
HAL Id: pastel-00004140
https://pastel.hal.science/pastel-00004140v1

Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Services spontanés sécurisés pour l’informatique diffuse
Slim Trabelsi

To cite this version:
Slim Trabelsi. Services spontanés sécurisés pour l’informatique diffuse. domain_other. Télécom
ParisTech, 2008. English. �NNT : �. �pastel-00004140�

https://pastel.hal.science/pastel-00004140v1
https://hal.archives-ouvertes.fr

1

Services Spontanés Sécurisés Pour
l’Informatique Diffuse

Thèse

Présentée pour obtenir le grade de docteur
de l’Ecole d’Ingénieur TELECOM

ParisTech
Spécialité : Informatique et réseaux

Par

Slim Trabelsi

Soutenue le 07 Juillet 2008 devant le jury composé de

Rapproteurs : Valérie Issarny (INRIA, LE Chesnay – France)
Hossam Afifi (TELECOM SudParis – France)

Examinateurs: Pascal Urien (TELECOM ParisTech – France)
Roberto Di Pietro (Università di Roma – Italie)
Jean-Christophe Pazzaglia (SAP Labs – France)

Directeur de Thèse: Yves Roudier (Eurecom – France)

2

3

Remerciements

Je dédie cette thèse à mes parents, à Olfa, et ainsi qu’à mon frère qui m’ont tout donné et qui
m’ont apporté un soutien sans faille.

Je tiens à remercier tout d’abord Yves Roudier pour la confiance qu’il m’a accordée, ainsi
que pour tous les conseils et toute l‘aide apportée lors des mes années de thèse. Je remercie
aussi Jean-Christophe Pazzaglia et Guillaume Urvoy-Keller pour leur aide si précieuse et
leur bonne humeur permanente.

Une pensée particulière à tout le staff d’Eurecom, notamment aux doctorants : Marco,
Alessandro, Emilie, Moritz, Federico, Remi, Selim, René et tant d’autres, avec qui j’ai passé
des moments inoubliables, ainsi qu’au personnel administratif et tout particulièrement
Gwenaëlle, Emilie, Carine, Patrice , Nadine, Christine…

Merci à tous.

Slim Trabelsi, Septembre 2008

4

5

Abstract

The pervasive computing paradigm assumes an essentially dynamic model of interaction
between devices. That also motivates the need for mechanisms to discover previously
unknown service at an early phase of such interactions. Whereas this assumption is at the
heart of many pervasive computing protocols and systems, the necessity of securing service
discovery, in particular privacy-wise, and the complexity of this task have been largely
underestimated, if considered at all.
The goal of this thesis is to study the security requirements of service discovery protocols and
to provide secure and reliable solutions to overcome threats and security lacks associated to
service discovery standards. Three security solutions are proposed that address different
deployments of service discovery. Architectures suitable for secure discovery and the
protocols they require are introduced in the first part of this thesis. Decentralized architectures
are addressed using an attribute based encryption scheme to restrict the access to discovery
messages. An alternative proposal is presented for centralized architectures that makes use of
a trusted registry in charge of enforcing discovery policies. Finally, a hybrid model is
presented for large-scale deployments that relies on a peer to peer indexing system accessible
through an anonymizing layer. The second part of this thesis details the effect of secure
service discovery through a performance study approach. A mathematical performance model
is designed in order to evaluate the robustness, availability, efficiency, and resource
consumption of a service discovery system during its normal execution and under a denial of
service attack. Finally, this thesis studies the security and trust issues related to the
introduction of context awareness into pervasive computing systems and in particular, its
impact on the service discovery mechanisms in terms of matching accuracy and flexibility
with respect to the environment.

6

7

Résumé

Chapter I. Introduction

La notion d’informatique diffuse fut définie par Weiser en 1991 [WEI91] comme étant
l’avenir de l’informatique dans lequel l’utilisateur pourra interagir numériquement avec son
environnement (intelligent) de façon complètement transparente. L’environnement est
assimilé à un ordinateur composé de plusieurs petits composants qui interagissent en
permanence et offrant à l’utilisateur la possibilité d’accéder à des informations et des données.
L’informatique diffuse devient donc accessible partout et à tout moment faisant ainsi partie de
la vie quotidienne de l’être humain. Aujourd’hui l’informatique diffuse est devenue
d’actualité et est réellement déployée dans certains réseaux (entreprises, aéroports, salles de
conférences, maisons intelligentes …), et s’appuie généralement sur le concept du tout
service, où les équipements intelligents sont accessible via une interface client service. Ce
type de déploiement de systèmes est plus communément appelé Architecture Orientée Service
(AOS), qui est l’une des techniques de déploiement de systèmes les plus répandues et les plus
efficaces pour les systèmes distribués. Ce type d’architecture a été initialement développé
pour faciliter l’accès dynamique aux applications déployées sur des équipements
environnants. Combinée à la programmation orientée objet, l’AOS permet le déploiement
d’applications distribuées pouvant communiquer de façon efficace et flexible via un réseau de
données ou mobile, repoussant ainsi les limites des solutions centralisées. Le service est
l’élément principal d’une AOS, il englobe un ensemble de fonctionnalités et de procédures
accessibles via une interface standardisée. Cette interface permet aux utilisateurs ainsi qu’aux
logiciels de s’interconnecter et de communiquer de façon optimale et flexible (adaptative).
Ces services peuvent ainsi représenter tous les aspects applicatifs connus qui proposent des
fonctionnalités tels que l’accès aux bases de données, gestion et traitement de données ou
encore les transactions commerciales. Le consommateur de ces services est plus
communément appelé client, et est représenté par un utilisateur humain ou logiciel. Ces deux
acteurs peuvent communiquer via une interface standardisée sans pour autant partager la
même plateforme d’implémentation ou de déploiement. IBM définit par exemple la notion de
service dans une AOS comme étant une fonction applicative structurée et par conséquent
comme un composant réutilisable pour n’importe quelle transaction commerciale.
Actuellement le paradigme d’AOS est accru par l’émergence de la technologie des Web
Services. Cette technologie est totalement indépendante de l’environnement de
programmation, ainsi les applications peuvent être développées en utilisant n’importe quel
langage de programmation sans pour autant présenter un problème de communication. Pour
faciliter la communication et l’interconnexion de ces différentes applications, des interfaces
flexibles décrites à l’aide du langage balisé XML sont utilisées comme étant un pont de
jonction des différentes applications. Ainsi chaque application peut interpréter cette interface
XML et générer dynamiquement le squelette de la méthode utilisée pour interagir avec le
service distant. Le standard utilisé généralement pour la description de ces interfaces d’accès
aux services est appelé Web Service Description Language (WSDL). Le format des
protocoles de communication est aussi standardisé via une enveloppe de messages XML
appelée SOAP.

8

A. Découverte de services
Afin de gérer efficacement le déploiement et le fonctionnement des AOS, des techniques
d’orchestration régissant toutes les étapes de mise en œuvre de ce genre d’architectures ont
été développées. Ces techniques ont pour rôle d’identifier et localiser les différents
composants du système et permettre de les manipuler de façon intelligente, comme par
exemple la possibilité de composer et combiner plusieurs services en vue d’obtenir un service
évolué. Parmi ces techniques d’orchestration, la découverte de services prend une place
importante au sein de la pile AOS, surtout quand l’environnement de déploiement devient
plus dynamique et plus ouvert. Ainsi, si on se place dans le cadre d’un intranet local mettant
en jeu très peu d’acteurs, de simples services de nommage (à la CORBA) peuvent faire
l’affaire. En revanche, dans le cadre d’un grand réseau distribué, il est évident que les services
de découvertes doivent prendre en compte plusieurs paramètres, à savoir : l’existence de
milliers voire de millions de services hétérogènes répartis à travers le globe, les limites de
bandes passantes, la capacité du passage à l’échelle, et surtout la sécurité. Les protocoles de
découverte de services sont différents des systèmes de nommage/adressage de type DNS car
ils concernent plus la couche applicative et les aspects d’indexation logique complètement
indépendants du système d’adressage et de routage niveau réseau. Les systèmes de découverte
mettent en jeu deux ou trois éléments primordiaux, à savoir les clients ainsi que les serveurs,
et dans certaines configurations la possibilité de rajouter des répertoires jouant le rôle
d’annuaires de services. Les répertoires sont généralement publics et permettent aux serveurs
d’enregistrer leurs services ainsi qu’aux clients de demander des services. Dans le cas où les
seuls éléments du système sont les clients et les serveurs, la découverte de service est dite
décentralisée. Dans le cas où le répertoire est utilisé lors de la découverte de services, le
système est dit centralisé.

B. Contribution
Dans cette thèse je focalise mon étude sur la sécurisation et l’étude de performance des
systèmes de découvertes de services appliqués aux services ubiquitaires dans les AOS. Cette
étude commence par l’analyse des failles de sécurité, ainsi que des attaques possibles
auxquelles sont exposés les systèmes de découvertes existants. Cette analyse a abouti à un
modèle de sécurité détaillant les différents paramètres de sécurité qui doivent être pris en
compte par les développeurs et les programmeurs afin de déployer un système de découverte
sûr et robuste.
Partant de ce modèle de sécurité, j’ai proposé trois solutions sécurisées pour la découverte de
services correspondant à des degrés divers d’organisation et d’échelle de l’infrastructure sur
laquelle le mécanisme est déployé. Nous montrons tout d’abord comment le chiffrement est
suffisant pour protéger des architectures décentralisées de type LAN ou WLAN en
restreignant l’accès aux messages de découverte diffusés d’après une politique à base
d’attributs. Nous proposons ensuite l’utilisation de politiques de découvertes comme concept
essentiel à la sécurisation de la découverte de services dans les architectures centralisées qui
s’appuient sur un registre comme tiers de confiance. Nous introduisons enfin une architecture
pour le déploiement d’un mécanisme de découverte de services sécurisé à plus grande échelle
s’appuyant sur un système d’indexation pair à pair accessible via une couche de routage
anonyme. Dans une deuxième partie de la thèse, nous analysons l’efficacité des mécanismes
de découverte de service sécurisée proposés par une étude de performance. Un modèle
Markovien est construit afin de calculer différents paramètres de performances liées à la
robustesse, la disponibilité, l’efficacité ou le coût en termes de ressources consommées lors de
l’exécution d’un processus de découverte en charge normale aussi bien que soumis à une
attaque de déni de service. Nous discutons finalement dans une dernière partie des problèmes

9

de sécurité et de confiance liés à l’introduction de sensibilité contextuelle dans les
mécanismes de découverte de service.

Chapter II. Modèle d’attaque et de sécurité pour la
découverte de services

Sécuriser les services ubiquitaires revient à protéger les informations de découvertes publiées
par les utilisateurs et les services lors d’une exécution d’un processus de découverte dans un
milieu hostile (non sûr). Afin de cibler ces informations sensibles et détecter les failles de
sécurité possibles lors de l’exécution du protocole de découverte, nous avons décidé de mener
une analyse non formelle de chaque étape d’exécution de l’algorithme et de souligner les
vulnérabilités, d’imaginer les attaques possibles pour les exploiter et proposer des contre-
mesures. Non avons donc commencé par énumérer une liste non exhaustive de ces failles et
attaques.

A. Attaques et vulnérabilités

Vulnérabilités au niveau des messages
- Possibilité d’attaques de dénis de service contre les répertoires : l’attaquant peut

générer de faux messages de publications de services afin de surcharger les
répertoires jusqu’à la panne de ce service.

- Accès aux requêtes des clients : en accédant aux messages de requête clients,
l’attaquant peut deviner les intentions de l’utilisateur ainsi que ses activités, son
identité et ses ressources.

- Interception des requêtes des clients : afin de récupérer les informations
personnelles décrites dans le point précédent, les attaquants peuvent se faire passer
pour de faux répertoires et ainsi récupérer toutes les requêtes des clients.

- Modification ou suppression des requêtes des clients : si un attaquant arrive à
compromettre un routeur, il a la possibilité d’intercepter les requêtes de clients afin
de les modifier et les réutiliser à des fins illégales, ou bien tout simplement les
supprimer afin d’isoler l’utilisateur.

- Rejouer des requêtes clients : il s’agit d’écouter le média de transmission des
messages (dans un réseau sans fil non protégé), mémoriser les requêtes des clients,
afin de les rejouer par la suite et ainsi se faire passer pour un client honnête.

- Rejouer des messages de publication de services : afin de donner de fausses
informations à propos des services publiés, un attaquant a la possibilité de générer
des messages de publication de faux services ou des services modifiés à partir de
véritables messages récupérés du réseau. Ces fausses informations injectées dans
le répertoire ont pour but de tromper voire pirater les clients à la recherche de
véritables services.

Publication des services
- La publication d’un service sur un faux répertoire : un attaquant peut mettre en

ligne de faux répertoires dans le but des récupérer et tromper tous les utilisateurs
du service de découverte. Il peut ainsi créer un nœud absorbant.

- Effacement illégal de services déjà publiés : un attaquant peut se faire passer pour
un service afin d’effacer les données publiées sur un répertoire.

- Publier de faux services : un attaquant peut publier de faux services qui ne
correspondent pas à leurs descriptions.

10

B. Modèle de sécurité
A partir du modèle d’attaque décrit précédemment nous pouvons déduire un modèle de
sécurité permettant de protéger les systèmes de découvertes contre ses éventuelles attaques.

- Authentification: l’objectif de base de la découverte est la communication entre
différentes entités inconnues entre elles. Afin de pouvoir vérifier l’existence et
l’honnêteté de ces éléments il est impératif que chaque entité puisse authentifier
son vis-à-vis et ainsi vérifier l’origine des messages.

- Autorisation : on peut supposer que certains services puissent être restreints à un
certain type de clients, ainsi que certaines requêtes puissent être destinées à
certains répertoires ou services. Pour ce faire, des systèmes d’autorisation doivent
être mis en œuvre pour octroyer certains privilèges (certificats, tickets, droits
d’accès …) aux entités concernées.

- Protection des données privées : chaque message échangé lors de la découverte de
service peut contenir des informations privées liées aux clients ainsi qu’aux
services. Ces informations doivent absolument être protégées et restreintes d’accès
aux éléments ayant les autorisations nécessaires pour y accéder.

- Confidentialité : afin de protéger l’accès aux messages de découverte ainsi qu’aux
données privées, il existe des techniques qui assurent la confidentialité en cachant
les données sensibles et en les divulguant uniquement aux entités ayant les
autorisations nécessaires pour y accéder. Généralement, des techniques de
chiffrement sont utilisées pour assurer la confidentialité des données.

- Contrôle d’accès : l’authentification des clients et des serveurs est assez
problématique lors de la phase initiale de la découverte. Idéalement, un serveur ne
devrait publier ses services restreints qu’aux clients ayant un profil ou des
autorisations spécifiques, mais dans la pratique il est extrêmement difficile de
mettre en œuvre cette restriction. Pour cette raison, il est impératif pour des
serveurs de déployer des systèmes de contrôle d’accès aux profils des services
proposés, afin de pouvoir filtrer efficacement les clients ayant le droit de les
découvrir.

Chapter III. Sécuriser la découverte de services
décentralisée

Lors d’une découverte de service décentralisée, les clients et les serveurs communiquent
directement entre eux, sans aucun intermédiaire. Les serveurs contactent tous les clients du
réseau en leur envoyant les profils des serveurs à publier, et les clients à l’écoute du réseau
récupèrent les profils publiés et les mémorisent afin d’accéder aux services en cas de besoin.
Si un nouveau client rejoint le système, il a la possibilité de contacter tous les serveurs afin de
demander quelques services. La particularité de ce genre de configuration décentralisée est
qu’il n’y a aucun intermédiaire de confiance qui pourra être en charge de la sécurisation de la
découverte. Pour cette raison, chaque élément doit assurer lui-même la protection de sa
découverte de service.
Afin de satisfaire les bases décrites dans le modèle de sécurité, comme la confidentialité, le
contrôle d’accès ou la protection des données privées, il y a la possibilité, adoptée par
certaines solutions, d’utiliser un système de chiffrement et d’authentification basé sur

11

l’infrastructure des clefs publiques (PKI). Ce type de système basé sur une distribution
préliminaire de clefs publiques et privées ainsi qu’un serveur d’authentification déployé par
l’autorité de certification permettant à chaque utilisateur de vérifier l’authenticité des clefs. Ce
type d’infrastructure suppose la présence permanente d’une infrastructure de sécurité, ce qui
entre en conflit avec le principe d’applications ubiquitaires décentralisées et mobiles qui ne
peuvent pas forcément dépendre d’une infrastructure fixe. Ainsi, afin de se démarquer de cette
contrainte tout en gardant les mêmes fonctionnalités associées au PKI, nous avons décidé
d’utiliser une infrastructure de chiffrement appelée chiffrement basé sur les attributs, qui est
une extension du chiffrement basé sur l’identité. L’avantage de cette nouvelle alternative est
de permettre d’être indépendant d’une infrastructure d’authentification pour vérifier la validité
des clefs de chiffrement/déchiffrement.

A. Chiffrement basé sur les attributs
Le concept du système de chiffrement basé sur les attributs est similaire au système de clefs
asymétriques du PKI, à la seule différence que les clefs publiques ont un sens sémantique
décrivant un ensemble d’attributs représentant une identité.

Figure 1 : Chiffrement basé sur les attributs

Comme la Figure 1 le montre l’utilisateur Bob qui veut envoyer un message chiffré à Alice,
dont le profil est décrit par les attributs publics {A,B,C}, peut utiliser la combinaison de ces
attributs afin de constituer la clef publique (unique) de chiffrement. Alice qui est propriétaire
de ces attributs, et qui a un certificat démontrant cette propriété peut a tout moment générer
les clefs privées liées à ses attributs afin de pouvoir les utiliser pour déchiffrer le message
brouillé de Bob. Si elle y parvient, Bob a implicitement authentifié Alice, en restreignant
l’accès à son message aux détenteurs des attributs {A,B,C}, protégeant ainsi les données
privées qui peuvent être contenues dans son message.

B. Application du chiffrement basé sur les attributs aux
protocoles de découverte de services

Nous avons choisi d’appliquer le chiffrement basé sur les attributs à tous les messages de
découvertes qui doivent être sécurisés ; les requêtes des clients sont chiffrées en fonction des
attributs correspondant aux services recherchés. Ainsi seuls les services authentifiés possédant
les clefs privées valides correspondant à ces attributs sont capables de déchiffrer et répondre à
la requête. Dans ce cas, le client est capable d’authentifier implicitement les serveurs

12

recherchés, vérifier la validité de leurs attributs, interdire l’accès de la requête aux entités non
authentifiées et protéger les données privées contenues dans la requête.

<s:Body>
 <d:Probe>
 <d:Types>

(Encrypt[Printer]{Printer|Eurecom})
 </d:Types>
 </d:Probe>
 </s:Body>

Figure 2: Requête client chiffrée

La Figure 2 représente une requête pour un service d’imprimante exprimée suivant le standard
du protocole de découverte de Web Services WS-Discovery. Le corps de cette requête est
chiffré en utilisant les attributs {printer, imprimante} comme clef publique. Ainsi uniquement
les imprimantes certifiées du domaine Eurecom seront capables de déchiffrer la requête du
client.

De la même façon, les serveurs proposant des services privés peuvent restreindre la
découverte de ces services à certains clients ayant un profil bien déterminé. La même
technique de chiffrement est utilisée pour brouiller le message d’annonce des services ainsi
que les messages de réponse aux clients. Les attributs utilisés pour chiffrer le message
correspondent aux attributs décrivant les profils des utilisateurs autorisés à découvrir le
service.

<d:Hello ... >
<a:EndpointReference> Encrypt[EPR]{Professor,Eurecom} </a:EndpointReference>

<d:Types> Encrypt[Color_Printer]{Professor,Eurecom} </d:Types>
<d:Scopes> Encrypt[Eurecom_Printer]{Professor,Eurecom} </d:Scopes>
<d:XAddrs> Encrypt[Colorprinter.eurecom.fr]{Professor,Eurecom} </d:XAddrs>
<d:MetadataVersion>xs:unsignedInt</d:MetadataVersion>

...
</d:Hello>

Figure 3: Message de publication de service chiffré

La Figure 3 représente un message de publication de service d’imprimante couleur exprimée
suivant le standard du protocole de découverte de Web Services WS-Discovery. Ce message
est restreint aux professeurs certifiés par le domaine Eurecom.

C. Discussion
A ce niveau de la thèse, j’ai proposé une solution permettant de sécuriser la découverte de
services dans une architecture décentralisée, où les éléments peuvent communiquer en toute
sécurité sans aucun intermédiaire. En appliquant le chiffrement basé sur les attributs aux
protocoles de découvertes de service, les contraintes de sécurité décrites au début de ce
document sont satisfaites sans faire intervenir un tiers élément en charge de la sécurisation du
processus, ce qui a pour avantage de permettre le déploiement de la découverte sécurisée dans
un environnement ubiquitaire mobile.

13

Chapter IV. Sécuriser la découverte de service basée sur
les répertoires

La solution décentralisée ne prend pas en compte l’utilisation de répertoires de découverte qui
jouent le rôle d’intermédiaire entre les clients et les services. De plus, le fait de chiffrer les
messages de découverte selon le procédé basé sur les attributs ne permet pas au répertoire de
jouer son rôle d’annuaire, vu qu’il sera incapable de déchiffrer les messages brouillés. Par
contre le fait d’utiliser un répertoire de confiance peut présenter un avantage pour sécuriser la
découverte de services. Si les clients, ainsi que les services, arrivent à authentifier le
répertoire, ce dernier pourra jouer le rôle d’intermédiaire de confiance sur lequel pourront se
reposer ces éléments.

A. Politique de découverte de services
Afin de répondre aux contraintes énoncées par le modèle de sécurité, chaque utilisateur doit
avoir la possibilité de décrire ses préférences, ainsi que les paramètres liés à la protection des
messages de découverte. Côté client, l’utilisateur doit être en mesure de vérifier que les
services qui correspondent à sa requête sont authentifiés et certifiés comme étant sûrs et
honnêtes. Côte serveur, l’administrateur doit être capable de spécifier les restrictions et le
contrôle d’accès liés à ses services. D’autres paramètres de sécurités tels que le chiffrement ou
la protection des données privées doivent être définis. Pour se faire, nous avons décidé
d’utiliser une politique de sécurité qui serait dédiée à la découverte de services (exemple voir
figure 4).

<Policy PolicyId="Policy" RuleCombiningAlgId="permit-overrides">
 <Target>…</Target>
 <!-- Rule of Color Printer Discovery Action -->
 <Rule RuleId="rgetPatient" Effect="Permit">
 <Target>
 <Subjects>…</Subjects>
 <Resources>Color Printer</Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="function:anyURI-equal">
 <AttributeValue DataType="anyURI">Discover</AttributeValue>
 <ActionAttributeDesignator DataType=anyURI AttributeId="action-id" />
 </ActionMatch>
 </Action>
 </Actions>
</Target>
 <!-- Check if the subject is a Professor from Eurecom -->
 <Condition FunctionId="function:string-equal">
 <Apply FunctionId="function:string-one-and-only">
 <SubjectAttributeDesignator DataType="string" AttributeId="SubjectRole"
/>
 </Apply>
 <AttributeValue DataType="string">Professor</AttributeValue>

<AttributeValue DataType="string">Eurecom</AttributeValue>
 </Condition>
 </Rule>
</Policy>

Figure 4: Exemple de politique de découverte de services

Cette politique de sécurité est fournie par les clients et les serveurs puis est transmise au
répertoire qui sera en charge de l’appliquer. Ainsi la fonction du répertoire n’est plus limitée
au rôle de simple annuaire, mais de garant de la sécurité sur processus de découverte. Deux

14

nouvelles tâches lui sont assignées : l’interprétation et l’application des politiques de
découverte, ainsi que l’authentification des éléments du système.

Figure 5: Architecture pour la découverte de services sécurisée basée sur les répertoires
centralisés

La Figure 5 décrit l’ordre d’exécution du système de découverte de services basé sur les
répertoires. Avant de commencer à échanger les messages de découvertes, les clients et les
serveurs doivent d’abord joindre un répertoire, l’authentifier et établir une connexion
sécurisée en utilisant des protocoles de chiffrements simples tels que SSL ou TLS. Ainsi tous
les messages échangés par la suite seront chiffrés.

- Etape1 : le serveur publie ses services en envoyant au répertoire les profils des
services à publier, les politiques de sécurité qui leur correspondent, et un certificat
ou un ticket qui permettra au répertoire d’authentifier les services.

- Etape2 : le client envoie au répertoire une requête contenant les critères du service
à rechercher, la politique de sécurité décrivant les critères que doivent satisfaire les
services recherchés et un certificat permettant au répertoire d’authentifier le
serveur en cas de besoin.

- Etape3 : le répertoire cherche une correspondance entre la requête des clients et les
profils des services enregistrés.

- Etape4 : pour vérifier les politiques des clients et des serveurs, le répertoire vérifie
les certificats fournis par ces deux éléments afin de les authentifier et appliquer les
politiques de sécurité.

- Etape5 : après avoir authentifié les deux parties, le répertoire vérifie si les services
sélectionnés répondent aux contraintes de sécurité imposés par la politique du
client, ensuite vérifie si le profil du client correspond aux contraintes énoncées
dans la politique des serveurs sélectionnés.

- Etape6 : après avoir vérifié les correspondances entre les politiques de sécurité et
les profils des intervenants, le répertoire renvoie la réponse correspondant à la
requête du client et qui satisfait toutes les contraintes de sécurité.

B. Intergiciel pour la découverte de services sécurisée
Les AOS actuelles ont pour avantage d’êtres flexibles et adaptables à toutes les plateformes
de déploiement. La solution de sécurité proposée dans cette thèse doit donc être capable

15

d’avoir une interface assez flexible afin de permettre à toutes les applications ubiquitaires de
bénéficier des fonctionnalités de la découverte de service sécurisée. Pour cette raison, nous
avons décidé de fournir une couche intergicielle proposant des interfaces génériques
accessibles via tous types de plateformes. Cette interface propose des méthodes permettant
de :

- Déclarer les services en publiant leurs profils descriptifs.
- Exporter les politiques de sécurité liées à la découverte.
- Exporter les certificats d’authentification.

Figure 6: Pile intergicielle

La pile intergicielle proposée dans cette thèse se compose de trois couches :
- Couche du protocole de découverte de services : cette couche spécifie les formats

de messages de découverte ainsi que le système de traitement des messages. Dans
notre implémentation nous avons choisi de suivre les spécifications du protocole
WS-Discovery qui a pour avantage d’implémenter les deux topologies de
découverte (décentralisée et centralisée basée sur les répertoires). Les messages
d’annonce sont envoyés via multicast et ceux de réponse via unicast.

- Couche de sécurité : cette couche fournit les méthodes utilisées pour authentifier
les utilisateurs, interpréter et appliquer les politiques de sécurité.

- Couche interface d’accès : c’est une interface visible à tous les utilisateurs afin
d’accéder aux fonctionnalités fournies par les autres couches.

C. Discussion
Dans cette partie de la thèse, j’ai introduit pour la première fois la notion de politique de
découverte permettant à tous les utilisateurs de spécifier des politiques de sécurité afin de
protéger la découverte de services. Cette politique permet d’exprimer tous les besoins
spécifiés dans le modèle de sécurité de référence.

16

Chapter V. Passage à l’échelle pour la découverte de
services sécurisée

A. Passage à l’échelle
Les solutions décrites précédemment sont limitées pour le passage à l’échelle. En effet, si le
service requis par le client ne se trouve pas dans le même sous réseau ou dans le répertoire
local, le processus de découverte est stoppé sans prendre en compte les services publiés dans
d’autres réseaux et répertoires. De plus, dans le cas d’un système mettant en jeu plusieurs
milliers de serveurs et clients, les solutions actuelles seraient vite surchargées et incapables de
prendre en charge un tel nombre de participants. La solution la plus recommandée pour le
passage à l’échelle préconise l’utilisation d’un système de répertoires distribués. La
distribution des répertoires doit être régie selon une architecture de déploiement bien
spécifique qui dépend du système d’indexation et de routage escompté. Trois architectures
sont alors possibles (figure 7) :

- Plate : tous les répertoires sont interconnectés de façon non structurée et
communiquent entre eux par broadcast. Il n’y a pas de stratégie d’indexation et de
recherche particulière ; chaque nœud doit contacter tous les autres s’il veut publier
un service ou en chercher un. Cette architecture offre un meilleur passage à
l’échelle par rapport aux solutions simples, mais atteint vite ses limites dans le cas
où des milliers de registres sont mis en jeu.

- Hiérarchique : la stratégie de déploiement correspond à un arbre binaire (ou n-
aire) d’indexation. L’indexation et la recherche de services suit la logique de
parcours de l’arbre, ainsi la complexité maximum d’une recherche est de l’ordre
de o(log(n)). Comparé à l’architecture précédente, l’architecture hiérarchique
offre un meilleur passage à l’échelle quelque soit le nombre de nœuds, mais elle
peut se révéler coûteuse en terme de maintenance et surtout dans la gestion des
pannes. En effet, si un nœud tombe, il est très difficile de récupérer les données
maintenues, car il n’y a pas de système de duplication.

- P2P basé sur les tables de hachage distribuées (DHT) : cette solution a beaucoup
de succès auprès des applications d’échange de fichiers. Chaque donnée dans le
système a une valeur de hachage, chaque nœud est en charge de la mémorisation
de plusieurs valeurs de hachages pointant vers les nœuds détenant les profils des
services. Quand un nouveau profil de service est entré dans un nœud, ce dernier
va générer une valeur de hachage correspondant au profil, puis va envoyer le lien
de cette information à tous les nœuds en charge de cette valeur de hachage. Ainsi,
s’il y a une nouvelle requête de service, le nœud relayant cette requête va calculer
sa valeur de hachage et contacter tous les nœuds en charge de cette valeur afin de
récupérer les coordonnées du nœud qui détient l’information. Cette solution,
contrairement aux deux précédentes, passe très bien à l’échelle et ne requiert pas
un système de maintenance très compliqué. Pour cette raison nous avons choisi
d’adopter cette configuration.

Figure 7 : Architectures pour les répertoires distribués

Flat
Hierarchical DHT

17

B. Découverte de services anonyme
Les mécanismes de sécurité décrits précédemment, utilisés dans le but de protéger la
découverte de services, ne peuvent pas être appliqués tels quels pour une architecture de
répertoires distribués. Le premier problème qui se pose concerne la confiance accordée aux
répertoires ; il n’est pas possible de faire confiance à tous les répertoires y compris ceux qui
ne sont pas connus. Le deuxième problème concerne l’utilisation du chiffrement basé sur les
attributs ; si les messages de découverte sont chiffrés selon les profils des services recherchés,
les répertoires ne pourront pas accéder aux messages afin de faire la correspondance avec les
profils des services. Dans une solution précédente [TRA07] nous avons proposé de chiffrer
certaines parties des messages et laisser les attributs de correspondance en clair, mais cette
hypothèse allait à l’encontre du modèle de sécurité concernant la protection des données
privées des clients et des services (qui peuvent être restreints). Afin de palier à cette faille,
nous avons proposé de rendre les messages partiellement chiffrés anonymes ; ainsi les
attributs privés qui sont en clair ne peuvent pas être reliés à leurs propriétaires et la
correspondance données/utilisateurs sera impossible à établir. Différentes techniques
d’anonymisation de messages peuvent être utilisées, on peut citer par exemple : les MIX
[BER01] [KES98], les Crowds [REI98], ou bien les systèmes de routage basés sur les
chiffrements co-centrique (onion routing) [KAT07].

Figure 8: Routage anonyme basé sur le chiffrement co-centrique

Cette dernière technique (décrite en figure 8) permet notamment d’acheminer des messages
anonymes dans les deux sens (envoi et réception). Ainsi, l’utilisateur voulant publier ou
découvrir un service devra d’abord choisir un ensemble de nœuds intermédiaires jouant le rôle
de relais vers le répertoire à contacter. L’envoyeur doit chiffrer le message successivement
avec les clefs publiques chaque nœud du chemin de façon à ce que chaque participant ne
puisse accéder qu’aux informations de routage du nœud précédent et du nœud suivant, à
l’exception du répertoire qui aura accès aux informations de routage du nœud qui le précède
et au message de l’utilisateur. Ainsi les nœuds intermédiaires ne connaissent pas le contenu du
message, et le répertoire qui a accès au message ne connaitra pas l’expéditeur.

C. Description du protocole
Après avoir décrit les solutions envisageables pour le passage à l’échelle de la découverte de
services et pour l’anonymisation de l’échange des messages de découverte, nous allons
décrire l’architecture mettant en œuvre ces mécanismes au service de la découverte sécurisée
(voir figure 9).

18

Figure 9: Architecture pour la découverte sécurisée de services à travers des répertoires
distribués

- Initialisation : les clients et les services doivent d’abord choisir leurs chemins de
routage des messages composés d’au moins trois nœuds intermédiaires.

- Etape1 : le serveur publie les profils de ses services en contactant le répertoire
local de façon anonyme. Le message est relayé de façon anonyme à travers les
nœuds intermédiaires jusqu’au répertoire qui une fois les données enregistrées
renvoie un accusé de réception au serveur en utilisant le chemin anonyme inverse.

- Etape2 : le répertoire hache les valeurs des mots-clefs décrivant les services et
envoie les clefs de hachages aux répertoires en charge du stockage de ces clefs.

- Etape3 : le client envoie sa requête de service au répertoire le plus proche, toujours
de façon anonyme.

- Etape4 : le répertoire cherche localement les correspondances avec la requête. Si
elles n’existent pas, les mots-clefs de la requête sont hachés et relayés vers le
système pair à pair.

- Etape5 : le répertoire en charge des clefs de hachage correspondant aux attributs de
la requête retourne le pointeur vers le répertoire en stockant les données des
services recherchés.

- Etape6 : le répertoire local, après avoir récupéré les informations des services,
retourne la réponse à l’utilisateur.

D. Discussion
Contrairement aux deux solutions précédentes, celle-ci permet une découverte sécurisée qui
ne se limite pas aux réseaux locaux, mais qui s’étend à tous les autres réseaux et domaines.
Cette solution passe mieux à l’échelle sans pour autant sacrifier la sécurité. De plus, le fait
d’utiliser un système P2P offre une meilleure robustesse aux pannes et aux failles.

Chapter VI. Analyse de performance de la découverte de
service sécurisée

Le déploiement d’un système de service de découverte peut se faire de plusieurs manières :
centralisé, décentralisé, répertoires, ah-hoc, pair à pair … Le choix du type de déploiement

19

dépend de plusieurs facteurs comme le type et la taille du réseau, le nombre d’utilisateurs, la
quantité de ressources qui sera mise à disposition, ainsi que l’autonomie énergétique des
équipements à déployer. Ces facteurs doivent être connus par l’administrateur en charge du
déploiement d’un système de découverte afin de proposer une configuration optimale. Il
existe des outils de simulation et de modélisation permettant de prendre comme paramètres
d’entrées ces facteurs environnementaux afin de fournir des résultats qualitatifs et
quantifiables donnant des indications à l’administrateur afin qu’il aboutisse au meilleur choix
de déploiement. Dans cette partie de la thèse nous avons développé un modèle de découverte
de services prenant en compte les mécanismes de sécurité décrits dans les solutions
centralisées et décentralisées. Notre modèle de performance, basé sur une représentation
Markovienne (mathématique), a été validé par un simulateur décrivant le même système.
Seuls les aspects applicatifs ont été pris en compte lors de la modélisation ; les contraintes
réseaux ont été négligées vu qu’elles disposent déjà de plusieurs modèles de performance.

A. Modèle de découverte sécurisée

1. Modèle centralisé

Figure 10 : Modèle centralisé

La figure 10 représente le traitement sécurisé d’un message de découverte de services dans un
répertoire de confiance. Les arrivées des requêtes de services sont représentées par un
générateur de variables aléatoires (1) qui simule les arrivées des requêtes selon un processus
de Poisson. Une fois arrivées, les requêtes sont stockées dans la mémoire tampon du
répertoire (2) en attendant d’être traitées. Le traitement de la requête consiste d’abord à
authentifier les serveurs sélectionnés et vérifier la politique de sécurité du client (3), ensuite
authentifier le client et vérifier la politique de sécurité des services (4). La probabilité q1
correspond à la probabilité qu’un service corresponde à la politique du client. La probabilité
q2 correspond à la probabilité que le client corresponde à la politique du service.

20

2. Modèle décentralisé

Figure 11: Modèle décentralisé

La figure 11 quant à elle, représente le traitement sécurisé d’une requête envoyée
simultanément (via multicast) à tous les serveurs du système afin qu’ils puissent déchiffrer le
message et traiter la requête. Tout comme dans le modèle centralisé, les arrivées des requêtes
dans le système (1) sont supposées aléatoires et suivant une distribution de Poisson. Tous les
serveurs ayant reçu la requête tentent de la déchiffrer (2) à l’aide des clefs privées dont ils
sont propriétaires et qui correspondent aux attributs des profils de leur services. Une fois la
requête déchiffrée avec une probabilité q1, le service chiffre sa réponse pour la renvoyer au
client (3). Le client doit alors essayer de déchiffrer la réponse du service à l’aide des clefs
privées correspondant aux attributs de son profil.

3. Hypothèses du modèle
Afin que le comportement du système soit correctement quantifié et modélisé, il est
nécessaire d’énoncer certaines hypothèses autour des différentes étapes par lesquelles passent
les systèmes de découvertes. Ces hypothèses ont pour but de se rapprocher le plus possible du
comportement réel d’un système, tout en simplifiant la modélisation et le calcul.

- Le temps de traitement d’une requête : afin de modéliser le temps de traitement
d’une requête il est impératif de distinguer les deux types d’architectures. Pour
l’architecture décentralisée, le temps de traitement consiste essentiellement en la
durée de chiffrement et déchiffrement des messages. Suite aux mesures effectuées
lors du chiffrement/déchiffrement des messages de découverte, nous avons
observé une variabilité de la durée de traitement qui était indépendante de la
longueur du message ou de la clef de chiffrement. Ceci nous a amené à supposer
que le temps de traitement est très proche d’une distribution exponentielle. Nous
avons donc décidé de modéliser le temps de chiffrement/déchiffrement d’une
requête comme étant une variable aléatoire suivant une distribution exponentielle
de moyenne 1/ . Pour l’architecture centralisée, le temps de traitement consiste
essentiellement en la durée d’authentification et du temps de vérification des
politiques de sécurités. Nos mesures ont montré que la variation du temps de
traitement était corrélée à la complexité de la politique de sécurité.

- Temps inter-arrivées des requêtes : les requêtes des clients arrivent au système
suivant le processus de Poisson.

21

- Classe de trafic : dans le cas du modèle décentralisé on peut imaginer que certains
services puissent être plus populaires que d’autres, ou que certains services sont
dupliqués. Pour ces raisons il est important de distinguer différentes classes de
trafic dont les probabilités q1 ne sont pas équivalentes et varient en fonction de la
popularité des services ou du nombre de duplicatas.

B. Modèle Markovien
Les modèles mathématiques de performance permettent dans certains cas d’évaluer les
performances d’un système en obtenant des résultats assez proches de ceux obtenus avec des
simulateurs. L’avantage d’utiliser ces modèles mathématiques réside dans la durée de calcul :
alors qu’une simulation d’un événement peut prendre plusieurs heures, voire quelques jours,
les modèles analytiques eux ne prennent que quelques secondes, le temps de résoudre
quelques systèmes d’équitations. De plus ces modèles sont très facilement extensibles et
modifiables. Les chaînes de Markov constituent un outil fondamental pour modéliser les
processus en théorie des files d'attente et en statistiques. Etant donné que les modèles de
découvertes décrits précédemment sont représentés par un système de files d’attentes, les
chaînes de Markov peuvent être utilisées pour l’étude de performance du processus de
découverte de services. En mathématiques, une chaîne de Markov est un processus
stochastique possédant la propriété markovienne. Dans un tel processus, la prédiction du futur
à partir du présent ne nécessite pas la connaissance du passé.

1. Modèle Markovien centralisé
Pour chaque requête de découverte entrant dans le système, il peut y avoir deux cycles
d’authentification et de vérification de politique de sécurité. Afin de prendre en compte ces
deux cycles de traitement de la requête, nous avons décidé de représenter le processus de
découverte en utilisant une chaine de Markov bidimensionnelle ; chaque dimension représente
un cycle d’authentification (Voir figure 12).

Figure 12 : Chaine de Markov pour la découverte centralisée

22

La première dimension de la chaîne de Markov (A) représente le nombre de requêtes stockées
dans la mémoire tampon du répertoire, ainsi que la requête encours de traitement. La
deuxième dimension (B) est un booléen qui indique le cycle de traitement de la requête ; 0
pour le premier cycle et 1 pour le deuxième. Les arrivées de requêtes sont représentées avec le
taux d’arrivée . A chaque arrivée de client le paramètre (A) est incrémenté. Après le premier
cycle de traitement, la requête passera au deuxième cycle avec une probabilité q1, ou quittera
le système avec une probabilité (1-q1). Si la requête se trouve au deuxième cycle (B=1) elle
quittera le système après le traitement.

2. Modèle de Markov décentralisé
La représentation du système décentralisé a été divisée en deux chaines de Markov. La
première (figure 13) représente le processus d’arrivées des requêtes avec un taux et les
tentatives de déchiffrement des messages de la part des serveurs. La deuxième (figure 14)
représente le processus de chiffrement de la réponse côté serveur et du déchiffrement de la
réponse côté client.

Figure 13: Chaine de Markov pour la découverte décentralisée

Dans la figure 13 chaque état représente le nombre de serveurs en cours de traitement (en
train de déchiffrer une requête)

Figure 14 : Chaine de Markov pour la découverte décentralisée

Dans la figure 14, le paramètre Xe1 représente le débit de sortie des services déchiffrant les
messages. Le paramètre Xe2 représente le débit de sortie du chiffrement des réponses par les
services.

23

3. Probabilités d’authentification
Les probabilités q1 et q2 représentent, dans les deux modèles, les probabilités
d’authentification (déchiffrement, authentification et correspondance avec les politiques de
sécurité). Ces probabilités dépendent du nombre d’éléments dans le système et de la taille du
vocabulaire sémantique du contexte applicatif. Le vocabulaire contient un ensemble de mots
liés au domaine applicatif. Par exemple, le vocabulaire du domaine médical contient des mots
comme : scanner, radiologie, chirurgie, dermatologie, cancérologie, médicament, pharmacie
etc… alors que pour le domaine de la découverte de services, le vocabulaire contient des mots
décrivant les services (imprimante, banque …) et les identités ou les rôles des utilisateurs
(professeur, étudiant, chercheur …) participant à la découverte.
La probabilité de correspondance P d’un élément dans un vocabulaire est représentée par un
groupe d’attributs x dans un système et est définie par la probabilité que ces attributs
appartiennent au vocabulaire V :

1;

1;

:
xsize

xsize
V
C

xP

C
C

x

V

x
C

C. Simulateur et validation du modèle Markovien
Afin de vérifier la qualité et confirmer les résultats obtenus par le modèle Markovien, nous
avons choisi de développer un simulateur décrivant les deux architectures de découvertes
(centralisé et décentralisé). Si les résultats obtenus par le simulateur se révèlent être proches
de ceux obtenus par le modèle mathématique nous pouvons donc admettre que ce dernier est
valide et peut être utilisé pour l’étude de performance de la découverte de services sécurisée.
Le simulateur génère des événements liés au scénario décrit dans les deux modèles
précédents. Les arrivées des requêtes ainsi que les temps de traitement sont générés
aléatoirement à l’aide une librairie java appelée SSJ [SSJ] fournissant des générateurs de
variables aléatoires. Nous avons donc comparé les résultats de certains paramètres de
performance comme le taux de rejet (le rejet survient lorsque le système est plein et toutes les
ressources sont occupées à traiter les requêtes) ou le taux d’utilisation des ressources.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

0

0.05

0.1

0.15

0.2

0.25

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

Figure 15 : Comparaison du taux de rejet

24

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
es

ou
rc

e
us

ag
e

Lambda

Resource usage

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
es

ou
rc

e
us

ag
e

Lambda

Resource usage

Model-10
Simulator-10

Model-20
Simulator-20

Figure 16 : Comparaison du taux d’utilisation des ressources

Les figures 15 et 16 montrent que les résultats obtenus grâce aux simulateurs sont très
proches de ceux obtenus avec le modèle Markovien, ce qui prouve que les hypothèses
choisies précédemment se rapprochent du fonctionnement réel du système. Grâce à cette
validation nous sommes maintenant capables de calculer les paramètres de performance
comme : le temps de séjour d’une requête, le nombre moyen de requêtes traitées, la
disponibilité des ressources, la consommation en mémoire, le temps moyen d’activité des
serveurs et des répertoires, le taux de succès des requêtes…
En analysant les paramètres de performances obtenus grâce au modèle, nous pouvons
comparer les architectures centralisées et décentralisées afin de connaître les avantages et les
inconvénients de chaque solution. Le tableau suivant résume partiellement certaines de ces
différences.

Paramètres de performance Rejet Nombre de requêtes Temps de service
Centralisé Décentralisé Centralisé Décentralisé Centralisé Décentralisé

Augmentation de la taille
du buffer - = + = + =

Augmentation de la
probabilité de

correspondance
= = - = + =

Augmentation du
nombres de serveurs

dans le système
= - = + = =

D. Evaluation de l’impact des attaques de dénis de service
La seule attaque envisageable contre les systèmes de découverte sécurisée présentés dans
cette thèse est l’attaque de dénis de service (DdS) dirigée vers les serveurs et les répertoires. Il
s’agit pour l’attaquant de générer de fausses requêtes et de les envoyer de façon intempestive
vers les cibles à atteindre. Les victimes de cet envoi massif de fausses requêtes vont essayer
de traiter tous les messages reçus jusqu’à arriver à saturation et ne plus être capable de fournir
son service. Ce genre d’attaque affecte plus la solution décentralisée où les serveurs doivent
d’abord déchiffrer les messages avant de les traiter ; le déchiffrement étant coûteux en termes
de CPU.
Il existe deux types de sources d’attaques de DdS : la première, dite mono-source, dans
laquelle l’attaquant génère les faux messages d’une même source en modifiant éventuellement
les adresses IP pour leurrer le serveur. La deuxième, multi-sources, dans laquelle l’attaquant
se sert de plusieurs ordinateurs zombis contrôlés à distance afin d’envoyer les fausses
requêtes.

25

Afin de contrecarrer les attaques de type DdS, il existe des techniques appelées puzzles
cryptographiques qui consistent à lancer un défi cryptographique à la source d’une requête : si
celle-ci réussit à résoudre le calcul, sa requête sera traitée par le serveur. Ainsi les attaques
DdS mono-sources sont éradiquées et les multi-sources fortement ralenties.

E. Modèle d’attaque

1. Modèle
Afin de connaître l’impact des attaques de DdS sur le système de découverte sécurisée, nous
avons décidé d’étendre le modèle de performance décrit précédemment et d’y introduire un
trafic supplémentaire représentant les fausses requêtes de découvertes générées par les
attaquants. Le trafic corrompu est représenté par un taux d’arrivées variable de moyenne attack
et est mêlé au trafic normal. Dans cette étude nous allons comparer deux systèmes soumis à
des attaques, l’un sera protégé et l’autre pas.

Figure 17 : Modèle d’attaque pour l’architecture centralisée

Dans le modèle centralisé (figure 17) les requêtes corrompues peuvent occuper de l’espace
dans la zone tampon, mais sont rejetées du système dès que le répertoire procède au premier
cycle d’authentification.

Figure 18: Modèle d’attaque pour l’architecture décentralisée

Dans le modèle décentralisé (figure 18) les requêtes corrompues sont rejetées du système juste
après la tentative de déchiffrement par les serveurs.

26

Le trafic global du système prend en compte les deux types de trafics (normal et corrompu),
ce qui va directement influer sur le calcul de la probabilité d’authentification à l’entrée du
système (déchiffrement par les serveurs et premier cycle d’authentification du répertoire). La
nouvelle formule décrivant la probabilité de d’authentification s’écrit :

attack
attack

qq 1

2. Impact d’une attaque de DdS sur les systèmes protégés et
non protégés

Afin d’étudier l’impact des attaques de DdS sur la découverte de sécurité, nous avons
comparé les paramètres de performances obtenus dans un système non protégé contre ces
attaques et un système mettant en œuvre les puzzles cryptographiques.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Attack Rate

Rejection Rate

Decentralized-Attack
Centralized-Attack

Decentralized-Clean
Centralized-Clean

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Attack Rate

Average Sojourn Time

Decentralized-No-Anti-Clogging
Centralized-No-Anti-Clogging

Decentralized-With-Anti-Clogging
Centralized-With-Anti-Clogging

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

M
at

ch
in

g
R

at
e

Attack Rate

Request Matching Success Rate

Decentralized-Attack
Centralized-Attack

Decentralized-Clean
Centralized-Clean

Figure 19: Comparaison des paramètres (rejet, temps de séjour, probabilité de
correspondance) de performance lors d’une attaque de DdS

On remarque sur la figure 19 que les performances des systèmes non protégés se dégradent
deux fois plus vite que les autres, sauf pour le temps de séjour d’une requête dans le système
décentralisé qui, lui, reste inchangé à cause de la distribution des serveurs lors du
déchiffrement.
Le modèle d’attaque nous permet donc d’estimer de façon analytique les dégâts que peuvent
provoquer certaines attaques de DdS dirigées vers des systèmes non protégés. Ce modèle peut
donc être utilisé comme extension de chaînes de Markov cachées servant à analyser le trafic et
détecter les attaques de ce genre.

27

F. Discussion
Dans cette partie de la thèse nous avons proposé deux modèles analytiques pour évaluer
l’impact de l’utilisation des mécanismes de sécurité dans les protocoles de découverte de
services. Il s’agit à notre connaissance du premier modèle mathématique traitant cette
problématique. Les résultats des paramètres de performance obtenus grâce à ce modèle sont
très importants pour le choix de déploiement de l’une des architectures de découvertes
possibles, à savoir centralisée ou décentralisée. Il est possible d’évaluer rapidement des
paramètres comme la robustesse, l’efficacité, l’utilisation de la ressource, la disponibilité, la
taille des messages ou le taux de traitement des messages. Ce modèle de performance a
permis ensuite de développer un outil de modélisation des attaques de DdS permettant
d’étudier le comportement du système de découverte face à ce genre d’attaques.

Chapter VII. Contexte dans les systèmes de découverte
de services

Dans les systèmes ubiquitaires, l’utilisateur est entouré par un environnement intelligent dans
lequel évoluent des équipements intelligents (RFID, capteurs …) de façon complètement
transparente. Cet environnement est en évolution perpétuelle affectant de la même façon le
comportement des utilisateurs et des applications qui lui appartiennent. Ces éléments doivent
donc s’adapter dynamiquement à ces changements de façon à adapter leurs fonctionnalités et
maintenir un échange d’informations correctes. Cette évolution dépend de plusieurs éléments
dits contextuels. Le contexte joue donc un rôle primordial dans l’informatique diffuse.
L’utilisation des informations contextuelles dans la découverte de services permet d’affiner et
d’adapter la recherche dynamique des éléments ubiquitaires. Le contexte est lié à toute
information pouvant caractériser l’état dans lequel se trouve un élément. Les systèmes de
découverte de services peuvent utiliser le contexte afin de fournir une correspondance
requête/service plus précise. Les différentes approches d’intégration du contexte dans la
découverte de service se sont pour la plupart limitées à l’exploitation de l’information
contextuelle provenant des capteurs sans aucune réelle interprétation. Pour cette raison, nous
avons proposé une véritable sémantique contextuelle permettant de raisonner correctement sur
les informations fournies par les capteurs. Les informations contextuelles comme la
localisation sont récoltées des capteurs, puis interprétées et traitées afin d’en dériver des
informations plus riches et plus complexes telles que la proximité ou la distance. Nous avons
de plus intégré ces informations aux politiques de découvertes décrites précédemment, afin de
faire intervenir le changement de contexte dans la prise de décision lors de l’application de la
sécurité durant le processus de découverte de services.

A. Représentation du contexte
Les ontologies sont utilisées pour la représentation et la gestion d’une base de connaissance
ayant des propriétés taxonomiques communes. En plus de la classification et de la
catégorisation des objets ontologiques, il est possible d’établir des relations logiques entre les
différents éléments d’une même ontologie et entre les ontologies elles mêmes. Dans le
domaine contextuel, les ontologies sont utilisées afin de classifier les différents aspects
ontologiques selon leur nature (lieu, temps, température …). Il existe des langages dédiés aux
ontologies qui permettent de les représenter et les manipuler selon des règles bien spécifiques.
Le langage OWL (Web Ontology Language) permet de définir et représenter une ontologie
selon un schéma bien défini (RDS). Il existe une ontologie définissant le domaine contextuel
d’un utilisateur, décrite en langage OWL et appelée CoOL. CoOl propose quatre classes de
contexte : l’utilisateur (son activité, son rôle, ses préférences), l’environnement (température,

28

lieux, distance…), la plateforme (matériel ou logiciel) et le service. La figure 20 décrit
l’ontologie CoOl.

Figure 20: Ontologie CoOL

B. Raisonnement contextuel
Pour le raisonnement contextuel, nous distinguons deux approches complémentaires : le
raisonnement ontologique ou le raisonnement basé sur les règles d’inférences. Le
raisonnement ontologique a une portée assez limitée étant donné qu’elle se base sur des
relations binaires entres les éléments. Pour cette raison, nous avons choisi d’utiliser des règles
d’inférences via le moteur d’inférence Jess qui sera combiné à la description ontologique. La
figure 21 décrit l’interaction entre le moteur d’inférence et les ontologies contextuelles.

Figure 21: Raisonnement contextuel

C. Découverte de service contextuelle
Le module de raisonnement contextuel peut être rajouté à l’architecture de découverte
sécurisée de telle façon que le module de gestion des politiques de découverte prenne aussi en
charge les informations contextuelles. Dans ce cas, la politique pourra décrire des fonctions
ainsi que des données liées au contexte. Ainsi la localisation d’un utilisateur vis-à-vis de celle
d’un serveur mobile peut être considérée comme étant un critère de prise de décision lors du
traitement d’une requête. La figure 21 décrit un exemple de politique de sécurité limitant la
découverte des services médicaux à moins de 2000 mètres.

29

<Apply FunctionId="isCloseTo">
 <Apply FunctionId="findLocation">
 <SubjectAttributeDesignator
 DataType=GPSLocation AttributeId="SubjectLocation"/>
 </Apply>
<AttributeValue
 DataType="integer">2000 meters</AttributeValue>
 <Apply FunctionId="string-one-and-only">
 <SubjectAttributeDesignator
 DataType=string AttributeId="PatientID" />
 </Apply>
</Apply>

Figure 21: Politique de découverte contextuelle

Chapter VIII. Conclusion
Dans cette thèse nous nous sommes focalisés sur les problèmes liés à la sécurité et à la
performance des systèmes de découverte de services dans l’informatique diffuse. Nous avons
proposé plusieurs mécanismes et solutions afin de combler les failles et sécuriser ces systèmes
pour garantir un déploiement sûr et robuste.

Dans la première partie de ce travail de recherche nous avons présenté un état de l’art autour
des différents protocoles de découverte de services. Nous avons ensuite analysé le mode de
fonctionnement de ces protocoles afin d’y déceler les failles et les faiblesses de sécurité qui
pourraient être utilisées par des attaquant afin de compromettre le bon fonctionnement de la
découverte de services. A partir de cette analyse nous avons déduit un modèle de sécurité
proposant des consolidations au niveau du protocole afin de protéger la découverte contre
toutes les failles détectée dans le modèle d’attaque. La seconde partie de ce document est
dédiée aux solutions de sécurité que j’ai proposées tout au long de ma thèse pour protéger la
découverte de services dans les systèmes ubiquitaires. Nous avons proposé trois solutions : la
première, dédiée aux architectures locales décentralisées, suggère de chiffrer tous les
messages de découvertes selon une technique de chiffrement basée sur les attributs et
permettant de restreindre l’accès des messages uniquement aux éléments authentifiés. La
deuxième solution, consacrée aux architectures locales centralisée, propose d’utiliser des
politiques de sécurité dédiées à la découverte de services. Ces politiques sont interprétées et
appliquées par les registres centralises afin de garantir la sécurité en fonction des préférences
des utilisateurs. Enfin la troisième solution, dédiée aux architectures du type internet, repose
sur un système d’indexation pair à pair et un routage de messages anonyme.
Afin d’évaluer l’impact de l’utilisation de ces mécanismes de sécurité sur la performance des
systèmes de découverte de services nous avons proposé un modèle analytique d’évaluation de
performances. Ce modèle permettant d’évaluer plusieurs paramètres de performances du
système et de comparer les résultats obtenus avec chaque type d’architecture. Une extension
de ce model a permit d’aboutir à un modèle d’attaques permettant d’étudier l’impact des
attaques de DdS sur les systèmes de découverte.
La dernière partie de mes travaux concerne l’utilisation des informations contextuelles,
décrivant l’environnement des utilisateurs, dans les systèmes de découverte de services
sécurisée les rendant ainsi plus adaptables à l’environnement dynamique des applications.

30

31

Table of Contents

Abstract..5
Table of Contents ...31
List of Figures ..35
List of Tables ...37
List of Publications...38
Introduction..41

A. Pervasive and Ubiquitous Computing..42
B. Distributed Systems ..44
C. Service Oriented Architecture (SOA)..44
D. Web Services ..45
E. Peer to Peer Systems...46
F. Workflow Architecture ...46
G. Security requirement in Pervasive Systems ...46
H. Contributions ..48
I. Outline..49

Chapter I. Service Discovery ...51
A. Introduction ..51
B. Definition..51
C. Service Discovery Components Design...52
D. Service Discovery Protocols..53

1. Salutation..54
2. Service Location Protocol (SLP) ...54
3. Jini Lookup Service (JLS) ...55
4. UDDI..55
5. UPnP ..56
6. WS-Discovery...56
7. Service Discovery Protocol (SDP): Bluetooth ...57
8. Service Discovery in Ad-Hoc Networks..58

E. Matching and Semantics ...58
1. Matching...58
2. Ontology Based Service Discovery ...59

F. Context Awareness and Service Discovery..59
G. Threats and Security Requirements ...60

1. Threats and Attacks...60
2. Security Requirements for Service Discovery..64

H. Approaches Secure Service Discovery ..66
1. Access Control on the Service Side ...66
2. Registry-Based Architecture..66
3. Privacy Issues for the Service Discovery ...67
4. Registry-less Architecture ...67

Chapter II. Securing Decentralized Service Discovery...69
A. Introduction ..69
B. Technical Background ..69

1. Identity Based Encryption ...69
2. Attribute Based Encryption ...70
3. Attribute Based Algorithm ..71
4. Private Key Generation: Online Vs Offline ...71

C. Enabling Secure Service Discovery with Attribute Based Encryption........................72

32

1. Introduction ..72
2. Profiles and Attributes...72
3. Applying Attribute Based Encryption..73

D. Algorithms for Decentralized Secure Service Discovery System...............................75
E. Private Key Management ..76

1. Requesting Private Keys from an Online PKG ..76
2. Private Key Generation: Online Vs Offline ...77
3. Key Revocation...78

F. Use Case Scenarios ...78
G. Security Evaluation...80

1. Proof of Security ...80
2. Security Analysis ..82

H. Experimental Results ..83
I. Alternative Solutions...83

1. Group Encryption..83
2. Policy Based Cryptography...84

J. Conclusion..84
Chapter III. Securing Registry-Based Service Discovery ..86

A. Introduction ..86
B. Technical Background ..86

1. XACML..86
2. X.509 Attribute Certificate ..87

C. Service Discovery Policy ..87
1. Concept...87
2. Choosing a Service Discovery Policy ..88

D. Architecture for a Registry-Based Secure Service Discovery.....................................89
E. Algorithm for a Secure Centralized Service Discovery..90
F. Secure Service Discovery Middleware ..91

1. Related Work..91
2. Middleware Stack ...92

G. Security Evaluation...93
H. Measurement Results ..94
I. Conclusion..95

Chapter IV. Secure Service Discovery with Distributed Registries....................................97
A. Introduction ..97
B. Related Work..97
C. Technical Background ..98

1. Onion Routing ..99
2. Distributed Hash Tables (DHT)...100

D. Requirements ..101
E. A Scalable Distributed Registry-Based Model...101

1. Indexing and Data Retrieval ..101
2. Algorithms for inter-registry Indexing and Data Retrieval102

F. Securing the Access to Distributed Registries..103
1. Need for Anonymity ...103
2. Pairing-Based Onion Routing..104
3. Anonymizing Publish / Request Messages for the Service Discovery104

G. Architecture for a Secure Distributed Registry-Based Service Discovery106
H. Security Evaluation...107
I. Performance and Results ...108

33

1. Pairing-Based Onion Routing Costs ..108
2. Kademlia Request/Response Costs..108

J. Conclusion..109
Chapter V. A Performance Analysis of Secure Service Discovery Solutions..................111

A. Introduction ..111
B. Related Work..111

1. Matching Strategies...111
2. Fault Tolerance and Crash Robustness ..112
3. Publishing and Retrieval Time ..112

C. Modeling Secure Service Discovery..112
1. Centralized Discovery...112
2. Decentralized Discovery ...113
3. System Model Assumptions ..114

D. Markovian Model ...114
1. Markovian Centralized Model...114
2. Markovian decentralized Model ..116

E. Matching Probabilities ..117
F. Model Validation ..118

1. Java Simulator ..118
2. Rejection Rate...119
3. Server and Resource Usage Rate ...120

G. Performance Analysis ...122
1. System Setup ..122
2. Rejection Rate...123
3. Average Number of Users in the System...124
4. Service Time Duration of a Request in the System ..125
5. Summary...127

H. Evaluation of the Impact of DoS Attacks on System Performances128
1. Introduction ..128
2. Attack Model ..128
3. Impact of a DoS Attack for a Protected and non Protected System129
4. Summary...131

I. Conclusion..131
Chapter VI. Context Awareness in Service Discovery...133

A. Definition..133
1. Data Modeling ..133
2. Reasoning ...134
3. Quality of Context...134

B. Context Awareness and Security ...135
1. Context-Aware Access Control ...135
2. Privacy and Context Awareness ..136
3. Context-Aware Encryption..136

C. Context-Aware Security Policy ...136
1. Introduction to Security Policies..136
2. Security Policy and Context-Awareness ..137
3. Related Work..137
4. Context-Aware Security Policy Requirements ...139

D. Securing Contextual Information ..140
1. Confidentiality of context information...141
2. Integrity of context information:..141

34

3. Trustworthiness of Delivered Context Information ..141
E. Context-Aware Security Policy for the Service Discovery.......................................142

1. Context Information Representation ..142
2. Reasoning about Context Information ...143
3. Health Care Scenario...144
4. Performance and Results ...145

F. Conclusion..145
Chapter VII. Conclusion and Perspectives..148
Bibliography...151
Annex...159
1. API description ...159

1.1. General Features: ..159
1.2. Interface Definition ...160

1.2.1. Parameters...160
1.2.2. Methods ..160

2. UML specifications...161
2.1. External API ...161
2.2. Communication related data structures..161
2.3. Policy handling ...162
2.4. Protocol implementation ...163

3. WSDL interface specification ...166
4. Installation and usage guidelines...168

4.1. Installation ..168
4.2. Usage..169

35

List of Figures

Figure 1 :B2C E-Commerce Sales in Europe ..42
Figure 2 : Moore’s Laws for Hardware evolution..43
Figure 3 : SOAP Envelop ...46
Figure 4 Adressed scopes ...48
Figure 5 : Salutation architecture ..54
Figure 6 :UDDI Architecture ...55
Figure 7 : WS-Discovery Message Sequence ..57
Figure 8 : SDP Architecture ...57
Figure 9 : Top Level of the OWL-S Ontology ..59
Figure 10 : Client request disclosure ...61
Figure 11 :Client request interception ...61
Figure 12 :Client request modification or dropping...62
Figure 13 : Publishing services to fake registries...62
Figure 14 : Services deregistered by an unauthorized party ...63
Figure 15 : Identity Based Cryptosystem ..70
Figure 16 : Attribute Based Encryption Cryptosystem ..71
Figure 17 : Probe Message..73
Figure 18 : ProbeMatch Message..74
Figure 19 : Encrypted Probe Message...74
Figure 20 : Clear Probe Message ..75
Figure 21 : Encrypted Hello Message ...75
Figure 22 : Request Algorithm..76
Figure 23 : Response Algorithm ...76
Figure 24 : Private key request format ..77
Figure 25 :Private key response format ...77
Figure 26 : Discovering shopping service in insecure mode ..79
Figure 27 : Discovering restricted e-mail services...79
Figure 28 : Discovering restricted movie service with privacy protection..............................79
Figure 29 : PDP and PEP interaction in XACML ...87
Figure 30 : Communicating Discovery Policy...88
Figure 31 : Discovery Policy sample using XACML ..89
Figure 32 : Secure Registry-Based Architecture..89
Figure 33 : Request Algorithm..91
Figure 34 : Middleware Stack...93
Figure 35 : Onion Message Format ..99
Figure 36 : Onion Routing Virtual Circuit ..100
Figure 37 :DHT indexation...101
Figure 38 : Algorithm for node insertion...102
Figure 39 : Algorithm for Key insertion..103
Figure 40 : Pairing-based onion routing circuit ..104
Figure 41 : Publish message structure ...105
Figure 42 :Anonymizing Publish Messages ..105
Figure 43 : Anonymising Request Messages...106
Figure 44 : Architecture for a Secure Distributed Registry-Based Service Discovery106
Figure 45 : Lookup Latency for a Keyword in KAD...108
Figure 46 : Centralized Model ..112
Figure 47 : Decentralized Model...114

36

Figure 48 :Centralized Markov Chain Model ..115
Figure 49 : Decentralized Markov Chain Model ...116
Figure 50 : a – Encryption Markov chain; b - Decryption Markov chain117
Figure 51 : Rejection rate in a centralized architecture ..119
Figure 52 : Rejection rate in a decentralized architecture ..120
Figure 53 : Resource usage comparison in a centralized architecture121
Figure 54 : Resource usage comparison in a decentralized architecture...............................122
Figure 55 : Rejection rate curves for the four test scenarios ..124
Figure 56 : Average number of users in the system for the four test scenarios125
Figure 57 : Service time duration of a request in the system for the four tests scenarios127
Figure 58 : Attack model for a Centralized Architecture ...128
Figure 59: Attack Model for a Decentralized Architecture ..129
Figure 60 : Rejection rate..130
Figure 61: Total sojourn time of a request in the system ...130
Figure 62 : Request successful matching probabilities ..131
Figure 63 : Security Infrastructure ...138
Figure 64 : Organization of CoOL ...143
Figure 65 : Reasoning Module Architecture..143

37

List of Tables
Table 1 : Service discovery protocols Summary..57
Table 2 : Service discovery threat model ..64
Table 3 : measurement values ...83
Table 4 : measurement values ...94
Table 5 : Pairing-based onion routing time measurements ..108
Table 6: Values of the input variables used in the tests..122
Table 7 : Performance summary ..127
Table 8 : Measurement values...145

38

List of Publications

International Conferences
2008

[1] Trabelsi, Slim; Urvoy-Keller, Guillaume; Roudier, Yves; “A Performance Based
Approach To Selecting A Secure Service Discovery Architecture” in Proceedings of
Mobile and Wireless Networks Security workshop - MWNS 2008, joint with 7th IFIP
International Conference on Networking 2008.

[2] Trabelsi, Slim; Urvoy-Keller, Guillaume; Roudier, Yves; “A Markovian Performance
Model for Secure Service Discovery Systems” submitted The 15th International
Conference on Analytical and Stochastic Modeling Techniques and Applications

2007

[1] Trabelsi, Slim; Roudier, Yves; ”A Security Oriented Middleware for Service
Discovery” Programme-Initiative Réseaux Autonomes et Spontanés, 30 et 31 October
2007, Paris

[2] Trabelsi, Slim;Roudier, Yves; “Secure service publishing with untrusted registries
Securing service discovery”, SECRYPT 2007, International conference on Security
and Cryptography, July 28-31, 2007, Barcelona, Spain

[3] Trabelsi, Slim;Roudier, Yves;Pazzaglia, Jean-Christophe, “Discovery: Threats and
solutions”, SAR-SSI 2007, 2nd Conference on Security in Network Architectures and
Information Systems, 12-15 June 2007, Annecy, France

[4] Trabelsi, Slim;Gomez, Laurent;Roudier, Yves, “Context-aware security policy for the
service discovery”, SSNDS'07, 3rd IEEE International Symposium on Security in
Networks and Distributed Systems, May 21-23, 2007, Niagara Falls, Canada

2006

[1] Trabelsi, Slim;Pazzaglia, Jean-Christophe;Roudier, Yves, “Secure Web service
discovery: overcoming challenges of ubiquitous computing” ECOWS 2006, 4th IEEE
European Conference on Web Services, 4-6 December, 2006, Zurich, Switzerland.
This paper obtained the Best Paper Award

[2] Trabelsi, Slim;Pazzaglia, Jean-Christophe;Roudier, Yves, “Enabling secure discovery
in a pervasive environment”, SPC 2006, 3rd International Conference on Security in
Pervasive Computing, April 18 - 21, 2006, York, UK - also published in LNCS
Volume 3934 , pp 18-31

2005

[1] Baynat, Bruno; Boussetta, Khaled; Eisenmann, Pierre; Trabelsi, Slim, “Extended
Erlang-B law for performance evaluation of radio resources sharing in GSM/(E)GPRS
networks”, PIMRC 2005, 16th Annual IEEE International Symposium on Personal
Indoor and Mobile Radio Communications September 11 - 14, 2005, Berlin, Germany

39

Research Reports

[1] Trabelsi, Slim;Urvoy-Keller, Guillaume;Roudier, Yves “A Markovian performance
model for secure service discovery systems” Rapport de recherche RR-08-214

[2] Trabelsi, Slim; Roudier, Yves;Pazzaglia, Jean-Christophe, “Service discovery:
reviewing threats and security architectures” Rapport de recherche RR-07-197

[3] Trabelsi, Slim; Roudier, Yves; “Enabling secure discovery with attribute based
encryption” Rapport de recherche RR-06-164

Book Chapters

[1] Pazzaglia, Jean-Christophe;Wrona, Konrad;Laube, Annett;Montagut, Frédéric;Gomez,
Laurent;Roudier, Yves;Trabelsi, Slim; “Utilisation des informations contextuelles pour
assurer la sécurité d'un processus collaboratif distribué : un exemple dans l'e-Santé”,
Chapter 13 in "Informatique Diffuse", Observatoire Francais des Techniques
Avancees, Collection Arago 31, Paris, Mai 2007, ISBN: 2-906028-17-7 , pp 345-370

40

41

Introduction

In the second half of the 20th century the computing devices were used to help human beings
to process an incredible amount of information during short time periods. Computers were
also used to automate industrial work, like automatically driven factory machines in heavy
industries. The architectural design was primitive and restricted to a centralized deployment.
Single machines and centralized processing centres were in charge of centralized data and
information management and a single interface was offered to be accessed by high qualified
users in order to administer the system.
With the emergence of personal micro-computers and the World Wide Web technology, the
human / computer or computer / computer interaction has radically changed. Information
access has become decentralized (we can access a huge wealth of knowledge from any
computing machine); data processing is no longer restricted to big companies and industry;
interfaces with machines becomes accessible for all users without any qualification;
computers are not used only for work, but also for entertainment (Multimedia content, games,
shopping …). “Information technology penetrates and changes job descriptions, life styles,
and business relations” [HAN03]. The notion of a virtual world is no more limited to Science
Fiction books and movies, but has turned into a reality. Men can have a virtual identity used
in social network services, to apply for a job, or to make a business deal. Their personal web
page or Blog becomes part of their personality. They can have a parallel social life via their
computer, when they meet other people via chat-rooms, forums, web messengers. They can
sell, buy, contact, create, vote, communicate … or live a double-life like in Second Life1.
E-Business takes advantage of this new life style, improving efficiency and innovation for the
market rules. A home can easily be changed into a shopping market, clients can buy from
their office, and employees can remotely access their office desktop without leaving their
homes. The evolution of this new business is extremely fast (about 25 % growth rate per year)
as shown in a recent study led by eMarketer about the evolution of the B2C E-Business in
Europe between 2006 and 2007 and predicting that the market will treble in size until 2011
(see Figure 1).

1 http://secondlife.com/

42

Figure 1 :B2C E-Commerce Sales in Europe2

Besides the technological evolution, the decentralized and distributed architecture design
played an important role in this revolution. The fact that various computing elements were
deployed all over the world and could collaborate with each other, expanding space
boundaries, raised the concept of tightly-coupled shared memory and multiprocessors
providing means to share resources, data, and information, as is the case of printers, scanners,
services. Peer to Peer architecture introduced a new concept of file sharing in which every
user can exchange data with other users without any intermediation. This concept is also used
for communication, telecommunications and distributed storage.

A. Pervasive and Ubiquitous Computing

According to Weiser “Not only do books, magazines and newspapers convey written
information, but so do street signs, billboards, shop signs and even graffiti. Candy wrappers
are covered in writing. The constant background presence of these products of "literacy
technology" does not require active attention, but the information to be conveyed is ready for
use at a glance.” [WEI91]. In other words, all the environmental elements can be assimilated to
readable information and can be processed by a computing entity. The computer becomes
omnipresent and plays an important part of our everyday life, becoming accessible to
everyone, everywhere, at any time. The main idea of the pervasive computing is that the
environment surrounding the user is a huge computing system composed of millions of small
devices working together. Pervasive computing has four important characteristics:

Decentralization: Huge computing systems are fragmented into a multitude of small
devices processing the same data. Each of these devices is assigned a specific task
and the end-result of these tasks is aggregated into a consistant result exploitable by
the users or others machines. Decentralization improves the performance usage of the
resources (load balancing, charge distribution, delegations …), availability and fault
resistance (fault tolerance, recovering and replacing broken elements, etc.), the
flexibility while accessing resources (interfaces are available everywhere).
Diversity: The hardware evolution follows Moore’s law formulations; the number of
transistors integrated per circuit is rising, the cost per transistor is decreasing,
computer consumption is decreasing, disk storage content is encasing for a
decreasing volume (Figure 2)

2 http://www.emarketer.com/

43

Figure 2 : Moore’s Laws for Hardware evolution
This evolution makes computing systems small and cheap enough to be embedded,
distributed, and deployed everywhere in space, in a huge quantity. Owning such
equipments becomes accessible to all people independently of their budget (a personal
PC is sold less than $200). For these reasons, users have a large choice to use
pervasive devices in any circumstances. For example, a photographer can store his
digital pictures in the local disk of his photograph, in a smart card, in a SD or XD disk,
in a USB key, in his phone memory, in a CD, in a computer, in a remote storage
container via the network, etc. Recent research is working on a collaborative P2P
storage solution, whereby the user can store fragments of his data into his
neighborhood disks. Access to the same data can be done via different equipment
(PDA, Smart-Phones, laptops …) depending on the context of the user (home, office,
travel, car …).
Mobility: Wireless technology provided new network architectures with various
access means: Infrared, Wifi, Bluetooth, GSM, GPRS, UMTS … The user can be
permanently connected to a network (infrastructure of Ad-Hoc) via these different
access media; he can move without interrupting the execution of an online service.
The handover function facilitates a permanent connection while ensuring a transition
between different wireless access media without interrupting the traffic. By means of
a hybrid UMTS/Wifi card, the connection is automatically switched between these
two networks depending on the connectivity (or QoS). Location techniques are also
developed in order to retrieve equipment and services during the exploration of
unknown environments.

Flexibility: Ubiquitous applications are permanently communicating, though, initially,
applications were developed under various technologies using different languages and
running over different platforms an OS. In pervasive systems, applications are
heterogeneous and completely independent; this is why developers provided tools and
protocols to insure these interactions via user interfaces (user / machine) and
middleware (machine / machine). The interface is a human understandable portal used
by the user to interact with the application. The middleware is a mediation layer
between different software components, which provides interoperability between
those components. These interfaces are useful when an entity (human or software)
wants to interact with a new unknown pervasive environment (set of applications)
without any prior knowledge of the technology deployed and without installing

44

locally a foreign code imported from this environment. It is also useful to support the
software evolution; when an application is updated or changed, other components
must adapt themselves automatically to this change.

B. Distributed Systems
Tanenbaum [TAN02] defines the distributed systems as “A collection of independent computers
that appears to its users as a single coherent system”. In distributed systems, machines are
usually autonomous though interconnected. Users can access these hosts via a single interface
in order to interact with these machines. Users do not have any information about the
machines with which they are interacting. The group of distributed systems is perceived as a
black box by the human user. The main objectives of design in distributed systems are:

Connecting resources: interconnection between machines and users via a network,
and providing protocols to facilitate communication between different actors of the
system.
Transparency: as mentioned before, the system should be perceived as a black box
by humans. Many parameters are hidden from the user, like data location and access
means, the machine location, prospective replications, failure treatments, load
balancing, concurrency with other users.
Scalability: To avoid bottleneck problems and provide a solution capable to serve a
huge number of requests at the same time, distributed systems can share the amount of
tasks in order to balance the load of the system and permits a scalable solution.

C. Service Oriented Architecture (SOA)

The Service Oriented Architecture is one of the concrete technical deployment models of the
distributed system paradigm combined with the object oriented programming concept, in the
sense that entities are assimilated to remotely accessible distributed objects. The machines and
applications in the distributed systems are subsumed by the notion of services (software agent
abstraction). SOA was originally (in particular as envisioned in Jini [JIN]) intended to enable
access to applications running on nearby devices in a dynamic fashion. This programming
style promotes the use of loosely coupled and highly interoperable applications to overstep the
limitations of traditional distributed component solutions (like CORBA [COR]). A Service, the
building block of SOA solutions, encapsulates a set of related business functions within a
container and gives access to these functions through standardized interfaces. SOA introduces
a loosely coupled interaction model which serves as the basis to define protocols and
procedures that enable an efficient interconnection between different applicative systems or
software components. It consists mainly of services, which are applicative elements providing
elaborate functions (database access, data processing, business logic…), and of clients that are
requesting such services. These two types of players only rely on a standardized interface to
communicate but do not necessarily share the same implementation platforms (programming
language or OS). IBM’s definition of services reads as follows: “A service in SOA is an
application function packaged as a reusable component for use in a business process. It
either provides information or facilitates a change to business data from one valid and
consistent state to another”3. In this vision, the service is deployed to provide business
functions that could be used by some application in order to support a business process.

3 http://www.ibm.com/developerworks/library/ws-soaintro.html

45

The Client / Server relationship is central in SOA, where all the requesters (human or
machines) are considered as clients, and all information providers are considered as servers
offering services. Different interfaces are used to communicate, collaborate or to be composed
independently of the technology used to develop services. In SOA, one usually distinguishes
four entities:

Service: software entity accessible via published interfaces
Service provider (Server): entity that implements and deploys one or more services.
Service requestor (Client): entity that needs to access a service (it could be a human
user, or an application, or another service)
Service broker (Registry, Repository): an entity playing the role of yellow pages in
which servers can publish their services and clients can look for services. Services are
published in order to be visible and accessible and Clients can use specific methods to
retrieve these services.

D. Web Services
Currently, the SOA paradigm is largely promoted by the spread of Web Service technology.
This technology proposes a neutral language and environmental programming model that
provides flexible and adaptable interfaces. These interfaces describe a series of methods used
to access services via an XML based descriptions and messages. Web Services overstep the
limitations of traditional distributed component solutions (e.g., Jini [JIN], CORBA [COR]…) in
that they increase distributed software dynamicity and flexibility thanks to the use of XML-
based interfaces. Every computing entity able to process XML can generate the appropriate
method stubs in order to access services. The XML language used to define the interface
describing a Web Service is called Web Services Description Language (WSDL) [WSDL].
This language defines the interaction with the service, where it is located, its capabilities are
(what the service can do), how to invoke it and input and output parameters. Usually, WSDL
files describing services are published in repositories in order to be reached by prospective
users.
The message exchange layer in Web Services technology is also based on an XML envelope
called SOAP. SOAP is a simple and extensible protocols that allows applications to exchange
XML coded messages over HTTP transport layer. Compared to other messages formats,
SOAP provides a simple structure to incorporate useful information and meta-data that can be
processed by applications. The SOAP envelope of a message has two parts (Figure 3):

SOAP Header: It is an optional element in which management or security
information is specified. It provides extra information about the application or about
eventual preferences related to the message. For example it could contain encryption
or authentication elements used to protect messages.
SOAP Body: it is a mandatory element (payload) containing essential endpoint
information about the message exchange. It contains information about namespaces,
or a description of the remote methods used to access services.

46

Figure 3 : SOAP Envelop

E. Peer to Peer Systems
The principle of Peer to Peer (P2P) systems is the data exchange between users without any
mediation or any centralised entity to handle the data exchange. P2P architecture is actually
one of the most scalable architectures developed in past years. This system relies on many
distributed systems concepts like load balancing, redundancy, Distributed Hash Tables (DHT)
for routing, overlay networks. Today, P2P networks are composed of millions of users (or
hosts) called nodes, scattered all over the world and linked by the Internet. Users are supposed
to permanently collaborate by sharing their resources and collaborating without any interest
(actually protocols are tending to favour the user that is collaborating). Nodes are not
necessary reliable, and there is not impact on the system if one of these nodes fails or
disconnect. There are two main techniques to retrieve data: the first consists in sending
requests to a random numbers of neighbour nodes; these nodes propagate the request with the
same technique until obtaining a reference to the node keeping the data. It is called
unstructured P2P system used notably in Gnutella [GNU]. The second technique, called
structured technique, is based on hash tables maintained locally in every node. Data and nodes
are identified by hash values that give an indication about the location of the peers holding the
data. These hash values are stored in the hash tables. This system is called Distributed Hash
Tables (DHT) that is a look-up algorithm in a structured P2P system that uniquely maps a key
k to a single peer p, and defines an overlay network substrate (X;U) through which queries
for k are routed towards p.[GAR04].

F. Workflow Architecture
Pervasive applications in some cases could be assimilated to participants in a business process
collaborating according to specific business rules, defined to regulate the steps of a
transactional process. Software entities called workflows are in charge of this regulation. The
workflow is the automated version of a collaborative business process, where written
procedures, tasks and interaction rules become managed and controlled by a computer. The
workflow management coalition defines the automated workflow as “Workflow is concerned
with the automation of procedures where documents, information or tasks are passed between
participants according to a defined set of rules to achieve, or contribute to, an overall
business goal”

G. Security requirement in Pervasive Systems

47

In pervasive computing, services are more open, accessible, distributed, and close to the user.
This proximity introduces new threats and vulnerabilities for the systems. Before the
emergence of ubiquitous systems, services were protected as citadels isolated from the foreign
populations and accessible via small bridges secured by guards. Now, systems and services
are assimilated to supermarkets open for everybody, in which merchandise is directly
accessible to clients in a self-service way. Of course, such displayed goods are vulnerable and
can be easily stolen, but new sophisticated guard systems appeared to protect the
merchandise.
At present, the Internet is a market place with billions of costumers and e-business companies
generating and exchanging trillions of dollars all over the world. It is evident that old security
techniques, like access control lists or static firewalls, are no more sufficient to protect this
business; this is why new techniques were developed to adapt the security requirements to the
environment, to the application, to content of the exchanged data, etc …
These techniques usually concern fundamental security principles, like:

Authentication: used to identify and authenticate an entity in order to verify its source
or to estimate the trust level that it can be granted. The entity that would be
authenticated has to provide a verifiable proof of its identity, like a password, a
certified token or personal biometric information.
Confidentiality: it concerns the protection of resources or information from
unauthorized access. The main objective is to keep sensitive information secret. These
information must be known only by a restricted number of users that share some
specificities. For example, military secret documents must be accessible only to army
officers of the same country. Confidentiality is not limited to data access protection,
but it may also aim at hiding the very existence of the data. In fact, knowing that a
data exists could be considered as a threat to the data itself and to the system. One well
known mechanism used to preserve confidentiality is cryptography, which scrambles
data and makes it unreadable or invisible for unauthorised entities.
Integrity: integrity refers to trustworthiness regarding data or resources. It is usually
phrased in terms of preventing improper or unauthorized change [BIS03]. Checking the
integrity of a data is verifying if the information contained has not changed or been
corrupted, and also verifying what the source of this data is. Integrity is used to
prevent and detect any modification introduced on the content of a data.
Availability: it is usually related to the reliability of the system, in the sense that a
desired resource must remain available for use by providing a mechanism to keep the
system running normally in any case. The attack that corrupts availability is called a
Denial of Service (DoS) attack.
Privacy: Westin defines privacy as “the claim of individuals, groups and institutions
to determine for themselves, when, how and to what extent information about them is
communicated to the others” [WES87]. During a message exchange, users and
computing entities can exchange private data. The data must be protected against
undue interference, illegal use and diffusion of such information. Some techniques
were developed to safeguard personal privacy and limit the publication of identifiable
data [FIS01] by providing anonymity, pseudonymity, unlinkability, unobservability,
confidentiality, integrity and availability.
Access Control: it is a restriction to access or performance of an action on some
resources (objects) by the requester (subject) or the group to which it belongs. The
subject has a collection of rights or authorizations that must be checked before access
is granted to the requested resource. This restriction is applied on actions (read, write,
modification, delete…) that can be performed by the subject on the object.

48

H. Contributions
In this thesis report we study orchestration mechanisms that enable the interconnection and
the cooperation between pervasive systems described above. We particularly focus on the
discovery and location mechanisms that are essential for any entity to join a pervasive system
and exploit its functionalities in a correct manner. We first analyze the security problems and
the potential threats related to these mechanisms that usually follow the security requirements
related to pervasive systems in general. This security analysis provides a list of threats and the
possible attacks that can be built against the data and resources of discovery mechanisms in
pervasive systems.
Existing security solutions were proposed in the literature to overcome some of these security
lacks but none of them take into account the new requirements imposed by pervasive
environments in which users are mobile and application are flexible and dynamic. Privacy
issues and user protection was also neglected in these studies.
For these reasons we propose in this thesis different security solutions, adapted to different
network configurations and architectures, relying on contextual information related to the
ambient environment then we proposed a performance evaluation of the overhead generated
by the security techniques used in these solutions. Figure 4 illustrates the scopes of problems
addressed in this thesis:

Security: different security mechanisms like cryptography, security policy,
anonymizing techniques are used and adapted to the discovery environment. These
security solutions are deployed for centralized and decentralized architectures in local
and global networks.
Context Awareness: contextual information is added to the discovery mechanisms in
order to add precision and flexibility in the security solutions.
Performance: the impact and the costs related the security techniques used in our
solutions are studied in order to evaluate the feasibility of a real deployment of such
secure solutions. A dimensioning mathematical tool is proposed to study all the
performance parameters of secure service discovery solutions.

Figure 4 Adressed scopes

49

I. Outline
In the first chapter of this thesis we introduce and define the notion of service discovery
technique in terms of design, protocol, and deployment. Then we present a threat model
analysis describing lacks and possible attack observed on most of the existing protocols. From
this threat model we derived the security requirements of service discovery mechanism.
The second part of the thesis covers three chapters, each one presenting a security solution
proposed to protect and secure service discovery in pervasive systems; in the second chapter
of the thesis we present a secure solution dedicated to decentralized architectures and using an
attribute based encryption scheme to restrict the access to discovery messages. In the third
chapter we describe another solution dedicated to centralized architectures that makes use of
a trusted registry in charge of enforcing discovery policies. And the fourth chapter we
propose a hybrid solution dedicated to large-scale deployments and relying on a peer to peer
indexing system accessible through an anonymizing routing system.
The third part of this thesis is dedicated to the performance analysis of secure service
discovery systems. For this performance study, detailed in chapter 5, we proposed a new
mathematical performance model to evaluate the robustness, availability, efficiency, of our
service discovery system during its normal execution and under a denial of service attack.
The last part of this document is dedicated to context awareness. In the chapter 6 we
demonstrate hwo contextual information adds more accuracy and flexibility in security
mechanisms dedicated to service discovery.

50

51

Chapter I. Service Discovery

A. Introduction
The Service Oriented Architecture (SOA) paradigm was initially developed in the Jini [JIN]
framework to address the specific requirements of pervasive computing software. In
particular, SOA was originally intended to enable access to applications running on nearby
devices in a dynamic fashion. This programming style promotes the use of loosely coupled
and highly interoperable applications to overstep the limitations of traditional distributed
component solutions (CORBA [COR], DCOM [DCO]). A Service, the building block of SOA
solutions, is intended to encapsulate a set of related business functions within a container and
enable access to these functions through standardized interfaces. In pervasive computing,
context-awareness would typically be enabled through the access to a set of such services.
Orchestration techniques were developed in order to deploy a set of basic services into a more
complex service. Even though static orchestration is frequently used, for example in Web
Service based architectures, we contend that the quintessence of the SOA style, especially
when used for pervasive computing software, lies in the dynamic composition of services.
Such a dynamic composition obviously comes at a cost: being able to locate previously
unknown services becomes mandatory.
Discovery therefore becomes of strategic importance in the SOA stack and this importance is
growing proportionally with the dynamic aspect of the environment: while a typical intranet
implementation may rely on a basic discovery strategy (e.g. naming service in CORBA) or
may even not strictly require it (e.g. predefined set of known services), Internet-wide and,
above all, pervasive applications face a set of challenges with respect to discovery. In such
applications, the discovery strategy should cope with the heterogeneity of services and
platforms from a technical perspective (e.g. take into account bandwidth, energy savings …),
with the complex semantics of service descriptions (e.g. resorting to terminology- or
ontology-based descriptions), with the scalability of the solution, and with the requirements
for security and trust regarding the services discovered.

B. Definition
Communication devices in fixed networks like local LANs are at best traditionally assigned a
static network configuration, at worst use DHCP to dynamically configure their IP address.

52

The DNS protocol is quite sufficient to find a host in such networks using its IP address or its
domain name. With the emergence of new dynamic networks and services where devices are
pervasive, the discovery techniques are being adapted in order to find mobile services rather
than devices. Architectures in which deployed services are no more static and no more relying
on a fixed topology. Wireless technology introduced a new dynamicity parameter for the
service location; mobile services retrieval is no more relying on IP addresses routing tables
(like in Bluetooth), but on other parameters and identifiers. This adaptation technique called
service discovery addresses how to combine services as a logical layer in such systems,
together with the specification of environmental constraints.
The main players of the discovery phase are: the service requester (client), which can be a
human user or software and the service provider (server), which represents the entity
providing one or multiple services that can be accessed by the clients. Two main discovery
architectures can be adopted according to the network topology and the capacities of the
computing devices:

Centralized Discovery (registry-based): Centralized discovery approaches rely on a
registry which plays the role of yellow pages, and which clients can refer to. The
registry (or repository) is a database containing descriptions and references to some
available services. Servers publish their services to a registry, while clients discover
published services by requesting a registry. A service advertises its capabilities (a set
of attributes describing the service) to the registry, which will store them for a certain
amount of time. A client contacts the registry to find a service by sending a request
containing service preferences, which the registry tries to match with the most suitable
provider found from the stored advertisements. In that approach, registries have to be
considered by the services and the clients as a third trusted party.
Decentralized Discovery: Limiting service discovery to registry supported architecture
that many standards SOA based services have adopted in their implementations is
reductive in terms of network architecture and equipments (e.g. need to deploy
specific equipments like registries). An alternative approach to service discovery
exists that relies on peer-to-peer advertisements between services and clients (point-to-
point and point-to-multipoint). In such an approach, clients discover services by
broadcasting their requests to their neighbourhood, and if one of the neighbours
features the requested service, it will directly respond; the neighbour may otherwise
forward a request to its own neighbourhood. This mechanism is used for instance by
the P2P-based Web Service Discovery system (PWSD) [GAR04-2], which relies on the
Chord P2P protocol to perform the service discovery over the internet.

C. Service Discovery Components Design
Service discovery is not limited to a matching procedure but involves a multitude of
components that interact together to provide a coherent and efficient discovery service. These
components can be deployed according to various design approaches depending on the
environment and the technologies deployed by the system administrator. Zhu et al [ZHU05]
provide a classification of these different components designs:

Service and attribute naming: the description contained in the service profiles
published by the servers must specify a service name used semantically to characterize
the published service (like printer, mail, bank, library etc …). Clients can use these
names (also represented as a set of attributes) in their discovery queries in order to
reach a particular service. These service attribute names can be expressed according to
an infinite number of structures without limiting boundaries or particular description

53

logic; for this reason most of the discovery protocols propose to use template
structures to define a naming format. Some other protocols offer predefined
descriptions (Universal Unique Identifiers UUID) for some popular services. These
solutions remain static and limited to well known identifiers and not really adapted to
pervasive commuting systems.
Communication method and diffusion protocols: three communication methods can
be used to exchange discovery messages: the unicast based method is easy to use and
to manage, but limited to point to point between client – registry, client – service, or
service – registry communication. Such a communication method requires a prior
knowledge about the network addresses of the registries (fixed manually). The second
method is Multicast-based and is used to avoid the manual configurations of unicast
addresses by specifying a single multicast address to initiate the discovery (by
multicasting publish or request messages) before switch to unicast. The last
communication method is broadcast-based and has the same goal as multicast that
frequently used in wireless ad-hoc networks. Compared with the multicast-based
method, the broadcast aims of overloading the transmission links due to the large
amount of packets used to disseminate the information.
Query and registration methods: in the announcement-based approach, clients and
registries listen to a channel (multicast most of the time) and catch the announcements
sent by the servers publishing their services. In this case, clients and registries can
cache published information in order to access it faster when needed. In the query-
based approach, clients (sometimes registries) directly query the available servers (and
the registries holding information about services) without the need for any
announcement.
Service State: published services have a maximal duration time while the services are
not expired called lifetime. This information allows clients and registries to remove
information about expired services. In this condition the discovery system has a soft-
state. Sometimes, registries contact the concerned services to renew their
announcement. Some other configurations, called hard-state, do not take into account
lifetime and keep service information until the concerned sever unpublishes its
services.
Service selection: after requesting services, a client receives a list of matched services;
in this case the client is able to manually select his preferred services (more adapted
for human users). If the client is automated, the selection mode can be employed to
mechanically select the service verifying some specific criteria.
Service invocation: after selecting a service, clients can access it by remotely invoking
the functions provided by the server. This invocation step involves a service network
address, a communication mechanism and a specific application method. The network
addressing element is responsible for locating the service end point in a network using
an address resolution mechanism. The communication element is responsible for
defining which communication mechanism is suitable for the service invocation, like
RPC, SOAP/HTTP, TCP, UDP. Finally the invocation methods that are described via
the interfaces provided by the services and described using description files like
WSDL files. These description files are interpreted by the client in order to generate
locally the appropriate methods used to interact with the service.

D. Service Discovery Protocols

 The research community and industry elaborated numerous service discovery solutions and
protocols initially dedicated to a particular context (frameworks, application, platform, OS,

54

network topology, programming language etc.), then adapted to generic applications and
deployable for any context.
In this section, most of the well known discovery standards and protocols are described and
compared.

1. Salutation
The Salutation discovery architecture is the product of an open source industrial consortium
called Salutation Consortium (dissolved since June 2005). This solution provides a complete
architecture (see Figure 5) dedicated to service discovery including standardized methods for
applications and some particular entities called Salutation Managers (SLM). The SLM plays
the role of a service broker in which servers could register their services capabilities and
clients can ask for a service using a platform independent interface called SLM-API. One
SLM is usually affected to a single network entity (LAN, WLAN, or sub-domain) but they are
also reachable from other networks through a Remote Procedure Call (RPC). In order to
harmonize the transport layers between different network entities, a Transport Manager ™
can be coupled with SLM to form a SLM-TI that offers the brokering capabilities of an SLM
and the transport adaptation function of a TI. The responsibility of the SLM is not limited to
service discovery but it also intermediates messaging by crating virtual pipes between client
and services using the transport manager (TM). This functionality is called Service Session.

Figure 5 : Salutation architecture

2. Service Location Protocol (SLP)
Developed by an IETF working group, SLP provides a freely available framework allowing
network application to discover networked services in enterprise TCP/IP networks. It provides
a dynamic configuration mechanism for applications. Applications are related to clients
looking for servers available in the local enterprise network. Centralized repositories are used
for service publishing and client request matching.
The SLP architecture has three main components:

The User Agent (UA) representing the clients that are looking for a service
The Service agent (SA) that advertise the location and the characteristics of a service
(service Type)
The Directory Agent (DA) representing the centralized repository in charge of
collecting information provided by the SA, caching service location and attribute
information, and matching Service Type with the requests coming form the UA
(SrvRqst).

UAs are able to directly send their request to SAs by multicasting a SrvRqst to the available
SAs. If an SA is concerned by this request, it replies by a response message (SrvRply) to the
UA via unicast. In order to use the DA to retrieve available SAs, the UA must discover the
existence of the DA using one of the three DA discovery methods (static, active, and passive).

55

3. Jini Lookup Service (JLS)
In contrast with the previous discovery architectures, Jini defines a Java-based discovery
architecture with a programming model exclusively exploitable through Java technology.
Each Jini device is assumed to embed a Java Virtual Machine (JVM) running on it. In order to
facilitate the access to the services, Jini relies on the Java Remote Method Invocation (RMI) in
order to export device drivers to client applications.
The architecture is based on a central component called the Jini Lookup Service (JLS) that
plays the role of a registry in which service providers can register their services by sending a
join message. A timeout period called lease is applied to service registrations in order to
eliminate the unavailable services that are still in the JLS. Clients can directly query the JLS
about the available services. After selecting a service, the client is able to access it through an
additional piece of code (driver) sent by the service provider during the registration step and
retrieved from the JLS.

4. UDDI
The Universal Description Discovery and Interrogation (UDDI) specification is a pure
registry based service discovery mechanism (see Figure 6) that provides elaborated
classification and representation of metadata related to web services profiles. Conceptually, a
service provider can publish three types of information into a UDDI registry:

White pages: General contact information about a company providing the
service, including business name, address, contact information, and unique
identifiers.
Yellow pages: Information describing a service using specific taxonomies and
categorisation. This information allows others to discover your web service
based upon its categorization (such as in the manufacturing or car sales
business).
Green pages: Technical information that describes the behaviour of the
service and how to access it. This includes pointers to the grouping information
of web services and where the web services are located.

Figure 6 :UDDI Architecture [TSA03]

Version 3 of UDDI provides a new architecture design for the registries consisting in a
classification depending on the sensitivity of the registry. We distinguish in this new
architecture three categories of registries: the public, the private, and the shared repositories.
In order to restrict the usage of the private and the shared registries, UDDI version 3 offers the
possibility to use digital signatures. These additional functionalities are integrated to prevent
fake service registration. Finally, only Web Services with signed digital tokens will be
selected.

56

5. UPnP
Universal Plug and Play is a set of protocols issued by an industrial consortium led by
Microsoft aiming at the interconnection, auto-configuration, advertisements, and discovery
between clients, services, and devices belonging to the same network domain. Device and
service profiles are represented in an XML format that facilitates the auto-configuration of the
new devices joining the network. Unlike Jini and SLP, UPnP does not support registries;
communication between devices and clients is always direct. This restricts UPnP deployement
to small environments like home network systems.
UPnP offers a set of complementary functionalities: the first one is the addressing support via
the Auto-IP protocol that automatically assigns IP addresses to the new entities joining the
network. Its second functionality is the discovery by providing a basic protocol used to
inquire about some information related to the requested devices. After getting preliminary
information containing a URL (pointing to a XML-based description file), the third
functionality will resolve this URL in order to download the XML file. The XML description
file is then interpreted in order to exploit the control functions in charge of the interactions
with the requested service. The control interaction will be transmitted via HTTP and wrapped
using SOAP. The last functionality offered by UPnP and supported by GENA (General Event
Notification Architecture) is related to the event notification used to send notification about
the state variable changes of the system.

6. WS-Discovery
Web Services Dynamic Discovery (WS-Discovery) is a technical specification that defines a
multicast discovery protocol to locate services connected to a network. Each service provider
announces itself (by sending a ”Hello” message) through the multicast group to display the
services that it can provide. Each user looking for a service propagates its query (by sending a
”Probe” message) through the multicast to which only concerned service must make a unicast
response (by sending a ”Probe Match” message). The default matching attributes are the Type
and the Scope of the service. Obviously, other attributes and metadata information can also be
added.
Because the WS-Discovery protocol is based on multicast, the discovery scope may be
restricted to local subnets. For this reason and in order to scale to a large number of endpoints,
the specification defines multicast suppression behaviour if a discovery proxy (DP) is
available on the network. By listening announcements, clients detect discovery proxies and
switch to use a discovery proxy-based protocol. However, if a discovery proxy is
unresponsive, clients revert to the decentralized protocol. These discovery proxies can
communicate with each other in order to extend the discovery scope to the others subnets.
This feature enables smooth migration from carefully managed to ad hoc networks. The WS-
Discovery specification does not suggests securing the discovery process but it recommends
the usage of a compact signature format to secure the exchanged messages. In this case, each
entity has the possibility to verify the signature of the message sender. This signature protects
from message modifications, replay, spoofing, etc. Signature verification is obviously
insufficient to protect users (servers and clients) since a valid signature only assesses that the
message content has not been altered without presuming of the level of trust of the issuer.
Moreover, the content of the message is not confidential and there is no guarantee against the
disclosure of private information. For example, a malicious server can publish fake services
with a valid signature or listen to request messages in order to collect valuable information.

57

Figure 7 : WS-Discovery Message Sequence

7. Service Discovery Protocol (SDP): Bluetooth
SDP is a simple decentralized discovery protocol with minimal requirements for the transport
layer (in case of application with Bluetooth, L2CAP is used as transport protocol). The
request/response messages are called protocol data units (PDU) and are directly exchanged
between clients and servers without the help of registries (see Figure 8). Each server
maintains a service attribute record containing the following information:
ServiceRecordHandle, ServiceClassIDList, ServiceRecordState, ServiceID,
ProtocolDescriptionList, BrowseGroupList, LanguageBaseAttributeIDList,
ServiceInfoTimeToLive, ServiceAvaliability, BluetoothProfileDescriptorList,
DocumentationURL, ClientExecutibleURL, IconURL, ServiceName, ServiceDescription,
ProviderName. These attributes are matched with the Client’s request in order to send back a
PDU response message containing the unique identifier of the requested services (UUDI) or
an SDP_ErrorResponse in case of wrong matching. A UUID is a universally unique identifier
that can be used by a client to retrieve and access the corresponding service.

Figure 8 : SDP Architecture [GRA00]

Type Communication method
Centralized Decentralized Unicast Multicast Broadcast

SLP Yes Yes No Yes No
UPnP No Yes No Yes No
UDDI Yes No Yes No No
Jini Yes Yes Yes Yes No
SDP Bluetooth No Yes No No Yes
WS-Discovery Yes Yes Yes Yes No
Salutation Yes No Yes No No

Table 1 : Service discovery protocols Summary

58

8. Service Discovery in Ad-Hoc Networks
The service discovery standards described above are not really adapted to Mobile Ad-hoc
NETworks (MANET) because they systematically rely on a stable and fixed infrastructure
that permits a traditional routing of discovery messages based on fixed ip addresses and quasi
static routing tables. In Ad-hoc networks, users and nodes are systematically moving and the
routing paths are permanently changing. For this reason service discovery is not limited to a
simple match making but it concerns the service location. Service discovery in MANETs
raises two crucial questions: does the service exists and how can we locate it?
[SAI05] propose a MANET architecture in which nodes are deployed around a directory
backbone covering a neighborhood located within a fixed number of hops according to
population density of the system. In order to simplify the indexation and retrieval in the
directories Bloom filters [BLO70] and membership tests are used to locate the directories
holding requested service descriptions. Compared to other existing MANET discovery
protocols that rely on broadcast flooding this solution be more scalable and tends to minimize
the traffic through the network with the restriction to selected trusted nodes. These play the
role of directories that is not evident for a pure Ad-hoc network.
[YAN06] tries to enhance the efficiency of the post-query discovery protocol (relying on a
multicast query and a unicast reply) by introducing the multicast reply with a response
caching. All the nodes are supposed to cache the responses of a multicast request in order to
decrease the total number of requests and also to decrease the complexity of the messages
from O(N²) to O(N). In order to ensure a reliable multicast routing, edge nodes are selected to
forward messages to all neighbors. This solution makes two strong assumptions that limit the
efficiency: first the lifetime of a service description is assumed to be long enough to be
cached and reused. The second, the number of nodes must be limited to avoid overhead of the
traffic because of systematic multicasting.

E. Matching and Semantics

1. Matching
Matching plays an essential role in the service discovery application in order to map requested
elements (contained in a client query) and published elements (contained in a published
service profile). In order to establish a degree of relationship between these two elements, we
use mapping expressions. Mapping expressions are initially specified to find simple
correspondence between two schema elements that could be more or less complicated. We
noticed in the previous state of the art, related to some of the most popular service discovery
mechanisms, that an important evolution occurred on the service description media. SLP, for
instance, used textual description to publish service profiles and matchmaking process
between client’s request and service profiles, is limited to a string comparison. This solution
is too restrictive and not enough dynamic for pervasive application and new generation
services like web services (using WSDL representation). More recent discovery technologies
like WS-Discovery or UDDI adopted more flexible media like the XML format to describe
services by offering a better meta-data representation. Currently, semantic web technology is
enhancing SOA by introducing new formalisms based on the ontological representation of the
service description. This new representation enables a real semantic based discovery that
provides more dynamicity to the orchestration techniques like service composition or dynamic
binding; but it also introduces more complexity on the matching expressions due to the
growth of the size of the representation schema and the number of matches to be performed.
Di Martino [MAR06] discussed the major matching approaches that could be adopted for a
service discovery application. He proposed a classification following these criteria:

Instance vs. schema: matching the data or the schema-level information.

59

Element vs. structure: matching an element composed of a set of attributes or a
combination of elements.
Language vs. constraints: matching using a textual description of the elements or
using constraints related to keys relationships.

This classification gives an overview of the different matching possibilities that could be
adopted for service discovery depending on the application domain.

2. Ontology Based Service Discovery
A number of standards supporting these functionalities have been adopted recently like OWL-
S [MAR03] (previously DAML-S) is an ontology (defined in chapter Chapter VI.A.1)
described in OWL with three main components (see Figure 9); first, the service profile that
describes the attributes of the published services, attributes that will be used for the
matchmaking with the discovery requests. Second the service model describing the behavior
of the service in terms of process invocation, composition, monitoring, and updating. Third,
the service grounding that provides the technical specifications for the access to the service
providing useful information related to the messaging format, the protocols and the details
about the access methods and their variables (could be contained in a WSDL description file).
Other technologies like METEOR-S [MET], WSMO [WSM], and SWSF [SWS] also made use
of semantic web languages like RDF or OWL

Figure 9 : Top Level of the OWL-S Ontology [MAR03]

F. Context Awareness and Service Discovery
The use of context represents a significant benefit to enable service discovery in the highly
dynamic environments addressed in ubiquitous computing. Context or context information
refers to any information that can be used to characterize the state of an entity (user, or
software, or hardware component of a computing system) [DEY01]. The location of a service,
obtained for instance through a GPS or WiFi-based location of the device on which a service
is running, network bandwidth, or the security protocols enabled on some platform all may
serve to characterize dynamic services and networks. Service discovery may obviously
exploit context to achieve more precise matching in such environments. More importantly,
such context information complements and provides more flexibility to the discovery policy
specification. It in particular makes it possible to express fine grained discovery policies more
closely following the constant changes of the environment and services.
[RAV06-2] exploited contextual information related to the network conditions: like the type of
networks, supported protocols, number of active users, number of available services, etc. to
select the most appropriate service instance and minimize the amount of generated traffic for
the discovery. They demonstrate this performance gain by testing and comparing context-

60

aware service requests with classical requests and they observed a gain of number of
exchanged messages and also in the processing and response time.
[DOU05] proposes an architecture for service discovery based on context-aware registries. In
their system the authors provide a formal representation of the context related to services. The
context is represented by a set of dimensions that takes discrete values over a specific domain
that could be assimilated as a tree containing intermediate notes (context values) and leafs
representing a contextual ID. Using this formal model combining the contextual information
provided by services and clients, the context-aware discovery mechanism becomes more
precise and improves the discovery performances. This model suffers from a lack of
dynamicity concerning the context information values update.
[LEE03] presents a prototype of context-aware service discovery based on an extension of the
Jini lookup service. Contrary to the previous solution, this one takes into account the
dynamicity of the context value on the server side. During the registration, a service has to
record two types of attributes: static attributes (does not change during the service lifetime)
and dynamic attributes (contextual information change with the environment evolution).
During the matchmaking process, the static attributes are first compared with the query in
order to perform a static filter, and after that the discovery service evaluates the dynamic
contextual information in order to perform a dynamic filter on the request.
[BRO04], [BRO04-2] propose to use an ontological description of the context information
combined with an ontological description of the services (described in the previous section) in
order to make the user query more information rich by increasing the precision of the
matching results. Due to the high resource requirements of such ontological systems in terms
of CPU consumption and memory space requirements, this solution is actually not adaptable
for small mobile devices.

G. Threats and Security Requirements

1. Threats and Attacks
This section provides a list of threats and the possible attacks that can be built against the data
and resources of service discovery players. Although this list is non-exhaustive most of the
discovery protocols (centralized and decentralized) are studied and analyzed in order to find
out weaknesses and vulnerabilities that could be exploited by attackers. For each threat, a
possible countermeasure is proposed that can be applied in order to prevent the disruption of
the service discovery service. The following description lists threats to the centralized and
decentralized service discovery architectures together.

Protocol Messages and Entities
The registry is not available (service-side): the attacker performs a Denial of Service
attack by flooding registration messages. He intends to force the registry to consume
its resources in such away as it can no longer provide its intended service. One of the
possible countermeasures is to modify the protocol by adding anti-clogging messages,
if message parsing is too costly, then blacklist originators of bogus messages.
Client request disclosure (client-side): client intentions, activity, or identity may be
revealed, directly or indirectly by his service lookup queries. An appropriate
countermeasure consists in setting up secure channels (encryption). For instance,
during an industrial social event, companies could provide Job services for people that
want to apply for a job. Some companies by intercepting job lookup messages sent by
users applying for a job are able to know people that may leave their company for
another competitor company (see Figure 10)

61

Figure 10 : Client request disclosure

Interception of request (client-side): the discovery request reveals private information
about service discovery clients. A possible attack consists in faking the identity of a
registry that is known and trusted and forwarding to that registry. Registry certificate
distribution might be an adapted countermeasure to prevent this type of attack. The
process of distributing certificates of trusted registries should be protected during the
configuration phase of the mobile device. A fake Bank Server could play a
masquerade attack in order to obtain private banking information from users (see
Figure 11).

Figure 11 :Client request interception

Message modification or drop (client side): if the attacker compromises a router from
the network, he can intercept and modify or drop the client’s lookup message to the
registry (see Figure 12). The client should protect the message he sends with respect to
its integrity and to the authentication of its origin, for instance with a signature or a
message authentication code. A redundancy mechanism can be configured to
guarantee the delivery of the messages in case of dropping.

62

Figure 12 :Client request modification or dropping

Replay of Request message DoS (client-side): the attack consists in replaying a lookup
message coming from a legitimate client. A sequence number could be added to the
message in order to drop the previously processed messages.
Replay of registration message (registry-side): the attacker replays the registration
message of a properly authenticated service in order to update the service profile with
wrong information. A signed sequence number must be added to the registration
message in order to take into account the processed messages and drop the relayed
ones. An attacker could reuse a real banking service publish message in order to setup
a fishing attack.

Service Registration (centralized architecture only)

Registration to a malicious registry (server-side): an attacker might fake being a
registry whose identity (and implicitly matching behavior) is known and trusted (see
Figure 13). Subsequent attacks include preventing clients from matching the registered
service. Registry authentication is one possible countermeasure. This can be achieved
by ensuring a properly protected distribution of the certificates of trusted registries
during the configuration of mobile device, which also requires an initial authentication
phase during discovery; or by ensuring that registry keys are distributed to mobile
devices and that communication with the registry is encrypted with that key.

Figure 13 : Publishing services to fake registries

A service can be deregistered by an unauthorized party (registry-side): this occurs
when an attacker tries to dereference an active service from the registry which it

63

registered previously. The use of a nonce (e.g., sequence number) with a signature
(MAC) by the registered service to certify the origin of a de-registration message
constitutes a possible countermeasure to such attacks.

Figure 14 : Services deregistered by an unauthorized party

Fake registration (registry-side): An attacker can send a fake registration message to
the registry containing wrong information with fake attributes. To prevent this attack,
the registry has to include a verification of the proper certification of attributes of
registering services by appropriate authorities together with a proof of identity of the
registering party (e.g., signature of registration request).

Matching process

Client lookup disclosure (client-side): client intentions or activity might be disclosed if
the matching process is open to all services registered. A service may have been
established to gather statistics about users trying to access a certain profile of services.
More dangerously, an attacker might try to get access to confidential information sent
by the client at the access phase subsequent to service discovery. The countermeasure
to this attack consists in restricting the services whose description matches the client
lookup with additional constraints on some of their certified attributes. This
specification can take the form of a policy submitted by the client together with his
lookup request, and which may refer to the same or to attributes of the services
different from those specified in the lookup request.
Service discovered by unauthorized party (service-side): a typical example of this
threat is the possibility for an attacker to determine the identity or content served by a
service which wants to be seen or accessible only by a restricted set of other services
(service trapping). The countermeasure consists in the delegation of a trusted (and
authenticated) registry, the enforcement of a restrictive policy provided by the service
that will allow the service discovery by authorized clients only. We also recommend
the use of restrictive cryptographic mechanisms. This kind of threat can be extremely
dangerous in case of industrial spying. A spy could discover all the interfaces and the
architecture topology of an automated factory relying on web services for the
workflow management of industrial machines.

Threat Attack Countermeasure
Non availability of the service Brute force DoS attack Anti-clogging

mechanisms and IP
blacklisting

Service Side

Registration to malicious Fake registry that drops Authenticating registries

64

registry or reuse illegally
published information

Service disclosure Intercepting restricted
service profiles

Hide the service
publishing and restrict
the discovery to
authorized users

Request disclosure Intercepting client’s
requests and deduce his
intentions and his
preferences

Protecting client’s
request from
unauthorized access

Request interception and
modification

Spoofing attacks and
reuse of clients requests
for malicious purpose

Adding integrity
mechanisms and
checksums to requests

Message drops Packet interception and
dropping. Adding a
noise signal to physical
communication layer

Redundancy mechanisms
(used for UDP based
protocols) and correcting
code word mechanisms

Client Side

Request Replay The attacker replays old
requests

Sequence number and
time stamp for messages

Non availability of the service Brute force DoS attack Anti-clogging
mechanisms and IP
blacklisting

Replay registration messages The attacker replays old
registrations

Sequence number and
time stamp for messages.
Sender authentication

Illegal deregistering services The attacker fakes a
deregistration message
form a server to delete
it from the registry

Message signature
verification and the use
of secret and unique
publish ID or a nonce

Registry Side

Fake registrations Fishing attacks
(registering fake
services)

Service authentication

Table 2 : Service discovery threat model

2. Security Requirements for Service Discovery
Discovery is very often performed at the initiative of the service requester (e.g. lookup model)
but can also be initiated by the service provider (e.g. advert model). The specificity of
discovery is that these players, who may pertain to different administrative domains, are by
definition initially unaware of their respective existence and security policies. The following
requirements make it necessary to answer the relatively original threats described above:

Authentication: the very objective of service discovery is to communicate with
previously unknown entities that provide specific functionalities. Open discovery
services therefore require that the first message sent (lookup or advert) be in clear, also
meaning that the content of the message can be accessed. Without the means to
authenticate clients and servers, service discovery makes the implementation of a
man-in-the-middle attack possible [GHA04], a malicious entity being able to wrongly
answer a discovery message. Registry based discovery schemes obviously make it
much simpler than infrastructure-less ones to perform secure discoveries, since the
registry is the only element which the client needs to identify and be identified to, yet
at the price of additional infrastructure deployment requirements.
Authorization: Some restricted services may not be discoverable by all clients. Only
authorized clients are able to discover restricted services. This authorization must be
provided by clients in order to prove their right to discover the service. Authorization
can be materialized in security tokens, certificates, recommendations or access control
lists providing necessary information about the rights of the client.

65

Privacy: the discovery initiator takes a more important risk than the other party since
he does not control the entities which will receive the discovery message, nor the
potential usage of the information embedded in his request message. The information
disclosed by client requests is likely to reveal a subset of the intentions of the service
requester. An attacker may try to gather profiles of users of the service discovery
mechanism based on the information carried by discovery messages as well as
subsequent messages generated by the actual access to the service and display some
more information (host name, Certificate, Credentials …). The correlation of such data
with discovery related information is particularly worrying from a privacy protection
perspective.
Confidentiality: defined by the International Organization for Standardization (ISO)
as "ensuring that information is accessible only to those authorized to have access":
Confidentiality is strongly related to privacy; for instance when a data is labeled
private, it also means confidential. Privacy is usually related to one entity (private
information must be accessible only for the holder of this information) but
confidentiality can concern a set of entities that share common particularities. A
confidential document could be accessible for a group of users that share the same
access rights (or roles). In service discovery, confidentiality is used to protect sensitive
data (not merely private) contained in the discovery messages; it restricts access to
these data to allowed users. Confidentiality protects from spoofing attacks, hides the
intentions of a client contained in his service requests, protects from message
modifications, and ensures the anonymity of the private services (by hiding their
existence). Cryptographic techniques are usually applied to ensure confidentiality by
ciphering clear data and making it accessible for users holding specific decryption
keys.
Access control: since client/service authentication is problematic in the initial
discovery phase, traditional service oriented architectures do not support access
control during discovery. Service providers would ideally advertise their services
exclusively to authorized users, even though this objective is in practice difficult to
achieve in a pervasive environment. Still, disclosing the description of a service to any
requester potentially increases the risk that a malicious client or malware takes
advantage of this knowledge and of the service vulnerabilities to gain unauthorized
access.
Integrity: The integrity of a data or a document concerns the detection (ultimately the
correction) of possible errors or modification introduced on the data. In the previous
threat model, we described an attack related to discovery message modification,
alteration, deletion or replay. To protect discovery message from this kind of threat, an
integrity mechanism must be applied to all messages to verify their correctness and be
sure that sensitive information contained in discovery messages is original.
Accountability: In case of malicious behaviour (like fake announcement sent by
servers), clients or system administrators must be able keep a trace of this breach for
an eventual appeal for a neutral judgment. These traces can take the form of logs or
tokens.
Availability: Availability: denial of service (DoS) is an attack against the availability
of resources preventing the authorized access to a system resource or delaying system
operations and functions. Openly exposing service descriptions during discovery
enables attackers to exploit vulnerabilities by creating specially crafted messages for
the server or by the registry. Notably, registries clearly constitute a single point of
failure and therefore are particularly sensitive to brute force DoS attacks. Peer-to-peer

66

discovery on the contrary is expected to increase the availability of services on the
whole.

H. Approaches Secure Service Discovery

1. Access Control on the Service Side
Initially in SOA systems the main security preoccupations were related to service access
restrictions. For example, Universal Plug and Play (UPnP) Security [ELL03], [ELL02] and
Bluetooth Security [BLU]. UPnP Security provides many authorization methods including
access control lists, authorization servers, authorization certificates, and group definition
certificates, and users are assumed to provide correct credentials. In the secure discovery
mode of Bluetooth, services only respond to users that share a common secret. In this
category, service providers may easily protect their privacy. If a user does not have the
privilege to discover and access a service, then a service provider can remain silent. Users are
obliged to expose in clear text their identities and service requests to service providers.
Therefore, users may unnecessarily expose their sensitive information when service providers
do not provide the requested services. Moreover, users need to memorize the relation among
services, service providers, and credentials. Otherwise, they may not be able to supply correct
credentials and, thus, they lose opportunities to access services.

2. Registry-Based Architecture
One of the first approaches dealing with secure service discovery was proposed by [CZE99].
This architecture relies on an additional component, called Service Discovery Service (SDS),
which plays the role of a secure information repository (secure registry). This SDS helps
clients and servers to set up a trust relationship and secure channels between each another: it
provides authentication, access control, encryption, signature verification, and privacy
protection using a PKI. The SDS multicasts its public key certificate in order to allow the
encryption of the service publication and of the client request. A server also can restrict the
discovery of its services to some specific clients by associating an access control list with the
published service profile; a component of the SDS called the capability manager will use this
list to enforce access control. The SDS, which has to be permanently available, and which has
to decrypt all messages coming from clients and servers around therefore constitutes a single
point of failure. It could create a bottleneck, and some malicious user could attack the SDS by
sending fake encrypted messages. In order to encrypt the exchanged messages, the SDS uses a
hybrid public/symmetric key system. Trust establishment between the SDS and other entities
is limited to a simple verification of the SDS public certificate validity. This kind of
infrastructure is heavy to manage and only based on certificate verification; in this case every
user with a valid certificate is able to discover every existing service without any restriction.
Contrary to our solution, clients and services do not have any possibility to define their own
security preferences regarding discovery.
[ZHU03] also proposes an architecture for securing service discovery. In this work,
components share a multicast address that will be used to bootstrap communication.
Directories (i.e. registries) use this multicast address to periodically announce their unicast
address and certificate. Proxies are used to protect the servers by handling the registration,
authentication, authorization, and key management for them. Entities in the system set up a
session using hybrid encryption. Due to the number of proxies (one by service) and the PKI
infrastructure used to secure the communication, the model proposed is however likely to
generate an important message overhead. Contrary to the claimed objective of this work to
address pervasive systems, services are likely to be static, whereas the approach we advocate

67

only requires the local availability of a fixed registry (each client potentially being a server for
other clients).

3. Privacy Issues for the Service Discovery
[ZHU04] addresses privacy protection aspects of the discovery process. The authors propose
the use of Bloom filters to protect the client and server personal information set within a
discovery request (identity, certificates, attributes…). Membership tests are performed
between the directory and the client using generated Bloom filters in order to authenticate
themselves. The participating entities must agree beforehand on specific hash functions in
order to use these Bloom filters, yet this issue is not resolved but through a static agreement.
The scope of the restrictions is very poor compared to our policy solution that provides an
efficient semantic expressiveness used to define the security preferences of each entity.
Carminati [CAR05] also raised the question of privacy issues in Web Services with untrusted
UDDI-based Discovery Agencies (equivalent to a foreign agency providing a registry
service). After describing the privacy requirements related to the discovery mechanisms, they
provide five UDDI-based registries scenarios (Internal enterprise application, Portal, Partner
catalog, and e-Marketplace). For each scenario they proposed the application of three privacy
enforcement strategies: Access-Control based solution using a third trusted party (a trusted
UDDI registry) that is in charge of the access-control policy enforcement to the registry.
Cryptographic-Based Solution, also relying on a trusted third party called encryption module
that is in charge of encrypting sensitive data (XML encryption) according to a specific
privacy policy provided by clients and services. Hash-Based solution where service providers
publish hashed services in an untrusted registry.

4. Registry-less Architecture
Carminati’s solution relies on a trusted third party or a trusted registry to secure the service
discovery that is not adapted for a decentralized discovery configuration (like UPnP) that does
not rely on a fixed infrastructure. For this reason a secure pervasive discovery protocol SPDP
for infrastructure-less and in particular registry-less systems is proposed by Almenarez et al
[AL03]. This protocol relies on a trust model to decide which devices may participate to the
network and consequently to the discovery. The trust model is based on two trust degrees:
direct trust or recommendation (a of web-of-trust model). This solution is still limited in terms
of attacks because the setup step of the trust establishment procedure between new devices
must be direct although with unknown ones.

68

69

Chapter II. Securing Decentralized Service Discovery

A. Introduction
In the previous section we provided a threat model followed by a set of security requirements
that must be integrated in order to protect and secure service discovery mechanisms. An
important distinction, to ensure an efficient secure system is to separate the solution related to
a decentralized discovery from a centralized one then try to provide a hybrid solution able to
adapt the security to every architectural configuration. Of course several solutions (described
previously) provided interesting mechanisms to secure the discovery, but most of them are not
adapted to pervasive environment for they require a fixed and static infrastructure.
In this chapter we present a security solution dedicated to a decentralized configuration (P2P
communication) in which elements do not rely on a specific infrastructure or on a specific
component (like a registry) to perform a service discovery. The discovery message exchange
is performed in a P2P fashion. Each element relies only on it self. The challenge in this case
of architecture consists in finding a way to establish a trust relationship between different
actors of the system without requiring of a fixed trusted element that belongs to the
environment (permanently in charge of establishing this trust relationship). The objective is to
provide a simple mechanism that can be used by a new element of the system in order to
perform a safe and secure discovery without having any a priory knowledge about the
environment.

B. Technical Background
Before starting the description of our security solution we first choose to introduce some
preliminary definitions related to the different technologies and building blocs used in order to
develop these solutions.

1. Identity Based Encryption
The identity based encryption (IBE) scheme is an asymmetric encryption mechanism
proposed by initially by Shamir [SHA84] and developed practically by Boneh and Franklin
[BON01]. The principal advantage of this mechanism compared to other asymmetric key
mechanisms like PKI; is the avoidance of the public key verification by a user that must
verify the identity of a public certificate holder by contacting the certificate authority that
issued this public token. In order to avoid this verification, the public key becomes

70

semantically dependent with the holder identity; compared to PKI for which the public
encryption key has no semantic meaning (it is just a random value), in IBE the public key is
semantically expressed as an identity (or unique identifier). In this case the IBE scheme
allows to encrypt a message according to an identity in way such that only an entity holding
the appropriate private key related to his identity is able to decrypt the message. For example
Alice that wants to encrypt and send a message to bob can use bob’s mail address as a public
encryption key (bob@mail.com) and bob can use the private key related to this identifier in
order to decrypt the message.

Figure 15 : Identity Based Cryptosystem

The private key related to an identity is generated by a private key generator (PKG) that
belongs to the certificate authority. A shared secret called system parameters is used on both
side to encrypt and decrypt the message. This secret is provided by the certificate authority.

2. Attribute Based Encryption
An identity can be described using a set of attributes. Like for example information contained
in a passport (size, weight, birth date, birth city, nationality, biometric data, etc) putted
together can describe the identity of the passport holder. For this reason Sahai and Waters
[SAH05] proposed a new scheme called Fuzzy Identity Based Encryption (FIBE) that allows
for a private to encrypt a message using a set of attribute ’, and decrypt it using a set of
private keys related to a set of attributes if and only if d' where d is fixed at the
system setup. This concept is improved by Goyal et al [GOY06] in order to propose the
Attribute Based Encryption (ABE) that provides the possibility for a user to encrypt messages
according to a set of attributes with the possibility to make logical combinations between
these attributes (“AND”, “OR” operators). In order to decrypt such message, the user must
use a correct combination of a set private keys related to the encryption attributes. Usually an
indication about the combination must be sent in clear in order to combine the appropriate
private keys. The attribute combination can be associated to an encryption policy. Pirretti et al
[PIR06] implemented the ABE crypto system and provided a performance evaluation
illustrating the impact of attribute combination (or policy complexity) used to encrypt and
decrypt messages.

mailto:bob@mail.com

71

Figure 16 : Attribute Based Encryption Cryptosystem

In [GOY06] Private keys are identified by a tree-access structure in which each interior node of
the tree is a threshold gate and the leaves are associated with attributes. A user will be able to
decrypt a ciphertext with a given key if and only if there is an assignment of attributes from
the ciphertexts to nodes of the tree such that the tree is satisfied.

3. Attribute Based Algorithm
[PIR06] provided an informal specification of the attribute based encryption system as a
collection of four algorithms:

Setup(k): The Setup algorithm is run by the certification authority in order to create a
new ABE system. Setup takes as input a threshold value, k and outputs a master key
MK and a set of public parameters PP.
Key-Generator(Attributes,MK): The authority executes the Key-Generator
algorithm in order to generate a new private key PK. The algorithm takes as input the
user’s identity, Attributes, as a set of strings representing a user’s attributes and the
master-key MK and outputs user’s secret key PK.
Encrypt(M, Attributes ,PP): The Encrypt algorithm is run by a user to encrypt a
message M, with a target set Attributes, and the public parameters. It outputs a
ciphertext, C.
Decrypt(C, Attributes, PK): The Decrypt algorithm is run by a user with identity
Attributes and private key PK to attempt to decrypt a ciphertext C that has been
encrypted with Attributes.

4. Private Key Generation: Online Vs Offline
The private key generation is problematic for two reasons. First, how can the user contact the
Private Key Generator (PKG) in a secure manner (secure key distribution)? Second, what are
the appropriate keys required to decrypt the messages (key generation)? One of the interesting
features of IBE and ABE systems is the choice of the key distribution mechanism, for which
there exist three possible architectures:

Online PKG: there exists a key server that is permanently running and reachable by
the users in a secure manner. The user sends the server the requested attributes, and
depending on his profile, the server generates and sends the private key corresponding
to these attributes. It is a simple solution, yet inapplicable to ad-hoc environments non
permanently connected to a network infrastructure.

72

Offline PKG: the key server generates all the private key corresponding to the
attributes contained in the user profile. These keys are stored into a protected directory
in the user’s laptop. The user will choose among his key collection the appropriate
private key corresponding to the expected attributes of the recipient. This architecture
makes it difficult however to change the system parameters (profiles, attributes, keys)
or to manage the revocation of keys.
Embedded PKG: the key server is implemented in a tamper-resistant hardware like a
smartcard provided by the certification authority. This solution represents an ideal
compromise between the two precedent solutions for ubiquitous computing
applications. Using an embedded PKG the user that needs to get a private key does not
have to contact in a secure manner a distant PKG. In fact in order to protect the
sensitive information (private key, certificate) during the key exchange, the two
involved entities have to setup a secure channel. The second advantage of using an
embedded PKG, is the permanent availability, the user does not have to be
permanently connected to a network to reach a distant PKG.

C. Enabling Secure Service Discovery with Attribute Based
Encryption

1. Introduction
Service discovery is rendered necessary when clients need to locate services they can describe
but that they do not necessarily know, thereby rendering PKI based solutions, which require a
preliminary key distribution, awkward and contrived. In contrast, the new concept of Attribute
Based Encryption, derived from Identity Based Encryption schemes, makes it possible to
secure communications with unknown services based solely on their description, and in a
peer-to-peer fashion, that is, without the introduction of any additional trusted third party like
a registry. This technique is at the core of the mechanism we propose for securing the peer-to-
peer discovery of services. This paper first reviews which security properties are expected
from this architecture. It then goes on to detail how to integrate this mechanism within the
WS-Discovery Web Service protocol.

2. Profiles and Attributes
In a SOA architecture, every entity (client/service) exposes some information about itself
through one or more profiles. This information is useful for the users to distinguish between
the different entities of the system. Just like an identity card contains particular characteristics
of its owner like his name, his age, his home address, profiles characterize an entity through
the enumeration of attributes. Profiles can be used by services in order to announce
themselves and can be published in a public repository accessible to all users. During a
service discovery process, the server publishes its service profile (service description). The
attributes contained in this profile can be useful for the user to select the service he wants to
contact. Depending on the technology used for the service deployment, profiles will take
different forms: service description in the Web Service framework may for instance take
either the form of a WSDL profile consisting in an XML-based file, or of a DAML-S profile
made of an OWL-S based semantic web description. In WS-Discovery, the service profile is
composed of two strings (Type and Scope). Similarly in CORBA, the description of the
service is limited to a name within a context; this name is contained in a naming graph where
each name is associated with a reference to the service. In Jini, the service registers its
serialized proxy object together with a set of relevant attributes (Entry) that may be later use
during discovery. The client profile can be described in a certificate that contains some
indications about his identity and public key (X.509 Certificates) and also some other

73

attributes like the roles, the rights, or the delegations (Eureca [CRO05], X.509 Attribute
certificates). As can be seen, all the attributes related to the description of users and services
can be used to distinguish between the different entities involved in the system and also to
improve the knowledge about the surrounding environment.

3. Applying Attribute Based Encryption
The goal of our solution is to protect the sensitive information contained within the WS-
Discovery messages. To reach this objective, we applied ABE-mechanism to the principal
messages exchanged during the discovery phase. The attributes used to encrypt the data are
precisely the attributes enabling to describe a service:

Type: An identifier of the service endpoint (logical name describing the capability of
the service. Ex: Printer, TV …)
Scope: An extensibility point that may be used to organize the services into logical
groups (Ex: for the printer service the scope could be Color, Black & White …)

Assuming now that these two attributes identify the service, they can then be used to protect
the client’s probe messages by encrypting other attributes of the message4:

<s:Body ... >

<d:Probe ... >

<d:Types>
 Printer
</d:Types>

<d:Scopes >
Eurecom

 </d:Scopes >

...

</d:Probe>

</s:Body>
Figure 17 : Probe Message

In this example, the Probe message (Figure 17) content could be self-encrypted using the
attributes (Ex: AttributeAttributeEncrypt) in order to hide the mandatory services’ attributes
requested by the user (the requested service type and the EndpointReference of the requester).
This guarantee that only the service that holds the private keys corresponding to these
attributes are able to decrypt and process the Probe message. Of course these private keys
should be provided by a trusted PKG only to trusted services. The PKG should therefore
verify the credentials exhibited by the service, this can done using existing PKI infrastructures
and a specific X509v3 profile. The profile should be tuned to capture the attributes describing
the service.
Now let’s focus on the service’s response, the ProbeMatch message (described in
Figure 18) that must also be protected especially since the content of the message provides a
set of attributes offering a precise description of the service (location, address, URI).

4 In the messages, the s namespace refers to soap (http://www.w3.org/2003/05/soap-envelope) , the d namespace
refers to WS-Discovery (http://schemas.xmlsoap.org/ws/2005/04/discovery/) and d namespace refers to WS-
Addressing (http://schemas.xmlsoap.org/ws/2004/08/addressing).

74

[<d:ProbeMatch ... >
<a:EndpointReference>

<a:Address>
uuid:98190dc2-0890-4ef8-

ac9a-5940995e6119
</a:Address>
<a:EndpointReference>
<d:Types>

Printer
</d:Types>
<d:Scopes>

 Eurecom
</d:Scopes>
<d:XAddrs>
 http://printer.eurecom.fr/
</d:XAddrs>
<d:MetadataVersion>
 75965
</d:MetadataVersion>

...

</d:ProbeMatch>]

Figure 18 : ProbeMatch Message

All these attributes could be encrypted using a unique identifier of the user that requested the
service. In order to avoid carrying extra information, the endpoint-reference information
contained in the ReplyTo tag (Figure 18) of the Probe message’s header, can be used as the
identifier of the user. In this case the encryption action will be notated

IDClientobeMatchEncrypt _Pr and only the owner of the identity described in this endpoint-
reference that holds the appropriate private key corresponding to this identifier is able to
decrypt the Probe Match message. As described previously, this private key can be provided
by a PKG relying on existing PKI infrastructure.

a) Securing Client Request
In the decentralized model, protecting private data contained in the request message is
different from restricting the service discovery to some allowed clients. For this reason we
separated the two security aspects of encrypting request messages and publish/Response
messages.
Concerning the client’s request XML message generation and processing functions, the WS-
Discovery protocol was modified as follows:

During the Probe message generation the clear text String contained in the Type tag is
replaced by the encrypted text (Figure 19), then the protected probe message is
broadcasted to the entire multicast group. In this example, the type Printer is
encrypted.

<s:Body>
 <d:Probe>
 <d:Types>

(Encrypt[Printer]{Printer|Eurecom})
 </d:Types>
 </d:Probe>
 </s:Body>

Figure 19 : Encrypted Probe Message

75

All services listening to the multicast group will receive the message but only the
intended recipients will be able to decrypt the content of the Type tag in order to
process the received message. The encrypted text will be extracted from the Type tag
by using the secret key corresponding to the appropriate type of service (Figure 20),
thus making it possible to retrieve the clear text (Printer).

<d:ProbeMatch>
<a:EndpointReference>

<a:Address>
uuid:dc1c483f-8bc8-

48b9-9e34-e6546645c2ec
 </a:Address>
 </a:EndpointReference>

<d:Types>
Printer

 </d:Types>
 <d:MetadataVersion>

1
 </d:MetadataVersion>

Figure 20 : Clear Probe Message

b) Securing Service Publish/Response
After receiving and processing the client request (Probe message) a server depending on his
security requirements will encrypt his response message according the client’s identity as
described previously, or according to an access control policy to restrict the discovery to some
allowed users. In the second case the service should encrypt his publish messages (Hello) or
his response messages (ProbeMatch) using some attributes as public keys. These attributes
correspond to the profile of users that must be allowed to discover his services.
Let’s take the example of a server publishing a color printer service in a university, with a
restriction concerning the users authorized to discover it. This restriction allows only
professors from the university staff to discover the color printer service. In this case the Hello
message will be modified (Figure 21) and all the date corresponding to the service profile will
be encrypted according to the restriction policy:

<d:Hello ... >
<a:EndpointReference> Encrypt[EPR]{Professor,Eurecom} </a:EndpointReference>

<d:Types> Encrypt[Color_Printer]{Professor,Eurecom} </d:Types>
<d:Scopes> Encrypt[Eurecom_Printer]{Professor,Eurecom} </d:Scopes>
<d:XAddrs> Encrypt[Colorprinter.eurecom.fr]{Professor,Eurecom} </d:XAddrs>
<d:MetadataVersion>xs:unsignedInt</d:MetadataVersion>

...
</d:Hello>

Figure 21 : Encrypted Hello Message

The same kind of modification can be done in the service response message (ProbeMatch) in
order to restrict the access to the color printer discovery for the user that are not professors of
Eurecom university Staff.

D. Algorithms for Decentralized Secure Service Discovery
System

The modified secure service discovery protocol is quite similar to the original one in terms of
basic operations (Publish, Request, Response …) we some additional functionality related to
the message encryption.
The request (lookup, Probe) algorithm Figure 22 describes the procedure used by the client to
create a request message, to encrypt it and then send it:

76

Algorithm1: Request (attributes)

0. Begin
1. RM generate a Request message (request);
2. EM Encrypt the request message according with the appropriate
attributes (attributes);
3. Senden encrypted message via multicast (Multicast_Addr);
4. End

Figure 22 : Request Algorithm

The response message (ProbeMatch) algorithm in Figure 23 describes the procedure used by
a service that receives an encrypted message from a client. First the server has to decrypt the
message, process, built the corresponding response, encrypt the response and send it back to
the client. Concerning the encrypting arguments two cases are possible; the service is
restricted, in this case the response is encrypted according the attributes related to the
authorized users. The service is not restricted; in this case the response is encrypted according
to the client identity.

Algorithm2: Response (EM)

0. Begin
1. CM = Decrypt (EM, Get_private_key(KeyStore);
2. if (CM != null)
3. RM = Generate_Response_Message (Service_Profile);
4. if (! Service_Restricted)
5. RE = Encrypt (RM, CM.Sender_ID);
6. else
7. RE = Encrypt (RM, Client_attributes) ;
8. endif
9. Send_Unicast (RE, CM.Sender_Addr);
10. endif
11. End

Figure 23 : Response Algorithm

E. Private Key Management

1. Requesting Private Keys from an Online PKG

The IETF5 made some recommendation regarding to the private key request and transmission
in a secure manner. Basically to obtain private keys, a client performs a http request to a
remote server. The request must happen over a secure protocol. Both of the client and the
PKG can use TLS. When requesting the URI the client must verify the server certificate and
starts the keys transmission over a TLS secured connexion. The private key request can be
structured using the following XML format:

<ibe:request xmlns:ibe="urn:ietf:params:xml:ns:ibe">
 <ibe:header>
 <ibe:client version="clientID"/>
 </ibe:header>
 <ibe:body>
 <ibe:keyRequest>

5 The Internet Engineering Task Force (IETF) http://www.ietf.org/

77

 <ibe:algorithm>
 <oid> algorithmOID </oid>
 </ibe:algorithm>
 <ibe:id>
 ibeIdentityInfo
 </ibe:id>
 </ibe:keyRequest>
 </ibe:body>
</ibe:request>

Figure 24 : Private key request format

The key server replies to the request with a protected http response. This response has a status
code indicating success or no of the transaction. If the response contains a client error or
server error status code, the client must abort the key request and fail. The private key
response can be structured using the following XML format:

<ibe:response xmlns:ibe="urn:ietf:params:xml:ns:ibe">
 <ibe:responseType value="responseCode"/>
 <ibe:body>
 bodyTags
 </ibe:body>
 </ibe:response>

Figure 25 :Private key response format

The response code describing the type of response from the PKG is listed below:
100 KEY_FOLLOWS
101 RESERVED
201 FOLLOW_ENROLL_URI
300 SYSTEM_ERROR
301 INVALID_REQUEST
303 CLIENT_OBSOLETE
304 AUTHORIZATION DENIED

2. Private Key Generation: Online Vs Offline

The private key generation is problematic for two reasons. First, How can the user contact the
Private Key Generator (PKG) in a secure manner (secure key distribution)? Second, what are
the appropriate keys required to decrypt the messages (key generation)? One of the interesting
features of IBE and ABE systems is the choice of the key distribution mechanism, for which
there exist three possible architectures:

Online PKG: there exists a key server that is permanently running and reachable by
the users in a secure manner. The user sends the server the requested attributes, and
depending on his profile, the server generates and sends the private key corresponding
to these attributes. It is a simple solution, yet inapplicable to ad-hoc environments non
permanently connected to a network infrastructure.
Offline PKG: the key server generates all the private key corresponding to the
attributes contained in the user profile. These keys are stored into a protected directory
in the user’s laptop. The user will choose among his key collection the appropriate
private key corresponding to the expected attributes of the recipient. This architecture
makes it difficult however to change the system parameters (profiles, attributes, keys
…) or to manage the revocation of keys.

78

Embedded PKG: the key server is implemented in a tamper-resistant hardware like a
smartcard provided by the certification authority. This solution represents an ideal
compromise between the two precedent solutions for ubiquitous computing
applications. Using an embedded PKG the user that needs to get a private key does not
have to contact in a secure manner a distant PKG. In fact in order to protect the
sensitive information (private key, certificate …) during the key exchange, the two
involved entities have to setup a secure channel. The second advantage of using an
embedded PKG, is the permanent availability, the user does not have to be
permanently connected to a network to reach a distant PKG. But the weakness of this
solution concerns the Attribute certificate revocation management. Because of the off-
line status of the PKG, it is not possible to verify if the attribute certificate provided by
the key requester is revoked by the CA.

3. Key Revocation
Identity Based cryptosystems do not really have a key revocation mechanism: if a key is
corrupted, all the entities related to the CA have to change the system parameters. The
solution to limit the impact of this issue therefore consists in defining a key validity expiration
date. Compared with public key certificate schemes in which the identifier is a random value
revocable and replaceable over time, an IBE public key identifier is a unique name that cannot
be revoked. In contrast, as proposed in [BON01], it can be extended with a key validity period
(ex. time, date): we can for instance concatenate to this name with a variable value like a date,
e.g., {Printer || 2008}, in which case only the node with private key related the attribute
printer valid for the year 2008 can sign or decrypt messages.
The expiration-life solution is not efficient in case of explicit revocation (key corruption,
Identity corruption, excluding or replacing nodes of the system) where keys are revocated
before the expiration deadline. For this reason Hoeper et al. [HOE06] proposed a revocation
method that relies on an additional data added to the public key and representing the version
number of the issued public key. In this configuration the public key is built as:{ Attributes ||
Date || Version }
The version parameter is incremented every key renewal. For this solution authors proposed
an alert system in charge of managing the events related to key corruptions, and informing the
nodes of the system about the version incremental of each public key.

F. Use Case Scenarios
This section introduces a scenario that illustrates the application domains of such secure
service discovery solution. Let us suppose that an airline company offers wireless services
during flights (news, e-mail, movies, duty-free shopping …). Depending on the class of his
seat, each passenger will have different access privileges to these services.
The shopping service would be accessible to all passengers without any restriction. Every
passenger sending a service discovery request containing the { shopping } keyword with a
laptop will receive a response containing the details of where and how to access the digital
shopping mall (Figure 26). Of course, it is assumed that this service location needs not be
protected from other passengers since it is publicly accessible. This does not preclude
subsequent requirements for access control to the duty-free shopping service, for instance
because one has to check the validity of the passenger's credit card number before agreeing to
some transaction.

79

Figure 26 : Discovering shopping service in insecure mode

Passengers in business and first class may also get access to their e-mail. The response sent by
the e-mail service will need to ABE-encrypted in order to restrict its access to business and
first class passengers only (Figure 27). The response may contain credentials in order to
enable the passengers to access the service. All other passengers should be unable to locate
the service, much less gain access to it.

Figure 27 : Discovering restricted e-mail services

Passengers in first class may also request a premium movie service that lets them access to
recent movies. The premium service should only be accessible in presence of an adult
passenger, in particular in order to protect children against offensive or violent contents. A
service discovery request for the premium movie should thus contain the requesting
passenger's age for instance, yet such personal information should remain as confidential as
possible. Encrypting the service discovery request to render it accessible by the premium
service only would be enough to protect the passenger's privacy. However, to cope with
requirements regarding access control to the service description, the discovery response will
also need to be encrypted according to requester’s age, so that the location of the movie
service will be known only to adult passengers travelling in first class (Figure 28).

Figure 28 : Discovering restricted movie service with privacy protection

In all these examples, the assurance that some trusted authority did grant attributes to a
service according to an agreed upon taxonomy is all a passenger needs to protect the privacy
of his lookup messages. The same holds true with respect to the granting of attributes to

80

passengers. In all these scenarios, identities (or attributes) therefore are central to the
referencing of services or passengers.

G. Security Evaluation
In this chapter we proposed a secure service discovery protocol relying on the ABE
cryptosystem. The parameters of our security analysis are similar to the security properties
offered by the mechanisms used in our solutions according to the Bilinear Diffie-Hellman
(BDH) assumptions.

1. Proof of Security
Theorem : if an attacker is able to break the ABE scheme, then a simulator can be
constructed to play a decisional BDH game with a non-neglegible advantage

Proof: supposing that exists a polynomial-time adversary A able to build attacks against the
ABE scheme with an advantage . A simulator B playing a decisional BDH game with an
advantage /2 can be executed with the following parameters:
A challenger able to set the groups G1 and G2 with a bilinear map e and a generator g is able
to flip a fait binary coin . The challenger will set his parameters according to values for
random {w, x ,y ,z} values:

0;,,,,,,,

0;,,,,,,,
zyxw

wxyyxw

ggegggZYXW

ggegggZYXW

We assume the universe U defined

Challenge execution:

Init: the adversary A chooses a set of attributes to be challenged upon.

Setup: the parameter wxggeXWeJ ,, . For all Ui we define a function iT that
chooses a random ir Zp is defined if i and sets iT = rig for ii rt ; otherwise it shooses a
random i Zp and sets ii XgT x

i for ii xt then it gives the public parameters to A.

Phase 1: A makes requests for the keys corresponding to any access tree (defined in
[GOY06]) structure such that the challenge set does not satisfy . Lets suppose that A
can make a secret key request for an access structure where 0 , in order to generate
the private keys, B needs to assign a polynomial aQ of degree ad for every node in the access
tree .

Two procedures can be defined: PS that sets up sets up the polynomials for the nodes of an
access sub-tree with satisfied root node. PU that sets up sets up the polynomials for the nodes
of an access sub-tree with unsatisfied root node.

PS(a ; °; a) where, 1a . The procedure takes an access tree a (with root node
a) as input along with a set of attributes and an integer a 2 Zp.

The function PS first sets up a polynomial aq of degree ad for the root node a. It sets

aaq 0 and then sets rest of the points randomly to fix aq . Now it sets
polynomials for each child node a’ of a by calling the procedure that could be written

81

PS('a ; °; 'aindexqa). Notice that in this way, '0' aindexqq aa for each child
node a’ of a.

PU(a ; °; ag) where 0a . The procedure takes an access tree a (with root
node a) as input along with a set of attributes and an element ag G1 (where a

2 Zp.)
The function PU first sets up a polynomial aq of degree ad for the root node a such
that aaq 0 . Because 0a , no more than ad children of a are satisfied. Let

aa dh be the number of satisfied children of a. For each satisfied child a’ of a, the
procedure chooses a random point ¸ 'a Zp and sets '' aa aindexq . It then fixes
the remaining aa hd points of aq randomly to completely define aq .

Now the algorithm recursively defines polynomials for the rest of the nodes in the tree as
follows. For each child node a’ of a, the algorithm calls:

PS('a ; °; 'aindexqa) if a’ is a satisfied node. When 'aindexqa is known

PU(a ; °; 'aindexqag), id a’ is not a satisfied node. When only 'aindexqag can be
obtained by interpolation as only 0aqg is known. And '0 aindexqq aa for each
child node a’ of a.

To give keys for the access tree , simulator first runs PU(, ,A) to define a polynomial

aq for each node a of . When for each node a of , aq is known if a is satisfied; if a is not
satisfied , then at least 0aqg is known. Furthermore wqr 0 .
Simulator now defines the polynomial aa xqQ for each node a of . Where

wxQb r 0 . The key corresponding to each leaf node is given using its polynomial as
follows:
Let i=attr(a)

otherwiseggg

aattXgg
D

i

a

i

a

i

a

i

a

i

a

i

a

q
w

wq
t

Q

r
q

r
wq

t
Q

a

;

)(;
)0()0()0(

)0()0()0(

The simulator is now able to construct a private key for the access tree . Furthermore, the
distribution of the private key for is identical to that in the original scheme.

Challenge: the adversary A submits two challenge messages m0 and m1 to the simulator. The
simulator flips a fair binary coin , and returns an encrypted messages m :

i
r

i
iCEZmEE ,',

If 0 then wxyggeZ , and if s = y then wxyywxs ggeggeY ,, and
ii ryr

i YgE in this case the encrypted message is a valid random encryption of m .

82

Otherwise if 1 then zggeZ , we have zggemE ,' . Since z is random E’ will be a
random element of G2 from the adversaries view and the message contains no information
about m .

2. Security Analysis
Assuming that the ABE cryptosystem proposed and analyzed in the security proof is secure
and robust to attacks, we evaluate the robustness of our system.

Definition 1 spoofing attack is a situation in which one person successfully masquerades
as another by falsifying data and in order to access to discovery messages

Property 1 each entity accessing to a protected message must be authenticated

Proof- To obtain an ABE private key necessary to decrypt protected messages, the recipient
of an ABE-encrypted message provides the attribute certificate credential to a PKG and
requests the private keys that correspond to its certified attributes. The PKG authenticate the
client before issuing the key (Certificate verification and digest). The Authentication may
either be done through the secure transport protocol (either http TLS or SSL). If a user A
holding an X.509 attribute certificate describing attributes {x,y,z}, only the set of private keys
{PKx, PKy, PKz } will be generated by the PKG after the certificate digest.

Property 2 private data contained in client messages is protected against unauthorized
access

Proof- The private data related to the clients; like the address, the identity, the intension, and
the favourite services are encrypted and accessible only by the concerned services. According
the ABE system only authenticated and authorized services can hold the corresponding
private keys. Therefore users listening to communication issued by the clients are unable to
decrypt exchanged messages.

Property 3 restricted services are invisible for non authorized users

Proof- Services can encrypt their service announcement and their responses according to
chosen attributes. These attributes correspond to the profiles of the allowed users to discover
the service. According the ABE system only authenticated and authorized users can hold the
corresponding private keys. Therefore unauthorized users are unable de detect the existence of
the restricted services. This is called implicit authentication.

Property 4 fake services are automatically detected and ignored

Proof- If a service is able to decrypt a client’s request means that the appropriate private keys
were used. In order to obtain private keys related to some attributes, a user has to authenticate
to the Certification authority that verifies the capabilities of the services then generates the
private keys related to these attributes. Let’s suppose a malicious server F that sends a service
response for every encrypted message sent in the network. If a client sends an encrypted
request according to the attributes {x,y,z} only responses related to these attributes are
accepted, the others are rejected.

83

H. Experimental Results
In order to evaluate the efficiency of this new secure service discovery model, we developed a
Java implementation of the WS-Discovery protocol combined with Voltage IBE toolkit [VOL].
The Voltage IBE toolkit (C library) provides a high level interface for an easy integration with
any application.
Our early experiments show that the application of the IBE mechanisms to the WS-Discovery
protocol adds a negligible extra processing time with the following workstation specifications:

Virtual Machine: VMware 1.0.1
OS: Fedora Core 5 with a Linux 2.6.x kernel i686
CPU: Mobile Intel ® Pentium ® 4 CPU 1.70 GH
Physical memory 512 MB

Action Time (ms) Public Key size
Sending a Request 65,8 -
Processing a Request 100,2 -
Sending Response 2671,8 -
Processing a Response 54,2 -

927 16
961 64
965 128
968 256

Encryption Time

988 512
859 16
866 64
874 128
929 256

Decryption Time

955 512
IBE system setup 121 -
Table 3 : measurement values
If we suppose that the system setup step can be avoided (each has a local storage for the
system parameter and the private key) the additional extra-time generated by the IBE
application is approximately equal to the sum of the encryption / decryption process. This
value does not affect the usual sequencing of the WS-Discovery message exchange protocol.
This extra time is not problematic due the fact that WS-Discovery protocol uses the UDP
messaging format imposing a retransmission delay of 5 seconds in order to ensure the good
reception of a message in spite of some packet loss risks. This delay covers the extra time
generated by the decryption process.
We also tested a 100% Java solution by integrating the Identity Based Encryption JCE
Provider [DUF04] with our Java WS-Discovery Protocol implementation, but this library offers
very bad performance processing time that is not compatible with the WS-Discovery message
timings.

I. Alternative Solutions

1. Group Encryption
Using attributes based encryption means that for some elements sharing the same attributes
may hold the same private keys related to these attributes. In this case one solution offering
the same functionalities with improved performance results and management is the group
encryption mechanism [KIA07] that allows a sender to encrypt a message and with a restriction
for the receivers that would decrypt this message to be a member of the PKI group. As in a
group signature, in a group encryption there can be an opening authority that when the

84

appropriate circumstances are triggered it can reveal the identity of the group member who is
the recipient of the ciphertext. A group encryption provides “receiver anonymity” in the same
way that a group signature provides “sender anonymity”. This solution could be interesting if
the number of attributes of different services is quite reasonable in order to avoid the key
management of hundreds of groups. The second limitation is related to the obligation to have
an online certification authority and a key generator that is not always the case with the ABE
solution. Finally, service privacy could be affected by the possibility for every user to access
to the list of available services and this privacy violation does not correspond to our security
requirement related to the possibility for a service to hide his existence.

2. Policy Based Cryptography
Another possibility that we can consider to optimize the credentials combination, is the usage
of Policy Based Encryption mechanism [BAG05] (PBE). This mechanism is an extension of
the ID-based cryptography that allows the encryption of a data according to a policy, and only
the entity that fulfils this policy is able to decrypt this data. The advantage of using this
mechanism is the possibility to use conjunctions and disjunctions to make an efficient
combination of certificates and tokens used for encryption and decryption. Unfortunately,
there is no available implementation of this cryptographic scheme that could be deployed in
real systems.

J. Conclusion
This chapter discussed specific security and privacy issues of peer-to-peer service discovery
mechanisms. A solution based on a particular type of Identity Based encryption called
Attributed based Encryption was used to add security during the service discovery process by
protecting the user’s requests and restricting the access to the discovery of a service. This
solution does not need to rely on a trusted third party in order to perform the matchmaking
function. Attribute Based Encryption makes it possible to both encrypt for and describe the
semantics of a service, which is essential for accurately yet privately answering a request.
Contrary to PKIs, IBE public keys (a string) identify services with human understandable
semantics, even though they should be shared by all parties. Using ABE permits combination
of different attributes to describe some complex service profiles or service types. The use of
ABE may also prove beneficial in more open scenarios in which services are likely to be
described using various knowledge representations, like for instance controlled vocabularies
or ontologies. We are investigating how to combine reasoning about how service profiles
match with such tools together with encryption, even though this may require tradeoffs
regarding the privacy of service lookup.

85

86

Chapter III. Securing Registry-Based Service Discovery

A. Introduction
In the last section we described a secure solution dedicated to a decentralized discovery
architecture. As seen previously in the service discovery introduction section, another kind of
architecture can be used to deploys services, and this architecture is centralized (or registry
based) and some standardized discovery protocols like UDDI are exclusively deployable on
this kind of centralized configuration. With a registry based architecture the attribute based
cryptographic solution described previously is not compatible and not adapted because it
requires to hide important information needed by the registry in order to perform a matching
between clients requests and published services profiles.
Basically the registry in a centralized architecture is required and always available. It also
must be trusted by the clients and the servers, in the sense that the matchmaking procedure
must be performed correctly, and the information published by the servers must be safely
stored and not lost or corrupted. For this reason using a registry could represent an interesting
occasion to point out a third trusted party that could be used to establish a trust relationship
between different elements of the system.

B. Technical Background

1. XACML
XACML (eXtensible Access Control Markup Language) [XAC] is an OASIS policy standard
used to express and perform access control. It includes an XML-like policy language and a
query model for access control enforcement and decision making. The query model has a
request response format executed between a Policy Decision Point (PDP) and the Policy
Enforcement Point (PEP) that issues the request and handle responses (this interaction is
described in Figure 29). XACML request consists of a triple {Subject, Resource, Action}. A
Subject tends to gain access to a Resource (e.g. file, web service) in order to perform an
Action (e.g. read/write, invoke a method). The Subject is characterized by a set of attributes
(e.g role, location). Based on this triple {Subject, Resource, Action}, a rule-based access
control policy is enforced. After decision making, a XACML response is sent back to the
requestor (e.g. Permit, Deny, Intermediate or Not Applicable).

87

Figure 29 : PDP and PEP interaction in XACML [LOR03]

2. X.509 Attribute Certificate
An attribute certificate (AC) is a structure similar to a public key certificate (PKC); the main
difference being that the AC contains no public key, but it may contains attributes describing
group membership, role, security clearance, or other authorization information associated with
the AC holder. The AC has a similar structure with a PKC; with standards fields like the
version, the holder, the issuer, the signature the serial number, the validity and the issuer
unique identifier. The additional field is the “attributes” field that gives information about the
AC holder and its privileges. This field contains a sequence of attributes, and each attribute
contains a set of values.

C. Service Discovery Policy

1. Concept
The security requirement section described previously makes it clear that clients should be
able to find a service matching with their preferences, both in terms of service’s
characteristics and in terms of security and privacy requirements. These security requirements
can be imposed respectively by the service and by the client. On the client side, the user
should be sure that only services matching his preferences would be returned: from his point
of view, trusting a service should therefore go beyond the simple authentication of the service
provider and also encompass a complete certification process of the capabilities of the service.
On the server side, the problem is quite similar since the server does not know the users that
can potentially gain access to its service. They should therefore be accessible only to client
they trust to access them according to a precise behavior guaranteed by some authority.
Assigning the responsibility to enforce such discovery policies to a trusted entity of the
system is therefore critical to service discovery. To avoid raising the complexity of service
discovery, we do not propose to add a new entity to the system together with a dedicated
protocol, but rather to assign this task to the registry. The choice of the registry as being the
trusted third party in charge of the policy enforcement is an absolute requirement in
centralized approaches, since matching already implicitly is a trusted operation and policy
enforcement and matching are closely tied together.
Discovery policies may be quite simple: the client or the service provides rules that describe
who can access their respective profile based on some attributes. In this paper the discovery
policy objective is twofold:

88

Access Control: discovery constitutes a preliminary form of access control to services
by restricting the clients which will be able to subsequently contact a service. The
sensitive resource here is the service’s profile that must be hidden to the non
authorized users.
Privacy Protection: the client can protect the private information he reveals for each
lookup he performs (identity, intentions, favorite services …) from an uncontrolled
disclosure.

As shown in Figure 30 the usual discovery messages (publish and lookup) should be
accompanied by some credential (attribute certificate or signed token) in order to be
authenticated by the registry, by a discovery policy that will be enforced by the registry in
order to protect the entities according to their desires, the whole being secured using a
signature based on the credential transmitted for instance.

Figure 30 : Communicating Discovery Policy

2. Choosing a Service Discovery Policy
In order to avoid the complicacy of a new security policy language definition, we decided to
reuse an existing one that will permit us to express our requirements related to the privacy and
access control functionalities. Initially XACML offers a simple XML language traditionally
used to express and enforce access control and role based access control (RBAC). It also
supports extensions using the condition tags. These extensions specified as meta-data types
and functions used to create predicates for conditions. Some of these functions are proposed
in the XACML specification; like equality, arithmetic, string conversion, numeric data-type
conversion, logical, numeric comparison, date and time arithmetic, non metric comparison,
string, bag, regular expression, special match, and XPath functions. The programmer can also
integrate new personal functions that refer to functions written in other programming
languages. This wide expressiveness supported by XACML permit to extend the basic policy
language and adapt it with the security requirements related to the service discovery (privacy,
authentication, authorization, access control, recommendation).Using the XACML as a
service discovery policy language, we can easily restrict the discovery of a service to some
authorized clients. For example, we can allow the discovery of a Color printer service to users
that have the role of professor in the Eurecom domain (see Figure 31).

89

<Policy PolicyId="Policy" RuleCombiningAlgId="permit-overrides">
 <Target>…</Target>
 <!-- Rule of Color Printer Discovery Action -->
 <Rule RuleId="rgetPatient" Effect="Permit">
 <Target>
 <Subjects>…</Subjects>
 <Resources>Color Printer</Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="function:anyURI-equal">
 <AttributeValue DataType="anyURI">Discover</AttributeValue>
 <ActionAttributeDesignator DataType=anyURI AttributeId="action-id" />
 </ActionMatch>
 </Action>
 </Actions>
</Target>
 <!-- Check if the subject is a Professor from Eurecom -->
 <Condition FunctionId="function:string-equal">
 <Apply FunctionId="function:string-one-and-only">
 <SubjectAttributeDesignator DataType="string" AttributeId="SubjectRole"
/>
 </Apply>
 <AttributeValue DataType="string">Professor</AttributeValue>

<AttributeValue DataType="string">Eurecom</AttributeValue>
 </Condition>
 </Rule>
</Policy>

Figure 31 : Discovery Policy sample using XACML

D. Architecture for a Registry-Based Secure Service Discovery
In this section we describe the different steps executed during a secure registry-based service
discovery (see Figure 32). We also analyze and explain the working behavior of the system
and how the different elements of the architecture can interact with each others. As we
mentioned previously our system relies on a trusted registry that represents a secure
intermediate between clients and services. In this case we suppose that clients and servers
have an a priory knowledge about the registry information (location, address, public key …)
in order to locate the appropriate trusted one and establish a secure interaction.

Figure 32 : Secure Registry-Based Architecture

Setup: Client and services have to contact their default registry and establish an
encrypted secure channel (using SSL/TLS) with the help of the Public Key of the
registry. After establishing this communication channel the discovery process can
safely begin. All the message exchange must be encrypted.

90

Step (1) is initiated by the server in order to register its services by sending a publish
message containing the description of its capabilities, its profile and some specific
contextual information. The service has the possibility to add a discovery security
policy that must be enforced by the registry in order to guarantee the privacy and the
confidentiality of the proposed services. In order to be authenticated by the registry (to
satisfy client’s discovery policy) the server has the possibility to add a security tokens
(like Attribute Certificate) during the registration process, this token could contain
some certified information about the service (The owner, the company, the domain
…). All the information provided by the servers is stored in the registry’s database
(Profiles).
Step (2) is the Client’s service lookup by sending a request message containing the
service request. This request contains the attributes and the particularities of the
wanted service. Like for the server, the client has the possibility to add its own
security policy restricting the scope of the discovery to some specific services. The
client could also add some information about its identity or its current context attribute
values. Concerning the identity of the client it would be preferable to use a security
token in order to be authenticated by the registry.
The most important part of the secure service discovery process is the request
matching and the policy enforcement. The step (3) performed by the registry consists
in a request matching with the existing profiles contained in the profile database. If the
query matches with one or more services, the registry verify if the there are policies
related to the selected services or/and to the client’s request. If these policies exist the
registry starts with authenticating the client or the service (4) by checking the validity
of the provided Attribute Certificates and extracting the values of these attributes
(identity, role, domain, Qos …etc) in order to generate a XACML query related to
these attributes. This query will be compared with the policy and the decision will be
taken in order to give a response to the client (5). If the request is accepted, the
registry returns a response to the client by sending a response message containing the
necessary information to joint the selected service (6).

E. Algorithm for a Secure Centralized Service Discovery
The most important task of the system is assigned to the central registry that has to match the
query of the client with the service profiles published locally, then verify the existence of the
policies, authenticate the evolved parties, enforce the policies and finally send back a request.
All these actions are described in the algorithm Request_Process in Figure 33.

Algorithm 3: Request_Process (Client)

0. Begin
1. | match client query with published service profiles;
2. | while list of matched services ø then
3. | | get the next service recod of the list;
4. | | if Client and Service provide policies then
5. | | | Req_C build a Xacml request with Client properties;
6. | | | Req_S build a Xacml request with Service properties;
7. | | | match Req_C with Service policy;
8. | | | match Req_S with Client policy;
9. | | | if policies are satisfied then
10. | | | | send back a response to the client;
11. | | | endif
12. | | elseif only Service provides policy then
13. | | | Req_C build a Xacml request with Client properties;

91

14. | | | match Req_C with Service policy;
15. | | | if Service policy is satisfied then
16. | | | | send back a response to the client;
17. | | | endif
18. | | elseif only Client provides policy then
19. | | | Req_S build a Xacml request with Service properties;
20. | | | match Req_S with Client policy;
21. | | | if Client policy is satisfied then
22. | | | | send back a response to the client;
23. | | | endif
24. | | else
25. | | | send back a response to the client;
26. | | endif
27. | endwhile
28. End

Figure 33 : Request Algorithm

F. Secure Service Discovery Middleware
Discovery mechanisms are usually used to explore the environment and to adapt to the
different interfaces provided to connect to relevant services. The definition of specific
middleware is necessary in order to provide standardized interfaces facilitating the
interconnection of mobile devices and services. Various solutions like J2EE, .Net, or CORBA
have been developed providing a middleware abstraction over which one can deploy
standardized discovery protocols such as WS-Discovery, UPnP, Jini, or SLP. However, these
middleware have never specifically addressed security problems in the spontaneous
networking framework, which usually rely on too static assumptions that hamper the dynamic
deployment of services. In particular, an administrator has to know in advance users and
services of the system in order to ensure their protection. In this section we aim to provide a
flexible and adaptive middleware abstraction layer inspired from the architecture described in
the section Chapter III.D that programmers might easily integrate via a plain Java API or
through a Web Service interface.

1. Related Work
Several studies were published in the literature that proposes different middleware platforms
to enable an efficient service discovery. This section provides an overview of various such
platforms. To our knowledge however, no actual implementation of a security oriented
service discovery middleware platform answering spontaneous networking challenges was
ever described before.
[BIS06] introduces a service discovery middleware framework for an ad-hoc network of
devices. This architecture relies on a hierarchy of distributed registries called “Service
Repository”. In order to verify if all the published services are still “alive”, every registry
polls the rest of the network and requests the other registries to report their local services. The
authors compared the M2MI framework to Jini’s service discovery that is quite similar in its
functionalities.
[SOM07] aims at answering the challenges of the service discovery in partially connected or
disconnected mobile ad-hoc networks. It first lists the issues that must be addressed in order
to overcome the problems related to mobility and to the lack of permanent connectivity
(flexible addressing scheme, supporting asynchronous communications, content based
management of messages, and taking into account special and temporal contextual properties
of the services. The core framework of this proposal is based on the OSGi framework which
the authors extended in order to describe local and remote services and to enable a proactive
and reactive service discovery. Contextual properties are added to characterize mobile hosts.

92

With the emergence of pervasive computing environments, [CAM05] proposes a pervasive
discovery policy associated with a service description language (GSDL). In terms of new
challenges raised by discovery in such a programming paradigm, this paper only focuses on
network transmissions minimization, on the decentralization of the discovery infrastructure,
and on cooperation between different systems. The challenges described concerning service
description are the need for simplicity to adapt to the limited power and computing capacity
of the devices, the need for scalability, and the need to retain compatibility with all kinds of
platforms. The discovery algorithms presented prioritize between existing services by warding
the more static devices with more opportunities of answering requests. The GSDL description
language, which can be considered as an extension of the WSDL language, provides a
hierarchical description of the services for specifying the relationship between different
services. This hierarchical categorization provides more scalability for service publication.
The security middleware solution from which we inspired most has been published in [JIA05]
and addresses ubiquitous computing environments. The middleware provides a way for the
users and the administrators to define security policies for context-aware trust management.
Such a security policy was implemented by the authors. They define three kinds of policies:
an authorization policy (access control policy), a delegation policy (that allows user to
delegate his rights to another user), and an obligation policy that triggers actions in response
to specific events in the system. The middleware consists of five components: a policy
manager, used for the policy reasoning and enforcement; an object manager that provides a
monitor control of the different objects involved in the system; a context manager, which
collects and analyzes the contextual information from the sensors; finally an authentication
manager, used to verify and manage the X.509 certificates provided by the users and the
artifacts.

2. Middleware Stack
The heart of the platform is a middleware including a set of security services, notably for
automatic SOAP traffic encryption and signature. Finally, applications are either written on
top of the middleware or, in case of legacy applications, are adapted to use this middleware.
Application-specific policies can be defined to configure the platform. The secure discovery
middleware is intended to provide a secure and adaptable service discovery interface. This
system could be used by service providers in order to securely publish their services by
imposing their own security requirements. Users also have a way to discover and locate
services without exposing their identities or attributes to unbeknownst and potentially
untrusted entities, and of requesting that the services they are discovering adhere to specific
security requirements.
The discovery service is accessible to client applications through a Web Services interface.
This API gives access to records in a service registry that can be implemented in a centralized
or distributed fashion. The current implementation supports the peer-to-peer WS-Discovery
protocol that is nicely suited to spontaneous networking, even though some provision has
been made in the middleware to integrate other types of directories, most notably UDDI based
ones. This API is also accessible through Java methods. Using this interface, a server can:

declare its services by publishing their profile;
upload a security discovery policy for each of these services to the registry;
upload certified credentials to the registry that will make it possible for the latter to
authenticate the former.

Clients also use this interface in order to request for a specific service, described according to
an extensible set of attributes. They can also upload a security discovery policy and certified
credentials for authentication.

93

As can be readily seen from the above description, the registry is the decision (PDP) and
enforcement point (PEP) for the discovery policy, two functions which both rely on the use of
certified credentials. As a decision point however, the registry also relies on context
evaluation, as described below.

Figure 34 : Middleware Stack

The middleware stack shown in Figure 34 is composed of three layers:
Discovery Protocol Layer: This layer specifies the message formats, the message
sequencing, and the processing rules. Discovery follows the WS-Discovery protocol,
which was slightly extended to accommodate an explicitly designated registry based
on WS-Discovery proxies. Packets are routed via Multicast in case of a public
announcement (messages from the service to groups of registries) or Unicast in case of
a direct request (messages from the client to a registry). UDP datagrams are sufficient
to guarantee a coherent discovery connection without setting up a TCP connection. A
UDP message must be sent at least 3 times to guarantee its reception from the
concerned party. Other discovery protocols dedicated to service discovery like UPnP,
Jini, or SLP might be integrated if legacy systems are to be used.
Security Layer: This part of the stack provides tools and methods used to:
authenticate clients and services (identity and wrights verification), decide and enforce
the security policy provided by clients and services, and finally perform an access
control to restricted resources.
API Layer: It represents the visible interface accessible to the user. It provides the
information helpful for the users in order to access to the service discovery
Middleware. Two interfaces, a Java library, and a WSDL description are provided (see
the Annex).

G. Security Evaluation
In this chapter we proposed a secure service discovery protocol relying on a centralized
trusted registry in charge of enforcing security discovery policies. In this section we present
the secure properties of this protocol.

Property 1 it is impossible for a non authorized client to discover restricted services

94

Proof- Restricted services provide to the registry, during the registration, a security policy
limiting the discovery of the services to clients that profile corresponds to the conditions
expressed in the policy. If a client’s request matches with a restricted service, the registry will
authenticate the client, extract the attributes of the client and match it with the attributes
specified in the service’s policy. If the policy is not satisfied the registry will not respond to
the client in order to specify that the service does not exist.

Property 2 it could impossible for a fake service to be discovered by clients

Proof- Client could attach to their service request a security policy to verify the authenticity of
the selected services. If this request matches with a service the registry first authenticate the
selected service and verifies if it is compliant with the conditions expressed by the client’s
policy. For example the matched service is a printer service the registry has to verify if the
printer is one of the attributes of service’s certificate, else no response will be sent to the
client.

Property 3 communication between client / service and registries are secure

Proof- since SSL/TLS is systematically used between clients, service and registries, discovery
messages are exchanged through a secure channel. The number of exchanged messages is not
enough important to permit an attacker to break the encryption system.

H. Measurement Results
In order to evaluate the efficiency of our solution we extended the Java prototype of the WS-
Discovery protocol with the XACML functionalities, and then we performed some
measurements about time execution and memory consumption. For these experiments we
used:

OS: Fedora Core 5 with a Linux 2.6.x kernel i686
CPU: Mobile Intel Pentium 4 CPU 1.70 GH
Physical Memory 512 MB

In this table we provide all the measurement values related to each execution steps of the
context aware policy based service discovery.

Actions Time (ms) Size (byte)

Sending Hello (Publish) 31 3963
Sending Probe (Request) 67 862
Service matching 370 -
Authentication 1572 -
Policy enforcement 862 -

Sending ProbeMatch (Response) 15 1622

Table 4 : measurement values

95

I. Conclusion
In this chapter we propose a policy-based solution to secure registry-based service discovery.
For this solution we choose to take advantages of the status of central entity represented by
the registry in a centralized architecture in order to cope with the identified threats in chapter
Chapter I.G. The registry after being authenticated by clients and services plays the role of
trusted discovery policy reasoning and enforcement point in charge of authenticating the
elements that must be authenticated according to published policies. As proof of concept we
implemented a prototype securing WS-Discovery protocol and relying on a discovery policy
built as an extension of XACML access control policy. Our approach solves user’s privacy
and service access control by introducing a new security requirement expressiveness
dedicated to the service discovery that efficiently supports trust establishment between
different actors of the system.

96

97

Chapter IV. Secure Service Discovery with Distributed
Registries

A. Introduction
The solutions described in sections Chapter II and Chapter III clearly do not scale to an
internet wide service discovery in terms of lookup scope and protocol security; in a
centralized architecture or in P2P one described previously, if the service does not exist
locally, the client will stop sending its binding message or retry the binding process later.
With a distributed policy-based architecture on the contrary, if the service is not found locally,
the local registry can forward the query to other registries belonging to other domains and
networks in order to extent the search scope. The success probability of a query is better with
this distributed system, but it introduces more latency for the response. After a timeout the
client may decide to drop responses from distant proxies. With the distributed solution we can
avoid bottlenecks on the service side. In fact, with the decentralized solution, when a client
multicasts an encrypted probe message, all the servers that are listening to the multicast
channel will try to decrypt the message at the same time. During the decryption period if
another client sends another request message, it could be dropped or cached until the end of
the previous message decryption. This phenomenon generates a bottleneck on the service side
that could be avoided with the registry-based solution. This gain of performance costs more
complexity in the discovery protocol construction. With idea of distributed registries the
secure service discovery is extended to other LANs and solves the bottleneck problem created
with the decentralized solution. The essential challenge is to provide a scalable discovery
system with respect to the security requirements defined at the beginning of this thesis.

B. Related Work
A distributed architecture for service discovery was proposed by Chakraborty et al. [CHA06]
that aims to provide; first a local service discovery in P2P manner relying on advertisement
between local peers, second a distributed group information system that enable an intra
domain and scalable service discovery. In this solution services are categorized in hierarchical
groups according to their capabilities. Each node of the system is in charge of one group. In
case of mismatch with a client request (sent locally), the node’s query is forwarded to the
correct node in charge of the group to which the requested service belongs. Despite the claim
of the authors concerning scalability, each node has to memorize the whole group hierarchy of

98

the system in order to route the request to the correct node, and this assumption is not realistic
for a system involving millions of nodes deployed all over the world. The security aspects
related to service discovery is out of scope of this study.
To our knowledge, the first study dealing about security and particularly privacy for
distributed and scalable discovery architectures is proposed by Cardoso et al. [CAR07]. This
solution is an extension of the MUSDAC [RAV06] middleware platform that enables an intra-
domain and intra-network interaction between different service discovery protocols. In each
local network a MUSDAC manager is deployed on top of the existing discovery protocols and
provides a flexible interface to handle discovery and access requests of all the elements
present in the network. This manager is connected to a bridge in order to expand the service
discovery scope to other networks and domains. Extending the discovery scope to other
domains raises new privacy issues regarding the dissemination of discovery information may
contain private data that should be protected from the access of non trusted entities. Authors
address this issue by proposing a trust model regulating the execution of the discovery
process. Depending on the trust degree expressed by a user towards a foreign domain four
security mechanisms can be gradually used to protect the service request and access.

C. Distributed Architectures for Service Discovery
The main motivation of this paper is to achieve scalable and distributed service discovery.
Most of the scalability studies in the domain suggested the usage of distributed registries.
Registry distribution must rely on a specific deployment architecture and specific indexation
and routing mechanisms. Three architectures can be used to deploy distributed registries (see
Figure 35):

Flat: all the registries are interconnected and can communicate through broadcast or
multicast. There is no specific indexation/retrieval strategy; in case of new service
request addressed to one of the registries registry that does not store the relevant
information about the requested service, this one will forward the request to the other
registries in order to find a matching to the query. Such an architecture might work for
a small number of registries (less than 100) but it becomes inefficient for a huge
number of registries where the anarchic indexation/retrieval strategy generates an
overhead in the network and a latency message delivery.
Hierarchical: the deployment strategy of the registries corresponds to an n-ary or
binary tree in which data is indexed following to a data structure distributed
hierarchically through tree nodes. Indexation and retrieval operation will cost at the
worst case log(n) operations. In terms of scalability and indexation performance this
architecture overcomes the limitations of the flat architecture. However, in case of a
registry failure or shutdown the recovery process can be very costly and requires a
replication systems and an important signaling procedure. This could affect the service
discovery availability and could lose some important data.
P2P using DHT: an alternative architecture currently used in file sharing applications
relies on Distributed Hash Tables (DHTs) for indexation and retrieval. Each peer in
the system (a peer is a registry in our case) is in charge of indexing and maintaining
the mapping from names to values. This indexation is distributed among the nodes, in
such a way that a change in the set of participants causes a minimal amount of
disruption. This allows DHTs to scale to an extremely large number of nodes while
handling continual node arrivals, departures, and failures. This architecture enables to
handle thousands of registries with millions of data entries.

DHT based systems are clearly the most appropriate solution for deploying a scalable and
robust service discovery system and the rest of this paper discusses which security measures
can be adapted to their use.

99

Figure 35 : Alternative architectures for distributed registries

D. Technical Background

1. Onion Routing
Onion routing [GOL96] is a scheme for anonymous communication in which users can
communicate while hiding their identities from third parties. This approach is called Onion
Routing, because it relies upon a layered object to direct the construction of an anonymous,
bidirectional, real-time virtual circuit between two communicating parties, an initiator and
responder. Onion Routing hides routing information through the routing of an encrypted data
stream follow a path through intermediary nodes until the destination. To begin a session
between an initiator and a responder, the initiator node identifies a series of routing nodes
forming a path to the destination. The initiator constructs an onion message which
encapsulates that path. Figure 36 illustrates an onion constructed by the initiator Node W for
an anonymous route to the receiver Node Z through intermediate routing nodes X and Y. The
initiator then sends the onion along that route to establish a virtual circuit between himself and
the receiver Z.

Figure 36 : Onion Message Format [GOL96]

The onion message structure is composed of a superposition of encrypted layers. The core of
this onion contains the clear message to send. The basic structure of the onion is based on the
route to the receiver that is chosen by the initial sender. Based on this route, the initiator
encrypts first for the receiver, then for the preceding node on the route, and so on back to the
first routing node to whom he will send the onion. When the onion is received, each node
knows who sent him the onion and to whom he should pass the onion. But, he knows nothing
about the other nodes, nor about how many there are in the chain or his place in it. The virtual
circuit established between the node W and the node Z is described in the Figure 37.
The most famous anonymity software using this technique is TOR6 (The Onion Router) that is
originally sponsored by the US Naval Research Laboratory that actually becomes an open
source project.

6 http://www.torproject.org/

Flat
Hierarchical DHT

100

Figure 37 : Onion Routing Virtual Circuit [GOL96]

2. Distributed Hash Tables (DHT)
The distributed hash table (DHT) is an indexing and location system dedicated to P2P
information storage. This distributed system provides the possibility for a user (node) to
efficiently retrieve the value associated with a given name. DHT-based indexing systems
provide interesting properties related to the scalability because it should efficiently work for
millions of users and data. The behavior of the system is strongly dependent on the
collaboration of nodes; each node with a fixed identifier is responsible for a range of key
values representing a pointer to a stored element. Each stored element has an index value
represented by a hash key, the whole key range are represented in a keyspace. The entire
keyspace is partitioned among the participant nodes; each node is in charge of a partition. The
whole nodes identifiers are virtually represented as a circle in which each node has a specific
place. This virtual circle is used to facilitate the node position lookup. If a new element is
added to the system, the name of this data is hashed, and then depending on the hash key
value, the pointer to the data will be affected to the nodes in charge of the correspondent key
range. In order to retrieve this data, a hash key is generated from the requested name, and
depending on the value of the obtained key we can get an indication about the nodes in charge
of maintaining the information related to the stored data, then the request is routed to the
correspondent node that will give back the pointer to reach the queried element.
Figure 38 shows an example of an indexing circle containing 4 nodes sharing the entire
keyspace. A new key injected to the system is assigned to the first node whose identifier is
equal to or follows the hash value of the key. The key 2 is assigned to the node 6 and the key
9 to the node 12. If a request is concerning a key value 16 the request is routed to the node 20
that should holds the pointer to the requested element.

101

Figure 38 :DHT indexation

DHT based systems provide many interesting characteristics that can be exploited in service
discovery mechanisms:

Decentralization : many autonomous clients without a central control
Scalability : the system has to adapt large extensions of peers
Fault tolerance : the network must be resilient, especially in regard to stale peers
Load balancing : routing messages have to be balanced to reduce the network
overhead

E. Requirements
Scaling the discovery system does not mean scarifying its security. In the centralized registry
based solution described in chapter Chapter III, as the registry (trusted third party) remains
local it is in charge of establishing a secure channel between clients and servers by
authenticating then establishing a trust relationship between different actors of the system. As
soon as the discovery system deals with multiple distributed registries it becomes to be a hard
task to establish a trust relationship with all these registries. For theses reasons the distributed
discovery system must fulfill the following requirements:

Scalability: no limitation related to the network size and the elements number.
Efficient intra domain lookup: no restrictions for the request scope
Efficient matching and indexation: avoiding collisions and bad matching performance
values
Privacy protection:

- Protecting requests coming from clients: nobody must know who is
looking for what

- Protecting service publishing: restricted services must be protected against
unauthorized discovery

Authentication: implicit or explicit authentication for the trust establishment
Access Control: only authorized entities must be able to discover restricted resources
(requests and publications).

F. A Scalable Distributed Registry-Based Model

1. Indexing and Data Retrieval
The principal motivation of this solution is to make the service scalable and distributed. For
this reason we selected the most scalable and the most reliable technology actually deployed

102

for the distributed indexation: the P2P indexation and retrieval system based on DHTs called
Kademlia [MAY02] that provides a P2P storage and lookup protocol. This protocol is installed
as an external interface for all the registries involved in the discovery system and scattered all
over the world. Using this interface, active registries can permanently update information
about the stored data like every P2P client using a file sharing system. In case of a new
service publication, the registry stores the new entry locally. It then hashes the description
name of the new entry, and finally sends the key (with a pointer to the service entry) to the
appropriate registry in the indexing circle. If a client sends a service discovery request to the
local registry, this one tries to find the service entry locally otherwise it hashes the query
contained in the request and forward the request to the registry in charge of the hashed key
value that points to the final registry holding the appropriate information.
For this purpose we reuse the same message format used in Kademlia:

STORE: To publish a <hkey, value> pair, the registry locates the k closest nodes to
the key and sends them STORE RPC messages.
FIND_NODE: To retrieve the node in charge of the hkey corresponding to a published
service the requesting registry sends a FIND_NODE message containing a triples (IP
address, port, nodeID) for the contacts that it knows to be closest to the key.
FIND_VALUE: If a corresponding value is present on the recipient node, the
associated data is returned. Otherwise the RPC is equivalent to a FIND_NODE and a
set of k triples is returned.

2. Algorithms for inter-registry Indexing and Data Retrieval

Inserting a new node: Each registry/node maintains a routing table useful to locate
other registries/nodes of the indexation circle. If a new node joined the system these
routing tables must be updated. In practice the routing table used by a node does not
point to all the nodes of the system (millions of nodes) but just to a few nodes
representing a routing zone (similar to traditional routing tables for network routers).
If a new node joined one of these routing zones, his positions must be added to the
routing tables of the other nodes. The algorithm describing a new node insertion is
described in Figure 39.

Algorithm 4: Insert Node()

0. Begin
1. | if contact exists then
2. | | update contact information (IP address, keys, pointers);
3. | else
4. | | create new entry to the table;
5. | | insert the node contact information (IP address, keys, pointers);
6. | endif
7. End

Figure 39 : Algorithm for node insertion

Publishing a new entry: The registry receiving a new service publication will
forward this new entry to the appropriate registry in the indexing circle. If the entry
already exists the information will be updated. The algorithm describing a new key
insertion is described in Figure 40.

103

Algorithm 5: Adding new entry (key)

0. Begin
1. | if keyword had already sources then
2. | | create a new pointer for the existing keyword
3. | else
4. | | Add new <keyword, pointer> to the local record
5. | endif
6. End

Figure 40 : Algorithm for Key insertion

G. Securing the Access to Distributed Registries
Now the indexation and retrieval part of the discovery system is scalable, the next objective
concerns the protection of the users against potential threats that could affect publish/request
steps of the discovery.

1. Need for Anonymity
In the chapter Chapter II and Chapter III discovery mechanisms are relying on cryptography,
security policies dedicated to the discovery, and trusted registries. These security mechanisms
are preventing against eventual threats and attacks but they are limited to a local application
(LANs, PANs, home networks). Reusing the concept of trusted registries with thousands of
registries across the world introduces management limitations regarding to discovery policies
enforcement. Using Attribute based encryption to hide the content of exchanged messages
makes it impossible for a non trusted registry to match between clients requests and services
profiles. In [TRA07] we proposed a first solution that relies on attribute based encryption
applied on messages exchanged between registries although with keeping a part of the
messages in clear to enable matchmaking. In this solution it is possible for an attacker that
analyses the traffic to get information about the client’s intentions (who is looking for what)
and also to retrace the addresses of the node publishing services. Globally this solution is
scalable enough, but not sufficiently secure.
For this reason, we decided to improve this solution by adding anonymity for the senders in
order to anonymously reach the registry without hiding matching elements. Numerous
anonymity techniques exist to protect the anonymity of the senders. The easiest technique is
the proxy-based solution, in which proxies are placed between the endpoint users and the rest
of the networks in order to relay all the traffic issued by the users without showing the
original address of the initiator. This technique requires the deployment of one proxy per user
and does not protect against local traffic analysis that could be used to identify the initiator
address. To overcome these limitations, another concept appeared called the “mix technique”
that consists in creating a non direct path between the sender and the receiver in which a
number of relays will exchange the initial message and each relay hides the information about
the previous relay. With this configuration each node only knows the previous and the next
relay, and the final receiver will not be able to retrace the route of the message in order to
identify the sender. Variants of these concepts are Onion Routing (described previously),
Chaum Mixes [CHA81], Web-Mixes [BER01], SG Mixes [KES98] and Crowds [REI98]. All of
these solutions provide a scalable and efficient mechanism for anonymising a forward path
between a sender and a receiver, but there are some limitations concerning the backward path
for which these systems do not provide any particular protection. Kate et al. [KAT07], [KAT08]
fixed this problem with their new version of the onion routing protocol called “pairing-based
onion routing” in which they rely on pseudonyms to identify the nodes involved in order to
facilitate a two way anonymous path construction. This protocol is described in the next

104

section. We chose to integrate this anonymity mechanism for a secure service discovery
system relying on DHT-based registries.

2. Pairing-Based Onion Routing
This section describes how the pairing-based onion routing protocol works.

Pseudonyms and key agreements: in order to protect the anonymity of users
involved in the system, each node chooses for itself a pool of pseudonyms for which
they will generate private keys. These pseudonyms will be announced to the other
nodes of the systems. When a node A wants to contact another one B, A will use the
pseudonym of B as a session key KBA to encrypt the secure forward message. At the
same time B using the pseudonym of A and his own private key to build the backward
session key KBA used to secure the backward path.
Circuit construction: before staring the contribution to the routing system, a user has
to create a set of routes (information provided by directory servers providing a list of
available routes). After choosing a circuit, the user has to generate the appropriate
session keys related to pseudonym of each node involved in the system in order to
encrypt the onion message. If one of the involved nodes receives the message, he will
decrypt his onion layer with his private key, then derives the backward session key,
and forward the message to the next pseudonym. Figure 41 illustrates an example of
the circuit construction.

Figure 41 : Pairing-based onion routing circuit [KAT07]

3. Anonymizing Publish / Request Messages for the Service
Discovery

In this section we describe in details the mechanisms used to protect service discovery
message exchange with a distributed DHT-based registries that we propose.

Protecting the publish message: let us assume that a server wants to publish a set of
restricted services in some untrusted registries. First, this server will encrypt all the
data related to the identity, the location and the methods provided in his services. In
this case only encryption can hide this kind of information. An ABE encryption can
be applied to this part of the publish message taking as an encryption key argument
the profiles of the users that are allowed to decrypt the message and to discover the
services. A part of the publish message must remain clear in order to enable an easy
matching for the registry. In order to be authenticated by the client, the server has to
sign the publish messages of his services using the private keys related to his service
profiles. An illustration of a partially encrypted publish (WS-Discovery Hello

105

message) message restricted to users with role {professor} can be built as described in
Figure 42.

<s:Envelope>

 <s:Header>Encrypt[Header]{Professor}
</s:Header>

<s:Body> <d:Hello>

 <a:EndpointReference>

Encrypt[EndpointReference]{Professor}
 </a:EndpointReference>

 <d:Types>Printer</d:Types>

 <d:Scopes>University</d:Scopes>

 <d:XAddrs>

Encrypt[XAddrs]{Professor}
 </d:XAddrs>

</d:Hello></s:Body></s:Envelope>

Figure 42 : Publish message structure

Anonymous publishing of services: After securing the publish message the server
has to send it to the local registry without giving information about the identity and
the endpoint address of the services that could be deduced by correlating the service
description (clear text in the message) and the address from which the message is
sent. For this reason the server will select an onion routing path using the pseudonyms
of the others nodes belonging to the same registry. This anonymous path is used to
forward the message to the registry without any possibility for the registry to guess
about the server address and the location of the restricted services. The anonym
reverse path is used to send back a publication acknowledgement containing a unique
identifier that could be used by the server in order to update his services or deregister
it. Figure 43 details the message sequence to perform an anonymous service
publication using i >3 intermediary onion routing nodes.

Figure 43 :Anonymizing Publish Messages
Protecting request message: in order to authenticate the published services and
verify the authenticity of the published services, a user can verify the ABE signature
of a selected service by using the description attributes of the service as a key for
signature verification. For this reason, the request message does not need to be
encrypted. Only correlation between the requested service profile and the user’s
address must be prevented by making the request anonymous.
Anonymous service request: the same anonymity method is used for the request
and the publish actions. Before contacting the local registry, the request message must
be routed through an onion mix to prevent any attempt of correlation between the

106

requested service and the requester identity. In this case the user has to choose a path
to the registry according to the pairing-based onion routing protocol.

Figure 44 : Anonymising Request Messages

H. Architecture for a Secure Distributed Registry-Based
Service Discovery

In this section we describe the different steps executed during a secure service discovery
relying on untrusted distributed registries (see Figure 45). We also analyze and explain the
behavior of the system and how the different elements of the architecture can interact with
each others. As we explained previously our system relies on an important number of
untrusted registries distributed all over world wide network. These registries are
communicating through Kademlia for an optimal indexation and retrieval of services. Clients
and services have to anonymize their requests before accessing to their local registry in charge
of publishing and retrieving services. In this case we suppose that clients and servers have a
prior knowledge about the location of the local registry.

Figure 45 : Architecture for a Secure Distributed Registry-Based Service Discovery

Setup: Clients and services have to create their list of anonymous routes by requesting
the pseudonyms of the nodes depending on the same local registry.

107

Step (1) the Server choose one or more anonymous path to the local registry then
generate the publishing message according to the nodes pseudonyms of the chosen
route. The publish message is routed anonymously to the local registry that decrypts
the content and store the service entry locally. The registry sends back an
acknowledgement and a unique ID through the same anonymous path.
Step (2) after storing the service coordinates the registry hashes the service description
attributes. The hash key obtained is published into the appropriate registry in charge of
this hash key value.
Step (3) the client choose one or more anonymous path to the local registry then
generate the request message according to the nodes pseudonyms of the chosen route.
Step (4) the registry matches locally the request with the published service profiles. If
the service does not exists locally, the registry hashes the request attributes to obtain a
key. The local registry contacts the remote registry in charge of this key value in order
to get the location of the registries that store the information about the requested
services.
Step (5) the local registry contacts the remote registry holding information about the
requested services. The remote registry matches locally the request and sends back a
response containing the entry related to the requested service.
Step (6) the local registry send back the response to the client using the same
anonymous route initiated by the client.

I. Security Evaluation
In this chapter we propose evaluate the security requirements fulfilled by this security
solution.

Theorem 1 it is impossible for a user intercepting a clear message in the P2P network
to identify the service provider/ requester.

Proof- private information contained in clear exchanged messages are no more labeled as
private since the data holder is completely anonymous. Due to the onion based anonymazing
system deployed on the back-ends of the network, an attacker intercepting these data is not
able to make a link between users involved in the system and the discovery data exchanged.

Theorem 2 Private services are not accessible for non authorized users.

Proof- a server publishing private services has the possibility to encrypt the service profile to
be published using ABE encryptions scheme in order to restrict the access for the discovery of
his service to authorized users. Only meta-date related to the matchmaking is kept in clear.
Only user corresponding to the restricted profile and keeping the corresponding ABE private
key of this profile are able to access to service description.

Theorem 3 Fake published services are avoided by users

Proof- after receiving a response related to his service request, a client will verify the ABE
signature attached to this response and verify if it corresponds to the requested service profile.
If it is not, the response is ignored by the client.

Theorem 4 Non-trusted registries are not able to identify messages sources and
destinations

108

Proof- Since all the discovery messages are anonym the registry can not affect the privacy of
the participants. Only anonym data is handled by the non-trusted registry.

J. Performance and Results

1. Pairing-Based Onion Routing Costs
The measurements values of the pairing-based routing mechanism are strongly dependent on
the number NO of onion nodes involved in the anonym path. The user has to generate the
keys of each node in the path, then after sending the message to be routed each node has to
decrypt his dedicated part of the message then forward it to the next node in the path and
those for forward and backward direction of the routing. Table 5 presents the measurements
results obtained during tests gathered on a 3 GHz Pentium D.

PB-OROperation Time
Sender Onion Node

Pairing 2.9 ms 0 1
Multiplication in G 1.0 ms NO 0

Exponentiation in GT 0.2 ms NO 0
Total Time (ms) 1.2 NO 2.9

Table 5 : Pairing-based onion routing time measurements

2. Kademlia Request/Response Costs
In order to evaluate the latency of a request response in the wide world Kademlia network we
generated 500 requests containing words extracted from a dictionary and we evaluated the
mean latency time between the moment when we sent a request and the moment when we
received the related response. The average latency time obtained with this test is evaluated to
7.2851 s, representing the mean of the whole requests obtained and described in Figure 46.

Figure 46 : Lookup Latency for a Keyword in KAD

109

K. Conclusion
In this chapter we proposed a scalable solution for securing service discovery without relying
trusted registries. This solution is based on two topologies models: the first one related to the
back-end access in which clients and servers are publishing and requesting services to the
local registries in an anonymous way using onion based routing. The second topology model
is related to the edge inter-domain routing over which all the local registries spread in the
wide world are able to communicate and exchange discovery information using a P2P
metadata exchange protocol (Kademlia) that enables a scalable and efficient indexation and
retrieval of services profiles. Allying anonymous routing and P2P indexation this solution
enable a real scalable and secure service discovery mechanism deployable every where
independently from the domain and the network.

110

111

Chapter V. A Performance Analysis of Secure Service
Discovery Solutions

A. Introduction
The deployment of ubiquitous computing systems and the trend towards Service Oriented
Architectures will undoubtedly generalize the need for discovery mechanisms as essential
components for locating ambient and location-based services. Service discovery in a network
can be implemented in two manners, first using a decentralized architecture relying on point
to point (broadcast) or point to multipoint (multicast) communication, and second using a
centralized architecture based on an identified registry relied upon by users and servers to
facilitate discovery request matching. The choice of an appropriate architecture to enable an
efficient service discovery highly depends on the deployment environment (LAN, wireless or
ad-hoc communications, Internet, VPN, etc.) and on parameters like the expected number of
users and services, the type and amount of resources available (CPU, memory …), and the
power consumption. This section introduces Markovian models that aim at assessing the
impact at the application level of introducing security mechanisms, for both centralized and
decentralized service discovery. Focusing on the application level, i.e., neglecting network
artifacts such as delay or losses enables us to delineate network effects from the impact of
security mechanisms in terms of processing overhead for the nodes in the system.

B. Related Work
These studies aim at getting a better understanding of the phenomena observed during
discovery like message loss, faults, delays, or saturation, so as to select the most efficient
service discovery mechanism for a given application.

1. Matching Strategies
[LUO04] and [BAR03] present simulation results and performance evaluation of several
matching strategies called post-query strategies. They tested five strategies with two routing
protocols (DSR and DSDV): the greedy strategy where all nodes broadcast queries and
announcements in the network (flooding). The incremental strategy where each node
broadcasts to a small set of other nodes. The uniform memoryless strategy announcements are
sent to a random number of nodes. With memory strategy is similar to previous one but the
nodes maintain a record about the visited nodes. This study compares the query success rate,

112

the number of transferred messages and the average waiting time. Still, this work focuses
more on message propagation during discovery than the discovery process in itself.

2. Fault Tolerance and Crash Robustness
[DAB03] introduces a service discovery performance model that makes it possible to predict
discovery service failure and overloading in real time. Authors propose to apply fault, crash
and recovery rates during the simulation of a discovery process over centralized and
decentralized architectures. These rates make it possible to observe which configuration is
reliable and fault-tolerant. The results provided in this paper suggest that a decentralized
architecture yields better robustness than a centralized one.

3. Publishing and Retrieval Time
[ABB07] focus their study on the performance evaluation of the service publish and retrieval
time. Authors compared three discovery protocols: Bonjour [BON], Avahi and Free-Pastry and
simulate their behavior. According to their results Bonjour provides a better performance for
the registration and retrieval time.

C. Modeling Secure Service Discovery

1. Centralized Discovery

a) Description
Our security solution designed for a centralized configuration and described in chapter
Chapter III relies on security policies provided by clients and services. Registries have to be
considered by services and clients as a trusted third party whose role is no more limited to a
basic matchmaker, but which evolves to a security guarantor. In this configuration, clients and
services first establish a secure connection (e.g., SSL) with the registry to protect the
confidentiality of the exchanged messages. Servers can restrict the discovery of their services
to only certified users by specifying a security discovery policy to be enforced by the registry.
Clients are also able to restrict the matching scope to some certified services by specifying a
security discovery policy also enforced by the trusted registry. Both clients and servers have
to provide credentials issued by a known authority that can be used by the registry to
authenticate them during the policy verification phase.

b) Model

Figure 47 : Centralized Model
Figure 47 presents the processing phase of a secure client service request at the registry for a
centralized configuration in case of a single-threaded registry, a sole thread is in charge of all
processing steps.
The discovery process consists of these steps:

113

1. Client service discovery requests arrival: requests are assumed to be generated
according to arrival process with a rate .
2. Buffering: The registry can temporarily store the requests to be processed by the
central unit. Messages are served in a FIFO manner.
3. Request processing: the registry first matches a client request with the service profiles
available locally. The matched service will be authenticated in order to verify its compliance
with the security policy provided by the client. If the verification is successful, the registry
also has to further authenticate the client in order to verify its compliance with the security
policy provided by the service. The corresponding service time is a random variable with a
mean value 1/ .
4. Probabilistic decisions (acceptance or rejection): q1 is the probability that a service
matches with a client request and also be compliant with its policy. q2 is the probability that a
client be compliant with this service policy.

2. Decentralized Discovery

a) Description
The security solution proposed in the chapter Chapter II for a decentralized configuration
relies on a particular usage of the Identity Based Encryption mechanism. The server
advertises its service capabilities by multicasting its profile to the entire network. Clients can
cache service information or ask for a specific service by multicasting its requests to all
available servers and only concerned services will respond to him. With no possible reliance
on any third party in ad-hoc configurations, clients and servers now must assure their own
secure service discovery using a particular encryption scheme. Attribute Based Encryption
(ABE) is adopted to make it possible for a server to encrypt its service description according
to the restrictions imposed to users (i.e., only a class of users holding corresponding private
keys will be able to access to services information). Clients also can use the same encryption
mechanism in order to protect their request messages from unauthorized servers (i.e., only a
class of servers is able to decrypt the request).

b) Model

114

Figure 48 : Decentralized Model
Authentication and policy verification computing time are now replaced with encryption and
decryption time. The fact that the request is routed using multicast adds complexity to the
event handling. In a decentralized architecture, nodes usually have limited capacities as
compared to a registry: For this reason, we considered in our model that servers do not buffer
new requests when they are busy. In Figure 48, the execution takes this order:
1. Client service discovery request arrival: requests are generated according to an arrival
process with rate .
2. Servers message processing: all the available servers are contacted by the client via
multicast. Each of these servers has to decrypt the messages in order to authenticate and
access to client’s request. The time to decrypt is assumed to be a random variable with a mean
value 1/ 1.
3. Service authentication: q1 is the probability to successfully decrypt a client request. In
case of success the server has to encrypt the response message to the client.
4. Client authentication: q2 is the success decryption probability of a client.

3. System Model Assumptions
We make the following assumptions concerning the service demands and the processing for
the service requesters and service providers.

Processing Time. As described above, servers and clients must both perform some
tasks during the discovery process. In the distributed configuration, processing time is
essentially dedicated to encryption and decryption tasks. This processing time is
variable for each message (message length, key length, padding size …), and also
variable for the same message and the same encryption/decryption key. This
variability is exemplified in [HEN05], in which we can observe an event independent
duration time for Encryption/ Decryption actions. We model processing time in our
decentralized model as an exponentially distributed random variable with mean 1/ .
In the centralized configuration we observed that the processing time is strongly
correlated with the policy size (number of conditions/attributes to be checked) and
does not vary for a given policy size. We assume enough diversity in the distribution
of policy sizes to model the processing time as a random variable that we further
assume to be exponentially distributed for mathematical tractability in our Markov
models.
Inter-arrival Time. We assume clients request to follow a Poisson process with rate
.

Traffic class. For a decentralized scenario, some servers could be more popular than
others. In this case, the matching probability with the clients request is higher for
popular services. To model this popularity, traffic classes could be used to distinguish
between these services. The model described in this paper assumes that all services
have the same popularity, or to put it differently, focuses on the performance of an
average client.

D. Markovian Model
In this section we present Markovian models for the centralized and decentralized secure
service discovery systems. We use networks of queues to model both approaches.

1. Markovian Centralized Model

For each request, the CPU of the registry is assumed to perform one or two authentication and
policy verification cycles (since we assume that the registry is adopting a mono-threading

115

strategy for the request processing). The first cycle corresponds to service authentication,
while the second one corresponds to client authentication. We model these two cycles using a
bi-dimensional Markov chain (see Figure 49).
The first dimension of the Markov chain (A) represents the number of requests stored in the
cache and the number of requests currently processed (0 or 1).The second dimension of the
Markov chain (B) is a Boolean representing the request in the second processing cycle. If B =
1, the parameter A represents the number of requests in the cache. If B = 0, A represents the
number of requests in the cache plus one request in the first cycle processing state. For
instance, the left upper state in Figure 49 corresponds to A = 0 and B = 0.

a) Markov Chain

Figure 49 :Centralized Markov Chain Model

Figure 49 is the Markovian representation of the centralized system outlined in Figure 47.
Client requests are entering the system according to a Poisson process with rate . The
parameter A is the first to be incremented. After an authentication and verification first cycle
(exponential with rate), the system moves to the second authentication and verification
cycle with a probability q1 (B = 1) or the client is rejected with a probability (1-q1). If B = 1
and a new request reaches the registry, only A will be incremented.

b) Numerical Resolution
The bi-dimensional Markov chain described above is not easy to resolve using balance
equations for the stationary distribution. We used a transition rate matrix and transition rate
diagram to resolve numerically the system with the Gauss-Seidel method. The transition rate
matrix Q is written by:

116

|................
|...............|

|.........

........

1

2
221

112
1

T

TT
TTT

i

j
j

j
j

ij

Q

Where Tij is the transition rate between state i and state j
Q can be decomposed as:

DULQ ; where D is a diagonal matrix, L is the lower part of Q and U is the upper part of
Q. In a stationary regime the steady state probability vector P can be written as follows:

ji
ij

n
i

ji
ij

n
i

ji
ji

n
j

nnn

TPTP
T

P

DUPLPP

PLUPDPQP

)1()()(

1)1()(

1

..0.

Equation 1

The steady state vector P is used to calculate the different performance parameters of the
system, including the rejection rate, the server usage rate, the mean number of users, the
acceptance rate, the authentication rate, etc.

2. Markovian decentralized Model
Since we do not account for network effects, especially delay and losses, we assume that each
client request reaches all available servers simultaneously, through some multicast
communication scheme. For each request arrival the number of busy servers is equal to the
total number of servers in the system. Each server independently processes the request. After
decrypting the message, a server will generate a response, encrypt it, and send it to the client.

a) Markov Chain

Figure 50 : Decentralized Markov Chain Model

The Markovian chain in Figure 50 represents parts 1 and 2 of the model described in Figure
48. Each state of this linear Markov chain represents the number of occupied servers. Part 3
and 4 of the Figure 48 are represented by the two states Markov chains in Figure 51.

117

Figure 51 : a – Encryption Markov chain; b - Decryption Markov chain

The request arrival rate Xe1 represents the output rate of the linear chain in Figure 50. The
encryption Markov chain (Figure 51-a) is used to evaluate the impact of the server encrypting
time on the system. Xe2 represents the rate at which encrypted messages can be sent from
servers. The decryption Markov Chain (Figure 51-b) is used to evaluate the impact of the
decryption action performed by the client when it receives the encrypted response from the
server.

b) Numerical Resolution
The Markov chain representing the system is linear. For this reason, it is easy to calculate the
steady state probability vector P using balance equations:

nnpnnp

pp
pp

)()1()1(
...........

2).2())(1(
)1()0(

The steady state probability vector P can be written:

i

k

p
k

kip
1

)0(.)1()(

With

n

i

i

k

n

i

k
k

pip

1 1

0 1)1(
1)0(1)(Equation 2

E. Matching Probabilities
The probabilities q1 and q2 described above represent the probability for a client or a service
to obtain a successful matching (including authentication, access control, and decryption) with
security policies protecting the access to resource profiles. This probability depends on the

118

number of elements of the systems and on the volume of vocabulary known by each element.
The vocabulary volume is the amount of data knowledge related to a certain domain. For
example, a subset of the medical vocabulary (scanner, radiology, dermatology, cardiology
etc.) can be related to the services deployed inside a hospital building or the roles of users
(surgeon, patient, etc.). In analogy to such concepts, we define a vocabulary as the global set
of possible identities or roles in a system. The subset of this vocabulary is represented by the
group of identities and roles existing in the system.
The probability to match an element (client or server), represented by a group of attributes x
in a system, is defined by the probability P that these attributes belong to the subset
vocabulary C part of the general vocabulary V:

1;

1;

:
xsize

xsize
V
C

xP

C
C

x

V

x
C

Equation 3

F. Model Validation
In this section, we consider several scenarios to compare the results obtained with our
simulator (described below) and with the Markovian models presented in the previous section.
For a complete validation, we have considered a large set of the system parameters by varying
values like arrival rates, processing time, acceptance probabilities … These scenarios are not
necessarily realistic but they aim to provide as complete as possible validation of our
analytical models.

1. Java Simulator
In order to study the behavior of a system under various conditions, simulation is usually
considered as a realistic solution to provide the expected performance measurements. A lot of
network-oriented simulator tools are available but they are not really adapted to model
security mechanisms (like encryption, authentication, access control…).For this reason we
implemented our own event-driven simulator in Java using the SSJ [SSJ] Java library for
stochastic simulation. This library provides methods for generating random variables,
computing different measures related to probability distributions, performing goodness-of-fit
tests.
The simulator is configured according to the models described in section Chapter V.C. The
request source is represented by a generator that creates a new Client message structure
entering the system every arrival time period (according to a Poisson process). In the
centralized configuration the registry processor is represented by random variable generator
that generates a uniform processing time values. In the decentralized configuration an
exponential time generator is used for the same purpose. All the events of the simulator are
collected by a scheduler that memorizes the arrival time of each client, the processing time of
each request, the number of rejected requests, the number of successful matchings. All the
data acquired with the scheduler are reused to compute the performance parameters described
in the next section.
In order to verify the correctness of our self made simulator we compared our performance
results with those obtained with the Java Modeling Tool (JMT) [BER07] that is a simulator for
performance evaluation of queuing networks. We focus on the decentralized model that can
be easily simulated using JMT unlike the centralized model for which the step 4 of the Figure

119

47 cannot be represented using the JMT simulator. This is one of the reasons that encourage
us to develop our own simulator.

2. Rejection Rate
In Figure 52 and Figure 53, we compare the average rejection rate representing the probability
for a client request to be rejected from a server before the processing phase. Rejection occurs
when all the servers in the decentralized model are busy, i.e.,

NPRd Equation 4

And when N places of the cache of the registry in centralized model are occupied, i.e.,

)1,()0,(NPNPRc Equation 5

After setting the processing rate time to 0.2 (5 seconds on average to process a message),
we varied the request arrival rate from 0.1 to 0.3 (10 seconds to 3.33 seconds of inter-arrival
time) with an increment step of 0.01 in order to study different cases of system load: for
instance, 0.1 corresponds to a light load while 0.3 corresponds to a heavy load. We also varied
the number of servers and the buffer size at the registry (5, 10, and 20 places). The
authentication probabilities (q1 and q2) are constant and equal to 0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

Figure 52 : Rejection rate in a centralized architecture

120

0

0.05

0.1

0.15

0.2

0.25

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

Figure 53 : Rejection rate in a decentralized architecture

We observe from Figure 52 and Figure 53 a perfect matching between the rejection rate
measured by the simulator and the one computed by the Markovian model (the margin error is
0.07 %). For a distributed discovery model, the evolution of the rejection rate is linear: this
behavior is due to the fact that for every sent request, all the servers become busy at the same
time.
This means that a system administrator is able to predict in advance under which conditions
his secure discovery system might become overloaded based on the behavior described
through above and above, and which configuration is more suitable to ensure a better
availability.
A straightforward observation of Figure 52 and Figure 53 could lead to the conclusion that
rejection rate in centralized architecture is always higher the one in decentralized model.
However this comparison is misleading as in reality a registry should be much more powerful
than a server in a decentralized architecture, and action performed by registries are less
expressive in terms of computing resources.

3. Server and Resource Usage Rate
Using the same scenario as in the previous section, we now provide a comparison between the
usage rates of the servers for both architectures, in order to increase the accuracy of validation
tests. To obtain a meaningful comparison between the distributed model (S servers where S >
1) and the centralized model (1 server but N slots in the queue), we focused on the resource
usage time and not on the server usage time (the proportion of time the resources are busy).
With decentralized discovery, this usage time is equal to:

S

k
d S

kpkU
0

)(.
Equation 6

121

where S is the number of servers in the distributed system. And for a decentralized
architecture, with N the maximum capacity of the registry we obtain:

N

k
c N

kpkU
0

)(.
Equation 7

Figure 54 and Figure 55 illustrate a perfect matching between the resource usage rate
measured by the simulator and the one computed by the Markovian model (with less than
0.05% of discrepancy). We notice that the usage rate in the decentralized model is
independent from the resource size. This is due to the multicast allocation technique that
balances the resource occupation. A system administrator should therefore be able to
dimension the resources deployed in the system based on the behavior described in above and
above. Buffer size can be optimally adjusted to the traffic in a centralized scenario and an
optimal number of replicas of services (provided by the same server) can be deployed to
ensure a good quality of service.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
es

ou
rc

e
us

ag
e

Lambda

Resource usage

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

Figure 54 : Resource usage comparison in a centralized architecture

122

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
es

ou
rc

e
us

ag
e

Lambda

Resource usage

Model-10
Simulator-10

Model-20
Simulator-20

Figure 55 : Resource usage comparison in a decentralized architecture

We notice in the Figure 54 that the resource usage rate lower in 20 slots buffer when < 0.13
and becomes higher when < 0.13. This is however misleading as the number of free slots
remains higher in any for a 20 slot buffer in any circumstances. For instance when = 0.1, in
a 20 slot buffer, 17.6 places are free while 3.5 places are available in a 5 slot buffer. But if =
0. 4 places remain free 3 in a 20 slot buffer as compared to 1.5 for a 5 slot buffer.

G. Performance Analysis
The performance study detailed below answers the following determinant questions for
selecting one of the two secure solutions to service discovery: in which conditions is the
request rejection rate better or worse? Which model is able to serve the largest number of
clients? What is the fastest approach? What is the impact of a variable number of servers in
the system? What is the impact of the matching probabilities on the performance?

1. System Setup
This relies on measurements obtained on real systems as published in previous studies.

Centr1 Decentr1 Centra2 Decentr2 Centr3 Decentr3 Centr4 Decentr4

0.5 40 0.5 40 0.5 40 0.5 40 0.5 40 0.5 40 0.5 40 0.5 40

1 14.28 2.5 14.28 2.5 14.28 2.5 14.28 2.5

2 - 20 - 20 - 20 - 20

V 10 10 10 10 20 20 20 20

C 5 5 8 8 16 16 5 5

q1 0.5 0.5 0.8 0.8 0.8 0.8 0.25 0.25

Buffer Size 2-5-10 -
2-5-10 - 2-5-10 - 2-5-10 -

Table 6: Values of the input variables used in the tests

123

Four test scenarios are described in Table 6. The Attribute Based Encryption/Decryption
duration are excerpted from [HEN05] according to set values for x={1,2,3}. We experimented
with XACML policy reasoning and enforcement ourselves as detailed Table 4. The arrival
rate of client requests, the number of services, the vocabulary size, and the matching
probability q1 are variable in our tests.

2. Rejection Rate
We compare the average rejection rate representing the probability for a client request to be
rejected from a server before the processing phase. Rejection occurs when all the servers in
the decentralized model are busy, and calculated according to the equation above. When N
slots of the registry cache are occupied in the centralized model, the rejection rate is
calculated according to the equation above.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

124

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

Figure 56 : Rejection rate curves for the four test scenarios

Figure 56 shows that the rejection rate due to a lack of resources is invariant for the
centralized model in case of a fixed buffer size; in contrast, as the buffer size increases, the
rejection rate reduces. Regarding the decentralized model, Figures 56-a, 56-b, and 56-c show
that the rejection rate is strongly dependent on the number of servers deployed. As the number
of servers increases, the rejection rate decreases. Figure 56-d shows that probability q1 does
not affect the rejection rate for the decentralized model but clearly impacts the rejection rate
for the centralized model. We can conclude that the decentralized system is more suitable in a
system with a large number of servers.

3. Average Number of Users in the System
The average number of users Q present in the system is the temporal mean N(t) of the number
of users observed in the system over period [0,T].

n
TnTn

T
TQ ,1

Equation 8

In the centralized Markov chain model, Equation (4) can be written as:
Nbuffer

n
c npnpnQ

1
1,0, Equation 9

In the decentralized Model this equation becomes:
Nservers

n
d npnQ

1

Equation 10

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

125

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

Figure 57 : Average number of users in the system for the four test scenarios

Figure 57 illustrates the capacity to serve requests. In the centralized system, it is proportional
to the buffer size and to the matching probability (the bigger the matching rate, the longer
requests stay in the system). In the decentralized system, the number of users served is
proportional to the number of servers and the matching probability does not affect the number
of users in the system.

4. Service Time Duration of a Request in the System
The lifetime R of a request in the system is the mean time spent by the requests accepted and
processed during time period [0,T]. This rate can be computed using Little’s Law that states
that “the long-term average number of customers in a stable system Q is equal to the long-

126

term average arrival rate X multiplied by the long-term average time a customer spends in the
system R” [LIT61]:

X
QR Equation 11

where X is the product of the probability of at least a user being served and of the Processing
Rate. For the centralized model, the service time rate R is:

Nbufeer

n

c
c

npqnp

QR

1

.1,11.0,
Equation 12

For the decentralized model, the service time rate R is:

Nservers

n

d
d

np

QR

1
.

Equation 13

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

127

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

Figure 58 : Service time duration of a request in the system for the four tests scenarios

As depicted in Figure 58, the service time duration is strongly related to the matching
probability in the centralized model. As this probability increases, the longer it takes to
process the request. With a small buffer size, the system delivers a quicker response although
with a high rejection rate. In contrast, the decentralized model exhibits a constant service time
in every situation: this is due to the facts that tasks are distributed between servers.

5. Summary
Table 7 summarizes the tradeoffs from the performance study presented above: it lists the
effects of a change in the infrastructure on the performance parameters that influence the
quality of service of the service discovery functionality. One important result of this study is
that no single approach can satisfy the requirements of all deployment scenarios.

Performance parameters: Reject Number of users Service Time
Centralized Decentralized Centralized Decentralized Centralized Decentralized

Increased Buffer Size - = + = + =

Increased Matching
Probability = = - = + =

Increased Number of
Servers = - = + = =

Table 7 : Performance summary (C : Centralized, D: Decentralized, + : increase, - : decrease, = :
unchanged value)

128

H. Evaluation of the Impact of DoS Attacks on System
Performances

1. Introduction
 According to the security analysis of Chapter II.G and Chapter III.G, it is not possible for a
malicious user observing the system and analysing all the exchanged discovery messages to
build a software attack in order to corrupt the correct behaviour of a service discovery system.
Software attacks usually relies on a partial or total knowledge of the message parameters like
the service profile, the WSDL file, or the requested attributes in order to exploit these
information for an illegal use. For instance accessing a WSDL file provides information about
the service access functions and their parameters, with the possibility to detect holes in the
service like buffer overflow risks. The unique attack that remains to the malicious user is the
brute force DoS attack that consists in sending huge amounts of fake messages to the servers
(or the clients) in order to force them to spend useless CPU time while processing bogus
requests specially for a computing intensive operation based on cryptographic algorithms like
the one implemented in the decentralized secure solution. DoS attacks persistently emulate
several sources by either setting bogus source addresses in requests generated by a single
intruder, or by having recourse to several sources as distributed intruders. The first approach
used by DoS prevention methods consists of screening requests with bogus source
identification. A second approach to DoS prevention consists in challenging the attacker with
an anti-clogging mechanism [WAN03] in order to first add a processing cost to the requester (if
the attacks are generated from a single source) and verify the validity of the requester (if the
attacks are generated from distributed zombies machines).
In this section we present two DoS attack models for centralized and decentralised service
discovery that analyses the performance impact of brute force DoS attacks on such discovery
systems.

2. Attack Model
As detailed in the previous section, the attacks are limited to a brute force DoS attacks that
consist of injecting fake messages on the system in order to perturb its normal behaviour. We
compare two strategies: the first one we suppose that anti-clogging mechanisms are not
activated and we measure the performance parameters of an increasing fake request rate, the
second one we add a delay due to the anti-clogging mechanism also by increasing the fake
request rate. The bogus traffic is modelled with an additional traffic class with a rate attack
melt to the clean one. This malicious traffic enters the system like other traffic, until the
authentication phase in which all the corrupted messages will be dropped from the system.
We try with this comparison to observe in which conditions the anti-clogging mechanism will
be efficient in terms of performance measurements.

Figure 59 : Attack model for a Centralized Architecture

129

In the decentralized model (Figure 60) the corrupted traffic goes through all the available
services before being dropped from the system.

Figure 60: Attack Model for a Decentralized Architecture

The new traffic request rate generated by the attacker will impact on the global traffic request
rate to be treated by the system and also on the positive matching probability of the requests.
In the last section the matching provability q1 as detailed in section Chapter V.E depends on
the vocabulary size, the number of services, and the number of attributes related to the
requested services but not on the request traffic rate. This is no more accurate with the
addition of the new malicious traffic that will be automatically rejected during the matching
process as described in Figure 59 and Figure 60 for this reason the matching probability that
we note qattack is dependent on the probability q1 and the proportion of clean traffic compared
to the whole traffic:

attack
attack

qq 1 Equation 14

3. Impact of a DoS Attack for a Protected and non Protected
System

In order to study the impact of such DoS brute force attack we fixed the clean request traffic
rate to 8 for both models. The processing time values are kept as the same as used in section
Chapter V.G.1 for a non protected system, the number of servers and the buffer size (in the
centralized model) are fixed to 5 with a vocabulary size of 10 and q1 is equal to 0.5. We vary
the attack rate attack from 0.5 to 40 and finally we observe the variation of the rejection rate,
the sojourn time and the success matching probability of a request. The use of anti-clogging
mechanism like puzzle auction [WAN03] introduces an overhead for the request processing at
the entry of the system estimated by Wang et al. [WAN03] to 4.6 ms that added to the
processing time at the entry of the system.
We compare the performance parameters obtained for a protected system that uses an anti-
clogging mechanism with those obtained with a non protected system.

130

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Attack Rate

Rejection Rate

Decentralized-Attack
Centralized-Attack

Decentralized-Clean
Centralized-Clean

Figure 61 : Rejection rate

Figure 61 shows the impact of the malicious traffic on the rejection rate at the entry of the
system that raises with the raise of the amount of corrupted requests.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Attack Rate

Average Sojourn Time

Decentralized-Attack
Centralized-Attack

Decentralized-Clean
Centralized-Clean

Figure 62: Total sojourn time of a request in the system

Figure 62 shows the impact of a DoS attack on the total sojourn time of a request in the
system. We notice for the decentralized model that the sojourn time decreases when the attack
rate increases and this is due to life time of a corrupted request that is less important than a
life time of a clean request. The more there is fake requests on the system the more theses
packets are rejected from the system after the authentication and the less the sojourn time is
important. Concerning the centralized model when the malicious traffic is not important (less
than 18) the sojourn time of the clean model is low, but when the malicious traffic raises, the
number of fake requests rejected during the authentication raises and the growth of the
average sojourn time slows down. This is the reason why the curves related to the centralised
model intersect for a rate value equal to 18.

131

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

M
at

ch
in

g
R

at
e

Attack Rate

Request Matching Success Rate

Decentralized-Attack
Centralized-Attack

Decentralized-Clean
Centralized-Clean

Figure 63 : Request successful matching probabilities

 Figure 63 describes the variation of the successful matching probabilities for all the requests
generated in the system. We notice that the impact of a DoS attack critically affects the
matching probability with a difference of more than 22% between the different models. This
is due to the impact of the corrupted traffic on the reject rate and on the matching probability
described in above.

4. Summary
Adding a new traffic class representing corrupted request messages to the service discovery
performance model enable us to predict the performance degradation of the system in case of
DoS attack leaded against the service discovery system. The performance model presented in
this thesis takes also into account the overhead generated by the deployment of anti-clogging
mechanisms to counter DoS attacks.

I. Conclusion
In this chapter we introduced two analytical models to assess the impact of security
mechanisms used in both centralized and decentralized secure service discovery architectures.
This is the first such analytical study of this problem to our knowledge. Results provided by
our Markovian models are extremely important to determine whether a centralized or
decentralized strategy should be used to deploy services. They make it possible to undertake a
systematic study of the robustness, efficiency, resource consumption, availability, message
size, or acceptance rate in a SOA architecture, these performance parameters being easily
computed thanks to the analytic approach. An important issue of this performance model was
to extend the modelling tool in order to assess the impact of DoS attacks that could be
addressed against the service discovery system. This extension permits to analyse the
behaviour of the system in case of attacks and estimate the performance overhead generated if
any anti-clogging mechanism is added to the system to counter these attacks.

132

133

Chapter VI. Context Awareness in Service Discovery

In Ubiquitous systems, the user is surrounded by an intelligent environment in which smart
devices (RFID, sensors …) are integrated transparently. This environment is permanently
changing and affecting the behaviour of users and applications which must dynamically adapt
its functionalities in order to maintain interaction with the pervasive system. This adaptation
is strongly dependent on the context of the environment, although users and application must
be aware of this contextual information.

A. Definition
One of the first works dealing with context awareness in computing systems was carried out
by Shillit [SHI94] that described contextual information as a combination of location
information helping the software to adapt itself to the environment, a set of nearby objects and
users, and the evolution of these elements over time. This definition is too restrictive to really
describe contextual information, because it concerns a particular application related to
location, time and objects. Dey [DEY01] proposes a better definition of the context awareness:
“Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves”.

1. Data Modeling
In order to make the context information understandable by machines, some representation
schemes are proposed. These representations use meta-tags that facilitate the automatic
processing of the context types and their values without any human intervention. Gu et al
[GU04] classify these context representation models into three categories:

Application oriented approach: It is based on proprietary models that are strongly
related to a specific application. These models lack formality and expressiveness
because they use a local description. In these models, the application developer
usually specifies his/her own model for the context representation. Nowadays, these
purpose developers tend to use ad hoc XML vocabularies.
Model oriented approach: This category of models is used a semi-formal approach
rooted in existing and well accepted conceptual modeling techniques such as the

134

Entity-Relationship models or the UML diagrams. We can find in the literature some
UML policy definitions [DUR03].
Ontology oriented approach: Ontology is an information representation technique that
refers to a particular subject of existence. It is a kind of a shared knowledge between
different entities that have common understanding of some domains. Ontology is
composed of a set of entities, relations, methods, rules, and axioms providing a kind of
inference logic that enables an automated reasoning about this knowledge. In the
service discovery systems, ontology is used as a service profile representation that
provides richer semantic specifications. Such semantics enable a more flexible
automation of service provision and use, and support the construction of more
powerful tools and methodologies. W3C exerted lots of efforts to develop and deploy
semantic web technology by encouraging new standards like Resource Description
Framework (RDF7) that provides data model specifications and XML-based
serialization syntax. The most popular ontology specification language proposed by
W3C is called Web Ontology Language (OWL8) that enables the definition of domain
knowledge structures and domain vocabularies. OWL is modeled through an object-
oriented approach, and can be seen as an equivalent of description logic allowing a
basic reasoning over structured data.

2. Reasoning
Reasoning mechanisms are often introduced in context aware applications to achieve
adaptation. The content aware applications are adapted to achieve aggregation or translation
of contextual information or to interpret the rules defined in the security policy. Concerning
policy reasoning, the application developers will specify the interpretation of the set of rules
according to their semantics. Obviously, the chosen data modeling approach might affect the
underlying reasoning mechanisms. For example, OWL DL provides a built-in inference
engine while other modeling approaches would require defining rules interpretation using
different programming languages (Java, Prolog ….). Alternatively, the security module
(which can be considered as a Java security library) may provide an API to develop the
implementation of the security policy.

3. Quality of Context
The notion of Quality of Context (QoC) refers to the indicators values related to a category of
contextual information. The QoC provides a logical quantification of contextual data in order
to be objectively compared and evaluated. [SHE07] defies five QoC categories:

Precision: describing the granularity with which the context information is described
(Boolean, numeric, incremental without a numerical value, or weighted sets)
Freshness: defines the time elapsed between the determination of the context value
and its delivery to the system. A quantification metric value must be considered for
every context type in order to evaluate the freshness of a data since its definition.
Temporal resolution: describes the life time of contextual information. The value of
the context can be considered as valid during a range of time depending on the type of
the context. The location of a mobile car is no more valid after one or two minutes, but
the temperature of a room can be correct after 30 minutes.

7 http://www.w3.org/RDF/

8 http://www.w3.org/TR/owl-features/

135

Spatial resolution: defines the precision with which physical area an instance of
context information is applicable. For example the GPS location of a set of people
moving in the same room could me misleading.
Probability of correctness: each sensor has an error range due to the natural
imperfections of the measurements, this accuracy lack could raise if a large number of
sensors are used, for this reason the context provider has to signal a probability of
correctness value that must be considered by the user in order to evaluate the most
realistic value of the context.

B. Context Awareness and Security
Pervasive computing offers users the possibility to interact with computers, devise physical
spaces, and other users anytime and anywhere. In fact, in these ubiquitous environments, the
applications must be as mobile as their users. They should be able to adapt to dynamic
environments. These pervasive computing systems are able to capture, manage, and interpret
the different context and situations; then, in a second stage, integrate these data to the
applications. Due to the new vulnerabilities and exposures that are introduced by this context-
aware architecture, their successful deployment will depend on the ability to secure them.
[CAM03] focuses on the user’s interactions between the virtual and the physical worlds. In fact,
pervasive computing environments often exploit physical location and other context
information about users and resources to perform their services. For these reasons,
environments become prone to more severe security threats that can affect users and
equipments in the physical world and affect data and programs in the virtual world. Therefore,
these new pervasive environments require both physical security (sensors devices protection)
and digital security. Dynamicity and context-awareness flexibility for security mechanisms
are studied in [COV02] by comparing the traditional security mechanisms (based on a
relatively static access control decisions that do not change with context), with more
pervasive environments security mechanisms offering better flexibility. The security
architecture must also support mechanisms to securely collect contextual information that is
used to enforce security policies. In particular, the architecture must account for the context in
which requests are made (source of request, object requested, context information trust level,
etc.). Patwardhan [PAT04] identifies context-aware application security risks as the basically
malicious code; for example, using mobile devices as a carrier of malicious code especially
for some applications that are capable of running on multiple platforms. For Julien [JUL04],
security on context-aware environments concerns three types of threats: protecting mobile
hosts from malicious agents, protecting agents from tempering hosts, and securing data (also
contextual data).

1. Context-Aware Access Control
It is clear that the major part of the related work, concerning access control in context-aware
security system, uses the Role Based Access Control RBAC [SAN96] for access control. In
[CAM03], three types of roles (system, spaces and application roles) are defined. Access
control policies are expressed in terms of space roles. The space administrator sets access
control policies for resources within a particular space. When users enter a space, their system
role is mapped into an appropriate space role. In [COV02], Covington suggests the Generalized
RBAC [COV00], that is, an extension to the traditional RBAC that uniformly applies the
concept of roles not only to subjects, but also to objects and system states (environments). But
in [JUL04], there is a security agent that assumes the responsibility for mediating access to its
data. To achieve a flexible access control, each agent specifies an individualized access
control function (each agent can restrict access to its data for some agents) and each agent
must provide credentials to identify himself.

136

2. Privacy and Context Awareness
In [ZUI04], [LAN02] and [JIA02], the main security threat in the context-aware environments is
basically the violation of the user’s privacy. In fact, contextual information is provided by
many sensors that can be invisible to the users. It is obvious that these sensors, gathering
information about people without being noticed, can be a threat to privacy.
To address the privacy problems in context-aware environments, in [CAM03], the authors use
MIST [AL02]. The MIST infrastructure uses public key cryptography techniques to make
communication impossible to trace by un-trusted third parties.
In [JIA02], every object, in an information space, is associated with a privacy tags. These tags
are composed of three parts: A space handle that specifies which information spaces the
object belongs to, a privacy policy that represents permissions specified by space owners for
different types of operations, and a privacy property list describing the characteristics of an
object (time life, representational accuracy, and capturing confidence).
For [LAN02] and [ZUI04], the privacy control architecture is based on the P3P [P3P] privacy
policy standard (defined by W3C).

3. Context-Aware Encryption
Al-Muhtady et al. [AL06] defined a location-based encryption for publish/subscribe event
systems. Here, a service provider encrypts its information with location-dependent encryption
keys and makes the encrypted information publicly available. The network operator provides
decryption keys to customers based on their current location. This approach provides location
authentication, location-based access control models, and location based encryption. The
major security breach of this solution is related to the secrecy of the decryption keys
distributed to the users. Since these keys are not important for the users, nothing forbids them
to publish these keys after the usage.

C. Context-Aware Security Policy

1. Introduction to Security Policies
A security policy defines the acceptable behaviors and the conditions of usage guaranteeing
the protection of systems. Policies are rules governing the choices in behavior of a system, a
service, an application or a user. A security policy is likely to be composed of a set of rules
forbidding or allowing specific interactions with the system. The language used to define a
policy can be informal, like human language as English, or it can be formal using a defined
syntax associated with a specific semantics enabling complex processing (such as inference,
reasoning, proof). Bishop [BIS03] defines security policy as a statement that partitions the
states of the system into a set of authorized, or secure, states and a set of unauthorized or non-
secure states. In particular, for Tonti et al [TON03] policy can be used to dynamically regulate
the secure behavior of system components without changing code and without requesting the
regular intervention of the administrator.
Each system has its own requirements concerning security aspects, and depending on these
aspects; some kinds of security policies are used:

Authentication policy: defines how systems can perform the authentication process.
In the context-aware systems these policies define a set of contextual information that
can be used as additional input of the authentication mechanisms.
Access control policy: is used to grants or revokes the right to access some resources
or to perform some actions.
Privacy policy: it states the rules about how the private sensitive information
concerning individuals is being collected; how the information being collected and

137

being used; how an individual can access his own data collected about him; how the
individual can sign-out; and what security measures are being taken by the parties
collecting the data.
Communication policy: is used by the policy-based network management systems
that specify the protocols, at the network layer, that must be used for the
communication systems. Note that filters at the application layer are more related to
the messaging policy.
Messaging policy: defines which kind of message structure can be exchanged
between the system entities. In the case of a WS web service case, a messaging policy
can define the SOAP message structure.

2. Security Policy and Context-Awareness
Adding context information to security policies enables us to capture a new set of constraints
introduced by the surrounding environment and correlated information as a new set of
constraint parameters. This environment possibly changes and evolves during the execution of
the application. Context awareness enables us to describe more accurate and dynamic stateful
policy rules that take much more information into account. In fact, context information is
strongly related to the application’s environment, and this environment changes and evolves
during the execution of the system. To add this notion of context in the security policies, we
must be able to represent and model correctly the context information and also to reason about
it.

3. Related Work
In pervasive computing environments, it is important to have a flexible and dynamic method
for defining and managing security policies. In [KAG03], Kagal et al provided an overview of
the dynamic policy definition languages. These languages (represented in a semantic language
like RDF-S, DAML+OIL, OWL) are based on ontologies allowing a flexible and multi-
domains application. The ontologies based language includes a representation of actions that
allows more contextual information to be captured and allows for grater understanding and
interpretation of contextual environment. Other solutions extend existing security policy
languages like WS-security, XACML, and SAML in order to add the context reasoning.
Classical access control policy rules are usually based on a set of constraints defined by a
tuple <U, A, O>, which consists of three entities: the users U, the accessible object of the
system O, and the actions A that can be performed. Context-aware systems may introduce a
fourth entity representing the constraint C, which is likely to consist in context information.
Based on this policy vision, Hu et al [GU04] propose an extensible context-aware access
control policy based on a fine-grained definition of the context information. They proposed
three definitions to model this contextual constraint C:

The context type: defined as a property (a term used by the authors) related to every
participant in a running application. It can be considered as a context classification
depending on the application.
The context constraint: defined as a regular expression based on logical operators that
specify the contextual constraints C.
The authorisation policy: defined as the representation of the tuple <U, A, O, C>.

Two algorithms are used for the dynamic context evaluation applied with a Web Service-
based security infrastructure (see in Figure 64), where users can access data via a Web
Service portal.

138

Figure 64 : Security Infrastructure [HU04]

This security infrastructure is based on static access control lists (ACL) for the access control
mechanism, so that only known users can access the service; should there be a new user, the
administrator must add manually the identity of the new member to the access list. Finally,
this solution is original in so far as it uses context information in the security policy to add
more precision and not dynamics (i.e. adjustment of the policy to the changing context) to
their access control model. Covington et al [COV02],[COV00] define their own policy
management tool for the policy specification and context representation. This tool uses a
graphical representation of XML-encoded rules to specify access policies, role definitions and
relationships. Their security policy is only focused on the access control policy; this is why
their policy model is based on an extension to RBAC model called Generalized RBAC
[COV00]. This access control model removes the subject centric limitation, by adding the
possibility to define the policy from a subject-centric, object-centric, and environment-centric
perspective. The notion of environment role allows the policy administrator to add roles to the
surrounding environment of the system using a set of contextual information. For example,
GRBAC enable to define an environment role corresponding to each day of the week. In his
context-aware security system, Campbell et al [CAM03] defined a new implementation
methodology for dynamic security policies [NAL02]. They defined the notion of dynamic
policy as a program consisting of a set of guards and actions created and installed, on the fly,
by the user or the administrator of the system. The originality of this development life-cycle is
the last step (policy validation and testing). The final phase is composed of two steps: the first
step, verification, performs a formal verification of the added proprieties and reasons formally
about security guaranties (e.g. inconsistency); the second step, testing, checks the
implementations of these policies to make sure they match with the specifications. This
solution is not strictly speaking context-aware since the authors do not mention anything
about the context modeling and reasoning. However, they propose to use this dynamic policy
within a context-aware application. The application will be able to download and use the
appropriate policy depending on the system situation; in other words, the dynamic policy
offers a solution to adapt the system security to the environment.
Several other contributions to context-aware and policy-based security in the mobile networks
can also be found in the literature. Recently, there has been special emphasis on the next
generation networks (NGN). NGN represents the integration of the 3G networks (UMTS)
with the WLAN. Jean et al [JEA03] propose a policy based context-aware service
methodology; they choose a policy-based method because policies are ideal for context
modeling. They purport to propose a solution to facilitate the provision of context-aware
services in a secure manner by implementing a policy-based network management (PBNM).
This PBNM focuses more on the security mechanisms in the network layer than on the

139

application layer. The authors applied their security policy on a network-centric context-
aware service called TEANU (Transparent Enterprise Access for Nomadic Users). This
service offers the user the possibility to access their workstation from anywhere, using the
NGN technologies. In their scenario, the context-aware service uses the location of the user
and the properties of the network to send the appropriate policy to the network domain
(WLAN domain for example). Depending on the security policy, different strategies will be
used to secure communication between the users and their office (for example IPsec VPN
while on the WLAN). Context-aware security policy can also be used for mobile code
verifications [HU04]. In fact, the applications and operating systems are nowadays very
frequently updated, and these updates are often available online. Therefore, the user can
download pieces of code (plug-in, patches) and will often execute them without proper
verification.

4. Context-Aware Security Policy Requirements
The context-aware policies described in the previous section are usually defined for a
particular application deployment (mobile code security, inter-network handover, personal
network access control…). The security scope covered by these policies is limited to a
specific behavior of the system and cannot be deployed for other systems including different
applicative domains. This lack of flexibility is due missing of a general study about the
requirements of a context-aware policy for pervasive systems. During my contribution to the
Mosquito project [MOS] I was in charge of studying the requirements that must be satisfied by
a generic context aware security policy.
Two policy application domains are identified:

a) Message Level Policy
Set of rules used to protect the confidentiality and the integrity of the exchanged messages in
a pervasive system. These rules have to cover these specifications:

Confidentiality policy: Depending on the message header (meta-data), the policy
engine must decide which information must be encrypted and which mechanism must
be used to perform this encryption. Confidentiality must also be adapted according to
the contextual information related to the network or the domain. Depending on the
network (local, or foreign) the confidentiality degree can vary. Or according to the
wideband and the throughput offered in a system the policy will adapt the encryption
strength and heaviness in order to maintain a minimum level of quality of service in
the network.
Integrity policy: To protect message against modifications the policy must define
when and which mechanisms, like e.g. signatures or some message authentication
code (MAC), are to be used to ensure the integrity of the message.
Messaging policy: This kind of policy is used to fix some conditions and some rules
concerning the messages exchanged between the different entities. For example, the
messaging policy might suggest using a particular message format or header format
between two entities. In some cases UPD port scanning must be ignored when IP
source belongs to an untrusted domain and allowed if it belongs to local and trusted
domains.

b) Application Level Policy
Each application can define the following policies that must to be respected by the rest of the
entities of the system:

140

Trust policy: This policy describes the constraints concerning the trust establishment
between entities form the different administrative domains or from the same
administrative domains. These constraints concerns trust establishment mechanisms
like signatures, recommendation, certification or reputation. Location information
could be used for a trust establishment between two close entities in case of data
exchange between two PDA of two users staying behind, and refusing all the
connexions coming from distant PDA.
Access Control policy: Access control policies can be used either to control the
access to the resources and the methods offered by the applications deployed within a
pervasive environment. Each application offers one or more services and resources.
For example a GPS service is in charge of acquiring context information and offering
some functionality to use this information. These resources must be protected against
non authorised access and security defines which entity can access to which resource
and which functionality.
Federation policy: A federation policy enables users to co-operate through
exchanging data and/or programs. Two types of policies can be differentiated that are
suitable for a federation. The device-federation policy describes when and how
devices can federate. This is complemented by the delegation policy which describes
when and to whom a user can delegate rights or application tasks. The policies can be
“system-wide” if deployed in a pervasive framework, but can always be overwritten
by some application specific policies that are deployed with the application.
Service Discovery policy: This policy is applied to perform a secure service discovery
request and also to protect the service registration. In this policy, we have two aspects:
first the client discovery policy with which a client can define a set of constraints
concerning his request; these constraints can concern confidentiality or access control.
We can take the example of a client that requests only services that are signed by some
certification authorities. Second the service publication policy, used by a server that
wants to restrict the rights to discover its service to a predefined set of users. Location
information could be a restriction for the service discovery or the request delivery in
case of local service discovery.
Privacy policy: used to protect the personal and private information of the users. It
defines what information could be considered as private and also specifies who is
allowed to access, read, write, modify, store or publish such data. This kind of actions
that could be performed over sensitive private data could be restricted with temporal
and geographical conditions. For example confidential documents of a company that
should be displayed only in the restricted area.
Code verification policy: This policy is used to verify the correctness and the safety
of an imported code. These foreign codes can represent a threat to the system for two
reasons: if the administrator uses a non self-made code (for example downloaded from
a non trusted source) this code can be malicious and if an administrator develops his
own patch code with some security vulnerabilities.

D. Securing Contextual Information

In this thesis, considering contextual discovery policy, we expose ourselves to threats at
discovery policy enforcement and decision point. Thus, discovery services strongly rely on
context. It raises security and trust issues regarding context acquired from sensor networks
[ROM02].

141

1. Confidentiality of context information
Considering user’s context information, user should be able to protect personal information
such as his health status, or medical history. Hong proposes an architecture so-called Confab
in order to provide privacy in ubiquitous computing [HON04]. Confab framework has been
designed for protecting a user’s location information in ubiquitous systems. It is based on an
analysis of privacy needs for end-users and application developers. The main idea is that
personal information are captured, stored and processed as much as possible on the user’s
device. Users can apply security control on their choice on those data. Context views have
been introduced by Shankar [SHA02]. Context view is a fraction of an entity’s context that is
relevant to the application. In order to protect context information confidentiality, delivered
context information can be controlled in context view. Bussard et al proposed security
mechanisms for protecting privacy of context information [BUS04].

2. Integrity of context information:
This focuses on guaranteeing that the provided context information has not been corrupted by
a third party. Hash functions or public key digital signatures can provide context integrity.

Hash function: We consider two kind of hash function: un-keyed and keyed hash
functions. In the first case, un-keyed hash functions, such as MD5 or SHA-1, provide
a very low level of data integrity with respect to the use of context in application
adaptation. With keyed hash function, such as MAC, we have the issue of the
establishment of pre-shared key between the context information providers and the
context-aware systems.
Public key digital signature: the PKI-based approach might not be always suitable
for context-aware systems, especially in distributed systems including low-cost
sensors.

3. Trustworthiness of Delivered Context Information
In the scope of context-aware system, it is important to distinguish between two trust aspects:
the trust of a context information provider that is supposed to be reliant and honest, like for
example a national forecast provider. And trustworthiness of delivered context information
related to the correctness and the quality of the delivered context information. A certified
national forecast provider is trusted and honest, but weather information could be
misconceived. In this case we can evaluate the trust about delivered context information by
computing the distance between it and the real context using some existing methods:

Statistical analysis of context information: the idea is to perform statistical analysis
of the value of context information in order to detect unreliable ones. A simple
example is to take an average of temperature values provided by different
thermometer in the same room. Such naïve approach raises the following issue: if the
temperature values collected are (10; 10; 11; 50) we get an average of over 20. It is
obvious that the last value is a wrong one, and the temperature in the room should be
10. A simple solution is to use median that detects that value 50 is out of the scope,
and eliminate the context information provider delivering this temperature value as an
unreliable provider. Of course, real-life implementation requires use of much more
sophisticated statistical tools.
Distributed reputation network: [NEI07] developed a trust model for context aware
provisioning based on recommendations and reputation. This trust model is used as an
input parameter for a new formalism combining different trust aspects (identity,
privacy, and context provisioning) in order to evaluate the resulting trust users have in
a context-aware service. Usually the trustworthiness is based on previous experience

142

with the same party. The problem is that often there has not been any direct interaction
before. In this case, an entity can establish trust in its communication partner based on
the latter’s reputation [GAN04]. Reputation is based on the collection of evidence of
good and bad behavior. In the case where we use sensors in order to identify and
authenticate users, their reputation depend, e.g., on whether the sensors input led to
correct authentication or to a violation of a security policy. Reliability of context
information is computed based on the previous experiences with a context information
provider. The mathematical foundations for reputation management are rooted in
statistics and probability. Trust context views [ROB03] have been introduced by
Robinson in order to establish a degree and state of trust within a certain interactive
context. This approach doesn’t consider the authentication of context information
provider.
Confidence value: in the scope of Gaia architecture, Al-Muhtadi et al. [AL03] define a
notion of confidence values in context-aware authentication. Gaia architecture
establishes a confidence value based on the authentication devices and protocol used.
For example, iris recognition would have a better confidence value than a fingerprint
authentication device. The use of challenge-response protocol would be considered
with a strong confidence value than a user’s identity sent in clear text. Above
considerations about security and trust are relevant for discovery and acquisition of
context information. Reasoning about context information raises another security
challenge. Indeed, reasoning about context information often deals with integrating
several pieces of context information into another piece of context information. For
example, from a patient’s heart rate and blood pressure, we can evaluate his health
condition. Assuming that patient’s heart rate and blood pressure has different level of
trust and security, the question is about the level of trust and security about the
patient’s health condition.

E. Context-Aware Security Policy for the Service Discovery
In the section Chapter I.F we studied the impact and the requirements of the context
awareness for the service discovery and the benefits of the integration of the contextual
information in order to provide a fine grained discovery policy. The existing approaches to the
introduction of context-awareness for service discovery have so far only exploited raw
context directly acquired from sensors (e.g. GPS location, remaining battery). While this may
indeed enhance service discovery with basic context-awareness, the use of sensor context
information is however too restrictive to define a discovery policy. Instead, we introduce
semantically-rich context information, thereby supporting context reasoning: raw contextual
data that are gathered from sensors, like the location, can therefore be further processed to
derive complex information, such as proximity. De facto, we already improve the flexibility
of context-aware discovery policies whose expressive power extends to more complex
contexts. Context reasoning may also take place during the enforcement of discovery policies,
and make it easier to combine context information coming from different sources.

1. Context Information Representation
As defined previously ontologies deal with knowledge management and object taxonomy
based on their properties. Once objects are classified and characterized, an ontology makes it
possible to specify relationships between those objects. In the scope of context-aware
systems, context ontology classifies context information and establishes relationships (e.g.
similarity relationship) between it [BRO04], [LEE04] and [BER05]. The use of a context ontology
language provides a well defined syntax, semantics, and efficient support for reasoning about
context information [LIS03]. CoOL, developed in the scope of CoDAMos project [BER05] was

143

selected for this purpose: it proposes four classes of context: user (e.g., user’s activity, role,
preferences), environment (e.g., ambient temperature, location), platform (e.g., hardware,
software) and service (e.g., service description, data-flow, supported protocol) [PRE03]. Figure
65 provides an overview of the upper CoOL context ontology. With respect to context
representation, CoOL is expressed in Web Ontology Language (OWL). We choose to take
advantage from this rich ontology in order to express our requirements in terms of contextual
representation. In our implementation context information are acquired via context toolkit
widget [SAL99]. A Widget is a Java interface to a sensor.

Figure 65 : Organization of CoOL [BER05]

2. Reasoning about Context Information
For reasoning about context information, we distinguish two complementary approaches for
reasoning about context information: ontology and inference rule based reasoning. As
described in the previous section, ontology supports relationship definition between context
information. Based on those relationships, ontology eases reasoning about context.
Nevertheless the expressiveness power of OWL can be quickly restrictive as soon as we try to
target more complex reasoning about context. Due to the restriction of OWL-DL, ontology
based reasoning is limited to binary relationship between two context notions. For this reason,
we can not quantify relationship in OWL-DL. For example, proximity relationship can be
established in context ontology, but it can be quantify with respect to the distance between the
users. For those reasons, we propose to use inference rule-based reasoning engine such as Jess
[JES], in combination to ontology-based reasoning. Once ontology-based identified
relationships between context, inference rule tends to cope with ontology-based reasoning by
evaluating and quantifying those relationships. In our use case, proximity between doctor and
patient has to be evaluated. An overview of our architecture for reasoning about context
information is given in Figure 66.

Figure 66 : Reasoning Module Architecture

144

3. Health Care Scenario
In order to provide a practical example of the usage of contextual information for the service
discovery we can consider an emergency scenario in which in case of danger a patient cans
discovery available physicians in his surrounding environment, according to two conditions:
the authentication, and the physical proximity location of the physician. These conditions are
expressed using the discovery policy defined previously.
The GPS location of the client and the physician are represented using the CoOL ontology as
follows

<cool:GPSLocationElement xmlns:cool="http://discovery.service.com/cool#">
 <cool:Altitude>0.0</cool:Altitude>
 <cool:Latitude_Degree>44</cool:Latitude_Degree>
 <cool:Latitude_Minute>4</cool:Latitude_Minute>
 <cool:Latitude_Second>28.206604</cool:Latitude_Second>
 <cool:Longitude_Degree>123</cool:Longitude_Degree>
 <cool:Longitude_Minute>7</cool:Longitude_Minute>
 <cool:Longitude_Second>44.2411</cool:Longitude_Second>
</cool:GPSLocationElement>

Using this representation we can reason about the notion of proximity by defining a function
for inference rule engine Jess that evaluated the proximity between the physician and the
patient. This function isCloseTo is expressed as follow:

(defrule isCloseTo
 ;; LOOK FOR A PHYSICIAN’s LOCATION ;;
 …
 ;; LOOK FOR A PATIENT’s LOCATION ;;
 …
 ;; GET LATITUDE, LONGITUDE AND ALTITUDE OF PHYSICIAN’s LOCATION ;;
 …
 ;; GET LATITUDE, LONGITUDE AND ALTITUDE OF PATIENT’s LOCATION ;;
 …
 ;; TEST IF THEIR DISTANCE IS HIGHER THAN 20 ;;
 (test (< (distanceInM ?PhysicianLocation ?PatientLocation)20))

 =>

 ;; ASSERT THE RELATIONSHIP BETWEEN THE PHYSICIAN AND PATIENT ;;

 (assert
 (triple
 (p"http://www.owl-ontologies.com/unnamed.owl#isCloseTo")
 (s ?PatientLocation)
 (o ?PhysicianLocation)
)
)
)

This function is used for a discovery policy definition in which the patient will restrict the
discovery and the access to his personal medical data module to authorized physicians present
nearby. This function can be expressed with the XACML-based policy as follow:

<Apply FunctionId="isCloseTo">
 <Apply FunctionId="findLocation">
 <SubjectAttributeDesignator
 DataType=GPSLocation AttributeId="SubjectLocation"/>
 </Apply>
<AttributeValue
 DataType="integer">2000 meters</AttributeValue>
 <Apply FunctionId="string-one-and-only">
 <SubjectAttributeDesignator
 DataType=string AttributeId="PatientID" />
 </Apply>

145

</Apply>

4. Performance and Results
In order to evaluate the efficiency of our solution we extended the Java prototype of the WS-
Discovery protocol with the XACML functionalities, then we performed some measurements
about time execution and memory consumption. For these experiments we used:

OS: Fedora Core 5 with a Linux 2.6.x kernel i686
CPU: Mobile Intel Pentium 4 CPU 1.70 GH
Physical Memory 512 MB

In this table we provide all the measurement values related to each execution steps of the
context aware policy based service discovery.

Actions Time (ms) Size (byte)

Sending Hello (Publish) 31 3963
Sending Probe (Request) 67 862
Service matching 370 -
Authentication 1572 -
Context Reasoning 4005 76000

Policy enforcement 862 -

Sending ProbeMatch (Response) 15 1622

Table 8 : Measurement values

The context reasoning step is composed of a sequence of actions. First OWL reasoning
generates 231 rules and 66 OWL instances, which represents around 19 Kb. It takes 1302 ms
for reasoning about the similarity between patient’s pulse and heart rate. Then inference rule-
based reasoning, the translation of OWL instances to facts takes 2453 ms and generates 335
facts, which represents 57 kb. Finally, inference about patient’s unconsciousness costs 190
ms, whereas proximity evaluation takes 60 ms. In conclusion, OWL-reasoning is less
consuming in term of memory usage. But it is slower than inference-rule reasoning. Overall,
reasoning about proximity or patient’s health condition is performed in less than 4 seconds,
with 80 kb.

F. Conclusion
In this chapter we introduced the notion of context awareness in pervasive computing systems
and particularly the impact of the contextual information in service discovery mechanisms in
terms of matching accuracy and flexibility to the environment. We demonstrate how context
awareness could be incorporated in some security mechanisms and like security policies and
more particularly service discovery policy described in section Chapter III.C for which we
propose a context-aware extension applicable with secure registry-based service discovery. In
this solution we tend to cope with the identified threats in chapter Chapter I.G by defining a
secure registry solution relying on discovery policy. We motivate the use of secure and trusted
context-information in order to adapt the security policy enforcement with dynamic
environment. As proof of concept we implemented a prototype securing WS-Discovery
protocol and relying on a context-aware extension of XACML access control policy. Our

146

approach solves user’s privacy and service access control by introducing context-aware access
control for discovery service and efficiently supports trust establishment between different
actors of the system.

147

148

Chapter VII. Conclusion and Perspectives

This thesis deals about security issues related to the service discovery in pervasive computing.
Various approaches and techniques are tackled with the wish to overcome the most important
threats and weakness of such systems independently from the deployment architecture.

The first part of this study introduces the notion of service discovery in pervasive computing
systems. Different architectures and deployment strategies related to this domain are detailed
and organized according to the applicative environment. An overview of the existing service
discovery protocols and standards are technically described and compared in order to get an
idea about the different strategies and techniques adopted and deployed in real pervasive
computing systems. This specifications analysis permits to detect security holes, weaknesses
and vulnerabilities related to the protocols that could be exploited by attackers and provides a
detailed threat model describing the potential attacks and the countermeasures that could be
adopted to overcome these vulnerabilities. The required security aspects of service discovery
to mitigate the threats are identified in security requirement list that should be followed by an
administrator to design a secure service discovery protocol.

The second part of this thesis describes the different solutions proposed in order to overcome
the security challenges described in the security requirement list for any architecture and
deployment scheme. This first solution relies on the usage of Attribute Based Encryption
scheme to secure the discovery messages by encrypting sensitive and private data contained
in these messages and permitting to clients and services to restrict the scope of the discovery
to only trusted and authenticated elements. This solution does not rely on a trusted third party
except a unique certificate authority issuing encryption/decryption keys. The second solution
exposes a registry-based solution for securing service discovery mechanisms that tend to
overcome threats and attacks related to registry-based environments. In addition to PKI-based
message encryption mechanisms used to hide discovery message, this solution introduces the
new concept of service discovery policy that is used by clients and serves in order to express
their security and privacy requirements during the service discovery process. The registry
dedicated usually to the matchmaking between published services and clients requests has a
new function of trusted third party in charge of authenticating discovery elements and
enforcing the discovery policies provided by the users. Both of these two solutions are
dedicated to small networks (like PANs, LANs , WLANs, and home network) and it is
difficult to expend it to wide networks with millions of elements without scarifying matching
efficiency and security. For this reason a third scalable and secure solution is proposed to
ensure a secure service discovery independently from the network size and the number of
element involved in the system. This solution relies on anonymization mechanisms used by
clients and servers to reach securely reach local registries that in case of mismatch with users
requests will expand the discovery to other registries spread in the world wide network using
a P2P communication system for indexing and retrieval.

The third part of this dissertation presents a performance study that analyses the impact of the
deployment of such security mechanisms in service discovery protocols. For this part of the
thesis we developed a mathematical model validated by simulations that permits to calculate
the different performance parameters of the secure systems in order to undertake a systematic
study of the robustness in case of Dos attacks, the efficiency for extreme environmental
condition, and resource consumption. This model makes it possible for a system administrator
that is deploying a secure service discovery system to choose the appropriate security solution

http://secondlife.com/
http://www.emarketer.com/
http://www.ibm.com/developerworks/library/ws-soaintro.html
http://www.ietf.org/
http://www.torproject.org/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/

149

depending on the network topology and the environmental profile of the area in which he
planned to deployed it. He can also adjust the needed resources to ensure a robust and stable
system deployment.

The last part of this thesis focuses on the impact of the contextual information related to the
surrounding environment in the behavior of users and applications in pervasive computing
systems. We discussed how contextual information can be used as a dynamic parameter for
the security mechanisms and the service discovery systems by incorporating a contextual
reasoning in our security discovery policy.

An interesting issue need further research is the conception of a new policy language
dedicated to service discovery. This language should describe all the identified functionalities
that are useful to perform a secure service discovery including authentication, encryption,
signature verification, reputation, recommendation, negotiation etc…
Since we supposed that users are not really mobile in the system, an interesting extension of
the performance discovery model could be a mobility model evaluating the discovery system
when users are joining or leaving a service discovery enabled area.

150

151

Bibliography

[ABB07] H. Abbes, C. Cérin, J-C. Dubacq, M. Jemni, “Performance Analysis of Publish/Subscribe
Systems”, Rapport Interne LIPN (15/05/2007), 2007

[AL02] J. Al-Muhtadi, R. Campbell, A. Kapadia, D. Mickunas, and S. Yi, "Routing Through the Mist:
Privacy Preserving Communication in Ubiquitous Computing Environments," presented at
International Conference of Distributed Computing Systems (ICDCS 2002), Vienna, Austria,
2002.

[AL03] J. Al-Muhtadi, A. Ranganathan, R. Campbell and M. D. Mickunas, "Cerberus: A Context-
Aware Security Scheme for Smart Spaces," in the Proceedings of the First IEEE Annual
Conference on Pervasive Computing and Communications (PerCom 2003), pp. 489-496, Fort
Worth, Texas, March 26, 2003

[AL06] J. Al-Muhtadi, R. Hill, R. Campbell, and D. Mickunas, "Context and Location-Aware
Encryption for Pervasive Computing Environments" in 3rd IEEE International Workshop on
Pervasive Computing and Communication Security (PerSec), 2006 at IEEE PerCom 2006

[ALM03] F. Almenarez, C. Campo: “SPDP: A Secure Service Discovery Protocol for Ad-hoc
Networks”, In 9th Open European Summer School and IFIP Workshop on Next Generation
Networks, Budapest, 2003.

[BAG05] W. Bagga, R. Molva, “Policy-based cryptography and applications”, FC' 2005, 9th
International Conference on Financial Cryptography and Data Security, 28 February-03 March
2005, Roseau, The Commonwealth of Dominica - Also published in LNCS Volume 3570

[BAR03] M. Barbeau, E. Kranakis, “Modeling and Performance Analysis of Service Discovery
Strategies in Ad Hoc Networks”, International Conference on Wireless Networks pp. 44-50,
2003

[BER01] O. Berthold, H. Federrath, and S. Köpsell. "Web MIXes: A System for Anonymous and
Unobservable Internet Access," H. Federrath, editor, Designing Privacy Enhancing
Technologies, LNCS 2009, pp 115-129, 2001.

[BER05] J. Van den Bergh and K. Coninx, “Towards integrated design of context-sensitive interactive
systems”, Third IEEE International Conference on Pervasive Computing and Communications
Workshops, 2005.

[BER07] M.Bertoli, G.Casale, G.Serazzi, “The JMT Simulator for Performance Evaluation of Non-
Product-Form Queueing Networks”, SCS Annual Simulation Symposium 2007.

[BIS03] M. Bishop, “Computer Security: Art and Science”, Addison Wesley Professional, 2003

[BIS06] H. P. Bischof, J. V. Donaldo, “M2MI Service Discovery Middleware Framework”,
Proceedings of the International Conference on Pervasive Systems and Computing (PSC 2006),
Las Vegas, Nevada, USA , 2006

[BLO70] H. B. Bloom, "Space/time trade-offs in hash coding with allowable errors", Communications of
the ACM 13 : pp. 422–426, 1970

[BLU] “Bluetooth Security,” white paper, Bluetooth SIG Security Expert Group, 2002.

[BON] Apple’s Bonjour http://www.apple.com/macosx/technology/bonjour.html

http://www.apple.com/macosx/technology/bonjour.html

152

[BON01] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing“, Proceedings of
the 21st Annual International Cryptology Conference on Advances in Cryptology, pages 213–
229. Springer-Verlag, 2001.

[BRO04] T. Broens and al, “Context-aware, ontology-based, service discovery”, 2nd Symposium on
Ambient Intelligence, 2004

[BRO04-2] Broens, T.H.F., “Context-aware, Ontology based, Semantic Service Discovery”, Master thesis,
University of Twente, the Netherlands, 2004

[BUS04] L. Bussard L., Roudier Y., “Untraceable secret credentials: Trust establishment with privacy,”
in PERCOMMW’04. Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, 2004.

[CAM03] R Campbell, J Al-Muhtadi, P Naldrug, G Sampemane, M D Mickunas “Towards Security and
Privacy for Pervasive Computing”, Software Security - Theories and Systems, Springer Berlin
/ Heidelberg, pp. 77-82, 2003

[CAM05] C. Campo, M. Munoz, J.C Perea, A. Mann, C. Garcia-Rubio, “PDP and GSDL: a new service
discovery middleware to support spontaneous interactions in pervasive systems”, in
proceedings of Pervasive Computing and Communications Workshops, 2005.

[CAR05] Carminati, B., Ferrari, E., Hung, P.C.K, “Exploring Privacy Issues in Web Services Discovery
Agencies”, IEEE Security and Privacy .Volume 3, Issue 5, 2005.

[CAR07] R. S. Cardoso, P-G. Raverdy, V. Issarny. "A Privacy-Aware Service Discovery Middleware for
Pervasive Environments", In Proceedings of IFIPTM 2007 Joint iTrust and PST Conferences
on Privacy, Trust Management and Security. 2007.

[CHA81] D. Chaum, “Untraceable Electronic Mail, Return address, and Digital Pseudonyms”,
Communications of the ACM 24/2, pp. 84-88, 1981.

[CHA06] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, , "Toward Distributed Service Discovery in
Pervasive Computing Environments", Article, IEEE Transactions on Mobile Computing, pp.
97- 112, 2006.

[COR] CORBA, http://www.corba.org/

[COV00] M J. Covington, M J. Moyer, M Ahamad “Generalized Role-Based Access Control for
Securing Future Applications” In 23rd National Information Systems Security Conference,
Baltimore, MD, October 2000

[COV02] M J. Covington, M Ahamad, S Srinivasan “A Security Architecture for Context-Aware
Emerging Applications”, Proceedings of the 18th Annual Computer Security Applications
Conference, December 9-13, 2002 Las Vegas, Nevada, 2002

[COV04] M. J. Covington, M. Ahamad, I. Essa, and H. Venkateswaran. Parameterized Authentication. In
Proceedings of 9th European Symposium on Research in Computer Security (ESORICS 2004),
pages 276–292, September 2004

[CRO05] S. Crosta, J C. Pazzaglia, H. Schottle, Modelling and Securing European Justice
Workflows”,6th Information Security Solutions Europe (ISSE 2005) Security Conference -
Budapest, Hungary, 2005.

[CZE99] S.E. Czerwinski et al, “An Architecture for a Secure Service Discovery Service” , In
Proceedings of MobiCom '99, Seattle, WA, August 1999.

[DAB03] C. Dabrowski, K.L. Mills, A.L. Rukhin, “Performance of Service-Discovery Architectures in
Response to Node Failures”. Software Engineering Research and Practice, pp. 95-104, 2003

http://www.corba.org/

153

[DAV02] N. Davies and H.W. Gellersens. “Beyond prototypes: Challenges in deploying ubiquitous
systems”. IEEE Pervasive Computing, 1(2):26--35, 2002.

[DCO] http://msdn2.microsoft.com/en-us/library/ms809340.aspx

[DEY01] A. K. Dey, “Understanding and using context,” Personal and Ubiquitous Computing Journal,
vol. 5(1), pp. 4–7, 2001.

[DOU05] C. Doulkeridis, N. Loutas, and M. Vazirgiannis, “A System Architecture for Context-Aware
Service Discovery”, International Workshop on Context for Web Service, 2005.

[DUF04] A. Duffy and T. Dowling, “An Object Oriented Approach to an Identity Based Encryption
Cryptosystem”, 8th IASTED International Conference on Software Engineering and
Applications, 2004.

[DUR03] F Dur´an, J Herrador, and A Vallecillo “Using UML and Maude for Writing and Reasoning
about ODP Policies”, Proceedings of IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, POLICY 2003, Lake Como, Italy, 2003

[ELL02] C. Ellison, “Home Network Security,” Intel Technology J., vol. 6, pp. 37-48, 2002.

[ELL03] C. Ellison, “UPnP Security Ceremonies” V1.0, Intel Co., Oct. 2003.

[FIS01] S. Fisher-Hubner, “IT-Security and Privacy”, Srpinger-Verlag Berlin Heidelberg 2001

[GAN04] S. Ganeriwal and M. B. Srivastava, “Reputationbased framework for high integrity sensor
networks,” in SASN ’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks. ACM Press, pp. 66–77, 2004.

[GAR04] Luis Garcés-Erice, “A Hierarchical P2P Network :Design and Applications”, 2004

[GAR04-2] O. Garofalakis et al “Web Service Discovery Mechanisms: Looking for a Needle in a
Haystack?” 15th ACM Conference on Hypertext and Hypermedia (Hypertext 2004), Santa
Cruz, USA, 2004

[GHA04] M. Ghader et al “Secure resource and service discovery in personal networks” Wireless World
Research Forum Meeting #12, Canada, 4-5 Nov 2004

[GNU] Gnutella http://www.gnutella.com

[GOL96] D. Goldschlag, M. Reed, and P. Syverson, “Hiding routing information”. In First International
Workshop on Information Hiding, pp. 137–150, (1996).

[GOY06] V Goyal, et al, “Attribute-Based Encryption for Fine-Grained Access Control of Encrypted
Data”, Proceedings of 13th ACM Conference on Computer and Communications Security
(CCS 2006), Alexandria, USA, October 2006

[GRA00] Gryazin, Eugene A., “Service Discovery in Bluetooth”, Bluetooth Technology and Utilization
Department of Computer Science, Helsinki University of Technology, Finland, presented Nov.
9, 2000.

[GU04] T Gu, X H Wang, H K Pung, D Q Zhang “An Ontology-based Context Model in Intelligent
Environments“Proceedings of Communication Networks and Distributed Systems Modeling
and Simulation Conference,. San Diego, California, USA, pp. 270-275, 2004.

[HAN03] U. Hansmann, L. Merk, M. S. Nicklous, and T. Stober, “Pervasive Computing”, Springer-
Verlag, 2003.

[HEN05] U. Hengartner, and P. Steenkiste, “Exploiting Hierarchical Identity-Based Encryption for
Access Control to Pervasive Computing Information”. Proc. of First IEEE/CreateNet

http://msdn2.microsoft.com/en-us/library/ms809340.aspx
http://www.gnutella.com/

154

International Conference on Security and Privacy for Emerging Areas in Communication
Networks, Athens, Greece, pp. 384-393, 2005.

[HOE06] K. Hoeper, G. Gong, “Key Revocation for Identity-Based Schemes in Mobile Ad Hoc
Networks”, in Proceedings of Ad-Hoc, Mobile, and Wireless Networks, Springer Berlin /
Heidelberg, Volume 4104/2006, pp. 224-237, 2006.

[HON04] J. I. Hong and J. A. Landay, “An architecture for privacy-sensitive ubiquitous computing,” in
MobiSYS ’04: Proceedings of the 2nd international conference on Mobile systems,
applications, and services. ACM Press, pp. 177–189, 2004.

[HU04] J Hu, A C Weaver “A Dynamic, Context-Aware Security Infrastructure for Distributed
Healthcare Applications” First Workshop on Pervasive Privacy Security, Privacy, and Trust
(PSPT2004), Boston, MA, USA, 2004.

[JEA03] K Jean, K Yang, and A Galis “A Policy Based Context-aware Service for Next Generation
Networks” 8th London Communication Symposium, London, UK, 2003

[JES] Jess. Rule engine for java. http://herzberg.ca.sandia.gov/jess/

[JIA02] X Jiang, J A Landay “Modeling Privacy Control in Context-Aware systems” IEEE Pervasive
Computing , Volume 1 , Issue 3 , pp. 59 – 63, 2002.

[JIA05] Z. Jiang, K. Lee, S. Kim, H. Bae, S.Kim, S. Kang, “Design of a security Management
Middleware in ubiquitous Computing Environment”, In Proceedings of the Sixth International
Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT
2005), Dalian, China, 2005.

[JIN] SUN Microsystems, Jini Specifications, http://java.sun.com/products/jini/

[JUL04] C. Julien, J. Payton, and G. C. Roman “Context-Sensitive Access Control for Open Mobile
Agent Systems”, in Proceedings of the 3rd International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS'2004), Edinburgh, Scotland (UK), May, pp.
42-48, 2004.

[KAG03] L. Kagal, T. Finin and A. Joshi “A Policy Language for a Pervasive Computing Environment”,
Proceedings of IEEE 4th International Workshop on Policies for Distributed Systems and
Networks, POLICY 2003, Lake Como, Italy, 2003.

[KAT07] A. Kate, G. Zaverucha, and I. Goldberg. “Pairing-Based Onion Routing”, in proceedings of
7th Privacy Enhancing Technologies Symposium (PETS 2007), 2007.

[KAT08] Aniket Kate, Greg Zaverucha, and Ian Goldberg , “Pairing-Based Onion Routing with
Improved Forward Secrecy”, Cryptology ePrint Archive, Report 2008/080, February 2008.

[KES98] D. Kesdogan, J. Egner, and R. Büschkes. "Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System," Information Hiding 1998, LNCS 1525, pp 83-98, Springer
Heidelberg, 1998.

[KIA07] A. Kiayias, Y. Tsiounis, M. Yung: “Group Encryption”. In proceedings of 13th Annual
International Conference on the Theory and Application of Cryptology & Information Security
ASIACRYPT 2007: pp.181-199, 2007.

[LAN02] M Langheinrich “A Privacy Awareness System for Ubiquitous Computing Environments”,
Proceedings of the 4th international conference on Ubiquitous Computing , Göteborg, Sweden,
pp. 237 - 245,2002.

[LEE03] C. Lee and S. Helal, “Context Attributes: An Approach to Enable Context-awareness for
Service Discovery”, in Proceedings of the Symposium on Application and the Internet
(SAINT), 2003.

http://herzberg.ca.sandia.gov/jess/
http://java.sun.com/products/jini/

155

[LEE04] Y. Lee, S. A. Chun, and J. Geller. Web-based semantic pervasive computing services””. IEEE
Computational Intelligence Bulletin, 4(2):4–15, 2004.

[LIS03] R. Liscano and A. Ghavam, “Context Awareness and Service Discovery for Spontaneous
Networking”, School of Information and Technology and Engineering (SITE), University of
Ottawa, 2003

[LIT61] Little, J. D. C.: A Proof of the Queueing Formula L = W" Operations Research, 9, pp. 383-
387, 1961.

[LOR03] M. Lorch, S. Proctor, R. Lepro, D. Kafura and S. Shah, “First Experiences Using XACML for
Access Control in Distributed Systems”, Presented at the ACM Workshop on XML Security,
Fairfax, VA, USA, October 2003

[LUO04] H. L. Luo, M. Barbeau, “Performance Evaluation of Service Discovery Strategies in Ad Hoc
Networks”. In proceedings of the Second Annual Conference on Communication Networks
and Services Research pp. 61-68, 2004.

[MAR03] D. Martin, OWL-S 1.0 Release, http://www.daml.org/services/owl-s/1.0/owl-s.html

[MAR06] B. Di Martino, “An Ontology Matching Approach to Semantic Web Services Discovery”,
 Frontiers of High Performance Computing and Networking – ISPA 2006 Workshops, Springer
Berlin / Heidelberg, pp. 550-558, 2006.

[MAY02] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer Information System Based on
the XOR Metric”. In Proceedings of the first International Workshop on Peer to Peer Systems
IPTPS, Cambridge, MA, USA, 2002.

[MET] http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s

[MOS] European ist project MOSQUITO. http://www.mosquito-online.org.

[NAL02] P Naldurg, R H. Campbell, and M. D Mickunas “Developing Dynamic Security Policies” 2002
DARPA Active Networks Conference and Exposition (DANCE 2002), San Francisco, CA,
USA, 29-31 May 2002.

[NEI07] R. Neisse, M. Wegdam, M.van Sinderen, G. Lenzini, “Trust Management Model and
Architecture forContext-Aware Service Platforms”, In Proceedings of the 2nd International
Symposium on Information Security (IS07), 2007.

[P3P] W3C, The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, available on
http://www.w3.org/TR/P3P/ , April 2002.

[PAT04] A. Patwardhan, V. Korolev, L. Kagal and A. Joshi “Enforcing policies in Pervasive
Environments”, The First Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services, 2004. MOBIQUITOUS 2004, Boston, Massachusetts, USA, 2004.

[PIR06] M. Pirretti, P. Traynor, P.McDaniel, and B. Waters, “Secure Attribute-Based Systems”,
Proceedings of ACM Conference on Computer and Communications Security (CCS '06),
Alexandria, VA, November 2006.

[PRE03] D. Preuveneers and J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx, Y.
Berbers, K. Coninx, V. Jonckers and K. De Bosschere. “Towards an extensible context
ontology for ambient intelligence. In Second European Symposium on Ambient Intelligence,
volume 3295 of LNCS, , Eindhoven, The Netherlands, pp. 148 – 159, 2004.

[RAV06] P-G. Raverdy, V. Issarny, R. Chibout, A. de La Chapelle. “A Multi-Protocol Approach to
Service Discovery and Access in Pervasive Environments”, In Proceedings of

http://www.daml.org/services/owl-s/1.0/owl-s.html
http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s
http://www.mosquito-online.org/
http://www.w3.org/TR/P3P/

156

MOBIQUITOUS – The 3rd Annual International Conference on Mobile and Ubiquitous
Systems: Networks and Services. San Jose, CA, USA, 2006,.

[RAV06-2] P.-G. Raverdy, O. Riva, R. Chibout, A. de La Chapelle and V. Issarny, "Efficient Context-
aware Service Discovery in Multi- Protocol Pervasive Environments", In Proc. of IEEE Intl.
Conference on Mobile Data Management (MDM), Tokyo,Japan, May 2006.

[REI98] M. Reiter, A. Rubin. Crowds: "Anonymity for Web Transactions," ACM Trans. on Information
and Systems Security, pp 66-92, 1 (1) 1998.

[ROB03] P. Robinson and M. Beigl. “Trust Context Spaces: An Infrastructure for Pervasive Security”.
In the First International Conference on Security in Pervasive Computing, 2003.

[ROM02] K. Romer, O. Kasten, F. Mattern, “Middleware Challenges for Wireless Sensor Networks”,
ACM Mobile Computing and Communication Review, Vol. 6, No. 4, pp. 59-61, October 2002

[SAI05] F. Sailhan, V. Issarny, “Scalable Service Discovery for MANET”. In Proceedings of the 3rd
IEEE International Conference on Pervasive Computing and Communications (PerCom'2005).
March 2005.

[SAH05] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption”, Advances in Cryptology-
Eurocrypt'05.LNCS 3494, pp. 457-473, Springer, 2005.

[SAL99] D. Salber, A.K. Dey and G.D. Abowd, "The Context Toolkit: Aiding the development of
context-enabled applications", in Proceedings of the SIGCHI conference on Human factors in
computing systems, (1999), pp. 434-441.

[SAN96] R. Sandhu, E. Coyne, H. Fienstein, and C. Youman, "Role Based Access Control Models," in
IEEE Computer, vol. 29, 1996.

[SHA84] A. Shamir, “Identity-based cryptosystems and signature schemes", in Advances in Cryptology
Crypto '84, Lecture Notes in Computer Science, Vol. 196, Springer-Verlag, pp. 47-53, 1984

[SHA02] N. Shankar and D. Bafanz, “Enabling secure ad-hoc communication using context-aware
security services,” in UNBICOMP 02: Workshop on Security in Ubiquitous Computing, 2002.

[SHE07] K. Sheikh, M. Wegdam, M. van Sinderen, “Middleware Support for Quality of Context in
Pervasive Context-Aware Systems”, In: Proceedings of the Fourth IEEE International
Workshop on Middleware Support for Pervasive Computing (PerWare'07), co-located with
Fifth Annual Conference on Pervasive Computing and Communications (PerCom 2007), 2007.

[SHI94] Schilit, B., Theimer, M. Disseminating Active Map Information to Mobile Hosts. IEEE
Network, pp. 22-32, 1994.

[SOM07] N. Le Sommer, “A Framework for Service Provision in Intermittently Connected Mobile Ad
hoc Networks”, In Proceedings of the 8th IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WOWMOM 2007), Helsinki, Finland, 2007.

[SSJ] P. L'Ecuyer, L. Meliani, J. G. Vaucher, “SSJ: a framework for stochastic simulation in Java”.
Winter Simulation Conference, 2002.

[SWS] http://www.daml.org/services/swsf/1.0

[TAN02] A. S. Tanenbaum, M. Van Steen, “Disctributed Systems: Principles and Paradigms”, Prentice
Hall, 2002.

[TON03] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, A. Uszok, “Semantic Web
Languages for Policy Representation and Reasoning: A comparison of KAoS, Rei, and
Ponder” International Semantic Web Conference (ISWC 03). Sanibel Island, Florida.

157

[TRA07] S. Trabelsi and Y. Roudier, "Secure service publishing with untrusted registries: Securing
service discovery", SECRYPT 2007, International conference on Security and Cryptography,
July 28-31, 2007, Barcelona, Spain

[TSA03] W.T. Tsai, R. Paul, Z. Cao, L. Yu, A Saimi, B. Xiao, “Verification of Web services using an
enhanced UDDI server”, Proceedings of the 18th International Workshop on Object-Oriented
Real-Time Dependable Systems, Anacapri (Capri Island), Italy, 2003.

[VOL] Voltage IBE Toolkit http://www.voltage.com/ibe_dev/

[WAN03] X. F. Wang, M.K Reiter, “Defending against denial-of-service attacks with puzzle auctions”, in
proceeding Symposium on of Security and Privacy, USA, (2003).

[WEI91] M. Weiser, “The Computer of the 21st Century,” Scientific American, vol. 265, no. 3, Sept. pp.
66–75, 1991.

[WES87] A. Westin, “Privacy and Freedom”, New York, 1987

[WSDL] WSDL specifications http://www.w3.org/TR/wsdl

[WSM] http://www.wsmo.org

[XAC] OASIS, XACML, http://www.oasis-open.org/committees/xacml/

[YAN06] Y. Yang, H.Hassanein, A. Mawji, “Efficient Service Discovery forWireless Mobile Ad Hoc
Networks”, in proceedings of IEEE International Conference on Computer Systems and
Applications, 2006.

[ZHU03] F. Zhu, M. Mutka, and L. Ni, “Splendor: A secure, private, and location-aware service
discovery protocol supporting mobile services”, in Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications (Percom’03). IEEE Computer
Society, pp. 235–242, 2003.

[ZHU04] F. Zhu, M. Mutka, L. Ni “Prudent exposure: A private and user centric service discovery
protocol” Proceedings of the 2nd IEEE International Conference on Pervasive Computing and
Communications (PerCom’04) Orlando, USA, 2004

[ZHU05] F. Zhu, M. Mutka, L. Ni, “Service Discovery in Pervasive Computing Environments”,
Proceedings of Pervasive Computing, IEEE, Vol. 4, No. 4, pp. 81-90. 2005.

[ZUI04] M. Zuidweg, J. G. P. Filho, M. Van Sinderen, “Using P3P in a web services-based context-
aware application platform” Proceedings of the 6th international conference on Electronic
commerce table of contents Delft, The Netherlands, pp. 376 – 381, 2004.

http://www.voltage.com/ibe_dev/
http://www.w3.org/TR/wsdl
http://www.wsmo.org/
http://www.oasis-open.org/committees/xacml/

158

159

Annex

In this annex document we present the specifications of the secure service discovered
implementation that we developed during my thesis work. This specification contains a
detailed API description, the diagram classes describing the developed components, the
sequence diagram describing the interactions between different elements of the system and
finally a WSDL description file providing information about the web service interface of our
secure service discovery system.

1. API description
The token supports dynamic discovery: when it is plugged into a device, it announces itself as
a discovery proxy, registering some personal services. This interface is mainly based on WS-
Discovery.

1.1. General Features:
The token acts both as a Target Service, announcing itself as a Discovery Proxy and as a
Discovery Proxy:

IP multicast messages supported:
o Sending:

Hello (SOAP/UDP)
Both Types DiscoveryProxy and TargetService
Hello messages sent periodically

IP multicast messages not yet supported:
o Receiving:

Probe
Resolve

Messages over HTTP
o Sending:

Bye
ProbeMatch
ResolveMatch

With each matching endpoint reference, the associated metadata includes the credentials to
access to the service

o Receiving:
Probe

Scope rules support to be defined
Resolve

The token does not support compact signature.
Secure registration of target services:

Through HTTPS, with client authentication
Registration messages from Liberty Alliance Discovery Specification 2.0

o Receiving
Modify.

The ModifyDiscovery operation allows multiple insertions and removals to be made in a
single request. The operation is atomic; the insertions and removals either all succeed or all

160

fail. Each entry is defined as an End Point Reference (EPR) according to WS-Addressing
specification.

o Sending
ModifyResponse

The message ModifyResponse includes a status response and the new ids of the eventual
inserted entries.

1.2. Interface Definition

1.2.1. Parameters
ServiceProfile: A structure describing the profile of a service. This structure is
composed in on seven optional and extendible attributes that are :

o Type: describes the type of the offered service (printer, file sharing, weather,
…)

o Owner: represents the identity of the user that proposes the service.
o Domain: an indication about the domain in witch belongs the service
o Organisation: the name of the organisation (or the business) that proposes the

service
o LifeTime: an indication about the life time of the service after this delay the

service is no more available
o Qos: We can add an indication about the quality of service provided by the

service.
EndPointReference: A structure containing the information that are useful to join the
service and composed on two attributes:

o Address: also called UUID that represents an unique identifier, but this address
does not provide an indication about the end point of the service.

o ReferenceProperties: provides an URL or a routable address where we can
access to the service

PublishType: a structure that contains a service profile and an EndPointReference
used to register a service
LookupResponseType: structure that contains a service profile and an
EndPointReference used as a response to the service requester query
ServiceID: it is an identifier affected by the registry to the services to distinguish
between them, this identifier is used by the service in order to update or unregister
itself.
ClientPolicy / ServicePolicy: contains a metadata representing the client (server)
policy

1.2.2. Methods
Publish: Method used for the service publication

o Input parameter : PublishType
o Output parameter: serviceID

Lookup: Method used by the client to discover to make a service discovery request
o Input parameter : ServiceProfile
o Output parameter: an array of LookupResponseType

Unregister: Method used by the service to unregister from the registry

161

o Input parameter : ServiceID
SetServicePolicy / SetClientPolicy: Methods to set security policies

o Input parameter : ServicePolicy / ClientPolicy

2. UML specifications
The discovery mechanism code has been developed in Java and is organized along several
sub-packages.

2.1. External API
The JavaAPI sub-package contains classes providing the Java mapping of the WSDL
interface. These classes are organized as follows (see Figure 67):

The Discovery Java interface provides the operations necessary to access a registry
Data structures are provided to store the service profile, for the registration of a service
as well as for its lookup (incomplete profile in this case)

Figure 67: Java API to Service Discovery (UML class diagram)

2.2. Communication related data structures
Data structures related to communications and protocol are located in two sub-packages:

The Data sub-package contains data structures made to handle the sending and
reception of WS-Discovery messages
The Messages sub-package (see Figure 68) describes the structure of WS-Discovery
messages

162

Figure 68: Messages sub-package (UML class diagram)

2.3. Policy handling
Policy specifications are addressed in the Policy sub-package (see Figure 69). It describes:

the discovery policy decision point interface; the PDP functionality is called by the
MOSQUITO registry (Proxy) following the process described in Figure 70;
helper classes to construct:

o the access control policy to the service description (used by service providers;
o a XACML request from the MOSQUITO registry PEP to the PDP (this

structure is necessary since the client request, being a discovery, does not
contain an actual reference to a managed resource)

Figure 69: Policy sub-package (UML class diagram)

163

Figure 70: registry - Policy enforcement process (UML sequence diagram)

2.4. Protocol implementation
The Discovery sub-package (see Figure 72) contains classes that implement the WS-
Discovery protocol and its extensions. The most important classes in this sub-package are as
follows:

The Proxy class implements a registry: this means it is both a regular WS-Discovery
proxy and a (trusted) discovery policy enforcement point. Figure 73 describes how the
service policy is retrieved and stored with the service description. It also describe the
more complex process of client probe request retrieval and processing (matching and
discovery policy enforcement).
The GenericClient class is used as a launcher for clients to retrieve information from
looked up services (opening a unicast socket to a specified registry, generating and
sending probe messages, and handling probe match messages)
Service launchers are provided by classes Server (multicast-able service) and
UnicastServer (unicast case only – necessarily registered with a registry). The use of
such a launcher together with the construction of a policy is illustrated by the sequence
diagram of Figure 71.

164

Figure 71: Use of a service launcher (UML sequence diagram)

165

Figure 72: Discovery sub-package – protocol implementation (UML class diagram)

166

Figure 73: MOSQUITO registry - Service policy retrieval and storage (UML sequence diagram)

3. WSDL interface specification
The discovery mechanism exposes the LAN registry interface to potential clients and services
that respectively want to send lookup or registration requests. The corresponding interface
description is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://JavaAPI" xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://JavaAPI" xmlns:intf="http://JavaAPI"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

167

<wsdl:types>
<schema targetNamespace="http://JavaAPI" xmlns="http://www.w3.org/2001/XMLSchema">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="ArrayOfLookupResponseType">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="impl:LookupResponseType[]"/>

</restriction>
</complexContent>

</complexType>
</schema>

</wsdl:types>

<wsdl:message name="PublishRequest">
<wsdl:part name="in0" type="xsd:anyType"/>

</wsdl:message>

<wsdl:message name="UnregisterResponse">
</wsdl:message>

<wsdl:message name="LookupResponse">
<wsdl:part name="LookupReturn" type="impl:ArrayOfLookupResponseType"/>

</wsdl:message>

<wsdl:message name="UnregisterRequest">
<wsdl:part name="in0" type="impl:serviceID"/>

</wsdl:message>

<wsdl:message name="LookupResponse1">
<wsdl:part name="LookupReturn" type="impl:ArrayOfLookupResponseType"/>

</wsdl:message>

<wsdl:message name="LookupRequest1">
<wsdl:part name="in0" type="impl:ServiceProfile"/>

</wsdl:message>

<wsdl:message name="LookupRequest">
<wsdl:part name="in0" type="xsd:anyType"/>
<wsdl:part name="in1" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="PublishResponse">
<wsdl:part name="PublishReturn" type="xsd:anyType"/>

</wsdl:message>

<wsdl:portType name="Discovery">
<wsdl:operation name="Publish" parameterOrder="in0">

<wsdl:input message="impl:PublishRequest" name="PublishRequest"/>
<wsdl:output message="impl:PublishResponse" name="PublishResponse"/>

</wsdl:operation>
<wsdl:operation name="Unregister" parameterOrder="in0">

<wsdl:input message="impl:UnregisterRequest" name="UnregisterRequest"/>
<wsdl:output message="impl:UnregisterResponse" name="UnregisterResponse"/>

</wsdl:operation>
<wsdl:operation name="Lookup" parameterOrder="in0 in1">

<wsdl:input message="impl:LookupRequest" name="LookupRequest"/>
<wsdl:output message="impl:LookupResponse" name="LookupResponse"/>

</wsdl:operation>
<wsdl:operation name="Lookup" parameterOrder="in0">

<wsdl:input message="impl:LookupRequest1" name="LookupRequest1"/>
<wsdl:output message="impl:LookupResponse1" name="LookupResponse1"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="mosquitoSoapBinding" type="impl:Discovery">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="Publish">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="PublishRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:input>
<wsdl:output name="PublishResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="Unregister">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="UnregisterRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

168

 namespace="http://JavaAPI" use="encoded"/>
</wsdl:input>
<wsdl:output name="UnregisterResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="Lookup">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="LookupRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:input>
<wsdl:output name="LookupResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="Lookup">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="LookupRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:input>
<wsdl:output name="LookupResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://JavaAPI" use="encoded"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="DiscoveryService">
<wsdl:port binding="impl:mosquitoSoapBinding" name="mosquito">

<wsdlsoap:address location="http://localhost:8080/mosquito"/>
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

4. Installation and usage guidelines

4.1. Installation
In order to use the Secure Service discovery application, you have to install

the sunxacml-1.2 binary archive9

the Kxml2 binary archive10

and add the following JAR files into your classpath: home_root\sunxacml-
1.2\lib\samples.jar, home_root\sunxacml-1.2\lib\sunxacml.jar, home_root\sunxacml-
1.2\lib\sunxacml-debug.jar, home_root\kxml2\kxml2-2.2.2.jar,
home_root\kxml2\xmlpull_1_1_3_4b.jar

In order to externalise some parameters we used three parameter files that must be copied
on the project root:

proxy.properties: intalled on the proxy side and contains two parameters:
o Proxy.policyPath : used to set the path directory where the proxy could store

the security policies of the servers
o Proxy.requestPath: used to set the path directory where the proxy could store

the policy requests related to the clients service query
policyGenerator.properties: installed on the server side, it contains one parameter:

o DiscoveryPolicyBuilder.policyPath: this path is used as a policy store of the
service. When a server generates un new service policy, it will be stored there.
Then when a service will publish its policy it will extract the file from this

9 http://sourceforge.net/project/showfiles.php?group_id=73884&package_id=74038&release_id=253638
10 http://sourceforge.net/project/showfiles.php?group_id=9157&package_id=58653

169

directory path.
Unicast.txt: installed on the client and service sides and contains the IP address of the proxy
(this will enable the unicast communication discovery)

4.2. Usage
To get a first impression of the library usage:
Run a proxy object (the registry starts)
Run class test (from the fr/eurecom/mosquito/test directory)
If something does not work, check that the content of class test code has correct parameters

(e.g. at least one service started, then the client run).
To get a better understanding of the discovery protocol (or to demonstrate the messages that
are exchanged), protocol loggers for the client and registry were developed and can be
launched to see the messages exchanged between parties. In particular, this makes it possible
to visualize message duplication because of multicast sending. One should simply start one of
the following classes: SwingClient, UnicastSwingClient, SwingProxy, or UnicastSwingProxy
(see Figure 72) depending on the version of the extended WS-Discovery protocol used.

	Abstract
	Résumé
	Introduction
	Découverte de services
	Contribution

	Modèle d’attaque et de sécurité pour la découverte de services
	Attaques et vulnérabilités
	Modèle de sécurité

	Sécuriser la découverte de services décentralisée
	Chiffrement basé sur les attributs
	Application du chiffrement basé sur les attributs aux protocoles de découverte de services
	Discussion

	Sécuriser la découverte de service basée sur les répertoires
	Politique de découverte de services
	Intergiciel pour la découverte de services sécurisée
	Discussion

	Passage à l’échelle pour la découverte de services sécurisée
	Passage à l’échelle
	Découverte de services anonyme
	Description du protocole
	Discussion

	Analyse de performance de la découverte de service sécurisée
	Modèle de découverte sécurisée
	1. Modèle centralisé
	2. Modèle décentralisé
	3. Hypothèses du modèle

	Modèle Markovien
	1. Modèle Markovien centralisé
	2. Modèle de Markov décentralisé
	3. Probabilités d’authentification

	Simulateur et validation du modèle Markovien
	Evaluation de l’impact des attaques de dénis de service
	Modèle d’attaque
	1. Modèle
	2. Impact d’une attaque de DdS sur les systèmes protégés et non protégés

	Discussion

	Contexte dans les systèmes de découverte de services
	Représentation du contexte
	Raisonnement contextuel
	Découverte de service contextuelle

	Conclusion
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Pervasive and Ubiquitous Computing
	Distributed Systems
	Service Oriented Architecture (SOA)
	Web Services
	Peer to Peer Systems
	Workflow Architecture
	Security requirement in Pervasive Systems
	Contributions
	Outline

	Service Discovery
	Introduction
	Definition
	Service Discovery Components Design
	Service Discovery Protocols
	1. Salutation
	2. Service Location Protocol (SLP)
	3. Jini Lookup Service (JLS)
	4. UDDI
	5. UPnP
	6. WS-Discovery
	7. Service Discovery Protocol (SDP): Bluetooth
	8. Service Discovery in Ad-Hoc Networks

	Matching and Semantics
	1. Matching
	2. Ontology Based Service Discovery

	Context Awareness and Service Discovery
	Threats and Security Requirements
	1. Threats and Attacks
	2. Security Requirements for Service Discovery

	Approaches Secure Service Discovery
	1. Access Control on the Service Side
	2. Registry-Based Architecture
	3. Privacy Issues for the Service Discovery
	4. Registry-less Architecture

	Securing Decentralized Service Discovery
	Introduction
	Technical Background
	1. Identity Based Encryption
	2. Attribute Based Encryption
	3. Attribute Based Algorithm
	4. Private Key Generation: Online Vs Offline

	Enabling Secure Service Discovery with Attribute Based Encryption
	1. Introduction
	2. Profiles and Attributes
	3. Applying Attribute Based Encryption
	Securing Client Request
	Securing Service Publish/Response

	Algorithms for Decentralized Secure Service Discovery System
	Private Key Management
	1. Requesting Private Keys from an Online PKG
	2. Private Key Generation: Online Vs Offline
	3. Key Revocation

	Use Case Scenarios
	Security Evaluation
	1. Proof of Security
	2. Security Analysis

	Experimental Results
	Alternative Solutions
	1. Group Encryption
	2. Policy Based Cryptography

	Conclusion

	Securing Registry-Based Service Discovery
	Introduction
	Technical Background
	1. XACML
	2. X.509 Attribute Certificate

	Service Discovery Policy
	1. Concept
	2. Choosing a Service Discovery Policy

	Architecture for a Registry-Based Secure Service Discovery
	Algorithm for a Secure Centralized Service Discovery
	Secure Service Discovery Middleware
	1. Related Work
	2. Middleware Stack

	Security Evaluation
	Measurement Results
	Conclusion

	Secure Service Discovery with Distributed Registries
	Introduction
	Related Work
	Distributed Architectures for Service Discovery
	Technical Background
	1. Onion Routing
	2. Distributed Hash Tables (DHT)

	Requirements
	A Scalable Distributed Registry-Based Model
	1. Indexing and Data Retrieval
	2. Algorithms for inter-registry Indexing and Data Retrieval

	Securing the Access to Distributed Registries
	1. Need for Anonymity
	2. Pairing-Based Onion Routing
	3. Anonymizing Publish / Request Messages for the Service Discovery

	Architecture for a Secure Distributed Registry-Based Service Discovery
	Security Evaluation
	Performance and Results
	1. Pairing-Based Onion Routing Costs
	2. Kademlia Request/Response Costs

	Conclusion

	A Performance Analysis of Secure Service Discovery Solutions
	Introduction
	Related Work
	1. Matching Strategies
	2. Fault Tolerance and Crash Robustness
	3. Publishing and Retrieval Time

	Modeling Secure Service Discovery
	1. Centralized Discovery
	Description
	Model

	2. Decentralized Discovery
	Description
	Model

	3. System Model Assumptions

	Markovian Model
	1. Markovian Centralized Model
	Markov Chain
	Numerical Resolution

	2. Markovian decentralized Model
	Markov Chain
	Numerical Resolution

	Matching Probabilities
	Model Validation
	1. Java Simulator
	2. Rejection Rate
	3. Server and Resource Usage Rate

	Performance Analysis
	1. System Setup
	2. Rejection Rate
	3. Average Number of Users in the System
	4. Service Time Duration of a Request in the System
	5. Summary

	Evaluation of the Impact of DoS Attacks on System Performances
	1. Introduction
	2. Attack Model
	3. Impact of a DoS Attack for a Protected and non Protected System
	4. Summary

	Conclusion

	Context Awareness in Service Discovery
	Definition
	1. Data Modeling
	2. Reasoning
	3. Quality of Context

	Context Awareness and Security
	1. Context-Aware Access Control
	2. Privacy and Context Awareness
	3. Context-Aware Encryption

	Context-Aware Security Policy
	1. Introduction to Security Policies
	2. Security Policy and Context-Awareness
	3. Related Work
	4. Context-Aware Security Policy Requirements
	Message Level Policy
	Application Level Policy

	Securing Contextual Information
	1. Confidentiality of context information
	2. Integrity of context information:
	3. Trustworthiness of Delivered Context Information

	Context-Aware Security Policy for the Service Discovery
	1. Context Information Representation
	2. Reasoning about Context Information
	3. Health Care Scenario
	4. Performance and Results

	Conclusion

	Conclusion and Perspectives
	Annex
	1. API description
	1.1. General Features:
	1.2. Interface Definition
	1.2.1. Parameters
	1.2.2. Methods

	2. UML specifications
	2.1. External API
	2.2. Communication related data structures
	2.3. Policy handling
	2.4. Protocol implementation

	3. WSDL interface specification
	4. Installation and usage guidelines
	4.1. Installation
	4.2. Usage

