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Résumé des travaux 1

Notations and Definitions 29

1 Introduction 31

1.1 Content of optical satellite images . . . . . . . . . . . . . . . . . . . . . . . 32
1.2 Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I Problem statement 37

2 Data mining in satellite images 39

2.1 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Satellite image models and their application . . . . . . . . . . . . . . . . . 41

SPOT5 images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Data mining in high resolution satellite images . . . . . . . . . . . . . . . 42
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Feature extraction 45

3.1 Image intensity features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Texture features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Haralick features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Gabor features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
QMF features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Geometrical features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Adaptive edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Adaptive thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Edge approximation by line segments . . . . . . . . . . . . . . . . . 50

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Pattern recognition in satellite images 57

4 Supervised classification 59

4.1 Support Vector Machines (SVM) classification . . . . . . . . . . . . . . . . 59
4.2 Curse of dimensionality and feature selection algorithms . . . . . . . . . . 61
4.3 SVM classification of satellite images . . . . . . . . . . . . . . . . . . . . . 62



ii CONTENTS

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Unsupervised classification. Clustering algorithms 71

5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Combinatorial search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Hierarchical clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . 73

Hierarchical agglomerative clustering algorithms . . . . . . . . . . . . . . 73
Single-link method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Complete-link method . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Average-link method . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Centroid-link method . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Median-link method . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Ward’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
General agglomerative algorithm . . . . . . . . . . . . . . . . . . . . 76

Hierarchical divisive clustering algorithms . . . . . . . . . . . . . . . . . . 77
Bi-section clustering algorithms . . . . . . . . . . . . . . . . . . . . 77
K-section clustering algorithms . . . . . . . . . . . . . . . . . . . . . 78

5.4 Partitional clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . 78
K-means clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Kernel K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Spectral K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Bayesian decision theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Maximum Likelihood Classification . . . . . . . . . . . . . . . . . . . . . . 82

Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . 83
Expectation-Maximisation algorithm . . . . . . . . . . . . . . . . . 84

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Model selection 87

6.1 Estimation of the clustering solution . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Between-, within- cluster criteria . . . . . . . . . . . . . . . . . . . . . . . . 90

Validity criteria for hierarchical clustering . . . . . . . . . . . . . . . . . . 90
Validity criteria for partitional clustering . . . . . . . . . . . . . . . . . . . . 90

6.3 Information measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Bayesian information criterion . . . . . . . . . . . . . . . . . . . . . . . . . 92
Akaike information criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Minimum description length criterion . . . . . . . . . . . . . . . . . . . . . 93

Stochastic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2-parts description length . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 MDL for the Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . 94
MDL for the Complete Log-likelihood of GMM . . . . . . . . . . . . . . . . 95

Graph of MDL to determine the number of clusters . . . . . . . . . 96
The optimal number of clusters and features . . . . . . . . . . . . . 98

Kernel MDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Experiments with synthetic data . . . . . . . . . . . . . . . . . . . . . . . . 100
Experiments with real data: satellite images . . . . . . . . . . . . . . . . . . 102

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 An unsupervised hierarchical clustering based on KMDL . . . . . . . . . 106

An unsupervised hierarchical clustering algorithm, MDL . . . . . . . . . . 110



CONTENTS iii

An unsupervised hierarchical clustering algorithm, KMDL . . . . . . . . . 110
Direct error computation . . . . . . . . . . . . . . . . . . . . . . . . 110
Eigen values for error computation . . . . . . . . . . . . . . . . . . . 111

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Combination of clustering results 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Nominal data clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Partitional clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Combinatorial search . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Partitional algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Bernoulli mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Multinomial mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Combination using a co-association matrix . . . . . . . . . . . . . . . . . . 130
Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Eigen vector decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Bounds of square error E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Quadratic programming . . . . . . . . . . . . . . . . . . . . . . . . . 135
Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Combination algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 136
Approximate solution. Initialisation . . . . . . . . . . . . . . . . . . 138
Gradient descent optimisation and storage reduction . . . . . . . . 140
A complete iterative algorithm . . . . . . . . . . . . . . . . . . . . . 142
Examples of combining . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Proposed Mean Shift combination . . . . . . . . . . . . . . . . . . . . . . . 147
Proving convergence with mean shift . . . . . . . . . . . . . . . . . . . . . 147
Optimal adaptive radius for mean shift combination . . . . . . . . . . . . . 149
Practical aspects of mean shift . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.6 Measure of clustering stability, stable patterns . . . . . . . . . . . . . . . . 155
Examples of stable patterns and clustering stability . . . . . . . . . . . . . 156
Self-optimising effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Clustering combination and image analysis 159

8.1 Comparing clustering combination methods . . . . . . . . . . . . . . . . . 160
Clustering error Ec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
S-link combination: NMI and error E . . . . . . . . . . . . . . . . . . . . . 162
K-means combination: error E and MDL . . . . . . . . . . . . . . . . . . . 162
MMM with EM-algorithm combination: error E and MDL . . . . . . . . . 165
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 Combining via reclustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.3 Combining of satellite image segmentations . . . . . . . . . . . . . . . . . 168
8.4 Combining of images with artefacts . . . . . . . . . . . . . . . . . . . . . . 168



iv CONTENTS

Synthetic segmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Combination of clustered images with clouds . . . . . . . . . . . . . . . . . 172

8.5 Determining the optimal number of clusters for image series . . . . . . . 174
8.6 Combining for image deblurring . . . . . . . . . . . . . . . . . . . . . . . . 175
8.7 Clustering of nominal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.8 Unsupervised feature selection algorithm . . . . . . . . . . . . . . . . . . . 178
8.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

III Semantic construction 181

9 Semantic construction for images 183

9.1 Visualisation of clusterings . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2 Extraction of relations among concepts . . . . . . . . . . . . . . . . . . . . 185
9.3 Semantic construction for multimedia images . . . . . . . . . . . . . . . . 185

Combining of classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Combining descriptions of classifications . . . . . . . . . . . . . . . . . . . 191

Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.4 Semantic construction for satellite images . . . . . . . . . . . . . . . . . . . 195

Combining of samples of satellite images . . . . . . . . . . . . . . . . . . . 195
Unsupervised image clustering of urban content (QuickBird) . . . . . . . . 197
Satellite image of general content (SPOT 5) . . . . . . . . . . . . . . . . . . 199
Satellite image of urban areas (SPOT 5) . . . . . . . . . . . . . . . . . . . . 209

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

10 Conclusions 219

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A Haralick features 225

B Features of line segments and edges 227

C MDL for the Complete Log-likelihood of GMM 231

D Proof of Theorem 7.5.1 233

E Dictionary of image classes 235

F Human-computer interface for unsupervised image clustering 237

Bibliography 240



v

Acknowledgements

To my family

I am grateful to my thesis supervisor Professor Henri Maı̂tre for the guidance, encour-
agement, fruitful discussions and constructive comments.

I am thankful to the jury members for their participation in my PhD defence: Jean-
François Marcotorchino (president of the jury), Gérard Govaert et Bernard Merialdo (re-
porters), Marine Campedel et Danielle Ducrot (examiners). I thank them for attentive
reviews and comments which helped me to improve my thesis manuscript.

I would like to thank all members of a project ”Competence Centre” (TELECOM
Paris/ CNES/ DLR) in the frame of which my thesis has been realised. Especially I thank
Alain Giros and Mihai Datcu for their fruitful comments.

I want to express many thanks to Marine Campedel for numerous discussions during
my thesis. I also thank Hichem Sahbi for his constructive remarks. I am very grateful
to all colleagues at TELECOM Paris for their help, advices and an excellent working
atmosphere.

I would also thank my ”co-bureaux” Luo Bin, Marie Lienou, Mihai Costache, Julien
Rabin, Xavier Perrotton and many others PhD students at TELECOM Paris.

I wish to thank my friends Sergiy Redko, Michael Lemarenko, Julie Qian, Julien
Chabas and François Faragot for the interesting time spent together.

Of course I am very grateful to my wife Maryna for her unconditional support.



vi CONTENTS



vii

Abstract

Remote sensed satellite images have found a wide application for analysing and man-
aging natural resources and human activities. Satellite images of high resolution, e.g.,
SPOT5, have large sizes and are very numerous. This gives a large interest to develop
new theoretical aspects and practical tools for satellite image mining.

The objective of the thesis is unsupervised satellite image mining and includes three
main parts. In the first part of the thesis we demonstrate content of high resolution optical
satellite images. We describe image zones by texture and geometrical features.

Unsupervised clustering algorithms are presented in the second part of the thesis.
A review of validity criteria and information measures is given in order to estimate the
quality of clustering solutions. A new criterion based on Minimum Description Length
(MDL) is proposed for estimating the optimal number of clusters. In addition, we pro-
pose a new kernel hierarchical clustering algorithm based on kernel MDL criterion.

A new method of ”clustering combination” is presented in the thesis in order to ben-
efit from several clusterings issued from different algorithms. We develop a hierarchical
algorithm to optimise the objective function based on a co-association matrix. A second
method is proposed which converges to a global solution. We prove that the global min-
imum may be found using the gradient density function estimation by the mean shift
procedure. Advantages of this method are a fast convergence and a linear complexity.

In the third part of the thesis a complete protocol of unsupervised satellite images
mining is proposed. Different clustering results are represented via semantic relations
between concepts.

Keywords : Satellite image, feature, class, cluster, clustering, combination, consensus,
algorithm, co-association, number of clusters, square error, minimum description length,
mean shift, semantic.
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Résumé

Les images satellitaires ont trouvées une large application pour l’analyse des ressources
naturelles et des activités humaines. Les images à haute résolution, e.g., SPOT5, sont
très nombreuses. Ceci donne un grand intérêt afin de développer de nouveaux aspects
théoriques et des outils pour la fouille d’images.

L’objectif de la thèse est la fouille non-supervisée d’images et inclut trois parties prin-
cipales. Dans la première partie nous démontrons le contenu d’images à haute résolution.
Nous décrivons les zones d’images par les caractéristiques texturelles et géométriques.

Les algorithmes de clustering sont présentés dans la deuxième partie. Une étude de
critères de validité et de mesures d’information est donnée pour estimer la qualité de
clustering. Un nouveau critère basé sur la Longueur de Description Minimale (LDM) est
proposé pour estimer le nombre optimal de clusters. Par ailleurs, nous proposons un
nouveau algorithme hiérarchique basé sur le critère LDM à noyau.

Une nouvelle méthode de ”combinaison de clustering” est présentée dans la thèse
pour profiter de différents algorithmes de clustering. Nous développons un algorithme
hiérarchique pour optimiser la fonction objective basée sur une matrice de co-association.
Une deuxième méthode est proposée qui converge à une solution globale. Nous prou-
vons que le minimum global peut être trouvé en utilisant l’algorithme de type ”mean
shift”. Les avantages de cette méthode sont une convergence rapide et une complexité
linéaire.

Dans la troisième partie de la thèse un protocole complet de la fouille d’images est
proposé. Différents clusterings sont représentés via les relations sémantiques entre les
concepts.

Mots-clés : Image satellitaire, caractéristique, classe, cluster, clustering, combinaison,
consensus, algorithme, co-association, nombre de clusters, erreur quadratique, longueur
de description minimale, mean shift, sémantique.
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1

Résumé des travaux

Introduction

L’observation de la Terre est un domaine de la science qui a trouvé un large champ
d’application au cours des dernières décennies pour l’analyse, la surveillance, la prévision
et la gestion des ressources naturelles et des activités humaines. Les scientifiques et les
spécialistes de différents domaines sont intéressés dans les observations de vastes zones
de la Terre et même sa surface globale. Les techniques de télédétection sont capables de
réaliser de telles observations. La télédétection est l’acquisition de données (des images)
qui ont la relation spatiale dans les scènes détectées. Les instruments de télédétection
(e.g., des caméras ou des capteurs) mesurent différents éléments d’information tels que
les différents domaines du spectre électromagnétique.

Nous nous sommes intéressés au traitement des images optiques telles que les images
SPOT5 ”Satellites Pour l’Observation de la Terre” 1. Les images capturées par un satellite
reflètent de grandes surfaces dans les détails. Il en résulte de gros volumes de données,
e.g., une image SPOT5 de taille 12000 × 12000 pixels couvre 60 × 60km2 [Gleyzes et al.,
2003]. Les images comme SPOT5 sont très nombreuses, près de 106 images ont été ac-
quises depuis 1986 2. La haute résolution d’images permet d’identifier de nombreuses
structures comme les bâtiments, les routes, les aéroports, les gares, les ponts, les forêts, les
domaines agricoles, les nuages, l’eau, la neige et beaucoup d’autres. A l’heure actuelle,
elles sont faiblement exploitées en raison de leur grande taille et de temps d’analyse
visuelle. Cela donne un grand intérêt et fournit une demande afin de développer de
nouveaux aspects théoriques et des outils pour la fouille d’images satellitaires.

Dans cette thèse nous étudions et proposons de nouvelles méthodes d’analyse d’images
satellitaires dans le cadre de la fouille d’images. L’objectif de la thèse consiste en l’extraction
d’information (des caractéristiques, des modèles et des classes) à partir des images dans
une forme compacte et offrant une sémantique des images à l’utilisateur. L’idée défendue
ici est de mener différentes approches possibles de fouille d’images et de combiner leurs
résultats au lieu d’utiliser une seule approche. L’attention dans cette thèse est concentrée
sur les méthodes de clustering non supervisées. La procédure d’extraction de données
proposée dans cette thèse n’est pas limitée par une tâche spécifique et peut être appliquée
comme une approche générale sur les différents types de données, e.g., les images mul-
timédia. Une caractéristique du schéma proposé consiste en la possibilité de son applica-
tion à de très grandes bases des données, ce qui est le cas de bases de données d’images
satellitaires .

La fouille de données est la direction de science qui combine différentes aspects
d’apprentissage statistique, de sélection de modèle et d’estimation de paramètres

1http://www.spotimage.fr
2http://www.cnes.fr/web/258-spot.php

http : //www.spotimage.fr
http : //www.cnes.fr/web/258-spot.php


2 RÉSUMÉ DES TRAVAUX

[Witten & Frank, 1999]. Dans cette thèse la fouille de données est considérée comme
une tâche combinant la reconnaissance des formes, la classification et la représentation
des relations entre les données [Jain & Dubes, 1988; Fukunaga, 1990; Duda et al., 2000;
Theodoridis & Koutroumbas, 2003]. La fouille de données dans des images satellitaires
est montrée dans les nombreux travaux [Datcu & Seidel, 2000; Stein et al., 2002].

Un exemple de l’analyse de la surface de la Terre par des images satellitaires est
le projet Corine Landcover [Bossard et al., 2000]. L’idée principale de ce travail est de
déterminer les caractéristiques et les catégories des surfaces et les classer en utilisant
des images satellitaires. Il y a une liste des formes et des classes prédéterminées par les
différents experts qui sont utilisés pour la classification supervisée d’images. Les classes
sont représentées par un arbre hiérarchique avec plusieurs niveaux de la hiérarchie. Cette
représentation est utilisée par différents experts pour analyser la surface. La principale
limite de cette approche de fouille de données est la sélection supervisée et la classifi-
cation supervisée des classes. Souvent, les experts classent les données visuellement,
mais il existe également de nombreux algorithmes d’apprentissage pour la classification
[Gorte & Stein, 1998]. Ces expériences ont été réalisées pour la plupart avec des images à
faible résolution (de plusieurs dizaines à plusieurs centaines de mètres par pixel).

L’apprentissage statistique, la modélisation Bayesienne par les modèles probabilistes
sont des approches largement utilisées pour la reconnaissance des formes [Fukunaga,
1990]. Les principes pour estimer et sélectionner des meilleurs modèles probabilistes des
données sont expliqués dans [Friedman et al., 2001; Mackay, 2002]. Les modèles prob-
abilistes pour des données continues sont souvent considérés comme un mélange de
modèles, e.g., la mélange de distributions Gaussiennes. Une très bonne étude de cette
question peut être trouvée dans [Mclachlan & Peel, 2000].

Dans la pratique, des modèles d’apprentissage statistique et des algorithmes parfois
atteignent leurs limites en raison des hypothèses fortes sur les distributions probabilistes.
Pour surmonter ces limites, une approche basée sur un noyau est récemment devenu très
populaire [Vapnik, 1998]. Une étude détaillée d’approches à noyau pour l’apprentissage
statistique est présentée dans [Vapnik, 1998]. D’autres idées pratiques et intéressantes
pour l’apprentissage par les noyaux sont bien expliquées dans [Shawe-Taylor & Cristianini,
2004].

Les exemples de systèmes de fouille d’image satellitaire et de leurs aspects théoriques
sont présentés dans [Datcu & Seidel, 2000; Datcu et al., 2003; Datcu & Seidel, 2005; Barnes,
2007]. L’une des études récentes de la fouille peut être trouvée dans [Heas & Datcu, 2005;
Gueguen & Datcu, 2007]. Bien que ce travail porte sur les séries temporelles d’images
satellitaires, certains aspects de la modélisation des données peuvent être prises en con-
sidération pour différents types d’images satellitaires.

Le but de cette thèse est de contribuer à la fouille non supervisée d’images satelli-
taires. Pour cette tâche, les sujets suivants ont été abordés :

1. l’extraction d’information provenant d’images satellitaires et sa représentation par
des caractéristiques ;

2. la sélection d’éléments d’information et la réduction de l’espace de données pour
les algorithmes de clustering ;

3. la modélisation des données par le clustering en utilisant différents algorithmes
non supervisés avec la sélection de la solution optimale pour chaque algorithme ;
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4. la combinaison des différents résultats obtenus par les algorithmes non supervisés
de clustering ;

5. la représentation sémantique de clusterings pour satisfaire les besoins de l’utilisateur.

La principale problématique de la thèse est de trouver des catégories de zones d’images
et de faire le clustering sans connaissance a priori sur le type et le nombre de catégories.

La thèse est organisée de la manière suivante : la problématique de cette thèse est
posée dans le Chapitre 2, où une description des images satellitaires à haute résolution
est également présentée. Dans ce Chapitre les problèmes de fouille de données et re-
connaissance des formes pour les grandes bases de données d’images satellitaires sont
également introduits. Le Chapitre 3 présente l’information qui peut être extraite à partir
des images satellitaires optiques. L’information est représentée par des caractéristiques
qui décrivent les différentes propriétés de la surface de la Terre. Le problème de la re-
connaissance des formes est abordé dans le Chapitre 4 où la classification supervisée est
présentée. Ensuite, dans le Chapitre 5 nous présentons des algorithmes de clustering. Le
problème et les solutions pour la sélection non supervisée de modèles de clustering sont
proposés dans le Chapitre 6. La formulation du problème de la combinaison de clus-
tering ainsi que ses solutions sont proposées au Chapitre 7. Le Chapitre 8 présente une
variété d’exemples d’application de combinaison. Un protocole complet de fouille non
supervisée d’images satellitaires est montré dans le Chapitre 9. Enfin, les conclusions et
les perspectives de la thèse sont données au Chapitre 10.

Fouille d’images satellitaires

Dans ce Chapitre, nous donnons une définition de fouille de données et des exemples
d’applications dans différents domaines. L’un de ses principaux rôles est la prise de
décision. La fouille de données (Data Mining) est un processus de découverte de modèles
de données et les relations entre eux. Il couvre également les aspects de classification, la
prévision des données et de représentation des résultats découverts. La représentation
peut être faite par des indicateurs statistiques ou par l’intermédiaire de la visualisation
des images, des arbres ou des graphiques [Larose, 2006]. Une forme (pattern) est un
exemple représentatif d’une partie des données et en fonction de l’application peut être
une image, un signal ou n’importe quel type de mesures soit à être classées ou reconnues
[Marques de Sá, 2001; Larose, 2006].

A l’heure actuelle, la fouille de données est utilisée dans de nombreux domaines : sci-
entifique, industriel et commercial [Marques de Sá, 2001; Theodoridis & Koutroumbas,
2003; Duda et al., 2000; Larose, 2006]. Les exemples d’applications de fouille de données
sont :

⋆ Imagerie. Il y a de plus en plus d’images satellitaires et une demande de la ges-
tion des données et le traitement intelligent augmente : l’analyse, la détection et
la classification des images satellitaires et aériennes. Il y a de nombreuses applica-
tions, e.g., pour la gestion des zones urbaines et agricultures : analyse et la gestion
des sols ; pour la géologie : la classification des couvertures des terres (eau, sol,
des forêts, urbain, etc.), l’estimation et l’analyse des ressources minières, l’analyse
sismique ; pour l’astronomie : l’analyse des images télescopiques. De nombreuses
organisations commerciales sont intéressées par l’analyse des images multimédia
afin de trouver des groupes de mêmes images et d’analyser les besoins des utilisa-
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teurs, l’analyse de vidéo, la classification, la description du contenu et l’indexation
des images et des video (e.g., Google).

⋆ Bio-informatique. En bio-informatique l’une de tâches connue d’extraction de
données est l’étude du comportement des gènes au cours d’expériences. Les gènes
peuvent être regroupés automatiquement où chaque groupe de gènes représente le
même comportement ou les caractéristiques.

⋆ Industrie. La fouille de données peut être considérée pour l’industrie lourde et
pour l’industrie de haute technologie. Un exemple très courant est la détection
automatique et la classification des objets sur une chaı̂ne de montage d’une usine.
Cela réduit le temps et d’améliorer la qualité de l’assemblage de produits.

⋆ Commerce. La fouille de données pour le commerce peut-être l’analyse du marché
et des produits, etc. L’un des problèmes intéressants est l’étude des besoins des
consommateurs.

Nous nous intéressons à la fouille d’images satellitaires SPOT5. Une telle image a
deux dimensions et est enregistré par un scanner optique multispectral. Pour chaque ap-
pareil SPOT5 une ligne a 12000 éléments qui correspondent aux pixels sur une image 3. Le
traitement de l’image satellitaire comprend les étapes suivantes : tout d’abord, les images
sont enregistrées par des appareils d’enregistrement numérique. Puis elles sont corrigées
par la correction, la restauration ou la reconstruction d’images. Enfin, les images sont
classées en utilisant luers caractéristiques. Cela se fait par la classification supervisée,
semi-supervisée ou non supervisée. La dernière étape est la présentation des résultats
soit directement à l’utilisateur, soit par l’enregistrement sur un système d’information
géographique (SIG). Dans cette thèse la classification non supervisée d’image satellitaires
et la représentation des résultats sont pris en compte.

La fouille des images satellitaires à haute résolution (HR) est considérée dans ce
Chapitre. Les images à HR fournissent diverses informations sur la surface de la Terre et
sont très intéressants pour les experts dans différents domaines : l’urbain, l’agriculture,
l’environnement, la militaire, etc. Les exigences relatives à la classification d’images et sa
validation peuvent être trouvées dans [Muchoney & Strahler, 1996; Atkinson & Lewis,
2000]. L’une des principales applications de l’imagerie satellitaire est la construction des
cartes pour la détection des routes et des zones urbaines, pour l’analyse des champs agri-
cultures ou des forêts (les classes). Les systèmes actuels d’analyse d’images satellitaire
impliquent très souvent l’information fournie par un expert. Ce type de travail nécessite
un effort humain considérable. La demande pour les systèmes automatiques est très
grande car ils peuvent améliorer la qualité des décisions et réduire le temps d’analyse
nécessaire. Un autre intérêt de l’utilisation de systèmes automatiques d’analyse d’images
satellitaires consiste à découvrir de nouvelles informations et connaissances (nouvelles
relations entre les classes, de nouvelles classes).

Les étapes principales d’un système pour analyser les images satellitaires sont
généralement les mêmes, indépendamment de l’application :

1. Extraction des caractéristiques (feature extraction) - la modélisation et l’extraction
d’information d’image satellitaire ;

3http://www.cnes.fr

http : //www.cnes.fr
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2. Reconnaissance des formes (pattern recognition) - la sélection de modèles et
l’optimisation de leurs paramètres pour l’analyse, la classification et le clustering ;

3. Représentation des résultats - la visualisation des résultats de la reconnaissance des
formes.

Dans ce Chapitre nous avons illustré des exemples de fouille de données. Un bref
exemple d’analyse d’images satellitaires et de fouille de données a été illustré. Les sujets
suivants sont passés en revue : les demandes d’extraction de données dans différents do-
maines (scientifique, industriel et commercial). L’importance de l’utilisation des systèmes
de fouille de données a été argumentée. Les exemples d’analyse d’images satellitaires
ont été présentés. Les étapes de l’extraction de données ont été démontrées dans ce
Chapitre. Une interaction entre un utilisateur et un ordinateur pour fouiller des images
a été décrite.

Extraction des caractéristiques

Dans ce Chapitre, nous revoyons la définition et les notations de descripteurs (également
appelé les caractéristiques) et montrons les modèles de caractéristiques ainsi que leur ex-
traction. Une forme (pattern) est considérée comme une partie d’une image satellitaire.

Une image naturelle, par exemple une image satellitaire, contient des régions qui
ont des propriétés communes pour la perception visuelle. Les régions homogènes de la
ville, des forêts et les nuages sont faciles à distinguer. Chacune de ces régions est car-
actérisée ou décrit par des caractéristiques, e.g., les pixels de niveau gris d’intensité ou
les textures. Il y a deux groupes de caractéristiques : (i) naturelle et (ii) artificielle. Les
caractéristiques naturelles correspondent à la perception visuelle, e.g., niveau d’intensité,
de régions texturelles, tandis que les caractéristiques artificielles sont obtenues après la
manipulation d’images, e.g., un histogramme d’une image, les spectres de fréquence spa-
tiale, etc. [Pratt, 2001].

Les caractéristiques d’une image sont utilisées pour la segmentation d’images, la clas-
sification et le regroupement afin de trouver des régions avec des propriétés communes.
En traitement d’images de nombreuses caractéristiques ont été proposées pour décrire
une image. En règle générale, pour des images statiques (dans notre cas SPOT5) les
modèles de caractéristiques sont principalement les suivants : les descripteurs statis-
tiques de l’intensité de l’image, de textures et de la géométrie [Pratt, 2001; Forsyth & Ponce,
2002]. Dans ce Chapitre, nous proposons les caractéristiques géométriques et donnons
des exemples des caractéristiques de textures qui ont été réalisés dans [Campedel et al.,
2004, 2005].

Pour obtenir les caractéristiques de l’intensité d’image nous calculons les moments
statistiques telles que les moments centraux du premier ordre (valeur moyenne) et du
second ordre (écart type). Ce type de descripteurs statistiques est en mesure de dis-
tinguer sur une image SPOT5 une partie lumineuse d’image avec une haute intensité des
niveaux de gris (e.g., les nuages, la neige) d’une partie sombre à faible intensité (e.g., la
mer et la terre). Certaines statistiques d’ordre supérieur peuvent être extraites de l’image
: l’asymétrie, le kurtosis, l’entropie.

Une texture est définie comme une image d’une surface qui est facile à reconnaı̂tre,
mais difficile à décrire et il est représenté par de nombreux objets [Forsyth & Ponce,
2002]. Différentes propriétés d’échantillons d’images peuvent être caractérisées par la
dépendance spatiale de l’intensité des pixels. Certains modèles de dépendance spatiale
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sont représentés soit par l’extraction des statistiques d’une image, soit par un filtrage
d’image. Les caractéristiques obtenues par le filtrage sont appelées les caractéristiques
de texture. Maintenant, nous donnons quelques modèles basiques de caractéristiques de
texture.

Des caractéristiques réputées pour décrire la texture sonnt les caractéristiques de Har-
alick [Haralick et al., 1977]. Ces caractéristiques sont calculées sur un histogramme du
deuxième ordre de la distribution de probabilité conjointe d’une paire de pixels que l’on
appelle une matrice de co-occurrence (MC). Les caractéristiques calculées sur MC sont
des descripteurs statistiques qui reflètent différentes propriétés de textures. Les filtres
de Gabor représentent des modèles de la perception visuelle d’une texture [Daugman,
1985]. Ils ont été largement étudiés et appliqués pour la classification et la segmentation
d’images [Dunn et al., 1994; Dunn & Higgins, 1995; Jain & Farrokhnia, 1991; Weldon et al.,
1996]. Les caractéristiques extraites par des filtres de Gabor sont les valeurs moyennes
et les écarts-types des images filtrées. Ces caractéristiques permettent d’obtenir des car-
actéristiques qui sont invariantes par rotation [Manthalkar et al., 2003]. Quadratic Mirror
Filters (QMF) appliquent un filtrage qui peut reconstruire une image exactement [Vetterli,
1986].

Nous considérons les caractéristiques géométriques comme celles qui décrivent les
propriétés géométriques des objets visibles sur l’image, e.g., les propriétés statistiques
des segments linéaires et des bords détectés sur l’image. Nous présentons une approche
de détection de bords, l’approximation des bords par les segments linéaires et l’extraction
de caractéristiques géométriques. L’image est filtrée par le filtre de Deriche [Deriche,
1987b] suivant le seuillage de Hysteresis et la détection des bords. Les segments linéaires
sont les approximations des bords [Papakonstantinou, 1985]. Les caractéristiques sont
extraites des bords et des segments linéaires.

Les modèles des caractéristiques décrivant des propriétés différentes de la surface de
la Terre dans les images satellitaires ont été présentés dans ce Chapitre. Ces modèles
reflètent la texture et les caractéristiques géométriques. Les principaux thèmes abordé
dans ce Chapitre sont les suivants : les statistiques calculées sur les modèles Haralick,
Gabor et QMF ont été considérés comme les caractéristiques de texture. Les éléments
géométriques sont des valeurs statistiques de bords et de segments linéaires. Les bords
ont été détectés en utilisant le filtre de Deriche. L’espace des caractéristiques introduit
dans ce Chapitre est utilisé ensuite pour la fouille d’images satellitaires par des algo-
rithmes supervisés et non supervisés.

Reconnaissance des formes pour l’imagerie satellitaire

La reconnaissance des formes (pattern recognition) est la partie principale de la fouille
de données et a été développée dans les 20 dernières années. L’une des problématiques
de reconnaissance des formes est la description statistique des données. Une telle de-
scription est basée sur des modèles qui sont utilisés pour la classification : supervisée,
semi-supervisée ou non supervisée. La tâche de classification supervisée est d’attribuer
des étiquettes ou des classes à des échantillons, en sachant que les classes existent et quel
échantillon appartient à quelle classe. La classification semi-supervisée s’effectue par
l’intégration de l’interaction humaine.

Dans ce Chapitre, nous considérons la classification supervisée qui assigne une forme
à l’une des classes. Cette forme est décrite par un ensemble de caractéristiques. La plus
simple classification supervisée est la classification en deux classes où les classes sont
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linéairement séparées. Dans ce cas, le modèle du classificateur est un hyperplan qui
sépare les modes dans l’espace des caractéristiques.

Les études récentes sur la classification ont indiqué le potentiel considérable de la ma-
chine à vecteurs de support (Support Vector Machines, SVM) [Vapnik, 1998; Chapelle et al.,
2002; Shawe-Taylor & Cristianini, 2004]. L’une des applications de reconnaissance de
formes est la classification supervisée de données de télédétection [Huang et al., 2002].
Des études comparatives ont montré que la classification SVM peut être plus précise
que des techniques connues telles que les réseaux de neurones et les arbres de décision
ainsi que les classificateurs probabilistes classiques tels que la classification de maximum
de vraisemblance (maximum likelihood classification) [Chapelle et al., 2002]. SVM a été
conçu pour la classification binaire mais plusieurs méthodes existent pour étendre cette
approche vers la classification des multi-classes [Vapnik, 1998; Hsu & Lin, 2002]. La clas-
sification par SVM est basée sur l’estimation d’un hyperplan optimal de séparation entre
les classes en mettant l’accent sur des échantillons qui sont au bord des distributions des
classes: les vecteurs de support. L’approche SVM est largement utilisée dans de nom-
breuses applications de classification supervisée. Elle est surtout mise en oeuvre dans de
nombreux systèmes de traitement d’images satellitaires [Parulekar et al., 2005] : pour la
classification supervisée [Bhattacharya et al., 2007; Zammit et al., 2007] ainsi que pour la
classification semi-supervisée ou la boucle de retour de pertinence (relevance feedback)
[Ferecatu & Boujemaa, 2007; Costache & Datcu, 2007].

Dans ce Chapitre nous considérons le problème de la malédiction de la dimension.
Les images sont décrites par un ”grand” ensemble des caractéristiques (”grand” signi-
fie de dizaines à des centaines des caractéristiques). Il est très important de prendre
en compte la dimension de données. La dimension influence les résultats de classifica-
tion de manière significative [Bishop, 2006]. L’auteur montre que certains algorithmes
de reconnaissance des formes ne peuvent être directement appliquées à des données
de grande dimension et devraient être utilisé avec prudence. L’une des solutions à ce
problème peut être soit une pondération, soit une sélection des caractéristiques. La
pondération est une procédure d’attribution d’un poids à une caractéristique soit par
une connaissance préalable, soit par l’intermédiaire d’un algorithme qui estime le poids
au cours du processus de classification. La sélection est en mesure de déterminer un en-
semble des caractéristiques plus approprié pour représenter l’information utile dans les
données. En outre, le temps de traitement des données est en baisse après la sélection.
La réduction de la dimension ou des caractéristiques pourrait être utilisée pour diminuer
le sur-apprentissage et améliorer la classification. L’une de ces techniques est la sélection
récursive (recursive feature elimination, RFE) [Guyon, 2002]. RFE élimine certaines car-
actéristiques et conserve le sous-ensemble qui fournit la meilleure performance de clas-
sification [Campedel et al., 2004].

Pour classer une base de données d’images satellitaires SPOT5, quatre classes de tex-
tures sont utilisées : les champs, les villes, les nuages et la mer. Les images satellitaires
de différentes villes du monde ont été sélectionnés : Béziers, Paris, Los Angeles et Hong
Kong. Nous supposons que chaque image contient différentes textures de la surface de la
Terre qui reflètent la nature et l’architecture des villes diverses. Pour aborder l’absence de
la description géométrique nous démontrons un exemple de la classification des images
avec des caractéristiques géométriques et de texture.

Dans ce Chapitre la classification supervisée et la sélection des caractéristiques ont
été introduites et appliquée aux images satellitaires . Le problème d’un grand ensemble
de caractéristiques appelé ”la malédiction de la dimension” a également été présenté. La
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classification des images satellitaires par SVM avec les caractéristiques géométriques et
texturelles a été démontrée. Comme il a été illustré, un très grand espace de données
peut conduire à une mauvaise classification des résultats et prendre beaucoup de temps.
La dimension de données a été réduite via la sélection par SVM-RFE. La classification
supervisée par SVM qui utilise les caractéristiques géométriques montre des propriétés
intéressantes des images satellitaires, e.g., la ruguosité des structures détectées. Cepen-
dant, l’utilisation des caractéristiques géométriques est une approche limitée et elle doit
être completer par les caractéristiques de texture pour refléter des différentes propriétés
des surfaces.

Classification non supervisée (clustering)

La modélisation des données est chargée de représenter la connaissance et l’extraction
d’information. Quand il n’y a pas ou peu d’information a priori sur les données alors
les méthodes de classification non supervisée doivent être utilisées. La classification
non supervisée est un moyen de la modéliser les données. Pendant la modélisation, les
paramètres optimalaux du modèle de données sont estimés et la qualité des données qui
sont remplacées par le modèle est vérifiée. Il y a plusieurs problèmes d’estimation de
modèles pour lequel nous devrions prêter attention :

1. le choix du modèle de données,

2. si les paramètres du modèle sont partiellement connus ou pas connus, ils devront
être estimées,

3. l’approche d’estimation devra également être sélectionnée et argumentée.

Les modèles de classification nous serviront pour la description du contenu de données.
Pour comprendre le contenu d’un ensemble de données, nous devrons d’abord trouver
les éléments composant (les clusters et / ou les classes). L’un des moyens de trouver
des groupes ou des classes de données peut être l’estimation du modèle de données. Le
modèle indique comment les données sont distribuées dans les clusters (classes). En-
suite, les relations entre les clusters peuvent être présentées par des liens entre eux, par
exemple sous la forme d’un graphe ou d’un arbre hiérarchique.

Il y a une variété de directions pour découvrir les classes par la classification non
supervisée. L’un d’entre eux est fait référence dans la littérature - le clustering. Les
références sur les méthodes de regroupement (clustering) et de reconnaissance des formes
peuvent être trouvées dans [Diday, 1979; Jain & Dubes, 1988; Fukunaga, 1990] tandis que
les approches et les formulations sont proposées dans [Mclachlan & Peel, 2000; Duda et al.,
2000; Friedman et al., 2001; Rencher, 2002; Theodoridis & Koutroumbas, 2003; Rowe, 2002;
Mackay, 2002; Hardle et al., 2003; Bishop, 2006]. Le regroupement (clustering) est un
processus automatique qui découvre des groupes (les clusters, les groupes de données
similaires) et assigne un échantillon de données à chacun des groupes.

L’une des études précédentes sur les différentes méthodes et les algorithmes de clus-
tering est présenté dans [Diday, 1979; Jain & Dubes, 1988]. Habituellement, les tech-
niques de regroupement sont soit partitionnelles, soit hiérarchiques. Le regroupement
par la partition est une division des échantillons en groupes (clusters), tels que les échantillons
dans un groupe sont plus proches les uns des autres que d’échantillons dans différents
groupes. Le regroupement par les méthodes hiérarchiques est classé comme la division et
l’agglomération et est également appelé de bas en haut et de haut en bas (bottom-up and
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top-down) [Diday, 1979; Jain & Dubes, 1988; Rencher, 2002; Friedman et al., 2001]. Le re-
groupement par la division commence par un groupe qui contient tous les échantillons
et les sépare dans les clusters de la manière récursive. L’avantage des algorithmes de
division est que le temps, la complexité et la mémoire sont très petits. Au contraire, il
souffre d’optimalité locale de trouver des solutions de regroupement. Le regroupement
par l’agglomération commence par un point (singleton) et fusionne des groupes de deux
ou plusieurs clusters. Les algorithmes de regroupement (clustering) traitent le problème
de regroupement comme un processus d’optimisation qui cherche à maximiser ou min-
imiser un critère particulier de regroupement [Friedman et al., 2001; Rencher, 2002; Webb,
2002].

Le nombre de solutions possibles pour obtenir toutes les partitions de données est
trop élevé pour la plupart des cas pratiques [Jain & Dubes, 1988]. La recherche directe du
regroupement pourrait être appliquée qu’à un très petit nombre d’échantillons.

Les méthodes hiérarchiques de regroupement (clustering).

Le clustering hiérarchique est une partition de données imbriquées. Il est représenté
par un arbre hiérarchique ou un dendrogramme. Chaque regroupement correspond à un
certain niveau de l’arbre hiérarchique [Diday, 1979; Theodoridis & Koutroumbas, 2003].
Nous considérons le cas de regroupement hiérarchique lorsque les groupes d’une parti-
tion à un certain niveau sont complètement inclus dans les groupes de niveau supérieur.
Le haut niveau hiérarchique de l’arbre est la racine et contient toutes les données, le
niveau inférieur de l’arbre peut contenir les feuilles qui correspondent aux échantillons,
chaque groupe de ce niveau a un seul échantillon.

Les méthodes hiérarchiques d’agglomération. Les méthodes hiérarchiques d’agglomération
consistent en fusion des groupes à un certain niveau de l’arbre. Nous ne considérons
que la fusion de paires de clusters (un problème fréquent pour résoudre des problèmes
pratiques [Rencher, 2002]). Il n’existe pas de garantie, en général, que la fusion par
paires peut produire la représentation optimale de données ou la solution optimale d’une
fonction objective. De l’autre côté, plusieurs clusters peuvent être fusionnés à chaque
étape, cependant cette méthode implique le temps de calcul exponentiel et beaucoup de
mémoire. Le regroupement par l’agglomération hiérarchique construit un arbre hiérarchique
à partir de la première partition en utilisant une matrice de paires de distances entre les
clusters (clusters peuvent contenir un seul échantillon). Selon la méthode de choix de
deux groupes à fusionner et la méthode pour calculer la distance, plusieurs méthodes du
regroupement hiérarchique existent : lien-unique (single-link), lien-complète (complete-
link), lien-moyenne (average-link), lien-médiane (median-link) et agglomération de Ward.
La généralisation de ces approches également existe [Diday, 1979; Jain & Dubes, 1988;
Duda et al., 2000; Rencher, 2002; Theodoridis & Koutroumbas, 2003].

A chaque étape de la fusion par l’algorithme de single-link, deux groupes voisins sont
fusionnés. La distance minimale entre les clusters est la distance entre deux échantillons
les plus proches de ces groupes. Pour la méthode de complete-link, là encore, comme
dans les cas précédents, un arbre hiérarchique est construit par la fusion de deux groupes
(les plus proches). La distance qui les sépare est calculée pour les deux échantillons
plus éloignés appartenant à ces groupes. Cet algorithme diffère de la single-link par
le calcul de la plus grande distance entre les clusters. L’algorithme de complete-link
cherche la cohésion des groupes, contrairement à single-link qui cherche des groupes
isolés. L’approche average-link cherche de fusionner les deux groupes voisins lorsque
la distance entre eux est le moyen par paires à distance entre les points de ces groupes.
Cet algorithme diffère de deux présentées ci-dessus dans le sens où il est moins sensi-
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ble au bruit. D’autre part, cet algorithme a tendance à trouver les clusters globulaires
et pas à trouver des groupes avec des formes complexes. Ses propriétés statistiques
sont mentionnées dans [Friedman et al., 2001]. L’approche de centroid-link regroupe
deux clusters les plus proche et la distance entre eux est calculée comme étant la dis-
tance entre les centroı̈des de ces groupes. Pour la méthode de median-link un cluster
ayant le plus grand nombre de points a un poids supérieur dans le calcul de distance
[Rencher, 2002]. La méthode de Ward (Ward’s method) est basée sur la réduction de
l’erreur dans chaque groupe et elle est nommée comme la méthode de la variance mini-
male. Les méthodes hiérarchiques présentées ci-dessus peuvent être considérées comme
une seule méthode avec des paramètres différents pour mettre à jour la matrice des dis-
tances [Lance & Williams, 1967].

Les méthodes hiérarchiques de division

Les méthodes hiérarchiques de division ne sont pas populaires et sont rarement ren-
contrées dans la littérature [Jain & Dubes, 1988; Rencher, 2002; Webb, 2002]. Cependant,
nous expliquons brièvement cette approche pour une observation complète de méthodes
hiérarchiques et pour montrer certains de leurs aspects intéressants. Ces algorithmes di-
visent itérativement les données en culsters. Au cours de la division, ils construisent un
arbre hiérarchique. Dans la littérature [Jain & Dubes, 1988; Rencher, 2002] le regroupe-
ment hiérarchique de division sont considérés en deux groupes : monothetic et poly-
thetic. Les algorithmes monothetics utilisent les caractéristiques consécutivement une
par une pour diviser les données tandis que les algorithmes polythetics utilisent toutes
les caractéristiques pour diviser les données. Pour les algorithmes monothetics un ordre
de caractéristiques devrait être fixés ou estimés. Seulement les algorithmes polythetic
sont considérés dans cette thèse parce qu’un ensemble complet des caractéristiques est
plus informatif que leur sous-ensemble.

Deux exemples des algorithmes hiérarchique de division sont Bi-section et K-section
algorithmes de regroupement [Chan et al., 1994]. L’algorithme Bi-section divise les données
en deux groupes et ainsi de suite chaque subcluster est divisé en deux. De même, l’algorithme
K-section divise les données en K clusters [Jain & Dubes, 1988]. L’avantage des algo-
rithmes de clustering par la division est la construction rapide des arbres hiérarchiques
pour un volume de données élevé.

Les algorithmes de regroupement par la partition (partitional clustering)

K-moyens (K-means) algorithme de clustering. K-means algorithme peut être trouvé
dans les nombreux travaux sur le clustering des données [Diday, 1979; Jain & Dubes,
1988; Duda et al., 2000; Webb, 2002; Mackay, 2002; Theodoridis & Koutroumbas, 2003;
Friedman et al., 2001]. La version classique de K-means regroupe l’ensemble de données
en un nombre prédéterminé de clusters. Chaque groupe est paramétré par ses vecteurs
moyens. L’algorithme a deux étapes :

1. attribution : chaque échantillon est attribué à son plus proches vecteur moyenne,

2. mise à jour : les vecteurs moyenne sont re-estimés.

Nous devrions mentionner l’algorithme de regroupement K-medoid qui a été proposés
dans [Kaufman & Rousseeuw, 1990; Diday, 1979]. Sa principale différence d’algorithme
K-means consiste à remplacer les vecteurs moyens par des échantillons qui minimisent
l’erreur quadratique.

K-means à noyau. Dans le cas lorsque les données ont une structure complexe (e.g.,
les données ne sont pas séparables linéairement) l’application directe de K-means est
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inappropriée en raison de la tendance de K-means de détecter des groupes en forme des
globes. L’une des solutions est de regrouper les données par un noyau sur une nouvelle
espace caractéristique où les clusters sont linéairement séparables. Le noyau est défini
comme le produit scalaire. Avec le noyau et la fonction objective, les étapes d’algorithme
K-means peuvent être appliquées [Shawe-Taylor & Cristianini, 2004]. Lorsque le noyau
non-linéaire est appliqué, ce regroupement peut trouver des groupes de clusters qui ont
des formes non-linéaires.

K-means spectrale. Dans [Ng et al., 2002], les auteurs ont proposé l’algorithme de
clustering spectrale. L’idée générale de cette approche est d’utiliser les vecteurs propres
du noyau comme une matrice de données sur lesquelles un algorithme de clustering est
appliqué. Le point essentiel est de fixer le nombre de vecteurs propres comme le nombre
de clusters. La relation entre le noyau et le spectrale K-means sont mises en évidence
par [Schölkopf et al., 1996; Dhillon et al., 2004]. Les références supplémentaires sur le
clustering spectrale sont [Lau & Wade, Aug 1991; Kannan et al., 2000; Yu & Shi, 2003].

La théorie de la décision Bayésienne.

La théorie de la décision Bayésienne [R. Hanson & Cheeseman, May, 1991; Duda et al.,
2000; Bishop, 2006] est très utilisée pour la reconnaissance des formes [Cheeseman & Stutz,
1996; Mclachlan & Peel, 2000]. Elle est basé sur l’hypothèse que les données peuvent être
décrites par des modèles probabilistes. Le problème pratique de la décision Bayésienne
se pose lorsque les valeurs de la probabilité ne sont pas connues. En pratique, ces valeurs
doivent être estimés sur des données en utilisant l’hypothèse sur un modèle de données.
Dans ce Chapitre, nous donnons une brève introduction sur la théorie de la décision
Bayésienne et puis nous décrivons un algorithme pour estimer le modèle de données.
Nous utilisons le terme ”classe” au lieu de ”cluster” sans perte de généralité.

La classification par le maximum de vraisemblance. Pour des tâches pratiques de recon-
naissance des formes, nous n’avons pas de probabilités (la vraisemblance, les priors et
l’évidence), par contre nous avons seulement les échantillons de données. Le problème
est de savoir comment évaluer ces probabilités et les utiliser. Dans la littérature sur
l’estimation des paramètres du modèle il y a deux approches principales [Duda et al.,
2000; Mackay, 2002; Mclachlan & Peel, 2000; Bishop, 2006] :

1. l’estimation du maximum de vraisemblance,

2. l’estimation Bayésienne.

Ces deux approches produisent les résultat similaires à l’estimation des paramètres pour
le grand volume de données (c’est le cas de reconnaissance de formes pour les images
satellitaires) [Duda et al., 2000].

Dans des cas pratiques, avec de nombreux échantillons (un million et plus) et une
dimension élevée (plusieurs dizaines et plus), l’estimation bayesienne demandes beau-
coup de calculs. Il est difficile d’appliquer une telle estimation dans le délai raisonnable.
Au contraire, les résultats de l’estimation du maximum de vraisemblance sont beau-
coup plus faciles à réaliser et plus intuitif à interpréter. C’est pourquoi nous proposons
d’examiner l’estimation du maximum de vraisemblance. Cette approche est présentée
dans ce Chapitre afin d’estimer un modèle probabiliste par le modèle de mélange gaussien
(MMG) et la classification non supervisée.

L’évaluation des probabilités du modèle et ses paramètres sont faites par l’algorithme
”Expectation-Maximisation” ou algorithme EM. L’algorithme maximise le logarithme de
vraisemblance [Dempster et al., 1977; Mclachlan & Peel, 2000]. Les récents développements
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intéressants d’algorithme EM de mélange des modèles sont donnés dans [Govaert & Nadif,
2005, 2003]. Cette optimisation peut se converger vers les solutions optimales qui sont
localles, qu’est souvent le cas de problèmes pratiques. Et, en général, il n’existe au-
cune garantie de la convergence vers le optimum global, sauf dans des cas particuliers
[Mclachlan & Peel, 2000; Bishop, 2006]. Certains trucs pratiques sur l’amelioration de la
solution optimale sont examinés.

Dans ce Chapitre les algorithmes de regroupement non supervisé (clustering) ont
été révisés. Ils sont divisés en deux groupes : clustering partitionnelle et clustering
hiérarchique. Les algorithmes de regroupement par la partition sont présentés de le plus
simple comme K-means vers les plus complexes comme K-means spectrale et K-means
à noyau. Ils sont terminés par un regroupement probabiliste avec le modèle de mélange
gaussien des clusters. Les paramètres de MMG sont estimés par l’algorithme EM. Les
algorithmes de regroupement sont comparés via leur complexité et l’optimalité.

Le problème principal du regroupement non supervisé est l’estimation de la qualité
de regroupement :

1. comparer et sélectionner les meilleurs regroupements d’un algorithme,

2. déterminer le nombre de clusters.

Ces problèmes ont l’importance cruciale et dépendent de l’algorithme de clustering. Ils
seront considérés dans le Chapitre suivant ou de nouvelles idées seront proposées.

Sélection du modèle

L’extraction de connaissances à partir des images satellitaires est l’objectif principal de
cette thèse. Notre objectif est d’obtenir un contenu des données grâce à la modélisation
des données. A la première étape, cette modélisation doit fournir des clusters. Dans
notre cas, l’un des problèmes cruciaux du clustering des données est qu’il n’existe pas
d’information a priori sur le nombre de groupes (des clusters, des classes) dans une
image. Un groupe ou une classe est considérée comme un type de la surface de la
Terre. Pour aborder ce problème, nous proposons d’appliquer le regroupement ou des
algorithmes de classification non supervisée pour détecter les clusters dans une image.
Comme nous l’avons vu dans le Chapitre précédent l’un des paramètres de ces algo-
rithmes est le nombre de clusters. Dans ce Chapitre, nous analysons plusieurs approches
et des critères pour estimer le nombre optimal de clusters. En outre, ces critères sont
en mesure de choisir le meilleur regroupement d’un ensemble de clusterings. Il est à
noter, que de sélection inappropriés du nombre de groupes et / ou du regroupement
peut conduire à l’interprétation des données erronées que peut être le cas des problèmes
pratiques.

L’estimation de la qualité de regroupement est appelée la validité de clustering. L’étude
sur la validité que peut être trouvée dans [Jain & Dubes, 1988; Mclachlan & Peel, 2000;
Friedman et al., 2001; Theodoridis & Koutroumbas, 2003; Mackay, 2002] est divisés en
trois groupes [Jain & Dubes, 1988; Theodoridis & Koutroumbas, 2003] : externe, interne
et relative. Les critères externes vérifient comment les données confirment une structure
qui a été imposée a priori. Ces critères peuvent être vérifiés sans l’application des algo-
rithmes de regroupement. Les critères internes peuvent se basé sur la quantité de valeurs
calculées sur les données et le regroupement. Les critères relatifs évaluent le regroupe-
ment en comparant différents clusterings obtenu soit à partir du même algorithme, mais
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avec des paramètres différents, soit issus des différents algorithmes de regroupement sur
les mêmes données. Dans ce Chapitre, nous nous intéressons aux critères internes pour
les différents algorithmes.

Pour les algorithmes de regroupement hiérarchique, nous montrons une valeur statis-
tique appelé le coefficient cophenetic de corrélation (CCCP ou Cophenetic Correlation
Coefficient (CPCC)) [Jain & Dubes, 1988]. L’estimation des algorithmes de regroupe-
ment est montrée à travers l’erreur de regroupement de données et les critères théoriques
d’information.

Le nombre de groupes (clusters) dépend de la façon comment un modèle optimal
rapproche aux données. Dans ce Chapitre, nous concentrons notre attention sur une
mesure théorique d’information. En vertu de cette mesure nous considérons Minimum
Description Length (MDL). Nous montrons les relations entre MDL et d’autres critères
d’information telles que les mesures d’information Akaike (AIC, Akaike information cri-
terion), le critère d’information de Bayes (BIC, Baeysian information criterion) et la com-
plexité stochastique d’information (SIC, statistic information criterion). Nous démontrons
également la simplification de MDL pour la hypothèse de regroupement ”dur” (hard
clustering), lorsque les données appartiennent à un seul groupe. Par ailleurs, nous pro-
posons un nouveau critère appelé MDL à noyau (KMDL, kernel MDL) afin d’estimer le
nombre de clusters pour l’algorithme de clustering par K-means à noyau. Sur la base
de MDL et KMDL critères, nous proposons un nouvel critère MDL (GMDL, general
MDL). En outre, plusieurs algorithmes de regroupement hiérarchique proviennent de
GMDL. L’intérêt de ces algorithmes est qu’ils trouvent des groupes ayant des formes
non-linéaires et dans le même temps, ils sont en mesure d’estimer la qualité de regroupe-
ment et le nombre optimal de clusters.

Les critères théoriques sont devenus très connus afin de sélectionner le modèle op-
timal de données [Mclachlan & Peel, 2000; Mackay, 2002]. En particulier, ils donnent
de bons résultats dans le cas où un grand nombre de données sont disponibles, e.g.,
le traitement d’images satellitaires. Ces critères sont clairement formulées et ont de
bonnes bases théoriques. Il existe de nombreux travaux qui montrent l’équivalence des
mesures théoriques entre AIC, BIC, MDL [Mackay, 2002; Mclachlan & Peel, 2000]. Cer-
tains critères entropiques peuvent également être trouvée dans [Biernacki et al., 1999].

Notre objectif est de trouver des groupes dans les images satellitaires sans connais-
sance préalable de leur type ou le nombre. Vu la quantité de données disponibles, nous
préférons utiliser des algorithmes de regroupement simples, rapides et efficace. K-means
est un d’entre eux, mais il souffre de plusieurs inconvénients :

1. il ne peut s’adapter à toutes formes de clusters,

2. la connaissance du nombre de groupes est nécessaire,

3. le résultat dépend fortement du processus d’initialisation.

Pour répondre au premier problème, une solution classique consiste à utiliser K-
means algorithme à noyau [Shawe-Taylor & Cristianini, 2004]. Au cours de la dernière
décennie des algorithmes à noyau ont attiré beaucoup de chercheurs qui les applique à
diverses tâches telles que l’apprentissage automatique, la reconnaissance des formes, etc.

Pour répondre aux deuxième et troisième problèmes nous proposons d’utiliser une
approche standard telle que la sélection du meilleur regroupement obtenue en utilisant
des différents nombres de clusters et initialisations. Cette sélection est basée sur un min-
imum d’un critère de regroupement. Il permet également de stabiliser les résultats de
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regroupement. La sélection de la meilleure solution pour les initialisations aléatoires a
été montré pour être efficace [Biernacki et al., 2003].

Notre proposition sur l’utilisation du critère MDL pour déterminer le nombre de
groupes se fonde sur plusieurs arguments. Tout d’abord, MDL est en mesure de donner
le meilleur modèle de données [Mackay, 2002], e.g., pour le modèle de mélange Gaussien
(GMM). Deuxièmement, ce critère fonctionne bien lorsque beaucoup de données sont
disponibles [Heas & Datcu, 2005]. C’est notre cas parce que nous avons un stockage
énorme des images satellitaires. Enfin, dans la littérature nous n’avons pas trouvé de
travaux précédents sur l’application de critère MDL pour Kernel K-means afin de trou-
ver le nombre optimal des clusters. Tous ces arguments nous ont fourni la motivation de
formuler les critères MDL pour l’algorithme de K-means à noyau.

Ce Chapitre couvre les sujets suivants : un critère pour comparer les regroupements
en sachant les classes, les critères entre-cluster et inter-cluster pour les groupements
hiérarchique et partitionnelle, les critères d’information. Nous révisons la définition de
MDL pour GMM et nous montrons une simplification de MDL à travers le logarithme de
la vraisemblance de GMM complet. Ensuite, nous formulons MDL à noyau simplifié en
utilisant MDL pour GMM. Les résultats sur les données synthétiques et des images satel-
litaires sont présentés. La qualité d’un regroupement peut être mesurée via la classifica-
tion connue (e.g., via l’indice de Rand, le nombre d’échantillons correctement classifiés,
etc. [Jain & Dubes, 1988]).

Les critères de validité de regroupement. Certains critères de validité peuvent être
trouvés dans [Jain & Dubes, 1988]. Le regroupement partitionnel est la partition de données
en groupes (clusters). Un bon regroupement partitionnel est tel qu’il réduit la distance
entre les points dans le même groupe et au même temps, cela augmente les distances en-
tre les différents groupes. Une série des critères a été calculée dans [Coleman & Andrews,
1979].

Mesures d’information. Les critères donnés ci-dessus pour le regroupement parti-
tionnel sont basés sur la théorie de l’information et sont souvent très efficaces. Dans le
cadre d’un ensemble de tels critères nous présentons un ensemble de mesures appliquées
à un modèle probabiliste. En outre, nous proposons un nouveau critère sur la base d’une
simplification du modèle probabiliste de clustering.

Critère d’information bayésien. Les données sont estimées habituellement en deux étapes
de la procédure d’inférence. Dans la première étape, en supposant que les données
obéissent à un modèle, nous estimons des paramètres du modèle. Cette estimation est ef-
fectuée pour chaque modèle. Dans la deuxième étape en utilisant les paramètres, on com-
pare les modèles et sélectionne le meilleur d’entre eux. Cette procédure à deux étapes est
soutenue par le fait que plus le modèle est complexe, mieux cela correspond aux données.
Nous devons trouver un compromis entre le modèle et sa complexité. La première étape
de modélisation a été examinée dans le Chapitre précédent par l’estimation de maxi-
mum de vraisemblance du GMM. La sélection du modèle peut être fait via une approche
théorique basée sur le théorème de Bayes [Mackay, 2002]. La minimisation du critère
d’information bayésien (BIC) montre le modèle optimal. Akaike a proposé son critère
AIC qui est similaire de BIC, mais il est dérivé sur une autre base théorique. BIC propose
souvent de choisir des modèles plus simples parce qu’il a une plus grande pénalité que
AIC [Friedman et al., 2001] ; AIC a tendance à surestimer un modèle (choisir le modèle le
plus complexes) [Mclachlan & Peel, 2000].

Critère de description de longueur minimale (minimum description length, MDL) Comme
nous travaillons sur un ensemble fini et discret de données modélisées par une fonction
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de la densité, on peut considérer leur logarithme négatif. Ce logarithme est un code en-
tier. Puis, pour ces modèles le code de longueur peut être écrit [Rissanen, 1995]. Ce code
est aussi appelé la complexité stochastique d’information du modèle (SIC, stochastic in-
formation criteria). L’optimisation de ce critère conduit à la sélection du meilleur modèle
de données. La sélection du modèle peut être également démontée à l’aide du code
du modèle. Le modèle prévoit une probabilité de données appropriée. L’utilisation de
l’entropie de Shannon permet calculer la quantité d’information du modèle. La mesure
de cette information est exprimée en bits. Plus de bits sont utilisés pour représenter
l’information plus complexes. Par conséquent, le plus complexe est le modèle. Il existe
un codage universel proposé dans [Rissanen, 1984] qui a deux parties :

⋆ Partie 1. Description de longueur du modèle décrit le modèle et ses paramètres.

⋆ Partie 2. Description des données décrit la longueur des données sachant le modèle
et ses paramètres.

MDL pour le modèle de mélange des Gaussiens détermine le nombre optimal de clus-
ters. Le clustering est obtenu par EM-algorithme qui estime les paramètres de GMM. En
outre, nous écrivons critère MDL pour le regroupement ”dur” lorsque chaque échantillon
appartient à un seul groupe. Pour cela, nous développons le logarithme de la vraisem-
blance complet de GMM en introduisant une variable supplémentaire qui indique le
regroupement ”dur”. Cette considération conduit à quelques simplifications de critère
MDL. La simplification de MDL peut être développée et appliquée aux autres algo-
rithmes (e.g.: K-means à noyau). En outre, des nouveaux algorithmes hiérarchiques sont
dérivés de MDL simplifié.

Nous proposons le critère MDL à noyau via une formulation simplifiée de MDL. La
distance entre les échantillons (l’erreur) peut être calculée en l’espace d’origine, ainsi que
dans l’espace transformé en utilisant un noyau. L’un des principaux avantages de cette
formulation est que la moyenne explicite d’un groupe n’est pas nécessaire. Ce point est
important quand cette moyenne n’a pas de sens physique, comme c’est souvent le cas
pour les clusters non-convexes. Les expériences avec des données synthétiques et des
données réelles (des images satellitaires) sont démontrées dans ce Chapitre.

Un regroupement hiérarchique non supervisé basée sur KMDL est proposé dans
cette Chapitre. En outre, nous développons deux nouveaux algorithmes de regroupe-
ment hiérarchique. Le premier utilise le critère MDL et la deuxième KMDL. Nous for-
mulons un algorithme de clustering hiérarchique qui optimise GMDL. Notre proposi-
tion est similaire à celui présentée dans [Heas & Datcu, 2005] mais se distingue par le
critère. Dans [Heas & Datcu, 2005] les auteurs proposent un algorithme hiérarchique qui
optimise MDL par la combinaison de deux groupes à chaque étape (un niveau de la
hiérarchie). L’idée de cette approche est de regrouper les données en grand nombre de
”petits groupes” et ensuite optimiser hiérarchiquement le critère MDL pour trouver le
nombre optimal de clusters de données. Au lieu de calculer MDL pour chaque nombre
de clusters ils considèrent une hiérarchie de modèles et analysent MDL. Nous utilisons
la même approche, mais pour le critère proposé GMDL.

Le choix d’une représentation optimale des données à chaque niveau de la modèle
hiérarchique est décrit par le critère GMDL. Au lieu de calculer directement ce critère à
chaque niveau de la hiérarchie et rechercher sa valeur optimale, il est préférable d’examiner
son gradient. La valeur minimale du gradient montre le meilleur GMDL, ainsi que la di-
rection où cet optimum peut être trouvé. En outre, le gradient réduit le temps de calcul
et le volume de données traitées.
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Dans ce Chapitre, le problème de sélection de modèle a été pris en considération.
Différents critères ont été indiquées pour les algorithmes de regroupement hiérarchique,
partitionnel et probabilistes. Pour le regroupement hiérarchique un critère basé sur la ma-
trice cophenetic a été présenté, alors que pour le regroupement partitionnel les critères
intra- et inter- ont été discutés. Pour les modèles probabilistes comme le modèle de
mélange des gaussien les critères théoriques AIC, BIC, MDL et SIC ont été révisés. La
similitude entre ces critères a été démontrée. Le regroupement des données a été examiné
par GMM avec l’estimation de ses paramètres par l’algorithme EM. La simplification de
MDL pour le regroupement ”dur” et GMM a été proposée. Le critère MDL simplifié peut
être appliqué par K-means algorithme ainsi que par sa modification comme K-means
à noyau ou K-means spectrale. L’avantage de K-means à noyau, c’est qu’il permet de
séparer les groupes qui ne sont pas séparables linéairement.

L’algorithme hiérarchique basé sur MDL simplifié a été proposé dans ce Chapitre. Ce
regroupement hiérarchique est non-supervisé et permet de déterminer le nombre optimal
de clusters. Cet algorithme a été élargi afin de formuler le regroupement hiérarchique
basé sur MDL à noyau. L’avantage de cet algorithme est qu’il est en mesure de trouver
le nombre optimal de clusters et de séparer des groupes qui ne sont pas linéairement
séparables.

Combinaison de regroupements (clusterings)

Une étude sur les dernières méthodes de combinaison de clustering est présentée dans
ce Chapitre. Elle couvre un large éventail d’approches : de bien formulée avec des bases
théoriques à des approches empiriques. La combinaison de clusterings est considérée
dans cette thèse comme une tâche non supervisée car nous visons à éviter l’interaction
avec l’utilisateur, soit parce qu’il peut prendre beaucoup de temps pour un utilisateur
d’analyser les clusterings, soit parce qu’il est très difficile de les interpréter. Nous pro-
posons de combiner les clusterings en utilisant les algorithmes de regroupement (clus-
tering). Nous verrons que chaque approche a ses avantages et ses inconvénients. Les
inconvénients nous motivent à poser le problème de la combinaison d’une manière nou-
velle afin de les éviter. Après la formulation du problème, nous proposons deux méthodes
non-supervisées et deux algorithmes pour combiner les différentes clusterings. La première
méthode, malgré son efficacité, n’a pas de preuve claire sur la convergence à la solution
unique et globale. Concernant la deuxième méthode, le même problème est reformulé,
qui mène la solution globale. En outre, un algorithme est proposé pour trouver cette so-
lution. Une preuve de la convergence de cet algorithme à la solution unique et globale
est dérivée. Les avantages des méthodes proposées sont examinés. Les résultats sur les
données synthétiques et réelles sont fournis à la fin de ce Chapitre.

Nous introduisons le problème de la combinaison du regroupement avec l’application
à l’analyse d’images satellitaires. Dans les dernières années, de nombreux capteurs différents
d’imagerie de télédétection ont fourni un énorme quantité d’images numériques. L’une
des approches d’analyse automatique d’images par des concepts est le regroupement.
Dans ce cas, les concepts sont les clusters. Il y a une variété d’algorithmes de regroupe-
ment. Chacun d’entre eux a ses avantages et ses inconvénients. Certains algorithmes
sont robustes et regroupent est correcte même en cas de fort bruit, mais ils peuvent ne
pas être sensibles aux données avec une structure complexe. Au contraire, d’autres algo-
rithmes sont en mesure de trouver les vrais groupes dans les données avec des structures
complexes, mais l’influence du bruit sur les résultats de groupement est très forte. La
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question est comment choisir ou combiner les algorithmes de clustering. C’est une pra-
tique courante lorsque plusieurs regroupements sont effectués en parallèle, soit parce
qu’il y a différents algorithmes, soit parce qu’on change différents paramètres du même
algorithme. Différents clusterings fournissent des résultats complémentaires desquelles
nous voudrons bénéficier [Fred & Jain, 2005; Strehl & Ghosh, 2002; Topchy et al., 2004a;
Ayad & Kamel, 2005; Boulis & Ostendorf, 2004; Li et al., 2004; Y. Qian, 2000]. La prin-
cipale difficulté est de déterminer un critère judicieux pour combiner les clusterings
élémentaires afin d’obtenir une solution finale du regroupement. Un autre problème
est comment appliquer efficacement la méthode choisie dans le cas de très grandes bases
de données. La contribution de ce Chapitre est d’aborder ces deux problèmes.

Différentes méthodes peuvent être utilisées pour fusionner l’information provenant
des différents regroupements [Diday, 1979; Michaud & Marcotorchino, 1979; Kuncheva,
2004; Marcotorchino & Michaud, 1982; Fred & Jain, 2005; Strehl & Ghosh, 2002; Topchy et al.,
2004a]. Nous considérons deux approches dans ce Chapitre :

1. combinaison probabiliste,

2. combinaison algébrique.

L’approche probabiliste considère les clusterings comme les données nominales et la
combinaison est réalisée par le regroupement non supervisé. L’approche algébrique
utilise une matrice de la représentation de clusterings. Les méthodes algébriques sont
basées sur la propriété de deux échantillons d’appartenir ou non au même groupe, selon
le type de regroupement. Une étude de ces méthodes est donnée dans ce Chapitre. Nous
utilisons un critère de combinaison pour l’approche algébrique avec les développements
mathématiques. Nous décrivons un algorithme de la combinaison et nous proposons de
l’améliorer afin de traiter des données réelles de manière efficace. Le critère de combinai-
son proposé permet de trouver le optimum globale de la combinaison par un algorithme
itératif ”mean shift”. Les résultats de combinaison sur les données synthétiques et les
données réelles sont présentés et discutés. Enfin, l’estimation de la stabilité de regroupe-
ment est discutée.

Beaucoup de méthodes ont besoin d’information a priori sur les données afin de com-
biner les clusterings ou régler manuellement les paramètres de la combinaison. Cela nous
motive à poser le problème dans une forme qui ne dépend d’aucun paramètre et connais-
sances préalables.

Tout d’abord, nous proposons de considérer l’ensemble des clusterings comme le
clustering des données nominales. Plusieurs algorithmes peuvent être appliquées : de
K-means à EM-algorithme avec un mélange des modèles multinomiaux. La combinaison
optimale de ces algorithmes peut être choisi par le critère MDL. Deuxièmement, nous
formulons la combinaison en utilisant la matrice de co-association. Elle permet de traiter
de gros volumes de données ainsi qu’un grand nombre de classes sans utiliser la ma-
trice de co-association explicitement. Nous proposons une fonction objective et deux
algorithmes pour combiner différentes clusterings. Le premier algorithme utilise une
approche hiérarchique non supervisée et montre des performances compétitives par rap-
port à ceux qui existent déjà. Il combine les clusterings qui ont un grand volume de
données. Malheureusement, il n’existe pas de preuve qu’il réalise toujours un optimum
global. Le second algorithme de combinaison est rapide et itératif dont nous prouvons la
convergence vers le optimum globale. Il surpasse expérimentalement les combinaisons
issues des approches proposées dans la littérature.
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Le clustering des données nominales. La combinaison peut être considérée comme le
clustering nominale (ou catégoriel) des données, ou les étiquettes des clusterings sont
les données nominales. Les algorithmes de regroupement peuvent être appliqué afin
de trouver une solution de la combinaison de clustering, e.g., par le regroupement ”dur”
(K-means [Diday, 1979]) ou par la modélisation probabiliste avec algorithme EM [Bishop,
2006; Mclachlan & Peel, 2000; Hardle et al., 2003]. Dans ce Chapitre les algorithmes comme
K-means, spectral K-means et K-means à noyau ont été pris en considération. Les algo-
rithmes groupent les données continues pour lesquelles la distance Euclidienne ou une
autre distance (e.g., à noyau) sont déterminées
[Shawe-Taylor & Cristianini, 2004]. Les données nominales doivent être transformées en
un ensemble de données binaires afin d’appliquer les distances et les algorithmes de
regroupement comme pour les données continus [Diday, 1979; Mclachlan & Peel, 2000;
Bishop, 2006]. D’autre part, l’approche probabiliste avec l’algorithme EM peut être ap-
pliquée directement aux données nominatives (mais pour des raisons de commodité,
nous avons transformé les données afin de montrer clairement les calculs des proba-
bilités).

Regroupement par la partition (partitional clustering) Les algorithmes de regroupe-
ment par la partition tels que K-means peuvent être choisis afin de regrouper des données
nominales, e.g., des étiquettes ou des noms. Dans notre cas, les données sont les groupes
d’étiquettes nominatives. Comme les clusterings peuvent être présentés par de matrices
binaires, on peut appliquer les algorithmes de regroupement des données binaires. Une
telle approche peut être trouvée dans [Govaert & Nadif, 2007], où K-means et l’algorithme
EM avec un modèle de mélange multinomiaux sont comparés. Ce travail n’est pas con-
sidéré pour la combinaison de clusterings, mais il a de nombreux points communs avec ce
problème. La comparaison des K-means et EM-algorithme est donnée dans le Chapitre
prochain. Dans ce Chapitre, nous montrons comment une approche probabiliste peut
être appliquée afin de combiner des différents clusterings. Les modèles probabilistes et
l’estimation de ses paramètres par l’algorithme EM seront aussi effectués.

Distribution binomiale. La combinaison de clusterings peut être considérée comme le
regroupement de données nominatives via la modélisation probabiliste. Dans ce Chapitre,
nous proposons une étude du modèle probabiliste de Bernoulli qui donne un passage au
modèle multinomial qui est plus générale. Cette modélisation est basée sur un mélange
de distributions de Bernoulli avec l’estimation les paramètres du mélange. Chaque mélange
correspond à un ensemble de données nominales. Nous donnons le modèle de mélange
de distributions de Bernoulli et l’algorithme EM qui est utilisé pour estimer des paramètres
du mélange. L’approche probabiliste comprend :

1. représenter de clusterings par une matrice binaire,

2. modéliser des données binaires via le modèle de mélange de Bernoulli,

3. appliquer l’algorithme EM afin de trouver des groupes des clusterings,

4. sélectionner le meilleur modèle en utilisant des mesures d’information.

Il est bien connu que l’algorithme EM produit le résultat optimal et local. En outre, la
classification de cet algorithme dépend de l’initialisation. Pour éviter ces problèmes,
la solution suivante peut être proposées : sélectionner la meilleure classification via le
modèle de mélange et le critère MDL pour différentes initialisations et le nombre des
composants du mélange (le nombre de clusters).
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Modèle de mélange multinomial. La distribution de Bernoulli pour les données binaires
suppose que les variables binaires (clusterings) sont indépendants, mais pas mutuelle-
ment exclusives. Pour ce dernier cas, les données binaires ainsi que les matrices con-
caténées doivent être modélisées par la distribution multinomiale. Les groupes (les clus-
ters) de clusterings peuvent être trouvés par l’algorithme EM via la modélisation proba-
biliste. Nous considérons un modèle de mélange des distributions multinomiales. Sans
perte de généralité, nous considérons que la classification obtenue (non-supervisée) est
une combinaison de clusterings et les classes trouvées représentent des groupes de clus-
terings. Nous devrions faire une différence entre les distributions binomiales et multino-
miales. Les modèles multinomiaux généralisent la distribution binomiale. Toutefois, les
deux modèles peuvent être appliqués aux données nominales et très souvent donnent les
mêmes résultats. Là encore, les mêmes problèmes se posent lorsque EM-algorithme est
utilisé : les résultats optimaux locales, la dépendance de l’initialisation, la sélection du
meilleur modèle et l’estimation du nombre de composants du mélange. Ces problèmes
peuvent être résolus via l’estimation du modèle par le critère MDL.

Combinaison par la matrice de co-association. Dans cette section, nous proposons
d’étudier les solutions de combinaison de clustering en utilisant la matrice de co-association.
Nous présentons également de nouvelles méthodes pour la combinaison afin d’éviter les
inconvénients des approches existantes. L’idée de la combinaison proposée est de re-
grouper les échantillons qui sont dans le même cluster dans la plupart des clusterings.
Tout d’abord, nous montrons une fonction objective pour combiner différentes cluster-
ings. Ensuite, nous développons un algorithme hiérarchique pour optimiser la fonc-
tion objective. Un tel algorithme est compétitif par rapport aux autres algorithmes de
combinaison, mais en dépit de ses très bons résultats, il ne garantit pas la convergence
vers la solution globale. Après une analyse de la fonction objective, nous proposons une
méthode améliorée qui donne la solution globale. De plus, nous décrirons les conditions
d’une telle convergence.

Il est intéressant de noter que tel regroupement peut être exprimé en termes de réduction
de l’erreur quadratique entre les échantillons présentés par des étiquettes de clusterings.
Nous prouvons dans ce Chapitre que la solution globale de l’erreur quadratique min-
imale peut être trouvée en utilisant le gradient de l’estimation d’une fonction de den-
sité. Tous les modes locale de la densité forment des groupes d’échantillons et, par
conséquent, constituent la solution globale de l’ensemble. L’un des avantages d’une telle
méthode est que l’algorithme a une convergence rapide et une complexité linéaire. C’est
un avantage important quand une grande quantité de des données doivent être traitées
comme dans le cas du traitement d’image satellitaire. La combinaison de clusterings est
effectuée sur les données synthétiques et réelles. L’efficacité de la méthode proposée et
sa supériorité par rapport aux autres approches sont démontrées. Les limites de l’erreur
quadratiqueE de combinaison sont montrés. Ils ont la relation avec la décomposition des
valeurs et des vecteurs propres de la matrice de co-association. Mais, pour le problème
à part, comme pour le cas précédent, la solution par les vecteurs propres ne permet pas
d’assurer l’association a des valeurs positives. Une autre solution peut être envisagée
via la décomposition de Cholesky de la matrice de co-association. Le résultat de telle
transformation est très dépendant des permutations des lignes et des colonnes de la ma-
trice. Une troisième approche peut être vue par la programmation quadratique. Mal-
heureusement, pour des applications réelles, e.g., la classification d’images, la complexité
devient cruciale : il est très difficile de travailler avec une matrice carrée. Ce problème a
une formulation non-convexe et quadratique qui est très difficile à résoudre. Toutefois,
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il existe des méthodes d’optimisation quadratique visant à trouver un minimum local
[Floudas & Visweswaran, 1994].

La solution proposée.
Afin de combiner les clusterings et de trouver une solution consensuelle qui minimise

l’erreur quadratique nous proposons utiliser l’algorithme single-link [Jain & Dubes, 1988].
Cet algorithme a été expérimentalement démontré de produire très bons résultats. Le
nombre optimal de groupes est observé lorsque l’erreur quadratique est minimale. L’un
des moyens les plus simples pour aller vers un minimum est une méthode de gradient,
qui part d’une bonne initialisation et de façon itérative minimise l’erreur du consensus.
Le gradient de l’erreur réduit le temps de calcul ainsi que le volume stocké des données
traitées. Nous avons présenté la fonction objective et l’algorithme hiérarchique qui trouve
le meilleur consensus des clusterings. Malheureusement, il n’existe pas de preuve que ce
algorithme hiérarchique peut atteindre un optimum de la fonction objective. Pour sur-
monter cette limitation, nous reformulons le processus d’optimisation ainsi que les con-
ditions d’optimalité et nous proposons un algorithme exact pour trouver le minimum de
l’erreur. Les exemples de la combinaison sont démontrés.

Combinaison par un algorithme mean shift. Nous proposons de trouver un consensus de
clusterings qui, comme précédemment, minimise l’erreur quadratique. Nous prouvons
dans ce Chapitre que cette minimisation est équivalente à la réduction de l’erreur quadra-
tique entre les échantillons de clusterings. Une approche non paramétrique pour trouver
une solution est l’objectif presque de toutes les tâches de traitement de l’information. La
base d’une telle approche en ce qui concerne la reconnaissance des formes est l’estimation
non paramétrique de la densité par son gradient [Fukunaga, 1990; Comaniciu & Meer,
2002], ce que l’on appelle l’estimation de la densité par l’algorithme de mean shift. Nous
montrons également les propriétés de cet algorithme qui garantissent leur convergence
rapide en nombre fini d’itérations.

Théorème. Le noyau d’Epanechnikov est le meilleur noyau pour trouver le minimum global
d’erreur E par l’algorithme mean shift. Un radius adaptatif et optimal est calculé pour la
combinaison par mean shift. Les aspects pratiques de mean shift sont aussi discutés :

⋆ accélération de mean shift par les initialisations appropriées,

⋆ attribution des échantillons aux clusters,

⋆ calcul d’erreur E,

⋆ fusion des vecteurs mean shift.

Dans ce Chapitre nous présentons une comparaison de différentes méthodes qui est
réalisée sur les données synthétiques et réelles. Nous effectuons des expériences de com-
binaison sur les données réelles de ”UCI machine learning repository”. En outre, nous
comparons les résultats avec les travaux de [Fred & Jain, 2005], où le critère NMI nor-
malisé est étudié. Le but de ces expériences est de montrer que la combinaison obtenue
par les algorithmes proposés est compétitive et même mieux que par l’approche pro-
posée dans [Jain & Dubes, 1988]. La combinaison peut être utilisée pour de nombreuses
applications de fouille de données : le regroupement des données nominales (e.g., des
documents textuelles), la combinaison des différentes clusterings ou des segmentations
de la même scène, (e.g., en regroupant des différents clusterings de séries temporelle
d’images), le regroupement de la vidéo, la détection de mouvement, etc. On peut également
stabiliser les résultats de clustering par une mesures de la stabilité.
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Dans ce Chapitre, le problème de combinaison de clustering a été pris en considération.
L’étude sur les travaux précédents a été faite. Plusieurs algorithmes récents de combinai-
son ont besoin d’un réglage des paramètres. Combinaison de clustering a été présenté par
le regroupement des clusterings. La simple combinaison a été obtenue par K-means algo-
rithme appliqué à la représentation binaire des clusterings. L’équivalence des différentes
mesures a été illustrée.

La combinaison plus complexe basée sur l’approche probabiliste a été également prise
en considération. Dans ce cas, les clusterings sont considérés comme des données nom-
inales et sont modélisés soit par les mélanges de Bernoullis, soit par les modèles multi-
nomiaux. L’estimation des paramètres du modèle a été faite par l’algorithme EM. Le
meilleur modèle probabiliste peut être choisi par le critère MDL. Il a été noté que les
mélanges probabiliste souffrent d’initialisations aléatoires de paramètres ce qui donne
les résultats de combinaison différents.

Les inconvénients des méthodes analysées nous ont motivés de poser le problème
de combinaison comme une tâche non supervisée. La solution pour la combinaison est
basée sur la matrice de co-association. La distance quadratique entre le consensus et les
clusterings a été utilisée. Deux algorithmes pour optimiser ce critère ont été proposés. Le
premier est un algorithme hiérarchique et le second est un itératif. Malgré la bonne per-
formance d’algorithme hiérarchique il n’existe pas de preuve qu’il peut atteindre la solu-
tion globale. Au contraire, il a été prouvé (Théorème 1) que l’algorithme itératif de mean
shift trouve la solution optimale de la combinaison. Les aspects pratiques d’application
de combinaison ont été examinés.

Enfin, quelques mesures pour estimer la stabilité de clustering ont été proposées. Ils
indiquent la stabilité des échantillons, des clusters et des clusterings.

Combinaison des clusterings et l’analyse d’images

Dans ce Chapitre, nous démontrons quelques exemples d’application de combinaison.
Au début, nous donnons une courte liste des applications avec des brèves explications.
Puis nous comparons les performances des algorithmes de combinaison afin de démontrer
l’efficacité de méthodes proposées. Différents critères d’évaluation de combinaison sont
donnés : supervisé et non-supervisés. Le critère supervisé n’est utilisé que pour comparer
les résultats de la combinaison à la classification connue. Les critères non-supervisé sont
les critères utilisés pour évaluer la combinaison optimale sans la connaissance préalable
de la classification. Les résultats de la comparaison sont discutés. Les applications possi-
bles sont démontrées sur des images.

Nous donnons maintenant une liste des applications de combinaison proposées dans
ce Chapitre :

1. Comparaison des méthodes de combinaison. Les performances des différents algo-
rithmes de combinaison et leurs fonctions objectives sont comparées.

2. Combinaison par le regroupement. Un schéma de la combinaison par le regroupe-
ment est donné.

3. Combinaison de segmentations d’images satellitaires . Un exemple de combinaison
de segmentations d’images est présenté.

4. Combinaison d’images avec des artefacts. Tout d’abord, nous montrons un exemple
synthétique pour supprimer des artefacts, puis des images satellitaires segmentées
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avec des nuages sont utilisées.

5. Détermination du nombre optimal de clusters dans les séries d’images.

6. Combinaison pour la reconstruction d’images (image deblurring). Une brève dis-
cussion sur la reconstruction d’images est donnée.

7. Regroupement des données nominales. La combinaison est considérée comme le
regroupement de données nominales.

8. Combinaison pour la sélection des caractéristiques. Une méthode non supervisée
de sélection des caractéristiques est présentée.

Nous donnons un bref résumé des expériences sur la combinaison des données.
Différents algorithmes de combinaison ont été comparés dans ce Chapitre. Nous avons
vu que l’erreur quadratique E et le critère MDL montrent le nombre optimal de groupes
contrairement au critère NMI [Fred & Jain, 2005] qui ne parvient pas dans certains cas. En
outre, il faut noter que l’application directe d’algorithme single-link peut prendre beau-
coup de temps et de mémoire pour les grands nombres de données en raison de la com-
plexité quadratique. Au contraire, K-means ou algorithme EM ont le temps, la mémoire
et la complexité linéaires et peuvent être appliqués pour tester rapidement les combi-
naisons. Mais ils souffrent des initialisations dans le cas d’un grand nombre de groupes.
Au contraire, la combinaison effectuée par le mean shift pour tous les cas synthétiques
fournit la combinaison exacte.

Dans ce Chapitre différents exemples de combinaison de clustering ont été pris en
considération. La comparaison des différents algorithmes de combinaison est effectuée.
Nous concluons que la fonction objective et l’algorithme MSC prouvent pratiquement
leur supériorité par rapport aux autres fonctions objectives et des algorithmes de combi-
naison. L’efficacité de la combinaison est montrée via :

1. les erreurs de classification et de clustering,

2. la stabilité des solutions,

3. le temps de calculs.

Les applications suivantes pour l’analyse des images ont été prises en considération
: la combinaison de différents segmentations, l’estimation des paramètres et la détection
d’objets. Pour l’analyse des données en général, la combinaison permet de combiner des
données nominales, estimer et de trouver des modèles stables, analyser et caractériser la
stabilité des clusters et clusterings. Une application importante de combinaison consiste
à la sélection non supervisée des caractéristiques et montre des bons résultats D’autres
expériences sont données dans le Chapitre suivant où la fouille de données est appliquée
aux images multimédia et aux images satellitaires.

La sémantique d’images

Dans ce Chapitre, nous abordons un problème de la construction de la sémantique pour
des images. La sémantique peut être considérée comme un ensemble de concepts et de
relations entre eux [Suykens & Horvath, 2002]. Cette représentation permet de montrer
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une variété de connaissances sur les images (concepts-relations) dans une forme com-
pacte. En outre, la sémantique peut être utilisée pour la gestion des images (classifica-
tions, clustering, requête, etc.)

Deux types d’images sont pris en considération pour les expériences dans ce Chapitre
: (i) les images multimédia et (ii) les images satellitaires. Nous commençons à construire
la sémantique pour les images multimédia. Cette expérience a été réalisée partiellement
supervisée (pour obtenir différentes classifications) et partiellement non supervisée (en
combinant les classifications). L’objectif de cette expérience est de vérifier l’approche
proposée pour la construction de la sémantique. Les images multimédia ont été utilisées
en raison de leur interprétation facile par les utilisateurs.

L’une des premières études sur la construction de la sémantique est détaillé dans
[Gotlieb & Kumar, 1968]. Les auteurs proposent d’analyser le vocabulaire indexé, où
chaque indice exprime une collection de mots ou de phrases. Récemment, la construc-
tion de la sémantique d’images est devenue très connue [Kuhn et al., 2007; Carneiro et al.,
March 2007]. Dans [Kuhn et al., 2007], un regroupement sémantique est proposé, basé
sur l’indexation sémantique latente avec le regroupement des éléments textuels qui parta-
gent le même vocabulaire. Les clusters représentent des sujets sémantiques avec des liens
entre eux et il sont visualisés sur un graphe 2D. Une étude de haut niveau du contenu
sémantique basée sur la recherche d’images est donnée dans [Liu et al., 2007].

La sémantique de données textuelles est similaire à la construction de la sémantique
pour les images, mais pour les images :

1. il n’y a pas de vocabulaire (index) d’images,

2. il n’y a pas de connaissances a priori comment les indices sont lié et comment ils se
regroupent pour former des concepts,

3. il n’existe aucun rapport sémantique entre les concepts.

En dépit du manque d’information, nous avons deux hypothèses : (i) les images peu-
vent être interprétées et (ii) les images représentent l’information utile. En effet, nous
sommes capables de détecter dans les images multimédia des objets, des types de tex-
tures, des couleurs et donc de classer les images en différents groupes. En outre, il est
possible de décrire les images par les mots. Toutes ces hypothèses permettent d’applique
les méthodes non supervisées de traitement d’images pour extraire de termes d’images
(index), de concepts d’images et de relations entre les concepts. La représentation de
résultats de clustering est discutée dans ce Chapitre.

Visualisation de clusterings. L’un des objectifs de l’analyse des données non-supervisé
est la détection des formes. Lorsque nous avons un grand volume de données, on peut
avoir, probablement, de nombreux groupes (des dizaines ou centaines). La navigation
dans les résultats devient une tâche plutôt difficile. Pour cela, nous devons extraire
d’information provenant du regroupement obtenu, e.g., estimer de paramètres de groupes,
de relations entre eux, de degrés de connexions, etc. Différentes distances peuvent être
considérées comme les relations entre les groupes (clusters), e.g., la distance Euclidienne.
Pour la visualisation, les clusters peuvent être considérés comme des concepts et, pour la
simplicité, représentés comme des noeuds, tandis que les relations entre eux peuvent être
considérées comme des arêtes qui relient les noeuds. Deux représentations sont possibles
: les arbres et les graphes. Un arbre est un graphe sans boucles, non orienté avec un seul
noeud en haut et les feuilles à la base. Un arbre peut généraliser les clusters dans un con-
cept. Cette représentation est très utile afin d’analyser comment chaque groupe (noeud)



24 RÉSUMÉ DES TRAVAUX

est liée à d’autres groupes (noeuds) et de mesurer le degré de cette relation. Les arbres et
les graphes peuvent être extraites à partir de la matrice des distances ou des similitudes.
Un exemple de représentations de regroupement ainsi que l’analyse est donnés dans ce
Chapitre.

Extraction de relations entre les concepts. Dans ce Chapitre nous introduisons les re-
lations entre les concepts représentés par des arbres et des graphes. Nous concentrons
notre attention sur les cas où les données sont regroupées par les algorithmes de classifi-
cation non supervisée. Les clusterings peuvent être combinées pour obtenir un clustering
de consensus. Les relations entre les clusters obtenus de la matrice de co-association sont
exploitées dans ce Chapitre. L’algorithme de mean shift estime la combinaison optimale
des clusterings. Dans la littérature la relation est exploitée par l’algorithme de single-link
[Fred & Jain, 2005] qui sélectionne deux groupes voisins (les plus proches).

Pour construire le graphe de relations, un produit de vecteurs entre les moyens de
clusters de consensus est calculé sur la matrice de co-association. L’importance des rela-
tions entre les clusters est affichée par l’épaisseur de l’arête : la relation la plus importante
a l’arête la plus épaisse.

La sémantique d’images multimédia. Dans cette Chapitre la sémantique d’images
multimédia est prise en compte. Les exemples d’analyse sont également donnés. L’idée
derrière cette expérience est de demander à plusieurs observateurs de classifier un en-
semble fini d’images, ensuite, d’exploiter l’ensemble des classifications sémantiques et
de tirer des concepts d’images. Cette expérience, en cas de succès, soutiendra l’idée que
la sémantique peut être émergé d’un consensus de regroupement. Pour le test 45 images
multimédia contenant une variété de sujets ont été sélectionnés. Chaque utilisateur est
invité à classer 45 images en fonction de son propre ”meilleur critère”. Chaque utilisa-
teur peut choisir le plus grand nombre de clusters (ou le plus petit !) et classes les images
comme il (elle) veut. En outre, l’utilisateur est invité à donner un nom à chaque classe,
et à la fin d’annoter avec un vocabulaire libre chaque classe. L’intérêt de cette expérience
est d’avoir des classifications indépendantes de différents utilisateurs ou chaque classifi-
cation est pertinente et ”bonne” comme les autres.

L’objectif de cette expérience est de trouver une classification consensuelle parmi les
50 différentes, fournies par les utilisateurs. Les classifications reflètent les points de vue
indépendants et dans le même temps, ils ont une information commune. La combinaison
reflète les groupes des classes données par les utilisateurs.

Dans la deuxième partie, nous explorons les classifications des images multimédia,
mais au lieu de combiner les étiquettes des classifications nous analysons les descrip-
tions textuelles associés aux classifications. Rappelons que chaque utilisateur, après avoir
classé les images avec son propre nombre de classes et ses propres classes, il a été de-
mandé de décrire la description de chaque classe avec un ensemble de mots.

L’objectif de cette expérience est d’analyser et de combiner des descriptions obtenues
de différents utilisateurs. Comme auparavant, le résultat de la combinaison fournit la
sémantique d’images. En outre, nous comparons la combinaison de classifications et la
combinaison des descriptions.

Une expérience sur une combinaison de classifications visuelles et les mots des de-
scriptions d’images a été présentée dans ce Chapitre. Elle ouvre de nouvelles directions
dans l’analyse des données. Elle montre également que la tâche de la fouille de données
peut être résolus par des approches différentes et illustre la concordance des résultats
d’extraction de données. La partie intéressante de l’expérience est que l’analyse des
descriptions a été faite entièrement non supervisée. Nous n’avons pas l’information a
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priori sur le nombre de clusters et le nombre d’images qui sont distribués dans les clus-
ters. L’information visuelle et textuelle reflète la même représentation sémantique ou
en d’autres termes le même sens. La sémantique confirme également la pertinence de
l’analyse non-supervisé.

Les clusters ont été considérés comme des concepts. La représentation sémantique
des données est en mesure d’indiquer les connexions entre les concepts. En outre, elle
peut être exploitée plus précis pour la recherche ou la fouille de bases de données. Enfin,
l’utilisateur peut construire sa propre sémantique des classes par l’analyse des connex-
ions entre les clusters, par les graphes ou par les arbres. Nous devons noter que ce type
d’expérience n’est pas limité aux images et peut être appliqués aux différents types de
données.

La sémantique d’images satellitaires

Dans cette partie, nous proposons d’aller plus loin dans la fouille de données non
supervisée et l’appliquer sur le grand ensemble d’images satellitaires, afin de sortir la
sémantique.

Pour cette expérience, la participation d’utilisateurs n’est pas impliquée et toutes les
opérations sont entièrement non supervisées. Nous donnons maintenant les étapes es-
sentielles de l’expérience réalisée :

1. Extraction des caractéristiques d’images satellitaires .

2. Sélection non supervisée des caractéristiques.

3. Clustering de données par différents algorithmes non-supervisés.

4. Estimation non supervisée du nombre de clusters pour chaque algorithme.

5. Combinaison non supervisée de différents clusterings.

6. Construction non supervisée de la sémantique d’images satellitaires via la combi-
naison de regroupement (clustering).

Nous proposons d’analyser les images satellitaires SPOT5 de différents villes. Les im-
ages ont une variété de surfaces qui ont été séparées par le regroupement non-supervisé
: ville, terrain, mer, etc. Les images ayant le contenu très complexe sont également prises
en compte. Ce contenu est représenté par les zones urbaines qui sont difficiles à dis-
tinguer par la sémantique.

Dans ce Chapitre, la notion de la sémantique d’images, ses principes, sa construc-
tion et l’analyse ont été présentées. Les exemples de la sémantique sont montrés sur
les images multimédia et les images satellitaires. Nous avons démontré comment tirer
la sémantique d’images dans le mode non-supervisé et nous l’avons justifiée par une
connaissance préalable. Pour les images multimédia à la fois la perception visuelle et la
description textuelle ont montré la sémantique pertinente. La sémantique d’images satel-
litaires a été approuvée par l’interprétation visuelle. La visualisation de combinaison a
été faite via les arbres et les graphes des structures.

Dans la première expérience, nous avons construit la sémantique des images mul-
timédia. Dans la deuxième expérience, nous avons présenté les résultats de la combi-
naison de clusterings des villes. La troisième expérience a été réalisée entièrement non
supervisée sur des images satellitaires. La combinaison de différents clusterings a été
utilisée afin d’inférer la sémantique d’images satellitaires qui a été représentée par les
arbres et les graphes. La perception visuelle du regroupement correspond à la structure
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sémantique et justifier la pertinence de l’approche proposée.

Conclusion

Dans cette thèse une approche non-supervisé de fouille de données appliquée aux im-
ages satellitaires optiques à haute résolution a été proposée. L’idée générale de la fouille
de données comprend l’extraction d’information à partir d’images, la modélisation par
les algorithmes de regroupement (clustering), la combinaison de différentes clusterings et
la représentation des clusterings par une structure sémantique. Un prototype du logiciel
avec l’interface graphique pour la fouille d’images satellitaires a été développé.

Résumé La fouille de données non supervisée développée dans cette thèse a été évaluée
sur des images satellitaires. Toutefois, l’idée générale de cette approche peut être facile-
ment appliquée aux autres types de données. L’accent de la thèse a été mis sur les
méthodes non supervisées en raison de la taille des bases de données qui nécessitent
d’être fouillées sans l’interaction humaine afin d’obtenir la modélisation objective.

Nous proposons d’appliquer différents algorithmes pour la modélisation des données,
puis de combiner leurs résultats, au contraire de nombreux ouvrages similaires qui ap-
pliquent un algorithme unique pour fouiller des données. Certains algorithmes de re-
groupement sont algébriques, d’autres sont probabilistes.

Nous résumons maintenant les nouvelles idées présentées dans cette thèse :

⋆ Extraction de caractéristiques géométriques d’images satellitaires.
Les caractéristiques sont basées sur les statistiques des bords détectés dans les im-
ages. En outre, un ensemble des caractéristiques de texture sont extraites à partir
d’images : les descripteurs d’Haralick, les coefficients de Gabor et les caractéristiques
QMF.

⋆ Le problème de la malédiction de la dimension oblige à sélectionner
les caractéristiques pertinents. Une nouvelle méthode non-supervisée de la sélection
des caractéristiques qui est basée sur leur regroupement a été proposée. Cette ap-
proche découle de la combinaison des différentes clusterings de l’espace des car-
actéristiques.

⋆ Le critère de la Longueur de Description Minimale (minimum description length,
MDL) estime les meilleurs regroupements et le nombre optimal de clusters.

⋆ Les nouveaux algorithmes hiérarchiques ont été dérivés à partir du critère simplifié
MDL, adapté pour le K-means à noyau. Les algorithmes sont basés sur l’optimisation
du gradient du critère MDL.

⋆ Une nouvelle méthode non-supervisée de combinaison de clusterings est prouvée
d’atteindre la solution globale. Elle est basée sur l’estimation de la densité par
l’algorithme ”mean shift”.

⋆ Tous les clusterings sont présentés par un arbre ou un graphe. Cette représentation
permet à l’utilisateur de visualiser des résultats de regroupement et d’apprendre
les structures de données.
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Les expériences ont été menées sur différents types de données comme les images
multimédia ou les images satellitaires. Expérimentalement, nous avons montré que les
arbres et les graphes reflètent la sémantique des données.

Les perspectives Plusieurs sujets de recherche peuvent être issue de la thèse. L’un des
principaux inconvénients et, par conséquent, le sujet de recherche concerne l’extraction
de caractéristiques. Comme cette question n’est pas la question principale de cette thèse
elle n’a pas été complètement étudiée. Les paramètres d’algorithmes pour l’extraction de
caractéristiques ont été fixés a priori avec la connaissance des propriétés d’images satelli-
taires. Ils ne reflètent pas exactement la richesse d’information d’images. Une propo-
sition est l’estimation des paramètres optimaux pour chaque algorithme d’extraction.
Cette approche peut être réaliser via une modélisation des images et une optimisation
des paramètres en fonction de la qualité de modèle.

La taille croissante des bases de données (des images satellitaires, des images mul-
timédia, etc.) pose un problème de la complexité des algorithmes de regroupement.
Beaucoup d’algorithmes développés ont une complexité quadratique. Par conséquent, ils
ne peuvent être appliqués à de grandes quantités de données dans un délai raisonnable.
Un nouvel axe de recherche consiste à développer les algorithmes ayant la complexité de
calcul linéaire.

La troisième direction est un problème de la sélection des caractéristiques. Cette
procédure devrait également être intégrée dans l’algorithme de clustering.

Le clustering est l’étape de l’extraction de données qui représente les dernières par les
clusters et les relations entre eux Kuhn et al. [2007]; Parulekar et al. [2005]. L’analyse des
clusters et des relations est une étape vers l’interprétation des données à haut niveau. Une
étape intermédiaire entre le clustering et l’interprétation des résultats par l’utilisateur
peut être prise en considération. Cette étape est appelée la construction automatique de
la sémantique des images. Les clusters à ce niveau sont considérés comme des concepts.
L’information spatiale peut-être impliquée pour trouver des groupes de clusters qui ont
la même organisation spatiale.

La sémantique des images est un pas vers l’ontologie (une représentation formelle)
des concepts et les relations pour décrire la surface de la Terre. L’intérêt de la fouille
d’images via l’ontologie est de lier la sémantique des images et les modèles de langues
naturelles afin d’améliorer la compréhension des scènes. De nos jours, cette direction
de recherche pour l’extraction des données et le raisonnement des connaissances est très
prometteuse. L’un des projets sur ce sujet est l’éditeur différentiel et formel de l’ontologie
(Differential and Formal Ontology Editor, DAFOE) 4. En dépit du fait que l’ontologie des
images satellitaires n’ait pas encore été construite, de nombreux travaux sur ce sujet ont
été effectués : la cartographie de la surface de la Terre, la représentation formelle des
concepts, les relations entre eux, etc. Les travaux sur l’analyse de l’environnement en
utilisant un formalisme géographique et des images satellitaires sont développés dans
les projets de Corine Land Cover Bossard et al. [2000]. La formalisation des images et des
concepts par l’ontologie est considérée comme une perspective de recherche .

4http://dafoe4app.fr/

http : //dafoe4app.fr/
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Notations and Definitions

We give notations and definitions of useful terms which appear throughout the thesis.
Data - all used information about studied subject represented via numerical values (real
or nominal values), e.g., data is a satellite image with pixel intensities.
Sample - an item of data represented by a vector of values, e.g., a sample is a subimage, a
patch of the image or a pixel.
Feature - named value associated with a sample. Each value of a sample corresponds
to a feature (a variable, an attribute), e.g., a feature of a sample (sub image) is its mean
value.
Model - is representation of data, samples or features via a set of parameters (values)
and an algorithm which calculates these parameters. We differentiate the model of data,
the model of features and the model of samples:

⋆ model of data is used to represent data (e.g. raster images represented by with
pixels, intensity of each pixel, etc.) and to modify data (image filtering, enhancing,
etc.);

⋆ model of features is used to extract (calculate) features from samples;

⋆ model of samples is a model of classifier or clusterer and is used for supervised,
semi-supervised or unsupervised (clustering) classification of samples.

Class - set of samples of a predetermined group (each sample of this group has the same
class name).
Classifier - algorithm which determines to what class a sample belongs.
Classification - process and a result of a classifier on a given set of samples.
Cluster - group of samples with similar attributes (each sample is associated to the same
cluster index).
Clusterer - algorithm which discovers clusters using some distance or criteria of simi-
larity or dissimilarity among samples.
Clustering - process and a result of a clusterer on a given set of samples.
i index of samples, i = 1, ..., I .
j an index of an attribute, j = 1, ..., J .
X = {X1, ..., XI} - set of samples Xi.
Xi = {Xij , ..., Xij} sample Xi or the vector of attribute values Xij .
m an index of nominal attribute value, m = 1, ...,M .
k an index of a cluster or a class, k = 1, ...,K.
p index of clusterings, p = 1, ..., P .
P the number of clusterings.
Cp = {Cp

1 , ..., C
p
K} - set of clusters or classes Ck.
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C = Cp if p = 1 and C = {C1, ..., Ck, ..., CK}.
Bp = {bpik : bik = 1, if i ∈ Ck cluster, 0 otherwise; ∀i}.
B = [B1, ..., Bp, ..., BP ] - concatenation of matrices Bp.
Θk set of parameter values associated to a probability density function (p.d.f.).
K kernel function.
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Chapter 1

Introduction

Earth Observation (EO) is a domain of science which has found wide application during
last decades for analysing, monitoring, forecasting and managing natural resources and
human activities. From particular observations of the Earth surface, scientists and spe-
cialists of different domains become interested in observations of large areas of the Earth
and even its global surface.

Remote Sensing (RS) techniques for EO are able to realise such observations. RS is the
acquisition of geospatially linked data (images) of sensed scenes by instruments of mea-
surements at remote distance. Instruments or devices of remote sensing (e.g., cameras or
sensors) may measure different pieces of information such as various domains of the elec-
tromagnetic spectrum. Active and passive remote sensing systems exist. Active sensing
is made by radars emitting electromagnetic radiation towards the scene and measuring
the scattered wave. For Earth Observation, these systems use Synthetic Aperture Radars
(SAR) 1 and produce SAR images. Passive RS systems acquire electromagnetic radiations
emitted or reflected by the Earth. Usually, a source of passive radiation is the solar radi-
ation or the emission of infrared radiations by thermal objects. Passive RS systems form
optical images like ”Satellites Pour l’Observation de la Terre” (SPOT) 2. Observed satel-
lite images capture in details wide surfaces resulting in large volumes of data, e.g., one
SPOT5 image size of 12000× 12000 pixels covers 60× 60 km2. For more details on SPOT5
system and images see [Gleyzes et al., 2003]. Images as SPOT are very numerous, near
106 images were acquired since 1986 3. At present, they are weakly exploited due to their
large sizes and time consuming visual analysis.In the near future satellites with new sen-
sors like Pleiades which will take many more new images will be launched. This gives
a large interest and provides a demand for new theoretical methods to analyse satellite
images and to develop new information systems for exploiting these images.

This thesis studies and proposes new methods to analyse satellite images in the con-
text of satellite image mining. The objective of the thesis consists in extracting informa-
tion (features, patterns, classes) from the images, representing it in a compact form and
providing a semantic of images to the user. The main idea here defended is to carry out
different possible approaches of image mining and to combine their inferences instead
of using one single approach. Attention in this thesis is paid on unsupervised clustering
methods to mine data.

The procedure of data mining proposed in this thesis is not limited by a specific task

1http://www.dlr.de
2http://www.spotimage.fr
3http://www.cnes.fr/web/258-spot.php

http://www.dlr.de
http://www.spotimage.fr
http://www.cnes.fr/web/258-spot.php
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and may be applied as a general approach on different data types, e.g., multimedia im-
ages. A characteristic feature of the proposed mining schema consists in the possibility
of its application to very large databases that is the case of satellite image databases.

1.1 Content of optical satellite images

An example of optical satellite images is SPOT5 image of size 12000 × 12000 pixels with
a ground resolution of 5 meters per pixel and covering a surface 60× 60 km2 is presented
in Figure 1.1. The image covers such a large city like Paris with its suburb. The high
resolution of the image allows identifying many different structures like buildings, roads,
airports, railway stations, bridges, forest, agricultural fields, clouds, water, snow and
many others. As we may see from zoom parts of this image there are a lot of interesting

Figure 1.1: An example of a SPOT5 image of Paris with some instances of full resolution
areas.

and useful information as different structures and forms.
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Let us shortly analyse the content of image in Figure 1.1. A zone of suburb contains
several clear lines which are main streets; several pixels grouped in square forms repre-
sent houses of size 10×10 meters; trees are viewed as gray dark spots. An image of fields
has near uniform areas of size 20× 20 pixels ( i.e., relatively large areas of 100× 100 me-
ters) as well several clear lines of roads. A zone of clouds presents a high level of intensity
on a large surface of approximately 500× 500 meters. A forest offers quasi uniform gray
levels with small deviations. Downtown Paris has high density of buildings of size 10×5
pixels (i.e., 50 meters) and many streets represented by long straight lines.

Very often in satellite image analysis, information is considered at the pixel level
[Stein et al., 2002]. It is the case for the images with low resolution, e.g. from tens of
meters to several kilometres per pixel. Thus dominant information is issued from large
homogeneous surfaces like forest, water, snow, clouds, and cities. But with the progress
of scanning devices, the resolution of satellite imaging is constantly growing and infor-
mation at one pixel is no more significant. On the contrary, neighbouring areas should
be taken into account and information is carried by groups of pixels. From Figure 1.1 we
see that such windows may capture various objects. We may conclude that the higher is
the resolution of the image the more complex the content of the image is and the more
interesting information which may be analysed.

1.2 Pattern recognition

Data mining is the direction of science which combines different aspects of statistical
learning, model selection, parameter estimation, etc., [Witten & Frank, 1999]. To mine
data means to find representative samples of data called patterns and relations between
them as well as to classify and/or predict data. In this thesis data mining is considered
as a task combining pattern recognition, classification and representation of relations be-
tween data. Some fundamental, important and interesting surveys of pattern recognition
and classification may be found in [Jain & Dubes, 1988; Fukunaga, 1990; Duda et al., 2000;
Theodoridis & Koutroumbas, 2003]. It is a common approach to mine data when we have
not much or no a priory information about data to be analysed. Concerning data mining
in satellite images, there are many works which have been done [Datcu & Seidel, 2000;
Stein et al., 2002].

One of the reference examples of analysing the Earth surface by satellite images is the
Corine Landcover project [Bossard et al., 2000]. The main idea of that work is to deter-
mine patterns and classes of surface and classify them using satellite images. There is
a list of patterns and classes predetermined by different experts which are used for su-
pervised surface classification. Classes are represented by a hierarchical tree with several
levels of hierarchy. Then this compact information is used by different experts to analyse
the surface. The main limit of this data mining approach is the supervised selection and
supervised classification of patterns and classes. Often, experts classify data visually but
there exist also many works as in [Gorte & Stein, 1998] proposing learning algorithms for
classification. These experiments were carried out mostly for images with low resolution
(from tens to hundreds of meters per pixel).

Statistical learning, Bayesian modelling and probabilistic model inference are widely
used approaches for pattern recognition [Fukunaga, 1990]. Principles of estimation and
selection of the best probabilistic model for data are explained in [Friedman et al., 2001;
Mackay, 2002]. Probabilistic models for continuous data are often supposed to be mixture
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models, e.g., mixtures of Gaussian distributions. A very good survey of this topic can be
found in [Mclachlan & Peel, 2000]. In practice, well formulated statistical learning mod-
els and algorithms sometimes reach limits because of strong assumptions on probabilistic
distributions. To overcome such limits, kernel approaches become recently very popular.
A detailed survey to kernel approaches for statistical learning is introduced in [Vapnik,
1998]. Further interesting practical ideas for learning by kernels are well explained in
[Shawe-Taylor & Cristianini, 2004].

Examples of a satellite image mining systems and their theoretical aspects are pre-
sented in [Datcu & Seidel, 2000; Datcu et al., 2003; Datcu & Seidel, 2005; Barnes, 2007].
One of the recent surveys of satellite image mining may be found in [Heas & Datcu,
2005; Gueguen & Datcu, 2007]. Although this work deals with temporary satellite im-
ages, some aspects of general data modelling may be considered for different types of
satellite images.

1.3 Contribution of this thesis

The purpose of this thesis is to contribute to unsupervised satellite image mining. Within
this task, the following steps have been addressed:

⋆ extraction of information from satellite images and its representation by features;

⋆ selecting of most informative features and reducing the feature space for clustering
algorithms;

⋆ data modelling via clustering using different unsupervised algorithms with selec-
tion of the best optimal solution for each algorithm;

⋆ combination of the different results obtained from unsupervised clustering algo-
rithms

⋆ semantic representation of unsupervised clusterings to satisfy user’s requirements.

The main problem of the thesis is to find categories of zones of images and to clus-
ter them without prior knowledge on the type and number of categories. In this thesis
several new approaches to mine and analyse satellite images are proposed:

⋆ Geometrical features describing high resolution satellite images. High resolution
satellite images have two different structures: textures (uniform surfaces as sea,
forest, clouds, etc.) and geometrical forms (structures with recognised forms: build-
ings, airports, warehouses, etc.). Geometrical features are good candidates to com-
plement textural descriptors. The first contribution of this thesis is the selection of
a set of geometrical features for satellite image.

⋆ Unsupervised selection of pertinent features. Different descriptions of the same
image lead to high dimensional image representations. The problem of minimizing
a high dimensional space is considered in this thesis. Feature selection is one of
the solutions to overcome the problem. As the second contribution we propose
an unsupervised feature selection algorithm which improves the quality of pattern
recognition results. This work is published in [Campedel et al., 2007].
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⋆ Unsupervised clustering with estimating the number of clusters. The third contri-
bution concerns the problem of estimating the number of clusters for unsupervised
clustering algorithms. The feature space is supposed to have Gaussian distribu-
tions. An Expectation-Maximisation algorithm with a mixture of Gaussians finds
the optimal data clustering. A Minimum Description Length (MDL) criterion se-
lects the best model for EM-algorithm as well as the number of clusters. Analysis
of MDL for GMM leads to a new simplified MDL criterion [Kyrgyzov et al., 2007b].
Simplified MDL criterion may be applied to different algorithms which minimises
square errors, e.g., K-means. It also can be generalised to estimate non square er-
rors via kernel methods. This new criterion has been called Kernel MDL (KMDL)
[Kyrgyzov et al., 2007b]. Proposed simplified MDL criterion to determine the opti-
mal number of clusters has been used in different applications [Costache & Datcu,
2007; Bordes & Maı̂tre, 2007; Marine Campedel, 2008].

⋆ KMDL criterion leads to a new class of algorithms such as a kernel hierarchical
clustering. This algorithm is the fourth contribution and it shows superior perfor-
mances compared to classical algorithms which operate with square error minimi-
sation. The algorithm also estimates the optimal number of clusters.

⋆ The fifth contribution consists in combining different clustering results obtained
from different algorithms. Two unsupervised approaches to estimate the optimal
combination are proposed. The first is based on a hierarchical agglomeration of
clusterings and a search for an optimal consensus among them by minimising a
new proposed criterion [Kyrgyzov et al., 2007a]. This idea has been applied in
[Marine Campedel, 2008; Campedel et al., 2007]. The second approach is shown
to achieve a global optimum of the clustering combination [Kyrgyzov et al., 2008].

⋆ The sixth contribution consists in representing different clustering results to a user
via semantic relations between concepts. An optimal consensus is found for cluster-
ings obtained from different algorithms. Clusters in consensus solution are consid-
ered as concepts. Relations among these concepts are shown to a user in the form
of a tree or a semantic graph. This idea is presented in the work [Marine Campedel,
2008].

The thesis is constructed in the following way: problem statement for this thesis is
expressed in Chapter 2, where a description of satellite images of high resolution is also
presented. Problems of data mining and pattern recognition for large data bases of satel-
lite images are introduced. Chapter 3 presents information which can be extracted from
optical satellite images. Information is represented by features which describe differ-
ent properties of the Earth surface. The problem of pattern recognition is introduced in
Chapter 4 where supervised classification is presented. Then Chapter 5 presents a review
of unsupervised classification via clustering algorithms. The problem and solutions of
model selection for unsupervised clustering algorithms are stated in Chapter 6. The for-
mulation of the combination problem of clusterings as well as its solutions is proposed
in Chapter 7. Chapter 8 presents a variety of application examples of combination. A
complete protocol of unsupervised data mining of satellite images is shown in Chapter
9. Finally, conclusions and perspectives of the thesis are given in Chapter 10.
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Part I

Problem statement
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Chapter 2

Data mining in satellite images

2.1 Data mining

In this chapter we give a definition of data mining and examples of applications in dif-
ferent domains. One of its main roles is decision making. Data mining is a process of
discovering patterns in data and relations among them. It covers also aspects of pattern
classification, data prediction and representation of discovered results. The representa-
tion may be done by statistical indicators or through visualisation by images, trees or
graphs [Larose, 2006]. A pattern is a representative example of some part of data and
depending on application can be an image, a signal or any type of measurements to be
either classified or recognised [Marques de Sá, 2001; Larose, 2006]. Pattern recognition as
well as machine learning includes both theoretical and technical instruments of data min-
ing. Theoretical aspects may be considered as problem statements, theorems, methods
and algorithms while technical aspects include systems and methods of data acquisition,
programmes of data processing.

At present, data mining is used in many domains: scientific, industrial and commer-
cial [Marques de Sá, 2001; Theodoridis & Koutroumbas, 2003; Duda et al., 2000; Larose,
2006]. These domains are very interdependent because science provides solutions for
industrial problems, that influences commercial activities and vice versa commerce de-
mands industrial solutions that poses tasks to scientists. Here we list several domains
and applications where data mining is used.

⋆ Image processing As we mentioned in previous chapter there is more and more
satellite images and a demand of data management and intelligent processing is
growing. It may be an analysis, detection and classification of satellite or aerial im-
ages, radar and sonar signals, automated target recognition. There are many appli-
cations, e.g., for urban management and agriculture needs: soil analysis and man-
agement; for geology: land cover classification (water, land, forest, rocks, urban,
etc.), estimation and analysis of mining resources, seismic analysis; for astronomy:
analysis of telescopic images.

With innovations various cameras are accessible to numerous users which take a
lot of digital pictures. A user may have thousands of images in several years and
may want either to require a specific image or organise images in different groups.
For example, indoor-outdoor, travels-events, portraits according to different crite-
ria: data, parenthood, etc. Data mining in these images will include feature ex-
traction from photos and automatic grouping of images based on features. A user
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may query images with special characteristics. Many commercial organisations are
interested in analysis of multimedia images to find groups of similar images and
to analyse user’s needs, parameters for camera characteristic, image (video) com-
pression and coding, video analysis, shot detection and classification, image and
video retrieval, content description and indexing (e.g., Google). Video analysis may
be used for vehicle detection, traffic analysis and control, monitoring, navigation
systems, robot vision, etc.

Another example of image mining is a biometry which includes fingerprint analy-
sis, face and speech detection and recognition, people detection and tracking, hu-
man motion recognition and body analysis, human-computer interfaces, surveil-
lance and alarm systems, observation of human activity. Biometry may be used in
any public place for control and surveillance (airports, hospitals, schools, organisa-
tions, etc.). Medical application makes a widespread use of data mining and covers
analysis of medical images and data, classification of human body, organs, detec-
tion and classification of artefacts and diseases, support of medical decisions, etc.

⋆ Bioinformatics In bioinformatics one of the popular data mining tasks is studying
of behaviour of genes during experiments. Genes may be grouped automatically
where each group of genes represents the same behaviour or characteristics. Auto-
mated cytology, properties of chromosomes, genetic studies, etc.

⋆ Industrial domain Industrial application is very close to commercial application.
For example, in automobile industry a producer of cars wants to analyse a data
bases of world cars and either to estimate how many cars with the same character-
istic are or to classify cars. The estimation of tendency in construction is also very
important that directly influences on the commercial proposition. Mining may be
considered not only to cars but any products, from light industry to heavy and
high-tech industry. For example, a very popular example is the automatic detec-
tion and classification of objects on an assembly line of a factory. That reduces the
time and increase the quality of product assembly.

⋆ Commercial application Data mining for commercial needs involves tasks quoted
above and may include fault detection in products, character recognition, water-
marking, market analysis, etc. One of the interesting tasks is the study of consumer
needs. For example, it is very important to find groups of consumers with the
same needs, which help to better manage their demands and to elaborate good
propositions. Selling in markets includes a lot of different groups of consumers like
students, working people, young, seniors etc.. Indeed, consumers differencing by
characteristics such as age, social position, earning level, etc., are expected to buy
different families of products. It is important to determine such families in an au-
tomatic way that allows retaining the customer by providing more adapted choice
of new, cheaper and convenient groups of products, being sure that such groups of
consumers will always buy certain groups of products. It concerns not only market
but a selling process in general, e.g., high-tech technologies (mobile phones, com-
puters, services, etc.), bank services (credits, insurances, market of securities, etc.),
and all possible commerce.
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2.2 Satellite image models and their application

In this section a short introduction to models of satellite images as well as their ap-
plications is given. As mentioned in the previous chapter there are mostly two types of
remote sensing domains depending on the wavelength: (i) visible and infrared remote
sensing and (ii) microwave remote sensing. In this thesis the accent is on visible remote
sensing for optical images of a high resolution.

A two dimensional image is recorded by an optical multispectral scanner along the
flight of the satellite platform. For example, the SPOT5 scanner is a linear array of solid
semiconductive elements 1. These elements detect average intensity and correspond to
pixels of a digital image with integer values. Such a kind of sensors is called Charge Cou-
pled Devices (CCD). For SPOT5 camera each line has 12000 elements which correspond
to pixels on an image. Three consecutive lines of camera record the same line of data
but with different characteristics of a filter (near infrared, red, green). A digital image
has coordinates of pixel number, counted from left to right and from top to bottom. The
size of pixels corresponds to sampling frequency, the larger the pixel size the lower the
sampling frequency and the worse the image. On the contrary, the smaller the pixel size
the more details may be seen on the image and the bigger image size.

Satellite image processing includes main steps: input images are registered by digital
recording devices. Then images are corrected or reconstructed via image intensity or ge-
ometry correction, image restoration or reconstruction. Finally, images are classified by
grouping image descriptors or features in classes. This is done by supervised, semi su-
pervised or unsupervised classification, segmentation or image matching. The last step is
presentation of results either directly to a user or by saving them to a Geographical Infor-
mation System (GIS). In this thesis unsupervised image classification and representation
of results are considered.

SPOT5 images

High Resolution (HR) satellite images are considered to have a metric resolution, e.g.,
SPOT5 images have the resolution of 5 meter per pixel, and images with the sub-metric
resolution have a Very High Resolution (VHR), e.g., QuickBird (QB) 2 images have 60 cm.
per pixel and Pléı̈ades images will have 70 cm. per pixel 3. Examples of images of the
same place provided by satellites SPOT5 and QuickBird are presented in Figure 2.1. On
HR images as SPOT5 Figure 1.1 each pixel has meaning for objects no less than houses,
big trees, trucks, etc.; neighbour pixels may represent bigger objects such as roads, build-
ings, bridges, crossroads, airplanes, etc. A square of size 64 × 64 pixels takes a ground
surface 320 × 320 meters and capture such textures as homogeneous area of forest, sea,
desert, snow, cloud, agriculture field, suburb, downtown, industrial zones, etc. Examples
of several such surfaces are presented in Figure 2.2, they have been extracted from SPOT5
image of Paris Figure 1.1.

1http://www.cnes.fr
2http://www.digitalglobe.com/
3http://www.cnes.fr/web/3227-pleiades.php

http://www.cnes.fr
http://www.digitalglobe.com/
http://www.cnes.fr/web/3227-pleiades.php
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a b

Figure 2.1: Samples of satellite images of the same place in Los Angeles: a - SPOT5 (5
m/pixel), b - QuickBird (0.6 m/pixel). c©Copyright CNES

2.3 Data mining in high resolution satellite images

Images of HR provide diverse information about the Earth surface and are very inter-
esting for experts in different domains: urban, agriculture, environment, military, etc.,.
Satellite images reflect useful information about resources of different countries and al-
low quickly analysing the Earth surface and make decisions; it is only limited by the
quantity and capacity of satellites to capture images. Requirements for land cover classifi-
cation and its validation via satellite images can be found in [Muchoney & Strahler, 1996].
Another review for classification of remote sensed images is given in [Atkinson & Lewis,
2000].

One of the main applications of satellite imagery is map constructing. Knowing
ground coordinates and setting them on a satellite image a geographical expert may com-
pare actual ground state to existing maps. Also images are utilised to help up-date maps,
e.g., for monitoring density of buildings in urban zones which may increase or decrease,
for detecting roads which may appear or disappear, for analysing developing or degrad-
ing agriculture fields or forest, etc. Another possible application of satellite images may
be in using them as a tourist guide, virtual tourism or visit. Before departure in differ-
ent places tourists may be interested in viewing these new places. Images with different
scales may give an idea to visit some neighbour regions.

Actual systems of satellite image analysis very often implicate information provided
by an expert. e.g., recognition of urban and natural zones, detection of road nets, etc.
Such a kind of work needs a lot of experts and efforts.

Currently, analysis of satellite images is done by users visually. Of course the visual
observation is a restricted approach. As we know satellite images have large sizes, they
are numerous and in the future more and more images will come. To do an analysis of
a large surface several experts should be involved, but it takes several years to educate
an expert that may be expensive. In addition, the more human is introduced in taking
decision in a complex process the more probable to have mistake and subjective results.
A term ”subjective” means that results of the image analysis will be different from one
user to another. An example of analysis is the road detection on satellite images. Indeed,
in the world there are a lot of regions when there are no maps or they are composed
only on the paper and not in the electronic version. HR or VHR satellite images are
used to detect a road on the image. But these images are very large for relatively small
surface (12000×12000 pixels for 60×60 km2). To find roads one person may analyse such
an image approximately one week. Roughly speaking, an expert who uses only satellite
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a

b

c

d

e

f

Figure 2.2: Instances of typical image content issued from SPOT5 images of Paris (64× 64
pixels per sample) : a - Downtown, b - Suburb, c - Industrial zone, d - Forest,
e - Field f- Cloud. c©Copyright CNES
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images to analyse the surface of Europe which is 107km2 would take near 53 years. Either
53 experts can find only roads for one year.

We see, that the demand in automatic system is very big, because they may signifi-
cantly improve the quality of decisions and reduce the time needed for. Human analysis
has advantage in its a priori knowledge but subjective decisions are very time consum-
ing.

To overpass lacks of human decisions automated analysis should be applied every-
where where it is possible. Now, the demand in automatic systems is very high and less
or even no user interaction is preferred. Under such a kind of interaction we understand
setting some a priori parameters or tuning them during analysis. An automated system
should analyse and process data and provide a user with all possible results in a compact
and clear form.

An addition interest of using automated systems of satellite image analysis consists in
possibility to discover new information and knowledge. For example, such new informa-
tion may be new classes, that user does not realise before, new relations among classes,
which will help to understand interdependence among them. Another possible analysis
may be in discovering whether the same arrangement or interdependence of classes may
be observed in other parts of the Earth surface, etc.

Main steps of a system to analyse satellite images are usually the same, independently
from application, and consists of:

⋆ Feature extraction - modelling and extraction of information from satellite image;

⋆ Pattern recognition - selecting models and optimising their parameters for analysis,
classification, clustering and learning process;

⋆ Representation of results - visualising results of pattern recognition.

Some intermediate steps as well as loops among them may also be included. The follow-
ing chapter is devoted to feature extraction from satellite images.

2.4 Conclusions

In this chapter examples of data mining have been illustrated. A brief review of different
problems of satellite image analysis and mining has been considered. Models of optical
satellite images have also been discussed. Following subjects have been revised:

⋆ Applications of data mining in different domains: scientific, industrial and com-
mercial. The importance of mining systems has been argued.

⋆ Existing numerous volumes of satellite images have been noted. Examples of satel-
lite image analysis have been presented. Available diversity of the Earth surfaces
has been shown by satellite image samples. Image content shows its richness and
complexity. A comparison of human and automatic analysis of satellite images has
been provided and the growing needs in automatic systems have been justified.

⋆ Main steps of data mining have been presented in this chapter. An interaction be-
tween a user and a computer during mining process has been described.
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Chapter 3

Feature extraction

In this chapter we give definitions and notations for pattern descriptors (also called later
features) and show models of features as well as feature extraction. Here a pattern is
considered as a part of a satellite image.

A natural image, e.g., a satellite image, contains regions which have common prop-
erties for visual perception. For example, in Figure 1.1, we see homogeneous regions of
city, forest and clouds which are easily distinguishable. Each of these regions is char-
acterised or described by features, e.g., by similar pixel gray level intensity or texture.
There are two groups of features: (i) natural and (ii) artificial. Natural features corre-
spond to visual image perception, e.g., intensity level, textural regions, while artificial
features are obtained after image manipulation , e.g., image histogram, spatial frequency
spectra [Pratt, 2001], etc. Image features are used for image segmentation, classification
and clustering to find regions with common properties.

In image processing domain many features have been proposed to describe an image.
Typically, for static images (in our case SPOT5) feature models mainly are: statistical de-
scriptors of image intensity, textures and geometry [Pratt, 2001; Forsyth & Ponce, 2002].
In this chapter we propose developed geometrical features and give examples of texture
features which have been realised in [Campedel et al., 2004, 2005].

Let us have I patterns presented as grayscale images Ii of size Nr ×Nc pixels, where
i = 1, ..., I (later I, for simplicity). The image I is a square matrix which has Nr pixels of
rows from top to bottom andNc of columns from left to right: I = {Irc : r = 1, ..., Nr, c =
1, ..., Nc}, Irc ∈ {0, ..., L− 1}, where L is the number of gray levels. Let feature set {Xij}
have I elements, where Xj has a value describing feature j of pattern I. Later we use Xj

to indicate the feature j of sample i for the simplicity.

3.1 Image intensity features

For image intensity features we compute statistical moments such as central moments of
the first (mean value) and second order (standard deviation). A mean value of gray level
intensity of image I is:

X1 =
1

NrNc

Nr∑

r=1

Nc∑

c=1

Irc, (3.1)
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and a standard deviation of intensity level is:

X2 =

√√√√ 1

NrNc

(
Nr∑

r=1

Nc∑

c=1

Irc −X1

)2

(3.2)

This kind of statistical descriptors for SPOT5 is able to distinguish, e.g., a bright part of
the image with a high intensity gray level (e.g., clouds, snow) from a dark part with low
intensity (e.g., sea, land), see Figure 1.1. Some higher order statistical features may be
extracted from the image:
skewness

X3 =
1

NrNcX3
2

(
Nr∑

r=1

Nc∑

c=1

Irc −X1

)3

, (3.3)

kurtosis

X4 =
1

NrNcX4
2

(
Nr∑

r=1

Nc∑

c=1

Irc −X1

)4

, (3.4)

information theoretic measures, like entropy

X5 = −
L−1∑

l=0

pl log pl, (3.5)

where pl = Nl

NrNc
and Nl is the number of pixels of gray level l : 0 ≤ l ≤ L− 1.

3.2 Texture features

A texture is defined as an image of a surface which is easy to recognise but difficult to
describe and it is represented by many objects [Forsyth & Ponce, 2002].

Image samples in Figures 1.1 and 2.2 represent examples of different textures. Sam-
ples of a forest have small gray level deviations while samples of clouds have high gray
level deviations with dominant bright part. Samples of suburb, city and industrial zones
have sharp gray level surface. Image samples of fields can have geometrical forms (e.g.,
squares and triangles) with dark and bright gray levels. These different properties of im-
age samples can be characterised by spatial dependency of pixel intensity. Some models
of spatial dependency are represented either via extracting of image statistics or via im-
age filtering. Characteristics obtained from filtering are called texture features. Now we
give some basic models of texture features.

Haralick features

One of the famous features to describe texture presented by an image are Haralick fea-
tures [Haralick et al., 1977]. These features are calculated on the second-order histogram
of the joint probability distribution of a pair of pixels which are called a co-occurrence ma-
trix. This matrix is computed for a pair of pixels with coordinates (m,n) and (m±ρ, n±ρ),
which are separated by ρ pixels and have an angle θ with respect to the horizontal axis:

P (la, lb, ρ, θ) = #(Imn = la, Im±ρn±ρ = lb, θ). (3.6)
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Here P (la, lb, ρ, θ) is the number of occurrences Imn = la and Im±ρn±ρ = lb, for 0 ≤
la, lb ≤ L − 1 [Theodoridis & Koutroumbas, 2003]. Usually, ρ can take some units and θ
four angles 0◦, 45◦, 90◦ and 135◦. Size of co-occurrence matrix (CM) corresponds to the
number of gray levels of the image. Let pij be an element of normalised CM Pij Eq.
(3.6) for some ρ and θ such as pij = Pij/

∑
ij Pij . Image features calculated on CM are

statistical descriptors which reflect properties of textures (smoothness, coarseness, etc.).
They are listed in Appendix A.

The number of Haralick features is 78: 13 Haralick features for four directions 0◦, 45◦, 90◦

and 135◦ and one fixed ρ = 3 with their mean and standard deviation values.

Gabor features

Gabor filters represent models of visual perception of a texture [Daugman, 1985] and was
widely studied and applied for texture classification and segmentation [Dunn et al., 1994;
Dunn & Higgins, 1995; Jain & Farrokhnia, 1991; Weldon et al., 1996]. These filters in the
spatial domain are presented as [Manthalkar et al., 2003]:

h(x, y;u, θ) = exp

(
−1

2

[
x′2

σ2
x

+
y′2

σ2
y

])
cos(2πux′), (3.7)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ and u is the frequency along the
direction θ from the axis x. Variances σx and σy correspond to a width of Gaussian for
x and y axes respectively and they determine the bandwidth of the Gabor filter. The
Fourier transformation of Eq. (3.7) is:

H(U, V ) = 2πσxσy

(
exp

{
−1

2

[
(U − u)2

σ2
u

+
V 2

σ2
v

]}
+ exp

{
−1

2

[
(U + u)2

σ2
u

+
V 2

σ2
v

]})
,

(3.8)
where σu = 1/2πσx, σv = 1/2πσy. An example of Gabor filter for 128 points in the
spatial domain and its corresponding Fourier transform in frequency domain are in Fig-
ure (3.1 a) and (3.1 b). The Gabor filter in the frequency domain for 6 orientations
0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 4 scales from 0.05 to 0.4 are presented in Figure (3.1 c).

a b c

Figure 3.1: Examples of the Gabor filter: a - in the spatial domain; b - correspond-
ing frequency domain of (a); c - in the frequency domain for 6 orientations
0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 4 scales from 0.05 to 0.4.
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For m scales and n orientations we write:

gmn(x, y) = a−mh(x′, y′), (3.9)

where x′ = a−m(x cos(θ) + x sin(θ)), y′ = a−m(−x sin(θ) + x cos(θ)), θ = nπ/K and K
is the total number of orientations. Let Uh and Ul be the higher and lower frequencies
and K and S be the number of orientations and scales. We may write filter parameters in
frequency domain.

a = (Uh/Ul)
(1/(S − 1)), σu = (a−1)Uh

(a+1)
√

2 ln 2
,

σv = tan( π
2k )
(
Uh − 2 ln 2

(
σ2

u

Uh

))
×
[
2 ln 2− (2 ln 2)2σ2

u

U2
h

]−1/2 (3.10)

where u = Uh, θ = π/K, m = 0, 1, ..., S − 1. am ensures that the energy of signal Eq.
(3.9) does not depend on scale m. Features extracted by Gabor filters are mean values
and variances of filtered images. These features are used to obtain characteristics which
are invariant to rotation [Manthalkar et al., 2003].

QMF features

Quadratic mirror filters (QMF) applies a filtering scheme which can reconstruct an image
exactly [Vetterli, 1986]. It was proposed to consider a general problem of signal recon-
struction after applying filters. Generally, for image processing two filters are used low-
pass H1 and high-pass H0 and their combination in vertical and horizontal directions
gives four output.

The simplified scheme of such reconstruction is presented in Figure (3.2). In the two

Figure 3.2: Simplified scheme of QMF filtering

dimensional case (as for images), filtering is made in horizontal and vertical directions by
separable filters. Therefore we obtain four outputs: LL - low-pass filtering in horizontal
and vertical directions, LH - low-pass filtering in horizontal direction and high-pass fil-
tering in vertical direction, HL - high-pass filtering in horizontal direction and low-pass
filtering in vertical direction, HH - high-pass filtering in horizontal and vertical direc-
tions. Then the same scheme is applied to LL output after resampling. Here again, image
features are statistical values as mean and standard deviation for each output of filter. So,
we have to calculate 2 features (mean and variance) for LH, HL and HH outputs. For the
number of scales (decompositions) s we have s× 3× 2 features.
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3.3 Geometrical features

In this section we propose extracting geometrical features from optical satellite images.
We consider geometrical features as that which describe geometrical properties of ob-
jects seen on the image, e.g., line segments and statistical properties of edges detected
on the image. The resolution of satellite images (e.g., SPOT5) allows distinguishing pri-
vate buildings, big buildings, warehouses, borders of roads, rivers, fields. Such objects
have line segments of different length, angle and density. We want to benefit from such
properties to have more rich set of features and to cover more image classes.

We present detection of edges, edge approximation by line segments and extraction
of geometrical features. An image is filtered by Deriche filter [?] following hysteresis
thresholding and edge detection. Linear segments approximate edges using Papakon-
stantinou [Papakonstantinou, 1985] algorithm. Features are extracted from both edges
and line segments. For such big images as satellite, edge detection should be adaptive
because the image covers different landscapes.

Adaptive edge detection

Edge detection

A Deriche’s approach of edge detection [?], [Deriche, 1987a] is based on Canny’s filter de-
sign [Canny, 1983], [Canny, 1986]. Canny had defined a one - dimensional Finite Impulse
Response filter for edges by optimising specific criteria for the quality of edge detectors.
Deriche used the same method to construct an Infinite Impulse Response edge filter. Let
I(x, y) denote the image with size of N ×M pixels. The signal I is filtered by a low pas
filter ψ, then derived. In a similar way, it may be filtered by the derivative φ of ψ :

ψ(x) = −cx exp(−α | x |) (3.11)

c =
[1− exp(−α)]2

exp(−α)

φ(x) = c(α | x | +1) exp(−α | x |) (3.12)

where α is a scale parameter which controls the minimal distance between two adjacent
edges.

General steps of the edge detection are:

1. Convolve the image with a separable Deriche filter in x and y direction of the image.

2. Take the first derivatives in horizontal and vertical directions.

3. Compute the magnitude of the gradient Mg(x, y).

4. Perform non-maximal suppression of the gradient in horizontal and vertical direc-
tions.

5. Perform hysteresis thresholding.

Because the contrast in the images is varying and image dynamics are highly chang-
ing, we make use of adaptive thresholding in order to keep the main edges of any area
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whatever the local contrast.
We choose a threshold under the form:

t = m+ βs (3.13)

where

m =
1

NM

∑

(x,y)

Mg(x, y)

s =

√√√√
1

NM

∑

(x,y)

(Mg(x, y)−m(x, y))2

m is the mean and s is the standard deviation of the image magnitude derivation respec-
tively and β=0.8.

For hysteresis thresholding the high threshold is t and depends on standard deviation
of magnitude of the smoothed image. The low threshold is set 50% of the high threshold.

Adaptive thresholding

For adaptive edge detection of a large size image (typical size = 3000 × 3000 pixels) we
need to compute local thresholds. In later stage of the process, we are interested in mea-
suring density of edges on small windows of typical size 64× 64 pixels. We have chosen
to compute the threshold on windows of size 300x300. Then thresholds are interpolated
for windows with size 64× 64.

The most commonly-used method of interpolation is bilinear (also called twisted-
plane, area-weighting, or four-point). Let D(x, y) be the map of thresholds and I ′(x, y)
be interpolated values of D(x, y). Suppose that we need the value at location (i+p,j+q),
where i and j are integers, p and q are in [0, 1.0). We can approximate I(i+p,j+q) using the
values at the four nearest integer locations using the formula

I(x, y) = (1− p)(1− q)D(i, j) + p(1− q)D(i+ 1, j)+ (3.14)

+q(1− p)D(i, j + 1) + pqD(i+ 1, j + 1)

A scheme of adaptive edge detection is presented in Figure3.3.

Edge approximation by line segments

Edge detection provides an image of edge which can be used to detect road network, to
identify fields, etc. Some objects in high resolution satellite images have elongated edges
which can be modelled by line segments. For this reason, we propose extracting linear
segments using image edges.

Piecewise linear approximation (PLA) is widely used in signal and image process-
ing, and pattern recognition. PLA is able to approximate digitised curves (edges) using
consecutive line segments.

An edge can be presented as an open N-vertex polygonal curve P in 2-dimensional
space. P is the ordered set of vertices P = {p1, . . . , pN} = {(x1, y1), . . . , (xN , yN )} An
polygonal Q is approximation of P and consists of (M+1) vertices: Q = {q1, . . . , qM+1}
where the set of vertices qm is a subset of P and M < N . The end points of Q and P
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Figure 3.3: Diagram of adaptive edge detection
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a

b

Figure 3.4: Satellite image SPOT5 of Béziers c©CNES: a - original image 3000×3000 pixels,
b - image of edges.
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are the same: q1 = p1, qM+1 = pN . The approximation of the linear segment (qm, qm+1)
of Q for curve segment pi, . . . , pj of P is defined by the end points pi and pj : qm = pi,
qm+1 = pj and (qm, qm+1) = (pi, pj).

There are two optimisation problems [Imai & Iri, 1988; Kurozumi & Davis, 1982] con-
nected to polygonal approximation:

1. min− e problem: a polygonal curve P is approximated by another polygonal curve
Q with a given number of line segments M so that approximation error E(P ) is
minimised.

2. min−# problem: a polygonal curve P is approximated by another polygonal curve
Q with the minimum number of segments M so that approximation error E(P ) less
than a given maximum error Emax.

An approximation of the curve must satisfy some error criterion. The most of practi-
cal error measures in use are based on distance between vertices of the curve and linear
segments.

p
i

p
i+1

p
i−1

p
k

p
j

d k

Figure 3.5: Line approximation

Let dk(i, j) be the distance from curve vertex pk = (xk, yk) to the corresponding approxi-
mation linear segments (pi, pj) :

dk(i, j) =
|yk − ai,jxk − bi,j |√

1 + a2
i,j

(3.15)

where the coefficients ai,j and bi,j are defined from the parameters of linear segment
(pi, pj) :

a(i, j) =
yj − yi

xj − xi
(3.16)

b(i, j) = yi − ai,jxi (3.17)

The approximation error is defined as the maximum deviation from curve to approxima-
tion linear segment:

Emax(i, j) = max
i<k<j

dk(i, j) (3.18)

We consider edge approximation as a min − #problem because we are interested only
in minimal error approximation. One of the optimal algorithms for min−#problem has
been proposed by Papakonstantinou [Papakonstantinou, 1985] for error criterion Emax.
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Figure 3.6: Textures: field, city, cloud, sea.

Figure 3.7: Adaptive edge detection: field, city, cloud, sea.

Figure 3.8: Linear approximation: field, city, cloud, sea.
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An example of textures is presented in Figure 3.6 and respective images of edges is in
Figure 3.7. Figure 3.8 shows a result of linear approximation.

Geometrical features extructed from edges and their approximations by line segments
are presented in Appendix B.

An example of geometrical features (histograms of line segment rotations) is pre-
sented in Figure 3.9. The first histogram of directions (in Figure3.9) has one value that

Figure 3.9: The directions histogram of linear segments: a field, a city, a cloud, a sea.

exceeds the level 0.4. Thus, corresponding first image of field in Figure.3.8 has one direc-
tion. Other histograms in Figure 3.9 show the images of a city, a cloud and a sea have not
directions.

3.4 Conclusions

Feature models describing different properties of the Earth surface in satellite images
have been presented in this chapter. These models reflect texture and geometrical fea-
tures. With the growing quality, size and diversity of satellite images as many informa-
tive features as possible should be extracted. Main topics revealed in this chapter are
following:

⋆ Statistics calculated on Haralick, Gabor and QMF image models have been consid-
ered as texture features. The interest of those features is that they can model pixel
intensity and spatial relations among them. A drawback of these models is a pri-
ori parameter setting. In the case of satellite images we have predetermined and
known characteristics, e.g., image resolution, relative size of objects, etc. It allows
fixing parameters of models to get more informative features. But a priori param-
eters have a limit: models are not sensitive to images and process them equally. It
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sometimes may produce insufficient quality of features that influences directly the
accuracy of image classification or clustering. This problem should be solved by
adaptive parameter estimation. For example, the model of Haralick features has
the distance for which pixels are analysed. This parameter should be estimated.
Another drawback of Haralick features is that the number of pixels intensities is
different from one image to other. This number affects the size of the co-occurrence
matrix and computation of statistic. Gabor and QMF features are statistics of fil-
tered images. Here again filter parameters (rotation, size, depth of decomposition)
have been fixed, while their estimation is an important and interesting challenge.

⋆ Geometrical features are statistical values of edges and line segments extracted
from images. The edge detector using the Deriche filter has been built to get main
edges. The estimated adaptive threshold for the detector depends on the mean and
the standard deviation of image gradient magnitude. The algorithm of Papakon-
stantinou has been used to approximate edges by linear segments. But the param-
eter of the Deriche filter, i.e. scale, has been fixed during filtering. Parameters of
geometrical features have been also fixed: the error of the edge approximation by
line segments, parameters for binary edge co-occurrences. These features can be
improved via adaptive parameter estimating.

Introduced feature spaces describing image textures is used farther for mining satel-
lite images via supervised and unsupervised algorithms.
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Part II

Pattern recognition in satellite
images
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Chapter 4

Supervised classification

Pattern recognition is the main part of data mining and was deeply developed in the last
20 years. Many successful applications have been found in decision-making problems.
One of the possible bases of pattern recognition problems is statistical description of data.
Such a description is based on models which are used for classification: supervised, semi-
supervised or unsupervised. The task of supervised classification is to attribute labels
or classes to samples, knowing which classes exist and instances of samples for each
class. Semi-supervised classification is made by incorporating in classification human
interaction.

In this section we consider supervised classification which assigns a pattern to one of
the given classes through a model of classifier. A pattern is described by a set of features.
The simplest supervised classification case is the classification into two classes where
classes are linearly separated. In this case the classifier model is a hyperplane which
separates patterns in the feature space.

4.1 Support Vector Machines (SVM) classification

Recent research has indicated the considerable potential of SVM-based approaches for
classification tasks [Vapnik, 1998; ?; Shawe-Taylor & Cristianini, 2004]. One of the re-
cent applications of pattern recognition is supervised classification of remotely sensed
data [Huang et al., 2002]. Comparative studies have shown that SVM classification can
be more accurate than popular techniques such as neural networks and decision trees
as well as conventional probabilistic classifiers such as the maximum likelihood classi-
fication [?]. SVMs were designed for binary classification but various methods exist to
extend the binary approach to multiclass classification [Vapnik, 1998; Hsu & Lin, 2002].
SVM classification is based on fitting an optimal separating hyperplane between classes
by focusing on the training samples that lie at the edge of the class distributions, the
support vectors. In other words, it maximises the margin between positive and negative
examples. The basis of SVM classification for two classes is illustrated in Fig.4.1.
A training set of patterns x with known class labels y is {Xi, yi}, yi ∈ {1,−1}, i = 1, . . . , I ,
are used to build an optimal hyperplane which should be located between the two classes
such that the distance to the closest training data samples in both of the classes is as large
as possible. This hyperplane is a decision function defined by the equation ofwX+b = 0,
where X are points lying on the hyperplane, w is the normal to the hyperplane and b is
the bias. A separating hyperplane can be defined for the two classes as: wXi + b ≥ 1
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Figure 4.1: Basis of SVM classification. (a) Linearly separable classes and (b) non-linear
case.

(for the class yi = +1) and wXi + b ≤ 1 (for the class yi = −1). These two equations are
combined:

yi(wXi + b)− 1 ≥ 0 (4.1)

The support vectors of the two classes lie on two hyperplanes, which themselves are
parallel to the optimal hyperplane and are defined bywXi+b = ±1. The margin between
these planes is 2/‖ w ‖ and the analysis aims to maximise this margin through:

min

{
1

2
‖ w2 ‖

}
(4.2)

This optimisation problem is solved using Lagrange multipliers:

maxJ(α) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyj〈XiXj〉 (4.3)

In a case when the classes are not linearly separable (Fig.4.1 (b)), slack variables, {ξi}ri=1,
introduced and Eq.(4.1) may be rewritten as:

yi(wXi + b) > 1− ξi (4.4)

If outliers exist in the data set, Eq.(4.4) can always be satisfied by making ξi very large
and, so, a penalty term, CΣr

i=1ξi is added to penalise solutions for which ξi are very large.
Thus, the optimisation problem becomes:

min

[
‖ w2 ‖

2
+ C

r∑

i=1

ξi

]
(4.5)

The first part of Eq.(4.5) seeks to maximise the margin between the classes while the
second part aims to penalise samples located on the incorrect side of the hyperplane with
C.

The basic approach to SVM classification may be extended for nonlinear decision sur-
faces. In this case, the input data (x,y) are mapped into a high dimensional space (X,y)
through some nonlinear mapping φ : z→ y. Thus, the optimisation of Eq.(4.5) is:

maxJ(α) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyj〈φ(Xi), φ(Xj)〉 (4.6)
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subject to 0 ≤ αi ≤ C and
∑

i αiyj = 0.
Introducing kernel function (see definition in [Shawe-Taylor & Cristianini, 2004])

K(X,X ′) = 〈φ(X), φ(X ′)〉 (4.7)

we may represent resulting decision function of an input vector X :

f(X) = sgn

(
r∑

i=1

αiyiK(X,Xi) + b

)
(4.8)

where αi are Lagrange multipliers and K(X,Xi) is a kernel function. The magnitude of
αi is determined by the parameter C and lies on a scale of 0-C. A kernel widely used is
the radial basis function:

K(X,Xi) = e−γ‖(X−Xi)‖2

(4.9)

where γ is the parameter controlling the width of the Gaussian kernel. There are several
arguments for radial basis function: (i) only one parameter is needed for this kernel and
(ii) practically proved to be efficient in numerous applications [Vapnik, 1999]. The classi-
fication accuracy of SVM depends on the magnitudes of the parameters C and γ. With a
large value of γ and/or C, there is a tendency for the SVM to overfit the training data.

4.2 Curse of dimensionality and feature selection algorithms

We have seen from previous Chapter that images are described as ”large” set of features
(”large” means from tens features to hundreds). It is very important to take into account
the dataset dimension (the number D of features). This number may significantly influ-
ence classification results as shown in [Bishop, 2006]. For example, we consider a sphere
with radius r = 1 inD dimensions and calculate ratio between the sphere volume V (r,D)
and the sphere volume with radius r = 1− ǫ. Without loss of generality we consider the
volume of sphere with radius r as V (r,D) = c(D)rD, where c(D) is a constant. Then the
ratio for radius r = 1 and r = 1− ǫ, 0 < ǫ is:

V (1, D)− V (1− ǫ,D)

V (1, D)
=
c(D)− c(D)(1− ǫ)D

c(D)
= 1− (1− ǫ)D. (4.10)

From this ratio we see that for ”large” values of D and even for small value of ǫ the ratio
tends to 1. It means that the volume also tends to 1 and points which fill the sphere are
located near the border of the sphere. Consequently, the distance among uniformly dis-
tributed points in the D dimensional sphere tends to 1 as can be seen from Figure (4.2a).
Assume that samples belong to several classes in the sphere and we want to attribute a
new sample to one class. From Eq. (4.10) we see that the Euclidean distance from a new
sample to samples of different classes also tends to 1. In addition, if we consider Gaus-
sian probability distribution of points in a space of dimension D, then from Figure (4.2b)
we see that probability mass of a Gaussian distribution is mainly located within a thin
layer at some radius [Bishop, 2006].

This aspect is very important in pattern recognition and data mining tasks. It shows
that some basic algorithms of pattern recognition can not be directly applied to data of
high dimension and should be used carefully. One of the solutions to this problem may
be in feature weighting or feature selection. Feature weighting is a procedure assigning to
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Figure 4.2: Curse of dimensionality for various values of the dimensionality D. a - Rela-
tion of volumes of radius r = 1 − ǫ to r. b - Normalised probability density
w.r.t. radius r of a Gaussian distribution for different values of D.

a feature a weight either through prior knowledge (often difficult to have) or through an
algorithm which estimates feature weights during classification process. Feature selec-
tion is able to determine a more appropriate feature subset to reflect useful information
in data. In addition, data processing time is decreasing after feature selection.

Reduction of feature space dimension could be used to decrease overfitting and im-
prove classification. One of these pruning techniques is Recursive feature selection (RFE)
Guyon [2002]. RFE eliminates some of the original input features and retains a feature
subset that provides best classification performance. Detailed survey of feature selection
approaches, especially for satellite image processing, may be found in [Campedel et al.,
2004]. For an illustrative example we use RFE feature selection based on the following
iterative procedure:

1. Train the SVM classifier;

2. Compute the ranking criterion for all features w2
i ;

3. Remove the feature with smallest ranking criterion.

The iterative procedure stops when the desired number of features is obtained. This
selection approach produces a very good result for the classification but a priori infor-
mation about classes should be known. We are rather interested in unsupervised feature
selection because we have a lot of unstructured information. In Chapter 8 a new ap-
proach for unsupervised feature selection is presented. It selects features and gives very
good classification results.

4.3 SVM classification of satellite images

SVM approach is widely used in many applications of supervised classification. Espe-
cially it is implemented in many systems of satellite image processing [Parulekar et al.,
2005]. It also has been shown its usefulness in many works to classify satellite im-
ages: for supervised classification [Bhattacharya et al., 2007; Zammit et al., 2007] as well
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as for semi supervised classification or relevance feedback [Ferecatu & Boujemaa, 2007;
Costache & Datcu, 2007].

In this Section we propose three experiments:

1. classification of satellite image samples;

2. classification of samples with feature selection;

3. classification of complete scenes of satellite images.

To classify data base of SPOT5 satellite images four classes of textures are used: fields,
cities, clouds and sea Fig.3.6. Each class contains 100 examples issued from different
satellite images. Each sample has size of 64×64 pixels. 15 geometrical features presented
in Section 3.3 have been extracted from each sample. These features reflect geometrical
structure of image samples (distribution of edges, line segments, etc.).

In the first experiment we classify samples using the complete feature set. We apply
a cross validation procedure with a training set (75% of images) and a test set (25% of
images). Results of image classification are presented in Table 4.1.

Table 4.1: Classification table of database of textures for the whole set of 15 geometrical
features. Classification accuracy is 89 percent

Assigned class
Cloud Sea City Field Total

Cloud 93 3 2 2 100

Sea 10 89 0 1 100

City 3 0 86 11 100

Field 3 1 7 89 100

Total 109 93 95 103 400

The general accuracy of classification is obtained as the sum of diagonal elements in
the table, divided by the total number of samples. The classification accuracy is 89 percent
that is a good enough result. In Table 4.1 most of the samples from all four classes have
been correctly classified and a maximal confusion between classes is less than 11 percent.

In the second experiment we perform classification with feature selection. To deter-
mine the most significant features and suppress insignificant ones a recursive feature
elimination method based on SVM (SVM-RFE) has been applied [Campedel et al., 2004].
The number of selected features should be set for the SVM-RFE approach. Figure4.3
shows the classification error as a function of the number of features. A minimal error of
classification is obtained for 10 features: X1, X2, X3, X5, X9, X10, X12, X13, X14, X15, see
Appendix B.

It can be seen from Figure 4.3 that selected features are: the number of line segments
(X1 andX2), their length (X3 andX5), direction of line segments (X12), statistical features
of frequencies (X13, X14 and X15) and statistics of pixel distribution (X9 and X10). They
are more important and decrease classification error.

Now a cross validation procedure is applied to classify samples, using selected 10 fea-
tures (Table 4.2). The accuracy of classification is 92 percent which improves the previous
classification result. From Table 4.2 we see that the maximal confusion between any two
classes equals 7 samples that is less than 11 for classification with the complete feature
set.
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Figure 4.3: Classification error versus the number of features.

Table 4.2: Classification table of database of textures for 10 selected geometrical features
(X1, X2, X3, X5, X9, X10, X12, X13, X14, X15). Classification accuracy is 92
percent.

Assigned class
Cloud Sea City Field Total

Cloud 96 2 1 1 100

Sea 4 95 0 1 100

City 7 0 86 7 100

Field 3 0 6 91 100

Total 110 97 93 100 400

In the third experiment we demonstrate results of classification on satellite images.
Satellite images of different world cities have been selected: Béziers, Paris, Los Angeles
and Hong Kong. We suppose that each image contains different textures of the Earth
surface which reflect different natural and architectural configurations.

The protocol of feature extraction is the same as in previous experiments: original
images are cut into samples of size 64 × 64 pixels and then features are calculated for
each sample. Training of SVM classifier is performed on the same data base of 4 classes,
400 samples and 10 best features. Testing (classification) is given for samples of each
image.

First we propose to classify images of Béziers and Paris which have a size of 3000 ×
3000 pixels. The original images of Bezier and Paris are presented in Figures 4.4a and
4.5a, and their images of edges are shown in Figures 4.4b and 4.5b, respectively. Images
of edges in Figures 4.4b and 4.5b shows that ”smooth” surfaces as ”Sea”, ”Forest”, and
”Cloud” have no edges. It shows that geometrical features may distinguish textures with
edges and without edges. The best 10 geometrical features selected in the previous exper-
iment have been calculated for image samples. The classified satellite images of Bezier
and Paris are presented in Figures 4.4c and 4.5c, respectively.
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a) b) c)

− City − Sea − Field − Cloud

Figure 4.4: Classification of SPOT5 image of Béziers, c©CNES. a - an original satellite
image SPOT5, b - image of edges, c - classification result.

With the selected set of features, smoothed regions such as a sea, clouds, forests and
fields which have no edges are classified as the class ”Sea”. We observe in Figure 4.4c that
a coast line is classified as class ”Field”. It explained by the fact that the coast has long
strong lines like fields. The image of Paris in Figure 4.5c mainly contains class ”City” and
shows a good enough classification.

a) b) c)

− a city − a sea − a field − a cloud

Figure 4.5: Classification of SPOT5 image of Paris, c©CNES. a - an original satellite image
SPOT5, b - image of edges, c - classification result.

Another experiment consists in classifying images of Los Angeles, Hong Kong and
Peking presented in Figures 4.6a, 4.7a and 4.8a, respectively. These cities have been se-
lected to demonstrate diversity of landscapes.

Each image has a size of 512× 512 pixels. Corresponding images of edges are shown
in Figures 4.6b, 4.7b and 4.8b. Here again, we cut images into samples of size 64 × 64
pixels and compute 10 geometrical features for each sample. After, trained SVM classify
samples in 4 classes.

Results of classification for Los Angeles, Hong Kong and Peking are given in Figures
4.6c, 4.7c and 4.8c, respectively. Visually two classes (”City” and ”Field”) are dominant
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a b c

− City − Sea − Field − Cloud

Figure 4.6: Classification of SPOT 5 image of Los Angeles, c©CNES.

a b c

− City − Sea − Field − Cloud

Figure 4.7: Classification of SPOT 5 image of Hong Kong, c©CNES.

a b c

− City − Sea − Field − Cloud

Figure 4.8: Classification of SPOT 5 image of Peking, c©CNES.
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in the images, Figures 4.6a, 4.7a and 4.8a. The image of Los Angeles in Figure 4.6c is
well classified except the small part of class ”Field”. The presence of class ”Field” in
the urban zone is explained by the fact that warehouses in industrial zones have the
same geometrical features as fields (long straight lines, etc.). Another confusion between
classes ”City” and ”Field” is observed from the image classification of Hong Kong, Figure
4.7c. The classified image in Figure 4.7c contains mostly class ”City” and small part of
class ”Field”, while the original image in Figure 4.7a has only several small urban zones
and mostly has fields. This confusion comes from the tradition of organising villages
and agriculture field: fields are of very small sizes and have the near same geometrical
features as urban zones. The same type of confusion is observed from image classification
of Peking, Figure 4.8c.

Image classifications in Figures 4.4c - 4.8c show that in spite of capturing information
about structures by geometrical features, sometimes they are not sufficient to discrimi-
nate semantically different classes (e.g., ”Field” and ”City”).

To overcome the lack of geometrical description we give an example of image clas-
sification with geometrical and texture features. An example of satellite image of Honk
Kong (3000 × 3000 pixels) is shown in Figure 4.10a. Samples of size 64 × 64 pixels have
been issued from the image. Three classes ”Mountain”, ”Village” and ”Field” each of size
25 samples have been defined for SVM classification, Figure 4.9.

a

b

c

Figure 4.9: Samples of classes issued from SPOT5 image in Figure 4.10a: a - ”Mountain”,
b - ”Village”, c - ”Field”. c©CNES

Textures and geometrical features have been extracted from each sample. Then SVM-
RFE approach has selected 30 best features by classifying 75 samples (25 per class). Fi-
nally, trained SVM result the supervised image classification which is shown in Figure
4.10b. We observe from Figures 4.10a and 4.10b that the original image is well classified
by three classes (”Mountain”, ”Village” and ”Field”). This experiment demonstrates that
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geometrical features complement textural features.

4.4 Conclusions

In this Chapter supervised classification and feature selection have been introduced and
applied to satellite images. The problem of a large feature set called curse of dimensional-
ity has been also presented. SVM classification of satellite images with structural features
has been demonstrated. As it has been shown, very large space of data may lead to wrong
classification results. In addition, mining high dimensional data is time consuming. Data
dimension has been reduced via feature selection by SVM-RFE.

Supervised SVM classification using geometrical features shows interesting proper-
ties of satellite images, e.g., sharpness of detected structures. However using only geo-
metrical features is limited approach and they should be completed by texture features
to reflect different properties of surfaces.
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a

b

Figure 4.10: Satellite image SPOT5 of Honk Kong c©CNES: a - original image 3000×3000
pixels, b - SVM classification for texture and geometrical features (red -
”Mountain”, green - ”Village” and blue - ”Field”).
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Chapter 5

Unsupervised classification.
Clustering algorithms

Data modelling is in charge of representing knowledge. It may also help in extracting
information. When there is no or a few prior information about data then unsupervised
methods should be used. Unsupervised classification is one way of modelling data. It
estimates optimal data model parameters and verifies how good data are replaced by
the model. There are several problems of model estimation for which we should pay
attention:

1. the choice of the data model,

2. if the model parameters are partially known or not known they should be esti-
mated,

3. the estimation approach should also be selected and argued.

To understand a content of data set we should first find their composing elements
(clusters and/or classes). One of the ways to find clusters or classes in data may be
considered via estimation of the data model. The model indicates how data distributed in
clusters (classes). Then, relationships between clusters may be presented as links between
them, as for instance in the form of a graph or a hierarchical tree.

There is a variety of directions to discover classes via unsupervised classification. One
of them is referred in the literature as clustering. Earlier references about clustering and
pattern recognition methods may be found in [Jain & Dubes, 1988; Fukunaga, 1990] while
recent approaches and formulations are proposed in [Mclachlan & Peel, 2000; Duda et al.,
2000; Friedman et al., 2001; Rencher, 2002; Rowe, 2002; Theodoridis & Koutroumbas, 2003;
Mackay, 2002; Hardle et al., 2003; Bishop, 2006].

Clustering is an automatic process which discovers clusters (groups of similar data)
and assigns a data sample to each of cluster. In the next Section we represent a hierarchy
of clustering algorithms.

5.1 State of the art

One of the earlier surveys of different clustering methods and algorithms has been pre-
sented in [Jain & Dubes, 1988]. Usually clustering techniques are divided in partitional
and hierarchical. Partitional clustering is a division of the samples into K groups, or
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clusters, such that the samples in a cluster are more similar to each other than to sam-
ples in different clusters. Hierarchical clustering methods are categorised into divisive
and agglomerative also called bottom-up and top-down [Jain & Dubes, 1988; Rencher,
2002; Friedman et al., 2001]. A divisive clustering starts with one cluster which contains
all samples and splits it into the most appropriate clusters in a recursive way. We present
a schema of the various clustering algorithms for pattern recognition in Figure 5.1. The

Figure 5.1: An overview of clustering algorithms for pattern recognition.

advantage of divisive algorithms is that the time and memory complexity is very low.
On the contrary, it suffers from local optimality of found clustering solutions. An ag-
glomerative clustering starts with one-point (singleton) clusters and merges two or more
most appropriate clusters. Clustering algorithms treat the clustering problem as an op-
timisation process which tries to maximise or minimise a particular clustering criterion
function [Friedman et al., 2001; Rencher, 2002; Webb, 2002].
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5.2 Combinatorial search

Let us have a look to the combinatorial issue of the search for optimal clustering.
The number of possible solutions to obtain all possible data partitions of size I is

given by Stirling number [Jain & Dubes, 1988]:

1

K!

K∑

k=1

(−1)(K−k)

(
K

k

)
(k)I , (5.1)

where K is the number of clusters of a desired partition. Clearly this number is too high
for most of practical cases. It grows up to 10155 with 100 samples. The direct search of
clustering could be applied only to a very small set of samples.

One of the ways to work with the direct search may be in computing some statistical
quantities on data to restrict the search range. For example, to compute the lower and
higher bounds of possible partition numbers. Other links on this topic for a few samples
could be found in [Jain & Dubes, 1988].

5.3 Hierarchical clustering algorithms

Hierarchical clustering is a nested data partition. It is represented by a hierarchical
tree or a dendrogram. Each clustering corresponds to a certain level of the hierarchical
tree [Theodoridis & Koutroumbas, 2003]. We consider the case of hierarchical clustering
when clusters of a partition at a certain level are completely included in clusters of higher
level. The top level of hierarchical tree is the root and contains all data set, the lower level
of the tree may contain leaves which correspond to data samples, so that each cluster of
this level has one sample only.

Hierarchical agglomerative clustering algorithms

Methods of agglomerative clustering consist in merging clusters at a certain level of tree.
Here we consider only pairwise merging of clusters (a frequent issue to solve practical
problems [Rencher, 2002]). There is no guarantee, in general, that pairwise merging may
produce a global optimal representation of data or a global optimal solution of an objec-
tive function. From the other hand, several clusters can be merged at each step, however
this method may entail an exponential time and memory complexity. An agglomera-
tive hierarchical clustering builds a hierarchical tree from initial partition using a pair-
wise matrix of distances between clusters (clusters may contain only one sample). After
merging two clusters, a distance matrix should be updated: distances from the merged
cluster to other clusters should be reestimated. Depending on the method of choice of
two clusters to be merged and the method to calculate distance matrix updating, several
hierarchical clustering methods exist.

A pseudo code of hierarchical clustering algorithm is given here (Algorithm 5.3), with
the same definitions as in Chapter 4. Let Cu and Cv be any two different clusters in
cluster set Cu, Cv ∈ C, where u, v = 1, ...,K, u 6= v and K is the cluster number in C.
Let clustering C1 be included in C2: C1 ∈ C2. The agglomerative algorithm produces
a hierarchical tree of included clusterings C1 ∈ C2 ∈ ...Ck−1 ∈ CK . Let d(Cu, Cv) be a
dissimilarity function between any two clusters Cu and Cv , e.g., a distance, and t be the
current level of hierarchy.
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Algorithm 5.3 Pseudo code of agglomerative algorithm

1: Initialise t = 0 and C0 as the initial data clustering, e.g., C0
i = Xi, i = 1, ..., I

2: t = t+ 1

3: For all (Cu, Cv) ∈ Ct−1, ∀u, v find (r, s) as

3.1: d(Cr, Cs) = minu,vd(Cu, Cv)

3.2: Set Cq = Cr ∪ Cs

3.3: New clustering Ct = (Ct−1 − {Cr, Cs}) ∪ Cq

4: Go to Step 2

Direct search for all possible pairs (u, v) in the matrix d is able to construct a hierar-
chical tree with K levels, when K = I . The algorithm complexity is O(I3) that makes
difficult to apply it for large datasets [Theodoridis & Koutroumbas, 2003], and it may be
inapplicable for short time calculations when a large volume of data is processed. In addi-
tion, the computation complexity of the similarity matrix d should be taken into account.
For practical realisation of the hierarchical algorithm and in order to reduce computation
complexity we suggest to choose C0 with a small number of clusters. The initial cluster-
ing C0 may be obtained by simple algorithms, e.g., K-means partitional clustering which
has a linear complexity. This algorithm will be presented later in Section 5.4.

Different agglomerative clustering algorithms depend on the choice of matrix d and
the method which is used to merge two clusters. Below we consider the main ones:
single-link, complete-link, average-link, median-link and Ward agglomerative clustering
algorithms. The generalisation of these approaches will also be done. These algorithms
are general and may be found in [Jain & Dubes, 1988; Duda et al., 2000; Rencher, 2002;
Theodoridis & Koutroumbas, 2003]. For the simplicity of notations, we will use u and v
instead of Cu and Cv.

Single-link method

At each merging stage of single-link algorithm two neighbouring clusters u and v are
merged to one cluster. The minimal distance between clusters is the distance between
two closest samples of these clusters:

duv = min
i∈u,l∈v

dist(XiXl), (5.2)

where i = 1, ..., nu, l = 1, ..., nv are the number of samples in clusters u and v, respec-
tively. As we can see this algorithm has a quadratic computation complexity O(I2) to
find nearest neighbour elements. Different techniques or a priori knowledge may reduce
this complexity, e.g., in image processing for searching we may consider only neighbour-
ing pixels. This approach may find clusters with complex shapes, e.g., elongated, spirals
etc. But it is influenced by noise: small noise may lead for merging two different clusters.
Some extensions of this approach may be developed by considering several neighbours
when calculating the distance between clusters. But one should set a priori or estimate
the optimal neighbours’ number.
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Complete-link method

Here again, as in previous case a hierarchical tree is built by merging two nearest clus-
ters u and v; but distance between them is calculated as two farthest-neighbour samples
belonging to these clusters:

duv = max
i∈u,l∈v

dist(XiXl). (5.3)

This algorithm differs from single-link by computation of the farthest distance between
clusters. Complete-link algorithm seeks cohesion of the clusters, contrary to single-link
which looks for isolated clusters.

Average-link method

The average-link approach search to merge two neighbour clusters u and v when the
distance between them is the average pairwise distance between points of these clusters:

duv =
1

nunv

nu∑

i=1

nv∑

l=1

dist(XiXl), (5.4)

where nu and nv are the numbers of samples in clusters nj1 and nj2 , respectively. This
algorithm differs from previous two in the way that it is less sensitive to noise. From the
other hand, this algorithm tends to find globular clusters and will not find clusters with
complex shapes. Its statistical properties are mentioned in [Friedman et al., 2001].

Centroid-link method

For the centroid link method two nearest clusters are merged and the distance between
them is computed as the distance between centroids of these clusters:

duv = dist(X̄u, X̄v), (5.5)

where X̄u and X̄v are mean vectors of clusters u and v, respectively. Mean vectors are
X̄u =

∑nu

i=1,Xi∈uXi and X̄v =
∑nv

i=1,Xi∈v Xl. After merging two clusters u and v the new
centroid is found as:

X̄uv =
nuX̄u + nvX̄v

nu + nv
. (5.6)

Median-link method

For the centroid-link method a cluster with higher number of points has higher weight
in calculating a distance. To avoid this problem a median approach may be applied:

muv =
nuX̄u + nvX̄v

2
, (5.7)

where muv is a median distance between two clusters which corresponds to the midpoint
of a line connecting two clusters u and v. This median has no relation to a statistical
median, it is related to the geometrical median of a triangle which connects a vertex with
a midpoint of the opposite side [Rencher, 2002].
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Ward’s method

This approach is based on the minimisation of the square error in each cluster and is
named as minimum variance method. It has been shown that Ward’s method [Ward,
1963] outperforms hierarchical methods described above. Let the sum of within cluster
distances for cluster u, v and their combination Cuv be:

SSEu =

nu∑

i=1

(Xi − X̄u)′(Xi − X̄u), (5.8)

SSEv =

nv∑

i=1

(Xi − X̄v)
′(Xi − X̄v), (5.9)

SSEuv =

nuv∑

i=1

(Xi − X̄uv)
′(Xi − X̄uv). (5.10)

where X̄uv i as in Eq. (5.6) and nuv = nu+nv is the number of points in the merged cluster
u ∪ v. Ward’s method aggregates two clusters u and v which minimise the increasing
within-cluster distance of their merging:

△ = SSEuv − (SSEu + SSEv) =
nuv

nu + nv
(X̄u − X̄v)

′(X̄u − X̄v) (5.11)

Ward’s methods tends to merge clusters with a small or equal number of samples as
shown in [Jain & Dubes, 1988; Rencher, 2002]. Updated distance between any of the re-
maining clusters k, where k = 1, ...,K and merged clusters uv is:

d(k, uv) =
nk + nu

nk + nuv
dist(k, u) +

nk + nv

nk + nuv
dist(k, v) +

nk

nk + nuv
dist(u, v) (5.12)

General agglomerative algorithm

Hierarchical clustering methods above presented may be viewed as methods with special
parameters for updating the matrix of distances [Lance & Williams, 1967]. After merging
of clustersCu andCv the pairwise distance from this new cluster to any other r is updated
as:

d(r, uv) = αudist(r, u) + αvdist(r, v) + βdist(u, v) + γ | dist(r, u)− dist(r, v) | (5.13)

The authors in [Lance & Williams, 1967] propose to simplify Eq. (5.13) by introducing
constraints: 





αu + αv + β = 1,
αu = αv,
γ = 0,
β < 1.

(5.14)

From the equation (5.14) we see that 2αu = 1 − β and αu = αv = (1 − β)/2. It means
that for the general hierarchical clustering algorithm with updating distances Eq. (5.14)
we should define only one parameter β. This hierarchical clustering algorithm is called
the flexible beta method. Parameters are summarised in Table 5.1.

General equation of the hierarchical clustering Eq. (5.13) with parameters from Table
5.1 is added to Algorithm 5.3 and produces a general approach to cluster data by the hi-
erarchical agglomerative algorithm. Complexity of this algorithm may be reduced using
relatively small number of clusters to construct a hierarchical tree.
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Table 5.1: Parameters of the flexible beta method

Clustering Method αu αv β γ

Single-link 1/2 1/2 0 -1/2

Complete-link 1/2 1/2 0 1/2

Average-link nu

nu+nv

nv

nv+nu
0 0

Centroid nu

nu+nv

nv

nv+nu

−nvnu

(nv+nu)2
0

Median 1/2 1/2 -1/4 0

Ward’s method nv+nvu

nv+nu+nvu

nu+nvu

nv+nu+nvu

−nvu

nv+nu+nvu

Flexible beta (1− β)/2 (1− β)/2 β(< 1) 0

Hierarchical divisive clustering algorithms

Divising methods are not popular and are rarely met in the literature [Jain & Dubes, 1988;
Rencher, 2002; Webb, 2002]. However we should list this approaches for a complete ob-
servation of hierarchical methods and to show some of their interesting aspects. Divi-
sive hierarchical algorithms divide iteratively data into clusters. During division they
construct a hierarchical tree. In the literature [Jain & Dubes, 1988; Rencher, 2002] divi-
sive hierarchical clustering are considered into two groups: monothetic and polythetic.
Monothetic algorithms use consequently one by one feature to divide data while poly-
thetic algorithms use all features to divide data. For monothetic algorithms an order of
features should be set or estimated. Only polythetic algorithms are considered in the
thesis because a complete set of features is more informative than each separate feature.

Another classification of divisive hierarchical algorithms may be presented as Bi-
section and K-section or two- or multi-way clustering [Chan et al., 1994]. For bi-section
we use an algorithm to divide data into two clusters and so on we divide each subcluster
in two. Similarly, for K-section algorithm on each step we divide data into K clusters
[Jain & Dubes, 1988]. Bi-section algorithms may be successfully applied to data which
have linearly separated clusters in the feature space, if it is not the case, it may fail. K-
section algorithm is used when clusters have more complex shapes. In general, divisive
hierarchical clustering algorithms do not provide an optimal solution and may result a
local optimum of clustering. The advantage of divisive clustering algorithms is that they
may build a hierarchical tree for a high volume of data very quickly and with significantly
less memory and time complexity than agglomerative hierarchical clustering. Next, we
give examples and descriptions of polythetic Bi- and K-section algorithms.

Bi-section clustering algorithms

Bi-section algorithm may be considered to divide data by some criterion. Here we pro-
pose to draw our attention to maximisation of square Euclidean distances between di-
vided clusters. As it is easy to show, this distance also minimises square errors of each
cluster or within-clusters distances. Therefore we may apply such an algorithm as K-
means [Jain & Dubes, 1988] to divide successively data into two clusters. Introduction to
this and other partitional algorithm is given in the next section. In [Shawe-Taylor & Cristianini,
2004], the authors show that optimisation of partitional clustering into two clusters may
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be solved in the closed form. The solution of this problem is presented by the second
eigen vector of the kernel matrix or Laplacian [Shawe-Taylor & Cristianini, 2004]. Neg-
ative elements of this vector correspond to the first cluster while positive elements with
positive values belong to the second cluster. Applying this division we obtain hierarchi-
cal clustering with a binary tree.

K-section clustering algorithms

For K-section algorithms we may also apply partitional K-means. Here we have a choice
to divide data into several subclusters at each level of hierarchy. This number should be
set a priori (if we have such information) or estimated. Unfortunately, K-section cluster-
ing cannot be obtained directly from eigen vectors of the similarity matrix. Note, that
K-means may produce a local optimum of clustering and should be applied carefully
because it may give different results for different starting points.

Here again as in the case of the agglomerative clustering we have included clusters,
but from top to bottom. LetCu andCv be any two different clusters in cluster setCu, Cv ∈
C, where u, v = 1, ...,K, u 6= v and K is the number of clusters in C. Let clustering C2 be
included in C1: C2 ∈ C1. The divisive algorithm produces a hierarchical tree of included
clusterings CK ∈ Ck−1 ∈ ...C2 ∈ C1 Let t be the current level of hierarchy. Now a
pseudo code for a general K-section divisive algorithm may be presented, Algorithm 5.3.
We should say that for data coding there is an optimal hierarchical clustering presented

Algorithm 5.3 Pseudo code of K-section divisive algorithm

1: Initialise t = I and Ct is the initial data clustering, Xi ∈ Ct
1 = Xi, i = 1, ..., I

2: Divide each cluster Cr of Ct into {Cq} clusters, where q = 1, ...K.

3: Ct = Ct − Cr

4: For q = 1, ...,K do

4.1: New clustering Ct−1 = Ct ∪ Cq

5: t = t− 1

6: If t > 0 then Go to Step 2

in [Feder & Merhav, 1996]. In the following Section we give algorithms of partitional
clustering.

5.4 Partitional clustering algorithms

K-means clustering algorithm

K-means algorithm was proposed in 1960s and may be found in numerous literature ref-
erences about data clustering [Jain & Dubes, 1988; Duda et al., 2000; Webb, 2002; Mackay,
2002; Theodoridis & Koutroumbas, 2003; Friedman et al., 2001] The classical version of
K-means algorithm clusters the data set X into a predetermined number of K clusters.
Each cluster k, k = 1, ...,K is parameterised by its means vector µk:

µk =
1

nk

nk∑

l=1

Xl , (5.15)
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where nk is the number of points in cluster k.
K-means clustering is minimising the sum-of-squares criterion:

min
K∑

k=1

∑

i⊆Ck

‖ Xi − µk ‖2, (5.16)

We present a pseudo code of the K-means in Algorithm 5.4. This algorithm consists
in two steps:

1. assignment step, when each sample Xi is assigned to its nearest mean vector,

2. updating step, when mean vectors µk are reestimated for the assigned samples.

This procedure is shown to minimise the square error Eq. (5.16).

Algorithm 5.4 Pseudo code of K-means algorithm

1: Initialise K and mean vectors µk

2: Assign all points Xi to its nearest cluster Ck = argmink{d(Xi, µu)}, u = 1, ...,K

3: Update µk as µk = 1
nk

nk∑

l=1

Xl , where Xl ∈ Ck

4: Go to Step 2 until the assignments do not change

Discussions

At the beginning the algorithm randomly initialises mean vectors and at the second
step assign every sample to the closest cluster (in the sense of a given distance). At the
third step it updates the mean of each cluster. Repeating the second and the third steps
the algorithm converges to some local optimum with a stopping criterion, so that the
mean of each cluster does not change or there is no change in assignment.

At the first step we should initialise mean vectors µk. We can set its values if we know
a priori information where clusters are located. If we do not have this information we can
initialise µk either by random values in the range of data or by random selection of sam-
ples from data and assigning them to mean vectors. We note, that random initialisation
may produce different results from one run to the other, especially in the case when we
have relatively high dimension of data (e.g., higher than 10), many clusters in data (e.g.,
higher than 10) and not enough data samples. One of the practical suggestions to avoid
problems with different clustering may be in application of Ward’s hierarchical clustering
of data and then using hierarchical clusters to calculate initial mean values for K-means.

We should mention K-medoid clustering algorithm which have been proposed in
[Kaufman & Rousseeuw, 1990]. Its main difference from K-means algorithm consists in
replacing mean vectors by samples which minimise the square error Eq. (5.16). This al-
gorithm is effective and robust to outliers but the main drawback is its complexity O(I3).
Several solutions to reduce this complexity have been revised in [Friedman et al., 2001],
but they do not guarantee the optimal clustering.

Kernel K-means

In the case when data have a complex structure (e.g. data are nonlinearly separable) a
direct application of K-means is inappropriate because of the tendency of K-means to
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group data into globe-shaped clusters. One of the solutions is to map data by a kernel
into a new feature space where samples are linearly separable. The kernel K(·) is defined
as the inner product :

K(Xi, Xl) = 〈φ(Xi)φ(Xl)〉 (5.17)

where φ(·) is a mapping of X to an inner product feature space and i, l take values
[1, ..., I]. The simplest kernel is called ”linear”:

K(Xi, Xl) = XiXl , (5.18)

and one of the frequently used kernels is the Gaussian kernel

K(Xi, Xl) = e−
‖Xi−Xl‖

2

2σ2 , (5.19)

where σ is a kernel parameter. As in the previous case Kernel K-means minimises the
same optimisation function but on transformed data :

min
J∑

j=1

∑

Xi⊆Ck

‖ φ(Xi)− φ̄(Xi) ‖2, (5.20)

where φ̄(Xi) = 1
nk

∑
Xi⊆Ck

φ(Xi) corresponds to the mean of cluster Ck with nk number
of samples. To solve 5.20 we do not operate with the explicit representation of function

φ(·) but we calculate the distance ‖ φ(Xi)− φ̄(Xi) ‖2 with the inner product 〈φ(·)φ(·)〉.
The kernel distance between sample Xi and cluster Ck as in Eq. (5.21) is:

‖ φ(Xi)− φ̄(Xi) ‖2 = 〈φ(Xi)φ(Xi)〉 −
2
∑

Xl⊆Ck

〈φ(Xi)φ(Xl)〉

nk
+

∑ ∑

XjXl⊆Ck

〈φ(Xj)φ(Xl)〉

n2
k

,

(5.21)
which can be rewritten as :

‖ φ(Xi)− φ̄(Xi) ‖2 = K(Xi, Xi)−
2
∑

Xl⊆Ck

K(Xi, Xl)

nk
+

∑ ∑

XjXl⊆Ck

K(Xj , Xl)

n2
k

. (5.22)

With the objective function Eq. (5.20) and Eq. (5.22), the standard steps of K-means
algorithm are applied [Shawe-Taylor & Cristianini, 2004]. Kernel K-means algorithm
is an interesting way to exploit data. When nonlinear kernel is applied this cluster-
ing may find groups of clusters which have non-linear shapes. In addition, the authors
in [Shawe-Taylor & Cristianini, 2004] prove that optimal clustering may be found from
eigen decomposition of the kernel matrix. They show that K clusters can be detected by
K eigen vectors and values as the minimisation of the least squares distances between
samples and mean vectors of corresponding clusters in the kernel space. It means that
simple K-means like algorithms may be applied directly on eigen space. In addition,
kernel K-mean is able to separate clusters which are not linearly separated in original
space.

An algorithm of kernel K-means is presented in Algorithm 5.4. As can be seen Kernel
K-means algorithm is equal to K-means when the linear kernel (5.18) is used.



5.5. BAYESIAN DECISION THEORY 81

Algorithm 5.4 Pseudo code of kernel K-means algorithm

1: Initialise data clustering Xi into K clusters

2: Calculate the distance d(Xi, µk) Eq. (5.22) from all points Xi

to all mean vectors µk presented by points Xi ∈ Ck, k = 1, ...,K

3: Assign all points Xi to its nearest cluster Ck = argmink{d(Xi, µk)}, k = 1, ...,K

4: Go to Step 2 until the assignment do not change

Spectral K-means

In [Ng et al., 2002], the authors proposed the spectral clustering algorithm. The general
idea of this approach is to use eigen vectors of the kernel matrix as a dataset on which a
clustering algorithm is applied. The key point is to fix the number of eigen vectors as the
number of desired clusters. The algorithm consists in the next main steps :

Algorithm 4 Pseudo code of spectral K-means algorithm

1: Compute the matrix A based on Gaussian kernel

2: Construct a matrix L = D−1/2AD1/2, where D is a diagonal matrix

with diagonal elements which correspond to the sum of rows of matrix A.

3: Calculate matrix X as the eigen decomposition of K vectors of matrix L.

4: Normalise matrix X so that each row has a unit length : Yij =
Xij

P

i Xij
.

5: Obtain a clustering solution by applying K-means algorithm

to the matrix Y for K clusters.

As in the case of kernel K-means the parameter σ may be taken equal to 1, if each
attribute has been normalised by subtracting its mean and dividing by its standard devi-
ation. A kernel normalisation may also be done as in [Shawe-Taylor & Cristianini, 2004]:

K(Xi1 , Xi2) =
K(Xi1 , Xi2)√

K(Xi1 , Xi1)K(Xi2 , Xi2)
(5.23)

Relation between spectral and kernel K-means are demonstrated in [Schölkopf et al.,
1996; Dhillon et al., 2004]. Addition references for spectral clustering are in [Lau & Wade,
Aug 1991; Kannan et al., 2000; Yu & Shi, 2003].

5.5 Bayesian decision theory

Bayesian decision theory has a well formulated theoretical background, clearly explained
in the literature [R. Hanson & Cheeseman, May, 1991; Duda et al., 2000; Bishop, 2006] and
widely used for pattern recognition tasks [Cheeseman & Stutz, 1996; Mclachlan & Peel,
2000]. It is based on the assumption that data may be described by probabilistic mod-
els. The practical problem of Bayesian decision arises when probability values are done
partially or are unknown. Practically, these values should be estimated on data using
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hypothesis about a model of data. Firstly, we give a small introduction about Bayesian
decision theory and then we describe an algorithm to estimate the data model.

In this section we use the term ”class” instead of ”cluster” without loss of generality.
Bayesian decision theory is a statistical approach to model and extract information from
data. Let {Ck} ∈ C be a finite set ofK classes with a priori probabilities P (Ck), where k =
1, ...,K and P (Xi | Ck) is the class-conditional probability density function of random
variable X whose distribution depends on the class Ck. When P (Ck) and P (Xi | Ck) are
provided then the probability density function of sample Xi which belongs to the class
Ck is

P (Xi, Ck) = P (Xi | Ck)P (Ck) = P (Ck | Xi)P (Xi).

The a posteriori probability of class Ck given sample Xi is presented via the Bayesian
decision formula:

P (Ck | Xi) =
P (Xi | Ck)P (Ck)

P (Xi)
, (5.24)

where

P (Xi) =
K∑

k=1

P (Xi | Ck)P (Ck), (5.25)

or in the other word

Posterior =
likelihood× prior

evidence
. (5.26)

P (Xi | Ck) is the likelihood of class Ck with respect to sample Xi and P (Xi) is the ev-
idence factor to normalise the probability to 1. The decision that sample Xi belongs to
cluster Ck is done for maximal value of P (Ck | Xi).

Maximum Likelihood Classification

The equation (5.24) shows how to construct an optimal classifier when all probabilities
are known. But in many practical tasks of pattern recognition we have no these probabil-
ities (likelihood, priors and evidence), instead of it we are disposing only data samples
Xi. The problem is how to estimate these probabilities and use them instead of true ones.
We refer to an approach based on probabilistic models for which we should estimate pa-
rameters. In the literature for the parameter model estimation we may found two main
approaches [Duda et al., 2000; Mackay, 2002; Mclachlan & Peel, 2000; Bishop, 2006]:

⋆ maximum likelihood estimation

⋆ Bayesian estimation.

These two approaches result similar estimation of parameters for the large volume of data
(that is the case of pattern recognition in satellite images). But the nature of estimation
between them is quite different. For maximum likelihood the estimation of fixed un-
known parameters maximises the probability of observed samples. While the Bayesian
approach considers parameters as random variables with known a priori distribution.
This distribution together with observed samples estimates a posterior density. A reader
may find a brief comparison of these two approaches in [Duda et al., 2000].

We should note, that in practical cases, e.g., image processing tasks, with many sam-
ples (a million and more) and high dimensions (several tens and more), Bayesian esti-
mation is computationally consuming, that makes it difficult for application in the rea-
sonable time. Whereas results of maximum likelihood estimation are much easier to
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realise and more intuitive to interpret. In addition, as we mentioned for large data sam-
ples the estimation of parameters and classification of these two methods converge to the
same results. That is why we propose to consider maximum likelihood estimation. This
approach is presented in the following section and estimates a probabilistic model via
Gaussian Mixture Model (GMM) and unsupervised classification.

Gaussian Mixture Model

The finite mixture model is widely used to represent data in statistical pattern recogni-
tion. Let X = {X1, ..., XI} denote the data set of samples Xi, where each Xi is a vector
Xi = (Xi1, ..., XiJ) of feature values Xij . The set X is modeled by a finite mixture model
consisting of two parts [Cheeseman & Stutz, 1996]:

1. the prior probability P (Xi ∈ k | Θk) = αk that every sample Xi is a member of
only one mixture component k, (k = 1, ...,K), where αk = nk/I , (nk denoting the
number of samples belonging to the mixture component k);

2. the conditional probability modelling each component k by the parameterised prob-
ability density function (pdf) Pk(Xi | Θk), where Θk denotes the parameter set.

Let Pk(Xi | Θk) denote the class-probability of observing sample Xi conditionally to
Xi belonging to the component k. The finite mixture model expresses the probability of
observing Xi as a sum of pdf:

P (Xi | Θ) =
K∑

k=1

αkPk(Xi | Θk) . (5.27)

With the assumption that data instances Xi, i = 1, ..., I are independently distributed
the joint data probability (probability of observing data set X or likelihood function) is
the product of the individual instance probabilities:

P (X | Θ) =
I∏

i=1

K∑

k=1

αkPk(Xi | Θk) (5.28)

An important sub-class of mixture models is the multivariate Gaussian distribution,
based on a Gaussian class-distribution:

Pk(Xi | Θk) = N (Xi | µk,Σk) =
e−

1

2((Xi−µk)Σ−1

k
(Xi−µk)T )

(2π)D/2 | Σk |1/2
, (5.29)

where µk and Σk are the mean and the covariance matrix of the kth component, respec-
tively. Estimates of the kth mean and covariance matrix are obtained in the sense of maxi-
mum likelihood estimation as [Dempster et al., 1977; Mclachlan & Peel, 2000; Duda et al.,
2000]:

µk =
1

nk

nk∑

l=1

Xl , (5.30)

Σk =
1

nk

nk∑

l=1

(Xl − µk)
T (Xl − µk) , (5.31)

where Xl⊆k.
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Expectation-Maximisation algorithm

Evaluation of conditional probability Pk(Xi | Θk) and their parameters are made by
Expectation-Maximisation algorithm or EM-algorithm. The algorithm maximises the
log-likelihood [Dempster et al., 1977; Mclachlan & Peel, 2000]. We should note that this
optimisation may converge, and it is often a case for practical problems, to different lo-
cal optimal solutions. And, in general, there is no guarantee of convergence to a global
optimum, except in several particular cases. But some practical tricks how to improve
optimal solution will be discussed later.

The equation (5.29) is used to get values Θ̂k and αk which allow to estimate the weight
wik or the conditional probability that instance Xi belongs to class k :

wik =
αkPk(Xi | Θ̂k)∑K
l=1 αlPl(Xi | Θ̂l)

(5.32)

EM-algorithm [Bishop, 2006] is presented in Algorithm 5.5. It estimates parameters
of Gaussian mixture model via unsupervised classification and maximisation of the log-
likelihood function.

Algorithm 5.5 Pseudo code of EM-algorithm

1: Initialise K means µk Eq. (5.30), covariance matrices Σk Eq. (5.31) and αk.

2: E-step Calculate wik

wik = αkN (Xi|µk,Σk)
PK

l=1
αlN (Xi|µl,Σl))

3: M-step Re-estimate the parameters

3.1: µk = 1
nk

∑I
i=1wikXi ,

3.2: Σk = 1
nk

∑I
i=1wik(Xi − µk)

T (Xi − µk) ,

3.3: αk = nk

I , where nk =
∑I

i=1wik.

4: Evaluate the log-likelihood function:

ln(P (X | µ,Σ, α)) =
∑I

i=1 ln
{∑K

k=1 αkN (Xi | µk,Σk))
}
.

5: If log-likelihood converged,

then stop,

else go to Step 2.

Other variants of EM-algorithm as well as a survey of other probabilistic models may
be found in [Mclachlan & Peel, 2000; Bishop, 2006]. We mention that the Gaussian mix-
ture model sometimes in practice are replaced by more robust t-mixtures [Mclachlan & Peel,
2000]. In case of multinomial data, a mixture of multinomial distributions may be con-
sidered [Bishop, 2006].

Recent interesting developments of EM-algorithm for mixture models are given in
[Govaert & Nadif, 2005, 2003]. Authors propose to cluster data simultaneously with fea-
ture clustering. This representation indicates that each cluster of data have a correspond-
ing cluster of features.
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5.6 Conclusions

In this Chapter unsupervised clustering algorithms have been revised. They are divided
into two groups: hierarchical and partitional clustering. Partitional clustering algorithms
are presented from simple as K-means clustering to more complex as kernel and spectral
K-means. They are ended by a probabilistic clustering with the Gaussian mixture model
of clusters. Parameters of GMM are estimated by Expectation-Maximisation algorithm.
The clustering algorithms are compared through their complexity and optimality.

The main problem of unsupervised clustering is the estimation of clustering quality.
Under this notion we understand:

1. comparing and selecting the best clustering result of an algorithm,

2. determining the number of clusters.

These problems are crucial and depend on the clustering algorithm and its measure. They
will be considered in the following Chapter 6 and some new ideas will be proposed.

We have seen that the basis of these algorithms is different. In the case of large vol-
umes of data we consider the data to have ”complex” distributions and shapes of clusters.
That is why it is also assumed that application of different clustering algorithms will pro-
vide us with different clustering results. The interpretation of those results is considered
in Chapter 7.
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Chapter 6

Model selection

Knowledge extraction from satellite images is the main purpose of this thesis. At the
beginning of this extraction we aim to obtain content of data through data modelling.
At the first step this modelling should provide clusters. In our case, one of the crucial
problems of data clustering is that there is no prior information about how many clusters
or classes an image has. A cluster or a class is considered as a type of the Earth surface.
Moreover, it is quite difficult to analyse visually a large satellite image and to delimit
different types of surfaces. To overcome this problem we propose to apply clustering
or unsupervised classification algorithms to detect image clusters. As we have seen in
previous Chapter 5 one of the parameters of these algorithms is the number of clusters. In
this Chapter we give a review of several approaches and criteria to estimate the optimal
number of clusters. Furthermore these criteria are able to select the best clustering from a
set of clusterings. We should note, that inappropriate selection of the number of clusters
and/or clustering results may lead to different and wrong data interpretations that may
be the case in real practical problems.

The estimation of the clustering quality in called cluster validity. A survey of the
validity may be found in [Jain & Dubes, 1988; Mclachlan & Peel, 2000; Friedman et al.,
2001; Theodoridis & Koutroumbas, 2003; Mackay, 2002] and divided into three groups
[Jain & Dubes, 1988; Theodoridis & Koutroumbas, 2003]: external , internal and relative
criteria. External criteria verify whether or how data confirm a structure which were
a priori imposed. These criteria may be verified without application of clustering al-
gorithms. Internal criteria may be based on the quantity values calculated on data and
clustering results. Relative criteria evaluate clustering by comparing different clusterings
obtained either from the same algorithm, but with different parameters or issued from
different clustering algorithms on the same data.

One of the first clustering quality analyses is to check whether data represent some
clusters or they have a random distribution and are not structured in the original space.
This analysis is revised in [Jain & Dubes, 1988] and based on the Hubert’s statistics. This
approach is not considered in the thesis because we know a priori that our data presented
by satellite images have clusters. When the nature about data is not known or proportion
of noise or random samples in data may be considered as significant then this analysis
should be carried out to verify whether data may be clustered or not.

In this chapter we survey internal criteria for different algorithms. Relative criterion
represents an essential part of this thesis and will be revised in Chapter 7.

For hierarchical clustering algorithms we show a statistical value called Cophenetic
Correlation Coefficient (CPCC). The estimation of partitional clustering algorithms will
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be shown through the clustering error of data and information theoretic criteria.
The number of clusters depends on how optimally a model approximates data. In

this Chapter we concentrate our attention an information theoretic measure to estimate
how well model fits data. Under such measure we consider Minimum description length
(MDL). We show relations between MDL and other information measures such as Akaike
information criterion (AIC), Bayesian information criterion (BIC) and Stochastic Infor-
mation Complexity (SIC). We demonstrate also simplification of MDL criteria under the
hypothesis of ”hard” clustering, when data belongs only to one cluster. Further we de-
rive a new criterion called kernel MDL (KMDL) to estimate the number of clusters for
kernel clustering algorithm. Based on MDL and KMDL criteria we propose a general
MDL (GMDL) criterion. In addition, several hierarchical clustering algorithms are de-
rived from GMDL. The interest of such algorithms is that they find clusters with nonlin-
ear shapes and in the same time they are able to estimate the quality of the clustering
solution and the optimal number of clusters.

Information theoretic criteria have become very popular to select the optimal model
for data fitting [Mclachlan & Peel, 2000; Mackay, 2002]. Especially it produces good re-
sults in the case when a lot of data are available, e.g., satellite image processing. These
criteria are clearly formulated and have good theoretical bases. There are many works
discussing equivalence of information theoretic measures AIC, BIC, MDL, which show
that sometimes these measures are equivalent [Mackay, 2002; Mclachlan & Peel, 2000].
Some entropic criterion can also be found in [Biernacki et al., 1999].

We aim to find image clusters and to cluster them without prior knowledge on their
type or number. Considering the amount of available data we prefer using simple, fast
and efficient clustering algorithms. K-means is one of them but suffers from several
drawbacks:

1. it cannot adapt to any cluster shape,

2. the knowledge of the number of clusters is necessary,

3. the result strongly depends on the initialisation process.

To answer the first problem, a classical solution is to use kernel K-means algorithm
[Shawe-Taylor & Cristianini, 2004] given in Chapter 5. During the last decade kernel-
based algorithms attracted lots of researchers who applied them to various tasks such
as machine learning, pattern recognition, computer vision, etc. The success of these ap-
proaches is related to the fact that using a kernel (see definition and properties of kernel
in [Scholkopf & Smola, 2001] [Shawe-Taylor & Cristianini, 2004]) is equivalent to define
a feature space transform. This feature space depends on kernel parameters; several ap-
proaches are proposed in the literature to determine the optimal parameters [?]. The re-
sulting feature space leads to linear separation of clusters. Therefore, classical algorithms
(like K-means) can be applied.

To answer the second and third problems we propose to use a standard approach
such as selection of a clustering solution obtained using different numbers of clusters
and initialisations. This selection is based on the minimum of a clustering criterion. It
allows also stabilising clustering results. The selection of the best solution for random
initialisations have been shown to be effective [Biernacki et al., 2003].

Our proposition about using MDL criterion to determine the number of clusters is
based on several arguments. Firstly, MDL is able to give the optimal code or the optimal
data model [Mackay, 2002], e.g., for the Gaussian mixture model. Secondly, this criterion
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works well when lots of data are available [Heas & Datcu, 2005]. This is our case because
we have a huge storage of satellite images. Finally, in the literature we have not found
previous works about applying MDL criteria to Kernel K-means to find the optimally
associated number of clusters. This provided us with the motivation to formulate MDL
criteria for Kernel K-means clustering.

In this Chapter we propose a new criterion, based on Minimum Description Length,
to estimate the optimal number of clusters. The criterion, called Kernel MDL (KMDL),
is particularly adapted to the use of kernel K-means clustering algorithm. Its formula-
tion is based on the definition of MDL derived for Gaussian Mixture Model (GMM). We
demonstrate the efficiency of our approach on both synthetic and real data.

This Chapter covers the following topics: a criterion to compare clustering knowing
classes is presented in Section 6.1. Between- and within-cluster criteria for hierarchical
and partitional clustering are given in Section 6.2. A survey of information criteria is
presented in Section 6.3 We revise the main definition of MDL for GMM and we show a
simplification of MDL through the complete log-likelihood of GMM in Section 6.4. Then
we formulate Kernel MDL in Section 6.4 using the simplified MDL for GMM. Results on
synthetic data and real satellite images are presented in Sect. 6.4 and Sect. 6.4, respec-
tively.

6.1 Estimation of the clustering solution

The quality of a clustering solution can be measured in regards to the true classifica-
tion (e.g., Rand index, the number of missclassified samples, etc. [Jain & Dubes, 1988]).
Another measures may look at the class labels of the samples assigned to each cluster:
entropy and purity of clustering [Zhao & Karypis, 2004]. The first measure is the widely
used entropy measure that looks at how the various classes of samples are distributed
within each cluster, and the second measure is the purity that measures how good a clus-
ter fills a given class. Given a cluster Ck of size nk, the entropy of this cluster is defined
as:

E(Ck) = − 1

logQ

Q∑

q=1

nq
k

nk
log

nq
k

nk
(6.1)

where Q is the number of classes in the dataset, nq
k is the number of samples in the q-th

class assigned to the k-th cluster. The entropy of the entire clustering solution is then
defined as the sum of the individual cluster entropies weighted by the cluster size. That
is :

Entropy =

K∑

k=1

nk

n
E(Ck) (6.2)

A perfect clustering solution is the one which has clusters containing samples from
only a single class, thus, the entropy equals zero. In general, the smaller the entropy, the
better the clustering solution.

The cluster purity is the fraction of maximal nq
k to the size nk of cluster k. It is defined

as :

P (Ck) =
1

nk
max

k
(nq

k) (6.3)
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The overall purity of the clustering is obtained as the weighted sum of the individual
cluster purities and is given by :

Purity =

K∑

k=1

nk

n
P (Ck) (6.4)

The larger purity, the better the clustering solution.

6.2 Between-, within- cluster criteria

In this section we show clustering validity criteria based on calculating distances for clus-
tered data. As we mentioned above we do not consider external indexes therefore we do
not test our data for randomness. We are sure that we process satellite images as data
with potential clusters (a variety of surfaces). Moreover, we suppose that algorithms of
feature extraction provide reliable information. For hierarchical data clustering validity
criteria are based on pairwise distance matrix, while for the partitional clustering algo-
rithm these criteria are calculated for each cluster of a given clustering.

Validity criteria for hierarchical clustering

Indices to validate hierarchical clustering show how good a hierarchical tree fits data.
One of the indexes to verify this criterion is the Cophenetic Correlation Coefficient (CPCC)
[Jain & Dubes, 1988]. This coefficient is based on the cophenetic matrix. The cophenetic
proximity measure dC on I samples is the level in the dendrogram of a particular hierar-
chical clustering at which samples Xv and Xu are first in the same cluster [Jain & Dubes,
1988]. The lower the difference between the cophenetic matrix and the matrix of similar-
ities (or distances) the better the hierarchy fits the data set. The Cophenetic Correlation
Coefficient is:

CPCC =
1/M

∑
d(v, u)dC(v, u)−mDmC

1/M
√

(
∑
d2(u, v)−mD)(

∑
d2

C(u, v)−mC)
, (6.5)

where mD = 1/M
∑
d(u, v), mC = 1/M

∑
dC(u, v), and 1 ≤ u < v ≤ I . This coefficient

takes values in the range from −1 to 1. When fitting is not very good then the value of
the coefficient tends to −1, while a good data fitting of data by hierarchy tends to 1. The
cophenetic matrix represents an ultrametric and satisfies to its conditions [Jain & Dubes,
1988]. The matrix depends on the hierarchical methods. Applying any hierarchical algo-
rithm to the ultrametric matrix produces the same clustering whatever the algorithm.

Validity criteria for partitional clustering

Some of earlier criteria for cluster validity may be found in [Jain & Dubes, 1988]. A very
popular criterion is based on calculating between- and within-cluster distances. Parti-
tional clustering is partition data into groups (clusters). A good partitional clustering is
such that it reduces the distance among points in the same cluster and at the same time it
increases distances among different clusters. Based on this idea a set of criteria have been
calculated [Coleman & Andrews, 1979]. Within cluster distance is based on the distances
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among points in the cluster. Such distance can be calculated using a square Euclidean
distance and represented as the covariance or scatter matrix.

Sw =
1

K

K∑

k=1

Σk, (6.6)

where Σk is the covariance matrix of cluster k as in Eq. (5.31). Between-cluster distance is
calculated between clusters and usually using the Euclidean distance. This distance may
be considered as the covariance or scatter matrix of cluster means.

Sb =
1

K

K∑

k=1

(µk − µ0)
T (µk − µ0), (6.7)

where µ0 is the mean of data and is written as

µ0 =
1

I

I∑

i=1

Xi, (6.8)

Several criteria have been derived from these within-, between-cluster distances which
are based on cluster separability [Coleman & Andrews, 1979]:

β1 = tr(S−1
w Sb), (6.9)

β2 = ln(| Sw + Sb | / | Sw |), (6.10)

β3 = trSb/trSw, (6.11)

β4 = trSb · trSw, (6.12)

where tr(·) denotes matrix trace (sum of the diagonal elements of a matrix), and | · | the
determinant of the matrix. We should note that β1 and β2 are invariant under any non-
singular linear transformation, while β3 depends on the coordinate system. To determine
the number of clusters which gives the best separability of data one should cluster data
for different numbers of clusters for one of the parameters β. The maximal value indi-
cates the optimal number of clusters. It is easy to verify, that when we have one (i) cluster
in data and (ii) as many clusters as the number of samples, parameter β4 becomes equal
to 0. The maximum of β4 lies between these two limit cases and will indicates the appro-
priate number of clusters. It has been shown in [Coleman & Andrews, 1979] that when
β3 achieves value 1 then β4 achieves its maximum value. This relation may be useful to
avoid unnecessary calculations for further number of clusters.

Maximum or minimum of these criteria shows the optimal number of clusters. Some-
times, when data have a complex structure, the curve of these criteria may exhibit several
local minima or maxima. It is the case when data can be clustered in different numbers
of clusters dependently on the scale under which data are seen. For this example, several
well separated clusters can be considered each of them containing small well grouped
subclusters. As a real example for satellite image processing, large clusters as city and
forest can be well separated, but each of them will contain subclusters as suburb, down-
town, etc., for city and different kind of forest for forest class.
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6.3 Information measure

The above given criteria for partitional clustering were proposed in the earlier stage of
data mining. Nowadays, there are criteria which are based on information theory and are
often more effective. Under a set of such criteria we consider information-theoretical mea-
sures. We present a set of the measures applied to a probabilistic model. In addition we
derive a new criterion based on a simplification of the probabilistic model of clustering.

Bayesian information criterion

Usually data are estimated by two stage inference procedure. At the first stage assuming
that data obey a given model, we estimate parameters of the model. Such estimation is
done for each model. At the second stage using the found parameters we compare the
models and select the best of them. This two stage procedure is argued by the fact that
the more complex the model the better it fits data. We should find a tradeoff between
model fitting and model complexity. The first stage of modelling has been considered
in the previous Chapter 5 via Maximum likelihood estimation of the Gaussian Mixture
Model. Here we pay attention to the second stage of the model selection.

Model selection can be done with respect to a theoretical approach based on the
Bayes’ theorem [Mackay, 2002]. Having two models M1 and M2 we aim to select the
one which best fits data D. Using prior probability P (M1) of the model M1 and the
probability P (M1 | D) of modelM1 given data D (and the same probabilities forM2).
We apply Bayesian formula and compute the ratio:

P (M1 | D)

P (M2 | D)
=
P (M1)

P (M2)

P (D | M1)

P (D | M2)
, (6.13)

where the ratio P (M1)
P (M2)

express the prior preference of modelM1 with respect to model

M2. Therefore, when two modelsM1 andM2 have the same prediction power we prefer
simpler model to complex ones. If the ratio in Eq. (6.13) is greater than 1 we select model
M1 as the best one. Model estimation (parameter estimation Θ) can be done through the
Bayesian theorem Eq. (5.26). The posterior probability of Θ is given by:

P (Θ | D,Mi) =
P (D | Θ,Mi)P (Θ | Mi)

P (D | Θ)
(6.14)

The posterior probability of each model is:

P (Mi | D) ∝ P (D | Mi)P (Mi), (6.15)

where the normalised constant P (D) =
∑

i P (D | Mi)P (Mi) has been omitted. Here the
main difficulty in applying this formula is to calculate the evidence P (D | Mi). This can
be done by parametric or non-parametric model estimation for classification or cluster-
ing. Then the evidence is the normalisation in Eq. (5.26)

P (D | Mi) =

∫
P (D | Θ,Mi)P (Θ | Mi)dΘ. (6.16)

Usually, P (Θ | D,Mi) = P (D | Θ,Mi)P (Θ | Mi) has a peak at the most probable param-

eter Θ̂. In this way the evidence may be approximated, using Laplacian method [Ripley,
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1996], by the height of the peak. When the posterior is approximated by the Gaussian, the
Occam factor is obtained from the determinant of the corresponding covariance matrix:

P (D | Mi) ≃ P (D | Θ̂,Mi)× P (Θ̂ | Mi)det(−1/2)(A/2π),
Evidence ≃ Likelihood ×Occam factor

(6.17)

where A = −∇∇ lnP (Θ̂ | D,Mi) is the Hessian evaluated for the optimal parameter

Θ̂. As we may see from the Bayesian model selection, the evidence is obtained by mul-
tiplying the best fit likelihood by Occam factor. Occam factor may be estimated for I
samples fitted by a parametric model with J degrees of freedom. With some calculations
we obtain:

logP (Θ̂ | M)− J

2
log(I/2π)− log det(−1/2)(I), (6.18)

where det(I) is the determinant of I the Fisher matrix evaluated at Θ̂ with elements:

Iu,v = E
∂ logP (X | Θ)

∂Θu∂Θv
. (6.19)

To select the order of the model [Schwarz, 1978] used approximation of Eq. (6.18) without
a determinant of the Fisher matrix. Using this approximation the logarithm of P (D | Mi)
Eq. (6.17) leads to the Bayesian information criterion (BIC):

BIC = − logP (D | Θ̂) +
J

2
log(I). (6.20)

The minimisation of this criterion shows the optimal order of the model.

Akaike information criterion

Akaike has proposed the Akaike Information Criterion (AIC) which is similar to BIC, but
was derived on a different theoretical basis.

AIC = −2 logP (D | Θ̂) + 2J log(I). (6.21)

BIC often proposes to select simpler models because it has a larger penalty term than
AIC [Friedman et al., 2001]. AIC tends to overfit a model, i.e., means to select more
complex models. That is why AIC can overestimate the number of mixture components
[Mclachlan & Peel, 2000]. The survey of different information criteria and classification
criteria to select the order of a model as well as their empirical comparison is given in
[Mclachlan & Peel, 2000].

Minimum description length criterion

Stochastic complexity

As we are working with a finite set of discrete data modelled by density functions we
can consider their negative logarithm. This logarithm is an integer code. Then for such
modelsM the code length L(X | M) may be written as [Rissanen, 1995]:

L(X | M) = − logP (X | Θ̂) +
J

2
log

I

2π
+ log

∫ √
| I(Θ) | dΘ + o(1). (6.22)

This code length is also called Stochastic Information Complexity (SIC) of the model. The
optimisation of this criterion leads to the selection of the best model fitting data.
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2-parts description length

Model selection may also be viewed through the code length of the model. The model
provides a probability of data fitting. Using Shannon entropy we may calculate how
much information the model contains. The measure of this information is expressed in
bits. It says how many bits in average we should take to code our model. The more bits
are used to represent information the more complex information and, consequently, the
more complex the model is. There exists a universal coding proposed in [Rissanen, 1984]
which consists in two parts:

Part 1 Model description length −L(M) describes the modelM and its parameters Θ̂.

Part 2 Data description length −L(X | M) describes data X knowing the modelM and

its parameters Θ̂.

Then the universal coding is the sum of two parts:

L2P = −L(M)− L(X | M). (6.23)

In the literature the first term is usually represented as:

− L(M) =
J

2
log(I) + o(1), (6.24)

while the second term is:

− L(X | M) = − logP (X | Θ̂,M). (6.25)

Then the two part universal coding becomes:

L2P = − logP (X | Θ̂,M) +
J

2
log(I) + o(1). (6.26)

From equation (6.26) we see that universal coding L2P is the same as BIC Eq. (6.20). It has
been also shown that the two part description code L2P Eq. (6.26) is the approximation
of the SIC Eq. (6.22).

6.4 MDL for the Gaussian Mixture Model

In this section we consider MDL to determine the optimal number of clusters. Clustering
is obtained by Gaussian mixture model and EM-algorithm which estimates parameters
of GMM. In addition, we write MDL criterion for hard clustering when each sample be-
longs only to one cluster. For this we introduce a complete-likelihood of GMM taking an
additional variable which indicates the hard clustering. This consideration leads to some
interesting simplifications of MDL criterion. The simplified MDL may be extended and
applied to other algorithms. In addition, new hierarchical algorithms may be derived.

With the assumption that the data instances Xi are independently distributed, the
joint data probability (probability of observing data set X or likelihood function) is the
product of the individual instance probabilities:

P (X | Θ) =
I∏

i=1

K∑

k=1

αjPk(Xi | Θk) . (6.27)
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The Expectation-Maximisation (EM) algorithm [Mclachlan & Peel, 2000; Mackay, 2002]
can be used to estimate the optimal parameters Θk of GMM. Without loss of generality
we say that the kth component of GMM models the kth cluster.

The purpose of clustering data is to simplify their representation in the feature space
by replacing each sample by a generic class which is likely to express all the properties
of the samples. However, when substituting a sample by its model, an error is intro-
duced. The more complex the model, the less the error. The ”model complexity” is well
expressed by the number of parameters needed to build the model. In the mixture of
Gaussians case where every cluster is given by its mean (5.30) and its covariance matrix
(5.31), the more clusters are used, the more complex the model, and the less the error
between data and model. A method to choose the optimal number of clusters consists in
selecting the number that most efficiently codes the data, i.e. which provides the shortest
description of the models. This method, called Minimum Description Length (MDL), has
been proposed by Rissanen [Rissanen, 1978, 1984; Barron et al., 1998]. MDL is defined as
[Rissanen, 1984]:

min
k,Θ
−log(P (X|Θ)) +

1

2
klog(I) , (6.28)

where log(P (X | Θ)) is the log-likelihood of the mixture model (6.27) and 1
2klog(I) is a

penalty function with k parameters.

MDL for the Complete Log-likelihood of GMM

Let see the log-likelihood for the mixture of Gaussian distributions in details. To com-
plete the likelihood P (X|Θ) Eq. (6.27) of the finite mixture expressed by Eq. (5.27),
we should introduce the hidden variable z which attributes any sample to a class: z =
{z1, ..., zi, ..., zI} [Figueiredo, 2002] [Govaert, 2003]. Label zi is coded as a binary vec-
tor zi = [zi1, ..., zik, ..., ziK ], where zik = 1 if sample i belongs to cluster k, or 0 if not.
Using Eq. (6.27), the complete log-likelihood log(P (X, z|Θ)) becomes [Figueiredo, 2002;
Govaert, 2003]:

log (P (X, z | Θ)) = log

(
I∏

i=1

K∑

k=1

zikαkPk(Xi | Θk)

)
=

I∑

i=1

ziklog(αkPk(Xi | Θk)) .

(6.29)

We derive in more details simplification of the complete log-likelihood log(P (X, z|Θ))
Eq. 6.29 in Appendix C.

In the right part of the MDL definition Eq. (6.28), k is the model free parameters
number. In case of Gaussian mixture model free parameters are:

⋆ K − 1 parameters for K weights αk (since
∑
αk = 1);

⋆ J parameters for each mean µk;

⋆ J(J + 1)/2 parameters for each covariance matrix Σk.

Therefore, the number of free parameters is:

k = K − 1 +K(J + J(J + 1)/2) = K(J2 + 3J + 2)/2− 1 . (6.30)
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Using the complete log-likelihood Eq. (C.5) and the free parameter number of Eq. (6.30),
the description length Eq. (6.28) of Gaussian mixture model with K clusters is:

− 1

2

K∑

k=1

nklog

(
α2

k

| Σk |

)
+ (K(J2 + 3J + 2)/2− 1)log(I)/2 + const . (6.31)

The const term having no influence on MDL for different cluster numbers and as αk =
nk/I , we may minimise:

Λ = −
K∑

k=1

nklog

(
n2

k

| Σk |

)
+K(J2 + 3J + 2)log(I)/2 . (6.32)

Equation Eq. (6.32) shows that a quality of clustering only depends on the weighted
determinants of the covariance matrices which express the square errors between data
and model. Estimating the covariance matrices Σk and the populations of each cluster
nk, we can draw the MDL curve Λ as a function of the cluster number K. The minimum
on this curve indicates the optimal description of the data set X , i.e. the minimum error
with the minimum model complexity.

The MDL criterion Eq. (6.32) may be applied to any clustering method: to EM, which,
as said before, provides the best clustering, given a number of clusters, or to simpler
algorithms - like K-means which may be seen as a simplified version of EM [Mackay,
2002], or Kernel K-means, which is an extension of K-means. Based on this remark, we
propose to define an MDL optimisation of Kernel K-means in Section 6.4.

Graph of MDL to determine the number of clusters

We demonstrate our approach on synthetic data before applying it for real data such as
satellite images. The simplest and often used example of synthetic data is Gaussian distri-
butions where each distribution is a cluster. In the literature on data mining the number
of distributions is usually around ten. But in our case when we work with satellite im-
ages we may have several tens or even hundreds of clusters. That is why we demonstrate
experiments with 24 and 49 Gaussians to determine the number of clusters by MDL cri-
teria. We use the MDL criterion Eq.(6.32) for our experiments. The examples of 24 and
49 clusters are presented in Figure (6.1b) and Figure (6.1d) respectively. The number of
points for each Gaussian is 100.

We run K-means algorithm for a fixed number of clusters (starting from 2 clusters)
with the random selection of cluster centres. Initialising 5 times clustering centres we
select the best clustering with the minimal MDL criteria. Then we change the number of
clusters and repeat clustering. The curve of MDL for 24 clusters is shown in Figure (6.1a).
We see that this curve has a well defined global minimum, which shows the optimal
number of clusters. The same experiments are done for 49 Gaussians Figure (6.1d). The
corresponding MDL curve is shown in Figure (6.1c). As in the previous case, it has a
global minimum that indicates the true number of clusters.

For this experiment MDL has a one well defined global optimum, Figures 6.1a and
6.1c. Thus, we can apply an optimisation method (e.g., a dichotomy search) to determine
the optimal number of clusters on MDL curve instead of computing MDL values for
each of the number of clusters. It can therefore reduce computational time and machine
resources.
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Figure 6.1: MDL curve to determine the optimal number of clusters. a - MDL for 24 Gaus-
sian clusters, b - the optimal clustering of 24 Gaussians, c - MDL for 49 Gaus-
sian clusters, d - the optimal clustering of 49 Gaussians,
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During our experiments with MDL we experimentally observe that it is better to start
from a high value of the cluster number and analyse MDL by decreasing this value. In
this way MDL curve is not so noisy and we can obtain the optimal value very quickly
(several steps).

The optimal number of clusters and features

Here a simple example to determine simultaneously the optimal number of clusters and
the optimal number of features on synthetical data is considered. As we discussed at
the beginning of Section 6.4 MDL criterion estimates the opimal model parameters for
data clustering. These parameters include the number of clusters and the number of data
dimentions. Therefore we can estimate both these parameters to obtain the optimal data
clustering in the sense of MDL.

The estimation is based on the simplified MDL criterion Eq.(6.32). We generate 9
Gaussian clusters in 3 dimension space. Clusters have random sizes: 51, 93, 135, 165,
86, 48, 34, 65, 29. Data are presented in Figure 6.2 a. We concatenate the same three
dimensions of data to have correlations. In addition, we concatenate three dimensions
of data perturbed by Gaussian noise. At the end we concatenate two dimensions which
have Gaussian noise. In the total we have 11 correlated and noisy features of data.

The experiment has following steps: K-means algorithm is run to cluster data of 11
dimensions. For the number of clusters from 2 to 15 the algorithm is run three times
with random initialisations, the best clustering for 3 initialisations is selected by MDL
criterion. Then the last dimension is deleted from data and clustering is repeated. The
best clustering results is selected by MDL criterion. Figure 6.2 b represents MDL criterion
for different number of clusters and different number of features. The optimal number of
clusters equals 9 and the optimal number of features equals 3, which corresponds to the
minimum of MDL criteria. The third dimension of features for MDL criteria shows that
the optimal number of clusters as 9, see Figure 6.2 c. The ninth dimension of clusters for
MDL criteria indicates the optimal number of features as 3, see Figure 6.2 d. A critical
point in this experiment is that features are arranged and removed one by one estimating
MDL criterion. In practice, we do not know very often which feature should be removed
first. The simplest solution may be in estimating MDL criterion foreach removed feature
to decide which of them should be removed first (if it is necessary). Another technique of
features selection can be considered via wrapping or filtering methods [Campedel et al.,
2005].

The idea of this example was to show that MDL criteria can be used to select the best
data features and the best number of clusters in data.

Kernel MDL

In this Section we propose to derive kernel MDL criterion, from the formulation of sim-
plified MDL Eq.(6.32). From Eq.(6.32) it can be seen that the simplified MDL depends on
determinants of matrices | Σk |, which describe the model of data error. This error may
be calculated in the original space X , as well as in the transformed space using a kernel.
Therefore, we propose to define a general MDL, similar to Eq.(6.32), as:

−
K∑

k=1

nklog

(
n2

k

Dist(Xu, Xv|u, v⊆k)

)
+ P (K,J, I) (6.33)
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Figure 6.2: MDL criteria to select the optimal number of clusters and features for corre-
lated and noisy data: a - a toy example of 9 Gaussian clusters. Three first
dimensions are displayed, dimensions 4 − 6 are the same data, dimensions
7− 9 are noisy original data and dimensions 10− 11 have Gaussian noise. b -
MDL criteria for different number of clusters and different number of features
(data clustered by K-means algorithm). c - the third dimension of features for
MDL criteria (the optimal number of clusters is 9), d - the ninth dimension of
clusters for MDL criteria (the optimal number of features is 3).
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where Dist(Xu, Xv|u, v ⊆ k) is the error function for samples Xu and Xv being repre-
sented by the kth cluster (for instance, the distance between Xu and the mean of cluster
k) and P (K,J, I) is a penalty function.

The simplest error function is the Euclidean distance which may be calculated using
the kernel K (5.17). The sum-squares distances from patterns to their corresponding kth

cluster centroid has been presented in [Shawe-Taylor & Cristianini, 2004] as the optimi-
sation function for Kernel K-means:

Sk =
1

nkJ

∑

u⊆k



K(Xu, Xu)− 1

nk

∑

v⊆k

K(Xu, Xv)



 . (6.34)

In the case when K is a linear kernel, S equals the variance in the original space X as
expressed by (5.18). Therefore, assuming that the variances of each cluster are equal for
each dimension, we may rewrite the determinant of covariance matrix Σk as:

| Σk | = SJ
k . (6.35)

As the error Sk (6.34) may be derived for any kernel, e.g. Gaussian (5.19), we may
substitute the determinant (6.35) in the MDL expression (6.32) to obtain the kernel MDL:

KMDL = −
K∑

k=1

nklog

(
n2

k

SJ
k

)
+K(J2 + 3J + 2)log(I)/2 . (6.36)

For the following experiments the same penalty function as in (6.32) have been used.
The derivation of an alternative penalty is not addressed in this paper. One of the main
advantages of this formulation is that the explicit mean of a cluster k is not needed. This
point is important when this mean has no physical meaning, as it is often the case for non-
convex clusters. To calculate MDL criterion for the mixture of Gaussians in the original
space X the distance between samples and the nearest cluster centroid must be calcu-
lated. Problems may appear in case when data are distributed on clusters with holes as
in Figure 6.3-d.

Experiments with synthetic data

In this section we test kernel MDL on synthetic data before applying it to real data such as
satellite images. The simplest and often used example of synthetic data consists in using
Gaussian distributions where each distribution is a cluster. When working on satellite
images, we expect to have a large number of clusters because of the great variety of
possible scenes. Therefore, we demonstrate the potential of the method with a rather
large number of clusters, larger than in the literature [Jain & Dubes, 1988].

We make use of 20 Gaussian distributions with 100 samples per cluster as presented in
Figure 6.3-a. EM algorithm run 20 times for each cluster number, with a different random
initialisation. Two curves are presented in Figure 6.3-b, showing the results of clustering
using either MDL (6.32) or KMDL (6.36) with Gaussian kernel and parameter σ = 2. For
all curves of KMDL a constant is added to better visualise with MDL. As expected, both
curves exhibit a well defined minimum, with an optimal number of clusters equals to 20.

The same experiments were done for another toy example having clusters with a com-
plex structure. Points of this cluster are distributed on a circle. Here again, EM-algorithm
and Kernel K-means with Gaussian kernel (σ = 0.5) have been used. We should say that
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Figure 6.3: Synthetic examples. In a: synthetic example 1 with 20 clusters. In b: results
on clustering example 1. Detection of the optimal number of clusters by MDL
(6.32) (solid line) and by KMDL (6.36) (dashed line). In c: example 2 with a
circular cluster as clustered by EM. In d: the same as clustered by Kernel K-
means. In e: curves drawn for example 2. In f: Optimal number of clusters
for Thyroid and Iris data. MDL (6.32) (solid line with points) and KMDL1
(6.36) with σ = 5 (solid line with diamonds) propose 3 as an optimal number
of clusters for Thyroid data set. KMDL2 (6.36) with (5.18) (dashed line with
stars) and KMDL3 (6.36) with (5.19) σ = 4 (dashed line with squares) propose
3 as an optimal number of clusters for Iris data set.



102 6. MODEL SELECTION

the choice of the optimal value of σ is not considered in this thesis. Optimal results are
presented in Figure 6.3-c and Figure 6.3-d. From Figure 6.3-e, it may be observed that
EM with MDL detects more clusters than expected because of the difficulty to linearly
separate a cluster with a complex structure (also seen in Figure 6.3-c where the circle is
split into 4 clusters). On the contrary Kernel K-means with the Gaussian kernel optimally
separates the mixture in Figure 6.3-d, and KMDL determines the true number of clusters.

The last experiment concerns two real world data sets Iris and Thyroid taken from
the UCI machine learning repository. Iris data contain 3 classes, 50 samples per class and
4 features per sample. The minimum of KMDL (6.36) with the linear kernel (5.18) and
the Gaussian kernel (5.19) determines the true number of clusters equals 3 Figure 6.3-f.
Thyroid data have 3 classes: 150, 35 and 30 samples per class, respectively, and 5 features
per sample. Both criteria KMDL (6.36) with the Gaussian kernel (5.19) and MDL (6.32)
determine the true number of clusters as 3 Figure 6.3-f.

From this set of experiments, several practical rules have been observed. At first, as in
the previous Section, it seems that it is better to start from high values of cluster number
to progressively reduce it in order to have a less chaotic behaviour of the curve. Then we
observe that the MDL is often unequivocal, allowing to use speeding search techniques
like dichotomy for instance.

Experiments with real data: satellite images

The experiment

In the framework of the CNES-DLR Competence Centre we are interested in informa-
tion extraction and image understanding for Earth observation with high resolution im-
ages 1. In order to reduce the amount of information carried by an image, we propose
to categorise satellite images. To avoid bias and omissions due to human expertise, we
investigate unsupervised image category extraction. In this scope we consider each clus-
ter as a category. The optimal number of clusters obtained from a given set of images
is therefore an important clue which cannot be arbitrarily fixed. The previous approach
(based on simplified MDL (6.32) and KMDL (6.36)) will be our guideline to determine
this number.

We are working with images from the SPOT 5 satellite, they are panchromatic im-
ages with a ground resolution of 5m per pixel. Each original image is very large (12000×
12000 pixels) and quite complex; therefore we extract smaller images (1024× 1024 pixels)
with rather homogeneous content on urban areas. These (1024 × 1024) images will, from
now on, be named ”the images” since the original large images will no longer be used
in the rest of this document. The images represent 6 cities: Copenhagen (Denmark), Is-
tanbul (Turkey), Los Angeles (USA), La Paz (Mexico), Madrid (Spain), Paris (France). We
assume that, because of geography, culture and history each image has different surface
textures. Sub-samples of images are presented in Figure 6.4. From these images, we form
a database of samples by cutting each image into 400 samples, each of size 64× 64 pixels.
Samples overlap by 13 pixels. The composed database contained 2400 samples, 6 cities
and 400 samples per city. From each sample, 202 features have been extracted: statis-
tics issued from Quadratic Mirror Filters filtering, statistics from Gabor filters, statistics
from Haralick co-occurrence matrix descriptors and geometrical features. 15 features

1http://www.coc.enst.fr/

http://www.coc.enst.fr/
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were automatically selected from the initial features using unsupervised feature extrac-
tion [Campedel et al., 2005].

a b c

d e f

Figure 6.4: Samples of SPOT5 images (64 × 64 pixels per sample) : a - Copenhagen (Den-
mark), b - Istanbul (Turkey), c - Los Angeles (USA), d - La Paz (Mexique), e -
Madrid (Spain), f - Paris (France). c©Copyright CNES

The data matrix of size 2400 × 15 is clustered with two algorithms: EM-algorithm
[Mclachlan & Peel, 2000; Mackay, 2002] with GMM and Kernel K-means with the Gaus-
sian kernel Eq.(5.19) [Shawe-Taylor & Cristianini, 2004] and parameter σ = 15 which
equals the dimension of normalised data. We compare two clustering algorithms in or-
der to compare their clustering criteria. 50 random initialisations were performed and
the best clustering was chosen. In our experiments the data were normalised in such a
way that their mean equals 0 and the standard deviation of each column is 1, so that the
weight of each feature is the same:

µj =
1

I

I∑

i=1

Xij , (6.37)

σj =

√√√√1

I

I∑

i=1

(Xij − µj)
2 , (6.38)

X̃ij =
Xij − µj

σj
(6.39)

Setting in Eq.(5.19) σ as the data dimension (σ = J), we obtain the curves shown in
Figure 6.5 for MDL and for KMDL Eq.(6.36). For EM-algorithm the optimal number of
clusters is 9 whereas for Kernel K-means it is 11. We may present these optimal cluster-
ings as distribution matrices (as in Tables 6.1 and 6.2, respectively), where each column
corresponds to a city in the same order as in Figure 6.4, and each line represents a cluster.

Discussion

In the ideal case, where all the cities would be perfectly different, we could consider
that the clustering is good if each cluster consists of one city only. From the classification
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Figure 6.5: Detection of the optimal number of clusters by MDL (solid line) and KMDL
(dashed line) criteria for SPOT 5 image textures.

matrices Tables 6.1 and 6.2 we can see that the EM-algorithm and Kernel K-means give
almost the same clusters. But EM-algorithm finds cluster 4 as a mixture of two cities (Los
Angeles and Paris), although these cities exhibit rather different structures Figure 6.4.
The classification matrix of Kernel K-means (Table 6.2) shows that these two cities are
separated (clusters 3 and 8). Even if we set the number of clusters to 12 for the EM-
algorithm the confusion between these cities remains. This confusion disappears when
the number of clusters is 15, but it will not be an optimal clustering in terms of MDL. We
consider that Kernel K-means better clusters data than EM-algorithm because clusters
better correspond to cities. Some texture examples of clustered cities (4 textures per clus-
ter) by Kernel K-means are presented in Tables 6.3 and 6.4. The samples closest from the
centre of the corresponding clusters have been chosen. Each row of Table 6.3 has 4 tex-
ture examples for clusters from 1 to 6 and Table 6.4 for clusters from 7 to 11. We analyse
visually these examples using classification matrix in Table 6.2. The first and sixth rows
of Table 6.3 correspond to 4 textures of La Paz. These clusters show two different surfaces
for this city. The second row has samples from every city and corresponds to large places
which are likely to be similar almost everywhere around the world. The third column is
a typical examples of Paris city blocks and we see from the classification matrix in Table
6.2 that cluster 3 collects nearly all samples of this city. Cluster 4 has mixed samples from
Istanbul and Copenhagen with a domination of Istanbul (see cluster 4 in Table 6.2). These
textures represent both urban and rural areas. Cluster 5 has also similar urban textures
from these cities but with a domination of Copenhagen. Cluster 7 in Table 6.4 has mainly
textures from Madrid but also from other cities. Los Angeles is represented by cluster
8 with its typical square streets. Half textures of Madrid are represented by cluster 9.
Dense areas of Istanbul correspond to cluster 10. Cluster 11 has textures which contain
wide roads. From this early interpretation of classification results, we are quite satis-
fied by the way the textures have been grouped and by the homogeneity of the obtained
classes. Results of clusterings in Tables 6.1 and 6.2 show that several clusters have redun-
dant information. It means that for different clusterings there are clusters which have the
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Table 6.1: Clustering matrix for 6 cities with EM-algorithm

Cities

Clusters Copenhagen Istanbul Los Angeles La Paz Madrid Paris
∑

1 2 3 2 4 155 6 172
2 117 14 0 0 0 0 131
3 86 131 1 0 5 6 229
4 6 3 253 20 24 251 557
5 131 221 0 0 0 0 352
6 0 0 5 256 7 32 300
7 28 11 7 20 32 48 146
8 30 17 132 4 177 56 416
9 0 0 0 96 0 1 97

400 400 400 400 400 400

Table 6.2: Clustering matrix for 6 cities with Kernel K-means algorithm

Cities

Clusters Copenhagen Istanbul Los Angeles La Paz Madrid Paris
∑

1 0 0 0 94 0 1 95
2 28 10 6 22 31 49 146
3 0 0 19 24 9 259 311
4 67 123 1 0 4 6 201
5 112 27 0 0 1 0 140
6 0 0 4 252 5 28 289
7 20 16 72 4 172 34 318
8 13 2 296 0 35 19 365
9 2 2 2 4 142 4 156
10 114 208 0 0 1 0 323
11 44 12 0 0 0 0 56

400 400 400 400 400 400
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same samples. It will be useful for data mining to combine samples that always belong
to common clusters that may reduce redundant information and find some interesting
particular clusters in data [Kyrgyzov et al., 2005].

Conclusions

In this Section a new criterion called Kernel MDL (KMDL) to estimate the optimal num-
ber of clusters for the Kernel K-means algorithm has been proposed. This criterion is
derived from a simplified formulation of the classical MDL for the Gaussian Mixture
Model. Both KMDL and the simplified MDL allow determining the optimal number of
clusters using simply the error function between the data and the model of clusters. To
adapt the criterion to the Kernel K-means algorithm we defined this error function as the
corresponding optimised criterion.

The error can be calculated on the kernel function with the Kernel K-means algorithm.
The advantage of this approach is that Kernel K-means can linearly separate data which
are nonlinearly separable in the original space. As we can see from experimental results
the two criteria MDL and KMDL work well and give optimal numbers of clusters each for
its own algorithm. Kernel K-means algorithm with KMDL shows superior results than
EM with MDL for synthetic data as well as real data. Kernel K-means algorithm with
KMDL is able to detect clusters with non globular shapes contrary to EM with MDL.
Both approaches give different data clusterings.

6.5 An unsupervised hierarchical clustering based on KMDL

In this Section we develop two new hierarchical clustering algorithms. The first uses
the MDL criterion Eq.(6.32) and the second KMDL Eq.(6.36), presented in the previous
Section.

Let us first formulate a general unsupervised hierarchical algorithm which optimises
GMDL Eq.(6.33). Our proposition is similar to the one presented in [Heas & Datcu, 2005]
but differs by the used criterion. In [Heas & Datcu, 2005] the authors propose a hier-
archical algorithm optimising MDL by combining two clusters at each step (a level of
hierarchy). The idea of this approach is to cluster data into large number of ”small” clus-
ters and then optimise hierarchically MDL criteria to find the optimal number of data
clusters. Instead of calculating MDL for each model they consider a hierarchy of models
and analyse MDL. We use the similar approach but for the proposed GMDL criterion
Eq.(6.33) and we also extend this algorithm for kernels.

The choice of an optimal data representation at each level of the hierarchical model is
described by GMDL criterion Eq.(6.33). Instead of the direct calculation of this criterion
at each level of hierarchy and the search of its optimum it is better to consider its gradient.
The minimum value of the gradient shows the optimum as well as a direction in which
this optimum may be found. Moreover, the gradient reduces the computation time as
well as the volume of stored and processed data.

Firstly, we define the gradient of GMDL Eq.(6.33). Let GMDLK+1 be a GMDL Eq.(6.33)
with K + 1 clusters and GMDLK with K clusters, respectively. At step K let us combine
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Table 6.3: Texture examples of clusters, Kernel K-means

Clusters Texture examples

1

2

3

4

5

6
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Table 6.4: Texture examples of clusters, Kernel K-means

Clusters Texture examples

7

8

9

10

11
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two clusters k and k′ . The gradient of GMDL Eq.(6.33) is expressed as:

Γk∪k′ =
∂GMDL

∂K
= GMDLK −GMDLK+1 =

−
K∑

k=1

nklog

(
n2

k

Dist(Xu, Xv|u, v⊆j)

)
+ P (K,J, I)+

K+1∑

k′=1

nk′ log

(
n2

k′

Dist(Xu, Xv|u, v⊆k′)

)
− P (K + 1, J, I) =

nk log

(
Dist(Xu, Xv|u, v⊆k∪k′)
Dist(Xu, Xv|u, v⊆k)

)
+ nk′ log

(
Dist(Xu, Xv|u, v⊆u∪v′)
Dist(Xu, Xv|u, v⊆k′)

)
+

2nk log(nk) + 2nk′ log(nk′)− 2(nk + nk′) log(nk + nk′)− ∂P (K,J, I)

∂K
.

(6.40)

The same function P (J,D, I) is used as in Eq.(6.30). The gradient of this function is:

C =
∂P (K,J, I)

∂K
= (J2 + 3J + 2)log(I)/2 = const (6.41)

Let
Fkk′ = 2nk log(nk) + 2nk′ log(nk′)− 2(nk + nk′) log(nk + nk′)− C , (6.42)

be a function of sizes of two merged clusters. Then, for simplicity, we write the gradient
Γ of GMDL Eq.(6.40) as:

Γk∪k′ = nk log

(
Dist(Xu, Xv|u, v⊆k∪k′)
Dist(Xu, Xv|u, v⊆k)

)
+

nk′ log

(
Dist(Xu, Xv|u, v⊆k∪k′)
Dist(Xu, Xv|u, v⊆k′)

)
+ Fkk′ .

(6.43)

To combine two clusters k and k′ the next condition should be satisfied:

(k, k′) = arg min
uv
{Γu∪v : Γu∪v ≤ 0;u, v = 1, ..., I, u6=v.} . (6.44)

As we see from Eq.(6.41) the term of complexity does not depend on the number of clus-
ters K. This term has no influence on the best choice of two clusters to be combined.
The interpretation of the penalty function Eq.(6.41) is that, it provides a threshold on the
hierarchical tree indicating where it should be cut to give the optimal data clustering ac-
cording to GMDL Eq.(6.33). One of the possible questions to be considered could be the
automatic determination of the threshold C during the optimisation procedure. We did
not address this problem in our paper.

We may propose now the General Unsupervised Hierarchical Clustering (GUHC) al-
gorithm for GMDL.

If we suppose that C = 0 in (6.41) and at step Step 3 we choose the minimum of Γp∪q

without the condition of negativity, then we can build an optimal clustering tree.
The GMDL criterion is calculated at each optimisation step K of GHUC algorithm

as:
GMDLK = Γ(K) +GMDLK+1 . (6.45)
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Algorithm GUHC-algorithm

1: Initiate with K clusters given by any optimal method

or consider each sample as a cluster.

2: Compute Dist(Xu, Xv|u, v⊆p∪q) and Γp∪q, where p, q = 1, ..,K.

3: Find (k, k′) = min
pq
{Γp∪q : Γp∪q ≤ 0; p, q = 1, ...,K, p6=q} and Γ(K) = Γk∪k′ .

4: If no Γ(K), the optimal clustering is obtained, stop.

5: Set Dist(Xu, Xv|u, v⊆k)← Dist(Xu, Xv|u, v⊆k∪k′).
6: Reestimate Dist(Xu, Xv|u, v⊆k∪p) and Γk∪p.

6.1: Set Dist(Xu, Xv|u, v⊆p∪k)← Dist(Xu, Xv|u, v⊆k∪p), p = 1, ..,K.

7: Delete row Dist(Xu, Xv|u, v⊆k′∪p), p = 1, ..,K.

8: Delete column Dist(Xu, Xv|u, v⊆p∪k′), p = 1, ..,K.

9: Go to Step 3.

An unsupervised hierarchical clustering algorithm, MDL

In the case when we use GMDL criterion Eq. (6.33) as the optimality criterion Eq. (6.32)
we have

Dist(Xu, Xv|u, v⊆k) =| Σk | ,

Dist(Xu, Xv|u, v⊆k∪k′) =| Σk∪k′ | .
(6.46)

Then the hierarchical algorithm based on MDL minimises the gradient Γk∪k′ Eq.(6.43)
which has the form:

Γk∪k′ =
∂Λ

∂K
= nk log

( | Σk∪k′ |
| Σk |

)
+ nk′ log

( | Σk∪k′ |
| Σk′ |

)
+ Fkk′ . (6.47)

This algorithm finds the optimal number of Gaussian clusters for data X and constructs
their hierarchical tree.

An unsupervised hierarchical clustering algorithm, KMDL

Direct error computation

When GMDL Eq. (6.33) is used as the criterion Eq. (6.36) we obtain:

Dist(Xu, Xv|u, v⊆k) = SJ
k ,

Dist(Xu, Xv|u, v⊆k∪k′) = SJ
k∪k′ , .

(6.48)

Then the hierarchical algorithm based on KMDL minimises the gradient Γk∪k′ (6.43)
which has a form:

Γk∪k′ =
∂KMDL

∂K
= Jnk log

(
Sk∪k′

Sk

)
+ Jnk′ log

(
Sk∪k′

Sk′

)
+ Fkk′ . (6.49)

We give a description of the hierarchical algorithm for KMDL criterion. Let us note some
of its properties. The proposed error Sk Eq. (6.34) has the good property that its calcu-
lation may be done by precalculated data, since the error Sk∪k′ may be computed using
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errors Sk and Sk′ . It allows avoiding the storage and processing of a kernel matrix K
Eq. (5.17) at each minimisation step of eq. (6.49). Moreover, the calculation of the ker-
nel matrix K is not needed, but only the computation of errors Sk, Sk′ and Sk∪k′ . This
significantly decreases the need in memory. If we compute the kernel matrix K it makes
difficult to apply the algorithm for real applications such as images or large database,
because of the dimensional issue of matrix K. In image processing we want to cluster an
image of size n × n on a pixel basis thus with n2 samples, providing a matrix K of size
n2 × n2, i.e. with n4 terms. It produces a huge volume of data for large n and can not be
processed in a reasonable time for our experiments. We write Sk (6.34) as two terms:

Sk =
1

nkJ

∑

u⊆k

K(Xu, Xu)− 1

n2
kJ

∑

u,v⊆k

K(Xu, Xv) =
1

nkJ
Sdk −

1

n2
kJ
Sskk , (6.50)

where Sdk and Sskk is the sum of corresponding diagonal elements and the sum of ele-
ments of the kernel matrix K, respectively. Let Ss be a square matrix where each element
Sskk′ is the sum of elements of the kernel matrix K:

Sskk′ =
∑

u⊆k,v⊆k′

K(Xu, Xv) . (6.51)

The error Su∪v′ of combination of two clusters Su and Sv′ can be written as:

Su∪v′ =
1

J

(
Sdk + Sdk′

nk + nk′
− Sskk + Ssk′k′ + 2Sskk′

(nk + nk′)2

)
(6.52)

Matrix Ss may be calculated once or at every optimisation step. To overcome memory
complexity for large data sets we propose to initialise the clustering by a high number
of clusters which is much lower than the number of samples. The initial clustering may
be done by any simple algorithm such as K-means. Note, that if the kernel K is linear
Eq.(5.18), then the algorithm in this Section is equivalent to the algorithm in Sec. 6.5 with
the spherical covariance matrix Eq.(6.35).

The proposed hierarchical algorithm has a hypothesis that clusters are spherical. There-
fore, calculations are very fast. The modification of this algorithm for the case when there
is no prior information on the form of clusters is presented in the following section.

Eigen values for error computation

Here we propose to calculate the gradient Eq.(6.40) of the hierarchical algorithm based
on kernel eigen values. Let GMDL criterion Eq.(6.33) be Eq.(6.32) and λu is the uth eigen
value of Σk Eq.(5.31), where u = 1, ..., nk and λ1 ≥ ... ≥ λu ≥ ... ≥ λnk

. Then we write
the determinant Eq.(6.35) as:

| Σk |=
nk∏

u=1

λu (6.53)

It is interesting to note, that such eigen values can be obtained from the kernel K
defined in Eq. (5.17). For example, eigen values of the covariance matrix Σk Eq. (5.31) of
data X are equivalent to the eigen values of the linear kernel Eq.(5.18). To compute the
covariance matrix Σk Eq.(5.31) we normalise dataX so that the mean µk Eq. (5.30) is equal
to zero. So, in a similar way, we compute eigen values of the kernel, but normalising it
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such that the mean of this kernel equals to zero. This operation is called kernel centring
[Shawe-Taylor & Cristianini, 2004]. A new feature map is given by:

φ̂(X) = φ(X)− 1

nk

nk∑

u=1

φ(Xu) (6.54)

Let Xu and Xv be the same vectors with notations x and z, respectively. Then the new
centred kernel K̂ is:

K̂(x, z) = K(x, z)− 1

nk

nk∑

v=1

K(x, zv)−
1

nk

nk∑

u=1

K(xu, z) +
1

n2
k

nk∑

u,v=1

K(xu, zv) (6.55)

Let, λu be eigen values of the centred kernel K̂ Eq.(6.55). Then errors in Eq.(6.43) are:

Dist(Xu, Xv|u, v⊆k) =

nk∏

u=1

λu ,

Dist(Xu, Xv|u, v⊆k∪k′) =

nk+nk′∏

u=1

λu, .

(6.56)

The hierarchical algorithm based on KMDL minimises the gradient Γk∪k′ Eq.(6.43) which
has a form:

Γk∪k′ = Jnk log





nk+nk′∏

u=1

λu

nk∏

u=1

λu




+ Jnk′ log





nk+nk′∏

u=1

λu

nk′∏

u=1

λu




+ Fkk′ . (6.57)

This approach is more effective because it may calculate not only the Gaussian clus-
ters but clusters of any forms. Unfortunately, such an error calculation is more computa-
tional expensive than the direct error computation presented above.

We give a simple example of clustering synthetical data. Two data sets are generated:
(i) 15 Gaussians with random covariances Figure 6.6a and (ii) 6 clusters (two Gaussians,
two cigars and two circle clusters) Figure 6.6b.

Results of the optimal data clustering by GHUC-algorithm with linear kernel and
Γ (6.57) are shown in Figures 6.6a and 6.6b. We see in Figure 6.6a that the algorithm
with a linear kernel detects correctly Gaussians clusters, but is not appropriate to recover
circular clusters in Figure 6.6b. MDL curves showing the optimal number of clusters for
data in Figure 6.6 are shown in Figure 6.7. MDL curve for Gaussians (Figure 6.6a) and Γ
Eq.(6.47) is presented in Figure 6.7a. It indicates correctly the optimal number of clusters
as 15.

For these data Kernel MDL (with Gaussian kernel K Eq.(5.19)) and Γ Eq.(6.57) is
given in Figure 6.7b. The MDL curve with points corresponds to parameter D = 15
in C Eq.(6.41) and shows the correct number of clusters 15. The MDL curve with dia-
monds has D = 2 in C Eq.(6.41) and goes down indicating the number of clusters as 35.
However, we should say that clustering results are the same for different values of D in
kernel MDL. We have shown that gradient of the penalty function Eq.6.41 does not influ-
ence on the hierarchical clustering. Finally, KMDL curve for the linear kernel and data in
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Figure 6.6: Data clustering by GHUC-algorithm with linear kernel and Γ (6.57): a - the
optimal clustering of 15 Gaussian. d - the optimal clustering of 2 circular, 2
Gaussian and 2 cigar clusters.

Figure 6.6b is demonstrated in Figure 6.7c. The optimal number of clusters detected by
this criterion is 10.

Now we cluster data in Figure 6.6b by GHUC-algorithm with Gaussian kernel. The
optimal clustering is presented in Figure 6.8a. It shows that the hierarchical algorithm
detects correctly all 6 clusters (clusters are nonlinearly separated). Two KMDL curves
(Γ Eq.(6.57) with Gaussian kernel K Eq.(5.19)) are presented in Figure 6.8b: (i) the curve
with points for D = 15 in C Eq.(6.41) and (ii) the curve with diamonds for D = 2. Here
again, clustering results are the same for different values ofD in kernel MDL. The optimal
number of clusters is 6 for the curve with points in Figure 6.8b.

It is very interesting to note that the proposed kernel hierarchical algorithm based on
KMDL is robust to the choice of the kernel parameter. For Gaussian kernel K Eq.(5.19)
the algorithms gives the same clusters for varying the parameter σ from 10−1 to 107.

From the experimental results we note that the function C Eq.(6.41) describing the
model complexity is not appropriate when we use, Gaussian kernel Eq.(5.19). But as we
previously said this function has no influence on the hierarchical clustering tree and only
specifies where we should cut the tree. Thereby the clustering tree is the same for any
choice of C Eq.(6.41).

6.6 Conclusions

In this Chapter the problem of model selection has been considered. Different criteria
have been shown for hierarchical, partitional and probabilistic clustering algorithms. For
hierarchical clustering a criterion based on the cophenetic matrix has been presented,
while for partitional clustering within- and between-clustering criteria have been dis-
cussed. For probabilistic models as Gaussian mixture model information theoretic crite-
ria as AIC, BIC, SIC and MDL have been revised. A similarity between these criteria has
been shown. Data clustering has been considered via GMM with the estimation of its pa-
rameters by EM-algorithm. The simplification of MDL for hard clustering and GMM has
been proposed. Simplified MDL criterion can be applied for simpler clustering algorithm
such as K-means algorithm as well as for its modification as kernel K-means or spectral
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Figure 6.7: MDL curves for clustering data in Figure 6.6. a - MDL curve for clustered
Gaussians by Γ (6.47). The optimal number of clusters is 15. b - KMDL curve
for clustered Gaussians by Γ (6.57) with Gaussian kernel K (5.19). A line with
points for D = 15 in C (6.41) and a line with diamonds for D = 2. Clustering
results are the same for the same number of clusters. The optimal number of
clusters is 15. c - KMDL curve for clustered data in Figure 6.6b. The optimal
number of clusters is 10.
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Figure 6.8: Synthetic examples. In a: Result of optimal clustering of example 2 in
Figure 6.6-d by GHUC-algorithm with Gaussian kernel. in b: KMDL curve
for clustered example 2 by Γ (6.57) with Gaussian kernel K (5.19). A line with
points for D = 15 in C (6.41) and a line with diamonds for D = 2. Cluster-
ing results are the same for the same number of clusters. Optimal number of
clusters is 6.

K-means. The advantage of kernel K-means is that it can separate clusters which are not
linearly separated.

A hierarchical algorithm based on the simplified MDL has been proposed in this
Chapter. The idea of this algorithm consists in optimisation of MDL criteria. The optimi-
sation is done via the gradient descend method. Each step of optimisation is performed
by constructing a hierarchical tree. At each level of the tree we combine two clusters.
The order to combine clusters indicated by gradient of MDL criteria. This hierarchical
clustering is performed in the unsupervised way and determine the optimal number of
clusters.

This algorithm was extended to formulate kernel hierarchical clustering based on the
kernel MDL. The advantage of this algorithm is that it is able to cluster data in unsuper-
vised way, to find the optimal number of clusters and to separate clusters which are not
separable linearly.
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Chapter 7

Combination of clustering results

A survey of basic and recent methods for combining clustering results are presented in
this chapter. This survey covers a wide set of approaches : from well formulated with
theoretical bases to empirical approaches. Here combination of clusterings is considered
as an unsupervised task since we aim at avoiding user interaction, either because it may
take a lot of time for a user to analyse clusterings, or because it is very difficult to in-
terpret them. We propose to combine clusterings using clustering algorithms. We will
see that each approach has its advantages and disadvantages. Disadvantages motivate
us to state the problem of combination in a new way and discard them. After problem
formulation we propose two unsupervised methods and algorithms to combine different
clusterings. The first method, although efficient, has no clear proof about its convergence
to a unique global optimal solution. Concerning the second method the same problem is
reformulated, that leads a global solution. In addition, an algorithm is proposed to find
this solution. A proof of the convergence of this algorithm to the global unique solution
is derived. Advantages of the proposed methods are discussed. Results on synthetical as
well as real data sets are provided at the end of this Chapter. Examples of combination
will be illustrated in the following Chapter.

7.1 Introduction

We introduce the problem of clustering combination with application to the satellite im-
age analysis. In the recent years many different imaging sensors for Remote Sensing have
appeared delivering a huge amount of digital images. This kind of data of Earth Obser-
vation (EO) is used by the experts of various domains (ecology, agriculture, defence, etc.).
Along with the image, the expert gets a description in terms of sensor type, geographical
coordinates, time of reception, spectral bands. This information gives a rough descrip-
tion of the image, but it characterises a whole image and can not give answers about the
precise content of the image. Noumerious experiments on image processing have shown
that a small part of any satellite image may be captured in a vector of measures which
expresses the main properties : the multi spectral or radiometric content, the textural
properties, the structural properties, etc. [Pratt, 2001; Barnes, 2007]. Such information
would describe the exact content in terms of imagery, may extremely improve managing
image database, facilitate understanding and discovering new classes from images. What
we call ”content of the image” is the answer to the question ”What is in the image?”, e.g.,
which structures, which scattering properties, objects, etc. Experts from different do-
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mains give different answers to this question because they operate with various concepts
and have various applications in mind. They also have a different knowledge about the
way to describe the image. It means that an expert has his own ontology i.e., a specifi-
cation of a conceptualisation of a knowledge domain. Under the word ”a concept” we
consider a group of similar objects. One of the approaches for automatic discovering of
concepts in the data is the clustering. In this case, concepts are clusters. There is a variety
of clustering algorithms (Chapter 5). Each of them has its own advantages and disadvan-
tages. Some algorithms are robust and correctly cluster data even in the case of heavy
noise but they may be not sensitive to data with a complex structure. On the contrary,
other algorithms are able to find true clusters in the data with complex structures but the
influence of noise on their clustering results is very strong. Thus, the trade off is often to
choose the best clustering algorithm.

Clustering algorithms are basic components of pattern recognition. They are used for
data mining tasks when there is no or few prior information about data to be analysed
[Jain & Dubes, 1988]. The profit of clustering is to obtain groups of samples which will be
seen as similar for further data exploration or retrieval in supervised or semi-supervised
classification [Duda et al., 2000].

It is a common practice when several clustering steps are made in parallel, either be-
cause different algorithms, or, because different parameters of the same algorithm. Differ-
ent clusterings provide complementary results from which we may benefit [Fred & Jain,
2005; Strehl & Ghosh, 2002; Topchy et al., 2004a; Ayad & Kamel, 2005; Boulis & Ostendorf,
2004; Li et al., 2004; Y. Qian, 2000; Topchy et al., 2004b]. At this point the main difficulty
is to determine a judicious criterion to combine elementary clusterings to obtain a final
clustering solution. Then a remaining problem may arrive to efficiently implement the
chosen method in the case of very large databases. The contribution of this Chapter is to
address these two problems.

Many different methods may be used to fuse information issued from different clus-
tering [Diday, 1979; Michaud & Marcotorchino, 1979; Marcotorchino & Michaud, 1982;
Fred & Jain, 2005; Strehl & Ghosh, 2002; Topchy et al., 2004a; Kuncheva, 2004]. We con-
sider two approaches in this Chapter: (i) probabilistic and (ii) algebraic clustering combi-
nation. The probabilistic approach analyses clusterings as nominal data and combination
is performed via unsupervised clustering. The algebraic approach operates with matrix
representation of clusterings. Algebraic methods are based on the property of two sam-
ples to belong or not to the same cluster, depending on the type of clustering. A review
of methods is given in Section 7.2. Probabilistic combination with different methods of
nominal data clustering is presented in Section 7.3. We formulate the combination cri-
terion for the algebraic approach with some mathematical developments in Section 7.4.
Section 7.4 describes the proposed combination algorithm along with an improvement to
efficiently process real data. In Section 7.5 a global optimum of the proposed combination
criterion is shown to be found exactly by an iterative mean shift algorithm. Combination
results on both synthetical and real data are presented and discussed in Section 7.5. Fi-
nally, estimation of clustering stability is discussed in Section 7.6.

7.2 Related works

Combination of different inferences has found many applications relative to supervised
classification. There are many works which establish the usefulness of such an approach
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[Xu et al., 1992; Huang & Suen., 1995; Al-Ani & Deriche, 2002; Kang & Kim, 1997]. How-
ever clustering combination is not yet deeply studied [Kuncheva, 2004]. The goal of com-
bination of classifiers (respectively clusterers) is to combine their outputs to improve the
final classification (respectively clustering). The difference between combining classifica-
tions and clusterings is that for combining of classifications a finite number of classes is
used and the classes of the different classifiers are the same. On the contrary, clusterings
give different sets of clusters, different numbers of clusters and clusters usually do not
correspond from one clustering to the other. Therefore, the combination of clusterings
can provide a new set of clusters.

There exist many different methods to aggregate information pieces issued from dif-
ferent clustering techniques. One of the most attractive is based on the use of a co-
association matrix [Diday, 1979; Michaud & Marcotorchino, 1979; Marcotorchino & Michaud,
1982]. A co-association matrix reflects the number of occurrences of two samples to be
in the same cluster depending on the classification algorithm. An element of this sym-
metric square matrix with size equal to the number of samples, may be interpreted as
the frequency of two samples to be in the same cluster. The co-association matrix will be
introduced in Section 7.4.

In [Fred & Jain, 2005], the authors propose a methodology which is related to an alge-
braic approach of clustering combination described in [Marcotorchino & Michaud, 1982;
Diday, 1979]. A number of clusterings are obtained by K-means algorithm with random
initialisations and a random number of clusters. Collecting their results allows build-
ing the co-association matrix. This problem has been considered as the detection of ”des
formes fortes” proposed in [Diday, 1979]. Several approaches have been proposed to is-
sue a ”consensus” clustering from the set of given clusterings [Michaud & Marcotorchino,
1979; Marcotorchino & Michaud, 1982]. In [Michaud & Marcotorchino, 1979], the authors
propose several measures to find the ”consensus clustering” via aggregation approach.
Clustered data samples are presented by binary matrices and aggraged in order to obtain
the consensus clustering. The ”consensus” clustering is also coded as a binary matrix
and approximates the set of the clusterings.

Another approach to find the ”consensus” clustering is based on the linear program-
ming [Marcotorchino & Michaud, 1982]. The objective function firstly proposed in work
[Michaud & Marcotorchino, 1979] is shown to have a linear form [Marcotorchino & Michaud,
1982]. Finally, the exact solution to find the ”consensus” clustering is proposed. An im-
portant drawback of the proposed approach is a square memory complexity. It makes
difficult its application for very large data sets.

An approach of clustering combination is based on a hierarchical classification with
a single-link method. This algorithms is applied to the co-association matrix to group
samples which appear the most frequently together [Marcotorchino & Michaud, 1982].
In [Fred & Jain, 2005], the final number of classes is taken either as the one that corre-
sponds to the longest lifetime on the dendrogram of the hierarchical algorithm or as the
one which provides the highest mutual information measure between the initial clus-
ters and successive classifications. In this case, normalised mutual information (denoted
NMI in [Fred & Jain, 2005]) is the objective criterion of the method. It expresses a global
quality of the final partition. This method, only based on the frequency of association
of different samples to the same class, is interesting for the user who does not need to
care about the elementary clustering methods. It makes no assumption on the reasons
for which samples have been grouped and does not question about the pertinence of the
initial clustering stage. However it suffers from several limitations: (i) it requires some



120 7. COMBINATION OF CLUSTERING RESULTS

prior knowledge on the approximate number of clusters, (ii) it does not guarantee any
optimality of the final classification and (iii) it may face storage and computational prob-
lems when dealing with very large sample sets.

The first limitation comes from the initial clustering stage. If the number of initial
clusters is sequentially increased from 2 to the number of samples, the co-association
matrix tends to be a near diagonal matrix with small values out of diagonal. Therefore,
the more clusters used to build the co-association matrix, the more clusters result from
the combination. To limit this trend, following the method presented in [Fred & Jain,
2005], one should constrain the initial K parameter of the K-means to values close from
the targeted number of classes.

The third limitation is due to the single-link algorithm used to extract the final classes
(or similarly to the complete-link or to the average-link algorithms which are proposed as
alternatives in [Fred & Jain, 2005]). This algorithm requires the storage of the complete
co-association matrix (or at least its upper-part). In case of thousands of samples, this
may create storage and computational difficulties.

To address the second limitation, the method proposed by Topchy et al. may be used
[Topchy et al., 2004a]. In order to optimise the final classification, Topchy et al. consider
the clustering combination in the framework of finite mixture models of clustering en-
sembles and solve it according to the maximum likelihood criterion with the Expectation-
Maximisation (EM) algorithm. Another solution to overcome this second limitation may
be found in Strehl and Ghosh [Strehl & Ghosh, 2002] using also the mutual information
as an objective function as in [Fred & Jain, 2005], but optimising it with a greedy com-
binatorial algorithm. Unfortunately, its complexity is exponential with the number of
samples. Both Topchy et al. [Topchy et al., 2004a] and Strehl and Ghosh [Strehl & Ghosh,
2002] methods require a predetermined number of final classes. We will propose below
a way to overpass this constraint.

In [Y. Qian, 2000] Qian & Suen propose to combine clustering labels jointly with a
feature space of data. We do not consider such an approach here because very often
it is impossible to combine unambiguously criteria of different clustering algorithms.
In addition, for their approach, several prior parameters should be tuned to combine
clustering results. Ayad and Kamel [Ayad & Kamel, 2005] combine clusterings generated
by K-means algorithm with the same predetermined number of clusters. Authors argue
that the representation of clustering labels by a co-association matrix is cumbersome and
propose to analyse a matrix of pairwise distances between clusters, instead. They find
the correspondence between clusters from different clustering. Then a group-average
hierarchical clustering is applied to group elements of this matrix, in such a way that they
always combine clusterings with the same number of clusters. Authors do not provide
any objective function to estimate the combination quality and the number of clusters
after combination.

In [Boulis & Ostendorf, 2004], a matrix of sample associations is used to represent dif-
ferent clusterings. Then combination of clusterings is obtained by clustering this matrix.
In this approach, the final number of clusters should be a priori known. Lange and Buh-
mann [Lange & Buhmann, 2005] make use of a probabilistic model of the co-association
matrix. The EM -algorithm optimises model parameters. It requires O(I2) operations for
each iteration, where I is the number of data samples making it difficult to apply this
approach to a high volume of data.

Clustering combination is a recent interesting topic in data mining but it appears up to
now weakly exploited. A recent survey [Kuncheva, 2004] only reviews the few methods
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of clustering combination which we also present in this chapter.

As we have seen many methods need a priori information about data to combine
clusterings or to manually set parameters for the combination scheme. This motivates
us to state the problem in a form which will not depend on any parameter and prior
knowledge.

Firstly, we propose to consider combination as nominal data clustering. Several algo-
rithms can be applied: from K-means to EM-algorithm with multinomial mixture models.
The optimal combination for these algorithms can be selected by MDL criteria presented
in Chapter 6. Secondly, we formulate combination using the co-association matrix. It
allows to process large volumes of data as well as large numbers of final classes without
using the co-association matrix explicitly. We propose an objective function and two algo-
rithms to combine different clusterings. The first algorithm uses a hierarchical approach
and shows competitive performances compared to existing ones. It combines clusterings
in an unsupervised way for a large volume of data. Unfortunately, there is no proof that
it always achieves a global optimum. The second algorithm is a fast iterative combina-
tion algorithm for which we prove the convergence to a global optimum of the proposed
objective function. It outperforms experimentally proposed combination approaches.

7.3 Nominal data clustering

Combination of clusterings may be seen as nominal (or categorical) data grouping, where
labels of clusterings are nominal data. Standard clustering algorithms may be applied
to find a solution of clustering combination, e.g., via ”hard clustering” as K-means al-
gorithm [Diday, 1979] or probabilistic modelling with EM-algorithm [Mclachlan & Peel,
2000; Hardle et al., 2003; Bishop, 2006]. In Chapter 5 K-means, spectral K-means, ker-
nel K-means algorithms have been considered. They cluster continuous data for which
Euclidean or other (kernel) distance is determined [Shawe-Taylor & Cristianini, 2004].
Nominal data should be transformed to a binary data set in order to apply distances
and clustering algorithms as for continuous data [Diday, 1979; Mclachlan & Peel, 2000;
Bishop, 2006]. This question is considered in the following subsection. From the other
hand, the probabilistic approach with EM-algorithm may be applied directly to nominal
data (but for convenience, we also transform data to show clearly calculation of proba-
bilities), Sections 7.3 and 7.3.

Partitional clustering

Partitional clustering algorithms such as K-means can be chosen to cluster nominal data,
e.g., labels or names. In our case, nominal data are cluster labels.

Let us consider one clustering. Intuitively, there is no distance between different la-
bels (since there is no metrics in the label space) and no order among labels. But samples
belonging to the same cluster considered as equivalent. On the contrary, samples with
different labels have all the same difference. Let this difference take value 1.

Let a data set be clustered into a given number of clusters. Then let assume that there
are several clusterings and each of them having its own number of clusters. Let I be
the number of samples and P the number of clusterings. Each clustering (denoted with
index p, p = 1, ..., P ) associates each sample i with one and only one cluster.

We may describe the pth clustering by a binary rectangular matrixBp with I rows and
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Jp columns, where Jp equals the number of clusters in the pth clustering, so that:

Bp
ik =

{
1, if sample i ∈ k,
0, otherwise.

(7.1)

where i = 1, ..., I , k = 1, .., Jp. Bp is called a partition matrix. Let us note some properties
of matrix Bp:

1. all columns of the matrixBp are orthogonal, it means that the vector product of any
two different columns equals zero;

2.

Jp∑

k=1

Bp
ik = 1;

3. if samples i and l are from the same cluster (have the same label), then
Jp∑

k=1

Bp
ikB

p
lk = 1, otherwise, if i and l are from different clusters

Jp∑

k=1

Bp
ikB

p
lk = 0.

We can conclude that the vector product of rows ofBp can be used to state the distance
between nominal samples presented by binary matrix Bp as 1 - vector product. Now, let
binary matrix B be the concatenation of matrices Bp such that

B = [B1, ..., Bp, ..., BP ]. (7.2)

Here again the distance between samples i and l can be stated via the vector product of
Bi and Bl. If samples i and l are always in the same cluster for different clusterings p
(clusters may have different labels in different clusterings) then the vector product BiB

′
l

equals P . When samples i and l have no chance to be in the same cluster for any cluster-
ing p then the vector product BiB

′
l equals 0.

The vector product :

BiB
′
l =

PP
p=1

Jp∑

k=1

BikBlk (7.3)

has two important properties:

1. it is limited by 0 from the bottom,

2. it is limited by P from the top.

After normalising Eq.(7.3) by P we obtain: 0 ≤ BiB
′
l ≤ 1. Then the distance between

two samples i and l can be stated via the vector product as:

d(BiB
′
l) = 1−

PP
p=1

Jp∑

k=1

BikBlk (7.4)

When the distance is introduced for nominal data presented by binary matrix B then
a clustering algorithm can be applied, e.g. K-means algorithm.

Let us pay attention at direct clustering. As it was mentioned in Section 5.2 clustering
can be done by verifying all possible clustering solutions (combinatorial search).
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Combinatorial search

Let the combination of clustering be expressed by the binary matrix Bs. Combinatorial
search for the optimal clustering Bs has two bounds:

1. if Bs is the identity matrix, then each cluster has exactly one sample,

2. if Bs has only one row of ones, then only one cluster contains all samples.

The number of possible solutions between these two extreme cases is given by Stirling
number Eq. (5.1) to obtain all possible clusterings or variants of Bs [Jain & Dubes, 1988].
This number is too high for most of practical cases (up to 10155 for 100 samples). The
direct search of Bs could be applied only to a set with a very small number of samples.

One of the ways for direct search may be in computing some statistical quantities on
Bs to restrict the search range. For example, to compute the lower and higher bounds for
possible number of clusters. Others links on this topic for a few samples could be found
in [Jain & Dubes, 1988].

Partitional algorithms

Since distance Eq. (7.4) is introduced, we can apply K-means algorithm to cluster bi-
nary matrix B Eq. (7.2). The result of this clustering is the combination of cluster-
ings. Analogously, spectral and kernel K-means algorithms may be applied to cluster
matrix B. In the case of kernel K-means presented in Section 5.4 the linear kernel K
Eq.(5.18) for the data B is simply covariance matrix K = BB′, where ′ denotes the ma-
trix transposition operation. We should note, that for kernel K-means it has been proven
in [Shawe-Taylor & Cristianini, 2004] that the first K eigen vectors of kernel K contain a
global optimal solution for data clustering intoK clusters, but there is no explicit solution
how to obtain this clustering.

As clusterings can be presented by binary matrices it allows applying clustering al-
gorithms to binary data. One of such approach can be found in [Govaert & Nadif, 2007],
where K-means algorithm and Expectation-Maximisation algorithm with multinomial
mixture model are compared. That work is not considered for combination of clusterings,
however it has many common points with this problem. The comparison of K-means and
EM-algorithm is given in Chapter 8.

We have shown the distance between samples i and l via the vector product Eq. (7.4).
Let have a look at the Euclidean distance dE(Bi, Bl) between points Bi and Bl:

dE(Bi, Bl) = (Bi −Bl)
2 =

PP
p=1

Jp∑

k=1

(Bik −Blk)
2

=

PP
p=1

Jp∑

k=1

B2
ik − 2

PP
p=1

Jp∑

k=1

BikBlk +

PP
p=1

Jp∑

k=1

B2
lk

= 2P − 2

PP
p=1

Jp∑

k=1

BikBlk = 2P − 2BiB
′
l.

(7.5)
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We see that Euclidean distance dE(Bi, Bl) Eq. (7.5) is equivalent to the vector product
distance d(Bi, Bl) Eq. (7.4) and differs only by a constant 2P . The normalised by 2P Eu-
clidean distance have the same properties: it is bounded 0 ≤ dE(Bi, Bl) ≤ 1. In addition,
the Euclidean distance dE(Bi, Bl) is the same as the Hamming distance multiplied by a
constant:

dH(Bi, Bl) =
1

2
dE(Bi, Bl) = P −BiB

′
l. (7.6)

The Hamming distance shows how many bits are different between two binary strings.
We see that different distances d(BiB

′
l) Eq. (7.4), dE(Bi, Bl) Eq. (7.5) and dH(Bi, Bl) Eq.

(7.6) are the same for combination of clusterings (they differ by a coefficient).

The main problems of the approach presented in this Subsection concern K-means
like algorithm:

1. local optimal solution,

2. the number of clusters is not known.

The first problem can be solved by running several times the algorithm and selecting the
”best” clustering, e.g., in the sense of the square error. For the second problem simplified
MDL (Chapter6) can be used to determine the optimal number of clusters. But in this case
the number of model parameters for simplified MDL should be changed: the dimension

of dataB should equals P and not
∑P

p=1 Jp. A comparison of algorithms to cluster binary
data can also be found in [Govaert & Nadif, 2007].

In the following Section we demonstrate how a probabilistic approach can be applied
to combine different clusterings. Probabilistic models and the estimation of its parame-
ters by EM-algorithm will also be done.

Binomial distribution

Combination of clusterings may be considered as clustering of nominal data via a proba-
bilistic modelling. In this case we do not apply a distance as, e.g., Euclidean or other (Sec-
tion 7.3), but we can cluster clusterings using probabilistic classification. In this Chapter
we propose to survey Bernoulli probabilistic model that gives a passage to a multinomial
model which is more general.

Here again clusterings are presented as binary matrix. We use the same notations as
previous, where each clustering p, p = 1, ..P is presented by binary matrix Bp Eq. (7.1),
and P is the total number of clusterings. We can concatenate matrices Bp into one matrix
B. Instead of element notationsBijp , i = 1, ..., I , jp = 1, ..., Jp, let use simply notationBij ,

where j = 1, ...,
∑P

p=1 Jp.

Let b be a single random binary variable (or one column of the matrix B). Then we
may introduce the probability that variable b takes value 1 as:

P (b = 1 | µ) = µ, (7.7)

where 0 ≤ µ ≤ 1. Then the probability that b takes 0 is P (b = 0 | µ) = 1 − µ. The
probability of the distribution b is called Bernoulli distribution:

Bern(b | µ) = µb(1− µ)(1−b), (7.8)
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where its mean is E[b] = µ, its variance is var[b] = µ(1 − µ). Then we may write a
likelihood function for binary data B, with assumption that data are i.i.d (independently
and identically distributed) from P (b | µ) as:

P (B | µ) =
I∏

i=1

P (bi | µ) =
I∏

i=1

µbi(1− µ)(1−bi). (7.9)

Then the logarithm of likelihood function may be written as:

logP (B | µ) =
I∑

i=1

(bi logµ+ (1− bi) log(1− µ)). (7.10)

Setting the derivative of logP (B | µ) to zero with respect to µ we obtain a maximum
likelihood estimation for µ:

µ =
1

I

I∑

i=1

bi, (7.11)

or if the number of 1 in the column b of B is m then:

µ =
m

I
. (7.12)

The distribution of m, given the data B is called Binomial distribution:

Bin(m | N,µ) =

(
I
m

)
µm(1− µ)(I−m), (7.13)

where (
I
m

)
=

I!

(I −m)!m!
, (7.14)

is the number of ways of choosing m objects out of I . The mean of this distribution is
E[m] = Nµ and the variance var[m] = Nµ(1− µ).

Bernoulli mixture model

Our goal in this section is to model binary data and to combine them into clusters. This
modelling is based on a mixture of Bernoulli distribution and estimating mixture pa-
rameters. Each mixture component corresponds to a cluster of nominal data. Below we
give the mixture model for Bernoulli distributions and EM-algorithm which is used to
estimate parameters of the mixture.

Bernoulli distribution is also known as latent class analysis. In the previous section a
single variable b of B has been considered, let now see the set of variables or matrix B,

where Bij ∈ {0, 1}, i = 1, ..., I , j = 1, ..., J and J =
∑P

p=1 Jp. When all variables (column
of B) have the Bernoulli distribution with parameter µj , then:

P (B | µ) =

J∏

j=1

µ
Bj

j (1− µj)
(1−Bj), (7.15)

where µ = {µ1, ..., µj , ..., µJ}. The mean value of this distribution is E[B] = µ and the
covariance matrix is cov[B] = diag{µj(1− µj)}.
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The mixture of K components of Bernoulli distributions for sample Bi has the same
general form as for GMM Eq. (5.27):

P (Bi | µ,α) =

K∑

k=1

αkPk(Bi | µk), (7.16)

where µ = {µ1j , ..., µkj , ..., µKj} and the probability of Bi given µk is

Pk(Bi | µk) =
J∏

j=1

µ
Bij

kj (1− µkj)
(1−Bij) (7.17)

Assuming that dataB are i.i.d. the logarithm of the joint data probability or likelihood
function is the logarithm of the product of probabilities of B given µ and α:

logP (B | µ,α) = log
I∏

i=1

P (Bi | µ,α) =
I∑

i=1

log

{
K∑

k=1

αkPk(Bi | µk)

}
(7.18)

Introducing a complete likelihood and using Bayes’ theorem with some transformations
[Bishop, 2006] we may obtain the weight wik or the conditional probability that the sam-
ple Bi belongs to the class k:

wik =
αkPk(Bi | µk)
K∑

l=1

αlPl(Bi | µl)

. (7.19)

EM-algorithm for Gaussian mixture model have been proposed in Section 5.5 . We can
apply this algorithm to the Bernoulli distribution as well. Weights wik are calculated
on the E step of EM-algorithm. Parameters µ and α are calculated on the M step and
maximise the expected complete likelihood of the data. The expected number of points
Nk of the component k is:

Nk =

I∑

i=1

wik. (7.20)

The mean value µk of this component is:

µkj =
1

Nk

I∑

i=1

wikBij . (7.21)

The weights of mixture model is:

αk =
Nk

N
. (7.22)

In addition, next constraints should be satisfied:∑K
k=1 αk = 1,

∑J
j=1 µkj = 1, 0 ≤ αk ≤ 1 and 0 ≤ µk ≤ 1.

Now the EM-algorithm for the Bernoulli mixture model (BMM) can be given.
We have seen that combination of clusterings may be done through the probabilistic

approach. This approach includes

1. representation of clusterings in a binary matrix,
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Algorithm 7.3 Pseudo code of EM-algorithm for the Bernoulli mixture model

1: Initialise K means µk and αk.

2: E-step

2.1: Calculate probabilities Pk(Bi | µk) as in Eq. (7.17):

Pk(Bi | µk) =
J∏

j=1

µ
Bij

kj (1− µkj)
(1−Bij)

2.2: Calculate weights wik as in Eq. (7.19):

wik =
αkPk(Bi | µk)
K∑

l=1

αlPl(Bi | µl)

4: M-step Re-estimate parameters Nk Eq. (7.20), µk Eq. (7.21) and αk Eq. (7.22)

4.1: Nk =
I∑

i=1

wik.

4.2: µkj =
1

Nk

I∑

i=1

wikBij .

4.3: αk =
Nk

N
.

5: Evaluate the log-likelihood function:

logP (B | µ,α) =
I∑

i=1

log

{
K∑

k=1

αkPk(Bi | µk)

}

6: If log-likelihood is converged,

then stop,

else go to Step 2.

2. modelling binary data via the Bernoulli mixture model,

3. applying EM-algorithm to find groups of clusterings,

4. information theoretical measures discussed in the Chapter 6 may be applied to se-
lect the best model.

Examples and comparison between different approaches of clustering combination are
given in Chapter 8. We should note several disadvantages of such modelling:

1. it is well known that EM-algorithm gives a locally optimal result,

2. classification result of this algorithm depends on the initialisation. There is a little
chance to have a good initialisation for large data set, e.g., for image processing.

3. it may be difficult to apply this algorithm when many (hundreds) clusters and clus-
terings (some tens) are used: during classification by EM-algorithm (Algorithm

7.3), the multiplication in Pk(Bi | µk) Eq. (7.17) will go to zero).

To avoid these problems the following solution may be proposed: select the best clas-
sification and mixture model by MDL Eq. (6.28) criterion for different initialisations and
the number of mixture components.
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Unsupervised classification of nominal data by Bernoulli distributions supposes that
each variable takes one of two binary values. But in the case of clustering combination
each variable of B takes a set of mutually exclusive values. We may see this property
in revising matrix Bp. Columns of Bp are mutually exclusive and orthogonal. In this
case, instead of Bernoulli distribution data should modelled by a multinomial distribu-
tion [Bishop, 2006]. This is explained below as well as EM-algorithm to estimate param-
eters of the multinomial model.

Multinomial mixture model

Labels of one clustering result may be coded as binary matrixBp. Columns of this matrix
are orthogonal and mutually exclusive. The Bernoulli distribution for binary data sup-
pose that binary variables are independent but not mutually exclusive. For the last case
binary data Bp as well as concatenated matrix B of Bp should be modelled by multino-
mial distribution.

Groups in clusterings may be found by EM-algorithm with a probabilistic modelling.
Under probabilistic modelling we consider a mixture model of multinomial distributions.
Parameters of this model are estimated by EM-algorithms. Without loss of generality we
further consider that the obtained unsupervised classification is a combination of cluster-
ings and found classes represent clusters of clusterings.

We should make a difference between binomial and multinomial distributions. The
multinomial models generalise binomial distribution, however both models may be ap-
plied to nominal data and very often give the same results. Although we should note that
multinomial mixture model with EM-algorithm may process the higher number of clus-
ters than the binomial mixture, in regard to the problem of multiplication of probabilities
Pk(Bi | µk) Eq. (7.17).

We have p different clusterings, where each clustering have Kp clusters, p = 1, ..., P .
Let jp = 1, ...,Kp be the index for cluster jp in clustering P . Without loss of generality let
binary matrix B be the concatenation of binary matrices Bp as in Eq.(7.2). Then an ele-
ment Bijp means that sample i belongs to cluster jp in clustering p, where i = 1, ..., I . Ma-

trixB has a property that the sum over each sample i and each cluster jp is
∑Jp

j=1Bijp = 1,
∀i, p. Denoting the probability that Bijp = 1 via parameter µijp we express it as:

P (Bijp) =

Jp∏

jp=1

µijp , (7.23)

where parameter µijp ≥ 0 and
∑Jp

j=1 µijp = 1, ∀i, p because it is a probability. Then we
may write the multinomial distribution of data B over µ

P (B | µ) =
P∏

p=1

Jp∏

jp=1

µ
Bjp

jp
, (7.24)

where µ = {µ1, ..., µjp , ..., µJp
}. It is easy to see that this distribution Eq. (7.24) is the

generalisation of Eq. (7.15).
Here again as in previous cases we write mixture model of K components of multi-

nomial distributions for sample Bi:

P (Bi | µ,α) =
K∑

k=1

αkPk(Bi | µk), (7.25)
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where µ = {µ1j , ..., µkj , ..., µKj} and the probability of Bi given µk is

Pk(Bi | µk) =
P∏

p=1

Jp∏

jp=1

µ
Bijp

kjp
. (7.26)

The logarithm of the likelihood function (under assumption that B are i.i.d.):

logP (B | µ,α) = log
I∏

i=1

P (Bi | µ,α) =
I∑

i=1

log

{
K∑

k=1

αkPk(Bi | µk)

}
(7.27)

Parameters of multinomial distribution Eq. (7.26) are estimated through the maximi-
sation of its likelihood function [Bishop, 2006].

As before weightwik or the conditional probability that the sampleBi belongs to class
k is:

wik =
αkPk(Bi | µk)
K∑

l=1

αlPl(Bi | µl)

. (7.28)

EM-algorithm is applied as in previous sections but to mixture of multinomial distri-
butions. The expected number of points Nk of the component k is:

Nk =
I∑

i=1

wik, (7.29)

and weights of mixture model is:

αk =
Nk

N
. (7.30)

Mean value µjp of mixture component k is:

µkjp
=

1

Nk

I∑

i=1

Bijp . (7.31)

Then the EM-algorithm for the Multinomial mixture model (MMM) is given in Algo-

rithm 7.3.
Here again, the same problems arise as in its previous section when EM-algorithm is

used: local optimal results, dependence of on initialisation, selection of the best model
and estimation of the number of mixture components. They can be solved via model
estimation by MDL criterion Eq. (6.28).

If we do not have a priori information about parameters of the multinomial mixture
model µk Eq. (7.31) and αk Eq. (7.30) and K we may estimate them several times (for
different initialisations) and select the optimal values in the sense of MDL Eq. (6.28). At
the beginning we should fix the number of mixture components K. One of the simplest
way to initialise αk Eq. (7.30) is αk = 1/K or randomly with respect to conditions. To
obtain stable classification results we may run EM-algorithm several times and each time
we randomly initialise parameters µk Eq. (7.31) and/or αk Eq. (7.30). The best selected
model has the lowest value of log-likelihood function of MMM.

Changing the number of components K for MMM and estimating parameters of
MMM for each run we can estimate K or the complexity of the model by any infor-
mation criterion, e.g., MDL Eq. (6.28). We obtain the curve with maxima (or minima, it
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Algorithm 7.3 Pseudo code of EM-algorithm for the multinomial mixture model

1: Initialise K means µk and αk.

2: E-step

2.1: Calculate probabilities Pk(Bi | µk) as in Eq. (7.26):

Pk(Bi | µk) =
P∏

p=1

Jp∏

jp=1

µ
Bijp

kjp

2.2: Calculate weights wik as in Eq. (7.28):

wik =
αkPk(Bi | µk)
K∑

l=1

αlPl(Bi | µl)

4: M-step Re-estimate parameters Nk Eq. (7.29), µk Eq. (7.31) and αk Eq. (7.30)

4.1: Nk =
I∑

i=1

wik.

4.2: µkjp
=

1

Nk

I∑

i=1

Bijp .

4.3: αk =
Nk

N
.

5: Evaluate the log-likelihood function:

logP (B | µ,α) =

I∑

i=1

log

{
K∑

k=1

αkPk(Bi | µk)

}

6: If log-likelihood is converged,

then stop,

else go to Step 2.

depends on the sign) indicating the optimal K. Here again we should properly select the
number of free parameters to correctly penalise the model complexity in MDL Eq. (6.28):
the dimension of data should be equal to P .

From a practical point of view, the combination of clustering results by the mixture
model of Bernoulli distributions or multinomial distributions give very often the same
results. But we should differ BMM from MMM, because MMM is generalisation of BMM.
Thus, MMM is preferred to BMM for clustering combination.

7.4 Combination using a co-association matrix

In this section we propose to survey some solutions for clustering combination using a
co-association matrix. We also present new methods for clustering combination to avoid
disadvantages of existing approaches. The idea of the proposed combination is to group
samples which are in the same cluster in most cases. Firstly, we propose an objective func-
tion to combine different clustering results. Then we develop a hierarchical algorithm to
optimise the objective function. Such an algorithm is competitive compared to any other
algorithms of combination but in spite of its very good results it does not guarantee the
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convergence to a global solution. After analysis of the objective function we propose an
improved method which gives a global solution. Moreover we describe conditions for
such a convergence.

It is interesting to note, that such a grouping may be expressed as the minimisation
of the square error between samples presented by labels of clusterings. We prove in this
section that the global solution of the minimum square error may be found using the
gradient estimation of a density function. All the locally optimal modes of the density
form groups of samples and consequently constitute a global solution of the combina-
tion. One of the advantages of such a method is that the proposed algorithm has a fast
convergence and a near linear complexity. It is an important advantage when a great
amount of data is to be processed as in the case of satellite image processing. The com-
bination of clusterings is performed on synthetic and real databases. The effectiveness of
the proposed method and its superiority with respect to other combination approaches
are demonstrated.

Problem statement

Let us consider the case where we have a large set of samples and different clustering
methods, each of them providing a partition of the sample set into a specific number of
clusters. As before let I be the number of samples and P the number of clusterings. Each
clustering (denoted with index p, p = 1, ..., P ) associates each sample uwith one and only
one cluster.

The elementary co-association matrix Ap collects information on which sample v be-
longs to the same cluster as u:

Ap
uv =

{
1, if u and v are in the same cluster,
0, otherwise.

(7.32)

Therefore Ap is a binary symmetric square matrix of size I .
We may similarly describe the pth clustering by partition matrix Bp defined in Eq.

(7.1) with I rows and Jp columns, where Jp equals the number of clusters in the pth

clustering, u = 1, ..., I , j = 1, .., Jp.
We verify that:

Ap = BpBp′, (7.33)

where ′ denotes the matrix transposition.
For the P clusterings, we can compute the average matrix A as:

A =
1

P

P∑

p=1

Ap =
1

P

P∑

p=1

BpBp′. (7.34)

A is the global co-association matrix or, in short, the co-association matrix. For large
P , we may say that two elements u and v have a probability Auv to belong to the same
cluster.

Let us denote Bs the consensus partition, i.e. a partition of the samples which reflects
at best the point of view of every clustering. Our goal is to obtain such a consensus
partitionBs from the co-association matrixA. FromBs, we may compute a square matrix
D of size I as:

D = BsBs′. (7.35)
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Such a matrix D would be the binary co-association matrix corresponding to the con-
sensus classification. For any problem, where P different clusterings are performed, we
may observe one matrix A, but the consensus partition Bs is unknown as well as D. The
purpose of the clustering combination is to derive these unknown matrices.

Several different matrices D could be obtained, depending on the criterion chosen to
derive D from A. For instance, in [Fred & Jain, 2005] the matrix D is obtained from A
by maximising an information theoretic criterion (normalised mutual information NMI
criterion). We propose here to formulate the solution as the one which minimises the
square error between D and A:

E = ‖D −A‖2, (7.36)

which may be rewritten (since D is binary) as:

E =
I∑

u=1

I∑

v=1

(
I∑

r=1

(Bs
urB

s
rv

′)−Auv

)2

=
I∑

u=1

I∑

v=1

Duv(1− 2Auv) +
I∑

u=1

I∑

v=1

A2
uv,

subject to Bs′Bs = I, with
I∑

i

Iii = I and Bs
uv ∈ {0, 1},

(7.37)

where I is a diagonal matrix of size I with diagonal elements equal to the cluster sizes.
The proposed quadratic objective function Eq. (7.37) has a convex form for all pos-
sible consensus clusterings, contrary to a mutual information criterion as proposed in
[Fred & Jain, 2005; Strehl & Ghosh, 2002]. Therefore it may be solved exactly by efficient
methods.

Eigen vector decomposition

It can be noted that In Equation (7.37),
I∑

u

I∑

v

A2
uv is a constant, which plays no role in

the minimisation.

Let Q denote a square matrix with element Quv = (1− 2Auv). As D = Bs·Bs′ using a
matrix trace and its cyclic property, from (7.37) we have now to minimise:

I∑

u

I∑

v

DuvQuv = Tr(D·Q) = Tr(Bs·Bs′·Q) = Tr(Bs′·Q·Bs) (7.38)

Let Q̄ = −Q, then the best clustering, which minimises Eq. (7.37) is given by:

max Tr(Bs′·Q̄·Bs) (7.39)

with a constraint on the norm of Bs: Tr(Bs·Bs′) = I .

The relaxed solution of this problem could be derived from a projection matrix U =
V ·
√
|Λ|, where Q̄ = V ·Λ·V ′ is the eigen decomposition of the matrix Q̄ = 2Auv − 1, V is

a diagonal matrix of eigen values and Λ is a matrix with eigen values. The matrix Bs has
1 for maximal element of each row of U and 0 for the rest of them. Also using the same
substitution the matrix Bs can be obtained from the eigen decomposition of A. With the
same notations A = V ·Λ·V ′ = (V ·

√
Λ)·(V ·

√
Λ)′, where Bs = V ·

√
Λ.
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Discussion: The theoretical solution proposed here is a good solution when matrix Q
reflects a perfect clustering. In this case, we just have U different column vectors for Q.
The eigen-space is therefore of the same dimension as U , each eigen-vector of Bs having
as a multiplicity order the number of samples in the corresponding clustering. Matrix Bs

(resulting from the eigen-vector decomposition is of size P .
WhenQ is not perfect, the decomposition has more than P non-zero eigen vectors. We

may expect the P largest eigen values correspond to optimal solution and the following
ones correspond to noise. Therefore we will just discard the I−P smallest eigen-vectors.
But nothing guarantees that the obtained Bs has binary vectors, and the decision issue
(which sample belongs to one of the vector of Bs) may be not true. Moreover it is not
guaranteed that it is positive, a necessary condition to reflect the membership of a sample
to the corresponding cluster. For these reasons, there is no warranty that eigen vectors
will produce a desired solution; this method may lead to wrong results. This approach is
discussed in [Shawe-Taylor & Cristianini, 2004].

Bounds of square error E

The low bound of square error E Eq.(7.37) is 0 and it is achievable when the ”consensus”
clustering is one of the given clusterings and all they are equal. When clusterings are
different then the lower bound is not equal to 0. The bound of error E (7.37) can be
calculated [Marcotorchino & El ayoubi, 1991; Benhadda & Marcotorchino, 1998]. Let us
analyse the theorem of Hoffman-Wielandt:

If two symmetrical matrices A Eq.(7.34) and D Eq.(7.35) of size I × I have ordered
eigen values λ1 ≥ λ2 ≥ ... ≥ λI and γ1 ≥ γ2 ≥ ... ≥ γI , respectively, then:

‖A−D‖2F ≥
I∑

i=1

(λi − γi)
2, (7.40)

where ‖A−D‖2F =
I∑

u=1

I∑

v=1

(Auv −Duv)
2 is a Forbenius norm and u, v = 1, ..., I .

Then using Eq. (7.37) we write inequality (7.40) as:

I∑

u=1

I∑

v=1

A2
uv − 2

I∑

u=1

I∑

v=1

DuvAuv +

I∑

u=1

I∑

v=1

D2
uv ≥

I∑

i=1

λ2
i − 2λiγi + γ2

i . (7.41)

As
I∑

u=1

I∑

v=1

A2
uv =

I∑

i=1

λ2
i and

I∑

u=1

I∑

v=1

D2
uv =

I∑

i=1

γ2
i then we obtain:

I∑

u=1

I∑

v=1

DuvAuv ≤
I∑

i=1

λiγi. (7.42)

Let Cj be the jth consesnsus cluster having nj samples, where
∑J

j nj = I and j =
1, ..., J . Then we may rewrite inequality 7.42 as:

I∑

u=1,u∈Cj

I∑

v=1,v∈Cj

Auv ≤
J∑

j=1

λjγj (7.43)
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or

1

nj

I∑

u=1,u∈Cj

I∑

v=1,v∈Cj

Auv ≤
J∑

j=1

λj , (7.44)

because γi = nj for i, j = 1, ..., J and γi = 0 for i = J + 1, ..., I .
We see that inequality (7.40) indicates the lower bound of the error E (7.37). More

over inequality (7.44) shows how good is consensus clustering {Cj}.

Cholesky decomposition

Another side of this problem can be viewed from the properties of matrix Bs. A desired
solution for the square matrix Bs is a lower triangular matrix. It is clear that column
permutation of Bs does not change the matrix D. We use this property to represent Bs in
the form of a lower triangular matrix:

1. We permute the first column in Bs with a column, which has a ”one” in the first
row.

2. Then we search the first zero in the first column and a position of one in such a row.

3. After we permute the second column of Bs with a column in which we have found
the one. We repeat this procedure by searching the first zero in a current column
and permuting the next column with a column that has a one in the row that corre-
sponds to the found zero.

An example is shown in Figure (7.1). The matrix Bs of size 8 × 4 corresponds to the
assigning of 8 elements to 4 clusters.

↓ ↓ ↓
→ 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 → 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 → 0 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 ⇒ 1 0 0 0 ⇒ 1 0 0 0 ⇒ 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
N N N N N N

a b c d

Figure 7.1: Matrix permutations to obtain a Choleski matrix. a - permutation of first and
third columns, b - permutation of second and forth columns, c - permutation
of third and forth columns, d - permuted lower triangular matrix Bs with
added zeros.

We see that the first row of a left matrix in Figure7.1 has 1 in a third column. We
permute first and third columns Figure (7.1a). Then in the first column the first 0 is at a
the second row in which 1 is at the forth position. We permute second and forth columns
Figure (7.1b). At the next step the second column has first zero below a diagonal at the
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forth position and in this row 1 is at the forth position, so we permute third and forth
columns Figure 7.1c. A final result of permutation is in Figure (7.1d). We see that our
matrix Bs can be presented as the lower diagonal matrix.

An example of a co-association matrix is in Figure 7.2

1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0

A1 = Bs·Bs = 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

Figure 7.2: Co-association matrix A associated to the partition matrix Bs in Figure7.1

Cholesky decomposition of a square matrix A solves the equation A = B·Bs′ with a
minimal L2 error that corresponds to minE, under the condition that A is positive defi-
nite or semi-definite. But, for the problem at hand, as for the previous case, this solution
does not ensure thatBs has positive values. At last, the result of Cholesky decomposition
of the matrix A is very dependent on lines and columns permutations.

Quadratic programming

Problem 1 When looking for Bs as an upper triangular matrix, we need to search only
I(I + 1)/2 elements of this matrix. If all these elements are arranged in single column
vector bs [Pratt, 2001] the problem (7.38) could be rewritten as a constrained quadratic
problem:

min bs′·Q∗·bs

subject to bs′·bs = I and 0 ≤ bs ≤ 1
(7.45)

where the Q∗ matrix is constructed by block diagonal concatenation of the Q matrix and
by deleting rows and columns which correspond to zero elements of the upper triangular
part of Bs.

Unfortunately, for real applications, e.g., image classification, the complexity issue
becomes dominant: it is very cumbersome to work with a matrixQ∗ of size (I(I+1)/2)2 =
O(I4), when I is of the order of 103.

Problem 2 As matrix Auv is symmetric, then Auv = A′
uv and Q = Q′. With these con-

straints our problem becomes:
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min Tr(Bs′·Q·Bs)

subject to u·Bs ≤ v, v = (I, ..., 1),

Bs·u′ = u′, u = (1, ..., 1),

Bs = {0, 1} or 0 ≤ Bs ≤ 1

(7.46)

The Lagrange function for 7.46 is:

L(Bs, µ, η) = Tr(Bs′·Q·Bs) + (u·Bs − v)·µ′ + η·(Bs·u′ − u′) (7.47)

where µ and η are vectors of Lagrange multipliers.

The Karush-Kuhn-Tucker conditions for (7.46) to have a minimum are:

∂L

∂Bs
= 2Q·Bs + u′µ+ η′u = 0,

∂L

∂µ
= u·Bs − v = 0,

∂L

∂η
= Bs·u′ − u′ = 0,

Bs, µ, η ≥ 0

(7.48)

Discussion: Problems 1 and 2 given above have non-convex quadratic formulation be-
cause matrices Q∗ and Q are nondefinite (they have positive and negative eigen-values).
Non-convex quadratic problems is very difficult to solve, however there exists methods
of quadratic optimisation designed to find a local minimum of (7.45) [Floudas & Visweswaran,
1994].

Proposed solution

Combination algorithm

In order to combine clusterings and find Bs that minimises E Eq. (7.37) we propose to
use a single-link merging algorithm Jain & Dubes [1988]. This algorithm has been ex-
perimentally shown to give very good results when compared to other hierarchical algo-
rithms such as average-link, Ward, complete-link, etc., Fred & Jain [2005]. The motivation
of using single-link algorithm is based on the previous remark that the general term Auv

of matrix A may be considered as the probability of two samples to belong to the same
cluster. Of course we do not know the memberships of u and v and the actual number
of clusters J , but it is reasonable to group in the same cluster elements of A that have
the highest probability of coassociation, that is the way single-link works Jain & Dubes
[1988]. We propose the Least Square Error Combination (LSEC) algorithm for solving
Eq. (7.37) (see Algorithm 1). The optimal number of clusters J is found when the error
E in Eq. (7.37) is minimum. At the first step we initialise Bs as the identity matrix sup-
posing that each cluster has only one sample. Error E(1) = I2 is initialised to have its
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Algorithm 7.1: Pseudo code of LSEC-algorithm

1: Set Bs as the identity matrix, J ← I , i← 1 and E(i) ← I2.
2: Find clusters’ indexes (j, k) = arg max

u∈j,v∈k
Auv; j, k = 1, ..., J , j 6= k.

3: Set B∗ ← Bs.
4: Merge two clusters j and k by Bs

uj ←
(
Bs

uj +Bs
uk

)
.

5: Remove column k from matrix Bs.

6: E(i+1) ←
I∑

u=1

I∑

v=1




J∑

j=1

(Bs
ujB

s
vj)−Auv




2

.

7: if E(i+1) ≤ E(i), then

8: i← i+ 1,
9: J ← J − 1,
10: go to Step 2;
11: else Bs ← B∗, Bs is the optimal partition, stop.

maximal value. A partition presented by matrixBs is stored to matrixB∗ before merging
two clusters. Merging is continued till minimising error E(i).

Simulated example

In order to demonstrate the efficiency of this algorithm, it has been experimented on
synthetic noisy data. The experiment was carried out on a data set of 100 samples with
Jp = 5 classes each of which has 20 samples. 25% of class labels were randomly changed
according to a uniform noise. Matrix Bp Eq. (7.1) is constructed for each of P = 100
noisy clusterings. Matrix A Eq. (7.34) was estimated by Bp, p = 1, ..., P . The accuracy
of combination is the mean accuracy of each class in percentage. The accuracy of each
class is the relative number of points of a cluster with the maximal size obtained after
the combination. Figure 7.3 shows comparison of LSEC-algorithm with NMI criterion for
single − link algorithm [Fred & Jain, 2005]. For 100 noisy clusterings, LSEC-algorithm’s
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Figure 7.3: Combination comparison of LSEC algorithms and NMI criterion with
single− link algorithms. a - Combination accuracy for number of noisy clus-
terings, b - Estimated number of clusters as a function of the number of noisy
clusterings

accuracy is 100%, contrary toNMIcriterion with about 70% of the accuracy. in Figure
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7.3a for the first clustering the accuracy of combination is 75% because it considers one
clustering with 25% of noise. Then accuracy falls down for three noisy clusterings and
after grows up for LSEC but for NMI criterion it remains at most the same. Figure 7.3b
shows that the accuracy also concerns the estimation of the cluster number. We see that
for a large number of noisy clusterings the accuracy of LSEC-algorithm to determine the
cluster number is good when it fails for the NMI criterion.

Matrix A is computed in I(I − 1)/2 iterations. To combine clusters, I iterations are
needed and error E is calculated in I(I − 1)/2 iterations for each combination. The time
complexity of such an algorithm is therefore in O(I3). It is not appropriate for high vol-
ume of data. To overcome this problem we propose an efficient initialisation procedure
(in Section 7.4) as well as an optimisation of the algorithm adapted for high volume of
data (in Section 7.4).

Approximate solution. Initialisation

One of the simplest ways to go towards a minimum of Equation (7.37) is a gradient like
method, which starts from a good initialisation and iteratively modifiesBs that improves
(7.37). A better initialisation is likely to accelerate the convergence. A good initialisation
may be the eigen vector decomposition limited to the K first eigen vectors. Another
initialisation may be the one Bp, among all the clusterings, which were used to build
matrix A, provides the clustering with the minimum error:

Bs = min
Bp






I∑

u=1

I∑

v=1

(
I∑

r=1

(Bp
urB

′p
rv)−Auv

)2

, p = 1, ..., P




 (7.49)

A gradient like method which iteratively modifies Bs and minimises the error E
Eq. (7.37) will also be considered. Suppose an elementary step of optimisation consists
in allocating sample q to cluster j instead of its initial cluster j0. Let Bj0 and Bj be the
partition matrices before and after this allocation. The variation of E Eq. (7.37) is given
by:

∆E(q|j0 → j) =
I∑

u=1

I∑

v=1

(Dj
uv −Dj0

uv)(1− 2Auv), (7.50)

where Di = BjBj ′ and Dj0 = Bj0Bj0 ′ as in Eq. (7.35).

The change is accepted if and only if ∆E(q|j0 → j) is not positive, and the process is
iterated until no change improves E.

Let us consider two partitions Bj0 and Bj where the second partition Bj is obtained
by affectation of sample q of Bj0 to the cluster j.

Then the variation of E depends only on the difference between Dj
uv and Dj0

uv, Figure
7.5.
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j0 j
1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0

→ 0 1 0 0 1 1 1 1 1 1 → 1 0 1 1 1 0 0 0 0 0
0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1

Bj0 = 0 1 Dj0
uv = 0 0 1 1 1 1 1 1 Bj = 0 1 Dj

uv = 0 0 0 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1

a b c d

Figure 7.4: Influence of affectation. a - a partition matrix Bj0 , b - a co-association matrix
Dj0 , c - a partition matrix Bj0 , d - a co-association matrix Dj0 .

0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 −1 −1 −1 −1 −1
0 0 −1 0 0 0 0 0

Dj
uv −Dj0

uv = 0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0

Figure 7.5: The difference Dj
uv −Dj0

uv for the variation of E

We can see from Figure 7.5, ∆E Equation (7.50) could be rewritten as:

∆E(q|j0 → j) =
I∑

u=1

I∑

v=1

(Dj
uv −Dj0

uv)(1− 2Auv) =

I∑

u=1

I∑

v=1

Dj
uv(1− 2Auv)−

I∑

u=1

I∑

v=1

Dj0
uv(1− 2Auv) =

2
∑

k

(1− 2Aqk)− 2
∑

l

(1− 2Aql)

(7.51)

where index k denotes samples in cluster j except sample q, and l denotes samples of
cluster j0 except sample q.

The looked for cluster j having one sample k should minimise 2(1 − 2Aqk) but it is
equivalent to finding the maximum of Aqk for every possible cluster j = 1, ..., J . All
diagonal elements of matrix A are maxima and have 1, that is why we find maximum
of Aqk for each q excepting diagonal elements. Using nonpositiveness condition for the
error variation ∆E(q|j0 → j) ≤ 0 Eq. (7.51) we write the necessary condition to examine
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points Aqk:

∆E(q|j0 → j) ≤ 0

2(1− 2Aqk) ≤ 0

0.5 ≤ Aqk

(7.52)

The Condition (7.52) means that two points could be combined if they are in the same
cluster more than in a half cases. This optimisation procedure is equivalent to building
nearest-neighbour sub graphs. It avoids the storage of the square matrix A. It is very
important when processing a large amount of data. Points belonging to each sub graph
are assigned to the same cluster. Such clusters will form now on the initialisation matrix
Bs for LSEC-algorithm (instead of the identity matrix) resulting in a noticeable gain of
computation time. We note that this combination is a local optimum for the general
criteria Equation (7.37). An alternative solution is to use a simulated annealing strategy
which will accept a change of cluster for a sample, even ifE is not decaying, but according
to a probability which slowly goes to zero when iterating the process. It would be, of
course, far more expensive in the sense of computational time.

Gradient descent optimisation and storage reduction

In proposed Algorithm 7.1 matrix A should be computed at Step 4. This step may be
difficult for real applications such as images or large database clustering, because of the
dimension of matrix A. For instance, when processing images, we often have to deal
with thousands of pixels. For an image of size n × n (thus with n2 samples), we have
to build a matrix A of size n2 × n2, i.e. with n4 terms. For example, with a small image
of 200x200 pixels we should construct a co-association matrix that has 1.6x109 elements;
with 1 byte per term we should process about 1.49 gigabytes at each combination step.
This huge volume of data can not be processed in a reasonable time. However, we can
find the solution for this problem in analysing the error of combination (Equation 7.37).

Instead of calculating the error at each step of the optimisation procedure, we suggest
using the optimisation error gradient as proposed in Eq. (7.50), and follow a descending
approach as an optimisation strategy. The error gradient reduces the computation time
as well as the volume of stored and processed data.

Let k and l be indexes of samples belonging to two clusters j0 and j respectively with
nj0 and nj samples each. Let Dj0 = j0j

′
0 + jj′ be the binary co-association matrix before

combination and Dj = (j0 + j)(j0 + j)′ after combination. All elements of Dj either are
equal to 1 or to 0. Matrices Dj0 and Dj are displayed respectively in Figure 7.6. Their

difference Dj
uv −Dj0

uv is in Figure 7.7.

Let look first at a simple example. Suppose we want to find the error gradient after a
combination of two clusters j0 and j. LetDj0 = j0j

′
0 +jj′ andDj = (j0 +j)(j0 +j)′ be the

co-association matrices before and after the combination. They are displayed in Figure

7.6, respectively. Their difference Dj
uv −Dj0

uv is in Figure 7.7.

Let Ej0 and Ej be errors as in Eq. (7.37) before and after combination.

We obtain the difference ∆E between errors Ej and Ej0 by substituting matrices Dj0
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j0 j j0 + j
1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1

→ 1 0 1 1 1 0 0 0 0 0 → 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bj0 = 0 1 Dj0
uv = 0 0 0 1 1 1 1 1 Bj = 1 Dj

uv = 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a b c d

Figure 7.6: Influence of affectation. a and b - a partition matrix Bj0 , and its co-association
matrix Dj0 , c and d - a partition matrix Bj , after having merged the two clus-
ters j0 and j, and its co-association matrix Dj .

0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0

Di
uv −Di0

uv = 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

Figure 7.7: The difference Dj
uv −Dj0

uv for the variation of E due to the merging of the two
clusters j0 and j

and Dj in Eq. (7.50):

Ej0 =

I∑

u

I∑

v

Dj0
uvQuv, Ej =

I∑

u

I∑

v

Dj
uvQuv,

∆E = Ej − Ej0 =
I∑

u

I∑

v

Dj
uvQuv −

I∑

u

I∑

v

Dj0
uvQuv

=
I∑

u

I∑

v

(Dj
uv −Dj0

uv)Quv =
I∑

u

I∑

v

((j0 + j)(j0 + j)′ − (j0j
′
0 + jj′))Quv

=

I∑

u

I∑

v

(j0j
′
0 + j0j

′ + jj′0 + jj − j0j′0 − jj′)Quv

=
I∑

u

I∑

v

(2j0j
′)Quv = 2nj0nj − 4

nj0∑

k

nj∑

l

Akl.

(7.53)

A new condition for subcluster combination is obtained from the condition that the
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error gradient is non positive ∆E ≤ 0 and Quv = 1− 2Auv:

∆E = 2nj0nj − 4

nj0∑

k

nj∑

l

Akl ≤ 0

nj0nj ≤ 2

nj0∑

k

nj∑

l

Akl

0.5 ≤

I∑

u

I∑

v

Auv

nj0nj

(7.54)

Property (7.54) states that two subclusters j0 and j are combined if the sum of their
connection probabilities is greater than a half of all possible connections of their points.
We say that the normalised sum of their connections is greater than 0.5. The last term in
the gradient ∆E Eq. (7.53) allows us to calculate a double sum without storage of whole
matrix A.

A complete iterative algorithm

Now let use the results presented in Section 7.4 which provide a good initialisation of
the algorithm by an initial clustering based on nearest neighbour graphs. Let Jg be the
number of these initial clusters. From Jg, a binary matrixBg is built according to Eq. (7.1)
and a single matrix B = [B1, ..., Bp] as a concatenation of Bp. A is derived from Eq. (7.34)
as:

A =
1

P
BB′. (7.55)

Matrix S of size JgxJg can be computed as the sum of connections between all pairs of
Jg clusters:

S = Bg ′ABg =

(
Bg ′B√
P

)(
Bg ′B√
P

)′
. (7.56)

Let each element Nkl of a matrix N correspond to the number of all possible connections
of two clusters k and l:

Nkl = nknl, (7.57)

where k, l = 1, ..., Jg and nk, nl are the numbers of samples in clusters k and l, respec-
tively. The normalised sum of connections between two clusters k and l allows building
matrix S where each element Skl is expressed as:

Skl = Skl/Nkl, (7.58)

with 0 ≤ Skl ≤ 1. From matrix S we may propose a generalisation of condition (7.54): if
Skl ≥ 0.5, clusters k and l should be combined to reduce the error E Eq. (7.37) for LSEC-
algorithm. Ranking Skl elements in descending order indicates the order in which two
clusters should be grouped at Step 2. This algorithm, called DLSEC (differential LSEC)
significantly reduces computations and may be applied to large volumes of data.

We compare calculation cost for a direct search presented in Section 7.4 with an opti-
mised search proposed in Sections 7.4 to 7.4 in Figure 7.8. An ideal clustering with Jp = 6
clusters is taken as an example. Random changes of labels are performed on 20% of the
samples. By repeating this procedure 100 times we construct the matrix Bc. Then we
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Figure 7.8: Time computation for direct and optimised search vs. the number of samples,
in the case of synthetic data.

measure the time needed for the combination by direct and optimised search. As can be
seen from Figure 7.8, the proposed optimised search decreases significantly the compu-
tational time. Moreover, after combination of noisy clusterings, a perfect clustering with
6 classes is always obtained. The bootstrapping method [Kuncheva, 2004] may be one of
the possible applications of the DLSEC-algorithm. For the experiment, we set randomly
60% of samples with initial clustering labels and 40% as unclassified labels for which we
attributed the same label. After 100 steps of boosting the combination returns the initial
clustering. It could be one of the issues for a parallel clustering of huge amounts of data
or for improving clustering.

To compute Jg clusters of the nearest neighbour graph for the initialisation of DLSEC
algorithm as described in Section 7.4 I(I − 1)/2 operations at most are needed. The com-
bination of these clusters as presented in Section 7.4 needs Jg−1 operations, where Jg≪I .
The time complexity of optimised DLSEC-algorithm is approximately O(I2 + Jg). Note,
that DLSEC method only needs about O(I2) operations at most for the complete optimi-
sation compared to the method in [Lange & Buhmann, 2005] which requires O(I2) oper-
ations at each step of the optimisation process. Moreover, DLSEC-algorithm can have a
linear complexity if we consider, for a sample, the classes of its nearest-neighbours as in
image processing applications. We introduced the objective function and the optimised
hierarchical algorithm to find the optimal consensus clustering. Unfortunately there is no
clear proof that the hierarchical algorithm may achieve a global optimum of the objective
function. To overcome this limitation we reformulate the optimisation process as well as
the optimality conditions and propose an exact algorithm to find the global optimum for
E Eq. (7.37).

Examples of combining

Eigen decomposition, standard hierarchical methods In this Section we demonstrate a
toy example of clustering combination. We test methods of combination on to producing
the correct number of classes and the correct classes from the only examination of the
co-association matrix.

We will make use of a smooth co-association matrix A for experiments. Smooth-
ness for A means that this matrix differs from a perfect clustering which only have
zeroes and ones, i.e. square internal blocks. Co-association matrix A should be sym-
metric with elements satisfying 0 ≤ Auv ≤ 1 and Auu = 1. Moreover, matrix A is
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formed by a matrix B, see Eq. (7.33). To create smooth matrix A we use smooth ma-
trix B where each column equal to a one dimensional function of Gaussian distribution
(Figure7.9). To ensure having terms between 0 and 1, we normalise matrixA as suggested
in [Shawe-Taylor & Cristianini, 2004]:

Auv =
Auv√
AuuAvv

(7.59)

Therefore, the obtained matrix A verifies all the previous requirements.
An example of columns of matrix B and corresponding matrix A are presented in

Figures 7.9a and 7.9b, respectively. We apply our algorithm to find binary matrix Bs that
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Figure 7.9: A matrixB made of 6 clusters and about 600 samples. a - columns of matrixB:
each column has a Gaussian distribution, b - the normalised matrix A = BB′

gives the minimal error E Eq. 7.37 as well as others hierarchical algorithms: complete-
link algorithm, Ward algorithm and unweighted average distance (UPGMA) algorithm
(Chapter5). For the last 3 algorithms we analyse the error E Eq.(7.37) at every level of the
clustering tree. For each algorithm and each level of hierarchy we build E as a function
depending on the number of clusters (Figure 7.10).
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Figure 7.10: Error E as a function of the number of clusters for several clustering algo-
rithms. The exact number of clusters (6) is found by all algorithms.

All algorithms find the correct number of clusters (6) in Figure 7.10. Confusion matri-
ces of each hierarchical clustering are presented in Table (7.2). We see from the confusion
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matrix in Table 7.2a that the proposed combination method has no error: each cluster
corresponds to the true class. On the contrary, all the other algorithms have some confu-
sions.

Classes

1 2 3 4 5 6

101 0 0 0 0 0 101
0 101 0 0 0 0 101
0 0 101 0 0 0 101
0 0 0 93 0 0 93
0 0 0 0 109 0 109
0 0 0 0 0 96 96

101 101 101 93 109 96 601

Classes

1 2 3 4 5 6

101 7 0 0 0 0 108
0 94 2 0 0 0 96
0 0 92 0 0 0 92
0 0 7 93 5 0 105
0 0 0 0 104 4 108
0 0 0 0 0 92 92

101 101 101 93 109 96 601

a b

Classes

1 2 3 4 5 6

88 0 0 0 0 0 88
13 101 2 0 0 0 116
0 0 99 1 0 0 100
0 0 0 92 9 0 101
0 0 0 0 88 0 88
0 0 0 0 12 96 108

101 101 101 93 109 96 601

Classes

1 2 3 4 5 6

100 0 0 0 0 0 100
1 101 2 0 0 0 103
0 0 84 0 0 0 84
0 0 15 93 0 0 108
0 0 0 0 109 4 113
0 0 0 0 0 92 92

101 101 101 93 109 96 601

c d

Table 7.2: Combining of co-association matrix A by different methods. a - The proposed
combination, b - Complete link algorithm, c - Ward algorithm, c - Unweighted
average distance (UPGMA) algorithm. Method (a) is only one to provide a
clustering without error.

Eigen vectors and values In Section 7.4 we show possible approaches to solve Equation
(7.37) using eigen vector decomposition. In this Section we present examples for these
methods. Let use the same co-association matrix A as in previous experiment. Then the
relaxed solution for A is a projection matrix P = V ·

√
|Λ|, where V and λ are the eigen

vectors and eigen values of either Q̄ = 2A− 1 or A.

Let see eigen values for the matrix Q̄ = 2A − 1: Λ1,1 = 257.8, Λ2,2 = 232.9, Λ3,3 =
170.4, Λ4,4 = 149.1, Λ5,5 = 119.9, Λ6,6 = 5.7, Λ601,601 = −334.8 and for the matrix A:
Λ1,1 = 139, Λ2,2 = 128.9, Λ3,3 = 114.9, Λ4,4 = 84.5, Λ5,5 = 73.7, Λ6,6 = 60, We see that
the sum of eigen values equals to the number of elements

∑
i Λii = 601 and the number

of positive values corresponds to the number of clusters. It can be supposed that each
positive value Λii corresponds to the number of points in each cluster. Then using this
information it could be possible to find clusters. Let Bs be a partition of data. We get
matrix Bs by setting 1 for maximal element of each row of P and 0 for the rest of them.
Examples of projection P for matrices Q̄ = 2Auv−1 and A are presented in Figure (7.11a)
and (7.11b), respectively.

We build matrix B using two projections in Figure 7.11. The confusion matrices for
different partitions are in Tables 7.3a and 7.3b, respectively. Confusion matrices expected
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Figure 7.11: Projection on eigen spaces. 6 first vectors of the matrix P . a - for matrix
2A− 1, b - for matrix A

Classes

1 2 3 4 5 6

101 45 0 0 0 0 146
0 56 3 0 101 0 160
0 0 98 39 0 0 137
0 0 0 54 5 0 59
0 0 0 0 3 1 4
0 0 0 0 0 95 95

101 101 101 93 109 96 601

Classes

1 2 3 4 5 6

0 50 0 0 0 0 50
67 0 0 0 0 95 162
0 0 0 0 108 1 109
34 51 101 93 1 0 280

101 101 101 93 109 96 601

a b

Table 7.3: Confusion matrices for the matrix P . a - eigen solution for 2A − 1, b - eigen
solution for A.
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to be diagonal as in Tables 7.2. Diagonal form means a correct combination. But we ob-
serve in Tables 7.3a and 7.3b, high confusion that means clusters are not well separated.
As we can see eigen values do not coincide to the number of samples. Moreover, pos-
itive Λii could decrease slowly that will make difficult to determine the correct number
of clusters. These obstacles influence on a result of combination and can lead to unpre-
dictable results. Therefore, we do not consider direct application of eigen decomposition
as an effective method.

7.5 Proposed Mean Shift combination

In this section P clusterings are considered as labels coded by p binary matrices Bp Eq.
(7.1), where p = 1, ..., P . The matrices are concatenated into a single matrix B and form

space ℜd, where d =
∑P

p=1 Jp. We propose to search a consensus clustering which, as
previously, minimises the square error E Eq. (7.37). We prove in this section that this
minimisation is equivalent to the minimisation of the square error among samples bu,
where bu is a row of B and u = 1, .., I .

All samples {bu} are located on a hyper circle, since they simultaneously satisfy a

hyper plane equation
∑d

j=1 buj = d = const and a hyper sphere equation
∑d

j=1 b
2
uj = d =

const. Therefore vectors {bu} may be normalised by a constant
√∑

p Jp such that their

square norm is 1. Let us write the minimisation of square error E Eq. (7.37) as:

min
Bs

E = min
Bs

I∑

u=1

I∑

v=1

Duv(1− 2Auv) = min
J,Cj

J∑

j=1

∑

u∈Cj

∑

v∈Cj

(1− 2Auv) =

min
J,Cj

J∑

j=1

n2
j (1−

2

n2
j

∑

u∈Cj

∑

v∈Cj

Auv)

(7.60)

where unknown consensus clusters Cj has corresponding binary matrix Bs, where j =
1, ..., J and J is the unknown number of consensus clusters. Unknown cluster Cj has the
unknown number of samples nj .

The matrix Bs has a size of I × J . As all elements verify 0 ≤ Akl ≤ 1 and Auv = bub
′
v

we may derive a condition to guarantee that the error Eq. (7.60) is always minimised:

‖bu − bv‖2 < 1 : u, v ∈ Cj ⇒
1

n2
j

∑

u∈Cj

∑

v∈Cj

Auv > 0.5. (7.61)

This condition shows the expression in the parenthesis of the last part of Eq. (7.60) is
always negative. We may also say that if during the estimation of consensus clusters Cj

the condition (7.61) is hold and the number of samples nj is growing then error E Eq.
(7.60) is always minimised.

Proving convergence with mean shift

Let µj be the mean vector of cluster Cj , µj =
∑

v bv/nj , v ∈ Cj . The square norm of µj is:

‖µj‖2 =
1

n2
j

∥∥∥∥∥
∑

v

bv

∥∥∥∥∥

2

=
1

n2
j

∑

v

(‖bv‖2 + 2
∑

u

bvb
′
u) =

∑

u∈Cj

∑

v∈Cj

Auv/n
2
j . (7.62)
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The square error σ2
j of cluster Cj with mean µj is:

σ2
j =

1

nj

nj∑

u=1

‖bu‖2 −
∥∥∥∥∥

1

nj

nj∑

u=1

bu

∥∥∥∥∥

2

= 1− ‖ µj ‖2 . (7.63)

where ‖bu‖2 = 1. Minimising the last term in Eq. (7.60) is equal to maximising both µj

and the number of samples nj in any cluster j.

Proposition 7.5.1. A global minimum of the error E Eq. (7.60) is achieved by an optimisation
algorithm which maximises the norms of local mean vectors µj Eq. (7.62) or/and minimises square
errors σ2

j Eq. (7.63) jointly with maximising the number of samples nj in clusters:

minE = min
∑

j

n2
j (1− 2‖µj‖2) = min

∑

j

n2
j (2σ

2
j − 1),

under conditions ‖ µj ‖2> 0.5, σ2
j < 0.5.

(7.64)

A nonparametric approach to find a solution is the goal of near all information pro-
cessing tasks. The base of such an approach in regard to the pattern recognition is the
nonparametric density estimation by its gradient [Fukunaga, 1990], [Comaniciu & Meer,
2002], so-called the density estimation by mean shift vectors.

The multivariate kernel density estimation with kernel K(b) and window radius h,
computed in the point b has a form [Fukunaga, 1990]:

f̂(b) = (Ihd)
−1

I∑

u=1

K(h−1(b− bu)) (7.65)

For such an estimation an appropriate kernel should be selected to approximate the
density and if the kernel has unknown parameters they should also be estimated. One of
the popular kernels is the Gaussian kernel with the width of the kernel window [Comaniciu,
2003] as parameter. This kernel is not appropriate for the problem at hand because it
makes the assumption that the more data are available the denser the distribution. In the
case of normalised samples {b} the higher the number of samples does not guarantee the
higher density. We aim to group samples {b} which are located on the different positive
axes.

We propose to use the multivariate Epanechnikov kernel which yields the minimisa-
tion of the average global error between the estimate and the true density [Comaniciu et al.,
2000]:

KE(b) =

{
(d+2)
2cd

(1− ‖ b ‖2), if ‖ b ‖≤ 1,

0, otherwise.
(7.66)

where cd is the volume of the unit d-dimensional sphere of radius 1 and b = {b}. The
profile of kernel KE is the function kE : [0,∞)→ R such that K(b) = k(‖ b ‖):

kE(b) =

{
(d+2)
2cd

(1− b), if b ≤ 1,

0, otherwise.
(7.67)

The density estimation Eq. (7.65) is obtained via its gradient [Comaniciu & Meer,
2002]:
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∇̂fh,K(b) =
2ck,d

Ihd+2

[
I∑

i=1

k

(∥∥∥∥
b− bi
h

∥∥∥∥
2
)]




∑I
i=1 bik

(∥∥∥ b−bi

h

∥∥∥
2
)

∑I
i=1 k

(∥∥∥ b−bi

h

∥∥∥
2
) − b



 . (7.68)

The second term in Eq. (7.68) is the mean shift:

mh,k(b) =

∑I
i=1 bik

(∥∥∥ b−bi

h

∥∥∥
2
)

∑I
i=1 k

(∥∥∥ b−bi

h

∥∥∥
2
) − b, (7.69)

which expresses the difference between point b and the mean of the samples weighted by
kernel k(∗). It also shows the direction in which the density is increasing and where the
weighted mean value should be replaced. The mean shift estimation always converges
and proceeds in two steps [Comaniciu & Meer, 2002]: (i) compute the mean shift vector
mh,k; (ii) move kernel k(b) by mh,k.

Let us note two very important properties of mean shift algorithm applied to data
{b}.
Property 1. All {b} vectors have positive values, consequently the cosine between successive
mean shift vectors always remains positive [Comaniciu & Meer, 2002], guaranteeing a fast and
good rate of convergence and we have never a chaotic descent.
Property 2. As the mean shift algorithm converges [Comaniciu & Meer, 2002] and all data {b}
have values from a finite set, the mean shift estimation of µj is obtained in a finite number of
iterations. In practice, the iteration number for convergence is very small (some units).

Condition (7.61) to achieve a global minimum of error E Eq. (7.64) shows that the
maximal distance among samples {bu} is less than 1. From this condition, the distance
from mean vector µj to any point of cluster j is less than 1. The Epanichnekov ker-
nel is differentiable in a sphere of radius 1; therefore optimisation converges to a global
optimum [Comaniciu et al., 2000]. We demonstrate a theorem which asserts the global
optimality of Epanechnikov kernel to minimise E Eq. (7.64).

Theorem 7.5.1. Epanechnikov kernel is the optimal kernel to find a global minimum for error E
Eq. (7.64) by the mean shift algorithm.

Proof. See Appendix D.

We also mention that reclustering labels by K-means algorithm after mean shift com-
bination does not decrease error E Eq. (7.64) of combination and even may increase it.

Optimal adaptive radius for mean shift combination

We proved in Appendix D that the mean shift combination with the Epanechnikov kernel
finds an optimal solution for error E Eq. (7.60). Because starting point is a data sample
µj = bi the threshold is chosen as 1 (7.61) satisfying the condition of the Epanechnikov
kernel with a radius 1. As ‖µj‖2 is changed during the search, an optimal radius should
be estimated. Condition (7.61) shows that the optimal solution of the error Eq. (7.60) is
found when Auv > 0.5. In such a case using the square norm of mean vector µj Eq. (7.62)
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calculated on nj samples and the worst case when Auv = bub
′
v = 0.5 : u 6= v; Auu = 1,

then ‖µj‖2 = (0.5nj(nj−1)+nj)/n
2
j = 0.5(1+1/nj). To optimise the errorE Eq. (7.60) the

optimal adaptive radius rj ( or similarly the minimal distance from any sample bu : u /∈ j
to the mean vector µj) should be:

rj =
√
‖bu − µj‖2 =

√
1− 2bu

∑

v∈j

bv/nj + ‖µj‖2 =
√
‖µj‖2 =

√
0.5(1 + 1/nj) (7.70)

This formula shows when µj = bv then rj = 1 that satisfies Eq. (7.61) and :

lim
nj→∞

rj = lim
nj→∞

√
‖µj‖2 = lim

nj→∞

√
0.5(1 + 1/nj) =

√
0.5 ≈ 0.7071. (7.71)

From this limit we obtain a low bound for the square norm of the mean vector µj : 0.5 <
‖µj‖2. This value always guarantees the minimisation of error E Eq. (7.60). We may now
present the algorithm of the mean shift combination (MSC) with Epanechnikov kernel
and adaptive radius rj .

MSC-algorithm

Initialise j = 1, l = 1, ci = 0 : i = 1, ..., I

Step 1 Initialise rj = 1, k = 1, yk = bj

Step 2 Compute yk+1 = 1
nk

∑
bi∈W (yk,r) bi,

rk =
√

0.5(1 + 1/nk),
k ← k + 1 till convergence.

Step 3 Assign rj = rk, ci = l, ∀i :
√
‖bi − yconv‖2 < rj , l = l + 1; j : cj ≡ 0. Go to Step 1.

where nj is the number of points in the window W (yk, rj) of radius rj with centre yk and
ci has labels after the combination.

Practical aspects of mean shift

In this section we give some notes on practical application of the mean shift algorithm
for clustering combination. The following aspects are discussed:

1. accelerating the mean shift via appropriate initialisation,

2. assigning samples to mean vectors,

3. computation of error E,

4. merging mean shift vectors.

Accelerating the mean shift via appropriate initialisation

A classical version of mean shift algorithm consists in application of the iterative pro-
cedure by starting from every point of data set. When the algorithm is applied to a large
data set, e.g., image samples, then the direct application may be time consuming. There
are several ways to avoid examining of all starting points:
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1. after the mean shift has converged, then we may select points from the radius of
the converged mean vector and do not consider them for further computation. If
any point converge to the converged radius then it belongs to the converged mode.

2. Another way to reduce computation time may be in excluding points from the ra-
dius of converged mean shift. After the mean shift has converged, then run it on
the reduce data set.

In addition, we start mean shift from samples potentially belonging to large clusters.
This allow us to find quickly a large cluster, eliminate it from data set and process run
algorithm on the reduced data set. The simplest way to select potentially large cluster is
to find a cluster with the largest size in all clusterings. Another way to select the large
cluster may be in using the entropy as a measure of clustering consistency. The entropy
is calculated for each clustering:

Hp = −
Jp∑

k=1

nk

I
log

nk

I
, (7.72)

where p = 1, ..., P . Clustering p which has the minimal value of Hp can be used to find
the largest cluster. Then, a sample from the largest cluster is taken as starting point for
mean shift algorithm.

The next way to select a starting point from a potentially large cluster is: find all
unique clusters as intersection of clusterings. A sample from the largest unique cluster
is a good candidate for initialisation. This approach is interesting when clusterings are
not very different. However, a procedure of finding all intersections can have a quadratic
computation complexity when clusterings very different (e.g., noisy or bootstrapped).

Assigning of samples to mean vectors

Some practical problem emerge when the mean shift algorithm is applied on the nominal
data (clusterings or segmentations) and when data are not really randomly and indepen-
dently distributed. Sometimes there are two different converged points with overlapped
radiuses. The problem is the following: how to decide which points belong to which
mean vector? In the case of the continuous kernel, e.g., the Gaussian kernel, we may
compute the probability of points belonging to every converged mode and assign points
via the Bayes classification rule. In the case of a truncated kernel, e.g., the Epanechnikov
kernel, the probability is calculated not for all samples of given modes. There are several
solutions to assign a sample to one of the mean vectors:

1. combine into one cluster those samples which share some samples belonging to
different modes (it gives robust clustering combination result);

2. assign samples to the nearest neighbour mode;

Computation of error E

To improve combination by the mean shift algorithm we propose to consider separately
the estimation of parameters (means vectors, in our case) and assigning labels to sam-
ples. This influences directly the quality of combination calculated using square error
E. It means that the error is calculated using the square norms of the estimated mean
vector and the number of samples assigned to this vector, contrary to direct computation
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of square error E, when only samples from a spherical window are used. This aspect
comes from the fact that the estimated mean vector may go far from the original starting
point. Therefore, we consider all starting points converged to the same mean vector as
belonging to the same combined cluster.

Merging of mean shift vectors

Another very important aspect of the mean shift algorithm presented in the thesis is that
during the convergence there are mean shift vectors which are very near from each other.
We propose to combine these neighbour vectors using the next simple rule:

1. if the converged mean vector contains in its radius another converged mean vector
and

2. if after their combination the norm of the new vector is greater then 0.5,

then these two vectors are combined and the new mean vector is reestimated. This com-
bination guarantees to minimise the square error E.

Results

Synthetic clustering combination

In this Section we present different clustering combination criteria and algorithms on
synthetic data. To generate simulations we take one clustering and exchange randomly
samples from true clusters to false ones. From these clusterings, several classes are ex-
tracted by different methods: the hierarchical single-link, Ward and average-link algorithms
[Jain & Dubes, 1988] with the average normalised mutual information NMI [Fred & Jain,
2005]; our LSEC-algorithm and MSC-algorithm for square error E Eq. (7.37) as presented
in this paper, and AUTOCLASS clustering system [Cheeseman & Stutz, 1996] that cluster
labels by mixtures of multinomial models with Expectation-Maximisation algorithm.

The first example is made for 2 classes each of size 50 samples. 25% randomly se-
lected samples are changed to other random value of labels. Each labelling is repre-
sented as binary matrix B Eq. (7.1). We collect 100 of such noise labelings and construct
co-association matrix A Eq. (7.32). Figure 7.12 shows two criteria to determine the op-
timal number of clusters: for NMI [Fred & Jain, 2005] the optimal number has highest
value and for square error E Eq. (7.37) the lowest value indicates the optimal number
of clusters. For such an elementary example NMI criterion grows up with a growing
number of clusters for all hierarchical algorithms, contrary to error E Eq. (7.37) which
provides always the true number of clusters in all cases. AUTOCLASS gives the true so-
lution, but for this system we should indicate a priory number of clusters and set a large
number (near 100) of restarting to find a good solution. It is well known that all cluster-
ing systems that are based on EM-algorithm do not guarantee a global solution and the
best solution is selected using restarting (e.g., with random parameter initialisation). Pro-
posed LSEC-algorithm as well as (MSC)-algorithm gives 2 clusters without errors. For
experiments with a high number of clusters and noisy labels error E Eq. (7.37) indicates
more precisely the true number of clusters than average NMI.

UCI data

We perform experiments with the clustering combination on real datasets taken from
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Figure 7.12: Combination of clusterings with 30% of noised labels by single-link (points),
average-link (circles) and Ward (diamonds) hierarchical algorithms: a - NMI
criterion, b- square error E Eq. (7.37).

the UCI machine learning repository and compare results with the work of [Fred & Jain,
2005] where the normalised NMI criteria is studied. The goal of these experiments is to
show that the proposed combination algorithms are competitive and may even outper-
form averaged NMI criterion in [Jain & Dubes, 1988].

Real data from UCI repository are the same as in [Fred & Jain, 2005]: 1. Iris data (150
samples, 4D); 2. Breast Cancer (683 samples); 3. Optical Digits (3823 samples); 4. Log
yeast (384 samples); 5. Std Yeast (384 samples).

To obtain clusterings of data we use K-means algorithm for fixed and random number
of clusters. The fixed number of clusters k∗ is the ”natural” known number of classes
and the random number is chosen randomly near k∗. After the combination we estimate
its quality as the percentage of misclassified samples. The largest number of samples in
a combined class was set as the true and all other samples in this class are set as mis-
classified. The minimum value of this error is used to indicate the best clustering for 100
random initialisations of K-means algorithm.

LSEC-algorithm, MSC-algorithm and AUTOCLASS (AC) were used to combine dif-
ferent clusterings and their results are compared to the best Evidence Accumulation Clus-
tering (EAC) with single-link or average-link approaches (EAC-SL, EAC-CL), Table 3 and
Table 2 in [Fred & Jain, 2005] for fixed and random k∗, respectively. Here again for AUTO-
CLASS combination we should always set a priori number of clusters and a large number
of restartings to obtain a good solution. Results of combination of clusterings is presented
in Table 7.4 as error rates of classification (in percentage).

From Table 7.4 we see that the best individual clustering obtained by K-means al-
gorithm (column 3) in most cases leads to less errors comparing to combined results of
NMI [Fred & Jain, 2005] (column 4). Also LSEC and MSC algorithms have lower errors
(columns 6,7) in most cases compared to NMI criterion. AUTOCLASS (column 5) justifies
good performance of LSEC and MSC algorithms with near the same error. The same val-
ues of error for Iris and Brest Cancer data explained by the fact that such data have small
size that is why clusterings as well as combinations are the same.

In addition MSC-algorithm outperforms LSEC-algorithm. We observe that in several
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Table 7.4: Error (in percentage) of the clustering combination

Fixed k∗ Variable k∗

Data set k∗ KM(min) Jain AC LSEC MS Jain AC LSEC MS

Iris 3 10.7 11.1 10.7 10.7 10.7 10.0 10.0 10.0 10.0

Brest Cancer 2 3.9 4.0 3.9 3.9 3.9 2.9 2.9 2.9 2.9

Optical Digits 10 13.1 23.2 17.3 17.1 15.7 21.0 11.8 11.1 10.5

Log Yeast 5 58.6 66.6 59.4 58.8 58.8 59.0 49.2 52.8 50.3

Std Yeast 5 26.1 31.8 31.2 32.8 32.5 33.0 26.5 26.8 26.3

cases MSC-algorithm has significantly lower values of the clustering errors than NMI
[Fred & Jain, 2005] (less than 7.8% for Log Yeast and 7.5% for Optical Digits). An effect
that the best K − means clustering error less than several combinations for fixed k∗ is
explained by the fact of presence of many low quality clusterings.

The second set of experiments was done with a varying number of clusters, where
K-means was initialised randomly. Columns 8, 9,10 and 11 of Table 7.4 show clustering
errors after the combination by Jain, AUTOCLASS, LSEC and MSC algorithms, respec-
tively. In such a kind of experiments with the combination we find ”stable” clusters
instead of the natural clusters. That is why estimated numbers of clusters k′ may differ
from a priory known k∗. Here again, we see that performance of proposed combination
algorithms (columns 10 and 11) is still very good and better than EAC-SL or EAC-AL
(column 7, Table 2) in [Fred & Jain, 2005] Table 2. Interesting, that in [Fred & Jain, 2005]
there is no definitive decision about what algorithm of combination is the best. Experi-
ments on synthetic examples as well as real data bases show better performance of our
combination algorithms than in [Fred & Jain, 2005]. In addition, proposed approaches
have near linear complexity and may process a huge volume of data.

Discussions

In Sections 7.4 and 7.5, two efficient optimisation algorithms for the combination of op-
timal clusterings have been proposed. They avoid the use of any parameter, does not
depend on initialisation, determines the number of clusters in an unsupervised way and
significantly reduces redundant information. We showed the objective function and con-
ditions for its optimisation. The first method uses single-link algorithm to find an optimal
solution. This algorithm has been chosen experimentally because of its good results com-
pared to other hierarchical algorithms. But it does not guarantee the convergence to a
global optimum. To avoid this problem a new combination approach is proposed based
on the mean shift procedure. It has been proved in Section 7.5 that mean shift minimises
the square error between clusterings, achieves a global optimum and has a linear com-
plexity. These methods are able to process very large sets of samples, without facing
problems of memory or time complexity. The combination of different clusterings is able
to improve unsupervised data mining and infer new information about data.

Clustering combination makes possible using different clustering algorithms. In this
way we can compare and process different metrics which are not comparable. If several
algorithms are used to analyse data, then it is better to estimate the optimal number of
clusters for each algorithm, taking into account its metric.

The combination may be used for many different applications of data mining tasks:
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clustering of nominal data (e.g. text documents), combination of different clusterings or
segmentations of the same scene (e.g. by clustering different groups of features or clus-
tering time-series images), video clustering, motion detection, etc. It also may stabilise
clustering result for an algorithm which depends on the choice of initial parameters.

7.6 Measure of clustering stability, stable patterns

One of the important and interesting questions for clustering algorithm is a measure of
clustering stability. Some discussions about clustering stability can be found in [Kuncheva,
2004]. Under the stability of clustering we consider the measure which defines how sam-
ples share the same cluster with others samples. The notion of clustering stability includes
the stability related to one data and the stability of the whole clustering data set. The stability re-
lated to one data describes the quantitative ability of one sample to share the same cluster
with others samples. We define this measure as Si for the ith sample using the matrix A
Eq.7.34:

Si =
2

I

I∑

v=1

| Aiv − 0.5 | (7.73)

The stability of clustering of data is the mean value of stability of all data points:

S =
1

I

I∑

i=1

Si (7.74)

Measures Si and S are positive, real and limited from above by 1 and from below by 1/I .
If we do not take into account diagonal elements of A for Su and normalise them by I− 1
in the Eq.(7.73), then Si and S is in the range of [0, 1]. Measures Si and S do not depend
on any metric of algorithm and even do not depend on an algorithm used for clustering.
They are based only on the clustering labels. Using the measure of clustering stability we
can estimate and select stable points for several clusterings of the same algorithm. The
more higher value of Si the more stable point i. Also it is possible to compare different
clustering algorithms and select the one which gives more stable clustering results.

Measures Si and S considers the stability of points to be in the same cluster as well as
the stability of points from other clusters. We can calculate how stable a sample is within
its cluster. Let have one clustering and a set of clusterings presented by matrix A. With
little modification of Equations (7.73) we define measures for sample i in cluster k as S′

i:

S′
i =

1

#k

∑

v∈k

Aiv (7.75)

where #k is the number of samples in cluster k. Then the clustering stability S′ of data is:

S′ =
1

I

I∑

i=1

S′
i. (7.76)

As it has been shown in this Chapter clustering combination corresponds to min-
imisation of square distances E Eq. (7.63) for every combined cluster k. This distance
depends on the square norm of the mean vector µk Eq. (7.62). Therefore, the index of
stability can be used directly from the equation (7.63). It has the following interpretation:



156 7. COMBINATION OF CLUSTERING RESULTS

the lower the square distance of cluster k Eq. (7.63) the stable cluster k. If all clusterings
are the same in cluster k, then σk equals to zero. For unstable clusterings the limit of
stability is σk = 1 − 1

I . If the number of samples I is very high then the upper bound
equals to 1. Therefore, stability is limited as: 0 ≤ σk < 1.

Examples of stable patterns and clustering stability

We perform experiments on clustering stability using one clustering coded as binary ma-
trix B. The clustering has 6 classes 100 examples per class. The matrix A is obtained
using matrices Bi, i = 1, ..., 100. Each matrix Bi is the noised B. The noise is a random
changing a cluster label of a given sample. The intensity of noise is measured in percents,
e.g. 5% of noise change randomly 5% of sample.

Examples of A for 10% and 30% of noise are in Figure 7.14a and in Figure 7.14b,
respectively.

a b

Figure 7.13: Matrix A for different noise intensity. a - 10% of noise, b - 30% of noise
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Figure 7.14: Clustering stability. a - measure Si for 10% of noise (green) and Si for 30% of
noise (blue), b - measure S′

i for 10% of noise (green) and S′
i for 30% of noise

(blue). Stability of data clustering for 10% of noise is S = 0.87 and for 30% of
noise is S = 0.68. Stability of data clustering within clusters for 10% of noise
is S′ = 0.81 and for 30% of noise is S′ = 0.51
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Stable patterns have maximal values of Si or S′
i. We can use this stability for the tasks

of image analysis and data mining.

Let us to have maps and corresponding satellite or/and aerial images. Maps have
been made by interpretation of the Earth surface. Image features give supplementary
information about the surface. We can cluster images such that the clustering looks like
a map. From the maps and the clustering we can select stable clusters (in the sense of
measures S′ Eq.(7.76) or E Eq.(7.37)). Moreover, changing the number of clusters in the
clustering algorithm we could build a curve of S′ orE. The optimal value on these curves
indicate the clustering which is near to the maps.

Here are several advantages of this schema compared to supervised classification.
Firstly, new clusters could be found in an unsupervised way. Secondly, there is no need
to calculate any distance between the image feature space and maps. In addition, the
optimal number of clusters is estimated using only clustering labels. Various examples
of clustering combination are presented in Chapter 8.

Self-optimising effect

In this section we show results of experiments about a self-optimising effect of the pro-
posed combination method. Under the self-optimising effect we mean optimisation by the
method of combination a parameter which is not supposed to be optimised at the be-
ginning. This parameter is the optimal number of clusters of data. It has been observed
from experiments that this number after combination tends to the true number of data
clusters.

Experiments have been performed on data shown in Figure 7.15a. Data have 16 Gaus-
sians with the same covariance matrix where each Gaussian has 100 points. This is the
simplest illustrative example.
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Figure 7.15: Matrix A for different noise intensity. a - 10% of noise, b - 30% of noise

We run the clustering algorithm, e.g., K-means, for every number of clusters from 2 to
30. Then we build a histogram as a function of the number of clusters to show how many
clusters have been obtained after combination.

The histogram is in Figure 7.15b. We see that the maximum value of the histogram
corresponds to the true number of clusters 16. Number 7 shows how many times 16 clus-
ters have been estimated by combination. This illustrative example shows an interesting
property of combination: it is able to estimate true clustering.
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7.7 Conclusions

In this Chapter the problem of clustering combination has been considered. Previous
works on this problem have been reviewed. Several recent algorithms of the clustering
combination need some parameter tuning. Clustering combination has been presented
through the clustering of clusterings. The simplest combination has been obtained by K-
means algorithm applied to binary representation of clusterings. Equivalence of different
measures has been illustrated (vector product, Euclidean and Hamming distances).

More complex modelling of combination based on the probabilistic approach has also
been considered. In this case clusterings are considered as nominal data and are modelled
either by mixtures of Bernoulli or multinomial models. Estimation of model parameters
is done by EM-algorithm. The best model for mixtures can be chosen by MDL criteria. It
has been noted that probabilistic mixtures suffer from random initialisations of the model
parameters which yields to different result of clustering combination.

Their disadvantages motivated us to state the problem of combination in an unsuper-
vised way. The problem statement is based on the co-association matrix. The measure
of square distances between a consensus clustering and given clusterings has been used.
Two algorithms to optimise this criterion have been proposed. The first algorithm is a
hierarchical one and the second one is iterative. Despite of the good performance of the
hierarchical algorithm there is no proof that it may achieve the global optimal solution of
the proposed criterion. On the contrary, it has been proven in Section 7.5, Theorem 7.5.1
that the iterative algorithm finds the global and unique optimal solution of the clustering
combination. Practical aspects of iterative algorithm application have been discussed.

Finally, several measures estimating clustering stability have been proposed. They are
able to indicate stable samples, clusters and clustering and compare different clusterings.

In the following Chapter we demonstrate application of clustering combination.
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Chapter 8

Clustering combination and image
analysis

In this chapter we demonstrate various examples of applications exploiting clustering
combination. At the beginning, we give a short list of proposed applications with brief
explanations. Then we compare performances of unsupervised clustering combination
algorithms to demonstrate effectiveness of proposed method (Chapter 7). Different cri-
teria to evaluate combination are given: supervised and unsupervised. A supervised
criterion is used only to compare results of combination to original clustering. Unsu-
pervised criteria are used to estimate the optimal combination without previous knowl-
edge of original clustering. Comparison results are discussed. Possible applications are
demonstrated mostly for images.

We list now some applications of combination which are demonstrated in this Chap-
ter:

1. Comparing clustering combination methods. The performances of different combi-
nation algorithms and objective functions are compared.

2. Combining via reclustering. A schema of combination via reclustering is given.

3. Combining of satellite image segmentations. An example of unsupervised combi-
nation of segmented images is presented.

4. Combining of images with artefacts. First we demonstrate a synthetical example on
how to remove artefacts from images, then segmented satellite images with clouds
are used.

5. Determining the optimal number of clusters for image series.

6. Combining for image deblurring. Brief discussions on image deblurring are given.

7. Clustering of nominal data. Combining is viewed as grouping of nominal data.

8. Combining for feature selection. A method for unsupervised feature selection is
presented.

Other possible applications of clustering combination may be considered. Different
maps of the same scene (touristic, agricultural, industrial etc.) can be combined to find
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some common areas of ground occupancy. Combination of clustered or segmented im-
ages of the same scene can be helpful for supervised, semi-supervised or unsupervised
image mining. These images may be segmentations of multi- or hyperspectral images
captured at once or in different times (time series images) or of images obtained from
different satellites.

We propose to compare methods of combination.

8.1 Comparing clustering combination methods

Different approaches can be used to combine clustering results, e.g., single-link hierar-
chical clustering, K-means clustering, multinomial mixture models with EM-algorithm
and mean shift combination. We propose to compare these methods through their per-
formances with several criteria:

1. NMI-criterion [Fred & Jain, 2005],

2. square distance between clusterings E (as defined in Eq. (7.60), Chapter 7),

3. MDL criterion for binary data Eq. (6.32),

4. MDL criterion for probabilistic models of binary data Eq. (6.28),

5. clustering error Ec, as described below.

We will show that each of these criteria is adapted for a particular clustering algorithm.

Clustering error Ec

In this subsection we would like to estimate the error of clustering combination compared
to the true clustering. The true clustering is used only to validate clustering combination.
After combination, clustering error may be estimated as the relative number of misclus-
tered samples to the total number of samples. We call this error as ”compactness” because
it characterises the compactness of clustering results. Let the true clustering have K clus-
ters and the combined clustering have P clusters. Then ”compactness” is computed as
follows:

compactness =
1

I

P∑

p=1

(
#p−max

k
#(p ∪ k)

)
= 1− 1

I

P∑

p=1

max
k

#(p ∪ k), (8.1)

where I is the number of samples and #p−max
k

#(p ∪ k) is the number of misclustered

samples for cluster p. The expression #(p∪k) is the general term of the confusion matrix:
the columns correspond to true clusters, and rows to combined clusters.

When the number of combined clusters is greater than K (the true cluster number),
the clustering error (”compactness”) Eq. (8.1) tends to zero as P increases. But it is not
a ”good” clustering because clusters are small and not ”compact”. To overcome this
problem it must be penalised by another error called ”sparsity” of clustering. ”Sparsity”
is estimated in the following way: for each true cluster we take the ratio of size of the
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marginal cluster to the size of the true cluster. Then the mean value is computed on all
true clusters. Finally, the ”sparsity” is computed as one minus the mean value:

sparsity = 1− 1

K

K∑

k=1

max
p

#(p ∪ k)
#k

, (8.2)

where p = 1, ..., P , #k is the number of samples in cluster k and max
p

#(p ∪ k) is the

number of samples of marginal cluster p with class k.

The trade between the two errors Eq. (8.1) and Eq. (8.2) can be derived as their sum.
It will characterise the error of clustering combination in regards to the true clustering:

Ec = sparsity + compactness. (8.3)

The error Ec is limited by 0 and 1: 0 ≤ Ec ≤ 1. When the combined clustering is the
same as the true clustering then error Ec equals zero. This error Ec Eq. (8.3) is used only
to estimate the quality of combination and is not used in any combination algorithm. A
similar criterion has been used in [Le Hegarat-Mascle et al., 1997].

Synthetic data

We perform a comparison of combination results on synthetical data which are noisy
clusterings. For that I = 200 samples have been chosen, distributed in K clusters with
equal populations each. We simulate noisy clusterings by allowing uniform random al-
location of labels to a wrong cluster. A noise level of 20% means that we change 20% of
the samples, randomly chosen from their original cluster to another one.

We collect 100 noisy clusterings for a given number of clusters and a given level of
noise. Noisy clusterings are generated for 2, 5, 10 and 20 clusters and 20%, 25% and
30% levels of noise. Thus, to evaluate combination algorithms we build 12 data sets each
of which has 100 noisy clusterings. This experiment is similar to the one described in
Section 7.4 but realised on more data sets.

We propose to examine different clustering algorithms for different combination cri-
teria. We have chosen the following algorithms and criteria:

1. hierarchical single-link applied to the co-association matrix with

(a) NMI criterion as in [Fred & Jain, 2005],

(b) square error E Eq. (7.60),

2. K-means applied to binary representation of clusterings with

(a) square error E Eq. (7.60),

(b) simplified MDL Eq. (6.32),

3. Multinomial mixture model (MMM) and EM-algorithm with

(a) error E Eq. (7.60),

(b) MDL criterion Eq. (6.28).
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We note, that when MDL criterion Eq. (6.28) is used for evaluation we should correctly
determine the number of free parameters. This number depends on the data dimension.
Since we represent clusterings by binary matrices Eq. (7.1) or Eq. (7.2), the dimension
which determines the degree of freedom of model (either for K-means or for multinomial
model, Chapter 7) equals to the number of clusterings P and not the number of columns
in Eq. (7.2). Considering dimension equals to P we can apply MDL criterion either as in
Eq. (6.32) or as in Eq. (6.28). We show in Sections 8.1 and 8.1 which criterion to use for
which combination algorithm. Results of clustering combination for three combination
algorithms are presented in Figures 8.1, 8.2 and 8.3.

S-link combination: NMI and error E

We begin the comparison of combinations for single-link algorithm with two unsuper-
vised criteria: NMI Figure 8.1 a-d and error E Eq. (7.60) Figure 8.1 e-h. Combination
has been tested on twelve data sets described above. As we remember s-link hierarchi-
cal clustering algorithm is applied to co-association matrix A Eq. (7.34) which represents
different clusterings. Maximal value of NMI criterion indicates the optimal number of
combined clusters while error E Eq. (7.60) and Ec Eq. (8.3) have to be minimised.

From Figure 8.1 a-d we see that NMI criterion can determine the true number of clus-
ters, i.e., 2, 5, 10 and 20 only for a weakly noisy clusterings with 20% of noise ( black
line of Figure 8.1 a-d ) and gives false numbers of clusters by growing up for clusterings
with 25% and 30% of noise ( Figure 8.1 a-d, blue and red lines ). On the contrary, square
error E Eq. (7.60) allows to determine the true number of clusters, i.e., 2, 5, 10 and 20
for all clusterings ( Figure 8.1 e - h, black, blue and red lines). Sharp peaks indicating
the true number of clusters are observed for the number of cluster 2, Figure 8.1 a, e, i,
while with an increasing number of clusters and noise, error E Eq. (7.60) has flat peaks.
Figures 8.1 i-l show error of clustering combination Ec for different numbers of clusters.
All minimum of supervised error Ec, Eq. (8.3) equal to 0. It shows experimentally that
single-link combination may find true numbers of clusters for synthetical data using a
good objective function as E Eq. (7.60).

K-means combination: error E and MDL

Figures 8.2 a-d illustrate square error E Eq. (7.60) for K-means algorithm which is used
to combine clusterings. Here again, true clustering is determined for different numbers
of clusters, i.e., 2, 5, 10 and 20 and all noise levels (20%, 25%, 30%). With an increasing
number of clusters and noise level error E Eq. (7.60) tends to have flat behaviour.

On the contrary, MDL criterion Eq. (6.32) has sharp peaks on the true number of clus-
ters Figures 8.2 e - h and as well successfully combines clustering. We note that K-means
algorithm uses different initialisations and gives different clustering result. This results
are considered as combination of clusterings. K-mean is run 50 times for a given num-
ber of clusters and MDL Eq. (6.32) curve is plotted for the number of clusters from 2 to
30. Points above curves, in Figures 8.2 e - h are values of MDL Eq. (6.32) for different
initialisations. Only minimal values (diamonds) are considered as optimal and are con-
nected by lines (black, blue and red). We see that MDL criterion with K-means has very
sharp and clear minimum of MDL for different numbers of clusters and different levels
of noise. On all Figures 8.2 a - h error E and MDL have black lines (20% of noise) under
blue ones (25% of noise) and blue lines under red lines (30% of noise). For MDL criteria
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Figure 8.1: Comparison of combinations of single-link algorithm with NMI criterion and
error E Eq. (7.60). Different numbers of clusters are tested: 2, 5, 10 and 20
(from left to right). From each ”true” clustering 100 noisy clusterings with
20%, 25% and 30% of noise are generated. Combinations : a - d - single-link
with NMI criterion, e - h - single-link with error E Eq. (7.60), i - l - clustering
error for single-link algorithm Ec Eq. (8.3).
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Figure 8.2: Comparison of combinations based on K-means algorithm with MDL criteria
and error E. Different numbers of clusters are tested: 2, 5, 10 and 20 (from
left to right). From each ”true” clustering 100 noisy clusterings with 20%, 25%
and 30% of noise are generated. Combinations : a - d - K-means with error E
Eq. (7.60), e - h - K-means with MDL criterion Eq. (6.32), i - l - clustering error
for K-means algorithm Ec Eq. (8.3).
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this is explained that less noisy data have less complexity. The explanation for error E
Eq. (7.60) is that less noisy data have less square error.

Here we should note that K-means uses random initialisations and it cannot guaran-
tee a global optimum. In the case of a high number of clusters, e.g., some tens, results
may be very different and the number of runs necessary to achieve the optimum may be
very high (it may be not useful for practical applications). However, the initial solution
can be taken as one of the given clusterings. A good initialisation is the closest clustering
to all other clusterings, e.g., in the sense of the Euclidean distance. But again, this clus-
tering may be far from the optimal one and K-means may not achieve the optimal value.
We see that a stable method of combination with guaranteeing optimal solution should
be used.

Clustering error Ec (Figures 8.2 i - l) shows that K-means algorithm may achieve opti-
mal combination. The error Ec has zeroes at the optimal combinations for 2, 5, 10 and 20
(from left to right) clusters and all noisy levels. We also remark that standard deviation of
the error Ec Eq. (8.3) grows with growing numbers of clusters. This effect is explained by
the fact that K-means has more degrees of liberty and gives many different clusterings.

MMM with EM-algorithm combination: error E and MDL

Figures 8.3 a-h show the comparison of error E Eq. (7.60) and MDL Eq. (6.28) criterion
for clustering combination. Parameters of the mixture of the multinomial model (MMM)
have been estimated by EM-algorithm. Figures 8.3 a-d correspond to error E. Minimal
values of error E indicates the optimal number of clusters for combination. As we see
clusters 2, 5, 10 and 20 are correctly estimated by error E for different levels of noise.

MDL criterion estimated with MMM and EM-algorithm is shown in Figures 8.3 e-h.
The optimal number of clusters is determined as the minimum values of MDL curve. We
see in Figures 8.3 e-h that with growing number of clusters MDL criteria becomes to have
rather chaotic behaviour. This effect appears because clustering results are very different
for different initialisations and it is possible to have many local optima for a high number
of clusters.

The probability of obtaining a good clustering is decreasing with a growing number
of clusters. This effect is observed through the chaotic behaviour of supervised error Ec

Eq. (8.3), which shows the quality of the clustering, Figures 8.3 i-l. Standard deviation
of error Ec for 2 clusters is much smaller than for Ec with 10 clusters Figure 8.3 k and 20
clusters Figure 8.3 l. It expresses the fact that combination of clusterings by MMM with
EM is very unstable. In the same time the supervised error of the clustering combination
Ec in Figures 8.3 i-l shows that the optimal combinations are achieved. These values of
Ec equal zero and are observed on all Figures 8.3 i-l. This proves experimentally that
MMM with EM algorithm can be used to combine clustering results, however for large
numbers of clusters the global optimum may never be achieved.

Discussion

We give a short summary of experiments for combination of synthetical data. Different
algorithms of clustering combination have been compared in this Section. We have seen
that the square error E Eq. (7.60) and MDL criterion Eq. (6.28) show the optimal number
of clusters in contrast to NMI criterion [Fred & Jain, 2005] which fails in some cases. In
addition, we should note that direct application of hierarchical single-link algorithm may
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Figure 8.3: Comparison of combinations of Multinomial mixture model estimated by
EM-algorithm with error E and MDL criteria. Different numbers of clusters
are tested: 2, 5, 10 and 20 (from left to right). From every clustering 100 noisy
clusterings with 20%, 25% and 30% of noise are generated. Combinations : a
- d - MMM with EM and error E Eq. (7.60), e - h - MMM with EM and MDL
criterion Eq. (6.28), i - l - clustering error Ec for MMM with EM algorithm Eq.
(8.3).
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be time and memory consuming for large data sets because of the square complexity. On
the contrary, K-means or EM-algorithm have linear time and memory complexity and
may be applied to quickly test combinations. But they still suffer from depending on
initialisations and may not give the optimal clustering in the case of a large number of
clusters.

Clustering combination performed by mean shift for all synthetical cases given above
returns the exact true clustering. It means that each noisy clustering set after combination
by MSC have been recovered as the true clustering with error Ec Eq. (8.3) equals zero.

8.2 Combining via reclustering

In this Section we propose another approach to combine different clusterings. In previous
Section we have shown how to combine clusterings by single-link algorithm, K-means or
multinomial mixture model with EM-algorithm. The choice of MDL criterion to select the
optimal number of clusters has also been studied. We remind that to select the optimal
clustering combination we run EM-algorithm with different random initialisations and
then select the best model. Here we propose to apply K-means, BMM or MMM with
EM-algorithm (with random initialisations) and then to recluster again these results. The
schema of such a clustering combination is given in Figure 8.4 This schema can be used

Figure 8.4: Schema for clustering combination using label reclustering with random ini-
tialisations. Convergence of combination can be estimated on how many clus-
terings are the same: if more then a half, then combination is converged,
else take results of combination and recombine them. Alternatively, either
the square distance E Eq. (7.60) or the stability of clusterings can be used as
indication of convergence.

to find a stable clustering combination for a given set of algorithms. In this way we
can loop the process until convergence is achieved. There are several ways to estimate
convergence:

1. evaluate MDL criterion and check the difference between actual and previous val-
ues;

2. measure the stability of clustering (described in Section 7.6) and stop when a certain
level is achieved (this level can be fixed or computed);
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3. take one of the clusterings for a given iteration, then stop if this clustering is the
same as one half of clusterings.

4. the distance between clusterings may be estimated as the square distance E Eq.
(7.60) and if it equals zero, then stop.

8.3 Combining of satellite image segmentations

In this section we demonstrate the ability of our combination approach in the context of
satellite image segmentation. Data are considered as the image pixels; segmented regions
provide clusterings. We do not pay attention here to the segmentation algorithm. Seg-
mentations have been obtained with the same algorithm but with different parameters
(e.g., watershed segmentation with different thresholds).

As mentioned before, combination can be performed either using K-means algorithm
or MMM with EM-algorithm. It is clear that when we have data as image segmentations
which have hundreds of clusters it will be time consuming to analyse MDL curve to
find the optimal number of clusters, as discussed in Section 8.1. As initial solution for
combination by clustering algorithm, one of the segmentations results can be selected.
This initial segmentation should be nearest to all segmentations expressed, e.g., in the
sense of square distance E Eq. (7.60). But, as explained in Section 8.1, the selection of one
of the clusterings may not lead to the optimal combination. However, sometimes it can
lead to a good enough solution.

Below we give six segmentations to be combined, see Figure 8.5 a-f. Different meth-
ods of segmentation combining are applied: (i) [Giros, July 31 2006-Aug. 4 2006], (ii) a
multinomial mixture model with EM-algorithm to estimate MMM parameters (Chapter
7), and (iii) mean shift combination MSC (Chapter 7).

The result of the segmentation combination presented in Figure 8.5 g is performed
by the method described in [Giros, July 31 2006-Aug. 4 2006] using mutual information
between segmentations. In Figure 8.5h the combination by MMM with EM-algorithm is
presented. As seen from previous sections MMM with EM needs a good initialisation,
otherwise it is very time consuming to initialise it randomly to obtain the best combina-
tion.

The second segmentation has been selected as the initial solution for MMM. The dis-
tance from each segmentation to all others is computed as the square error E Eq. (7.60),
see Figure 8.6. The minimum value of square error E corresponds to the second segmen-
tation. We compute parameters of MMM (mean values) given the second segmentation
and run EM for MMM to obtain a combination of segmentations, see Figure 8.5 h.

The result of combination by MSC algorithm is given in Figure 8.5 i. We see from
Figure 8.5 i that the error E Eq. (7.60) has the lowest value for combination by MSC
algorithm. It means that combination by MSC produces the segmentation which is closer
to others comparing to combination by other methods.

8.4 Combining of images with artefacts

One of the main problems in satellite imagery is that the Earth surface is covered with
clouds that may provide a lot of partially useless images. For several satellite images
of the same scene it is possible to determine common background supposing that clouds
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a b c

d e f

g h i

Figure 8.5: Combination of segmentations. a - f - 6 segmentations to be combined. The
square distance E Eq. (7.60) is used to evaluate the quality of combination. g
- combination obtained by Giros E = 17.2 · 106, h - combination obtained by
MMM with EM E = 18.8 · 106, i - combination obtained by MSC E = 3.5 · 106.
The error is negative because a constant term is not taken into account in Eq.
(7.60).
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Figure 8.6: Square distance E Eq. (7.60) from 6 segmentations to their common represen-
tation. The distance from combination obtained by MSC algorithm 3.5 · 106 is
three times lower than distances from any of the 6 segmentations.

randomly cover the Earth surface with many ”open” areas. Then it is possible to segment
these images, combine different segmentations and reconstruct the original scene. Here
we propose two examples of combination using:

1. synthetical image segments with artefact,

2. real satellite images with clouds.

Synthetic segmentations

We propose to generate synthetical segmentations with simulated ”clouds” as an exam-
ple. We generate 25 regions of size 20 × 20 pixels with at most 10 different labels. Thus
we have a simulated image of 100× 100 pixels where several regions may have the same
label. In addition, we simulate the presence of ”clouds” on images. The ”cloud” is a cir-
cular segment (however, it may have any shape) with a random position and a random
radius. 10 examples of such segmentations are proposed, Figure 8.7 a-j.

Examples of simulated segments in Figure 8.7 a-j contain twice as less different la-
bels than the number of regions. We illustrate it to show that combination of segmenta-
tions may provide useful information. The combination of segmentations is performed
by MSC algorithm which finds in an unsupervised way the number of correct segments
which equals 25. The result of combination of the 10 segmentations is shown in Figure 8.8.
We see from Figure 8.8 that the combination allows reconstructing original background
image of segmentations. All 25 regions have been detected even if each segmentation has
no more than 10 labels. It proves practically that combination may derive new and inter-
esting information from data with different points of view (segmentations, clusterings,
classifications, maps, etc.).
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a b c d e

f g h i j

Figure 8.7: Simulated segmentations with ”clouds”. Each image has 25 regions with at
most 10 labels. Circular regions on each image simulate ”clouds”.

Figure 8.8: Result of combination by MSC algorithm of simulated segmentations given in
Figure 8.7. After combination 25 segments have been detected, ”clouds” have
disappeared.
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Combination of clustered images with clouds

In this section we give a combination example for satellite image segmentations. Here
we propose to combine image segmentations of the same scene but captured at different
times. Five images are SPOT5 time series of the same scene. Each image has size of
200× 200 pixels. Examples of satellite images are presented in Figure 8.9.

a b c

d e

Figure 8.9: SPOT5 time series images of the same scene, c©CNES.

The first image in Figure 8.9 a contains clouds. We want to segment images and
combine their segmentations. The considered segmentations are obtained by K-means
clustering algorithm with a fixed number of clusters equal to 3. We have not considered
the estimation of the optimal number of clusters and only show combination results.
Image segmentations are shown in Figure 8.10.

The first image, see Figure 8.10a shows segments of clouds. The result of combination
Figure 8.10f does not have the cloud.

To evaluate the quality of segmentation combining illustrated in Figure 8.10 we cal-
culate distances in Table 8.1. E1 shows distances between each segmentation and five
segmentations, while E2 shows distances between each segmentation and their combi-
nation.

Maximum values of errors E1 and E2 for the first segmentation in Table 8.1 means
that, this segmentation (image with ”clouds”, Figure 8.10a) is far from both all segmenta-
tions and their combination in Figure 8.10f. Hence, we may detect an image with artefacts
as clouds, smog, etc. Moreover, in this case clouds do not influence combination of seg-
mentations.
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a b c

d e f

Figure 8.10: Combination of clustered images: a-e - image clusterings (Figure 8.9). f -
combination of clusterings.

Table 8.1: Distances for combined segmentations in Figure 8.10

Segmentations

Error 1 2 3 4 5

E1 1.8e+ 08 1.2e+ 08 1.0e+ 08 1.1e+ 08 1.6e+ 08
E2 23.6e+ 07 11.3e+ 07 1.7e+ 07 9.3e+ 07 19.5e+ 07
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For real applications we may further substitute segments from combination by origi-
nal parts of images. This allows ”reconstructing” the image disturbed by clouds.

8.5 Determining the optimal number of clusters for image series

The combination method proposed in this thesis may combine clusterings with different
numbers of clusters. Here we propose to consider this number as a parameter to be
estimated. Let us consider as instance clustered images of the same scene (like in the
example in the previous Section) Figure 8.9 a-e. We want to cluster a new image of this
scene ”similarly” to existing clusterings. The problem is how to estimate the number of
clusters for the new image.

Let the first image Figure 8.9a be a ”new image”. We aim at comparing it to the four
clusterings of Figure 8.10 b-e, where each clustering has 3 clusters. We would like to
estimate the number of clusters for the first image Figure 8.9a. In addition, clustering of
the first image should be similar to the four clusterings in Figure 8.10 b-e.

To estimate the number of clusters for the first image we cluster it with an increasing
number of clusters from 2 to 15 and draw the distance E Eq. (7.60) from the clustering to
the four others in Figure 8.10 b-e. This procedure is repeated for the number of clusters
from 2 to 15. In Figure 8.11 the minimum value of the distance E indicates that the first
image with 4 clusters is the closest to clusterings in Figure 8.10 b-e.

2 3 4 5 6 7 8 9 10
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

8

Number of clusters

S
qu

ar
e 

er
ro

r 
E

a b

Figure 8.11: Optimal clustering compared to four given clusterings. a - the distanceE Eq.
(7.60) between the first clustered image in Figure 8.9a and the four clustered
images in Figure8.10 b-e. b - the result of clustering with the optimal number
of clusters which equals 4.

We see from the optimal clustering of Figure 8.11 b than one cluster corresponds to
clouds. We may conclude that if a new image has more clusters that given images then it
contains some new information.

Other approaches may be considered via combination. For example, when the num-
ber of segments depends on a parameter of the segmentation algorithm (e.g., a threshold
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for watershed segmentation algorithm), then the optimal value of this parameter may be
determined as the parameter for which segmentations are similar.

An example in video processing is motion estimation with a fixed camera observing
a scene. It is possible to detect the background and analyse movements. We could also
imagine detecting movements, based on the square errorE Eq. (7.60) between segmented
frames. A frame with movements can be detected as one which is far from the combi-
nation of several frames. It is also possible to separate movements in the video from the
background. For scenes with more movements error E will be larger than for the rare
movements on the scene.

8.6 Combining for image deblurring

In this section, we illustrate briefly an idea observed from practical experiments on com-
bination concerning for image deblurring.

Let us generate an image with 7 gray levels, Figure 8.12a. Then let shift this image in
the direction of its two spatial axis. Suppose that this shift has random Gaussian noise
with 2 pixels standard deviation. If we take the mean of 50 shifted images we obtain a
blurred image as in Figure 8.12b.

a b c

Figure 8.12: The square error between the original image (a) and blurred image (b) is
148.44, while the square error between the reconstructed image (c) and the
blurred (b) image is 12.35. Reconstructed image differs from the original by
several pixels, e.g., in the area of white circle.

Since each image has only 7 gray levels we can unwrap it into a vector and represent
this vector by a binary matrix as in Eq. (7.1). Then we can concatenate shifted binary
images into one matrix B as in Eq. (7.2). Finally we propose to combine the concatenated
binary matrix B by the mean shift combination proposed in Chapter 7. Under image
deblurring we consider an image obtained after combination. The result of combination
is shown in Figure 8.12c. We see from Figure 8.12c that globally the square error 12.35
between the reconstructed image (c) and the blurred (b) image is much lower than 148.44
between the original image (a) and blurred image (b).

It shows that combination gives more accurate result from the set of shifted images.

Figure 8.13 shows lines from the original image, from the mean of shifted images and
from reconstructed image.
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Figure 8.13: Lines of the original image, mean of shifted images and reconstructed image
(Figure 8.12 a-c).
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As we see from Figure 8.13 a-d, the reconstruction is better for each line than the
original line of the image.

We observe that combination of randomly shifted binary images returns a good re-
constructed image in the sense of the minimum of the square error. We may consider this
process as image deblurring.

Here proposed combination for image deblurring remains still open because it has
been presented only on simulated data. To apply it on real data we should obtain matrices
Bp Eq. (7.1) from the blurred image. How to obtain these matrices is not considered
here. But deblurring may be considered as an additive model where blurred image is the
sum of shifted perfect images. As the mean of shifted images does not depend on their
order of summation, we may construct the matrices Bp by suppressing images from the
mean image. But there is the problem of image shifting. The shifting of an image may
be avoided via Fourier transform, because the amplitude of Fourier transform does not
depend on shift. This question needs to be more deeply analysed.

8.7 Clustering of nominal data

In this sub section we give a small example of nominal data combination. This data set
has each variable as a set of nominal data, e.g., a set of categories. Every variable can
be coded as binary matrix B Eq. (7.1) and all of them concatenated into binary matrix B
as in Eq. (7.2). Then instead of clustering data B by MMM with EM-algorithm we may
combine binary data by mean shift combination (MSC), Chapter 7.

Here we consider nominal data taken from UCI repository 1.

The first experiment is performed on a data set of votes. It includes votes for each
of the U.S. House of Representatives Congressmen on the 16 key votes. There are nine
different types of votes: voted for, paired for, and announced for, voted against, paired
against, and announced against, voted present, voted present to avoid conflict of inter-
est, and did not vote or otherwise make a position known. We represent labels of votes
as binary matrices and then all matrices are concatenated into binary matrix B. For the
missing labels which have a character ”?” we put zero in B. MSC algorithm is applied
on matrix B. After combination 2 clusters have been found. Three samples have been
detected as outliers. The first sample has an unknown vote and the two second have 15
unknown votes among 16, that is why they have been clustered as single clusters. The
error of combination is 11.4% (the percentage of misclassified samples) which is compa-
rable to 11% classification in [Gionis et al., 2005].

The second data set is Mushroom Data Set with 8124 instances and 22 categorical
attributes. This data set includes descriptions of hypothetical samples corresponding to
23 species of gilled mushrooms. Each species is identified as definitely edible, definitely
poisonous, or of unknown edibility and not recommended. The latter class has been
combined with the poisonous one. The error after combination by MSC algorithm is
10.6% and is better than 10.9% in the work [Gionis et al., 2005].

MSC-algorithm has been applied to obtain combination of nominal data. Here again,
we do not need random initialisations and MSC - algorithm find automatically the opti-
mal number of clusters.

1http://www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html

http://www.ics.uci.edu/$sim $mlearn/{MLR}epository.html
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8.8 Unsupervised feature selection algorithm

One of the attractive topics of data mining is feature selection. This problem is very
important because it consists in eliminating noisy, correlated and dependent features.
This procedure allows to improve supervised, semi-supervised and unsupervised data
analysis and to significantly reduce time computation and memory volume of data to be
processed. This is a very actual problem for large volumes as well as for small volumes of
data. Unsupervised feature selection is desired when no a priori information on feature
preference is available.

In this section we propose an original method of unsupervised feature selection. As
we suppose that data features may be correlated and dependent, we propose to group
similar features and then select one feature which represents each group. This grouping
can be considered as a clustering process applied to the feature set (it corresponds to
clustering transposed data matrix).

How many clusters should be used? One approach to estimate the number of clusters
is to use, for example, MDL approach. But in the case of feature clustering MDL criteria
will have very high penalty and there is no sense in using MDL in this case.

For unsupervised feature selection we propose to cluster features by K-means algo-
rithm which is simple and fast. We run it for the number of clusters from 2 to the number
of features. For each number of clusters we initialise K-means with ten random initial-
isations. Then we group features by mean shift combination (MSC) in order to find the
optimal cluster number for features. When we run K-means for a high number of clus-
ters, combination of clustering results becomes a critical issue. Despite of it, this feature
selection algorithm gives very good results in practice, see the following chapter.

After combination of feature clusterings we select from each combined cluster a fea-
ture which is the most stable. Stability is estimated by stability criteria S Eq.(7.74) in
Section 7.6. Data analysis (clustering, classification, etc.) is then performed on the se-
lected features set.

This idea has been published in [Campedel et al., 2007]. Results of this approach are
compared to supervised feature selection and supervised classification. Classification has
been performed by SVM classifier which achieves generally very high performances in
practical tasks. In the paper [Campedel et al., 2007] we demonstrate that unsupervised
feature selection provides very good results compared supervised selection.

8.9 Conclusions

In this chapter different and new examples of clustering combination have been consid-
ered. Comparison of different algorithms for combination is performed. We conclude,
that the proposed objective function and the proposed MSC algorithm prove practically
their superiority compared with other objective functions and combination algorithms.
Effectiveness of combination is shown via (i) clustering and classification errors, (ii) sta-
bility of solutions and (iii) the fast implementation. One of the main advantages of the
proposed combination is that it gives the same combination for the same set of cluster-
ings.

The following applications to image analysis have been considered: combination of
different clustering results and segmentations, parameter estimation, artefact detection,
estimation of movements. Combination of time series images with artefacts may recon-
struct a scene, e.g., in the case of images with clouds it is possible to recognize and sub
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stitute clouds by ”stable” image segments. Some ideas about image deblurring by com-
bination have been mentioned.

For data analysis in general, it allows to combine nominal data values, estimate and
find stable patterns, analyse and characterise stability of clusters and clusterings.

An important application of combination consists in unsupervised feature selection
which shows very good practical results proving by the way the interest of the proposed
method.

Another experiments are given in the following Chapter where unsupervised mining
approaches are applied to multimedia and satellite images.
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Part III

Semantic construction
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Chapter 9

Semantic construction for images

In this chapter we address a problem of semantic construction for images. Semantic can
be viewed as a set of concepts and relations among them [Suykens & Horvath, 2002]. This
representation helps to show a variety of knowledge about images (concepts-relations)
in a compact form. Moreover, semantic may be used in managing images (classifications,
clustering, querying, etc.).

Two types of images are considered for experiments in this chapter: (i) multimedia
and (ii) satellite images. We begin to construct semantic for multimedia images. This
experiment has been carried out partially supervised (obtaining different classifications)
and unsupervised (combining classifications). Its description is presented in Section 9.3.
The aim of this experiment is to verify the proposed approach for semantic construction.
Multimedia images have been used because of their easy interpretation by users. This
experiment being successful is applied to satellite images in a fully unsupervised way,
see Section 9.4. But, at first, a brief introduction to semantic is presented.

One of the earliest works on semantic construction for computer sciences may be
found in [Gotlieb & Kumar, 1968]. The authors propose to analyse indexed vocabulary,
where each index expresses words, collections of words, or phrases. The idea of this work
is to establish semantic associations among indices depending on context, when indexing
terms may have different connections. A power of this approach is that it uses a known
vocabulary; therefore associations among terms are derived. From the other hand, it has
a drawback because of using a priori knowledge about semantic relationships among
terms. Finally, indexed terms are grouped into clusters (concepts). We suppose that
this approach can be extended via automatic data analysis and applied to images. The
problem here is that for images there are neither vocabulary nor concepts and they should
be detected in an unsupervised way.

Recently, semantic construction for images became very popular [Kuhn et al., 2007;
Carneiro et al., March 2007]. It is a rather difficult task.

In [Kuhn et al., 2007], a semantic clustering is proposed, based on latent semantic
indexing along with clustering of textual items which share similar vocabulary. Clusters
represent semantic topics with links between them, and visualised on a 2D map.

A survey of high-level semantics for content-based image retrieval is given in [Liu et al.,
2007]. The authors consider semantic based image retrieval to support data mining in-
stead of improving low-level feature extraction algorithms. Five state-of-the-art tech-
niques are revised: (i) object ontology, (ii) machine learning level, (iii) relevance-feedback,
(iv) semantic templates (v) fusing of text and visual content of multimedia images.

The semantic construction for textual data is similar to semantic construction for im-
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ages. But problems emerge for images: (i) there is no image vocabulary (indexes), (ii) no
a priori knowledge on how indexes are related and how they group to form concepts,
(iii) there is no explicit semantic relation among concepts. Despite of the lack of infor-
mation there exist two assumptions: (i) images are tractable data and can be interpreted,
and (ii) images reflect useful information. Indeed, when we are looking at multimedia
images we are able to detect objects, types of textures, colours and therefore, to categorise
images into different groups. Moreover, it is possible to describe images by words. All
these assumptions allows applying unsupervised methods of image processing to ex-
tract image terms (indexes), image concepts and relations among concepts. This will be
demonstrated in Section 9.4. A representation of clustering results is discussed in the
following Section.

9.1 Visualisation of clusterings

One of the goals of unsupervised data analysis is pattern detection. The idea of this ap-
proach has been discussed in Chapter 5. It consists in clustering data and identifying
their semantic content. When we cluster a large volume of complex data it probably
results many clusters (tens or hundreds). To navigate in the results becomes a rather dif-
ficult task. Therefore, there is a need to automatise the analysis of clusterings. For that,
we should extract new information from the obtained clustering, e.g., estimate parame-
ters of clusters, relations between them, degrees of connections, etc. Different distances
can be considered as relations between clusters, e.g., the Euclidean distance or any other.
For visualisation, clusters may be considered as concepts and for simplicity represented
as nodes, while relations between them can be regarded as edges which connect nodes.
Two representations are possible: trees and graphs structures.

What does a tree of clusters represent? A tree is an undirected graph with a single
node at the top, leaves at the bottom and no loop. A tree may generalise clusters in one
concept. Analysing nodes from top to bottom levels we are able to extract new pieces of
information, e. g., which concepts preferably grouped and which concepts are grouped
only at the top of the tree. Navigation using a tree is simple and fast and the user con-
centrates its attention on the current level of tree. But the tree has some disadvantages
compared with graph representation. At each level of the tree we have only information
about sub trees and no relation to the other nodes of the tree.

What does the graph of clusters represent? A graph is a set of nodes and edges,
where undirected edges connect nodes. This representation is very useful to analyse
how every cluster (node) is related to other clusters (nodes) and to measure the degree of
this relation. This representation may be helpful in the search of patterns represented by
one cluster or by different clusters. Cluster connections are not limited by the levels as
for the tree and allows analysing more deeply clusters and their relations. This may be
very useful when searching and constructing new concepts.

Trees and graphs may be extracted from the matrix of relations with relations being
distances, similarities and dissimilarities. Examples of representations of clustering re-
sults as well as their analysis are given in the following sections.
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9.2 Extraction of relations among concepts

In this Section we introduce relations among concepts represented by trees and graphs.
We concentrate our attention on the case where data are clustered by different unsuper-
vised algorithms. All discovered clusters reflect the original feature space, but have been
discovered by different distances or models. The clusterings can be combined to obtain
general (consensus) clustering. It is sometimes very difficult or even impossible to com-
bine them via original feature space. That is why we propose to combine clusterings by
co-association approach, see Chapter 7, avoiding by the way the concordance of different
methods.

Relations between clusters in the coassociation matrix are exploited in this section.
They reflect relations between different clustering results. The mean shift algorithm MSC
of the combination of clusterings finds the optimal combination, as shown in Section 7.5.
The degree of relations between combined clusters may be considered as the Euclidean
distance between clusters in the space of clusterings B. If instead of the Euclidean dis-
tance we calculate the normalised sum of relations between combined clusters in space
B, then it corresponds exactly to the vector product of two mean vectors of the combined
clusters in space B. The vector product is related to the Euclidean distance as it has been
shown in Section 7.3.

In the literature a very popular relation is exploited by the single-link algorithm
[Fred & Jain, 2005] selecting two nearest neighbour clusters. The formulation of the coas-
sociation matrixA Eq. (7.32) allows finding them without explicit calculation of the whole
matrix. A single-link tree reflects the relations between clusters.

To construct the graph of relations, a vector product between means of clusters calcu-
lated on matrix B is used. Clusters are equally important and no preference for clusters
is considered (there is no order ). Clusters are represented as points in the 2 dimen-
sional space situated on a circle with equal distances between neighbour points. Rela-
tions among clusters are presented by edges. The importance of relations is displayed
through the thickness of the edge: the more important the relation the thicker the edge.
Moreover, we can display only relations (edges) of a given cluster or to display the most
important relations after thresholding.

Examples of clustering representations by trees and graphs for multimedia images
are given in the following Section.

9.3 Semantic construction for multimedia images

In this section semantic of multimedia images is addressed. Examples of the analysis
are also given. The idea behind this experiment is to ask several observers to classify
a finite set of images, then, to exploit the combination of the classifications to derive
semantic concepts for the images. This experiment, if successful, will support the idea
that semantic may emerge from a consensual clustering.

The experiment has been made at TélécomParisTech, among the large processing re-
search group and have been realised via webpage interface written in html, php and java
scripts. An example of the webpage is shown in Figure 9.1. It runs on my home page
1. For the experiment 45 multimedia images containing a variety of subjects have been
selected. They are displayed in a random order in Figure 9.2.

1http://www.tsi.enst.fr/˜kyrgyzov/webclass/

http://www.tsi.enst.fr/~kyrgyzov/webclass/
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Now we give the experiment protocol. Each user is asked to classify 45 images accord-
ing to its own personal ”best criterion” (as if organising his (her) own image directory in
his (her) computer archive). Each user may choose as many (or as few!) classes as he
(she) wants. All the classes will be at the same level (no hierarchy among classes). More-
over, the user is asked to give a name to each class, and at the end to annotate with a
free vocabulary the class content. The interest of this experiment is to have independent
classifications from different users each classification being as pertinent and ”good” as
any other. The protocol is the following:

Step 1. ”OBSERVING” (5 minutes).
The user examines all images in the left part of the web page (can click on an image
to enlarge it), defines the classes which are the best adapted to sort these images
and choose the name for each class.

Step 2. ”CLASSIFICATION” (5 minutes).
Clicking on the line under each image the user creates the class (by selecting ”Add
new class”) selects an existing class. At this stage the user can change the name of
classes at any time. After giving names to all images the user clicks on a button
”OK”.

Step 3. ”DESCRIPTION” (5 minutes).
Names of the given classes are available on the right bottom part of the page. The
user is asked to give several words (nouns) for each class in order to precise and
annotate the class content. These words are freely chosen by the user, without the
system. At the end the user should click on the ”Classification is done” button.

In the total 50 different users participated to the experiment providing 50 different
and independent classifications of 45 images. Two experiments have been conducted.
In the first experiment the different classifications have been combined. In the second
experiment the literal descriptions of classes have been combined. Below we explain
more precisely the experiments.

Combining of classifications

The goal of this experiment is to find a consensus classification among the 50 different
ones given by the users. The classifications reflect independent points of view and in the
same time they have some common information. Combining is able to find consensus
clusters which reflect groups of classes given by users, as it has been shown in Chapter
7. We hope that new clusters may be extracted from the combination result and they will
better represent images than any single user’s classification.

The first problem of combining of classifications is that each of them has its own num-
ber of classes. Moreover, classes from different classifications have no correspondence
between each other because they have been obtained from different users independently.
The second problem is that we do not a priori how many clusters the combination of
classifications should have. The combination of classifications is performed by the unsu-
pervised MSC algorithm, see Section 7.5. When applying this algorithm on the 50 given
classifications of 45 images, see Figure 9.2, the number of estimated clusters by MSC
equals 8.

The misclassification square error E as defined in Eq. (7.60) is calculated to estimate
how far each classification is from all others. The error E is shown in Figure 9.3.



9.3. SEMANTIC CONSTRUCTION FOR MULTIMEDIA IMAGES 187

Figure 9.1: Web interface for description of multimedia images.
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Figure 9.2: The 45 multimedia images which have been used for the experiment, Figure
9.1. Images presented in a random order issued from Corel Photo Library.
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Figure 9.3: Error
√
E Eq. (7.60) between classifications and combined clustering.

E1 =
√
‖Bp(Bp)T −A‖2 - distance E from 50 classifications to each of them

(minE1 = 11.2), E2 =
√
‖BBT −Bp(Bp)T ‖2 - distance E from consensus

clustering to each of 50 classifications (minE2 = 10.2), E3 =
√
‖BBT −A‖2 -

distance E from consensus clustering to 50 classifications (E3 = 6.2),

We see from Figure 9.3 that none of the 50 classifications has zero error with all 50 clas-
sifications. It means that the 50 classifications are different. We also see from Figure 9.3
that the combined clustering has the lowest error (

√
E = 6.2) that says the combination

is situated ”at the middle” of classifications. Error
√
E can be interpreted as a consensus

with mean error of 6 images, while other classifications give the minimal errors of 11 and
10 images. Combined clustering has 8 clusters and differs from any other given classi-
fication. Images of 8 clusters of combination are given in Figure 9.4. We observe from
Figure 9.4 that images are grouped corresponding to some common sense or in the other
words semantic context: scenes, objects, actions, etc.

Now let us represent relations among clusters issued from co-association matrix A as
discussed in the previous section. These relations are graph and tree connections among
clusters, see Figure 9.5a.

The degree of connections for the graph is reflected by the width of the edge: the
wider the edge, the more important the connection. We see from Figures 9.4 and 9.5a that
clusters which have close semantic meanings have more important degrees of connec-
tions. For example, cluster 8 (where we observe cows, mountains, sky and a building)
has strong connection to clusters 1 (the cluster of animals), 3 (the cluster of urban land-
scape) and 5 (the cluster of paysages). Another example, cluster 6 represented by boats
is linked to cluster 5 and to cluster 7 which groups vehicles. It is meaningful links among
discovered clusters. Also we observe the important link between cluster 3 (architecture)
and clusters 4 (viewing as art creation). Here again this link is logical because there is no
clear distinction between art and architectural creations.

The representation of relations between combined clusters by the tree is illustrated
in Figure 9.5b. This figure proves experimentally the importance of connections among
clusters illustrated in Figure 9.4. The tree in Figure 9.5b generalise different concepts into
one single cluster at the highest level of tree. We note that in the case of several groups
of clusters which have no connections it will produce several trees, each of which has its
own meaning. Data represented by these trees will have no common sense provided by
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Figure 9.4: Combination of classifications. 8 clusters have been detected. Corresponding
cluster label is shown under each of 45 images.
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Figure 9.5: Connections among clusters of the combined classifications: a - graph, b - tree.
Connections show semantic relations among clusters illustrated in Figure 9.4.

users.

Combining descriptions of classifications

In this part we explore the classifications of the multimedia images, but instead of com-
bining labels of classifications we analyse the textual descriptions associated with these
classifications. Remind that each user after having classified images with its own number
of classes and its own classes, was asked to describe the meaning of each class with a set
of words.

The goal of this experiment is to analyse and combine descriptions obtained from dif-
ferent users. As before we assume the result of combination provides semantic of images.
In addition, we compare combination of classifications and combination of descriptions.

Combination of words is very similar to the text mining (clustering) and includes the
following steps:

1. Text preprocessing. Elimination of articles, words with mistakes, coding words by
labels, etc.

2. Text clustering. Choosing models and algorithms to cluster text data.

3. Representation of clustering results.

Below more precisely these three steps are discussed in order to combine descriptions
of images.

Text processing

Here we operate with the same 50 classifications which have been analysed in the
previous section. Words attributed only by the user are used to characterise classes. De-
scriptions of image classifications have been done mainly with English words. Mainly
nouns have been selected while articles and endings have been removed manually to
avoid mistakes, presence or absence of comas, etc. For a larger set of data, a programme
of linguistic processing would probably be necessary written.
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In the total we obtained 157 words (or group of words) to describe image classes. The
extracted dictionary of image class descriptions is given in Appendix E.

Text clustering The textual descriptions are devoted to the clustering of the image
database, using the words as descriptors.

As seen in Chapter 7 there are several methods to cluster nominal data. We propose
to apply mean shift combination algorithm (see Section7.5) which has shown promising
results in Chapter 8. For that purpose we construct matrix B Eq. 7.1 of size I × J where
I = 45 images and J = 157 words. We calculate how many times each word j is used in
the 50 different descriptions of each image i. If image i contains word j thenBij = Bij+1.
If image i is never described by word j then Bij = 0. This process is done for all 50
descriptions. To satisfy the definition conditions of coassociation matrix A = B · B′ Eq.
(7.33) we normalise matrix B such that every row Bi has a square norm equals 1. After
data preprocessing matrix B is clustered by MSC - algorithm which finds 5 clusters. The
result of clustering is presented in Figure 9.6.

Visually we observe that images in each cluster are semantically related. For example,
cluster 1 contains all animals, cluster 2 represents persons. Cluster 3 shows architecture
and art objects, while cluster 4 corresponds to landscapes. Finally, vehicles are grouped
in cluster 5. Below we discuss in details results of word clustering.

Representation of results

We observe that the combination of words (Figure 9.6) produces almost the same re-
sult that the combination of visual classifications (Figure 9.4). It is an interesting and
important conclusion because it shows the correspondence between the language repre-
sentation and the visual appreciation of the images. It sustains the reliability of the ex-
periment and of the proposed method of combination. However, the number of clusters
of the text clustering equals 5 it is lower than when the combining visual classifications
which provided 8 clusters. This may be explained by the fact that the same words de-
scribe different concepts and therefore reduce the variability of groups. For instance the
clusters ”architecture” and ”art” from visual experiment are combined in the same cluster
in word clustering. The extracted word description of each cluster is presented in Table
E.1. From Table E.1 we see that cluster 3 mainly represents two categories ”architecture”
and ”art”. Words of this cluster are very similar by their sense.

In addition we propose to analyse clustering results represented by tree and graph in
Figure 9.7.

We observe that cluster 3 has strong relation with cluster 4 in Figure 9.7a. It is also
illustrated in the tree Figure 9.7b because these clusters are connected first. Connections
between cluster 3 and 4 are justified by similar meaning of words in Table E.1.

Here, as in previous section where combining of classifications have been demon-
strated, we observe on graphs and trees almost the same connections between discovered
clusters. It shows that visual and text information reflect the same semantic representa-
tion or in other words the same meaning. It also confirms pertinence of the proposed
unsupervised analysis.

Discussions

An experiment on combination of visual classifications and words descriptions of images
has been presented in this Section. It opens new directions in data analysis. It also shows
that the task of data mining can be solved by different approaches and illustrates concor-
dance of data mining results. The interesting part of the experiment is that the analysis
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Figure 9.6: Clusterings combining of words of images. Ordered 45 multimedia images
corresponding to labels of 5 optimal clusters.
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Figure 9.7: Connections among clusters of the combined classifications for the text rep-
resentation: a - graph, b - tree.

of descriptions has been done in fully unsupervised way. We do not have a priori infor-
mation on how many clusters exist and how many images are distributed in clusters.

We present a correspondence matrix for two clusterings : one is a combination of
visual classifications, the other is a combination of textual descriptions, Table 9.1. 8 visual
clusters and 5 word clusters are obtained in Sections 9.3 and 9.3, respectively. This matrix
shows how many samples (images) are shared by any two clusters.

Table 9.1: Correspondence matrix of combined classifications

Visual clusters
Word clusters 1 2 3 4 5 6 7 8

∑

1 5 0 0 0 0 0 0 0 5
2 0 5 0 0 0 0 0 0 5
3 0 0 15 5 0 0 0 0 20
4 0 0 0 0 7 0 0 1 8
5 0 0 0 0 0 2 5 0 7∑

5 5 15 5 7 2 5 1 45

We see from Table 9.1 that word cluster 3 contains samples from visual clusters 3
and 4 which corresponds to two semantic concepts of ”architecture” and ”art”. Word
cluster 4 has samples from cluster 5 and 8 which represents images of ”paysage”. Last
word cluster 5 (”transport”) merge visual clusters 6 (”boats”) and 7 (”vehicles”). Table
9.1 shows that visual clusters are included into word clusters. It illustrates pertinence of
the realised experiment and of the MSC combination method.

This approach may be tested on large volumes of multimedia images, e.g., taken from
internet. Here clusters have been considered as concepts. Semantic data representation
is able to indicate connections between concepts. It may be further exploited for more
accurate searching or mining of data bases. Finally, a user may construct its own semantic
classes via the analysis of cluster connections by the graph or tree representation. We
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should note, that this kind of experiment is not limited to images and can be applied to
different types of data.

9.4 Semantic construction for satellite images

In the previous Section we have successfully demonstrated how semantic may be con-
structed on the example of multimedia images. This experiment has been carried out
partially in supervised way (manual image classifications) and unsupervised way (de-
riving semantic from classifications). A limited number of images has been considered
(45) and different users have classified these images in different classes. From the combi-
nation of these classifications semantic grouping of images have been emerged (trees and
graphs). In this section we propose to go more deeply in unsupervised image mining
and to apply it on the large and mostly unknown data set of satellite images, in order to
emerge similar semantic grouping.

For this experiment the participation of users is not involved and all operations are
made in a fully unsupervised way. We give now the essential steps of the carried out
experiment:

1. Feature extraction from satellite images.

2. Unsupervised feature selection.

3. Unsupervised data clustering by different clustering algorithms.

4. Unsupervised selection of the number of clusters for each algorithm.

5. Unsupervised combination of different clustering results.

6. Unsupervised building of satellite image semantic via representation of clustering
combination.

We begin experiments by an illustrative example of unsupervised combination of
satellite image clusterings. Then unsupervised satellite image clustering is demonstrated.
Finally, several experiments of building of the satellite image semantic are proposed.

Combining of samples of satellite images

In this Section we demonstrate applications of different clustering algorithms to analyse
satellite images in urban areas. Results of clustering combination are presented here. The
goal of these experiments is to show that different points of view on the data can produce
generalised results as compact clusters which may have semantic interpretation.

We perform experiments on 6 different SPOT5 satellite images at a resolution of 5 me-
ters per pixel. Each of the 6 images has a size 1024× 1024 pixels. They represent 6 world
cities: Paris (France), Copenhagen (Denmark), La Paz (Mexico), Los Angeles (USA), Is-
tanbul (Turkey), Madrid (Spain). We expect that each image exhibit different textures
which reflect different historical, cultural and architectural configurations. Indeed each
image is not homogeneous and each city exhibits different textures depending on the
place in the city. We are interested in discovering similarities between cities, and to dis-
cover which part of a given city looks alike a part of another city. Those similarities will
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Figure 9.8: Textures of SPOT5 images: a - Copenhagen (Denmark),b - Istanbul (Turkey),c
- Los Angeles (USA),d - La Paz (Mexique),e - Madrid (Spain), f - Paris (France).
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Table 9.2: Confusion matrices and clustering errors for 6 classes. a - K - means algorithm
28%, b - Spectral K - mean algorithm 27%, c - Kernel K - means algorithm 26%,
d - EM - algorithm 38%, e - Ward’s hierarchical clustering algorithm 42%, f -
proposed combination algorithm for clusterings 26%
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emerge from clusterings as presented in the previous chapters. Examples of images are
presented in Figure 9.8.

To cluster these images we build a database of samples. For that we cut an image
in 400 samples of size 64 × 64 pixels. Windows overlap by 13 pixels. As a result, we
obtain a database of 2400 samples, grouped in 6 classes of 400 samples each. From each
texture several features have been extracted. Features are: statistics of Quadratic Mirror
Filters, statistics of Gabor filters and Haralick features, see Chapter 3. 10 features were
selected from 185 [Campedel et al., 2004], see Section 8.8. We apply different unsuper-
vised clustering algorithms to cluster matrix data of size 2400 × 10: a classical K-means
algorithm [Jain & Dubes, 1988], Spectral K-means algorithm [Ng et al., 2002], Kernel K-
means algorithm [Shawe-Taylor & Cristianini, 2004], Ward’s hierarchical clustering al-
gorithm [Jain & Dubes, 1988] and Expectation-Maximisation algorithm with a Gaussian
mixture model, see Chapter 5. To cluster data we set the fixed numbers of clusters to 6
since we know that 6 cities are represented. Clustering results are presented as confusion
matrices in Tables 9.2 a-e.

In this Section we set the number of clusters equal for every algorithm. But in follow-
ing subsections the optimal number of clusters is estimated. Here, estimation of cluster-
ing quality may be given by the percentage of samples which are wrongly clustered in
the wrong class and all others samples in this cluster are set as misclassified.

From the confusion matrices in Tables 9.2 a-e we see that for some classes different al-
gorithms give different clustering solutions. All clusterings have redundant information
but at the same time their intersections can generate new informative clusters. To anal-
yse intersections between all clusters is a very difficult task. In Table 9.2 f we perform the
consensus combination as presented in Chapter 7 to generate a common result. We see
from Table 9.2 f that this consensus combination provides results as good as the best sin-
gle classification (26% error). It confirms that clustering combining produces reasonable
results.

Unsupervised image clustering of urban content (QuickBird)

In this Section unsupervised clustering of a high resolution image is demonstrated. We
have presented above experiments made on SPOT5 images. Nowadays, new satellites
produce images of very high quality and resolution. One of that satellites is QuickBird
from which we obtained images with a resolution of 0.6m per pixel and a size of 24000×
24000 pixels. An small piece of such an image is presented in Figure 9.9. It is a QuickBird
image of Las Vegas of size 3000× 3000 pixels.

This image corresponds to a quarter of private houses. Visually there are houses with
different roof structures and colours. We aim to show that a fully unsupervised clustering
may determine different quarters with houses which have similar roofs.

We cut the original image into small images of size 64×64 pixels and extract features,
see Chapter 3. Unsupervised feature selection expressed in Section 8.8 is applied and
selects the best set of 32 features. We only show results of clustering of the image by
K-means and EM algorithm with the Gaussian mixture model. MDL criterion is used to
estimate the optimal number of clusters, see Figure 9.10.

MDL curve presented in Figure 9.10b shows that EM-algorithm determines less clus-
ters than K-means algorithm, see Figure 9.10a. It is reasonable because EM algorithm
with the GMM model is more adaptive to model data and consequently has more sim-
pler model than the model of K-means algorithm.
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Figure 9.9: QuickBird satellite image of city Las Vegas with a resolution 0.6m per pixel
and size 3000× 3000 pixels. c©CNES
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Figure 9.10: MDL curve to determine the optimal number of clusters for image in Figure
9.9. a - MDL criterion for K-means algorithm, the optimal number of clus-
ter equals 8; b - MDL criterion for EM-algorithm with GMM, the optimal
number of cluster equals 6.
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Result of image clustering is shown in Figure 9.11. Clusters are displayed with dif-
ferent colours. As the size of clustered image is smaller than the size of the image we
interpolate labels to have the same size as the original images.

a b

Figure 9.11: Optimal clustering of image in Figure 9.9: a - Kmeans algorithm with 8
clusters, MDL is in Figure 9.10a. b - EM-algorithm and GMM with 6 clusters,
MDL is in Figure 9.10b.

From the Figures 9.11a and 9.11b we see that we have detected clusters which corre-
spond to different urban squares with different forms of houses. Interesting, that for the
high resolution image we detect a main road as a separate cluster. K-means clustering
gives a little bit perturbed clustering, in Figure 9.11a, which is comparable with EM-
algorithm, in Figure 9.11b. It demonstrates that EM-algorithm with GMM model better
clusters than K-means algorithm.

Examples of textures of each clusters for K-means and EM-algorithm with GMM are
presented in Figures 9.12 and 9.13, respectively.

Figure 9.13 represent textures of 6 clusters detected by EM-algorithm with GMM and
estimated by MDL criteria.

Taking into account that there are many different algorithms each of which gives
different clustering we are interested in combining different results to obtain a general
clustering. In addition, we aim to get a semantic representation of satellite images via
clustering combining. Below we demonstrate two examples of unsupervised semantic
construction for satellite images with general and urban content.

Satellite image of general content (SPOT 5)

Here we propose to analyse a SPOT5 satellite image of Bezier city located in the South of
France. This image presented in Figure 9.14 has a resolution of 5 meters per pixel and a
size of 3000× 3000 pixels.

As we see from Figure 9.14 half of the image is covered with sea and the other half is
covered with a continental part. The continental part has city regions and wide surfaces
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Cluster 1
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Figure 9.12: Examples of texture clusters of Las Vegas clustered by K-means algorithm,
see Figure 9.11a. The optimal number of clusters detected by MDL criterion
equals 8, see Figure 9.10a. c©CNES
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Cluster 1
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Figure 9.13: Examples of texture clusters of Las Vegas clustered by EM-algorithm with
GMM, see Figure 9.11b. The optimal number of clusters detected by MDL
criterion equals 6, see Figure 9.10b. c©CNES
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Figure 9.14: SPOT 5 satellite image of city Bezier, South of France ( c©CNES).

of fields.
In previous sections the semantic has been extracted from multimedia images via

different supervised classifications. Here instead of classifications we propose to process
unsupervised clusterings. They can be obtained by three strategies:

1. from one clustering algorithm with different conditions (number of clusters, initial-
isations, etc.);

2. from different clustering algorithms (each has the optimal clusterings);

3. from different descriptions of the same data with one or different clustering algo-
rithms.

The first approach has been considered in the work of [Fred & Jain, 2005], as the direct
combination of clusterings for different numbers of clusters and initialisations. A draw-
back of this approach is that it may result as many clusters as is used for clustering: the
more clusters are used to cluster data the more clusters are after combining. Moreover,
there was no indication how to estimate the number of clusters for a clustering algorithm.

We advocate for the second approach and propose to select the best optimal model,
i.e., the best clustering for each algorithm. In that way we are sure to combine optimal
clusterings. This approach mainly concerns the quality of clustering algorithm and the
selection of the best clustering result. MDL criteria estimates the optimal number of
clusters, the best initialisation and the best clustering for each algorithm.

The third approach is interesting but is not studied in the thesis. On the contrary,
in our experiment, all features are involved at once to cluster data. We suppose that a
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full set of features better describes data than any isolated subpart. However, to eliminate
redundant features a feature selection procedure can be applied.

Now we propose a schema to extract semantics from data (satellite images). It in-
cludes the following steps:

1. image clustering by different algorithms, each of them giving the optimal cluster-
ing,

2. combination of clustering results,

3. representation of image semantic by a graph and a tree.

We follow the mining schema presented in the previous Section, but with unsuper-
vised clusterings instead of supervised classifications. All unsupervised clusterings are
obtained by different clustering algorithms.

Now we detail how images are clustered. The first step is the data representation.
This means cutting a big satellite image into small subimages called samples. Each sam-
ple has a size of 64 × 64 pixels, and a window which cut samples is sliding with a step
of 32 pixels from left to right and from top to bottom of the image. In the total there is
8464 subimages for the given size of window, image and step. It corresponds to 92 × 92
samples.

The second step is the feature extraction from 8464 images of size 64 × 64 pixels.
These features have been described in Chapter 3 and constitute the following groups of
features:

1. Gabor features,

2. geometrical features,

3. Haralick features,

4. QMF features.

In the total 134 features have been extracted. At this step we have obtained a dataset to
be clustered. Let this data be noted as matrix X of size 8464× 134.

The dimension of the space equals 134 that is very high for data clustering. This
problem of the ”curse of dimensionality” is explained in Section 4.2. There is a need to
select features. We emphasise that features are selected in an unsupervised objective way
to avoid subjective interpretation of data. It is also done to avoid changing of clustering
results from one user to another.

An approach of unsupervised feature selection procedure is proposed in the work of
[Campedel et al., 2007], and explained in Section 8.8. In the work [Campedel et al., 2007]
the number of clusters for a feature clustering has been chosen from 2 to the size of fea-
tures. Then the LSEC-algorithm (Section 7.4) has been applied to different clusterings to
find a consensus clustering and the optimal number of feature clusters. Here we propose
a slightly modified approach: we run K-means for the number of clusters changed from
2 to the half of the total number of features. As we have seen from Section 7.6, the com-
bination approach has a tendency of self organising. It means that if we cluster data with
smaller number of clusters but the true number of clusters is higher than used for clus-
tering, then clustering combination algorithm will tend to detect the number of clusters
which is near the true number. As we will see later the number of clusters detected after
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the combination of clustered features is near the half of the maximal size of clusters (the
half of the number of features). That is why we have run K-mean for a number of clusters
from 2 to one half of the number of features.

We cluster 134 features with K-means algorithm and the number of clusters from 2 to
67 with 3 random initialisations. Then MSC-algorithm of clustering combination is ap-
plied to find the consensus clustering. Stable features are selected as representative. The
stability is computed as S Eq.(7.75). As the result 31 stable features have been selected.

Next step is data clustering, starting with 8464 samples and 31 features. There is
two critical problems : (i) the choice of the number of clusters and (ii) the initialisation
process. To chose the optimal number of clusters we propose to use MDL criterion, which
also solves the problem of the initialisation by selecting the best model with the minimal
value of MDL. MDL criterion is computed for different number of clusters from 2 to 20
and for 5 random initialisations. For a given number of clusters, the minimal MDL value
corresponds to the optimal clustering among 5 ones obtained with random initialisation.
Finally, the best clustering has minimal MDL and indicates the best number of clusters.

The figure of MDL estimating the number of clusters for 7 different algorithms is
presented in Figure 9.15.

MDL (Figure 9.15) exhibit a regular curve (without a noisy behaviour) and shows
that the optimal number of clusters is: 8 for K-means algorithm, 5 for EM-algorithm
with GMM, 6 for spectral K-means algorithm, 4 for kernel K-means algorithm, 6 for
Ward’s hierarchical algorithm, 5 for the complete-link hierarchical algorithm and 7 for the
average-link hierarchical algorithm. The analysis of the number of clusters corresponds
to expected results: simpler clustering algorithms have higher number of clusters. For ex-
ample, MDL for EM and GMM Figure 9.15b shows lower number of clusters than MDL
obtained by K-means algorithm Figure 9.15a. It is explained by the fact that more com-
plex models tend to fit data with simpler models of clusters. As a conclusion: the complex
hypothesis provides the simplest model (GMM fits data simpler than K-means). For each
algorithm we select the best clustering which corresponds to the minimum value of MDL
criterion. Further we process these 7 optimal clusterings only.

To visualise clustering results we interpolate each clustering (labels) to the size of
the original image and superpose these two images. The original image has a size of
3000 × 3000 pixels while the size of samples is 8464 which corresponds to a size 92 × 92
pixels. We use a symbolic interpolation that is the repetition several times of the same
label in horizontal and vertical directions. Examples of optimal clusterings is shown in
Figures 9.16 and 9.17.

Clustering results presented in Figure 9.16 and 9.17 provide very good results from
the point of view image interpretation. We easily discover the cluster of fields, different
zones of urban areas, different zones of sea and a coast line. In Figures 9.16 and 9.17 the
cluster of city is clearly separated from the cluster of fields. Another very interesting area
is two detected clusters on the sea area: cluster of the sea and cluster of the shallow water
enveloped by the coast, see Figures 9.16a-d and Figure 9.17a. In the internal part of the
water, which is enveloped by the coast there is a cluster of sea activities: fishing farms.
A sample of this cluster is presented by the first image of cluster 3 in Figure 9.18. It is
very important aspect of unsupervised image clustering, because it is not visible on the
original image in Figure 9.14 but is detected by the clustering.

The next step of unsupervised image mining is combination of clustering results. The
optimal combination of 7 clusterings has been performed by MSC algorithm and found
an optimal clustering with 6 clusters. Results of the combination which have been in-
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Figure 9.15: MDL curve to determine the optimal number of clusters: a - K-means algo-
rithm 8 clusters, b - EM-algorithm with GMM 5 clusters, c - Spectral K-means
algorithm 6 clusters, d - Kernel K-means algorithm 4 clusters, e - Ward’s
hierarchical algorithm 6 clusters, f - complete-link hierarchical algorithm 5
clusters, g - average-link hierarchical algorithm 7 clusters.
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a b

c d

Figure 9.16: Optimal clusterings of SPOT5 image of Bezier: a - K-means algorithm 8 clus-
ters, b - EM-algorithm with GMM 5 clusters, c - Spectral K-means algorithm
6 clusters, d - Kernel K-means algorithm 4 clusters,
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a b

c d

Figure 9.17: Optimal clusterings of SPOT5 image of Bezier: a - Ward’s hierarchical al-
gorithm 6 clusters, b - complete-link hierarchical algorithm 5 clusters, c -
average-link hierarchical algorithm 7 clusters. d - combination of 7 optimal
clusterings by MSC algorithm (6 clusters have been detected).
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terpolated as in previous case by symbolic interpolation is presented in Figure 9.17d.
Examples of each cluster are presented in Figure 9.18.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Figure 9.18: 6 clusters detected by clustering combination of Bezier image, see Figure
9.17d.

The combination of clusterings see Figure 9.17d is similar to 7 optimal clusterings see
Figure 9.16a-d and 9.17a-c.

The next step is the construction of the semantic links among concepts where each
concept corresponds to a cluster after combination. Links are presented by tree and graph
structures and displayed in Figure 9.19.

It can be observed from Figure 9.19 that clusters after combination represent seman-
tic concepts and relations among these concepts show logical links. Tree representation
helps to show generalisation of concepts up to one single meaning, see Figure 9.19a, while
the graph structure shows all possible semantic connections among concepts, see Figure
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Figure 9.19: Semantic connections among concepts (clusters of combination presented in
Figure 9.17d ): a - tree connections. b - graph connections.

9.19b. These two different representation help the user to find and construct new clusters
or even to understand some hidden phenomena of surface organisation.

Unsupervised construction of the semantic for satellite image with common content
has been demonstrated in this Section. The image has a variety of surfaces which have
been separated by unsupervised clustering: city, field, sea, etc.. In the next subsection
an image with more complex content is considered. This content represents urban zones
which are difficult to distinguish in a semantic sense.

Satellite image of urban areas (SPOT 5)

In this Section as in the previous we construct semantic for a satellite image. Here we
consider the image of Paris which represent a complex urban content. The image is issued
from SPOT5 at a resolution of 5 meters per pixel and with a size of 3000×3000 pixels, see
Figure 9.20.

As in previous cases we use the same protocol for satellite image mining (Section
9.4). Firstly, we divide the image into samples. Then 134 features are extracted from each
sample and 32 most important of them are selected in the unsupervised way. Then dif-
ferent algorithms are applied to cluster data: K-means, EM-algorithm, spectral K-means,
hierarchical algorithms (Ward, complete-link and average-link). For iterative clustering
algorithms different random initialisations are used. MDL criterion is used as before to
select the best clustering for a given number of clusters. This criterion also determines
the optimal number of clusters as shown in Figure 9.21a-g.

It can be observed from Figure 9.21a and b that the number of clusters for EM-algorithm
is less than for K-means algorithm.

For the sake of visualisation, clusterings are interpolated and superimposed with the
original images. Results of image clustering with different algorithms are presented in
Figures 9.22 and 9.23.

We may note from Figures 9.22 and 9.23 that some clusters are found by every algo-
rithms, e.g., forest, clouds. But each algorithm gives different partitions of urban areas
(downtown and suburbs). It is explained that urban areas is more complex and a different
algorithms finds different partitions of urban zones.
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Figure 9.20: SPOT 5 satellite image of city Paris c©CNES.

The optimal combination of clusterings has been found by MSC algorithm and con-
tains 16 clusters, see Figure 9.23d.

Examples of each cluster are presented in Figures 9.24 and 9.25. We observe from
Figure 9.24 that cluster 1 represents images of river in urban area, while cluster 4 has
samples of river in rural area. Cluster 2 shows examples of areas with private houses,
and cluster 3 corresponds to downtown of Paris. Cluster 5 has open surface with trees,
and cluster 8 has samples with trees which are more dense. Cluster 6 has samples with
a half of white and a half of black parts which may be classified as fields, however we
may note samples with clouds. Cluster 7 has rather commercial zones with buildings
and wide roads.

From Figure 9.25 we see clearly that cluster 15 and 16 represent clouds (a histogram
equalisation has been used to visualise samples, that sometimes may confuse visual ob-
servation). Cluster 10 has samples of forest, cluster 14 has less trees in the urban zone,
and clusters 13 has some part of trees. Cluster 11 has images of fields with strong straight
lines. Cluster 12 corresponds to urban area as well as cluster 9 with some artefacts as
clouds.

The semantic representation of combined satellite image clusterings is given in Fig-
ures 9.26a-b. Tree and graph representations of the combination of different clusterings
reflect the common information among clusters, see Figures 9.25 and 9.26. For example,
clusters 2 in Figure 9.24 and 14 in Figure 9.25 are first connected by tree structure in Fig-
ure 9.26a. Clusters 15 and 16 in Figure 9.25 are connected by graph in Figure 9.26b and
by tree in Figure 9.26a. We may conclude that clusters have reasonable connections for
the tree as well as for the graph structure.
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Figure 9.21: MDL curve to determine the optimal number of clusters: a - K-means al-
gorithm 12 clusters, b - EM-algorithm with GMM 9 clusters, c - Spectral K-
means algorithm 13 clusters, d - Kernel K-means algorithm 6 clusters, e -
Ward’s hierarchical algorithm 17 clusters, f - complete-link hierarchical algo-
rithm 8 clusters, g - average-link hierarchical algorithm 15 clusters.
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a b

c d

Figure 9.22: Optimal clusterings of SPOT5 image of Paris: a - K-means algorithm 12 clus-
ters, b - EM-algorithm with GMM 9 clusters, c - Spectral K-means algorithm
13 clusters, d - Kernel K-means algorithm 6 clusters
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a b

c d

Figure 9.23: Optimal clusterings of SPOT5 image of Paris: a - Ward’s hierarchical al-
gorithm 17 clusters, b - complete-link hierarchical algorithm 8 clusters, c -
average-link hierarchical algorithm 15 clusters. d - combination of different
optimal clusterings by MSC algorithm (16 clusters have been detected).
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Figure 9.24: Clusters 1− 8 detected by combination of clusterings of Paris.
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Figure 9.25: Clusters 9− 16 detected by combination of clusterings of Paris.
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Figure 9.26: Semantic connections among concepts (clusters of combination presented in
9.23d ): a - tree, b - graph.

9.5 Conclusions

In this Chapter the notion of image semantic, its principles, construction and analysis
have been presented. Examples of semantic are shown on multimedia and satellite im-
ages. We have demonstrated how to derive image semantic in the unsupervised way and
justified it with prior knowledge about images. For multimedia images both the visual
perception and vocabulary descriptions have shown pertinent semantic. Satellite image
semantic has been approved by visual interpretation.

Visualisation of combination results has been proposed via the tree and graph struc-
tures. A tree structure is able to generalise different clusterings using the combination
result. It represents a top down hierarchy and helps to see how structures are near from
others. The importance of connections is shown at each level of the hierarchy.

The graph structure shows connections among consensus clusters. The clusters are
located on a circle with equal distance between them. Graph relations are shown as
edges between consensus clusters. The importance of each relation is displayed by the
thickness of the edge. These relations may help the user to find ”semantic” links between
consensus clusters.

In the first experiment we have constructed semantic of multimedia images. Inde-
pendent classifications have been combined to obtain semantic representations of im-
ages. Classifications have been obtained from users and classes having been described
by words. The combination of classifications as well as the combination of words give
almost the same semantic. It shows that visual perception of images corresponds to tex-
tual description. We may conclude that the combination of different clusterings (classi-
fications) of images derive image semantic which corresponds to information content of
images.

In the second experiment, we have presented results of the combination of different
clusterings of cities.

The third experiment has been carried out on satellite images in fully unsupervised
way: feature extraction from images, unsupervised feature selection and unsupervised
clustering. The number of clusters has been chosen automatically for each algorithm.
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Combination of different clusterings has been used to construct satellite image semantic
which has been represented by tree and graph structures. Visual perception of clustering
corresponds to the semantic structure and justify pertinence of the proposed approach.
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Chapter 10

Conclusions

In this thesis an unsupervised mining approach of optical satellite images of high resolu-
tion has been proposed. The general idea of mining includes information extraction from
images, modelling by clustering algorithms, combining different clustering solutions and
representing clusterings via a semantic structure. A software prototype of user interface
for satellite image clustering has been proposed.

10.1 Summary

The unsupervised mining approach developed in this thesis has been evaluated on satel-
lite images. However, the general idea of mining can be easily applied to other types
of data. The accent in the thesis has been put on unsupervised methods because of the
size of the data bases which require to be mined without human interaction to obtain an
objective data modelling.

On the contrary of many similar works which argue to apply one single algorithm of
data mining, we propose here different algorithms for data modelling and then combine
their results. Some clustering algorithms are algebraic, others are probabilistic. For com-
plex data, results obtained with different modelling often differ from one approach to
another. We have proposed an unsupervised approach for combining clusterings issued
from different algorithms.

We summarise now the new ideas demonstrated in this thesis:

⋆ Extraction of geometrical features from satellite images. These features are based
on statistics of edges detected on gray scale images. In addition, a set of texture fea-
tures is extracted from images: Haralick descriptors, Gabor coefficients and QMF
features.

⋆ The problem of curse of dimensionality obliges to select the most informative fea-
tures. A new method of unsupervised feature selection which is based on feature
clustering has been proposed. This approach is derived from the combination of
different clusterings of the feature space.

⋆ A minimum description length MDL criterion estimates the best clustering and the
optimal number of clusters.

⋆ New hierarchical algorithms have been derived from the simplified MDL criterion
adapted for kernel K-means. The algorithms are based on the gradient descend
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optimisation of the kernel MDL criterion.

⋆ A new method of unsupervised clustering combination is proven to achieve the
exact global solution. It is based on the mean shift procedure to estimate the density
of the clusterings.

⋆ All clusterings are presented by tree and graph structures. It helps the user to visu-
alise clustering results and to learn data structures.

We present now in more details these propositions.

When going from high resolution images (i.e., SPOT) to very high resolution (i.e.,
IKONOS), the Earth surface goes from textural to structural representation. Therefore
image descriptors also have to be adapted to the change in the resolution. For example,
sea, forest and fields still look like texture surfaces, while urban and artificial areas (in-
dustrial zones, etc.) begin to have geometrical structures. Working with VHR images we
should introduce both types of information: texture and geometrical. Texture features
describe image regularities, while geometrical features capture information about lines,
etc. In this thesis, geometrical features have been extracted from edges. An adaptive
edge extraction has been proposed to reduce the effects of the change of contrast. Finally,
various edge statistics have been calculated (length of line segments, edge density per
surface, etc.).

The problem of high dimension of data has been solved by unsupervised feature se-
lection. This approach has shown almost the same performances as the feature selection
with supervised classification. The idea of this method is: (i) cluster features and (ii) com-
bine clusterings by unsupervised approach. One single stable feature is selected from
each cluster. Selected features are used further for data clustering. It has been assumed
that features extracted from satellite images are not very noisy. MDL criterion has been
efficient in selecting the optimal number of clusters and the optimal number of features.
As a conclusion, two steps of feature selection can be considered. The first step is unsu-
pervised feature selection by combination of clustered features. It selects features which
are not correlated. The second step is removing of noisy features by MDL criterion.

Estimating the optimal number of clusters and the quality of clusterings has been
carried out by MDL. The proposed simplification of MDL criterion makes it possible to
be applied by different algorithms. A new hierarchical algorithm has been derived from
simplified MDL criterion and kernel K-means algorithm. The hierarchy is constructed via
gradient descend optimisation of the kernel MDL. Clustering results have demonstrated
the efficiency of the algorithm.

Combination of clusterings obtained from different algorithms is performed by two
methods. The first one is hierarchical and the second one is iterative (the mean shift). The
hierarchical algorithm has no clear proof about the global optimum of the combination,
while the exact solution can be obtained by the iterative algorithm.

Combination results have been presented by graph and tree structures. The tree struc-
ture expresses the hierarchical dependency among clusters, while the graph structure
displays all possible connections among clusters. Experimentally, we have shown that
trees and graphs reflect semantic meaning of data. Experiments have been carried out on
different kinds of data issued from multimedia and satellite images. Obtained semantics
have demonstrated interpretable links among concepts of images.
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10.2 Perspectives

Several possible future research topics are emerging from the thesis.
One of the main drawbacks and consequently research directions, concerns feature

extraction. As this subject is not the main issue of this thesis it has not been completely
studied. Parameters for feature extraction algorithms have been set a priori from the
knowledge of the properties of satellite images. It does not exactly reflect the richness
of image information. A proposition would be to estimate optimal parameters for each
feature extraction algorithm. This can be made via image modelling and parameter op-
timisation based on the quality of the feature model. The following parameters of geo-
metrical features should be estimated: the optimal parameter of scale for Deriche edge
detector, the error of edge approximation by line segments and the window size for edge
statistics. Parameters of Haralick features as the size of the analysing window and the
number of gray-scale levels should be optimal. Image frequencies for Gabor and QMF
filtering should also be estimated optimally.

The drastically increasing size of databases (satellite images, multimedia images, etc.)
poses the problem of the computation complexity of clustering algorithms. Many theo-
retical basis and developed algorithms exhibit a square complexity. Therefore they can-
not be applied to large data sets in reasonable time. A new research direction consists
in developing algorithms with linear memory complexity and time calculation. This rule
should be kept imperatively for processing large databases, when algorithms with square
complexities fail. One of the approaches satisfying these demands may be seen via mean
shift like data clustering algorithms. This algorithm guarantees the global and exact clus-
tering for a given model of data. One of the problems and consequently possible research
directions is the estimation of parameters of functions used by the mean shift algorithm.

The third direction is the problem of feature selection. This procedure should be also
integrated in the clustering algorithm. The selection should be considered via weighting
each feature for each cluster separately.

Another kind of propositions consists in software development for large data bases.
Data should be processed without doubling itself, e.g., without saving image patches,
that is the case of many research works extracting features. It may significantly reduce
processed memory.

Clustering is the first step of data mining which represents data in a compact form via
clusters and relations among them. Analysis of characteristics of clusters and relations
is a step towards high level data interpretation (under interpretation we mean human
interaction for inference and generation of knowledge). An intermediate step between
clustering results and human interpretation is very often considered. This step is called
automatic construction of high level semantic. At this level clusters are considered as
elementary items of information. For image processing tasks we have additional infor-
mation about where clusters are located on the image. This spatial information may be
used to find groups of clusters which have the same spatial organisation. We propose
four levels of abstraction of data:

1. Zero level is data representation.

2. First level is clusters and their relations discovered from data.

3. Second level is spatial and textual links of clusters on the first level.

4. Third level is human interpretation of data semantic.
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The zero level represents data, i.e., satellite images. At the first level clusters are obtained
from data. Relations among them are inferred either in the original feature space or in
the feature space of different clusterings.

Information about spatial organisation of data is added at the second level. The ele-
mentary spatial organisation may be seen via blocks (regions) of an image. For example,
an image can be divided into rectangular blocs. The goal of this step is to find clusters of
blocks. Each of these clusters contains blocks which have similar spatial distribution of
clusters obtained at the first level. Textual information may also be added at this level to
enforce linkage among clusters. This level defines complete semantic of data.

Human interpretation of clusterings should involve the image semantic. At this level
a system of mining proposes to a user all possible information about data: clusters of
data, semantic clusters and possible relations among them. Here several scenario of data
interpretation are possible: (i) hierarchical analysis of data, i.e., how particular data rely
on context or how the context is built on data; (ii) selection of the particular cluster or
group of clusters to classify data. This classification can be supervised or semi super-
vised. For semi-supervised classification a user gives an example to the system and iter-
atively selects appropriate responses.

In this thesis the first level of the semantic construction has been proposed. Several
future research directions can be considered to enrich the image semantic. The first di-
rection is determining the optimal block size for image clustering. These blocks can have
different sizes. For example, blocks of urban zones should be smaller because urban
zones contain quite different pieces of information. If this block is too large then im-
portant information may be mixed. On the contrary, a block of agricultural zones, e.g.,
fields, may be of larger size because it has homogeneous information. We conclude that
the richer information the smaller the block size should be and vice-versa. In addition,
any form of block should be taken into account, because the Earth surface reflected by
satellite images has no rectangular frontiers. Various interpretations of the same zones
are possible for different block sizes. Therefore, the second direction is estimating the
optimal block size for semantic clustering. For example, in the case of urban zones small
blocks describe images of residential buildings, warehouses, etc. When the block size is
larger, then images of buildings constitute residential zones, images of warehouses corre-
spond to industrial zones, etc. With larger block sizes it is possible to discriminate urban
zones from rural and agricultural zones, etc. We conclude that an image can be divided
into blocks of several optimal sizes depending on semantic meaning. Thus, each region
of the image corresponds to a certain level of semantic hierarchy.

Satellite image semantic is a step towards a formal representation of concepts and
relations to describe the Earth surface. This representation is needed to better explore
large data bases of satellite images. Semantic can be formalised by ontology. The inter-
est of mining images via ontology consists in linkage of image semantic and models of
natural languages to better reflect scene understanding. Nowadays, it is a very promis-
ing research direction on data mining and knowledge reasoning. One of the projects on
this subject is Differential and formal ontology editor, DAFOE 1. Despite ontology for
satellite images has not yet been constructed, many works on it have been done: cartog-
raphy of the Earth surface, formal representation of concepts and relations among them,
etc. Works on environment analysis using geographical formalism and satellite images is
developing in project of Corine Land Cover [Bossard et al., 2000].

1http://dafoe4app.fr/

http://dafoe4app.fr/
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In this thesis we have been interested in automatic modelling of images, extraction
of concepts and relations. Formalization of these terms by ontology may be seen as new
research direction.
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Appendix A

Haralick features

In this Appendix we list Haralick features [Haralick et al., 1977] mentioned in Section
3.2. The features are computed on a co-occurrence matrix. The matrix is the second-
order histogram of the joint probability distribution P (i, j, ρ, θ) Eq. (3.6) of a pair of pixels
which are separated by ρ pixels and have an angle θ with respect to the horizontal axis.
Let pij be an element of normalised CM Pij Eq. (3.6) for some ρ and θ: pij = Pij/

∑
ij Pij .

Then Haralick features are:

1. Angular second moment

X6 =
L−1∑

i=0

L−1∑

j=0

p2
ij (A.1)

2. Contrast

X7 =
L−1∑

n=0

n2






L−1∑

i=0,
|i−j|=n

L−1∑

j=0

pij





(A.2)

3. Correlation

X8 =

{∑
i

∑
j(ij)pij

}
− µxµy

σxσy
, (A.3)

where µx and σx are mean and standard deviation of
∑

j pij , analogously for µy, σy

and
∑

i pij .

4. Variance
X9 =

∑

i

∑

j

(i− µ)2pij (A.4)

5. Inverse difference moment

X10 =
∑

i

∑

j

pij

1 + (i− j)2 (A.5)

6. Sum average

X11 =
2L∑

i=2

ipx+y(i) (A.6)
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7. Sum variance

X12 =
2L∑

i=2

(i−X11)2px+y(i) (A.7)

8. Sum entropy

X13 = −
2L∑

i=2

px+y(i) log px+y(i) (A.8)

9. Entropy

X14 = −
∑

i

∑

j

pij log(pij) (A.9)

10. Difference variance

X15 =
2L∑

i=2

(i−X11)2px−y(i) (A.10)

11. Difference entropy

X16 =
L−1∑

i=0

px−y(i) log{px−y(i)} (A.11)

12. Information measure 1

X17 =
Hxy −H1

xy

max{Hx, Hy}
(A.12)

13. Information measure 2

X18 =
√

(1− exp(−2(H2
xy −Hxy))) (A.13)

where Hxy, Hx and Hy are

H1
xy = −

∑

i

∑

j

pij log(px(i)py(j)) (A.14)

H2
xy = −

∑

i

∑

j

px(i)py(j) log(px(i)py(j)) (A.15)
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Appendix B

Features of line segments and edges

In this Appendix we propose features of linear segments and edges discussed in Section
3.3. Let Li− be a length of the ith linear segment and αi− is its angle of rotation, where
i = 1, . . . , N and N− is the number of linear segments.
We propose to use the following features:

1. X1 = N - the number of linear segments;

2. X2 = NT - the number of linear segments for Li > T , where T = constant;

3. The mean length of linear segments:

X3 =
1

N

N∑

i=1

Li; (B.1)

4. The mean length of linear segments for Li > T :

X4 =
1

NT

NT∑

i=1

{Li|Li > T}; (B.2)

5. The weighted length of linear segments:

X5 =

∑N
i=1 L

2
i∑N

i=1 Li

; (B.3)

6. The weighted length of linear segments for Li > T :

X6 =

∑N
i=1{L2

i |Li > T}
∑N

i=1{Li|Li > T}
; (B.4)

7. X7 - the length of curves which corresponds to the number of pixels;
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8. Features of pixels distribution with sliding window. Let N ′
i,j is a number of pixels

in the window of size nw ×mw pixels where nw = 10,mw = 10 and 1 ≤ i ≤ S, 1 ≤
j ≤ S, S = 64− (mw − 1):

Mean

X8 =
1

S2

∑

i,j

N ′
i,j (B.5)

9. Standard deviation

X9 =

√
1

S2

∑

i,j

(
N ′

i,j −X8

)2
(B.6)

10. Skew

X10 =
1

S2

∑

i,j

(
N ′

i,j −X8

X9

)3

(B.7)

11. Kurtosis

X11 =
1

S2

∑

i,j

(
N ′

i,j −X8

X9

)4

− 3 (B.8)

12. The number of directions of linear segments X12;
An angle of linear segment is αi = arctan(a(i, j)) Eq.3.16. We use eight angles:
[0, 22.5), [22.5, 45),[45, 67.5),[67.5, 90),[90, 112.5),[112.5, 135), [135, 157.5), [157.5, 180).
These angles are used to compute a histogram H , where

∑8
i=1Hi = 1. The num-

ber of directions are the number of histogram values which exceed a threshold 0.4.
Thus, we may have 0, 1, or 2 directions.

13. A co-occurrence matrix (CM) Eq. (3.6) introduced in Section 3.2 is used to extract
features from a gray-tone image [Shanmugan et al., 1973; Haralick et al., 1977]. We
propose to calculate statistics on CM from an image of edges. We remind that CM
is a matrix of frequencies Pi,j of two pixels separated by distance d where one pixel
has gray-level i and the other has gray-level j. Let Nx × Ny be a size of the image
with the horizontal spatial domain Lx = {1, 2, ..., Nx}, vertical spatial domain Ly =
{1, 2, ..., Ny} and I(k, l) ∈ {0, 1, ..., Ng}, Ng is the number of gray-levels.

A binary image has two levels 0 and 1, thus Ng = 2. In this case the CM is a
frequency of occurring of two pixels with gray-level 1. Thus, we can compute fre-
quencies for four different angles: P (d, 0◦), P (d, 45◦), P (d, 90◦), P (d, 135◦). where
0 ≤ d ≤ D, D - maximal distance. D is chosen 20. Frequencies of the binary image
which do not depend on angles can be defined as:

P ′(d) =
1

4
(P (d, 0◦) + P (d, 45◦) + P (d, 90◦) + P (d, 135◦))

We use three statistical features of P ′(d).

Mean of the frequencies:

X13 =
1

D

∑

d

P ′(d)′ (B.9)
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14. Standard deviation of the frequencies:

X14 =

√
1

D

∑

d

(P ′(d)−X13)
2 (B.10)

15. Entropy of the frequencies:

X15 = −
∑

d

P ′(d) logP ′(d) (B.11)
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Appendix C

MDL for the Complete
Log-likelihood of GMM

In this Appendix we propose to simplify the complete log-likelihood log(P (X, z|Θ)) Eq.
(6.29) which has been presented in Chapter 6 Section 6.4.

Let z be a hidden variable which attributes any sample i to classes: z = {z1, ..., zi, ..., zI}.
Then complete likelihood function log(P (X, z|Θ)) Eq. (6.29) of the finite mixture Eq.
(5.27) is [Figueiredo, 2002; Govaert, 2003]:

log (P (X, z | Θ)) = log

(
I∏

i=1

K∑

k=1

zikαkPk(Xi | Θk)

)
=

I∑

i=1

ziklog(αkPk(Xi | Θk)) .

(C.1)

By substituting the multivariate Gaussian distribution Pk(Xi | Θk) (5.29) in the complete
log-likelihood (C.1), we obtain:

I∑

i=1

ziklog(αkN (Xi | µk,Σk)) =
I∑

i=1

ziklog



αk
e−

1

2((Xi−µk)Σ−1

k
(Xi−µk))

T

(2π)D/2 | Σk |1/2
)



 =

I∑

i=1

zik

(
log

(
αk

| Σk |1/2

)
− D

2
log(2π)− 1

2

(
(Xi − µk)Σ

−1
k (Xi − µk)

T
))

=

1

2

I∑

i=1

ziklog

(
α2

k

| Σk |

)
− 1

2

I∑

i=1

zikJ log(2π)

−1

2

I∑

i=1

zik
(
(Xi − µk)Σ

−1
k (Xi − µk)

T
)
.

(C.2)

In this equation, some terms are constant:

− 1

2

I∑

i=1

zikJ log(2π) = −1

2

K∑

k=1

nkJ log(2π) = −1

2
IJ log(2π) = const1 . (C.3)
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Moreover, to calculate the matrix Σk (5.31) the only samples from the cluster k are needed,
therefore:

− 1

2

I∑

i=1

zik
(
(Xi − µk)Σ

−1
k (Xi − µk)

T
)

= −1

2

K∑

k=1

nkJ = −JI
2

= const2 . (C.4)

Then, the complete log-likelihood log(P (X, z|Θ)) (C.1) may be written as:

1

2

I∑

i=1

ziklog

(
α2

k

| Σk |

)
+ const =

1

2

K∑

k=1

nklog

(
α2

k

| Σk |

)
+ const . (C.5)

In the right part of the MDL definition (6.28), k is the model free parameters number. In
case of Gaussian mixture model free parameters are:

⋆ K − 1 parameters for K weights αk (since
∑
αk = 1);

⋆ J parameters for each mean µk;

⋆ J(J + 1)/2 parameters for each covariance matrix Σk.

Therefore, the number of free parameters is:

k = K − 1 +K(J + J(J + 1)/2) = K(J2 + 3J + 2)/2− 1 . (C.6)

Using the complete log-likelihood (C.5) and the free parameter number of (C.6), the de-
scription length (6.28) of Gaussian mixture model with K clusters is:

− 1

2

K∑

k=1

nklog

(
α2

k

| Σk |

)
+ (K(J2 + 3J + 2)/2− 1)log(I)/2 + const . (C.7)

The const term having no influence on MDL for different cluster numbers and as αk =
nk/I , we may rewrite Eq. (C.7) as:

Λ = −
K∑

k=1

nklog

(
n2

k

| Σk |

)
+K(J2 + 3J + 2)log(I)/2 . (C.8)
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Appendix D

Proof of Theorem 7.5.1

In this Appendix we prove proposed Theorem 7.5.1 which states the mean shift algorithm
finds the global minimum of error E Eq. (7.64).

Firstly, we show the maximisation of the mean shift vector norm. Proposition 7.5.1

is a particular case of Theorem 1 proposed in [Comaniciu, 2003] or Theorem 3 derived
in [Fashing & Tomasi, 2005] that establish that the optimum solution is found when the
mean shift procedure maximises the norm of the mean shift vector.

Secondly, we prove that during optimisation the number of points nj falling into clus-
ter j is a strictly monotonic increasing sequence.Let yk be a point where density is esti-
mated within the d-dimensional window W (yk). Let the density estimation f̂ Eq. (7.65)
with Epanechnikov kernel Eq. (7.66) for k and k + 1 consecutive steps be f̂k and f̂k+1

respectively:

f̂k =
1

(Ihd)

∑

bu∈W (yk)

K

(
b− bu
h

)
=

(d+ 2)

2Icd

∑

bu∈W (yk)

(1− ‖yk − bu‖2) =

(d+ 2)

2Icd

1

nk

∑

bu,bv∈W (yk)

bvb
′
u.

(D.1)

and

f̂k+1 =
(d+ 2)

2Icd

∑

bu∈W (yk+1)

(1− ‖yk+1 − bu‖2) =
(d+ 2)

2Icd

1

nk+1

∑

bu,bv∈W (yk+1)

bvb
′
u. (D.2)

It was proved in [Comaniciu & Meer, 1999] Theorem 1 that the positive sequence {f̂k} of
density estimation by mean-shift algorithm and Epanechnikov kernel is converging and

f̂k+1 − f̂k ≥
d+ 2

2Icd
nk‖yk+1‖2, (D.3)

consequently the condition f̂k+1 > f̂k holds. Using this condition we may prove that
nk+1 > nk. Let us rewrite inequality (D.3) by substituting equations Eq. (7.62), Eq. (D.1)
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and Eq. (D.2):

(d+ 2)

2Icd



 1

nk+1

∑

bu,bv∈W (yk+1)

bvbu −
1

nk

∑

bu,bv∈W (yk)

bvbu



 ≥

(d+ 2)

2Icd

nk

n2
k+1

∑

bu,bv∈W (yk+1)

bvbu.

(D.4)

Dividing inequality (D.4) by f̂k+1 Eq. (D.2) and using conditions 0 < f̂k/f̂k+1 < 1 the
inequality (D.4) becomes:

1− f̂k

f̂k+1

≥ nk

nk+1
> 0⇒ 0 < 1− nk

nk+1
< 1⇒ 0 < nk < nk+1. (D.5)

When the optimal value is achieved, then f̂k+1 ≡ f̂k and nj = nk+1 ≡ nk. We proved
here that the number of samples n2

j is strictly increasing (D.5). The condition ‖µj‖2 > 0.5
Eq. (7.61) provides strictly negative values during minimising error E Eq. (7.64) by the
mean-shift algorithm with Epanechnikov kernel Eq. (7.66).
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Appendix E

Dictionary of image classes

In this appendix we represent words which have been extracted from descriptions of the
50 image classifications in Section 9.3.

Each user characterises its image classes by words. Descriptions of image classifi-
cations have been done mainly with English words. Mainly nouns have been selected
while articles and endings have been removed manually to avoid mistakes, presence or
absence of comas, etc. In the total 157 words (or group of words) have been obtained to
describe image classes.

The dictionary is :
activity, air, alive, animal, architecture, art, artificial, art photograph, art pictural, artistique,
automobile, balloon, beach, bizarre, bird, boat, bridge, building, car, castle, celebrity, child, city,
city landscape, coast, construction, costume, countryside, diversite, disguise, dance, dense, dragon,
details, driver, detail, earth, electricity, eau, fly, forest, famous, folklore, forest, famous sight, fair,
figure, go, green, grass, group, great horizon, house, holidays, history, human, historic building,
historic places of interest, human being, historic places of interest, hard to classify, interieur, in-
teresting, installation, image non naturelle, images of home, live, little building, landscape, land-
scape with human building, landscape without visible human presence, mammal, men, mosaic,
modern building, monument, means of transport, marine, motor, man, mountain, nature, natu-
ral zone, nationality, natural landscape, not natural, not a gategory, neon, old, original, object,
other, outlier, panoramic view, postcard, people, performance, place, painting, people, paysage,
paint, plane, plage, pelleteuse, paysage de cartes postales, panoramic view, photos of sport, peo-
ple doing something together or alone, photos of folklore around the world, photos of nature, re-
ligious building, recognizable, roue, sea, sky, swim, somoone with claws and fur, scenery, seat,
stand, smart, show, scenery, street, sculpture, stained glass window, statue, stained glasses, ship,
should be renamed vehicle, sport, social activities, theatre, transport, tower, totem, tradition, tree,
unique, urban landscape, useless, vitrail, vehicule, vehicules de toute sorte, verdure, vacances,
voyage, voiture, women, walk, wise, water, widescreen, wheel, woman, zoom on a detail of an object
.

The following Table E.1 represents the extracted word description of each cluster ob-
tained in Section 9.3. Words of each cluster in Table E.1 are very similar by their sense
and corresponds to semantic concepts.



236 E. DICTIONARY OF IMAGE CLASSES

Cluster 1: any image with an animal as a main character, an animal is the
main subject, birds, animals, nature, sea, sky, animals, natural zone,
live,swim, go, earth, birds, someone with claws and fur, animaux,
betes, bestioles, animal, nature, ANIMALS, All kinds of animals, birds,
mammals, alive, animal, green , animal placed in a tree, panoramic
views, animals, oiseau, mammifere, unique, Living animals,

Cluster 2: any image containing people, people is the main subject, peo-
ple, costume, activity, men, women, group, seat, walk, stand,
one,or,few,persons, human being, art, folklore, child, live, smart, wise,
personnages humains, nationalities, traditions, societes humaines ; di-
versite ; peuples, ce qui fait penser aux vacances, aux lieux touristiques,
endroits a visiter... Photos of folklore around the world, show; celebrity;
costume; disguise , hommes, traditional, costume, performance, people
doing something together or alone, wear for special cultural events, so-
cial activities

Cluster 3: nice scenary that could be taken on holidays, well-known monuments,
building, street, electricity, monument, castle, recognizable, landscape
with human buildings, towers, monument, batiment, pont, construc-
tions humaines, paysages non naturels, famous sights, monuments,
bridges, ce qui fait penser aux vacances, aux lieux touristiques, endroits
a visiter, monuments, architecture, ARCHITECTURE, MONUMENTS
Famous sites around the world, buildings; beaches; holidays; scenery;
castles, castles, famous, old, city landscape, interest object mostly sur-
rounded by sky, Historic buildings, religious buildings

Cluster 4: nice scenary that could be taken on holidays, landscape without partic-
ular focus, grass, sky, nature, nature, postcard, nature, landscape with-
out visible human presence, landscape,contryside,sea,beach,mountain,
paysage, nature, water, tree, sky, earth, coasts, forests, castels, houses,
paysage de cartes postales, plage, mer, cite, rivage, SEA, SHORE,
SEASHORE, BEACH, buildings; beaches; holidays; scenery; castles na-
ture, widescreen, water and land separated by a long line, natural land-
scapes, urban landscapes, panoramic views, animals, eau, montagne,
verdure, plage

Cluster 5: nice scenary that could be taken on holidays, landscape without partic-
ular focus, water, sea, ships, boat, nature, postcard, landscape with hu-
man buildings, cars,boats,planes, nature, ensemble de batiments, ship,
water, vehicules de toute sorte, cars, ships, details ce qui fait penser aux
vacances, aux lieux touristiques, endroits a visiter, plage, mer, cite, ri-
vage, SEA, SHORE, SEASHORE, BEACH Photos of sports, buildings;
beaches; holidays; scenery; castles vehicule, marine, boats, means of
transport, panoramic views, animals, machines or instruments, eau,
montagne, verdure, plage, everyday life objects

Table E.1: Discovered clusters described by the text.
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Appendix F

Human-computer interface for
unsupervised image clustering

In this appendix we demonstrate a developed human - computer interface for unsuper-
vised satellite image clustering. Human - computer interface is a mean of dialog between
a user and a computer system. This program is applied by a user to load satellite image,
to visualise the image, set some parameters (if needed) and cluster the image. The sys-
tem returns as a result labels of the clustered image and display them by superimposing
it with the original image. In addition, examples of each cluster can be dispayed in the
form of small patches. A screen shot of the interface is presented in Figure F.1.

The user’s manual for this application consists in the following steps:

1. The default image is loaded for clustering. The user can select another satellite
image by clicking on the button ”Load image”.

2. The user can scroll image either to zoom in or to zoom out it. The same action can
be done by sliding a bar at the left side of the program.

3. The user can select desired number of clusters, (the number of clusters is 2, by
default).

4. Clicking on the button of ”Cluster image” the user runs K-means clustering algo-
rithm to cluster image.

5. Clusters are displayed in the original image by different colours.

6. The user can visualise samples of the obtained clusters by clicking on the ”Textures”
button. These patches correspond to the nearest samples of each cluster (nearest in
the sense of Euclidean distance to the mean vector of corresponding cluster).

Specification The ”Unsupervised image clustering” (UIC) program has been written
in C++ using QT widgets and can be compiled either for Windows OS or Linux OS. The
demo version of the program is able to load two satellite images of size 3000×3000 pixels.
Extensions of the program to a higher number of images may be done easily. Images
are either pre-cut or online extracted from larger images. The algorithm of K-means is
builded in the program.
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The result of clustering is displayed by different colours on original image. RGB
colour map depends on the number of clusters. Finally, the gray level of the image is
scaled and added to each colour.

The application shown in Figure F.1 represents UIC program with a loaded and clus-
tered image of Madrid. Clusters are displayed by different colours. Examples of textures
of each cluster are given in the right part of the image. This program can be improved
by implementing additional functions of data mining: as unsupervised features selec-
tion, clustering algorithms, criteria to determine the number of clusters, visualisation of
clustering results, etc.
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Figure F.1: Screenshot of program for unsupervised satellite image clustering.
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