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ii Aknowledgements



AbstratThe use of multiple antennas has been reognized as a key tehnology to signi�antlyimprove the spetral e�ieny of next-generation, multiuser wireless ommuniation net-works. In multiuser multiple-input multiple-output (MIMO) networks, the spatial degreesof freedom o�ered by multiple antennas an be advantageously exploited to enhane thesystem apaity, by sheduling multiple users simultaneously by means of spatial divisionmultiple aess (SDMA). A linear inrease in throughput, proportional to the number oftransmit antennas, an be ahieved even by using linear preoding strategies if ombinedwith e�iently designed sheduling protools. However, these promising gains ome underthe often unrealisti assumption of lose-to-perfet hannel state information at the trans-mitter (CSIT). Therefore, at the heart of the downlink resoure alloation problem lies thatof feedbak aquisition.In this thesis, we fous on linear beamforming tehniques relying on low-rate partialCSIT. Several methods that allow the base station (BS) to live well even with oarse,limited hannel knowledge are identi�ed. One �rst key idea is based on splitting the designbetween the sheduling and the �nal beam design stages, thus taking pro�t from the fatthe number of users to be served at eah sheduling slot is muh smaller than the totalnumber of ative users. This two-stage approah is applied to a senario in whih randombeamforming (RBF) is exploited to identify good, spatially separable, users in the �rst stage.In the seond stage, several re�nement strategies, inluding beam power ontrol and beamseletion, are proposed, o�ering various feedbak redution and signi�ant sum rate gains,even in sparse network settings (low to moderate number of users).In hannels that exhibit some form of orrelation, either in temporal or in spatial do-main, we point out that signi�ant useful information for the SDMA sheduler lies hidden inthe hannel struture. We show how memory-based RBF an exploit hannel redundanyin order to ahieve throughput lose to that of optimum unitary beamforming with fullCSIT for slow time-varying hannels. In spatially orrelated hannels, long-term statistialCSIT, whih an be easily obtained with negligible per-slot or no feedbak overhead, revealsinformation about the mean spatial separability of users. A maximum likelihood (ML) han-nel estimation framework is proposed, whih e�etively ombines slowly varying statistialCSIT with instantaneous low-rate hannel quality information (CQI). User seletion andbeamforming tehniques suitable for suh settings are also proposed. It is demonstratedthat in systems with reasonably limited angle spread at the BS, feeding bak a single salarCQI parameter per user is su�ient to perform SDMA sheduling and beamforming withnear optimum performane. iii



iv AbstratLimited feedbak strategies utilizing vetor quantization odebooks are also investigated.In partiular, the problem of e�ient, sum-rate maximizing CQI design is addressed andseveral salar feedbak metris are proposed. These metris are built upon inter-user in-terferene bounds and an be interpreted as reliable estimates of the reeived signal-to-interferene-plus-noise ratio (SINR) at the reeiver side. It is shown that salar CQI feed-bak ombined with hannel diretional information (CDI), zero-foring beamforming, andgreedy user seletion algorithms an ahieve a signi�ant fration of the apaity of thefull CSIT ase by exploiting multiuser diversity. An e�ient tehnique that provides theBS the �exibility to swith from multiuser (SDMA) to single-user (TDMA) transmission isprovided, exhibiting linear sum-rate growth at any range of signal-to-noise ratio (SNR).Further feedbak ompression an be ahieved if the CSIT information utilized by thesheduler is represented by ranking-based feedbak. We show that an integer value is oftensu�ient in order to identify users with favorable hannel onditions. In parallel, it equalizesthe hannel aess probability in networks where users' hannels are not neessarily iden-tially distributed and mobile terminals experiene unequal average SNRs due to di�erentdistanes from the BS and the orresponding di�erent path losses (near-far e�ets).



ContentsAknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iAbstrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiList of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixList of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiiiNomenlature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvRésumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Introdution 31.1 Bakground and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 From Single-user to Multiuser MIMO Communiations . . . . . . . . . . . . . 41.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Contributions and Outline of the Dissertation . . . . . . . . . . . . . . . . . . 62 Multi-antenna Broadast Channels 112.1 The Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.1 Path loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.2 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.3 Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.4 Channel Seletivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 Multiple-Input Multiple-Output Channels . . . . . . . . . . . . . . . . . . . . 152.3 Multiuser Multi-Antenna Systems . . . . . . . . . . . . . . . . . . . . . . . . 162.3.1 Multi-antenna Channel Modeling . . . . . . . . . . . . . . . . . . . . . 172.4 Capaity of MIMO Broadast Channels . . . . . . . . . . . . . . . . . . . . . 202.4.1 Capaity with perfet CSI at the transmitter . . . . . . . . . . . . . . 202.4.2 Capaity with no CSI at the transmitter . . . . . . . . . . . . . . . . . 222.5 Multiuser MIMO Shemes with perfet CSIT . . . . . . . . . . . . . . . . . . 232.5.1 Non-linear Preoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.5.2 Linear Preoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.6 The ardinal role of Channel State Information . . . . . . . . . . . . . . . . . 272.6.1 Channel Knowledge at the Transmitter . . . . . . . . . . . . . . . . . 272.6.2 Capaity saling laws in MIMO BC systems . . . . . . . . . . . . . . . 282.6.3 Partial Channel State Information . . . . . . . . . . . . . . . . . . . . 302.6.4 Statistial Channel Knowledge at the Transmitter . . . . . . . . . . . 302.7 Sheduling and Multiuser Diversity . . . . . . . . . . . . . . . . . . . . . . . . 312.7.1 Asymptoti Sum-rate Analysis with Opportunisti Sheduling . . . . . 322.8Living with partial CSIT: Limited feedbak approahes . . . . . . . . . . . . . . 34v



vi Contents2.8.1 Quantization-based tehniques . . . . . . . . . . . . . . . . . . . . . . 342.8.2 Dimension redution and projetion tehniques . . . . . . . . . . . . . 342.9 Linear Preoding and Sheduling with Limited Feedbak . . . . . . . . . . . . 352.9.1 Finite Rate Feedbak Model for CDI . . . . . . . . . . . . . . . . . . . 352.9.2 Codebook design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.9.3 Random Opportunisti Beamforming . . . . . . . . . . . . . . . . . . . 383 Enhaned Multiuser Random Beamforming 413.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.2 Sum-Rate Analysis of Random Beamforming . . . . . . . . . . . . . . . . . . 433.3 Capaity saling laws for high SNR . . . . . . . . . . . . . . . . . . . . . . . . 463.4 Two-Stage Sheduling and Linear Preoding . . . . . . . . . . . . . . . . . . . 493.5 Enhaned Multiuser Random Beamforming . . . . . . . . . . . . . . . . . . . 503.6 Enhaned Preoding with perfet seond-stage CSIT . . . . . . . . . . . . . . 513.7 Beam Power Control with Beam Gain Information . . . . . . . . . . . . . . . 513.7.1 Optimum Beam Power Alloation for Two Beams . . . . . . . . . . . . 523.7.2 Beam Power Alloation for more than two beams . . . . . . . . . . . . 543.7.3 Beam Power Control in Spei� Regimes (B ≥ 2) . . . . . . . . . . . . 573.8 Beam Power Control with SINR feedbak . . . . . . . . . . . . . . . . . . . . 593.9 Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603.10 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643.A Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.B Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.C Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.D Proof of Corollary 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.E Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.F Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.G Proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.H Proof of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.I Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 Exploiting Channel Struture in MIMO Broadast Channels 714.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.2 Exploiting redundany in time-orrelated hannels . . . . . . . . . . . . . . . 724.2.1 User Seletion in time-orrelated hannels . . . . . . . . . . . . . . . . 724.2.2 Beamforming and Sheduling exploiting temporal orrelation . . . . . 724.2.3 Memory-based Opportunisti Beamforming . . . . . . . . . . . . . . . 734.3 Performane evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.4 Exploiting Statistial CSIT in Spatially Correlated Channels . . . . . . . . . 774.4.1 System Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.4.2 User Seletion with ML Channel Estimation . . . . . . . . . . . . . . . 794.4.3 ML oarse Channel Estimation with CQI Feedbak . . . . . . . . . . . 804.4.4 Interferene-bounded Multiuser Eigenbeamforming with limited feed-bak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.4.5 Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Contents vii4.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924.A Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 Limited Feedbak Broadast Channels based on Codebooks 955.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.3 CQI Feedbak Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.3.2 Bounds on average reeived SINR . . . . . . . . . . . . . . . . . . . . 985.3.3 Lower bound on instantaneous reeived SINR . . . . . . . . . . . . . . 1005.3.4 SDMA/TDMA transition with limited feedbak . . . . . . . . . . . . . 1045.4 User Seletion Shemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.4.1 Greedy-SUS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.4.2 Greedy-US algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.5 Performane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.5.1 Asymptoti (in K) sum-rate analysis . . . . . . . . . . . . . . . . . . . 1075.5.2 Sum-rate analysis in the interferene-limited region . . . . . . . . . . . 1085.6 MIMO Broadast Channels with Finite Sum Rate Feedbak Constraint . . . 1095.6.1 Multiuser Diversity - Multiplexing Tradeo� in MIMO BC with Lim-ited Feedbak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.6.2 Finite Sum Rate Feedbak Model . . . . . . . . . . . . . . . . . . . . . 1105.6.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115.6.4 Deoupled Feedbak Optimization . . . . . . . . . . . . . . . . . . . . 1125.7 Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135.8 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.A Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215.B Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225.C Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225.D Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235.E Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245.F Proof of Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256 Feedbak Redution using Ranking-based Feedbak 1276.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276.2 Ranking-based Feedbak Framework . . . . . . . . . . . . . . . . . . . . . . . 1296.2.1 Two-stage approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296.2.2 Ranking-based CQI Representation . . . . . . . . . . . . . . . . . . . . 1306.3 Performane analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316.3.1 Asymptoti optimality of ranking-based feedbak for large windowsize W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316.3.2 Throughput for in�te observation window size W . . . . . . . . . . . . 1326.3.3 Throughput for �nite observation window size W . . . . . . . . . . . . 1336.3.4 Performane redution bound for �nite window size W . . . . . . . . . 1346.3.5 Window size versus feedbak redution tradeo� . . . . . . . . . . . . . 1356.4 Ranking-based CDI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



viii Contents6.5 Sheduling with Heterogeneous Users . . . . . . . . . . . . . . . . . . . . . . . 1366.6 Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376.7 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416.A Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1426.B Proof of Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1426.C Proof of Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437 System Aspets in Multiuser MIMO Systems 1457.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457.2 Channel State Information Aquisition . . . . . . . . . . . . . . . . . . . . . . 1467.2.1 CSI at the Reeiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467.2.2 CSI at the Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . 1467.3 Codebook-based Preoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477.4 CQI feedbak metris and Link Adaptation . . . . . . . . . . . . . . . . . . . 1497.5 Opportunisti Sheduling: System Issues . . . . . . . . . . . . . . . . . . . . . 1497.6 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507.6.1 De�nition of Fairness in Sheduling . . . . . . . . . . . . . . . . . . . . 1507.6.2 Proportional Fair Sheduler (PFS) . . . . . . . . . . . . . . . . . . . . 1517.6.3 Multiuser Proportional Fair Sheduler (M-PFS) . . . . . . . . . . . . . 1528 Conlusions and Perspetives 1559 Résumé en français 159



List of Figures2.1 Multiple-Input Multiple Output Channel Model. . . . . . . . . . . . . . . . . 152.2 Downlink of a multiuser MIMO network: A BS/AP ommuniates simulta-neously with several multiple antenna terminals. . . . . . . . . . . . . . . . . 172.3 Analytial hannel model with loal satterers at mobile station . . . . . . . . 192.4 Shemati of Random Opportunisti Beamforming. . . . . . . . . . . . . . . . 403.1 Comparison between simulated and analytial ahievable sum-rate of RBFwith M = 4 antennas and SNR = 20 dB. . . . . . . . . . . . . . . . . . . . . 443.2 Ahievable sum rate omparison vs. average SNR for RBF with M = 4antennas. Both analyti expressions approximate aurately the simulatedperformane at high SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.3 Ahievable sum rate omparison between simulated and analytial results forRBF with M = 4 antennas and SNR = -15 dB. . . . . . . . . . . . . . . . . . 453.4 Sum rate versus the number of users for Optimal Beam Power Control with
M = 2 transmit antennas and SNR = 20 dB. . . . . . . . . . . . . . . . . . . 613.5 Sum rate versus average SNR for Optimal Beam Power Control (strategy 3)with M = 2 transmit antennas and K = 10 users. . . . . . . . . . . . . . . . . 613.6 Sum rate omparison of di�erent seond-stage preoders (strategy 1) versusthe number of users for M = 2 and SNR = 10 dB. . . . . . . . . . . . . . . . 623.7 Sum rate versus the number of users for Iterative Beam Power Alloation andOptimal Power Control with M = 2 transmit antennas and SNR = 10 dB. . . 623.8 Sum rate versus the number of users for Iterative Beam Power Alloationwith M = 4 transmit antennas and SNR = 10 dB. . . . . . . . . . . . . . . . 633.9 Sum rate versus the number of users for On/O� Beam Power Control with
M = 2 transmit antennas and SNR = 20 dB. . . . . . . . . . . . . . . . . . . 633.10 Sum rate versus average SNR for On/O� Beam Power Control with M = 4transmit antennas and K = 25 users. . . . . . . . . . . . . . . . . . . . . . . . 643.11 Sum rate versus the number of users for On/O� Beam Power Control with
M = 4 transmit antennas and SNR = 20 dB. . . . . . . . . . . . . . . . . . . 644.1 Sum rate vs. the number of transmit antennas M of MOBF with K = 20users and various Doppler spreads. . . . . . . . . . . . . . . . . . . . . . . . . 764.2 Sum rate as a funtion of number of users K of MOBF for di�erent Dopplerspreads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77ix



x List of Figures4.3 Sum rate performane versus angle spread of proposed ML estimation methodfor M = 2 and K = 50 users. Full CSIT is obtained for the seleted users ata seond step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.4 Sum rate performane versus the number of users of ML hannel estimationmethod forM = 2 and σθ = 0.2π. Full CSIT for the seleted users is obtainedfor preoder design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.5 Sum rate performane versus angle spread of proposed ML estimation frame-work for M = 2, and K = 50 users. Partial CSIT is employed for preodingdesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.6 Sum rate as a funtion of the number of users for various user seletionshemes with M = 2, antenna spaing d = 0.5λ and σθ = 0.1π. . . . . . . . . 894.7 Sum rate as a funtion of antenna spaing for various user seletion shemeswith M = 2, σθ = 0.1π and K = 50 users. . . . . . . . . . . . . . . . . . . . . 904.8 Sum rate as a funtion of angle spread for various user seletion shemes with
M = 2, antenna spaing d = 0.5λ and K = 50 users. . . . . . . . . . . . . . . 904.9 Sum rate as a funtion of the number of users for M = 2, and σθ = 0.1π. . . 914.10 Sum rate as a funtion of angle spread for M = 2, antenna spaing d = 0.4λand K = 100 users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.1 Finite Sum Rate Feedbak Model. . . . . . . . . . . . . . . . . . . . . . . . . 1105.2 Sum rate versus the average SNR for BD = 4 bits, M = 2 transmit antennasand K = 30 users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145.3 Sum rate as a funtion of the number of users for BD = 4 bits, M = 2transmit antennas and SNR = 20 dB. . . . . . . . . . . . . . . . . . . . . . . 1145.4 Sum rate performane as a funtion of the average SNR for inreasing valueof the number of users, with BD = 4 bits of feedbak per user and M = 2transmit antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155.5 Sum rate as a funtion of the average SNR for inreasing odebook size,
M = 2 transmit antennas, and K = 50 users. . . . . . . . . . . . . . . . . . . 1165.6 Sum rate performane as a funtion of the number of users for inreasingodebook size, M = 2 transmit antennas, and SNR = 10 dB. . . . . . . . . . 1165.7 Sum rate versus the number of users for with SNR = 20 dB, M = 2 transmitantennas and 10-bit total feedbak bits. BD = 5 bits are used for odebookindexing and (BQ = 10 − BD bits) for CQI quantization. For metri IV, 2bits are used for quantization of the hannel norm and 3 bits for the alignment.1175.8 Sum rate vs. number of users for M = 2 and SNR = 10 dB. . . . . . . . . . . 1185.9 Sum rate vs. number of users for M = 2 and SNR = 20 dB. . . . . . . . . . . 1185.10 Sum rate vs. number of users in a system with optimal BD/BQ balaningfor di�erent SNR values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.1 Throughput omparison as a funtion of window sizeW for single-beam RBFwith M = 2 antennas, SNR = 10 dB and K = 10 ative users. . . . . . . . . 1386.2 Average rate as a funtion of the number of users for single-beam RBF with
M=2 antennas, SNR = 10 dB and di�erent values of window size W . . . . . 139



List of Figures xi6.3 Average rate as a funtion of the number of users for single-beam RBF with
M = 2 antennas, SNR = 10 dB, W=1000 slots, and ranking-based CQImetri quantized with di�erent resolutions. . . . . . . . . . . . . . . . . . . . 1396.4 Sum rate as a funtion of the number of users for multi-beam RBF with
M = 2 antennas, SNR = 10 dB and W = 1000 slots. . . . . . . . . . . . . . . 1406.5 Sum rate as a funtion of users for multi-beam RBF in a heterogeneous net-work in whih users' average SNRs range from -10 dB to 30 dB, M = 4antennas and W = 1000 slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406.6 Normalized sheduling probability vs. user index for multi-beam RBF with
M = 4 antennas and K = 10 users. The users are sorted from the lowest tothe highest average SNR and the SNR range is from -10 dB to 30 dB. . . . . 141



xii List of Figures



List of Tables3.1 Iterative Beam Power Control Algorithm for Sum-Rate Maximization . . . . 554.1 Memory-based Opportunisti Beamforming Algorithm . . . . . . . . . . . . . . . 744.2 Greedy User Seletion with Statistial CSIT . . . . . . . . . . . . . . . . . . . . . 814.3 Resoure Alloation Algorithm with Statistial CSIT . . . . . . . . . . . . . . . . 875.1 Greedy Semi-orthogonal User Seletion with Limited Feedbak . . . . . . . . . . . 1205.2 Greedy User Seletion Algorithm with Limited Feedbak . . . . . . . . . . . . . . 120

xiii



xiv List of Tables



NomenlatureIn this setion, the notational onvention of the thesis is summarized. First, we provide alist of abbreviations, followed by an overview of the notation of more general nature. Weonlude with the notations that are more spei� for this thesis.Abbreviations and AronymsThe abbreviations and aronyms used throughout the thesis are summarized here. Themeaning of an aronym is usually indiated one, when it �rst ours in the text.3GPP Third Generation Partnership ProjetAMC Adaptive Modulation and CodingAoA Angle of ArrivalAoD Angle of DepartureAP Aess PointAWGN Additive White Gaussian NoiseBC Broadast ChannelBD Blok DiagonalizationBER Bit Error RateBF BeamformingBGI Beam Gain Informationbps bits per seondBS Base StationCCI Channel Covariane InformationCDMA Code Division Multiple AessCDF Cumulative Distribution FuntionCDI Channel Diretion InformationCMI Channel Mean InformationCQI Channel Quality InformationCSI Channel State InformationCSIR Channel State Information at ReeiverCSIT Channel State Information at TransmitterDMT Diversity Multiplexing Tradeo�DPC Dirty Paper CodingEVD Eigenvalue DeompositionFDD Frequeny Division Duplex xv



xvi NomenlatureGEV Generalized EigenvalueHSDPA High-Speed Downlink Paket Aessi.i.d. independent and identially distributedi.ni.d. independent and non-identially distributedKKT Karush-Kuhn-Tuker optimality onditionsl.d. Limit DistributionLOS Line-of-SightMAC Multiple Aess ChannelMIMO Multiple-Input Multiple-OutputMISO Multiple-Input Single-OutputML Maximum LikelihoodMMSE Minimum Mean-Square ErrorNLOS Non Line-of-SightOFDM Orthogonal Frequeny Division MultiplexingOFDMA Orthogonal Frequeny Division Multiple AessPDF Probability Density FuntionPFS Proportional Fair ShedulingQoS Quality of ServieRBF Random (opportunisti) BeamformingRHS Right Hand Siderms root mean squareRVQ Random Vetor QuantizationSDMA Spae Division Multiple AessSINR Signal-to-Interferene-plus-Noise RatioSISO Single-Input Single-OutputSNR Signal-to-Noise Ratios.t. Subjet toSTC Spae-Time CodeSVD Singular Value DeompositionTDD Time Division DuplexTDMA Time Division Multiple AessTHP Tomlinson-Harashima PreodingUCA Uniform Cirular ArrayULA Uniform Linear ArrayUMTS Universal Mobile Teleommuniations SystemVQ Vetor QuantizationWLAN Wireless Loal Area NetworkWMAN Wireless Metropolitan Area NetworkZF Zero ForingWloG Without loss of Generality



Nomenlature xviiNotationsThe notations used in this dissertation are listed in this setion. We use boldfae upper (e.g.
X) and lower ase (e.g. x) letters for matries and olumn vetors, respetively. Plain lettersare used for salars and upperase alligraphi letters (e.g. S) denote sets. No notationaldistintion is used for a random variable and its realization. Other notational onventionsare summarized as follows:

C, R The sets of omplex and real numbers, respetively.
|x| The absolute value of a salar.
∠x The phase of a omplex salar (in radians).
‖x‖ The Eulidean (ℓ2) norm of vetor x

‖X‖F The Frobenius norm of matrix X

⌈x⌉ The eiling operator, i.e. the smallest integer not less than x.
∠(x,y) The angle between two vetors x and y.
|X | The ardinality of the set X , i.e. the number of elements in the �niteset X .
E{·} The expetation operator.
CN (x,X) The irularly symmetri omplex Gaussian distribution with mean xand ovariane matrix X.
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(·)T The transpose operator.
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X† The Moore-Penrose pseudoinverse of matrix X.
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I The identity matrix.Tr(X) The trae of matrix X, i.e. the sum of the diagonal elements.
vec(X) The vetor obtained by staking the olumns of X.
⊗ The Kroneker matrix produt.
O(·) The big-O notation, i.e. f(x) = O(g(x)) as x → ∞ i� ∃x0, c > 0 suhthat |f(x)| ≤ c |g(x)| for x > x0.
exp(·) The exponential funtion.
log(·) The natural logarithm.
log2(·) The base 2 logarithm.Thesis Spei� NotationsWe summarize here the symbols and notations that are ommonly used in this thesis. Wehave tried to keep onsistent notations throughout the doument, but some symbols havedi�erent de�nitions depending on when they our in the text.

M Number of transmit antennas
Nk Number of reeive antennas at user k.
K Number of ative terminals, i.e. the set of users simultaneously askingfor servie during one given sheduling window.
hk The hannel from base station to user k (frequeny �at).
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h̄k The hannel of user k normalized by its amplitude, i.e. h̄k = hk/ ‖hk‖.
W The preoding matrix.
wk The beamforming vetor of user k.
Q An isotropially distributed unitary matrix.
q An orthonormal vetor (beam), i.e. olumn of Q.
nk The AWGN noise vetor of user k.
Rk The ahievable rate of user k.
P The maximum transmit power.
S The set of seleted (sheduled) users.
B The number of ative beams.
γk The CQI feedbak of user k.
ζk The sheduling (deision) metri for user k.



Résumé 1RésuméL'utilisation des antennes multiples a été reonnue omme une tehnologie-lé qui peutonsidérablement améliorer l'e�aité spetrale des futurs réseaux de ommuniation multi-utilisateurs sans �l. Dans les systèmes à entrées multiples sorties multiples (MIMO) multi-utilisateurs, les degrés de liberté spatiaux o�erts par les antennes multiples peuvent êtreavantageusement exploités a�n d'augmenter la apaité du système. Cela est fait en or-donnançant plusieurs utilisateurs simultanément par une méthode d'aès multiple ave ré-partition spatiale (SDMA). Une augmentation linéaire de débit, proportionnelle au nombred'antennes de transmission, peut être réalisée même en utilisant des stratégies du préodagelinéaire si elles sont ombinées ave des protooles d'ordonnanement e�aes. Cependant,es gains prometteurs relèvent de l'hypothèse souvent irréaliste qu'une information du analparfaite à l'émetteur (CSIT) est disponible à la station de base (SB).Dans ette thèse, on onsidère des tehniques de formation linéaire de faiseaux (beam-forming) et d'ordonnanement basées sur des CSIT partielles à bas débit. Plusieurs méth-odes qui permettent à la SB de bien vivre même ave une onnaissane du anal limitéesont identi�ées.On propose de dédoubler la oneption entre l'ordonnanement et les étapes �nales deformation de faiseaux, a�n de béné�ier du fait que le nombre d'utilisateurs à servir danshaque réneau d'ordonnanement est beauoup plus bas que le nombre total d'utilisateursatifs dans la ellule. Cette approhe à deux étapes est appliquée dans un ontexte de forma-tion de faiseaux aléatoires (RBF) a�n d'identi�er des utilisateurs spatialement séparablesdurant la première étape. Dans la deuxième étape, plusieurs stratégies d'amélioration su-essive, y ompris le ontr�le de puissane de faiseau et la séletion de faiseaux, sontproposées, en o�rant une rédution importante du feedbak ainsi que des gains signi�atifsen débit somme, même dans des réseaux ave un nombre d'utilisateurs faible à modéré.Dans des anaux MIMO temporellement ou spatialement orrélés, on identi�e que l' in-formation extrêmement utile pour l'ordonnaneur SDMA se trouve ahée dans la struturedu anal. On montre omment le RBF peut exploiter la redondane du anal et atteindreun débit prohe de elui du beamforming unitaire optimal ave CSIT omplète pour desanaux qui varient lentement ave le temps.Dans des anaux spatialement orrélés, la CSIT statistique à long terme, qui peut êtrefailement obtenue ave un taux de rétroation négligeable, révèle des informations surla séparabilité spatiale moyenne des utilisateurs. Une tehnique d'estimation du anal àmaximum de vraisemblane (MV) est proposée, qui ombine e�aement la CSIT statistiqueà long terme ave l'information de qualité de anal (CQI) instantanée à bas débit. Destehniques de séletion d'utilisateurs et de beamforming sont également proposées. Il estdémontré que dans des systèmes ave étalement angulaire à l'émetteur raisonnablementfaible, même un seul paramètre salaire de CQI par utilisateur est su�sant pour aomplird'ordonnanement et beamforming ave une performane prohe de l'optimale.Des stratégies de feedbak limité en utilisant des odebooks de quanti�ation sont égale-ment étudiées. En partiulier, le problème de la oneption de CQI est adressé et plusieursmétriques salaires de rétroation sont proposés. Ces métriques sont basés sur des bornes del'interférene multi-utilisateur et peuvent être interprétés omme une estimation rédible durapport signal-sur-interférene-plus-bruit (SINR) au niveau du réepteur. Il est démontré



2 Résuméque es métriques salaires de CQI, ombinés ave l'information sur la diretion du anal(CDI), forçage à zéro et des algorithmes de séletion d'utilisateur 'greedy', peuvent atteindreune partie signi�ative de la apaité optimale en exploitant le gain de la diversité multi-utilisateur. Une tehnique e�ae qui o�re à la SB la �exibilité néessaire a�n de passer dela transmission multi-utilisateur à la transmission mon-utilisateur est aussi proposée. Cetteméthode présente une roissane linéaire du débit-somme à fort rapport signal-sur-bruit(RSB) (région limitée par l'interférene).Le taux de la voie de rétroation peut être de plus diminué en représentant le feedbakpar une métrique basée sur le rang (ranking-based feedbak). On montre qu'une valeurentière est souvent su�sante pour identi�er les utilisateurs ave les onditions du anal lesplus favorables. En parallèle, ette représentation de la rétroation égalise la probabilitéd'aès dans les réseaux où les anaux des utilisateurs ne sont pas néessairement identique-ment distribués et les terminaux mobiles ont des RSBs moyens inégaux due aux di�érentesdistanes de la SB et aux di�érentes pertes de hemin.



Chapter 1
Introdution
1.1 Bakground and MotivationThe last deade the wireless industry has been onfronted with a galloping demand forhigher data rates and enhaned quality of servie (QoS). The appliations o�ered to us-tomers nowadays are no longer limited to voie transmission, but new types of servies,suh as streaming multimedia, internet browsing, �le transfer and video telephony, eahwith di�erent QoS requirements, are provided. The suess story of ellular telephony hasopened the way to the development of various types of wireless systems, suh as loal andmetropolitan area networks (LAN, MAN), ad-ho and sensor networks, short-range wirelessprotools, et. The variety of wireless protools ombined with the inreasing demand fordata servies have amended the wireless servie vision to an anywhere-anytime basis.The introdution of new data servies is one of the underlying reasons for the transitionfrom iruit-swithed systems to paket-swithed networks. Networks aommodating delay-tolerant, best-e�ort tra� have now evolved, o�ering �exibility to the resoure alloationunit to shedule transmissions in slots where the ommuniation link exhibits favorablehannel onditions. This gives rise to the so-alled multiuser diversity gain [1℄, whih aimsat a better utilization of the spetrum inside eah ell at the expense of user fairness anddelay.In addition to multiuser diversity, another key tehnology that e�iently utilizes thesare bandwidth resoure is multi-antenna ommuniations. Multiple-Input, Multiple-Output (MIMO) tehniques have generated a great deal of interest due to their potential forhigh spetral e�ieny, inreased diversity, and interferene suppression apabilities. As aresult, the use of multiple antennas is envisioned in most of next-generation wireless proto-ols, inluding 3GPP Long Term Evolution (LTE) [2℄, High Speed Downlink Paket Aess(HSDPA), IEEE 802.16e (WiMAX) [3℄, and IEEE 802.11n [4℄.3



4 Chapter 1 Introdution1.2 From Single-user to Multiuser MIMO Communia-tionsThe high throughput and diversity gains promised by point-to-point (single-user) MIMOommuniations are essentially ahieved via the use of diversity gain-oriented tehniques(e.g. spae-time oding [5℄) ombined with rate maximization-oriented tehniques (e.g.spatial stream multiplexing). In suh a traditional single-user view of MIMO systems, theextra spatial degrees of freedom brought by the use of multiple antennas are exploited toexpand the dimensions available for signal proessing and detetion, thus ating mainly asa physial layer performane booster. In this approah, the link layer protools for multipleaess indiretly reap the performane bene�ts of MIMO antennas in the form of greaterper-user rates, or more reliable hannel quality, despite not requiring full awareness of theMIMO apability.Reently, there has been a vivid interest in the role of multiple antennas in multiuser net-work settings, and espeially in broadast and multiple aess senarios. The multiple aesshannel (MAC), also referred to as the uplink, applies to settings where many transmitterssend signals to one reeiver in the same frequeny band. The broadast hannel (BC), alsoreferred to as downlink, models a network in whih a base station (BS) ommuniates (sendsdata) to many users sharing the same medium. Investigation of the more hallenging broad-ast hannel lies at the ore of this thesis. In multiuser MIMO networks, the spatial degreesof freedom o�ered by multiple antennas an be advantageously exploited to enhane thesystem apaity, by sheduling multiple users simultaneously by means of Spae DivisionMultiple Aess (SDMA). Suh a multiple aess protool requires more omplex shedulingstrategies and transeiver methodologies, but does not involve any bandwidth expansion.In spatial multiple aess, the resulting multiuser interferene is handled by the multipleantennas, whih in addition to providing per-link diversity also give the degrees of freedomneessary to separate users in the spatial domain.Reent information theoreti advanes reveal that the apaity-ahieving transmit strat-egy for the MIMO broadast hannel is the so-alled dirty paper oding (DPC) [6�8℄. How-ever, this optimum transmit strategy, whih involves a theoretial pre-interferene anel-lation tehnique ombined with an impliit user sheduling and power loading algorithm,is highly omplex to implement and sensitive to hannel estimation errors. The apaity-ahieving tehnique in MIMO broadast hannels revealed the fundamental role playedby the spatial dimension on multiple aess and sheduling, replaing the simplisti viewof MIMO as a pure physial layer tehnology. This gave rise to the development of theso-alled ross-layer approahes, whih aim at the joint design of the physial layer's mod-ulation/oding and link layer's resoure alloation and sheduling protools.Multiuser MIMO tehniques and their performane have begun to be intensely investi-gated beause of several key advantages over single-user MIMO ommuniations. In parti-ular, multiuser MIMO shemes allow for a linear inrease in apaity, proportional to thenumber of transmit antennas, thanks to their spatial multiplexing apabilities. They alsoappear more robust with respet to most of propagation limitations plaguing single-userMIMO ommuniations, suh as hannel rank loss or line-of-sight. Furthermore, the spatialmultiplexing gains promised by information theory an be ahieved without the need for



1.3 Assumptions 5multi-antenna terminals, thereby allowing the development of small and heap terminalswhile intelligene and ost is kept on the infrastruture side.As everything good in life, nothing omes for free. All these promising results unfor-tunately ome at the ritial assumption of good hannel state information at transmitter(CSIT). Multiuser MIMO systems, unlike the point-to-point ase, bene�t substantially fromCSIT, the lak of whih may signi�antly redue the system throughput. This is beausewithout CSIT, the BS does not know in whih diretion to send the beams. If a BS with Mtransmit antennas ommuniating with K single-antenna reeivers has perfet hannel stateinformation (CSI), a multiplexing gain of min(M,K) an be ahieved. Although the approx-imation of lose to perfet CSI at the reeiver (CSIR) is often reasonable, this assumption isoften unrealisti at the transmitter side. If the BS has imperfet hannel knowledge, the fullmultiplexing gain may be redued, and in settings with omplete absene of CSI knowledge,the multiplexing gain ollapses to one. CSIT aquisition seems to be the most substantialost to pay in order to properly serve the spatially multiplexed users and boost the sys-tem apaity of multiuser MIMO systems. In systems where hannel reiproity annot beexploited or is prone to errors, the need for CSIT feedbak plaes a signi�ant burden onuplink apaity, exaerbated in wideband ommuniations (e.g. OFDM) or high mobilitysystems (suh as 3GPP-LTE, WiMAX, et.).In this dissertation, we fous on the multi-antenna downlink hannel and aim at iden-tifying what kind of partial CSIT, also referred to as limited feedbak, an be onveyed tothe BS in order to ahieve apaity lose to that of the full CSIT ase. Motivated by reentkey �ndings, whih show that linear preoding strategies with partial CSIT an ahieve asigni�ant fration of the full CSIT apaity if ombined with e�ient sheduling proto-ols [9�12℄, we fous on low-omplexity, linear beamforming tehniques. We try to shedsome light on the problem of partial CSIT design by proposing several low-rate feedbakstrategies that allow the BS to ope well with limited hannel knowledge and ahieve near-optimal sum rate. As we will see in the following hapters, the role of multiuser diversityand opportunisti sheduling is instrumental in our approahes. Our thesis is that thanksto the multiuser diversity gain, it is generally su�ient to feed bak one or two properlydesigned salar feedbak parameters in order to perform beamforming and user seletionthat ahieves throughput relatively lose to the optimum one.1.3 AssumptionsIn an e�ort to provide a lear and onise framework to this work, we make the followingstandard assumptions:
• Single ell network.A single ell is onsidered and the inter-ell interferene is treated as noise.
• Perfet hannel state information at the reeiver.Users an estimate perfetly their hannels, so that full hannel state information atthe reeiver (CSIR) is always assumed. CSIR is often obtained from pilot symbolsand blind hannel estimation tehniques, espeially in downlink hannels, where pilot-symbol-based hannel estimation is more e�ient as the terminals share a ommon



6 Chapter 1 Introdutionpilot hannel. This assumption may be questioned in high-mobility settings and resultsin signi�ant overhead in wideband systems.
• Narrowband hannelsFlat-fading hannels are onsidered, i.e. the signal bandwidth is muh less than thereiproal of the propagation time of the wavefront aross the antenna array. Ourproposed methods an be easily applied on a per subarrier basis in wideband OFDMsystems.
• Ideal link adaptation.Ideal link adaptation protools are assumed and the ontinuous-rate, ontinuous-powerShannon apaity formula is alulated as user throughput measure. This is a reason-able assumption sine urrent powerful oding shemes an perform lose to Shannonlimit. Furthermore, the SNR-gap if pratial oding and modulation shemes are useddoes not a�et the sum-rate saling of the proposed tehniques.
• In�nite baklogged users.An in�nite baklog of pakets in eah queue is assumed, thus the base station hasalways data to transmit to the seleted (sheduled) users. Sine the resoure alloa-tion poliies are studied from a throughput maximization point of view, queue stateinformation and tra� arrival proesses have been negleted.1.4 Contributions and Outline of the DissertationForeword: This dissertation stems from an ANRT CIFRE (Convention Industrielle deFormation par la Reherhe/Industrial Agreement for Training through Researh) agreementbetween Teleom ParisTeh / EURECOM, Sophia-Antipolis, and the Radio Aess Networks(RESA) group at Frane Teleom Researh and Development, Paris. The onduted researhwork was fully funded by Frane Teleom Researh and Development (Orange Labs).The main fous of the thesis is user seletion and linear preoding in multiuser multi-antenna systems with limited feedbak. We provide below an outline of the dissertation anddesribe the ontributions made in eah hapter.Chapter 2 - Multi-antenna Broadast ChannelsIn this hapter, we review reent fundamental �ndings in MIMO broadast hannels. Thegeneral multi-antenna system model is introdued and apaity results for the broadasthannel are presented under di�erent assumptions on the quality/amount of CSIT. We em-phasize on the ardinal importane of CSIT and the role of multiuser diversity for ahievinglose to optimum apaity. Capaity saling laws for opportunisti sheduling under di�er-ent hannel statistial distributions are provided. The apaity growth for networks withpath loss and fading is a ontribution of this hapter. Finally, we present in detail lin-ear preoding strategies ombined with sheduling using limited feedbak, whih forms thebuilding blok of the dissertation. The advantages and drawbaks of this setting are iden-ti�ed, motivating our work and the solutions proposed in the subsequent hapters. Part ofthis hapter has been published in a tutorial paper:



1.4 Contributions and Outline of the Dissertation 7
• D. Gesbert, M. Kountouris, R.W. Heath, Jr., C.-B. Chae, and T. Sälzer, "From SingleUser to Multiuser Communiations: Shifting the MIMO Paradigm," in IEEE SignalProessing Magazine, Speial Issue on Signal Proessing for Multiterminal Commun.Systems, vol.24, no.5, pp. 36-46, Sept. 2007.Chapter 3 - Enhaned Multiuser Random BeamformingThe ontributions of this hapter are two-fold: In the �rst part, we provide an unpublishedexat sum-rate analysis of onventional random beamforming (RBF) [9℄. Capaity salinglaws for the interferene-limited region (high SNR) are derived using extreme value theory,showing the ardinal importane of multiuser diversity in this regime. In the seond part, alimited feedbak-based sheduling and beamforming senario that builds on RBF is onsid-ered. We introdue a two-stage framework that deouples the sheduling and beamformingdesign problems in two phases. Several re�nement strategies, inluding beam power on-trol and beam seletion, are proposed, o�ering various feedbak redution and performanetradeo�s. The ommon feature of these shemes is to restore robustness of RBF with respetto sparse network settings (low to moderate number of ative users), at the ost of moderateomplexity inrease.The work in this hapter has been published in:
• M. Kountouris and D. Gesbert, "Robust multi-user opportunisti beamforming forsparse networks," in Pro. 6th IEEE Workshop on Signal Proessing Advanes inWireless Communiations (SPAWC 2005), pp. 975 - 979, New York, USA, June 5 - 8,2005 (invited paper).and will appear in:
• M. Kountouris, D. Gesbert, and T. Sälzer, "Enhaned Multiuser Random Beamform-ing: Dealing with the not so large number of users ase," IEEE Journal on Sel. Areasin Communiations (JSAC), Speial Issue on Limited Feedbak Wireless Comm. Net-works, Ot. 2008.Chapter 4 - Exploiting Channel Struture in MIMO Broadast ChannelsIn this hapter, we onsider multiuser MIMO hannels orrelated in either time or spatialdomain, and provide several tehniques that inrease the system throughput by exploitingthe hannel struture. In time orrelated hannels, an opportunisti beamforming shemeexploiting hannel memory is proposed. This sheme is shown to �ll the apaity gap withoptimum unitary preoding with full CSIT for slow time-varying hannels. In spatiallyorrelated hannels, a maximum likelihood (ML) oarse hannel estimation framework isestablished, whih e�etively ombines slowly varying statistial CSIT - assumed availableat the transmitter - with instantaneous low-rate feedbak. A greedy user seletion shemeand a low-omplexity SDMA eigenbeamforming tehnique based on multiuser interferenebounds are also proposed and evaluated. It is demonstrated that, in wide-area ellularnetworks, salar CSIT feedbak is su�ient to ahieve near-optimal throughput performaneif it is properly ombined with long-term statistial knowledge.The work in this hapter has been published in:
• M. Kountouris and D. Gesert, "Memory-based opportunisti multi-user beamforming,"in Pro. of IEEE International Symposium on Information Theory (ISIT 2005), pp.1426 - 1430, Adelaide, Australia, September 4 - 9, 2005.
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• M. Kountouris, R. de Franiso, D. Gesbert, D.T.M. Slok, and T. Sälzer, "Lowomplexity sheduling and beamforming for multiuser MIMO systems," in Pro. 7thIEEE Workshop on Signal Proessing Advanes in Wireless Communiations (SPAWC2006), Cannes, Frane, July 2 - 5, 2006.Chapter 5 - Limited Feedbak Broadast Channels based on CodebooksThis hapter deals with limited feedbak strategies utilizing vetor quantization odebooks.In partiular, the problem of e�ient, sum-rate maximizing hannel quality information(CQI) feedbak design is addressed. We proposed several salar feedbak metris thatinorporate information on the hannel gain, the hannel diretion, and the quantizationerror. These metris are built upon bounds on the instantaneous inter-user interferene, andan be interpreted as reliable estimates of the reeived SINR. It is shown that salar CQIfeedbak ombined with hannel diretional information (CDI) and e�ient user seletionalgorithm an ahieve a signi�ant fration of the apaity of the full CSIT ase by exploitingmultiuser diversity. An adaptive sheme transiting from SDMA to TDMA transmissionmode is proposed and is shown to ahieve linear sum-rate growth at any SNR range.The work in this hapter has been published in:
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• M. Kountouris, R. de Franiso, D. Gesbert, D.T.M. Slok, and T. Sälzer, "ExploitingMultiuser Diversity in MIMO Broadast Channels with Limited Feedbak," aeptedto IEEE Trans. on Signal Proessing, August 2007 (under revision).Chapter 6 - Feedbak Redution using Ranking-based FeedbakIn this hapter, a low-rate representation of CSIT feedbak parameters, referred to asranking-based feedbak, is identi�ed as a means to further ompress the reported hannelfeedbak. This representation enables the sheduler to identify users that are instanta-neously on the highest peak with respet to their own hannel distributions, independentlyof the distribution of the other users. Furthermore, we show that temporal fairness is also
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• M. Kountouris, T. Sälzer, and D. Gesbert, "Sheduling for Multiuser MIMO DownlinkChannels with Ranking-based Feedbak," EURASIP Journal on Advanes in SignalProessing, Speial Issue on MIMO Transmission with Limited Feedbak, Marh 2008.Chapter 7 - System Aspets in Multiuser MIMO SystemsThis hapter fouses on several system issues and design hallenges that arise in real-worldwireless systems. We disuss the main pratial and implementation hallenges that onemay fae when deploying tehniques as those proposed in Chapters 3-6. Emphasis is put onfairness issues and the proportional fair sheduling (PFS) rule is generalized for multiusersystem settings, inluding OFDM, SDMA, multiell networks, et. Part of these results hasbeen published in:
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Chapter 2
Multi-antenna BroadastChannels
In this hapter, we review multiuser MIMO ommuniations fousing on the more hal-lenging downlink, the so-alled broadast hannel (BC). The general multi-antenna systemmodel is introdued and known apaity results for the broadast hannel are presented un-der di�erent assumptions regarding the amount of CSIT. Information theoreti results shedlight on the ardinal importane of CSIT and sheduling, as well as on the role of multiuserdiversity for ahieving the optimum system apaity. Capaity saling laws for opportunistisheduling under di�erent hannel models are investigated. Several approahes inludingnon-linear and linear hannel-aware preoding are reviewed, disussing design hoies andperformane tradeo�s. Emphasis is given on low-omplexity, linear preoding strategiesombined with sheduling using limited feedbak, whih form the building blok of the dis-sertation. The limited feedbak model that we adopt and investigate in subsequent haptersis presented in detail and its limitations are identi�ed.2.1 The Wireless ChannelThe wireless radio hannel is a partiularly hallenging medium for reliable high-rate om-muniations. Apart from being subjet to noise, interferene and several other impairments,the wireless medium is above all a multipath time-varying hannel. A signal transmittedover a radio hannel is subjet to the physial laws of eletromagneti wave theory, whihditate that multiple paths our as a result of re�etion on large surfaes (e.g. buildings,walls, and ground), di�ration on edges, and sattering on various objets. Therefore, areeived signal is a superposition of multiple signals arriving from di�erent diretions atdi�erent time instanes and with di�erent phases and power. These paths may ombineonstrutively or destrutively, reating a multi-tap hannel impulse response, with eah11



12 Chapter 2 Multi-antenna Broadast Channelstap having random phase and time-varying amplitude. We �rst review the physial phe-nomena that attenuate the signal power. For a more detailed presentation, the interestedreader is referred to [13℄.2.1.1 Path lossPath loss is a range-dependent e�et and is due to the distane d between the reeiver and thetransmitter. In ideal free spae, the reeived signal power is desribed by the Friis equationand follows an inverse square law power loss. Several deterministi and empirial modelshave been developed for various ellular environments (miroells, maroells, pioells,et.), suh as Okumura-Hata, Wal�sh-Ikegami, and their COST-231 extensions, plane-earth and lutter fator model [13℄. A generi path loss model is given by
L = βd−ǫ (2.1)where ǫ is the path loss exponent and β is a saling fator that aounts for antenna har-ateristis and average hannel attenuation. The path loss exponent varies normally from2 to 6, depending on the propagation environment. For the ase of full speular re�etionsfrom ground is 4, while for buildings and indoor environments it an take values from 4 to6.2.1.2 ShadowingShadowing, also known as marosopi or long-term fading, results from large obstalesbloking the main signal path between the transmitter and reeiver, and is determined bythe loal mean of a fast fading signal. The random shadowing e�ets, whih are in�uenedby antenna heights, operating frequeny and the features of the propagation environment,may be modeled as log-normal distributed with probability density funtion (PDF):

p(x) =
1

xσ
√

2π
e

(log x−µ)2

2σ2 x > 0 (2.2)where µ and σ are the mean and standard deviation of the shadowing's logarithm.2.1.3 FadingFading, often referred to as mirosopi or small-sale fading, results from the onstrutiveor destrutive superposition of multipaths and desribes the rapid signal �utuations of theamplitudes, phases, or multipath delays. The statistial time varying nature of the reeivedenvelope is ommonly desribed by the following three fading distributions:Rayleigh fadingRayleigh fading is a reasonable model when there is no dominant propagation path (nonline-of-sight, NLOS) between the transmitter and the reeiver and is used to desribe theamplitude of a signal when there is a large number of independent sattered omponents.Applying the entral limit theorem, the hannel impulse response an be onsidered as aomplex-valued Gaussian proess irrespetive of the distribution of the individual ompo-nents. In a NLOS on�guration, this random proess is assumed to have zero mean and



2.1 The Wireless Channel 13phase evenly distributed between 0 and 2π radians. The envelope of the reeived signal willtherefore be Rayleigh distributed with PDF given by
p(x) =

2x

Ω
e−

x2

Ω x > 0 (2.3)where Ω = E{x2} is the average reeived power.Riean fadingIf a diret, possibly a line-of-sight (LOS), path exists, the assumption of a zero-mean fadingproess does no longer hold and the distribution of the signal amplitude is modeled asRiean. The Riean distribution is often de�ned in terms of the Riean fator K whihdenotes the ratio of the power in the mean omponent of the hannel (diret path) to thepower in the sattered paths. The Riean PDF is given by
p(x) =

2x(K + 1)

Ω
e−K− (K+1)x2

Ω I0

(
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√

K(K + 1)

Ω

)

x > 0 (2.4)where Ω = E{x2} and I0(x) is the zero-order modi�ed Bessel funtion of the �rst kindde�ned as
I0(x) =

1

2π

∫ 2π

0

e−x cos θdθ (2.5)Nakagami fadingA general fading distribution that �ts well with empirial measured data is the Nakagamidistribution given by
p(x;m) =

2mmx2m−1

Γ(m)Ω
e−

mx2

Ω x > 0 (2.6)where Ω is the average reeived power and m = Ω2

E{x2−Ω2} . The m fator determines theseverity of fading, i.e. for m = ∞ there is no fading. For m = 1 the distribution in (2.6)redues to Rayleigh fading, while form = (K+1)2/(2K+1) the distribution is approximatelyRiean fading with fator K.2.1.4 Channel SeletivityMultipath propagation results in the spreading of the signal in di�erent dimensions a�etingsigni�antly the reeived signal. These dimensions are time (Doppler spread), spae (anglespread) and frequeny (delay spread).Doppler spread and time seletive fadingThe motion of the transmitter, the reeiver or the satterers results in time seletivity, i.e.a single tone spreads in frequeny over a �nite spetral bandwidth. The variations dueto Doppler shifts are spei� to eah path and depend on their angle with respet to themoving diretion of the transmitter/reeiver. Di�erent Doppler shifts lead to the so-alledDoppler spread, whih is the maximum frequeny spread among all Doppler shifts, and isgiven by
fm =

v

λc
(2.7)



14 Chapter 2 Multi-antenna Broadast Channelswhere v is the mobile speed and λc is the arrier wavelength.How fast the hannel deorrelates with time is spei�ed by the temporal autoorrelationfuntion. The Doppler power spetrum ρd(fd) is de�ned as the Fourier transform of thetemporal autoorrelation funtion of the hannel response to a ontinuous wave
ρd(fd) =

{

1

πfm

√
1−(fd/fm)2

∀fd ∈ [−fm, fm]

0 elsewhere (2.8)The most ommonly used model for the autoorrelation funtion is the Clarke-Jakes' model,whih assumes uniformly distributed satterers on a irle around the antenna
ρd(τ) = J0(2πfmτ) (2.9)where Jk is the k-th order Bessel funtion of the �rst kind and τ is the sampling interval.A measure of the time seletivity is the hannel oherene time Tc, de�ned as the intervalover whih the hannel remains strongly orrelated. The shorter the oherene time, thefaster the hannel hanges over time. The oherene time is a statistial measure and satis�es

Tc ∼
1

fm
(2.10)As we show in Chapter 4, the sheduler an take advantage of the time seletivity and bene�tfrom the resulting hannel redundany (time diversity), as a means to further ompress thehannel feedbak or suessively re�ne the sheduling deisions.Delay spread and frequeny seletive fadingDelay spread is aused when several delayed and saled versions of the transmitted signalarrive at di�erent time instants at the reeiver. The time di�erene between the maximummultipath delay τmax (typially the arrival time of the LOS omponent) and the minimumpath delay τmin is alled delay spread. Delay spread auses frequeny seletive fading as thehannel ats like a tapped-line �lter. The range of frequenies over whih the hannel an beonsidered `�at' de�nes the oherene bandwidth Bc and depends on the form of the powerdelay spetrum (rms delay spread). A hannel is haraterized as �at or frequeny non-seletive if the signal bandwidth B is signi�antly small ompared to the hannel oherenetime, i.e. B << Bc = 1/τmax. In the subsequent hapters, only �at fading hannels areonsidered.Angle spread and spae-seletive fadingAngle spread at the reeiver/transmitter refers to the spread in angles of arrival (AoAs) /angles of departure (AoDs) of the multipath omponent at the reeive/transmit antennaarray, respetively. The di�erent diretions of arrival lead to spatial seletivity that impliesthat signal amplitude depends on the spatial loation of the antenna array. Spae seletivefading is haraterized by the oherene distane dc, whih is the maximum distane betweentwo antenna elements for whih the fading remains strongly orrelated. An upper boundfor the oherene distane is given by

dc ≤
λc

2 sin(∆θmax/2)
(2.11)



2.2 Multiple-Input Multiple-Output Channels 15where ∆θmax is the maximum angle separation, i.e. the range in whih the power azimuthspetrum is non zero.2.2 Multiple-Input Multiple-Output ChannelsMultiple-Input Multiple-Output (MIMO) hannels arise in many di�erent senarios suh asmulti-antenna wireless systems or wireline systems (e.g. DSL), and an be represented in anelegant, ompat, and uni�ed way by a hannel matrix. The basi disrete-time, narrowbandsignal model for a point-to-point MIMO hannel with M transmit and N reeive antennasis given by
y = Hx + n (2.12)where x ∈ CM×1 is the transmitted symbol, H ∈ CN×M is the hannel matrix, y ∈ CN×1 isthe reeived signal, and n ∈ C

N×1 is the noise vetor. We assume zero-mean irularly sym-metri omplex Gaussian noise with ovariane matrix Rn
1. For onveniene, a whitenedhannel H̃ = R

−1/2
n H is often used suh that the white noise w = R

−1/2
n n has a unitaryovariane matrix, i.e. E{wwH} = I. Due to the noise normalization, the transmit poweronstraint P = Tr(E{xxH}) takes on the interpretation of the average signal-to-noise ratio(SNR) per reeive antenna under unity hannel gain. Knowledge of the hannel gain matrix

H at the transmitter and reeiver is referred to as hannel state information at the trans-mitter (CSIT) and hannel state information at the reeiver (CSIR), respetively.
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(2.13)1A omplex random vetor x is irularly symmetri if its distribution is the same with the distributionof ejθ
x, ∀θ ∈ [0, 2π]. For θ = π we have E{x} = 0 and for θ = π/2, x is a proper random vetor, i.e.

E{xx
H} = 0.



16 Chapter 2 Multi-antenna Broadast Channelsin whih hij [n] is the spatio-temporal signature (hannel gain) indued by the j-th transmitantenna aross the i-th reeive antenna and n is the disrete-time index. Eah hannelelement may have di�erent amplitude and phase due to spatial seletivity.When the bandwidth-delay spread produt of the hannel is larger than 0.1, the hannelis generally haraterized as frequeny-seletive, and its reeived signal is given by
y[n] =

L
∑

l=0

H[l]x[n− l] + n[n] (2.14)where L is the hannel order. To simplify the notation in the subsequent parts of the thesis,we drop the time index n assuming the hannel at a given time instant.When M = 1, the MIMO hannel redues to a single-input multiple-output (SIMO)hannel, and when N = 1, the MIMO hannel redues to a multiple-input single-output(MISO) hannel. When both M = N = 1, the MIMO hannel simpli�es to a simple salaror single-input single-output (SISO) hannel.2.3 Multiuser Multi-Antenna SystemsA multiuser hannel is generally any hannel that must be shared among multiple users.There are two types of multiuser hannels: the uplink and the downlink hannel. An uplinkhannel, also referred to as multiple aess hannel (MAC) or reverse hannel, has manytransmitters sending signals to one reeiver in the same frequeny band. A downlink hannel,also referred to as broadast hannel or forward hannel, has one transmitter sending signalsto many reeivers. In this setion, we present both multiuser multi-antenna hannels (uplinkand downlink), however the dissertation fouses solely on the hallenges assoiated withthe downlink hannel. In a multi-user setting, we onsider ommuniation between a BSequipped with M antennas and K ative terminals, where eah ative user k is equippedwith Nk antennas. Among all terminals, the set of ative users is roughly de�ned by theset of users simultaneously downloading or uploading pakets during one given shedulingwindow. The length of the sheduling window an be arbitrary but should not exeed themaximum lateny expeted by the servie (likely as small as a few tens of ms to severalhundred ms). By all means the ative users over one given window will be a small subset ofthe onneted users, themselves forming a small subset of the subsribers.In the uplink, the reeived signal at the transmitter an be written as
y =

K
∑

k=1

HT
k xk + n (2.15)where xk ∈ CNk×1 is the k-th user signal vetor, possibly enompassing power-ontrolled,linearly ombined, onstellation symbols. Hk ∈ CNk×M represents the hannel matrix and

n ∼ CN (0, σ2I) is the omplex irularly symmetri additive white Gaussian noise vetor(AWGN) at the transmitter. The transpose operator is simply used by onvention foronsistene with the downlink notation and does not presume a reiproal link.In the downlink, illustrated in Fig.2.2, the reeived signal yk ∈ CNk×1 of the k-th useran be mathematially desribed as
yk = Hkx + nk for k = 1, . . . ,K (2.16)



2.3 Multiuser Multi-Antenna Systems 17where Hk ∈ CNk×M represents the downlink hannel response and nk ∈ CNk×1 is theomplex irularly symmetri AWGN at reeiver k with nk ∼ CN (0, σ2
kI). The transmittedsignal x is a funtion of the multiple users' information data, an example of whih takes thesuperposition form

x =
∑

k

xk (2.17)where xk ∈ CM×1 is the transmitted vetor signal arrying, possibly non-linearly enoded,message for user k, with ovariane Σk = E{xkxHk }. The power alloated to user k istherefore given by Pk = Tr(Σk). Two power onstraints are ommonly used:
• individual power onstaint, also referred to as per antenna power onstraint, where
Pmink ≤ Pk ≤ Pmaxk , ∀k and Pk ≥ 0.
• sum power onstraint, where the power alloation needs to maintain ∑k Pk ≤ P .
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K users (user k has Nk antennas)Figure 2.2: Downlink of a multiuser MIMO network: A BS/AP ommuniates simultane-ously with several multiple antenna terminals.In broadast hannels the available transmit power is divided among the di�erent users,whereas in the uplink eah user has an individual power onstraint assoiated with itstransmitted signal. In this thesis, unless otherwise stated, we assume a short-term averagesum power onstraint, whih implies that the transmitter has to use the power P at eahhannel use.2.3.1 Multi-antenna Channel ModelingThe modeling of MIMO hannels is a multi-step proedure of essential importane in systemanalysis, deployment and network planning sine it enables performane predition andomparison of di�erent system on�gurations in various propagation environments. Thevarious hannel models one an �nd in the literature an be lassi�ed in two ategories:propagation-based models and analytial models.The �rst ategory aims at reproduing the physial wave propagation in a deterministior stohasti way. In deterministi models, the hannel matrix is generally generated basedon a geometrial desription of the propagation environment employing ray-traing teh-niques ombined with knowledge about the propagation environment. In stohasti models,



18 Chapter 2 Multi-antenna Broadast Channelsthe hannel behavior is onsidered as a random variable with a ertain statistial distribu-tion depending on the propagation environment. Empirial models, whih are based on realhannel measurements, also fall into this ategory.Analytial hannel models fous on modeling only the spatial struture (MIMO hannelmatrix) of the hannel. They are narrowband models sine Doppler shifts and delay spreadsare negleted. An important ategory of analytial models is the so-alled orrelation-basedmodels, presented below.Correlation-based modelsCorrelated hannels are haraterized by the hannel orrelation matrix whih aptures thespatial orrelation among the elements of MIMO hannel matrix H. A full-orrelation modelis desribed as
H = unve(R1/2ve(Hw)) (2.18)where Hw is the i.i.d. spatially white (zero-mean irularly symmetri omplex Gaussianwith unit variane), and R is the MN ×MN positive semi-de�nite Hermitian ovarianematrix de�ned as
R = E

{ve(H)ve(H)H
} (2.19)The ve(·) operator staks the olumns of a matrix to a vetor. An underlying assumptionis that ve(H) is Rayleigh distributed.The full-orrelation model is the most aurate - yet very omplex - model. For simpliity,the orrelation matrix is often assumed to have a less general, separable struture, the so-alled Kroneker struture. In this model, the ovariane of the salar hannels seen fromall the transmit antennas to a reeive antenna is assumed to be the same for any reeiveantenna. The same applies for the reeive antenna orrelation matrix. The hannel modelis desribed as

H = R
1/2
R HwR

1/2
T (2.20)where RT = E{HHH} and RR = E{HHH} is the transmit and reeive orrelation matrix,respetively. They are related by R ≈ 1√

Tr(RR)
RR ⊗RT

T , where ⊗ denotes the Kronekerprodut. The Kroneker model is satis�ed for few antennas or large antenna spaing.The most simple, yet with no physial relevane, model is the i.i.d. (anonial) modelwhere the hannel matrix H = Hw is onsidered i.i.d. spatially white.LOS omponent model In the presene of a LOS omponent, the MIMO hannel matrixan be generally modeled as the sum of a �xed or LOS omponent H̄ and a sattered orNLOS omponent Hw given by
H =

√

K

K + 1
H̄ +

√

1

K + 1
Hw (2.21)where E{H} =

√

K/(K + 1)H̄ is the omplex hannel mean (LOS omponent) and K =
‖H̄‖2

F

Tr(R) is the Riean fator. K = ∞ orresponds to non-fading hannel and K = 0 or-responds to pure fading. The LOS omponent is assumed to be rank one and generatedas
H̄ = aR(ΩR)aHT (ΩT ) (2.22)



2.3 Multiuser Multi-Antenna Systems 19where aR(Ω) and aT (Ω) are the reeive and transmit array responses, respetively, and
ΩR and ΩT are the AoAs/AoDs orresponding to the LOS omponent at the reeiver andtransmitter sides, respetively.Propagation-based analytial modelWe present here a �nite satterer analytial model that is used for simulating the spatiallyorrelated MIMO hannels in Chapter 4. The fundamental assumption of the �nite satterermodel is that propagation an be modeled in terms of a �nite number P of multipathomponents. Thus, the hannel impulse response is a superposition of P spatially separatedpaths (rays) given by

H =
1√
P

P
∑

p=1

φpar
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θrp
)

aHt
(

θtp
) (2.23)where φp is the gain of the p-th path seen at the reeiver, θtp and θrp are the AoDs and AoAs,respetively of the p-th path. The array responses (steering vetors) are given by
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r
p)
]T (2.25)where Θm is the phase shift of the m-th array element with respet to the referene antennaand depends on the array on�guration. The two most ommonly used uniform arrayon�gurations are: the uniform linear array (ULA) and the uniform irular array (UCA).A ULA onsists ofM elements whih are aligned linearly. The spaing between two antennaelements is denoted by d and is idential for all elements. In UCA the elements are uniformlyplaed on a irle with radius r. ULA failitates the estimation of the angles of inidene,but it has the drawbak that its beamwidth varies with the main diretion. Therefore, ifa ULA is used for beamforming, it is done so in setorized systems with a range limitedto 120o. In UCA, the propagation delay between two adjaent elements is not idential.Taking the antenna element 0 as referene point, the transmit steering vetor for a ULA is
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Figure 2.3: Analytial hannel model with loal satterers at mobile station
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at
(

θtp
)
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1, ej2π
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p), . . . , ej2π(M−1) d
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]T (2.26)while for a UCA the transmit array response is given by
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r
λ cos(θt

p−2πM−1
M )

]T (2.27)The AoA and AoD an be well modeled by a trunated Laplaian PDF or a trunatedVon Mises distribution. For our simulations in Chapter 4, we assumed that the angles ofinidene with respet to the transmitter broadside θp follow a Gaussian distribution with
2π-periodi ontinuation and mean θ. The angle spread around its mean is given by theroot mean square (rms) deviane σθ =

√

E

{

∣

∣θp − θ
∣

∣

2
}. The hannel gain of eah path φpis assumed to be zero-mean omplex Gaussian distributed and all paths have unit variane.2.4 Capaity of MIMO Broadast ChannelsThe omplete haraterization of the apaity region of multi-antenna broadast hannel wasthe foremost theoretial hallenge in multiuser information theory over the last �ve years.The analysis of broadast hannels was initiated by Cover [14℄ and their apaity is generallyknown only in speial ases, where the signals sent to the users an be ordered aording totheir `strength'. In ontrast to single-user systems where the apaity is a single number,the apaity of a multiuser system with K users is haraterized by a apaity region, i.e.a K-dimensional rate region, where eah point is a vetor of rates ahievable by all the Kusers simultaneously. A rate vetor is ahievable if there exists a oding sheme for whihthe error probability for all users is arbitrary small as the ode blok length inreases. Themaximum of the sum of the ommuniation rates is the so-alled sum-rate point and lies onthe boundary of the apaity region. Clearly, sine the K users share the same bandwidth, atradeo� arises between the reliable ommuniation user rates: if one wants to ommuniateat a higher rate, the other users may need to lower their rates.A large lass of broadast hannels, known as `more apable' hannels [15℄, ontainstwo important ategories as speial ases: `degraded' and `less noisy' hannels. Roughlyspeaking, a broadast hannel is degraded when the users an be ordered from the strongestto the weakest in a natural order. For instane, a SISO broadast hannel is degraded, sinethe users an be ordered aording to their |Hk|2, and the apaity region an be ahieved bysuperposition oding [14℄. However, MIMO broadast hannels are generally non-degradedas there is not a natural way to order hannel matries.2.4.1 Capaity with perfet CSI at the transmitterAlthough the haraterization of the general (fading) broadast apaity region is a longstanding problem in multiuser information theory, substantial progress has been made forGaussian MIMO hannels. Despite not being degraded, the Gaussian MIMO BC o�erssigni�ant struture that an be exploited to haraterize its apaity region. The keytheoretial tool for haraterizing the MIMO BC apaity region with full CSI, the DirtyPaper Coding (DPC), was revealed by the seminal work of Caire and Shamai (Shitz) [7℄.Therein, it was shown that the idea of interferene pre-subtration at the transmitter (DPC)



2.4 Capaity of MIMO Broadast Channels 21does indeed ahieve the apaity of a 2-user MISO broadast hannel. The results of [7℄ wereextended and generalized by [16�18℄, until the full haraterization of MIMO Gaussian BCapaity region (for any ompat set of input ovarianes and not only under a total poweronstraint) by Weingarten et al. [8℄, establishing the optimality of DPC as apaity-ahievingstrategy.Assuming noise with unit variane and given a set of positive semi-de�nite matries
Pk ≥ 0, ∀k that satisfy the power onstraint Tr

{

∑K
k=1 Pk ≤ P

} and a permutation funtion
π on the user set {1, . . . ,K}, the following rates are ahievable using DPC [8℄:
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(2.28)The DPC region is given by the onvex hull of all the ahievable rates as
CDPC = onv{⋃

π

⋃

P1...K

CDPCk (π,P1...K)

} (2.29)and is shown to be equivalent to the apaity region of MIMO broadast hannel [8℄.The apaity expression (2.29) an be simpli�ed as follows:
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∣

} (2.30)Dirty Paper CodingThe onept of dirty paper oding was introdued by Costa [6℄, who showed that for a salarGaussian hannel with AWGN and an interfering Gaussian signal known non-ausally at thetransmitter (but not at the reeiver), the apaity is the same as if there was no additive in-terferene, or equivalently as if the reeiver also had knowledge of the interferene. In otherwords, dirty paper oding allows non-ausally known interferene to be `pre-subtrated' atthe transmitter with no inrease in the transmit power. Assume, without loss of generality,that the enoding proess is performed in asending order. The enoder �rst piks a ode-word for i-th reeiver, and then hooses a odeword for reeiver (i+ 1)-th reeiver with full(non-ausal) knowledge of the odeword intended for reeiver i. Thus, the enoder onsidersthe interferene signal aused by users j < i as known non-ausally and subsequently, the
i-th deoder treats the interferene signal aused by users j > i as additional noise.Uplink-Downlink dualityThe main tool that failitated the extension of the work in [7℄ and simpli�ed the problemof �nding the apaity region of MIMO BC was the uplink-downlink duality, introduedin [17�19℄. The onept of uplink-downlink duality an be seen, in general, as the equivalenebetween the performane of a lass of reeive and transmit strategies when the role oftransmitters and reeivers are reversed. This equivalene has been observed in seeminglydi�erent ontexts in the literature. For instane, in point-to-point links, the duality isnothing else but the hannel reiproity. In multiuser information theory, the duality implies



22 Chapter 2 Multi-antenna Broadast Channelsthat the apaity region of the MIMO BC, CDPC with power onstraint P is equal to theapaity region of the so-alled dual MIMO MAC, CMAC with sum power onstraint P .
CDPC(P,H1...K) =

⋃

Tr{∑K
k=1 Pk≤P}

CMAC(P1...K ,H
T
1...K) (2.31)where the union is taken over all matries Pk ≥ 0 ∀k suh that Tr
{

∑K
k=1 Pk ≤ P

}.The major bene�t of the uplink-downlink duality is that the apaity region of thedownlink an be alulated through the union of regions of the dual uplink, whih is onvexand whose boundary an be alulated using interior-point methods [20℄. An additionalbene�t is from an optimization theory point of view, sine by exploiting the duality thedimensionality of the optimization problem is signi�antly redued. In many pratial ases,the number of transmit antennas in the broadast hannel is greater than the number ofreeive antennas of any of the reeivers. Therefore, instead of optimizing over K matriesof size M ×M , we need to optimize over K matries of sizes N ×N . Note that the uplink-downlink duality only holds under a total power onstraint, and extensions of the DPCoptimality to general onstraint settings (e.g. per-antenna power onstraint) are based onthe more general onept of min-max duality [8, 21℄.On the optimal number of users with non-zero alloated powerMultiuser information theory advoates for transmitting to multiple users simultaneouslyby properly distributing the spatial dimensions among the best group of users as a meansto boost the system throughput. A natural question that arises is how many users anbe simultaneously ative, and how the spatial dimensions are distributed among them. Yuand Rhee [22℄ obtained a theoretial upper bound on the number of simultaneously ativeusers by ounting the number of variables and unknowns in the set of Karush-Kuhn-Tuker(KKT) optimality onditions for the sum-rate maximization problem. This bound indiatesthat in the downlink hannel maximizing the sum rate entails sheduling at most M2 userssimultaneously. In pratie, simulations show that typially the number of ative usersis four times the number of transmit antennas in the high SNR regime using optimumovariane matries, and that sheduling up to M users, although suboptimal, results to asmall apaity loss. In [23℄, it was independently shown that under ertain onditions in avetor downlink with K users and a BS with two transmit antennas, the number of usersthat an be simultaneously served an be higher than two. The power alloated to the k-thuser is no longer a water-�lling proedure, but it is found by the KKT onditions. Notethat when restriting to linear preoding tehniques, as we do in this thesis, the number ofserved users is diretly limited by the number of degrees of freedom at the BS, i.e. M .2.4.2 Capaity with no CSI at the transmitterThe Gaussian MIMO BC with no CSIT is still degraded no matter whether the reeivershave CSIR or not, assuming that the transmitter or the reeivers are equipped with multipleantennas [7℄. In that ase, the apaity region is ahieved by superposition oding [24℄.When the users have the same number of antennas, it an be shown that superpositionoding is the same as time sharing. In this ase, the sum apaity is the same as if thereis only one user in the system and no gains an be expeted from serving multiple users



2.5 Multiuser MIMO Shemes with perfet CSIT 23simultaneously. The apaity region of fading MIMO BC is an open problem of theoretialinterest. The apaity region is not expliitly haraterized, and only asymptotially tightbounds urrently exist. The fading MISO BC is onsidered in [25℄ assuming the distributionof the fading oe�ients is isotropi. It was shown that the apaity region is equivalent tothat of the fading salar BC, resulting in a multiplexing gain of one. When the transmitterhas inomplete CSI on the fading realization, the pre-log fator (multiplexing gain2) at highSNR of a two-user real-valued fading MISO BC is upper bounded by 2/3 [26℄.2.5 Multiuser MIMO Shemes with perfet CSITAlthough DPC is shown to ahieve the entire apaity region of MIMO broadast han-nel, this tehnique, apart from being theoretial and oneptual, it is very di�ult to beimplemented in pratie. One of the major di�ulties is that DPC does not indiate howthe spatial resoures should be shared among users. One lass of pratial dirty paperodes is the nested lattie odes [27℄. Exellent performane on DPC has been also reportedin [28,29℄, and in [30℄, where a new approah whih invokes superposition oding is proposed.The question of what rate region an be ahieved without relying on dirty-paper odinghas been widely addressed, mainly in terms of linear and non-linear types of preoding.Many reent publiations have shown that for a limited number of users, even tehniquesthat do not invoke DPC are useful, and sometimes provide lose to optimum apaityregion performane [31℄. Preoding works similarly to equalization with the di�erene thatit inverts the fading at the transmitter side instead of the reeiver side. The main drawbakof preoding is the need for aurate hannel estimates of the fading gains of eah user at thetransmitter side. Although CSIT an be ahieved through hannel estimation or feedbak,it is di�ult to be obtained in rapidly-varying hannels.2.5.1 Non-linear PreodingSeveral sub-optimal and simpli�ed DPC variants are reported in the literature, suh asnon-linear salar versions [32, 33℄ and high dimensional simpli�ed strategies [34℄, in whiha regularized hannel inversion is attempted. An attrative non-linear preoding tehniqueuseful for the MIMO BC is proposed in [35℄ where the proessing at the reeiver requiresa simple one-dimensional modulo operation. Other improved tehniques resort on lattieredution [36℄ and integer oding [37℄.Two popular and representative non-linear preoding methods are based on vetor per-turbation [38℄ and on a spatial extension of Tomlinson-Harashima preoding (THP) [27℄.Vetor perturbation uses a modulo operation at the transmitter to perturb the transmittedsignal vetor in order to avoid the transmit power enhanement inurred by hannel inver-sion shemes [38℄. Finding the optimal perturbation involves solving a minimum distanetype of problem and thus an be implemented using sphere enoding or full searh basedalgorithms. THP [39,40℄, whih is dual to Deision Feedbak Equalization (DFE), was orig-inally proposed as a non-linear temporal equalization method that applies a salar integero�set at the transmitter enabling interferene anellation after appliation of a modulo2The multiplexing gain m is de�ned as m = lim
P→∞

C(P )

log2 P



24 Chapter 2 Multi-antenna Broadast Channelsfuntion at the reeiver. While in the original THP, a single hannel is equalized with re-spet to time, spatial equalization is required for MIMO hannels. THP has generally lowerenoder omplexity than vetor preoding sine it omputes the omponents of the transla-tion vetor sequentially. For the ase of multiuser MISO systems, a THP-based tehnique,known as trellis preoding, was also proposed by Yu and Cio� [33℄.2.5.2 Linear PreodingThe onsiderable omplexity required by non-linear tehniques as well as the fat that lin-ear beamforming ombined with e�ient user seletion exhibits the same asymptoti per-formane as DPC [7, 11, 12℄ revitalized the interest for linear preoding shemes. Linearpreoding is a generalization of traditional SDMA, where users are assigned di�erent pre-oding matries at the transmitter. The preoders are designed jointly based on CSIT fromall users and following a number of design and optimization riteria. The transmit preod-ing optimization problem an be approahed under di�erent assumptions, suh as poweronstraints (total or individual), and with di�erent performane riteria (e.g. maximizingSINR, sum rate, error probability, e�etive bandwidth, assigned SINR targets, minimumpower, peak-to-average ratio). The di�ulty in designing apaity-optimal downlink pre-oding, mainly due to the oupling between transmit power, beamforming, and user or-dering, has lead to several di�erent approahes ranging from transmit power minimizationwhile maintaining individual SINR onstraints to worst-ase SINR maximization under apower onstraint. Duality and iterative algorithms are often employed in order to providee�ient solutions [41, 42℄.Let sk ∈ CNk×1 denote the k-th user (normalized) transmit symbol vetor (whih is asalar symbol for beamforming) and S be the set of seleted users (among all K ative ones)that will be assigned non-zero rate, with ardinality |S| =M≤M . Under linear preoding,the transmitter multiplies the data symbol for eah user k by Wk (or wk in the ase ofbeamforming) so that the transmitted signal is a linear funtion x =
∑

k∈S Wksk, where
Wk ∈ CM×Nk is the preoding matrix for user k designed to maximize some performanemeasure. The resulting reeived signal vetor for user k is given by

yk = HkWksk +
∑

j∈S,j 6=k
HkWjsj + nk (2.32)where the seond term in (2.32) represents the multiuser or inter-user interferene. Weassume that eah user will deode Sk ≤ Nk streams that onstitute its data. The goal oflinear preoding is to design {Wk}Mk=1 based on the hannel matrix knowledge, so that agiven performane metri is optimized for eah stream. If user odes drawn from an i.i.d.Gaussian distribution are used, the ahievable rate of user k is

Rk = I(sk;yk) = log2
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(2.33)where Σk = WkE{sksHk }WH
k denotes the transmit ovariane matrix of user k.



2.5 Multiuser MIMO Shemes with perfet CSIT 25Channel Inversion - ZF PreodingPreoding design problems inorporating measures suh as maximization of SINR or sumrate usually lead to intratable optimization problems. A standard suboptimal approahproviding a promising tradeo� between omplexity and performane is hannel inversion,also known as zero-foring beamforming (ZFBF). For ease of explanation, we assume Nk =

1, ∀k. In ZFBF, the preoder W = [w1 . . .wK ] is designed to ahieve zero interferenebetween the users, i.e. [HW]k,j = 0 for j 6= k For a group of seleted users S, we denote
H(S) and W(S) the orresponding submatries of H and W respetively. If Nk = N ≤Mand rank(H) = N , the ZFBF matrix is given by the Moore-Penrose pseudoinverse of H(S)

W(S) = H(S)† = H(S)H(H(S)H(S)H )−1 (2.34)The ahievable sum rate is given is by
RZF(S) = max

∑

k∈S
ηkPk ≤ P

∑

k∈S
log2 (1 + Pk) (2.35)where

ηk =
1

‖wk‖2
=

1

[(H(S)H(S)H )−1]k,k
(2.36)an be interpreted as the e�etive hannel gain of the k-th user. The transmit powersan be alloated aording to di�erent riteria and depending on the system performanetarget. If the objetive is to maximize the ahievable system throughput, the optimumpower alloation Pk is given by water-�lling

Pk = ηk

[

µ− 1

ηk

]+

∀k ∈ S (2.37)where [x]+ = max(0, x) and µ is obtained by solving the water-�lling equation
∑

k∈S
[µ− 1/ηk]

+
= PThe sum-rate of ZFBF with optimal power alloation is given by [7℄

RZF(S) =
∑

k∈S
[log2(µηk)]

+ (2.38)The maximum ahievable sum rate of ZFBF is found by exhaustive searh, i.e. hekingevery possible hoie of user groups S, however greedy user seletion algorithms are shownto ahieve near optimal performane [11, 12, 43℄.When the hannel is ill-onditioned, at least one of the singular values of (H(S)H(S)H )−1is very large, resulting in a very low SNR at the reeivers. Note also that hannel inversion, inontrast to ZF (least-squares) equalization that auses noise enhanement when the hannelis nearly rank-de�ient, inurs an exess transmission power penalty (signal attenuationat the transmit side). Therefore, the apaity of hannel inversion with no user seletiondoes not inrease linearly with M , unlike the optimum apaity. User seletion o�ers animportant degree of freedom that an be exploited in order to improve the performane ofZFBF by seleting group of users with mutually orthogonal spatial signatures, leading to
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rank(H(S)) =M ≤ M (no power penalty). For asymptotially large K, ZFBF with userseletion is shown to ahieve both the spatial multiplexing and the multiuser diversity gain,i.e. RZF ∼ M log2

(

1 + P
M logK

) [12, 44℄. Finally, when ZFBF with equal power alloationis performed in a system with K users with N > 1 reeive antennas eah (with M ≥ KN),it onverts the system into KN parallel MISO hannels and an be viewed as equivalent(in terms of ergodi sum rate) to performing ZFBF in a hannel with KN single-antennareeivers.Regularized Channel Inversion - MMSE PreodingFor rank-de�ient hannels, the performane of ZFBF an be improved by a regularizationof the pseudo-inverse, whih an be expressed as:
W(S) = H(S)H(H(S)H(S)H + βI)−1 (2.39)where β is the regularization fator. The above sheme is often referred to as MinimumMean Square-Error (MMSE) preoding due to the analogous with MMSE beamformingweight design riterion if the noise is spatially white. However, at the reeiver side the mean-squared error (MSE) between the reeived vetor and the symbol vetor is not minimized.Similarly to MMSE equalization, a non-zero β value results in a measured amount ofinter-user interferene. The amount of interferene is determined by β > 0 and an optimaltradeo� between the ondition of the hannel matrix inverse and the amount of rosstalkought to be found. In pratie, the regularization fator is ommonly hosen as β = Mσ2/Pmotivated by the results in [34℄ showing that it approximately maximizes the SlNR at eahreeiver, and leads to linear apaity growth withM . The performane of MMSE is ertainlysigni�antly better at low SNR and onverges to that of ZF preoding at high SNR. However,MMSE does not provide parallel and orthogonal hannels, thus power alloation tehniquesannot be performed in a straightforward manner.Blok DiagonalizationIf the terminals have eah multiple antennas, the additional degree of freedom at the reeiverside an be exploited in various ways. For instane, multiple data streams an be transmittedto a user or some level of inter-user interferene may remain after preoding, whih isaneled using the multiple reeive antennas. However, several design hallenges arises,suh as signal gain and interferene anellation oordination between the transmitter andthe reeiver, and appropriately alloating resoures among all users and all spatial hannelsof eah user.Blok diagonalization (BD) [45℄ is a generalization of hannel inversion tehniques whenthere are multiple antennas at eah reeiver. When BD is employed, the preoding matries

Wj , ∀j are hosen suh that HkWj = 0, ∀k 6= j, thus eliminating the multiuser interfereneso that yk = HkWksk + nk. This requires to determine an orthonormal basis for the leftnull spae of the matrix formed by staking all Hj , ∀j 6= k matries together.Assume that Nk ≥ 1 with∑L
k=1Nk = N

′ and up to Sk data streams are transmitted touser k. De�ne H̃k as a (N
′ − Sk)×M matrix

H̃k =
[

HT
1 · · · HT

k−1 HT
k+1 · · · HT

L

]T (2.40)



2.6 The ardinal role of Channel State Information 27then any suitable Wk lies in the null spae of H̃k. Let the singular value deomposition(SVD) of H̃k be
H̃k = ŨkD̃k

[

Ṽ
(1)
k Ṽ

(0)
k

]H (2.41)where Ũk and D̃k are the left singular vetor matrix and the matrix of singular values of
H̃k, respetively, and Ṽ

(1)
k and Ṽ

(0)
k denote the right singular matries eah orrespondingto non-zero singular values and zero singular values ((M−rank(H̃k)) singular vetors in thenullspae of H̃k)), respetively. Any preoderWk that is a linear ombination of the olumnsof Ṽ(0)

k will satisfy the null onstraint, sine it produes zero interferene to the other users.Assuming that H̃k is full rank, the transmitter requires that the number of transmit antennasis at least the sum of all users' reeive antennas to satisfy the dimensionality onstraintrequired to anel interferene for eah user [45℄. The sum rate of blok diagonalization anbe further enhaned by performing water-�lling on eah D̃k.2.6 The ardinal role of Channel State InformationKnowledge of the hannel state by the transmitter of a ommuniations system has beendemonstrated to be bene�ial to wireless ommuniations, partiularly in multiuser MIMOsystems. The major importane of the availability of hannel knowledge has been alreadyreognized in [7℄, by pointing out that lak of perfet CSIT results in total loss of degreesof freedom, in ontrast to what happens in single-user or multiple aess MIMO shemes.The MIMO BC with no CSIT is degraded no matter whether the reeivers have CSIRor not. Hene, when the users have the same number of antennas, it an be shown thatsuperposition oding is the same as time-sharing. Therefore, the sum apaity is the sameas if there is only one user in the system and no multiuser diversity gains an be expeted.The signi�ant di�erene on the sum rate behavior between multiuser and single-user MIMOreveals the ardinal role of CSIT in multiuser MIMO downlink systems, presented in detailin the following setions.2.6.1 Channel Knowledge at the TransmitterIn multiuser MIMO literature it is often assumed that the reeiver enjoys lose-to-perfethannel knowledge, whereas the transmitter has di�erent levels of CSIT, ranging from noCSIT at all to full CSIT. The assumption that the reeiver has aurate hannel informationis often reasonable espeially in the downlink, where pilot symbol-based hannel estimationis more e�ient sine the terminals an share a ommon pilot hannel. Channel aquisitionat the transmitter relies on hannel measurements at a reeiver, sine the transmitter isinformed by the reeiver on the hannel state in an impliit or expliit way. The methodsavailable to gather CSI at the transmitter mainly rely on hannel reiproity or feedbak.In systems for whih hannel reiproity annot be exploited, the need for CSIT feedbakplaes a signi�ant burden on uplink apaity. The feedbak load is further exaerbatedin high-mobility systems (suh as 3GPP-LTE, WiMAX, et.) where the hannel onditionshange rapidly and in wideband systems, where more feedbak training is required due tofrequeny seletivity.



28 Chapter 2 Multi-antenna Broadast Channels2.6.2 Capaity saling laws in MIMO BC systemsThe dominant role of CSIT in multiuser multi-antenna systems an be identi�ed by study-ing the asymptoti apaity growth under di�erent assumptions on CSIT. Spei�ally, thefundamental role played by the multiple antennas in expanding the hannel apaity is bestapprehended by examining how the sum rate sales with the transmit power and the numberof ative users.Full CSI at the TransmitterHigh Power Regime: The saling law of the sum-rate apaity of MIMO BC for �xed
Nk = N , M , and K and large P is given by [44,46℄

lim
P→∞

CDPC

logP
= min(M,max(N,K)) (2.42)The above result implies that at high SNR, the apaity exhibits linear growth with thenumber of transmit antennas. Furthermore, the number of reeive antennas per user playsvery little role in the apaity of MIMO broadast hannels ompared to M (provided that

K > M).Large K Regime: The saling law of the sum-rate apaity of MIMO BC for �xed
Nk = N , M , and P and large K is given by [44℄

lim
K→∞

CDPC

log logKN
= M (2.43)The result in (2.43) indiates that, with full CSIT, the system an enjoy a multiplexinggain of M , obtained by the BS seleting and sending data to M arefully seleted users outof K (multiuser diversity). Sine eah user exhibits N independent fading oe�ients, thetotal number of degrees of freedom for multiuser diversity is KN , thus giving the extra gain

log logKN .In ontrast, if the BS selets and transmits only to the user with maximum rate, theapaity of time-sharing, CTS, is given by [44℄
lim
K→∞

CTS

min(M,N) log logK
= 1 (2.44)From the above results, it is evident why the apaity saling laws provide the neessaryjusti�ation for the great appeal of multiuser MIMO systems. The spatial multiplexing gainofM , whih is the pre-log fator of the sum rate, implies a linear (in the number of transmitantennas) inrease in apaity for no additional power. The orresponding gain is realizedby simultaneously transmitting independent data streams in the same frequeny band tospatially separable users.No CSI at the TransmitterIn the absene of CSIT, user multiplexing is generally not possible, as the BS does not knowin whih `diretion' to form beams.



2.6 The ardinal role of Channel State Information 29High Power Regime: The saling law of the sum-rate apaity of MIMO BC for �xed
Nk = N , M , and K, satis�es

lim
P→∞

CDPC

logP
= min(M,N) (2.45)whih implies that at high SNR the apaity is essentially the same as that of a point-to-point MIMO system. In other words, TDMA is optimal in this regime.Large K Regime: The saling law of the sum-rate apaity of MIMO BC for �xed

Nk = N , M , and P and large K is
lim
K→∞

CDPC

log logKN
= 0 (2.46)In ontrast to (2.43), there is no multiuser gain sine the transmitter has no knowledge ofthe users hannels in order to exploit them.Note that the above results hold under the assumption of perfet CSIR. The impat of lakof CSI at both ends of the MIMO network and in the asymptotially high SNR regime isstudied in [25, 47℄, where it is shown that both the multiuser downlink and the single userapaity sale double logarithmially with the SNR.Information theoreti design guidelinesThe above apaity growth results highlight several fundamental aspets of multiuser MIMOsystems, whih ome in muh ontrast with the onventional single-user MIMO setting. Thedesign guidelines that an be extrated are summarized as follows:

• Capaity saling laws advoate for serving multiple users simultaneously in an SDMAfashion, with a suitably hosen preoding sheme at the transmitter. Although themultiplexing gain is limited by the number of transmit antennas, the number of si-multaneously served users is in priniple arbitrary. How many and whih users shoulde�etively be served with non-zero power at any given instant of time is the problemaddressed by the resoure alloation strategy.
• Unlike in the point-to-point MIMO setting, the spatial multiplexing of di�erent datastreams an be done while users are equipped with single-antenna reeivers, thus en-abling the apaity gains of MIMO while maintaining low ost for user terminals.Having multiple antennas at the terminal an thus be viewed as optional equipmentallowing extra diversity gain for ertain users or giving the �exibility toward interfer-ene aneling and multiplexing of several data streams to suh users (reduing thoughthe number of other users served simultaneously).
• The multiplexing gain of M in the downlink omes at the ondition of lose to perfetCSIT. In the absene of CSIT, user multiplexing is generally not possible, as the BSjust does not know in whih `diretion' to form spatial beams. Thus, the omplete lakof CSI knowledge redues the multiplexing gain to one. This is a key di�erene withpoint-to-point MIMO, in whih the asymptoti apaity is not sensitive to CSIT, andeven in the absene of CSIT, the full multiplexing gain (of one) an be preserved. An



30 Chapter 2 Multi-antenna Broadast Channelsexeption lies in senarios with terminal devies having enough antennas to removeo-stream interferene at the reeiver (Nk ≥M). In the latter ase, the BS may deideto either multiplex several streams to a single user or spread the streams over multipleusers, ahieving an equivalent multiplexing gain in both ases. This is onditionedhowever on the individual user hannels to be full rank.2.6.3 Partial Channel State InformationThe often unrealisti assumption of lose to perfet CSIT, as well as the onsiderable gapbetween the ahievable sum rate of full CSIT ompared to the no CSIT ase, have motivatedresearh work on shemes employing partial CSIT. Partial CSIT or limited feedbak refersto any possible form of inomplete information on the hannel. This term inludes, but isnot limited to, salar CQI feedbak (e.g. estimate of reeived SINR), quantized CSIT (quan-tization of hannel vetor), hannel diretion information, statistial CSIT, et. MultiuserMIMO shemes relying on partial CSIT lie at the heart of this dissertation.The pratial, though suboptimal, approahes desribed in Setion 2.5.1 are shown to behighly sensitive to hannel estimation errors, thus di�ult to be implemented with partialCSIT. The low-omplexity alternative of downlink beamforming and sheduling, despitebeing less sensitive to CSIT imperfetions, requires full CSI as a means to minimize themultiuser interferene [12℄. Fortunately, work like [9℄ demonstrates that the optimal apaitysaling of MIMO BC (i.e. M log logK) assumingK single-antenna users, an be ahieved for
K →∞ even though the transmitter relies on salar CQI. Several shemes based on partialCSIT are shown to ahieve lose to DPC sum-rate performane in some asymptoti regimes.However, the majority of these approahes beome inevitably interferene dominated at highSNR sine the error introdued (and the inrease in inter-user interferene) due to partialCSIT sales with SNR. Hene, in the large power regime, suh shemes exhibit a sum rateeiling behavior and fail to ahieve full multiplexing gain.It would have been �awed to onlude that partial CSIT leads neessarily to a ollapseof multiplexing gain. This multiplexing gain loss an be mitigated by using a variable - yet�nite - rate feedbak hannel. In [10℄, Jindal showed that the feedbak load per user mustinrease approximately linearly with the number of transmit antennas as well as with thetransmit power (in dB) in order to ahieve the full multiplexing gain. In this thesis, we tryto shed some light on these issues, by proposing several robust linear beamforming shemeswith limited feedbak. The interferene dominated behavior of suh shemes is studied indetail and several of our proposals provide means to irumvent the sum-rate eiling e�et.2.6.4 Statistial Channel Knowledge at the TransmitterAnother kind of partial hannel state knowledge that an be obtained at the BS with little orno feedbak overhead is the statistial CSIT. As seond-order hannel statistis vary muhslower in time ompared to the hannel realization itself, expliit statistial CSIT an beonveyed periodially to the BS resulting in little uplink overhead. Impliit knowledge onthe hannel statistis an be obtained without any additional feedbak by averaging uplinkmeasurements (statistial reiproity).



2.7 Sheduling and Multiuser Diversity 31In the literature, two ommon models for statistial CSIT are:
• Channel Mean Information (CMI), whih refers to the ase where the mean of thehannel distribution is available while the ovariane matrix is unknown and oftenassumed as white.
• Channel Covariane Information (CCI), whih refers to the ase where the mean isassumed zero (as it is assumed to vary rapidly) and the information regarding therelative geometry of the propagation paths is available through a non-white spatialovariane matrix.Channel knowledge aquisition using ovariane feedbak an be applied to both time di-vision duplex (TDD) and frequeny division duplex (FDD) systems. In ontrast to deter-ministi reiproity in TDD systems, the hannel statistis of the uplink and the downlinkremain related in FDD and the di�erene between the frequeny bands an be overome byusing frequeny alibration matrix. Long-term statistial hannel knowledge is assumed inChapter 4, where we show how statistial CSIT an be ombined with instantaneous low-rate CQI feedbak to inrease system throughput by seleting spatially ompatible userswith large hannels gains.2.7 Sheduling and Multiuser DiversityIn Setion 2.5, we presented shemes that deal with the optimization of the input ovarianematries or the preoding design. In this setion, a di�erent approah is followed and we tryto identify the optimal seletion of users to be served. Following the seminal work of Knoppand Humblet [1℄, multiuser diversity reeived an inrease attention in the �eld of resourealloation for wireless networks, shattering the traditional view of fading as detrimental.In this work, the authors provided novel insights to the question of `whih user should beserved in order to maximize the sum rate' and gave rise to a novel set of tehniques, oinedas opportunisti ommuniation. Simply speaking, opportunism reommends shedulingthe best user (i.e. the user with the most favorable hannel onditions) in eah ohereneinterval in order to maximize the system throughput.Consider a MISO K-user broadast hannel, for whih the sum rate apaity is upperbounded by

CBC ≤ E

{

max
Pk≥0,

∑K
k=1 Pk≤P

log2

(

1 +

K
∑

k=1

Pk ‖hk‖2
)} (2.47)Clearly, the sum rate is maximized when only the strongest user is assigned non-zero power

Pk = P , i.e. CBC = E

{

log2

(

1 + P max
1≤k≤K

‖hk‖2
)}.Traditionally, hannel fading was viewed as a soure of unreliability that has to bemitigated. An important means to ope with fading is diversity, whih an be obtained overtime (interleaving of oded bits), frequeny (ombining of multipaths in spread-spetrumor frequeny-hopping systems) and spae (multiple antennas). The basi idea is to improveperformane by reating several independent signal paths between the transmitter and thereeiver. The seminal work of [1℄ gave the idea that in the ontext of multiuser diversity,fading an be onsidered as a soure of randomization that an be exploited. This is done



32 Chapter 2 Multi-antenna Broadast Channelsby dynamially sheduling transmissions (resoures) among the users as a funtion of thehannel state and serve users only when their instantaneous hannel qualities are near totheir peaks. In one phrase, under opportunisti transmission, we transmit when and wherethe hannel is good.2.7.1 Asymptoti Sum-rate Analysis with Opportunisti Shedul-ingMultiuser diversity is a form of diversity inherent in wireless networks, provided by theindependent time-varying hannels aross the di�erent users. The multiuser diversity gainomes from the fat that the e�etive hannel gain, denoted as gk, is improved from gk to
max1≤k≤K gk. The amount of multiuser diversity gain depends ruially on the tail of thedistribution of gk, implying that the heavier the tail, the more likely there is a user witha very strong hannel, and the larger the multiuser diversity gain. Therefore, the hannelstatistis has an impat on system throughput. In the following, we derive the sum-rategrowth for di�erent hannel gain distribution.FadingWe onsider that the hannels of all users are i.i.d. Rayleigh fading, thus gk is hi-squareddistributed with 2M degrees of freedom, i.e. gk ∼ χ2

(2M) if gk = ‖hk‖2 or gk ∼ χ2
(2) if

gk = |hk|2. The limiting distribution (l.d.) of a hi-square random variable is of Gumbeltype and it an be shown that the maximum value of K i.i.d. gk ∼ χ2
(2M) random variablessatis�es [9℄

Pr{ logK + (M − 2) log logK +O(log log logK)

≤ max
1≤k≤K

gk ≤ logK +M log logK +O(log log logK)}

≥ 1−O
(

1

logK

) (2.48)Therefore, for largeK, max
1≤k≤K

gk behaves as logK with high probability, thusR ≈ log logK+

logP + o(1). The larger the number of users, the stronger tends to be the strongest hanneland the larger the multiuser diversity gain.It an be easily shown that the limiting distribution of Riean and Nakagami fading isof Gumbel type. However, the multiuser diversity gain is signi�antly smaller in the Rieanase ompared to the Rayleigh ase. Exponential and gamma distributions also belong tothe maximum domain of attration of a Gumbel distribution.Log-normal ShadowingWe onsider now that the e�etive hannel gain gk is dominated by log-normal shadowing.It an be shown that the maximum value of K i.i.d. log-normal distributed r.v. withlogarithmi mean µs and variane σ2
s , satis�es [48℄

Pr{bK − aK log logK ≤ max
1≤k≤K

gk ≤ bK + aK log logK} ≥ 1−O
(

1

logK

)where bK = exp{√2 logKσs + µs} and aK = bKσs/
√

2 logK.Hene, the throughput sales like R ≈ √2 logKσs + µs



2.7 Sheduling and Multiuser Diversity 33PathlossConsider now a more realisti senario, in whih the users are loated randomly over aell given by a disk of radius R around the serving BS. The hannel gain onsists in theprodut between a variable representing the path loss and a variable representing the fastfading oe�ient, i.e. gk = Lkγk, where Lk is the path loss between user k and the BS (f.Set. 2.1), and γk is the orresponding normalized omplex fading oe�ient.We onsider a uniform distribution of the population in eah ell. Thus the distanebetween user k and the BS, dk, is a r.v. with non-uniform distribution fD(d) given by
fD(d) = 2d/R2, d ∈ [0, R] (2.49)Further, the random proess dk an be onsidered i.i.d. aross users and ells, if users in eahell are dropped randomly in eah disk. The onsidered overage region an be assimilatedwith the inside area of eah disk, in a disk-paking region of the 2D plane. Users droppedoutside the disks an dropped from the analysis, as these will not a�et the saling law.Assuming R = 1 for normalization, the distribution of Lk = βd−ǫk is given by

fL(x) =

{

2
ǫ (
x
β )−

2
ǫ

1
x with x ∈ [β,∞)

0 with x /∈ [β,∞)
(2.50)The distribution of Lk is remarkable in that it di�ers strongly from fast fading distribu-tions, due to its heavy tail behavior. Formally, Lk follows a Pareto-type distribution and isa regularly varying random variable with exponent −2/ǫ, i.e. lim

t→∞
1− Fα(x)

1− Fα(tx)
→ t2/ǫ. Aninteresting aspet of regularly varying r.v. is that they are stable with respet to multi-pliation with other independent r.v. with �nite moments as pointed out by the followingtheorem:Theorem 2.1 [49℄: Let X and Y be two independent r.v. suh that X is regularly varyingwith exponent −η. Assuming Y has �nite moment E{Y η}, then the tail behavior of theprodut Z = XY is governed by:

1− FZ(z)→ E{Y η}(1− FX(z)) when z →∞ (2.51)The idea behind this theorem is that when multiplying a regularly varying r.v. with anotherone with �nite moment, one obtains a heavy tailed r.v. whose tail behavior is similar tothe �rst one, up to a saling. Sine γk has �nite moments, the tail behavior of gk an beharaterized by:
1− Fg(x)→ E{γ

2
ǫ

k }
(

β

x

)
2
ǫ when x→∞ (2.52)Therefore, gk is also regularly varying with exponent − 2

ǫ , whih implies that [50℄
lim
K→∞

Pr{ max
1≤k≤K

gk ≤ βE{γ2/ǫ
k }ǫ/2K

ǫ
2 x} = e−x

−2/ǫ ∀x > 0, (2.53)Using the above result, we an show that the throughput sales for asymptotially large Kas
R ≈ ǫ

2
logK (2.54)Observe that a muh greater throughput growth than in the ase of fading is obtained.This is due to the ampli�ed multiuser diversity gain due to the presene of unequal path



34 Chapter 2 Multi-antenna Broadast Channelsloss aross the user loations in the ell. As the distribution of pathloss belongs to themaximum domain of attration of Fréhet type, a logarithmi apaity growth with K isahieved. However, the sheduling deisions are taken in a quite unfair fashion admittedly,sine the sheduler tends to selet users loser to the aess point as more users are addedto the network.2.8 Living with partial CSIT: Limited feedbak approahesLimited feedbak shemes employing SDMA transmission and e�ient sheduling are keytopis of this dissertation. In this setion, we try to ategorize the many possible limitedfeedbak strategies and brie�y expose the ones that will be extensively disussed in thefollowing hapters.2.8.1 Quantization-based tehniquesQuantization is the �rst idea that omes to mind when dealing with soure ompression,in this ase the random hannel matries or the orresponding preoders being the possiblesoures. The amount of CSIT depends on the frequeny of feedbak reporting (generally afration of the oherene time), the number of parameters being quantized, and the resolu-tion of the quantizer. Most researh fouses on reduing the number of parameters and therequired resolution. The feedbak design problem has been studied in single-user MIMOommuniation systems using a onept known as limited feedbak preoding [51℄. The keyidea of this line of researh has been to quantize the MIMO preoder and not simply thehannel oe�ients. The hallenge of extending this work to multiuser hannels is that thetransmit preoder depends on the hannels of the other users in the system. Simplifyingthe transmit preoding struture, e.g. using ZF or MMSE preoding, is one of the simplestmeans to redue feedbak requirements.In approahes assuming single-antenna reeivers, the random odebook and Grassman-nian quantization ideas are used to quantize the diretion of eah user's hannel [10, 52℄.The main observation in [10℄ is that the feedbak load should sale approximately linearlyboth with the number of transmit antennas and the SNR (in dB), unlike the single-userase. The reason is that quantization error introdues an SINR �oor sine it prohibits per-fet inter-user interferene anellation. Thus this error must diminish for higher SNRs inorder to allow for a balaning between the noise and the residual interferene due to hannelquantization. As we see in Chapter 5, an improvement an be obtained by feeding bak thequantized hannel vetor and a ertain SINR-like salar value that is - among others - afuntion of the error between the true and quantized hannel.2.8.2 Dimension redution and projetion tehniquesDimension redution tehniques involve projeting the matrix hannel onto one or morebasis vetors known to the transmitter and reeiver. In that way, the CSIT matrix Hk ofsize Nk×M is mapped into an ℓ-dimensional vetor with 1 ≤ ℓ ≤ Nk×M , thus reduing thedimensionality of the CSIT to ℓ omplex salars (whih in turn may be quantized). Onethe projetion is arried out, the reeiver feeds bak a metri γk = f(Hk) that is typially



2.9 Linear Preoding and Sheduling with Limited Feedbak 35related to the square magnitude of the projeted signal. For instane, antenna seletionmethods fall into this ategory with the projetion being arried out by the reeiver itself.Alternatively, the projetion an be the result of using a partiular preoder W at theBS. A good example of this approah is given by a lass of shemes using unitary preodingmatries. We now review this approah for Nk = 1 where the BS designs an arbitraryunitary preoder W = Q of size M × M , further saled in order to satisfy the poweronstraint. Eah terminal identi�es the projetion of its vetor hannel onto the preoderby hkQ, and reports an index and a salar metri expressing the SINR measured under anoptimal beamforming vetor seletion:
γk = max

1≤i≤M

|hkqi|2
Mσ2/P +

∑

j 6=i |hkqj |2
(2.55)where qi denotes the i-th olumn of Q. The sheduling algorithm then onsists in oppor-tunistially assigning to eah beamformer qi the user whih has seleted it and has reportedthe highest SINR.When the unitary preoder must be designed without any a priori hannel knowledge,a saled identity matrix an be used (per-antenna SDMA sheduling). In this ase, thealgorithm falls bak to assigning a di�erent seleted user to eah transmit antenna. Inthe small number of user ase, the performane of suh sheme is plagued by inter-userinterferene, however interferene tends to derease as the number of ative users beomeslarge. In low-mobility system settings (slow fading), the use of a �xed set of preoders mayresult in severe unfairness between the users due to the limited hannel dynamis. Thisproblem an be alleviated by the randomization of the preoders. The idea of randomopportunisti beamforming (RBF) [9, 53℄, whih is presented in detail in Setion 2.9.3, anbe reast in the ontext above, assuming that Q is randomly generated at eah shedulingperiod, aording to an isotropi distribution, while preserving the unitary onstraint.2.9 Linear Preoding and Sheduling with Limited Feed-bakWe review here two of the main building bloks of the dissertation: the �nite rate feed-bak model and random opportunisti beamforming. The �rst model will be used for theodebook-based SDMA beamforming and sheduling tehniques that we propose in Chapter5, while the latter is the main building blok for approahes in Chapters 3 and 4. We alsodisuss the ommon harateristis and partiularities of both approahes.2.9.1 Finite Rate Feedbak Model for CDIProbably the most popular partial CSIT model when a bandwidth onstraint on the uplinkhannel is imposed is the so-alled �nite rate feedbak model in the multiuser literature. Thisis often referred to as limited feedbak model in works fousing on point-to-point MIMOommuniations. It is initially proposed for single-user MIMO [51, 54�57℄ and extended tomultiuser MIMO settings in [10, 52℄. The �nite rate feedbak model is linked to vetorquantization: with a feedbak rate onstraint of BD bits, the reeiver an report ND = 2BDdi�erent hannel representations. This implies that the hannel spae at the reeiver is



36 Chapter 2 Multi-antenna Broadast Channelsgenerally partitioned in ND non-overlapping regions, with eah region represented by adistint odeword. Partial CSIT under �nite rate feedbak model orresponds to informingthe BS in whih region the urrent hannel realization lies.In this approah, a quantization odebook V = {v1,v2, . . . ,vND} ontaining ND = 2BDunit-norm vetors {vi}ND

i=1 ∈ CM is utilized. The odebook is assumed to be known to boththe transmitter and the reeivers and we set Nk = 1 ∀k. At eah feedbak reporting slot
t, eah reeiver k, based on its urrent hannel realization hk, determines its `best' vetorfrom the odebook, i.e. the odeword that optimizes a ertain ost funtion. In settingswhere the BS exploits the quantized CSI to design the downlink beams, it is often assumedthat eah reeiver quantizes its hannel to the vetor that maximizes the following innerprodut [10, 54, 56, 58℄

ĥk = vn = argmax
vi∈V

|h̄H
k vi|2 = arg max

vi∈V
cos2(∠(h̄k,vi)) (2.56)where the normalized hannel vetor h̄k = hk/ ‖hk‖ orresponds to the hannel diretion,and we refer to ĥk as the k-th user hannel quantization.One the hannel vetor is quantized, eah terminal sends the orresponding quantiza-tion index n bak to the transmitter using BD = ⌈log2ND⌉ bits. In the researh literature,it is often assumed for simpliity that the feedbak reporting stage is aomplished instan-taneously and with no errors. The error-free assumption an be well approximated usingsu�iently powerful error-orreting odes over the feedbak link, whereas the zero-delayassumption may be valid when the proessing and feedbak delays are small relative to thehannel oherene time. However, these assumptions an be hallenged in pratial senar-ios (f. Chapter 7), e.g. the feedbak delay an be signi�ant in fast fading hannels withtypial user speeds of 30-50 km/h (large Doppler spread).2.9.2 Codebook designThe performane of a system relying on quantized CSIT depends heavily on the odebookstruture and the design riterion onsidered. The quantization problem exhibits severalsimilarities with lassial soure oding problems. As the vetor hk ∈ CM an be representedby a 2M -dimensional vetor of real oe�ients, the odebook design is equivalent to asoure oding problem, where the enoder desribes a random soure s ∈ R2M by one ofthe entries ŝi ∈ R2M of a �nite alphabet odebook. The odebook and the quantizer aredesigned to minimize the distortion between the soure and its unquantized representation.However, there are several key di�erenes when onsidering the quantization problem inlimited feedbak MIMO systems.In point-to-point MIMO systems, the odebook design problem is expliitly related tothe Grassmannian line paking problem [59℄, as a odevetor an be viewed as the oor-dinates of a point on the surfae of a hypersphere with unit radius entered around theorigin. This point ditates a straight line in a omplex spae C

M that passes through theorigin. The inner produt (2.56) is related to the hordal distane, de�ned as the distane
dchord(h̄k,vi) =

√

1− |h̄Hk vi|2 = sin(∠(h̄k,vi)) between two lines generated by h̄k and vi.In this dissertation, the hordal distane (2.56) is onsidered as odeword seletion riterion(distortion measure), despite the fat that onsidering an Eulidean distane metri (and



2.9 Linear Preoding and Sheduling with Limited Feedbak 37quantizing the non-normalized hannel hk) may result in inreased performane. Quan-tizing the hannel diretion and using the hordal distane is motivated by the fat thatbeamforming on the quantized spatial information is generally used. As the transmitterrequires information on the hannel diretion in order to form beams, quantizing diretlythe hannel realization an be viewed as redundant operation.Another key di�erene with soure problems is that the hannel realization and thevariable to be quantized may lie in di�erent spaes and may have di�erent dimensions. Forinstane, one an typially assume that the vetor h̄k is onstrained to be unit-norm andinvariant to arbitrary phase rotation ejθ; hene it lies on the unit hypersphere, whereas thehannel instantiation hk ould be anywhere in the C
M spae.The problem of optimum odebook design is not yet fully solved, and sine the optimalhannel vetor quantizer is generally di�ult to obtain and analyze, one typially resorts toapproximate or heuristi odebook design. The omplexity of the problem lies on the fatthat odebook design depends on various system parameters, inluding the hannel proper-ties and statistis, the antenna on�guration and orrelation, et. Furthermore, a odebookan be onsidered as optimum for a spei� distortion metri. Apart from the hordal andEulidean distanes, more general non-mean-squared error funtions an be onsidered inlimited feedbak MIMO systems (e.g. average reeived SINR or mutual information loss).However, an e�ient and general odebook design rule is the following: for random hannelswith i.i.d. CN (0, 1) entries, h̄k is independent of ‖hk‖ and uniformly distributed over theunit-norm sphere FM =

{

u ∈ CM : ‖u‖ = 1
}, i.e. h̄k ∼ U(FM ). An e�ient quantizer hasto satisfy the following two onditions:

• Nearest Neighborhood Condition (NNC): For given odevetors {vi, i = 1, . . . , ND},the optimum partition ell (Voronoi region) Hi of the i-th odevetor vi satis�es
Hi = {h̄k ∈ FM : |h̄Hk vi| ≥ |h̄Hk vj |, ∀j 6= i}, for i = 1, . . . , ND (2.57)

• Centroid Condition (CC): Given the partitions {Hi, i = 1, . . . , ND}, the optimumodevetors vi satisfy
vi = arg max

v∈Hi

E{|h̄H
k v|2|h̄k ∈ Hi} (2.58)In multiuser MIMO systems, simple odebook strutures, inluding random vetor quantiza-tion (RVQ) [57,60℄ and approximate ell vetor quantization (ACVQ) [56℄, are often utilizedto model the CDI, sine the single-user Grassmannian approah has not been extended yetto multi-antenna broadast hannels. In pratial systems, several odebook designs havebeen reported o�ering good performane under ertain hannel settings (f. Chapter 7).Random Vetor QuantizationRandom vetor quantization has been proposed for CDMA signature optimization withlimited feedbak in [60℄ and applied to point-to-point MIMO systems with limited feedbakin [57℄. In this sheme, eah of the ND odevetors is independently hosen from an isotropidistribution. RVQ provides a lower bound in terms of performane, due to the fat thatany strutured odebook should perform at least as well as RVQ. The sharpness of thelower bound is dereased, when the odebook size is dereased, due to the fat that aRVQ odebook does not uniformly over the M -dimensional spae. For the statistis of



38 Chapter 2 Multi-antenna Broadast Channelsquantization error, de�ned as sin2(∠(ĥk, h̄k)) = 1 −
∣

∣

∣ĥHk h̄k

∣

∣

∣

2 under RVQ, the interestedreader is referred to [10,61℄. Nevertheless, performane analysis of multiuser MIMO shemesemploying RVQ, despite its simpliity, does not often result in simple alulations andintegrals with losed-form solution. In suh ase, the following odebook design frameworkmight be of interest.Approximate Cell Vetor QuantizationA geometrial framework for vetor quantization was presented in [56℄. Therein, in orderto evaluate the area of no-outage regions, the authors de�ned spherial aps on the surfaeof the hypersphere, whih yields a good approximation for the area of no-outage regions.Assuming that eah odeword is isotropially distributed in CM , the unit norm sphere Uwhere a random vetor h̄k lies is partitioned intoND `quantization regions' (deision regions)
{H̄i; i = 1, . . . , Nd}, where H̄i = {h̄k ∈ U : |h̄Hk vi|2 ≥ |h̄Hk vj |2, ∀j 6= i, 1 ≤ j ≤ ND}.If the hannel h̄k ∈ H̄i, the reeiver k feeds bak the index i. Approximate ell vetorquantization results assuming that eah quantization ell is a Voronoi region of spherialap with the surfae area 1/ND of the total surfae area of the unit sphere [62℄. Sine h̄k isuniformly distributed over U , we have that Pr{h̄k ∈ H̄i} ≈ 1/ND, ∀i, and the (approximate)quantization ell is given by [55,56, 63, 64℄

H̃i = {h̄k ∈ U : 1− |h̄Hk vi|2 ≤ δ}, ∀i, kfor δ = (1/ND)
1

M−1 = 2−BD/(M−1). Although generally there are overlaps in the approxi-mate quantization ells, this approximation is shown through numerial results to be quiteaurate even for smallND [63℄. Furthermore, it an be shown that ACVQ yields an auratelower bound to the quantization error for any vetor quantization odebook [55,56℄.2.9.3 Random Opportunisti BeamformingIf we onsider that eah user is allowed to use only BD = log2M bits for CDI quantization,the optimal hoie for a randomly generated odebook is one that ontains orthonormalvetors. Therefore, the above vetor quantization-based tehniques an be viewed as ex-tension to a popular, alternative low-rate feedbak sheme, oined as random opportunistibeamforming (RBF).In RBF, 1 ≤ B ≤M mutually orthogonal random beams are generated at the transmit-ter. The single-beam RBF (B = 1) was proposed in [53℄, while multi-beam RBF (B = M) isproposed in [53℄ and analyzed in [9℄. A unitary preoding matrix Q is generated randomlyaording to an isotropi distribution. ItsM olumns (vetors) qm ∈ CM×1 an interpretedas random orthonormal beams. An isotropially distributed (i.d.) unitary matrix an begenerated by �rst generating a M ×M random matrix X whose elements are independentirularly symmetri omplex normal CN (0, 1), and then perform the QR deomposition
X = QR, where R is upper triangular and Q is an i.d. unitary matrix. At time slot t thetransmitted signal is given by

x(t) =

B
∑

m=1

qm(t)sm(t) (2.59)



2.9 Linear Preoding and Sheduling with Limited Feedbak 39where sm(t) is a salar signal intended for the user served on beam m. The SINR of user kin beam m is equal toSINRk,m =
|hkqm|2

∑

j 6=m
|hkqj |2 + Bσ2/P

m = 1, . . . ,B (2.60)Eah user, say the k-th, alulates the SINRs over all beams, i.e. SINRk,m for m = 1, . . . ,B,�nds the beam bk that provides the maximum SINR, i.e. bk = arg max
1≤m≤B

SINRk,m, andfeeds bak the value of SINRk,bk
in addition to the orresponding beam index bk. Anunderlying assumption here is that the users know their own hannel oe�ients. In turn,the transmitter assigns eah beam m to the user km with the highest orresponding SINR,i.e. km = arg max

1≤k≤K
SINRk,m. Sine the users have i.i.d. hannels, the CDF of the SINR ofa seleted user (after sheduling) Fs(x) is given by [9℄:

Fs(x) = (FSINR(x))
K

=

(

1− e−xBσ
2/P

(1 + x)B−1

)K (2.61)The ahievable sum rate (assuming Gaussian signaling) is given by
RRBF ≈ E

{ B
∑

m=1

log2(1 + max
1≤k≤K

SINRk,m)

} (2.62)where the approximation is used sine there is a probability that user may be the strongestuser for more than one beam.Asymptoti sum-rate analysis showed that, for �xedM , P and K →∞, the average sumrate of RBF sales asM log logK, whih is the same as the saling law of the apaity whenperfet CSI is available. This is due to the fat that the max
1≤k≤K

SINRk,m behaves like logK,whih is the behavior of the numerator (maximum of K i.i.d. χ2
(2) r.v.'s), as the interfereneterms beome arbitrary small. In other words, in the largeK regime, RBF with partial CSITdoes not su�er any apaity loss due to inter-user interferene despite relying on imperfet(salar) CSIT. The intuition behind that sheme is that for large K, there exists almostsurely a user well-aligned to eah beam, as well as with very little interferene from otherbeams. Thus, we have M data streams being transmitted simultaneously in orthogonalspatial diretions and as a result, full spatial multiplexing gain is exploited. Furthermore,the authors in [9℄ show that if M = O(logK), then a linear apaity saling with M isguaranteed, and fairness is ahieved as a byprodut. Here, the term fairness implies thatthe probability of hoosing users with unequal SNRs is equalized.A limitation of [9℄ is that it is optimal for a very large, typially unrealisti number ofusers. The performane is quikly degrading with dereasing number of users. Furthermore,this degradation is ampli�ed when the number of transmit antennas inreases. The reason isintuitive: as the number of ative users dereases andM inreases, it beomes more and moreunlikely thatM randomly generated, equipowered beams will math well the vetor hannelsof any set of M users in the ell. In Chapters 3 and 4 we propose several enhanementsin order to restore robustness and inrease the sum-rate performane of RBF in sparsenetworks. Moreover, RBF is highly sub-optimal at high SNR, i.e. lim

P→∞

RRBF

logP
= 0, as itbeomes interferene dominated. As interferene sales with P and annot be eliminated due



40 Chapter 2 Multi-antenna Broadast Channelsto partial hannel knowledge of �xed rate, the multiplexing gain of M annot be ahievedat high SNR.
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Chapter 3
Enhaned Multiuser RandomBeamforming
3.1 IntrodutionIn this hapter, we onsider the downlink of a wireless system with a M -antenna basestation and K single-antenna users. A limited feedbak-based sheduling and beamformingsenario is studied that builds upon the multi-beam RBF framework [9℄ presented in detailin Setion 2.9.3. The popularity of RBF has been spurred by the fat that it yields thesame apaity saling, in terms of multiplexing and multiuser diversity gain, as the optimalfull CSIT-based preoding sheme. The optimal apaity saling of M log logK is ahievedwhen the number of users K is arbitrary large, with only little feedbak from the users, i.e.in the form of individual SINR. RBF-based approahes have in fat evolved in a topi ofresearh in its own right and many possible strategies an be pointed out [65�68℄.The intuition behind the RBF onept is that although the beams are generated ran-domly and without any a priori CSIT, for large K, the seleted group of users exhibit largehannel gains as well as good spatial separability, and the probability that the random beamdiretion is nearly mathed to ertain users is inreased. However, a major drawbak of thistehnique is that its performane is quikly degrading with dereasing K. Furthermore, thisdegradation is ampli�ed when the number of transmit antennas inreases. As the numberof ative users dereases and M inreases, it beomes more and more unlikely that M ran-domly generated, equipowered beams will losely math the vetor hannels of any set of
M users. This situation ould easily be faed as tra� is normally bursty with frequentsilent periods in data-aess networks, thus the sheduler may not ount on a large numberof simultaneously ative users at all times. Another limitation of RBF is that it beomesinterferene dominated at high SNR, and its multiplexing gain vanishes sine interferene -whih sales with SNR - annot be eliminated with �xed-rate partial CSIT.41



42 Chapter 3 Enhaned Multiuser Random BeamformingIn the �rst part of this hapter, we provide analyti sum-rate expressions for onventionalrandom beamforming [9℄ and derive apaity saling laws at high SNR. Main impliationof our results is that in ertain asymptoti regimes, it is bene�ial to redue the number ofative beams, i.e. the beams alloated non-zero power.In the seond part of this hapter, we investigate solutions to irumvent the limitationsof RBF for K dereasing. We introdue a new lass of random unitary beamforming-inspired shemes that exhibits robustness in ells with - pratially relevant - low to moderatenumber of users (sparse networks), while preserving the limited feedbak and low-omplexityadvantages of RBF. One �rst key idea is based on splitting the design between the shedulingand the �nal beam omputation (or "user serving") stages, thus taking pro�t from the fatthe number of users to be served at eah sheduling slot is muh less than the number ofative users (i.e., B ≤M << K). In the sheduling phase, a �nite feedbak rate shedulingsheme is presented exploiting the onept of RBF. We use the SINR reported by all users,whih is measured upon the initial preoding matrix as a basis on whih to further improvethe design of the �nal beams that will be used to serve the seleted users. In general, theinitial preoder an be designed based on any a priori hannel knowledge; however here weassume that the �rst-stage beams are generated at random as in [9℄ sine no a priori CSITis assumed. One the group of B(1 ≤ B ≤M) users is pre-seleted using the SINR feedbakon the random beams, additional CSIT may be requested to only the seleted user group inorder to design the �nal preoder. More spei�ally, we make the following proposals andontributions:
• The seond-stage preoding matrix may require variable levels of additional CSIT feed-bak to be omputed, depending on design targets, and the �nal beams will improveover the random beamforming used in [9℄. In partiular, while we expet little gainover [9℄ for large K, signi�ant throughput gain appears for sparse networks in whihthe initial random beamformer may not provide satisfatory SINR for all M users.
• If we restrit ourselves to the ase that the initial beam diretions do not hange, wepropose then to adapt the power and the number of ative beams aording to thenumber of users, the average SNR and the number of transmit antennas as a meansto maximize the system throughput.
• In one variant of the proposed designs, we study a power alloation sheme aross the
B (initially equipowered) random beams showing substantial apaity improvementover [9℄ for a wide range of values of K. The sheme requires B ≤ M real-valuedsalar values to be fed bak from eah of the B pre-seleted users. For a 2-beamsystem, the global optimal beam power solution is provided in losed-form, whereasfor the general B-beam ase, solutions based on iterative algorithms are proposed andnumerially simulated.
• In another proposed robust variant of RBF, no additional CSIT feedbak is requiredduring the seond stage. Instead, we exploit the SINR information obtained underthe random beams in the �rst stage in order to not only perform sheduling but alsoto re�ne the beamforming matrix itself. An on/o� beam power ontrol is proposedas a low-omplexity solution, yielding a dual-mode sheme swithing from TDMAtransmission (only one beam is alloated non-zero power) to SDMA where all beams



3.2 Sum-Rate Analysis of Random Beamforming 43are ative with equal power. The throughput gains over [9℄ are shown to be substantialfor high SNR and low K values.3.2 Sum-Rate Analysis of Random BeamformingWe �rst onsider the onventional multiuser random beamforming [9℄, for whih Sharif andHassibi provide apaity saling laws for asymptotially large K using extreme value the-ory. In this setion, we omplement their throughput analysis by alulating analytiallythe average sum rate for any values of K and M . In addition to an exat throughput har-aterization, a simple, losed-form expression is provided that approximates very auratelythe throughput for relatively high and low SNR levels. Furthermore, using extreme valuetheory, we derive the apaity growth in P up to the seond order revealing the bene�ialrole of multiuser diversity in the interferene-limited region (P →∞).Exat throughput of multiuser RBFWe onsider the system model desribed in Setion 2.9.3 and for notation onveniene wede�ne ρ = P
σ2M .Lemma 3.1: For any values of P , M , and K, the average sum rate of multiuser RBFsatis�es

A− α ≤ RRBF ≤ A (3.1a)with
A =

M

log 2

K
∑

k=1

(

K

k

)

(−1)k+1e
k
2ρ

(

k

ρ

)

(M−1)k−1
2

W k(1−M)−1
2 ,k(1−M)

2

(

k

ρ

) (3.1b)
α =

M

log 2

K
∑

k=1

(

K

k

)

(−1)k+1e
k
ρ

(

k

ρ

)(M−1)k (

Γ(k(1−M),
k

ρ
)− Γ(k(1−M),

k

2ρ
)

) (3.1)whereWk,m(z) is the Whittaker funtion and Γ(a, x) =
∫∞
x
ta−1e−tdt is the upper inompletegamma funtion.Proof. The proof is given in Appendix 3.A.Approximate throughput of multiuser RBFAlthough the losed-form expression (3.1a) is aurate, it is unfortunately involved ando�ers no insight. For that, we derive the following simple, approximate expression for theaverage sum rate, whih proves to be aurate.Lemma 3.2: For any values of P , M , and K, the average sum rate of multiuser RBF isapproximately given by

RRBF ≈
M

log 2

ρHK

(M − 1)ρ+ 1
(3.2)where HK =

K
∑

k=1

1

k
is the K-th harmoni number.Proof. The proof is given in Appendix 3.B.



44 Chapter 3 Enhaned Multiuser Random Beamforming

0 50 100 150 200
3

4

5

6

7

8

9

10

11

12

Number of users

S
um

 r
at

e 
(b

ps
/H

z)

 

 

Simulation
Analysis eq.(3.3)
Analysis eq.(3.2)

Figure 3.1: Comparison between simulated and analytial ahievable sum-rate of RBF with
M = 4 antennas and SNR = 20 dB.Average sum rate at high SNRIn the high power regime (P → ∞), the throughput is given by the following orollary,whih is a diret result of Lemma 3.2 for ρ→∞ (i.e, Rhigh = lim

P→∞
RRBF).Corollary 3.1: The average sum rate of multiuser RBF for any K, M at high SNR isupper bounded by

Rhigh ≈
M

M − 1
HK log2 e (3.3)The upper bound is sharp for asymptotially high SNR values. Similar result an be foundin [68℄. The above orollary an be alternatively derived by approximating the reeivedSINR as SINRk,m ≈ |hkqm|2

∑

j 6=m|hkqj |2 with CDF given by F (x) = 1− 1
(1+x)M−1 . The approximateaverage sum rate is given by

Rhigh ≈
∫ ∞

0

log2(1 + x)dFK =
M

M − 1

∫ 1

0

log2

1

1− z1/K
dz =

M

M − 1
HK log2 e (3.4)The tightness of the approximate losed-form expressions (3.2) and (3.3) is ompared withsimulated results in Figures 3.1 and 3.2.Average sum rate at low SNRIn the low power regime (P → 0), the throughput is haraterized by the following lemma:Lemma 3.3: The average sum rate of multiuser RBF for any K, M at low SNR is givenby

Rlow ≈
MK

log 2

K−1
∑

k=0

(

K − 1

k

)

(−1)k+1 e
k+1

ρ

k + 1
Ei(−k + 1

ρ
) (3.5)with Ei(x) = −

∫∞
−x

e−t

t dt is the exponential integral.Proof. The proof is given in Appendix 3.C.
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Figure 3.2: Ahievable sum rate omparison vs. average SNR for RBF withM = 4 antennas.Both analyti expressions approximate aurately the simulated performane at high SNR.Corollary 3.2: In the low power regime, the average sum rate of RBF an be approxi-mated as
Rlow ≈

ρ

log 2
HK

(

1− ρ

2
(1 +HK)

)

≤ ρ

log 2
HK (3.6)

Proof. The proof is given in Appendix 3.D.The tightness of the above sum-rate approximation is examined in Figure 3.3.
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46 Chapter 3 Enhaned Multiuser Random BeamformingOn the Optimal Number of Ative BeamsFrom the above losed-form sum-rate expressions, we an onlude that the ahievablethroughput is not always an inreasing funtion with the number of beams for all averageSNR ranges. In this setion, we provide the optimal number of ative beams, i.e. the beamsthat are assigned non-zero power, for di�erent operating average SNRs. The obtained resultsprovide an additional motivation for the tehniques presented in the subsequent parts of thishapter, in whih we adjust the number of ative beams and/or the power alloated to themas a means to maximize the ahievable throughput (beam seletion).We denote the number of ative beams as B and we try to identify the optimal value of
B∗ that maximizes the sum rate for �xed K, i.e.

B∗ = max
1≤B≤M

RRBF(B) (3.7)When RBF operates at low SNR, thenProposition 3.1: At low SNR (P → 0), it is optimal to alloate power to all beams, i.e.
B∗ = M .Proof. Di�erentiating (3.5) with respet to B, we see that ∂Rlow

∂B > 0 whih implies that
Rlow is inreasing with B. The result an be shown alternatively onsidering the CDF ofSINR at low SNR, i.e. Flow(x) = 1− e−σ2xB/P and showing

∂Rlow
∂B =

∂

∂M

{

B
∫ ∞

0

log2(1 + x)dFKlow

}

> −P
2

B2

∫ 1

0

log2
2(1 − x1/K)dx > 0 (3.8)On the other side, when the system operates at asymptotially high SNR, we have thatProposition 3.2: At high SNR (P →∞), it is optimal to alloate non-zero power to onlyone beam, i.e. B∗ = 1.Proof. As ∂Rhigh

∂B < 0, we have that Rhigh is a monotonially dereasing funtion with
B. To summarize, in the low power regime, it is bene�ial from a sum-rate maximizing pointof view to alloate non-zero power to a higher number of beams, whereas in the interferene-limited region (P →∞) with �xed K, sheduling only one user (TDMA) is the transmissionstrategy that maximizes the system throughput.3.3 Capaity saling laws for high SNRThe asymptoti throughput analysis in [9℄ was foused on the large K regime with �xed
P . However, when P is inreasing, random beamforming is highly sub-optimal sine itbeomes interferene dominated. The ahievable sum rate saturates, as it does not salelogarithmially with the power. Therefore, the multiplexing gain ollapses to zero, i.e.



3.3 Capaity saling laws for high SNR 47
lim
P→∞

RRBF

logP
= 0. Here we investigate the asymptoti behavior of max

1≤k≤K
SINRk,m in highpower regime. In this regime, the SINR beomes

lim
P→∞

SINRk,m = SIRk,m =
|hkqm|2

∑

j 6=m |hkqj |
2 ∼

χ2
(2)

χ2
(2M−2)

(3.9)whih is a anonial F-distributed r.v. as it is the ratio of two independent hi-squaredrandom variables. Let Xk,m = SIRk,m for k = 1, . . . ,K be a sequene of K i.i.d. r.v. withommon parent distribution F (x) = 1 − 1
(1+x)M−1 and PDF f(x) = M−1

(1+x)M . Let Fj:K(x)denote the CDF of the j-th largest r.v. among {X1, . . . , XK}, denoted as Xj:K , where thebeam index is omitted for notation onveniene. The asymptoti sum rate performanedepends on the limiting distribution of the variate XK:K = max
1≤j≤K

Xj:K , whose CDF isgiven by FK:K(x) = [F (x)]K . The distribution F (x) is of Pareto-type and it belongs to thelass of regularly varying funtions.De�nition 3.1: A non-negative r.v. X and its distribution are said to be regularly varyingwith index α ≥ 0 if the right distribution tail F (x) = 1−F (x) is regularly varying with index
−α, i.e.,

lim
x→∞

F (tx)

F (x)
= t−α ∀t > 0Sine FX(x) is a regularly varying funtion at ∞ with exponent −(M − 1), the neessaryand su�ient ondition for maximal attration to the limit law of the Fréhet type D(G1),i.e. FX(x) ∈ D(G1), is satis�ed [50℄. Hene, the distribution F (x) belongs to the maximaldomain of attration of Fréhet type, with limit distribution (l.d.)

G1 (x;M − 1) =

{

e−x
−(M−1)

x > 0,M > 1

0 x ≤ 0meaning that there is a sequene aK > 0 suh that
lim
K→∞

Pr {XK:K ≤ aKx} = lim
K→∞

FK(aKx)→ G1 (x;M − 1) (3.10)The fat that the SIR distribution lies in the domain of attration for maxima of Fréhettype an be alternatively proved using Smirnov's theorem [69,70℄. For normalizing sequenes
aK = K1/(M−1) and bK = −1, we have that

lim
K→∞

FK:K(aKx+ bK) = ΥK
1 (x) (3.11)with ΥK

1 (x) = G1 (x;M − 1)

K−1
∑

i=0

(− logG1 (x;M − 1))
i

i!In order to derive the seond-order terms of the apaity growth, we need to measure therate of onvergene of the distribution of the sample maximum. For that, the uniformdistane metri, de�ned as dK = supx
∣

∣FKX (aKx)−G1 (x;M − 1)
∣

∣, is onsidered, resultingin the following theorem.



48 Chapter 3 Enhaned Multiuser Random BeamformingTheorem 3.1: Let Xj:K denote the jth largest random variable in a random sample of K,then
Pr







(

log
√
K

K

)− 1
M−1

− 1 ≤ Xj:K ≤
(

K log
√
K
)

1
M−1 − 1







≥ 1− O
(

1

logK

) (3.12)Proof. The proof is given in Appendix 3.ETherefore, it readily follows that at large K, the sum rate of multiuser random beam-forming in the interferene-limited region sales (and a fortiori its average) as
Rhigh ∼

M

M − 1
log2K +

M

M − 1
log2 log

√
K +O(1) (3.13)Theorem 3.1 establishes rigorously the sub-optimality of RBF in the high power regime.As the interferene sales with P , the sheme beomes interferene dominated at high SNR,and the multiplexing gain vanishes. Interestingly, multiuser diversity gain beomes more im-portant in this regime, sine the sum rate exhibits logarithmi growth with K (in ontrastto the double logarithmi log logK). Although only a fration of the spatial multiplex-ing gain is ahieved (r = M

M−1 ), multiuser diversity inreases the sum rate by a fator of
logK, ompensating thus for the loss in degrees of freedom. Simply speaking, having moreative users to hoose from, it `pushes' the interferene-limited region to higher SNR val-ues. Another impliation of the above theorem is the optimality of TDMA at high SNR:as ∂Rhigh

∂M < 0 (either (3.4) or (3.13)), the throughput is a monotonially dereasing fun-tion withM , implying that at high SNR the sum rate is maximized by using only one beam.The �rst-order term in apaity growth of RBF with respet to P an be alternativelyderived using the following, more intuitive way. From the onvergene of FK(x) to a Fréhetdistribution we have
Pr {XK:K ≤ uKx} → G1 (x;M − 1) = e−x

−(M−1) (3.14)with normalizing sequene uK = F−1(1 − 1/K) = K1/(M−1) − 1. The average sum-rate athigh SNR is given as
Rhigh = M

∫ ∞

0

log2(1 + x)dFK(x) =
M

log 2

∫ ∞

0

1− e−(uK/x)
M−1

1 + x
dx (3.15)where the RHS of the equation is obtained through integration by parts. By using thehange of variable y = 1/x for x ∈ (0,∞) and the approximation e−c ≈ 0 for some positivevalue c, we have

Rhigh ≈
M

log 2







∫ c
1

M−1

uK

0

1− e−(uKx)
M−1

y(1 + y)
dy +

∫ ∞

c
1

M−1

uK

1

y(1 + y)
dy






(3.16)Therefore, for K asymptotially large, lim

K→∞

c
1

M−1

uK
= 0 as uK K→∞→ ∞ and

lim
K→∞

Rhigh
M log2(uK + 1)

= lim
K→∞

M
log 2 log

(

uK

c1/(M−1) + 1
)

M log2(uK + 1)
= 1 (3.17)



3.4 Two-Stage Sheduling and Linear Preoding 49whih implies that the average sum-rate sales (in the ratio onvergene sense) as Rhigh ∼
M log2(uK + 1) = M

M−1 log2K.3.4 Two-Stage Sheduling and Linear PreodingIn this setion, we propose a MIMO downlink sheduling and beamforming framework inwhih the design is split into two stages. In the �rst stage, a oarse beamforming matrixis used (possibly seleted even at random) and user group (of size |S|) seletion is per-formed among all K ative users. In the seond stage, possibly additional hannel qualityinformation is olleted for the seleted user group, and an improved beamforming matrixis designed to serve them. The fat that |S| << K is instrumental in reduing the totalfeedbak requirement in this senario. The two-stage framework an be desribed as follows:Stage 1: User SeletionThe transmitter generates a linear preoding matrix W based on any a priori hannel in-formation it may has. Here, sine we onsider that the hannel onditions of the users arenot known a priori, a B × B (B ≤ M) unitary preoding matrix Q is drawn randomly andequal power alloation is used (Pm = P
B , ∀m), as a means to redue the feedbak burdenand omplexity requirements, i.e. W = Q = [q1 . . .qB]. The B olumns qm ∈ CM×1 ofthe preoder an be interpreted as random orthonormal beams, generated aording to anisotropi distribution, as proposed in [9℄. Eah of the K users, say the k-th, alulates theSINRs over all equipowered beams, i.e.SINRk,m =
|hkqm|2

∑

j 6=m
|hkqj |2 + Bσ2/P

m = 1, . . . ,B (3.18)�nds the beam bk that provides the maximum SINR, and feeds bak γk = SINRk,bk
inaddition to the orresponding beam index. A simple and low-omplexity user seletionsheme is employed at the BS by seleting the users that have the highest SINR on eahbeam qm. The group of seleted users is denoted as S. In [9℄ B = M beams are ativated.In the general ase however, we ould deide to ativate the B ≤M best beams only.Stage 2: Final Preoding designIn our proposed framework, we follow up with a seond stage where the B users in S may beallowed to report bak to the BS additional limited feedbak, denoted as γ′

k, k ∈ S. Based onthe feedbak information, the transmitter designs the �nal preoding matrixW
′
(S) = f(γ

′

k),where f(·) is some feedbak-based beamforming design funtion. Note that in [9℄ there isno seond stage, in other words W
′
(S) = Q. The seond-stage feedbak an take on amongothers the following forms, depending on the system feedbak rate onstraint:

• Strategy 1 : γ′

k = hk (full CSIT)
• Strategy 2 : γ′

k = ĥk (quantized hannel vetor)
• Strategy 3 : γ′

k = |hkqm|2 (BGI: beam gain information)
• Strategy 4 : γ′

k = γk (no additional feedbak)



50 Chapter 3 Enhaned Multiuser Random BeamformingNote that anyone of these two-stage shemes represents an e�ient feedbak redution strat-egy onsidering the number of seleted users B is typially very small in omparison with K.For instane B = 2 or 3 in pratial standardized systems while K ould be a few tens evenfor moderately sparse networks. The optimal way of splitting the feedbak load aross thestage 1 (sheduling) and the stage 2 (beam design) is an interesting open problem, beyondthe sope of the thesis, although some design rules for ZFBF systems where γ′

k is given bya quantized version of the quantization error of the hannel and ZFBF have been alreadysuggested [71℄.Note that the design of a two-stage feedbak sheme will inevitably introdue a longerhand-shaking delay before the atual payload data an be sent to the mobile. For an e�ientoperation of feedbak-based approah (whether single stage or two-stage), the total durationspent on feedbak together with payload transmission must be signi�antly less that theoherene time of the hannel Tcoh. Therefore, for the 2-stage approah to be appliable,we envision a framing struture that enompasses the two stages of feedbak, bak to bak,as an overall feedbak preamble, prior to payload transmission. This preamble (minislot) ofshort duration τm, during whih users report their feedbak messages is thus followed by alarger slot of duration τs >> τm, whih is dediated to pilot and data transmission. Thetotal framing interval duration should be kept less than the oherene time of the hannel,i.e. τs + τm ≤ Tcoh. Note that the seond stage of feedbak ollets fresh CSIT, so that thepreoder design does not su�er from extra outdating degradation (ompared with a singlestage feedbak).
3.5 Enhaned Multiuser Random BeamformingWhen the number of ative users K is large (dense networks), RBF an bene�t from mul-tiuser diversity by sheduling users with favorable hannel onditions (highest SINR), im-proving thus the system apaity. The seleted group of users exhibit large hannel gainsand good spatial separability among them and the probability that the random beam dire-tion is losely mathed to ertain users is inreased with inreasing K. For low to moderatenumber of users (sparse networks), the probability that all B users enjoy a reasonable SINRis lower sine the seleted users may not be fully separable under a randomly generated uni-tary beamforming matrix Q. Nevertheless, we point out that this user set, the user groupseleted by the sheduler under the initial random orthogonal beams, is likely to exhibitgood separability onditions relative to the rest of the users, sine it is at least the best usergroup for one orthogonal preoder Q. Therefore, we argue that a design based on random
Q ould be kept for the purpose of sheduling. In strategies 1-3, we propose to augment therandom beamforming step (stage 1) with an additional yet low-rate CSIT feedbak (stage2), as a means to restore robustness and improve sum-rate performane. Note that theseond stage only involves the B pre-seleted users. In this hapter, we present results forstrategy 1, but we fous on strategies 3 and 4 in partiular due to their low-rate feedbakmerits. Results for strategy 1 are also presented in the following setion.



3.6 Enhaned Preoding with perfet seond-stage CSIT 513.6 Enhaned Preoding with perfet seond-stage CSITWe �rst onsider the ase where, one the set of sheduled users is determined, perfetCSIT feedbak is requested for the B seleted users (strategy 1 ). Note that this results inan overall feedbak requirement muh inferior to that of [12℄. Based on the seond-stageCSIT, for any set of transmission powers P = [P1, ..., PB], the beamforming matrix W′(S)that maximizes the SINR of eah user is given by
W′(S) = H(S)H(H(S)H(S)H + βI)−1Note that the optimal preoding matrix in the downlink is derived from the uplink MMSEbeamformer, based on the uplink-downlink duality. Therefore, using the RBF as a userpre-seletion sheme, a set of quasi-orthogonal users is revealed to the transmitter. The BSin turn applies MMSE preoding in order to serve the seleted users. The suboptimality ofthis strategy depends on the sparsity of the system. The more users are in the ell, the morelikely is to selet an orthogonal user group at the �rst step. Note that the performane ofMMSE downlink preoder an be enhaned using power alloation. However, the solution tothis optimization problem is not trivial, even if the duality is exploited. Another key messageof this tehnique is the e�etive hannel (SINR) is a powerful user seletion metri, sine itreveals the set of users with high hannel gains and quasi-orthogonal hannel diretions.3.7 Beam Power Control with Beam Gain InformationWe onsider now that strategy 3 is adopted during the seond stage, thus the sheduler gainsknowledge of ηkmm = |hkmqm|2 for eah km ∈ S. Without loss of generality (WloG), weorder the users suh that ηkii ≥ ηkjj , ∀i < j is assumed, and unless otherwise stated B = M .Note that the extra feedbak load is minimal beause it onerns only B users. If a moderatenumber of users exist, some of the random beams may not reah a target. This is measuredat the BS in terms of the BGI ηkmm. In turn, the beam power ontrol is used to reduethe resoure alloated to the low-quality beams, to the bene�t of the good-quality beams.As a result, we hoose not to hange the diretion of the initial random beams. Based onthis beam gain information (BGI) ηkmm we propose to design the beamforming matrix byapplying a power alloation strategy aross the beams of {qm}Mm=1, i.e. wm =

√
Pmqm.De�ne the vetor of transmit powers P = [P1 . . . PM ] where Pm is the transmit power onbeam m. The SINR of the seleted user km ∈ S over its preferred beam m an be expressedas: SINRkm,m(P) =

Pmηkmm

σ2 +
∑

j 6=m
Pjηkmj

(3.19)The beam power alloation problem for RBF in order to maximize the sum rate subjet toa total power onstraint an be formulated as:
max

P
R(S,P) = max

P

M
∑

m=1

log2 (1 + SINRkm,m(P))

s.t.

M
∑

m=1

Pm ≤ P, Pm ≥ 0, m = 1, . . . ,M (3.20)



52 Chapter 3 Enhaned Multiuser Random BeamformingWe �rst remark that the power onstraint is always satis�ed with equality. This is easilyveri�ed by noting that any power vetor P
′ with ∑m P

′

M < P annot be the optimumpower vetor. For any ǫ > 1, a power vetor P with Pm = ǫP
′

m, m = 1, . . .M suh that
∑

m ǫPM = P inreases the sum rate R(S,P), sine it inreases all user rates.In what follows we searh for the optimal beam power alloation (power vetor P∗) by�nding
P∗ = arg max

P∈PM
R(S,P) (3.21)where PM = {P|∑m Pm ≤ P, Pm ≥ 0,m = 1, . . . ,M} is the onstraint set, whih is alosed and bounded set. Although the sum rate funtion is onave in SINR, it is notstritly onave in power. Thus, the optimization problem is hard to solve due to non-onvexity of the objetive funtion, plus no transformation into onvex by relaxation seemsdoable. This problem is however typial of sum-rate maximizing power ontrol [72℄. Inthe following setions, we investigate a losed-form optimal solution for a 2-beam systemand iterative solutions for the general ase. Moreover, the above beam power ontrol setupan be seen as an instane of the interferene hannel, the analysis of whih is a famouslydi�ult problem in information theory. Our power alloation solutions an be thereforeused to any ommuniation network that an be modeled as an interferene hannel.3.7.1 Optimum Beam Power Alloation for Two BeamsFor RBF sheme with B = 2 beams, the optimum beam power alloation poliy understrategy 3 an be derived analytially. The sum rate for user set S = {k1, k2} is given interms of P1 ∈ [0, P ] by:

R(S, P1) =

2
∑

m=1

log2 (1 + SINRkm,m) (3.22)
= log2

[(

1 +
P1ηk11

σ2 + (P − P1)ηk12

)(

1 +
(P − P1)ηk22

σ2 + P1ηk21

)]Sine the logarithm is a monotonially inreasing funtion, we an onsider the followingobjetive funtion:
J (P1) = (1 + SINRk11) (1 + SINRk22)

=

(

1 +
P1ηk11

σ2 + (P − P1)ηk12

)(

1 +
(P − P1)ηk22

σ2 + P1ηk21

) (3.23)By Fermat's theorem, the neessary onditions for maxima of the ontinuous objetivefuntion an our either at its ritial points or at points on its boundary. Therefore, theglobal maximizer of the above generally non-onvex optimization problem is given by thefollowing alternatives:
• boundary points of P2: P1 = 0 or P1 = P .
• extreme points on the boundary of P2: i.e., the values P1 ∈ [0, P ] resulting from

∂J (P1)
∂P1

= 0.Spei�ally, we have the following result:



3.7 Beam Power Control with Beam Gain Information 53Theorem 3.2: For the two-beam RBF, the optimum sum-rate maximizing beam poweralloation P∗ = (P ∗
1 , P

∗
2 ) is given by:







P ∗
1 = arg max

P1={0,P,P′}
J (P1)

P ∗
2 = P − P ∗

1

(3.24)where P1 ∈ [0, P ] and
P

′
=

{

(−B ±
√
B2 − 4AΓ)/2A if A 6= 0

−Γ/B if A = 0
(3.25a)

A = ηk11ηk21(ηk21 − ηk22)(Pηk12 + σ2) + ηk22ηk12(ηk11 − ηk12)(Pηk21 + σ2)

B = (Pηk12 + σ2)ηk11(Pηk21ηk22 + 2ηk21σ
2 − ηk22σ

2)

+ ηk22(2ηk12 − ηk11)(Pηk21 + σ2)(Pηk12 + σ2)

Γ = ηk11σ
2(Pηk12 + σ2)(Pηk22 + σ2)− ηk22(Pηk21 + σ2)(Pηk12 + σ2)2 (3.25b)Proof. The proof is given in Appendix 3.F.Hene, the optimal power ontrol is either TDMA-mode (only one user/beam is alloatednon-zero power) or SDMA-mode in whih the transmit power values to multiple users arepositive and alloated aording to (3.25a).Beam power ontrol in extreme interferene asesTo gain more intuition on the optimal power alloation sheme, we investigate two extremeases in terms of interferene. De�ne the interferene fators αkm =

∑

j 6=m ηkmj

ηkmm
. In the2-beam ase, we have αk1 =

ηk12

ηk11
and αk2 =

ηk21

ηk22
. For non-interfering beams (i.e., αk1 =

αk2 = 0), the optimal beam power alloation is given by the water-�lling power alloation
P ∗

1 = min

(

P,

[

P

2
+

(ηk11 − ηk22)σ
2

2ηk11ηk22

]+
) and P ∗

2 = P − P ∗
1 (3.26)where [x]

+
= max(0, x). Note that SDMA with equal power alloation is optimal whenboth users experiene the same hannel onditions (ηk11 = ηk22).In the ase of fully-interfering beams (i.e., αk1 = αk2 = 1), TDMA mode is of ourse optimalas the solution to (3.20) under the assumption wlog ηk11 > ηk22 is

P ∗
1 = P and P ∗

2 = 0 (3.27)Optimality onditions for TDMA transmission modeThe beam power solution stated in Theorem 3.1 implies that the optimum transmissionmode is either TDMA (P1 = 0 or P ) or SDMA with P1 = P
′ . It is therefore interestingto identify the region of TDMA optimality and provided the relevant onditions. We �rstderive onditions requiring knowledge of the interferene fators αki ∈ (0, 1] only. Theseonditions an be used as pratial design rules, espeially in distributed resoure alloation



54 Chapter 3 Enhaned Multiuser Random Beamformingsenarios. Formally, we have thatLemma 3.4: If αki ≥ 0.5, the optimum power alloation is P ∗
1 = P and P ∗

2 = 0 (TDMAtransmission mode).Proof. The proof is given in Appendix 3.G.Corollary 3.3: A su�ient ondition for TDMA optimality is
αk1 + αk2 ≥ 1 or equivalently ( 1

cos2 θ1

)2

+

(

1

cos2 θ2

)2

≥ 3 (3.28)where θi = ∠
(

h̄ki ,qi
) is the angle (misalignment) between the diretion of the normalizedhannel h̄ki = hki/ ‖hki‖ and beam qi.Proof. The �rst ondition is a trivial result of Lemma 3.4 by summing up the interferenefators and the equivalent seond relation is derived by using αki = tan2 θi.Additionally, if BGI knowledge is allowed (strategy 3), a (sharper) su�ient TDMAoptimality ondition is the following:Lemma 3.5: The optimum power alloation is TDMA mode (P ∗

1 = P ) if
Pηk11

σ2
≥ 1− αk1 − αk2

αk1αk2
(3.29)Proof. The proof is given in Appendix 3.H.3.7.2 Beam Power Alloation for more than two beamsFor the general ase of B > 2 beams, an analytial treatment of (3.20) does not unfortunatelyseem tratable, beause of the lak of onvexity. Therefore, we propose here a suboptimal- yet e�ient - iterative algorithm that aims to inrease system throughput by alloatingpower over the beams. The algorithm tries to identify the extreme points of the sum rate and�nd the power vetor P that maximizes (3.20). The extremum of the sum rate funtion anbe found analytially using Lagrangian duality theory and onsidering the Karush-Kuhn-Tuker (KKT) onditions. Let WloG B = M and de�ne the objetive funtion

G(P) =

M
∑

m=1

log2

(

1 +
Pmηkmm

σ2 +
∑

j 6=m Pjηkjj

) (3.30)In order to solve the optimization problem
max

P∈PM
G(P), subjet to P ≥ 0,

M
∑

m=1

Pm = P (3.31)we may formulate the Lagrangian funtion as
L(p, µ, ν) = G(p) +

M
∑

m=1

νmPm − µ
(

M
∑

m=1

Pm − P
) (3.32)



3.7 Beam Power Control with Beam Gain Information 55where ν ≥ 0 and µ ≥ 0 are dual variables. The ost funtion is neither onvex not onavewith respet to {Pm}Mm=1, therefore a global optimal solution for any hannel model is hardto obtain. However, KKT onditions are neessary for extremum, whether loal or global,of G(P). By di�erentiating with respet to Pm, we �nd
∂G(P)

∂Pm
+ νm − µ = 0, 1 ≤ m ≤M (3.33)

Pm ≥ 0, 1 ≤ m ≤M
P −

∑

m

Pm ≥ 0The KKT onditions are neessary and su�ient if and only if the Hessian of (3.32) is anegative de�nite matrix. For suh lass of hannels, a global maximum is identi�ed throughthe KKT onditions above. For general hannels, the KKT points an be a global or loalmaximum, a saddle-point, or even a global or loal minimum.Iterative Beam Power Control AlgorithmPerforming transformation of the primal problem (3.20) into its dual and solving the latterby KKT onditions does not guarantee global optimal primal solution. As the primal is nota onvex optimization problem, there ould be a duality gap. Nevertheless, we propose aniterative algorithm, inspired by the iterative water-�lling (IWF) algorithm [73℄ and the KKTsolution of (3.31), as a means to identify the extreme points on the boundary of PM . Inthis Iterative Beam Power Control Algorithm, eah user iteratively maximizes its own rateby performing single-user water-�lling and treating the multiuser interferene from all theother users (beams) as noise. Clearly, our algorithm does not seek to �nd a global optimum,however it an provide signi�ant sum-rate improvement.Algorithm I Let P(0) be the initial point and I(P(i)) = σ2 +
∑

j 6=m P
(i)
j ηkjj be the inter-ferene funtion at i-th iteration. The steps of the algorithm are summarized in Table 3.1.Iterative Beam Power Control AlgorithmStep 1 (Initialization) Set P(0) = 0Step 2 For iteration i = 1, 2, . . ., ompute ∀km ∈ S:

λ
(i)
km

=
ηkmm

I(P(i−1))
=

ηkmm

σ2+
∑

j 6=m P
(i−1)
j ηkjjStep 3 (Water-�lling): let π(i) be the solution of:

π(i) = arg max
π≥0,

∑

m πm≤P

∑

km∈S
log2

(

1 + πmλ
(i)
km

)Step 4 (Update): let P(i) = π(i)Table 3.1: Iterative Beam Power Control Algorithm for Sum-Rate MaximizationSome observations are in order:At eah iteration i, one λ(i)
km

=
ηkmm

(σ2+
∑

j 6=m P
(i−1)
j ηkmj)

is alulated for eah user km using
P

(i−1)
j , j 6= m, it is kept �xed and treated as noise. Given the total power onstraint P , the



56 Chapter 3 Enhaned Multiuser Random Beamforming`water-�lling step' is a onvex optimization problem similar to multiuser water-�lling withommon water-�lling level. Thus, all transmit powers in P assigned to beams are alulatedsimultaneously in order to maintain a onstant water-�lling level. The algorithm omputesiteratively the beam power alloation that leads to sum rate inrease and onverges to alimit value greater or equal to the sum rate of equal power alloation. Formally, the powerassigned to beam m at iteration i yields P (i)
m = [µ− 1/λ

(i)
km

]+, with ∑

km∈S
[µ− 1/λ

(i)
km

]+ = P ,where µ is the ommon water-�lling level. The beam power ontrol for strategy 3 assignstransmit powers over the beams aording to the iterative solution when the ahieved sumrate is higher than that of the boundary points.Convergene Issues As stated before, no global maximum is guaranteed due to thelak of onvexity of sum-rate maximization problem. Therefore, we do not expet that theonvergene point of the iterative algorithm be generally a global optimal power solution.Interestingly, it an be shown that the onvergene leads to a Nash equilibrium, whenonsidering that eah user partiipates in a non-ooperative game. The onvergene to anequilibrium point an be guaranteed sine I(P) is a standard interferene funtion [73, 74℄.The proof of existene of Nash equilibrium follows from an easy adaptation of the proofin [75℄. However, the uniqueness of these equilibrium points annot be easily derived for thease of arbitrary hannels.Let us now derive analytially the onvergene point of the 2-beam ase using the itera-tive algorithm and ompare it with the optimal beam power solution given by Theorem 3.2.At the steady state, say iteration s, we have that
{

P
(s)
1 = µ− 1/λ

(s)
k1

P
(s)
2 = µ− 1/λ

(s)
k2

with 





λ
(s)
k1

=
ηk11

P
(s−1)
2 ηk12+σ2

λ
(s)
k2

=
ηk22

P
(s−1)
1 ηk21+σ2

(3.34)and µ = P
2 + 1

2λk1
+ 1

2λk2
from the sum power onstraint. Upon onvergene of the algorithm,we have that P (s)

i = P
(s−1)
i , i = 1, 2, whih results into a system of equations APT = bwith

A =

[

2− ηk21/ηk22 ηk12/ηk11

ηk21/ηk22 2− ηk12/ηk11

] and b =





P + σ2
(

1
ηk22
− 1

ηk11

)

P + σ2
(

1
ηk11
− 1

ηk22

)



For det(A) 6= 0 → αk1 6= 1 and αk2 6= 1, we have that PT = A−1b, giving the following`water-�lling' solution
P1 =

Pηk22 (ηk11 − ηk12) + σ2 (ηk11 − ηk22)

2ηk11ηk22 − ηk22ηk12 − ηk21ηk11
and P2 = P − P1 (3.35)It an be observed that (3.35) is di�erent from (3.25a). Fortunately, it still provides aheuristi power alloation algorithm and as shown through simulations in Setion 3.9, thereis not a signi�ant redution in sum rate by alloating the power over beams using thisalgorithm.Reinterpretation in terms of Suessive Convex ApproximationIn this setion, we resort to Geometri Programming (GP) [72℄ whih represents the stateof the art in ontinuous power ontrol for non-onvex problems. The GP approah has



3.7 Beam Power Control with Beam Gain Information 57beome a very popular and powerful tehnique as it provides e�ient solutions in powerontrol problems with non-linear objetive funtions and spei� SINR onstraint, by re-vealing the hidden onvexity struture. Furthermore, the proposed solutions are very fastand numerially e�ient, often exhibiting polynomial time omplexity. In partiular, weapitalize on the so-alled suessive onvex approximation (SCA) tehnique [72,76℄, whihis shown to be onvergent and turns out that it often omputes the globally optimal poweralloation. Interestingly, the heuristi iterative algorithm proposed in Table 3.1 �nds anequivalent interpretation, sine applying SCA to our beam power ontrol problem results inthe same iterative algorithm. We �rst lower bound log(1 + SINR) in the objetive funtionfor some a and b [76℄:
log(1 + SINR) ≥ a log(SINR) + b (3.36)Applying (3.36) into the optimization problem (3.20) results in the relaxation

max
P

1

log 2

M
∑

m=1

(am log (SINRkmm(P)) + bm) subjet to M
∑

m=1

Pm ≤ P (3.37)whih still remains a non-onvex problem sine the objetive funtion is not onave in P.However, using the transformation P̃m = log(Pm) we have the following onave maximiza-tion problem:
max

P̃

M
∑

m=1

(

am log
(SINRkmm(eP̃)

)

+ bm

) subjet to M
∑

m=1

eP̃m ≤ PDe�ning the Lagrangian funtion as
D(P̃, λ) =

M
∑

m=1

(

am log
(SINRkmm(eP̃)

)

+ bm

)

− λ
M
∑

m=1

(

eP̃m − P
) (3.38)we onsider the dual problem (3.38) that is min

λ
max

P̃

D(P̃, λ). The dual solution of the innermaximization problem is given by the stationary point of the Lagrangian funtion (3.38)with λ �xed. Di�erentiating wrt P̃m and applying the inverse transformation Pm = eP̃m weform the following �xed-point equation
∂D
∂P̃m

= 0⇒ Pm =
am

λ+ am
ηkmm

∑

j 6=m Pjηkmj+σ2

(3.39)Remarkably, this �xed point-equation provides the same power alloation algorithm as inTable 3.1 for am = 1, ∀m (wlog) where the powers an be updated iteratively using (3.39).However, we note that a zero duality gap annot be guaranteed formally due to lak of on-vexity, implying that no theoretial argument an show onvergene to the global optimumfor general lass of hannels.3.7.3 Beam Power Control in Spei� Regimes (B ≥ 2)The apparent non-onvexity of the B-beam ase an be alleviated in ertain SINR (inter-ferene) regimes, as a hidden onvexity of the beam power alloation problem appears. Weshall onsider the beam power alloation for B = M beams in four ases: 1) the highSINR regime, 2) the low SINR regime, 3) approximation by the arithmeti-geometri meansinequality, and 4) the symmetri interferene regime.



58 Chapter 3 Enhaned Multiuser Random BeamformingHigh SINR regimeIn the high SINR regime, whih orresponds to SINR values higher than 0 dB, the ap-proximation log(1 + x) ≈ log(x) an be applied. In that ase, the objetive funtion G(P)beomes
G(P) ≈ 1

log 2

M
∑

m=1

log (SINRkmm) = log2

(

M
∏

m=1

SINRkmm

)

= log2









M
∏

m=1

Pmηkmm
∑

j 6=m
Pjηkmj + σ2









(3.40)A similar result has previously observed in [72℄ in the ase of ode division multiple a-ess (CDMA) power ontrol. The optimum power alloation solution an be found usingGeometri Programming, as the approximate high-SINR sum rate is a onave funtion of
logPm.Low SINR regimeIn the low SINR regime, the sum rate is approximated by applying Taylor �rst-order seriesexpansion, i.e. log(1 + x) ≈ x. In that ase, the objetive funtion beomes

G(P) =

M
∑

m=1

log2 (1 + SINRkmm) ≈ log2 e

M
∑

m=1

SINRkmm

= log2 e

M
∑

m=1

Pmηkmm
∑

j 6=m
Pjηkmj + σ2

(3.41)The objetive funtion (3.41) is onvex in eah variable Pm sine
∂2

∂P 2
m

(

M
∑

m=1

Pmηkmm
∑

j 6=m Pjηkmj + σ2

)

=
∑

m 6=i

2Pmηkmmη
2
kmi

(

∑

j 6=m Pjηkmj + σ2
)3 ≥ 0 (3.42)Therefore, the optimal beam power ontrol strategy is found by the KKT onditions andan be solved numerially using e�ient interior-point methods [20℄.Arithmeti-geometri means approximationFrom the arithmeti-geometri means inequality [77℄, the sum rate an be upper boundedas

R(P) = log2

(

M
∏

m=1

(1 + SINRkm,m(P))

)

≤ M log2









1 +
1

M

M
∑

m=1

Pmηkmm

σ2 +
∑

j 6=m
Pjηkmj









= GAGM (P) (3.43)where the inequality is sharp for SINRkii = SINRkjj , ∀i, j ∈ S. Sine the logarithm isa monotonially inreasing funtion and the argument of the log-funtion of GAGM (P) is



3.8 Beam Power Control with SINR feedbak 59onvex wrt eah Pm (similarly to the low SINR regime), a losed-form global optimal solutionan be derived. The sharpness of the above sum-rate approximation is quanti�ed by thedi�erene δ = GAGM (P) − R(P). For h =
maxi(1+SINRkii)

minj(1+SINRkjj)
> 1 the following inequalitystands

0 ≤ δ ≤ M

log2

K
′
(h, 1) (3.44)where K ′

(h, 1) = log

(

h
1

h−1

e log h
1

h−1

) is the �rst derivative of the Kantorovih onstant [78℄.The upper bound is tight for equal SINR values, and the approximation is better when thespread of (1+SINR) values is small (h→ 1).Symmetri interferene regimeWe restrit here ourselves to the ase of symmetri interferene networks, in whih all usershave the same interfering beam gains. This senario orresponds to the ase where theseleted users are situated at about the same distane from the interfering beams. Hene,for ηkmj = ηkmi, ∀i, j 6= m, the ahievable sum rate is given by
R(S,P) =

M
∑

m=1

log2

(

1 +
Pm

σ2/ηkmm + αkm

∑

j 6=m Pj

) (3.45)with αkm =
ηkmj

ηkmm
, j 6= m. Sine the objetive funtion (3.45) is onave in Pm and the fea-sible region is onvex, the KKT onditions imply that there exist a unique Nash equilibriumthat an be ahieved using iterative water-�lling.3.8 Beam Power Control with SINR feedbakSuppose now that we have a harder rate onstraint for the seond-stage feedbak. Spei�-ally, we adopt strategy 4 in the seond stage, assuming thus that the sheduler has aessonly to the same amount of feedbak information as in [9℄, namely γ′

k = γk = SINRkmm(1 salar). Nevertheless, we further exploit this salar information in view of rendering thepreoding matrix more robust with respet to ases where not all M users an be servedsatisfatorily simultaneously with the same amount of power. This an be viewed as alow-omplexity, low-feedbak variant of the two-stage linear beamforming framework. Themajor hallenge here is that when only SINR feedbak is available, the transmitter does nothave aess to BGI and thus it annot estimate the preise reeived SINR and inter-userinterferene if the transmit beam powers had been alloated di�erently. Therefore, it an-not expliitly maximize the instantaneous sum rate by alloating the power unequally overthe beams. We then resort to a power ontrol strategy based on the maximization of theexpeted sum rate.On/O� Beam Power ControlWe propose a simple power alloation sheme, oined as On/O� Beam Power Control, inwhih the transmitter takes a binary deision between:
• TDMA mode toward one seleted user (the one with maximum γk from stage 1).
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• SDMA where all random equipowered beams are ative, as in [9℄.The sheduler, based only on SINR feedbak, ompares the instantaneous ahievable SDMAsum rate with the expeted TDMA rate, and selets the transmission mode that maximizesthe system throughput.Let RSDMA =

M
∑

m=1

log(1 + SINRkmm) denote the ahievable SDMA sum rate that an beexpliitly alulated at the BS, and RTDMA denote the expeted TDMA transmission rate.The expeted TDMA rate an be e�iently alulated by onsidering the statistis of theBGI of the user, say k1, with maximum γk1 onditioned to the feedbak information γk1 .Formally, the distribution funtion of s = P
σ2 ηk11 (BGI of the highest SINR user) is givenby

Fs(x) = Pr{s ≤ |γk1} =
FY (σ

2

P (x/γk1 −M))

FSINR(γk1)
(3.46)where FY (x) is the CDF of the interferene Y =

∑

j 6=1 ηk1j and FSINR(x) = 1− e−xσ2/ρ

(1+x)M−1 .The On/O� Beam power ontrol sheme results in the following binary mode deision de-noted as F :
F =

{ TDMA if ∆R > 0SDMA if ∆R ≤ 0
(3.47)where ∆R = RTDMA −RSDMA.For the expeted TDMA rate RTDMA = E

{

log2

(

1 + P
σ2 ηk11

)} with Fηk11
(x) = (1− e−x)K ,the following losed-form expression an be derived:Proposition 3.3: For any values of P , M , and K, the average rate of TDMA-based randombeamforming is given by

RTDMA =
1

log 2

K
∑

k=1

(

K

k

)

(−1)kekσ
2/PEi(−kσ2/P) (3.48)where Ei(x) = −

∫∞
−x

e−t

t dt is the exponential integral.Proof. The proof is given in Appendix 3.I.3.9 Performane EvaluationWe evaluate the sum-rate performane of the proposed beam power ontrol algorithmsthrough Monte Carlo simulations assuming i.i.d. �at fading Rayleigh hannels aross usersand transmit antennas. We also onsider that B = M beams are generated. The ahievedsum rate is ompared with onventional SDMA-based random beamforming [9℄ where equalpower is alloated over the beams.We �rst assess the performane of enhaned RBF with perfet seond-stage CSIT feed-bak (strategy 1). In Figure 3.6 we ompare the sum rate performane of the two-approah inwhih the seond-stage preoding is alulated based on full CSIT. As expeted, the MMSEpreoder applied to a set of quasi-orthogonal users outperforms signi�antly the single-stagerandom beamforming. The performane gain of 1.7 bps/Hz of MMSE beamformer an befurther inreased if optimal power alloation is used.
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Figure 3.4: Sum rate versus the number of users for Optimal Beam Power Control with
M = 2 transmit antennas and SNR = 20 dB.
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Figure 3.5: Sum rate versus average SNR for Optimal Beam Power Control (strategy 3)with M = 2 transmit antennas and K = 10 users.We then assess the performane of beam power ontrol with BGI seond-stage feedbak(strategy 3). In Figure 3.4 we present the sum rate ahieved using optimal power alloationversus the number of ative users K for the 2-beam ase and SNR = 20 dB. Single-beamrandom beamforming refers to the sheme proposed in [53℄ where only one random beam isgenerated (TDMA) at eah slot. The gains of optimally alloating power aross beams aremore pronouned for systems with low to moderate number of users (up to 30), whereas for
K inreasing, the bene�ts of beam power ontrol vanishes as the optimal solution advoatesexpetedly the use of equipowered beams. Figure 3.5 shows a sum-rate omparison as afuntion of the average SNR for K = 10 users, illustrating that beam power alloationprevents the system from beoming interferene-limited. Power ontrol allows us to switho� beams, thus keeping a linear apaity growth in the interferene-limited regime at highSNR by onverging to TDMA.
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Figure 3.7: Sum rate versus the number of users for Iterative Beam Power Alloation andOptimal Power Control with M = 2 transmit antennas and SNR = 10 dB.In Figure 3.7 we ompare the ahieved sum rate di�erene between the optimal poweralloation and the power solution given by our iterative algorithm at SNR = 10 dB. Useof the iterative algorithm, despite suboptimal, results in negligible throughput loss at allranges of K. The performane of the iterative power ontrol is further evaluated in Figure3.8 for a 4-beam downlink showing substantial sum-rate enhanements for pratial numberof users.We then evaluate the results of the on/o� beam power ontrol (strategy 4), whih usesthe same amount of feedbak as the onventional RBF [9℄. In Figure 3.9 we plot thesum rate versus the number of users for M = 2 transmit antennas and SNR = 10 dB.The sheme is swithing from TDMA mode at low K (all transmit power is given to thehighest SINRkm user) to SDMA-based RBF with equal power alloation. We also observethat the sum-rate gap between the optimal power ontrol (with seond-stage feedbak)
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Figure 3.8: Sum rate versus the number of users for Iterative Beam Power Alloation with
M = 4 transmit antennas and SNR = 10 dB.
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Figure 3.9: Sum rate versus the number of users for On/O� Beam Power Control with
M = 2 transmit antennas and SNR = 20 dB.
and on/o� power ontrol (no additional feedbak) for K < 20 users is approximately 0.4bps/Hz. In Figures 3.10 and 3.11 we onsider a 4-beam RBF sheme and show the sum rateperformane of on/o� beam power ontrol as a funtion of average SNR and the numberof users, respetively. Although the throughput urve of onventional RBF onverges to a�nite eiling at high SNR, the TDMA-SDMA binary deision apability of the beam on/o�sheme provides a simple means to irumvent the interferene-limited behavior of RBF withno extra feedbak. We note also that TDMA mode is generally preferable from a sum-ratepoint of view in sparse networks, and the range of K in whih TDMA is bene�ial inreasesfor SNR inreasing.
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Figure 3.10: Sum rate versus average SNR for On/O� Beam Power Control with M = 4transmit antennas and K = 25 users.
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Figure 3.11: Sum rate versus the number of users for On/O� Beam Power Control with
M = 4 transmit antennas and SNR = 20 dB.3.10 ConlusionThis hapter foused on SDMA-based random beamforming tehniques. We �rst studiedonventional random beamforming and provided an exat haraterization of the expetedsum-rate, as well as of the apaity growth in the interferene-limited region. Main outomeof this analysis is that the number of beams that should be alloated non-zero power has tobe adapted depending on the system average SNR and the number of ative users K in theell.Then, we introdued a two-stage sheduling and linear preoding framework, whihdivides the sheduling and the preoding design stages into two steps. Based on this de-oupled approah, we proposed a sheme oined as enhaned random beamforming. In thesheduling phase, RBF is exploited to identify good, spatially separable performing low-ratefeedbak user seletion. In the seond stage, additional �nite rate CSIT may be requestedto only the pre-seleted users in order to re�ne the �nal preoder. Several beam power on-



3.10 Conlusion 65trol strategies, with various levels of omplexity and feedbak load, are proposed in orderto restore robustness of RBF in sparse networks. Their sum-rate performane is assessed,revealing substantial gains ompared to RBF for systems with low to moderate number ofusers, at a moderate or zero ost of extra feedbak.Throughout this hapter, the users' hannels were onsidered temporally and spatiallyunorrelated. In the following hapter, we investigate how information and redundany hid-den on the hannel struture an be exploited by the sheduler in temporally and spatially-orrelated hannel.



66 Chapter 3 Enhaned Multiuser Random BeamformingAPPENDIX3.A Proof of Lemma 3.1From Lemma 3 in [9℄, we have that for any values of P , M , and K, the average sum rate ofmulti-beam RBF satis�es
I1 ≤ RRBF ≤ I2 (3.49a)with

I1 = M

∫ ∞

1

log2(1 + x)dFK(x) I2 = M

∫ ∞

0

log2(1 + x)dFK(x) (3.49b)We �rst evaluate the upper bound as follows
I2 = M

∫ ∞

0

log2(1 + x)d(FK(x)− 1)
(a)
=

M

log 2

∫ ∞

0

1− FK(x)

1 + x
dx

=
M

log 2

∫ ∞

0

1−
(

1− e−x/ρ

(1+x)M−1

)K

1 + x
dx

(b)
=

M

log 2

K
∑

k=0

(

K

k

)

(−1)k+1

∫ ∞

0

e−xk/ρ

(1 + x)(M−1)k
dx (3.50)where (a) is obtained by using the integration by parts and (b) follows from binomialexpansion. The losed-form expressions of the integral in (3.50), whih then gives (3.1b),an be obtained by the following formula (Shlömilh funtion) [79℄:

S(ν, z) =

∫ ∞

0

(1 + t)−νe−ztdt = zν−1ezΓ(1− ν, z) = z−ν/2−1ez/2W−ν/2,(1−ν)/2(z) (3.51)whereWk,m(z) is the Whittaker funtion and Γ(a, x) the upper inomplete gamma funtion.To obtain a lower bound, we use the fat that I1 = I2 −M
∫ 1

0
log2(1 + x)dFK(x) = A− α,whih results in (3.1) using similar steps as for I2.3.B Proof of Lemma 3.2Starting from (3.50), we have

RRBF ≈ M

log 2

K
∑

k=0

(

K

k

)

(−1)k+1

∫ ∞

0

e−xk/ρ

(1 + x)(M−1)k
dx

(a)

≤ M

log 2

K
∑

k=0

(

K

k

)

(−1)k+1

∫ ∞

0

(1 + x)−k/ρ

(1 + x)(M−1)k
dx

=
M

log 2

K
∑

k=0

(

K

k

)

(−1)k+1 ρ

k((M − 1)ρ+ 1)
=

M

log 2

ρHK

(M − 1)ρ+ 1where (a) follows from (1 + x)r ≤ erx for any real x, r > 0.



3.C Proof of Lemma 3.3 673.C Proof of Lemma 3.3When P → 0, the approximation SINRk,m ≈ ρ |hkqm|2 with CDF Fl(x) = 1 − e−x/ρ. Theaverage sum rate is given as follows
Rlow = M

∫ ∞

0

log2(1 + x)dFKl (x) =
MK

ρ log 2

∫ ∞

0

log2(1 + x)e−
x
ρ (1− e− x

ρ )K−1dx

(a)
=

MK

ρ log 2

K
∑

k=0

(

K

k

)

(−1)k
∫ ∞

0

log2(1 + x)e−
x(k+1)

ρ dx (3.52)
=

MK

log 2

K
∑

k=0

(

K

k

)

(−1)k+1
e−

k+1
ρ Ei(−k+1

ρ )

k + 1where (a) follows from binomial expansion.3.D Proof of Corollary 3.2Expanding the logarithm in (3.52) to seond-order Taylor series, i.e., log(1 + x) ≈ x− x2/2we have
Rlow =

MK

ρ log 2

K
∑

k=0

(

K

k

)

(−1)k
∫ ∞

0

(

x− x2

2

)

e−x(k+1)/ρdx

=
ρ

log 2
HK

(

1− ρ

2
(1 +HK)

) (a)

≤ ρ

log 2
HKwhere (a) is obtained by negleting the seond-order term.3.E Proof of Theorem 3.1We use Dziubdziela's Theorem [80℄ with aK = K1/(M−1) and bK = −1. We �rst evaluatethe following funtions:

δ̃K(x) = 1− F (aKx+ bK) =
1

KxM−1
(3.53)and

g(j,Kδ̃K(x)) =







e−Kδ̃K(x) j = 1

e−Kδ̃K(x)

(

[Kδ̃K(x)]
j−1

(j−1)! − [Kδ̃K(x)]
j−2

(j−2)!

)

j ≥ 2
(3.54)and

Θ(x) =

∣

∣

∣

∣

∣

1

(j − 1)!

∫ − logG1(x)

Kδ̃K(x)

ωj−1e−ωdω

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

(j − 1)!

∫ x−M+1

x−M+1

ωj−1e−ωdω

∣

∣

∣

∣

∣

= 0 (3.55)In the following, we apply the theorem to �nd out how Fj:K(x) is lose to its l.d. at
x = (log

√
K)1/(M−1) and x = (log

√
K)−1/(M−1).Substituting x = (log

√
K)1/(M−1) and x = (log

√
K)−1/(M−1) in Υj

1(x), we obtain
Υj

1

(

(log
√
K)

1
M−1

)

= e
− 1

log
√

K

j−1
∑

i=1

1

i!(log
√
K)i

= 1−O(1/ logK) (3.56a)
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Υj

1

(

(log
√
K)−

1
M−1

)

= e− log
√
K

j−1
∑

i=1

(log
√
K)i

i!
= O

(

(log
√
K)i)√
K

) (3.56b)Thus,
∣

∣

∣Υ
j
1

(

(log
√
K)

1
M−1

)

−Υj
1

(

(log
√
K)−

1
M−1

)∣

∣

∣ ≥ 1−O(1/ logK) (3.56)Then, for x = (log
√
K)1/(M−1), we have δ̃K((log

√
K)1/(M−1)) = 1

K log
√
K
, hene

Kδ̃2K((log
√
K)1/(M−1))g(j,Kδ̃K((log

√
K)1/(M−1))) = o(1/K)Therefore, we have

∣

∣

∣

∣

Fj:K

(

(K log
√
K)

1
M−1 − 1

)

−Υj
1((log

√
K)

1
M−1 ) + o

(

1

K

)∣

∣

∣

∣

= O

(

1

K2

) (3.57)In the same way, for x = (log
√
K)−1/(M−1), we have δ̃K((log

√
K)−1/(M−1)) = log

√
K

K ,hene
Kδ̃2K((log

√
K)−1/(M−1))g(j,Kδ̃K((log

√
K)−1/(M−1))) = o(1/K)Therefore, we have

∣

∣

∣

∣

∣

∣

Fj:K





(

log
√
K

K

)− 1
M−1

− 1



−Υj
1((log

√
K)−

1
M−1 ) + o

(

1

K

)

∣

∣

∣

∣

∣

∣

= O

(

(log
√
K)3

K

)(3.58)Using (3.56),(3.57), and (3.58), we obtain
∣

∣

∣

∣

∣

∣

Fj:K

(

(K log
√
K)

1
M−1 − 1

)

− Fj:K





(

log
√
K

K

)− 1
M−1

− 1





∣

∣

∣

∣

∣

∣

≥ 1−O (1/ logK) (3.59)or equivalently
Pr







(

log
√
K

K

)− 1
M−1

− 1 ≤ Xj:K ≤
(

K log
√
K
)

1
M−1 − 1







≥ 1− O
(

1

logK

) (3.60)3.F Proof of Theorem 3.2Sine J (P1) is not always onave in P1, the P ∗
1 that maximizes the objetive funtionis either the boundary points (P1 = 0 and P1 = P ) or the solutions orresponding to

∂J /∂P1 = 0. By di�erentiating the objetive funtion with respet to P1, we have
∂J
∂P1

= AP 2
1 +BP1 + Γ (3.61)where

A = ηk12ηk22(ηk11 − ηk12)(Pηk21 + σ2) + ηk11ηk21(ηk21 − ηk22)(Pηk12 + σ2)

B = ηk11(Pηk12 + σ2)(Pηk21ηk22 + 2ηk21σ
2 − ηk22σ

2)

+ ηk22(Pηk12 + σ2)(Pηk21 + σ2)(2ηk12 − ηk11)
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Γ = ηk11σ

2(Pηk12 + σ2)(Pηk22 + σ2)− ηk22(Pηk21 + σ2)(Pηk12 + σ2)2Setting ∂J
∂P1

= 0, the possible values of P1 that maximize the throughput are the real-valuedroots of the seond-order polynomial AP 2
1 + BP1 + Γ = 0 (for A 6= 0) that satisfy theonstraint P1 ∈ [0, P ] or P1 = −Γ/B for A = 0. Hene, the optimum P ∗

1 is the value amongthe boundary points (P1 = 0 and P1 = P ) and the extreme points (roots of the polynomial)that maximizes J (P1), whih onludes the proof.3.G Proof of Lemma 3.4Let Ji(Pi)(i = 1, 2) represent the individual rate of user ki given as
Ji(Pi) = log2

(

1 +
Piηkii

σ2 + (P − Pi)ηkij

)

= log2

(

1 +
Pi

σ2/ηkii + αki(P − Pi)

)

, j 6= i(3.62)The sum-rate maximizing beam power alloation problem an be rewritten as
max
P∈P2

J1(P1) + J2(P2) subjet to P1 + P2 = PWe investigate now the behavior of the individual user rate objetive funtion. By alulat-ing the �rst and seond derivative of Ji(Pi) we have
∂Ji(Pi)
∂Pi

=
∆ + αkiPi
∆(∆ + Pi)

> 0
∂2Ji(Pi)
∂P 2

i

=
d1(∆ + αkiPi)

d2
(3.63)with ∆ = αki(P − Pi) + σ2/ηkii, d1 = (2αki − 1)∆ + αkiPi, and d2 = ∆2(∆ + Pi)

2. Thesign of d1 determines the onvexity or onavity of Ji(Pi). If d1 > 0 → Pi >
(

1
αki
− 2
)

∆,
Ji(Pi) is a onvex funtion of Pi, and onave otherwise. Sine ∆ > 0, for αki ≥ 0.5the objetive funtion Ji(Pi) is onvex ∀i, i.e. ∂Ji(Pi)

∂Pi
> 0, hene the sum of two onvexfuntions J1(P1) + J2(P2) is maximized for P ∗

1 = P and P ∗
2 = 0.3.H Proof of Lemma 3.5Let RTDMA = log2

(

1 +
Rηk11

σ2

) denote the system throughput for TDMA mode. TDMA isoptimal when RTDMA ≥ R(P)⇒ log2

(

B(P1)
C(P1)

)

≥ 0, where
B(P1) = (1 + Pηk11/σ

2)(Pαk1ηk22 + σ2)((P − P1)αk1ηk11 + σ2)

C(P1) = (Pαk1ηk11 + P1ηk11(1− αk1) + σ2)(Pηk22 + P1ηk22(αk2 − 1) + σ2)The region of TDMA optimality depends on the onvexity of Ψ(P1) = B(P1) − C(P1). Bydi�erentiating twie we have that
∂2Ψ(P1)

∂P 2
1

= −2ηk11ηk22

(

Pηk11
σ2

αk11αk22 + αk11 + αk22 − 1

) (3.64)For ∂2Ψ(P1)
∂P 2

1
≤ 0, Ψ(P1) is onave with respet to P1 (Ψ(P1) ≥ 0), sine Ψ(0) ≥ 0 and

Ψ(P ) = 0, whih results in (3.29).



70 Chapter 3 Enhaned Multiuser Random Beamforming3.I Proof of Proposition 3.3The average sum rate of TDMA-based random opportunisti beamforming is given by
R = E
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}
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∫ ∞
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∫ ∞

0

1
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(1− FKs (x))dx = log2 e

∫ ∞
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∫ ∞
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(
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)

(−1)ke
kσ2

P Ei(−kσ2

P
)where integration by parts is applied to obtain (a) and (b) follows from binomial expansion.



Chapter 4
Exploiting Channel Struture inMIMO Broadast Channels
4.1 IntrodutionExploiting multiuser diversity by seleting at eah sheduling window the user(s) with themost favorable hannel realizations is known to maximize the sum rate of multiuser systems.However, several pratial impliations may limit the appliability of suh opportunistisheduling shemes. Several opportunisti shemes required omplete hannel knowledge inorder to fully bene�t from multiuser diversity gains. This may lead to prohibitive feedbakrequirements in FDD systems and/or lak of robustness to CSIT errors in TDD setups. Thesigni�ant feedbak overhead in the uplink hannel an be alleviated by feeding bak oarse,quantized CSIT. The feedbak load an be also redued by allowing only users likely to beseleted, i.e. users with large CQIs, to aess the feedbak hannel.For simpliity, many ontributions in the limited feedbak literature adopt a spatiallywhite, blok fading hannel model, in whih eah hannel realization remains onstant overone blok and hanges independently in the next blok. Nevertheless, the blok fadinghannel model is rather pessimisti in pratie, sine temporal and spatial orrelation oftenexists. In this hapter, we fous on suh orrelated hannel senarios and show that thishannel struture, either in time or in spae domain, an be seen as an additional degreeof freedom to be exploited during the sheduling phase. We show this additional hannelinformation an be used for signi�ant throughput inrease and/or feedbak redution andompression.In time-varying hannel on�gurations, the inherent temporal redundany an be ex-ploited for:
• Feedbak aggregation: information derived from low-rate feedbak hannel an beumulated over time to approah the performane of full CSIT senario.71



72 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channels
• Feedbak ompression: the hannel an be seen as a Markov soure and redundanyis exploited to redue feedbak lose to rate of innovation.In spatially-orrelated hannels, long-term statistial hannel knowledge an reveal infor-mation about the mean spatial separability of users, thus it ontains relevant informationfor the SDMA sheduler. For instane, two users in very di�erent areas of the ell are morelikely to be separable than losely loated users beause their hannels lie in two distintones of energy as seen by the BS, if reasonably limited angle spread at the BS is assumed.Note that the angle information is impliit in the transmit orrelation matrix of the user'shannel and needs not be estimated. Moreover, statistial CSIT an be easily obtained bythe mobile and fed bak to the transmitter while ausing almost negligible per-slot feedbakoverhead.The remainder of the hapter is organized as follows: in the �rst part, we fous on time-orrelated hannels and address the question how temporal orrelation an signi�antlyimprove user sheduling deisions and ahieve near optimal sum rate. Spei�ally, we pro-pose a sheme that builds on random multi-beam beamforming [9℄, in whih hannel memoryis exploited as a means to suessively re�ne the random preoder seletions. In the seondpart, we address the problem of SDMA sheduling and beamforming with limited feedbakin spatially-orrelated hannels. Several user seletion strategies exploiting statistial CSITare investigated. We show how seond-order statistial information is ombined with in-stantaneous CQI and derive a oarse hannel estimation framework. Finally, we proposea low-omplexity, interferene-bounded SDMA eigenbeamforming sheme, whih relies onmulti-user interferene estimates (bounds).4.2 Exploiting redundany in time-orrelated hannels4.2.1 User Seletion in time-orrelated hannelsConsider that the hannel exhibits orrelation from one sheduling time slot to the other.Evidently, in suh on�gurations, the sheduling deisions exhibit in turn some form oforrelation over suessive intervals. In other words, hannel orrelation in the time domainreates temporal redundany, whih an be exploited as means to either redue feedbakrate or inrease the system throughput. If the hannel varies slowly, then learly the bestuser in terms of hannel quality at urrent time slot τ is highly likely to be the best userat the subsequent time slots τ + Tc. Therefore, the fat that previously seleted usersare highly likely to remain good an be further exploited during the user seletion proess.Temporal orrelation has been exploited in paket swith design, either by using a maximumweight mathing algorithm [81℄ or by a randomized algorithm exploiting temporal orrelationof queue states [82℄. In [83℄, the authors proposed a randomized sheduler that exploitstemporal orrelations in slow fading hannels.4.2.2 Beamforming and Sheduling exploiting temporal orrelationSine sheduling and linear preoding is the leitmotiv of this dissertation, we address theproblem how to exploit temporal orrelation and enhane the sum-rate performane of low-omplexity multiuser transmission tehniques in MISO broadast hannels. We present a



4.2 Exploiting redundany in time-orrelated hannels 73novel SDMA sheduling/preoding sheme, oined as Memory-based Opportunisti Beam-forming (MOBF). The sheme builds on multi-beam random beamforming [9℄ presented inSetion 2.9.3, and exploits memory in the hannel as a means to �ll the gap to sum-rateoptimality.In a nutshell, MOBF replaes the random seletion of preoding matries with a ombi-nation of random and past feedbak-aided beamforming matries that are kept in memory.The sheme an be seen as suessive re�nement of the preoding matrix inside the oher-ene time of the hannel. When the oherene time of the hannel is high (e.g. large Dopplerspread), MOBF approahes the sum apaity of optimal unitary preoder with perfet CSIT.For unorrelated i.i.d. hannels, the performane of the proposed sheme remains superiorto that of [9℄ at the expense of moderate additional feedbak (two SINR values per userinstead of one).Interestingly, the sheme an be seen to also relate to reent useful results [84℄, presentedto improve the delay performane of the single-beam opportunisti beamforming [53℄. In [84℄sheduling is limited to one user and temporal hannel orrelation is exploited through theuse of a �xed set of beams determined in advaned. This sheme does not automatiallyreah the performane of a full CSIT senario, sine the temporal orrelation was used torestore fairness and users with long waiting times are prioritized. Another sheme thatexploits temporal orrelation in orthogonal frequeny division multiple aess (OFDMA)systems have been proposed in [85℄.4.2.3 Memory-based Opportunisti BeamformingAs stated before, MOBF builds on random beamforming (f. Setion 2.9.3), in whih thetransmitter generates at eah time slot t a B × B (B ≤ M) unitary preoding matrix Q(t)randomly, as a means to redue the feedbak burden and omplexity requirements, i.e.
W(t) = Q(t) = [q1(t) . . .qB(t)]. In onventional RBF [9℄, a new random unitary preodingis generated and used for serving the seleted users at eah time slot. Hene, any kind ofstruture in the physial hannel is not exploited. Memory-based Opportunisti Beamform-ing attempts to exploit memory in the hannel by making at eah time slot an improvedseletion of the unitary preoding matrix based on past CQI information. Temporal orre-lation is exploited by memorizing the previous best sheduling deision(s), i.e. the groupof seleted users S for a random preoder Q(t), and omparing it with the next randommathings Q(t+ i) for i = 1, . . . , Tc.Spei�ally, we onsider that the BS has a odebook (set) of `preferred' unitary matries ofsize U :

Q = {Q1,Q2, . . . ,QU} (4.1)with Q ⊆ U(M,M), where U(M,M) denotes the unitary group of degree M , i.e. the groupof M ×M unitary matries de�ning the omplex Stiefel manifold. The notion of `preferred'is used in the sense of (relative) maximization of the sum rate among past used randombeamforming matries.At eah time instant t, the unitary matrix of the preferred set, denoted Q̃ and de�ned as thepreoder that has provided the highest sum rate in previous time slots, is applied and its sumrate is measured (updated) under urrent hannel onditions. The ahievable sum rate of Q̃at time slot t+ 1 is ompared with that of a new, randomly generated unitary matrix Qr,



74 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channelsand the beamforming matrix that o�ers the highest sum rate is seleted for transmission. Inthe phase of updating the odebook Q, the sum rate value of Q̃ in the odebook is updated,and the newly generated random preoder Qr is added into the odebook if and only if itssum rate is higher than the sum rate of the odebook matrix with the minimum sum rate.Let St denote the set of seleted users at eah sheduling window t and H(St) be theorresponding submatrix of H = [hT1 . . .h
T
K ]T . With R(Q,St) we denote the sum rate whenunitary beamforming matrix Q is used for serving the users belonging to St. The steps ofthe proposed algorithm are outlined in Table 4.1.Table 4.1: Memory-based Opportunisti Beamforming AlgorithmMemory-based Opportunisti Beamforming (MOBF) AlgorithmFirst phase: (`best' unitary matrix seletion)Step 0 Initialize odebook Q = {Q1,Q2, . . . ,QU},eah with sum rate R(Qi), i = 1, . . . , UAt eah time slot t,Step 1 Generate a new random preoder QrStep 2 Selet Q̃ ∈ Q : Q̃ = arg max
Qi∈Q

R(Qi)Step 3 Apply Q̃, ollet updated feedbak from the usersand alulate R(Q̃,St+1)Step 4 If R(Q̃,St+1) > R(Qr,St), Q∗ → Q̃ , else Q∗ → QrSeond phase: (Update of odebook Q)Step 5 Update the value R(Q̃) in the set QStep 6 If [R(Qr) > R(Qmin)], Qmin → Qr, where Qmin = arg min
Qi∈Q

R(Qi))Some omments are in order: The algorithm outlined in Table 4.1 presents a generalframework for memory-based, randomized sheduling in slow time-varying hannels. First,in pratie, at eah time slot t the set Q ontains only one preoder matrix (U = 1), i.e.the one that has provided the highest system throughput up to the urrent time instant.Seondly, although MOBF is based on RBF for preoding and user seletion, our proposedsheme is not only restrited to suh systems. The idea of memory-based preoding an bealso applied to systems where the users utilize a odebook to quantize their hannels andfeed bak quantized CDI. If the hannel is strongly orrelated, the above onept an beused to redue the feedbak load by dereasing the feedbak reporting rate. At eah slot,additional CDI is then fed bak only if it is su�iently di�erent than the one previouslyreported. Alternatively, if we enfore CDI reporting at eah time instant, users may have thepossibility to re�ne their CDI information at eah time slot, using hierarhial odebooks.



4.2 Exploiting redundany in time-orrelated hannels 75Performane AnalysisThe underlying idea behind the sum-rate analysis of MOBF is the following: the proessof memorizing at eah sheduling slot the sum-rate maximizing preoding matrix an beseen as a random searh of beamforming on�gurations in the spae of orthogonal unitarypreoders. Evidently, the performane of suh sheme depends on the distribution of thesum rate onditioned to a ertain hannel realization H(S) for the seleted group of users
S. To simplify our analysis, we �x the hannel of the seleted users to a ertain realization
H and we analyze the properties of Xi = R(Qi,H), whih represents the sum rate providedby random unitary matries Qi for a given hannel H. Therefore, {Xi}∞i=1 is a randomproess whose distribution depends on the underlying random variable Qi. For �xed hannelrealization, Xi is i.i.d. for i with assoiated PDF fX(·) and CDF FX(·). If the hannel isquasi-stati, memory-based beamforming aims at �nding the unitary beamforming matrix
Q∗ from the feasible set of unitary matries U that maximizes the sum rate. This an bemathematially written as:

Q∗ = arg max
Qi∈U

R(Qi) = arg max
1≤i≤|U|

Xi (4.2)Note that this optimization returns one out of possibly many global maximizers Q∗ sinethe global maximizer is not unique, i.e. R(Q∗) = R(Q∗Q′H), for any Q′ ∈ U . However,the maximum value of the sum rate, X∗ = R(Q∗,H), is unique over the set U .Assuming that the set of unitary matries U is �nite with ardinality |U|, then for |U|i.i.d. random unitary matries {Qi}|U|
i=1, the ahievable sum rate X∗ is given by

X∗ = max
1≤i≤|U|

Xi =

∫ ∞

0

xdF
|U|
X (x) (4.3)For asymptotially large |U|, the distribution of max

1≤i≤|U|
Xi onverges - after proper shiftingand saling - to a limiting distribution (l.d.) of Gumbel, Fréhet or Weibull type. However,as the exat form of the CDF FX(x) is di�ult to obtain, the exat l.d. is di�ult to beinferred. Hene, we resort to the following result in order to derive the asymptoti (in |U|)onvergene of our algorithm.Proposition 4.1: Consider a hannel with memory L = Tc

Ts
, where Tc is the hanneloherene time, and Ts is the slot duration. For L → ∞, the sum rate of memory-basedbeamforming RMOBF onverges to the apaity of optimum unitary beamforming R∗ for agiven hannel H:

RMOBF →R∗ = max
Q∈U
R(Qi,H) (4.4)Proof. The proof is given in Appendix 4.A.The above result implies that the maximum of the sum rate o�ered by using variouspreodersQi onverges asymptotially to the optimum apaity of unitary beamformingR∗.As a result, the orresponding unitary preoding matrix, denoted Q∗, whih orrespondsto the matrix that maximizes the sum rate onverges to one of the possibly many optimumunitary preoders. Therefore, if the hannel is quasi-stati (very large L), the odebook ofMOBF will ontain an optimal beamforming matrix, i.e. a unitary matrix that maximizesthe sum rate for a ertain hannel realization.



76 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channels4.3 Performane evaluationFor the evaluation of MOBF, we onsider a time-varying Rayleigh fading hannel where thefading hannels hk(t) are i.i.d. among users and transmit antennas. We onsider that thehannel evolves aording to the Clark-Jake's Doppler model, with autoorrelation funtion
E{h(t)h(t + ℓTs)} = J0(2πfdℓTs) where fd denotes the one-sided Doppler bandwidth (inHz). We set Ts=1 ms and arrier frequeny equal to 2GHz. The average SNR is set to 0dB for all users.In Figure 4.1, we plot the sum rate of MOBF versus the number of transmit antennasMfor di�erent Doppler spreads and K = 20 ative users. Expetedly, the apaity of MOBFinreases as the hannel order (memory) inreases. Furthermore, MOBF exhibits the sameapaity saling as that of RBF. The worst performane is ahieved for a rapidly time-varying hannel with memory L = 1, where the probability that the `preferred' matrix willbe valid if reapplied falls to 1/2. In this ase, MOBF bene�ts from seletion diversity gainas ompared to onventional RBF. This means that MOBF is equivalent to a RBF shemewhere two randomly generated preoders are generated and the one with the highest sumrate is applied. The sum rate of MOBF is also plotted for a stati hannel (L → ∞). Inthat ase, the traking apability of our algorithm is inreased and the transmitter is ableto suessively `learn' the hannel diretions of users, approahing thus the ase of ompleteCSIT. Note also that MOBF ahieves high sum rate even for �xed, but not neessarily large,number of users.
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Figure 4.2: Sum rate as a funtion of number of users K of MOBF for di�erent Dopplerspreads.4.4 Exploiting Statistial CSIT in Spatially CorrelatedChannelsApart from exhibiting temporal orrelation, in real wireless systems, users' hannels are oftenorrelated in the spae domain. In the following setions, we onsider an outdoor ellular(wide-area) network, for whih the i.i.d. spatially white hannel model used so far in thisdissertation does not hold. In pratie, eah user tends to exhibit di�erent spatial hannelstatistis, whih is aptured by its hannels orrelation matrix. For ease of exposition, notemporal hannel orrelation is onsidered below.We assume that the transmitter has statistial CSIT, i.e. information of the statistis ofthe wireless stohasti propagation hannel. This is a reasonable and pratial assumptionsine statistial CSIT has the advantage of longer oherene time as ompared to that of thefading hannel, thus it an be easily obtained by the mobile and fed bak to the BS at lowrate. Furthermore, several forms of statistial CSIT are even reiproal, e.g. the seond-order orrelation matrix, the power of Riean omponent, et., and do not neessitate anyfeedbak to be revealed to the transmitter. A key observation here is that useful informationrelevant to the sheduler lies untapped in the long-term statistial information of the user'shannels. Seond-order statistial hannel knowledge reveals a great deal of information onthe marosopi nature of the underlying hannel, inluding the multipath's mean angle ofarrival/departure and its angular spread.On the other hand, in order to exploit multiuser diversity during the sheduling proe-dure, the transmitter must have some form of instantaneous CQI for eah user as a means todistinguish favorable from unfavorable hannel realizations. The question we try to answerhere is whih type of low-rate CQI is relevant and su�ient in order to minimize the feedbakload, while allowing the sheduler to extrat multiuser diversity gain. A generi maximumlikelihood (ML) oarse hannel estimation framework is established, whih let the BS to



78 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channelse�iently selet users ombining statistial CSIT and instantaneous CQI. Low-omplexityuser seletion metris and algorithms are also proposed. Finally, in order to better estimatethe inter-user interferene, we augment the per-slot CQI feedbak with instantaneous salarCDI on beamforming alignment. We demonstrate the merit of hannel/beamforming align-ment information and propose SDMA eigenbeamforming based on inter-user interfereneestimates.Combining the seond-order hannel statistis with instantaneous CQI for resoure al-loation was also onsidered in [86℄ for point-to-point systems. In [87, 88℄, Hammarwall etal., proposed a minimum mean squared error (MMSE) estimation framework for ombiningCQI and long-term CSIT. The signal/interferene power estimates, whih are omputedby the onditional moments of the hannel, are used for SINR estimation, sheduling andtransmission.4.4.1 System SettingWe onsider the downlink of a ellular FDD system with single-antenna mobiles and orrela-tion between the hannels gains of di�erent antennas. This senario models an environmentwhere transmit antennas are plaed for instane at an elevated high-point base station, i.e.the near-�eld sattering at the transmitter is limited [89℄. We assume that the reeivers areloated in a rih-sattering surrounding, thus orrelation appears only at the transmitterside.Channel ModelThe hannel vetor of k-th user is modeled as satis�es hk ∼ CN (h̄k,Rk). This means thatthe omplex random vetor hk ∈ CM×1 is irularly-symmetri Gaussian distributed, withmean h̄k = E{hk} and ovariane matrix Rk = E{(hk − h̄k)(hk − h̄k)
H}. Its multivariatePDF is given by

fh (hk) =
1

πM |Rk|
exp

{

−(hk − h̄k)
HR−1

k (hk − h̄k)
} (4.5)The orrelation matrix Rk ∈ C

M×M , whih is perfetly known at both ends of the link, isassumed to be dominated by one or a few eigenvalues. This is a valid assumption sine thestatistial hannel information hanges slower than the small-sale fading of the hannel,and an be obtained with low or no additional feedbak.Instantaneous CQI FeedbakAt eah sheduling slot, the users feed bak instantaneous information on their hannelquality (CQI), denoted as γk. A general representation of CQI utilized in this hapter is
γk =

∥

∥hHk Zk
∥

∥

2 (4.6)where Zk ∈ CM×T an be seen as a training matrix ontaining T vetors {zki}Ti=1, resultingin a weighted norm of the hannel vetor. The CQI feedbak an take on among othersthe following forms, depending on the system feedbak rate and pilot signaling overheadonstraints:
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• Strategy 1 : γk =

∣

∣hHk z1

∣

∣

2 (beam gain information - T=1)
• Strategy 2 : γk = ‖hk‖2 (hannel norm feedbak - Zk = I)In what follows, we fous on the above two CQI feedbak strategies.4.4.2 User Seletion with ML Channel EstimationOptimal User SeletionIf we restrit ourselves to the ase of joint linear beamforming and sheduling, the optimaluser seletion poliy is to exhaustively searh over all the user sets for all ombination offeasible beamformers and selet the one that maximizes the system throughput. Formally,the optimal group of seleted users is determined as

S∗ = arg max
∀S,W

R(S,W) (4.7)where R(S,W) is the ahievable sum rate when the user set S is served using preoder W.The problem may be extremely omplex for dense networks, sine the searh omplexityinreases exponentially with the number of users. The omplexity an be redued by takinginto aount a smaller group of pre-seleted users. This group may be de�ned based onoarse hannel knowledge, whih is obtained by very low-rate feedbak.MSE User Seletion MetriHere we redue the omplexity of optimal user seletion by restriting the hoie of thepreoding matrix to be the one that minimizes the mean-square error (MSE) between thereeived and symbol vetors. Thus, the objetive here is to �nd the optimal group of usersunder MMSE preoding WMMSE(S). We �rst derive the solution assuming full CSIT inorder to gain insight. Let H ∈ CK×M denote the onatenation of all hannels, H =

[h1, . . . ,hK ]
H , where the k-th row is the hannel of the k-th reeiver (hHk ). Mathematiallythe problem an be expressed as

WMMSE(S) = arg min
W

‖W‖2
F≤P

E
{

||s(S) − y(S)||2
} (4.8)whih results in the following optimal preoding matrix

WMMSE(S) =
(

H(S)H(S)H + βI
)−1 (4.9)where β is the non-negative Lagrange multiplier tuned to ful�ll the transmit power on-straint. When the riteria is to maximize the sum rate, the regularization onstant takesthe value β = Mσ2/P [34℄. Inserting this solution into to the MSE minimization problem(with ost funtion JMMSE, it an be shown that the MMSE level is given by

JMMSE(S) = M − 2Re{Tr (WMMSE(S)H(S))

+ Tr(WMMSEH(S)H(S)H (S)WMMSE(S)H ) +Mσ2}where Re{·} denotes the real part. We should remark that the downlink MMSE preodersdo not in fat minimize the MSE at the reeiver side, sine the preoder a�ets all reeived



80 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channelssignals before noise is introdued. The MSE user seletion metri that minimizes the MSEfor the seleted group of users S∗ is given by
S∗ = argmax

S
2Re

{

Tr
{

Ψ(S) (Ψ(S) + βI)
−1
}}

− Tr

{

(

Ψ(S) (Ψ(S) + βI)
−1
)2
}

= argmin
S

Tr

{

(

(

H(S)H(S)H + βI
)−1
)2
} (4.10)where Ψ(S) = H(S)H(S)H .If we onsider that the sheduler has only statistial knowledge of the hannels, i.e. reliesonly on the orrelation matries, eq. (4.10) an be approximated by replaing Ψ(S) by itsstatistial estimate Ψ̂(S). In this hapter, we onsider that Ψ̂(S) may take the followingtwo forms:

• Ψ̂(S) = R(S) if no additional instantaneous CQI is available at the sheduler. Theonatenated orrelation matrix is de�ned R(S) =
∑

k∈S Rk = E{H(S)H(S)H}.
• Ψ̂(S) = Ĥ(S)Ĥ(S)H , where Ĥ is the onatenation of hannel estimates ĥk ombininglong-term statistial knowledge and instantaneous CQI feedbak.In that ase, the MSE minimizing group of users S∗CE based on hannel estimates (CE) isgiven by

S∗CE = arg min
S

Tr

{

(

(

Ψ̂(S) + βI
)−1

)2
} (4.11)Greedy User SeletionIn the previous setion, determining the optimal set of spatially separable users, S∗, requiresexhaustive searh over the entire user set. However, when is K large, the omplexity ofoptimal user seletion beomes prohibitively high, sine the size of its searh spae∑M

i=1

(

K
i

)is large. A suboptimal, yet e�ient, greedy user seletion sheme an be used instead, similarto the approah in [11℄. Here we extend this sheme for MMSE linear beamforming withlong-term spatial information and instantaneous salar CQI feedbak γk. The proposedgreedy user seletion algorithm is given in Table 4.2. In this algorithm, users are added oneby one to the set. The omplexity an be redued by onsidering only users exeeding athreshold γth. The user with the highest CQI is examined at eah time, and it is addedto the set of sheduled users S only if it results in sum-rate inrease. We should note thatthe overall performane of greedy user seletion depends heavily on whether the preodingmatrix an be reproessed eah time a user is added, whih in turn depends on the form ofthe hannel feedbak available at the transmitter.4.4.3 ML oarse Channel Estimation with CQI FeedbakAs stated before, the orrelation matrix provides useful information about the spatial han-nel harateristis, espeially if it is ill-onditioned, however it does not reveal any infor-mation about the quality of the urrent hannel realization. In order to exploit multiuserdiversity, the sheduler requires properly designed instantaneous low-rate feedbak γk, whih



4.4 Exploiting Statistial CSIT in Spatially Correlated Channels 81Table 4.2: Greedy User Seletion with Statistial CSITGreedy User Seletion with statistial CSITAt eah time slot t1. Initialize S = ∅ and G = ∅.2. Selet the users that exeed the threshold γth
G = {∀k ∈ {1, . . . ,K}|γk ≥ γth}3. Selet the user with the highest CQI value

kmax = arg max
1≤k≤K

γk

S ← S ∪ {kmax} , G ← G \ S4. Repeat
k∗ = arg min

k∈G
Tr

{

(

(

Ψ̂(S) + βI
)−1

)2
}

S ← S ∪ {k∗} , G ← G \ Suntil |S| = M5. Return user set San be a measure of the quality of the urrent hannel. In this setion, we restrit ourselvesto Rayleigh fading orrelated hannels, i.e. h̄k = 0, and we propose a simple framework inwhih long-term statistial hannel knowledge is ombined with short-term partial CSIT asa means to provide a oarse hannel estimate at eah slot.ML Estimation with Beam Gain InformationWe adopt here the feedbak strategy 1 and onsider that eah user k feeds bak the squaredmagnitude of the hannel with a beamforming vetor zk ∈ CM×1, i.e. γk =
∣

∣hHk zk
∣

∣

2. Thebeamforming vetors an be interpreted as pilot signals during the training phase or asthe preferred beamformer in a two-stage preoding and sheduling approah (see Setion3.4). This beamformer an be hosen randomly or it an be optimized based on long-termstatistial information.Optimized training vetors As the orrelation matrix of eah user is known at thetransmitter side, the training vetors zk an be optimized. Brie�y speaking, an e�ienttraining odebook an ontain N = Np +Nl +Nr vetors, where the indies p,l,r indiateprinipal, loal, and random, respetively as explained below. The odebook onstrutionfollows a three-step proedure:



82 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channels1) Based on eah user's statistial CSIT, the odebook will ontain Np prinipal eigenvetorsof the ovariane matrix Rk (Np = 1 for MISO hannels).2) In this step, we selet Nl vetors in the loal area of eah prinipal statistial diretion vkas a means to aount for those hannel realizations that steer the prinipal singular vetorin a loality of the prinipal statistial diretion. The loal area of the prinipal statistialdiretion is de�ned by a one around vk and is haraterized by the angle between thetraining and the prinipal statistial vetors.3) During the third step, we generate Nr vetors that are outside the one de�ned in step 2and aount for the hannel realizations in whih the diretion of the prinipal right singularvetor (or vetor hannel) is far from the statistial (mean) hannel diretion. These vetorsan be hosen randomly or as the ones that overs optimally the remaining spae, outsidethe one, whih is related to the Grassmannian line paking problem. In the ideal ase, thesize of Nr should be adapted based on the strength of orrelation, as it gives a measure onthe frequeny that these deviations our.Random training vetors For simpliity, we rather adopt a low-omplexity approahand onsider a random opportunisti beamforming setting [9℄. In this setting, we assumethat the vetors zk are isotropially distributed and hosen randomly, i.e. zk = qm where
{qm}Mm=1 are the olumns of the unitary matrix Q. We ombine the information ex-trated from the orrelation matrix with a salar instantaneous feedbak in the form of
γk = |hHk q̃k|2, where the vetor zk = q̃k is hosen by user k as

q̃k = arg max
m=1,...,M

|hH
k qm|2 (4.12)Clearly, this type of salar CQI provides a joint instantaneous measure of the quality of theurrent hannel realization and its diretion of the hannel instantaneously. Although theamount of spatial information enapsulated into this metri annot be deomposed fromthe hannel gain information, it is partiularly useful for users with strong hannels, i.e.users that are very likely to be sheduled. It an be also shown that the hoie of q̃k isequivalent to seleting the beam over whih user k experiene the highest reeived SINRkin [9℄. Assume that user k has its maximum SINR on beam i out of the j ∈ {1, . . . ,M},de�ned as:

i = argmax
j

xj

c− xj
(4.13)where xj =

∣

∣hHk qj
∣

∣

2 with 0 < xj < c, and c =
∑M
m=1

∣

∣hHk qm
∣

∣

2
+ Mσ2/P is a positiveonstant. De�ning the funtion f(x) = x

c−x , we have that lim
x→0

f(x)→ 0 and lim
x→c

f(x)→∞.Sine f(x) is always monotonous positive for x ∈ (0, c), we have that
i = arg max

j
f(xj) = max

j
xj (4.14)or equivalently argmax

j
SINRk,j = arg max

j

∣

∣hH
k qj

∣

∣

2.Constrained Maximum Likelihood OptimizationWe propose a ML estimation framework that ombines long-term statistial knowledgeand instantaneous CSIT provided by the feedbak metri γk. This feedbak allows us to pik



4.4 Exploiting Statistial CSIT in Spatially Correlated Channels 83users whose hannels span spatially separated ones of multipath and have good hannelgains. This so-alled Constrained Maximum Likelihood (CML) hannel estimate is theone that maximizes the log-likelihood funtion of the PDF (4.5) onditioned to the salarfeedbak onstraint γk = |hHk q̃k|2:
ĥk = argmax f(h|γk) (4.15)This results to the following optimization problem:
maxhk

hHk Rkhk

s.t. |hHk q̃k|2 = γk
(4.16)It an be easily shown that (4.16) is equivalent to solving the following generalized eigenvalueproblem (GEV): Rkhk = λΦkhk, where Φk = q̃kq̃

H
k . The maximum generalized eigenvalueof the Hermitian matrix pair (Rk,Φk), with Φk > 0 is de�ned as

λmax(Rk,Φk) = sup{λ|det(λΦk −Rk) = 0} = sup
q 6=0

hHk Rkhk

hHk Φkhk
(4.17)The solution of (4.16), in the view of the generalized Rayleigh-Ritz quotient, is given by

ĥk = arg max
hk

hH
k Rkhk

hH
k Φkhk

(4.18)whih orresponds to the dominant generalized eigenvetor, denoted as uk, assoiated withthe largest positive generalized eigenvalue of the Hermitian matrix pair (Rk,Φk). Therefore,the ML hannel estimate is given by
ĥk =

√
γk

|q̃Hk uk|
uk (4.19)Orthogonal Basis expansionThe solution of the CML estimate as a generalized eigenvalue problem requires the om-putation of the prinipal generalized eigenvetor at eah time slot, thus it may exhibitremarkable omputational omplexity in pratie. In order to failitate the alulation ofthe oarse estimate, we derive an equivalent hannel estimation framework in whih thehannel of the k-th user is expressed as a linear ombination of orthogonal vetors. Al-though any orthogonal basis an be used, in the ase of random training vetors it is morenatural to hoose the beamforming vetors {qm}Mi=1 as our orthonormal basis. In that ase,the hannel vetor an be expressed as

hHk =

M
∑

m=1

αmqHm (4.20)where αm are the (omplex) weights of the orthogonal expansion.Consider, without loss of generality, that q1 orresponds to the best beam hosen byuser k. Substituting (4.20) into (4.16), and solving the optimization problem (4.16) usingLagrange multipliers, we obtain that the optimal weights bopt = [α2, · · · , αM ]
T equal to

bopt = −α1A
−1c (4.21)



84 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channelswhere
c =

[

qT2 R−1
k q∗

1, · · · ,qTMR−1
k q∗

1

]T

A =

[

qT2 R−1
k q∗

2

qT3 R−1
k q∗

2

]and α1 =
√
γk so that the instantaneous CQI feedbak onstraint is satis�ed.Observing the similarity in the struture of matrix A with that of QTR−1

k Q∗, the omputa-tional omplexity of the matrix inversion of A an be further redued through use of blokmatrix deomposition. Denote F = QTR−1
k Q∗, then

F =













qT1 R−1
k q∗

1 qT1 R−1
k q∗

2 · · · qT1 R−1
k q∗

M

qT2 R−1
k q∗

1... A

qTMR−1
k q∗

1











The inverse A−1 an be easily obtained using the equation:
S−1
A

[

1 −cHA−1

−A−1c S−1
A A−1 + A−1ccHA−1

]

= F−1where SA = qT1 R−1
k q∗

1 − cHA−1c is the Shur omplement of A and F−1 = QTRkQ
∗ as Qis unitary.ML Channel Estimation with Channel Norm FeedbakConsider now that the instantaneous CQI metri takes on the form of the hannel norm, i.e.

γk = ‖hk‖2. Clearly, the above diretion independent CQI feedbak provide less instanta-neous spatial information than γk =
∣

∣hHk zk
∣

∣

2. However, for users with large hannel gain,thus for users that are more likely to be seleted, hannel norm feedbak provide some formof additional spatial information (espeially in Riean hannels). Moreover, the larger thehannel gain, the more aurate this hannel diretional information. There is however adi�erene between Rayleigh and Riean hannels. In the Rayleigh ase, the sign ambiguityon the diretion annot be eliminated, whereas in Riean hannels (non-zero mean) there isadditional CDI on the sign of large hannel realizations.Similarly to Setion 4.4.3, we formulate a oarse ML hannel estimate assuming that thehannel norm of user k is known, whih results in the following onstrained optimizationproblem:
max
hk

hHk Rkhk

s.t. ‖hk‖2 = γk
(4.22)The solution of (4.22) is given by

ĥk =
√
γkuk (4.23)where uk is the eigenvetor assoiated with the largest eigenvalue of Rk and γk is hosensuh that the onstraint on the instantaneous hannel norm is satis�ed.



4.4 Exploiting Statistial CSIT in Spatially Correlated Channels 854.4.4 Interferene-bounded Multiuser Eigenbeamforming with lim-ited feedbakIn the previous setions, we dealt with the problem of de�ning an e�ient type of instan-taneous CQI to be ombined with long-term statistial hannel knowledge. The proposedoarse ML hannel estimate framework is mainly useful for the purpose of user seletion.Although preoding design based on the hannel estimates is feasible, providing good per-formane for small angle spreads, it is in general sensitive and prone to sign ambiguities.In this paragraph, we exploit the long-term statistial information in a di�erent wayfor the problem of joint sheduling and beamforming with limited feedbak and fous on apratial, low-omplexity sheme. In brief, eah user k has a �xed, prede�ned beamformingvetor, mathed to the prinipal eigenvetor of its hannel orrelation matrix Rk. At eahsheduling slot, the users are allowed to feed bak two salar values: the alignment betweenthe hannel and their prede�ned beamforming vetors and their hannel norms. In turn, thesheduler selets the group of users that maximizes the system throughput using greedy userseletion and by estimating of the reeived SINR based on inter-user interferene bounds.One the users to serve are identi�ed, the preoding matrix ontains the preferred beam-forming vetors (prinipal eigenvetors) of the seleted users. The proposed sheduling andpreoding algorithm is outlined in Table 4.3.Feedbak Strategy We propose that eah user feeds bak the following two salar values:
• its hannel norm γ

(1)
k = ‖hk‖.

• the alignment (angle) between its instantaneous hannel vetor and a preset normalizedbeamforming vetor wk, i.e. γ(2)
k =

|hH
k wk|
‖hk‖ .The intuition behind this feedbak poliy is two-fold: in MIMO BC with partial CSITan e�ient sheduling set should ontain users with large instantaneous hannel gains andmutually quasi-orthogonal hannel spatial signatures, as means to ahieve both spatial mul-tiplexing and multiuser diversity gains. The �rst salar CQI γ(1)

k allows to selet users withhigh hannel gains as a means to bene�t from multiuser diversity. In ontrast to a feedbakmetri of type γk =
∣

∣hHk wk

∣

∣

2, large γ(1)
k learly identi�es the users with the most favorableonditions, whereas the latter metri an be large even for users with moderate gains butwhose vetor hannels are perfetly aligned with their beamforming vetors. The seondsalar metri γ(2)

k provides a measure of the misalignment between the hannel and thebeamformer, and an be interpreted as a measure of the hannel quantization error dueto limited CSIT knowledge. In single-user settings, the quantization error a�ets only thereeived signal and is translated to a power o�set. However, in multiuser SDMA settings,it an be shown that γ(2)
k plays a vital role in the estimation of the inter-user interferene.Therefore, both γ(1)

k and γ(2)
k an be used as a means to estimate the inter-user interferenedue to limited feedbak.User Seletion If a perfetly orthogonal set of beamforming vetors an be found, theabove limited feedbak is su�ient to ahieve the same asymptoti sum rate as that of DPC.However, in pratie, this is highly unlikely to be ful�lled and the remaining interferene



86 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channelsannot be alulated expliitly. For that, approximate expressions and bounds on the inter-user interferene based on limited hannel knowledge are of interest. For user k ∈ S, theinterferene an be expressed as Ik(S) =
∑

i∈S,i6=k Pi|hHk wi|2 = ‖hk‖2 Ik(S), where Ik(S)denotes the interferene over the normalized hannel hk. Let IUBk (S) denote an upper boundon Ik(S), a lower bound on the SINR assuming is given bySINRLB
k (S) =

Pk ‖hk‖2 cos2(∠hk,wk)

‖hk‖2 I
UB

k (S) + σ2
=

Pk

(

γ
(1)
k γ

(2)
k

)2

‖hk‖2 I
UB

k (S) + σ2
(4.24)where IUB

k (S) is also a funtion of γ(1)
k and γ(2)

k . The sheduler aims to selet the group ofusers that maximizes a lower bound on the sum rate as follows
S∗ = argmax

S

∑

k∈S
log
(

1 + SINRLB
k (S)

) (4.25)Analyti low and upper bounds on the inter-user interferene under linear preoding arepresented in detail in the following hapter. At this point, we propose to use the followingupper bound [90℄
IUBk

(S) = (γ
(2)
k )2αk(S)+

(

1−(γ
(2)
k )2

)

βk(S)+2ρk

√

1−(γ
(2)
k )2δk(S) (4.26)where αk(S) = wH

k

(

∑

i∈S,i6=kwiwH
i

)wk, βk(S) denotes the largest eigenvalue of thematrix UH
k

(

∑

i∈S,i6=kwiwH
i

)Uk and δk(S) =
∥

∥

∥UH
k

(

∑

i∈S,i6=kwiwH
i

)wk

∥

∥

∥, where Uk ∈
CM×(M−1) is an orthonormal basis spanning the null spae of wk.Linear Preoding Let the eigenvalue deomposition of the transmit orrelation matrixbe Rk = E{hkhHk } = VkΣkV

H
k , where Σk is a diagonal matrix with the eigenvalues of

Rk in desending order and Vk is a unitary matrix with the eigenvetors of Rk. As a lowomplexity approah, we propose a system where eah user has a preferred beamformingvetor known both by the BS and the mobile terminal. As shown in [91℄, for single-userMIMO ommuniations, given a ertain user k with orrelation matrixRk the average rate ismaximized by mathing the beamforming vetor to the prinipal eigenvetor of its orrelationmatrix, wk = v1
k (eigenbeamforming). Hene, we design eah user's beamforming vetorinspired by this single-user strategy. This multiuser eigenbeamforming transmission shemean be seen as an equivalent odebook-based system where eah user has a trivial odebookof size one. The odebook ontains a single odevetor, i.e. the prinipal eigenvetor, andis updated at very low rate equal to the oherene time of the seond-order statistis. Weshould also remark that under the prism of hannel estimation framework, the interferene-bounded eigenbeamforming an be seen as a method where the transmitter designs thepreoder based on a oarse hannel estimate given by

ĥk = ‖hk‖ cos(∠hk,v
1
k)v1

k = γ
(1)
k γ

(2)
k v1

k (4.27)4.4.5 Performane EvaluationFor the system evaluation, we assume that the hannel evolves aording to a speularmodel where the hannel impulse response is a superposition of a �nite number of paths, as



4.4 Exploiting Statistial CSIT in Spatially Correlated Channels 87Table 4.3: Resoure Alloation Algorithm with Statistial CSITAt eah time slotAt reeiver sideCompute & Feedbak γ
(1)
k = ‖hk‖ → BS ∀k = 1, · · · , K

γ
(2)
k =

|hH
k wk|
‖hk‖

→ BSAt transmitter sideUser seletionStep 1 Preselet users with γ
(1)
k · γ(2)

k > µth, Q → Q′Set R∗
LB = 0 and S∗ = ∅For all S ∈ Q′ repeatStep 2 Compute

IUBk(S) = (γ
(2)
k )2αk(S)+

(

1−(γ
(2)
k )2

)

βk(S)+2ρk

√

1−(γ
(2)
k )2δk(S)Step 3 Compute SINRLB

k (S) =
P
M

(

γ
(1)
k

γ
(2)
k

)2

P
M

(

γ
(1)
k

)2
IUBk

(S)+1Step 4 Compute RLB =
∑

k∈S log2

[

1 + SINRLB
k (S)

]Step 5 If RLB > R∗
LB, RLB → R∗

LB and S → S∗BeamformingConstrut beamforming matrix W (S)desribed in Setion 2.3.1. We onsider ULA at the transmitter with antenna spaing d =

0.4λ, where λ = 0.15m is the wavelength (here for 2GHz). We onsider a narrowband, �at-fading Rayleigh (spatially orrelated) hannel where eah user k has a di�erent ovarianematrix Rk. The assumption that the reeivers do not have the same orrelation matrix iswell motivated by the fat that in broadast hannels, the angle-of-arrival is di�erent foreah user beause they are not physially o-loated. The ovariane matrix is omputedusing the assumption of Gaussian distributed sattering with angular spread σθ (standarddeviation of the distribution) and is averaged over 60 time slots. Note that the angularspread orresponds to an angular spread setor of 2σθ degrees. Unless otherwise stated, theBS is equipped with M = 2 antennas and the transmit SNR is set to 10dB.ML Estimation with Beam Gain InformationWe ompare the sum rate ahieved using the oarse ML hannel estimate with BGI withthat of optimal MMSE beamforming with full CSIT and with a random beamforming-basedsheduling approah [9℄.Figures 4.3 and 4.4 show the performane omparison as a funtion of the angle spreadand the number of users, respetively. One the group of seleted users S is identi�edbased on eah user's oarse hannel estimate, the transmitter obtains full CSIT only for theseleted M users and designs the MMSE preoding matrix of user set S. In RBF approah,the users are seleted based on the maximum SINR [9℄. We observe that the sheduler,despite using only oarse only hannel estimate, is able to identify a better group of usersthan RBF for all angle spreads. When the angle spread is lose to zero, our method losesthe throughput gap with respet to the MMSE preoding with full CSIT. Note also that both
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Figure 4.3: Sum rate performane versus angle spread of proposed ML estimation methodfor M = 2 and K = 50 users. Full CSIT is obtained for the seleted users at a seond step.
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Figure 4.4: Sum rate performane versus the number of users of ML hannel estimationmethod for M = 2 and σθ = 0.2π. Full CSIT for the seleted users is obtained for preoderdesign.estimation methods exhibit exatly the same performane as they are equivalent solutionsfor the same optimization problem, di�ering only in terms of omputational omplexity.In Figure 4.5, we evaluate the performane of the hannel estimation methods whenuser seletion and beamforming design are performed in one step based on oarse hannelestimates. Evidently, MMSE preoding design based on the estimated hannel is robust onlyin highly orrelated hannels, for whih the hannel estimate is loser to the real hannel.Nevertheless, both estimation methods show - with no additional feedbak - a signi�antthroughput gain over RBF for angle spread less than 35 degrees.
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Figure 4.6: Sum rate as a funtion of the number of users for various user seletion shemeswith M = 2, antenna spaing d = 0.5λ and σθ = 0.1π.ML Estimation with Norm FeedbakIn Figures 4.6 - 4.8 we evaluate the ML hannel estimation framework with norm feedbakand greedy user seletion algorithm (Table 4.2) as a funtion of K, antenna spaing d, andthe angle spread σθ, respetively. As a benhmark, we also plot the sum rate of MMSEbeamforming with full CSIT and RBF. In all methods, one the group of users to be shed-uled is identi�ed, the BS obtains full CSIT for the seleted users in order to design theMMSE preoding matrix. Our methods show a lear gain over RBF for angle spread lessthan 35 degrees making it pratial approah for ellular outdoor systems, as typial mea-surements in outdoor networks report angle spreads in the region less than 5-20 degrees atthe BS [89℄. Interestingly, the antenna spaing an be optimized and it is found that about
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Figure 4.8: Sum rate as a funtion of angle spread for various user seletion shemes with
M = 2, antenna spaing d = 0.5λ and K = 50 users.
0.4λ gives optimal results, as it gives the best tradeo� between resolution and suppressionof spatial aliasing. Note that a small antenna spaing redues transmit antenna diversity,however multiuser diversity an ompensate for that during the phase of sheduling.Interferene-bounded EigenbeamformingWe evaluate now the performane of interferene-bounded multiuser eigenbeamforming(Interf.-bounded MU EigenBF). Figures 4.9 and 4.10 show the ahieved sum rate of ourproposed sheme as a funtion of the number of users and the angle spread, respetively.For omparison, we also plot the performane of optimal MU eigenbeamforming with per-



4.4 Exploiting Statistial CSIT in Spatially Correlated Channels 91fet CSIT and that of interferene-bounded multiuser eigenbeamforming using full CSITfor user seletion. As we an see, the performane of the proposed low-omplexity shemeexeeds that of RBF but depends on the level of antenna orrelation, i.e. angle spread
σθ. Expetedly, gains are more pronouned for angle spread less than 45 degrees (outdoorellular networks).
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92 Chapter 4 Exploiting Channel Struture in MIMO Broadast Channels4.5 ConlusionsIn this hapter, we showed that the redundany that arises in temporally and spatiallyorrelated hannels an be exploited in order to inrease the system throughput by opti-mizing the SDMA sheduling deisions. In the �rst part, motivated by the fat that theperformane of random beamforming degrades severely with low number of users, we showhow exploiting hannel time orrelation we an alleviate this problem at minimal ost. Theproposed memory-based opportunisti beamforming provides a way to lose the gap to op-timality for arbitrary number of users when the hannel oherene time is large, e.g. in lowmobility (indoor) settings. In the seond part, we investigated spatially-orrelated MISOhannels and showed how statistial hannel knowledge an be e�iently ombined withinstantaneous salar hannel feedbak for the purpose of sheduling and linear preoding.Spei�ally, it was demonstrated that, in SDMA systems with hannel-aware sheduling, itis su�ient to feed bak a single salar CSIT parameter - either the hannel norm or beamgain information - in order to ahieve near optimal sum-rate performane. We derived newsheduling metris that have the advantage of aommodating statistial hannel informa-tion and limited instantaneous hannel feedbak. A ML hannel estimation framework hasbeen established that is suitable for resoure alloation in wide-area multi-antenna ellularsystems. Finally, a low omplexity preoding/sheduling algorithm, based on interferene-bounded SDMA eigenbeamforming for spatially orrelated MISO hannels. All the aboveshemes exhibit performane lose to that of omplete CSI when the multipath angularspread per user at the BS is small enough, making these approahes suitable to wirelesssystems with elevated BS suh as outdoor ellular networks, in whih the elevation of theBS above the lutter dereases the angle spread of the multipath.



4.A Proof of Proposition 4.1 93APPENDIX4.A Proof of Proposition 4.1To prove this statement, we an equivalently show that for the set of i.i.d. random uni-tary matries, {Q1, . . . ,Q|U|
}

⊂ U , max
1≤i≤|U|

Xi onverges to R∗ for |U| su�iently largeand �xed number of users K. Thus, we want to show that ∀ǫ, δ > 0, ∃ |U| suh that
Pr
{

max1≤i≤|U| ≤ R∗ − ǫ
}

≤ δAs the sequene of unitary matries {Qi}|U|
1 are i.i.d. r.v.'s, and {Xi}|U|

1 are also i.i.d. for
i, using order statistis we have that

Pr

{

max
1≤i≤|U|

Xi ≤ R∗ − ǫ
}

= [FX(R∗ − ǫ)]|U| (4.28)For a hannel with memory L, it is evidently meaningful to have |U| ≥ L. As 0 ≤ FX(x) ≤ 1,asymptotially for L → ∞, we have that
Pr

{

max
1≤i≤|U|

Xi ≤ R∗ − ǫ
}

→ 0 (4.29)
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Chapter 5
Limited Feedbak BroadastChannels based on Codebooks
5.1 IntrodutionIn the previous hapters, we investigated limited feedbak approahes that an be mainlyategorized as dimension redution or projetion tehniques (f. Setion 2.8.2). The major-ity of our proposed solutions were built on - although not limited to - a random beamformingontext. Conventional RBF [9℄ was mainly employed as a pre-sheduling tehnique, whilethe random beamformer were optimized during the preoding design phase. A limitationof RBF is that the resolution of CDI is �xed to BD = log2M , thus the sheme annotbe extended for the ase where additional CDI bits an be utilized. On the other hand,reent �ndings suggest that CDI is of partiular importane in limited feedbak multiusermulti-antenna systems, espeially in the high power regime. As it was shown in [10℄, ifhannel inversion (zero-foring) is employed as transmission strategy, the feedbak load peruser must inrease approximately linearly with M and the transmit power (in dB) in orderto ahieve the full multiplexing gain. Moreover, up to now, we onsidered shemes where arandom unitary preoder is �rst generated with no a priori CSIT and the BS ollets low-rate (salar) CQI from eah user as a means to selet a group of good users and potentiallyre-design the preoding matrix for the seleted group.In this hapter, we take on a quantization-based approah (f. 2.8.1). The preodingmatrix is not pre-designed (before the feedbak phase), but is generated based on partialCSIT obtained by all ative users. In other words, eah user �rst reports some form ofquantized CSIT, whih in turn is used at the BS for user seletion and preoding design.Several limited feedbak approahes, imposing a bandwidth onstraint on the feedbak han-nel have been studied in point-to-point MIMO systems [54�56, 58℄. In this ontext, eahuser feeds bak �nite preision (quantized) CSIT on its hannel diretion by quantizing its95



96 Chapter 5 Limited Feedbak Broadast Channels based on Codebooksnormalized hannel vetor to the losest vetor ontained in a predetermined odebook. Inthis hapter, we onsider a multi-antenna broadast hannel with K ≥ M users, in whiheah user is allowed to report feedbak bak to the BS via a �nite rate feedbak hannel.This CSIT onsists of BD-bit quantized information on its hannel vetor diretion, referredto as CDI, omplemented with additional instantaneous CQI. CDI information is mainlyemployed for the purposes of preoding design, while CQI serves as a means to intelligentlyseletM spatially separable users with large hannel gains. This approah an be seen as anextension of RBF to a odebook ontaining ND > M beamforming vetors (not neessarilyorthonormal). It has the ability to tune the feedbak load per user, providing more �exibil-ity in realisti �nite rate feedbak senarios, in whih the few feedbak bits need to be splitbetween hannel diretional and hannel quality information. Our model is on the lines ofwork in [62℄ whih extended the �nite feedbak rate model [10, 52℄ for the ase of K ≥ M .As transmission strategy, several beamforming methods have been investigated in the liter-ature, inluding orthogonal unitary beamforming [92℄, transmit mathed-�ltering [93℄, andzero-foring beamforming [64,93�95℄. Note that in the above ontributions, the hannel gainfeedbak is onsidered unquantized for analytial simpliity.A major part of this hapter fouses on the following question: "What type of salarCQI information needs to be onveyed in order to ahieve lose-to-optimum performane?"Reent results show that if the salar CQI ontains information only on the hannel norm,the sum rate growth is independent of the average SNR and the number of ative users
K [62, 64℄. Therefore, the system beomes interferene-limited for high SNR, and fails toahieve the optimum sum rate growth, even when the number of users goes to in�nity(no multiuser diversity gain). This is due to the fat that an estimate on the inter-userinterferene is needed, and thus additional knowledge in the form of hannel quantizationerror is neessary in order to ahieve both multiplexing and multiuser diversity gains andapproah the apaity with perfet CSIT.The problem of e�ient CQI design for sum-rate maximization with sheduling and linearpreoding in the above �nite rate feedbak setting is addressed here. Our main ontributionsan be summarized as follows:
• We propose several salar feedbak metris based on inter-user interferene bounds,whih enapsulate information on the hannel gain, the hannel diretion, as well as onthe quantization error. These metris an be interpreted as estimates of the reeivedSINR, whih is generally unknown to the individual users that have knowledge onlyon their own hannels.
• We employ these metris in a system employing linear ZF beamforming on the quan-tized hannel diretions and greedy user seletion. For that, we extend the greedysheduling algorithm of [11℄ for the limited feedbak ase. This algorithm has theadvantages that it does not depend on any a priori de�ned system parameter (suhas quantized hannels' orthogonality [62℄) and is able to swith from multiuser tosingle-user transmission.
• Using the above preoding setting, we derive upper bounds on the instantaneous mul-tiuser interferene that allows us to analytially predit the worst ase interfereneand a SINR lower bound in a system employing zero-foring on the quantized hanneldiretions.



5.2 System model 97
• The system throughput is analyzed and its asymptoti optimality in terms of apaitygrowth (i.e. M log logK) is shown for K → ∞. Sum rate upper bounds for the highSNR regime are also derived.
• Sheduling metris suitable for swithing the transmit mode from multiuser (SDMA)to single-user (TDMA) are proposed, based on a re�ned feedbak strategy. We showthat expetedly single-user mode is preferred as the average SNR inreases, whereasmultiuser mode is favored when the number of users inreases.5.2 System modelWe onsider a multi-antenna broadast hannel onsisting ofM antennas at the transmitterand K ≥ M single-antenna reeivers. The �nite rate feedbak model presented in Se-tion 2.9.1 is adopted and users quantize their hannel diretions using (2.56). The hannelquantization of user k is denoted as ĥk. For analytial simpliity, we adopt the ACVQodebook design [63, 64℄ (f. Setion 2.9.2).As linear preoding sheme, we use ZF beamforming on the quantized hannel diretionsavailable at the BS. The beamforming matrix is then given by

W(S) = Ĥ(S)† = Ĥ(S)H
(

Ĥ(S)Ĥ(S)H
)−1 (5.1)where Ĥ(S) is a matrix whose olumns are the quantized hannels ĥk (odevetors) of theusers belonging to the group of seleted users, denoted by S. The normalized beamform-ing vetor intended for the k-th user is denoted by wk and equal power alloation arossusers is assumed. Clearly, non-linear preoding shemes or regularized inversion (MMSEpreoding) an ahieve a better sum rate than ZFBF. However, we use ZFBF for two mainreasons. First, ZFBF is a linear preoding tehnique that an be implemented with reduedomplexity and is asymptotially optimal at high SNR or for large K [11, 12℄. Seondly,a signi�antly simpler and more tratable theoretial analysis an be aomplished usingZFBF, resulting in losed-form expressions for performane.Some terms that will be used extensively in the following setions are:

• hannel diretion (normalized hannel): h̄k = hk/ ‖hk‖

• quantized hannel: ĥk

• quantization error: sin2 φk = sin2(∠(ĥk, h̄k))

• hannel alignment: cos θk =
∣

∣h̄kwk

∣

∣5.3 CQI Feedbak Design5.3.1 Problem formulationIn multiuser SDMA downlink systems with more ative users than transmit antennas (K >

M), user seletion has to be performed based on some properly hosen hannel side infor-mation. The sheduling deisions depend in turn on the optimization riteria onsidered,



98 Chapter 5 Limited Feedbak Broadast Channels based on Codebookse.g. maximization of system throughput, maximization of user rates, fairness, delay min-imization, et. If the sum-rate maximization is onsidered as optimization riterion, thesheduled users need to exhibit:
• mutually orthogonal hannel diretions
• high hannel gainsfor lose to optimum throughput performane. The spatial separability among users allowsthe BS to form non-interfering beams with no signi�ant power penalty, whereas the impor-tane of CQI is two-fold: it is used for identifying users with favorable hannel onditionsand it indiates the rate (oding and modulation order) at whih the BS an transmit datato a partiular user (link adaptation).One hallenge when designing feedbak metris is that information on reeived SINRis in priniple not available to the individual users that only have knowledge of their ownhannels. The SINR measurement depends, among others, on the hannel as well as on thenumber of other mobiles being simultaneously sheduled along with the user making themeasurement. As user ooperation is not onsidered, the number of simultaneous users andthe available power for eah of them will generally be unknown at the mobile. However, inthe large number of user ase, simpli�ations arise, whih give the user the possibility ofestimating its SINR. This SINR estimate feedbak enables the sheduler to identify userswith large hannel norms, as well as small quantization errors. In the following paragraphs,we study the problem of e�ient design of hannel quality feedbak. Our objetive is toderive salar feedbak metris, denoted as γk, that allow us to exploit the multiuser diversityand ahieve lose to optimum sum-rate performane.5.3.2 Bounds on average reeived SINRThe SINR of user k ∈ S under equal power alloation and ZFBF on the quantized hannelsis given bySINRk =

P |hkwk|2
∑

j∈S\{k} P |hkwj |2 +M
=

P ‖hk‖2 |h̄kwk|2
∑

j∈S\{k}

(

P ‖hk‖2 |h̄kwj |2
)

+M
(5.2)The hannel diretion h̄k an be expressed in referene to its quantized version via the rossorrelation indiator πk = sin2 φk = 1 −

∣

∣

∣ĥkh̄
H
k

∣

∣

∣

2 as h̄k =
√

1− πkĥk +
√
πkĥ

⊥
k , where ĥ⊥

kis the normalized projetion of h̄k onto the orthogonal omplement of ĥk. Note that theatual phase information in h̄k is omitted sine it is not relevant for SINR omputation.Then, for the terms that appear in the interferene we have that
|h̄kwj |2 = (1− πk)|ĥkwj |2 + πk|ĥ⊥

k wj |2 = πk|ĥ⊥
k wj |2, ∀k 6= j (5.3)sine the ZF beamforming vetor wj is hosen orthogonal to the quantized hannel vetorsof all other users, i.e. ĥkwj = 0 for all k 6= j, k ∈ S. Then, using (5.3), eq. (5.2) an bewritten as SINRk =

P ‖hk‖2 |h̄kwk|2
P ‖hk‖2 πk

∑

j∈S\{k} |ĥkwj |2 +M
(5.4)



5.3 CQI Feedbak Design 99Lower bound on the average reeived SINRThe reeived SINR an be normally measured at the reeived side. However, in a multiusersystem, mobile terminals annot alulate their reeived SINR in advane. This is due to thefat that eah reeiver k annot estimate the inter-user interferene sine it does not haveaess to the beamforming vetors wj , j ∈ S and the group of seleted users. Although thereeived SINR annot be alulated expliitly at the reeiver side, as all beamforming vetors
wj , j 6= k would lie in the null spae of ĥk, eah reeiver an alulated a bound on theexpeted interferene aused by the other users. Therefore, a lower bound on the expetedSINR with respet to the expeted inter-user interferene an be derived. Conditioned on
hk and ĥk and taking the expetation with respet to the interferene terms wj , j ∈ S \{k}we have [64℄:

E{SINRk} = E

{

P |hkwk|2
∑

j∈S\{k} P |hkwj |2 +M

}

= E

{

P ‖hk‖2 |h̄kwk|2
P ‖hk‖2 πk

∑

j∈S\{k} |ĥkwj |2 +M

}

(a)

≥ P ‖hk‖2 E
{

|h̄kwk|2
}

P ‖hk‖2 πkE
{

∑

j∈S\{k} |ĥkwj |2
}

+M

(b)

≥ P ‖hk‖2 E
{

|h̄kwk|2
}

P ‖hk‖2 sin2 φk +M
(5.5)where (a) results from applying Jensen's inequality. The unit vetors ĥ⊥

k and wj are bothisotropially distributed on the (M − 1) dimensional hyperplane orthogonal to ĥk. As thedistribution of wj on this hyperplane depends only on ĥi for i ∈ S \ {j, k}, then wj isindependent of ĥ⊥
k , for j 6= k. Thus, the inner produt |ĥkwj | follows a beta distribution

B(1,M − 2). Hene, the expeted interferene is given by
E







∑

j∈S\{k}
|ĥkwj |2







= (|S| − 1) · 1

M − 1
≤ 1, for |S| ≤M (5.6)When M users are sheduled simultaneously, i.e., |S| = M , inequality (b) (f. eq.5.5)beomes tight.Upper bound on the average reeived SINRThe inter-user interferene is minimized by performing orthogonal transmission and selet-ing users with near-orthogonal quantized hannel diretions. In that ase, we have that

∠(ĥk,wk) ≈ 0, and the average reeived SINR an be upper bounded by
E {SINRk} ≤ P ‖hk‖2 cos2 φk

P ‖hk‖2 sin2 φk +M
(5.7)The above upper bound beomes tight when a set of perfetly orthogonal users an be found,in whih ase the reeived SINR is given bySINRk =

P ‖hk‖2 cos2 φk

P ‖hk‖2 sin2 φk +M
(5.8)



100 Chapter 5 Limited Feedbak Broadast Channels based on CodebooksThis is the atual reeived SINR under the assumption that M = M perfetly orthogonalusers are sheduled.CQI feedbak metri IIn the previous paragraph, we saw that although the reeivers do not have knowledge of thesheduling deisions and thus of wj , simple (upper) bounds on the expeted reeived SINRan be obtained. Motivated by that, we onsider that that eah user an alulate and feedbak information on its e�etive hannel (SINR) by feeding bak the following salar metri
γIk =

P ‖hk‖2 cos2 φk

P ‖hk‖2 sin2 φk +M
(5.9)proposed in parallel in [62, 94, 96, 97℄. This type of CQI enapsulates information on thehannel gain as well as the CDI quantization error, sin2 φk. The above metri results froman upper bound on the average reeived SINR, whih in turn is alulated based on theexpeted value of the inter-user interferene due to quantized CSIT and using an upperbound on the expeted reeived signal power. This CQI metri an be interpreted as anupper bound on eah user's reeived SINR under the assumption that exatly M users willbe served by M equipowered beams, designed based on quantized CDI. We should remarkthat this CQI value annot be used diretly for link adaptation. Clearly, it is not ahievableand the only ase where the reeived SINR equals the one predited by (5.9) is when the Mbeamforming vetors at the transmitter are perfetly orthogonal (i.e. the olumns of Ĥ(S)are orthogonal), i.e. Ĥ(S) is unitary and W(S) = Ĥ(S)H . Despite this design limitation, itdoes however provide an e�ient estimate of the multiuser interferene at the reeiver sideand of the average SINR, allowing the sheduler to identify users with large hannel gainsand near-orthogonal hannel diretions. Moreover, this bound beomes more aurate whenthe number of ative users K is inreasing.5.3.3 Lower bound on instantaneous reeived SINRIn the previous setion, we studied bounds on the average reeived SINR and identi�ed ane�ient CQI metri. However, from a pratial point of view, metri I has the limitationthat is not ahievable (upper bound), sine in general the beamforming vetors are notperfetly orthogonal, espeially in networks with low to moderate number of users. As aresult, metri I may be useful for user seletion purposes; however it annot be employedfor rate adaptation. If the system mathes the oding rate and modulation order based onthe γIk value (f. eq. (5.9)), the link will su�er from signi�ant outage events sine CQImetri I overestimates the reeived SINR. To irumvent that, the BS is required to ask foradditional feedbak from the seleted users to perform rate alloation. This seond step offeedbak may be detrimental in terms of signaling overhead and protool delays, and it israther impratial in fast time-varying hannels.In order to avoid the need for this seond step and to guarantee outage-free transmissions,we aim at �nding a feedbak metri that an be e�iently utilized for both sheduling andrate alloation simultaneously. For that, we propose to feedbak a lower bound on the SINRrather than an upper bound. Additionally, we derive bounds on the instantaneous SINRand not on the average one. Our lower bound is based on:
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• a lower bound on the reeived signal power.
• an upper bound on the atual multiuser interferene.Note also that the SINR estimated by (5.9) does not take into aount the fat that a spei�preoder is used for transmission sheme. Therefore, it neglets the e�et of preodingand that of the orresponding misalignment between the quantized hannel diretion andthe beamforming vetor. In this paragraph, assuming that ZFBF is employed, we deriveinterferene bounds that inorporate the power loss introdued by the misalignment betweenthe instantaneous hannel and the ZF beamformers.Notation: The following orthogonality onstraints, whih that are used extensively below,an be imposed:
• Two quantized hannel vetors ĥi and ĥj are ǫ-orthogonal if ∣∣∣ĥiĥHj ∣∣∣ ≤ ǫ.
• The orthogonality between the quantized hannel and the zero-foring beamformer isde�ned as: ξ ≤ ∣∣

∣
ĥkwk

∣

∣

∣
.

• The worst-ase orthogonality between two zero-foring beamformers is de�ned as ǫZF =

max
i,j∈S

∣

∣wH
i wj

∣

∣.Lower bound on reeived signal powerThe quantity |h̄kwk|2 = cos2(∠(h̄k,wk)) that appears in the numerator of (5.4) an bebounded as follows: using the inequality ∠(h̄k,wk) ≤ ∠(h̄k, ĥk) + ∠(ĥk,wk), and the fatthat the funtion cosx is monotonially dereasing in x for the interval of interest, we have
cos2(∠(h̄k,wk)) ≥ cos2(∠(h̄k, ĥk)+∠(ĥk,wk)). Therefore, the reeived signal power of user
k, denoted as Sk, an be lower bounded as

Sk = P |hkwk|2 ≥ P ‖hk‖2 cos2(φk + ∠(ĥk,wk)) = (5.10)Note that if the BS is able to �nd perfetly orthogonal user hannels, the quantized hanneldiretion ĥk and zero-foring beamforming vetor wk oinide, and hene ∠(ĥk,wk) = 0,yielding the following simple expression for the lower bound in (5.10): Sk = P ‖hk‖2 cos2 φk.As the above lower bound annot be alulated expliitly at the reeiver side, we are obligedto use the orthogonality onstraint ξ, whih results in the following lower bound:
SLB1
k ≥ P ‖hk‖2 cos2(φk + arccos(ξ)) (5.11)A di�erent lower bound on the reeived signal an be derived as follows:

cos2 θk = |h̄kwk|2 =
∣

∣

∣

√
1− πkĥkwk +

√
πkĥ

⊥
k wk

∣

∣

∣

2

(a)

≥
∣

∣

∣
|
√

1− πkĥkwk| − |
√
πkĥ

⊥
k wk|

∣

∣

∣

2

= (1− πk)|ĥkwk|2 − 2
√

(1− πk)πk|ĥkwk||ĥ⊥
k wk|+ πk|ĥ⊥

k wk|2where for (a) the inverse triangle inequality ||x| − |y|| ≤ |x− y| is used.Sine the reeivers annot alulate the above lower bound (as they do not have aessin the quantity |ĥkwk|), the reeived signal power needs to be further bounded as:
SLB2
k ≥ P ‖hk‖2

(

ξ2 cos2 φk − ξ
√

1− ξ2| sin(2φk)|
) (5.12)



102 Chapter 5 Limited Feedbak Broadast Channels based on CodebooksBounds on Instantaneous Multiuser InterfereneThe inter-user interferene of the k-th user an be expressed as:
Ik(S) = P ‖hk‖2

∑

j∈S,j 6=k

∣

∣hkwj

∣

∣

2
= P ‖hk‖2 Ik(S) (5.13)where Ik(S) denotes the multiuser interferene experiened by the k-th user over the nor-malized hannel. Sine the zero-foring beamformers satisfy the orthogonality onstraint

ĥkwj = 0, ∀j 6= k, we have thatIk(S) = πk
∑

j∈S,j 6=k

∣

∣

∣ĥ
⊥
k wj

∣

∣

∣

2

= πkI⊥k (S) (5.14)In order to bound the inter-user interferene, we need to bound either the term I⊥k (S) orIk(S) that annot be alulated at the reeiver side (sine wj are not known in advaneto mobile terminals). Let us de�ne the matrix Ψk(S) =
∑

j∈S,j 6=k wjw
H
j , the operator

λmax {·}, whih returns the largest eigenvalue, and Uk ∈ CM×(M−1) an orthonormal basisspanning the null spae of wk. We reall that the ZF beamformers are onsidered as unit-norm vetors.Theorem 5.1: Given a set of normalized beamforming vetors {wk}, k ∈ S, the normalizedinterferene term Ik(S) is upper bounded byIk(S) ≤ cos2 θkαk(S) + sin2 θkβk(S) + 2 sin θk cos θkωk(S) (5.15)where














αk(S) = wH
k Ψk(S)wk

βk(S) = λmax

{UH
k Ψk(S)Uk

}

ωk(S) =
∥

∥

∥UH
k Ψk(S)wk

∥

∥

∥

(5.16)Proof. The proof is given in Appendix 5.A.For notation simpli�ation, we drop below the dependene on S.Lemma 5.1: The worst-ase orthogonality of a set of M zero-foring beamforming vetorsand the alignment with the normalized hannel (cos θk) are bounded as a funtion of cosφkfor ǫ < 1
M−1 as follows:

ǫZF ≤ ϑ (5.17)
cos θk ≥

∣

∣

∣cosφk −
√
ϑ
∣

∣

∣

1 + ϑ
(5.18)with ϑ =

ǫ

1− (M − 1)ǫProof. The proof is given in Appendix 5.B.It is worth noting that the above lemma provides another lower bound on the reeivedsignal power, given by:
SLB3
k ≥ P

(1 + ϑ)2
‖hk‖2

(

cosφk −
√
ϑ
)2 (5.19)



5.3 CQI Feedbak Design 103Based on this result, we have:Theorem 5.2: Given a group of ǫ-orthogonal users with ardinality |S| = M , the reeivedSINR in a system employing zero-foring beamforming is lower bounded by
SINRk ≥

P ‖hk‖2 cos2 θk

P ‖hk‖2 I
UB1

k + M
(5.20)where

I
UB1

k = (M − 1) (ϑ cos θk + sin θk)
2 − (M − 2)(1− ϑ) sin2 θk (5.21)with cos θk =

|cosφk−
√
ϑ|

1+ϑ and ϑ = ǫ
1−(M−1)ǫ .Proof. The proof is given in Appendix 5.C.An additional inter-user interferene upper bound IUB2

k an be derived by trying to upperbound the term I⊥k (S).CQI feedbak metri IIMotivated by the above lower bound on the instantaneous SINR (f. Theorem 2), we proposethat eah user feeds bak to the BS the following salar metri
γIIk =

SLBx
k

I
UBx

k +M
(5.22)where the wildard `x' an be replaed by 1, 2 or 3 for the reeived signal (LB) and 1 or 2for the interferene (UB). In the numerial results setion, we only simulate the followingmetri:

γIIk =
SLB3
k

I
UB1

k +M
=

P
(1+ϑ)2 ‖hk‖

2 (cosφk −
√
ϑ)2

P ‖hk‖2 I
UB1

k +M
(5.23)In order to alulate (5.23), the reeiver has to know the orthogonality system parameters

ǫ and ξ and to assume that M = M exatly users will be sheduled. The basi di�erenebetween (5.9) and (5.23) is on the estimation of the inter-user interferene and the reeivedsignal power. In (5.9) the interferene is replaed by an upper bound on its average value,i.e. E

{

∑

j∈S\{k}
P
M ‖h‖

2 |h̄kwj |2
}

≤ P
M ‖h‖

2 sin2 φk, where for CQI metri II an upperbound on the instantaneous multiuser interferene (f. eq. 5.21) is used instead.CQI metri I an be viewed as an estimation of reeived SINR assuming that the quan-tized hannel ĥk and the zero-foring beamformer wk oinide, i.e. ∠(ĥk,wk) = 0. Thisassumption beomes valid for large number of users K. Therefore, in metri I, the approxi-mation cos2(∠(h̄k,wk)) ≈ cos2(∠(h̄k, ĥk)) is used, whereas in CQI metri II the power lossintrodued by the angle shift due to the misalignment of ĥk and wk is taken into aount(usong Lemma 5.1).Evidently, the two proposed metris oinide for ǫ = 0 sine we have cos2 θk = cos2 φk,thus ĪUBk
= sin2 θk = sin2 φk and (cosφk−

√
ϑ)2

(1+ϑ)2 = cos2 φk. Hene, metri II (5.23) takesexatly the form of metri I (5.9).



104 Chapter 5 Limited Feedbak Broadast Channels based on Codebooks5.3.4 SDMA/TDMA transition with limited feedbakIn the previous paragraphs, we tried to derive e�ient salar CQI metris. An upper boundon the expeted SINR as well as a lower bound on the atual reeived SINR have beenproposed as useful metris that allow the BS to bene�t from multiuser diversity and ahievenear-optimal sum rate. A ommon underlying assumption of both γ
(I)
k and γ

(II)
k is that

M = M users are neessarily sheduled. However this an be a major drawbak as in MIMObroadast hannels with partial CSIT, it is not guaranteed that multiuser transmission (fullSDMA) always outperforms single-user transmission (TDMA). There are several ontexts inwhih it is bene�ial from a apaity point of view to softly transit to TDMA by swithingo� beams and ommuniating withM < M users, espeially in the high SNR regime and/orfor low number of users. The inauray in the multiuser interferene alulation introduedby limited hannel knowledge is detrimental in the high power regime, in whih the systembeomes interferene-limited and its sum rate saturates. Motivated by the above laim, weare interested here to �nd a feedbak strategy that o�ers the desirable �exibility betweenSDMA of various orders and TDMA, as a means to ahieve linear apaity growth at anySNR range.CQI feedbak strategy for adaptive SDMA/TDMAIn order to obtain �exibility on estimating the resulting inter-user interferene and henethe users' SINRs for various values of M, a di�erent form of CQI feedbak needs to beonsidered. In [90℄ we already presented the idea of deomposing the CQI feedbak in twosalar values, whih was further exploited in [94℄. In addition to the odevetor index (CDI),we propose that eah user feeds bak:
• the hannel norm γ

(1)
k = ‖hk‖

• the square of the alignment γ(2)
k = cos2 φkThe deomposition of the CQI into two salars enables the BS to alulate more aurateSINR estimates for any set of sheduled users with ardinalityM≤M . This is due to theability of alulating more aurately the inter-user interferene by having the CQI in theform of hannel gain and quantization error. Note that under a ertain �nite and �xed ratefeedbak onstraint, eah salar value is quantized with redued auray ompared to thease of only one salar CQI metri (e.g. metri I and II). The e�et of CQI quantization isstudied through simulations in Setion 5.7, where it an be seen that the redued preisionof the two salar CQIs does not redue the sum-rate performane ompared to the one salarCQI ase.Sheduling metrisAt the transmitter side, the sheduler based on the deomposed CQI and CDI informa-tion estimates the reeived SINR. User seletion an be performed based on the followingsheduling metri, referred to as metri III:

ζIIIk =
P ‖hk‖2 ρ2

k

P ‖hk‖2 IUBdk
+M

(5.24)



5.4 User Seletion Shemes 105where
ρ2
k = cos2(φk + ∠(ĥk,wk)) (5.25)and

IUBdk
= ρ2

kαk(S)+
(

1−ρ2
k

)

βk(S)+2ρk

√

1−ρ2
kωk(S) (5.26)whih an be expliitly alulated at the transmitter using (5.16).The sheduling deision metris are denoted with ζk in order to distinguish them from theCQI feedbak metris denoted with γk. The values ζIIIk and ζIVk are alulated on the BSand are not fed bak to the BS from the users, whereas γIk and γIIk are reported bak by themobile and also serves as user seletion deision metris from the sheduler.In the ideal ase of ǫ → 0, we have that IUBdk

→ sin2 φk, and when ǫ = 0 the followingsheduling metri IV, interpreted as an upper bound on the reeived SINR, an be used atthe BS
ζIVk =

P ‖hk‖2 ρ2
k

P ‖hk‖2 sin2 φk +M
(5.27)Atually, setting ǫ to be inversely proportional to K, it an be seen from Lemma 5.1 thatas K → ∞, ǫZF → 0, and cos θk → cosφk. Thus, for K → ∞, IUBk

= sin2 φk and hene(5.27) onverges to (5.9) forM = M .Note that sheduling metri (5.24) provides a more aurate SINR estimate ompared to(5.23) as ρ2
k ≥ (cosφk−

√
ϑ)2

(1+ϑ)2 and ĪUBdk
≤ ĪUBk

. Furthermore, as ρ2
k ≤ cos2 φk, we have that

γIk ≥ γIVk ≥ ζIIIk ≥ ζIIk . An important di�erene with pratial impliations is that γIIk and
ζIIIk alulate SINR values that an be supported by the user hannel and an be used foroutage-free rate alloation, whereas γIk and ζIVk are upper bounds that are not ahievablein general. A major advantage using the deomposed CQI feedbak strategy is that the BSan adapt the number of sheduled userM depending on the average SNR, the number ofusers K and the amount of multiuser interferene. This results in a adaptive multi-modesheme where the transmitter swithes between single-user transmission mode (TDMA with
M = 1) and multiuser mode (SDMA with 2 ≤M ≤M).5.4 User Seletion ShemesAt the transmitter side, the CQI metris proposed in Setion 5.3 are employed in order toselet users with favorable hannel onditions and orthogonality properties. We present heretwo user seletion algorithms for sheduling in systems employing linear beamforming. Ouroptimization objetive is to maximize the system apaity, therefore the optimum shedulingpoliy is to selet through exhaustive searh, theM≤M amongK users that maximize thesystem throughput. Nevertheless, sine the omplexity of suh a ombinatorial optimizationproblem is prohibitively high for large K, we resort to low-omplexity sheduling strategiesbased on greedy user seletion (see e.g. [11, 12, 62℄).5.4.1 Greedy-SUS algorithmWe �rst review a heuristi sheduling algorithm based on semi-orthogonal user seletion(SUS) proposed in [12,62℄. Using CQIk de�ned in equations (5.9), (5.23), (5.24), and (5.27),



106 Chapter 5 Limited Feedbak Broadast Channels based on Codebooksand CDIk = ĥk, k = 1, . . . ,K, the BS selets up to M out of K users at eah timeslot. The algorithm is outlined in Table 5.1. The �rst user is seleted from the set
Q0 = {1, . . . ,K} of ardinality ∣∣Q0

∣

∣ = K as the one having the highest hannel qual-ity, i.e. k1 = argmaxk∈Q0 CQIk. The (i + 1)-th user, for i = 1, . . . ,M − 1, is seletedas ki+1 = arg maxk∈Qi γk among the user set Qi with ardinality ∣∣Qi∣∣ ≤ K, de�ned as
Qi =

{

k ∈ Qi−1 | |ĥkĥHj | ≤ ǫ ∀j ∈ S
}. The orthogonality ǫ between the quantized han-nels is system parameter that has to be set in advane. Evidently, if ǫ is very large, theseleted user group may experiene signi�ant multiuser interferene, reduing the systemsum rate. Conversely, if ǫ is too small, the sheduler annot �nd enough semi-orthogonalusers to transmit to, and less than M users are multiplexed.We should remark that greedy user seletion results in multiuser diversity redution.The metri CQIki

of the seleted user at the i-th step of the algorithm, ki is not alwaysseleted among K users. At eah step, CQIki
is equal to the maximum of Ki =

∣

∣Qi−1
∣

∣i.i.d. random variables with ommon CDF Fγ(x). Obviously, the multiuser diversity gainof log |Q0| = logK is experiened only from the �rst seleted user and dereases with theuser index.5.4.2 Greedy-US algorithmA limitation of the previous sheduling algorithm is that it does not generally adapt thenumber of seleted users and fores to selet M users. As a result, full SDMA transmitmode is always supported independently of the system operating points, namely K andSNR. Therefore, it is more appropriate to be used with metris of the type of γIk and γIIk . Inontrast with MIMO broadast hannels with omplete CSIT, in limited feedbak systemsit is not guaranteed that multiuser transmission (SDMA) always outperforms single-usertransmission (TDMA). There are several ontexts in whih it is bene�ial from a apaitypoint of view to softly transit to TDMA by swithing o� beams and ommuniating with
M < M users. Soft SDMA/TDMA swithing an be realized by feeding bak two salarvalues (strategy 3 and 4). In order to exploit the �exibility of this deoupled feedbakapproah and adapt the number of sheduled users, we need to modify the greedy seletionproedure. For that, we generalize a standard greedy user seletion (GUS) algorithm withperfet CSIT [11℄ for the ase of quantized CSIT, summarized in Table 5.2. We denote Sithe set of seleted users up to the i-th step, and R(Si) =

∑

k∈Si
log2(1 +CQIk), with CQIkbeing: γIk, γIIk , ζIIIk or ζIVk . The user with the highest rate (equivalently SINR metri)among K users is �rst seleted, and at eah iteration, a user is added only if the sum rate(based on the estimated SINR) is inreased. At eah step, it is important to re-proess theset of previously seleted users (thus, re-alulating the zero-foring beamformers) one auser is added to the set Si. We should note that if γIk , γIIk are used, the algorithm beomestrivial and oinides with greedy-SUS algorithm, sine the one salar CQI information doesnot allow us to re-proess the preoding strategy eah time a user is added.As stated before, the value of the orthogonality onstraint ǫ a�ets the performane of thegreedy-SUS algorithm. If ǫ is set too small, the multiuser diversity gain dereases, andthe user set Qi an be empty before M quasi-orthogonal users are found. The optimalvalue dereases with K, as the probability of �nding M semi-orthogonal users among K is



5.5 Performane Analysis 107larger, however it is di�ult to be optimized analytially. A main advantage of Greedy-USalgorithm ompared to Greedy-SUS is that it does not require to predetermine any systemparameter ǫ, as it an be alulated and optimized at eah step based on the feedbak values
γ

(1)
k , γ(2)

k and the andidate users.5.5 Performane AnalysisWe analyze the sum-rate performane of the above CQI feedbak metris ombined withuser seletion algorithms under the ollowing system on�gurations:
• Strategy 1 : CQI feedbak and sheduling metri γIk ombined Greedy-SUS algorithm.
• Strategy 2 : CQI feedbak and sheduling metri γIIk ombined Greedy-SUS algorithm.
• Strategy 3 : CQI feedbak metris γ(1)

k and γ(2)
k ombined Greedy-US algorithm andsheduling metri ζIIIk .

• Strategy 4 : CQI feedbak metris γ(1)
k and γ(2)

k ombined Greedy-US algorithm andsheduling metri ζIVk .Closed-form throughput expressions an be derived using similar tools as in Setion 3.2;however little or no insight is gained from these involved expressions. For that, we fouson two pratially relevant regimes: the large number of users regime (K → ∞) and thehigh power regime (P →∞). XX We deide to investigate the performane using the lowerbound on the reeived SINR γIIk , sine it provides a lower bound on the ahievable sumrate of strategy 1 as well.5.5.1 Asymptoti (in K) sum-rate analysisWe onsider the asymptoti ase of K →∞ andM �xed. As (5.23) is a lower bound on theuser's SINR, the exat reeived SINR that an be supported by the hannel is unknown atthe BS (but higher than γIIk ). Thus, the expeted sum rate R of strategy 2 is lower boundedas
R ≥ E

{

M
∑

i=1

log2

(

1 + γIIki

)

}

= E

{

M
∑

i=1

log2

(

1 + max
k∈Ki

γIIk

)

} (5.28)where Ki =
∣

∣Qi−1
∣

∣ aptures the multiuser diversity gain redution due to Greedy-SUSalgorithm. A bound on the ardinality of ∣∣Qi∣∣ an be alulated through the probabilitythat a user i in Qi is ǫ-orthogonal to users in Qi−1, whih is equal to Iǫ2(i,M−i), where
Ix(a, b) is the regularized inomplete beta funtion. The ki-th user is the one that has themaximum CQI metri among Qi−1, whose ardinality onverges to the following value (byusing the law of large numbers) [98, 99℄:

∣

∣Qi−1
∣

∣ ≈ KPr{h ∈ Qi−1} ≥ KIǫ2(i− 1,M − i+ 1)with ∣∣Q0
∣

∣ = K.Note that for large number of users K and hoosing ǫ = 1/ logK, so that lim
K→∞

KIǫ2(i −
1,M − i+ 1) = ∞ and lim

K→∞
ǫ = 0, we have that γIIk → γIk . Therefore, before establishingthe asymptoti sum-rate optimality of strategy 2, we need to derive the statistis of γIk .



108 Chapter 5 Limited Feedbak Broadast Channels based on CodebooksDistribution of γIk For the statistis of the upper bound on the expeted reeived SINRwe have:Lemma 5.2: The distribution funtion of Fγ(x) of the CQI feedbak metri γIk is given by
Fγ (x) =

{

1−ND e−Mx/P

(1+x)M−1 x ≥ 1−δ
δ

1−ND e−Mx/P

(1+x)M−1 + T 0 ≤ x < 1−δ
δ

(5.29)where T = 1
Γ(M−1)

[

ND
e−Mx/P

(1+x)M−1 (Γ (M − 1, δ(x+ 1)v)− Γ (M − 1, v))
], v = Mx

P (1−δ−δx) ,and Γ(a, x) is the (upper) inomplete gamma funtion.Proof. The proof is given in Appendix 5.D.Note that the �rst branh of the CDF was �rst derived in [62℄. In the Appendix, weprovide a di�erent proof for x ≥ 1−δ
δ as well as the expression of Fγ(x) for x < 1−δ

δ .Asymptoti Sum-rate Optimality If we denote β = 1
ND
· (P/M)

M−1, the followingresults the asymptoti optimality of the proposed limited feedbak sheme (strategy 2):Theorem 5.3: The sum rate of the proposed sheme R onverges to the optimum apaityof MIMO broadast hannel Ropt, for K →∞, i.e.
lim
K→∞

(Ropt −R) = lim
K→∞



M log2

1 + P
M logK

1 + P
M log

(

K
β

)



 = 0 (5.30)with probability one.Proof. The proof is given in Appendix 5.E.The above theorem implies that the optimalM log logK apaity growth an be ahievedfor K → ∞ by using the proposed metri (5.23) with greedy user seletion algorithm andZF beamforming on the hannel quantizations. Note also that this notion of sum rateonvergene is stronger than that apaity ratio onvergene, i.e. limK→∞
R

Ropt
= 1, as thelatter annot guarantee that there is unbounded SINR gap between the proposed shemeand the optimal one (full CSIT ase).5.5.2 Sum-rate analysis in the interferene-limited regionIn this setion, we study the sum rate ahieved by strategy 2 in the high-power regime(interferene-limited region). For P →∞, it an be shown thatTheorem 5.4: The sum rate of strategy 2 at high SNR with �nite BD and K is upperbounded by

R ≤ M

M − 1

(

BD +
1

log 2
HK

) (5.31)where HK =
∑K

k=1
1
k is the harmoni number (K-th partial sum of the harmoni series).Proof. The proof is given in Appendix 5.F.



5.6 MIMO Broadast Channels with Finite Sum Rate Feedbak Constraint 109The above theorem implies that the system beomes interferene-limited and its sumrate onverges to a onstant value at high SNR, even for arbitrary large but �nite BD and
K. This behavior is inherited to all �nite �xed-rate feedbak-based MISO systems due to thequantization error, whih results to loss of the multiplexing gain at high SNR. Furthermore,as ∂R/∂M < 0, the sum rate is a monotonially dereasing funtion with M , implying thatat high SNR the sum rate is maximized by using M = 1 beam.The asymptoti behavior of HK is given by the standard Euler expansion as HK ∼

logK + γem −
∞
∑

n=1

Bn
Kn
∼ γ + logK +

1

2K
− 1

12K2
+O(

1

120K4
), where γem ≈ 0.57721566...is the Euler-Masheroni onstant and Bn denotes the n-th Bernoulli number. A sharp lowerand upper bound of the harmoni sequene for any natural K ≥ 1 is derived in [100℄ asfollows:

1

2K + 1
1−γem

− 2
≤ HK − logK − γem <

1

2K + 1
3

(5.32)Therefore, for large number of users (K →∞), lim
K→∞

HK = logK+γem. Thus, the sum rateat high SNR and K →∞ exhibits logarithmi growth with K due to the multiuser diversitygain. In other words, for �xed BD, although only a fration of the full multiplexing gain isahieved (r = M
M−1 ), the sum rate sales as logK, ompensating for the loss in degrees offreedom and `shifting' the interferene-limited region to higher SNR values.5.6 MIMO Broadast Channels with Finite Sum RateFeedbak ConstraintIn the previous paragraphs, the term quantization refers to the CDI feedbak sine weimpliitly onsider that the reported CQI values are not quantized. In other words, eahuser uses BD bits for CDI feedbak and in�nite number of bits for reporting the salar CQIvalue. In this setion, we impose a �nite sum rate feedbak onstraint, whih implies thateah user an only utilize Btot bits to report both CDI and CQI hannel knowledge.5.6.1 Multiuser Diversity - Multiplexing Tradeo� in MIMO BCwith Limited FeedbakWe present here a tradeo� between multiuser diversity and spatial multiplexing gain thatarises in SDMA downlink with �nite sum rate feedbak onstraint, where eah user sendsCDI (based on a odebook) and CQI feedbak. This is mainly due to the following fat: onone hand, CDI is su�ient to ahieve the full multiplexing gain, but annot simultaneouslyexploit multiuser diversity gain of order log logK. Furthermore, CDI feedbak load needs tosale appropriately depending on system parameters (e.g., operating SNR, number of ativeusers, et.) in order to guarantee throughput that sales linearly with the number of transmitantennas [10℄. On the other hand, in order to ahieve the optimal double logarithmiapaity saling with K, CQI has to be onveyed at the transmitter as a means to performe�ient user seletion and ontrol the e�et of CDI quantization error. Therefore, in asystem where only a �nite number of feedbak bits per user an be onveyed, the amount ofbits used for CSIT quantization has to be shared between CDI (multiplexing gain) and CQIquantization (multiuser diversity). While CDI quantization inurs in loss of multiplexing



110 Chapter 5 Limited Feedbak Broadast Channels based on Codebooksgain, CQI quantization leads to a degradation of the multiuser diversity bene�t. Therefore,assuming that eah user is allowed to feed bak a �nite number of bits results in a tradeo�between the spatial multiplexing gain
r = lim

P→∞

R(P )

logP
(5.33)and the multiuser diversity gain

m = lim
K→∞

R(P,K)

r log logK
(5.34)Although the term is inspired by the popular diversity-multiplexing tradeo� (DMT) inMIMO point-to-point systems [101℄, there are several fundamental di�erenes. The mul-tiuser diversity di�ers from single-user diversity in the sense that the latter refers to theability for the multiple antennas to reeive the same information aross di�erent paths,while in multiuser systems, di�erent information is transmitted and reeived by di�erentusers. The multiuser diversity gain inreases with the number of ative users in the ell,while the available multiplexing gain remains equal to min(M,K), regardless of the valueof K. Hene, with full CSIT both multiuser diversity and multiplexing gain an be attainedsine they sale with di�erent magnitudes, K and SNR respetively. In ontrast, in theDMT for single-user MIMO systems, both diversity and multiplexing gain sale with theSNR, thus the above two gains annot be fully ahieved simultaneously.5.6.2 Finite Sum Rate Feedbak ModelWe present here a general framework whih is referred to as �nite sum rate feedbak model.Eah reeiver k is onstrained to have a limited total number of feedbak bits Btot, availablefor quantizing its hannel vetor and feeding bak its quantized CSIT bak to the BS. Fromthis total amount of bits, BD bits are used to represent the CDI h̄ = h/ ‖h‖ based on apredetermined odebook, and BQ bits are used for salar quantization of the real-valuedCQI. This model is depited in Fig. 5.1. In [10℄ it was shown that hannel diretional

            CDI                        CQICSIT

B tot BD BQ+=Figure 5.1: Finite Sum Rate Feedbak Model.information an be used to ahieve the full multiplexing gain when the feedbak load BDsales appropriately. In a multiuser ontext with K > M , the CDI does not provide anyinformation on users' hannel gains, thus it is not su�ient to be used for e�ient userseletion and to exploit multiuser diversity gain. Hene, additional instantaneous, low-rateCQI is required. We try here to reveal the interplay between K, SNR, and feedbak load
BD and BQ, in order to exploit in the best possible way the degrees of freedom available ina multiuser MIMO downlink, i.e. the multiuser diversity and spatial multiplexing gain. Weaim at haraterizing the tradeo� that results from the sum feedbak rate onstraint per



5.6 MIMO Broadast Channels with Finite Sum Rate Feedbak Constraint 111user (Btot), by identifying the optimal feedbak rate alloation (split) in order to ahieveboth gains. Simply speaking, we try to quantify how many feedbak bits are worth CDIand CQI.CQI QuantizationAs hannel quality indiator, we onsider instantaneous salar feedbak, denoted as γk,whih an take on various forms and is evidently a ertain funtion of the urrent hannelrealization hk (i.e., γk = f(hk)). We assume that γk are i.i.d. random variables withprobability density funtion (PDF) fγ(γ).Let X =
{

q0 < q1 < . . . < qNQ

} and Y =
{

γq0 < . . . < γqNQ−1

} be the input deisionlevels and the output representative levels (reonstrution values), respetively, of an N2-level quantizer Q(·) de�ned as:
Q(γ) = γqi if qi ≤ γ < qi+1 0 ≤ i ≤ NQ − 1with q0 = 0 and qNQ = ∞. A partition region (quantization level) is de�ned as Qi =

[qi, qi+1) , 0 ≤ i ≤ NQ − 1. Eah user sends the orresponding quantization level index
i bak to the transmitter using BQ = ⌈log2NQ⌉ bits. In order to minimize the outageprobability, we assume the following onservative but reliable quantization rule γqi = qi.The distortion D introdued by the quantizer is given by

DNQ = E [e(γ,Q(γ))] =

NQ−1
∑

i=0

∫

Qi

e(γ, γqi)fγ(γ)dγ (5.35)where e(·, ·) is an error weighting funtion. Neessary onditions for optimal quantizer Q:
∂DNQ

qi
= 0 i = 0, . . . , NQ

∂DNQ

yqi

= 0 i = 0, . . . , NQ − 15.6.3 Problem FormulationOur objetive is to dynamially alloate bits to CDI and CQI feedbak (as shown in Fig.5.1) given a total amount of feedbak bits Btot, so that the apaity of the multiuser MIMOdownlink R(BD, BQ) is maximized. In the desribed �nite sum rate feedbak model, theoptimal feedbak rate alloation that maximizes the apaity an be formulated in thefollowing onstrained optimization problem:
max
BD,BQ

R(BD, BQ)

s.t. BD +BQ = Btot







(5.36)LetWk,m be the event that a user k is seleted for transmission amongK users over beamm.Capitalizing on the analysis of [102℄, we alulate the probability of this event onditionedon the fat that γk falls into the quantization level Qj
Pr (Wk,m|γk ∈ Qj) =

K
∑

n=0

1

n+ 1
·
(

K − 1

n

)

· P1 · P2



112 Chapter 5 Limited Feedbak Broadast Channels based on Codebookswhere
P1 = Pr {n users other than user k ∈ Qj} = (Pr (γ ∈ Qj))nand
P2 = Pr {(K − n− 1) users other than user k ∈ Qw, w < j}

=



Pr



γ ∈
⋃

w<j

Qw









K−n−1We assume here that if more than one user lie in Qj , a random user is sheduled fortransmission. Note also that for i.i.d. hannels, Pr (Wk,m|γk ∈ Qj) is not dependent on kand m. Using that (Pr (γ ∈ Qj)) = Fγ(qj+1) − Fγ(qj), and after some manipulations, onean show that
Pr (Wk,m|γk ∈ Qj) =

[Fγ(qj+1)]
K − [Fγ(qj)]

K

K (Fγ(qj+1)− Fγ(qj))
(5.37)Consider now that the quality indiator γ is a funtion of eah user's SINR. In that ase,the e�et of CDI quantization will be re�eted on the distribution of γ. Hene, the CQIontains information both on hannel gain and CDI quantization error. For instane, thevalue γ an be a lower or an upper bound on the ahievable SINR or even the ahievableSINR value itself. Suppose now that the metri γ represents a lower bound on the SINR.Then, the rate of the seleted user k, Rk is given by

Rk ≥
NQ−1
∑

j=0

∫

γ∈Qj

Pr (Wk,m|γk ∈ Qj) log2(1 + γ)fγ(γ)dγ

=

NQ−1
∑

j=0

∫

Qj

log2(1 + γ) · [Fγ(qj+1)]
K − [Fγ(qj)]

K

K (Fγ(qj+1)− Fγ(qj))
· fγ(γ)dγThe system throughput R(BD, BQ) an be lower bounded by

R(BD, BQ) =
∑

k∈S
Rk ≥

∑

k∈S

2BQ−1
∑

j=0

∫

Qj

log2(1 + γ)
[Fγ(qj+1)]

K − [Fγ(qj)]
K

K (Fγ(qj+1)− Fγ(qj))
fγ(γ)dγ (5.38)where BD is ontained both in Fγ(γ) and fγ(γ).Unfortunately, the optimization problem (5.36) does not seem to aept losed-form solution.Additionally, the solution depends on the quantization levels qi, 0 ≤ i ≤ NQ − 1 to beonsidered, thus di�erent CQI quantization strategies will yield di�erent solutions. Toirumvent the omplexity of numerial brute fore optimization and the non-linearity of thisoptimization problem, numerial algorithms based on dynami programming and providinga global optimum an be used [103,104℄.5.6.4 Deoupled Feedbak OptimizationIn this setion, instead of determining jointly the optimal feedbak bit split, we follow alow-omplexity approah. The problem is deomposed in a two-step optimization proedure:



5.7 Performane Evaluation 113we �rst �nd the optimal number of CDI bits required to guarantee full multiplexing gain,implying that the feedbak load alloated to CQI is BQ = (Btot −BD), and optimizing the
2BQ quantization levels by using (5.38). This approah is motivated by results showing thatlak of aurate CDI feedbak in the high SNR regime results in loss of multiplexing gain. Asthe loss of the pre-log fator of M is more detrimental on the ahievable sum-rate than theloss in multiuser diversity, we believe that for suh kinds of feedbak rate optimizations, ane�ient rule of thumb is to guarantee appropriate CDI feedbak rate to ahieve lose-to-fullspatial multiplexing gain.To illustrate this feedbak optimization tehnique, we apply this deoupled approahto feedbak optimization of strategy 1. Based on the asymptoti growth of (5.9) for large
K given in [64℄, we derive the saling of CDI feedbak load, whih in turn determines theremaining CQI feedbak bits. We de�ne the power gap (per user) between the SINR ofthe above sheme, SINRI, and that of zero-foring with perfet CSI, SINRZF as the ratio
SINRI

SINRZF
= α. Note that this power gap is translated to a rate gap. In order to ahievefull multiplexing gain for �nite K, the number of CDI bits BD per reeiver k should saleaording to:

BD = (M − 1) log2 (P/M)− (1 − b) log2K + c (5.39)where c = log2(K/Ki) is a onstant apturing the multiuser diversity redution at eahstep i of the greedy-SUS algorithm due to the ǫ-orthogonality onstraint between sheduledusers. As b < 1, having more users in the ell, a smaller number of feedbak bits BD peruser is required in order to ahieve full multiplexing gain. For example, in a system with
M = 4 antennas, K = 30 users and SNR = 10 dB, when a 3-dB SINR gap is onsidered,eah user needs to feed bak at least BD = 9 bits.Saling of CDI feedbak bits at high SNR regimeIn the high SNR regime, the role of CDI is more ritial due to the e�et of quantizationerror [10℄. For P →∞ and �xed K, based on asymptoti results of [64℄, we an show thatthe feedbak load should sale as

BD = (M − 1) log2 P − log2K (5.40)For instane, for a system with M = 4 antennas, SNR = 20 dB and K = 60 users, BD = 14bits are required to guarantee full multiplexing gain. Expetedly, the feedbak load BD athigh SNR is larger than that of (5.39). Thus, it is more bene�ial to alloate more feedbakbits on the quantization of hannel diretion (BD) at high SNR, and assign less bits for CQI(BQ).5.7 Performane EvaluationIn order to assess the sum-rate performane of the proposed shemes, simulations havebeen performed under the following onditions: M = 2 transmit antennas, orthogonalityonstraint ǫ = 0.4 and odebooks generated using random vetor quantization (RVQ) [10,61℄.The ahieved sum rate is ompared with two alternative transmission tehniques for theMIMO downlink, random beamforming [9℄ and zero-foring beamforming with perfet CSI(and equal power alloation).
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Figure 5.2: Sum rate versus the average SNR for BD = 4 bits, M = 2 transmit antennasand K = 30 users.
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Figure 5.3: Sum rate as a funtion of the number of users for BD = 4 bits, M = 2 transmitantennas and SNR = 20 dB.Unquantized CQIIn Figure 5.2 we ompare the sum rates of the proposed CQI metris as a funtion of theaverage SNR, for K=30 users and BD = 4 bits per user for CDI quantization. Strategy 1(metri I) and strategy 2 (metri II) o�er similar throughput, exhibiting however the samebounded behavior at high SNR, where the system apaity onverges to a onstant value.Given a �xed number of CDI bits BD, the system beomes unavoidably interferene-limitedat high SNR and the rate urves �atten out. This is due to the fat that the aurayof knowledge (resolution) of the quantization error remains onstant for SNR inreasing,



5.7 Performane Evaluation 115as well as due to that Greedy-SUS fores the system to shedule always M users. On theontrary, the sheme using strategy 3 (with feedbak of two salar values) provides higher�exibility by transmitting to M ≤ M users, thus keeping a linear sum-rate growth in theinterferene-limited region and onverging to TDMA for P →∞ (whereM = 1 is optimal).In Figure 5.3 we plot the sum rate as a funtion of K for average SNR = 20dB andodebook of size BD = 4 bits. It an be seen that all salar metris an e�iently bene�tfrom the multiuser diversity gain. The gap with respet to the full CSIT ase an bedereased by inreasing the feedbak load BD. However, the slightly di�erent saling ofstrategy 4 (sheduling metri IV) is due to the fat that the user seletion based on sum-rate estimates deides that M < M beams ought to be used. Sine the alulations areperformed using inomplete CSIT, erroneous or loose estimations an sometimes lead tosub-optimal deisions in terms of the number of users to be sheduled. Furthermore, in asystem with �xed orthogonality fator ǫ, the auray of the lower bound (γII) does notimprove as K inreases. On the other hand, the upper bound (γI) beomes more realistidue to a higher probability of �nding orthogonal quantized hannels, hene yielding slightlybetter performane.
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Figure 5.4: Sum rate performane as a funtion of the average SNR for inreasing value ofthe number of users, with BD = 4 bits of feedbak per user and M = 2 transmit antennas.We study now the performane of strategy 1 with di�erent number of users and CDIfeedbak bits in order to obtain an insight on the CQI feedbak metri design and the resultsof our asymptoti analysis. Figures 5.4 and 5.5 show a sum-rate omparison as a funtion ofthe average SNR, illustrating the multiplexing gain ahieved by strategy 1. In both �gures, itan be seen that given a �xed number of feedbak bits BD, the system beomes unavoidablyinterferene-limited at high SNR and the rate urves �atten out. Given a �xed odebooksize, Figure 5.4 shows the performane improvement of the proposed CQI metris as thenumber of ative users inreases. Indeed, it an be seen that the performane gap betweenthe sheme with perfet CSIT and strategy 1 with partial CSIT is narrower forK inreasing.Although the sheme enters the interferene limited regime for large values of P , the largerthe number of users, the higher the SNR value for whih the sum rate onverges to a bound.
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Figure 5.5: Sum rate as a funtion of the average SNR for inreasing odebook size, M = 2transmit antennas, and K = 50 users.
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Figure 5.6: Sum rate performane as a funtion of the number of users for inreasing ode-book size, M = 2 transmit antennas, and SNR = 10 dB.For �xed number of ative users in the ell (Fig. 5.5), by inreasing the number of odebookbits, strategy 1 onverges to ZFBF with perfet CSIT, while providing onsiderable gainswith respet to RBF. Note also that inreasing the number of bits for hannel diretionquantization at high SNR is more bene�ial than at low SNR. The sum rate as a funtionof the number of users K is shown in Figure 5.6. As the size of the odebook inreases,the performane of sheme I approahes that of the sheme with perfet CSIT, showingthe expeted saling with the number of users. This is due to the fat that metri I ane�iently exploit multiuser diversity.



5.7 Performane Evaluation 117E�et of CQI quantizationIn order to evaluate the e�et of CQI quantization, we onsider a system in whih eah userhas in total 10 bits available for feedbak reporting. A sum-rate omparison as a funtionof the number of users for SNR = 20 dB is shown in Figure 5.7. We use BD bits for feedingbak the index of the quantized hannel and the remaining BQ = (10 − BD) bits for CQIquantization. For Strategy 4 (two salar values of feedbak), 2 bits are used for quantizationof the hannel norm (γ(1)) and 3 bits for the alignment (γ(2)). The random beamformingsheme uses BD = 1 bits in order to speify the hosen transmitted beam (BD = ⌈log2M⌉)and the remaining (9 bits) for SINR quantization. A simple quantization tehnique has beenused that minimizes the mean squared distortion (max Lloyd algorithm). For this amountof available feedbak, it an be seen that for the simulated range of K, 6 bits are enoughto apture a large portion of multiuser diversity and preserve the saling (ase BD = 4).Note also that the performane is similar to that of Figure 5.3, in whih the CQI metrisare onsidered unquantized.
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Figure 5.7: Sum rate versus the number of users for with SNR = 20 dB, M = 2 transmitantennas and 10-bit total feedbak bits. BD = 5 bits are used for odebook indexing and(BQ = 10−BD bits) for CQI quantization. For metri IV, 2 bits are used for quantizationof the hannel norm and 3 bits for the alignment.Finite sum rate feedbak onstraintWe evaluate now the sum rate performane of strategy 1 under a �nite sum rate feedbakonstraint. The total number of available feedbak bits is Btot = 7 bits. CQI quantizationis performed through Max-Lloyd's algorithm. One both the input quantization levels qiand output representative levels γqi are found, the quantizer sets γqi = qi, 0 ≤ i ≤ NQ − 1in order to avoid information outage events.Figures 5.8 and 5.9 show the sum rate as a funtion of the number of users for SNR= 10 dB and SNR = 20 dB respetively for di�erent CDI and CQI feedbak alloations.As expeted, it is more bene�ial to alloate more bits on hannel diretion quantization
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Figure 5.8: Sum rate vs. number of users for M = 2 and SNR = 10 dB.in a system with low number of ative users. On the other hand, as the number of usersinreases, it beomes more bene�ial to alloate bits on CQI quantization instead. The blakurve BD = 1 bit orresponds to the RBF for M = 2 transmit antennas [9℄. In a systemwith optimal quantization, i.e. mathed to the PDF of the maximum CQI value among Kusers, the amount of neessary quantization levels is redued as the number of users in theell inreases. Thus, fewer amounts of feedbak bits are needed for CQI quantization inorder to apture the multiuser diversity.
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Figure 5.9: Sum rate vs. number of users for M = 2 and SNR = 20 dB.In Figure 5.10, the envelope of the urves in the two previous �gures is shown, whihorresponds to a system that hooses the best BD/BQ balane for eah average SNR and
K pair. In this �gure, we ompare how this best pair of (BD, BQ) hanges as the systemaverage SNR inreases. Both urves are divided in di�erent regions, aording to the optimal
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K values, there exists an optimal ompromise of BD and BQ, given that Btot = BD + BQ.5.8 ConlusionIn this hapter, we study multi-antenna broadast hannels, in whih eah user reports bakto the BS quantized CDI and real-valued salar CQI through a limited rate feedbak hannel.We proposed various salar CQI feedbak and sheduling metris that, if ombined withe�ient joint sheduling and zero-foring beamforming, an ahieve a signi�ant fration ofthe apaity of the full CSI ase by means of multiuser diversity. These metris are builtupon inter-user interferene bounds and inorporates information on both hannel gain andquantization error as a means to estimate satisfatorily the reeived SINR. A novel feedbakstrategy is also identi�ed, whih allows for adaptive swithing between multiuser (SDMA)and single-user transmission (TDMA) mode was also identi�ed as a means to ompensatefor the sum-rate eiling e�et at high SNR. Our sheme is shown to ahieve linear sum-rategrowth in the interferene-limited region by dynamially adapting the number of sheduledusers. Under a pratially relevant �xed feedbak rate onstraint per user, we formulatedthe problem of optimal feedbak balaning in order to exploit spatial multiplexing andmultiuser diversity gains. A low-omplexity optimization approah has been suggested inorder to identify the neessary CDI and CQI feedbak load saling, revealing an interestinginterplay between the number of users, the average SNR and the number of feedbak bits.
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Table 5.1: Greedy Semi-orthogonal User Seletion with Limited FeedbakStep 0 set S = ∅, Q0 = 1, . . . ,KFor i = 1, 2, . . . ,M repeatStep 1 ki = arg max

k∈Qi−1
CQIkStep 2 S = S ∪ kiStep 3 Qi =

{

k ∈ Qi−1 | |ĥkĥHki
| ≤ ǫ

}

Table 5.2: Greedy User Seletion Algorithm with Limited FeedbakStep 0 Initialization: Set S0 = ∅, R(S0) = 0, and Q0 = 1, . . . ,KStep 1 k1 = arg max
k∈Q0

CQIkSet S1 = S0 ∪ {k1}While i < M repeat
i← i+ 1Step 2 ki = arg max

k∈(Q0−Si−1)
R(Si−1 ∪ {k})Step 3 Set Si = Si−1 ∪ {ki}if R(Si) ≤ R(Si−1)Step 4 �nish algorithm and i← i− 1Step 5 Set S = Si andM = i



5.A Proof of Theorem 5.1 121APPENDIX5.A Proof of Theorem 5.1Before proeeding to the proof of Theorem 5.1, we �rst state the following result.Lemma 5.3: Let Uk ∈ CM×(M−1) be an orthonormal basis spanning the null spae of wk.Then,
∥

∥hkUk

∥

∥

2
= 1− cos2 θk (5.41)Proof. De�ne the orthonormal basis Zk of CM obtained by staking the olumn vetors ofUk and wk: Zk = [Ukwk]. Sine ZkZHk = I and hk has unit power

∥

∥hkZk∥∥2
= hkZkZHk hHk = hkhHk = 1 (5.42)Then, by de�nition of Zk we an separate the power of hk as follows

∥

∥hkZk∥∥2
=
∥

∥hk [Ukwk]
∥

∥

2
=
∥

∥hkUk

∥

∥

2
+
∣

∣hkwk

∣

∣

2
= 1 (5.43)Setting ∣∣hkwk

∣

∣

2
=cos2 θk and solving the above equation for ∥∥hkUk

∥

∥

2 we obtain the desiredresult.Now we an proeed to the proof of Theorem 5.1. Using the de�nition of Ψk(S) andde�ning ω2
k = cos2 θk, the interferene over the normalized hannel for user k and index set

S, denoted as Ik(S), an be expressed as
Ik(S) =

∑

i∈S,i6=k

∣

∣hkwi

∣

∣

2
=

∑

i∈S,i6=k
hkwiwHi hHk = hkΨk(S)hHk (5.44)The normalized hannel hk an be expressed as a linear ombination of orthonormal basisvetors. Using Lemma 5.3, all possible unit-norm hk vetors with ∣∣hkwk

∣

∣ = ωk an bewritten as follows hk = ωke
−jαkwH

k +
√

1−ω2
kUkBkek (5.45)where Bk is a diagonal matrix with entries ejβi , i = 1, . . . ,M − 1 and ek is an arbitraryunit-norm vetor in CM−1. The omplex phases βi and αk are unknown and lie in [0, 2π].Substituting (5.45) into (5.44) we get

Ik(S) = ω2
k wH

k Ψk(S)wk

(a) +
(

1−ω2
k

) eHk BHk UH
k Ψk(S)UkBkek

(b) +ωk
√

1−ω2
k [e−jαkwH

k Ψk(S)UkBkek
+eHk BHk UH

k Ψk(S)wke
jαk ]

(5.46)Sine the �rst term in (5.46) is perfetly known, the upper bound on Ik(S) is found by jointmaximization of the summands (a) and (b) with respet to αk, Bk and ek. We use a simpleroptimization method, whih onsists of bounding separately eah term.



122 Chapter 5 Limited Feedbak Broadast Channels based on Codebooks(a) De�ning Ak(S) = UH
k Ψk(S)Uk for larity of exposition, the seond term an bebounded as follows

maxBk,ek

(

1−ω2
k

) eHk BHk Ak(S)Bkek =
(

1−ω2
k

)

λmax{Ak(S)}

s.t. ‖ek‖ = 1 (5.47)where the operator λmax {·} returns the largest eigenvalue. The maximum in (5.47) isobtained when the vetor Bkek equals the prinipal eigenvetor of the matrix Ak(S).(b) De�ning qk = BHk UH
k Ψk(S)wke

jαk and noting that the matrix Ψk(S) is Hermitian byonstrution, the bound on the third term in (5.46) an be written as follows
maxqk,ek

ωk

√

1−ω2
k

[qHk ek + eHk qk] = maxqk

2ωk

√

1−ω2
k ‖qk‖

s.t. ‖ek‖ = 1 (5.48)The left hand side is maximized for ek =
q

k

‖qk‖ , whih satis�es the unit-norm onstraint,yielding the modi�ed bound in (5.48). The solution is given by
maxqk

2ωk

√

1−ω2
k ‖qk‖ = maxBk,αk

2ωk

√

1−ω2
k

∥

∥

∥BHk UH
k Ψk(S)wke

jαk

∥

∥

∥

= 2ωk

√

1− ω2
k

∥

∥

∥UH
k Ψk(S)wk

∥

∥

∥ (5.49)Finally, inorporating into (5.46) the bounds obtained in (5.47) and (5.49) we obtain thedesired bound.5.B Proof of Lemma 5.1By noting that ǫZF orresponds to the maximum possible amplitude of the o�-diagonalterms of (ĤkĤH

k

)−1 and under the non restritive assumption ǫ < 1
M−1 , the bound on

ǫZF is found by bounding the amplitude of the o�-diagonal terms in the Neumann series
∑∞

n=1 offdiag
(ĤkĤH

k

)n, where offdiag(·) takes the o�-diagonal part setting the elements inthe diagonal to zero. By representing the non-normalized zero-foring beamforming vetorsas the sum of ĥk and its orthogonal omplement w̃k, i.e. wk = ĥk + w̃k and boundingthe amplitude of the diagonal terms of I +
∑∞
n=1 offdiag

(ĤkĤH

k

)n, we obtain the desiredbound on the hannel alignment cos θk.5.C Proof of Theorem 5.2By using the de�nition of eah user's SINRk, cos θk and equal power alloation, we havethat SINRk =
P |hkwk|2

∑

j∈S,j 6=k P |hkwj |2 +M
=

P ‖hk‖2 cos2 θk

P ‖hk‖2
∑

j∈S,j 6=k
∣

∣hkwj

∣

∣

2
+M

(5.50)We aim to �nd an upper bound on the multiuser interferene given by Theorem 5.1 thattakes into aount the worst-ase orthogonality ǫZF. Expressing the worst-ase interferene



5.D Proof of Lemma 5.2 123reeived by the k-th user in terms of cos θk and ǫZF, the following bounds an be easilyderived for equation (5.16)










αk ≤ (M − 1)ǫ2ZF

βk ≤ 1 + (M − 2)ǫZF

ωk ≤ (M − 1)ǫZF

(5.51)Hene, by substituting these values in equation (5.15), we obtain the upper bound Ik =

cos2 θk (M − 1)ǫ2ZF + sin2 θk [1 + (M − 2)ǫZF] + 2 sin θk cos θk(M − 1)ǫZF ≤ sin2 θk. Bysubstituting ǫZF = ϑ and cos θk =
|cosφk−

√
ϑ|

1+ϑ (i.e. inequalities (5.17) and (5.18), respetivelybeome equalities), where ϑ = ǫ
1−(M−1)ǫ in the previous expression, we have the upper boundgiven by (5.21). Using this bound on the SINRk expression derived in (5.50), we obtain theSINR bound in equation (5.20).5.D Proof of Lemma 5.2Before proeeding to the proof, we �rst state some preliminary alulations that are usefulin the derivation of the CDF of γIk . To simplify the notation, we de�ne the random variable

ν := ‖hk‖2 whih is Gamma distributed with parameter M and mean E{‖hi‖2} = M ;hene, its PDF is given by
fν(x) =

xM−1

Γ(M)
e−x (5.52)where Γ(M) = (M − 1)! is the omplete gamma funtion.In [62℄, it is shown that under the ACVQ framework, the interferene Y = ‖hk‖2 sin2 φkfollows a hi-square χ2

(2M−2) distribution with (2M − 2) degrees of freedom weighted by δ,i.e. Y ∼ δχ2
(2M−2). Similarly, the distribution of the reeived signal X = ‖hk‖2 cos2 φk =

‖hk‖2 (1 − sin2 φk) is the sum of two independent weighted hi-square distributions χ2
(2) +

(1− δ)χ2
(2M−2).De�ne the following hanges of variables

ψ := sin2 φk u := 1
δ ν(1− ψ)

ν := ‖hk‖2 v := 1
δ νψ

(5.53)Then, the metri in equation (5.9) an be expressed as
γ =

u

v + M
Pδ

(5.54)The Jaobian of the transformation u = f(ν, ψ), v = g(ν, ψ) desribed in (5.53) is given by
J(ν, ψ) =

∣

∣

∣

∣

∣

∂u
∂ν

∂u
∂ψ

∂v
∂ν

∂v
∂ψ

∣

∣

∣

∣

∣

=
ν

δ2
(5.55)Expressing ν and ψ as a funtion of u and v, we have ν = δ(u + v) and ψ = v

u+v . Sub-stituting in the Jaobian, we get J(u, v) = (u+v)
δ . Sine ν and ψ are independent ran-dom variables for i.i.d. hannels, the joint PDF of u and v is obtained from fuv(u, v) =

1
J(u,v)fν [δ(u+ v)] fψ

[

v
u+v

]. The PDF fν is given by eq. (5.52) and fψ is given by [62℄
fψ (x) =

{

ND(M − 1)xM−2 0 ≤ x ≤ δ
0 x > δ

(5.56)
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fuv(u, v) =

δ

Γ(M − 1)
e−δ(u+v)vM−2 (5.57)The CDF of the CQI metri I is found by solving the integral

Fγ(x) =

∫∫

u,v ∈Dx

fuv(u, v) du dv (5.58)The bounded regionDx in the uv-plane represents the region where the inequality u
v+ M

Pδ

≤ xholds. In addition, sine the domain of ψ is Dψ = [0, δ], we also obtain the inequalities
v

u+v ≥ 0, v
u+v ≤ δ and thus u ≥ 1−δ

δ v. Hene, Fγ(x) is obtained by integrating fuv(u, v) overthe �rst quadrant of the uv-plane, in the region de�ned by u ≤ x
(

v + M
Pδ

) and u ≥ 1−δ
δ v.Depending on the slopes of these linear boundaries, the integral in (5.58) is arried out overdi�erent regions

Fγ(x) =















∫∞
0

∫ x(v+ M
Pδ )

1−δ
δ v

fuv(u, v) du dv x ≥ 1−δ
δ

∫

Mx
P(1−δ−δx)

0

∫ x(v+ M
P δ )

1−δ
δ v

fuv(u, v) du dv 0 ≤ x < 1−δ
δ

(5.59)The upper integration limit along the v axis in the region 0 ≤ x < 1−δ
δ , orresponds to thevalue of v in whih the linear boundaries interset, v = Mx

P (1−δ−δx) . Solving the integralsabove, we obtain the CDF of the SINR metri.5.E Proof of Theorem 5.3Let γIki
denote the upper bound on the ahieved SINR of user ki (i.e. the user seleted atthe i-th iteration, for i = 1, 2, . . . ,M . From Theorem 1 in [64℄, we have that
Pr

{

uK1 −
P

M
log log

√
K ≤ γIk1 ≤ uK1 +

P

M
log log

√
K

}

≥ 1−O
(

1

logK

)with uK1 = P
M log(Kβ )− P (M−1)

M log log(Kβ ).For i = 2, . . . ,M , we obtain
Pr

{

uKi −
P

M
log log

√
K ≤ γIki

≤ uKi +
P

M
log log

√
K

}

≥ 1−O
(

1

logK

)with uKi = P
M log(Ki

β )− P (M−1)
M log log(Ki

β ).From Greedy-SUS proedure, we have that γIk1 ≥ γIk2 ≥ . . . ≥ γIkM
, and after some manipu-lations it an be shown that for large K, we have

Pr

{

uKi −
P

M
log log

√
K ≤ γIki

≤ uK1 +
P

M
log log

√
K

}

≥ 1−O
(

1

logK

)Sine log(·) is an inreasing funtion, we have that
Pr{log2

(

1 + uKi −
P

M
log log

√
K

)

≤ log2

(

1 + γIki

)

≤ log2

(

1 + uK1 +
P

M
log log

√
K

)

} ≥ 1−O
(

1

logK

) (5.60)



5.F Proof of Theorem 5.4 125Hene,
lim
K→∞

Pr{
log2

(

1 + uKi − P
M log log

√
K
)

log2(
P
M logK)

≤ log2

(

1 + γIki

)

log2(
P
M logK)

≤
log2

(

1 + uK1 + P
M log log

√
K
)

log2(
P
M logK)

}

≥ 1−O
(

1

logK

) (5.61)By substituting uK1 and uKi in the above equation, we onlude that the LHS and the RHSof the inequalities both onverge to one as K →∞, therefore
lim
K→∞

R
log2

(

P
M logK

) = 1 (5.62)with probability one. Assuming equal power alloation and that M perfetly orthogonalusers an be found, as Pr{|S| = M} K→∞→ 1, we have that the proposed sheme ahieves asum rate of M log2

(

P
M logK

).An upper bound on Ropt is given in [44℄, where
Pr

{Ropt
M
≤ log2

(

1 +
P

M
(logK +O(log logK))

)}

≥ 1−O
(

1

log2K

)Thus,
Pr
{

log2(1 + γIki
)− Ropt

M ≥
log2

(

1 + uKi − P
M log log

√
K
)

− log2

(

1 + P
M (logK +O(log logK))

)

}

≥ 1−O
(

1
logK

)

−O
(

1
log2K

)where the RHS of the inequality inside the Pr goes to zero for K → ∞. As a result, forlarge K, we have that
0 ≤ log2(1 + γIki

)− Ropt
M

, i = 1, . . . ,Mwith probability one, whih results to (5.30) for K →∞, as Ropt is an upper bound on thesum rate of our proposed sheme.5.F Proof of Theorem 5.4For P →∞, we have
γIIk = lim

P→∞

P
(1+ϑ)2 ‖hk‖

2
(cosφk −

√
ϑ)2

P ‖hk‖2 IUBk
+M

=
(cosφk −

√
ϑ)2

(1 + ϑ)2IUBk

≤ cot2 φk (5.63)whose PDF is given by fcot2 φ(x) = (M−1)ND

(1+x)M , for x ≥ (1 − δ)/δ and zero elsewhere [64℄.The expeted sum rate for a user set S (of ardinality M) is given by
R ≤ E

{

M
∑

i=1

log2(1 + max
ki∈Ki

cot2 φki)

}

=

M
∑

i=1

∫ ∞

0

log2(1 + x)dFKi

cot2 φ(x)dx
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=

M
∑

i=1

Ki
∫ ∞

1−δ
δ

log2(1 + x)
2BD(M − 1)

(1 + x)M

(

1− 2BD
(1 + x)M−1

)Ki−1

dx

(a)
= 2BD(M − 1)

M
∑

i=1

Ki
Ki−1
∑

k=0

(Ki − 1

k

)

(−1)k
∫ ∞

1−δ
δ

log2(1 + x)
2BDk

(1 + x)k(M−1)+M
dx

=
log2 e

M − 1

M
∑

i=1

Ki
Ki−1
∑

k=0

(Ki − 1

k

)

(−1)k
[

BD log 2

k + 1
+

1

(k + 1)2

]

(b)
=

log2 e

M − 1

M
∑

i=1

(BD log 2 +HKi) (5.64)where (a) follows from binomial expansion and to get (b) the Nörlund-Rie integral repre-sentation is applied [105℄. Combining (5.64) with Ki ≤ K, we get (5.31).



Chapter 6
Feedbak Redution usingRanking-based Feedbak
6.1 IntrodutionIn the previous hapters, we investigated several sheduling and linear beamforming teh-niques and tried to identify low-rate feedbak measures that provide the transmitter withsu�ient yet partial hannel knowledge, as a means to ahieve near optimal system through-put. It was shown that if some form of impliit hannel knowledge (e.g. hannel orrelation)is exploited, it su�ient to feed bak one or two salar feedbak parameters in order toahieve satisfatory performane. In this hapter, we take a di�erent approah to the prob-lem of feedbak redution and aim at �nding a representation of feedbak metris that allowsfor further ompression. Using the promising two-step sheduling and preoding approahproposed in Chapter 3, we point out that the hannel information to be onveyed to thesheduler an be further dereased. As the �rst-stage hannel information is mainly utilizedfor the purposes of user seletion and not for beam design or rate alloation, we proposea new type of feedbak representation, oined as ranking-based feedbak. In this approah,eah user - instead of reporting a quantized version of CSIT feedbak - alulates and feedsbak the ranking, an integer between 1 and W +1, of its instantaneous CSIT among a set of
W past CSIT measurements. This representation enables the BS to selet users that are onthe highest peak (quantile) with respet to their own hannel distribution, independently ofthe distribution of other users. When W is su�iently large, the seleted users are also theones with the most favorable hannel onditions. An interesting property of this method isthat temporal fairness is restored in heterogeneous networks, i.e. systems in whih users'hannels are not identially distributed and mobile terminals experiene di�erent averageSNRs. 127



128 Chapter 6 Feedbak Redution using Ranking-based FeedbakFeedbak redution in SDMA systems has in fat evolved in a topi of researh in itsown right and many possible strategies an be pointed out. Apart from the approahesalready presented and proposed in the previous hapters, a few seleted additional onesare brie�y exposed here. A popular approah, referred to as seletive or threshold-basedfeedbak, allows a user to send bak information depending on whether its urrent hannelonditions exeed a ertain threshold or not. This onept was �rst proposed in [106℄ for adownlink single-input, single-output (SISO) system and SNR-dependent thresholds, and isshown to redue statistially the required total amount of feedbak by means of multiuserdiversity. The feedbak rate an be further redued, at the ost of feedbak delay, by usingan adaptive threshold [107℄. The seletive feedbak idea was extended for MISO systemsin [108℄. In [109℄, a sheme based on [53℄ and one bit feedbak was shown to ahievethe optimal apaity growth rate when K → ∞. A sheme based on multi-beam randombeamforming was proposed in [110,111℄, where it was shown that a deterministi feedbak of
log2(1 +M) bits per user is enough to guarantee the optimal apaity saling law for �xed
M and single-antenna reeivers. A ommon limitation of the above feedbak redutiontehniques is that the total feedbak rate grows linearly with the number of users, thusreduing the e�etive system throughput when the number of users is large. SDMA undera sum feedbak rate onstraint is onsidered in [112℄, in whih threshold-based feedbakon the hannel quality and the hannel diretion is used for feedbak redution in orderto satisfy a sum feedbak rate onstraint. Di�erently from the previous approahes inwhih users are assumed to send feedbak through dediated hannels, the authors in [113℄onsider a ontention-based feedbak protool, in whih users ompete to gain aess in ashared medium. In this system, the feedbak resoures are �xed random aess minislots,and ative users attempt to onvey feedbak messages only if their hannel gain is above athreshold.In this hapter, we adopt a two-stage SDMA downlink tehnique. During the shedulingphase, all ative usersK are allowed to feedbak some kind of �nite rate CQI, whereas in theseond step, information on the transmission rate is requested only from theM ≪ K seletedusers. Our work builds upon reently proposed ideas in the ontext of sheduling [114℄.Therein, a so-alled `sore-based' opportunisti sheduler was proposed for realisti senarioswith asymmetri fading statistis and data rate onstraints. Similar hannel distribution-based shedulers have also been proposed in [115�117℄ as a means to shedule a user whoseinstantaneous rate is in the highest quantile of its distribution. Interestingly, these workswere solely foused on sheduling at the transmitter side, and neither in the ontext offeedbak redution nor that of MIMO systems. The ontributions of this hapter are thefollowing:
• We propose a new onept of CSIT representation, oined as `ranking-based feedbak',for the sole purpose of user seletion as a means to redue the required feedbak load.The ranking-based CSIT onsists of an integer value that represents the rank of eahuser's instantaneous CQI among a number of stored CQI values observed over the Wpast slots.
• The key advantage of the proposed method is two fold: 1) ranking-based feedbak isalready in digital form, whih helps for further ompression and simple salar quan-tization, 2) ranking-based feedbak provides not only information about the hannel



6.2 Ranking-based Feedbak Framework 129quality but also about the relative quality level, in a way that is independent of theusers' fading statistis, hene providing inherent fairness. This type of limited feed-bak representation enables the BS to selet users that are on the peak of their ownhannel distribution, independently of the hannel onditions of other users.
• We analyze the sum-rate performane of a modi�ed MISO downlink system withrandom orthogonal beams as in [9, 53℄, in whih users are seleted based on ranking-based CSIT. Furthermore, we provide analyti expressions for the sum rate when Wis �nite. We quantify the e�et of �nite W and the error introdued in the shedulingdeisions ompared to the optimal ase of W →∞.
• We study the additional merit of ranking-based CSIT in heterogeneous networks byshowing that suh form of feedbak information is able to o�er temporal fairness amongusers, sine the probability of a user to be seleted is 1/K, independently of the otherusers' hannel distributions and its own average SNR.6.2 Ranking-based Feedbak FrameworkWe present here the onept of ranking-based feedbak and show its intrinsi advantageswhen it is used as a user seletion metri during the sheduling stage in a broadast hannelwith M transmit antennas and K ≥M single-antenna users.6.2.1 Two-stage approahWe assume a two-stage feedbak approah by splitting the feedbak resoure into two stages(sheduling followed by transmission). In the sheduling stage, all K ative users ompetefor medium aess and eah user k is allowed to report instantaneous CQI, denoted as γk,whih is a ertain funtion of its hannel, i.e. γk = f(hk). This CQI metri an generallytake on any form of hannel information representation. For instane, in a TDMA ontext,

γk may represent the SNR or the transmission rate of user k, whereas in a SDMA setting, theCQI may be the hannel norm or the reeived SINR (ahievable or estimated). Atually,all the feedbak metris that we presented in the previous hapters an be used here asCQI feedbak. However, as in this hapter the CQI is used solely for purposes of userseletion, oarser hannel information an possibly be used. Given a set of seleted users Swith ardinality |S| =M ≤ M , a seond step exploiting preoding is applied to serve theseleted users. During the seond step, the transmitter may request for variable levels ofadditional CSIT feedbak from theM << K pre-seleted users. The seond-step preodingmatrix may require variable levels of additional CSIT feedbak to be omputed, dependingon design. The seond-stage CSIT feedbak an be used for preoding design as well as forlink adaptation. For simpliity of exposition, we onsider a system where a random, unitarypreoder is generated at eah time slot during the �rst stage. Moreover, the seond-steppreoder is the same as the one used in the sheduling step and the seleted users feedbak their transmission rates for the purposes of link adaptation. Alternatively, the needfor a seond stage in order to inform the BS on the transmission rate an potentially beirumvented by assuming that the CDFs of di�erent users' hannels are known a priori atthe transmitter. This assumption an be justi�ed in systems, where the statistial reiproity



130 Chapter 6 Feedbak Redution using Ranking-based Feedbakbetween the downlink and uplink hannels allows the BS to estimate the distributions byaggregating eah user's CQI feedbak.6.2.2 Ranking-based CQI RepresentationAt time instant t, eah user measures its CQI on eah of B randomly generated beams(olumns of the �rst-stage preoding matrix). In addition to the instantaneous CQI valueon eah beam m, {γk,m(t)}Bm=1, eah user also keeps reord of a set of past CQI values,denoted as Wk,m, observed over a window of size W , i.e.
Wk,m = {γk,m(t− 1), γk,m(t− 2), . . . , γk,m(t−W + 1)}Then, eah user, say the k-th, alulates the ranking (order) rk,m(t) ∈ {1, . . . ,W + 1} ofits urrent CQI metri γk,m(t) on beam m among the W past values ontained in the set

Wk,m. In other words, if γk,m(t) is the third largest value within the set ofW latest measuredvalues, rk,m(t) = 3. The rank value of user k at slot t on beam m is mathematially givenby [114℄
rk,m(t) = 1 +

W−1
∑

w=1

1 {γk,m(t) < γk,m(t− w)} +
W−1
∑

w=1

1 {γk,m(t) = γk,m(t− w)}Zw (6.1)where Zw are i.i.d. random variables on {0, 1} with Pr{Zw = 0} = 1/2 orresponding tothe ase where the instantaneous CQI is equal to one or several of the past values, in whiheither rank value is randomly hosen with equal probability.The key ideas are as follows:1) eah user selets its minimum rank value over the beams, i.e.,
rk(t) = min

m=1,...,B
rk,m(t) (6.2)2) eah user, instead of reporting diretly its maximum CQI value over the beams, feedsbak a quantized value r̂k(t) of the integer rk(t), along with the beam index m in whih theranking value is minimum, i.e.

r̂k(t) = Q(rk(t)) (6.3)whereQ(·) represents aN = 2B-level quantizer. Thus, the feedbak load per user is ⌈log2N⌉bits for the ranking and ⌈log2M⌉ bits for the index of its preferred beam.At the transmitter side, the sheduler assigns eah beam m to the user k∗m with theminimum reported ranking value, that is,
k∗m(t) = arg min

1≤k≤K
r̂k(t) (6.4)As stated before, one the users {k∗m(t)}Bm=1 are seleted based on ranking-based CSIT,they are polled and requested to report the transmission rate that an be supported bytheir instantaneous hannel onditionss.TheW past CQI measurements are samples of eah user's CQI empirial proess. There-fore, the length of the observation window provides a measure of how aurately the CQIdistribution is monitored by the user. The larger the W , the better a user an trak thedistribution of its CQI proess, thus identifying more aurately the peaks with respet to



6.3 Performane analysis 131its own distribution. In other words, ranking-based CSIT enables eah user to have an esti-mate of the quantile of its CQI using W previous CQI samples, where the sample quantile1of order p is de�ned as the statistial funtional F̂−1
W (p) = inf

{

x : F̂W(x) ≥ p
} for p ∈ (0, 1)and F̂W (·) denoting the empirial distribution funtion of W samples. In the asymptotiase of W → ∞, the observation window aptures the entire CQI distribution and orre-sponds to the ase in whih ranking-based CSIT provides exat information on the CDF ofthe CQI proess. In this ase, the user with the minimum ranking-based CQI value is theone whose instantaneous CQI is in the highest quantile.6.3 Performane analysisWe evaluate the average rate of a system employing random opportunisti beamforming inwhih ranking-based feedbak is used as user seletion metri. We assume that the CQI takeson the form of user rate, i.e., γk,m = log2(1 + SINRk,m). Let Xk,m denote the rate proessof the k-th user rate on the m-th beam with CDF denoted as FXk,m

(·). The distributionfuntion is assumed to be stritly inreasing and ontinuous, suh that its inverse F−1
Xk,m

(·)exists. Unless otherwise stated, we assume a homogenous network where all users haveidential average SNR (i.i.d. hannel statistis).6.3.1 Asymptoti optimality of ranking-based feedbak for largewindow size WFor �nite window size W , ranking-based CSIT enables eah user to estimate the quantileof its instantaneous CQI based on W samples of its empirial CQI proess. For �xed xthe number of r.v.s Xi suh that Xi ≤ x follows a binomial distribution with probabilityof `suess' p = F (x), hene the r.v. F̂WX (x) follows a binomial distribution with possiblevalues 0, 1/W, . . . , 1. We examine here the behavior of the empirial funtion F̂WX (x) for Winreasing and show how likely is F̂WX (x) to be lose to F (x) for arbitrary large W and x�xed.Let the olletion of r.v. X = {Xt : t ∈ N+} be a disrete-time stohasti proess foreah user de�ned on the same probability spae. X is assumed stationary and ergodiand for exposition onveniene we omitted the user index k from the stohasti proess.The random sample of i.i.d. r.v. X1, X2, . . . , XW is an empirial proess, whose empirialdistribution F̂WX (·) is de�ned as the CDF that puts mass 1/W at eah sample point Xi, i.e.
F̂WX (x) =

1

W

W
∑

i=1

I {Xi ≤ x} (6.5)where I {Xi ≤ x} is an indiator funtion de�ned as
I {Xi ≤ x} =

{

1 Xi ≤ x
0 Xi > x

(6.6)We an show that for W → ∞, the empirial CDF onverges to the CDF of the CQIdistribution, whih implies that the user with minimum ranking feedbak value is the user1More formally, for a proess (Y (t), t ≥ 0) with stationary and independent inrements with Y (0) = 0,the p-quantile of (Y (s), 0 ≤ s ≤ t) for 0 < p < 1 is de�ned by M(p, t) = inf
{

x :
∫ t

0
1(Y (s) ≤ s)ds > pt

}.



132 Chapter 6 Feedbak Redution using Ranking-based Feedbakwith the maximum CQI value.Proposition 6.1: In a system where users have i.i.d. hannel statitis, user seletionbased on ranking-based feedbak onverges to the apaity-optimal max-rate sheduling for
W →∞.Proof. The proof is given in Appendix 6.A.6.3.2 Throughput for in�te observation window size WIn this setion, we study the average sum rate in the large W regime. Assuming W tobe in�nitely large, we an easily see that user seletion based on ranking-based CSIT isequivalent to minimum omplementary CDF (CCDF) sheduling. This means that if rk,maptures the distribution of reeived SINR proess, denoted as Γk,m, then lim

W→∞

rk,m
W

=

F̄Γk,m
(γk,m), where F̄Γk,m

(γk,m) = 1−FΓk,m
(γk,m) is the CCDF of the CQI metri γk,m. Asshown in Proposition 6.1, seleting on eah beam m the user k∗m with the minimum rankingvalue is equivalent to seleting the user with the minimum tail of CDF, i.e.

k∗m = arg min
1≤k≤K

r̄k,m(t) = arg min
1≤k≤K

1− FΓk,m
(γk,m(t))

= arg max
1≤k≤K

FΓk,m
(γk,m(t)) m = 1, . . . ,B (6.7)where r̄k,m(t) = rk,m(t)/W is the normalized ranking value and γk,m(t) is the realization of

Γk,m at slot t.The rate of user k on beam m, prior to hannel-aware sheduling, is given by
Rk,m =

∫ ∞

0

log2 (1 + γk,m) fΓ(γ)dγ =

∫ 1

0

log2

(

1 + F−1
Γk,m

(r̄)
)

dr̄ (6.8)where fΓk,m
(·) is the PDF of CQI metri γ. If we assume i.i.d. hannel statistis and thatthe user on the highest quantile is sheduled on eah beam m, then the average sum rate isgiven by the following proposition:Proposition 6.2: The average sum rate R of a symmetri network (i.i.d. users) whereuser seletion is performed based on ranking-based feedbak is given by

R = BK
∫ 1

0

log2

(

1 + F−1
Γ (z)

)

zK−1dz (6.9)Proof. The proof is straightforward by hanging the variable FΓ(γ) = z in the sum rategiven by R = B
∫∞
0

log2(1 + γ)dFKΓ , where FKΓ is the CDF of the best user seleted among
K i.i.d. users with ommon parent distribution FΓ(γ).Note that similar result has been derived in [115℄. Therein, the authors derive the averageuser rate for the general ase where the hannel distributions are not neessarily identiallydistributed and B = 1. Proving that the probability that user k is seleted at time slot tgiven that the user rate Xk(t) = xk is Pr{k∗(t) = k|Xk(t) = xk} = FK−1

Xk
(xk), they showedthat the average rate of a user is given by Rk =

∫ 1

0
uK−1F−1

Xk
(u)du.Unfortunately, equation (6.9) does not always result in losed-form expressions. For in-stane, the sum rate of multi-beam RBF given by RRBF = BK

∫ 1

0 F
−1
Xk

(u)uK−1du, where
F−1
Xk

(u) is the inverse of FXk
(u) = 1− e−B/P e−2uB/P

2(B−1)u requires numerial alulation. Analytiexpressions an be derived in spei� regimes, suh as the high and low power regions.



6.3 Performane analysis 1336.3.3 Throughput for �nite observation window size WLet Xk∗m(t) denote the rate proess of the user k seleted on beam m with distributionfuntion FXk∗
m

(x) = [Pr {Xk,m ≤ x}]K . The expeted rateRk,m of k-th user when sheduledon beam m is given by
Rk,m = E

{

Xk∗m(t)
}

=

∫ ∞

0

Pr

{

max
1≤k≤K

Xk,m(t) > x

}

dx (6.10)Proposition 6.3: The average sum rate R of a system generating B random orthonormalbeams and sheduling B users among K ative users based on ranking-based feedbak withobservation window W is given by
R =

B
∑

m=1

(

∫ ∞

0

(1− (FXk∗
m

(x))W )dx −
W
∑

w=1

(

W − w
W

)K ∫ ∞

0

Fw,m(x)dx

) (6.11)where Fw,m(x) =
(

W
w

)

(

FXk∗
m

(x)
)W−w (

1− FXk∗
m

(x)
)w.Proof. The proof is given in Appendix 6.B.Using the above proposition, we an show that the throughput RTDMA of single-beamRBF [53℄ is given by

RTDMA =

W
∑

w=0

[

1−
(

W − w
W

)K
]

(

W

w

)∫ ∞

0

(FXk∗
m

(x))W−w(1 − FXk∗
m

(x))wdx (6.12)with FXk∗
m

(x) =
(

1− e− 2x−1
P

)K . The onstant term G =

W
∑

w=0

[

1−
(

W − w
W

)K
] an beevaluated analytially as G = 1 +W + (−1)KW−K(ζ(−K)− ζ(−K,−W )), where ζ(s) and

ζ(s, a) are the Riemann zeta funtion and Hurwitz zeta funtion, respetively. Equation(6.12) does not seem to have losed-form representation for exponentially distributed hannelgains. However, in the high power regime the following series representation an be obtained:Corollary 6.1: At high SNR, the average sum rate RWhigh of multi-beam RBF with B = 2beams, �nite W and ranking-based user seletion is given by
RWhigh = 2

W
∑

w=1

(

W

w

)

[

1−
(

W − w
W

)K
]

Γ(Kw − 1)Γ(KW −Kw + 1)

Γ(KW )
(6.13)For large enough W , a good approximation of the binomial distribution is given by thenormal distribution (De Moivre-Laplae Theorem). Let q = FXk∗

m
(x) and p = 1−FXk∗

m
(x),then Fw,m(x) an be approximated by

Fw,m(x) ≈ 1√
2πWpq

e−
(w−Wp)2

2Wpq (6.14)whih simpli�es the alulation of the integral in (6.11) as ∫∞
0
Fw,m(x)dx = Q

(

√

2Wp/q
),where Q(·) is the standard normal CDF.



134 Chapter 6 Feedbak Redution using Ranking-based Feedbak6.3.4 Performane redution bound for �nite window size WIn the previous two setions we evaluated the throughput performane for �nite and in�niteobservation window size W . In order to quantify the system throughput redution dueto �nite values of W , a bound on the di�erene between the rate when eah user knowsperfetly its CDF and the throughput when ranking-based feedbak is based on the empirialdistribution of eah user's hannel distribution over W is of interest. Intuitively, the sumrate performane is a monotonially dereasing funtion withW , thus forW dereasing, theperformane degradation is inreased. However, a bound on the di�erene does not seemtratable. The main di�ulty is that the user rate distribution, as FXk,m
(x) is not a linearfuntion of the CQI distribution, i.e. FXk,m

(x) = FΓk,m
(2x − 1). Nevertheless, a boundon the the ratio F (W,K) = F̂WXk∗

m
(x)/FXk∗

m
(x), where F̂WXk∗

m
(·) is rate distribution seen byuser k when is sheduled based on ranking-based feedbak estimated using W samples isderived in [117℄.Proposition 6.4: For a system with K ative users employing ranking-based CSIT observedover W past values, the ratio F (W,K) is lower bounded as

F (W,K) ≥
(

1−
(

W

W + 1

)K
)

W + 1

K
≤ (1 − e−K/W )

W + 1

K
(6.15)where the Bernoulli inequality is used for bounding ( W

W+1

)K .Expanding e−K/W in Taylor series, we have that (1 − e−K/W )W+1
K = (1 − K

2W )W+1
W &

1 − K
W+2 . Hene, for �xed throughput redution, the number of samples W required to bestored in memory has to sale almost linearly with the number of ative users K in thesystem.In addition to the previous bound, a sharp non-asymptoti bound an be derived based onthe Dvoretsky-Kiefer-Wolfowitz (DKW) inequality [118,119℄:Theorem 6.1: Let X1, X2, . . . , XW ∼ FXk,m

, then for any ǫ > 0

Pr

{

sup
x

∣

∣

∣F̂WXk,m
(x) − FXk,m

(x)
∣

∣

∣ > ǫ

}

≤ 2e−2Wǫ2 (6.16)Based on Theorem 6.1, we an onstrut a on�dene set that gives us a measure of therequired window sizeW . Given α ∈ (0, 1), say that a random set S(x) is a (1−α) on�deneset for the parameter θ if
Pr {θ ∈ S(x)} ≥ 1− α (6.17)Then, for any F , we have that

Pr
{

ℓ1(x) ≤ FXk,m
(x) ≤ ℓ2(x), ∀x

}

≥ 1− α (6.18)where the two sequenes ℓ1(x) = max
{

F̂WXk,m
(x) − ǫW , 0

}, ℓ2(x) = min
{

F̂WXk,m
(x) + ǫW , 1

}and ǫW =
√

1
2W log (2/α). This implies that if one wishes to draw a large enough sampleto ensure that the deviation between the empirial distribution and the atual CDF is lessthan or equal to 10%, with 90% on�dene, then for ǫ = 0.1 in (6.16), a sample size ofapproximately W=150 samples is needed.



6.4 Ranking-based CDI Model 1356.3.5 Window size versus feedbak redution tradeo�In the previous setion, it has been shown that the performane di�erene between ranking-based user seletion and max-rate sheduling is dereased for W inreasing. In pratialsystems, the feedbak hannel shared by all users has a �xed bandwidth and thus the rateof reporting r̂k(t) is �nite and generally �xed. As a result, under a �xed feedbak rateonstraint of B = ⌈log2N⌉ bits, when W is inreased, the auray of r̂k(t) is dereased asthe distortion of the quantizer Q(·) is inreased. This is evidently due to the fat that thedynami range of the integer values rk(t) ∈ (0,W +1] to be quantized by B bits is inreased.In order to guarantee the same throughput performane for inreasing W , the number offeedbak bits B should sale aordingly so that the quantization error is �xed. This resultsin an interesting tradeo� between:
• the apaity performane
• the window size W
• the number of feedbak bits BConsider that uniform salar quantization is used to quantize a soure R that is uniformlydistributed over [0,1℄. The error variane (distortion) is given by:

σ2
Q = E

{

(R−Q(R))
2
}

=

∫ +∞

−∞
(r −Q(r))

2
fR(r)dr =

(rmax − rmin)
2

12N2
(6.19)where fR(r) is the PDF of the uniform soure R, and rmax and rmin are the maximumand minimum value of ranking-based feedbak, respetively. For �xed variane of the quan-tization error σ2

Q = δ2, rmin = 1 and rmax = W + 1, the number of bits B should saleproportionally to B ∼ (log2 (W/δ)− 1.8) bits. This feedbak requirement an be dereasedif non-uniform quantization (e.g. optimal entropy-onstrained) is employed. The problemof optimum quantization design for ranking-based feedbak has not been investigated in thethesis.6.4 Ranking-based CDI ModelThe onept of ranking-based feedbak, as presented above, is not restritive to RBFshemes; it an be generalized to other downlink preoding on�gurations. The ranking-based onept an indeed be applied to any kind of feedbak information of interest utilizedfor user seletion purposes. In odebook-based SDMA downlink systems, for instane, it anbe additionally used to represent some kind of CDI as a means to selet near orthogonal userwith large hannel gains. Consider a system in whih eah user an report CDI feedbakbased on a prede�ned odebook in addition to the CQI value that an take on the form ofhannel norm or estimate of SINR [64, 94℄. If we assume that the quantization odebook
V = {v1,v2, . . . ,vND} ontaining ND unit norm vetors vi ∈ C

M , for i = 1, . . . , ND isknown to both the transmitter and reeivers, eah reeiver k quantizes its hannel to theodevetor that maximizes the following inner produt:
ĥk = argmax

vi∈V
cos2(∠(h̄k,vi)) (6.20)



136 Chapter 6 Feedbak Redution using Ranking-based Feedbakwhere the normalized hannel vetor h̄k = hk/ ‖hk‖ orresponds to the hannel vetordiretion, and ĥk is the k-th user hannel quantization.Denote rg,k as the k-th user ranking of its CQI amongW past values, and let rd,k be theranking-based CDI given by the alignment between the diretions of the atual hannel andthe quantized one, i.e. cos2(∠(h̄k, ĥk)). In a entralized approah, eah user reports bakto the transmitter both rg,k and rd,k and the sheduler selets the user set with minimumranking values in both CQI and CDI, thus selets the users with high instantaneous hannelgain and small quantization error. In a distributed protool, the set of sheduled usersan be onstruted suh that only the subset L of users whose ranking values are below athreshold is allowed to report their CSIT to the BS. This pre-seletion protool is given by
L = {1 ≤ k ≤ K : rg,k ≤ τg and rd,k ≤ τd} (6.21)where τg, τd are thresholds for the hannel norm and hannel alignment, respetively. Thefat that rg,k, rd,k are uniformly distributed failitates the alulation of optimal thresholdvalues.6.5 Sheduling with Heterogeneous UsersUp to this point, we onsidered a system with statistially idential users and studied thesystem throughput when all users exhibit idential average SNRs. However, in a typialwireless network, user hannels are not neessarily i.i.d. and mobile terminals experieneunequal average SNRs due to di�erent distanes from the BS and the orresponding di�erentpath losses (near-far e�ets). Hene, if a max-rate sheduler is used, the throughput willbe maximized by transmitting to the users with the strongest hannels. As the seletedusers are highly likely to be the ones losest to the BS, the issue of fairness arises. Restoringfairness requires onsidering a di�erent sheduling poliy that sari�es apaity for the sakeof equalizing the probability that a user is sheduled.In heterogeneous system on�gurations, the sum rate is no longer an appropriate perfor-mane metri, as it annot guarantee any fairness onstraints and rate balaning among userswith non-symmetri average SNRs. We fous on the problem of maximizing the weightedsum rate, in order to re�et the potential fairness issues that arise. Assume that the hannelvetor of eah user an be written as hk =

√
ρkh̃k, where ρk denotes the k-th user averageSNR and h̃k ∼ CN (0, 1). The equivalent hannel model beomes

yk =
√
ρkh̃kx + nk, k = 1, . . . ,K (6.22)We onsider a weighted sum-rate maximization riterion, whih results in the optimizationproblem

max
S∈G

∑

k∈S
wkRks.t ∑

k∈S
wk = 1

wk ≥ 0 ∀k (6.23)where Rk and wk are the rate and weighting fator of the k-th user, respetively. Let ϕkbe the fration of time slots alloated to user k, with∑K
k=1 ϕk = 1. A general CCDF-based



6.6 Performane Evaluation 137user seletion poliy on m-th beam is de�ned as:
k∗m = arg max

1≤k≤K
(1− FXk,m

(xk,m))1/ϕk (6.24)In other words, using the minimum tail sheduler, user k an gain aess to the hannel withprobability ϕk. In [115℄, it has been shown that this sheduling poliy an guarantee equalaess to the hannel for heterogeneous users. This an be also ahieved if ranking-basedfeedbak is employed during the sheduling stage. More formally, let Ak,m be the event thatuser k is seleted on beam m based on ranking-based feedbak. If all users have the sametime fration, i.e. ϕk = 1/K, then following the proof in [115℄ we have
Pr{Ak,m} =

∫ ∞

0

Pr{Ak,m|Xk,m = x}fXk,m
(x)dx

= −
∫ ∞

0

(

1− FXk,m(x)

)
1−K

K dFXk,m(x) = 1/K (6.25)Interestingly, the probability that the k-th user is seleted Pr {Ak,m = 1} does not dependon the distribution of the other users, even if the users' hannels are independent butnot neessarily identially distributed. The independene of the seletion probability fromthe other users' statistis an be inferred from the fat that the ranking of eah user's CQIfollows a uniform distribution independently of the other users' fading harateristis. Thus,in addition to its feedbak redution merits, ranking-based metri an also restore temporalfairness by sharing the sheduling time slots in a fair manner among users. The average userthroughput for independent non-identially distributed (i.ni.d) hannel statistis with B = 1and max-CDF sheduling is studied in [115℄. In the appendix, we provide an additional proofof following result [115℄:Proposition 6.5: The average sum rate, R, of a heterogeneous system in whih ranking-based feedbak is used for the purposes of user seletion is given by
R =

B
∑

m=1

K

∫ 1

0

F−1
Xk,m

(z)zK−1dz (6.26)Proof. The proof is given in Appendix 6.C.6.6 Performane EvaluationIn this setion, we ompare the performane of following shemes:
• Sheme I: RBF employing quantized ranking-based CQI for user seletion in thesheduling stage.
• Sheme II: RBF in whih users are seleted based on quantized SNR/SINR feedbakin the sheduling stage.Using two-stage approah, the proposed CSIT representation is used solely for seleting thegroup of sheduled users. Thus, in both shemes, one the group of users (among all ative

K ones) is identi�ed in the �rst stage, the BS requests the transmission rate of the Mseleted users in order to perform link adaptation.



138 Chapter 6 Feedbak Redution using Ranking-based FeedbakIn the �rst set of simulations, we onsider single-beam RBF [53℄ as downlink transmissionsheme with M = 2 transmit antennas and SNR = 10 dB. In Figure 6.1 the throughputdi�erene between sheme I and II is plotted as a funtion of observation window size
W . Expetedly, for small values of W , ranking-based feedbak annot apture su�ientlythe CQI distribution, failing to selet the users that are on their highest quantile of theirdistribution. This results in a rate redution penalty as the system does not exploit multiuserdiversity and does not shedule users with large hannel gains. For W inreasing, theperformane of ranking-based system onverges to that of max-rate sheduler (forW →∞),as stated in Proposition 6.1.
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Figure 6.1: Throughput omparison as a funtion of window size W for single-beam RBFwith M = 2 antennas, SNR = 10 dB and K = 10 ative users.Figures 6.2 and 6.3 show the e�et of feedbak quantization on the system throughput. InFigure 6.2 the SNR feedbak value is quantized with B = 5 bits using the optimal Max-Lloydalgorithm, whereas the ranking-based CQI is quantized using B = 3 bits. For di�erent valuesof W , the proposed feedbak representation is able to identify orretly the users with thehighest instantaneous rate as ompared to the quantized SNR feedbak, resulting in apaitygain even with a feedbak load redution of 40%. This is mainly due to the inherent digitalform of ranking-based CQI and its dynami range, whih allows for e�ient ompression.In Figure 6.3 the performane of ranking-based user seletion for di�erent quantization bitrates is ompared with that of SNR-based CQI for �xed observation window size. Thefeedbak load an be redued up to 40% with negligible apaity redution (∼ 0.1bps/Hz).In the seond set of simulations, the multi-beam variant of RBF [9℄ is used as transmis-sion sheme. The SINR feedbak is quantized using B = 5 bits, whereas only 3 bits areused for ranking-based CQI quantization. As shown in Figure 6.4, the proposed feedbakrepresentation in an SDMA downlink with M = 2 antennas provides similar results as inthe single-beam ase by representing more e�iently the user seletion metri, thus reduingthe uplink hannel rate with no ompromise on the system throughput.
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Figure 6.2: Average rate as a funtion of the number of users for single-beam RBF with
M=2 antennas, SNR = 10 dB and di�erent values of window size W .

0 5 10 15 20 25 30 35 40 45 50
3.5

4

4.5

5

5.5

SNR−based User Selection B = 5bits
Ranking−based User Selection B=5bits
Ranking−based User Selection B=4bits
Ranking−based User Selection B=3bits
 

Number of users 

S
um

 r
at

e 
(b

ps
/H

z)

Figure 6.3: Average rate as a funtion of the number of users for single-beam RBF with
M = 2 antennas, SNR = 10 dB, W=1000 slots, and ranking-based CQI metri quantizedwith di�erent resolutions.In the last part of numerial results, we study a multi-beam RBF system with M = 4antennas and users with i.ni.d. hannels, whose average SNRs are uniformly distributedfrom -10 to 30 dB. The loss in sum rate observed in Figure 6.5 is expeted sine in the het-
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Figure 6.5: Sum rate as a funtion of users for multi-beam RBF in a heterogeneous networkin whih users' average SNRs range from -10 dB to 30 dB, M = 4 antennas and W = 1000slots.erogeneous network ase, the users with the minimum ranking-based CQI are not generallythe ones with the highest absolute instantaneous CQI values, but those whose instantaneousCQI values are near to a peak with respet to their own distribution. Nevertheless, ell-edge users that enjoy lower average SNRs have equal probability of being seleted, if theirhannels are instantaneously on the highest quantile. Seleting users with higher pathloss
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Figure 6.6: Normalized sheduling probability vs. user index for multi-beam RBF with
M = 4 antennas and K = 10 users. The users are sorted from the lowest to the highestaverage SNR and the SNR range is from -10 dB to 30 dB.(lower average SNR) results in system throughput redution, however temporal fairness isrestored as the aess time per user is equalized independently as shown in Figure 6.6.6.7 ConlusionIn this hapter, the problem of feedbak redution is addressed under a di�erent perspe-tive. We proposed a novel type of CSIT representation, oined as ranking-based feedbak,as a means to further redue the required feedbak load during the sheduling stage inmulti-antenna broadast hannels. Based on a two-stage sheduling/random beamformingapproah, we analyzed the performane of a system in whih users are preseleted basedon ranking-based feedbak. When users exhibit i.i.d. hannel statistis, it was shown thatranking-based user seletion an redue substantially (up to 40%) the uplink feedbak loadwith negligible or no derease in multiuser diversity gain and system throughput. In hetero-geneous networks (i.ni.d. hannels), temporal fairness an be ahieved at little expense ofthroughput due to the fat that users have equal aess probability to the hannel medium,irrespetive to the distribution of other users. In other words, users at ell edges or in deepfades (i.e. in poor hannel onditions) have the same hanes of being served as users thatenjoy favorable hannel onditions.



142 Chapter 6 Feedbak Redution using Ranking-based FeedbakAPPENDIX6.A Proof of Proposition 6.1The ranking rk,m(t), measured over W past samples, provides information about the em-pirial distribution of the rate proess, i.e. rk(t)
W ≈ 1− F̂WXk,m

(x). We want to show that thedi�erene between F̂WXk,m
(x) and the atual df FXk,m

(x) vanishes to zero when W → ∞.A measure of loseness of the two funtionals, alled maximum disrepany (Kolmogorov-Smirnov statisti), is given by
DW = sup

−∞<x<∞

∣

∣

∣F̂WXk,m
(x) − FXk,m

(x)
∣

∣

∣ (6.27)whose probability density funtion is independent of F (·) provided that F (·) is ontinuous.Considering the above distane metri as a measure of the di�erene, Proposition 6.1 is adiret onsequene of the following theorem:Theorem 6.2 (Glivenko-Cantelli [120℄): Let X1, X2, . . . , XW ∼ FXk,m
(x), then the samplepaths of F̂WXk,m

get uniformly loser to FXk,m
as W →∞, i.e.

∥

∥

∥F̂WXk,m
(x) − FXk,m

(x)
∥

∥

∥

∞
= sup

x

∣

∣

∣F̂WXk,m
(x) − FXk,m

(x)
∣

∣

∣

as→0 (6.28)The above theorem implies that for large W the empirial distribution onverges to thedistribution funtion almost surely (as). Hene F̂WXk,m
, whih is observed over a window ofsize W , is almost surely a good approximation for FXk,m

, and the approximation beomesbetter as the number of observations inreases. In this ase, user seletion based on ranking-based CSIT beomes equivalent to max-CDF sheduling, whih in turn is equivalent tomax-rate sheduling for large W and i.i.d. hannel distributions, i.e.
k∗m(t) = arg min

1≤k≤K
rk(t) = arg min

1≤k≤K

(

1− FXk,m
(xk,m)(t)

)

= arg max
1≤k≤K

xk,m(t) (6.29)6.B Proof of Proposition 6.3Let FXk∗
m

(x) = Pr
{

Xk∗m(t) ≤ x
} be the rate distribution of the seleted user k over beam mand Fw,m(x) be the probability that in beam m, the w largest values among W are greaterthan x, then for a seleted user k∗m over beam m onditioning on Fw,m(x) we have

Pr
{

Xk∗m(t) ≤ x
}

=
W−1
∑

w=0

Pr
{

rk∗m(t) > w
}

Fw,m(x) =
W−1
∑

w=0

(

W − w
W

)K

Fw,m(x) (6.30)where Pr
{

rk∗m(t) > w
}

= Pr

{

min
1≤k≤K

rk,m(t) > w

}

= [1− Fr(w)]K =
(

W−w
W

)K as theranking-based CSIT is uniformly distributed with CDF Fr(w) over the set ofW past values.Using results from order statistis [121℄, we have that
Fw,m(x) =

(

W

w

)

(FXk∗
m

(x))W−w(1 − FXk∗
m

(x))w (6.31)



6.C Proof of Proposition 6.5 143Therefore, the expeted sum rate R is given by
R =

B
∑

m=1

∫ ∞

0

Pr
{

Xk∗m(t) > x
}

dx =

B
∑

m=1

∫ ∞

0

(

1− Pr
{

Xk∗m(t) ≤ x
})

dx (6.32)
=

B
∑

m=1

∫ ∞

0

1−
W−1
∑

w=0

(

W − w
W

)K

Fw,m(x)dx (6.33)whih gives (6.11) as F0,m(z) = (FXk∗
m

(x))W .6.C Proof of Proposition 6.5Before proeeding to the proof, we state the following result:Lemma 6.1: The random variable Uk,m = FXk,m
(Xk,m) is uniformly distributed on theinterval [0,1℄.Proof. In the lines of [115℄, suppose that x is an arbitrary number and u = FXk,m

(x), with
0 ≤ u ≤ 1. The distribution funtion (CDF) of Uk,m is given as

FUk,m
(u) = Pr {Uk,m ≤ u} = Pr

{

FXk,m
(Xk,m) ≤ u

}

= Pr
{

Xk,m ≤ F−1
Xk,m

(u)
}

= u, 0 ≤ u ≤ 1 (6.34)whih implies that Uk,m is uniformly distributed on [0,1℄.The average sum rate of RBF is given by
R =

B
∑

m=1

Rk,m (6.35)where Rk,m is the average rate of the seleted user k on beam m given by
Rk,m = E{X(K)

k,m} (6.36)where X(K)
k,m = max

{

X1
k,m, X

2
k,m, . . . , X

K
k,m

} (maximum over K i.i.d. random variables)with X i
k,m ∼ Xk,m.Sine E{X(K)

k,m} = E{F−1
Xk,m

(U
(K)
k,m)} with U

(K)
k,m = max

{

U1
k,m, U

2
k,m, . . . , U

K
k,m

}, from orderstatistis [121℄ (eq. 3.1.1) we have that
E{F−1

Xk,m
(U

(K)
k,m )} = K

∫ 1

0

F−1
Xk,m

(z)zK−1dz (6.37)Inserting (6.37) into (6.35) results in (6.26).
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Chapter 7
System Aspets in MultiuserMIMO Systems
7.1 IntrodutionMIMO tehniques have been widely reognized as a key tehnology in the evolution of next-generation broadband wireless aess systems. Their potential for high spetral e�ieny,inreased diversity, and interferene suppression has motivated signi�ant amount of workand researh, not only from aademia but also from numerous ompanies that try to im-plement and ommerialize multiuser MIMO tehnology. The sare bandwidth resoures,the introdution of data servies and best e�ort appliations, the transition from iruit-swithed to paket-swithed networks, as well as the need for enhaned quality of servie(QoS) are some of the motivating fators that made MIMO tehnology key element of forth-oming wireless systems. Multiuser multi-antenna tehniques are urrently envisioned in3GPP long term evolution (LTE), WCDMA/HSDPA, IEEE 802.16e (WiMAX), and IEEE802.11n.For appliations suh as wireless LANs, broadband wireless MANs and ellular tele-phony, MIMO systems will likely be deployed in environments where a single base stationommuniates and delivers information to multiple users sharing the same spatial hannel.In suh network deployments, the spatial degrees of freedom o�ered by multiple antennasan be advantageously exploited to enhane system throughput, by sheduling simultane-ously multiple users. The design of multiuser MIMO systems hinges on the problem of thejoint design of a good antenna ombining tehnique (e.g. beamforming, spae-time oding)with a properly mathed hannel aess protool that may inlude some degree of SDMA.At the heart of this problem lies that of CSIT aquisition. Information-theoreti resultsand throughput gain promises may often beome questionable if a onstraint of reasonablylow-rate CSIT feedbak and omplexity is taken into aount.145



146 Chapter 7 System Aspets in Multiuser MIMO SystemsThis hapter fouses on several system issues and design hallenges that arise in real-world wireless system design. We disuss the main pratial hallenges that we shouldonsider when deploying tehniques as those proposed in Chapters 3-6. We also propose ageneralization of the proportional fair sheduler (PFS) for multiuser ontexts (e.g. SDMA,OFDMA, et.).7.2 Channel State Information AquisitionIn FDD systems and TDD systems without alibration, the only way probably to aquirehannel state information at the BS from eah user is through a feedbak ontrol hannel,similarly to the ontrol hannels used for power ontrol or adaptive modulation. Sine thebandwidth required for those feedbak ontrol hannels is onsidered as overhead that re-dues the overall system spetral e�ieny, and whih grows in proportion to the number ofative users, there is a substantial interest in ompressing the required amount of informa-tion. The issue of feedbak redution beomes imperative in systems with wideband (e.g.OFDM) ommuniation or high mobility (suh as 3GPP-LTE and WiMAX).7.2.1 CSI at the ReeiverChannel aquisition at the reeiver is usually aquired through transmission of trainingsequenes (pilot symbols) by the transmitter that enable the mobile terminals to performhannel estimation. It is also possible to use blind methods that do not require any trainingsymbols but exploit knowledge of the struture of the transmitted signal or the hannel. Theassumption that the reeiver enjoys aurate hannel state information is often reasonable,espeially in the downlink, where pilot-symbol-based hannel estimation is more e�ientsine the terminals an share a ommon pilot hannel. Note however that in pratialsystems, there is a tradeo� between the auray of CSIR and the ahievable throughput,sine in order to estimate the hannel, a portion of the transmission time and a fration ofthe power is spent to the training phase. Clearly the longer the training interval, the moreaurate the hannel estimate, and the higher the ahievable rate; however the longer thetraining phase, the less time the BS disposes to transmit data to the users.7.2.2 CSI at the TransmitterChannel aquisition at the transmitter an be performed either impliitly or in an expliitway by relying on hannel measurements at the reeiver side. The methods available togather CSI at the transmitter an be lassi�ed into two ategories, relying either on rei-proity or feedbak.Impliit CSIT: reiproity-based aquisitionThe reiproity priniple is based on the property that eletromagneti waves propagatingin both diretions will undergo the same propagation phenomena, thus in systems operatingat the same frequeny band in both uplink and downlink (TDD systems), the instantaneousforward hannel is idential to the transpose of the reverse hannel. Therefore, the BS an



7.3 Codebook-based Preoding 147estimate the downlink hannel from the uplink as long as the downlink-uplink swithingtime is muh smaller than the hannel oherene time.Ideally, reiproity requires the forward and reverse hannels to operate at the samefrequeny, the same time, and the same antenna array. Although this assumption may notalways hold in pratie, reiproity still hold if any time lag between the forward and reversetransmissions is muh smaller than the hannel oherene time Tc. Similarly, any frequenyo�set must be muh smaller than the hannel oherene bandwidth Bc, and the antennaloation di�erenes between uplink and downlink must be muh smaller than the hanneloherene distane dc.Reiproity-based hannel aquisition is usually applied in TDD systems, whereas it isnormally not appliable in FDD systems where the temporal and spatial dimensions maybe idential, but the frequeny o�set between uplink and downlink is generally muh largerthan the hannel oherene bandwidth. However, the users' spatial signatures vary moreslowly that fast fading. Therefore, depending on the angle spread, hannel diretionalinformation an be extrated from the uplink even in FDD systems. Note also that thereiproity priniple requires RF hardware hains with idential frequeny transfer funtionharateristis. Therefore, aurate RF hain alibration must be performed periodially totrak the slow time variations of the RF hains and adjust the di�erene in the frequenyresponse.Expliit CSIT: feedbak-based aquisitionFeedbak of CSI through an uplink hannel is employed in system settings where the uplinkand downlink utilize di�erent frequeny bands (e.g. FDD systems), or when the reiproity-based approah in a TDD system is not reliable due to temporal variation of the hannel.In this approah, the hannel is �rst estimated at the reeiver side and then onveyed tothe transmitter using a feedbak link.In the previous hapter, we used the idealized assumption of in�nite rate and zero-delayfeedbak hannel. However, for hannels with relatively small oherene time, e.g. multiuseroutdoor systems with high mobility users, the zero-delay and error-free assumptions are oftenunreasonable. The feedbak delay between the measured hannel and the one employed bythe transmitter may result in outdated CSI whih an be a signi�ant soure of error.Channel aquisition using feedbak an be applied in both TDD and FDD systems;however it is more ommon in FDD senarios. Although feedbak-based hannel aquisitionhas been suessfully applied in simple systems, the requirement on uplink bandwidth anbeome prohibitively large for omplex system settings suh as frequeny-seletive MIMOhannels. Moreover, in wideband systems, obtaining CSIT and CSIR per eah subarrieran be ostly in terms of training overhead. However, the performane of feedbak andhannel estimation an be improved by exploiting the high degree of orrelation betweenhannels of adjaent subarriers.7.3 Codebook-based PreodingCodebook-based downlink preoding has been already onsidered as transmission shemefor next-generation wireless standards (e.g. HSDPA) and has sparked a vivid debate in



148 Chapter 7 System Aspets in Multiuser MIMO Systems3GPP-LTE standardization ativities. Current senarios envisaged that mobile terminalsuse a odebook of size 2BD and are allowed to onvey bak to the transmitter a quantizationindex and a real-valued CQI via an uplink feedbak hannel. The andidate shemes thatare envisioned an be divided in two ategories:
• In the �rst group, often referred to as unitary preoding, the odebook ontains a setof L = 2BD/M pre-determined unitary beamforming matries of size M ×M . Eahterminal selets from the odebook the beamforming matrix that o�ers the highestSINR for eah of itsM beamforming vetors, assuming that the otherM−1 vetors areused for transmission to interfering users. The most popular sheme of this ategoryis per-user unitary and rate ontrol (PU2RC) [122℄.
• In the seond group, often referred to as non-unitary preoding, the odebook on-tains 2BD unit-norm quantization vetors and is used by eah terminal to quantize itshannel vetor diretion (of dimension M). As the employed hannel vetor is nor-malized, this feedbak value aptures information regarding only the spatial diretionof the hannel vetor. Sine the terminal does not know a priori the beamformingvetors of the interfering users, the reported CQI ontains an estimate (lower or upperbound) of the ahievable SINR. Zero-foring preoding is usually utilized to design thebeamforming matrix.Aording to the taxonomy we provided in Setion 2.8, unitary preoding an be viewed asprojetion-based tehnique, while non-unitary preoding as quantization-based tehnique.We should note that only unitary preoding is employed in 3GPP-LTE standard. Zero-foring beamforming, despite being proposed by several ompanies, has not been onsideredas a andidate multiuser MIMO sheme.Several odebook design hallenges arise in pratie, espeially sine de�ning near-optimal quantization regions depend on various system parameters, inluding the hannelproperties and statistis and the antenna on�guration and orrelation. In Chapter 5 westudied quantization-based approahes onsidering for simpliity unstrutured odebooksthat ontain M -dimensional random vetors. Suh odebooks are designed spei�ally forunorrelated hannels whose diretion is isotropially distributed in the unit sphere. There-fore, in pratially relevant orrelated hannels, strutured odebooks are expeted to per-form signi�antly better [123℄. A pratial odebook design o�ering good performane withline-of-sight hannels or hannels with a small angle spread is the Fourier odebook [124℄.This odebook is simply onstruted by extrating the top M rows of the disrete Fouriertransform (DFT) matrix of size ND.Another design hallenge is related to whether quantization odebooks should be om-mon or user-spei�. Clearly, the performane is inreased by onsidering that eah reeiveruses a di�erent and independently generated odebook, espeially in networks with low num-ber of users served using non-unitary preoding. If both the odebook size and the numberof users to selet from are small, it is highly likely that several users may quantize theirhannels to the same quantization vetors. Therefore, if ZFBF is applied on the hannelquantizations, the probability that M near-orthogonal users are found by the sheduler isdereased (redution in the spatial dimensions available). The omplexity of generating adi�erent odebook for eah user an be redued by generating a ommon, general odebook



7.4 CQI feedbak metris and Link Adaptation 149
Vg known at both ends of the link, and afterwards eah user obtains its spei� odebookthrough random unitary rotation of Vg. In that ase, eah odevetor is independent fromuser to user.Finally, two questions that often arise in pratie are related to the odebook size and howoften it should be updated depending on the hannel oherene time. For instane, althoughthe performane of ZFBF-based odebook tehniques is inreased for ND inreasing, unitarypreoding performs better for small odebook sizes. Atually, the multiplexing gain ofunitary preoding based shemes vanishes to one for large odebooks, due to the fat thatthe average number of users seleting the same beamforming matrix dereases exponentiallywith the number of quantization bits BD.7.4 CQI feedbak metris and Link AdaptationThe utility of CQI feedbak is two-fold: on one hand, it is employed by the SDMA sheduleras a means to selet users with favorable hannel onditions and separable spatial signatures.On the other hand, it is used from the link adaptation protool to selet the appropriateoding and modulation shemes and to adapt the rate of the link.The information enapsulated in the CQI feedbak parameters limits the deision and thedegrees of freedom available at the transmitter. For instane, if the CQI ontains informationon the hannel norm, the sheduler an easily identify the users with the strongest hannels,but fails to derive any information on their spatial separability and the interferene theyause to eah other. If more than one user aess simultaneously the hannel, suh CQImetri annot be generally utilized by the link adaptation protool, sine the instantaneousrate alloated ignoring the inter-user interferene may fall above the instantaneous mutualinformation of the fading hannel. However, in quantization-based systems, one hallengewhen designing feedbak metris is that information on reeived SINR is in priniple notavailable to the individual users who only have knowledge of their own hannels. The SINRmeasurement depends, among others, on the hannel as well as on the number of othermobiles being simultaneously sheduled along with the user making the measurement andtheir respetive beamforming vetors. As user ooperation is not allowed, the number ofsimultaneous users and the available power for eah of them will generally be unknown atthe mobile. In Chapter 5, we show that in the large number of user ase, simpli�ationsarise whih give the user the possibility of estimating with satisfatory auray the reeivedSINR. SINR-like metris that rely on statistial bounds an be e�ient sheduling deisionmetris, however they annot guarantee QoS and information outage-free rate adaptation.Note also that in pratial systems, suh as HSDPA, CQIs take disrete values representingone of the possible modulation and oding shemes (MCS).7.5 Opportunisti Sheduling: System IssuesOpportunisti sheduling protools are designed towards a better utilization of the spetrumby granting hannel aess to users that experiene favorable hannel onditions (multiuserdiversity). However, the promised throughput gains an be realized only if dynami linkadaptation tehniques are available to take advantage of the improvement in hannel ondi-



150 Chapter 7 System Aspets in Multiuser MIMO Systemstions. In other words, the BS should have aess to hannel quality measurements and theability to adapt the rate as a funtion of the instantaneous CQI. Apart from the problemof feedbak overhead and the requirement for hannels with fast �utuations, multiuser di-versity is gained at the expense of throughput fairness and delay. In an idealized senariowhere users' fading statistis are the same, the strategy of ommuniating with the userthat exhibits the best hannel maximizes not only the total apaity of the system but alsothe throughput of individual users. However, in pratie, the statistis are not symmetriand identially distributed: there are users who are loser to the BS with higher averageSNR or users at the ell edge with poor SNR; there are users who are stationary and somethat are moving; there are users who are in a rih sattering environment and some with nosatterers around them. In these senarios, opportunism may lead to unfair resoure allo-ation sine the users with poor hannel onditions may get negligible or zero throughput.Due to its partiular importane from a user-entri point of view, fairness is analyzed indetail in the following setion.7.6 FairnessThe onept of fairness has been extensively studied in the literature of resoure alloationfor wireline and omputer networks [125℄, whereas most theoretial approahes arose fromthe �eld of politial eonomis. In this �eld, the onept of utility and welfare funtions weredeveloped in order to de�ne fairness. In order to express user's satisfation with the serviedelivered by the network, utility funtions are de�ned to formalize a notion of networkperformane evaluated in terms of the degree to whih the network satis�es the servierequirements of eah user's appliations. Let rk denote the resoure (servie) assigned touser k, and whih may ontain all the relevant QoS measures (delay, throughput, paketloss, et.). The utility funtion Uk(rk) maps the resoure into the performane of the servie.For elasti tra�, suh as �le transfer, email and remote terminal, whih are delay tolerantand their satisfation is generally measured in terms of bandwidth, the utility funtion isommonly de�ned as Uk(rk) = log rk. The welfare funtion W (U1, . . . , UK) is de�ned as theone that aggregates the individual utility funtions Uk. A fair resoure alloation is the onethat maximizes the welfare funtion max{W (U1, . . . , UK)}.7.6.1 De�nition of Fairness in ShedulingThere is no unique or general de�nition of fairness and one an �nd at least three mainde�nitions of fairness in the resoure alloation literature:
• Max-Min Fairness: The idea behind max-min fairness is to alloate resoures asequally as possible among the ompeting users, thus this riterion might be the pre-ferred option for the terminals in a bad ondition, sine it assures that all users reeivethe same resoure sharing. Formally, max-min fairness is expressed

max
rk

min
k
Uk(rk) (7.1)for onave utility funtions. This orresponds to the welfare funtion W (U1, . . . , UK)= minUk

(U1, . . . , UK). It has the property that for a feasible resoure alloation vetor
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r = (r1, . . . , rK), an inrease of any rate within the domain of feasible rate alloationsmust be at the ost of a derease of some already smaller rate, i.e. the utility Uk(rk)annot be inreased without simultaneously dereasing Uj(rj) for some j with Uj(rj) ≤
Uk(rk). Depending on the resoure alloation problem, a max-min fair alloation doesnot always exist; however existene results in uniqueness.
• Proportional Fairness: The idea behind proportional fairness is to maximize theglobal performane, meaning that a user with bad onditions may see its utility de-reased if this allows a large enough inrease to a user with already good onditions(for the sake of the overall throughput). The welfare funtion of proportional fair al-loation is W (U1, . . . , UK) =

∑

k Uk. A rate alloation vetor r is proportionally fairif it is feasible, and if for any other feasible alloation r
′
= (r

′

1, . . . , r
′

K), the aggregateof proportional hanges is zero or negative:
K
∑

k=1

r
′

k − rk
rk

≤ 0 (7.2)
• Weighted Fairness: If weights wk are assoiated with the relative importane of eahuser for the system, both max-min and proportional fairness an be generalized. Thewelfare funtion for the weighted max-min fairness is then given by W (U1, . . . , UK)= min{Uk(rk/wk)} and for the weighted proportional fairness is W (U1, . . . , UK) =
∑

k wkUk. Under weighted fairness, eah utility funtion is inreased aording to itsassoiated weight wk.As the onept of fairness is generally subjetive, it is not lear whih de�nition is thebest one. Normally, the sheduler selets the appropriate fairness measure for the system,depending on the burstiness of the tra�, the number of users, the prie that users arewilling to pay, the system time sale, et. Two ommonly used measure of fairness are: theJain index [126℄ and the Gini index [127℄.7.6.2 Proportional Fair Sheduler (PFS)Proportional fair sheduler was used for the downlink sheduling in IS-856 (also known as1xEV-DO or HDR) and was adopted in [53℄ as a means to meet the hallenges of delay andfairness onstraints while harnessing multiuser diversity. PFS maintains resoure fairnessby providing a fair sharing of transmission time proportional to past user throughputs overa �xed window length. On a time-slotted transmission, let Rk(t) be the date rate requestedby user k at time slot t and supported by its instantaneous hannel quality. The shedulerselets at eah sheduling slot the user k∗ with:
k∗ = arg max

1≤k≤K

Rk(t)
R̄k(t)

(7.3)among all ative users K for whih the base station has data to send. The rate R̄k(t) isthe k-th user's average throughput in a past window of length tc, and is updated slot-wiseusing an exponential �lter as follows:
R̄k(t+ 1) =

{

(1 − 1
tc

)R̄k(t) + 1
tc
Rk(t), k = k∗

(1 − 1
tc

)R̄k(t), k 6= k∗
(7.4)



152 Chapter 7 System Aspets in Multiuser MIMO SystemsThe parameter tc de�nes the time horizon in whih we want to ahieve fairness and isonstrained by the maximum delay tolerane. Obviously, the larger tc, the less stringent thefairness onstraint, and thus longer delays start appearing between suessive transmissionsto the same user. For instane, in IS-856 tc ≈ 1.67 seonds.Note that the above PFS rule omputes the proportionally fair alloation based on thefollowing pratial result (theorem): there exists one unique PF alloation and is obtainedby maximizing ∑k log rk over the set of feasible resoure alloations. In [53℄ it was shownthat PFS maximizes the sum of the logarithm of the average throughput∑k log R̄k almostsurely among the lass of all shedulers when tc →∞. In other words, PFS maximizes theprodut of user long-term average throughputs, rather than the sum throughput. Therefore,when users are harged equally in terms of prie per unit share, PFS brings the maximumrevenue to the network operator aording to [128℄.In [53℄, PFS exploits the multiuser diversity by assigning the radio resoure to a userwhen its SNR is at or near its peak. In this sense, PFS an be thought as an approximation ofgreedy sheduling under resoure fairness onstraint. Its performane is a�eted by both theuser fading statistis and the number of ative users, and the optimum multiuser diversityan be obtained when eah user has the same i.i.d. small-sale fading over time. Note thatusers with higher SNR and greater fading variations get higher throughput than those withthe opposite ondition. However, regardless of the user average SNR, the PFS algorithmprovides equal opportunity of transmission to users with the i.i.d. fading statistis, and onlyslightly better hanes of transmission to those with smaller hannel variations over the longterm [129℄. Detailed theoretial analysis of the properties of PFS an be found in [130,131℄.7.6.3 Multiuser Proportional Fair Sheduler (M-PFS)PFS was originally proposed for systems that serve only one user at eah sheduling window.In this setion, we generalize the PFS poliy for any multiuser transmission system. Let
G be the set of all possible subsets of ardinality |G| = M of disjoint indies among theomplete set of user indies {1, · · · ,K}. Let St ∈ G, be one suh group of M users seletedfor transmission at a given time slot t.Proposition 7.1: The multiuser proportional fair sheduling poliy (M-PFS) is suh thatthe users are seleted as

S∗t = argmax
S∈G

∏

k∈S

(

1 +
Rk|S(t)

(tc − 1)R̄k(t)

) (7.5)where Rk|S(t) is the rate of user k ∈ S onditioned to the sheduling set S.Proof. In order to show that (7.5) is a proportional fair sheduler, we need to show thatit maximizes the sum of the logarithms of the average throughputs, i.e. ∑

k log R̄k(t).Consider the objetive funtion J =
∑

k log R̄k(t+ 1). Then we have:
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∑
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∑
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log
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) (7.6)



7.6 Fairness 153The �rst term in (7.6) an be omitted sine it does not depend on the partiular hoie ofthe sheduling set S, hene seleting the users that maximize the objetive funtion resultsin the following optimization problem:
S∗t = arg max

S∈G
J = argmax

S∈G
log
∏

k∈S

(

1 +
Rk|S(t)

(1− tc)R̄k(t)

) (7.7)whih results in (7.5) sine the logarithm is a monotonially inreasing funtion.By developing the above expression we have
S∗t = arg max

S∈G

(

1 +
∑

k∈S

Rk|S(t)

(1− tc)R̄k(t)
+ b

)where b is the by-produts from the multipliation. If we onsider a system with parallelhannels, in whih the rate provided to user k does not depend on the rate of users j, j ∈
S, j 6= k, then b an be omitted resulting in the following M-PFS expression

S∗t = arg max
S∈G

∑

k∈S

(Rk|S(t)

R̄k(t)

) (7.8)We remark that (7.5) an be diretly applied as the PFS poliy for multiuser SDMA downlinksystems, multi-arrier (e.g. OFDMA), and multi-ell networks.
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Chapter 8
Conlusions and Perspetives

In this dissertation, we have foused on resoure alloation and performane optimizationfor multiuser multi-antennas systems with inomplete CSIT. Limited feedbak tehniquesthat allow the transmitter to live well with partial hannel knowledge and still ahieve asigni�ant fration of the optimal apaity ahieved under perfet CSIT is the leitmotiv ofthis thesis.One �rst key idea is based on splitting the feedbak information between the shedulingand the �nal beam design (or "user serving") stage, thus taking pro�t from the fat thenumbers users to be served at eah sheduling slot is muh less than the number of userssimultaneously requesting data pakets during one given sheduling window. We introdueda two-stage framework that deouples the sheduling and beamforming problems, showingthat user seletion an be performed well using rough hannel estimates, while the stageof serving the seleted users is better aomplished with more aurate feedbak. In oneproposed setting, random beamforming is exploited to identify good, spatially separable,users in a �rst stage. In the seond stage, the initial random beams of the seleted usersare re�ned based on the available feedbak as a means to o�er improved performane androbustness. Several re�nement strategies, inluding beam power ontrol and beam seletion,are proposed, o�ering various feedbak redution and performane tradeo�. The ommonfeatures of the above shemes is to restore robustness of RBF with respet to sparse networksettings (low to moderate number of ative users), at the ost of a moderate omplexityinrease. The established framework is suitable for resoure alloation in slow varyingmulti-antenna networks with best e�ort, elasti tra�.Furthermore, we have studied the problem of user seletion and preoding with partialCSIT in more realisti hannel senarios. We showed that useful information that lies hiddenin the seond-order statistis of the hannel - either in the temporal or in the spatial domain- an be exploited by the SDMA sheduler. In time-orrelated hannels, the redundany(memory), whih appears due to the hannel struture, is exploited in order to suessivelyre�ne over time the random beams of RBF. A framework, oined as memory-based oppor-155



156 Chapter 8 Conlusions and Perspetivestunisti beamforming, has been established, whih allows to �ll the apaity gap betweena purely opportunisti RBF and a hannel-aware preoding and sheduling sheme withfull CSIT. Our approah is suitable for low mobility (indoor) settings (i.e. limited Dopplerspread), while is shown to approah the apaity of optimal unitary preoding with fullCSIT for hannels with large oherene time.In spatially-orrelated MIMO hannels, long-term statistial hannel knowledge an re-veal information about the mean spatial separability of users, whih is instrumental to aproper beamforming design. The merit of ombining statistial and instantaneous hannelinformation has been highlighted through several approahes. A maximum-likelihood (ML)hannel estimation framework is established, whih e�etively ombines slowly varying sta-tistial CSIT, assumed available at the transmitter, with instantaneous low-rate CSIT. Inpartiular, we onsidered both hannel norm and e�etive hannel gain (beam gain informa-tion) as salar CQI feedbak. E�ient algorithms were developed for omputing the oarseML estimates, whih enable the SDMA sheduler to identify users with large gains andseparable spatial signatures. A greedy user seletion sheme and a low-omplexity, SDMAeigenbeamforming tehnique based on multiuser interferene bounds were also proposed andevaluated. It was demonstrated that, in systems with reasonably limited angle spread atthe transmitter, suh as wide-area ellular networks with elevated base stations, it is su�-ient to feed bak a single salar but properly designed CQI parameter and ombine it withlong-term statistial CSIT in order to ahieve near-optimal throughput performane.Limited feedbak strategies utilizing quantization odebooks were also investigated inthe thesis. In partiular, the problem of e�ient, sum-rate maximizing CQI metri designis addressed. We identi�ed several salar feedbak metris that inorporate information onthe hannel gain, the hannel diretion, and the quantization error, and an be interpretedas reliable estimates of the reeived SINR. For that, bounds on the instantaneous inter-userinterferene when ZFBF is employed were derived. Although the exat SINR is in priniplenot available to the individual users, the use of interferene bounds and approximate ex-pressions results in simpli�ations that give users the possibility of estimating a priori theirindividual reeived SINR. It was demonstrated that salar CQI feedbak ombined withCDI and e�ient user seletion and ZFBF an ahieve a signi�ant fration of the apaityof the full CSIT ase by means of multiuser diversity. However, a major limitation of SDMAsystems relying on quantized CSIT is that they beome interferene dominated and theirmultiplexing gain is redued at high SNR under �xed feedbak load rate. Motivated by thefat that SDMA does not always outperform TDMA when the transmitter relies on inom-plete CSIT, we showed the importane of dynami SDMA/TDMA transition algorithms.Properly designed sheduling metris allowing a soft, adaptive swithing from multiuser tosingle-user transmission mode are shown to be a promising means to irumvent this prob-lem, guaranteeing a linear sum-rate growth at any SNR range. Moreover, we onsidereda pratially relevant system in whih eah user has a sum feedbak rate onstraint. Atradeo� between multiuser diversity and spatial multiplexing has been identi�ed, sine theavailable feedbak bits ought to be shared between CDI and CQI information. The prob-lem of optimizing the feedbak bit split has been studied, revealing an interesting interplaybetween the number of ative users, the average SNR and the feedbak load.Finally, a low-rate representation of CSIT feedbak parameters, referred to as ranking-based feedbak, was identi�ed as a means to further ompress the reported hannel feedbak



157information. Eah user alulates and reports to the BS the integer-valued ranking of itsinstantaneous CSIT among a set of stored past CSIT measurements. This alternative rep-resentation enables the sheduler to identify users that are instantaneously on the highestpeak (quantile) with respet to their own hannel distribution, independently of the distribu-tion of other users. Interestingly, in non-symmetri networks, with i.ni.d. hannel statistisamong users, the proposed ranking-based feedbak allows to restore temporal fairness sineit equalizes the probability that a user will be seleted, independently of its average SNR.Future ResearhThe results of this dissertation shed some light on how to ahieve a signi�ant frationof the multi-antenna broadast apaity as promised by information-theoreri results, evenwhen the transmitter relies on limited and inomplete hannel knowledge. In parallel, thethesis brought up several interesting open issues and topis for further researh, as brie�ydisussed in what follows.Our work in Chapters 3 to 5 have identi�ed linear preoding ombined with e�ient userseletion and limited as a promising tehnique to ahieve the sum rate of MIMO broadasthannels. Nevertheless, the results rely on several simplifying assumptions on the behaviorof the feedbak hannel. Sine the uplink hannel is not instantaneous and error-free inpratie, a natural extension to these results an be studying the e�et of feedbak hannelnoise, delays and CSIT estimation on the system performane. This investigation is ofprimary importane in high mobility networks with large Doppler spread hannels wheredelays are more prominent. Clearly, the feedbak delay would a�et the validity of thefeedbak and would ause the sheduler to mistakenly hoose users that do not have the mostfavorable hannel onditions. One simple method would be to bak o� the reported CQI;however understanding the amount of bak o� and the e�et of estimation error varianeon the throughput are hallenging open problems.In all our work, exept in Chapter 6, we study network settings with i.i.d. hannel fadingstatistis. It is of partiular interest to assess the real throughput gain of the proposedmethods in hannels with shadowing and path loss, in whih the users exhibit unequalaverage SNRs. Suh senarios would ertainly impat the multiuser diversity gains as wellas the system overall sum-rate and fairness performane. Additionally, if we onsider theimpat of realisti tra� models and system loads, the available degrees of freedom at thedisposal of the sheduler an be severely redued. It might be of interest to identify howmany e�etive ative users are available for seletion by the sheduler at eah time andhow to take advantage of the di�erent degrees of freedom to satisfy the QoS onstraints fordi�erent types of tra�. Fairness issues, whih have not been taken into aount in ourwork here presented, need to be inorporated, in order to provide high throughput whilesatisfying ertain QoS onstraints.Extensions of the problem of resoure alloation for multiuser multi-antenna downlinkhannels with limited feedbak to wideband systems and multiell settings are also problemsof timely relevane that require further researh.Finally, we have investigated tehniques mathed to a quantized (digital) hannel feed-bak where eah user sends bak a suitably enoded and modulated quantization index.Nevertheless, reent �ndings have started onsidering analog feedbak shemes. Althoughdigital feedbak is shown to be superior in most ases [132℄, suh pratially relevant frame-



158 Chapter 8 Conlusions and Perspetiveswork may give rise to hybrid digital/analog feedbak approahes. For instane, the feedbaklink design an be modeled as a Wyner-Ziv oding problem, where the transmitter ombinesthe digital, quantized CSIT information that ombines with analog side information.In order to onlude, we might say that the theoretial limits of multiuser multi-antennasystems are relatively well understood nowadays. However, the gap between the urrentpratial shemes and the theoretial limits is still signi�ant, making the optimal design oflimited feedbak multiuser MIMO transmission an open and exiting problem.



Chapter 9
Résumé en français
IntrodutionDurant la dernière déennie, l'industrie de ommuniations sans �l a été onfrontée àune demande intense d'augmentation de débits de données et l'amélioration de la qualitéde servie (QdS). Les appliations qui sont proposées aujourd'hui aux lients ne sont pluslimitées à la transmission de la voix; de nouveaux types de servies sont apparus, ommele streaming multimédia, la navigation sur Internet, le transfert de �hiers et la téléphonie-video, haun exigeant di�érentes ontraintes de débit et de qualité de servie.L'introdution de nouveaux servies de données est une des raisons fondamentales de latransition des systèmes de ommutation `iruit' aux réseaux de ommutation `paquet'. Lesréseaux, qui aueillent un tra� de type `best-e�ort' et tolérant aux retards, ont évolué,en o�rant la �exibilité néessaire à l'unité d'alloation des ressoures d'ordonnaner lestransmissions aux instants où le lien de ommuniation est exposé aux onditions du analles plus favorables. Cei donne lieu à la diversité multi-utilisateurs, qui vise à une meilleureutilisation du spetre dans haque ellule au détriment pourtant de l'équité (fairness) et dudélai.En plus de la diversité multi-utilisateurs, une autre tehnologie-lé qui utilise e�ae-ment les ressoures de la bande passante est elle de ommuniations multi-antennes. Lestehniques à entrées multiples sorties multiples (MIMO) ont susité un fort intérêt grâe àleur potentiel à o�rir des e�aités spetrales élevées, de la diversité et des dispositions desuppression des interférenes. Par onséquent, l'utilisation de plusieurs antennes est envis-agée dans la plupart des protooles sans �l de la nouvelle génération, y ompris 3GPP-LTE,High Speed Downlink Paket Aess (HSDPA), IEEE 802.16e (WiMAX) et IEEE 802.11n.De MIMO mono-utilisateur vers ommuniations MIMO multi-utilisateursLe haut débit et les gains en diversité promis par les ommuniations MIMO point-à-point (mono-utilisateur) sont obtenus essentiellement grâe à l'utilisation des tehniques dediversité (par exemple, odage spatio-temporel) en ombinaison ave des tehniques de max-159



160 Chapter 9 Résumé en françaisimisation du débit (multiplexage spatiale). Dans une approhe traditionnelle des systèmesMIMO mono-utilisateur, les degrés de liberté spatiaux portés par l'utilisation d'antennesmultiples sont exploités a�n d'aroître les dimensions disponibles pour le traitement dusignal et la détetion, en agissant ainsi essentiellement omme une approhe qui optimiseuniquement la performane de la ouhe physique. Les protooles de la ouhe de liaison(link layer) pour l'aès multiple béné�ient indiretement des avantages de la performanedes antennes MIMO, ave un plus grand débit par utilisateur ou une qualité de anal plus�able, sans même exiger une onnaissane exate de la apaité du lien MIMO.Dans les réseaux de MIMO multi-utilisateurs, les degrés de liberté spatiaux o�erts parles antennes multiples peuvent être avantageusement exploités a�n de renforer l'e�aitéspetrale du système, en ordonnançant plusieurs utilisateurs simultanément ave des méth-odes d'aès multiple par répartition spatiale (SDMA). Ce protoole d'aès multiple exigedes stratégies d'ordonnanement et des tehniques d'émetteur plus omplexes, sans néan-moins demander l'expansion de la bande passante. Ave un aès multiple par répartitionspatiale, l'interférene multi-utilisateurs est annulée par les antennes multiples qui, en plusde fournir une diversité de lien, donnent les degrés de liberté néessaires pour la séparationdes utilisateurs dans le domaine spatial.Les résultats réents de la théorie d'information révèlent que la stratégie optimale pouratteindre la apaité des anaux de di�usion MIMO (broadast hannel) est le `dirty paperoding' (DPC). Cependant, ette stratégie, qui implique une tehnique théorique de pré-annulation de l'interférene, ombinée à un ordonnanement impliite et à un algorithmed'alloation de puissane, est très omplexe à mettre en oeuvre et est extrêmement sensibleaux erreurs d'estimation du anal. Cette tehnique a pourtant révélé le r�le fondamentalde la dimension spatiale sur l'aès multiple et de l'ordonnanement, e qui remet en ausela vision traditionnelle trop simpliste que MIMO est purement une tehnologie de ouhephysique. Cela a donné lieu au développement d'approhes d'optimisation inter-ouhes,qui visent à la oneption onjointe de la modulation/odage de la ouhe physique et del'alloation des ressoures de la ouhe liaison ainsi que des protooles d'ordonnanement.Les tehniques MIMO multi-utilisateurs et leurs performanes ont ommené à être in-tensément étudiés en raison de plusieurs avantages par rapport aux ommuniations MIMOmono-utilisateur. En partiulier, les shémas MIMO multi-utilisateurs permettent une aug-mentation linéaire de la apaité, proportionnelle au nombre d'antennes de transmission,grâe à leurs aptitudes de multiplexage spatial. Ces systèmes apparaissent aussi plus ro-bustes fae à la plupart des limitations de propagation des ommuniations MIMO mono-utilisateur, omme la perte de rang du anal ou la visibilité direte (line-of-sight). En outre,les gains de multiplexage spatial promis par la théorie de l'information peuvent être at-teints sans la néessité d'antennes multiples au niveau de terminaux, permettant ainsi ledéveloppement de terminaux petits et bons marhés.Tous es résultats prometteurs viennent malheureusement ave l'hypothèse d'une on-naissane parfaite d'état du anal à l'émetteur (CSIT). Les systèmes multi-antennes multi-utilisateurs, à la di�érene du as mono-utilisateur, béné�ient de manière substantielle dela CSIT, dont l'absene peut réduire signi�ativement le débit du système et don leur in-térêt. Si une station de base (SB) aveM antennes de transmission qui ommunique ave Kréepteurs mono-antenne a une onnaissane du anal parfaite, un gain de multiplexage égalà min(M,K) peut être obtenu. Si la station de base a une onnaissane du anal imparfaite,



161le gain de multiplexage peut être réduit, et dans des on�gurations ave une absene totalede CSIT, le gain de multiplexage devient égal à un. Le oût d'obtention de la CSIT sembleêtre le plus important sari�e à enourir a�n de bien servir les utilisateurs en multiplexagespatial et d'augmenter la apaité du système MIMO multi-utilisateurs.Cette thèse se onentre sur la voie desendante d'un anal multi-antennes et vise à iden-ti�er quel type de CSIT partielle, également dénommée feedbak limité, peut être transmiseau transmetteur en vue d'atteindre des e�aités spetrales très prohes des apaités op-timales obtenues ave une CSIT parfaite.Nous nous onentrons sur des tehniques de formation de faiseaux (beamforming)linéaires à faible omplexité ave une CSIT partielle, qui peuvent atteindre une part im-portante de la apaité optimale sous ondition qu'elles soient assoiées à des protoolesd'ordonnanement e�aes. Nous essayons de donner des réponses et des solutions auproblème de oneption de la CSIT partielle en proposant plusieurs stratégies de feed-bak limité qui permettent à la station de base d'atteindre une e�aité spetrale quasi-optimale. Comme nous le verrons dans les hapitres suivants, la diversité multi-utilisateurset l'ordonnanement opportuniste jouent un r�le primordial dans nos approhes.Dans ette thèse, nous avons fait les hypothèses suivantes: tous les systèmes que nousétudions se trouvent dans une ellule et l'interférene interellulaire est traitée omme dubruit Gaussien additif. Les utilisateurs ont une onnaissane parfaite du anal au niveaude réepteur (CSIR). Nous onsidérons des anaux à évanouissement plat, e qui veut direque les signaux sont de bande étroite. En plus, nous supposons un lien d'adaptation idéalet don, nous alulons la apaité et le débit en utilisant la formule de Shannon. Lesutilisateurs ayants des paquets dans leurs queues, la station de base à toujours des donnéesà transmettre aux utilisateurs hoisis.Canaux de di�usion MIMOLe deuxième hapitre de ette thèse est onsaré à une présentation détaillée des om-muniations MIMO multi-utilisateurs. Nous faisons aussi le point sur l'état de l'art desMIMO multi-utilisateurs ave voie de rétroation limitée, en mettant l'aent sur la voiedesendante, autrement dit sur le anal de di�usion. Le modèle général des systèmes multi-antennes est donné et des résultats onnus sur la apaité du anal de di�usion sont présentéssous di�érentes hypothèses onernant l'information du anal à l'émetteur. Les résultats ré-ents de la théorie de l'information ont démontré l'importane ardinale de la CSIT et del'ordonnanement, ainsi que le r�le de la diversité multi-utilisateurs pour atteindre la a-paité du anal. Plusieurs approhes y ompris les tehniques du preodage non-linéaireet linéaire sont présentées et nous disutons sur les di�érentes approhes de oneption dusystème, ainsi que sur les ompromis des performanes. L'aent est mis sur les stratégiesdu préodage linéaire à faible omplexité, ombinées ave des stratégies d'ordonnanementen utilisant une CSIT partielle.



162 Chapter 9 Résumé en françaisCanaux à entrées multiples et à sorties multiples (MIMO)Le modèle du signal à temps disret et à bande étroite du anal MIMO point-à-pointave M antennes d'émission et N antennes de réeption est donné par
y = Hx + n (9.1)où x ∈ CM×1 est le symbole émis, H ∈ CN×M est la matrie du anal, y ∈ CN×1 estle signal reçu, et n ∈ CN×1 est le veteur du bruit. Nous supposons un bruit Gaussienomplexe de moyenne nulle et matrie de ovariane Rn. Un anal blan H̃ = R

−1/2
n H estsouvent utilisé de telle sorte que le bruit blan w = R

−1/2
n n a une matrie de ovarianeunitaire, E{wwH} = I. En raison de la normalisation du bruit, la ontrainte sur la puissane

P = Tr(E{xxH}) peut être interprétée omme le rapport signal sur bruit (RSB) moyen parantenne de réeption ave un gain du anal égal à un.La onnaissane de la matrie de gain du anal H à l'émetteur et de réepteur estdénommée information sur le anal à l'émetteur (CSIT) et information sur le anal auréepteur (CSIR), respetivement.
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NMFigure 9.1: Modèle du anal MIMOSystèmes multi-utilisateurs ave antennes multiplesUn anal multi-utilisateurs est généralement tout anal partagé entre plusieurs utilisa-teurs. Il existe deux types de anaux multi-utilisateurs: les anaux à voie montante et eux àvoie desendante. Un anal de liaison montante, aussi appelé anal d'aès multiple (MAC),a de nombreux émetteurs envoyant des signaux à un seul réepteur dans la même bande defréquene. Un anal desendant, aussi appelé anal de di�usion, a un émetteur qui envoiedes signaux à de nombreux réepteurs. Dans un ontexte multi-utilisateurs, nous onsid-érons uniquement la ommuniation entre la SB équipée ave M antennes et K terminaux,où haque utilisateur atif k est équipé de Nk antennes.Dans la voie desendante, illustré dans la Fig.9.2, le signal reçu yk ∈ CNk×1 par le k-ièmeutilisateur est exprimé par

yk = Hkx + nk for k = 1, . . . ,K (9.2)Le signal émis x est une fontion des données des utilisateurs multiples, 'est-à-dire
x =

∑

k

xk (9.3)



163où xk ∈ CM×1 est le veteur du signal transmis portant des données pour l'utilisateur k,ave ovariane Σk = E{xkxHk }.
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K users (user k has Nk antennas)Figure 9.2: La voie desendante d'un réseau MIMO multi-utilisateursLa aratérisation de la région de la apaité du anal de di�usion général est un problèmeouvert de la théorie de l'information multi-utilisateurs. L'outil théorique pour aratériser larégion de la apaité MIMO broadast ave CSI omplète, est le `dirty paper oding' (DPC),qui a été révélé par l'artile de Caire et Shamai (Shitz) [7℄. Là, il a été démontré que l'idéede pré-soustration de l'interférene à l'émetteur peut atteindre la apaité d'un anal dedi�usion MISO ave deux utilisateurs. Les résultats de [7℄ ont été généralisés par [16�18℄,jusqu'à e que Weingarten et al. [8℄ établisse la aratérisation omplète de la région de laapaité MIMO broadast gaussien, instituant l'optimalité de la stratégie DPC.Une tehnique intéressante de transmission multi-utilisateurs à faible omplexité est la`formation de voie opportuniste' (random opportunisti beamforming - RBF) [9, 53℄. DansRBF, 1 ≤ B ≤M faiseaux aléatoires et mutuellement orthogonaux sont générés par la SB.A l'instant t, le signal transmis est donné par
x(t) =

B
∑

m=1

qm(t)sm(t) (9.4)où sm(t) est le signal salaire pour l'utilisateur servi par le faiseau m. Le rapport signalsur bruit et interférene (SINR) de l'utilisateur k sur le faiseau m est égal àSINRk,m =
|hkqm|2

∑

j 6=m
|hkqj |2 + Bσ2/P

m = 1, . . . ,B (9.5)Chaque utilisateur, disons le k-ième, alule les SINRs sur tous les faiseaux, SINRk,m pour
m = 1, . . . ,B, trouve le faiseau bk qui o�re le SINR le plus élevé, bk = arg max

1≤m≤B
SINRk,m,et renvoie la valeur de SINRk,bk

ave l'indie du faiseau bk. En retour, l'émetteur attribuehaque faiseau m à l'utilisateur km ave le plus grand SINR, km = arg max
1≤k≤K

SINRk,m. Ledébit-somme du système (sous l'hypothèse de signalisation gaussienne) est donné par
RRBF ≈ E

{ B
∑

m=1

log2(1 + max
1≤k≤K

SINRk,m)

} (9.6)
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this beam Figure 9.3: Shéma de la formation de faiseaux aléatoires opportunisteL'analyse asymptotique sur le débit-somme a montré que, pour M et P �xe et K →∞,le débit moyen de RBF augmente omme M log logK, la même loi de roissane que laapaité optimale ave une CSIT parfaite. L'intuition derrière ette tehnique est que pourun K grand, il existe pratiquement sûrement un utilisateur bien aligné ave haque faiseau,ayant très peu d'interférene ave les autres faiseaux. Ainsi, le gain de multiplexage spatialpeut être omplètement atteint.Une limitation du [9℄ est que e shéma est optimal pour un très grand nombre d'utilisateurs (généralement irréaliste). La performane dégrade rapidement ave un nombred'utilisateurs qui diminue. En outre, ette dégradation est ampli�ée lorsque le nombred'antennes d' émission augmente. La raison est intuitive: lorsque le nombre d'utilisateursatifs diminue etM augmente, il devient de plus en plus improbable queM faiseaux générésaléatoirement soient bien adaptés ave les anaux de haque ensemble de M utilisateursdans la ellule. En plus, RBF est sous-optimal à fort RSB, lim
P→∞

RRBF

logP
= 0, ar le systèmedevient limité par l'interférene. Comme l'interférene roît ave la puissane P et ne peutêtre éliminée en raison de la onnaissane partielle du anal, le gain de multiplexage M nepeut être réalisé à fort RSB. Dans les deux hapitres suivants, nous proposons plusieursaméliorations de RBF a�n de rétablir et d'augmenter la robustesse de la performane dudébit-somme pour un petit nombre d'utilisateurs.



165Formation de voie opportuniste robusteDans e hapitre, nous étudions un sénario d'ordonnanement et de formation de fais-eaux ave voie de rétroation limitée basée sur le adre du beamforming aléatoire (RBF).L'intuition derrière le onept de RBF est que, malgré le faite que les faiseaux soientgénérés aléatoirement et sans auune CSIT à priori, pour un grand nombre d'utilisateurs
K, e groupe d'utilisateurs est aratérisé par de grand gains de anal ainsi qu'une bonneséparabilité spatiale. De e fait, la probabilité que la diretion du faiseau aléatoire soitpresque alignée ave le anal des ertains utilisateurs augmente. Cependant, un inon-vénient majeur à ette tehnique est que les performanes se détériorent rapidement lorsque
K baisse. Quand le nombre d'utilisateurs atifs diminue, il devient de plus en plus improb-able que M faiseaux générés de manière aléatoire seront prohes aux diretions des anauxde n'importe quel ensemble de M utilisateurs. Cette situation peut failement arriver dansla pratique où le tra� survient généralement par rafales (bursty) ave de fréquentes périodesde silene. Une autre limitation du RBF est qu'il est dominé par l'interférene à haut RSB.Son gain de multiplexage disparaît don, dû à l'interférene roissante ave le RSB qui nepeut être éliminée ave un débit �xe de CSIT.Dans la première partie de e hapitre, nous donnons des expressions analytiques pour ledébit du beamforming aléatoire et nous dérivons des lois d'éhelle de la apaité pour un fortRSB. L'impliation prinipale de nos résultats est que, dans ertains régimes asymptotiques,il est utile de réduire le nombre de faiseaux atifs, 'est-à-dire les faiseaux auxquels onalloue une puissane non nulle. Dans un régime de faible puissane, il est préférable d'utiliserun grand nombre de faiseaux si l'on veut maximiser la apaité, alors que dans la régionlimitée par l'interférene (P → ∞) et un K �xe, la stratégie de transmission qui maximisele débit du système onsiste à servir un seul utilisateur.Dans la deuxième partie de e hapitre, nous introduisons une nouvelle lasse de shémasde beamforming unitaire aléatoire qui présente de la robustesse dans les ellules ave unnombre d'utilisateurs faible à modérée (réseaux reux), tout en préservant un débit defeedbak limité ainsi que l'avantage de la faible omplexité de la formation des faiseauxaléatoires.Une première idée-lé est basée sur la division de la voie de rétroation entre l' ordon-nanement et l'étape de la oneption de faiseaux, a�n de béné�ier du fait que le nombredes utilisateurs à servir B à haque instant est beauoup plus bas que le nombre d'utilisateursatifs ('est-à-dire, B ≤ M << K). Dans une première étape, une matrie de formation defaiseaux, pouvant être séletionnée aléatoirement, est utilisée et une séletion de groupesd'utilisateurs (de taille |S| = B) est e�etuée parmi tous les K utilisateurs atifs. Dans ladeuxième étape, une information de qualité du anal additionnelle est perçue pour haqueutilisateur préséletionné et une matrie de formation de faiseaux améliorée est onçue a�nde les servir.Le SINR signalé par tous les utilisateurs est mesuré à la base de la première matriede formation de faiseaux. Basé sur ette information de rétroation, nous améliorons laoneption des faiseaux qui seront utilisés pour servir les utilisateurs séletionnés. Engénéral, la première matrie peut être onçue en fontion de n'importe quelle onnaissaneà priori du anal, mais dans e hapitre nous avons supposé que les faiseaux de la premièrephase sont générés aléatoirement ar auune CSIT à priori n'est prise en harge. Une fois



166 Chapter 9 Résumé en françaisque le groupe de B (1 ≤ B ≤ M) utilisateurs est préséletionné à l'aide du feedbak detype SINR, une information du anal additionnelle peut être demandée par e groupe a�nde onevoir la matrie du préodage �nale. La deuxième étape de préodage peut exigerque de nouvelles portions de rétroation CSIT soient alulées en fontion des objetifs dela oneption. Selon la ontrainte du débit de la voie de retour, la rétroation CSIT γ
′

k dela deuxième étape peut prendre les formes suivantes:
• Stratégie 1 : γ′

k = hk (CSIT omplète)
• Stratégie 2 : γ′

k = ĥk (veteur du anal quanti�é)
• Stratégie 3 : γ′

k = |hkqm|2 (BGI: information sur le gain de faiseau)
• Stratégie 4 : γ′

k = γk (pas de feedbak additionnel)Si nous nous onentrons sur la stratégie 3 dans laquelle les orientations du faiseau dela première étape ne hangent pas, nous proposons un algorithme d'alloation de puissanede faiseau à travers les B faiseaux aléatoires. Supposons que le veteur des puissanestransmises est dé�ni omme P = [P1 . . . PM ] où Pm est la puissane transmise sur le faiseau
m. Le SINR de l'utilisateur km ∈ S séletionné pour le faiseau m peut être exprimé par:SINRkm,m(P) =

Pmηkmm

σ2 +
∑

j 6=m
Pjηkmj

(9.7)L'alloation de puissane pour les faiseaux de RBF qui maximise la apaité ave la on-trainte de la somme des puissanes peut être formulée omme:
max

P
R(S,P) = max

P

M
∑

m=1

log2 (1 + SINRkm,m(P))

s.t.
M
∑

m=1

Pm ≤ P, Pm ≥ 0, m = 1, . . . ,M (9.8)Dans le as de deux faiseaux aléatoires, la stratégie d'alloation optimale P∗ = (P ∗
1 , P

∗
2 )est donné par:







P ∗
1 = arg max

P1={0,P,P′}
J (P1)

P ∗
2 = P − P ∗

1

(9.9)où P1 ∈ [0, P ] et
P

′
=

{

(−B ±
√
B2 − 4AΓ)/2A si A 6= 0

−Γ/B si A = 0
(9.10a)

A = ηk11ηk21(ηk21 − ηk22)(Pηk12 + σ2) + ηk22ηk12(ηk11 − ηk12)(Pηk21 + σ2) (9.10b)
B = (Pηk12 + σ2)ηk11(Pηk21ηk22 + 2ηk21σ

2 − ηk22σ
2)

+ ηk22(2ηk12 − ηk11)(Pηk21 + σ2)(Pηk12 + σ2) (9.10)
Γ = ηk11σ

2(Pηk12 + σ2)(Pηk22 + σ2)− ηk22(Pηk21 + σ2)(Pηk12 + σ2)2 (9.10d)Dans le as général de B > 2 faiseaux, un algorithme itératif (sous optimal mais e�ae)est proposé et simulé numériquement.



167Si nous onsidérons la stratégie 4, nous proposons une méthode simple d'alloation depuissane, nommée `On/O� Beam Power Control', dans laquelle l'émetteur prend une déi-sion binaire entre:
• mode de transmission TDMA vers un utilisateur hoisi (elui ave le plus grand γkdans la première étape).
• mode de transmission SDMA où tous les faiseaux aléatoires sont atifs ave la mêmepuissane.L'ordonnaneur, en se fondant uniquement sur les valeurs de rétroation SINR, ompare ledébit somme instantané du mode SDMA ave le débit attendu de TDMA et séletionne lemode de transmission qui maximise le débit du système.La performane de l'algorithme de ontr�le de puissane itératif est présenté dans laFigure 9.4 pour un système ave quatre faiseaux. Dans la �gure 9.5 nous traçons le débit-somme par rapport au nombre d'utilisateurs pour un système ave M = 2 antennes detransmission et RSB = 10 dB. Le shéma fontionne en mode TDMA pour de faibles valeursde K (toute la puissane est donné à l'utilisateur ave le SINRkm le plus haut) et passe enmode SDMA ave une alloation de puissane uniforme pour K grand. Nous observonségalement que l'éart du débit entre le ontr�le de puissane optimal (ave les deux étapesde feedbak) et le ontr�le de puissane On/O� (sans feedbak supplémentaire) pourK < 20utilisateurs est d'environ 0.4 bps/Hz.
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Figure 9.4: Débit-somme en fontion du nombre d'utilisateurs pour l'algorithme de ontr�lede puissane itératif ave M = 4 antennes de transmission et RSB = 10 dB.
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Figure 9.5: Débit-somme en fontion du nombre d'utilisateurs pour l'algorithme de ontr�lede puissane On/O� ave M = 2 antennes de transmission et RSB = 20 dB.Exploitation de la struture du anal dans des anaux dedi�usion MIMODans e hapitre, nous onsidérons des anaux MIMO multi-utilisateurs ave orrélationtemporelle et spatiale et nous proposons plusieurs tehniques qui augmentent le débit enexploitant la struture du anal.Dans les anaux ave orrélation temporelle, des informations provenant de feedbak àfaible débit peuvent être umulées au �l du temps pour approher les performanes opti-males ave CSIT parfaite (agrégation du feedbak). En outre, le anal peut être onsidéréomme une soure de Markov et la redondane est don exploitée pour réduire la voie derétroation. Nous proposons un shéma opportuniste de formation des faiseaux qui ex-ploite la mémoire du anal et qui o�re une apaité prohe de elle du préodage unitaireoptimal ave CSIT parfaite pour des anaux variant lentement ave le temps. Notre teh-nique, appelée `Memory-based Opportunisti Beamforming' (MOBF), essaie d'exploiter lamémoire du anal tout en faisant à haque instant une meilleure séletion de la matrieunitaire de préodage basée sur l'information CSIT du passé. La orrélation temporelle estexploitée par la mémorisation des déisions préédentes d'ordonnanement, 'est-à-dire enomparant le groupe S des utilisateurs séletionnés pour un preodeur aléatoire Q(t) aveles séletions-déisions suivantes Q(t+ i) pour i = 1, . . . , Tc.Le résultat i-dessus implique que le maximum du débit-somme o�ert à l'aide de diversesmatries de préodage QI onverge asymptotiquement vers la apaité optimale du beam-forming unitaire R∗. En onséquene, ette matrie de préodage unitaire, notée Q∗ quiorrespond à la matrie qui maximise le débit, onverge vers un des di�érents preodeursunitaires optimaux. Par onséquent, si le anal est quasi-statique, le odebook du shémaMOBF ontiendra une matrie de beamforming optimale, 'est-à-dire une matrie unitairequi maximise le débit-somme d'une ertaine réalisation du anal. Dans la �gure 9.6 nousévaluons le débit de MOBF en fontion du nombre d'utilisateurs ave M = 8 antennes de



169transmission. Comme attendu, l'éart de performane entre MOBF et RBF est plus élevépour un petit nombre d'utilisateurs. Le débit-somme de RBF s'améliore lorsque K aug-mente, ar il est plus probable que les faiseaux aléatoires trouvent des utilisateurs ave desanaux forts et étroitement alignés sur leurs diretions.
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Figure 9.6: Débit de MOBF en fontion du nombre d'utilisateurs K pour di�érentes valeursd'étalement Doppler.Dans des anaux spatialement orrélés, la onnaissane statistique du anal à long termepeut révéler un grand nombre d'informations sur la nature marosopique du anal, y om-pris la diretion moyenne d'arrivée/départ des trajets multiples et son étalement angulaire.Elle peut surtout révéler des informations sur la séparabilité spatiale moyenne entre les util-isateurs: par exemple, deux utilisateurs dans des domaines très di�érents de la ellule sontplus suseptibles d'être séparables que des utilisateurs situés prohe l'un à l'autre, pare queleurs anaux se trouvent dans deux �nes d'énergie di�érents, si un étalement angulaire à laSB raisonnablement faible est onsidéré. La CSIT statistique peut être failement obtenuepar les mobiles et puis renvoyée à l'émetteur ave un débit de voie de rétroation assez faible.Plusieurs formes de CSIT statistique sont aussi réiproques, par exemple la matrie de or-rélation et la puissane de la omposante Rie. D'autre part, a�n d'exploiter la diversitémulti-utilisateurs pendant la proédure d'ordonnanement, l'émetteur doit posséder une er-taine forme d'information sur la qualité du anal (CQI) instantanée pour haque utilisateura�n qu'il puisse distinguer les utilisateurs ave des onditions de anal favorables.Dans e hapitre, nous étudions quel type de feedbak CQI limité est pertinent et su�santa�n de minimiser le débit de la voie de rétroation, tout en permettant à l'ordonnaneurd'extraire les gains de la diversité multi-utilisateurs. Un adre d'estimation de anal àmaximum de vraisemblane (MV) est aussi établi, qui ombine e�aement la CSIT statis-tique variante lentement - supposée disponible à l'émetteur - ave un feedbak instantanéà faible débit. Nous proposons des métriques de séletion d'utilisateurs de basse om-plexité (de type MSE) ainsi qu'un algorithme d'ordonnanement `avare' (greedy). Nousonsidérons que haque utilisateur k renvoie le module arré du anal ave le veteur debeamforming zk ∈ CM×1, i.e. γk =
∣

∣hHk zk
∣

∣

2. Les veteurs de formation de faiseaux peu-



170 Chapter 9 Résumé en françaisvent être interprétés soit omme des signaux-pilotes durant la phase d'entrainement, soitomme les veteurs de formation de faiseaux préférés dans une approhe de préodage etd'ordonnanement à deux étapes. Cette estimation du anal à maximum de vraisemblaneest elle qui maximise la log-vraisemblane de la densité de probabilité (4.5) onditionnéepar la ontrainte de feedbak salaire γk = |hHk q̃k|2:
ĥk = argmax f(h|γk) (9.11)Dans e as là, nous avons le problème d'optimisation suivant:
maxhk

hHk Rkhk

s.t. |hHk q̃k|2 = γk
(9.12)Il peut être failement démontré que (9.12) est équivalent à résoudre un problème des valeurspropres généralisées, dont la solution est donnée par:

ĥk = argmax
hk

hHk Rkhk

hHk Φkhk
=

√
γk

|q̃Hk uk|
uk (9.13)qui orrespond au veteur propre généralisé assoié à la valeur propre la plus élevée, uk, as-soié à la plus grande valeur propre généralisée positive de la paire de matries Hermitiennes(Rk,Φk).Dans la �gure 9.7 nous voyons la performane du débit-somme de l'estimation MV enfontion de l'étalement angulaire. Une fois le groupe d'utilisateurs séletionnés S est identi�ésur la base de l'estimation du anal de haque utilisateur, l'émetteur obtient de la CSITomplète seulement pour les M utilisateurs hoisis pour onevoir la matrie de préodageMMSE du groupe des utilisateurs S. Lorsque l'étalement angulaire est prohe de zéro, notreméthode approhe le débit du préodage MMSE ave CSIT omplète.
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Figure 9.7: Débit-somme de la méthode d'estimation MV en fontion de l'étalement angu-laire pour M = 2 antennes et K = 50 utilisateurs. La CSIT omplète est aquise pour lesutilisateurs séletionnés dans une deuxième étape.



171Eigenbeamforming basé sur des bornes d'interférene ave feedbak limitéEn�n, nous augmentons le feedbak CQI ave un feedbak instantané et salaire sousforme d'information sur le rapprohement entre le anal et les faiseaux prédé�nis, a�nde mieux estimer l'interférene multi-utilisateurs. Nous proposons ainsi une tehniqued'eigenbeamforming SDMA à faible omplexité, basée sur de nouvelles bornes analytiquesde l'interférene multi-utilisateurs. Nous montrons que dans des réseaux ellulaires, uneinformation de feedbak CSIT salaire est su�sante pour o�rir des performanes prohe del'optimal si elle est ombinée ave une onnaissane statistique à long terme.La performane d'eigenbeamforming SDMA est évaluée dans la �gure 9.8. La perfor-mane de notre méthode à basse omplexité est supérieure à elle du beamforming aléatoire,et les gains sont plus prononés pour un étalement angulaire de moins de 45 degrés.
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Random BeamformingFigure 9.8: Débit-somme en fontion du nombre d'utilisateurs K pour M = 2 antennes et

σθ = 0.1π.Une onlusion générale est que tous nos shémas proposés ont des performanes prohesde elles du as CSIT omplète lorsque l'étalement angulaire par utilisateur à la SB est assezmodéré. Don nos approhes sont adaptées aux systèmes de ommuniation sans �l aveSBs élevées tels que les réseaux ellulaires, dans lesquels l'élévation de la SB au-dessus del'enombrement diminue l'étalement angulaire de la propagation multi-trajets.Canaux de di�usion MIMO ave feedbak limité ettableaux de odagesCe hapitre traite des stratégies de feedbak limité en utilisant des odebooks (tableauxde odages) à quanti�ation vetorielle. En partiulier, nous adressons le problème dela oneption de feedbak e�ae sous forme d'information de qualité du anal (CQI) quimaximise le débit du système. Nous avons proposé plusieurs métriques salaires de feedbakqui intègrent les informations sur le gain et la diretion du anal ainsi que de l'erreurde quanti�ation. Ces métriques sont onstruites basées sur des bornes de l'interférene



172 Chapter 9 Résumé en françaismulti-utilisateurs instantanée, et peuvent être interprétées omme des estimations �ablesdu SINR reçu. Nous démontrons que le feedbak CQI salaire ombiné ave informationsur la diretion du anal (CDI) et un algorithme de séletion d'utilisateurs e�ae peutatteindre une part signi�ative de la apaité optimale tout en exploitant la diversité multi-utilisateurs. Nous proposons également un système adaptatif de transition entre les modesde transmission SDMA et TDMA, qui est démontré atteignant une roissane de débitlinéaire pour tous les régimes de RSB.Dans e hapitre, la matrie de préodage n'est pas onçue par avane (avant la phasede voie de rétroation), mais elle est générée basée sur une CSIT partielle obtenue par tousles utilisateurs atifs. En d'autres termes, haque utilisateur renvoie une forme de CSITquanti�ée, qui à son tour est utilisée par la SB pour la séletion d'utilisateurs et la oneptiondu préodage. Chaque utilisateur envoie une CSIT (quanti�ée et de préision �nie) sur leanal de quanti�ation en quanti�ant le veteur du anal normalisé ave le veteur le plusprohe de son odebook prédéterminé. Comme un anal de di�usion multi-antenne ave
K ≥M utilisateurs est étudié ii, haque utilisateur est autorisé à rapporter une CSIT quionsiste de BD otets pour l'information sur la diretion du anal, omplétée par une CQIinstantanée. L'information CDI est prinipalement utilisée pour la oneption du préodage,tandis que la CQI sert à séletionner intelligemment M utilisateurs spatialement séparablesave des grands gains de anal. Cette approhe peut être onsidéré omme une extension dela formation de voie aléatoire (RBF) qui utilise un odebook ontenant ND > M veteurs debeamforming (pas néessairement orthonormaux). Dans les paragraphes qui suivent, nousadoptons une stratégie de préodage de forçage à zéro (ZF) sur la diretion quanti�ée duanal disponible à la SB.Une grande partie de e travail se onentre sur la question suivante: "Quel typed'information CQI salaire doit être ommuniqué à la SB a�n de réaliser des performanesquasi-optimales?" Les résultats réents montrent que si la CQI salaire ontient des in-formations uniquement sur la norme du anal, la roissane de débit est indépendante duRSB moyen et du nombre d'utilisateurs atifs K [62, 64℄. Par onséquent, le système de-vient limité par l'interférene pour RSB élevé, et ne parvient pas à atteindre la roissanede débit optimale, même lorsque le nombre d'utilisateurs va vers l'in�ni (pas de gain dediversité multi-utilisateurs). Cela est dû au fait qu'une estimation sur l'interférene multi-utilisateurs est néessaire, et don des onnaissanes supplémentaires sous forme d'erreurde quanti�ation du anal sont néessaires pour atteindre les gains de multiplexage et dediversité multi-utilisateurs.Nos ontributions prinipales peuvent être résumées omme suit:
• Nous proposons plusieurs métriques salaires de rétroation basées sur des bornes del'interférene multi-utilisateurs, qui résument l'information sur le gain et la diretiondu anal, ainsi que sur l'erreur de quanti�ation. Ces métriques peuvent être in-terprétées omme des estimations du SINR reçu, qui est généralement inonnu auxutilisateurs servis puisqu'ils onnaissent seulement leurs propres anaux.
• Nous appliquons es métriques dans un système de beamforming linéaire de forçage àzéro sur les diretions quanti�ées des anaux et de séletion des utilisateurs `greedy'.Pour ela, nous avons prolongé l'algorithme d'ordonnanement `greedy' de [11℄ pourle as de feedbak limité. Cet algorithme a les avantages qu'il ne dépend pas des



173paramètres système à priori (omme l'orthogonalité entre les anaux quanti�és [62℄)et permet de passer des transmissions multi-utilisateurs aux transmissions mono-utilisateur.
• En utilisant le ontexte de preoding i-dessus, nous dérivons des bornes supérieuresde l'interférene multi-utilisateurs instantanée qui nous permettent de prévoir analy-tiquement la pire interférene ainsi qu'une borne inférieure sur le SINR d'un systèmeemployant un forçage à zéro sur les diretions quanti�ées des anaux.
• Le débit du système est analysé et son optimalité asymptotique en termes de la rois-sane de la apaité ('est-à-dire M log logK) est démontrée pour K → ∞. Nousdérivons également des bornes supérieures du débit-somme pour le régime à fort RSB.
• Nous proposons des métriques d'ordonnanement pour le hangement de mode detransmission de SDMA (multi-utilisateurs) à TDMA (mono-utilisateur), sur la based'une stratégie de rétroation ra�née. Nous montrons que le mode mono-utilisateurest préféré lorsque le RSB moyen augmente, alors que le mode multi-utilisateurs estfavorisé lorsque le nombre d'utilisateurs augmente.Certains termes qui sont largement utilisés dans les setions suivantes sont:
• la diretion du anal (anal normalisé): h̄k = hk/ ‖hk‖

• le anal quanti�é: ĥk

• l'erreur de quanti�ation: sin2 φk = sin2(∠(ĥk, h̄k))

• l'alignment du anal: cos θk =
∣

∣h̄kwk

∣

∣Coneption de Feedbak CQIDans la voie desendante d'un système SDMA ave plus d'utilisateurs atifs que d' an-tennes d'émission (K > M), la séletion des utilisateurs doit être e�etuée sur la base d'uneinformation du anal bien hoisie et onçue. Les déisions d'ordonnanement dépendentdes ritères d'optimisation pris en ompte, par exemple la maximisation du débit du sys-tème, la maximisation du débit utilisateur, l'équité (fairness), la minimisation des délais,et. Si la maximisation du débit-somme est onsidérée en tant que ritère d'optimisationa�n d'approher la apaité optimale, les utilisateurs hoisis doivent avoir:
• des diretions de anal mutuellement orthogonales
• de grands gains de analLa séparation spatiale entre les utilisateurs permet à la SB de former des faiseaux noninterférents sans perte de puissane signi�ative, alors que l'importane de la CQI est double:elle est utilisée pour l'identi�ation des utilisateurs ave des onditions de anal favorables etelle indique le débit (ordre de odage et de modulation) dans lequel la SB peut transmettredes données à un utilisateur partiulier (adaptation du lien).La oneption de métriques de rétroation présente un dé� ar l'information sur le SINRreçu n'est, en prinipe, pas disponible à haque utilisateur individuel, n'ayant que onnais-sane de leur propre anal. La valeur de SINR dépend, don entre autres, du anal ainsi



174 Chapter 9 Résumé en françaisque du nombre d'autres utilisateurs simultanément servis. Comme la oopération entre lesutilisateurs n'est pas autorisée, le nombre d'utilisateurs simultanément servis et la puissanedisponible pour haun d'entre eux sont généralement inonnus au réepteur.Cependant, dans le as de grand nombre d'utilisateurs, les utilisateurs ont la possibilitéd'estimer leur SINR basés sur ertaines simpli�ations et approximations. Ce feedbak duSINR estimé permet à l'ordonnaneur d'identi�er les utilisateurs ave des normes du analélevées, ainsi qu'ave des petites erreurs de quanti�ation. Dans les paragraphes suivants,nous étudions le problème de la oneption du feedbak de la qualité du anal. Notre objetifest d'obtenir des métriques de rétroation salaires, γk, qui nous permettent d'exploiter ladiversité multi-utilisateurs et atteindre des performanes quasi-optimales.Bornes sur le SINR reçu moyenMétrique de feedbak CQI INous avons montré que, bien que les réepteurs n'aient pas onnaissane des déisionsd'ordonnanement et don des veteurs de beamforming wj , des bornes (inférieures) simplessur le SINR reçu espéré peuvent être obtenues. Motivés par ela, nous onsidérons quehaque utilisateur peut aluler et renvoyer la métrique de feedbak salaire suivante
γIk =

P ‖hk‖2 cos2 φk

P ‖hk‖2 sin2 φk +M
(9.14)proposée au même temps dans [62, 94, 96, 97℄.Ce type de CQI enadre information sur le gain du anal ainsi que sur l'erreur de quan-ti�ation de CDI, sin2 φk. La métrique i-dessus résulte basée sur une borne supérieuresur le SINR moyen reçu, qui à son tour est alulé sur la valeur espérée de l'interférenemulti-utilisateurs à ause de la CSIT quanti�ée et en utilisant une borne supérieure sur lapuissane du signal reçu moyen. Cette métrique CQI peut être interprétée omme une bornesupérieure du SINR reçu sous l'hypothèse que M utilisateurs seront exatement servis par

M faiseaux onçus basés sur la CDI quanti�ée. Nous devons remarquer que ette valeurde CQI ne peut pas être utilisée diretement pour l'adaptation du lien. Le seul as où leSINR reçu est égal à elui prédit par (9.14) est lorsque les M veteurs de beamforming àl'émetteur sont parfaitement orthogonaux.Borne inferieure du SINR reçu instantanéDans la setion préédente, nous avons étudié des bornes sur le SINR reçu moyen etidenti�é une métrique CQI e�ae. Toutefois, d'un point de vue pratique, la métrique Ia la limitation qu'elle ne peut pas être atteinte (il s'agit d'une borne supérieure), ar lesveteurs de beamforming ne sont pas en général parfaitement orthogonaux, en partiulierdans les réseaux ave un nombre d'utilisateurs modéré.Par onséquent, bien que la métrique I puisse être utile pour la séletion d'utilisateurs,elle ne peut pas être employée pour l'adaptation du lien. Si le système adapte le débitdu odage et de la modulation basé sur les valeurs γIk (f. eq. (9.14)), le lien va subird'importantes pertes ar la métrique CQI I surestime le SINR reçu. Pour ontourner ela,la SB doit demander du feedbak additionnel par les utilisateurs séletionnés a�n d'e�etuer



175l'alloation du débit. Cette deuxième étape de feedbak peut augmenter le débit de signal-isation et des retards du protoole, et elle n'est pas du tout pratique dans des anaux quivarient rapidement.A�n d'éviter la néessité de ette deuxième étape et de garantir des transmissions sanserreurs et interruptions, nous devons trouver une métrique de rétroation qui peut êtreutilisée e�aement à la fois pour la plani�ation et l'alloation du débit. Pour ela, nousproposons de renvoyer une borne inférieure sur le SINR au lieu d'une borne supérieure. Enoutre, nous dérivons des bornes sur le SINR instantané. Notre borne inférieure est baséesur:
• une borne inférieure de la puissane du signal reçu.
• une borne supérieure de l'interférene multi-utilisateurs atuelle.Metrique de feedbak CQI IIMotivés par la borne inférieure du SINR instantané i-dessus (voir Théorème 5.2), nousproposons que haque utilisateur renvoie à la BS la métrique salaire suivante:

γIIk =
SLBxk

I
UBx

k +M
(9.15)où `x' peut être remplaé par 1, 2 ou 3 pour le signal reçu (LB) et 1 ou 2 pour l'interférene(voir hapitre 5 pour plus de détails). Pour nos simulations, nous onsidérons la métriquesuivante:

γIIk =
SLB3
k

I
UB1

k +M
=

P
(1+ϑ)2 ‖hk‖

2
(cosφk −

√
ϑ)2

P ‖hk‖2 I
UB1

k +M
(9.16)Pour aluler (9.16), le réepteur doit onnaître les paramètres d'orthogonalité ǫ et ξ etsupposer que exatementM = M utilisateurs seront servis.La di�érene fondamentale entre (9.14) et (9.16) est l'estimation de l'interférene multi-utilisateurs et de la puissane du signal reçu. Dans (9.14) l'interférene est remplaée parune borne supérieure sur sa valeur espérée, 'est-à-dire E

{

∑

j∈S\{k}
P
M ‖h‖

2 |h̄kwj |2
}

≤
P
M ‖h‖

2 sin2 φk, alors que pour la CQI métrique II une borne supérieure sur l'interférenemulti-utilisateurs instantanée (f. eq. (5.21)) est utilisée.Transition SDMA/TDMA ave feedbak limitéDans les méthodes préédentes, nous avons essayé de dériver des métriques CQI salairespour transmissions multi-utilisateur e�aes. Une borne supérieure du SINR espéré ainsiqu'une borne inférieure du SINR reçu ont été proposées omme des métriques qui nouspermettent de béné�ier du gain de la diversité multi-utilisateurs. Une hypothèse sous-jaente ommune à la fois pour γIk et γIIk est queM = M utilisateurs sont néessairementservis/hoisis.Néanmoins, ela peut être une inonvenane majeure ar dans les anaux de di�u-sion MIMO ave CSIT partielle, il n'est pas garanti que la transmission multi-utilisateurs(SDMA) o�re des performanes toujours supérieures à la transmission mono-utilisateur(TDMA). Il existe don plusieurs ontextes dans lesquels il est béné�que d'un point devue apaité de ommuniquer ave M < M utilisateurs (en arrivant jusqu'à TDMA), en



176 Chapter 9 Résumé en françaispartiulier dans le régime de haut RSB et/ou de faible nombre des utilisateurs. En fait,l'impréision sur le alul de l'interférene multi-utilisateurs (par le manque de onnaissaneparfaite du anal) est préjudiiable dans le régime à fort RSB, dans lequel le système devientlimité par l'interférene et le débit-somme sature. Motivés par l'argument i-dessus, nousnous intéressons ii à trouver une stratégie de rétroation qui o�re la �exibilité souhaitéeentre SDMA et TDMA, pour atteindre une roissane de apaité linéaire pour tout régimede RSB.Stratégie de feedbak CQI pour transition SDMA/TDMA adaptativeA�n d'obtenir plus de �exibilité sur l'estimation de l'interférene multi-utilisateurs et, paronséquent, du SINR pour diverses valeurs deM, une autre forme de feedbak CQI doit êtreonsidérée. Dans [90℄ nous avons déjà présenté l'idée de la déomposition du feedbak CQIen deux des valeurs salaires, qui a été davantage exploitée dans [94℄. En plus de l'indie duodeveteur (CDI), nous proposons que haque utilisateur envoie:
• la norme du anal γ(1)

k = ‖hk‖

• le arré de l'alignement γ(2)
k = cos2 φkLa déomposition de la CQI en deux salaires permet à la SB de aluler une estimationdu SINR plus préise pour tout ensemble d'utilisateurs servis à ardinalitéM ≤ M . Celaest dû à sa apaité de aluler l'interférene multi-utilisateurs de façon plus préise ayantla CQI sous forme de gain du anal et de l'erreur de quanti�ation.Sous une ontrainte de débit de feedbak �xe et �ni, haque valeur salaire est quanti�éeave une préision réduite par rapport au as d'une seule métrique CQI salaire (par exemplemétriques I et II). L'e�et de quanti�ation de CQI est étudié par des simulations, où nousvoyons que la rédution de la préision des deux CQIs salaires ne réduit pas le débit sommepar rapport au as d'un CQI salaire.Canaux de di�usion MIMO ave une ontrainte �nie sur le débit-somme defeedbakNous imposons également une ontrainte sur le débit total de la voie de rétroation,e qui implique que haque utilisateur peut seulement utiliser Btot otets pour envoyer laonnaissane du anal CDI et CQI. Chaque réepteur k a à sa disposition seulement unnombre limité d'otets de rétroation Btot, pour la quanti�ation du veteur du anal et lefeedbak de la CSIT quanti�ée à la SB. De e nombre total d'otets, BD otets sont utiliséspour représenter la CDI h̄ = h/ ‖h‖ basée sur un odebook prédéterminé, et BQ otets sontutilisés pour la quanti�ation salaire de la valeur de la CQI. Ce modèle est dérit dans laFig. 9.9.
            CDI                        CQICSIT

B tot BD BQ+=Figure 9.9: Modèle de voie de rétroation à débit-somme �ni.



177Nous essayons de révéler ii l'interation entre K, le RSB et le débit de la voie derétroation BD et BQ, en vue d'exploiter les degrés de liberté qui existent dans la voiedesendante du MIMO multi-utilisateurs, 'est-à-dire la diversité multi-utilisateurs et lemultiplexage spatial. Nous herhons à aratériser le ompromis qui est la onséquened'une ontrainte �nie sur le débit total de feedbak par utilisateur (Btot), en identi�antl'alloation optimale du débit de rétroation pour atteindre en même temps le gain dela diversité multi-utilisateurs et elui du multiplexage spatial. En bref, nous essayons dequanti�er le nombre d'otets que nous devons onsarer pour la CQI et la CDI.Notre objetif est d'allouer dynamiquement les otets de feedbak CDI et CQI (voir laFig. 9.9) d'un montant total d'otets de rétroation Btot, de sorte à e que la apaité dela voie desendante MIMO R(BD, BQ) soit maximisée. Cela peut être formulé omme suit:
max
BD,BQ

R(BD, BQ)

s.t. BD +BQ = Btot







(9.17)
Rédution du feedbak ave CSIT basée sur le rangDans e hapitre, nous proposons une nouvelle représentation de l'information du analutilisée pour la séletion d'utilisateurs qui permet de diminuer davantage le débit de lavoie de rétroation. Ce type de feedbak, appelé `CSIT basée sur le rang', onsiste d'unevaleur entière qui représente le rang de la CSIT instantanée parmi un ensemble de Wmesures de CSIT antérieures. Cette représentation permet à l'ordonnaneur de séletionnerles utilisateurs qui se trouvent au point ulminant (quantile) de leurs propres distributionsdes anaux, indépendamment de la distribution des autres utilisateurs. Lorsque W estsu�samment grand, les utilisateurs séletionnés sont également eux qui ont les onditionsdu anal les plus favorables. En plus, e type de rétroation étant sous forme numériquedes quanti�ations salaires simples et des ompressions signi�atives peuvent être réalisées.Une propriété intéressante de ette méthode est que l'équité temporelle est rétablie dansdes réseaux hétérogènes, 'est-à-dire dans les systèmes dans lesquels les utilisateurs n'ontpas des anaux identiquement distribués et don dont les terminaux mobiles ont di�érentesvaleurs de RSBs moyens.Pour montrer les mérites de notre tehnique, nous adoptons un shéma de RBF et noussupposons qu'à l'instant t, haque utilisateur mesure sa CQI à haun des B faiseauxaléatoires. En plus de la valeur instantanée de CQI pour haque faiseau m, {γk,m(t)}Bm=1,haque utilisateur garde en mémoire un ertain nombre de mesures de CQI antérieures,
Wk,m, pendant une fenêtre d'observation de longueur W , i.e.

Wk,m = {γk,m(t− 1), γk,m(t− 2), . . . , γk,m(t−W + 1)}Chaque utilisateur, disons le k-ème, alule le rang (ordre) rk,m(t) ∈ {1, . . . ,W + 1} de samétrique de CQI γk,m(t) parmi les W valeurs du passé ontenues dans l'ensemble Wk,m.Par exemple, si γk,m(t) est la troisième plus grande valeur parmi les W valeurs mesurées,
rk,m(t) = 3. La valeur de rang est donnée omme
rk,m(t) = 1 +

W−1
∑

w=1

1 {γk,m(t) < γk,m(t− w)} +

W−1
∑

w=1

1 {γk,m(t) = γk,m(t− w)}Zw (9.18)
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Zw est une variable aléatoire i.i.d. dans {0, 1} ave Pr{Zw = 0} = 1/2, e qui orrespondau as où la CQI instantanée est égale à une ou plusieurs valeurs du passé. Dans e as làune valeur de rang est hoisie aléatoirement ave probabilité égale.Les idées-lé de notre approhe sont les suivantes:1) haque utilisateur hoisit la valeur de rang minimale, 'est-à-dire,

rk(t) = min
m=1,...,B

rk,m(t) (9.19)2) haque utilisateur, au lieu de renvoyer diretement sa plus grande valeur de CQI, envoieune valeur quanti�ée r̂k(t) de l'entier rk(t), ainsi que l'indie du faiseau m auquel ettevaleur de rang est minimisée, i.e.
r̂k(t) = Q(rk(t)) (9.20)où Q(·) représente un quanti�ateur à N = 2B niveaux. De e fait, la harge de feedbakpar utilisateur est égale à ⌈log2N⌉ otets pour le rang et ⌈log2M⌉ otets pour l'indie dufaiseau préféré.Au niveau de l'émetteur, l'ordonnaneur assigne haque faiseau m à l'utilisateur k∗mdisposant de la valeur de rang la plus petite,

k∗m(t) = arg min
1≤k≤K

r̂k(t) (9.21)Nous analysons la performane du débit système de la voie desendante d'un système MISOave des faiseaux orthogonaux aléatoires, pour lequel les utilisateurs sont séletionnés enfontion du `CSIT feedbak basé sur le rang'. En outre, nous donnons des expressions an-alytiques pour le débit lorsque W est �ni. Nous quanti�ons l'e�et d'une valeur W �nie,ainsi que l'erreur introduite dans les déisions d'ordonnanement par rapport au as op-timal W → ∞. Le débit somme moyen R d'un système ave B faiseaux et une fenêtred'observation W est donné par
R =

B
∑

m=1

(

∫ ∞

0

(1− (FXk∗
m

(x))W )dx −
W
∑

w=1
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)K ∫ ∞

0

Fw,m(x)dx

) (9.22)où Fw,m(x) =
(

W
w

)

(

FXk∗
m

(x)
)W−w (

1− FXk∗
m

(x)
)w. Dans les réseaux hétérogènes, la CSITbasée sur le rang a un mérite supplémentaire ar elle o�re de l'équité temporelle entre lesutilisateurs, 'est-à-dire la probabilité qu'un ertain utilisateur soit hoisi est égale à 1/K,indépendamment des distributions des autres utilisateurs et de sa propre valeur de RSBmoyen.Supposons que ϕk est la fration de temps assignée à l'utilisateur k, ave∑K

k=1 ϕk = 1.Une stratégie d'ordonnanement basée sur la CCDF est donnée par:
k∗m = arg max

1≤k≤K
(1− FXk,m

(xk,m))1/ϕk (9.23)En utilisant un ordonnaneur de minimum CCDF, l'utilisateur k peut avoir aès au analave une probabilité ϕk. Si Ak,m est l'événement que l'utilisateur k est séletionné pour lefaiseau m et tous les utilisateurs ont la même fration de temps, 'est-à-dire ϕk = 1/K,nous avons
Pr{Ak,m} =

∫ ∞

0

Pr{Ak,m|Xk,m = x}fXk,m
(x)dx

= −
∫ ∞

0

(

1− FXk,m(x)

)
1−K

K dFXk,m(x) = 1/K (9.24)



179La probabilité que le k-ème utilisateur soit séletionné Pr {Ak,m = 1} ne dépend pas de ladistribution des autres utilisateurs, même si les anaux des utilisateurs sont indépendants,mais pas néessairement identiquement distribués. L'indépendane de la probabilité deséletion peut être déduite du fait que le rang de la CSIT de haque utilisateur suit unedistribution uniforme indépendamment de l'évanouissement des autres utilisateurs. Dansla Figure 9.10 nous évaluons la performane de la stratégie d'ordonnanement basée surle rang. La valeur de RSB pour le système RBF onventionnel est quanti�ée ave B = 5otets en utilisant l'algorithme optimal Max-Lloyd, alors que la CQI basée sur le rang estquanti�ée en utilisant B = 3 otets. Pour di�érentes valeurs de W , la représentation deCSIT proposée est apable d'identi�er orretement les utilisateurs ave le plus haut débitinstantané, e qui fait que le gain de la diversité multi-utilisateurs est exploité, même aveune rédution du feedbak de 40%. L'équité temporelle et la probabilité d'aès égaliséesont montrées dans la �gure 9.11.
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Figure 9.10: Débit moyen en fontion du nombre d'utilisateurs pour RBF ave un faiseau,
M=2 antennes, RSB = 10 dB et di�érentes valeurs de longueur de fenêtre W .
Les Aspets SystèmesLes tehniques MIMO sont atuellement envisagées dans la plupart des ativités de nor-malisation des réseaux sans �l de la nouvelle génération, y ompris 3GPP-LTE, HSDPA,IEEE 802.16e (WiMAX) et IEEE 802.11n. Dans e hapitre, nous examinons ertaines ques-tions et dé�s de oneption systémique et d'implémentation qui se posent dans le monde réel.Nous présentons les prinipales di�ultés pratiques qui doivent être onsidérées et a�ron-tées lors du déploiement de tehniques MIMO omme elles proposées dans les hapitres 3-6.Dans la pratique, une attention partiulière doit être aordée à l'aquisition et à la rédution
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Figure 9.11: Probabilité d'aès normalisée vs. l'indie d'utilisateur pour le RBF aveM = 4antennes et K = 10 utilisateurs.de la voie de rétroation (feedbak), e qui devient impératif dans les systèmes à large bande(OFDM) ou de ommuniation à haute mobilité (omme dans 3GPP-LTE et WiMAX). Lesaspets d'équité sont également étudiés et une généralisation de la stratégie d'équité pro-portionnelle (PFS - proportional fair sheduling) pour les ontextes multi-utilisateurs estproposée.L'aquisition de feedbak au réepteur est généralement e�etuée par des séquenes designaux pilotes, émis par l'émetteur, qui permettent aux terminaux mobiles d'e�etuer uneestimation du anal. Il est également possible d'utiliser des méthodes d'estimation aveuglequi exploitent la onnaissane de la struture du signal transmis ou du anal. L'aquisition defeedbak à l'émetteur peut être e�etuée de deux sortes: soit impliitement (en exploitantla réiproité), soit expliitement en se fondant sur des mesures du anal au niveau duréepteur. En e qui onerne la notion d'équité, elle a été largement étudiée dans lalittérature de l'alloation des ressoures pour les réseaux informatiques et éonomiques, maisil n'existe pas de dé�nition générale et unique. On peut trouver au moins trois dé�nitionsprinipales de l'équité:
• équité max-min
• équité proportionnelle
• équité pondéréeParmi les trois, la stratégie d'ordonnaneur d'équité proportionnelle (PFS) est la plus répan-due. Elle vise à maintenir l'équité en o�rant un partage équitable du temps de transmission,proportionnel au débit utilisateur reçu durant une fenêtre de longueur �xe. L' ordonnaneur



181séletionne à haque réneau d'ordonnanement l'utilisateur k∗ ave:
k∗ = arg max

1≤k≤K

Rk(t)
R̄k(t)

(9.25)parmi tous les utilisateurs atifs K, où Rk(t) est le débit demandé par l'utilisateur k àl'instant t et R̄k(t) est le débit moyen observé pendant une fenêtre de longueur tc. Pour lamise à jour du débit moyen un �ltre exponentiel est utilisé:
R̄k(t+ 1) =

{

(1− 1
tc

)R̄k(t) + 1
tc
Rk(t), k = k∗

(1− 1
tc

)R̄k(t), k 6= k∗
(9.26)Multiuser Proportional Fair Sheduler (M-PFS)PFS a été initialement proposé pour des systèmes qui ne servent qu'un seul utilisateur àhaque fenêtre d'ordonnanement. Nous avons généralisé ette règle de PFS pour des réseauxmulti-utilisateurs, tels que les systèmes SDMA, les systèmes multi-porteurs (par exemple,OFDMA), et les réseaux multiellulaires. La règle d'ordonnanement multi-utilisateursd'équité proportionnelle (M-PFS) est que les utilisateurs sont hoisis tels que:

S∗t = argmax
S∈G

∏

k∈S

(

1 +
Rk|S(t)

(tc − 1)R̄k(t)

) (9.27)où Rk|S(t) est le débit d'utilisateur k ∈ S onditionné au groupe d'utilisateurs S.ConlusionsDans ette thèse, nous avons mis l' aent sur la problématique de l' alloation desressoures et l'optimisation des performanes pour des systèmes multi-antennes, multi-utilisateurs ave onnaissane du anal inomplète. Le leitmotiv de ette thèse omprenddes tehniques de rétroation limitée qui permettent à l'émetteur de bien vivre ave uneonnaissane de anal partielle en atteignant parallèlement une fration signi�ative de laapaité optimale.Une première idée-lé est basée sur la division de la voie de rétroation entre l' ordon-nanement et la oneption de faiseaux, a�n de béné�ier du fait que le nombre des util-isateurs à servir à haque instant est beauoup moins élevé que le nombre d'utilisateurs quidemandent des paquets de données pendant une ertaine fenêtre d'ordonnanement donnée.Nous avons introduit une approhe à deux étapes qui indique que la seletion des utilisa-teurs peut être aomplie ave une estimation de anal moins ra�née, alors que l'étape pourservir les utilisateurs séletionnés est mieux aomplie ave une onnaissane du anal pluspréise. Dans un premier temps, le shéma de formation des faiseaux aléatoires est exploitéa�n d'identi�er les utilisateurs spatialement séparables et en onditions de anal favorables.Dans un deuxième temps, les faiseaux aléatoires de es utilisateurs sont ra�nés basé sur lefeedbak disponible a�n d'o�rir de meilleures performanes et robustesse. Plusieurs straté-gies de ra�nement suessif, y ompris le ontr�le de puissane et la séletion de faiseaux,sont proposées, tout en o�rant un ompromis entre la rédution de feedbak et la apaitéatteinte. Le but ommun de es shémas est de rétablir la robustesse de RBF à l'égard desréseaux reux ('est à dire, ave un nombre d'utilisateurs atifs faible à modéré), au prixd'une augmentation modérée de la omplexité.



182 Chapter 9 Résumé en françaisEn outre, nous avons étudié le problème de séletion d'utilisateurs et du préodage aveCSIT partielle dans des sénarios de anaux plus réalistes. Nous avons montré que ertainesinformations utiles, ahées dans la statistique du anal de deuxième ordre, peuvent êtreexploitées par l'ordonnaneur d'un système SDMA.Dans les anaux temporellement orrélés, la redondane existante, due à la struturedu anal, est exploitée a�n de ra�ner au �l du temps les faiseaux aléatoires de RBFsuessivement. Une tehnique de formation de faiseaux opportuniste, nommée `memory-based opportunisti beamforming', a été proposée et nous avons démontré omment un telsystème nous permet de ombler le fossé entre la apaité de RBF et la apaité optimale debeamforming unitaire ave CSIT parfaite. Il est également démontré que notre algorithmeapprohe la apaité optimale quand la ohérene du anal est su�samment large. Notreapprohe trouve des appliations pour des systèmes à faible mobilité ('est-à-dire pour desanaux multi-antennes ave un étalement de Doppler limité).Dans les anaux MIMO spatialement orrélés, la onnaissane du anal statistique àlong terme révèle des informations importantes sur la séparabilité spatiale moyenne desutilisateurs, e qui est essentiel à une bonne oneption des faiseaux. Nous avons proposéplusieurs approhes qui mettent en évidene le mérite de ombiner l'information statistiqueet l'information du anal instantanée. Un shéma d'estimation du anal à maximum devraisemblane (MV) est établi a�n de ombiner e�aement la CSIT statistique ave uneCSIT instantanée de débit faible. En partiulier, nous avons examiné deux types de CQIsalaire:
• la norme du anal
• information sur le gain de faiseauUn algorithme de seletion d'utilisateur `avare' (greedy) ainsi qu'une tehnique de eigen-beamforming multi-utilisateurs à faible omplexité ont été proposées et évaluées. Notreapprohe est basée sur des nouvelles bornes d'interférene multi-utilisateurs dérivées spé-ialement pour notre ontexte. Il a été démontré que, dans les systèmes ave étalementangulaire à l'émetteur raisonnablement limité, il su�t d'envoyer un feedbak salaire et dele ombiner ave une CSIT statistique à long terme pour atteindre un débit prohe de laapaité optimale.Des stratégies de rétroation limitée en utilisant des tableaux de odage (odebooks) dequanti�ation vetorielle sont aussi étudiées dans ette thèse. En partiulier, nous avonsadressé le problème de la oneption des métriques CQI qui maximisent le débit du sys-tème. Nous avons identi�é plusieurs métriques de feedbak salaires qui sont fontion deparamètres omme le gain du anal, la diretion du anal et l'erreur de quanti�ation. Cesmétriques peuvent être interprétées omme une estimation �able du SINR reçu. Il a aussiété démontré qu'une telle CQI salaire, ombinée ave une CDI, un forçage à zéro, et unalgorithme d'ordonnanement `avare', peut atteindre une part importante de la apaitéoptimale en exploitant les gains de la diversité multi-utilisateurs. Une limitation majeurede es systèmes, omme tous les systèmes SDMA basés sur une CSIT quanti�ée, est qu'ilsdeviennent dominés par l'interférene, 'est-à-dire que leur gain de multiplexage est réduità haut RSB (si le débit de la voie de rétroation reste �xe). Motivés par le fait que la apa-ité d'un système SDMA n'est pas toujours inférieure à elle d'un système TDMA lorsque



183l'émetteur repose sur une CSIT inomplète, nous avons démontré l'importane et l'intérêtdes algorithmes adaptatifs de transition entre SDMA et TDMA. Nous avons présenté desmétriques d'ordonnanement, adaptées à identi�er ette transition SDMA/TDMA, tout enproposant des méthodes prometteuses pour garantir une roissane de débit linéaire pourtoutes les valeurs de RSB.En outre, nous avons examiné un système dans lequel haque utilisateur possède uneontrainte sur le débit total de sa voie de rétroation. Un ompromis entre la diversité multi-utilisateurs et le multiplexage spatial a été identi�é, ar les otets de feedbak disponiblesdoivent être partagés entre la CDI et la CQI. Le problème d'optimisation de l'alloation desotets de la voie de retour a été étudié et une approhe à faible omplexité a été proposée.Notre formulation révèle une intéressante interation entre le nombre d'utilisateurs atifs,le RSB moyen et le débit de feedbak.En�n, une représentation de l'information du anal à bas débit, dénommée `rétroationbasée sur rang' (ranking-based feedbak), a été identi�ée omme un moyen performant deompression de la CSIT reportée. Ave ette approhe, haque utilisateur alule et envoieà l'émetteur la valeur entière du rang de CSIT instantanée parmi un ensemble de mesuresde CSIT antérieures. Notre proposition donne à l'ordonnaneur la possibilité d'identi�er lesutilisateurs qui sont instantanément sur le sommet le plus élevé de leur propre distribution deanal, indépendamment de la distribution des autres utilisateurs. Cette méthode présenteun avantage supplémentaire dans les réseaux à anaux non symétriques. Elle permet derétablir l'équité temporelle ar elle égalise la probabilité qu'un utilisateur sera séletionné,indépendamment de la valeur absolue de son RSB moyen.
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