.2.4.

E(Θ,S, T ) =

∫

Ω

ρ(φS(x)− (φT (L(Θ,x))/|JT (Θ,x)|1/d))dx, (2.21)

where |JT (Θ,x)| is the determinant of the Jacobian matrix of the transformation. |JT (Θ,x)|1/d

corresponding to the scaling factor of the similarity.

• local transform: the above registration energy is combined with an elastic regularization term
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Esmooth as presented in section 2.3.2.

This approach was then extended to local parametric transformation using FFD in [83], and in-
dependently the similarity measure between distance transform changed to mutual-information,
following the approach introduced by Viola and Wells in [203].

The next section will show how these two different approaches are related before introducing
our registration framework.

2.4.1 Optimization Strategies

Consider a point x from the source reference frames, its distance value is φS(x) and it is trans-
formed through the registering transformation to the target domain as x′ = L(Θ,x). It can be
shown that the minimization of |φS(x)− φT (x′)| with respect to x′ is equivalent to the minimiza-
tion of the distance between x′ and its projection on the level set of φT with value φS(x).

However there are a few restrictions. φT being produced from a smooth manifold, it is dif-
ferentiable almost everywhere. Considering signed distance functions, ∇φT is not defined on the
internal and external skeleton of the shape T (Skeleton is defined as the loci of the centers of all
the bitangent circles to the boundary of the shape [14]). Assume that φT is differentiable at x′,
consider PδT (x′) its projection on the boundary of the target shape. It is interesting to notice that
for any point located along the line (x′, PδT (x′)) between the internal and external skeleton, its
projection on the boundary of T remains identical. Formally, this can be written:

PδT (x′ + α.u(x′)) = PδT (x′) with u(x′) = x′ − PδT (x′) (2.22)

With the above definition of u, also called Vector distance function [73], this proves the relation:

u(x′ + α.u(x′)) = x′ + α.u(x′)− PδT (x′)

= (1 + α)u(x′)

As we also have the relation between distance and vector distance:

u(x′) = φT (x′).∇φT (x′), (2.23)

These two relations shows that the gradient of the distance function remains constant along the line
(x′, PδT (x′)). This relation demonstrates the redundancy of the distance map representation: any
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level set can be used to recover (at least partially) the original shape. Also, the projection of x′ on
any other iso-level of φT with value located between the inner and outer skeletton is also located
on this line. Consequently, and following these restrictions, the distance between level sets can be
expressed as follows:

|φS(x)− φT (x′)| = ‖x′ − (x′ + (φS(x)− φT (x′)).∇φT (x′))‖ (2.24)

= ‖x′ − (PδT (x′) + φS(x).∇φT (x′))‖ (2.25)

= ‖x′ − (P{y|φT (y)=φS(x)}(x
′))‖, (2.26)

where P{y|φT (y)=φS(x)} represents the projection on the iso-level of φT with value φS(x). Let
px′ = P{y|φT (y)=φS(x)}(x′) be this projection, it is also interesting to differentiate the above quantity
for small variations of x′:

φT (x′ + δx′)− φS(x) = φT (x′) +∇φT (x′).δx′ − φS(x) (2.27)

= φT (x′)− φT (px′) +∇φT (px′).δx
′ (2.28)

This last equation shows that up to the first order, the quantity φS(x)− φT (x′) refers to a point to
line distance. With this approach, registration using distance functions can be directly compared
to ICP methods where closest points are considered on different iso-levels of the distance function.
This can be performed by optimizing the similarity measure with respect to the parameter vector,
considering point projection on the different iso-level line at the previous step:

Θi+1 = arg min
Θ

∫

Ω

ρ (φT (L(Θi,x))− φS(x) + [L(Θ,x)− L(Θi,x)] .∇φT (L(Θi,x))) dx.

(2.29)
This admits a closed form solution in the case of a quadratic cost function ρ

Optimization algorithms

The approach used in most of the shape registration work is based on the calculus of the variations
of the energy and optimized using gradient descent:

dΘ

dt
=

dE

dΘ
(Θ) =

∫

Ω

ρ′(φT (L(Θ,x))− φS(x)) <
dL
dΘ

(Θ,x)|∇φT (L(Θ,x)) > dx (2.30)

Θt+dt = Θt +
dE

dΘ
(Θ).dt (2.31)
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This approach is supposed to lead to a monotonically decreasing energy for an appropriate step
size dt. However the time step dt that preserve a decreasing sequence of energy value may vary
according to the position. We use a simple method which enforces a strictly decreasing energy by
dividing the time step by a factor µ2 (µ2 > 1) for every ascending step starting from the previous
position. In order to speed up the descent, the time step is multiplied by a factor µ1 at every
successfully descending step. In our application we have used µ1 = 1.2 and µ2 = 1.5.

A more evolved technique is based on second order development of the energy with respect
to the parameter Θ and therefore makes use of its Hessian matrix. This is known as Marquardt-

Levenberg method:
Θi+1 = Θi − (HE(Θ) + λI)−1∇E(Θ), (2.32)

where HE refers to the Hessian of E, and λ is a scalar parameter that modifies the algorithm from
pure Newton method (λ ≈ 0) or simple gradient descent (λ >> 1). Following the previous ap-
proach, λ is divided by µ1 after a successful descent step, and multiplied by µ2 after a failing step.
Within our approach the Hessian used in the above expression is actually a first order approxima-
tion computed with the approach presented in section 2.5

2.4.2 Narrow Bands and Distance Reinitialization

Such a variational method is quite sensitive to the initial conditions and could converge to a local
minimum. One also notices that the proposed form of energy cannot lead to exact results: it
was shown in section 2.2.4 that the distance transformed can be preserved only in the case of
similarity transformations. For more general transformations, the gradient is distorted with the
Jacobian matrix of the transformation and its norm cannot be kept equal to one (eikonal constraint).
Considering the classic relation for any C1 scalar function defined on Ω and any C1 parametric
contour C(t) with C(0) = x0 and C(1) = x1:

φT (x1) = φT (x0) +

∫ 1

0

<
dC

dt
(t)|∇φ(C(t)) > dt. (2.33)

With φ(x) = φT (L(Θ,x)), and C the segment joining any point x to its projection on the trans-
formed shape (y = PδL−1(Θ,T )(x)). y satisfies φ(y) = 0 and shows that deformations of the
gradient are integrated along the segment and the further x is located from the zero iso-level, the
more the distance will be distorted. Therefore in [135], the idea of considering a narrow band
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surrounding the source shape was proposed to make the registration process more robust.

Eα(L(Θ)) =

∫

Ω

χα(φS(x))ρ (φS(x)− φT (L(Θ,x))) dx (2.34)

with χα being the characteristic/indicator function:

χα(x) =

{
1/(2α) if x ∈ [−α, α]

0 else
(2.35)

The selection of the parameter α is crucial since to some extent it refers to the scale of the
shapes to be registered. In addition, it is natural when converging to the optimal solution that
α tends to 0. Therefore, we assume a finite number of decreasing values of scales associated to
narrow band radii {α0 > ... > αt > ... > αn ≈ 0} that is equivalent to a scale decomposition of
the process.

The same kind of attention should be paid to the choice of transformation: if Θ is too large,
there is a high risk of converging to a local minimum. So, while updating the scale value, we also
progressively increase the complexity of the transformation and therefore the number of parameters
in the vector Θ.

In order to account for the non invariance of the distance transform under basic transformations,
the distance to the transformed source shape is recomputed during the minimization process when
updating the parameter αt.

Formally, let Θt−1 be the parameters defining the transformation Lt−1(.) = L(Θt−1, .) for
which the energy was minimum at scale t − 1. Also let St−1 = Lt−1(S), that is the source shape
transformed with the current transformation . The registration between shapes is then equivalent
to iteratively minimizing:

Eαt(L(Θ)) =

∫

Ω

χαt(φS(x))ρ(φSt−1(Lt−1(x))− φT (L(Θ,x)))dx (2.36)

where φSt−1() refers to the distance transform of the shape Lt−1(S). Within such a formulation
the integration domain is always related to the initial source shape and does not depend on the
number of iteration or the parameter αt. Moreover when αt tends to 0, Eαt(L(Θ)) is equivalent to
the point based registration on shape boundary:

Eα∞(L(Θ)) = E0(L(Θ)) =

∫

δS
ρ(φT (L(Θ,x)))dx. (2.37)
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2.4.3 Similarity Measures

Most of the work on shape registration using distance transforms use the L2 norm, that is a
quadratic cost function ρ. This choice is sensitive to outliers and therefore enforces the importance
of the narrow band: a large size will produce larger values of the distance and these points poten-
tially erroneous will have a greater role in the optimization process. Less sensitive cost functions
can be used, like absolute value. Also ρ could be chosen equal to an M-estimator like Beaton-
Turkey so that large values of the difference φS(x)− φT (L(Θ,x)) will not have any influence on
the optimization.

A different approach was used to address the problem of distance deformation upon a transfor-
mation. In [84] the similarity measure between φS and φT ◦ L makes use of mutual information.
This method considers that the distance values of φS and φT ◦ L at every pixels are independent
samples from 2 unknown random variables and the transformation L as the one that minimizes the
independence of the random variables. There exist various ways to measure independence of ran-
dom variables, mutual Information being one of them, it was introduced in the case of multi-modal
image registration in [203]:

E(Θ) = H(φS) + H(φT ◦ L)−H(φS , φT ◦ L(Θ, .)), (2.38)

H(φS) =

∫
pφS (t) log(pφS (t))dt where pφS (t)dt =

∫

Ω

χ[t,t+dt]φS(x)dx/|Ω|

H(φT ◦ L) =

∫
pφT ◦L(t) log(pφT ◦L(t))dt where pT ◦L(t)dt =

∫

Ω

χ[t,t+dt]φT (L(Θ,x))dx/|Ω|

H(φS , φT ◦ L(Θ, .)) =

∫
pφS ,φT ◦L(u, t) log(pφS ,φT ◦L(u, t))dudt, (2.39)

where the last expression represents the entropy of the joint probability associated with φS and
φT ◦ L. In practice integration is not performed in the continuous domain but the output values of
the distance functions are sorted into histograms so that entropies are computed on discrete random
variables.

This approach has shown better results in the case of large deformation with a few degrees of
freedom for the transformation (affine, similarity). These particular cases lead to an inexact match
of the shape boundary and their associated distance transforms. While Standard methods (SSD,
SAD, M-estimator) will try to match every level-set of the distance transforms, one notices that
mutual information criterion aligns images so that a functional relation exists between the values
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of φS and φT ◦L. Therefore the scaling correction factor applied to preserve a distance function in
the case of a similarity is useless when using this criterion. In the case of local deformations, the
interest of mutual information is weakened when compared to classic approaches for 2 reasons. (i)
The warping between shape boundary being of better quality, the match between distance proved
sufficient to consider a measure on their difference. (ii) Local deformation is associated to a smaller
narrow band in the optimization process, therefore less prone to distance deformation.

One of the main criticism of geometric registration in medical imaging is that such correspon-
dences do not always refer to meaningful anatomical ones. The use of landmarks, automatically or
manually extracted, is a prominent step to introduce anatomical consistency.

2.4.4 Landmark Registration

Some shapes are given along with landmarks positions. We use this information to enforce the
correspondences between the shapes to register and amend the registration energy. Landmarks
positions being exact, we have used a simple additional quadratic term in the energies.

Elandmarks(Θ) =
N∑

i=1

‖L(Θ,pi)− qi‖2, (2.40)

where (p1 . . .pN) is a set of N landmarks located on the source shape, (q1 . . .qN) the set of N

corresponding landmarks on the target frame.

2.4.5 Implementation Remarks

The global energy is composed of 3 different terms:

E(Θ) =
1

a + b + c
(aEα,shape(Θ) + bEsmooth(Θ) + cElandmarks(Θ)), (2.41)

where Eα,shape refers to the distance based registration energy, and (a, b, c) are mixing scalar posi-
tive parameters. Eα,shape contains the information on the narrow band (with size α) used to register
distances transforms (section 2.4.2). Esmooth may only be used in the case of local registration
(section 2.3.2). Elandmarks is mostly used in the first steps of the registration to help recover large
deformations. The value of c decreases when considering more local deformations and smaller
narrow bands.
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Discretization of the integrals involved in Eα,shape is performed on a regular grid with variable
spacing lying on the source domain. Points of the grid located within the narrow band are consid-
ered. The computation of energy and gradients being linear in the number of points, the process
initially uses a coarse grid associated with a large narrow band, then refines the grid as the size of
the narrow band is decreasing so that the global number of points involved remains constant.

It is important to notice that registration carried on distance transforms contains certain redun-
dancy. This variable sparseness of the discretization is also of interest to address this issue. If
considering a large band, the registration problem is formulated on a large set of iso-contours hav-
ing coherent normal directions related to the curvature of the target shape (section 2.4.1). Upon
discretization, using numerous points located along the same line orthogonal to the target bound-
ary (namely a line joining x′ and PδT (x′)) which implicitly addresses the registration of the same
0-level position of the source shape boundary and is therefore redundant. Sparseness addresses
this limitation by spreading the point projection all along the shape boundary.

Regarding optimization, the grid being fixed, it has been shown in section 2.3.2 that all non-
linear computation involved in the local transformation can be pre-computed so that registration
complexity is also linear in the number of control points.

Setting the mixing sclars values (a, b, c) mostly depends on the application. A global approach
consists in favoring a large smoothing coefficients in the first steps, therefore performing rough
segmentation (with affine deformation being preferred to local deformations). Then decreasing
the importance of this value leads to more local and softer deformations. Meanwhile landmarks
information (if available) plays a prominent role in the first steps of the process to align properly
small anatomical structures. Along the process its influence is decreased so that the shape term
alone has significant role in the final refinement steps.

2.4.6 Experimental results

The registration framework has been experimented on various examples of 2D and 3D data with
different possible application. Large scale experimentation were performed having in mind the
future construction of a probabilistic model of the deformations. We have first considered digits
registration which shows very large local deformations (see appendix C). However regarding med-
ical applications it was experimented on sagittal view of the corpus callosum, with training sample
manually extracted from MR-images. Minimization of the registration energy is performed using
gradient descent, where successively refine the size of the narrow band from .3 to .05 times the size
of the shape, and simultaneously increase the complexity of the diffeomorphism (from an affine
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transformation to an FFD with a regular [12× 7] lattice) as shown on figure 2.9.

Fig. 2.9: Full Registration process on Corpus Callosum with FFD. Registration using similarity transform
(top right), registration using affine transform (top left), registration using 6× 4 FFD lattice, regis-
tration using 12× 7 FFD lattice

Our registration framework was also experimented on 3D shapes of cardiac left ventricle. We
have used a set of segmented CT and MRI volumes, including both healthy and pathological hearts.
This set of shapes contains 25 examples extracted from CT volumes with the semi-automatic
method presented in [74] and 18 examples manually segmented from MR-images.

When data is acquired with MRI, the scan domain is restricted to the most important parts of the
ventricle. Consequently, apex, mitral and aortic valves are not present and the segmented ventricle
represent a truncated shape (Fig. 2.10). The algorithm has been slightly modified to register
this type of truncated data, so that registered points located outside of the target volume do not
contribute to the energy. The cost function being quadratic, registration is performed considering
successively similarity transform, affine and TPS transform with 60 and then 90 control points.
Simultaneously, the narrow band considered is decreasing from from .3 to .05 times the size of the
shape. Initialization is performed by aligning the center of mass of the source and target shape,
and aligning the direction of the lung, on the images. Such initialization process approximately
aligns the aortic valves of both ventricles so that the registration process robustly converges to the
desired results (Fig. 2.11).

Our registration framework was experimented on various type of data as shown on figure 2.17:
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Fig. 2.10: Representation of the manually segmented left ventricle from MRI data

• 5 class segmentations of the heart (left/right ventricles, left/right atria and aorta) with 3D
free form deformation. It reaches the maximum accuracy allowed with the size of the grid.

• brain cortex segmentation. In such case segmentation align large structure but fails to register
the numerous foldings correctly.

• 3D faces: Synthetic meshes, data extracted with a laser scanner (both clouds of points and
reconstructed meshes), face extracted from a binocular video system [181]

• Full body meshes extracted from laser scanner.

The proposed framework would be capable to produce dense correspondences between any
two surfaces through the minimization of the proposed objective function. However the objective
function is highly non convex and therefore convergence to a local minimum is possible. One
can overcome this limitation either through the use of more advanced optimizers, or through the
estimation of the local uncertainty of the obtained solution.

2.5 Estimation of Registration Uncertainties

Several attempts to build statistical models on noisy sets of data in order to infer the properties of
a certain model have been proposed in the literature. There is a persistent relation in the literature
between noise and uncertainty. Distinction is more semantic than mathematical: One could simply
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a b c

d e f

Fig. 2.11: Full Registration process on cardiac left ventricle. (a) Initial pose. (b) After automatic initializa-
tion process. (c) Similarity transform. (d) 4 control points TPS transformation. (e) 60 control
points TPS-transform. (f) 90 control points TPS-transform.

state that noise is likely to be removed as uncertainty is likely to be estimated, both cases refer to
an unknown random variable. In the present case, registration of a geometric shape model is per-
formed, aligned with a noisy complex target shape. Registration may not be exact and uncertainty
on the retrieved transformation will provide additional information. This approach is related to
different work finding the source of uncertainty in landmarks points estimation and uses it to infer
different global parameters.

2.5.1 State of the Art

In [91], Kanatani reports various techniques to extract feature points in images along with uncer-
tainties due to the inherent noise. These information being used for geometric fitting of structures.
In real world, any measurement is subject to uncertainty. Considering a set of measurement or
samples is the starting point to statistical estimation to infer parameters of the measured variables.
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Origin of uncertainty can be divided in two categories. It can be either external, which means it
originates from the quality of the measuring devices (it depends on the noise level or image quality)
It can be internal in which case it originates from the physical phenomenon itself and the only way
to reduce it requires a repetition of the measurement procedure and doing statistical inference. In
the context of [91] where feature points need to be extracted from images, uncertainty is internal
because it directly originates from the algorithm used to determine feature points. Consequently
there is no other way to decrease uncertainty than multiplying the experiences with different feature
points extraction algorithms. Then discussing the fact that there is only one experiment available,
their approach builds the model to infer uncertainty on such a limit case. Regarding the registration
process, one can imagine several tests of the method using different initial conditions, optimization
techniques and similarity measures. Then uncertainty can be inferred according to the variance of
the obtained solutions. Such an approach is mathematically well founded but not-usable in prac-
tice.

A similar idea was used for landmarks registration with a Thin Plate Spline functional in [149].
Two sets of landmarks are given on two images either with orientation information (an additional
vector is given if landmarks are located on a visible boundary of an object) or given with uncer-
tainty information (a covariance based on gradient and structure matrix is given if landmarks is
located on a noisy position). Image registration is performed by updating the registration energy
with this information, however, no uncertainty is inferred on the final result.

In [139], an iterative estimation method was proposed to handle uncertainty estimates of rigid
motion on sets of matched points. Their contribution is due to the fact that they no longer con-
sider additive noise but place the noise at the center of the algorithms, it subsequently presents all
mathematical basis for the propagation of noise model through explicit or implicit functions. Their
work is directly related to ours as we are also projecting uncertainties along shape border to the
parameters of the transformation.

In a quite different context, in [166], Simoncelli introduced uncertainties within the estimation
of dense optical flow modeled with 2D Gaussian densities. This was based on a probabilistic
model on the image gradient and temporal derivative. Being able to retrieve large displacements,
such algorithm can also be seen as an image registration process where image at time t needs to
be registered on image at time t + 1. In the present case shapes are considered using implicit
representations, therefore uncertainty lie in the relative position of isosurfaces. Consequently the
uncertainty in the registration problem can be seen as equivalent to the ”aperture problem” in
optical flow estimation.

Last, but certainly not least, the closest related work can be found in [174] where an iterative



72 Chapter 2

technique to determine uncertainties on point to curve registration was proposed. Within their
original ICP based approach, correspondence between source and target is based on closest points
and used to compute an objective function based on the parameters of a parametric transform.
This functional is used to compute a covariance matrix (ΣΘ) error on the parameter estimate. The
dual bootstrap is an approach that uses this covariance estimate to select the most appropriate
transformation model, and parallel to that select the spacial area of images where feature points
are selected and considered to compute the objective function.

Recently in [168] an original approach was introduced to relax the constraint on points cor-
respondence between source and target sets of points. Their methods is extending the softassign
method of [33] (Eq. 2.16) where all correspondences between pairs of points are considered. The
original softassign equation is based uniquely on the Euclidean distance between points (trans-
formed source and target) to determine the influence of a pair with the matrix of coefficients Mij:

E(Θ) =
∑

(pi,qj)∈P×Q
Mi,jρ(d(T (Θ;pi),qj)) + F (M)/T, (2.42)

In [168], computation of weights is replaced with a more evolved estimate which also considers
transformation error (estimated by ΣΘ). Within their approach, the registration energy is a function
of the parameter of the transformation Θ and its covariance matrix ΣΘ:

E(Θ, ΣΘ) =
∑

(pi,qj)∈P×Q
Mij(ρij) ρ(d(T (Θ,pi),qj, ΣΘ))︸ ︷︷ ︸

ρij

, (2.43)

where ρij = d(T (Θ,pi),qj, ΣΘ) is a Mahalanobis error distance, which accounts for ΣΘ to com-
pute local error covariance associated to the couple (pi,qj). The matrix of weights on correspon-
dences Mi,j is also a function of the Mahalanobis distance ρij . ΣΘ is also a variable of the energy.
In practice it can be computed from the Hessian of the energy. Compute the Hessian of the energy
with respect to Θ for a certain value of ΣΘ, and obtain a new estimate of ΣΘ. The computation of
the parameter estimate is based on a three step iterative process: (i) minimize E(Θ, ΣΘ) with re-
spect to Θ holding the weights Mij and the covariance matrix ΣΘ fixed. (iii) minimize E(Θ, ΣΘ)

with respect to ΣΘ holding the weights Mij fixed. (iii) Recompute the weight Mij keeping ΣΘ

fixed. Consequently, the full registration algorithm is also introducing a minimization step with
respect to Θ, the weights and ΣΘ being fixed.

Inspired by these works we aim to recover uncertainties on the parameter vector Θ defining
the registering transformation as a covariance matrix corresponding to the degrees of freedom of
the transformation. We have developed two different approaches to compute these uncertainties
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leading to different results. We will show that these two approaches bears important similarity in
the case of our study.

2.5.2 Continuous Formulation: Towards Hessian Matrix

Our approach relies on the linearity of the transformations. Therefore it could be used to handle
uncertainty on any class of solutions to the approximation scheme presented in section 2.3.2. In
particular, this is the case of Thin Plate Spline and Free Form Deformation which may be written
with the form:

L(Θ,x) = x + X (x)Θ. (2.44)

We are considering the quality of the local registration on shapes, that is the zero level set of the
distance transform. Therefore, Eα is formulated in the limit case where α the size of the limited
band around the model shape tends to 0. The data term of the energy function (Eq. 2.34) can now
be expressed as:

E0(Θ) =

∫

∂S
φT

2(L(Θ;x))dx =

∫

∂S
φT

2(x′)dx, (2.45)

where we denote x′ = L(Θ;x). Consider q to be the closest point from x′ located on S , and given
‖∇φT (x′)‖ = 1 for a Euclidean distance, one can express the values of φT (x′):

φT (x′) = ‖x′ − q‖ = (x′ − q)∇φT (x′) (2.46)

Considering little variation of the vector δΘ, one can express a first order approximation of the
distance to the target:

φT (L(Θ + δΘ,x)) =φT (x + X (x)Θ + X (x)δΘ)

=φT (x′) +∇φT (x′)T .X (x).δΘ + δΘTX (x)THΘX (x)δΘ

=∇φT (x′)T (x′ − q + X (x).δΘ) + O(‖δΘ‖2)

(2.47)

This local expression of φT with a dot product reflects the condition that a point to curve distance
was adopted. When located around a local minimum of E0 first order terms are null, and we can
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write the classical second order approximation of the quadratic energy in the form:

E0(Θ + δΘ) =

∫

∂S

[∇φT (x′)T .(x′ − q + X (x).δΘ) + O(‖δΘ‖2)
]2

dx

=E0(Θ) +

∫

∂S

[
δΘT (X (x)T∇φT (x′)∇φT (x′)TX (x))δΘT +

2(x′ − q)T (∇φT (x′)∇φT (x′)TX (x)T )δΘT + 2(x′ − q)T∇φT (x′)O(‖δΘ‖2)
]
dx

(2.48)

This expression is satisfied near the optimum of the registration and therefore does not have
first order terms in its expansion. Also a common assumption based on the Gauss-Newton method
states that near the optimum, the term (x′−q)T∇φT (x′) is on average close to zero. Consequently
the third term in the above expression is negligible when compared to the first so that an efficient
second order approximation is expressed as:

E0(Θmin + δΘ) = E0(Θmin) +

∫

∂S

[
δΘT (X (x)T∇φT (x′)∇φT (x′)TX (x))δΘT

]
(2.49)

Localizing the global minimum of an objective function E is equivalent to finding the major
mode of a random variable with density proportional to exp(−E/β). The coefficient β corre-
sponds to the allowable variation in the energy value around the minimum. In the present case of a
quadratic energy (and therefore Gaussian random variable), the covariance and the Hessian of the
energy are directly related by Σ−1

Θ = HΘ/β. Having a quadratic form for the energy E0 leads to
the following expression for the covariance:

Σ−1
Θ,1 =

1

β

∫

∂S
X (x)T .∇φT (x′).∇φT (x′)T .X (x)dx (2.50)

In the most general case one can claim that the Hessian matrix HΘ is not invertible because the
registration problem is under-constrained. This is in particular the case with FFD, as control points
located too far from the zero level set have no impact on E0. Then, additional constraints have to
be introduced towards the estimation of the covariance matrix on Θ through the use of a regular-
ization term (Esmooth = ΘTCΘ) as presented in section 2.3.2. Such regularisation term presents
the advantage of being invariant to affine transformations, it has an influence mostly on the data
term of uncertainty estimation and consequently much weaker than a classical elastic regularizing
term: Regularization constraints are often considered in computational vision to address ill-posed
problems [194]. Towards an explicit formulation of the covariance on Θ, we consider such a term :
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E(Θ) =

∫

∂S
[(x + X (x)Θ− q) · ∇φT (x′)]2 dx + λ ΘTCΘ (2.51)

This leads to the covariance matrix for the parameter estimate :

ΣΘ,1 = β

(∫

∂S
X (x)T .∇φT (x′)∇φT (x′)TX (x)dx + λC

)−1

(2.52)

This expression is well defined for arbitrarily small values of λ. When the value of λ tends towards
0, some eigenvalues of ΣΘ will diverge leading infinite uncertainty on the parameter vector Θ

along these directions. This will be further developed with the following approach that is based on
the propagation of a Gaussian error on the data to the vector of parameters, leading to a slightly
different result.

2.5.3 Discrete Formulation: Uncertainty propagation

There exists a different interpretation obtained when considering the variations of the error mea-
surement near the optimum. In order to interpret and understand such a measure, let us consider
the discrete case. Then, the objective function to be optimized is given by E0:

E0(Θ) =
K∑

i=1

φT (L(Θ,xi))
2, (2.53)

where {xi} is a set of points uniformly sampled on the source shape boundary. One can also write
the same type of second order approximation leading to the following quadratic form:

E0(Θ) =
∑

[(L(Θ,xi)− qi)∇φT (x′i)]
2
,

where x′i = L(Θ,xi). Considering this expression in the neighborhood of the optimal parameter
vector Θmin and the linear form of the transformation:

E0(Θmin + δΘ) =
∑


(X (xi).δΘ + xi + X (xi).Θmin︸ ︷︷ ︸

x′i

−qi)∇φT (x′i)︸ ︷︷ ︸
ηi




2

This is expressed in the compact matrix form:

E0(Θmin + δΘ) = (X̂ δΘ− y)T (X̂ δΘ− y), (2.54)
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with

X̂ =




ηT
1 X (x1)

...
ηT

KX (xK)


 and y =




ηT
1 (x′1 − q1)

...
ηT

K(x′K − qK)


 , (2.55)

where X̂ is a K × N matrix.We assume that y is the only random variable as it refers to the
distance from the transformed source boundary δS to the target boundary δT . Such assumption is
equivalent with stating that errors in the point positions are only quantified along the normal direc-
tion. This accounts for the fact that the point set is treated as samples extracted from a continuous
manifold. One can take the derivative of the objective function in order to recover a linear relation
between Θ and y :

X̂ T X̂ δΘ = X̂ Ty (2.56)

The set of values contained in y refers to the point to curve distance between the transformed
source and the target. Therefore one can assume that the components of y, measuring the local
registration error, are a set of independent and identically distributed random variables. A basic
assumption will use for y a multivariate Gaussian random variable. The covariance matrix of y has
the form σ2I of magnitude σ2 with I being the identity matrix. Due to the linear form, the Gaussian
assumption for y leads to a Gaussian random variable for Θ. Once again, in the most general case
one can claim that the matrix X̂ T X̂ is not invertible due to the fact that the registration problem is
under-constrained. In a similar fashion, this problem is addressed adding the regularization term
Esmooth = ΘTCΘ:

(X̂ T X̂ + λC)δΘ = X̂ Ty (2.57)

Therefore the Gaussian random variable Θ is fully determined for any arbitrarily small value of λ.
Θ has covariance:

ΣΘ,2 = σ2(X̂ T X̂ + λC)−1X̂ T X̂ (X̂ T X̂ + λC)−1 (2.58)

This expression is different from ΣΘ,1 which in the discrete case would simply be written:

ΣΘ,1 = β(X̂ T X̂ + λC)−1 (2.59)

The next section will explore the relations between the two expressions.

2.5.4 Relations between the Hessian approach and Uncertainty propagation

Results obtained within the two approaches are fundamentally different since in the first case, we
are measuring the Hessian of the energy function while in the second case, modifying the data and
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capturing the variation of the minimum of the energy. In particular, ΣΘ,2 is a singular matrix (as
opposed to ΣΘ,1). This means that not all of the displacements in the parameter space Θ can be
explained with variations of the data. In the formula, this is due to the fact that the matrix X is not
full rank.

We will give some hints on how these two approaches are related by considering a vector of the
null space of ΣΘ,2 which will be denoted by Ker(ΣΘ,2). Given the form of ΣΘ,2 and the fact that
(X̂ T X̂ + γC) is invertible, any vector of Ker(ΣΘ,2) is related to the null space of X̂ T X̂ . Consider
a vector v1 verifying X̂ T X̂ .v1 = 0. Consider the singular value decomposition of X and assume
it is of rank R:

X̂ = UK,R.DR.V T
N,R, (2.60)

with UK,R, VN,R being matrices with orthonormal column vectors and DR a diagonal matrix with
all non-zero values. When applied to v1:

X̂ T X̂ .v1 = VN,R.D2
R.V T

N,R.v1 = 0

⇒ V T
N,R.v1 = 0

⇒ X̂ .v1 = 0

⇒ ∀i, ηT
i X (xi).v1 = 0.

This corresponds to directions along the vector of parameter that either do not influence contour
points (X (xi).v1 = 0) or influence contour points in the normal direction (ηT

i X (xi).v1 = 0). From
this point, the influence on the associated directions of the covariance matrix is inferred :

ΣΘ,2.v0 = 0

⇒ (X̂ T X̂ + λ.C)−1.X̂ T X̂ .(X̂ T X̂ + λ.C)−1.v0 = 0

⇒ X̂ T X̂ . (X̂ T X̂ + λ.C)−1.v0︸ ︷︷ ︸
v1

= 0

⇒ v0 = (X̂ T X̂ + λ.C).v1

⇒ v0 = λCv1.

Based on this equation, any vector of Ker(ΣΘ,2) can be written as the product of the null space of
X̂ T X̂ with the smoothing matrix C. These two vector space have the same dimension because the
matrix C is built in such a way that the matrix X̂ T X̂ + λ.C is non-singular.

In the particular case where C is proportional to the identity matrix (C = γI), corresponding
to a purely elastic smoothing term, we have v1 ∝ v0 so that v0 is also an eigenvector of ΣΘ,1 with
eigenvalue 1/(λγ). This value corresponds to the largest direction of uncertainty.
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We may consider the general form for the matrix C in the limit case when the smoothing term
is arbitrarily small: let v0 be a vector of Ker(ΣΘ,2), there exists v1 verifying v0 = Cv1, with v1

an element of the null space of X̂ T X̂ , we also have the relation:

v0 =
1

λ
(X̂ T X̂ + λC)v1 (2.61)

Applying it to the Hessian based expression of uncertainty ΣΘ,1: v0ΣΘ,1v0 = 1
λ
v0v1 = 1

λ
v0Cv0.

In such cases, the vectors of Ker(ΣΘ,2) correspond to directions so that v0ΣΘ,1 bv0 goes to in-
finity (the norm of ΣΘ,1.v0 is diverging) when the smoothing term is negligible (λ → 0). As our
framework considers a coarse to fine registration process where the influence of the regularization
term tends to zero; the above condition is satisfied.

This means that the vectors of Ker(ΣΘ,2) are excluded (null probability) if using uncertainty
based on the variations of data, while these directions are irrelevant (nearly as likely as the optimal
parameters) if using uncertainty based on the Hessian of the energy.

Once the behavior of ΣΘ,1 and ΣΘ,2 has been identified on Ker(ΣΘ,2), one may consider
its orthogonal space (Ker(ΣΘ,2)

⊥). Consider a vector y of the space Ker(ΣΘ,2)
⊥ and form the

product Σ−1
Θ,1ΣΘ,2:

Σ−1
Θ,1ΣΘ,2y = z (2.62)

X̂ T X̂ ŷ = (X̂ T X̂ + λ.C)ẑ with

{
y = (X̂ T X̂ + λ.C)ŷ

z = (X̂ T X̂ + λ.C)ẑ
(2.63)

X̂ T X̂ (ŷ − ẑ) = λ.C.ẑ (2.64)

Let consider the limit case when the regularization becomes negligible, we obtain the identity
between ŷ and ẑ on Ker(ΣΘ,2)

⊥.

Therefore the present approach based on the variations of the data (leading to ΣΘ,2) can be seen
as a mean to remove the influence of the variations of the parameter vector which do not affect the
data. The choice of the uncertainty model (ΣΘ,1 or ΣΘ,2) should depend on the application. It
mostly depends whether or not the null space associated with the registration has to be considered.
In the present case, uncertainty will be used to express the posterior density of the parameter vector,
given the registration. Consequently, ΣΘ,1 will be preferred so that density is defined on the entire
space.

In practice the calculation of the covariance is not necessary as it will be used to express
the registration likelihood through Gaussian kernels. So the uncertainty on the parameters of the
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registration will be simply expressed by the inverse of the covariance matrix:

Σ−1
Θ = σ−2(X TX + γC) (2.65)

Furthermore the sums and integrals presented in equations 2.58 and 2.52 do not consider a dis-
cretization of contour or surface but make use of a set of points uniformly sampled in space and
located in a thin narrow band surrounding the source shape/contour.

2.5.5 Scaling Uncertainty

Within both expressions of the uncertainty matrix a scaling coefficient appears (β in eq. 2.52, σ2

in eq. 2.58). We are retrieving this value in a heuristic manner based on the physical interpretation
of the Energy. For small displacements of the parameter vector close to the optimum of the energy
we have the relation:

dE =

∫

∂S
φT

2(L(Θmin + dΘ;x))dx− E0(Θmin) =
1

2
dΘ.H.dΘ. (2.66)

Within our application, we have scaled the Energy so that the hyperellipsoid boundary defined
by the implicit equation dΘ.H.dΘ = 1 has a physical meaning when applied to the shape. The
purpose of uncertainty will be to represent a single shape as a distribution of possible deformations,
mostly using a Gaussian random variable with a covariance matrix ΣΘ being related to H−1

Θ . In
order to estimate the scale of uncertainty, we will consider a special case where every control points
are fixed except one. Displacement of a control point can be easily related to a local displacement
of the shape boundary, and therefore directly related to the variation of the energy.

In the case of TPS, we have considered that all control points have equal influence on the sur-
face to be transformed. Consequently the we have considered the total area of the shape boundary
divided by the number of control points as an influential area which we denote AP. In the case
of 3D FFD, we have considered the squared distance between control points. This quantity is the
influential area of any control points AP.

If an additional normal motion of the surface is allowed within a distance d0 equal to 1% of a
charasteristic size of the shape, we obtain a quantity homogeneous to the energy corresponding to
the ’allowable’ range of displacements of the shape boundary that is used for scaling:

Escale = AP.d2
0 (2.67)
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Therefore we have used in our applications the uncertainty matrix the quantity (Escale.H
−1
Θ ). This

uncertainty matrix is displayed with the form of ellipses and ellipsoids, each ellipsoid corresponds
to the case where every other control point remain fixed at their optimal position. If using Gaussian
random variables to represent the distribution of displacements, these ellipses in 2D concentrate
40% of the total probability while the ellipsoids in 3D concentrate 20% of the probability.

2.5.6 Experimental Results

Some examples of such estimates are shown in Figure 2.12 and 2.13 where in the 2D case, 2 × 2

diagonal blocs of the 2N × 2N uncertainty matrices Σ−1
Θ are extracted, and represented as a set of

ellipses located at every control points corresponding to the loci of x verifying xT .Σ−1
Θ,22.x = 1.

One should notice that such representation is considering the control points as being independent
and do not represent all the covariant factors existing between control points. These coefficient
are not negligible and play an important role on neighboring control points. Figure 2.12 shows
uncertainty ellipses applied to FFD. Ellipses are elongated in the direction of the contour/surface
and larger on control points located further away from the shape boundary, which is due to the
fact that these control points have smaller influence on the shape deformations. Figure (2.13) and

Fig. 2.12: Projection of the covariance matrix Σ−1
Θ on the grid control points. Ellipses are elongated in

the direction of the contour, and larger on distance control points. Ellipses are not represented at
control points where uncertainty is too large.

(2.14) shows uncertainty ellipsoids applied to TPS transformation. control points being located
on the shape boundary, they have equal influence on the shape. Ellipsoids are elongated in the
direction of the of the surface and shows larger uncertainty at locations where the match is not
exact. One notice such larger uncertainty inside the ventricle near the papillary muscles. This is
due to the fact that the automatically segmented left ventricle present very important variations in
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this area (Fig. 2.13). In the case of incomplete MRI data (Fig. 2.14), uncertainty is extremly large
on the missing parts of the target shape.

(a) (b) (c)

Fig. 2.13: Projection of the covariance matrix ΣΘ on the TPS control points. (a, b) Left ventricle epi-
cardium, (c) Left ventricle endocarium (same pose as (b)).

(a) (b) (c)

Fig. 2.14: Registration and uncertainty computation on a manually segmented ventricle from MRI data.
Colormap shows the registration error (in mm.), (a) full view, (b) clipped view. (c) Uncertainty
ellipses.

2.5.7 Testing Sequence

In order to test the relevance of the registration framework and the computation of uncertainty,
we have carried a special experiment based on the training set. We dispose of a training set of
left ventricular shapes extracted from Computer Tomography imaging. A reference shape of the
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left ventricle has been registered to every sample of the training set using a Thin Plate Spline
Transformation with 90 control points (let Θi be the parameter vector of such transformation).
For every registered shapes, uncertainty has been computed with the above method (let ΣΘi

be
the associated covariance matrix). Then new random transformations are created, sampled from
a Gaussian distribution, centered on the transformation with parameter vector Θi and covariance
proportional to the inverse of uncertainty (Σ−1

Θi
). Consequently the perturbations appears mostly

in the normal direction to the surface. 75 random transformations and their associated shapes
are generated using this method. The reference shape model is registered to the set of perturbed
samples (vector Θi,reg) and uncertainty is compute for every registration result.

(a) (b) (c)

Fig. 2.15: (a) An example of the registration output: from the reference model to a shape of the training
set (Θi). (b) This registration output with an additional random perturbation (Θi,perturb). (c)
Registration of the reference model on the perturbed sample (transformation Θi,reg)+ uncertainty
representation (Σi,reg).

Figure 2.15 shows image example of the registration output on a training set example, addition
perturbation and the registration result on the example with perturbation. A set of measure can be
performed to assess the importance of uncertainty in the vector space of the Thin Plate Spline. The
table 2.16 represents a set of measures based on the control points. The average distance between
the perturbed sample and the initial one ( ¯‖Θi −Θi,perturb‖2) is lower than the average distance
between the registered sample and the perturbed one ( ¯‖Θi,reg −Θi,perturb‖2). This situation is
not acceptable as the registered sample is designed to be closer to the perturbed one. The use
of uncertainty information, allow to compute efficiently distance between shapes directly in the
vector space of TPS transformations.
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mean std deviation
‖Θi,reg −Θi,perturb‖2 23.70 4.69
‖Θi −Θi,perturb‖2 20.13 1.53

log(N(Θi,reg −Θi,perturb, Σi)) -694.43 6.63
log(N(Θi,reg −Θi,perturb, Σi)) -721.36 14.53

Fig. 2.16: This table shows that computing distances in the vector space of the transformation may only be
relevant if uncertainty information is also used. With the use of uncertainty, the distance between
the perturbed sample and its registration is always smaller than the distance between the perturbed
sample and the same sample without perturbation.

2.6 Conclusions

We have presented in this chapter the multiple representations of shapes and their relations to
different problems of computer vision. Independently, we have presented spatial approxima-
tion/interpolation techniques, that lead to a linear representation of spacial deformations. We have
focused on two particular cases Free Form Deformation and Thin Plate Splines and combined them
with a shape representation based on distance transforms.

The main contributions of our work lie in two particular aspects. Although combining spatial
transformation and distance representation has been previously explored, we have pushed the op-
timization process one step further to handle large deformations. To do this we had to address the
problems of narrow bands with variable size and different sparseness upon discretization. Parallel
to this, increasing the degrees of freedom of the underlying deformation allows the registration
process to go from a rough shape alignment to warping while preserving an invertible transfor-
mation. Our second contribution lies in the estimation of uncertainties in the registration result.
Due to the parametric transformation and noise of the objective shape, local registration cannot
lead to an exact warping of shapes. Assessing uncertainty at the parameter level can be of greater
importance than the local error as it represents the allowable range of variation of the parameter
leading to similar registration results.

Future research directions may cover different perspectives. First of all, different shape rep-
resentations sharing similarity invariant properties can be tested like integral kernels. Regarding
the optimization problem, it would be of interest to adapt the sparseness of the sampling locally
to address more efficiently the redundancy of the distance transform, therefore sampling denser
points in areas with high curvature of the iso-levels representing the details of the shape.

Furthermore, the uncertainty information in section 2.5, are presently computed on the shape
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boundary of the final registration result. This can be extended to different iso-contours and used to
select a different model of transformations or refine the narrow band.

Fig. 2.17: Various samples of registration
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Modeling Shape Variations

Abstract – A definition of shape modeling is related to the modeling of random variables defining the variations in a

class of shapes. Shape being an abstract concept, shape modeling is also naturally related to the shape representation.

This chapter will focus on statistical shape modeling that consists of a set of techniques that can be applied to describe

the possible variations of a class of shapes of interest. Given a training set of shapes, considered as a set of random

samples drawn from an unknown probability in a possibly infinite dimensional manifold, the main objective is to de-

fine the parameters of the density that expresses the observed variability with low complexity. A rich set of methods

starting from the parametric ones, assuming an underlying form of the density and ending with the non-parametric

ones based on kernels density estimation will be presented. In between these classes, one can find methods that aim

first to transform the observations non-linearly to a linearly separable space and then use conventional parametric

methods to model their variability. In this chapter we will focus on the use of uncertainty both in the case of paramet-

ric modeling with Independent Component Analysis and non-parametric modeling using variable bandwidth kernel

density estimation.
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3.1 Introduction

Let us consider a random variable as well as some measurements/observations/samples coming
from this variable. In the most general case these measurements are incomplete and unable to
characterize the behavior of the variable. The task of recovering a statistical model describing
this variable is a well-studied problem in statistics, pattern recognition and machine learning. The
task can be mainly decomposed in two components, find the most appropriate statistical model
to express the variable and estimate the parameters of this model to match the sparse measure-
ments/observations.

The case of modeling shape variations falls in the above general definition. Once the regis-
tration of all training examples to the same pose is completed, the task of recovering a compact
statistical model is to be addressed. The main challenge is to address on one hand the important di-
mensionality of the samples (3D shapes) while at the same time the small number of observations
(number of manual segmentation being available). Therefore important attention is to be paid both
to the selection of the model as well as to the inference approach on defining its parameters. On
top of that, one should be able to account for the uncertainties determined during the registration
phase, which makes the problem more complicated. This is due to the fact that each measurement
(shape, random variable), consists of individual measurements which are also random variables
and have to be propagated properly to the final model.

Prior art in modeling patterns from examples as well as shape variations exploits (i) Param-
eter estimation and supervised learning [31, 196], (ii) Non-parametric densities approximation
[48, 150], (iii) linear discriminant functions [63, 102]. Parameter estimation through supervised
learning makes an explicit assumption on the nature of the distribution which approximates the
samples [176]. Then, the maximum likelihood principle is used to determine the parameters of the
model. These models consider known parametric densities, like Gaussian [99] as well as mixtures
of Gaussians [44]. The unknowns to be determined are the number of mixture components, their
individual parameters (mean, variance, etc.) as well as the prior of each component. The use of
Minimum Description Length [52], or the Schwartz criterion from Bayesian information theory
are considered to determine the number of components while the Maximum Likelihood is used to
determine the parameters of each distribution. In the most simple variant of this model - often con-
sidered to model shape variations -, the use of single-mode Gaussian density has been considered
with their mean and variance being determined through singular value decomposition of the data
matrix. These methods are a reasonable compromise between complexity and computational effi-
ciency under the condition that the selected model can well express the samples (we assume that
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the density from which the samples are taken is known). One has to determine a small number of
variables from a reasonable observation set (well suited problem for unimodal distributions). On
the other hand their estimation might be quite sensitive to the initial conditions for the individual
parameters of the mixture components in particular for multi-variate densities with a large number
of components. Finding the tradeoff between the approximation error and the cost of introducing
new components (which eventually will improve the approximation quality) is not straightforward.

Opposite to parametric statistical modeling, the non-parametric density approximation ap-
proach does not make any assumptions on the underlying density. One should note that these
methods are either used for modeling statistical behavior of samples or classification. In the for-
mer most common case, these methods aim to reproduce the entire density from a small number
of observed/selected patterns. On the other hand, when aiming classification one can address the
task through direct comparison between the new observations and the samples. Parzen windows
are the most popular models to describe non-parametric densities. In such a context, one can con-
sider approximation functions (often called window-functions) and then express the entire density
through a linear combination of these window functions being centered at the observed samples.
Gaussians are the most common choice for the window functions. The methods often rely on fixed
bandwidth, where each sample is given the same importance. More advanced methods go beyond
this simplistic assumption and introduce a general class of kernels (e.g. window functions) where
the bandwidth (importance) of the sample function can vary across observations. In both cases,
the selection of samples used to reproduce the density is crucial. K-nearest neighbor estimation
is an alternative to kernel-based non-parametric density estimation aiming to properly address the
samples selection. These methods are seeking k-clusters, or representative samples which for a
given window function can approximate the surrounding cluster area given the whole observation
set. These methods can offer efficient classification but one has to figure out appropriate means
to determine the required number of clusters. Furthermore, their performance is questionable
when seeking a complete statistical description of the samples, like in the case of medical image
analysis and computer aided diagnosis. In the most general case one can claim that the use of non-
parametric densities provides efficient tools to model shape variations. The principle difficulty
of such approach lies in the sample selection (retain the most important ones) and the choice of
data-driven kernels in terms of their corresponding bandwidth.

One of the main challenges in 3D statistical shape modeling is the large dimensionality of the
samples. In the most general case even a simple surface representation with control points will
require random variables in a space of 50 to 100 parameters. Statistical inference in these spaces
with predefined models is not straightforward since in most of the cases the space is not linear
while at the same time the use of non-parametric densities might be impractical. Dimensionality
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reduction techniques have been investigated to address this problem. PCA which has been earlier
presented as well as methods like non-negative matrix factorization have been investigated. Ideally
one would like to reduce the dimensionality and introduce linearity to the new space. Such a task
offers an alternative concept to statistical modeling, aiming more towards classification where one
seeks discriminant functions to determine the bounds of the observed densities. Once the bounds
have been determined, the answer to the classification problem is straightforward. In the context of
our work we are interested in knowledge-based segmentation and therefore a need exists to convert
statistical models to constraints. The use of bounds, discriminant functions and hyper-planes offers
a natural way to constrain the segmentation problem. Discriminant functions can be either linear in
the observations or linear in a space recovered through the projection of the observations according
to some transfer function. Linear (Fisher) discriminant analysis [63] seeks a linear transformation
matrix in such a way that the ratio of the between-class scatter and the within-class scatter is
maximized. Independent Component Analysis defines a generative model where the data variables
are assumed to be linear mixtures of some unknown latent variables, and the mixing system is also
unknown [87]. The latent variables are assumed non-Gaussian and mutually independent and they
are called the independent components of the observed data.

Machine learning methods go beyond simple linear classification techniques. The use of ker-
nels to project the non-linear observations to a linear space and then the use of linear approxima-
tions in this new space is an active on-going research effort in the area of machine learning [160].
The most representative examples of this effort refers to Kernel-Principal Component Analysis
[119]. These methods seek a set of operators/kernel functions which will project the original space
onto a new linearly-separable space, where one can produce an accurate statistical approximation
of the new samples (creation of clusters), or be able to separate the different hypotheses. The
same concept was developed for the independent component analysis concept. Linear embedding
is an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving
embeddings of high-dimensional inputs. Support vector machines is a powerful clustering method
which seeks an hyper-plane and a normal vector with the least possible norm which separates cor-
rectly the labeled data. Boosting methods like adaboost are examples of weak linear classifiers
which upon proper integration can lead to exceptional classification performance. One should also
point out recent work on compressed or compressive sensing [60] which consists of recovering
from a set of subspaces the least possible number of examples capable of expressing the observa-
tions under a sparsity assumption.

The current state of the art in classification demonstrates that separation/clustering between
samples can be efficiently done provided sufficient training data are available. The problem of
segmentation though requires a probabilistic representation of the samples and in our case goes
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beyond traditional density estimation due to the presence of uncertainty estimates. Furthermore,
organs exhibit various degrees of variability which are to be considered. The main contribution
in this chapter presents the design of a non-parametric density function approximation with vari-
able bandwidth kernels. This density explores both the deformation and the uncertainties space
where the kernel bandwidth is directly associated with the local uncertainties on the registration
space. We also introduce a marginal variation of the independent component analysis, which intro-
duces the use of uncertainty information on the training set for the computation of the independent
components.

The remainder of this chapter is organized as follows. First, we review traditional dimension-
ality reductions techniques like principal and independent component analysis. The next section
reviews parametric and non-parametric approximations for samples using fixed and variable band-
width. Then, we introduce two novel statistical models which aim to propagate the uncertainties
which are associated with the samples: (i) uncertainty-driven independent component analysis, and
(ii) uncertainty-based variable bandwidth non-parametric density approximation. We conclude this
chapter with potential future directions to further explore measurements of uncertainties associated
with the samples towards more accurate statistical modeling of random variables.

3.2 State of the Art in Statistical Interpretation of Samples

Statistical analysis and interpretation of samples often involves input data drawn from one or more
unknown random variables.
The main objectives of this process are:

• Classification: is used to label the data in a certain number of classes. An interpretation of
the problem considers that data points associated with each class are sampled according to
an unknown set of independent random variables. The training set being built with sam-
ples drawn from each class, the classification problem consists of estimating the conditional
probability of a class given the data, and grants to any unclassified data point the label of the
most likely class.

• regression: assuming that a relationship exists between two random variables, the regression
problem consists of defining the conditional probability of one of the variable given the other.

• density estimation: assuming that the observed samples come from a single unknown random
variable, the aim is to determine the support and the parameters of the corresponding density.
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These tasks are often addressed in two stages involving a learning and an execution phase. During
learning, samples, corresponding classes and dependencies are given and the aim is to determine
the regressor. The definition of above tasks introduces certain relationships/dependencies between
them: density estimation actually encompasses the two others as classification relies on the proba-
bility of the class given a certain sample, and regression the probability of one of the variable given
the other. Therefore these application were addressed with the same kind of probabilistic models.

Let us consider a training set {S1,S2, ...,SN} of shapes representing the structure of interest.
Our approach to shape registration requires that a common shape model be registered to every
sample of the training set with respect to a certain parametric transformation. As a consequence,
the training set is represented as a set of transformations:

H = {Θ1, . . . ,ΘN},

where Θk ∈ Rd. The statistical modeling task consists of recovering a probabilistic representation
of this set. The task of building the common reference shape model will be developed in section
(3.3), we focus in this section on most standard methods for density estimation. The first common
assumption states that every Θk is an independent sample drawn from an unknown random variable
with density p(Θ).

3.2.1 Bayesian Learning

Let us consider without loss of generality the parametric form of the density is known, and it
involves a set of parameters ω to be determined. The samples of H are therefore drawn indepen-
dently according to the probability law p(Θ|ω), and therefore one can express the density of H
conditional on ω:

p(H|ω) = Πn
k=1p(Θk|ω).

That is called the likelihood of the samples. The most common mean to determine the parameters
ω is through the maximum likelihood estimate is the value ω̂ that maximizes p(H|ω).

In some problems, on top of knowledge of the form of the density, we also retain some infor-
mation on the distribution of the parameters ω. This can be considered as a prior density p(ω),
and the optimal estimate of ω should be able to express the samples while corresponding to a peak
on the prior density. In such a case, the probability density for ω given the samples is written
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according to the Bayes rule:

p(ω|H) =
p(H|ω).p(ω)∫
p(H|ω).p(ω)dω

∝ p(H|ω).p(ω)

Given that the denominator is independent to ω, the optimal solution for ω is the one that maximizes
this density and is known as the maximum a-posteriori.
This is usually obtained with the minimization of its log likelihood L(ω|H) = −[log(p(H|ω)) +

log(p(ω))]. If there is no prior on ω, which can be modeled with a uniform probability density,
maximum likelihood and maximum a-posteriori coincide. Normal distributions have certain nice
theoretical properties and are often considered to model single and high-dimensional samples.
Therefore a need exists to study this particular class of models which are often considered in
computer vision and medical image analysis.

3.2.2 Gaussian Assumption

Now assume that the training sample is drawn from a Gaussian distribution. Within this assump-
tion, the samples Θ have to be located in a finite dimensional vector space, that is isomorphic to
Rd. Then, if the mean and variance are unknown variables, the maximum likelihood criterion is
obtained solving its derivative with respect to the parameters:

d
{∑k=N

k=1 log(p(Θk|µ, Σ))
}

d(µ, Σ)
= 0.

This leads to the following estimator [4]:

µ̂ = Θ̄ =
1

N

k=N∑

k=1

Θk (empirical mean)

Σ̂ =
1

N

k=N∑

k=1

(Θk − µ̂).(Θk − µ̂)T (empirical variance)

The most common objective for performing such an estimation is dedicated to the reduction
of the problem dimensionality. One can determine the empirical mean and then subtract it from
the samples in order to recover the empirical covariance matrix. The study of the eigenvectors
of the covariance estimates leads to a representation in a different rotated basis of the samples
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into which the components are uncorrelated. It also allows to capture modes of variation for the
samples or determine the set of variations that are most often observed in the density. The eigen
decomposition of the covariance is composed of a unit matrix U and positive diagonal matrix Λ:

Σ = UΛUT

Then one can rewrite the probability density of Θ in the new reference:

p(Θ, {Θ̄, Σ}) = K(Θ− Θ̄, Σ)

= K(UT (Θ− Θ̄), UT ΣU)

= K(UT (Θ− Θ̄), Λ)

= Πi=d
i=1K([UT (Θ− Θ̄)]i, λi),

with K being the density function of a Gaussian random variable:

K(Θ, Σ) =
1√

2π|Σ| e−(1/2)ΘΣ−1Θ.

the last line of the above computation therefore makes use of the diagonal covariance matrix, to
decompose the multivariate Gaussian into a product of one-dimensional Gaussians. This approach
finds a linear transformation U transforming the data into a space where every components are
uncorrelated. Assuming that the Gaussian assumption is true, this transformation is also equivalent
to the statistical independence of the components. Assume that the diagonal covariance coefficients
are sorted λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. The terms of the above equation that correspond to the
smallest eigenvalues (say λi for i > d0) are the directions along which the density is narrowly
spread, so that Θ almost certainly verify [U(Θ − Θ̄)]i ≈ 0. Reducing the dimension of the
Gaussian by setting the λi to zero for i > d0 is known as Principal Component Analysis [89].
As a consequence, this method recovers the components that best explain the data in terms of
covariance. The data vector can then be approximated by:

Θ = Θ̄ +

i=d0∑
i=0

xiUi

This dimensionality reduction technique also has a probabilistic interpretation [195]. In this ap-
proach, the data (observed samples) are reconstructed from the linear transformation of a uniform
and unit variance d0-dimensional Gaussian random variable with an additive Gaussian noise.
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Despite the nice theoretical properties of Gaussian densities and the existence of convenient
tools to recover their parameters, this model often fails to approximate the samples. This is mostly
due to the fact that data distribution forms clusters and each cluster has its own Gaussian behavior.
For example, if we consider the deformation of the left ventricle one should expect that the heart
surface properties form several clusters, related with age, gender, weight, or pathologies affecting
the anatomy.

3.2.3 Gaussian Mixture Models

Gaussian mixture models are examples of multi-modal densities which make the assumption that
each cluster can be determined from a normal density. Furthermore, we assume that probability
of observing a sample, depends on the prior probability of the cluster and the probability of this
sample in this cluster. The general form of the distribution for a mixture of M Gaussians is:

p(Θ,G) =
i=M∑
i=1

πi.K(Θ− µi, Σi), subject to the constraint
M∑
i=1

πi = 1

with G = {µi, Σi, πi}M
i=1 defining all parameters of the mixture model, πi being the a priori prob-

abilities for the clusters and {µi, Σi} the mean and variance of the Gaussian density of each clus-
ter. There exists two principal methods to estimate the parameters: K-means and Expectation-
Maximization that will be briefly reviewed.

Under the assumption that data are produced from a mixture of Gaussians, the basic idea of
these algorithms is to classify the data, (associate it to a source : a single Gaussian) and compute
the parameter of each Gaussian with the maximum likelihood method presented in the previous
subsection. Mixture of Gaussians estimation does not admit a closed form solution, therefore the
proposed methods are iterative and require an initial guess.

K-means [105, 63] is using the most straightforward approach. Starting from a ’guessed’ po-
sition of the centers {µi} for each Gaussian component, every data point is associated with the
component whose center is the closest. Once the M clusters of data points are produced, the new
position of the cluster center is computed using the empirical mean value. Then one can also deter-
mine the other parameters: {Σi} using the assumption that the assigned samples are drawn from a
single Gaussian random variable, and {πi} by weighing the components according to the number
of samples in each cluster.

Fuzzy K-means [63] is an extension of the previous approach, where classification of data
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points in clusters is not binary. Also the semantic associated to this method is fully deterministic,
we will present Fuzzy K-means in a probabilistic approach as an introduction to its generalization
with Expectation-Maximization.

We define the probability that an observation Θi belongs to the Gaussian component j with
center µj as a function that depends on the Euclidean distance between the observation and µj:

mij =
d(Θi, µj)

−2/(φ−1)

∑M
j=1 d(Θi, µj)−2/(φ−1)

,

where φ > 1. One notices that this formula naturally verifies
∑M

j=1 mij = 1. The position of the
centers are updated using the weighted sum of Θi with the probability mij:

µj = (
N∑

i=1

mijΘi)

Computed weights (mi,j) only depend on the Euclidean distance from the cluster center to the
sample. As a consequence, there exists an underlying assumption that all clusters are equivalent
and sampled from a mixture of isotropic Gaussian probability. Let us now interpret this assumption
considering a density model with the form:

p(Θ|G) =
1

M

i=M∑
i=1

K(Θ− µi, σ.I)

with all components having the same weight and diagonal variance. G is the model, containing
in that case the position of the centers and the variance σ. This probabilistic approach to Fuzzy
K-means computes the weight mij as the probability for a point Θi belonging to the Gaussian
component Xj with center µj . We write Class(Θ) the index of the Gaussian component into
which a data point Θ is falling. Using Bayes rule:

mij = p(Class(Θi) = j|G,Θi)

=
p(Θi|Class(Θi) = j,G)p(Class(Θi) = j)

p(Θi|G)

=
e−d(Θi,µj)

2/σ

∑M
j=1 e−d(Θi,µj)2/σ

,

where p(Θi|Class(Θi) = j,G) is a single component Gaussian density and p(Class(Θi) = j) =

1/M . This expression shows the same ’fuzziness’ properties as the historical one, with conver-
gence towards the traditional K-means method when the variance σ goes to 0. K-means is a simple
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efficient tool for clustering with known strength and certain limitations. The most critical part is
the selection of the number of clusters, and the fact that isotropic densities of the components are
considered which often fail to model the actual multimodal distribution.

One can overcome this limitation through a simultaneous estimation of the centers, variance
and a priori weights for all components of the mixture. This is performed using an Expectation-
Maximization (EM) method where the E-step estimates the class probability of every data point
with Bayes rule:

mij = p(Class(Θi) = j|G,Θi)

=
πjK(Θi − µj, Σj)∑M
j=1 πjK(Θi − µj, Σj)

The M-step consists in the maximization of the expected value of log[p(Θ, Class(Θ)|G)] using the
previously determined class probability p(Class(Θi) = j|G ′,Θi) and considering fixed mixture
parameters G ′. The conditional expectation is formally written as:

Q(G,G ′) = E(log(p({Θ}, {Class(Θ)}|G))|G, {Θ′}),

the M-step is the maximization of this criterion with respect to the mixture parameters G:

Ĝ = arg max
G

Q(G,G ′)

Derivation of Q with respect to the parameters G leads to the following results for the update of
mixture model parameters:

πj =
1

N

N∑
i=1

p(Class(Θi) = j|G ′,Θi)

µj =

∑N
i=1 p(Class(Θi) = j|G ′,Θi)Θi∑N

i=1 p(Class(Θi) = j|G ′,Θi)

Σj =

∑N
i=1 p(Class(Θi) = j|G ′,Θi)(Θi − µj)(Θi − µj)

T

∑N
i=1 p(Class(Θi) = j|G ′,Θi)

It can be proven that one iteration of the EM algorithm always increases likelihood of the samples
and therefore the method does converge to a local maximum [116]. This approach is also more
robust than K-means and Fuzzy K-means as the underlying model is a better approximation of the
true distribution.

However, the performance of EM also depends on the model complexity (the number of Gaus-
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sians) and the initialization of the mixture parameters. For example the use of more and more
complex models will produce better and better approximations but not necessarily capture the
mixture clusters. At the same time the estimation of the model parameters will become more crit-
ical due to the increased number of degrees of freedom for the underlying model. Therefore, one
should pay attention to the number of mixture components and appropriate effort is to be made in
this direction.

The EM-solution to the problem of parameter estimation for the mixture model assumes that
the number of Gaussians in the mixture is known a-priori. In order to determine the number of
components, two criterion are frequently used:

• The Schwartz Criterion[69] is one of the Bayesian information criterion for model selec-
tion. In this case, model selection means selecting the number M of Gaussians.

J(G,M) = − log(p(H|G)) + M. log(N)

• The Minimum Description Length[65] aims to penalize the number of degrees of freedom
related to the model according to the assumption that the more parameters the model involves
the more expensive it will be to encode. The approximation quality can be combined with
a term that penalizes the cost of coding the model parameters. In the case of Gaussian
mixtures, a criterion based on length description [147] was added so that the final number
M of Gaussian retained in the mixture is minimizing the global criterion:

J(G,M) = − log(p(H|G)) + MDL(M) (3.1)

= − log(p(H|G)) +
M

2

[
1 + d +

d(d + 1)

2

]
log(N) (3.2)

MDL and Schwartz criteria do not depend on the parameters of G and have a fixed cost accord-
ing to the number of mixture models. Therefore, in order to determine the optimal set of parameters
that minimizes J(G, M), Mmax successive minimization procedures using EM algorithm need to
be performed before selecting the optimal model parameters. Although this techniques finds better
model fitting, it is Mmax times more expensive.

Mixture models can go beyond Gaussian densities and be defined using more complex distribu-
tions. One can claim that this model is a good compromise between computational complexity and
approximation performance. However, in the case where the number of components is reasonable,
they make an explicit assumption on the parametric form of the density. In real applications such
assumptions are not known or cannot be made in advance. Non parametric densities are an alter-
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native to parametric models and aim to describe a model explaining the unknown random variable
using all observed samples.

3.2.4 Non Parametric Density Estimation

Non parametric density estimation was initially proposed as a generalization of histograms. His-
tograms considers a tessellation of the whole space and associate to each tile ′i′ the value p(i) =

#{data points in tile′i′}/N . Non parametric density estimation will overcome the constraint on
the choice of the tessellation. In such a context, for every observation Θ a d-dimensional hyper-
cube R(Θ) centered at Θ with volume V is considered, and the corresponding density is defined
as:

f̂(Θ) =
#{data points inR(Θ)}

N.V

This function satisfies the property of a density, and (f̂(Θ).V ) is the estimated probability for a
test sample to lie in the hypercube R(Θ). If we consider the indicator function of the hypercube
R(Θ):

1R(Θ)(x) =

{
1 if x ∈ R(Θ)

0 else
(3.3)

One can rewrite the density using the Parzen window estimator [137]:

f̂(Θ) =
1

N.V

N∑
i=1

1R(Θi)(Θ)

Parzen windows are very popular density approximation techniques with applications to seg-
mentation, registration, tracking, etc. Kernel density estimation refers to a generalization of the
non-parametric approximation using an arbitrary interpolation/window function (certain constraints
are to be satisfied). Let us consider that the samples {Θi}N

i=1 are drawn from an unknown random
variable taking values in Rd with density function f . A non parametric estimator will make use
of a particular symmetric density function, named kernel, which will also be denoted by K and
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defined in Rd present the same properties as the centered Gaussian probability density function:

∫

Rd

K(Θ)dΘ = 1
∫

Rd

ΘK(Θ)dΘ = 0
∫

Rd

Θ.ΘTK(Θ)dΘ = Id

In its general form, the iso-contours of K are centered and symmetric with respect to every direc-
tion. Then an estimator of the unknown density function can be written in a general form, using a
non-singular matrix H:

f̂(Θ) =
1

N det(H)

N∑
i=1

K(H−1(Θ−Θi)).

In practice H is directly related to the covariance matrix of the distribution of the kernel. It is
therefore more practical to consider this covariance matrix Σ also referred as bandwidth which
verifies Σ = HT .H:

f̂(Θ) =
1

N
√

det(Σ)

N∑
i=1

K(Σ−1/2(Θ−Θi))

=
1

N

N∑
i=1

KΣ(Θ−Θi).

The selection of the kernel as well as of the corresponding bandwidth is quite critical in par-
ticular when observations are defined on spaces of high dimension. There exists various forms of
kernel functions. One can classify them in the following distinct classes [205]:

• Uniform kernels with 1(‖u‖ < 1) being the kernel function. These kernels correspond to the
Parzen window and have interesting practical properties when considering convolution.

• Epanechnikov kernels have the form 3
4
(1− u2).1(‖u‖ < 1). This kernel function offers nice

theoretical properties but limited practical applicability.

• Gaussian kernels have the form 1
(2π)d/2 exp(−‖u‖2/2). This form proves interesting espe-

cially thanks to its nice behavior under convolution product.
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Independently from the selection of the kernel function, the selection of the corresponding
bandwidth is equally important. It is non-natural to treat all the samples (with different rate of
appearance) in an equivalent fashion. Indeed, a fixed bandwidth approach often produces an un-
dersmoothing in areas with sparse observations and oversmoothing in the opposite case. In order
to demonstrate that, let us shortly discuss the expected approximation properties of the kernel esti-
mation. The expected mean of f̂ at a given location with respect to the samples is the convolution
of the true distribution with the kernel:

f̄(Θ) = E(f̂(Θ)) =

∫
KΣ(Θ− x)f(x)dx

Given the form of the kernel this produces a smooth version of the actual density. Using a second
order Taylor expansion of f at Θ, one can explicitly determine the local bias of the estimator [205]:

Bias(f̂(Θ)) = E(f̂(Θ))− f(Θ) =
1

4
trace[Σ.Hf (Θ)],

where Hf is the Hessian matrix of the true density function at Θ. Therefore a kernel density
estimator is always biased, and the decrease of the spectral radius of Σ will lead to smaller and
smaller bias. However the number of samples in real cases is limited and therefore the choice of
the actual bandwidth Σ is critical and not directly related to the statistical bias.

In order to assess the accuracy of the estimator, one may compute the Mean Square Error, with
respect to the samples: MSE(f̂(Θ)) = E{(f̂(Θ) − f(Θ))2} which produces a local expression
of the error depending on the number of samples. In order to assess directly the value of Σ a natural
criterion named Asymptotic Mean Integrated Square Error (AMISE) was considered [205]:

AMISE(f̂) = lim
N→∞

∫

Rd

MSE(f̂(Θ))dΘ

= V ar{f̂(Θ)}+ Bias2{f̂(Θ)}
∼ 1

4

∫

Rd

trace[Σ.Hf (Θ)]2dΘ +
1

N
√

(det(Σ))
‖K‖2

2,

with ‖K‖2 being the L2 norm of the kernel. The formula will also depend on the Hessian of
the density function. The density f being unknown, minimization of such criterion cannot be used
directly to estimate the value of the kernel bandwidth. A set of methods to address this issue makes
use of an initial assumption on the form of the density, compute the AMISE criterion and set the
bandwidth of the kernel Σ in order to minimize this quantity (known as Plug-in methods). Such
method assume a parametric form for the distribution and retrieve the optimal parameters using
maximum likelihood method. The initial estimate of the density will be used to compute ‖K‖2
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and Hf in order to assess the size of the kernel with AMISE criterion. Scott’s method [161] is one
of them where a normal distribution for the whole data is assumed. One estimates its covariance
Σ0 given the data and accesses the Hessian of the density using the obtained density. Based on
the closed form solution obtained in the univariate case, this technique will give the general form
for the kernel bandwidth: Σ = N−2/(d−4)Σ0. We have previously introduced 3 different types of
kernel functions. One may notice that the Epanechnikov kernel has the property of minimizing the
AMISE convergence criterion [113]. However, the AMISE criterion is asymptotic and it can be
proven that using a Gaussian mixture instead does not affect the quality of estimation.

Now that the state of the art on modeling random variables has been presented, let us focus on
the problem of modeling shape variations. Medical image analysis and in particular 3D processing
and parametric surfaces refer to high-dimensional random variables. Furthermore, organs of the
human body exhibit different degrees of variability among individuals. Therefore, a need exists to
introduce models of varying complexity where the aim is to produce a reliable density approxima-
tion with the smaller possible number of parameters. Such approximation can either be parametric
or non-parametric according to the organ complexity.

3.3 Statistical Modeling of Shape Variations

Modeling shape variations is equivalent to studying the deformations between the reference shape
model and all samples of the training set. Such a process involves two critical points: (i) the
selection of the reference shape, and (ii) the selection of the form of the density that models the
deformations towards explaining the training set as optimally as possible.

One should note though that these deformations are due to organ-specific and acquisition-
specific reasons. For example, the position of the subject in the scanner may vary from one acqui-
sition to another leading to different spatial positions of the shape samples and eventually affects
the deformation model. On top of that, different subjects have different global anatomical proper-
ties, and if we consider the heart, one should expect different cardiac volumes. However, in order
to study the heart, what is interesting is the local displacement of the myocardium. Therefore, in
order to inherit such invariance to the model a global registration is to be performed for all samples
where translation, rotation and scale have to be determined. The outcome of this task can then be
used to produce a training set where studying the deformations between the reference shape and
the training examples is meaningful.
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3.3.1 Initial Reference Shape

One of the critical parts of model building is related to the selection of the reference. This model
needs to be general enough and at the same time should encode local deformations so that the
reference shape can be mapped to any sample in the training set. Towards reducing the complexity
of the modeling phase, the degrees of freedom of this deformation model should be as low as
possible. The initial guess will be built from a sample of the training set. The element presenting
the most important regularity with all the visible properties of the shape of interest will be extracted.
In order to illustrate this process let us consider the case of the left ventricle.

3D left-ventricle data were obtained using a semi-automatic segmentation on CT-scans [74].
This algorithm is purely data-based, and make individual assignments at the voxel level. Therefore,
segmentation can be erroneous. We manually chose a regular sample of the training set, where the
papillary muscles and separation between mitral and aortic valves being well segmented. Further-
more, we impose the constraint of a model with an approximately constant thickness of the my-
ocardium, an expected property of healthy subject. Registration with respect to control points will
also address locally the thickness of the muscle, so that the deformed model adequately matches
pathological hearts with thinner myocardium in particular areas.

The considered sample shape is smoothed using a Gaussian filter, a signed distance transform
is applied and a mesh is generated using the mesher contained in the CGAL library [1]. Figure
3.1 shows successive steps of the reference shape model building. The mesh is manually edited to
remove the remaining irregularities of the surface that are specific to the subject.

In the case of 2D shape modeling, we applied our method to sagittal view of the corpus callo-
sum manually segmented from MRI images. The shape being more regular, the choice of an initial
reference shape is less critical. We picked one sample of the training set presenting sufficiently
regular properties. Post-processing the extracted sample was not necessary in this case.

We should mention though that such a process is only used to provide an initial guess of the
reference shape and not the final model. This reference shape will be used to bring all samples in
the same pose. Once such a process has been completed, a more accurate reference shape can be
obtained. Within this process, invariance to global transformation and pose subtraction is required.
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(a) (b)

(c) (d)

Fig. 3.1: Successive steps of the reference shape model building. (a) Mesh extracted from a automatically
segmented ventricle with marching cubes, (b) Smoothed and decimated mesh, (c) Manual manip-
ulation of the model, (d) the reference shape model with the set of control points describing the
deformation

3.3.2 Pose Subtraction and Local Registration

Let CM be the selected and processed shape resulting from the previous section. This will be our
initial reference. This reference will be registered to all the N shapes of the training set named
{S1,S2, . . . ,SN}. In most medical application, the pose of an object of interest is due to the
position of the patients during the exam. This information is not relevant for the modeling of the
anatomy and should be removed from the training set. In the corpus callosum case, an initial shape
registration is performed with respect to an affine transformation. Regarding the heart ventricle
a similarity transform was used to retrieve the pose information. This is performed for all the N

shapes. The inverse of the transformation is applied to every sample, bringing the whole training
set to the pose of the reference shape model.

Going to local registration, we have focused in the previous chapter on two classes of spatial
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deformations. We have built a coarse to fine registration framework for both of them. Free Form
Deformation proposes a set of regular grids with decreasing spacing between control points (see
section 2.3.2)). Regarding Thin Plate Splines, control points location was built manually consid-
ering the local registration error on the different samples of the training set as proposed in section
(2.3.2).

The final parameter vector associated with the registration at the finest scale is retained and
used for statistical shape modeling. Uncertainty in the parameter vector is also computed for every
registered sample (see section (2.5)). Consequently, every shape Si in the training set is associated
with a registration vector Θi and an uncertainty matrix ΣΘi

.

However, one should recall that this pose subtraction was done towards a reference model
initially extracted from the training set. This selection introduces certain bias in the process and
the use of uncertainty at that point will be useful, since:

• The registration cannot be perfect due to the limited number of deformation parameters,
therefore errors will be naturally related to the reference model.

• Segmentation errors exist in the training set itself.

The initial shape selection does not guarantee that the most representative shape model was se-
lected. This constraint is important since it will propagate to the model the ability to explain defor-
mations from the reference to all samples using a small number of degrees of freedom. Therefore
the initial shape model will be transformed to give a more accurate representation of all the sam-
ples.

3.3.3 Average Reference Shape Model

The idea of building an average shape model actually find its foundation in Active Shape Mod-
els [46] where the statistical model is parametric and assumes a Gaussian distribution. Using a
reference shape that is a true mean of the training set makes the covariance estimator unbiased.
However the justification in terms of statistical bias is questionable given the limited size of the
training set. The actual justification is practical: it was previously stated that the registration
framework is heavily dependent on the initialization. Choosing a reference shape capable of being
deformed evenly to every shape of the training set should be favored. This question should be
raised with an appropriate local metric defined in the shape manifold [138, 96]. Our approach is
different as it is based on deformations: a shape of the training can be explained using different
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deformation parameters. This explains the sensitivity of the registration with respect to the initial
state. Also the matrix of uncertainty (see section (2.5)) gives a local estimate of the deformation
candidates representing similar shapes. We have used the Mahalanobis distance with the estimated
uncertainty for each sample to compute the mean shape over the training set. Updating the model
is performed iteratively, in the same fashion as in Active Shape Models [46]:

1. Register the whole training set using CM as common source shape, compute uncertainties
({Θi, ΣΘi

}).

2. Compute the mean parameter vector:

Θ̄ = arg min
Θ

(
∑

i

(Θ−Θi)
T Σ−1

Θi(Θ−Θi)).

3. Update the reference shape: SM ← L(SM, Θ̄).

4. Update the control points initial position.

In practice, a stable mean shape is obtained after a couple of iterations of the above process.

Once the reference shape has been determined, the next step consists of modeling the variations
of the deformation estimates from this shape to all examples of the training set. The amount of vari-
ation between training examples heavily depends on the organ under consideration. Organs like the
heart refer to smooth surfaces with relatively limited variation. In order to account for such degree
of variation, we will introduce two models of increasing complexity. In order to do so, we need
clinical data with experts/physicians segmentation. However, the data obtained from clinical ex-
perts in many cases exhibit important variations between them, and these errors will be propagated
to the model. Furthermore, as explained earlier, the registration process will inevitably produce a
deformation result with some erroneous measurements. Last, geometric correspondences do not
always correspond to anatomical ones, and that is a third source of error propagation in the model.

Therefore a need exists to propose models which somehow account for these errors. In this
domain, qualitative interpretation of the results is equally important with the quantitative solution.
Therefore, understanding or providing measurements of uncertainty along with the obtained solu-
tion is a valuable element to data interpretation. In the next section we propose two models for the
observed deformations, being able to deal to some extent with the above issues.
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3.4 Dimensionality Reduction with Linear Methods

This section will focus on the use of uncertainty to build a statistical prior on the deformation
parameters Θ. Having the uncertainty defined for every sample, we consider in this section that
every shape of the training set contains sufficient information to represent a continuous cluster
of possible shapes. This cluster is defined using a Gaussian random variable, centered on the
registration result Θi with the uncertainty ΣΘi

as covariance matrix. This section will use the
covariance matrices as defined and scaled in section (2.5.5) based on the physical interpretation
of the bandwidth. From these elements we will estimate an a priori density function f̂(Θ) that
models the variations of the training set. The simplest possible model to be considered is the one
assuming that the variables follow a Gaussian density. In such a context, principal components
analysis can be used to describe the observed density of the deformations.

3.4.1 Uncertainty-Driven Principal Component Analysis with Uncertainty.

Assuming a Gaussian distribution of the whole training set, we first apply the Principal Component
Analysis technique on the data. In the present case however the data is not simply a set of vectors
{Θi}, but a continuous distribution of vectors with probability density:

f̂(Θ) =
1

n

∑
i

K(Θ−Θi, Σi)

The maximum likelihood estimator of the mean and variance can be computed as in section (3.2.2):

µ̂ =

∫
(Θ−Θi)f(Θ)dΘ

=
1

n

N∑

k=1

Θk

Σ̂ =

∫
(Θ− µ̂).(Θ− µ̂)tf(Θ)dΘ

=
1

n

∑
i

∫
((Θ−Θi) + (Θi − µ̂)) . ((Θ−Θi) + (Θi − µ̂))t K(Θ−Θi, Σi)dΘ

=
1

n
(Θi − µ̂).(Θi − µ̂)T +

N∑

k=1

Σi

The estimated mean is the same if we do not consider the uncertainty. The global covariance matrix
sums up the uncertainty associated with every sample and the sample covariance of the training set
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(covariance between classes). All covariances being added, uncertainty brings additional noise to
the standard Principal Component Analysis. This is visible as the decrease of the eigenvalues is
much slower when considering uncertainties and using PCA would require considering a greater
number of principal directions. Therefore such a model does not benefit much from the introduc-
tion of uncertainties and more advanced dimensionality reduction techniques and linear models are
to be determined.

3.4.2 Uncertainty-Driven Independent Component Analysis.

Independent Component Analysis (ICA) also known as Blind Source Separation is a statistical
and computational technique that can determine the statistical nature of sets of random variables,
measurements, or signals. This technique is based on a linear decomposition of a multidimensional
model, just as Principal Component Analysis (that computes directions of largest variance) and
Factor Analysis (that explains statistical measurements as a linear combination of a certain number
of factors).

While PCA retrieves an orthogonal transformation of the data into uncorrelated components,
ICA linearly transforms the data into components that are statistically independent. This means
that the projections of the observed data along these directions form a set of independent scalar
random variables [86]. The approach proposed with factor analysis uses a set of candidate factors
to retrieve the weights that generate the one dimensional observed data, while ICA directly uses
multivariate data to estimate both the factor and the weights.

In brief ICA relies on a generative model that assumes that data can be generated as a linear
combination of random variables. These latent variables are assumed non-Gaussian and mutually
independent and are called the independent components of the observed data. Regarding our ap-
plication to modeling of shape deformations, this means that any sample shape can be explained
as a linear combination of specific independent deformations of the reference shape. The simplest
proof of independence is found in the fact that it affects different parts of the shape under study:

Θ = A.s, (3.4)

where Θ is the observed data vector, here considered as a random variable, s an m-dimensional
random vector of sources with independent components, and A a constant mixing matrix. The ICA
process consists in recovering both the source and the mixing matrix using only the observed data.
Several approaches have been developed to robustly compute statistical independence of random
variables and estimate the values of the inverse de-mixing matrix for a fixed number of independent
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components:
ŝ = W.Θ ≈ A+.Θ, (3.5)

where A+ refers to the pseudo-inverse of the mixing matrix. Due to the limited number of samples
and the choice of the method, there is no equality between these two terms.

Various approaches to estimate the independent sources were presented like InfoMax [9], Jade
[23] or Fast-ICA [87, 86]. These methods involve a pre-processing of the data with aim to reduce
the dimensionality of the problem which involves two steps:

• centering: the mean value of the training set is subtracted from every sample: (Θi ← Θi−
Θ̄). The problem being linear, centering the data is equivalent to centering the independent
sources.

• whitening: a linear transform is applied to the data so that components become uncorelated
with variance 1. This transformation is produced from the Principal Component Analysis
applied to the set of data. Obtaining Θ̃i = L.Θi with

∑
Θ̃iΘ̃

T
i = I. The utility of whitening

resides in the fact that the mixing matrix Ã for the new data is orthonormal.

E{Θ̃iΘ̃
T
i } = ÃE{s.sT}ÃT = ÃÃT = I.

Consequently the complexity of the problem is reduced to d(d−1)/2, the number of degrees
of freedom of an orthonormal matrix. Whitening is also used to perform an initial dimension
reduction, by using standard PCA.

The principle difficulty of ICA comes from the definition of statistical independence and the
ways to measure it efficiently. In our application, we have focused on the Fast-ICA algorithm [87]
that interestingly relates independence and non-Gaussianity. The intuition comes from the Central
Limit Theorem, and the fact that any linear combination of independent centered and reduced
random variables will have a distribution closer to a Gaussian than any of the two input variables.
One will try to maximize the non-Gaussianity of the following expression:

y = wT .Θ = (wT .A).s.

If (wT .A) has more than one non-zero coefficients the resulting random variable will be closer
to a Gaussian than any of the component of s. Consequently (wT .A) has only one non-zero
component, and w corresponds to a line of the de-mixing matrix W.

Various criteria were proposed to measure the non-Gaussianity, examples are the kurtosis (sen-
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Fig. 3.2: A synthetic example of Independent Component analysis in the 2 dimensional case. ICA will
retrieve the linear function that will transform the distribution into a domain where the two com-
ponents are statistically independent.

sitive to noise), or the negentropy. The latter is based on the difference between the estimated
entropy of the samples and the entropy of a unit variance Gaussian. An efficient implementation
of the algorithm was used in our application [77].

ICA was previously used in shape modeling [198] where the authors proposed a method to or-
der and select the “most relevant” independent components. Their method represents shapes using
the point distribution models in a very high dimensional space. Our representation of deformations
is in a much lower dimensional space. Thus, our application does not require classification of in-
dependent components, we therefore directly compute m components. The components of s being
independent, their distributions can be expressed as the product of 1-dimensional random variables
densities:

p(s) =
m∏

i=1

pi(si) (3.6)

where a Gaussian mixture model is fitted with the EM algorithm (section 3.2.3) to estimate the
actual density of each component:

pi(si) =

Mi∑
j=1

αjN (µi,j − si, σi,j). (3.7)

In practice, the choice of Mi = 2 is sufficient to describe the variability of deformations for
the samples of the training set. Fig. 3.3 shows the training samples projected on the first three
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components. This method can produce a compact statistical model given a training set where
all samples are brought to the same pose (section 3.3). However, it does not account for the
uncertainties determined during the registration process.

Fig. 3.3: Density plot of independent components s = W.Θ, independence and Gaussian mixture estima-
tion of components appears relevant.

In order to include the registration uncertainties in the process, we generate additional data prior
to ICA. Our approach consists of sampling each measurement on the training set using the normal
law centered on the registration results with uncertainty being the covariance matrix N (Θi, ΣΘi

).
For each example the same number of samples is drawn using the corresponding densities. Such a
process will lead to an augmentation of the training set where samples of low uncertainty will have
more influence on the model to be recovered. On the other hand, for registration results showing
significant values of the covariance matrix determinant, the drawn samples will be dispersed and
therefore will have limited influence in the model construction. The augmented set of variables
can now be used within the Independent Component Analysis framework to produce a multi-
component density of deformations and obtain the following density estimator:

f̂(Θ) = Πm
i=1pi([W.Θ]i),

where [W.Θ]i is the ith independent component extracted from the data. Such a parametric model
is able to propagate the uncertainties and the errors due to segmentation and registration to the
model. However, it suffers from an explicit limitation that is related to an explicit assumption
being made regarding the behavior of samples. In other words this model will perform well if
and only if the observations satisfy these assumptions. If this is not the case the result will be
erroneous.

Organs of human body undergo various degrees of variability. Therefore in some cases the
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Fig. 3.4: The sampling of deformation candidates according to the uncertainty evaluation, as a prior to In-
dependent Component Analysis on the training set.

use of the above-mentioned model could provide excellent approximation of the density. How-
ever in cases where this is not possible, the use of non-parametric models could deal with the
non-parametric nature of the samples. In such a context the key will be the propagation of the
uncertainties to the non-parametric density.

3.5 Variable Bandwidth Non-Parametric Approximation of Deformations

The use of these estimators in our application is straightforward: Assuming the set of observed
shapes is a random variable X admitting a probability density function f , it is desirable to build
an estimator for f which we denote f̂ . We dispose of a random samples of shapes constituting the
training set {Θi}M

i=1. These values are not simple realization of the random variables but comes
along with uncertainties that characterize the allowable variations of the deformation parameters.

The most basic estimator is the fixed bandwidth kernel density estimator (section 3.2.4) and
consists of:

f̂(Θ) =
1

N

N∑
i=1

KΣ (Θ−Θi) =
1

N

N∑
i=1

1

‖Σ‖1/2
K

(
Σ−1/2(Θ−Θi)

)
(3.8)
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where Σ is a symmetric definite positive matrix - often called a bandwidth matrix - that controls
the width of the kernel around each sample point Θi.

However, when considering training sets of limited size, usefulness of varying bandwidths is
widely acknowledged to estimate long-tails on multi-modal density functions with kernels. In the
literature, kernel density estimation methods that do rely on such varying bandwidths are generally
referred to as adaptive kernel density estimation methods. It adapts to the sparseness of the data
by using a broader kernel over observations located in regions of low density. Two useful state of-
the-art variable bandwidth kernels consists of the sample point estimator and the balloon estimator

[158, 159].

The sample point estimator refers to a covariance matrix depending on the repartition of the
points constituting the sample :

f̂S(Θ) =
1

N

N∑
i=1

1

‖Σ(Θi)‖1/2
K

(
Σ(Θi)

−1/2(Θ−Θi)
)

(3.9)

where Σ(Θi) is the smoothing matrix (covariance) associated with Θi. A common selection of
Σ(Θi) takes the form:

Σ(Θi) = σ(Θi) · I. (3.10)

An optimal choice of h(Θi) showing good asymptotic behaviour was proposed as a function of the
true distribution (f(Θi)

−1/2 in [19] and f(Θi)
−1/d in [2] ) and in practice used as a rough estimate

of the density based on fixed bandwidth kernel to locally compute the bandwidth factor [78]. One
can consider various alternatives to determine the bandwidth function. This method was also useful
for energy minimization using mean-shift as presented in [41, 29, 40]. Within our framework, such
estimator may be directly used with the uncertainties calculated in section 2.5 and Σ(xi) = µΣΘi

.

There is a different approach of the result based on the origin of the uncertainties. These
were designed as the possible variations of deformations representing a shape of the training set.
Consequently the uncertainty at Θi defines locally a metric in the space of the deformations. If
samples with uncertainty were defined anywhere in the space, one would consider a Riemannian
geodesic to compute the distance between two samples. As only a few samples are available,
the distance from a vector Θ to the shape with parameter (Θi, ΣΘi

) will be defined with the
Mahalanobis distance: (Θi − Θ)Σ−1

Θi
(Θi − Θ). Therefore the sample point estimator can be

interpreted as a fixed bandwidth kernel estimator in such a modified vector space by.

f̂S(Θ) =
1

N

N∑
i=1

1

‖σ.ΣΘi
)‖1/2

K
(
(σΣΘi

)−1/2(Θ−Θi)
)

(3.11)
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where σ is a global scaling coefficient added for proper smoothing of the estimator.

In the present work we often have an estimation of the uncertainty on the point to be valued.
These uncertainties may be produced from shape registration as presented in the previous chapter
or based on image information in the case of segmentation. Consequently it is useful to introduce
a different kind of estimator with a varying bandwidth at each estimation point. It is known as
balloon estimator [188]. Bandwidth adapts to the point of estimation depending on the shape of
the sampled data according to:

f̂B(x) =
1

N

N∑
i=1

1

‖Σ(Θ)‖1/2
K

(
Σ(Θ)−1/2(Θ−Θi)

)
(3.12)

Considering bandwitdth with the form Σ(Θ) = h(Θ)·I, many estimators where proposed using the
distance from a point Θ to its kth nearest neighbor in the training set. However this kind of choice
presents some drawbacks, the variation of the bandwidth is discontinuous and these discontinuities
appear directly on the resulting estimator, also the estimator usually fails to integrate to 1. Using
the interpretation in terms of metric, given the uncertainty estimate, one will use:

f̂B(x) =
1

N

N∑
i=1

1

‖σΣΘ‖1/2
K

(
(σΣΘ)−1/2(Θ−Θi)

)

Let us consider {Θi}N
i=1 a multi-variate set of measurements where each sample Θi is asso-

ciated with uncertainty measures in the form of a covariance matrix ΣΘi
. Our objective can be

stated as follows: estimate the probability density of a new measurement Θ that is associated with
covariance matrix ΣΘ.
Let X be the random variable characterizing the distribution of deformation of the shape of interest
with density f . Practically, f may be estimated with f̂S using the sample point estimator. There-
fore f̂S is expressed in the form f̂S =

∑
f̂S,i where f̂S,i is the density associated with a single

kernel Θi with uncertainty ΣΘi
. A new shape sample can be seen as the realization of the same

phenomenon. A measure of this phenomenon is observed with a certain amount of uncertainty,
modeled as the random variable Ŷ with density ĝ.

In order to estimate the probability density at the new sample location, one should first deter-
mine for all possible u ∈ Rd their contribution to the distance from f̂(u) the existing prior estimate
of the training set X̂ and weigh them according to their fit with the density function associated to
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the test sample Ŷ:

fG(Ŷ) =

∫
f̂S(u)ĝ(u)du =

∫ [
M∑
i=1

f̂S,i(u)

]
ĝ(u)du =

M∑
i=1

[∫
f̂S,i(u)ĝ(u)du

]
(3.13)

In the case of a single Gaussian kernel for the estimates ĝ and the f̂S,i, We use the interesting
convolution properties of the Gaussian function and recover the expression:

f̂G(Θ) =
1

N

N∑
i=1

1

‖σ2(ΣΘ + ΣΘi
)‖1/2

K((σ2(ΣΘ + ΣΘi
))−1/2(Θ−Θi)) (3.14)

where σ is a global scaling coefficient added for proper smoothing of the estimator. We have used
the same choice as Cremers et al. in [47] using the mean of the minimum distance between sample
values, using the Mahalanobis distance associated with the resulting bandwidth ΣΘi

+ ΣΘj
:

σ2 =
1.52

N2

∑
i

min
i6=j

(Θi −Θj)
T (ΣΘi

+ ΣΘj
)−1(Θi −Θj)

The probabilistic interpretation is straightforward: given two measurements of the same phe-
nomenon with two different tools, the random variables X̂ (associated with the sample point es-
timator) and Ŷ (associated with the new sample), it is desirable to know how likely it would be
for these random variables to be equal. To assess this value, one consider the random variable
Ẑ = X̂− Ŷ, the previous result is the density function of Z at point 0:

pẐ(0) =

∫
f̂S(u)ĝ(u)du (3.15)

The present concept could be relaxed to address the case of non Gaussians kernels according
to a hybrid estimator:

f̂G(Θ) =
1

M

M∑
i=1

1

‖σ(ΣΘ, ΣΘi
)‖1/2

K(σ(ΣΘ, ΣΘi
)−1/2(Θ−Θi)) (3.16)

Such a density estimator takes into account the uncertainty estimates both on the training sample
points and on the new observed sample point Θ. Consequently, the density estimation decreases
more slowly in directions of large uncertainties of the sample point, than in any other direction.

This measure can now be used to assess the probability for a new sample of being part of
the training set through a process that evaluates the hybrid kernel for each of the examples in
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the training set. The resulting approach can account for the non-parametric form of the observed
density. However, this technique is very time consuming since the computation is linear in the
number of samples in the training set, and the computation of a hybrid kernel involves a matrix
inverse of the sum of covariance matrices. Therefore, there is an eminent need on decreasing the
cardinality of the set of retained kernels in the case of large training sets.

3.6 Dimensionality Reduction and Non-Parametric Interpretation of Samples

So as to qualify the fit of the probability density induced by a selection of kernels to the com-
plete training set, we make the selection of kernels that will maximize the log-likelihood of the
probability density calculated on the whole training set.

Consider a selection ZK = {X1, X2, . . . , XK} of K kernels extracted from the training set.
These have associated means and uncertainties {Θi, Σi}|ZK |

i=1 . Then the probability of any registered
shape with associated kernel Y = {Θ, Σ} has the form :

PZK
(Y ) =

1

|ZK |
∑

Xi∈ZK

K(Xi, Y ) (3.17)

and K(Xi, Y ) corresponds to the calculation of the hybrid kernel estimator:

K(Xi, Y ) =
1

‖σ(ΣΘi
+ ΣΘ)‖1/2

K((σ(ΣΘi
+ ΣΘ))−1/2(Θi −Θ))

For a selection of kernels ZK , one can evaluate the log-likelihood for the entire training set with
the associated kernels {Yi}N

i=1 :

CK =
N∑

i=1

log(PZK
(Yi)) (3.18)

The best selection of K kernels explaining the whole training set will maximize the above quantity.
We use an efficient sub-optimal iterative algorithm to update the set ZK . A new kernel Y is
extracted from the training set as the one maximizing the quantity CK+1 associated with ZK+1 =

ZK

⋃
Y . One kernel may be chosen several times in order to preserve an increasing sequence of

CK when adding new kernels. Consequently the selected kernels Yi used to evaluate the global
density probability have prior weight ωi. We finally use the sample point estimator to assess the
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value of a deformation vector Θ:

f̂S(Θ) =
K∑

i=1

ωi

‖σΣΘi
‖1/2

K(σΣ
−1/2
Θi

(Θ−Θi)), with
K∑

i=1

ωi = 1. (3.19)

And the hybrid estimator in the case where a deformation vector Θ is available with uncertainty:

f̂G(Θ) =
K∑

i=1

ωi

‖σ(ΣΘ + ΣΘi
)‖1/2

K((σΣΘ + ΣΘi
)−1/2(Θ−Θi)), with

K∑
i=1

ωi = 1. (3.20)

This approach may only be used in the case of a large training set, which contains redundant
information. We have applied it to the modeling of corpus callosum, reducing the size of the
training set from 80 to 50.

3.7 Conclusion

In this section we have presented a set of methods for modeling shape deformations and proposed
different use for the uncertainty information. Using linear parametric methods, we have proposed
the use of Independent Component Analysis combined with one dimensional mixture of Gaus-
sians density estimation. This approach produces a reduced representation of the deformation, but
also relies on the assumption that the data is produced from the linear combination of independent
sources. A different approach that does not make any assumption on the distribution of the data
was tested, based on kernel density estimation. Inspired from works on fixed and variable band-
width kernel methods, we have introduced the uncertainty measure in the estimator, using Gaussian
kernels. In the latter case we have proposed a hybrid density estimator capable of accounting for
the measure of uncertainty for the shape to be valued.

Having robustly defined the a priori density estimator given the training set, we will present in
the next chapter how this information is used to perform segmentation of the left ventricle on CT
images.

Future direction following the present work may include the introduction of a hybrid estimator
within the Independent Component Analysis method. Also the non-parametric approach may be
further explored having in mind the Riemannian interpretation of the space of deformation, and
the kernel estimators expressed in this modified metric space.
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Knowledge-Based Segmentation

Abstract – Segmentation is one of the central problems in the field of computer vision and medical image analysis. It

aims to define a partition of the image domain into a set of disjoint regions delineating objects with similar features in

an appropriately defined space. Therefore the problem is often equivalent to an optimization problem using edge, in-

tensities, texture and other statistical information of the image. Model free segmentation approaches have considered

edge or regional image information. However, in many cases, either due to noise, occlusions or absence of discrim-

ination between the objects and the background, the use of prior knowledge on the object to segment is necessary.

Consequently, hard and soft constraints are added to the segmentation results accounting for prior knowledge.

In this chapter we review the state of the art in model free and model based segmentation and introduce two novel

approaches to account for prior knowledge. One is using linear approximation models with uncertainties for the

segmentation of the left ventricle. The second assumes complex statistical models based on kernels with variable

bandwidth. This model is considered to segment parts of the brain. Both methods inherit the uncertainties of the

registration process.
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4.1 Introduction

Image segmentation is one of the most fundamental problems in low and mid-level vision. Defin-
ing such a problem is not straightforward since it has several variants. One of the most general
definition consists of saying that segmentation is equivalent to image partitioning into percep-
tually meaningful and similar regions according to some criterion. However, the definition of
perceptually similar structures is not universal. The term segmentation can be used for simple
intensity-based grouping and for object extraction, in images where the notion of similarity in the
feature space is not necessarily visually perceivable. In both cases the problem is ill-posed. In the
most general setting we have no clue either on the number of objects/regions, or on the statistical
characteristics of the regions and features to be extracted.

Image-based similarity techniques can be either intensity/feature-based or knowledge-based.
In the first case, the problem becomes equivalent to feature clustering and boundary extraction,
while in the second case we are mostly interested in fitting a predefined model to the image. The
easiest way to define segmentation consisted in partitioning the image into regions with similar
feature properties. Such similarity is defined on the observation space (image/color intensities).
Decisions can be taken either at the pixel or at the region level using well studied statistical tests.
In order to improve robustness to noise and to avoid individual erroneous decisions, one can impose
some spatial consistency constraints on the decision process. Prior works which have considered
decisions at the pixel level consist of EM-segmentation [207], clustering using K-means [200],
mean-shift [32, 39], etc. On the other hand when aiming to introduce constraints on the decision
process such that neighboring pixels are assigned to the same class, one can refer to work on
MRFs [12, 216] as well as their recent variants using max-flow/min-cut principles [18], region
growing, split-and-merge, etc. These methods are not so related to our approach, therefore will
not be developed further and we refer to [170] for their systematic review. These methods can
be used beyond conventional intensity-based segmentation through the development of statistical
descriptors on any perceptually meaningful space like for example texture [131, 152].

Boundary extraction is an alternative to statistical clustering. Instead of seeking individual de-
cisions for each pixel/voxel, the aim of these methods is to determine image transitions between
classes. However the definition of transitions is not trivial since, similar to the perceptual group-
ing problem, the space on which discontinuities are searched depends heavily on the application.
Edge-detection often relies on discontinuities in the visual space. The use of local features and
the extraction of local maxima on the image gradient space was the starting point for these meth-
ods [22, 79]. The main limitation of these methods was the lack of continuity on the separation
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between different regions (decisions were taken again individually). Snakes/active contours were
introduced in the mid-eighties and were a step forward along this direction where boundary ex-
traction was equivalent to the minimization of a cost function over a ”continuous” curve capturing
the desirable image features. Numerous variants based on the original snake formulation were
and are still proposed. These aim at improving their capture range as well as dealing with the
topology-preserving limitations that were introduced. One can cite their geometric alternative, the
geodesic active contour model [24], as well as their implicit, topology-free level set formulation
[127]. In order to improve robustness to noise as well as their capture range these methods were
amended to use regional information as well either in an explicit [123, 171, 218] or implicit formu-
lation [130, 26]. The proposed framework bears some concept similarities with the original snake
approach as well as its level set variant. Therefore related work will be further introduced in the
upcoming sections.

The abstract definition of the segmentation problem can be rather more specific in certain
application domains, like medical imaging. In such a context, regions correspond to physical
objects with, in most of the cases, a geometry which is constrained by anatomical knowledge. The
term knowledge-based segmentation is often employed to describe this sub-class of segmentation
problems which can be implemented using two abstract concepts:

• Define the set of eligible solutions as a subspace (constrained by the anatomy, training ex-
amples, etc.) and then solve the segmentation problem in this subspace.

• Consider a model-free segmentation approach (using any of the earlier presented methods)
with an additional term which penalizes the distance between the obtained solution and the
expected one.

Both methods exhibit certain strengths as well as important limitations. Subspace approaches
(manifold-based) have the advantage of being computationally tractable (small number of param-
eters to be determined) while guaranteeing that the final solution lies in the appropriate space.
Active shape models [43, 46], active appearance models [42], or deformable templates [118] are
some examples of such methods. These methods make certain fundamental assumptions on the
manifold of the solution space and require a large training set to capture the variations of the struc-
ture under investigation. Furthermore, these methods assume an explicit description of the solution
manifold. Therefore due to subspace constraints they inherit limited tolerance on deviations from
the model space. Such a property can be considered as an important shortcoming in the area of
medical image analysis where the main goal is to facilitate diagnosis through early detection of
non-healthy subjects.
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Soft (shape-based) constraints (manifold-enhanced) are an alternative to manifold-based ap-
proaches where one seeks a solution that is well supported by the data while its distance from
the manifold is within an acceptable range. Parametric contours [49], deformable surfaces [172],
shape-constrained level set methods [153], and more recently deformable metamorphs [82] are
some examples of these methods. Their main advantage is that one can use manifolds which are
not necessarily decomposable in vector sub-spaces. Therefore, one can consider various types of
representations as well as different number of degrees of freedom for the modeling component
towards being able to capture the observed variation of the samples. Furthermore, the data-fidelity
term can be customized to the nature of the problem as well. These two terms are often integrated
using some weight factor and are optimized jointly through the calculation of the partial deriva-
tives. While these methods exhibit certain strengths they also suffer from some limitations. In
theory one can consider very complex shape representations as well as sophisticated prior models
which in practice are often impossible since the designed cost function is far from being convex
and therefore convergence to a local minimum is highly probable. Parallel to that, one should
worry about the pose estimation problem in order to be able to compare instances of the same class
that have to be ”aligned”.

Therefore, a challenge exists in finding an appropriate compromise between the two approaches.
Furthermore, it is important to provide not only quantitative results but also a qualitative assessment
on the methods performance. In other words, the final outcome should also encode the uncertainty
of the solution. In this case, one can compensate the use of reduced or more complex models by
providing means of understanding the result to the end-user. To summarize, the use of reduced
models leads to efficient shape representations where one can use efficient optimization strategies.
At the same time, statistical models that can well express the variation of training samples are
designed in accordance with the chosen representation.

The remainder of this chapter is organized as follows. First, we review model-free segmenta-
tion using as basis the active contour model presenting both the explicit and implicit representa-
tions. Then we briefly review knowledge-based segmentation using manifold-based and manifold-
enhanced approaches before introducing our contributions. First, we propose a low rank model
both in terms of surface modeling as well as statistical approximation of the samples. This is used
to bring together our implicit thin plate spline surface modeling with the independent component
analysis statistical modeling of the shapes variations introduced in the previous chapter [184]. This
approach is validated using computer tomography CT scans of the left ventricle with aim to extract
the myocardium surface. Then, in order to cope with more important variations as well as make the
approach less organ specific we integrate the free form deformation approach [182] with a variable
bandwidth statistical modeling [185]. We demonstrate the performance of the algorithm on MR
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images of the corpus callosum [183]. In both cases, we use data, prior knowledge and uncertain-
ties as explained in the previous chapter while we are able to derive local measures of confidence
which integrate both shape and image support.

4.2 State of the Art in Segmentation

The segmentation problem is one of the best addressed in computer vision and medical image
analysis. Existing approaches can be classified into two distinct categories: (i) model-free and
(ii) model-based. Model-free methods do not make any explicit assumptions on the properties of
the objects being observed in the image and aim at performing clustering through the analysis of
the observed data in some feature space. Model-based methods make explicit assumptions on the
object of interest either in terms of appearance or in terms of geometry or in both/joint space. Each
class has its own strengths and well studied limitations. In the next sections we will briefly review
model-free and model-based segmentation while providing details on approaches related to the
ones presented in this chapter.

4.2.1 Model Free Approaches

Active contour model is a minimization approach to image segmentation (see 2.2.3). The shape
representation is used to define different objective function components that will constrain its
regularity and prevent overlapping while converging to the desired image properties. The most
primitive approach using such hypotheses is the Mumford-Shah framework which partitions the
image into (multiple) classes according to a minimal length curve while reconstructing the original
signal in each class from the noisy observations. The problem was initially formulated in 1985
[122](solved in 1D) and generalized in 1989 [123]. The energy function is defined as:

E(C, g) =

∫

Ω

‖I(x)− g(x)‖dx +

∫

Ω−C
‖∇g(x)‖2 dx + ν|C|, (4.1)

where C is the boundary, |C| its length, and g a smooth approximation of the image I that may
present discontinuities on C. The discrete formulation of this function is related to the early works
of Geman and Geman [70] with modified Monte Carlo methods. This was one of the first ap-
proaches to perform segmentation using the minimization of an appropriately defined cost func-
tion. The main limitation at that time was the lack of efficient mathematical and computational
tools to recover the lowest potential of this function.
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The ‘snakes’ [92], a pioneering framework introduced in 1987 by Kass, Witkin and Terzopou-
los was the first efficient attempt to recover objects from images using an appropriately defined
objective function. In such a context the boundary of an object was considered to be a single,
smooth and connected contour. The ‘snakes’ consider a curve C, parameterized by s ∈ [0, 1]. The
objective function behind this model has introduced two basic assumptions on the segmentation;
(i) smoothness on the solution space and (ii) boundaries between objects and the background that
are determined through strong gradient values. The energy is defined as:

E(C) =

∫ 1

0

α

∥∥∥∥
∂C
∂s

∥∥∥∥
2

+ β

∥∥∥∥
∂2C
∂s2

∥∥∥∥
2

︸ ︷︷ ︸
smoothing term

+ βh(C(s))︸ ︷︷ ︸
image term

ds

The smoothness term (internal) stands for regularity along the curve and has two components
corresponding to the minimization of stretching and bending of the curve respectively. The image
term (external) is designed in such a manner that the contour is attracted to the desired image
features. The simplest form of h is a decreasing function of the image gradient norm (h(C(s)) =

g(‖∇(I(C(s)))‖)), but more advanced functionals were proposed later, using texture information,
image points of interest, etc. The calculus of the variations and a local steepest gradient descend
were considered to recover the lowest potential of this cost function at that time. One of the main
limitations of this approach was its myopic nature, since the final solution was quite sensitive to the
initial conditions. This has been addressed in the recent years using mode advanced optimization
techniques including discrete approaches. However, convergence to local minimum was not the
only limitation of the original method. The snake model makes an explicit assumption on the
parameterization of the contour (in the most general case using control points and an interpolation
function). Therefore the segmentation outcome strongly depends on the selected parameterization.

The geodesic active contour can be considered as a geometric alternative to snakes and can
deal with the above mentioned limitation. It was introduced in [24, 95] and is based on a curve
representation which explores the geometric properties of the contour. Let us ignore the second
order smoothing term in the snake energy, then the rest of the integrals can be reformulated using
the Euclidean arc length:

E(C) =

∫ L(C)

0

∥∥∥∥
∂C
∂s

∥∥∥∥
2

ds +

∫ L(C)

0

g(‖∇I(C(s))‖)ds,

where L(C) is the length of the curve. Using Maupertuis principle and Fermat principle [24], it was
proven that the minimization of the above functional is equivalent to finding the curve of minimal
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length in a Riemannian space with metric being defined using the image function:

E(C) =

∫ L

0

g(‖∇I(C(s))‖)ds.

The lowest potential of this cost function can be determined using a gradient descent method, and
the computation of first order derivatives according to the Euler-Lagrange principles:

∂C
∂t

= g(‖∇I(C)‖)KN︸ ︷︷ ︸
boundary force

− (g′(‖∇I(C)‖)N )N︸ ︷︷ ︸
refinement force

.

with K being the curvature. The first term shrinks the initial contour towards the desired image
features (strong gradient) while penalizing irregularities of the curve through the curvature term.
The second term is only effective close to the object boundary (where g′(‖∇I(C)‖) 6= 0) and is
used to attract the curve to the center of the boundary, which corresponds to a local maximum of
the gradient norm. The use of explicit contour parameterization is computationally efficient but
inherits two important limitations. One should first introduce a frequent re-parameterization of the
contour to compensate local stretching and shrinking of the curve. Such an explicit approach does
not allow topological changes of the initial interface. Implicit contours and level-sets approaches
were introduced to overcome these constraints.

One can consider the gradient component normal to the curve (the tangential has only effect on
the internal parameterization of the curve) and can express the curve evolution using the following
generic formula. {

∂C
∂t

(s) = F (K, C(s), I)N
C(s, 0) = C0(s)

where motion depends on the contour mean curvature and image data.

Implicit methods represent a closed contour (or any full shape boundary) as the 0-isolevel of an
implicit function. Signed distance functions (2.2.4) are the most convenient representations both
from numerical and theoretical perspectives:

φC(x) =

{
dΩ(x) = ED(x,S) = infy∈S ‖y − x‖, x ∈ CS
−dCS(x) = −ED(x, CS) = − infy∈CS ‖y − x‖, x ∈ S

The key idea of level sets is to transform the Lagrangian approach to contour evolution into Eule-
rian one by evolving directly the implicit representation [57, 127]. One can show that the evolution
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of the contour C is equivalent to the evolution of the implicit function φ according to the scheme:

dφ

dx
= −F (K, I)|∇φ|,

where the definition of F is extended to the entire space using the expression K = ∇(∇φ/|∇φ|)
for the curvature. This formulation handles changes of topology such as splitting and merging.
However, given that the level set isophotes move with different speed functions (image-dependent)
the above flow and therefore frequent updates on the distance function are to be considered to
guarantee the numerical stability of the method. Level set methods have been studied both from
theoretical and practical points of view [163, 129] and are among the most popular segmentation
techniques. The use of level set representations had a huge impact on the further development of
snake based methods.

However, the snake model itself was myopic and quite sensitive to the absence of local support.
Region based segmentation was an alternative to pure edge-based snakes and developed in parallel
to the level set method. In [218, 219], Zhu and Yuille have used region statistics and have proposed
bayesian/minimum description length expression to estimate distributions of the different regions.
In the most general case, such energy is formulated as follows:

Eimage(I,G) = −
∑

i

∫

Ω

1RCi
(y) log (pCi

(I(y))) dy,

where {RC1 . . .RCN
} represent a partitioning of the image space into different regions segmenting

the objects of interest. 1RCi
is the characteristic function of the region RCN

, I is the image and
the set of pCi

are density functions that model the statistical properties of each region. Different
optimization methods and modeling of regions were proposed. The approach in [218, 219] was
based on snakes and able to deal with some topological changes through a subsequent merging
approach. The same objective has been achieved naturally through the use of level set methods in
[25]. The Mumford-Shah functional was also used in this context for the segmentation of images
into multiple regions [202]. Each region is defined with a logical combination of the different
level set signs. Consequently log2(n) levelset functions were necessary to represent n regions.
The approach was extended to geodesic active contour, adding a boundary term in [130] and later
extended to texture segmentation [133]. Also in [212] the approach to region based segmentation
was presented to maximize the dissimilarity between the distributions defining different segmented
regions. Despite improvements on the image terms, the main limitation of the deformable curves
and surfaces is not related to the objective function itself but more to its optimization.

Calculus of variations systematically leads to the use of low level information (curvature, gra-
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dient, intensity) and therefore the process becomes sensitive to image noise, and is likely to get
stuck in a local minimum of the energy. In order to address this limitation, the first attempt was to
introduce a ’balloon’ force [36], which aimed to help the contour to surpass noise. On the other
hand this model requires explicit knowledge of the direction of the propagation and could lead to
erroneous results in the presence of weak edges. The stochastic active contours [90] is a more
elegant approach to address this problem through a random perturbation of the motion, according
to a simulated annealing procedure. More recently, generalized gradient flows were considered to
address this limitation. These methods make an explicit use of the manifold structure of the space
of curves S, and defines the gradient locally in the tangent space of S using a particular metric
[177]. The standard derivation method used in conjunction with gradient descent assumes that we
are using the L2 norm in the tangent space:

< ∇SE(C)|h >L2=
dE(C + th)

dt

∣∣∣∣
t=0

,

where C ∈ S and h ∈ TCS defines the tangent space to S at position C. This approach is
not restricted to explicit contours, and was directly extended to level set representations. This
expression was modified with the use of a different scalar product on the tangent space. In [177]
the use of Sobolev norm W1,2 instead of L2, was proven to be equivalent to a proper smoothing of
the flow obtained with the L2 norm. A different motivation was considered in [169, 28] leading to
the same interpretations, where the authors have projected the gradient ∇SE(C) on different well
chosen subspaces. This framework was proven to be an efficient technique to avoid local minima
of the energy.

In general a method that constrains the motion of a deformable model can be interpreted as a
kind of prior on the object to segment as deformation of the initial shape will be preferably rigid
before going to local. Classic snake approaches can account for some global information related to
the geometry of the object such as area and perimeter but cannot account for structural information.
Such a task often involves recovering a probabilistic representation on the manifold of expected
solutions. Once an information space describing the object of interest is available, the next task
consists of penalizing image-based solutions which cannot be expressed from the prior model.

4.2.2 Model-Based Approaches

The domain of geometry-driven/aided object extraction has gained significant attention over the
past decade mostly due the development of the medical imaging field. Existing methods can either
be manifold based, or manifold aided. In the first case, one recovers a parametric representation of
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the manifold and then imposes that the solution to be recovered in the image be part of the mani-
fold. These methods are computationally efficient because the optimization is constrained to lie on
a predefined manifold but have limited capture since any sample is to be seen before segmentation
in order to be part of the model. Manifold-enhanced methods still assume a probabilistic/manifold
representation of the solution space. However, these methods introduce a cost proportional to the
distance between the solution and the manifold. This can be considered as an advantage since the
prior model is decomposed from the segmentation solution and certain freedom exists on recov-
ering solutions which have not been seen before. Computational complexity and computational
efficiency are the main limitations of the manifold-enhanced approaches.

Manifold-Driven Object Segmentation

Deformable template fitting was the first attempt to knowledge-based object extraction in images
with aim to determine the position of the eyes and mouth on faces in video sequences [214]. An
image template is used to define an energy that contains image information like edges, peaks and
valley of the intensity and geometric information based on the complexity of the transformation
applied to the template. Optimization being performed with gradient descent, the set of parameters
describing the template are used in an incremental fashion so that prominent features of the object
will be detected first and then refined using all parameters. This technique is very sensitive to the
initialization and was mostly tested for tracking purposes.

Active Shape Models (ASM) is one of the first known attempts to model the structural deforma-
tion of an object explicitly [45, 46]. The technique is based on a Point Distribution Model (PDM)
shape representation, that is a set of points located on the feature points of the object (edges) and
equally spaced to describe the contour properly. Assume the existence of a training set with manu-
ally segmented images, every shape is described with a PDM of corresponding points concatenated
as a unique feature vector x. Cootes and Taylor [46] proposed to model the variations of x as a
weighted sum of the columns of an orthonormal matrix P using principal component analysis on
the training data. Any shape of the training set can be approximated with the use of a weight vector
b:

x = x̄ + P.b,

where x̄ represents the mean of the samples and is used as a reference model. Towards invariance of
the model with respect to the camera/sensor point of view, a registration with respect to a similarity
transform was considered first, so that the above description is defined for the local deformation
component. This method is using PCA to retrieve the columns of P (see 3.2.2) which only contains
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the directions of the largest variation of the local deformations. Knowledge-based segmentation
using this model first involves an initial estimation of the position of the object in the image, and
then its local deformation using the coefficients of the modes of variations towards expressing the
data. This process is done in an iterative fashion. First, given the current position of the control
points, correspondences with the image (better positioning of the control points) are searched. This
is done at the point level through a local search on the normal direction to the curve. The optimal
correspondence is determined either using the highest gradient or through appropriate matching of
intensity profiles. Once the correspondences between the model and the image for the PDM are
obtained, the new pose parameters (s,Rθ, t) are computed by aligning it to the reference model,
and local parameters b computed with the projection on the columns of P . An updated candidate
shape is obtained and the process iterates until convergence, with the final result:

x′ = sRθ(x̄ + P.b) + t,

where by extension we have noted Rθ.x the transformation of all points of the PDM with rotation
Rθ. Active shape models are purely geometric ones and decorrelate geometry with appearance.
Introducing appearance in the manifold was a natural extension, namely the Active Appearance
Models (AAM) [42]. In this case, the training set is composed of a set of objects manually seg-
mented (outline of the object of interest and geometric feature points of interest, etc...). Then, all
extracted instances of the object are brought to the same pose according to the shape information
leading to a shape parameter vector like ASM (x). AAM is using a warping (non rigid deforma-
tion) of every shape of the training to the reference shape x̄. As shape is represented with PDM, the
warping is performed with a piecewise linear transformation of the Delaunay triangulation associ-
ated with the reference shape x̄. Once all instances of the object from the training set are aligned, a
feature vector is defined that contains image information (a vector y containing intensity of the im-
age). The mean appearance ȳ is also computed, and the initial approach also accounted for linear
contrast invariance that consists in a normalization of the histograms associated with the vectors
y. Data being pre-processed, learning possible shape and appearance variation is performed using
PCA in the joint space (x,y) to reduce the dimensionality of the problem:

x′ = sRθ(x̄ + PASM .b) + t

y′ = a(ȳ + PAAM .c) + b,

with (s,θ , t) the pose parameters, (a, b) image contrast parameters and (b, c) the weights associ-
ated with the local variation of shape and appearance respectively. Segmentation is performed by
deforming the model to the observed image, such that the set of parameters of the shape and image
model variations reconstruct an object that looks similar to the one observed. Initial optimization
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techniques were based on gradient descent iterating simultaneously on the shape and appearance
parameters. Recently, the convergence properties of the approach were studied in [114] and a
faster optimization method that does not require the calculus of variations was introduced in [59].
The technique was widely explored for various applications notably in segmentation of ultrasound
image sequences in [17]. Active Shape and Appearance models are examples of manifold-based
methods. Their main strength is computational efficiency, their main drawback shows limited
applicability/capture of variations.

In order to deal with more complex models the idea of sparse models has recently been pro-
posed [66]. It consists of recovering a basis and a linear and nonlinear interpolation strategy that
satisfies three criteria, (i) good representation of the training set, (ii) optimal support from the data,
(iii) invariance to local perturbations of the basis. While this contribution is showing more degrees
of freedom, the retrieved segmentation is still constrained to a fixed manifold. Manifold-enhanced
segmentation addresses this limitation with the use of model free approaches and penalizes the
distance to a learnt shape manifold with various complexity.

Manifold-Enhanced Object Segmentation

In such a context, one would like to combine model-free and model-based approaches. This can be
done through the definition of a cost function that is the sum of an image and regularisation term
(inspired by model free techniques), and a shape based term, derived from a training process. In
the most general case one can write:

E(C) = Eexternal(C, I) + Einternal(C) + Eshape(C)

These methods were first considered to improve the classic snake model. Since our approach
is exploring implicit representations, we will focus on manifold-enhanced approaches in this area.
The simplest possible approach relates segmentation with the Chamfer transform [31]. The prior
model was rather simple: an average contour and its corresponding distance transform. In order
to produce a prior term, the projection of the 0-level set (actual contour in the observed image) to
the reference level-set was considered according to certain pose parameters. In order to account
for the signed nature of the reference shape and to produce a nice/derivable prior the square of the
projection was considered, or:

E(C) =

∫
g(|∇I(C(p))|) +

λ

2
d2(µRθC(p) + t)‖C ′(p)‖dp
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where g is a classical image term cost function, (µ,Rθ, t) the pose parameters defining a similarity
transform. d is the Euclidean distance between the transformed contour µRθC(p) + t and the
reference contour C∗. The technique requires to constantly update the pose parameters aligning C
to the reference contour. The estimation of the pose parameters is critical in such a context since,
due to the small number of observations, it can be erroneous while the prior model has also limited
capture.

In [153, 154] these issues were partially addressed. In particular a more robust metric between
the evolving contour and the prior was proposed while a probabilistic behavior was inherited to the
reference level set model. Within this approach, a level set function φ∗M was considered which also
involves the local scalar variance aiming to describe the possible variations of the levelset values:

{φ∗M, σ∗M} = arg min
φM,σM

E(φM, σM), under constraint ‖∇φM(x)‖ = 1

with E(φM, σM) =

∫

Ω

N∑
i=1

− log(pMx (φi))dx

and pMx (φ) = K(φ(x)− φM(x), σM(x)),

where K(x, σ) is a Gaussian kernel with bandwidth σ valued at x. Optimization with respect to
φM and σM was performed in a variational framework, and these were used as a shape based
energy term for the segmentation process:

Eshape(φ) =

∫

Ω

(
log(σM(x)) +

(φ(x)− φM(x))2

2σM(x)2

)
.

This technique also requires a constant estimation of the pose parameter aligning the level set
model φ∗M to the current segmenting level set φ.

Most manifold enhanced segmentation methods require to separate pose estimation from local
deformation in order to design a shape prior which only accounts for local variations. Therefore
pose parameters need to be estimated constantly during the registration process. This difficulty
was addressed in [68], where an affine invariant shape model based on particular moments was
built. Their approach implicitly computes the pose parameters that align the deformable model to
a ’universal’ reference frame only based on second and third order shape moments. These are used
to retrieve the parameters of the affine matrix of the form:

A = RγDRθ

where Rγ, Rθ are rotation matrix and D a diagonal matrix. Affine invariant moments were com-
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puted in a closed form directly on the initial shape. Computation of the moments up to a certain
order allows reconstruction of an affine invariant reference shape. Therefore using the general
theory of shape gradients [6], they have derived a shape based energy term defined as the distance
between moments associated to the shape model and the deformable model respectively. They have
added this term to a region based energy functional of Chan & Vese [26] to perform segmentation.
These approaches have introduced robustness on imposing a prior as well as some improvement
on the capture range of the model. The next step was to consider more advanced statistical models
to capture the variation of a training set.

In [99] level sets and PCA manifold enhanced priors were considered in a sequential fashion.
The prior model was computed using an orthogonal sub-space through a PCA on the aligned
distance functions of the training examples. A mean shape model is obtained with orthogonal
modes of variations:

φ′(x) = φ̄(Rθx + t) +
N∑

i=1

biψi(Rθx + t),

where b = {b1 . . . bN} is the vector of local deformation parameters and a = {Rθ, t} defines
the pose parameters. The levelset φ′ is also a function of the parameters {a,b}. Segmentation
is associated to the minimization of a function containing an image-base term based on geodesic
active contour, and a shape-based term as the square distance between the current level set φ and
the best level set candidate φ′(a,b) approaching φ in the learned subspace:

E(φ) =

∫
λ1g(|∇I(x)|)|∇φ(x)|+ λ2(φ− φ′)2dx

φ′(a′,b′) = argmax
a,b

P (a,b|φ,∇I).

The first energy term defining the evolution of the levelset φ(t) is optimized using gradient descent,
while at every time step the optimal φ′(a, a) approximating φ(t) is computed with the maximiza-
tion of the second term. P (a,b|φ,∇I) is obtained using Bayes rule under certain independence
assumptions, and leads to different elementary terms. The optimal values of a and b are retrieved
by gradient ascent on the log-probability.

The work of [196] as well as the one of [155] was a natural extension of this concept leading
to an implicit version of active shape or active region models. This method aimed to recover
the pose parameters while evolving the contour in the image in such a way that it belongs to the
orthogonal learned space while at the same time accounts for the desired image features. Despite
the improvement over the static models, these methods impose a linear behavior on the training set,
that is the prior manifold should be expressed using an orthogonal base. Such a linearity constraint
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is not always satisfied. The use of kernel principal component analysis is an efficient tool to address
this limitation.

The idea of Kernel PCA is conceptually simple: assume data living in a non-linear space, con-
sider an infinite dimension function which projects this data to a new space where linear separation
is feasible. In [47], the Mumford-Shah data term was combined with a Kernel PCA prior model.
It can be proven that the data can be mapped to a high dimensional feature vector space with a
non-linear function φ so that the kernel in data space is mapped to a dot product in feature space
(k(zi, zj) =< φ(zi)|φ(zi) >F ). Using PCA in the feature space, can be formulated only with the
use of a dot product [119] and therefore translates to a weighted sum of kernels in the data space.
In such a case, the prior term of the energy takes the following form:

E(z) =
∑

k

λk

∑
i

wk,ik(z, zi),

where the wk,i are the components of the kth eigenvector associated with eigenvalue λk. In [47],
Cremers et al. have shown the strong relation between this approach and the Parzen window
technique for non-parametric density estimation (3.2.4).

Introducing prior knowledge in segmentation involves two aspects, (i) defining an appropriate
prior mode, (ii) defining a distance between the current solution and the model. Most of prior art
involves Euclidean distances between shapes which can be considered as a limitation. Recently,
more complex distances were considered like Sobolev and Hausdorf [27] and the manifold struc-
ture of the shapes was considered. Using linear methods like PCA and ICA in [28], the prior was
built under the assumption of small shape deformations, and defined in the tangent space associated
with the mean shape.

Meanwhile, manifold-based dimensionality reduction techniques were adapted to the set of
shapes and used for segmentation. Such methods assume that the set of shapes of the training is
sampled from a smooth finite dimensional sub-manifold of the manifold of shapes. These tech-
niques are twofold, first estimating a low dimension smooth manifold from the sampled data and
secon building an embedding from this manifold to a finite dimensional Euclidean space. For in-
stance, in [64], Laplacian eigenmaps and diffusion maps were considered. This embedding is used
as a basis to build a continuous manifold out of the limited set of training samples. The second
step consists of computing the projection of any shape on this manifold. The shape prior term can
be designed as the minimization of the distance from any shape to the learned shape manifold.

Let us now consider an axiomatic approach to knowledge-based segmentation. The properties
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of such an approach or constraints can be summarized as follows: (i) a model that can account
for the variations of the training examples and can go beyond that, (ii) a model that is as compact
as possible and involves a small number of parameters, (iii) a constraint that explores the model
towards recovering solutions that are consistent with the model, (iv) a method that uses the image
features as optimally as possible. The answer to the last condition is rather trivial since in the most
general case region-based techniques and separation of classes using statistics on intensities is the
most appropriate approach. This is not the case for the first three conditions. Inspired from our
work on modeling shape variations with uncertainties, the selection of the most appropriate model
is natural. Problems which involve samples of limited variation can be captured with linear models
which encode uncertainties while non-linear structures like the human brain can be modeled using
non-parametric models and kernels. In terms of nature of constraint, since dimensionality reduc-
tion has been already addressed in the model space, we consider a manifold-enhanced approach
where the optimization is addressed through deformation of the reference shape according to the
image and the prior on the deformation space.

4.3 Manifold-Enhanced Knowledge-Based Segmentation

A straightforward approach to the problem of image segmentation is based on the Bayesian formu-
lation of the maximum a posteriori. This model allows the natural use of intensity, texture region
information along with a shape prior [132, 128]. Let P(Ω) represent a partition of an input image
I. The density function of the partitioning given the image which we want to maximize according
to the Bayes rule is given by:

p(P(Ω)|I) =
p(I|P(Ω))p(P(Ω))

p(I)
,

where:

• p(I|P(Ω)) is the posterior probability of the image I given the segmentation result. This
term measures how well the segmentationP(Ω) explains the image, in terms of homogeneity
of intensity, distribution or texture information. The choice of this term is critical and should
motivate the feature space where separation between classes is straightforward.

• p(P(Ω)) is the prior probability of the segmentation. This term may include smoothness
constraints on the segmented regions, as well as the statistical shape prior.

• p(I) is the probability of having the image I in the space of all images. This term which do
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not contain any information is usually considered as a constant normalization term.

Recovering the sample that corresponds to the highest peak of the above probability density is
equivalent to the minimization of − log(p(P(Ω)|I)), this leads to the classical energy based ap-
proaches to image segmentation:

E(P(Ω)) = − log(p(P(Ω)|I)) = [− log(p(I|P(Ω)))]︸ ︷︷ ︸
Image term

+ [− log(p(P(Ω)))]︸ ︷︷ ︸
Internal + shape prior terms

The definition of these components should be application driven and will be discussed in the up-
coming sections. However, even if the descriptors are aiming to separate the object from the back-
ground, their definition may vary from one application to another, the theoretical model (region-
based segmentation) is the same.

4.3.1 Image-Based Term

Without loss of generality let us assume that the prior model consists of a Full Shape or a set
of non-overlapping full shapes Si as defined in section (2.2). In the latter case, this defines a
multi-components shape model. Then, we can go even further and assume that this shape model is
associated with a template related to the different structures being present in the image. Section 2.3
has defined a set of deformations applied to the shapes and having the entire domain Ω as support.
Deforming the shapes is therefore equivalent to deforming the associated template.

Let us now assume n-classes being part of the model ({C1 . . . Cn}) + a background class (C0).
Let x be a point of the template, then ζ(x) is the class of the point x.while In the most general case,
the template is probabilistic: the probability of any point of the template belonging to class Ci is
p(ζ(x) = Ci), therefore satisfying

∑n
i=0 p(ζ(x) = Ci) = 1. In case the template is determinisitic,

then p(ζ(x) = Ci) ∈ {0, 1}, and we can define regions on the template associated with each class
(RCi

= {x|Class(x) = Ci}), which also correspond to the reference shapes Si.

Consequently, one can define the model free segmentation problem through a warping of the
reference shapes (and the template being associated with it) in a very general fashion with the
maximum a-posteriori. One will retrieve the principal mode of p(I|Θ,G), where Θ is the vector
defining parametric transformation of the template and G refers to the visual properties of each
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class:

Θmax = argmax
Θ

(p(I|Θ,G))

p(I|Θ,G) =
∏

y∈ΩI

(∑
i

p(I(y)|ζ(L−1(Θ,y)) = Ci,Θ,G).p(ζ(L−1(Θ,y)) = Ci|Θ)

)

where L is the parametric transform associated with the vector of parameters Θ.

In practice the class probability of any point of the template can be determined through a learn-
ing process. In our case, the reference shapes defining the object of interest have been aligned
to a training set of pre-segmented corresponding shapes with respect to the parametric transfor-
mation L. Thanks to this shape registration process, the separation between classes is very well
defined and the associated template can be considered as nearly deterministic. Therefore, the class
probability p(Class(x) = Ci) will be approximated with the use of smoothed Heaviside function
showing fast transition of the class probability of Ci from 1 to 0 when crossing the boundary defined
by the shape Si.

p(Class(x) = Ci|G) = p(Class(x) = Ci) = Hσ

(
φRCi

(x)
)

,

with Hα(t) =
1

2
+

1

π
tan−1

(
t

α

)

where φRCi
is the signed distance computed from the class Ci on the template, and σ is the smooth-

ing parameter of the Heaviside function. One has also noticed that the class probability is naturally
independent of the visual property of each class.

Now consider that the transformation vector is known, one can write the probability of an
image point y belonging to the class Ci, conditional to the transformation vector Θ:

p(ζ(y) = Ci|Θ) = Hα

(
φRCi

(L−1(Θ,y))
)

,

In order to facilitate the notation, let pCi
be the distribution of the greylevel intensity for the class

Ci. Then, segmentation is equivalent of maximizing the a-posteriori:

p(I|Θ,G) =
∏

y∈ΩI

(∑
i

pCi
(I(y)).p(Class(y) = Ci|Θ)

)

=
∏

y∈ΩI

(∑
i

pCi
(I(y)).Hα

(
φRCi

(L−1(Θ,y))
))

.
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where L refers to the parametric transform associated with the vector of parameters Θ and L−1 its
inverse. This expression defines the likelihood of the image given the model, the product considers
all the voxels in the image. It is useful to define and minimize this quantity with the use of the log-
likelihood instead, so that the segmentation can be formulated as an energy minimization problem.
The particular form of the Heaviside function allows to write the approximation of the actual log-
likelihood by letting the factors Hα out of the logarithm:

Eimage(I,Θ,G) = −
∫

ΩI

∑
i

log (pCi
(I(y))) .Hσ

(
φRCi

(L−1(Θ,y))
)

dy (4.2)

In the limit case when α → 0, this energy is simply expressed as the sum of the likelihood of the
different disjoint regions:

Eimage(I,Θ,G) = −
∑

i

∫

L(Θ,RCi
)

log (pCi
(I(y))) dy

The optimal value for Θ is obtained through gradient descent. We have computed the derivative of
the expression with respect to the parameter vector:

dEimage(I,Θ,G)

dΘ
= −

∫

ΩI

∑
i

log (pCi
(I(y))) .

dHα

(
φRCi

(L−1(Θ,y))
)

dΘ
dy

Details about this energy derivation can be found in Appendix A. It is performed using continuous
expression of the Heaviside function, where one considers the limit case α → 0 corresponding to
an exact partitioning of the template. The obtained expression uniquely considers the boundaries
separating different classes of the template:

dEimage(I,Θ,G)

dΘ
= −

∑

i6=j

∫

∂ΩCi
∩∂ΩCj

LCi/Cj
(x).∇φL(Θ,RCi

)(L(Θ,x))
∂L
∂Θ

(Θ,x)dx,(4.3)

where φL(Θ,RCi
) is the distance transform of the region ΩCi

transformed with the parametric trans-
formation L(Θ, .). The gradient of this distance is evaluated at the transform points x′ = L(Θ,x)

of the regions boundary and weighted with LCi/Ci
(x) to act as a local force of the boundary. Con-

sequently, the term ∂L(Θ,x)/∂Θ projects the local influence on the vector of parameters. Last,
LCi/Cj

(x) is the difference of the log-likelihood of two regions sharing an interface:

LCi/Cj
(x) = log [pCi

(I(L(Θ,x)))]− log
[
pCj

(I(L(Θ,x)))
]

Once the image term has been introduced, the next step consists of imposing constraints on the
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Fig. 4.1: Image Based segmentation of the cardiac left ventricle in CT-images, constraining the transforma-
tion to a similarity transform and considering uniquely the endocardium (interface between blood
pool and muscle).

deformation model. In the context of our approach, segmentation is done through the deformation
of the template being associated with the reference surface. In other words, the unknown parame-
ters of the approach is the transformation of the template. In chapter 3, we have discussed methods
to recover a compact probabilistic model for these transformations using the training set.

4.3.2 Shape-Based Term

Let us consider an estimator f̂(Θ) for the probability density of deformation parameters Θ de-
scribing the object of interest. Using the Bayesian formulation of the posterior density (4.3), the
optimal solution is the one minimizing the sum of an image-based term and a shape prior term
aiming to impose consistency with the shapes observed in the training set. Such energy is defined
as:

E(A,Θ) = αEimage(A,Θ) + (1− α)Eshape(Θ) = αEimage(A,Θ)− (1− α) log(f̂(Θ))

with α being a blending parameter or a normalization factor between the two term, ‘A’ accounting
for global transformation and ‘Θ’ for local transformation. Let us now consider the two statistical
models of variation presented in chapter 3.

In the first case, the shape based energy term makes use of the prior density function based on
Independent Component Analysis. A prior probability density function was defined on the entire
space with the use of 1D Gaussian mixture fitting for every independent component (see section
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3.6). We should recall that only the local deformation of the transformation was modeled, and
therefore a need exists to make the method invariant to similarity. The current similarity carried
by the TPS is extracted from the general form using the same approach as presented in subsection
(2.3.2). The inverse of this transformation is subsequently applied to the control points to remove
the pose parameters associated with the current segmentation and leads to the similarity invariant
parameter vector Θ′.

The shape prior energy term is equivalent to the maximization of the log likelihood of the
current vector of parameter Θ.

Eshape(Θ) = −
m∑

i=1

log(pi([W.Θ′]i)), (4.4)

where W.Θ′ refers to the projection of the current shape on the independent components, pi refers
to the density estimated in (eq. 3.6) and (eq. 3.7) for the ith ICA component.

Let us now consider the non-parametric prior case as developed in section (3.5). Similar to the
case of the ICA, the optimal segmentation solution corresponds to the lowest potential of:

E(A,Θ) = αEimage(A,Θ)− (1− α) log(f̂S(Θ))

In this expression the shape term is based on the sample point kernel estimator f̂S and only accounts
for local deformations while the image term composes global and local transformation.

Our segmentation framework allows to compute uncertainty during the evolution of the de-
formed shape model and consequently use hybrid kernel estimator. Uncertainty is expressed under
the form of a covariance matrix and computed following the approach introduced in section (2.5).
In this case uncertainty may only account for the linear structure of the transformed model and
therefore allows variations of Θ that create tangential displacements of the contour. It is computed
as in equation (2.52) where the distance map of the target shape is replaced with the distance map
of the transformed shape:

Σ−1
Θ =

1

β

∫

∂S
X (x)T∇φL(Θ,R)(x

′)∇φL(Θ,R)(x
′)TX (x)dx

where x′ = L(Θ,x) and φL(Θ,R) is the signed distance map computed from the transformed
region L(Θ,R). One notices that this expression only accounts for local deformations as global
transformation has been subtracted from the statistical shape model. The gradient∇φL(Θ,R) admits
a closed form solution based on the Jacobian of the transformation and the gradient to the initial
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shape model (see Appendix A):

∇φL(Θ,R)(x
′) ∝ com

[
d

dxT
(L(Θ,x))

]T

.∇φR(x)

where ‘com’ denotes the matrix of cofactors. Uncertainty being scaled according to section (2.5.5),
it can now be used in the gradient descent with hybrid kernel estimator as defined in equation
(3.20):

Eshape(Θ, ΣΘ) = − log(f̂G(Θ, ΣΘ)) (4.5)

The use of hybrid estimators smooths out the sample point estimator according to local uncertainty
estimate.

4.3.3 Segmentation with Uncertainties

Medical imaging is an area where errors are critical. Furthermore, computer-aided diagnosis
should not aim at replacing humans but should be a tool that helps the physicians to make more
appropriate decisions. Therefore methods being able to determine the quality of the obtained so-
lution are required. As stated earlier, this can be done using the uncertainties of the process that
relate the Hessian matrix of the objective function to the variance of the distribution describing the
space of solutions.

To validate the segmentation results in a quantitative manner we propose to estimate uncertain-
ties on the deformation, expressed on the position of TPS control points. These uncertainties are
actually based on the structure matrix of the image-term of the energy and the normal to the seg-
menting contour. Such local information are subsequently projected on the vectors of parameters
Θ. In practice, uncertainties are expressed in the same fashion as (eq. 2.52) where the local shape
information part [∇φT (x′).∇φT (x′)T ] is replaced with a symmetric matrix which accounts for the
visual separation of the classes:

Σ−1
Θ =

1

β

∫

∂S
X (x)T Σ+(x)TX (x)dx

Σ+ =
‖a‖
‖b‖ .b.bT +

‖b‖
‖a‖ .a.aT with





a = ∇(LCi/Cj
(x′))

b = ∇(φS′(x′))

LCi/Cj
(x′) = log [pCi

(I(x′))]− log
[
pCj

(I(x′))
]

x′ = L(Θ,x)

(4.6)
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where integration is performed along the interfaces considered for segmentation. The global be-
havior of such uncertainties is described as follows: The contributions to the uncertainty along
the shape surface are ∇φS′(x′) the normal to the transformed shape and ∇(LΩi/Ωj

(x′)) which rep-
resents the quality of region separation on the interface (accounts for the visual support). The
principal eigenvectors of Σ are the first bisector of a = ∇(LΩi/Ωj

(x′))) and b = ∇φS′(x′ associ-
ated with the eigen value ‖a‖‖b‖(1+cos( ˆa,b)). The other eigenvector is the second bisector of a

and b associated to the eigenvalue ‖a‖‖b‖(1− cos( ˆa,b)). Consequently, if the direction of these
two vectors match exactly, then the uncertainty is concentrated in the tangential directions to the
shape boundary. If these directions differ, uncertainties are also present in the normal direction to
the shape.

Fig. 4.2: Uncertainty computed on the segmentation result of cardiac left ventricle. Representation of its
projection on the control points as a set of ellipsoids.

This local contribution is integrated along the segmented interface and projected on the pa-
rameter space (eq. 2.52) to define the segmentation uncertainty information as presented in figure
(4.2). However the contribution of prior knowledge in the uncertainty and its use as guidance for
the segmentation process is still to be explored. We will now describe the two medical applications
of our knowledge based segmentation approach. Focusing first on the segmentation of the left
ventricle.
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4.3.4 Left Ventricle Segmentation from CT-scans

The a-posteriori distribution of the greylevel given the class of a voxel takes advantage of the
Hounsfield units in the case of the 3D CT-scan of the heart. The classes corresponding to the
Blood Pool (BP) and Left Ventricle muscle (MC) have a single monochromatic distribution. The
background component shows a more complex mixture due to the presence of different tissues and
organs (lung, diaphragm, atria, right ventricle) (see Fig. 4.3).

Fig. 4.3: The histograms of the greylevels of different areas of the myocardium.

In the particular case of the background class, we have split this area on the template into
different sub-regions with simpler greylevel distributions, therefore separating at the template level
the positions of the lung (L), Right Ventricle (RV ), and everything remaining (RM). We have
estimated the distributions of these different regions and applied it to our model. However the
initial template was built only considering the interfaces (BP ) ↔ (MC) and (MC) ↔ (Bkg).
Therefore we do not have any prior knowledge on the position of the lung and right ventricle
when deforming the template. In order to assess the likelihood of an image voxel located in the
background class, a natural way would consider the maximum value of the intensity response for
the different sub-classes:

log [pBkg(I(L(Θ,x)))] = max
Ci={L,RV,RM}

log [pCi
(I(L(Θ,x)))]

This approach is not sufficient due to the similarity between the distribution of the left ventricle
muscle (MC) and right ventricle (RV), voxels classified with this maximum a posteriori probability
are most often misclassified, and such method fail to converge. Therefore we have used a weak
prior knowledge on the positions of the lung and right ventricle. Considering the template model,
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we have isolated on the epicardium the surfaces are corresponding to the interfaces with the lung
and the right ventricle. The positions of the two organs are based on the initial volume that was used
to create the shape reference template (see section 3.3.1) onto which lung and right ventricle were
segmented. We have reduced the size of the interfaces (left ventricle↔ lung) and (left ventricle↔
right ventricle) on the template so that these two interfaces match the actual interface (LV ↔ L)
and (LV ↔ RV) of the image to be segmented after deformations of the template.

Therefore we have transformed the derivation of the energy term with the use of the lung and
right ventricle intensity distributions:

dEimage(I,Θ,G)

dΘ
= −

∑

(Ci,Cj)∈H

∫

∂RCi
∩∂RCj

LCi/Cj
(x).∇φL(Θ,RCi

)(L(Θ,x))
∂L
∂Θ

(Θ,x)dx,

with H = {(LV, L); (LV, RV); (LV, BP)}

We use standard estimates from the training set for the densities pBP, pMC, pL, pRV. Initially, a
rough segmentation is performed by aligning the model with respect to a similarity transform where
uniquely the interface between left ventricle myocardium and blood pool regions are considered
(see figure 4.1), taking advantage of the high contrast between blood and muscle. Then we consider
local deformations with the use of Thin Plate Spline with 90 control points (see section 2.3.2). The
4 classes of the complete model are used to adjust the position of the epicardium. On top of this
deformation model based on image intensity, prior knowledge is used following the ICA model
introduced earlier. Subsequently, segmentation is performed in 3 successive steps using gradient
descent on the global energy E = Eimage+αEshape. First, image based (α = 0) affine segmentation
of the endocardium, then image based segmentation of the entire model of left ventricle with 60
control points, then segmentation with prior of the entire ventricle with 90 control points. Fig. 4.4
shows that we obtain very promising results with this method. For the first 3 examples, the average
error is around 1.5 mm and the maximum error is less than 5mm. The errors are larger for the last
example because this patient has a thick layer of fat around the heart and the method mistakenly
combines the fat with the myocardium. In the future we are planning to broaden the lung class
with a fat class.

4.3.5 Segmentation of the Corpus Callosum

In a similar fashion, we have applied our method to the segmentation of the corpus callosum in MR
mid-sagittal brain slices. A bimodal partition of the image domain is to be recovered, separating the
corpus callosum (cor) essentially composed of white matter from the background (bkg). A single
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Fig. 4.4: Results of the segmentation process. Left: Segmentation of the myocardium displaying the dis-
tance to the groundtruth along with a colormap considering four different sample cases outside of
the learning database. All results are displayed for a TPS deformation using the ICA shape model
with 90 control points. Middle column: The intersection of the segmentation with the data, pap-
illary muscles are correctly segmented. Right: Distribution of errors displayed as histograms. All
numerical values are expressed in millimeters.

region is sufficient to represent the model in the space of the template. Consider Rcor this region,
the segmentation problem consists of globally and locally deforming Rcor towards delineating the
corpus callosum in the image I. The deformation model makes use of an affine transformation and
Free Form Deformations (see section 2.3.2). Therefore the problem needs to be formulated with
the composition of an affine transform A and a local FFD L(Θ, .):

Eimage(A,Θ) = −
∫

Rcor

log [pcor (I (A ◦ L(Θ;x)))] dx−
∫

Ω−Rcor

log [pbkg (I (A ◦ L(Θ;x)))] dx

(4.7)
In practice the distributions of the corpus callosum as well as the ones of the surrounding region
[pcor, pbkg] can be recovered in an incremental fashion using the Mumford-Shah principle [124].
To do so, each distribution is estimated by fitting a mixture of Gaussians to the image histograms
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Fig. 4.5: Histograms of the corpus callosum and the background area. The of a use gaussian mixture to
model the corpus callosum and background intensity distribution in MR is appropriate (this figure
should be seen in color).

using the Expectation-Maximization algorithm. Fig. 4.5 shows the histogram of a typical image of
the corpus callosum. The figure illustrates how well Gaussian mixtures can represent the individual
histograms for the corpus callosum and the background, respectively. Histograms of the segmented
image are built considering the transformed template. We use as intensity samples of the corpus
callosum the inside of the transformed region Rcor and estimate the distribution with a single
Gaussian distribution. We use as intensity samples of the background the transformation of a large
band surrounding the outside of Rcor, the obtained distribution is approximated with a mixture of
2 Gaussians.

The segmentation process is initialized by positioning the initial contour according to the
method proposed in [103]. Energy minimization is performed using standard gradient descent
where derivation is computed with respect to the affine transformation and the vector of param-
eters Θ. Minimization is also alternating between descent in the transformation parameters, and
estimation of regional distributions. An initial gradient descent is performed, where optimization
with respect to an affine transformation is considered to retrieve a rough segmentation of the corpus
callosum. In a second step, free form deformation on a [7×12] lattice is used to retrieve the outline
of the object. At this point image contrast information is not sufficient to capture the actual outline
of the corpus callosum, Therefore a shape prior is essential. Following the kernel based approach
earlier introduced, uncertainty in the transformed shape is computed at every step of the optimiza-
tion and used to build the hybrid kernel estimator of the shape-based energy term. Segmentation
results are presented in figure (4.6) along with the associated uncertainties. We demonstrate the
individual steps of the segmentation process: the left most image shows the automatic initializa-
tion of the contour, the middle image shows the contour after the affine transformation has been
recovered, and the right image shows the local deformations.



144 Chapter 4

(a) (b) (c)

Fig. 4.6: Segmentation with uncertainties estimates of the corpus callosum; (a) Automatic rough positioning
of the model, (b) segmentation through affine transformation of the model (c) segmentation using
the local deformation of the FFD grid and uncertainties estimates on the registration/segmentation
process (this figure should be seen in color).

4.4 Conclusion

This chapter has developed the application to segmentation of our statistical shape models. Seg-
mentation of the corpus callosum and the segmentation of the left ventricle in cardiac CT images
have been used to demonstrate the potentials of our approach. Within these approaches based on
deformable models, we have introduced computation of uncertainty on the deformed model and
used it into the statistical shape model. Also we have proposed a model for the computation of
uncertainty in the visual features of the segmented image.

Future work may investigate a better understanding of uncertainty computation, generalizing
the framework proposed for shape registration. This axis of research is particularly important as
applications to medical assisted diagnosis are immediate. Finally, the use of image based uncer-
tainty for the model evolution during the segmentation process should be studied.
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Fig. 4.7: Additional segmentation results with uncertainty measures.





Chapter 5

Conclusions & Future Directions

Abstract – In this thesis we have investigated shape registration, shape modeling and their applications to knowledge-

based segmentation in medical image analysis. The main contribution of our approach consists of introducing the

notion of uncertainties in all levels of the process. Such uncertainties aim to account for (i) erroneous segmentation

results due to the lack of visual support , (ii) erroneous registration results either due to convergence to local minimum

or because geometric correspondences do not always refer to meaningful anatomical correspondences. We have

proposed two different statistical models to encode such measurements, one that is organ-based and aim to cope with

structures of limited variation which exhibit a parametric nature and a second that is domain-based and does not make

any assumptions on the statistical properties of the samples. We have used two different applications to demonstrate

the potentials of our approach.
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5.1 Introduction

Despite all the progress made in the area of shape modeling, shape registration, statistical modeling
of shape variations and their application to knowledge-based segmentation, one cannot claim the
existence of a universal solution to address these problems. However, a strong demand exists to
recover such a solution due to the important number of applications which will benefit from it
in the domains of medical image analysis, computer vision and computer graphics. While the
above-mentioned four tasks are strongly related and there is no doubt that the optimal approach
should address jointly the registration and modeling of shape variation components, this is not the
case. Most of the existing approaches in the literature decompose the process using a sequential
logic. Therefore it is natural to introduce a strong bias in a certain task, if it depends on the results
of a previous one. The accumulation of errors in the process will lead to a statistical model with
limited justification where an important part of the observable variations are due to the propagation
of errors.

This bias can be explained by a number of reasons. First, the training data is not always reliable:
in the domain of medical imaging, one can observe an important variability between the results
proposed by two different clinical experts. Such a variability increases linearly with the complexity
of the task. Then, even if the sample extraction is not erroneous, the task of bringing these samples
to the same pose (towards modeling) involves dense registration. This is by definition an ill-posed
problem due to the lack of sufficient constraints to recover the solution. Furthermore, while the
results can be considered reliable in the presence of geometric features, there is not guarantee that
meaningful geometric correspondences are equivalent to proper anatomical ones. Consequently,
the use of statistical models to capture the variations of the deformations between the training
examples and the common pose will be conditioned by the above errors.

The choice of these models is critical and should be able to capture the variability of the samples
as much as possible. Such variability depends on the nature of the organ being considered. The
use of parametric models - often considered in the literature - focus mostly on describing this
variability without implicitly taking into account the bias due to erroneous extraction of samples
or erroneous registration results. These methods strictly focus on the distribution of samples after
registration and would produce results that on top of modeling the variation of the samples also
encode the error of the registration. One can go even further and claim that the parametric nature
of these models imposes a severe constraint on their range and applicability across organs.

One can conclude that there is a great benefit in coping with this bias as well as proposing
statistical models of increasing complexity to describe the sample variations. These models should
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be as compact as possible while retaining the ability to capture important variations of the sample
when these are present. Introducing such an approach was the main motivation of this thesis.

5.2 Contributions

The most natural way to cope with the bias of a sequential process is through the propagation of
error from one step to the next. Such an action requires first considering a theoretical model for
the sequential process, then recovering qualitative measurements in each step and last propagating
these measurements over the process. In order to address this demand, we have considered a regis-
tration approach which can associate measurements of uncertainties with the obtained deformation
map.

The first major contribution of this thesis consists of proposing two means to determine a qual-
itative assessment of the obtained registration result. This is done using two different expressions
of uncertainties on a shape representation space where there is no explicit need of recovering corre-
spondences. The first was based on the natural Hessian-based expression of the objective function
while taking into account properties of the considered feature space. The second was recovered
through an explicit modeling of the variations of the data leading to a more general result when
compared to the Hessian-based expression. Such an observation has driven us to study the connec-
tion between the two different expressions of uncertainties and has produced conditions of mutual
understanding. In particular we have shown that the Hessian-based assessment is a particular case
of the data-driven one under certain conditions.

Once uncertainties have been determined, the next step consists of propagating them to the
statistical model. Such a task involves first the selection of the model and second the use of regis-
trations uncertainties within it. The second major contribution of this thesis consists of introducing
a variable bandwidth non-parametric approach to model shape variations. We proposed a definition
of the bandwidth that relates to the estimated registration uncertainties and have as aim to decrease
the importance of samples or parts of them with limited data support (high uncertainties). This
generic model does not make an explicit assumption on the organ to be modeled or on the inter
subject variation and can be computationally inefficient. To cope with the above remark, we have
also introduced a linear model based on independent component analysis where registration errors
are implicitly taken into account through an augmentation of the samples. These models can now
be used for segmentation, however it requires an efficient representation of the reference model.

We have proposed two different models of increasing complexity to encode the reference
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model. The first one consists of a limited number of control points and an efficient transforma-
tion model based on thin plate splines. The second uses a more flexible model which does not
make an assumption on the organ and models the deformation space in a uniform fashion using a
free from deformation. Two applications, the segmentation of the corpus callosum in mid-sagittal
MR-images, and the one of the left ventricle in cardiac CT images have been used to demon-
strate the potentials of our approach. Both the transformation models and the knowledge-based
segmentation approaches are considered to be the third major contribution of this thesis.

5.3 Future Directions

Despite the introduction of the registration uncertainties on the statistical model the method can
still be biased. The first step of the process is the extraction of training samples. Modeling the
variation among users as well as associating with the samples measures of confidence based on the
observable data support could help us account with this bias. Such uncertainties can be propagated
to the registration model and used to define appropriate cost functions where there is coherence be-
tween anatomical and geometric correspondences while being able to account for the segmentation
bias. The propagation of the segmentation uncertainties along with the ones from registration could
produce a statistical model where bias was deduced from the process. Next, better understanding of
the registration uncertainties and the relationship between the Hessian and the data-driven model
is also to be further investigated. In this thesis we were able to demonstrate some connections
between them, however the outcome needs to be further developed.

On the statistical modeling, in terms of parametric modeling we would like to investigate a
rather theoretical propagation of the uncertainties. The proposed approach decorelates the uncer-
tainties measurements from the model. Studying models like kernel-based principal component
analysis, Kernel-based Independent Component Analysis which can encode the uncertainties mea-
surement directly in the model space is a natural extension of our approach. On the non-parametric
modeling approach, the investigation of alternative models to perform dimensionality reduction of
the retained samples/kernels is also to be considered. Last, but not least the case of Gaussian Ker-
nels was considered which have some nice implementation properties but limited capture while do
not take into account the nature of the application. Therefore, the use of other kernels to describe
the deformations of the observed samples and produce a compact density is also to be developed.

On the segmentation component of our approach, we would like first to further develop the
notion of qualitative interpretation of the results. Similar to the registration case, we would like
to determine cost functions where the use of their Hessian or their data-driven variation can pro-
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duce uncertainties on the results. Such a task is challenging in particular when considering the
data-driven approach but could have a great impact in the domain of medical image analysis where
the availability of clinical users is limited since the method will be able to automatically deter-
mine areas where the interaction with the expert would be required. Last, but not least studying
the deformations/modeling of more complex organs like the human brain is a very promising di-
rection of our approach for two reasons, (i) these structures exhibit important variability among
samples/individuals and therefore the use of non-linear models could have a great impact, and (ii)
these structures are characterized by a very fine geometric space and therefore all the steps of the
process will provide valuable information towards modeling such a complex system.





Conclusion (Version Française)

Malgré tous les progrès effectués dans le domaine de la modélisation des formes, le recalage de
formes, modélisation statistique des variations de formes et segmentation avec a priori de formes,
aucune méthode n’a pu s’imposer jusqu’à présent comme une solution universelle. Cependant, il
existe une demande importante pour retrouver des solutions à de telles problématiques qui pourront
s’appliquer à l’imagerie médicale, la vision par ordinateur. Il apparaı̂t que les quatre problèmes
précédemment mentionnés touchent des sujets connexes, une approche optimale devrait donc
traiter conjointement le recalage et la modélisation. Pourtant les approches classiques présentées
dans l’état de l’art continuent de les traiter indépendamment et de façon purement séquentielle. Par
conséquent, il était naturel d’introduire un biais important sur la réalisation d’une certaine tâche si
son résultat devra être utilisé pour réaliser une autre tâche. En l’absence de biais, l’accumulation
des erreurs à l’étape 1, va créer un modèle statistique difficilement justifiable puisque une partie
non négligeable des variations observées sera due à la propagation des erreurs de l’étape 1.

Ce biais est donc une information supplémentaire ayant plusieurs justifications. D’abord, les
données utilisées pour l’apprentissage peuvent être imprécises ou partiellement erronées. Ensuite,
dans le cas du traitement des images médicales, différents experts fourniront différentes segmenta-
tions d’un même organe. Ces variations contribuent donc à augmenter linéairement la complexité
du problème. Même si l’extraction des données n’est pas le siège d’erreurs, le fait de transformer
tous les échantillons sur le même repère de référence est un problème de recalage dense nécessaire
à la modélisation des formes. Ceci reste un problème mal posé dans la mesure où le manque de
contrainte dans le recalage ne permet pas de retrouver une solution unique. Par ailleurs, si les
résultats obtenus doivent être considérés comme valables dans le cas d’un bon alignement des
données géométriques, il n’y a aucune garantie qu’un alignement géométrique corresponde à un
alignement des indicateurs anatomiques. Par conséquent, la construction d’un modèle statistique
capturant les variations des déformations sera aussi conditionnée par l’accumulation de ces erreurs.

Le choix d’un tel modèle est primordial et doit être capable de représenter au mieux les varia-
tions des échantillons, qui dépendent par ailleurs de la nature de l’organe considéré. L’utilisation
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d’un modèle paramétrique, fréquemment présenté dans les précédents travaux, se résume trop sou-
vent à décrire les variations sans tenir compte du biais provenant du bruit existant sur les exemples
composant les données, ni des erreurs dans l’extraction de ces données à partir des images. Ces
méthodes calculent donc une distribution uniquement basée sur le résultat de la phase de recalage
et génère donc un modèle pour les variations des échantillons codant aussi les erreurs d’extraction.
Par ailleurs, faire le choix d’un modèle paramétrique impose une contrainte importante sur les
variations autorisées et la possibilité de les appliquer à différents organes.

L’utilisation de ce biais permet de proposer un modèle statistique décrivant uniquement les
variations des échantillons, les erreurs d’extraction font alors partie du modèle. L’introduction
d’une telle approche et ces applications sont l’objectif principal de cette thèse.

Synthèse des travaux

L’approche la plus immédiate permettant d’utiliser le biais existant dans une chaı̂ne de proces-
sus, nécessite de propager ces informations d’une étape à la suivante. Ce raisonnement est donc
construit en considérant d’abord un modèle théorique adapté au processus séquentiel, puis y intro-
duire les mesures de qualité obtenues pour chaque étape et de les utiliser comme autant de données
pour l’étape suivante. Dans le cas particulier du recalage et de la modélisation de formes, une
approche du recalage a été introduite, ce qui permet de mesurer les incertitudes obtenues sur les
déformations paramétriques.

La première contribution de cette thèse propose deux moyens pour mesurer la qualité du
résultat obtenu durant la phase de recalage de formes. Nous introduisons pour cela deux ex-
pressions pour les incertitudes exprimées dans un espace de représentation des formes tel qu’il
n’est pas nécessaire d’avoir une correspondance point à point entre les deux formes. La première
expression est basée sur le calcul du Hessien de la fonctionnelle dont le minimum correspond à
un recalage géométrique réussi. La seconde expression est basé sur les données, c’est-à-dire les
formes elles mêmes sur lesquelles on considère des variations locales aléatoires. Ces variations
ayant une influence sur le résultat du recalage, elles permettent de quantifier l’incertitude sur le
recalage de chaque forme. Ayant ensuite conduit une étude comparative des deux approches, nous
avons pu mettre en évidence d’importants liens aidant à leur compréhension. Nous avons pu mon-
trer en particulier que les deux approches sont identiques lorsque les termes de régularisation du
recalage deviennent négligeables.

Dès lors que les incertitudes ont pu être calculées, l’étape suivante permet de les propager
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pour la construction du modèle statistique. Cette tâche implique d’abord la sélection d’une forme
de référence, mais aussi et surtout la sélection d’un modèle statistique permettant l’utilisation des
incertitudes en leur sein. Ceci constitue donc la seconde contribution majeure de ce travail de thèse
et introduit une approche non paramétrique utilisant des noyaux de taille et orientation variable
pour la modélisation de formes. Nous proposons donc une définition de ces noyaux en relation avec
l’évaluation des incertitudes, de sorte que des déformations correspondant à des directions de forte
incertitude des noyaux resteront acceptables pour le modèle de forme. Ce modèle générique ne fait
aucune supposition préalable sur la nature de l’organe à modéliser. En contrepartie, l’évaluation
de la densité estimée pour le modèle de forme devient coûteuse lorsque le nombre d’échantillons
augmente. Pour pallier ce problème, nous avons introduit un modèle linéaire basé sur l’analyse
en composante indépendante des déformations, dans lequel les incertitudes sont présentes grâce à
l’introduction de nouveaux échantillons. Ces modèles statistiques peuvent alors être utilisés pour
la segmentation.

Nous avons proposé deux modèles de déformations permettant de transformer la forme de
référence. Le premier modèle utilise un nombre limité de points de contrôle et une transformation
fondée sur les déformations de plaques minces (TPS). Le second modèle utilise une transformation
plus générale, ne nécessitant aucun a priori sur la forme considérée, mais faisant intervenir un
plus grand nombre de points de contrôle. Cette transformation fait appel aux déformations de
forme libres (FFD). Deux applications ont été étudiées pour montrer la force de cette approche,
la segmentation du corps calleux sur des vues sagittales en imagerie à résonance magnétique et la
segmentation du ventricule gauche en imagerie scanner.

Perspectives

Malgré l’introduction des incertitudes dans la modélisation statistique, il subsiste un biais non
maı̂trisé dans notre méthode. Il est dû au fait que les incertitudes sont calculées à partir de varia-
tions locales des formes, et ne peut donc tenir compte de grandes déformations. La première étape
du processus d’apprentissage étant l’extraction de formes et surfaces à partir d’images, le calcul
d’incertitudes pourrait être reconsidéré en tenant compte de ces données visuelles. Ces incertitudes
peuvent alors être propagées au modèle statistique et utilisées pour former une fonction de coût ap-
portant cohérence entre les correspondances géométriques et anatomiques alors capables de tenir
compte du biais de segmentation. L’utilisation conjointe des incertitudes dues à la segmentation
et au recalage permet alors de produire un modèle statistique justifié par l’application finale à la
segmentation. Par ailleurs, les liens entre les deux approches de calcul des incertitudes doivent être
approfondis, en particulier les liens existant entre les termes de régularisation introduits dans cette
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thèse et la régularisation de Tikhonov.

Un autre axe de recherche permet de redéfinir le lien entre la construction des incertitudes et
leur utilisation dans le modèle statistique. L’approche actuelle considère construction et utilisa-
tion comme étant indépendant. Créer un modèle d’incertitude associé à une mesure particulière
dans l’espace des déformations, en termes de géométrie Riemannienne, permettrait alors d’adapter
notre approche à des modèles statistiques plus complexes provenant de la théorie des noyaux. On
pourrait alors envisager l’analyse en composante principale ou indépendante par noyaux, perme-
ttant ainsi d’utiliser des modèles statistiques paramétriques encodant directement les incertitudes.
Enfin, l’étude est menée sur des noyaux Gaussien, choisi pour leurs propriétés calculatoires. Cette
étude devrait être approfondi à d’autres types de noyaux montrant de meilleures propriétés de
convergence dans la théorie de l’apprentissage non paramétrique.

En ce qui concerne la segmentation, le premier axe d’approfondissement touche à l’évaluation
des incertitudes sur le résultat obtenu. De façon similaire au recalage de formes, une approche
fondée sur le Hessien de la fonctionnelle de segmentation devrait être adoptée et mise en rela-
tion avec une approche basée sur les données de l’image. Cette technique aurait alors un impact
majeur dans son application au traitement des images médicales. Ceci permettrait de détecter les
régions où la segmentation automatique est incertaine, dans lesquelles une interaction du médecin
est requise. Enfin, l’étude des déformations et la modélisation d’organes complexes tel que le
cerveau humain est un axe de recherche prometteur. Il est en accord avec notre approche non
paramétrique pour deux raisons. D’une part ces structures présentent des variations importantes
selon les échantillons considérés, favorisant le choix d’un modèle non linéaire. D’autre part ces
structures présentent des détails géométriques de faible échelle, de sorte que toutes les étapes de
la chaı̂ne présentée dans ces travaux peuvent fournir des informations supplémentaires pour leur
modélisation statistique.
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Derivation of the Segmentation Image Term

This appendix gives some further exploration of the calculus of the derivative on the energy term
Eimage (equation 4.2). Consider the general formulation of the segmentation problem, where N

regions are retrieved, global transformation A and local parametric deformation L(Θ, .) are con-
sidered. Consider the inverse transformation of A ◦ L, this diffeomorphism verifies:

A(L(Θ,G(Θ,y))) = y (A.1)

Derivation with respect to the parameter Θ is written:

∂(A ◦ L)

∂ΘT
(Θ,G(Θ,y)) +

∂(A ◦ L)

∂xT
(Θ,G(Θ,y))

∂G
∂ΘT

(Θ,y) = 0 (A.2)

For simpler notation purpose we also pose:

DCi
(x,y) = −H(φRCi

(x))log(pCi
(I(y)))

Then the image term of the energy (eq. 4.2) can be rewritten as:

Eimage(Θ) =

∫

Ω

N∑
i=1

DCi
(G(Θ,y),y)dy

When differentiating Eq. (A.1) with respect to Θ and substituting the expression obtained for
dG/dΘ into the expression of dEimage(Θ)/dΘ, we get the following:

dEimage(Θ)
dΘT

= −
∫

Ω

N∑

i=1

∂DCi

∂xT
(G(Θ,y),y)

[
∂(A ◦ L)

∂xT
(G(Θ,y),Θ)

]−1 ∂(A ◦ L)
∂ΘT

(G(Θ,y),Θ)dy
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Now changing the integration variable according to the diffeomorphism x = G(Θ,y)

dEimage(Θ)
dΘ

= −
∫

Ω

N∑

i=1

∂DCi

∂xT
(x,A(L(Θ,x)))com

(
∂(A ◦ L)

∂xT
(x,Θ)

)T ∂(A ◦ L)
∂ΘT

(x,Θ)dx

where ‘com’ denotes the matrix of cofactors. When calculating explicitly the partial derivative of
D with respect to its first variable, this integral further simplifies into a curve integral along the
reference model:

dEimage(Θ)
dΘ

= −
N−1∑

i=1

N∑

j=i+1

∫

∂RCi
∩∂RCj

D̃Ci/Cj
(A(L(Θ,x)))

[
com

(
∂(A ◦ L)

∂xT
(x,Θ)

)
.∇φRCi

(x)
]T ∂(A ◦ L)

∂ΘT
(x,Θ)dx

with D̃ defined as:
D̃Ci/Cj

(y) = − log(pCi
(I(y))) + log(pCj

(I(y)))

This expression of the derivative refers only to the shape boundaries in the space of the model and
considers all boundaries defined on the template.

As stated in chapter 2.4, φRCi
(G(Θ,y)) and φL(Θ,RCi

)(y) have the same 0 iso-level. Therefore
the gradient of these two implicit functions are collinear:

∇φL(Θ,RCi
)(y) ∝ d(φRCi

◦ G)

dy
(Θ,y)

∝ com

(
∂(A ◦ L)

∂xT
(G(Θ,y),Θ)

)
.∇φRCi

(G(Θ,y))

By considering Heaviside functions defined in the image space (i.e.: H(φL(Θ,RCi
)(y))), then one

obtains a simpler expression of the derivative as mentioned in equation (4.3):

dEimage(Θ)

dΘT
= −
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i=1

N∑
j=i+1

∫
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∇φL(Θ,RCi
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∂ΘT
(x,Θ)dx
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Discrete Computation of Distance on Anisotropic
Grids

Distance maps were presented in section 2.2.4 as a particular class of images where the value at
each pixel refers to the shortest distance to the interface. We will introduce in this section two
algorithms known as Distance transformations, able to compute distance map on discrete grids
either from a binary image or from a consistently oriented mesh. We refer to [50] for an exhaustive
review of all exact and approximated distance transform algorithms . We will present two methods
able to limit the computation to a narrow band surrounding the zero-level. Narrow band is a
widely used technique to speed up level-set evolution, it will also be extensively used within our
registration technique based on deformable template. This section begin with a description of
discrete gradient required in the fast marching algorithm and in our registration framework.

B.1 Numerical Gradient.

Many numerical schemes were described by Sethian in [164]. In the present work, we simply
require the discrete computation of the distance map gradient at any voxel. Defining discrete first
order derivatives in 2D:

Centered : Dx
i,jf =

fi+1,j−fi−1,j

2∆x
Dy

i,jf =
fi,j+1−fi,j−1

2∆y

Left : D+x
i,j f =

fi+1,j−fi,j

∆x
D+y

i,j f =
fi,j+1−fi,j

∆y

Right : D−x
i,j f =

fi,j−fi−1,j

∆x
D−y

i,j f =
fi,j−fi,j−1

∆y
,

(B.1)
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image gradients can simply be defined using centered derivatives:

~ni,j = (Dx
i,jf,Dy

i,jf) (B.2)

In the case of approximate distance maps however, the normal vector is better approximated as the
mean of non centered derivatives:

~̃ni,j =
(D+x

i,j f, D+y
i,j f)

‖D+x
i,j f, D+y

i,j f‖ +
(D+x

i,j f,D−y
i,j f)

‖D+x
i,j f,D−y

i,j f‖ +
(D−x

i,j f,D+y
i,j f)

‖D−x
i,j f,D+y

i,j f‖ +
(D−x

i,j f, D−y
i,j f)

‖D−x
i,j f, D−y

i,j f‖ (B.3)

and then normalized: ~n = ~̃n

‖~̃n‖

B.2 Fast Marching

Fast Marching is a very widespread method to compute distance from a shape boundary, ie. contour
or surface. The basic idea is to consider the motion of the contour or surface along the normal
direction with unit speed. Then distance to the initial contour corresponds to the time at which the
front crosses a certain location. Formally, this can be written for a parameterized contour C(x, t)

with the motion equation:
∂C(x,t)

∂t
= N

C(x, 0) = ∂Ω,
(B.4)

where N represents the normal to the contour.

Let φ be the function associating any spatial point with the crossing time of the moving contour,
φ is equal to the distance transform of the contour and verifies φ(x) = 0 for any point on the shape
boundary ∂Ω and the following eikonal equation:

φ(C(x, t)) ≡ t → ∇φ.Ct(x, t) = 1

→ ∇φ.
(
∇φ
|∇φ|

)
= 1

→ |∇φ| = 1

(B.5)

In [165], Sethian proposed a discrete framework based on upwind schemes to solve this equation
that preserves the causality of the front propagation and can therefore admit the non-differentiability
of the distance on the skeleton. The Eikonal equation can be rewritten on the discrete grid:

max(D−x
i,j φ, 0)2 + min(D+x

i,j φ, 0)2 + max(D−y
i,j φ, 0)2 + min(D+y

i,j φ, 0)2 = 1 (B.6)
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Fig. B.1: The 3 types of points in Fast Marching algorithm

In [156], Rouy and Tourin proposed to solve this equation in an iterative manner directly on the
whole grid. The computational cost was too expensive and the front evolution method shows a
more efficient framework. The image domain is divided into 3 regions, defining 3 different types
of points with an associated distance value (see Fig. B.1):

• Accepted: These points are located behind the front. Crossing time is known and their value
will not change.

• Far Away: These points are located after the front which has not reach these locations yet.
Crossing time is arbitrarily fixed to +∞ on these pixels.

• Trial: The front is presently standing on these points, their crossing time is estimated using
Accepted neighboring points. Their value may change as long as their status do not change
to Accepted.

Initialization of the distance value will be discussed later in the appendix. Assume for now that we
dispose of a set P1 of Accepted points where the value is known. Every neighbor points of P1 in a
4-connected neighborhood is set to Trial and their value is computed based on equation B.6 using
uniquely Accepted points values. All other points are set to Far Away and their value is set to +∞.

The algorithm is then made of two steps repeating until the smallest trial point value is above
the narrow band size:

1. Select the Trial point P0 with the smallest value, set this point state to Accepted.

2. Set every non-accepted neighbor point of P0 to trial and compute its value using equation
B.6 with the newly accepted point.
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Fig. B.2: The circular list of [211], containing N buckets with size dx. The active buckets Ba contains the
trial points that are removed from the list and set to accepted.

The main difficulty of the algorithm is to find the smallest Trial point. This is performed using
min-heap sorting and constantly keeping the trial points in a sorted list. The cost of insertion of a
new point value in this list is O(log n) so that fast marching is commonly known as a O(n. log n)

method.

Recently in [211], an O(n) implementation was proposed, based on a discussion of fast march-
ing precision, the authors proposed to remove the min-heap sort and use a circular list instead. The
list is made of a number of buckets, each containing a set of trial points with value located within a
range dx. The point removed from Trial and set to Accepted may no longer be the smallest one but
belongs to the bucket with the smallest values (see Fig. B.2). Newly updated Trial neighbors are
added to the bucket corresponding to their value: (b(v − x0)/dxc+ B0) mod N . It is necessary
that the number of buckets in the list is sufficient to enforce the condition that all values in a bucket
lies within the range dx, that is equivalent to (v − xA) < N ∗ dx. This is easily enforced in the
case of distance transform as the difference in value between neighboring points is bounded and
cannot exceed the pixel size.

B.3 Chamfer Distance

Different to fast marching, chamfer distance do not require to handle lists of points and is always
computed in linear time. In order to recall the principle of Chamfer distance transform, we need to
introduce some definitions. The image domain I is associated with a finite subset of Z2. Therefore
we can talk about basis in the domain I for the sum defined on Z2 and introduce the definition of
chamfer mask:

MC = {(vk, ωk) ∈ Z2 × R, 1 ≤ k ≤ 2},

which do not contain the 0 vector, contains a basis of Z2, has positive weights (ωk > 0) and verifies
all central and axial symmetries ((v, ω) ∈MC ⇒ ((±vi), ω) ∈MC where (vi) are the coordinates
of v). Chamfer mask contains displacement vectors on the image grid with an associated weight.
As it contains a basis or Z2 it allows to reach any two points of the image with a finite sum of
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Fig. B.3: The rational balls in 3D for a (5× 5× 5). Left : the chamfer mask induce a norm on Z3, Left : the
mask do not induce a norm on Z3 ( from [67] )

vectors in MC :
~AB =

∑
vk∈MC

nk.vk.

This sum also defines a path on the image between A and B and its associated cost is:

W (PAB) =
m∑

k=1

nk.ωk.

The chamfer distance between A and B is simply defined as the minimum cost for all paths between
A and B: dAB = minW (PAB). The rational chamfer mask is defined from the chamfer mask as
the division of every vector by its associated weight in R2:

M′
C = {(vk/ωk) ∈ R2, 1 ≤ k ≤ 2},

Then, it can be shown that the chamfer mask defines a distance on Z2 if and only if the triangulation
of the associated rational mask defines a convex solid ( see Fig. B.3 ).

The computation of optimal chamfer coefficients as the best approximation of the Euclidean
distance has been introduced for a 2D, 3 × 3 mask in [16], and then extended and discussed for
higher dimensions and larger masks [201, 111]. In [67, 107], an in depth discussion has been
carried on the general choice of optimal integer coefficients on the mask.

In our case the distance were computed on the anisotropic grids by using a 3×3×3 mask where
the value of the coefficients were real and equal to the euclidean distance between the neighboring
nodes of the grid.

From a computational point of view, Chamfer distance is computed in two sequential opera-
tions using symmetric half Chamfer masks [151]. The image is initialized with 0 in the background
and∞ on the object. Any Chamfer maskMC is decomposed into two symmetric mask: a forward
mask Mf

C associated to a natural scan of the image (left to right and top to bottom), and a back-
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Fig. B.4: Decomposition of a Chamfer mask, forward and backward on a 3× 3 mask

ward mask associated to a reverse scan of the image (right to left and bottom to top) as shown on
Fig B.4.

The process on the whole image is replacing the current value of a pixel (I(p)) according to
the rule:

I(p) = min(I(p), min
vk

R Mf
C

(I(p + vk) + ωk),

Using a similar process with the backwards mask, this leads to the chamfer distance transform as
detailed in figure B.5 with a 3× 3 grid. Generalization to 3D is straightforward.

Fig. B.5: Sequential computation of the chamfer distance



Discrete Computation of Distance 165

B.4 Signed Distance Initialization

In order to represent shapes with signed distance a proper initialization of the distance map is
necessary. Both methods presented above assume the existence are propagating pixels based on
the existence of a set of pixels with known value.

A classical approach used upon reinitialization of the level set framework consists in isolating
the zero crossing of the level set with a very thin band (2 pixels) and recomputing the distance
function with some iterations produced with an explicit scheme on the PDE:

∂φ

∂t
= sign(φ).(1− |∇φ|)

In the present case of initialization from a binary shape, we use a direct approach to compute
the distance to the pixel boundary considering every pixels as a squared dot. This is performed
using the chamfer mask presented in the previous section where every weight ωi is divided by two
as shown on figure B.6. This method is particularly adapted to chamfer masks with size 3×3×3.

Fig. B.6: Initialisation of distance from binary images

Some other applications require the initialization of a distance map from a discretized contour
in 2D (resp. surface in 3D). In such case signed distance computation requires the contour (resp.
surface) to be locally oriented with a unit normal vector at every segments (resp. face). Then,
every pixel located in the bounding box of every segment (Resp. face) is initialized to the actual
Euclidean distance, signed according to the orientation B.7. This initialization requires to pay a
particular attention to pixels whose closest point is located at an edge of the contour (resp. edge
and vertex of the surface). For such points the sign of the Euclidean distance is set according to
the edge normal vector, average of the neighboring segments normal vectors as shown on figure
B.7. In the 3 dimensional case, initialization from a triangulated mesh is performed in a similar
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fashion with the method presented in [7], where the sign of the distance function around edges and
vertices is computed using angle weighted pseudo-normal.

Fig. B.7: Initialisation of distance from an oriented contour



Appendix C

Uncertainty Driven, Kernel Based Shape Modeling
for Digits Recognition

In order to evaluate the performance of the method, regarding both the registration and the mod-
eling part, we considered an application with an large training presenting large variability among
shapes. Character and in particular digit recognition is a problem that meets these requirements as
it shows very large variations among individual examples.

Since the aim of this application was to provide a proof performance of the method rather than
a complete recognition system, we focused on three digits which bear certain similarities, namely
the ’3’, ’4’ and ’9’. For each class, we have used 2000 examples of each digit from the MNIST
digit database [98] to build the prior model. We then used the kernel selection algorithm 3.6 to
retain 50 kernels.

The initial step consists of building an ’average’ model for each of the 3 digits. To do so we
refer to the classical method presented in [46]. Although an average model is not required within
our non parametric density estimator, it is desirable to present a smooth shape that has the ability
of being registered to all samples of the training set without topology change.

It should be noted at this stage that the process used for digit recognition is exactly the same
as the one followed on learning: the digit model is initially registered to the target with respect to
an affine transformation, then local FFD registration is performed after subtraction of the global
transformation with uncertainty computed upon registration as presented in section (2.5). This
uncertainty estimate is used within the hybrid density estimator presented in section (3.5) to get
the final matching score.
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Fig. C.1: (left) Distribution of the digits 3 and 4 in the space of likelihoods of belonging to the classes ‘3’
and ‘4’. (middle) Distribution of the digits 4 and 9 in the space of likelihoods of belonging to
the classes ‘4’ and ‘9’. (right) Distribution of the digits 3 and 9 in the space of likelihoods of
belonging to the classes ‘3’ and ‘9’.

Fig. C.2: Digits 4 and 9 can be very similar.

To verify that our method can encode the shape properties of the class of objects of interest,
we ran a cross validation test, where each of the 3 models was registered to all 6000 digits. We
then computed the hybrid estimator for the probability of the digit belonging to the class of the
model. Fig. C.1 shows the results. Fig. C.1a represents the matching of ‘3’ and ‘4’. The X-axis
is the likelihood that an example belongs to the class of ‘3’ (−log(f̂(x, Σ))) and the Y-axis is the
likelihood that an example belongs to the class ‘4’. It can be seen that the two classes are very well
separated. To demonstrate the separation, we used a simple support vector machine classifier [104]
to linearly separate the two classes in the space of likelihood measured. The linear boundary is also
shown in Fig. C.1a. The correct classification rate was 99.17%. Fig. C.1b illustrates the separation
between classes ‘3’ and ‘9’, the correct classification rate was 98.73%. Finally, Fig. C.1c illustrates
the separation between classes ‘4’ and ‘9’, the correct classification rate was 94.83%. Table C.1
shows the overall confusion matrix. The results are consistent with what was expected. The lowest
classification rate was obtained when comparing the ‘4’ and the ‘9’. These digits are indeed very
similar when handwritten by Americans, as can be seen from Fig. C.1. We can also see that ‘3’
and ‘9’ look more alike than ‘3’ and ‘4’. It is important to note that the proposed method is not
intended for such an application. However, given this validation we claim that such a model can
capture samples of increasing complexity. Also, the use of deformations along with uncertainties
provide efficient density estimators.

In order to demonstrate the performance of the variable-bandwidth density approximation, we
have compared our method with the case of fixed-bandwidth isotropic Gaussian Kernels. For
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the later case, the median value of the Euclidan distances between each samples and its nearest
neighbor in the training set was considered. Such a bandwidth is a common choice in the domain of
non parametric density estimation. We also applied the reduction algorithm presented in subsection
(3.6) to limit the complexity of the method. The results of the comparison are shown in Table C.1.
We can observe that for the case of false-negative (recognition error) an improvement that varies
between three times (notice the case of ’4’ - fixed bandwidth error: 20%, variable bandwidth: 7%)
to seven times (case of ’9’, - fixed bandwidth error: 27%, variable bandwidth: 6%) is obtained from
the use of variable bandwidth approximation. On the other hand, the error (false-positive) of fixed-
bandwidth is in most of the cases 5 times more important than the one obtained from our method.
Such an improvement is due to the orientation of bandwidth, capable of discrimating registration
results leading to similar transformations. This situation is not so rare when considering ’4’ and
’9’ and explain the superiority of our method.

‘3’ ‘4’ ‘9’
‘3’ 0.9240 0.0435 0.0325
‘4’ 0.0270 0.8035 0.1695
‘9’ 0.0530 0.2105 0.7365

‘3’ ‘4’ ‘9’
‘3’ 0.9845 0.0065 0.0090
‘4’ 0.0045 0.9385 0.0570
‘9’ 0.0145 0.0425 0.9430

Tab. C.1: Confusion matrix between the three classes of digits ‘3’, ‘4’, and ‘9’. Case of constant isotropic
Gaussian kernels on the left, our Method on the right
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Résumé

Nous avons pu observer récemment d’importants progrès dans les techniques d’imageries médi-
cales qui ont été accompagnés par le développement d’outils informatiques de prévisualisation et
d’aide automatique au diagnostic. La réalisation de tels outils nécessite généralement la création
d’un modèle mathématique capable de représenter les organes et dont la construction est divisée
en trois étapes : (i) choisir et extraire les structures à étudier, (ii) choisir un modèle mathématique
adapté à la représentation de ces structures particulières, (iii) estimer les variations des paramètres
du modèle ainsi choisi. Cette thèse aborde donc chacune de ces taches de façon originale. La
modélisation des organes est décrite au travers de déformations et nécessite une étape préalable de
recalage de forme. Ceci implique la définition d’une forme de référence ainsi que d’un ensemble de
déformations. Cette thèse introduit l’utilisation d’incertitudes sur le recalage de formes : définies
a l’aide d’une matrice de covariance dans l’espace des déformations, elles indiquent localement
la fiabilité du recalage obtenu. Ensuite vient la modélisation des variations de formes, obtenue à
partir d’un ensemble d’apprentissage représentant différentes instances de l’organe étudié. Cette
thèse apporte à la phase de modélisation des déformations, les informations sur les erreurs de
recalage au travers de la propagation des incertitudes. La contribution finale de la thèse touche à la
segmentation de ces structures par un modèle déformable, guidé par le modèle de forme sur lequel
les incertitudes dues au modèle sont évaluées. La segmentation cardiaque du ventricule gauche en
imagerie scanner, ainsi que le corps calleux en imagerie à résonance magnétique ont été considérés
pour démontrer les performances de cette approche.



Abstract

In the recent years, we have witnessed a revolution on new non-invasive means for human and
biological tissues imaging. The use of computer aided-techniques has emerged naturally as an
efficient pre-screening and post treatment evaluation procedure. This often involves mathemat-
ical modeling of organs which usually refers to the three following steps: (i) determine/extract
the structure of interest, (ii) provide a mathematical model to describe these structures and (iii)
estimate the variations of the parameters in the proposed model. In this thesis we propose novel
means to address the above tasks. The modeling of organs is performed with the description of the
deformations. It therefore involves shape registration with the definition of a reference shape and a
deformations space. In this thesis we introduce the use of uncertainties in the registration, defined
as covariance matrices in the deformations space which indicate the amount of confidence in the
obtained registration. The next step consists in modeling the shape variations based on a training
set representing various instances of the organ under study. In this thesis we extend the state of the
art that does not account for registration errors and introduce a method that propagates registration
uncertainty to the modeling step. The last contribution of the thesis is in the area of knowledge
based segmentation and consists of introducing a segmentation-by-deformation approach where
the use of uncertainties both in the model as well as image space are considered. Segmentation of
the cardiac left ventricle on CT scan and of the corpus callosum on MR-images using the above
mentioned-methods are considered as applications to demonstrate the extreme potentials of our
approach.
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