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Introduction

Présentation générale

L’apparition de techniques avancées en imagerie a amélioré de maniere significative la
qualité de la surveillance médicale des patients. Les modalités d’imagerie non-invasives
permettent aux médecins de faire des diagnostics plus précis et plus précoces et de prescrire
des modes de traitement plus performants et plus justes. De multiples modalités d’imagerie
sont employées actuellement ou sont en cours d’étude.

Dans cette these, nous étudions trois techniques émergentes d’imagerie biomédicale :
e imagerie magnéto-acoustique;
e imagerie thermographique;
e endotomographie par impédance électrique.

Pour chacune de ces trois techniques, nous proposons des modeles mathématiques et nous
présentons des nouvelles méthodes de reconstruction en imagerie médicale.

Tout d’abord, nous allons décrire les principes physiques de toutes les techniques proposées
dans cette these.

En imagerie magnéto-acoustique, le signal de sonde, par exemple une onde acoustique,
un courant électrique ou une tension électrique, est appliqué aux tissus biologiques qui
sont placés dans un champs magnétique. Le signal induit par la force de Lorentz est une
fonction de la conductivité locale des tissus biologiques. Si, par exemple, le signal de
sonde est une onde acoustique alors le signal induit est un courant électrique et la force
de Lorentz produit 'apparition d’une densité de courant électrique locale.

La mesure des courants électriques (a) ou de la pression (b) induits sur Iensemble de
la frontiere, proportionnels a la conductivité locale, permet d’obtenir la distribution de
la conductivité avec une bonne résolution. La méthode (a) est appelée 'imagerie
potentielle par vibration ou VPT (de 'anglais wvibration potential imaging) aussi connue
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comme 1'imagerie a effet Hall. La méthode (b) est appelée la tomographie magnéto-
acoustique a induction magnétiqgue ou MAT-MI (de I'anglais magneto-acoustic tomography
with magnetic induction).

La méthode (a) peut étre appliquée aux tissus du corps in vivo, ainsi qu’aux cellules
cultivées en suspension. Le faisceau ultrasonore effectue l’excitation dans une région
d’étude et le courant induit est mesuré a ’aide des électrodes. La recherche dans cette
direction semble tres prometteuse pour avancer la tomographie par impédence électrique
ou EIT (de l'anglais electrical impedance tomography). La technique EIT est une technique
d’imagerie qui se concentre sur la reconstruction de la distribution de I'impédance dans les
tissus biologiques par l'injection de courants électriques et par la mesure non-invasive de
potentiels. Dans le cadre de la technique EIT, le courant électrique est injecté dans ’'objet
par les électrodes surfaciques et les potentiels correspondant a la frontiere sont mesurés
sur toute la surface de 'objet dans le but de reconsrtuire la distribution de I'impédance
a l'intérieur de 'objet. Il est bien connu que cette méthode d’imagerie de la distribution
de conductivité produit des résultats avec une mauvaise précision. L’imagerie potentielle
par vibration s’appuie sur des techniques de mesure innovantes qui integrent I'information
structurelle. Dans le cadre de cette méthode, la résolution intrinseque est de ’ordre de
la taille de la tache focale de I'onde ultrasonore, alors elle devrait fournir des résultats de
haute résolution.

Notons qu’une onde acoustique ou un déplacement de tissu apparaissent lorsque ’on place
un tissu électriquement actif dans un champs magnétique.

Cette méthode (c), appelée I'imagerie magnéto-acoustique de courant électrique ou MACI
(de T'anglais magneto-acoustic current imaging), a été proposée pour reconstruire les
conductivités en detectant les courants actifs résultants de ’action de nerfs ou de fibres
musculaires qui peuvent étre imagés en mesurant le signal de pression induit.

L’imagerie médicale thermique est en train de devenir une modalité de dépistage du
cancer du sein, de la peau et du foie. En tant que modalité d’imagerie physiologique qui
effectue les analyses sur les fonctions du corps, elle peut permettre un diagnostic plus
précoce que des examens anatomiques. La procédure de 'imagerie médicale thermique
est fondée sur le principe selon lequel 'activité des vaisseaux sanguins et lymphatiques
dans le tissu précancéreux et dans la zones environnantes du cancer développé est presque
toujours plus élevée que dans les tissus normaux. Comme les masses précancéreuses et
cancéreuses sont des tissus tres métaboliques, ils ont besoin de ravitaillement abondant
pour maintenir leur croissance. Pour croitre les tumeurs doivent développer un nouveau
circuit d’approvisionnement sanguin. En effet, les tumeurs induisent un tel systeme de
nouveaux vaisseaux sanguins a partir de vaisseaux préexistants, processus qui se rap-
porte a I’angiogenese. Ce processus se traduit par une augmentation de la température.
L’expérience actuelle consiste a utiliser des caméras thermiques ultra-sensibles et des
ordinateurs sophistiqués pour détecter, analyser et produire des images thermiques de
diagnostic haute résolution des changements de température et vasculaires.



Le principe de 'imagerie thermique est le suivant. Un détecteur infrarouge a balayage
est utilisé pour convertir le rayonnement infrarouge émis par la surface de la peau en
impulsions électriques qui sont visualisées en couleurs sur un moniteur. Cette image
visuelle, appelée thermogramme, représente graphiquement la température du corps.
Comme dans le corps normal la répartition de la température est assez symétrique, la
répartition anormale de température peut étre facilement identifiée.

Les études cliniques montrent que l'imagerie thermique des seins a une sensitivité et
précision de 90% en moyenne. Une image infrarouge anormale est le plus important
marqueur de risque élevé de développement du cancer du sein. L’imagerie thermique peut
étre utilisée

(i) pour définir I’étendue de la lésion dont le diagnostic a été déja fait;

(ii) pour la localisation d’un domaine anormal non préalablement identifié, dans le but
d’effectuer les tests de diagnostique suivants;

(iii) pour détecter précocement les lésions avant qu’elles ne soient cliniquement évidentes;

(iv) pour guider les thérapies parmi lesquelles les plus connues sont les nouvelles tech-
niques de thermo-ablation des tumeurs.

L’imagerie thermique ultrasonore est une technique prometteuse qui utilise la thermogra-
phie. Elle exploite le principe de dépendance de la vitesse du son dans un milieu vis-a-vis
de la température. Les techniques de thermo-ablation, telle que la chirurgie par ultrasons
focalisés, vise a détruire les tumeurs malignes sans endommager les tissus environnants.

La technique consiste, dans un premier temps, a utiliser le systeme de la chirurgie par
ultrasons focalisés a basse intensité et utiliser en méme temps le systeme de diagnostique
d’imagerie thermique ultrasonore pour détecter 'augmentation locale de la température en
supposant que la dépendance de la vitesse du son vis-a-vis de la température est connue.

L’endotomographie par impédance électrique ou EIET (de 'anglais electrical impe-
dance endo-tomography) est une méthode pour reconstruire la conductivité des tissus ou
des organes profonds en utilisant une sonde d’impédance située au centre de la région
d’étude. La sonde est constituée d’électrodes paralleles, placées a la surface d’un cylindre
isolant et le champ électrique se propage dans le milieu entourant la sonde. Cette nouvelle
méthode a été développee pour la détection du cancer de la prostate. Le principe de
I’endotomographie suppose que le tissu normal de la prostate et le tissu de la tumeur ont
des conductivités électriques tres différentes.

Dans la pratique, le nombre des couples de courants et des potentiels électriques capturés
doivent étre limités en fonction du nombre d’électrodes fixées sur la surface de la sonde ce
qui restreint la résolution de I'image. Nous pouvons certainement augmenter la résolution
de I'image de conductivité en augmentant le nombre d’électrodes. Néanmoins, il faut
remarquer qu’au-dela d’un certain niveau, ’augmentation du nombre d’électrodes ne peut
pas améliorer la résolution de I'image a l'intérieur du corps a cause de 'inévitable bruit de
mesure et de l'insensibilité intrinseque mentionnée auparavant. Dans sa forme la plus
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générale EIET est séverement mal posée et non linéaire. Ces difficultés majeures et
fondamentales peuvent étre mises en évidence par les propriétés de la valeur moyenne
dans le cadre de la théorie des équations aux dérivées partielles elliptiques. En effet, la
valeur du potentiel & chaque point dans le milieu environnant la sonde peut étre exprimée
comme une moyenne pondérée de potentiels voisins ou le poids est déterminé par la
distribution de conductivité. Dans ce mode de calul de moyenne pondérée, les valeurs
de potentiels mesurées par la sonde sont influencées par la distribution de conductivité.
Par conséquent, les mesures de la sonde sont reliées a la distribution de conductivité de
fagon fortement non linéaire. C’est le principal obstacle au développement des algorithmes
de reconstruction non-itératifs en présence de limitation de données. Cependant, si nous
avons d’autres informations structurelles sur le milieu, alors nous pourrons peut-étre
déterminer les caractéristiques spécifiques sur la distribution de conductivité avec une
bonne résolution. Par exemple, on peut supposer qu’il existe un certain nombre de petites
inclusions de conductivités nettement différentes de celle du fond. Cette situation se
présente par exemple dans le cadre de I'imagerie du cancer de la prostate.

Dans ce cas, EIET cherche & restituer les inclusions inconnues. Grace a la petite taille
des inclusions les potentiels associés mesurés a la surface de la sonde sont tres proches de
potentiels correspondant au milieu sans inclusions. A moins que l’on sadche exactement
quel échantillon doit étre restitué, il est presque impossible d’extraire de données largement
bruitées des informations pertinentes sur les inclusions. En outre, en imagerie de la
prostate, il n’est en général pas nécessaire de reconstituer la conductivité ou de reconstruire
la géométrie des inclusions avec une tres grande précision. L’intérét majeur consiste a
déterminer leurs positions et leurs tailles.

Plan de la these

Dans le chapitre [1, apres avoir rappelé les bases théoriques des trois approches différentes
de I'imagerie magnéto-acoustique, nous proposons de nouveaux algorithmes pour résoudre
des problemes inverses correspondant a chaque approche.

Le chapitre 2 est consacré a I'imagerie thermographique. Nous effectuons une étude
quantitative de la perturbation de température due a une petite inclusion et nous concevons
de nouveaux algorithmes pour la localisation et l’estimation de la taille de I'inclusion.
Nous adoptons un modele assez réaliste; toute la théorie basée sur ce modele peut donc
étre appliquée aux autres domaines de thermographie, en particulier a la résolution des
problemes de détection des inclusions. Notre but est de fournir un terrain mathématique
pour la reconstruction grossiere d’'une caractéristique de l'inclusion qui soit stable a travers
tous les bruits appliqués aux mesures et a travers toutes les modifications de la géométrie.
Etant basé sur des estimations rigoureuses, nous suggérons une approximation qui permet
de développer un algorithme non itératif de détection d’inclusions. Nous proposons une
nouvelle plate-forme mathématique de l'imagerie thermique ultrasonore qui peut étre
utilisée pour guider les nouvelles thérapies, par exemple la thermo-ablation des tumeurs.
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Dans le chapitre 3, nous étudions I’endotomographie par impédance électrique. Nous avon
trois objectifs:

(i)

(iii)

Nous proposons une procédure de détection d’une inclusion isotrope de forme
elliptique dont le premier ordre du tenseur de polarisation anisotrope ou APT (de
Panglais anisotropic polarisation tensor) coincide avec celui d’une inclusion anisotrope
en forme de disque. Ensuite, nous montrons comment il est possible d’extraire la
caracteristique de I’anisotropie & partir I’APT d’ordre suppérieur.

Nous proposons également ’extension de I'approche de I'imagerie par déformation
élastique au cas de EIET et nous démontrons sa faisabilité. Cette approche appelée
impédiographie est basée sur la mesure simultanée d’un potentiel et des vibrations
acoustiques induits par une onde ultrasonore. Sa résolution intrinseque dépend de
la taille de la tache focale de la perturbation acoustique, elle fournit donc des images
de haute résolution. L’idée principale de I'impédiographie consiste a extraire le
maximum d’informations sur la distribution de conductivité a partir de données
qui ont été enrichies par le couplage des mesures électriques et de la localisation
des perturbations élastiques. Plus précisement, on perturbe le milieu au cours de
I’acquisition des mesures électriques, en effectuant la focalisation ultrasonore sur la
région d’intérét de petite taille a 'intérieur du corps. En utilisant un modele simple
pour les effets mécaniques de ’onde ultrasonore, on peut démontrer que la différence
entre les mesures dans les cas perturbé et non perturbé est asymptotiquement égale
a la valeur de la densité d’énergie au centre de la zone perturbée. Dans la pratique,
des ondes ultrasonores influencent une zone de quelque millimetres de diameétre.
Les perturbations devraient donc étre sensibles aux variations de la conductivité
a ’échelle millimétrique, précision requise pour la diagnostique du cancer de la
prostate.

Nous présentons la méthode de détection de multiple inclusions en utilisant le modele
réaliste.

11



Introduction

General presentation

The introduction of advanced imaging techniques has significantly improved the quality
of medical care available to patients. Noninvasive imaging modalities allow a physician
to make increasingly accurate diagnoses and render precise and measured modes of treat-
ment. A multitude of imaging modalities are available currently on subject of active and
promising research.

In this thesis, we investigate the following three emerging biomedical imaging techniques:
(i) Magneto-Acoustic Imaging;
(ii) Thermographic Imaging;
(iii) Electrical Impedance Endo-Tomography.

For each of these techniques, we propose mathematical models and build new methodology
for image reconstruction.

First of all we outline the physical principle of these techniques.

In magneto-acoustic imaging, a probe signal such as an acoustic wave or an electric
current (or voltage) is applied to a biological tissue placed in a magnetic field. The probe
signal produces by the Lorentz force an induced signal that is a function of the local
electrical conductivity of the biological tissue. If the probe signal is an acoustic wave,
then the induced signal is an electric current and the Lorentz force causes a local current
density.

Induced boundary currents (a) or pressure (b) which are proportional to the local electrical
conductivity can be measured to reconstruct the conductivity distribution with the spatial
resolution of the ultrasound. The induced signal is detected and an image of the local
electrical conductivity of the specimen based on the detected induced signal is generated.
Method (a) is referred as the vibration potential imaging and method (b) as magneto-
acoustic tomography with magnetic induction. The vibration potential imaging is also
known as the Hall effect imaging.

Method (a) can be applied to body tissue in vivo and to measurements in suspensions
and cultured cells. The ultrasound beam ensures the excitation of the desired region
of interest and the interaction current is collected by means of electrodes. It is a very
promising direction of research for improving the electrical impedance tomography (EIT).
EIT is an imaging technique focused upon reconstructing the impedance distribution of
biological tissue using current injection and noninvasive voltage measurements. In EIT,
electrical current is injected into the object from electrodes attached to the surface, and
the corresponding boundary voltage is measured over the surface of the object in order to
reconstruct the impedance distribution within the volume. It is known that this approach
for imaging the conductivity distribution produces images with deceivingly poor accuracy
and spatial resolution. The vibration potential imaging relies on innovative measurement
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techniques which incorporate structural information. Its intrinsic resolution is of order of
the size of the focal spot of the ultrasound, and thus it should provide high resolution
images.

If an electrically active tissue is placed into the magnetic field then an acoustic wave
or tissue displacement is created. This method (c), known as magneto-acoustic current
imaging, has been suggested as a method for reconstructing current dipoles and imaging
action currents arising from active nerve or muscle fibers by detecting the induced pressure
signal.

Medical thermal imaging is becoming a common screening modality in the areas of
breast, skin, and liver cancers. As a physiological imaging modality that assesses body
function, it can indicate developing disease states earlier than anatomical examinations.
The imaging procedure is based on the principle that chemical and blood vessel activity in
both pre-cancerous tissue and the area surrounding a developing cancer is almost always
higher than in the normal tissue. Since pre-cancerous and cancerous masses are highly
metabolic tissues, they need an abundant supply of nutrients to maintain their growth. To
obtain these nutrients they increase circulation to their cells by secreting chemicals to keep
existing blood vessels open, recruit dormant vessels, and create new ones (neoangiogenesis).
This process results in a local increase in temperature. State-of-the-art applications use
ultra-sensitive thermal imaging cameras and sophisticated computers to detect, analyze,
and produce high-resolution diagnostic thermal images of these temperature and vascular
changes.

The principle of thermal imaging is as follows. An infrared scanning device is used to
convert infrared radiation emitted from the skin surface into electrical impulses that
are visualized in colour on a monitor. This visual image graphically maps the body
temperature and is referred to as a thermogram. The spectrum of colours indicate an
increase or decrease in the amount of infrared radiation being emitted from the body
surface. Since there is a high degree of thermal symmetry in the normal body, subtle
abnormal temperature asymmetry’s can be easily identified.

Clinical studies show that thermal imaging of the breasts has an average sensitivity and
specificity of 90%. An abnormal infrared image is the single most important marker of
high risk for developing breast cancer. Thermal imaging can be used

(i) to define the extent of a lesion of which a diagnosis has previously been made;

i1) to localize an abnormal area not reviously identiﬁed, so further diagnostic tests can
p g
be performed;

(ili) to detect early lesions before they are clinically evident;
(iv) to guide thermal ablation therapies.

Ultrasonic temperature imaging is a promising technique using thermography. It exploits
the principle that the sound speed in tissue depends on temperature. Thermal ablation

13
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therapies, such as focused ultrasound surgery, aim to destroy malignant tumors without
damaging the surrounding tissue. The technique is to run the focused ultrasound surgery
system at an initial, pre-ablative low intensity and to use a diagnostic ultrasound imaging
system to detect the associated localized temperature rise, assuming that the temperature
dependence of speed of sound is known.

Electrical Impedance Endo-Tomography (EIET) is a new alternative method for
scanning the conductivity of deep tissues or organs using an impedance probe placed at the
center of the region of interest. The probe consists of electrodes placed at the surface of an
insulating cylinder and spreads in the medium surrounding the probe. The electrodes are
surrounded by the medium to be examined instead of encircling it. The basic assumption
is that normal prostate tissue and tumor tissue have different electric conductivities.

In practice captured current-voltage pairs must be limited by the number of electrodes
attached on the surface of the probe, that restrict the resolution of the image. Definitely,
we can increase the resolution of the conductivity image by increasing the number of
electrodes. However, it should be noticed that, beyond a certain level, increasing numbers
of electrodes may not give any help for producing a better image for the inner-region of the
body if we take account of inevitable noise in measurements and the inherent insensitivity
mentioned before. In its most general form EIET is severely ill-posed and nonlinear.
These major and fundamental difficulties can be understood by means of the mean value
type theorem in elliptic partial differential equations. The value of the voltage potential
at each point in the medium surrounding the probe can be expressed as a weighted
average of its neighborhood potential where the weight is determined by the conductivity
distribution. In this weighted averaging way, the conductivity distribution is conveyed
to the probe potential. Therefore, the probe data is entangled in the global structure
of the conductivity distribution in a highly nonlinear way. This is the main obstacle in
finding non-iterative reconstruction algorithms with limited data. If, however, we have
additional structural information about the medium in advance, then we may be able
to determine specific features about the conductivity distribution with good resolution.
One such type of knowledge could be that the body surrounding the probe consists of a
smooth background containing a number of unknown small inclusions with a significantly
different conductivity. This situation arises for example in prostate cancer imaging.

In this case, EIET tries to recover the unknown inclusions. Due to the smallness of
the inclusions the associated voltage potentials measured on the surface of the probe
are very close to the potentials corresponding to the medium without inclusion. Thus
unless one knows exactly what patterns to look for, noise will largely dominate the
information contained in the measured data. Furthermore, in prostate imaging it is often
not necessary to reconstruct the precise values of the conductivity or geometry of the
inclusions. The information of real interest is their positions and size.

14



Thesis outline

The thesis is organized as follows.

In Chapter [1, we provide the mathematical basis for the three different magneto-acoustic
imaging approaches and propose new algorithms for solving the inverse problem for each
of them.

Chapter 2 is devoted to the thermographic imaging. We perform a quantitative study of
the change of temperature due to a small anomaly and design new accurate algorithms for
localizing and estimating the size of the anomaly. We adopt a model that can be viewed
essentially as a realistic, therefore any developed theory from this model can be applied
to other areas in thermography, especially in anomaly detection problems. Our purpose
is to provide a mathematical ground for the reconstruction of a rough feature of the
anomaly which is stable against any measurement noise and any change of geometry. Based
on rigorous estimates, we derive an approximation that gives a noniterative detection
algorithm of finding a useful feature of anomaly. We also provide the mathematical ground
of ultrasonic temperature imaging used for the guidance of thermal ablation therapies.

In Chapter [3, we study electrical impedance endo-tomography. Our aim is threefold:

(i) We first find an isotropic inclusion of elliptic form with isotropic conductivity first-
order polarization tensor of which coincides with the anisotropic one of a disk-
shaped anisotropic inclusion. We then show how to extract anisotropy from higher-
order anisotropic polarization tensors. It is known that detection of anisotropy can
discriminate malignant tumors from benign ones.

(ii) We also generalize the recent approach of conductivity imaging by elastic deformation
to EIET and demonstrate its feasibility. This approach, called impediography,
is based on the simultaneous measurement of a potential and of acoustic vibrations
induced by ultrasound waves. Its intrinsic resolution depends on the size of the
focal spot of the acoustic perturbation, and thus it provides high resolution images.
The core idea of impediography is to extract more information about the conduc-
tivity from data that has been enriched by coupling the electric measurements with
localized elastic perturbations. More precisely, one perturbs the medium during the
electric measurements, by focusing ultrasonic waves on regions of small diameter
inside the body. Using a simple model for the mechanical effects of the ultrasound
waves, one can show that the difference between the measurements in the unper-
turbed and perturbed configurations is asymptotically equal to the pointwise value
of the energy density at the center of the perturbed zone. In practice, the ultrasounds
impact a zone of a few millimeters in diameter. The perturbation should thus be
sensitive to conductivity variations at the millimeter scale, which is the precision
required for prostate cancer diagnostic.

(iii) Finally, we present a method for detecting multiple anomalies using a realistic
electrode model.
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Chapter 1

Mathematical Models and
Reconstruction Methods in
Magneto-Acoustic Imaging

1.1 Introduction

In magneto-acoustic imaging, a probe signal such as an acoustic wave or an electric current
(or voltage) is applied to a biological tissue placed in a magnetic field. The probe signal
produces by the Lorentz force an induced signal that is a function of the local electrical
conductivity of the biological tissue [33]. If the probe signal is an acoustic wave, then the
induced signal is an electric current and the Lorentz force causes a local current density.

Induced boundary currents (a) or pressure (b) which are proportional to the local electrical
conductivity can be measured to reconstruct the conductivity distribution with the spatial
resolution of the ultrasound. The induced signal is detected and an image of the local
electrical conductivity of the specimen is generated based on the detected induced signal.
Method (a) is referred as the vibration potential imaging and method (b) as magneto-
acoustic tomography with magnetic induction. The vibration potential imaging is also
known as the Hall effect imaging.

Method (a) can be applied to body tissue in vivo and to measurements in suspensions
and cultured cells. The ultrasound beam ensures the excitation of the desired region
of interest and the interaction current is collected by means of electrodes. It is a very
promising direction of research for improving the electrical impedance tomography (EIT).
EIT is an imaging technique focused upon reconstructing the impedance distribution of
biological tissue using current injection and noninvasive voltage measurements. In EIT,
electrical current is injected into the object from electrodes attached to the surface, and
the corresponding boundary voltage is measured over the surface of the object in order to
reconstruct the impedance distribution within the volume. It is known that this approach
for imaging the conductivity distribution produces images with deceivingly poor accuracy
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Chapter 1 Magneto-Acoustic Imaging

and spatial resolution. The vibration potential imaging relies on innovative measurement
techniques that incorporate structural information. Its intrinsic resolution is of order of
the size of the focal spot of the ultrasound, and thus it should provide high resolution
images.

If an electrically active tissue is placed on a magnetic field then an acoustic wave or tissue
displacement is created. This method (c), known as magneto-acoustic current imaging, has
been suggested as a method for reconstructing current dipoles and imaging action currents
arising from active nerve or muscle fibers by detecting the induced pressure signal.

We refer the reader to [33, 27, 28, [39, 40, 17, 35, 36] for physical basic principles of
vibration potential tomography, magneto-acoustic tomography with magnetic induction,
and magneto-acoustic current imaging.

In this chapter, we provide the mathematical basis for these three different magneto-
acoustic imaging approaches and propose new algorithms for solving the inverse problem
for each of them.

1.2 Mathematical Formulations

1.2.1 Vibration Potential Tomography

We recall that, in mathematical terms, EIT consists in recovering the conductivity map
of a 2D or 3D body € (of class C1'*, a > 0), from one or several current-to-voltage pairs
measured on the surface of the body. Denoting by 7(z) the unknown conductivity, the
voltage potential v solves the conduction problem
V-(yVv)=0 in

v=g on 0.

The problem of impedance tomography is the inverse problem of recovering the coef-
ficients v of the elliptic conduction partial differential equation, knowing one or more

current-to-voltage pairs (g %\BQ). Throughout this chapter, except in Section (1.4,

we assume that g € C»*(Q) and the conductivity v € C%%(Q), and is bounded in
above and below by positive constants. The solution v is then in C1%(Q). Further, we
suppose that the 7 is a known constant on a neighborhood of the boundary 02 and let .

denote |-

In vibration potential tomography (VPT), ultrasonic waves are focused on regions of
small diameter inside a body placed on a static magnetic field. The oscillation of each
small region results in frictional forces being applied to the ions, making them move.
In the presence of a magnetic field, the ions experience Lorentz force. This gives rise to
a localized current density within the medium. The current density is proportional to
the local electrical conductivity [33]. In practice, the ultrasounds impact a spherical or
ellipsoidal zone, of a few millimeters in diameter. The induced current density should
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thus be sensitive to conductivity variations at the millimeter scale, which is the precision
required for breast cancer diagnostic. The feasibility of this conductivity imaging technique
has been demonstrated in [14].

Let z € 2 and D be a small impact zone around the point z. The created current by the
Lorentz force density is given by

J.(z) = exp(z)y(x)e, (1.2)

for some constant ¢ and a constant unit vector e both of which are independent of z.
Here and throughout this chapter, xp denotes the characteristic function of D. With the
induced current J, the new voltage potential, denoted by wu,, satisfies

V-(wVu,+J.)=0 in Q,

u, =g on 0.

According to (1.2), the induced electrical potential w, := v — u, satisfies the conductivity
equation:
V- (yVw,) =cV - (xpye) forz e, 13)
1.3
wy(x) =0 for z € 0N.

The inverse problem for the vibration potential tomography is to reconstruct the conduc-
tivity profile v from boundary measurements of 2

2z | a0 or equivalently 92=(sq for 2 € Q.

Throughout this chapter, we assume that ~ is constant in D. This assumption is natural
since the resolution can not be lower than the characteristic size of the ultrasonic beam.
Recall that « is known in a neighborhood of the boundary 0f2.

Let | D| denote the volume of D. Since 7 is assumed to be constant in D and |D| is small,
we obtain using Green’s identity

/ ’y*awzgda = / V- (yVw,)vdx
o0 Ov 0

= c/ V - (xpvye)vdx
Q

= —c/nye -Voudx = —C/De - V(yv)dw
~ —e| DIV (70)(2) - e. (1.4)

Note that the approximation error in (1.4)) is

cy(z) /D e- [Vu(z) — Vu(z)] dz,

and it is o(| D|) as one can easily prove using the Lebesgue Theorem. Here, the regularity of
the gradient Vv is used. Truly, only a local regularity of the gradient around D is required.
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Regularity does not affect the reconstruction procedures presented in Section1.3.1. In fact,
in Section (1.4 we consider discontinuous conductivities. The approximation is only used
for the derivation of formula [1.4. When the measurement is taken at a location D where
the conductivity is irregular, this formula is not accurate. However, as it is shown in
Section [1.3| and Section [1.4), the reconstruction is essentially local, and no spatial diffusion
of the error occurs. This approximation simply tend to slightly smooth the jumps of the
conductivity.

The relation (1.4) shows that, by scanning the interior of the body with ultrasound waves,
cV(yv)(z) - e can be computed from the boundary measurements agfj loq in Q. If we
can rotate the subject, then ¢V(yv)(z) for any z in €2 can be reconstructed. In practice,
the constant ¢ is not known. But, since yv and % on the boundary of 2 are known,

we can recover ¢ and yv from ¢V (vv) in a constructive way. To see this, let us put

0
u:="v, h:=cV(yw), ¢:=W)loq, V= (guv)

o9’
Note that h, ¢ and 3 are known. The new unknown w satisfies
cAu=V-h in
ulag = ¢, (1_5)
ou
%’69 =9

Thus, if ¢ can be evaluated, we can reconstruct u, using either of the boundary data.
Let us define

w(z) = /QF(:L’ —y)V-h(y)dy, =€,

where I'(x) is the fundamental solution of the Laplacian in R, then cu — w satisfies

A(cu —w) =0 in Q,

(cu —w)lag = cp — wlag, (1.6)
Olcu —w)| ow
o oo =Y B lan

Let us now define A as the Dirichlet-to-Neumann map for the Laplacian. Then, (1.6)
implies that

0
Ay — wlpn) = ctp — 8%) ooy
and therefore 5
w
c(Ap) = ¥) = Awlon) = 5-| . (1.7)

Since everything but ¢ is known in (1.7), this gives the value of ¢ provided this identity
is not trivial. Let us now address this point. Note that because = is constant in a
neighborhood of 92, V - h is compactly supported in Q. If A(p) — ¢ = 0 then V - h is
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orthogonal to any harmonic function in 2 and therefore it is naught almost everywhere by
the density of harmonic functions in L?(Q). This means that either c is zero, or v = 0 in Q.
Thus provided that the imposed boundary potential g # 0, we have proved that ¢ can be
computed using (1.7) and, in turn, v using the first two equations in (1.5). We emphasize
that A can be computed easily. In fact, it is the normal derivative of the Poisson integral.

The new inverse problem is now to reconstruct the contrast profile v knowing

E(z) =(2)v(2)

for a given boundary potential g, where v is the solution to (1.1).

1.2.2 Magneto-Acoustic Tomography with Magnetic Induction

In the magneto-acoustic tomography with magnetic induction (MAT-MI), pulsed magnetic
stimulation by the ultrasound beam is imposed on an object placed in a static magnetic
field. The magnetic stimulation can be considered as an ideal pulsed distribution over
time. The magnetically induced eddy current is then subject to Lorentz force. This in
turn creates a pressure wave that can be detected using an ultrasound hydrophone [33].
The MAT-MI uses this acoustic pressure wave to reconstruct the conductivity distribution
of the sample as the focus of the ultrasound beam scans the entire domain.

Let v be the conductivity distribution of the specimen. Denoting the constant magnetic
field as By and the magnetically induced current density distribution as J.(z) with z
indicating the location of the magnetic stimulation, the Lorentz force is given by

J.(z) x Bydi—o = cxpyedi—o,

where D is the impact zone which is a small neighborhood of z as before, and ¢ is a constant
independent of z and x. Then the wave equation governing the pressure distribution p,
can be written as
&p-
ot?
for some final observation time 7', where c¢s is the acoustic speed in ). The pressure
satisfies the Dirichlet boundary condition

p. =0 on 00x]0,T] (1.9)

—AAp. =0, z€Q, t€]0,T] (1.8)

and the initial conditions

Op- = —cV - (xpye) in Q. (1.10)

—0=0 and =
Pzli=0 Ot 1t=0

The inverse problem for the MAT-MI is to determine the conductivity distribution ~ in

from boundary measurements of Bg’j on 902x]0,T] for all z € . We will assume that 7" is
large enough so that

diam(€2)

cs
It says that the observation time is long enough for the wave initiated at z to reach the
boundary 0f2.

T > (1.11)
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1.2.3 Magneto-Acoustic Current Imaging

Similarly to MAT-MI, it is possible to detect a pressure signal created in the presence of
a magnetic field by electrically active tissues [17, 35, 36]. A magneto-acoustic technique
has been developed to image electrical activity in biological tissue. In the presence of an
externally applied magnetic field, biological action currents, arising from active nerve or
muscle fibers, experience a Lorentz force. The resulting pressure or tissue displacement
contains information about the action current distribution.

Let z € Q be the location of an electric dipole, which represents an active nerve or muscle
fiber, with strength ¢. The wave equation governing the induced pressure distribution p,
can be written as
8*p.
ot?
for some final observation time 7', where ¢, is the acoustic speed in 2. The pressure
satisfies the Dirichlet boundary condition (1.9) and the initial conditions (1.10).

— AN, =0, z€Q, t€]o,T], (1.12)

The inverse problem for the magneto-acoustic current imaging is to reconstruct the position
z and the strength ¢ of the dipole from boundary measurements of %% on 09x]0,T7.
So this problem is to find an active nerve or muscle fiber from boundary measurements
of the wave. Here again we assume the final observation time 7' is large enough so that
(L.11) holds.

1.3 Reconstruction Methods

1.3.1 Reconstruction Methods for the VPT

Recall that the inverse problem for the VPT is to reconstruct the conductivity distri-
bution v from the quantity £(z), z € Q, which can be computed from the boundary
measurements %”; loq, where v, is the solution to (1.3). The relation between v and £(z)

is approximately given by

V(z) = (1.13)

where v is the solution to (1.1).

In view of (1.13)), v satisfies

V- <€Vv> =0 in Q,
v (1.14)

v=g on 0f.

If we solve (1.14) for v, then (1.13) yields the conductivity contrast 7. Note that to be able
to solve (1.14) we need to know the coefficient £(z) for all z, which amounts to scanning
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all the points z € Q by the ultrasonic beam. It is quite interesting to compare VPT with
MAT-MI in this respect and we will address this point at the end of the next subsection.

Observe that solving (1.14) is quite easy mathematically: If we put w = Inv, then w is
the solution to

V- (EVw)=0 1in Q,
(1.15)
w=Ing on 0,

as long as g > 0. Thus if we solve (1.15) for w, the v = e is the solution to (1.14).
However, taking exponent may amplify the error which already exists in the computed
data £. See Section [1.4 for the numerical examples. In order to avoid this numerical
instability, we solve (1.14) iteratively. We note that the argument in this paragraph
ensures the existence and uniqueness of the solution to (1.14) as long as Ing € HY/2(9%).

To solve (1.14]) we adopt an iterative scheme similar to the one proposed in [3]. Start with
o and let vy be the solution of

V"Y()vv() =0 in Q,

(1.16)
vp =g on O
According to (1.13)), our updates, vo + 0y and vy + dv, should satisfy
oy=—-— 1.17
Yo+ 0y =~ (1.17)
where
V- (y0+6v)V(vg+dv) =0 in Q,
dov=0 on 01,
or
V- Vv +V-0yVyy =0 in Q,
(1.18)

6v=0 on 0.

We then linearize (1.17) to have

70—1—(57:8%8(1—57}). (1.19)

Uo(l +(5U/Uo) Vo Vo
Thus cs e
by =—20 -5 5= 4. (1.20)
UO Vo

We then find dv by solving
ov _ :
Vq0Vou = V- (£ 4 6) Vi =0 inQ,

ov=0 on 0f.
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or equivalently
V- 4oVéu — V- (%&;) — V.6V, inQ,

0

(1.21)
ov=0 on J9N.

Our reconstruction procedure is as follows.

[Iterative Reconstruction Procedure]:
1. Start with an initial guess vy for the conductivity contrast.
2. Solve (1.16) to obtain vy.
3. Compute 6 = —% + .
4. Solve (1.21)) to obtain dv.

5. Compute oy = —L;;} —9.
v

0
6. Replace vg by o + 67.

In the case of incomplete data, that is, if £ is only known on a subset €2 of the domain,
we can follow an optimal control approach as used in [12]. We minimize the functional

J (o) = /QXQ (7— i>2 (1.22)

over all v = exp(o) with o € L*°(Q2) and v = v* in a neighborhood D of 9f2, where xq is
the characteristic function of 2, and v is the solution of (1.1). Note that J depends on o
analytically. The derivative of 7 with respect to o applied to 6 € L>(Q) is

b7 [ (mrake) (1),

where vs € H} (2) is the solution of
V- (yVus) + V- (0yVv) =0 in Q.

Let w € HZ(9) be the solution of the adjoint problem
1 £
V-yVw = xo—5¢& (’y — ) in Q,
v v

After integrations by parts, we see that the derivative of 7 can be written

p7161-5=2 [ 51 (x0 (2~ ) +vw-w0).

Therefore, choosing § of the form

1 £
§=_—— <XQ <7— ) + Vw - Vv) , (1.23)
2y v
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we obtain

Dj(a)-éz—/ﬂ'y()m(’y—i)+Vw~Vv>2§0. (1.24)

[Optimal Control Reconstruction Procedure]:
1. Starting from an arbitrary + for the conductivity and an arbitrary stepsize h.
2. Compute 7 := (1 + hd), where § is given by (1.23).
3a. If 7(6) < J(0), we set v := 4 and increase the step size h.

3b. If J(6) > J(o), decrease the stepsize h and return to Step 2 (as we know from
(L.24) that for sufficiently small h, the objective J does not increase).

4 Repeat Steps 1, 2 and 3 until J is small enough.

Note that the optimal control procedure can also be applied to the case of complete data.
The procedure described before is simpler than the optimal control procedure in the sense
that it does not require the determination of a stepsize. However, the optimal control
approach has the advantage of embedded stability, as it is a minimization procedure.

It is also worth emphasizing that both reconstruction procedures work well for discontin-
uous conductivities because of their local character.

1.3.2 Reconstruction Method for the MAT-MI

The algorithms for the MAT-MI available in the literature are limited to unbounded
media. They use the Spherical Radon transform inversion. However, the pressure field is
significantly affected by the acoustic boundary conditions at the tissue-air interface, where
the pressure must vanish. Thus, we cannot base magneto-acoustic imaging on pressure
measurements made over a free surface. Instead, we propose the following algorithm.

Let v satisfy

82'0 2 .
92 c;Av =0 in 2x]0,T7, (1.25)
with the final conditions
ov
= — = in Q. 1.2
vle=r ot lt=T H (1.26)

Multiply both sides of (1.8) by v and integrate them over € x [0,7T]. Since 7 is constant
on D then after some integrations by parts this leads to the following identity:

"o e
/0 /agz gy (@ vle D) do(z)dt = = /D e Vo, 0)dz. (1.27)

Cs
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As before we assume that - is constant D which is reasonable as D is small. Suppose that
d=3. For y e R3\ Q, let

6 (t47—14)

C
t) == in 0x]0,T 1.28
'Uy(.’IJ, ) 47r]a:—y] n X] ’ [7 ( )
where 0 is the Dirac mass at 0 and 7 := ‘yc_sz‘. It is easy to check that v, satisfies (1.25)

(see e.g. [13, page 117]). Moreover, since
ly — 2| = | —y[ < |z — 2| < diam(Q)

for all z € Q, v, satisfies (1.26) provided that the condition (1.11) is fulfilled. Choosing
vy as a test function in (1.27) and obtain the new identity

. 1.2
W) = T Wyx()dx/ B ay = (2, )0y (2, 1) do () dt (1.29)

Let us now compute [ pe- Vuy(x,0)dr. Note that, in a distributional sense,
z—yl\ y—= ' |z —y| y—z
\Y% 0)=6|7— ) — . 1.30
Uy(% ) (T Cs 4|z — 9’3 * ! Cs dmes|r — y|2 ( )
/ e Vo, (z,0)ds = / m(s <T— |x_y|> d
D p 4rlz —y| Cs

+/ @—w%zy<7_w—w>d
D 47TCs|x _y| Cs

=IT+1I.

Thus we have

z—y
lz—yl[’

/ / Xp(so +y)(o - e)é(r—) do ds
S2

XD(CSTJ +y)(o-e)do,

Letting s = |z — y| and 0 = we have by a change of variables (t =7 — s/c — s)

47r

where S? is the unit sphere. Since cs7 = |y — 2|, we have

I=—c,Ap(0), (1.31)
where Ap(t), t € R, is defined by
1
Ap(t) == yym /52 xp((|z—y| —t)o+y)(o-e)do. (1.32)
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We now compute II. Using the same polar coordinates s and o centered at y, we have

1 o
I = — / s/ xp(so+y)(o-e)d <7‘—8> do ds,
dmes Jo g2 Cs
and hence
I]__Cii (1 _t)/ (cs(T—t)o+y)(o-e)do
a 47Tdt SZXD 5 y t=0
Cs csT d
i [ oz =slr + i eydo = ST L | [ wntenlr=tio s epds]

Thus, we have
IT = csAp(0) — cslz — y|Ap(0). (1.33)

Combining (1.31) and (1.33) we obtain

/ e - Vuy(z,0)dz = —c|z — y|Ap(0), (1.34)
D

and hence

= 8]92 (x,t)vy(z,t)do
y(z) = — ]z—y|A / /89 ey t)vy(x,t) do(z) dt. (1.35)

Note that the function Ap(t) is dependent on the shape of D and the direction e, and it
is not likely to be able to compute it in a close form. But, if we take the source point y
so that z — y is parallel to e and D is a sphere of radius r (its center is z), then one can
compute Ap(t) explicitly using the spherical coordinates. In fact, in such a case, we have

T‘2 ,,A

4z =yl =) 16(]z -yl - )"

Ap(t) = (1.36)

and hence we obtain a formula for the reconstruction of c¢y(z) from (1.35). Let us
summarize the formula in the following theorem

Theorem 1.3.1 Choose y € R3\ Q so that z — y is parallel to e. If D is a sphere of
radius r with its center at z, then

cy(z) = — / /69 86% (x,t)vy(z,t) do(x)dt. (1.37)

2\2 yl2 N 4\2 yl4

provided that v is constant y(z) on D.

Note that the formula (1.37) is an exact formula. But since r is sufficiently small and we
are using approximation v & y(x) on D, it is preferable to use the following approximate
formula.
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[Reconstruction Formula for MAT-MI]

QCS‘Z - y|2 ’ p..
y(z) =~ ) Lo (x,t)vy(z,t) do(x) dt (1.38)
If the impact zone D is the sphere of radius r centered at z and y is chosen so that z — y
is parallel to e.

Formula (1.38) can be used to effectively compute the conductivity contrast in Q with a
resolution of order the size of the ultrasound beam.

It is worth mentioning that in order to obtain c¢y(z) using the MAT-MI, it suffices to
stimulate the point z, while for the VPT we need to stimulate all the points in the body
even if we want to detect the conductivity of a local region. This is due to difference
between the nature of differential equations involved: finite speed of propagation of the
wave equation (MAT-MI) and infinite speed of the elliptic equation (VPT).

1.3.3 Localization Method for the MACI

Let ¥ be a plane in R? \ © orthogonal to e. Let v, be given by (1.28), where y € X.
We have by multiplying (1.12) by v, and integrating by parts that

Op: _w—2)-e
/ /89 5 (z,t)vy(x,t) do(z) dt = yo S (1.39)

The projection on ¥ of the location z can be obtained by taking the maximum of &(y)
as y € X. The third component of z can be obtained as the point on a line parallel
to e where £(y) changes sign. This algorithm is parallel to the one developed in [25] for
anomaly detection from electrical impedance boundary measurements.

1.4 Examples of Applications

1.4.1 Vibration Potential Tomography with FreeFem++

We present a test for iterative procedures proposed for the VPT reconstruction. The do-
main {2 is the disk of radius 6 centered at the origin. Next to the boundary, that is, outside
of a disk of radius 5, the conductivity is constant, equal to 1. In the region of the radius 5,
the background conductivity is an oscillating function, sin (4\ /x? + y2> +2. We introduced
three zones where the conductivity is notably different: An area with an irregular boundary
where the conductivity is a piecewise constant function int (8/10 cos(4y) + 9/10) + 1/10,
where int is the integer part function, a small stretched ellipse with constant conductivity
1/10, and an annulus where the conductivity increases rapidly (z+2)?+0.1. The purpose
of choosing this pattern is to demonstrate that the reconstruction methods are very
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effective for a large variety of conductivities. The conductivity distribution is presented
on the Figure [1.1. The simulations are done using the partial differential equation solver
FreeFem++ [15].

)

Figure 1.1: Conductivity Distribution.

Figure 1.2/ shows the result of the reconstruction when perfect measurements (with ’infinite’
precisions) are available. We use two different Dirichlet boundary data, g, = 2 + x/6
and g, = 2+ y/6. In the first approach proposed in Section [1.3.1, this is implemented
by alternating the procedures with g, and g,. In the optimal control approach, this
corresponds to simply adding the contribution of both correctors. In both cases, the
boundary data are positive, which implies the positivity of v in the domain 2. The initial
guess is depicted on the left: it is equal to 1 everywhere. The right picture represents the
reconstructed conductivity after three iterations. A 7 digit accuracy in L? norm and in
L™ norm is reached after five iterations.

Figure 1.2: Perfect reconstruction test. From left to right, the initial guess, the reconstructed
conductivity after three iterations

To document the effectiveness of our approach in the case of partial data, we perturb the
measure data. We add 5% noise to the measured data, and we destroy the data on two
elliptical subdomains, replacing it by 1. If we use solve iteratively, using alternatively
the (perturbed) data corresponding to g, or gy, the algorithm cycles after fives iterations.
This is because we are trying to match mismatched data : the minimum corresponding to
g data is not the same as the one corresponding to g,, because of the perturbations we
applied to both data sets. The results are presented in Figure [1.3.
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Figure 1.3: Perturbed reconstruction test. From left to right, the measured data for g, and g,,
and the reconstructed conductivity after five iterations

Note that the pattern is recognizable from the data £ itself. This may be expected:
thanks to De Giorgi-Nash estimates, the potential u is continuous, thus the data displays
the discontinuities of . However, the value of 7 cannot be read from the data. The local
character of the minimization procedure is striking. The solution does not seem to be
affected by a substantial loss of data. If we limit the minimization procedure to the area
outside the elliptical subdomains instead of considering false data, the optimal control
procedure converges to a non-zero minimum, which is due to the background noise.
The reconstructed pattern is very similar to the one presented in Figure [1.3.

1.4.2 Magneto-Acoustic Tomographies with Incomplete Data

Suppose that the measurements of dp,/Jv(x,t) are only done on a part I" of the boundary
0€). Suppose that T and I' are such that they geometrically control €2, which roughly means
that every geometrical optic ray, starting at any point x € 2, at time ¢ = 0, hits I before
time 7" at a nondiffractive point; see [10]. Let 5 € C5°(€2) be a cutoff function such that
B(xz) =1 in a subdomain € of Q. Following [2], we construct by the geometrical control
method a function v(x,t) satisfying (1.25), the initial condition v(x,0) = B(z)vy(x,0)
(vy given by (1.28)), the boundary condition o = 0 on 9Q\T, and the final conditions (1.26).
The reconstruction formulae (1.38) and (1.39) should be replaced by

2c51z —y 2 T apz ~
v (2) ~ _’TQ| /0 /F P (o )0, ) dor(r) (1.40)

and

/ ' / %% (2. )5 (2, 1) do() dt = I —2) ¢ (1.41)
0 r

4|z —y[3

1.5 Concluding Remarks

In this chapter, we have proposed two algorithms for solving the inverse problem in vibra-
tion potential tomography. Both algorithms are based on transforming the conductivity
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equation into a nonlinear PDE. The first one follows from a perturbative approach while
the second one follows an optimal control approach and can be applied to the case of
incomplete data. It should be emphasized that from (1.4), an alternative way for solving
the VPT problem is to first obtain j = v|Vv| in each D and then to replace v by j/|Vv| in
the conductivity equation (1.1). This yields to exactly the same nonlinear problem as the
one extensively investigated by Seo’s group for Magnetic Resonance Electrical Impedance
Tomography (MREIT). An efficient algorithm for solving the inverse problem in MREIT
is the so-called J—substitution algorithm. See for instance [22, 23]. We believe that if we
restrict the resolution in the J—substitution algorithm to the size of D, it would lead to
the same quality of conductivity images as the one provided in this chapter. However, the
algorithms developed here for VPT are simpler and use only one current.

For magneto-acoustic tomography with magnetic induction, we provided explicit inversion
formulae. Magneto-acoustic tomography transforms the inverse conductivity problem into
a much simpler inverse source problem. Because of the acoustic boundary conditions,
the spherical Radon inverse transform can not be applied. Our approach is to make
an appropriate averaging of the measurements by using particular solutions to the wave
equation. Our approach extends easily to the case where only a part of the boundary is
accessible.

It is worth noticing that our approach for the magneto-acoustic tomography can be used
in photo-acoustic imaging (see [41] for a review of the current state-of-the-art of photo-
acoustic imaging). We also intend to generalize our inversion formula to the case where
the medium is acoustically inhomogeneous (contains small acoustical scatterers).
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Chapter 2

Asymptotic Formulas for
Thermography Based Recovery of
Anomalies

2.1 Introduction

Medical thermal imaging has become a procedure of choice in the screening for breast, skin,
or liver cancer [26]. It has the ability to identify various stages of disease development, and
can pick up early stages which usually elude traditional anatomical examinations. Thermal
imaging relies on the fact that chemical and blood vessel activity in pre-cancerous tissue
and its surroundings are higher than in healthy tissue. Pre-cancerous and cancerous areas
are characterized by heightened metabolism and require an abundant stream of nutrients
to maintain growth. These extra nutrients are transported through various channels such
as increased chemical activity, enhanced blood stream, and creation of new blood vessels
(neoangiogenesis) [42]. This process results in a local increase in temperature.

Detection of these small temperature variations is made possible by state of the art
imaging techniques. They involve ultra-sensitive thermal cameras and sophisticated soft-
ware in detecting, analyzing, and producing high-resolution thermal images of vascular
changes. More precisely, medical thermal imaging technique proceeds as follows: an
infrared scanning device is used to convert infrared radiation emitted from the skin surface
to electrical impulses. Those are then plotted on a color monitor. This map of body surface
temperature is referred to as a thermogram. The spectrum of colors corresponds to a scale
of infrared radiation emitted from the body surface. Since temperature distribution is
highly isotropic in healthy tissue, subtle temperature anisotropies produce a clear imprint.
See [1} 134].

Thermal imaging is a very reliable technology. In fact, clinical studies have shown that
thermal imaging has an average sensitivity and specificity of 90% when applied to screening
of breast tissue. As of today, an abnormal infrared image is the single most important
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marker of high risk of onset breast cancer onset. Thermal imaging may also be used for
different purposes such as

(i) assessing the extent of a previously diagnosed lesion;

(ii) localizing an abnormal area not previously identified, so further diagnostic tests can
be performed;

(iii) detecting early lesions before they are clinically apparent;
(iv) guiding thermal ablation therapies.

In this chapter, we perform a quantitative study of temperature perturbation due to
small thermal anomalies and we design algorithms for localizing these anomalies and
estimating their size. We start from a realistic model in half space with convective
boundary condition on the surface. It is noteworthy that our results can be applied to
other types of thermography problems, such as the detection of buried objects in the
underground. We seek to reconstruct only some rough feature of present anomalies.
This partial reconstruction has the advantage to be stable against measurement noise
and perturbation in geometry. Based on rigorously derived asymptotic estimates, we find
an approximation formula that leads us to noniterative detection algorithms for finding
dominant features of present anomalies.

We also consider in this chapter how to lay the mathematical background for ultrasonic
temperature imaging. Ultrasonic temperature imaging is an essential tool for guiding
medical devices in the course of thermal ablation therapy. It relies on the fact that sound
speed in tissues depends on temperature. Thermal ablation therapy, such as focused
ultrasound surgery, is a new way of destroying malignant tumors without damaging sur-
rounding tissue. This technique consists of running the focused ultrasound surgery system
at an initial, pre-ablative low intensity while using a diagnostic ultrasound imaging system
to detect the associated localized temperature rise. This assumes that the temperature
dependence of sound speed is known.

Let us now recall some previous results on anomaly detection by thermal imaging.
In a recent paper [6], efficient noniterative algorithms for locating thermal anomalies from
boundary measurements of temperature were introduced. The proposed reconstruction
was based on a small volume assumption for the anomalies. The authors also assumed that
the anomalies lay inside a bounded homogeneous domain, on whose boundary a heat flux
was imposed. Resulting temperature was then measured on the same boundary. In another
piece of work, Miller et al. [32] studied ultrasonic temperature imaging. Remarkably, their
investigation lacks any mathematical analysis. We believe that a rigorous mathematical
theory for the effects of thermal anomalies had to be investigated, since we want to perform
a meticulate quantitative analysis. Ultimately this study should result in improving
accuracy of lesion detection. In the following sections we will first present our novel
mathematical analysis, we will then derive reconstruction algorithms. Numerical evidence
validating these algorithms is presented in the last section of this chapter.
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2.2 Physical Background, Non-dimensionalisation, Green’s Function

2.2.1 Problem Statement

We consider the transient heat equation in the half space
Q = {(x1,12,23) € R®: 3 < 0} (2.1)

in a homogeneous background of thermal conductivity ky. The background contains
regions (of small) volume where the conductivity is different. Denote D the union of
all regions where the heat conductivity is different from kg, and k£ the over all thermal
conductivity function. We define D = U7", D, where the D;’s are such that k(z) is equal
to the positive constant k; on D;. If we denote 7 the temperature function, 7 satisfies [29]

or

i V- (kVT)=0 in (Q\dD) x (0,7), (2.2)
ko(VT-v)t =k;j(VT-v)~ on 0D; x (0,T), (2.3)
lim7(x,t) = 19 as |z| — oo, (2.4)
7(2,0) = Tinit(x) in Q, (2.5)
— koVT €3 — Ccool(T — Temt) on 89 X (O,T), (2.6)

where 79 is the (constant) temperature at infinity, 7;,;; is the initial temperature profile,
and condition (2.6) expresses the radiational cooling on the boundary of Q. C,, is a
positive constant that provides thermal resistance and 7e,¢ (21, 2, t) is an imposed exterior
temperature.

2.2.2 Non-dimensionalisation

To obtain simpler equations we set

u(zt) = T(ﬂx, Clzot) - T

Ceool cool
to obtain the following equations for u:
(;?—Au:() in (Q\ D) x (0,7T), (2.7)
ou k :
-V (k—ovu) —0 in D x (0,7), (2.8)
k.
(Vu-v)t = k—j(Vu ‘v)” on dD; x (0,7T), (2.9)
0
limu(z,t) =0 as |z| — oo, (2.10)
ko
w(x,0) = Tipit| =—— ) — 70 =: Ujns on {2, 2.11
( ) t<Ccool ) 0 ! ( )
ou k k
s +u= Te”“(?:ozx’ CTOt> — 70 = Uegt on 00 x (0,7T). (2.12)

cool
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2.2.3 Existence, Uniqueness and Continuous Dependence on Initial Data and
Boundary Condition of the Solution to the Perturbed Problem

From general PDE theory, an existence, uniqueness and continuous dependence on initial
data and boundary condition result can be stated for the system (2.7)-(2.12)).

Theorem 2.2.1 Assume uiniy € L*(Q), uexe € L2(0,T; L?(00Q)), f € L*(0,T; L*(2)).
There is a unique weak solution to the following problem:

ou k

ou g (Fg,) = in Q x (0,T 2.1
-V (kOVu> f in Q x (0,T), (2.13)
w(z,0) = Uinit in 9, (2.14)
L on 99 x (0,T). (2.15)
8.%'3

This solution satisfies the estimates

lull 20751 0)) < C (1winitl n2(0) + [teat | 220, 1:0200)) + 1 lL20m02(0))),  (2.16)
where C is a positive constant depending only on the two positive constants my := min %
and moy := max %
Proof. The bilinear functional
k
a(u,v) = Vqu—i—/ uv,
a ko o9
defined on H'(Q) x H'(Q) satisfies
|a(u,v)| < (1 + mo)llullm o)llvllm @), (2.17)
i, 0)| 2 mal[ul oy — a3y (2.15)
Define the continuous linear functional L on H'(Q) by
L(v) = / f(z, t)v(z)dx +/ Uezt(x, t)v(x)d,
Q o0
for almost all ¢ in (0,7"). It follows from [11], [30] that the initial value problem
d
a(u(t),v) + &(u(t)vv)LQ(Q) = (L(t),v) g1y, 01 () (2.19)

has a unique solution in L?(0,T; H'(Q2)) that depends continuously on L and wjp;. O
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Remark 2.2.2 We make the following remark on regularity. It is well known that the
solution to (2.19)-(2.20) is smooth in (Q\ D) x (0,T) and in D x (0,T) provided that f
be smooth. Due to [31)], if L and uinit are more reqular, say f is such that (%)jf is in

_ . 1
L2(0,T; Hy () for j =0,...,p, Uey is such that (%)Juem is in L?(0,T; HZSOJEQ(@Q)) for

j=0,....p+1, and win;t 18 in HfotQ(ﬁ), then u is such that (%)ju is in L?(0, T} HfotQ(ﬁ \ D))
for 5 =0,...,p+ 1 provided the compatibility conditions:

() () () =i () () e om0

are satisfied.

2.2.4 Green’s Function and Solution to the Unperturbed Problem

Setting

1 (x1-€1)? (z1+€1)° o0 (z1+&14+m)3
xr1,&1,t) = (e_ @ 4e T 4 —2/ e” 4 d ) 2.21
g(w1,61,t) W ; n (2.21)

it is known that g satisfies (see Sommerfeld’s long rod solution [37])

8tg:8§19 ift>0,6#xand £ # —x,
0z,9—9=0 at 1 =0, for t > 0,

and ¢ is a fundamental solution to the heat equation in the rod, in the sense that the
function A defined by

t [e%s)
h:/o/o f(&1,8)g(x1, &1t — s),dérds

is 0 at time 0, and satisfies (0;—92 )h = f in (0,00)? and 9, h—h =0 at x; =0, for ¢ > 0,
if f is smooth.

Based on g we construct two Green’s functions adapted to our problem

G1($1,$2,$3,€1,§2,£3,t) =

1 (21612 +(za-69)% /  (w3-63)° _ (w3+£3)? X (—wz—g3+n?
it (e it +e It -2 e it ndn) ,
0

@V

GQ(£17£27£37§17§27t) = G1($1,$2,$3,§1,§2, Oat)
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Note that the integral term in G; can be re-expressed as

0o e 2 _ _
_2/ 67( A “dn = —2\/7?756723753+terfc(72t s 63),
0 2/t

where erfc is the complementary error function. If we define

0 fe'e) [e'e)
U1($17$2,$3,t)=/ / / J1(&1,82,83)G1 (w1, 2, 3, &1, &2, €3, ) dE1dEpdEs, (2.22)

t e’} o5}
uQ(:m,wz,:U:s,t):/o / / f2(&1, &2, 5)Ga(wy, w2, 23, &1, &2, t — 5)dE1dEads. (2.23)

Then u; satisfies

&gul — Au1 =0 in Q x (0, OO), (2.24)
Opsu1 +u; =0 on 09 x (0, 00), (2.25)
Ul(ZEl,.IQ,CCg,O) = fl(l'l,xg,.’xg), (226)

and ug satisfies

Opug — Aug =0 in Q x (0, 00), (2.27)
Opzu2 + U2 = fo on 99 x (0, 00), (2.28)
uz(x1, 22, 23,0) = 0. (2.29)

Consequently if the thermal conductivity k is constant throughout Q (or equivalently the
set D is empty) problem (2.7)-(2.12) can be solved by convolution. The solution, denoted
ug in that case is given by

ugp (1, 22,t) =

0 [ o)
/ / / it (€1, 2, €3) G (1, 9, @3, €1, €, €, )AL dEndEs +

t [e%s} o0
/0/ / et (&1, &2, 8)Ga (21, T2, 73, &1, &2, t — 5)dE1dEads.

Remark 2.2.3 Equations (2.24)-(2.26) assume some regularity on fi. For example
(2.24) and (2.25) are satisfied if f1 is in L?(Q) and for (2.26) to be satisfied at a fived
point x we may require

lim |fi(z +y) = fi(z)|ldy =0
=0/ ly|<e

Obtaining equations (2.27)-(2.29) from (2.23)) is not standard: we provide a proof in
Appendiz. It can be done under the assumptions fo is in L*(R? x (0,00)) and

lim/ / |fo(x +y,t —s) — fa(zx,t)|dyds = 0,
=0 Jo<s<e ly|<e

for (2.52)) to be satisfied at (z,t).
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2.3 The Perturbed Temperature Field

2.3.1 A Preliminary Result

We now give a continuous dependence result for a problem similar to (2.7)-(2.15) with
Special jump conditions across 0D. The following proposition holds.

Proposition 2.3.1 Let D bea region made up of a finite collection of bounded connected
smooth domains Dj, strictly included in ). Let o be a positive constant less than 1.
As previously k is assumed to be equal to the positive constant kj; in DNJ and kg in '\ D.
There is a unique v in L*(0,T; H'(Q)) satisfying the problem

S —Av=F in (\ 8D) x (0,7), (2.30)
68: V. (:Ovu) —F in D x (0,T), (2.31)
(Vu-v)t — Zg(w V)T =f on dD; x (0,T), (2.32)
v(2,0) = Ving in €, (2.33)
aa; + OU = Veas on 9 x (0,T), (2.34)

where F is in L?(0,T; L*(Q)), f is in L*(0,T; L*(OD)), vini is in L*(Q), Vext is in
L2(0,T; L?(09)). Indeed,

[l 20,1 () < CUlVinitll L2(0) + [[Vextll L2(0,7:02(00))
+ 1 F 2 0,m522(0)) + 1 fllL20,7522(0m))),  (2.35)

where C' depends on min k—ko, nrlaxl,g—k0 but is independent of a < 1 and of D.

Proof. Choose the functional L to be

L(v):/QF(J:,t)v(x)dl‘—i—/ Uegt(x, t)v(x)de + | f(x,t)v(x)dx,

o0 oD

for almost all ¢ in (0,7"), and a to be

k
a(u,v) = | —VuVou+ a/ uv.
a ko o9
It is clear that the proposition is a simple extension of Theorem (2.2.1). O
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2.3.2 Equations for the Perturbed Part of the Temperature Field

We now assume that D; = z; + €Bj, where the z;’s are fixed points and e is a dilation
parameter tending to 0. We denote u, the corresponding solution to (2.7)-(2.12). We also
assume that wing is in L2(2) and that and wuey is in L2(0,7T; L?(09Q)). The difference
Ve = U — Ug satisfies the following equations

881: — Av, =0 in (Q\ D) x (0,T), (2.36)
O, k _k .

-V (k—ovv€> = (5~ Dug in D x (0,7), (2.37)
(Voe-v)t — %(VUE V)T = (kﬁ —1)Vuy - v on 0D; x (0,7T), (2.38)

0 0

limve(z,t) =0 as |z| — oo, (2.39)
ve(z,0) = 0 in Q, (2.40)
0 |y =0 on AQ x (0,T). (2.41)
0x3

As ug is smooth in a neighborhood of D in the time interval (n, T) for 0 < n < T, equations
(2.36)-(2.41) imply due to proposition 2.3.1 that [|ve|| 220,711 () < CTze.

2.3.3 The Correction Term

As in [6], set

m 3
V= Ve + eZZ@xiuo(zj,t)wjy&x _6 Zj),

j=1i=1

where 1);; satisfies

Athji =0 in R®\ 0B;,
(50)" = (j)~ on 0B;,
k k
Syt )T — _ . .
(&ﬂ/h,z) k?() (ay¢37z) = (1 ko)&,xl on 8Bj,
lim;(x) =0 as |x| — oo.

Lemma 2.3.2 We have ¢, ;(x) = O(#), and Vip;i(z) = O(ﬁ) In particular, ¥, ; is
in L?(R3).

Proof. Tt is well known that ¢;; can be expressed as the single layer potential [, B, h(z,y)u(y)dy
m. It can be shown that faBj w(y)dy = 0
from where it follows that 1;;(z) = O(25) and Vib;;(z) = O(ﬁ) 0

||

for some density p and where h(z,y) =

The following result holds.
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Theorem 2.3.3 There emsts a positive constant C independent of T and € such that
IV Il 220/ 0y) < CT3€3.

Proof. For the sake of simpler notations we assume in this proof that m = 1.

We first perform a rescaling by setting v(z,t) = V(ex, €%t). v satisfies (2.30)-(2.34) with
m =1 and

3
F(z,t) = € 3 (00, 00u0) (21, )0 (w %)

=1
1nQ\< —|—Bl) (0,652),
F(z,t) =€ i(@xiatuo)(zl, ) (z - %) + Q(E - 1) (Aug)(ex, €t)

i=1 ko
T
o (Tm) < (05),
€ €

flz,t) = <k]; - 1) (Dyup) (ex, €2t) + ei(&xiuo)(zl, €’t) (1 - E)@ T

i=1 ko

n (%JraBl) x (o, ;2)
Uth—EzauO 25, )@bl(x—?)

=1
in €,

vexterauo (25,0 m3wz)<x——>+6228u0 (25, )wz(x—?)
on 02, with the choice a = e.
It is easily seen that
|F () gy < Ce! (2.42)
thus
1 (2, )12 0.0 /e2.02(y) < CT€ (2.43)

Next, we estimate f. We set y = 2 — 22, That way for y on (0B) x (0, E%)

Flest) = 7w+ 2 e) = (35 = 1) @) ey + 21,€%0) + 3 Ot 1,70 (1= ) o

k
0 i—1
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and using the fact that ug is smooth in Q x (0,7, we see that f is bounded in the sup
norm by Ce?, from which it follows that

1F (@, )| 720m,) < Ce' (2.44)
thus
Hf(xvt)H%2(07T/62;L2(aBl) < CTé. (2.45)
It is also clear that
Hvinit”%Z(Q) < Cé. (2.46)
Finally, we estimate veze. Denote (211, 212, 213) the coordinates of z;. For z = (x1,x2,0)
on 0f?
2112 211\ 2 2 2
2= 2 e (2
€ € € €

We find due to the decay of (0,,1;,) that

2 00 d

pap 4
2 SC/ 6 (zme = O
£2(99) o 0+ (%)

21

o (- 2)

€

and due to the decay of v;; that

‘%‘(m—%)‘Q <C/Doopdp<062.

12(09) ~ ph 4 (F2)t —
We infer,
[veat |7 2(p0) < C€° (2.47)
thus
et l 20,7 /e2 r200)) < CTe". (2.48)

We now apply (2.35) to obtain that
H’U(x7 t) "%2(0,T/62;H1(Q)) < CT€2
and changing variables yields

IV (2, )1 22012200y < € N0 D T207/e2.02(0)) < CTE

VeV (@, 172010200 < € NVa0(@ D200 2/e2:02(0)) < CTE,

as desired. O
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2.4 The Two-Dimensional Case

Section 2.2/ can be adjusted to a two dimensional model by making a few straightforward
modifications. We make these adjustments explicit only for the expression for the Green’s
function for the homogeneous problem. Adjusting section 2 is less obvious and will require
the introduction of a cut off function.

2.4.1 Straightforward Modifications of Green’s Function to Fit the 2D Case

Based on g defined in (2.21) we construct two Green’s functions adapted to our problem

1 (@)% /  (z3-£2)? _ (wg+E9)? X (czp—t+m)?
G1(1’1,$2,§1,fg,t) 4t (6 4t +e 4t -2 e 4t ”7d77>’
0

=t
Ga(z1,22,61,t) = Gi(z1,22,61,0,1).

If we define
o) 0
wr(e1, 22, 1) = / / F1(61,6)G (w1, 22, €1, €, 1)y, (2.49)
t o)
’LL2($1,.’E2,I§) = / / f2(£1,5)G2($1,$2,§1,t — s)dflds. (250)
0 J—o0
Then u satisfies
8tu1 — Aul =0 in Q x (0, OO),
Opu1 +u; =0 on 99 x (0, 00),
ui(z1,22,0) = f1(z1, z2), on 0N
and uo satisfies
&gUQ — AUQ =0 in Q x (0, OO), (2.51)
Oz, U2 + ug = fo on 99 x (0, oo), (2.52)
ui(x1,22,0) = 0. on 0f. (2.53)

Consequently, if the thermal conductivity k is constant throughout Q (or equivalently
the set D is empty) problem (2.7)-(2.12) can be solved by convolution. The solution,
denoted ug in that case is given by

uo(z1, x2,t) =

0 0 t o0
/ / uz‘m‘t(&,52)6'1(331,w2,§17§2,t)d§2d§1+/ / Uegt(&1, 5)Ga(x1, T2, &1, t—5)dE1ds.
—00 J—00 0 J—o0
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2.4.2 Special Corrector Obtained by Introducing a Cut off Function

The definition of the difference v. between the homogeneous and perturbed heat profiles
is the same in the two dimensional case: equations (2.36)-(2.41) apply in that case too.
Proposition 2.3.1 may be used as well in the two dimensional case. It is the insufficiently
rapid decay of v;; at infinity that makes the two dimensional case distinct, as explained
further down.

Let 1;; satisfy

At =0 in R?\ 9B;,
(50)” = (W50) T on B;,
k k
A )T — _ ) .
Outsi)* = 5 o)™ = (1 ko)&,x, on 9B;,
lim;;(x) =0 as |x| — oo.

The following lemma holds.

Lemma 2.4.1 We have 1;;(z) = O(i‘), and V;;(r) = O(i25). Moreover, 1;; is not

|z ||
in general in L*(R?).

Proof. In the two dimensional case too 1);; can be expressed as the single layer potential

faBj h(z,y)p(y)dy for some density p and where this time h(z,y) = —%logm -yl
It can be shown that faBj p(y)dy = 0 from where it follows that v ;(x) = O(El‘) and
ijﬂ'(.%') = O(ﬁ) O

Finally as a closed form expression for 1);; in the case where B; is the unit disk centered
at the origin is given by

in Bj,
in B2\ B,

ko+k |x\2
we conclude that 1, ;(z) is not in L?(R?) in that case.
Fix a function p in C*(R?) such that
oo [ z| < 1,
xTr) =
P 0 if 2] > 2.
Set

l’—Zj

m 2
V =v+ ez Zaxiuo(zj,t)wj,i(

j=1i=1

)p(ex). (2.54)

Notice that

Pt < e

€
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2.4.3 Derivation of the Order of the Estimate

Our main result is the following theorem.

Theorem 2.4.2 The71"e exists a positive constant C independent of T and € such that
IV 20,11 (0)) < CT2€%|loge|2, for the two-dimensional case.

Proof. For the sake of simpler notations we assume that m = 1.

First we rescale v(x,t) = V(ex, €%t). v satisfies (2.30)-(2.34) with m = 1 and

2
F(z,t)=¢ Z(@xiﬁtuo)(zj, 2t)psi; <:C - %)p(ezx)+

=1

(O,u0) (2, €*t) [Vwi (m — %)Vp(eQx) + ey (93 - Z—1>Ap(62x)}

1nQ\< —|—Bl) (O’;?)’

F(x,t) = g(@xﬁtuo)(zl, €2)1h; (z — %) + € (:0 — 1) (Aug)(ex, €*t)
| o (2en)x (0]
fx,t) = 6<:0 - 1) (Dyug)(ex, €Xt) + ei(@xiu())(zj, €’t) (1 - :O)al,:ni

i=1
, on (Z?l + 3B1) X (O, 632)
2
Vi = €3 Oiun(z3, 00 (@ — 7 ) p(’a),

i=1
in €,

Vext = 628 (] ij $2¢z)<$ - i)ﬁ(sz)—i_

€

Do, 000 (2 = =) (Orap)(¥2) + € Sl O (z = 2) o)
i=1
on 0f2 with the choice o = e.
It is easily seen that
1F (e, )220 < C€! (2.55)
thus

”F('r7t)”%,Q(O’T/e?;LQ(Q)) < CTé. (2.56)
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Chapter 2 Thermography Based Recovery of Anomalies

Next, using the fact that wg is smooth in Q x (0,7"), we obtain just as in the three

dimensional case
||f($7t)||%2(631) S 064
thus
Hf(x’t)H%Q(O,T/eQ;LZ(BBl)) S CT€2.
It is also clear that

||Uimlt||%2(g) < Ce?|loge|.

(2.57)

(2.58)

(2.59)

Finally we estimate vz Denote (211, 212) the coordinates of z;. For = (z1,0) on 92

212 211\ 2 212\ 2
- = () (5F)
€ € €

We find due to the decay of (0,,%;;) that

2 00
<C / e
L2(092) 0o P

@) (2 = 2)p(ea)

and due to the decay of v;; that

(o= 2o

2 o0 dp
< — <
L2(00) ~ C/o o+ (zmy =6

<C ————— < Ce.
12(0Q) ~ /o P2 (e =

(05 (36 - %) 0(621’)’

We infer,
||'Ue:z:t||%2(ag) < 065
thus
”UextH%Q(O,T/@;L?(BQ)) < CT€3.
We now apply (2.35) to obtain that
H’U(x7 t) “%2(077-'/62;}[1(9)) < CT€2‘ log 6‘,
and changing variables yields

IV (@, )1 720.0:020) < € 10(@ D T2(07/e2:2(0)) < CT€| logel,

HVIEV('T7t)H%ﬂ(O’T;LQ(Q)) S EZHV;EU(ZL',t)”%Q(O’T/EQ;[g(Q)) S CT€4‘ IOg 6‘,

as desired.
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Asymptotic Expansion Section 2.5

2.5 The Resulting Expansion After Multiplication by a Test Func-
tion and Integration on the Surface Plane

Suppose that the space dimension is 3. Let ¢ be in L?(0,7; H*($)) such that

(3 +A)p=0 in Q x (0,7), (2.62)
¢(.,T) =0 in . (2.63)

Let v, satisfy (2.36)-(2.41). We find by integration by parts and application of Theo-
rem [2.3.3,

m

/ /ag axg 632 / Za:vzuo (2,1 / Vi i(2)Vo(zj,t) (2.64)

7=1
+R, (2.65)

where the remainder R is bounded on D x (0,T) by CTe*sup [V¢|.

A calculation shows that {fBj Vi) 3
sor M) (depending only on B; and k;j/ko ) to obtain

Ve 63 / VU Z, )v Zi, 2.66
/ /39 8953 ; ko 0(%j B(25,t) (2.66)

+R. (2.67)

can be replaced by the polarization ten-

In the two-dimensional case, the cut off section appearing in formula (2.54) goes away by
integration on a bounded set. We obtain,

T
//aﬂvf ows | 22(*—1 /0 Vuo(zj, ) MV (2, 1) (2.68)
+R, (2.69)

for ¢ satisfying (2.62),(2.63), and where R is bounded on Dx (0, T) by CT€3|log 6|% sup |Vo|.

We summarize in the following theorem our main results in this chapter.

Theorem 2.5.1 (i) The following asymptotic expansions of the weighted boundary
measurements hold:

//ag 7+¢> - dz /Co /VUO 2, )MV (2, 1)

O(Tﬁ Suppx(0,7) VOl for d =3,
1
O(Te*|loge|2 suppy o1y |VOI)  ford=2.
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Chapter 2 Thermography Based Recovery of Anomalies

(ii) The following inner expansions hold. We have in the two-dimensional case

‘ Ue — up + ezm: i&;ﬁo(%ﬁ)%,i(fc — Zj)ﬂ(ﬁx)‘

j=1 i=1 €
where p € C*®°(R?) is such that p(z) = 1 if |x| < 1, p(x) = 0 if |z| > 2, while in three
dimensions

T B CEE]

j=1i=1

The weighted boundary measurements will be used in the next section to design non-
iterative algorithms for detecting the anomalies from boundary measurements while the
inner expansions form the basis of the reconstruction method from ultrasonic thermal
measurements. The inner expansions allow to reconstruct the anomalies with much better
spatial and contrast resolutions than the weighted measurements which only. In fact,
the inner expansions uniquely characterize the shape and the thermal conductivity of the
anomaly. In contrast, the asymptotic expansions of the weighted measurements show that,
from an imaging point of view, the location and the polarization tensor of the anomaly
are the only quantities that can be determined from boundary measurements.

< C’T%e2] log 6‘%,
L2(0,T;H ()

(S
(SIS

€2,

<CT
L2(0,T;H* ()

2.6 Examples of Applications

2.6.1 Active Temperature Imaging

Suppose for the sake of simplicity that d = 2 and all the anomalies are disks. Choose
Uezt = O04—00y for some point y € 0 and uine = 0 in . The unperturbed solution
corresponds to ug(z,t) = Ga(x,y,t). Choose ¢(z,t) = Go(x,y',T —t), where ¢y € 9.
The asymptotic formula for the weighted boundary measurements yields

m ] B. T
(UE - UU)(y/aT) ~ 262 Z (kf] - 1) | j]L. / VGQ(Zja y7t) ' VG2(Zjay/7T - t)dt
I Mo 1432 Jo

Let now y,y" € {y1,...,yn}, where yi,...,y, are source points on Q. Define the matrix
A={Ap}y_, by

2Zm kj 1Bl [T
A”/ = 2¢ (/{7 — 1) 5 VGg(zj,yl,t) . VGg(zj,yl/, T — t)dt.
j=1 0 1+ % 0

For z € 2, we decompose the symmetric real matrix C' defined by

T
C = [ | VGt t) V6ol T - )t
0 L'=1,..n
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Examples of Applications Section 2.6

as follows )
— 3wl )
=1

for some p < n, where v denotes the transpose of v;. By exactly the same arguments as
those in [6], the following characterization of the range of the matrix A holds:

vi(z) € Range(A) VI € {1,...,p} iff z € {z1,...,2m}.

Let the singular value decomposition (SVD) of the matrix A be defined by A = UXV™.
Let Usigna denote the first columns of U that provide a basis for the column space of A
and Up,;se the rest of the matrix U which provides a basis for the left null space of A. From
the characterization of the range of A, a test point z coincides with one of the locations z;
if and only if P(v;(z)) =0, where P =1 — US’lgnalUszgnal is the orthogonal projection onto

the null space of A. Thus we can form an image of the locations {z;}7, by plotting, at
each z in a box search, the quantities

1
Wi(z) := TP forl=1,...,p.

The resulting plot will have large peaks at the locations of zj,j =1,...,m.

The matrix A is known from measurements of (u. —ug)(y', T), where ug(z,t) = Ga(z,y,t)
and ¥,y € {y1,...,yn}

Other choices for heating are possible. For example, we can place the heat source in the
upper half space by choosing

1 [z —yl*\, 0 |z —y/?
uezt(x,t)—t[exp<—4t) —1—8—$2exp(—T) for z € 99,

and y € R?\ Q. Then we take

1
(T —1)

M—yP>

o(x,t) = m )

exp ( —
for 3/ € R2\Q and u;ni; = 0in Q. Set y,y" € {y1,...,yn}, where yl € R2\ Q. Construct the

matrix A from the weighted measurements fOT /. a0 (Ue — )( g T <z5) The same imaging
algorithm applies when v;(2) is constructed from the decomposition of the matrix

T
|:/ VG(Z,yl,t) VG(Z,yl/’T—t>dt:| 5
0 LU'=1,...n

lz—yl?

i)

Because of the singularity of G5 on the boundary 952, the second choice of heating is easier
to implement numerically.

where G(z,y,t) = Lexp (—

49



Chapter 2 Thermography Based Recovery of Anomalies

In the following example, two anomalies of radius 0.3 and 0.1 and conductivities 2 and 5
are placed at (—2,—1.5) and (2.5, —2.5), respectively. We set 7' =1 and the conductivity
of the background equals to 0.1. We choose n = 10 heat sources placed at the same zo > 0
and at xll = -5+ 10%,1 =1,...10. Figures 2.1/ and 2.2 show the reconstructions without
and with noise.

Figure 2.1: Detection of anomalies

In Figure 2.1, we see clearly the presence of two anomalies. However, the one on the right
is less clearer than the one on the left because it is deeper.

-4 -3 -2 -1 0 1 2 3

Figure 2.2: Detection in the presence of 1% (on the left) and 5% (on the right) of noise.

2.6.2 Passive Temperature Imaging

This appears to be a harder problem as no forcing can be imposed. The process is passive
and driven by cooling. Choose u;,;; in the form e*, a > 0 and ey linear in time to
simulate cooling: ueyi(z,t) = 1+ o — Bt, for z € Q.

50



Examples of Applications Section 2.6

The unperturbed solution ug(z,t) has the following form:

0 t
wo(T1, . s t) = / it (60) G (20, €0, 1) dEq + / ot (5)Ca (20, t — 8)ds,  (2.70)
% 0

where G, (z4,&q,t) is given by

+oo
~ 1 (zg—£q)> (zg+€0)? ($d+§d m?
Gi(zq,&a,t) = (e* W +e 4 —2 / e ”dn) (2.71)
vAart
i 0

and Ga(zq,t) = G1(x4,0, ).

It is easy to see that the gradient of unperturbed solution ug has only one nontrivial
component:

Veuo(w,t) = : . (272
f Uinit gd (xd7£d7 d{d“‘ fuext 8:)3 (ZL‘d,t S)dS

Suppose for the sake of simplicity that d = 2 and all the anomalies are disks.

For y = (y1,y2) in the upper half-space, choose

1 [z —y|
,t) = ,y,t,T) == (— )7
60 0) = 0wy, 1) 2= ey o (= s
as in the above section. For j = 1,...,m, write z; = (z](-l),z](?)). It is easy to see from

Theorem [2.5.1] that for fixed yo the functional

= [ [ =) (2 +0)

i =1....m.

(1)

has extrema for y; = z;

To verify the validity the asymptotic expansion in Theorem 2.5.1, we compare the val-
ues of I4(T") as a function of y; computed directly with those given by the asymptotic
formula. Here yo = 0.1 and T' = 0.1. Figure [2.3 shows these comparisons for an inclusion
located at (—2, —1.5) with different radius (0.005,0.01,0.1 and 0.2) and different thermal
conductivities 1.5,2,3 and 4. The approximation error gets larger with the radius of the
anomaly.

As we can see from Figure 2.3, the first order of magnitude given by the asymptotic
expansion formula is valid for the anomalies of radius 0.005 and 0.01. On the contrary,
for the anomalies of radius 0.1 and 0.2 there is a significant error.
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x10°

L L L L L L L L L L L L L L L L L L
-5 -4.5 -4 -35 -3 -25 -2 -15 -1 -05 0 -5 -4.5 -4 -35 -3 -25 -2 -15 -1 -0.5 0

Figure 2.3: Validation of the asymptotic expansion formula for inclusions with different
radius and thermal conductivities. From top to bottom, from left to right: the radius of
the inclusion is 0.005, 0.01, 0.1 and 0.2. In each figure, the conductivities are from the top
to the bottom: 1,5,2,3, and 4.

Figure 2.4/ shows that the extrema of I4(T") correspond to the x1 components of the
locations of the anomalies.

Once the z; components j=1,...,m, are found, in order to recover the x5 components

) ] )
we minimize over zj <0,5=1,...,m, the following functional

1) zj; (b 1) / (2}, ), )MOVo((2}, 2), 1yt

2.6.3 Ultrasonic Temperature Imaging

The principle of ultrasonic temperature imaging is to measure the local temperature near
the anomaly. The aim is to reconstruct the anomaly with a better spatial and contrast
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.8
-5 -45 -4 -35 -3 256 -2 -15 -1 -05 0 05 1 15 2 25 3 35 4 45 5

Figure 2.4: Reconstruction of the anomalies

resolutions than from boundary measurements. Theorem 2.5.1 says that

2
(e = o) (,£) ~ =€ 3 Aoz, b (22 ).
i=1

€

for |z — zj,| = O(e). Fix w to be a window around the anomaly jo. To reconstruct the
shape and the thermal conductivity of this anomaly, a natural way would be to minimize
over €B and k the functional

T
)
Standard regularization techniques can be used for solving this optimization problem.
See [5].

2 2
T -z
(ue —up)(z,t) + € ;_1 Oz, u0(2jy t)wjﬂ( - 20 ) ’ dxdt.

2.7 Appendix
We derive equations (2.51)-(2.53) from (2.50), if f2 is in L?((0,T) x R) and

lim/ / |fo(x + y,t — s) — fa(x,t)|dyds = 0. (2.73)
=0 Jo<s<e Jly|<e

Equation (2.51) is clear by dominated convergence. Equation (2.53) can be obtained for
any xo < 0 by applying Cauchy Schwartz inequality and letting ¢ tend to 0.

To obtain (2.52)), first assume that f; is equal to the constant 1 in the neighborhood of
(x1,t) defined by |1 — z1| < n,|s —t| < n. We observe the following, due to the boundary
condition for Gy away from singularities,

lim (3, - +) ( / /X fal€1, 8)Galarr, 2, 61,1 — s)dflds) 0,

xr2—0
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where X is the complement in (0,¢) X R of (t —n,t) x (r1 —n,z1 +n). Next we set for
To <0, u=¢& —x1,r=s—t. We want to determine

norn
lim (0, - +-) </ / Ga(u, xg,O,r)dudr) .
xo—0 0 —n

1 u? 3 — 2
Ga(u,x2,0,7) = %e*E [643 + \/mre” %2t (erf (22\;7) — 1>} )

integrating in w,

7 1 n a3 B —x2 + 27
_ el 2 z2tT f{— ) —-1])].
/_nGz(”’“’O’”du et (o) [ v (o (552) 1))

We can let x5 tend to zero in the latter expression, since dominated convergence can be
applied. Next, since

8:;:2G2(U7 Z2, 07 ’I”) =

1 _2[ z9 _<3 B —x9 + 21 B _ (=zp+2r)?
—e [ —ZeTa —fare 2T [erf [ =) — 1] —e *2T"e ar ,
2r 2y/r

we notice that 9,,Ga(u, z2,0, ) is the sum of three terms, the most singular is of order r~

the other two are of order, respectively, 7—! and r—1/2
term, integrating in w,

[ 2 P (1
— e o du=— e terf[ —— ).
_y 4mr? 2ry/mr 2\r

2
To proceed with the integration in r, we make the substitution r = % to obtain the integral

1 52
/ —e Terf <S77> ds.
22 /n? NG 2x9

By dominated convergence, the latter has the limit, as 22 < 0 approaches 0,

2

)

. Starting with the most singular

* 1 52
N 67 4
0o VT
We now examine the two terms from 0,,G2(u, z2,0,7), of lower order in r. Integrating in u,

Tl w2 - 2 (—zp+2r)?
—/ —e ar [(\/ﬂre_“” (erf (W) — 1) + e‘””e‘iﬁ} du =
_p 27 2\/r

o) ((57) )

We can let xo tend to zero in the latter expression, since dominated convergence can be
applied. In conclusion,

t o]
lim (O, - +) </ / f2(&1,8)Ga(w1, 22,61, — S)d&dS) =1,
0 J—o0

x2—0

ds = 1.

if f5 is equal to the constant 1 in some neighborhood of (x1,t). The more general case can
then be obtained by playing with inequalities, starting from estimate (2.73)).
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2.8 Concluding Remarks

In this chapter, starting from a realistic half space model for thermal imaging, we have
developed a mathematical asymptotic analysis well suited for the design of reconstruc-
tion algorithms. Based on rigorously derived asymptotic estimates, after obtaining an
approximation for the temperature profile, we were able to design noniterative detection
algorithms. We have then presented numerical simulations to test them. We have also
touched upon the subject of ultrasonic temperature imaging used for guiding in the course
of thermal ablation therapy. Related optimization algorithms will be the subject of
forthcoming work.
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Chapter 3

Electrical Impedance
Endo-Tomography

3.1 Introduction

Electrical impedance tomography (EIT) tries to recover the electrical conductivity distri-
bution inside the body from measurements of current flows and voltages on its surface.
It characterizes the change in measured impedance resulting from the conductivity change
in a given volume element. The injected current concentrates at electrodes near the source
and spreads throughout the whole conducting body, so that the injected current density
decreases for increasing distance to electrodes. This feature makes it difficult to obtain
accurate images of small and deep organs in the human body using EIT.

Electrical Impedance Endo-Tomography (EIET) is a new alternative method for scanning
the conductivity of deep tissues or organs using an impedance probe placed at the center of
the region of interest. The probe consists of electrodes placed at the surface of an insulating
cylinder and spreads in the medium surrounding the probe. The electrodes are surrounded
by the medium to be examined instead of encircling it. This new method has been
developed for prostate imaging by Jossinet and his group [18, [19]. The basic assumption
is that normal prostate tissue and tumor tissue have different electrical conductivity.

In practice captured current-voltage pairs must be limited by the number of electrodes
attached on the surface of the probe, which restrict the resolution of the image. See [16].
Definitely, we can increase the resolution of the conductivity image by increasing the
number of electrodes. However, it should be noticed that, beyond a certain level, increasing
numbers of electrodes may not give any help for producing a better image for the inner-
region of the body if we take account of inevitable noise in measurements and the inherent
insensitivity mentioned before. In its most general form EIET is severely ill-posed and
nonlinear. These major and fundamental difficulties can be understood by means of the
mean value type theorem in elliptic partial differential equations. The value of the voltage
potential at each point in the medium surrounding the probe can be expressed as a
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weighted average of its neighborhood potential where the weight is determined by the
conductivity distribution. In this weighted averaging way, the conductivity distribution
is conveyed to the probe potential. Therefore, the probe data is entangled in the global
structure of the conductivity distribution in a highly nonlinear way. This is the main
obstacle to finding non-iterative reconstruction algorithms with limited data. If, however,
we have additional structural information about the medium in advance, then we may
be able to determine specific features about the conductivity distribution with good
resolution. One such type of knowledge could be that the body surrounding the probe
consists of a smooth background containing a number of unknown small inclusions with
a significantly different conductivity. This situation arises for example in prostate cancer
imaging.

In this case EIET seeks to recover the unknown inclusions. Due to the smallness of
the inclusions the associated voltage potentials measured on the surface of the probe are
very close to the potentials corresponding to the medium without inclusion. So unless
one knows exactly what patterns to look for, noise will largely dominate the information
contained in the measured data. Furthermore, in prostate imaging it is often not neces-
sary to reconstruct the precise values of the conductivity or geometry of the inclusions.
The information of real interest is their positions and size.

Since the situation of the electrodes in EIET, in the middle of the region of interest, creates
a situation differing from classical EIT, the major classical concepts of EIT and accurate
reconstruction techniques need to be revised and adapted to this new situation.

In [38], an asymptotic formula for the voltage perturbations on the probe that are due to
the presence of a small anomaly has been derived as the size of the anomaly goes to zero.
Based on that formula, a reconstruction method for some features of the anomaly has
been proposed. This method enables detection of a single anomaly and its polarization
tensor. However, it is impossible to extract information about the material property, such
as conductivity and anisotropy, of the inclusion from boundary measurements.

In this chapter, our aims are threefold:

(i) We first find an isotropic inclusion of elliptic form with isotropic conductivity first-
order polarization tensor of which coincides with the anisotropic one of a disk-shaped
anisotropic inclusion. We then show how to extract anisotropy from higher-order
anisotropic polarization tensors.

(ii) We also generalize the recent approach of conductivity imaging by elastic deformation
to EIET and demonstrate its feasibility. This approach, called impediography,
is based on the simultaneous measurement of a potential and of acoustic vibrations
induced by ultrasound waves. Its intrinsic resolution depends on the size of the
focal spot of the acoustic perturbation, and thus it provides high resolution images.
The core idea of impediography is to extract more information about the conductivity
from data that has been enriched by coupling the electric measurements to localized
elastic perturbations. More precisely, one perturbs the medium during the electric
measurements, by focusing ultrasonic waves on regions of small diameter inside the
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body. Using a simple model for the mechanical effects of the ultrasound waves,
one can show that the difference between the measurements in the unperturbed and
perturbed configurations is asymptotically equal to the pointwise value of the energy
density at the center of the perturbed zone. In practice, the ultrasounds impact a
zone of a few millimeters in diameter. The perturbation should thus be sensitive to
conductivity variations at the millimeter scale, which is the precision required for
prostate cancer diagnostic.

(iii) Finally, we present a method for detecting multiple anomalies using a realistic
electrode model.

3.2 Mathematical Model

Let Q be a bounded domain in R?, with a connected smooth boundary 9. Let v denote
the unit outward normal to 0.

Introduce the weighted Sobolev space W12(R? \ Q) of functions

{\/ﬁ(li)(Q—kxP) e L2(R2\ ), erLQ(RQ\Q)}.

WH2(R2\ Q) is a Hilbert space under the scalar product

_ u(z)v(x) .
(u,v) = /11@2\9 A5 D)+ 7)) dr + - Vu(z) - Vou(zr)dr .

Let Py denote the set of constant functions on R?. We recall the Poincaré-type inequality

Ju(z)?

/R2\Q (14 J2*)(In(2 + [z[*))

5 dr < C/ | Vu(z)|? dr (3.1)
R2\0)

holds for all u in the quotient space W2(R? \ Q)/P,.

Suppose that R?\ € contains a finite number m of small inhomogeneities Dy, s = 1,...,m,
each of the form Dy = eBg + z5, where B, s = 1,...,m, is a bounded smooth domain in
R? containing the origin and z, € R? \ Q. We assume that the domains Dy, s = 1,...,m

are separated from each other and from the boundary 9f2. More precisely, we assume that
there exists a constant ¢y > 0 such that

|2s — 2| > 2c0 >0 Vs#s and dist(z,00) >2¢)>0 Vs, (3.2)

that €, the common order of magnitude of the diameters of the inhomogeneities, is suf-
ficiently small and that these inhomogeneities are disjoint. We also assume that the
"background” R? \ € is homogeneous with conductivity 1 and the inhomogeneity D has
conductivity ks, 0 < ks # 1 < 400, for 1 < s < m.
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Let the function g represent the applied boundary current. We assume that it belongs to
L?(092) and has mean value zero. Let u denote the steady-state voltage
potential in the presence of the conductivity inhomogeneities | J." | Dy, i.e., the solution
in WH2(R2\ Q) /P to

V- <X<Q\UDs> +stx(Ds)>Vu:O in R?\ Q,
s=1 s=1
ol =o [ a0 (33
aV 90 1 o0
\u(:z:) = O(m as |z| — +oo.

Let U denote the "background” potential, that is, the solution in W12(R?\ Q)/Py to

AU = in R?\ Q,
ol _ / _
1
U(z) = O<W) as |z| — +o0.
x
The EIET technique is to detect unknown inclusions Dg, s = 1,...,m, by means of a

finite number of current-to-voltage pairs (g, u|gn) measured on Of2.
In [38], the following formula has been derived
Sa(u—U)(z) = —VU(2)M (k, B)VT(z, 2) 4 o(€?), (3.5)

uniformly on 02, where M is the polarization tensor associated with B and k and I is
the fundamental solution to the Laplacian. Sq is the single layer potential defined by

Sad(z) = /8 T@)o)doly), ¢ < LH00)

and the polarization tensor M is given by

k+1
)= | (o

1o(c) = /a &Y V) ) do(y), b e L2(0B).

B 27|z —y|?

I —K§) ™ (v)ydo(y),

where

It is not difficult to generalize formula (3.5) to the case where the anomaly has anisotropic
conductivity. It suffices to replace M by the anisotropic polarization associated with B
and its anisotropic conductivity matrix. It is known that detection of anisotropy can
discriminate malignant tumors from benign ones.

Formula (3.5)) says that the only information that can be reconstructed is M (k, B). Since M
is a mixture of volume and conductivity, it is then impossible to extract from boundary
measurements material properties of the anomaly.
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3.3 Detection of Anisotropy

3.3.1 Green’s Function, Single and Double Layer Potentials

Let A be a positive-definite symmetric matrix. A fundamental solution or a Green’s
function T4 (z, z) of the operator V,, - AV, is the solution to

V. AV, (2, 2) = 0(z — 2), (3.6)

where § is Dirac’s delta function.

Let A, be the positive-definite symmetric matrix such that A=! = A2. A Green’s function
I'(z,2) is given by

1 ln||A*(:U—z)||, ifd=2
T4z, 2) = TA(w — 2) = { VI , , (3.7)
" ATy fd=3

where |A| is the determinant of A and || - || is the Euclidean norm of the vector in R

Let D be a bounded smooth domain in R?, the single and double layer potentials associated
with A of the density function ¢ € L?(0D) are respectively defined by

Sho(x) = /8 PHa—yoln)doty). e R (3.8)

and
DAG(z) = /8 vy AVPA s = ol)doty), @ € BRI\ 0D, (3.9)

The jump relations obeyed by the double layer potential and by the normal derivative of
the single layer potential for x € 0D are

v - AVSH()|, — v - AVSH(2)| = (2), (3.10)
Dpé(x)|, — Dpo(x)|_ = —¢(). (3.11)

3.3.2 Anisotropic Polarization Tensors

We now recall the definition and some important properties of the (generalized) anisotropic
polarization tensors (APT’s) associated with an anisotropic inclusion embedded in an
anisotropic background.

Let D be a bounded smooth domain in R? d = 2,3. Suppose that the conductivity
of D is A and that of R?\ D is A, where A and A are constant d x d positive-definite
symmetric matrix with A = A. The matrix A— A is assumed to be either positive-definite
or negative-definite.

61



Chapter 3 Electrical Impedance Endo-Tomography

We will use the standard notations for multi-indices: for a multi-index o = (ay, ..., qq) € N¢,
let x® :(E?l...xgd and ’a‘ :a1+...+ad.

Define the anisotropic polarization tensors (APT) [7], as follows:

Definition 3.3.1 For a multi-inder o € N% with |a| > 1, let (fa, ga) € L*(0D) x L*(0D)
be the unique solution to

on 0D. (3.12)

S fo — Sphga = 2
=v- -AVz®

V- AVS‘[“)faL — V- AVSSQQLF

For a pair of multi-indices o, 3 € N%, define the generalized anisotropic polarization tensors
associated with the domain D and anisotropic conductivities A and A, by:

Mgys(A, A, D) = / 2P 9o (x)do (). (3.13)
oD
If |a| = |B| = 1, it means that when a = e; and § =e; for i,j = 1,...,d, where {ey} is

the standard basis for R?, we denote Mg by M;;.

We note that the first-order APT was first introduced in [20] and it is proved there that

M;; is symmetric and positive (negative, resp.) definite if A — A is positive (negative,
resp.) definite. The generalized APT’s enjoy the same properties [7].

For a multi-index o € N¢ with |a| > 1, let:

Oa(x) = X(D)SP fu() + X(R?\ D)SAgal(x). (3.14)

Then 6, is the solution to the following transmission problem:

V- AV, =0 in R?\ D,

V- AVl =0 in D,

Qa‘i_eahzma on 0D,

v AVO,| —v-AV,|, = v AV2® on D, (3.15)
Oa() = 0, as |z] — oo, if d = 3,

Ou(z) - gﬂ\l/w In[|Asz|| [5p 0a(y)do(y) — 0 as |z| — oo, if d = 2.

It then follows from the jump conditions (3.10) and (3.11) that for any pair of multi-
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indices « and (3,

Mop = /azﬁgada = /xﬁ (1/ - AVShgal, —v- AVSégaL) do

oD oD
= /x’g <V . AVngaL —v- Aan> do — / v- AVz® <nga - :ca) do
oD oD
_ / <y.(ﬁ—A)wﬁ) 0n|_do (3.16)
oD

3.3.3 Detection of First-Order APT

The aim of this section is to find an inclusion of elliptic form with isotropic conductivity
first order polarization tensor of which coincides with the one of disk-shaped anisotropic
inclusion.

We recall that the first order polarization tensor associated with the domain B, where B
is a disk of radius d, of anisotropic conductivity A embedded in an isotropic background
of conductivity [ is given by

My(I,A,B) =2|B|(A+ 1) (A—1), (3.17)
where |B| = 7d?.

Let £ be an ellipse whose semi-axes are on the x1 and xo axes and of the length a and b,
respectively. Let B = RE’, where R is an orthogonal matrix (RR? = I). We recall that
the polarization tensor associated with the elliptic inclusion B of isotropic conductivity
kI embedded in an isotropic background of conductivity I is given by

. a+b
MALAB) = (- il ( S ) A (3.18)
b+ka

where |B| = mab.

At this point let us review a method to recover a, b, k£ and R form a given first order
polarization tensor M,;. We suppose that the elliptic and disk-shaped inclusions have the

same known volume:
|B| = mab = wd>. (3.19)

The equivalence of the first order of APT (3.17) and (3.18), implies the following equality

1 _ k+1
—tr(M, ) = —tr(M; 1) = ——. 3.20
|B| I‘( e ) |B| I'( d ) E—1 ( )
Then, if we introduce the notation
tr = tx((|BIA — |B|1)"'(IBIA + |BII), (3.21)
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we have . b1 52)
tr—1° ’
Let A; and Ay denote the eigenvalues of the matrix 2(|B|A + |B|I)~Y(|B|A — | B|I):
— _ a+b
e
It is easy to see that
(k—1)(a+b) = Ai(a+ kb) = Xa(b+ ka), (3.24)
or equivalently,
M (a7 + k| B|) = \o(ka®r + |B|). (3.25)

The lengths a and b can be recovered by

1Bl s — kM

_ /1Bl 2

@ 7 VA — kA (3.26)
1Bl [N —Fn

b=/ 7T,/AQ_M. (3.27)

Finally, R can be computed by solving a linear system of equations. It is a function of the
directions of anisotropy of A.

and

3.3.4 APT for Ellipses

Let D be a bounded smooth domain in R? whose conductivity is given by 2 x 2 positive-
definite symmetric matrix . Let the background conductivity be given by I. For a
multi-index a with || > 1, let

_ Mozl
M, = < M. > (3.28)
be the (higher-order) anisotropic polarization tensor. Let
_ Xal
Xo = ( Xoo ) (3.29)
be the vector defined by
Xoj = / VYo (y— Deydy, j=1,2, (3.30)

D

where {e;}j=12 is an orthonormal basis in R?.

64



Detection of Anisotropy Section 3.3

Let D be an ellipse such that D = Ry(D’) for some rotation:

[ cosyp —siny
Ry = ( siny  cos® ) (3:31)
and an ellipse D’ of the form
22 2
) + 2 =1, (p>9g). (3.32)
Let m = % and
1 0
J = ( 0 —1 ) (3.33)

Then, the following formula for M, for ellipses was obtained in [21]:
M, =2 [(7 + 1) —m(y — I)R¢JRﬂ X (3.34)
In particular, the first-order APT M = (Mjy,) is given by
M= 2[(fy+I)—m('y—I)R¢JR£] =1 =2/D| [(7—1)*1(7+I)—mR¢JR£ L (3.35)

Moreover, M 1M, is given by

_ 1 _
MM, = ﬁ('y -D7'X,. (3.36)

3.3.5 Anisotropy Detection

We prove now that the use of higher-order polarization tensors yields the reconstruction
of the material property of the anomaly.

For multi-index «, such as |a| = 3, we have the four possible cases presented in table [3.1
where Tj is given by

T; = / y7dy. (3.37)
D

To calculate Tj, we introduce the elliptic coordinates (r,¢). In these coordinates,
the ellipse D’ is given by

D’:{(yl):(pTCOS¢>‘O§T§1,0§¢<27T}a (3.38)

Y2 qrsin ¢

and the ellipse D is given by

Y1 Pr COS ¢ oS Y — qrsin ¢ sin Y
- = <r< < . .
D {<y2 > <prcos¢sin¢+qrsinq§cosw Osr=<l0<¢<2n (3.39)
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S
<

« y~ Vy® Xaj
3 3yi
(3,0) i 0 3(y = DT

w
=

e
N N N T

IS

2
(2,1)  2yo < yyl%y2> (v = I)2;T1

=

2
2 Y2 D
(172) Y1ys ( 2y1y2 ) (7 I)leQ D]

—_ o O H O O -
~ —— " ~_|?

0
03 1 (4p) 0-Dam

Table 3.1: Possible cases for |a| = 3.

The Jacobian is given by

0 0,
D(y,0) _ 4. gfyﬁ 5’%
D(r,¢) r a7y

:det'pcosqﬁcosw—qsm(ﬁsmw —prsin ¢ cos Y — qr cos ¢ sin P — abr. (3.40)

pcosgsiny + gsin¢gcosyp —prsin ¢ siny + qr cos ¢ cos Y

Using the elliptic coordinates, we have

D
T, = /y%dyldyg = /(pr cos ¢ cos ) — qr sin¢sin¢)2Mdrd¢
J J D(r, ¢)

1 2m
= pq / r3dr /(p2 cos? ¢ cos® 1 + ¢% sin? ¢ sin® 1) — 2pq cos ¢ sin ¢ cos 1 sin )dip
0 0

D
= %( % cos® P + ¢*sin ) = u|(p2 cos® 1 + ¢*sin?1p).  (3.41)

Similarly, we obtain

Ty = /ygdyldw =
D

D
Wqu(pQ sin® ¢ + ¢° cos® ) = |4‘(pz sin ¢ + ¢* cos® ). (3.42)

Let z, M and M, be the detected location, the first-order and the higher-order (|a| = 3)
APTs. Suppose that the ellipse B is small such as €2 = pq.

Using the expression of M 1M, we find

T

4ﬁ = p?cos® Y + ¢*sin? 1, (3.43)
13 2 2 2 2

4@ = p~sin“ Y + ¢° cos® 1. (3.44)
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It is easy to see that p and ¢ can be computed as the roots of the following equation:

T T
¢ 4ﬁ + 435 +22 4+ =0. (3.45)

Indeed, the expression under the sing of square root is equal to

T, T
4ﬁ " 4ﬁ +2¢% = p?(cos® P + sin® ¢) + ¢*(cos® ¢ + sin’ ) + 2pg = (p + ¢)%.  (3.46)

Once p and ¢ are found, v is recovered by

Ty Ty
1 4101 — 45
) = — arccos | —s——5— 3.47
since T T
‘75’ - ﬁ = (p* = ¢*)(cos® Y —sin® ¢) = (p* — ¢*) cos(2¢)). (3.48)

Finally, using the representation (3.35), we can find the conductivity matrix 7 using the
following formula:

v = |20 M 4 mRyJRY + 1] |20 M 4+ mRy IR, 1] (3.49)

3.3.6 Numerical Tests

We provide results for anisotropy detection in the presence of noise. In all of these
numerical tests we have used the following parameters

q =15, (3.50)

p=2.5, (3.51)

= % ~ 0.5236, (3.52)
31

- ( |y > (3.53)

To show the performance of the presented anisotropy detection method we apply to exact
values of parameters multiplicative gaussian noises of variance o?:

e = (1 + age), (3.54)

~ Miu(1+og11) Mi2(1+0gi12) )

M= , 3.55
( Ma1(1 +0g12) Mao(1 + 0go2) (3:55)

Ty =Ti(1+0g1), (3.56)

Ty =To(1+ 0gs), (3.57)

where g, g1, g2, g11, g12 and goo are independent gaussian random variables.

The results of numerical tests are presented in Table [3.2.
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o q p ¥ i
0 15 25 05236 o
. . : 1 3
2.92 0.97
0.01 1.48 2.52 0.5382 ( 0.97 2.92 >
3.13 0.7
0.1 1.03 2.87 0.5838 < 0.7 3.13 >

431 6.24
05 059 2.73 0.8187 (6,24 4.31)

Table 3.2: Results of anisotropy detection.
3.4 EIET by Elastic Deformation

The aim of this section is to demonstrate the feasibility of the electrical impedance by
elastic deformation (or impediography) for endo-tomography.

3.4.1 Physical Model

One or several currents are imposed on the surface 0€2 and the induced potentials are
measured on the boundary. At the same time, a circular region w of a few millimeters in
R2\ Q is mechanically excited by ultrasonic waves, which dilate this region. The measure-
ments are made as the focus of the ultrasounds scans an entire region around (2. Several
sets of measurements can be obtained by varying the ultrasound waves amplitudes and
the applied currents.

W

I

e 1

4 ™

\.
] N\
P

=
==

Figure 3.1: Experimental setup

We assume that the conductivity of each small disk B is proportional to its volume Vg
V(z) = p(z)VB,

where p(x) is coefficient depending on the point x € Q.
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The ultrasonic waves induce a small elastic deformation of the disk B. If this deformation
is isotropic, the material of points of B occupy a volume Vp in the perturbed configuration,
which at first order is equal to

VB = VB <1 + 2% + O(AT)>,

where r is the radius of the disk B and Ar is its variation due to the elastic perturbation.
As a consequence, the perturbed conductivity is given by

¥(z) = n(x)y(z), forall z e, (3.58)

where n(z) is a known function.

3.4.2 Mathematical Model

Let us now formulate our problem. We suppose that the conductivity v(z) is known close
to the boundary of domain Q and is equal to a positive constant for |z| large enough.
We denote by u the voltage potential induced by a current g, in the absence of ultrasonic
perturbations. It is given by

Ve (Y(z)Veu) =0 in R?\ Q,
) =g on 01, (3.59)
O() as |x| — 4o0.

Jal

| 92

We denote by wu,, the voltage potential induced by a current g, in the presence of an
ultrasonic perturbation localized in a disk domain w = z + 6B of volume |w| = O(5?).
The voltage potential u,, is a solution to

Vi (Yo(2)Veu,) =0 in R?\ Q,
Ouw

Y(r)Ge =g on 012, (3.60)
uy(x) = O(ﬁ) as |z| — +oo,

with the notation
Yo(z) = 7(@) (1 + Lu(2)(n(x) - 1)), (3.61)

where 1, is the characteristic function of the domain w.

As the zone deformed by the ultrasound wave is small, we can view it as a small volume
perturbation of the background conductivity ~y, and seek an asymptotic expansion of the
boundary values of u,, —u. The method of small volume expansions shows that comparing
Uy, and u on Of) provides information about the conductivity.

Define {¢}}¢_, to be the solutions to

V- (V) =V-(yVx;) inR?\Q,
T = on 99, (3.62)
¢(z)=0( L ), as |z| — +oo.

[l
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Following exactly the same arguments as those in [3], we can prove that the following

result holds.

Theorem 3.4.1 Assume that u € W2 (w). Then,
/ (uy —u)gdo = /(’yw — )M, Vu - Vudz + O(|w| ),
oN Q

for some positive k, where the matriz valued function M, (z) is given by

¢,

(Mes)jre = e

Moreover, in the case where w is a disk, M, (x) is given by

3.4.3 Conductivity Recovery

Suppose that w(z) is a centered at z disk. The function S(z) is given by

8= (2 /w(Z) ;mdx> ) /zm(u“’(z) ~ ulgdo

(3.63)

(3.64)

(3.65)

(3.66)

can be reconstructed from measurements on the boundary 9€). Theorem [3.4.1] shows that

S(2) = (=) Vu(2)]*.

(3.67)

Let € be a domain containing . If we scan the region Q1 \ Q then, in view of (3.67),
we can replace the conductivity problem (3.59) by the following nonlinear system of

equations:
Ve (Rehva) =0 ma\g,
é(f')Q % =g on 01},
V- -9Vu=0 in R?\ O,
|%({f|)2 ael- =551+ on 0,
u(z) = O(Hl‘) as |x| — +o00.

(3.68)

The solution of (3.68) can be found using the perturbative method described below.

70



EIET by Elastic Deformation Section 3.4

One follows the following recursive procedure:

1. We start from an initial guess for the conductivity «, and solve the corresponding
Dirichlet conductivity problem

A (’YVUO) =0 in R?2 \ﬁ,
uy = ¢ on 092, (3.69)
up(z) = O()  as |z| — +oo,

[l

where ¢ = u on 0 is the potential before any elastic perturbation. Well chosen
initial guess permits to significantly reduce the number of necessary iterations for
solving the problem (3.68)).

The discrepancy between the data and our guessed solution is

_ Sz
E

€0 Y0- (3.70)

2. We then introduce a corrector u., computed as the solution to

V- (vVu,) = =V - (egVugy) in €,
ue =0 on 012, (3.71)
ue(z) = O(%) as |z| — +o0.

||

3. The conductivity correction is then given by

S(x) = 29Vue - Vug
|VU0|2

v = (3.72)

4. We repeat these stages until the moment when the successive values of the conduc-
tivity v became sufficiently close one to each other.

We now present a test for this iterative procedure. The conductivity distribution is
presented in Figure 3.2. The background conductivity is 0.5, that of the elliptic inclusion
is 0.85, that of the L is 2.55, and that of the triangle is 1.5.

The following simulations are done using the partial differential equation solver FreeFem++ [15].
Numerically, to solve the equations posed on unbounded domains we set the solutions to

be 0 on some sphere of large radius containing ;. This turns out to be provide good
approximations of the solutions because of their behavior at infinity.

Figure 3.3 shows an initial guess, where

(3.73)

1 if 3 < |z| < 14,
105 elsewhere.
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Figure 3.3: Initial guess.

Figure 3.4/ shows the conductivity distribution reconstructed used only one g equals to |%1|
on the left, or (on the right) 2.

B
Figure shows the reconstructed conductivity distribution obtained by using 4 currents
Tl T2 T1+T2 T1—T2

Dl Vol and TR after one iteration (on the left) and 5 iterations (on the right).

3.5 Electrode Model

3.5.1 Physical Principles

Suppose that 2 is the disk of center the origin and radius R. Consider n(= 16) electrodes
equidistantly placed at 9§2. Suppose that the conductivity of the background is a positive
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Figure 3.4:

Figure 3.5: Conductivity distribution with multiple measurements and after only 1 (on the left)
or 5 iterations (on the right).

constant og. The measurements of the potential on the boundary is carried out using one
pair of current injection and one pair of voltage sensing. We suppose that for the pair
of current injection the electrodes are diametrically opposed and for the pair of voltage
sensing the electrodes are neighbors. The pair of current injection is denoted by S and
the one of voltage sensing by M.

Suppose that the conductivity of the anomaly is given by o9 + Ao and its volume by AQ,
where Ao and AS) satisfy

Ao < og et |AQ| < Q.
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Ac|AQ| -
a7z~ 2005 ),
0

where z = (z1, 22) is the center of the anomaly and s and 73 are the current densities
created in the absence of any anomaly by the pairs S and M, respectively.

The collected data form the 16 x 16 matrix given by:

CAc]AQ| [ Ts(2)
08 :

D(Z) - . . .
7516(2) I (Z) jsl(i(z) 'jMz (z) s ]_:916(2) 'jM16(Z)

which can be rewritten as follows:

_aofag | 5E) BE) | (e B . )
D(z) = Ug : : («7'1?{/11('2) j%fz(z) o j%wz > (3.75)

J5.6(2) 54,4(2)

The vectors Js, (2) and Jis, (2) are given by

rsino — RsinT

<TCOSO¢—RCOSkSW ) (TCOSO‘RCOS(k—;S)W )
(k+8)m
Is Is

: s km
rsina — Rsin &5
2, 8
Js(2) = p— . (3.76)
T | rcosa — Rcos = rcosa — R cos k8T
: s km
rsina — Rsin °F rsina — Rsin (k+88)7r
(k+1)7
7“COS()4—RC()S%7r rcosa — Rcos g
: - - (k1
. Ig rsma—Rsm%’r Ig rsina — Rsin ¢ 8)”
()= — - = -, (3.77)
T | rcosa— Rcos “F rcosa — Rcos FHUT

km

rsina — Rsin T (k+1)m
3

rsina — Rsin ~—52~

where r = |z] and a = z /.

In the case of multiple anomalies located at z1, ..., zy, the collected data give the matrix

D(z1,..., 2m):

D(z1,...,2m) = »_ D(z). (3.78)
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The singular value decomposition of D writes D = USVT, where

Uy~
NORNC) (16)
U=(am @ ... g )= "2 = 2 (3.79)
1 2 ' :16
Ugﬁ) Uge;) ugﬁ)
s1 O
0 S ... 0
S = diag(s1, 82, ...,816) = L . (3.80)
0 0 . S16
A D0
® (2 (16)
V(a0 §@ g )y=| " oo (3.81)
1 o . :16
U§6) U%G) UEG :

Further, VIV = UTU = Id;g. The following relation between %) and @*) holds:

Di® = usvTek) = 5.ak),

Suppose that s1 > s9 > ... > 8, > 8,41 = ... $16 = 0 and let Range(D) denote the space
spanned by the vectors 71, ..., 7).

3.5.2 Detection of the Centers and the Radius of the Anomalies

—

We define four vectors S, (2), Sy(2), 1,(z), and My(z) as follows:

7%, (2) 7% (2)
Gl = 7%, (2) | 5 (2) = j@(z) | (352)
7 (2) 7 (2)
7 (2) 3 (2)
i = | e M, (2) = %’i(z) . (3.83)
iy () ()

Set Eyy = span(M,(z), My(z)) and Ej; the vectorial space orthogonal to Eyps. Since Ejy
is of dimension > 2 then dim(Ej;) < 14.
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Suppose that @ € Eq;. Then, by construction of D(z1, ..., zm), we get
" Ao, o = - _
D(Zla 7Zm)w: *?( Sx(zl) Sy(zl) Sx(zm) Sy(zm) )
0
- - - - T, =
|AQ|( My(21) My(z1) ... My(2m) My(2,) ) @=0, (3.84)

where A€ is a 2m x 2m diagonal matrix:

3.84)) says that @ ¢ Range(D), which implies that dim(Range(D))+ > 16—2m. Therefore,
(3.84) say g p g

Proj (]\fo(z)‘ L7+ ,17@6))) ~ 0, (3.86)
Proj <My(2)‘ LFEH) 17’(16))) = 0. (3.87)

Set L = E(z_f@m“), ce ,17(16)). To detect the center of the anomaly, we seek points z that
are zeros of the function ¢(z) given by

g(z) = ‘Proj (Mx(z)‘ E) ‘2 + ’Proj (My(z)’ .C) ’2. (3.88)
Consider now the product UTDV. From (3.84), it follows that
UTDV)5 = 3 1A% @) (8,0, 5, (1)) (Vo). My () 0P =5, (3.80)
k=1

which corresponds to the system of linear equations: > ;* ; A;i|AQy| = s;, where A, is
given by

. - - . - T .
A = (@) (o), Sy () ) (VEa(r), My (1)) 0. (3.90)
It is clear that the solution to this system (in the least-square sense) is given by

(1A ..., A2 = (ATA) AT (51, 516)" - (3.91)

3.5.3 Numerical Tests

For this numerical test, we consider three anomalies placed at z; = (r;, j), where

21 = (r1,01) = (1.105,20.25°),
23 = (ra, a) = (2.405,100.25°), (3.92)
z3 = (r3, a3) = (1.505,290.25°),

with radius

dy = 0.03,
dy = 0.04, (3.93)
ds = 0.07.
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Figure 3.6: Plot of g.

In the Figure 3.6, we plot the values of the function g.
The function g has three peaks at the points:
2 = (7, a1) = (1.105,20.25°),

Zy = (P, Bi2) = (2.405,100.25°), (3.94)
2y = (73,a3) = (1.505,290.25°),

and we can compute the approximate radius:

dy = 0.03,
ds = 0.04, (3.95)
ds = 0.07.

This shows that our algorithm works pretty well.

Now we add noise to test the robustness of our algorithm. We add white Gaussian noise
with amplitude v: we multiply the jk element of the matrix D by (1 + v7;;), where the
variable 7;;, is centered gaussian with variance 1.

Figure [3.7 shows the values of ¢ when v = 0.01.

We see that two or the three anomalies are still visible. We have lost the one at the largest
distance to £2. The reconstructed locations for the first two ones are given by

2 = (71, a1) = (1.115,20.25°), (3.96)
% = (P, a) = (1.515,290.75°), '
and their radius by
dy = 0.070. '
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Figure 3.7: Noisy data.

Figure 3.8: Severely noisy data.

In the last test in Figure 3.8, we choose v = 0.6.

The detected locations and radius are given by

21 = (71, a1) = (1.065, 20.25°
i1 (11761) ( , ), (5.98)
Zy = (T2, @2) = (1.025,280.75°),
and
dy = 0.020,
- (3.99)
dy = 0.022.

We see that we can still detect the locations but not any more the radius.
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3.6 Concluding Remarks

In this chapter, we have proposed a method to detect anisotropy from higher-order polar-
ization tensors. We have also demonstrated the feasibility of EIET by elastic deformation
and presented a method for detecting multiple anomalies from EIET measurements using
a realistic electrode model.
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