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Introduction

The major concern of this thesis is the study of strongly-correlated ultracold atoms in optical
lattices. In our study we adopt both a macroscopic and phenomenological point of view,
asking questions on how to measure and observe physical quantities, and a more microscopic
perspective by studying the phase diagram of specific models in different regimes of correla-
tions.

The remarkable advances in handling ultracold atomic gases have given birth to the new
field of “condensed matter physics with light and atoms”. On the atomic physics side, the
impressive progress in controlling such systems, particularly using Feshbach resonances, allows
for the realization of interesting physical systems ranging from the weak interaction regime
to strongly correlated systems, such as gases in the unitary limit. Another milestone progress
is the possibility to introduce an external periodic potential to create the optical lattice
with controllable parameters such as dimensionality, geometry or tunneling properties. The
combination of these two aspects allows to realize and explore many interesting systems
connected to condensed matter physics. Key issues in the physics of strongly correlated
quantum systems can be addressed from a new perspective in this context.

There are many promising lines of research associated with ultra-cold atoms in optical
lattices, of which we would like to emphasize two in particular. One attractive perspective
is to use these systems as quantum simulators for outstanding problems in condensed matter
physics such as the problem of high-temperature superconductivity. By allowing for a study
of relevant models in a simplified and controllable setting, ultra-cold atoms may contribute
to a better understanding of these complicated materials and in particular help in identifying
the key physical mechanisms and in building an appropriate theoretical framework. A second
direction is to study the novel physics (exotic ground-states, collective excitations. . . ) in
regimes which are not easily accessible in conventional solid-state physics. For example, one
can perhaps dream of observing and manipulating the full many-body wave function of a large
quantum systems, hence converting a rather abstract notion into an experimentally accessible
quantity.

Motivated by these perspectives, this thesis is devoted to a study of ultra-cold fermionic
atoms in optical lattices. It is organized in two parts, corresponding to two different aspects:

I- In the first part, consisting of two chapters, we adopt a macroscopic and phenomenolog-
ical point of view. We first give a brief overview on the physics of ultracold atoms in optical
lattices in Chapter 1, then we propose a novel measurement procedure of single-particle ex-
citations of these systems in Chapter 2.

In Chapter 1, we start by establishing the theoretical framework for the description of
ultracold atoms in optical lattices. We then describe some pioneering experiments in this field.
We finally discuss the available experimental methods for probing and measuring physical
observables of these systems.

In Chapter 2, motivated by the direct observation of single-particle excitations in con-
densed matter by angular resolved photoemission spectroscopy (ARPES), we propose a spec-
troscopic method which aims at observing the Fermi surface and the spectrum of one-particle
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excitations in ultracold atomic systems. Our method is based on stimulated Raman spec-
troscopy. We show that, using this method, both the Fermi surface and the key physical
properties of quasiparticle excitations can be accessed in a momentum and energy-resolved
manner, under realistic experimental conditions in the presence of a confining potential. The
end of the chapter is devoted to a discussion of the very recent experimental realization of a
closely related measurement using RF spectroscopy in D. S. Jin’s group at Boulder.

II- The second part, consisting of Chapters 3, 4, 5, is devoted to the study of the fermionic
Hubbard model under different conditions and in different regions of parameters. The Hub-
bard model can be considered as the simplest model to describe quantum many-body systems.
In some sense, we can compare it to the Ising model in magnetism. Its set of parameters is
rather restricted. For a two-component system σ =↑, ↓, the model is fully defined by the
hoppings tσ, the interaction strength U , the temperature T , the total number of particles
n = n↑ + n↓ and the polarization p = n↑ − n↓). Nevertheless, it is still an unsolved model
in two and three dimensions. Since the discovery of the high-temperature cuprate supercon-
ductors, it is believed that the Hubbard model in two dimensions is the simplest model that
is able to explain the novel physics of these materials. Therefore the understanding of the
ground state and phase diagram of the Hubbard model is an essential issue.

In condensed matter physics, scientists meet two major difficulties. The first one is that
in order to reduce to the Hubbard model, one needs to focus on a restricted set of low-energy
degrees of freedom and perform a calculation of the electronic structure in order to estimate
the values of the hopping amplitude and interaction strength. Therefore, we do not really have
a Hubbard model with well controllable parameters. The second one is that the interpretation
of experimental measurements is further complicated by extrinsic effects such as impurities,
sample quality, etc... The new field of ultracold atoms in optical lattices offers in principle the
possibility to realize a pure Hubbard model whose set of parameters is very well controllable.

The second part of this thesis is devoted to theoretical studies of the Hubbard model with
either mass (hopping) or population imbalance, and is organized as follows.

In Chapter 3, we introduce some theoretical tools for the study of lattice quantum many-
body systems. As a many-body system contains a large number of degree of freedom, in
the strongly correlated regime, no exact analytical method is available. On the other hand,
despite the development of algorithms and computer power, a full numerical solution is still
far from our reach. A method which combines both analytical and numerical approaches
is currently the best choice for this study. In increasing order of numerical complexity, we
introduce and briefly describe in Chapter 3: the usual Hartree-Fock mean field theory (HF-
MFT), the slave boson mean field theory (SB-MFT) and the dynamical mean field theory
(DMFT). In the following chapters, we apply these different methods to study the Hubbard
model in different regimes.

In Chapter 4, we study the effect of mass imbalance on the phase diagram of a two-
component fermionic mixture with attractive interactions in optical lattices. Using static
and dynamical mean-field theories, we show that the pure superfluid phase is stable for all
couplings when the mass imbalance is smaller than a limiting value. For larger imbalance,
phase separation between a superfluid and a charge-density wave takes place when the cou-
pling exceeds a critical strength. The harmonic trap induces a spatial segregation of the two
phases, with a rapid variation of the density at the boundary.

Finally, in Chapter 5, we discuss the problem of a fermionic mixture with equal masses but
population imbalance. For the continuum system in the trap, the superfluidity of this mixture
has been already observed experimentally. The ground state of this kind of system has been
the subject of controversial discussions. Different suggestions for the novel phase are the
gapless superfluid (Sarma, or breached-pair) phase or the Fulde-Ferrell-Larkin-Ovchinnikov
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state (FFLO). We discuss in this chapter the possibility to stabilize a gapless superfluid phase
in the regime of strong correlations. We use for this purpose general energetic arguments, as
well as analytical and numerical calculations based on static mean field theory and dynamical
mean field theory.





Chapter 1

Ultracold atoms in optical lattices: a
brief overview

In this chapter, we first review the basic description of ultracold atoms in optical lattices by
a many-body Hamiltonian. We briefly describe key experiments: the observation of the phase
transition between the superfluid phase and a Mott insulator of ultracold bosonic atoms [46], as
well as the possible recent observation of an incompressible Mott state of ultracold fermions [63].
In the second part of the chapter, we describe available experimental techniques for the mea-
surement of correlation functions of physical observables.

1



2 Ultracold atoms in optical lattices: a brief overview

1.1 Ultracold atoms in optical lattices

In this section, we review the theoretical framework for the model of ultracold atoms in optical
lattices. In the appropriate experimental conditions discussed below, we show that ultracold
atoms in optical lattices can be described by the Hubbard model including the confining
potential.

1.1.1 Many-body Hamiltonian

Here, we give a brief introduction to the Hamiltonian describing ultracold atoms in optical
lattices (for more detailed references, see [42, 58, 121, 123]). For definiteness, we consider a
two-component fermionic system (with hyperfine states labeled by σ =↑, ↓), but the discussion
applies in a similar way to a bosonic two-component system. The optical periodic potential

Figure 1.1: Controllable optical lattices: two-dimensional (top) and three-
dimensional (bottom). Reprinted from [12]

is generated by the induced dipole interaction between the laser and the atoms: Vdip(r) =
−〈D.E(r)〉. Here E(r) is the electromagnetic field and D is dipole operator of the atom.
The atom exhibits an atomic transition from the ground state |g〉 to excited state |e〉 with a
resonance frequency ωres. The dipole interaction can be expressed as Vdip = Ω(r)|e〉〈g|/2+h.c.
Here Ω(r) = −2E(r)d is the Rabi frequency with d = 〈e|D|g〉 the element of dipole matrix.
Let δ be the detuning of the light field frequency from the atomic transition (i.e. δ =
ω − ωres). For large detuning δ � Ω(r), adiabatically eliminating the excited state |e〉 yields
the interaction potential Vdip = |Ω(r)|2/4δ ∝ E2(r). The population of atoms transferred to
the excited state is |Ω(r)|2/4δ2 thus the condition δ � Ω(r) is required for the validity of the
adiabatic elimination. Therefore counter-propagating laser beams can be used to generate
a periodic potential (Fig. 1.1 left panels). Due to the interference between these two laser
beams, a standing wave with the spatial period of λ/2 (with λ the wavelength of the laser)
is formed. By using different pairs of laser beams, different optical lattices with one, two
or three dimensions can be obtained (Fig. 1.1 right panels). The periodic potential for each
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species of the fermionic mixture reads

VLσ(r) = V0σ

∑

µ

sin2(kLµrµ), (1.1)

where µ = 1, 2, 3 corresponds to 1D, 2D or 3D cases and kLµ = 2π/λ is the wave-vector of
the lasers. The detuning of the laser frequency from the atomic resonance is different for the
two species of atoms, therefore the induced periodic potentials for each species are different:
V0σ = 4E2

0d2
σ/δσ. We note that the geometry of the optical lattice can be modified easily

by changing the angle between different couple of laser beams. In addition, one can also
play with the polarizations of the laser to create more interesting lattices [87]. For example,
the optical lattice with geometrical frustration (triangular lattice or kagome lattice) has been
proposed in Ref. [99].

An ultracold atom gas is trapped by an approximate harmonic potential. This comes
from the trapping potential by a magnetic or optical trap. In addition, the gaussian profile
of the laser beams used to create the optical lattice induces also a potential. More detailed
discussion on the trapped potential is left for the Section 1.1.2. At this stage we neglect the
harmonic potential. The non-interacting part of the Hamiltonian describing the atoms in the
optical lattice reads

H0 =
∑

σ

∫
dr
[
− ~2

2mσ
‖∇ψσ(r)‖2 + VLσ(r)|ψσ(r)|2

]
. (1.2)

Here, ψσ(r) is the many body wave function for atoms of the species σ with massmσ. VLσ(r) is
the lattice potential described above. The eigenstates of free fermions in a periodical potential
are well-known in solid state physics. One obtains Bloch’s wave function |φkν〉 corresponding
to single-particle energies εkν (with k the quasi-momentum in the Brillouin zone of the lattice,
and ν a band index)

H0|φkνσ〉 = εkνσ|φkνσ〉, (1.3)

with φkνσ(r) = eik.rukνσ(r) and ukνσ(r) a function having the periodicity of the lattice. It is
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Figure 1.2: Contour plot of Wannier function of ultracold atom gas in two
dimensional optical lattice for the first band

actually convenient to Fourier transform the Bloch wave functions in order to obtain Wannier
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functions [88] which are localized around a specified lattice site R (at least for the lowest
band). They are defined by

wRνσ(r) = wνσ(r−R) =
∑

k

e−ik.Rφkνσ(r) =
∑

k

eik.(r−R)ukνσ(r). (1.4)

Fig. 1.2 displays the contour plot of the Wannier function associated with the lowest band,
for a two-dimensional potential. The Fermion field operator can be decomposed on either the
localized Wannier basis-set or the Bloch basis-set

ψ†σ(r) =
∑

Rν

w∗νσ(r−R)c†Rνσ =
∑

kν

φ∗kνσ(r)c†kνσ, (1.5)

in which c†Rνσ is the creation operator of an atom in the single-particle Wannier state wRνσ

on site R and analogously c†kνσ the creation operator in the ν-th Bloch state with quasi-
momentum k. The non-interacting Hamiltonian thus reads

H0 =
∑

kνσ

εkνσc
†
kνσckνσ = −

∑

νσ

∑

RR′

tνσRR′c
†
RνσcR′νσ. (1.6)

In this expression, the tunneling amplitudes tνσRR′ can be computed from the overlap of two
Wannier functions on different sites

tνσRR′ = −
∫
drw∗Rνσ(r)

[
− ~2∇2

2mσ
+ VLσ(r)]wR′νσ(r) =

∫

BZ
dk εkνσ eik.(R−R′). (1.7)

Let us now turn to the interaction between atoms. Under appropriate conditions [121](e.g.
when the scattering length is small as compared to the spatial extension of the Wannier
functions), the interactions can be described by a contact (pseudo-) potential

Hint = g

∫
drψ†↑(r)ψ↑(r)ψ†↓(r)ψ↓(r). (1.8)

In this expression the coupling constant g is related to the scattering length as of the atomic
potential by m/4πas = 1/g +

∑
k 1/2εk which is the kinetic energy of non-interacting gas

εk = ~2k2/2m. Using the decomposition of the creation operators onto the Wannier basis-
set, one obtains the following expression for the interaction Hamiltonian, in second-quantized
notations

Hint =
∑

R1R2R3R4

∑

ν1ν2ν3ν4

Uν1ν2ν3ν4
R1R2R3R4

c†R1ν1↑cR2ν2↑c
†
R3ν3↓cR4ν4↓, (1.9)

in which the coupling constants are the following matrix elements

Uν1ν2ν3ν4
R1R2R3R4

= g

∫
drw∗R1ν1↑(r)wR2ν2↑(r)w∗R3ν3↓(r)wR4ν4↓(r). (1.10)

The full Hamiltonian H0 +Hint is quite complicated and involves all the Bloch bands in the
optical lattice. However, for a small enough number of particles and a deep enough lattice
potential, we have well separated bands and only the first band will be populated. Hence,
under appropriate conditions discussed in [121] (summarized on Fig. 1.3 left panel), we can
reduce the full Hamiltonian to a one-band description

H = −
∑

〈RR′〉

∑

σ

(tσc+
RσcR′σ +H.c) + U

∑

R

nR↑nR↓. (1.11)
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Figure 1.3: Left: Validity of the Hubbard model for the equal mass mixture
of fermionic atoms in optical lattice. The unit of energy is chosen as the recoil
energy ER = ~2k2

L/2m. Reprinted from [121]. Right: Example of the hoping
and interspecies interaction strength for the mixture with mass imbalance (6Li
and 40K). The sketch is done with kFas = 60.

For the first band, the estimation of the hopping and the on-site interaction are given by [123]

tσ/ERσ = 4π−1/2(V0σ/ERσ)3/4e−2(V0σ/ERσ)1/2
U/ER =

√
8/πaskL(V0/ER)3/4. (1.12)

Both the interaction strength and the hopping amplitudes can be controlled by changing the
intensity of the lasers beams, as displayed on Fig. 1.3 right panel. Furthermore, the interaction
strength U can be controlled independently using Feshbach resonances, as described below
(Sec.1.1.3).

1.1.2 Trapping potential

In the ultracold atom experiments, we always need to trap the atoms. First, atoms are
usually trapped before being cooled until low enough temperature. Until now, by mean of
the usual trap such as the TOP trap or the magneto-optical trap [19], the trapping potential is
approximately harmonic close to its minimum. Moreover, if we want to realize the experiment
with an optical lattice, there is always an additional harmonic potential coming from the
gaussian profile of the counter-propagating laser beams. In fact, the standing wave will create
not only a periodical potential but also a harmonic profile. Therefore in a full description of
an ultracold atom systems, we need to include the trapping potential to the Hubbard model
obtained for a homogeneous case.

H = −
∑

〈RR′〉

∑

σ

(tσc+
RσcR′σ +H.c) +U

∑

R

nR↑nR↓ +
∑

R,σ

Vσtrap(R)nσR −
∑

R,σ

µσnσR. (1.13)

Here, the trapping potential has the following form: Vσtrap(R) = mσω
2
hoR

2/2 in which m is
the mass of atoms and ωho is the trapping frequency.

In practice, the presence of this potential helps experimentalists to handle their exper-
iments on ultracold atom gas. In the experiments described in Sec 1.2, we will see that
this potential were used to perform interesting observations. By contrast, the presence of
this potential raises an essential question for theorists and turns the many-body problem
more complicated. Two usual approaches are a local density approximation (LDA) or nu-
merical simulation for a finite-size system. Here, we will briefly introduce the LDA ap-
proach which will be mainly used in the next chapters of this thesis. In the LDA approach,
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Figure 1.4: Density profile of 3D fermionic Hubbard model in presence of the
harmonic potential obtained by DMFT with LDA [80]. (i) For small interaction
(U = 1) or small density, the whole system is in a (Fermi-) liquid phase. The
density profile displays strong variations with the trapping potential. (ii) For
stronger interaction (U = 3), a Fermi liquid phase with a density gradually
decreasing towards the boundaries, surrounds a plateau formed in the center of
the trap. (iii) When the particle number is further increased the pressure exerted
by the trapping potential overwhelms the incompressibility of the Mott state.

we solve the theoretical model for a homogeneous system without confining potential then
extend to the non-homogeneous system by defining a spatial-dependent chemical potential
µσ(r) = µσ −Vσtrap(r). Local physical quantities 〈O(r)〉 are computed via their values in the
homogeneous system at this chemical potential:

〈O(r)〉 ≈ 〈Ohom[µσ(r)]〉. (1.14)

If the trapping potential is smooth enough with respect to all the variation length scales of
physical quantities, we can expect that this approximation can provide a reasonable compar-
ison with experiment. One of most obvious example is the calculation of the density profiles
of the ultracold atoms (Fig. 1.4) [80, 98].

1.1.3 Controlling the interaction strength with Feshbach resonances

Feshbach resonances, scattering resonances, were first investigated in the context of nuclear
physics [35]. The application of a Feshbach resonance for ultracold atom systems was first
discussed in [115]. This resonance now becomes an indispensable tool for experimentalists to
investigate the physics of cold atoms in many different contexts. Thank to this resonance, we
can easily tune the interaction strength from weak interaction regime to the strongly correlated
regime just by adjusting an external parameter such as the magnetic field. Detailed discussion
on the Feshbach resonance can be found in [13, 19, 68].

The mechanism of the Feshbach resonance can be explained by a model with two channels
(Fig. 1.5). The open channel represents scattering atoms with a continuum of states while
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Figure 1.5: The two channel model for a Feshbach resonance. Atoms prepared
in the open channel which corresponds to the interaction potential Vop(r) (in
red). They undergo a collision at low incident energy. The open channel is
coupled to the closed channel V (r) (in blue). When a bound state of the closed
channel has an energy close the incident energy, a scattering resonance occurs.
The position of the closed channel with respect to the open can be tuned by an
external magnetic field B. Reprinted from Ref. [13]

the closed channel represents the bound state of atoms. Feshbach resonances appear when
the total energy in an open channel matches the energy of a bound state in a closed channel,
as illustrated in Fig. 1.5. Let |O〉 be the states of atoms in the open channel and |C〉 be the
bound state of atoms in the closed channel. Atoms in the open channel interact with each
other via the Hamiltonian HOO. The two channels are coupled by the HOC = Ω|C〉〈O| with
Ω = 〈O|HOC |C〉. Via the second-order process, two atoms in the open channel scatter into
the closed channel to form a bound-state and subsequently decay to two separate atoms in
the open channel. This process induces an effective interaction H ′OO with interaction strength
Ω2/(EO−Eres) in the open channel. Here, EO is the energy of atoms in the open channel and
Eres is the energy of the bound state in the close channel. Therefore the scattering length in
the open channel is modified to

4π~2

m
as =

4π~2

m
aO +

Ω2

EO − Eres
, (1.15)

in which aO is scattering length in the open channel without presence of closed channel. The
detuning between the energy levels of open channel and closed channel δ = EO −Eres can be
adjusted by an external magnetic field B. We can rewrite the scattering length as

aS = aO(1 +
∆B

B −B0
), (1.16)

in which ∆B and B0 describe the width and the location of the Feshbach resonance respec-
tively. Fig. 1.6 shows an example of the Feshbach resonance of 6Li.

In practice, the Feshbach resonance works better for fermionic atoms because the life-time
due to the three body recombination becomes very large at the resonance. In contrast, for
the bosonic atoms this life-time becomes very small in this limit [19].
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Figure 1.6: Magnetic field dependence of the scattering length between the two
lowest hyperfine states of 6Li with a Feshbach resonance located at B0 = 834G
and a zero crossing at B0 + ∆B = 534G. The background scattering length
abg = −1405aB is exceptionally large in this case (aB being the Bohr radius).
Reprinted from Ref. [13]

1.2 Observation of strongly correlated phases of ultracold atoms
in an optical lattice

In this section, we would like to emphasize the motivations on the study of ultracold atoms in
optical lattices through two of milestone experiments: the phase transition from the superfluid
to Mott insulator in bosonic system and the recent evidence of the fermionic Mott insulator
at high temperature.

1.2.1 Superfluid to Mott insulator transition of bosonic atoms

In 2002, Greiner and co-authors achieved the first experimental observation of the transition
from the superfluid state to the Mott insulating state of interacting bosons, as predicted
by theory [57]. In their experimental set-up, they cooled the atom 87Rb into the spin-
polarized state (F = 2,mF = 2) in order to create a Bose-Einstein condensate. Then, a
three dimensional optical lattice was created by three optical standing waves whose cross-
ing point was centered in the condensate. This optical lattice creates a periodic potential
V (x, y, z) = V0(sin2(kx) + sin2(ky) + sin2(kz)) where k = 2π/λ. The gaussian profile of the
laser beams at the position of the condensate creates an additional weak isotropic harmonic
confinement over the lattice.

After creating the optical lattice, the atoms are distributed over approximately 150000
lattice sites (about 65 lattice sites in each direction). In order to test whether there is
still phase coherence between different lattice sites, they switched off suddenly the confining
potential and let the atomic wave function expand freely. In the superfluid regime where
all atoms are delocalized and coherent in phase, they observed a very high contrast three
dimensional interference pattern as shown in the time of flight image (Fig. 1.7). Otherwise,
in the Mott phase all atoms are well localized and there is no phase coherence. In contrast to
the superfluid case, a broad background is observed. This phase transition is observed simply
by tuning the intensity of the optical lattice. This observation is a fascinating example of the
feasibility of the cold atoms systems for the study of the quantum phase transition.

As described above, there exists always a confining potential that in this case helps to
stabilize a central region of incompressible Mott state in the trap. In the harmonic trap,
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Figure 1.7: Superfluid to Mott insulator transition of bosons in optical lat-
tices [46]. Absorption image of matter wave interference pattern. These were
obtained after suddenly releasing atoms from optical lattice with different po-
tential depths V0 after a time of flight of 15 ms. The values of V0 were: a)0Er;
b)3Er; c) 7Er; d)10Er; e)13Er; f)14Er; g)16Er and h)20Er.

the incompressibility of the Mott phase induces the "wedding-cake" structure of the density
profile. The Mott insulator has a gap ∆M to density excitations. This is therefore an in-
compressible state which means that adding an extra particle will costs a finite amount of
energy. It is clear from the mean-field calculation shown in [42] that if we want to vary the
average density from infinitesimally below an integer value n to infinitesimally above, we have
to change the chemical potential across the Mott gap.

Figure 1.8: Left panel: phase diagram of the Bose Hubbard model as a func-
tion of chemical potential µ/U and coupling t/U obtained in [36, 42, 105]. An
incompressible Mott insulator is found within each lobe of integer density. Right:
density profiles in a harmonic trap. The "wedding cake" structure is due to the
incompressibility of the Mott insulator. Reprinted from Ref. [42].

The Mott gap is proportional to the interaction strength U in the atomic limit (large U)
and vanishes at the critical coupling as ∆M ∝

√
U − Uc (within mean-field theory). The

existence of a gap means that the chemical potential can be changed within the gap without
changing the density. As a result, when the system is placed in a trap, it displays density
plateaus corresponding to the Mott state, leading to a wedding cake structure of the density
profile (Fig. 1.8). This is easily understood in the local density approximation, in which the
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local chemical potential is given by µ(r) = µ−mω2
hor

2, yielding a maximum extension of the

plateau
√

2∆M/mω2
ho. Several authors have studied these density plateaus beyond the LDA

by numerical simulation [10] and they have been recently observed experimentally [38].

1.2.2 Incompressible Mott state of ultracold fermions

Another important experiment is the observation of quantum phase transition from Mott
insulator to Fermi liquid phase in a mixture of fermionic atoms in optical lattice [63]. We
describe briefly here how they observe the Mott state. In the experiment, the equal fermionic
mixture is prepared in strongly correlated regime with two hyperfine states |9/2,−9/2 and
9/2,−5/2 of 40K. The degenerate gas is loaded into an optical lattice. The s-wave scattering
length between two species of atoms is tuned from as = 240± 4a0 to as = 810± 40a0 by the
Feshbach resonance located at B = 224.21 Gauss. The idea of the experiment is to observe
the Mott phase via the double occupation number. For a fermionic system, the Mott phase
is characteristic by the regular filling of one particle per site with small particle fluctuation.
Therefore, this state is interpreted by a low double occupation 〈D〉 = 〈n↑n↓〉.

Figure 1.9: Appearance of double occupancy in the strongly interacting regime.
The double occupancy for low atom numbers is nearly constant and starts to
increase only for large atom numbers. The blue and red lines represent the
theoretical expectation for D in the atomic limit. Reprinted from Ref. [63].

In order to measure this quantity in experiment, they first increased the lattice depth.
The state of atoms which is frozen and the filling number at each site is exactly determined
(no particle fluctuation). For a general configuration, we can have lattice sites with zero
particle, one particle or two particles. By tuning the interaction to the BEC-side of Feshbach
resonance , they formed molecules in the sites with double occupation. The number of
molecules were then measured by the RF spectroscopy technique (discussed in Section 1.3.2).
The experiment is repeated for different total number of atoms. In the Fig. 1.9, we see how
the double occupation varies when the total number of atoms increased. The symbols are the
experimental values while the continue curves are theoretical prediction at atomic limit. We
see that for a small number of atom, there is a plateau of small double occupation (less than
1%). As far as the particle number greater than a critical value nc (≈ 8× 104 for U/6J = 19
and ≈ 14×104 for U/6J = 25), the double occupation increases. The presence of this plateau
has been interpreted as evidence for a Mott insulator region. We note that in this experiment
the temperature is undetermined.
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1.3 Measuring physical observables in ultracold atomic sys-
tems: available methods

In this section, we summarize some of the measurement techniques that have been imple-
mented experimentally in order to probe these systems. It is convenient to distinguish two
kinds of measurements: those probing the single-particle response functions, and those prob-
ing the two-particle response. Among the latter are the measurement of the density-density
correlation function 〈ρ(r, t)ρ(r′, t′)〉 or the spin-spin correlation function 〈S(r, t)S′(r′, t′)〉. In
solid-state physics, these can be probed by X-ray or neutron scattering. In contrast, the cor-
relation function associated with a single-particle operator (such as the operator creating or
destroying a single atom in the system) involves transitions between the ground-state and an
excited state of the many-body system with one atom added to it or one atom removed from
it. In solid-state physics, this can be probed by photoemission (or inverse photoemission)
experiments. Since one of the main work in this thesis has been to propose a new measure-
ment method for the one-particle response function, I will mainly summarize in this chapter
the probes of two-particle correlation functions. One-particle correlation functions will be
addressed in detail in the next chapter.

1.3.1 General consideration on response functions

In general terms, measurements which involve a weak perturbation of the system coupling to a
physical observable Ô (such as, e.g. the density or the spin-density) will probe the correlation
function associated with this observable, namely

CO(r, r′; t, t′) = −i〈TtÔ(r, t)Ô+(r′, t′)〉. (1.17)

Here, Tt is the time order product. This is true when linear response theory applies, which
assumes that the system is not disturbed too far out of equilibrium. In this expression, the
operators evolve in the Heisenberg representation, and the brackets denote either an average
in the ground-state (many-body) wave function (for a measurement at T = 0) or, at finite
temperature, a thermally weighted average with the equilibrium Boltzmann weight.

The behavior of this correlation function is controlled (at T = 0) by the excited states
which are coupled to the ground-state upon application of Ô. In order to see this, we insert a
complete set of states in the above expression and obtain the following spectral representation
for t > t′(given here at T = 0 for simplicity)

CO(r, r′; t− t′) =
∑

n

e−i(En−E0)(t−t′)/~〈Φ0|Ô(r)|Φn〉〈Φn|Ô+(r′)|Φ0〉. (1.18)

In this expression,|Φ0〉 is the ground-state (many-body) wave function, and the summation
is over all admissible many-body excited states (i.e. having non-zero matrix elements). We
can introduce a spectral function, which measures how many such excited states contribute
to this correlation function in a given energy interval. It is defined for ω > 0

AO(r, r′;ω) =
∑

n

〈Φ0|Ô(r)|Φn〉〈Φn|Ô+(r′)|Φ0〉 δ [ω − (En − E0)/~] . (1.19)

This spectral function obeys the sum-rule
∫ +∞

−∞
dωAO(r, r′;ω) = 〈Φ0|

[
Ô(r), Ô(r′)

]
±
|Φ0〉 (1.20)
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where the commutator (resp. anticommutator) applies to bosonic (resp. fermionic) observ-
ables Ô. In a translationally invariant system (which is not the case if a trapping potential is
present), the spatial Fourier components of the spectral function can be considered instead.
For ω > 0 the spectral function reads

AO(k, ω) =
∑

n

|〈Φ0|Ôk|Φn〉|2 δ [ω − (En − E0)/~] . (1.21)

In the following, we discuss how to measure such correlation functions and spectral functions,
focusing mainly on two-particle observables. In the next chapter we will consider in more
details the measurement of the single-particle spectral function in an energy- and momentum-
resolved way.

1.3.2 Partial information on one-particle correlations from time-of-flight
and RF spectroscopy

Single-particle correlation functions probe excited states of the many-body system with one
atom added to it, or one atom removed, i.e. coupled to the ground-state via a single par-
ticle process. This is described by the creation or annihilation operator of a single atom.
Specializing the above formulas to Ô = ψ(r, t), we have to consider the correlation function

〈Ttψ(r, t)ψ(r′, t′)〉 = iG1(r, r′; t, t′), (1.22)

which is usually called the single-particle Green’s function G1 (Tt denotes time ordering).
The corresponding spectral decomposition involves the one-particle spectral function (written
here, for simplicity, for a homogeneous system so that crystal momentum is a good quantum
number and at T = 0)

A(k, ω) =
∑

n

|〈ΦN−1
n |ck|ΦN

0 〉|2δ(ω + µ+ EN−1 − E0)(ω < 0) (1.23)

A(k, ω) =
∑

n

|〈ΦN+1
n |c+

k |ΦN
0 〉|2δ(ω + µ+ E0 − EN+1)(ω > 0). (1.24)

The spectral function is normalized to unity for each momentum, due to the anti-commutation
of fermionic operators ∫ +∞

−∞
dωA(k, ω) = 1. (1.25)

The momentum and frequency dependence of this quantity contains key information about
the important low-energy excitations of fermionic systems (hole-like, i,e corresponding to the
removal of one atom, for ω < 0, and particle- like for ω > 0). Let us note that information
on one-particle correlators of a Bose system can be obtained from two-particle ones, when
the system is made to interfere with either another identical system [94] or with a reference
condensate [89]. By contrast, in Fermi systems the distinction between one- and two-particle
correlators is essential.

Time of flight measurement

As we now explain, time of flight measurements probe the single-particle Green’s function at
equal times 〈ψ+(r, t)ψ(r′, t)〉, i.e. the one-body density matrix. Its Fourier transform is the
momentum distribution at finite temperature

N(k) = 〈c+
k ck〉 =

∫ 0

−∞
nF (ω)A(k, ω)dω, (1.26)
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Figure 1.10: Time of flight imaging technique. Left panel: Schema of the
TOF experiment [12]. Right panel: First observation of the BEC in ultracold
atoms. Figure shows the momentum distribution of Bose Einstein condensation
at temperatures 400 nK, 200 nK and 50 nK of 87Rb [4].

in which nF (ω) is the Fermi-Dirac distribution. In an experiment of time-of-flight imaging,
the cloud of ultracold atoms is first released from the harmonic trap. The interaction between
atoms is tuned to weak interacting regime in order to make a ballistic expansion. After a
time of flight ∆t, the position of the atoms is proportional to the momentum of the atoms in
the initial cloud r ∼ hk∆t/m. Finally, an absorption image of the expanding cloud of atoms
is taken by a probing laser (Fig. 1.10 left panel). The resulting image provides directly the
distribution of the momentum space N(k) (Fig. 1.10 right panel).

The time of flight imaging is a very powerful technique to probe the quantum gases.
From the beginning of the ultracold atom field, it permitted to observe the Bose Einstein
condensation [4]. The right panel of Fig. 1.10 shows how one can observe the BEC by time
of flight technique. At high temperature T = 400nK, the thermal gas is characterized by
the broad particle distribution in momentum space. When the temperature is smaller than a
critical temperature Tc, a sharp peak of density emerging at zero momentum is an evidence
of BEC. Otherwise, it can be combined with other techniques such as RF spectroscopy,
Raman spectroscopy etc (discussed later in Chapter 2) in order to perform more sophisticated
measurement.

Measurement of Fermi surfaces by time-of-flight for weakly interacting cold fermions
in an optical lattice

Another interesting observation by this technique is the imaging of the Fermi surface in a
fermionic system. This experiment was realized in the Zürich group [67]. It is one of the
milestones which fills the gap between ultracold atoms physics and condensed matter physics.

In this experiment, the mixture of bosonic 87Rb and fermionic 40K atoms was in a
magneto-optical trap. For the magnetic trapping, they used the optical pumping to obtain
the potassium in the |F = 9/2,mF = 9/2〉 state and the rubidium in the |F = 2,mF = 2〉
state. Applying the sympathetic cooling for the mixture, they obtained the potassium at
a temperature of T/TF = 0.32 (TF = 260nK is the Fermi temperature of non-interacting
gas). After removing the rubidium atoms, they prepared a spin mixture with (50% ± 4) in
each of the |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 spin states by using two
radio-frequency pulses. In order to reach a lower temperature, they performed an evaporative
cooling. Finally, the mixture is brought to the temperature T/TF = 0.2.

The lattice was switched off in a adiabatic way such that atoms still stay in the lowest
band and the quasi-momenta are conserved. Then they took the time of flight absorption
image. This image reflects the quasi-momentum distribution of atoms in the k-space divided in
different Brillouin zones. As the density profile of atoms in the lattice depends on the harmonic
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Figure 1.11: Imaging of non-interacting Fermi surfaces. Figures from left to
right show the Fermi surface of the system with low filling (a), mediate filling (b)
and high filling (c). The density of atom is simply controlled by the confining
potential. Reprinted from Ref. [67]

confinement potential, the atom distribution is characterized by a the length ζα =
√

2t/mω2
α.

Here, ωα is the harmonic confinement frequency in the direction α = x, y, z. If the confinement
is weak, the atoms are distributed in a broad region with low filling (Fig. 1.11a). In contrast,
while the confinement is strong, the atoms are entirely filled the centered sites of the lattice
with high density (Fig. 1.11 b and c). Therefore, the confinement potential helps to change
the a normal state configuration to a band insulator configuration as shown in the Fig. 1.11.

RF spectroscopy

The RF method was first introduced in 2003 by the JILA group for 40K [97, 112] and by the
MIT group for 6Li [49]. The idea of the RF spectroscopy is illustrated in the Fig. 1.12 for

Figure 1.12: Illustration of RF spectroscopy for 6 Li. Atoms are prepared
initially in the two hyperfine states |1〉 and |2〉. The RF pulse couples the two
hyperfine states |2〉 and |3〉, therefore it probes only the atoms in the state |2〉.
Fig is Reprinted from Ref. [48]

the Lithium 6. Initially, the mixture is prepared in two hyperfine states |1〉 and |2〉 and the
third state |3〉 is empty. The RF pulse induces the transfer of atoms from state |2〉 to state
|3〉. The transfer rate can be measured in experiment by the number of atoms appearing in
the state |3〉 or the loss of atoms in the state |2〉. Remark that the third state has a short
life-time because of the rapid decay due to the three body collision with state |1〉 and |2〉 [48].
Therefore, in the experiment of the Innsbruck group they measured the loss of atoms in the
state |2〉 instead of atoms appearing in state |3〉.
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Figure 1.13: RF spectroscopy for weakly bound molecules in the fermionic
mixture of 6 Li atoms. Left panel: Schema of the RF spectroscopy. Right panel:
Experimental data of the RF spectrum for BCS phase. Reprinted from Ref. [48]

As an example, we present the experiment of RF spectroscopy on weakly bound molecules
(Fig. 1.13) which is performed in the Innsbruck group [23]. In this experiment, in order to
dissociate the pairing state the RF photon needs to provide an extra energy from the bare
atomic transition frequency. As mentioned in [125], the RF spectroscopy makes a vertical
transition in the momentum-space (with zero transfer momentum) of atoms in the state |2〉
to the state |3〉. If one supposes that the interaction between the third state |3〉 and the
two initial states is negligible, the shift in the RF spectrum can be explained in basing on
the a BCS description: ω − ω0 = ∆2/2µ corresponding to the displacement of the lowest
point in the energy dispersion. Hence, this RF shift does not directly measure the superfluid
order [52, 66]. For the real experimental condition, the this interaction is not negligible.
It was demonstrated that even taking in account the interaction effect, the RF shift is still
proportional to the square of the gap ω − ω0 ∝ ∆2 [13].

Here, we have presented the usual form of the RF spectroscopy which conversely to the
TOF technique gives some access to the frequency dependence of the one-particle spectral
function, but not to its momentum dependence. We note that a novel RF spectroscopy
recently realized in Jin’s group with momentum-resolution. We postpone the detail discussion
on this method in Chapter 2.

1.3.3 Two-particle correlation measurement

Bragg spectroscopy in BEC

The Bragg spectroscopic techniques are quite similar in spirit to what is done in condensed
matter physics to probe the correlation function of local observables such as the local den-
sity or the local spin-density. The Bragg spectroscopy method was first realized by the
MIT group [110, 111] in order to measure the density-density dynamical correlation function
〈ρ(r, t)ρ(r′, t′)〉 of a bosonic system. Later, theoretical studies in Ref. [16, 21] have shown
that polarized light can also allow us to probe the spin-spin response 〈S(r, t)S′(r′, t′)〉 for
fermionic systems. In condensed matter physics, analogous measurements can be done by
light or neutron scattering.

In order to show the main idea of this spectroscopy method, we propose to analyze the
experiment realized by the MIT group [111]. The scheme of the experiment is presented in
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Figure 1.14: Bragg scattering scheme for measuring the density-density cor-
relation function (experiment in MIT group [110]). The figure (a) shows the
schema of the experiment. By using two laser beams with a transfer momentum
q = k1 − k2, they were able to excite a part of the condensate to the excited
phonon modes. The figure (b) and (c) show the the absorption image and the
column density of the initial condensate respectively. The figure (d) and (e)
show the situation after the Bragg spectroscopy. In the absorption image (d),
we find a picture with two parts in which the excited part is shifted to the right
by the transfer momentum during the time-of-flight.

Fig. 1.14. Two laser beams of a transfer momentum q = k1−k2 and of a frequency difference
ω = ω1 − ω2 were used to focus on a Bose Einstein condensate. This frequency difference
was chosen such that ω � ∆ with ∆ the detuning from the atomic resonance. These two
laser beams create a modulated potential Vmod ∝ cos(q.r − ωt) coupling to the atoms via
the dipole interaction. In the second-quantized notation, this interaction is expressed by the
Hamiltonian:

V̂mod =
V

2
[ρ̂†(q)e−iωt + ρ̂†(−q)eiωt]. (1.27)

Here, ρ̂†(q) =
∑

k â
†
k+qâk is the Fourier transform of the atomic density operator at wave

vector q and V depends on the experimental parameters. The linear response of the many-
body system can be estimated by the Fermi golden rule. For the ground-state |g〉 with energy
Eg the excitation rate is given by:

2π
N~

∑

f

|〈f |ρ̂†(q)|g〉|2δ(~ω − Ef + Eg) = 2πω2
RS(q, ω), (1.28)

where the excited states |f〉 have energy Ef and ωR = V/2~. The integration over all the
frequency gives directly the static structure factor (Fourier transform of the density-density
correlation function).

S(q) = 〈g|ρ̂(q)ρ̂†(q)|g〉. (1.29)

The right panel of Fig. 1.14 shows the time of flight image of a condensate undergone a
Bragg scattering. After a long enough time of flight ≈ 70ms, we see a part of condensate is
transferred by a momentum given by Bragg scattering. This transfer momentum splits this
excited part from the initial condensate. By integrating over the intensity of TOF image of the
excited cloud, we obtain the total number of the transfer rate corresponding to the transfer
momentum q. This value is in fact proportional to the imaginary part of the two-particle
response function or particularly the structure factor at zero temperature.
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Shot noise correlations

Shot noise correlation measurement for ultracold atoms has been proposed by Altman et
al. [3] in inspiring the idea of the experiment of Hanbury Brown-Twiss [15]. Later different
groups have realized measurements for various systems such as the Mott insulator state [37],
the superfluid state [47] or tested the quantum properties like the bunching or anti-bunching
for Bose gases and Fermion gases [60].

Figure 1.15: Single shot absorption image and the associated spatial correlation
function. (a) Two-dimensional column density distribution of a Mott insulating
phase. (b) Horizontal section (black line) through the center of the image in (a)
and gaussian fit (red line) to the average over a set of 43 independent images. (c)
Spatial noise correlation function obtained by analyzing the same set of images,
which shows a regular pattern revealing the lattice order of the particles in the
trap. (d) Horizontal profile through the center of the pattern, containing the
peaks separated by integer multiples of lattice spacing. Reprinted from [37].

In a time of flight absorption image, one measures only the spatial distribution after a
certain expansion time t. This distribution reflects the momentum distribution of the initial
cloud of atoms 〈n(r)〉t ≈ (2πm/~t)〈n̂k(r)〉 where the momentum k is related to the position
r after time of flight t by k(r) = mr/~t. However, in the absorption image (Fig. 1.15 a), we
found that the density always fluctuates around some average value. To see that, we compare
the density distribution of a single shot absorption image to the average density taken on a set
of many picture (Fig. 1.15 b). These density fluctuations relate to a higher order correlation
function which characterized by

G(r, r′) = 〈n̂(r)n̂(r′)〉t − 〈n̂(r)〉t〈n̂(r′)〉t. (1.30)

We can relate this correlation to the correlation function of the ground state before ballistic
expansion in momentum space: G(r, r′) ∝ 〈n̂k(r)n̂k(r′)〉 − 〈n̂k(r)〉〈n̂k(r′)〉.

To analyze the fluctuation in experiments, the spatially averaged normalized density-
density correlation function is defined as following

C(d) =
∫
dR〈n̂(R + d/2)n̂(R− d/2)〉t∫
dR〈n̂(R + d/2)〉t〈n̂(R− d/2)〉t

, (1.31)

in which n̂(r) is the column density obtained from a single absorption image. In fact, this
two particles correlation measures the conditional probability of finding two particles at two
positions separated by the vector d = r − r′ over all the positions R = (r + r′)/2. To
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compute the average value 〈.〉, a statistic average has been taken in a set of independently
acquired images. For the Mott phase where the repulsive interaction sets the atomic density
to exactly an integer number of atoms per lattice site, the direct absorption image gives no
interference pattern because of lack of coherence ( Fig. 1.15 a,b). However, an analysis of
the noise correlation gives a very well contrast regular pattern revealing the lattice order of
particles in the trap (Fig. 1.15 c,d).



Chapter 2

Spectroscopy of one-particle
excitations

In this chapter, we address one of the aspects discussed in Chapter 1, namely the probes and the
measurements of physical quantities in ultracold atom systems. We propose and demonstrate
the possibility to use a Raman spectroscopy in order to probe the one particle Green’s function.
Different features of quasiparticles can be revealed from this method. Via some practical
examples, we show also that the imaging of the Fermi surface can be obtained simply by
measuring the Raman spectroscopy rate. The following Fig. 2.1 is an example of the simulated
Fermi surface image for both non-interacting and strongly correlated systems. In the first part
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Figure 2.1: Imaging the Fermi surface of ultracold atoms by Raman spec-
troscopy. The left panels are images of the Fermi surface for a homogeneous
systems without interaction (up) or with strongly correlated (down). The right
panels are images of the Fermi surface in the presence of confined trap.

of the chapter, we discuss the general formalism of the Raman spectroscopy in ultracold atom
system. Next, we exploit different possibilities to measure the Fermi surface and the properties
of one-particle excitations. We further analyze experimental aspects for commonly used atoms
such as Lithium (6Li) and Potassium (40K). At the end, we summarize the first experimental
realization of this spectroscopy by D. S. Jin’s group and compared experimental results with
numerical simulations taking account the trap potential.

19
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2.1 Single particle excitations

We will briefly recall in this section some fundamental conceptions of many-body physics.
The concept of a quasiparticle excitation and the spectral function are essential for a descrip-
tion of the physics at low energy scale [1, 6, 83]. An indispensable experimental method,
angular resolved photoemission spectroscopy (ARPES), for probing these quantities will be
also discussed.

2.1.1 Low energies: Quasiparticle excitations

Most interacting fermion systems have low-energy excitations which are well-described by
"Fermi liquid theory". In this description, the low-energy excitations are built out of quasi-
particles, long-lived (coherent) entities carrying the same quantum numbers than the original
particles. There are three key quantities characterizing the quasiparticle excitations:

• Their dispersion relation, i.e. the energy ξk (measured from the ground-state energy)
necessary to create such an excitation with (quasi-) momentum k. The interacting
system possesses a Fermi surface (FS) defined by the location in momentum space on
which the excitation energy vanishes: ξkF = 0. Close to a given point on the FS, the
quasiparticle energy vanishes linearly as: ξk ∼ vF (kF ) · (k− kF ) + . . . . Here vF is the
local Fermi velocity at that given point of the Fermi surface.

• The spectral weight Zk ≤ 1 carried by these quasiparticle excitations, in comparison to
the total spectral weight (= 1, see above) of all one-particle excited states of arbitrary
energy and fixed momentum.

• Their lifetime Γ−1
k . It is finite away from the Fermi surface, as well as at finite temper-

ature. The quasiparticle lifetime diverges however at T = 0 as k gets close to the Fermi
surface. Within Fermi liquid theory, this happens in a specific manner (for phase-space
reasons), as Γ−1

k ∼ ξ2
k. This insures the overall coherence of the description in terms of

quasiparticles, since their inverse lifetime vanishes faster than their energy.

For a non-interacting system, the notion of quasiparticle excitations coincides exactly with the
particle excitation. In this case, the spectral weight of the quasiparticle is 1 and the lifetime is
infinite. By contrast, in the presence of strong correlations, some of these key quantities can be
very different from the non-interacting system. Typical signatures of strong correlations are
the following effects (not necessarily occurring simultaneously in a given system): i) strongly
renormalized Fermi velocities, as compared to the non interacting (band) value, corresponding
e.g. to a large interaction induced enhancement of the effective mass of the quasiparticles,
ii) a strongly suppressed quasiparticle spectral weight Zk � 1, possibly non-uniform along
the Fermi surface, iii) short quasiparticle lifetimes. These strong deviations from the non-
interacting system can sometimes be considerable: the "heavy fermion" materials for example
(rare-earth compounds) have quasiparticle effective masses which are several hundred times
bigger than the mass from band theory, and in spite of this are mostly well described by Fermi
liquid theory.

2.1.2 Green’s function and spectral function

The Green’s function is defined as the response function to the one-particle excitation while
the spectral function is a function characterizing the decomposition of one single-particle
excitation into the spectrum of all excited states. The coherent part in this decomposition
characterizes the nature of quasiparticle excitations discussed above. For simplification, we
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define these quantities at zero temperature. Assuming that at T = 0, the many-body system
is in the ground state |φN0 〉 of N particles, the Green’s function is defined as

G(r, t; r′, t′) ≡ −i〈φN0 |Tc(r, t)c†(r′, t′)|φN0 〉, (2.1)

in which the T -product is the time order product1. For a time-independent Hamiltonian, the
Green’s function depends on the time difference t − t′ only. Remark that when t − t′ = 0
the Green’s function is simply the single particle density matrix. Assuming the translation
invariance, the Green’s function depends only on the relative distance r − r′. Therefore the
Green function can be reduced to simple form G(r, t;~0, 0) = G(r, t).

The physical interpretation of the Green’s function is related directly to the concept of
quasiparticles. Let us consider an initial system of N particles in the ground state |φN0 〉 with
energy E0

N . The number of particles is controlled by the chemical potential µ. At the instant
t = 0, we extract a particle with momentum k from the initial system. The new wave function
describing the N-1 particles system is |φ(t = 0)〉 = ck|φ0〉. In general, this wave function is
not an eigenstate of the Hamiltonian. At time t, this state evolves to |φ(t)〉 = e−iĤtck|φ0〉
which is a linear combination of the whole excitation spectrum of N-1 particles. In order to
observe the correlation of the single excitation with the initial N particles, we compare this
wave function to the one describing N-1 particles in the ground state after having removed one
particle at time t: |φe〉 = cke

−iĤt|φ0〉 = e−i(E
0
N−µN)tck|φ0〉. A natural way to compare these

two wave functions is to compute their scalar product (the overlap of these waves functions).
The overlap is nothing else than the Green’s function defined above at time t > 0

〈φe|φ(t)〉 = 〈φN0 |eiĤtc†ke−iĤtck|φN0 〉 = iG(k,−t). (2.2)

For a non-interacting system, the state with a less particle is also an eigenstate of the total
Hamiltonian with energy E∗N−1. The corresponding wave function evolves coherently into
the same state and only changes its phase with time |φ(t)〉 = e−i[E

∗
N−1−µ(N−1)]tck|φN0 〉 and

does not decay to any other excited states. The Green’s function is thus a simple phase
e−i(E

∗
N−1−E

0
N+µ)t.

For a system with interaction, the wave function of the N − 1 particles after a time t is a
decomposition on all the eigenstates |φN−1

α 〉 of the N − 1 particles. In order to evaluate the
expression for the Green’s function, we take a decomposition of the initial state ck|φN0 〉 onto
the basis of system (N-1)-particles with all the eigenstate |φN−1

α 〉. The probability to find the
system at the excited state |φN−1

α 〉 of energy EαN−1 − (N − 1)µ is |〈φ0|c†k|φN−1
α 〉|2. We define

then the spectral function as a measurement of this weight over the whole range of energy

A(k, ω) =
∑

α

|〈φN0 |c†k|φN−1
α 〉|2δ(ω + µ+ EαN−1 − E0

N ). (2.3)

The frequency contributions are given by ω = E0
N−EαN−1−µ which is negative. Remark that

in the opposite case where we inject one particle, the new state has a decomposition on the
basis {|φN+1

β 〉} of system with N+1 particles leading to the frequency ω = EαN+1−E0
N−µ > 0

(the energy of the excitation measured from the ground state of N particle). Our state |φ(t)〉
can be now written in this spectral decomposition

|φ(t)〉 =
∑

α

〈φN−1
α |ck|φN0 〉 〉 × e−i[E

α
N−1−µ(N−1)]t|φN−1

α . (2.4)

Therefore, the overlap of two wave functions now is
∑

α e
−i(EαN−1−E

0
N+µ)t|〈φN0 |c†k|φN−1

α 〉|2.
This quantity is no longer a simple phase and decreases in time. At t = 0, there is no phase

1The time order product is defined as Tc(r, t)c†(r′, t′) ≡ θ(t− t′)c(r, t)c†(r′, t′)− θ(t′ − t)c†(r′, t′)c(r, t).
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Figure 2.2: Spectral function of an interacting system that measures the weight
in a decomposition on a basis of "N-1" particles. Here, the peak centered at
energy ξk represents the quasiparticle coherent excitation with the lifetime Γ−1

k

while the broad part represents the incoherent excitation part. The Fermi energy
EF is the last level up to what the fermions are filled.

difference between the contributed terms in the sum, then the overlap is 1. When t is small,
the difference of phase between the terms is small and the amplitude of the overlap decreases.
At long time, all the phases can become incoherent and the sum can tend to zero. The rate
at which phase coherence is lost depends on the distribution of the spectral weight A(k, ω).
If the spectral weight is very localized around one excitation level with a width Γk, so the
typical time after which we loose the coherence (or the particle character) is τ = Γ−1

k . This
characteristic time scale is called the time of life of the excitation2. Below this time scale,
this excitation is well-defined as a quasiparticle excitation.

The quasiparticle description applies only at low energy, below some characteristic energy
(and temperature) scale T ∗F , the quasiparticle coherence scale. Close to the Fermi surface,
the one-particle spectral function displays a clear separation of energy scales, with a sharp co-
herent peak carrying spectral weight Zk corresponding to quasiparticles (a peak well-resolved
in energy means long-lived excitations), and an "incoherent" background carrying spectral
weight 1− Zk. A convenient form to have in mind (Fig. 2.2) is

A(k, ω) ' Zk
Γk

π[(ω − ξk)2 + Γ2
k]

+Ainc(k, ω). (2.5)

Hence, measuring the spectral function, and most notably the evolution of the quasiparticle
peak as the momentum is swept through the Fermi surface, allows one to probe the key
properties of the quasiparticle excitations: their dispersion (position of the peak), lifetime
(width of the peak) and spectral weight (normalized to the incoherent background, when
possible), as well of course as the location of the Fermi surface of the interacting system in
the Brillouin zone.

2.1.3 Measuring spectral function by photoemission in solid state physics

In condensed matter physics, angle-resolved photoemission spectroscopy (ARPES) provides
a direct probe of the one-particle spectral function (for a pedagogical introduction, see [27]).
This technique has played a key role in revealing the highly unconventional nature of single-
particle excitations in cuprate superconductors [28]. It consists in measuring the energy and

2The spectral function is a δ-function, so Γk = 0 and the time of life of particle is infinite. At long time,
there is no lost of coherence and the Green’s function has no decay.



2.1 Single particle excitations 23

momentum of electrons emitted from the solid exposing to an incident photon beam (Fig. 2.3).
In the simplest approximation, the emitted intensity is directly proportional to the single-
electron spectral function (multiplied by the Fermi function and by some matrix elements).
We can describe the system at the initial state and the final state as follows:

Figure 2.3: Scheme of the photoemission process in which a photon hν is sent
to the sample. The photon excites the system and extract an electron out off
the system. The out-going electron is detected with angle resolved (ϕ, ϑ) by the
electron analyzer. Reprinted from Ref. [27].

• Initial state made of photon with energy ~ωp, momentum p and the solid system with
energy ENi , total momentum ~0

• Final state made of photoelectron with energy Ekin, momentum K and the solid system
with energy EN−1

f and total momentum −k. In order to kick the electron out of the
system, the incident photon needs to provide an energy to overcome the work of the
surface φ.

The conservation of energy is equivalent to the resonance condition of the photoemission
process

ENi + ~ωp = Ekin + φ+ EN−1
f , (2.6)

which means that in the spectral function we measure the energy defined by

~ω = ENi − EN−1
f = Ekin + φ− ~ωp. (2.7)

For the conservation law in momentum, only the momentum in the direction parallel to
the surface of the sample is conserved: K‖ = k‖ = ~−1

√
2mEkin sin θ. The perpendicular

component is derived by the energy conservation: k⊥ = ~−1
√

2m(Ekin cos2 θ + V0)

Non-interacting electron gases

The ARPES spectrum measures all the excitations of negative energy because the out-going
electron was initially lying below the Fermi level. For the simple case of a non-interacting
gas, Fig. 2.4 (left side) shows the region in the plan (k, E) with non-zero signal. All the single
particle excitations are eigenstate of the free Hamiltonian. Therefore the spectral function
A(k, E) is a δ-peak (Fig. 2.4 right side).
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Figure 2.4: Example of a non-interacting gas. Left panel (down) shows the
intensity of emitted ARPES signal in the plane of (E,k) near the Fermi surface
while in the upper panel, we see a sharp jump with amplitude Z = 1 in the den-
sity distribution. Right panel represents the spectral functions of quasiparticle
excitations of different energies. They consist of a well-defined delta-peak with
infinite lifetime. Reprinted from Ref. [27].

Figure 2.5: Same as Fig. 2.4 for a Fermi liquid. The left panel shows the
spectral function in which the coherent part is the quasiparticle excitation with
the renormalization of spectral weigh Zk < 1 . The jump present in the mo-
mentum distribution is no longer 1 (upper panel on the right). The lower panel
on the right shows the experimental data of the photoemission. The intensity
of out-going atoms measured by the electron analyzer is plotted versus the their
kinetic energy in the selected direction 0− 0. Reprinted from Ref. [27].

Interacting gases: Fermi liquid quasiparticles

The Fig. 2.5 shows another system which is described by the Fermi liquid theory. As discussed
in the last section, in the spectral function we find a coherent part at low energy which looks
like an one-particle excitation in the non-interacting gas but with a smaller weight. The
remaining part of the spectral weight is transferred to the incoherent part at high energy.
The closer we approach the Fermi level (Fermi surface) the better the quasiparticle is defined.

2.2 Measurement of one particle excitation by Raman spec-
troscopy in ultracold atoms

Similarly to the ARPES measurement described above, we propose here to use stimulated
Raman spectroscopy [30] as a probe of one-particle excitations in a two-component mixture of
ultracold fermionic atoms. By this measurement, the frequency and momentum dependence
of the spectral function can be observed.
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2.2.1 Raman spectroscopy

Stimulated Raman spectroscopy has been considered previously in the context of cold atomic
gases, both as an out-coupling technique to produce an atom laser [51] and as a measurement
technique for bosons [59, 81, 84] and fermions [31, 118]. In the Raman process of Fig. 2.6,
atoms are transferred from α into another internal state β 6= α, α′, through an intermediate
excited state, using two laser beams of wave-vectors k1,k2 and frequencies ω1,2. If ω1,2 is
sufficiently far from single photon resonance to the excited state (i.e. ω1, ω2 not close to
εβ − εα), we can neglect spontaneous emission. The atom-laser interaction is described by

Figure 2.6: Raman process: transfer from an internal state α to another in-
ternal state β through an excited state γ. The momentum-resolved spectral
function is schematized, consisting of a quasiparticle peak and an incoherent
background.

the interaction between the dipole moment of atoms and the electromagnetic field of laser
beams: Vdip = −D.E(r). The dipole moment matrix and the laser field are defined as

D = dαγ |γ〉〈α|+ dβγ |γ〉〈β|+ h.c, E(r) = i
∑

λ

√
~ωλ/2ε0L3 ε (aλeikλr − a†λe−ikλr).

Here, the laser field couple these two hyperfine states |α〉, |β〉 of the mixture to the continuum
of state |γ〉 by the matrix element dαγ , dβγ . a

†
λ is the creation operator of the photon mode

λ (λ = 1, 2) with momentum k. In this description, L3 is just a mathematical object chosen
as the volume of the quantized box in the real space. The continuum limit is obtained by
taking the limit L → ∞. Later, we’ll show that the only important quantity is the density
of photon ni = Ni/L

3. ε0 is the dielectric constant of the vacuum. Using the rotating field
approximation and eliminating the intermediate state |γ〉, thus we obtain a simple form of
the interaction potential

V =
C

L3
|α〉〈β|a†1a2e

i(k1−k2).~r + h.c. (2.8)

Here, C is a constant depending on the dipole matrix elements d∗γα, dβγ and the mode ωλ. In
the second quantization, this potential can be expressed as a summation over the real space of
the field operator of creation and annihilation of an atom ψ†α,β , ψα,β . Therefore, the coupling
between these two modes ω1, ω2 with the atoms fields ψα,β is described by the potential

V̂ =
C

L3

∫
d3rψ†α(r)ψβ(r)ei(k2−k1).ra†1a2 + h.c. (2.9)
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Let us now consider a system of interacting cold atoms initially prepared in the internal state
|α〉, |α′〉. The interaction strength is controlled by the two-body s-wave scattering length
via the Feshbach resonance. The Raman scattering transfers a fraction of the initial atoms
into the third internal state |β〉 conserving the momentum and energy of the whole system
"atom+light". The total transfer rate to state β can be calculated [11, 59, 81] using the Fermi
golden rule

R =
2π
~
∑

f

|〈f |V̂ |i〉|2δ(Ef − Ei) =
1
~

∫ ∞

−∞
〈i|Ṽ (t)Ṽ (0)|i〉dt,

where Ṽ (t) = eiĤt/~V̂ e−iĤt/~ is the time-dependent Heisenberg representation of the interac-
tion. H is the total Hamiltonian. In order to decouple the correlation between the two states
α and β, we assume that no atoms are initially present in β and that the scattered atoms in β
do not interact with the atoms in the initial α, α′ states. We discuss later on the appropriate
experimental conditions. Under this assumption the general Hamiltonian reads

Ĥ = Ĥα + Ĥβ (2.10)

Here Ĥα is the one which describes the interacting system of two component fermionic mixture
in the initial states |α〉, |α′〉. The time-evolution operator can be decoupled as eiĤt/~ =
eiĤαt/~ × eiĤβt/~. The Hamiltonian Ĥβ describes the atoms in the internal state |β〉 which
undergo an external potential reads

Ĥβ =
∫

d3rεβn̂β(r) +
~2

2M

∫
d3r|∇ψβ|2 +

∫
d3rVβ(r)n̂β(r). (2.11)

Here, εβ is the internal energy of the internal β-state. The potential Vβ(r) consist of two part:
i) Vtrap the confined trap potential (magnetic or optic trap), ii) Vlat the potential of optical
lattice. By convention, the energy of the hyperfine state|α〉 is fixed to zero (εα = 0).

Let us calculate the term 〈i|Ṽ (t)Ṽ (0)|i〉 which appears in the transferred rate as given by
Fermi’s golden rule. Under the initial conditions, we start with a "atom+light" state with
Nα atom in the internal state α, no atom in the state β and the laser lights populated in
two mode ω1, ω2 with the populations N1, N2: |i〉 = |Nα, 0β, N1, N2〉. This quantity can be
calculated by applying the different operators for atoms and light to respected parts of the
initial state |i〉 = |Nα, 0β, N1, N2〉

〈i|Ṽ (t)Ṽ (0)|i〉 =
|C|2
L6

N1(N2 + 1)
∫

d3rd3r′ei(Ωt−q.∆r)g(r, r′; t)〈Nα|ψ†α(r, t)ψα(r′, 0)|Nα〉.
(2.12)

Here, we set ∆r = r−r′, q = k1−k2 the momentum difference of the two laser modes. The free
propagator for β-state atoms in vacuum is to be taken: gβ(r, r′; t) ≡ 〈0β|ψβ(r, t)ψ†β(r′, 0)|0β〉.
We define the frequency Ω as

Ω = ω1 − ω2 + µ, (2.13)

with µ is the chemical potential used to fix initial total number of the mixture in α and α′

states. In this notation, we absorb µ into the definition of frequency in Raman rate. Defining
the density of photons in two modes ni = Ni/L

3 and taking the continue limit, the expression
of the Raman transfer rate finally reads

R(q,Ω) =
|C|2n1n2

~

∫ ∞

−∞
dt

∫
d3rd3r′ei(Ωt−q.∆r)g(r, r′; t)〈Nα|ψ†α(r, t)ψα(r′, 0)|Nα〉. (2.14)
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The correlation function entering (Eq. 2.14) is proportional to the one-particle Green’s func-
tion 〈Nα|ψ†α(r, t)ψα(r′, 0)|Nα〉 = −iG<α (r′, r,−t) of the strongly interacting Fermi system.
The superscript < indicates that ψ† is always to the left of ψ. Operators are evolved in
the grand-canonical ensemble [1, 83]. The formalism obtained for Raman spectroscopy until
now is general and applicable for any system. The Raman transfer rate contains information
about the one-particle Green’s function of the interacting atoms in α-states. However, it is a
complicate expression which concerns a convolution of the free propagator g(r, r′; t) of atoms
in the β-state with the Green’s function. From Eq. 2.14, it is clear that a full determination
of the one-particle Green’s function requires measuring the rate R(q,Ω) for a large enough
set of wavevectors q and frequency shifts Ω such that an inverse Fourier transform can be
performed. Division by the known expression of gβ would then yield the Green’s function.
This seems an ambitious task however. We rather examine whether useful information can be
extracted directly from the measured Raman intensity R(q,Ω). In the next sections, we dis-
cuss two possibilities to probe directly the properties of one-particle excitations from Raman
rate.

Ultracold atomic systems are always obtained within a confined potential (magnetic or
optical trap). Moreover, if we have an optical lattice, the gaussian profile of the laser beams
will induce also an additional harmonic potential. We propose to study first the two possi-
bilities of measurement in the context of the homogeneous system then address the case with
presence of the confined potential by the local density approximation (LDA).

2.2.2 Measurement principles for homogeneous system

In a homogeneous system, we can exploit the translation invariance in order to simplify the
expression of Raman transfer rate. In this homogeneous case, the translation invariance is
conserved thus we can effectuate Fourier transform into the momentum space. The expres-
sion 2.14 can be written as

R(q,Ω) = i
|C|2n1n2

~

∫
dt

∫
d3rd3r′ei[Ωt−q.(r−r′)]g(r− r′, t)G<α (r′, r,−t)

=
|C|2n1n2

(2π)3~

∫
d3k nF (εβk − Ω)A(εβk − Ω,k− q).

For the atoms in the α-state, the Green’s function has been expressed in terms of the spectral
function and the Fermi factor nF as [1, 83]: G<α (k, ω) = i nF (ω)A(k, ω). As usual in the solid
state literature, single-particle energies ξ0

k = εkα− µ for the α state (as well as the frequency
ω) are here measured from the chemical potential, i.e. the Fermi energy, at T = 0. As
atoms in the β-state do not interact with the rest of the system, their non-interaction Green’s
function reads: Gβ(k, t) = −i[θ(εβk)θ(t)e−iεβkt − θ(−εβk)θ(−t)eiεβkt] thus the propagator
g(r, t) in (Eq. 2.14) reads

g(r, t) =
∫

d3k
(2π)3

ei(k.r−εβkt). (2.15)

Hence, the Raman spectroscopy gives access to the spectral function A(ω,p) in which the
energy of single particle excitation and the momentum are measured by ω = εβk−Ω, p = k−q.
Moreover, this expression the appearance of the Fermi-Dirac factor fixes a cut-off in energy
or a threshold of measurable signal as we discuss later in more detail. In the later of this
section, we will discuss two possible measurements which help to access directly to the one
particle correlation function.
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Conservation laws and spectral function

Let us now discuss the conservation laws present the Raman scattering process. In this
measurement, our system is prepared in the initial state with two lasers fields ω1 and ω2 and
a mixture of ultracold atoms prepared in two hyperfine states α〉 and α′〉. In the final state,
the system has one less α-atom and one more atom in the third hyperfine state |β〉.

• Initial state made of : i) an ensemble of Nα atoms with energy ENαi , total momentum
~0, ii) N1 photons of frequency ω1 and momentum k1, ii) N2 photons of frequency ω2

with momentum k2.

• Final state made of: i) an ensemble ofNα−1 atoms with energy ENα−1
f , total momentum

−p, ii) one atom in the internal state β with energy εβk, momentum k, iii) N1 − 1
photons ω1, k1, iv)N2 + 1 photon ω2, k2.

The conservation of energy gives us the relation

ENαi +N1~ω1 +N2~ω2 = ENα−1
f + εβk + (N1 − 1)~ω1 + (N2 + 1)~ω2. (2.16)

The energy measured in the spectral function is then defined by

~ω = ENαi − ENα−1
f − µ = εβk − Ω, (2.17)

where Ω = ω1−ω2 + µ is introduced in order to shift the energy reference to the Fermi level.
For the conservation law of momentum, we have the total momentum is conserved

~0 = −p + k + k2 − k1. (2.18)

Let us define q = k1−k2, so the momentum measured in the spectral function is: p = k−q.
The present situation is more favorable than the photoemission case because we do not have
the surface effect, which in ARPES prevents momentum conservation in the perpendicular
direction.

Measurement of total Raman rate by varying q

Let us now consider the first experimental scheme which allows to probe the physical prop-
erties of low energy excitations near the Fermi surface. Assuming that the out-going atoms
stay in the lattice, therefore the energy dispersion reads εβk = εβ − 2tβ

∑
µ cos kµ.

Here, we briefly show that it is possible to exploit directly the image of the Fermi sur-
face and the information about the quasiparticle excitation near the Fermi surface from the
measurement of Raman transfers rate near the threshold of extinction of signal. In the next
sections 2.3 and 2.4, we discuss in more detailed this measurement via concrete examples.
As shown in the Fig. 2.7, when the frequency difference ω1 − ω2 is small than the distance
εβ − µ from the lowest level in the β-branch to the Fermi level of the many-body system in
α-state, there is no measurable Raman signal. As far as the frequency difference becomes
greater than this threshold, we start to have the first signal which measures the excitation
around the Fermi surface. Fixing the probed frequency around this threshold Ω ≈ ΩT = εβ
and making a q-resolved measurement, the topography of the Fermi surface can be observed.
We can vary the module |q| in the interval [0, 2|k0|] by controlling the direction of the two
laser beams. The difference of the frequency can be changed in the order of the band width
of the spectral density of the system expected to be measured.
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Figure 2.7: Measurement at the threshold frequency of extinction. Atoms
initially prepared in the α-states are filled up to Fermi momentum kF corre-
sponding to the Fermi level EF = µ. We perform the Raman spectroscopy with
resolved transfer momentum q and a fixed Raman frequency near the threshold
of extinction ω1 − ω2 + µ ≈ εβ . This process brings atoms close to the Fermi
level of the α-branch to the lowest level of the β-branch.

Figure 2.8: Example of selective time of fight imaging for the β-state. In this
experiment, we first apply a vertical Raman transition with q = 0 (left panel)
then take the selective time of flight absorption image of the expanding cloud of
β-atoms (right panel).

Measurement at fixed laser momentum by time of flight imaging

In experiment, we can envisage to measure the momentum distribution of the out-going atoms
by taking a selective time of flight image (TOF). The scheme of the experiment is illustrated
in the Fig. 2.8. We propose to do a Raman spectroscopy with a fixed momentum difference of
the probed lasers q =const and to take a TOF picture of the expanding atoms in the β-state.
Repeating the experiment for different frequencies, we are able to make a scan in frequency.
From the TOF momentum distribution, we can extract the Raman rate as a function of
the momentum k of the scattered atoms. The Raman rate measured in each direction is
proportional to the intensity of the TOF image. If the particles in β-state are free, their
energy is determined by their momentum, εβk = εβ + ~2k2/2M (i.e they do not see the
trap or optical lattice). In this case, the rate of transition to internal state |β〉 is measured
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selectively in the momentum |kβ〉 (i.e. this is the momentum of the atoms in the β-state).
With a fixed value of q, we obtain the Raman rate in the direction of the momentum k of
out-going atoms

Rq(k,Ω) =
|C|2n1n2

~
nF (εβk − Ω)A(εβk − Ω,k− q). (2.19)

Here, we remind that the Raman frequency is defined as Ω = ω1 − ω2 + µ. The described
measurement is very similar to ARPES. In addition, we do not encounter some well-known
problem in ARPES like non-conservation of total momentum and the surface effect.

Another way to realize this time of flight measurement is RF spectroscopy. This spec-
troscopy method is equivalent with fixed momentum q = 0 Raman spectroscopy. In order to
make the transition to the third internal state, we can apply a RF pulse which couples di-
rectly the α-state to the β-state. The RF field has a very long wave length so the momentum
transfer is negligible. The RF field is essentially constant over the size of the sample, thus
the entire system is simultaneously addressed by the same coupling.

Summary

Finally, we would like to summarize in Table 2.1 the three described methods for measuring
the one-particle excitations in the following table. By exploring directly the experimental
data of Raman spectroscopy, we can have access to the properties of quasiparticle excitations
at low energy and also the image of the Fermi surface. In comparing to ARPES used in solid
state physics, the Raman spectroscopy has some more advantages. It permits first to probe
precisely excitations in different regions. The threshold measurement for excitation near Fermi
surface while the TOF measures all excitation deep inside the Fermi sea. Secondly, the cold
atoms system is more proper then we do not encounter any surface problem as in ARPES.
We demonstrated also that there is different possibilities to effectuate the TOF measurement
such as Raman spectroscopy or RF spectroscopy.

ARPES Raman spectroscopy TOF measurement
(photoemission) at threshold of extinction (Raman at fixed q or RF)

One photon process Two photons process 2 photon (Raman), 1 photon(RF)
Photon: ω,p Two photons: ω1 − ω2, q = p1 − p2 One or two photons: ω, q(q = 0)
Surface work φ Zeeman shift εβ Zeeman shift εβ

Scattered electron: k, εk Scattered atom: k ≈ 0, εβk ≈ 0 Scattered atom: k, εβk
k momentum resolved q momentum resolved k momentum resolved
Angular resolved signal Total signal Angular resolved signal

Table 2.1: Summary of the different methods for measuring the single particle
excitations.

2.3 Illustration on non-interacting systems

We have discussed so far different possibilities to probe a many-body system by the Raman
spectroscopy. Let us now demonstrate the feasibility of the proposed measurement via some
examples. The first case we would like to discuss is the system of non-interacting ultracold
fermions in optical lattices. If we have the translation invariance, then momentum k is a good
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quantum number. At zero temperature T = 0, the Fermi function nF (ω) becomes a θ(−ω)
function. Due to the Pauli principle, the fermionic particles fill all the one-particle states in
the momentum space up to the Fermi energy EF . The filling up to the last energy level EF
form a Fermi surface.

We now discuss in this section the measurement at the extinction threshold with the q-
resolved method. The second method by time of flight imaging will be addressed later more
in detail within the section 2.7. The spectral function of a non-interacting system is simply a
Dirac distribution A(k, ω) = δ(ω− ξk) (~ is considered as unit). Let us insert this expression
into the Raman transferred rate (Eq. 2.14) and change the variable k→ k + q, we have

R(q,Ω) =
|C|2n1n2

(2π)3~

∫
d3k nF (εβk+q − Ω)δ(εβk+q − Ω− ξk). (2.20)

In this expression, we see that the total Raman rate is the sum over the one-particle excitation
state of energy ξk = εβk+q − Ω which is inside the Fermi surface εβk+q − Ω < 0 (included
in the Fermi-Dirac factor). In order to evaluate an integral of the Dirac function, we need to
solve the following equation to get its poles ki(q,Ω)

f(k) = εβ(k + q)− Ω− ξ(k) = 0. (2.21)

We use the following property of the Dirac function: δ(g(x)) =
∑

i δ(x − xi)/|g′(xi)|. Thus
the Raman rate has an analytical form

R(q,Ω) =
|C|2n1n2

(2π)3~
∑

i

θ(Ω− εβ(ki + q))
f ′(ki)

. (2.22)

From this equation, we can conclude that when we look at the intensity of R(q,Ω) there is
some region in the (q,Ω)-plane where no signal can be measured. In fact, the curve which
limit this zone gives us the direct access to the Fermi surface. We find that the zone without
signal given by zero point of the argument in the Heaviside function Ω−εβ(ki+q) = 0 where
ki is the solution of Eq. 2.21. These two conditions give the wave-vector are: i)ξ(k) = 0 and
ii) Ω − εβ(k + q) = 0. The first equation gives us the solution kF . Replacing it into the
second one, we have the following relation which determine the vanishing of the signal in the
measurement of R(q,Ω).

Ω− εβ(kF + q) = 0. (2.23)

We illustrate the behavior in a 1D or 2D systems assuming all hyperfine states to be trapped
in an optical lattice.

1D system in a optical lattice

In a one dimensional system, the Fermi surface consists of just two value ±kF . Let us take
εβ(k) = εβ − 2tβ cos k be the energy dispersion for the β-atoms in the optical lattice and
ξ(k) = −2t cos k − µ be the one for α-atoms. The condition for vanishing of the signal
Eq. 2.23 becomes

Ω + 2tβ cos(±kF + q) = 0. (2.24)

Therefore, the signal vanishes for q = ±kF and Ω = εβ − 2tβ . This measurement gives direct
access to the Fermi points of a one dimension system.
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2D gas in an optical lattice

In a 2D system, the Fermi surface which is determines by kF is supposed in the form of curve
in a two dimensional plot. The out-going atom is trapped in the optical lattice. In this case,
we have εβ(k) = −2tβ(cos kx + cos ky) and ξ(k) = −2t(cos kx + cos ky) − µ. Therefore, the
condition of vanishing of the signal Eq. 2.23 becomes

Ω + 2tβ
(

cos(kFx + qx) + cos(kFy + qy)
)

= 0. (2.25)

When Ω = 0 we have q = −kF , so the measurement of the signal with respect to q give us
the information of the Fermi surface.
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Figure 2.9: Intensity plots of the Raman signal on the plane (qx, qy) for 2D
non-interacting fermions in optical lattice. Left panel is for the case with half-
filling. Right panel is for the system with density nα = 0.22. The non-vanishing
zone gives the form of the Fermi surface with the width of the order

√
2m∆Ω.

Here ∆Ω is chosen close to the threshold ∆Ω ≈ 0.01t.

• 2D half-filling Fermi surface
Let us consider the case where atoms in the internal state |β〉 are free, and the system
of atoms in the internal state |α〉 is trapped in 2D optical lattice. The system of cold
atoms has the average filling of one particle per site. In this example, we take a mea-
surement with ∆Ω fixed at value 0.01t close to the threshold of extinction. The width
of the quasiparticle peak is homogeneous Γ = 0.4t. The right panel on Fig. 2.9 shows
the measurable Raman signal whose maximal value is located at the Fermi surface. As
the the system at half-filling has no interaction, then the Fermi surface has the square
form and coincides to the half Brillouin zone.

• 2D hole-doped Fermi surface
The second case that we would like to check is the Fermi surface of the system of cold
atom in 2D optical lattice with hole-doped (less than one atom per site). The result
presented in Fig. 2.9 left panel is calculated with ∆Ω = 0.01t and a homogeneous width
of the quasiparticle peak Γ = 0.4t. The chemical potential is about µ = −1.0t. The
non-zero Raman signal form a Fermi surface inside the half Brillouin zone.

Conclusion In the experience, we expect to observe the image of the Fermi surface by
measuring the Raman rate resolvedly in transfer momentum for a fixed frequency close to
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the threshold of extinction. This measurement requires to be repeated for many value of q,
therefore it is more convenient to realize the experiment in a chosen direction.

2.4 More exotic many-body states: towards the feature of cuprates

We consider now some more sophisticated models in solid state physics where the strong
correlation introduces many new effects. In the case with moderate interaction (U is smaller
than the kinetic energy scale) the Fermi liquid description of quasiparticle is still valid. In
contrast, when the interaction becomes comparable to the kinetic energy scale, many fasci-
nating effects occur such as the Mott insulator-metal transition, or high Tc superconductivity.
In the following, we discuss the two possible measurements described above in the context of
a system in a normal phase with a pseudogap. Very interesting structures of Fermi surface
such as the arc form or the formation of pockets can be also observed within this spectroscopy.

2.4.1 Spectroscopy for strong interacting systems

As described in the section 2.1, for an interacting system the Green’s function or spectral
function can be separated in two parts. The first one consists of a quasiparticle peak (coherent
part) with the life-time Γ−1

k and a spectral weight Zk < 1. The second part consists of the
broaden part of the spectral describing the incoherent excitations. Therefore, the spectral
function and the Green function’s function have the following representations

A(k, ω) =
Zk

π

Γk

(ω − ξk)2 + Γ2
k

+Ainc(k, ω). (2.26)

G(k, ω) =
Zk

ω − ξk + iΓk
+Ginc(~k, ω). (2.27)

Here, Ainc(k, ω) (Ginc(k, ω)) is the incoherent part of the spectral function (Green’s function).
Other quantities like Zk, ξk and Γk can be obtained by the self-energy Σ(k, ω)

Zk = (1− ∂Σ′/∂ω)−1 ξk = Zk(εk − µ) Γk = Zk|Σ′′|.

For the simplification of calculation, we consider the case where Zk = 1, so we have a quasi-
particle with the life-time Γ−1

k . Let us study now the case of a system in two dimension
(generalization for 3D case is straight forward). As we see in the last simple cases, the fre-
quency ∆ω useful to probe the Fermi surface is the one close to the minimum energy of
the out-going atom. So we propose to measure R(q,Ω) with Ω ≈ min εβ(k). The general
formulation for Rq(k,Ω) is

Rq(k,Ω) =
2|C|2n1n2

(2π)d+1~
nF (εβ(k)− Ω)

Γk−q

[εβ(k)− Ω− ξ(k− q)]2 + Γ2
k−q

. (2.28)

Threshold of extinction measurement

We can develop the energy of the atom in the internal state β around its minimum point
k = ~0. The energy dispersion for atoms in β-state read εβ(k) = εmin + k2/2M in which
εmin is the lowest energy level corresponding to momentum k = ~0 and M is the effective
mass of β-atoms in near the lowest energy. At zero temperature the Fermi-Dirac distribution
becomes a cut-off for the momentum in the k-integral. In evaluating the non-zero domain of
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this function, we obtain the boundary for the integral. The integral will be taken over the
disk ‖k‖ ≤

√
2M(Ω− εmin) =

√
2M∆Ω

R(q,Ω) =
2|C|2n1n2

(2π)d+1~

∫

‖k‖≤
√

2M∆Ω
ddk

Γk−q

[εβ(k)− Ω− ξ(k− q)]2 + Γ2
k−q

. (2.29)

From the boundary of the integral, we see that whenever Ω < ΩT = mink εβk, there is no
Raman signal. This can be explained that in order to obtain the Raman signal, we need to
probe the system with a frequency larger than the gap from the Fermi level to the lowest energy
of the β-state. We propose to turn the Raman frequency around this threshold (∆Ω = Ω−ΩT

small enough) and measure the signal. In this case we can evaluate the integral simply by
the value of the spectral function at the point k = ~0. Then we have

R(q,Ω) =
|C|2n1n2

(2π)d~
2M∆ΩΓ−q

[∆Ω + ξ(−q)]2 + Γ2
−q

. (2.30)

The intensity of the signal measured is a Lorentz peak, which is situated at ∆Ω + ξ(q) = 0.
Measuring ∆Ω really small, this peak determines the Fermi surface. Let us do an approxi-
mation for ξ(q) near Fermi level: ξ(q) = VF .(q− qF ). Here VF is the Fermi velocity which
is in the normal direction of the Fermi surface. If we look at the distribution of intensity one
direction kF (which means q ‖ kF ), thus the width of the intensity peak Γs can be obtained
like: Γs = Γq/‖VF ‖ cosϑ where ϑ is the angle between VF and kF . Otherwise, if we consider
the distribution of intensity with δq = q − kF in the direction of VF (the normal direction
of the Fermi surface), then we have the width of the intensity peak in k-space Γs = Γq/VF .

In the case where we can not reach the region where ∆Ω is small enough (because of the
limit of the experimental resolution or two small number of atom excited to the β-state),
we must evaluate the integral over a small disk ‖k‖ <

√
2M∆Ω. In order to evaluate the

broadness comes this effect, we suppose that Γk is uniform Γk = Γ and develop ξ(q − k)
around kF

ξ(q− k) = VF .(q− k− kF ). (2.31)

Let us change this integral to the one over energy scale. We pose E = k2/2M + VF .k−∆Ω,
and define the density of state (DOS) with respect to this energy dispersion

D(E) =
1

(2π)d

∫

‖k‖<
√

2M∆Ω
ddk δ(E − k2

2M
−VF .k + ∆Ω). (2.32)

In the energy variable representation, the Raman spectroscopy rate reads

R(−q,Ω) =
|C|2n1n2

π~

∫
dE

D(E)Γ
[E −VF .(q− kF )]2 + Γ2

. (2.33)

Let us estimate the region where we can measure non-zero signal of Raman spectroscopy. The
boundary of the domain where D(E) is non-zero is determined by the equation

E − k2

2M
+ VF .k + ∆Ω = 0.

Thus for all value k belong to the disk ‖k‖ <
√

2M∆Ω, the function D(E) is non-zero

MVF −
√

2M∆Ω <
√

2M(E + ∆Ω) + (MVF )2 < MVF +
√

2M∆Ω, (2.34)

which gives us the boundary of integral: −VF
√

2M∆Ω < E < VF
√

2M∆Ω.
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In combining with the broadness of the Raman signal due to the quasiparticle life-time,
we can determine the whole condition for region where the signal vanishes

‖VF .(q− kF )‖ > VF
√

2M∆Ω + ΓkF . (2.35)

For one dimensional system in optical lattice, this result leads to the estimation of the size
of the measurable signal zone located at the two Fermi points ±kF : ∆q = q− kF = Γ/VF +√

2M∆Ω. For systems with higher dimension (2D,3D), this condition defines the boundary
of the sizable signal. Therefore, in experiment measuring the width of the Fermi shell will
provide the properties of the quasiparticles excitations near the Fermi surface (ΓkF , VF ).
We will discuss in more detail later how to extract these information.

Measurement by time of flight imaging

We propose here the second measurement which permits to see the Fermi surface of the
strongly correlated cold atoms. We apply the Raman spectroscopy for a fixed transferred
momentum q or the RF spectroscopy accompanying by the TOF imaging. After transferring
atoms in the internal state |α〉 to an other internal state |β〉, we turn off the optical lattice
and take the image of the atoms in the internal state |β〉. We obtain a distribution of atoms in
the momentum space where the intensity of the image is proportional to the Raman transfer
rate

Rq(k,Ω) =
|C|2n1n2

~
nF (εβ(k)− Ω)A(εβ(k)− Ω,k− q). (2.36)

Here, the momentum q and the frequency Ω are fixed. In order to reconstruct the Fermi
surface, we fix the momentum q to a convenient value and take different image with many
frequencies Ωn. Superposition of these images gives us the picture of the Fermi surface.
According to the appropriate choice of the momentum q, we have the following cases.

If the two hyperfine states |α〉 and |β〉 do not see the same optical lattice (i.e. they have
different effective mass or see trapped by different optical lattices). The convenient value
of transferred momentum for this measurement is q = (2nπ/a, 2mπ/a, 2pπ/a). Let us take
q = (0, 0, 0) and make the superposition of images measured with different frequencies. We
obtain the total intensity of the Raman rate as a function of the momentum k. Let us consider
the case in which the incoherent part of the spectral function is negligible. With the lorentzian
form of A(ω,k), then we have

R(k,q) =
|C|2n1n2

~
∑

n

nF (εβ(k)− Ωn)
Γ2

k

[εβ(k)− Ωn − ξ(k)]2 + Γ2
k

. (2.37)

The borders of the non-signal zone make a contour of the Fermi-Surface. At zero temperature,
the vanishing of signal is determined by the Fermi-Dirac factor nF which reads εβ(k)−Ωn > 0.
In addition, the maximal intensity is found on the lines εβ(k) − Ωn − ξ(k) = 0. So the
intersection of the two ensembles of curves gives us the points which belong to the Fermi-
surface ξ(kn) = 0. Here, kn are the points satisfied both conditions for a measurement with
Raman frequency Ωn.

The spectral density with negative energy A(ω) can be obtained by making the sum of
the measured signal over the k-space for many time of flight measurement. The discussion
on the quasiparticle excitations properties will presented later in the section 2.7 concerning
the recent experiment in Jin’s group.
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2.4.2 Phenomenological model of d-wave pseudogap

In this section, we study whether this Raman spectroscopy technique can be used to probe
more exotic states, such as the unconventional metallic state of high-temperature supercon-
ductors. This is currently one of the most outstanding problems in condensed matter physics.
Angular-resolved photoemission spectroscopy (ARPES) has played a particularly important
role in revealing important physical aspects of these materials. Apart from the property of

Figure 2.10: Generic phase diagram of high temperature superconductivity on
the (δ − T ) hole doping-temperature plane.

the superconductivity at high temperature, the phase diagram of cuprates is very rich, as
illustrated by the generic phase diagram in Fig. 2.10. This phase diagram is presented ver-
sus temperature T and hole-doping δ. Doping measures the deviation from half-filling (one
electron per site) and corresponds to the introduction of charge careers in the copper-oxygen
plane, usually achieved in these materials by chemical substitution.

The following regions are apparent on this generic phase diagram. At zero doping, we have
a Mott insulator which orders antiferromagnetically below the Néel temperature TN . Upon
doping, the Néel temperature is quickly suppressed and a superconducting phase appears
upon further doping. The superconducting transition temperature Tc displays a dome-like
shape, and is highest at some “optimal” doping (close to 15%). It is established that the
superconducting order parameter has d-wave symmetry.

The non-superconducting (metallic, or “normal”) phase is actually particularly interesting.
At high doping levels (above optimal doping), the properties of a conventional Fermi-liquid
are gradually recovered. In contrast, at low doping (below optimal doping, corresponding
to the so-called “underdoped” regime), the “normal” state is far from having the properties
of a normal metal ! A distinctive property of this phase is that it displays a suppression
of low-energy excitations, which shows up in many experimental probes (for example, the
magnetic susceptibility is not Pauli-like but decreases at low temperature). This suppression
corresponds to the appearance of a “pseudogap”, which opens up below some characteristic
temperature T ∗, and has a similar momentum-dependence as the superconducting gap. This
is most clearly revealed by ARPES. In Fig. 2.11, the photoemission intensity of three samples
with different doping levels is displayed. In the underdoped samples, it is seen that the
Fermi surface is only visible near the diagonal directions of the Brillouin zone (the diagonal
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direction is usually called the “nodal” direction since it is the direction along which the d-
wave gap ∝ cos k− cos ky vanishes). Near the “antinodes” (π, 0) and (0, π), the photoemission
intensity is suppressed, so that the Fermi surface appears to consists in disconnected “arcs”.

Figure 2.11: A quarter of the Fermi surface in the d-wave pseudogap phase
observed by the photoemission. The upper panels (A-C) show the intensity plot
of the signal measured in ARPES experiment for different hole-doping concen-
trations (δ = 0.05, 0.1, 0.12 from left to right).The lower panels (D-F) show
the form of the Fermi surface determined by the maximal signal of measured
intensity. Reprinted from Ref. [72].

Until now, there exists no widely accepted microscopic theory which is able to understand
completely the physics of this pseudogap phase. There are two main classes of explanations
for this phase. The first one assumes that the physics of this phase is a precursor of the
superconducting phase at low temperature, i.e that it is physically connected to the SC
region, and associated with preformed pairs without any phase coherence. The second class
of explanations argues that the pseudogap is associated with a different physical phenomenon
than superconductivity itself. For example, in some theories, the pseudogap is associated
with the Mott gap, which may survive near the antinodes upon doping and truncates the
Fermi surface into arcs (Fig. 2.11 A-C).

Here, we do not address the microscopic origin of the pseudogap formation, but we want
to understand whether the single-particle spectroscopy technique that we have proposed is
able to detect its formation in the context of ultracold fermionic atoms. It is important in
this respect to mention that theoretical studies of the two-dimensional Hubbard model [24,
34, 56, 64, 103] have unambiguously revealed that the truncation of the Fermi surface into
arcs is indeed a characteristic feature of this model.

For our purpose, it is therefore sufficient to adopt a phenomenological form of the spectral
function appropriate to the pseudogap phase. It has been shown in the context of cuprates[90]
that the ARPES experimental results can be reasonably well described by the following form
of the one-particle Green’s function:

G(k, iω) =
1

iω − ξ0k + iΓ1 −∆2
k/(iω + ξ0k + iΓ0)

. (2.38)

In this expression, ∆k = ∆0(cos kx− cos ky) describes the pseudogap with d-wave symmetry
and ξ0k is the bare energy dispersion of the non-interacting system. In order to be able to
compare with a realistic situation, we have introduced the damping parameters: Γ0 for the
self-energy and Γ1 for the Green’s function. The spectral function reads

A(k, ω) =
1
π

Γk

(ω − ξ0k − Σ′k)2 + Γ2
k

. (2.39)
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Here, Γ−1
k is the life time of the quasiparticle excitations and Σk is the self-energy. This

spectral function has the form of a Lorentz peak around the energy for quasiparticle ξk =
ξ0k + Σ′k. Here, Σ′k is the real part of self-energy (used to renormalize the quasiparticle
dispersion) reads

Σ′k =
∆2

k(ω + ξ0k)
(ω + ξ0k)2 + Γ2

0

. (2.40)

The life time of the quasiparticle for the d-wave pseudogap phase depends on the momentum

Γk = Γ1 +
Γ0∆2

k

(ω + ξ0k)2 + Γ2
0

.

As the d-wave gap vanishes on the nodal direction and is important on the antinodal direction,
the quasiparticle is very well-defined at the nodal point and very broaden at the antinodal
point (Fig. 2.11E). This form of the spectral function also provides a reasonable qualitative
description of recent theoretical results for the two-dimensional Hubbard model.

Measurement at threshold of extinction

In the Fig. 2.12, we present the numerical result which simulated the measurable Raman
signal for a d-wave pseudogap phase in the momentum space. The region without intensity
corresponding to the vanishing of Raman signal while the maximal intensity shows the image
of the Fermi surface. The Raman spectroscopy shows a clear image of the arc structure with
a high intensity in the nodal point where the pseudogap vanishes and a low intensity in the
antinodal point at which the value of the pseudogap is optimal. Performing an experiment

q
y

q
y

−π 0 π
q
x

−π

0

π

Figure 2.12: Model d-wave pseudogap state (see text), with ∆0 = 0.1 tα,
Γ0 = 0.05 tα,Γ1 = 0.4 tα. The plot is for a hole-doped system (nα = 0.45)
with a nearest (tα) and next-nearest neighbor (t′α) hopping, with t′α/tα = −0.3
(typical for cuprates, but similar effects are expected also for smaller |t′α/tα|).

near the threshold of extinction can help to observe the Fermi velocity VF . The value of ∆Ω
(∆Ω = Ω − εmin) will be chosen small enough, so a rough approximation for the integral in
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the Raman rate is acceptable. For the convenience of calculation, we consider the Raman
transfer rate with transferred momentum −q

R(−q,Ω) =
|C|2n1n2

(2π)d~
2M∆ΩΓq[

∆Ω + ξq

]2
+ Γ2

q

. (2.41)

The maximal signal of Raman rate is located at ∆Ω + ξq = 0. In the case of a d-wave
pseudogap phase, this relation becomes

∆Ω + ξ0q + Σ′q = 0. (2.42)

If we are exactly at the threshold ∆Ω = 0, this equation indicates the location of the Fermi
surface. For a measurement near the threshold, the location of the maximal Raman signal
no longer coincides with the Fermi surface. Let us define position of maximal signal be qmax

which is moved from the kF . Develop ξq near the Fermi surface as ξq = vF .(q − kF ).
Therefore, the position of the maximal Raman intensity is determined by

∆Ω = vF .(kF − qmax). (2.43)

By performing the experiment for many frequencies ∆Ω (Fig. 2.43) and measuring the po-
sitions of the peak of intensity qmax, then the Fermi velocity VF can be extracted directly
from the relation 2.43.

Figure 2.13: The Raman rate at the antinodal and nodal direction. Different
curves of the Raman rate for different ∆Ω shows the displacement of the peak

Once we obtained the Fermi velocity bVF , we can measure the lifetime of quasiparticle
excitation Γ−1

k . In the discussion on the measurement at the threshold of extinction, we have
shown that the width of the intensity peak is related to the inverse of the quasiparticle lifetime
as

∆q =
√

2m∆Ω +
Γ
vF

. (2.44)

In this paragraph, we would like to show how the Raman rate is similar to the spectral function
if we perform the Raman spectroscopy with many value of frequencies (not necessary closed
to the threshold of extinction) for a fixed transferred momentum. For the convenience of
the order of magnitude in the comparison, we compare the Raman rate renormalized by
the factor 1/∆Ω because the Raman signal is an integral over the disk of radius

√
2m∆Ω.

For the d-wave pseudogap model, we’re interested in the two main points: the nodal point
and the antinodal point of the Fermi surface. For the nodal direction, from the model we
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know that the quasiparticle is well defined (Fig. 2.14) because there is no pseudogap ∆ = 0.
For the Raman scattering rate, it is the average value of the spectral function in the disk
εβk − εmin < ∆Ω thus this peak becomes to be broader and lower than the one in spectral
function.

Figure 2.14: Comparison between the spectral function and the Raman scat-
tering rate R(∆Ω) renormalized by factor 1/∆Ω at the nodal point of the Fermi
surface

For antinodal direction, the quasiparticle peak in the spectral function becomes very
broad because the pseudogap is maximal. In fact, the appearance of the pseudogap has split
the quasiparticle peak. The numerical calculation (Fig. 2.15) shows that one can find the
same structure in A(ω) and R(ω)/ω. The same effect of enlargement happens in the Raman
scattering rate as the previous case.

Figure 2.15: Comparison between the spectral function and the Raman scat-
tering rate R(∆Ω) renormalized by factor 1/∆Ω at the same points in k-space.
Dash line refers to spectral function, solid line refers to Raman scattering rate

Time of flight measurement

The discussion so far has assumed that it is possible to repeat the measurement of the total
rate R for many different values of q. In some cases, a different scheme with a momentum-
selective detection of the scattered β atoms may be instead favorable, in which a single
value of q is used, and a time of flight expansion of the β atoms cloud is performed (after



2.5 Harmonic trap 41

suddenly turning off the trap and the lattice potential) in order to reconstruct the momentum
distribution of the atoms. This scheme most closely resembles ARPES experiments in solids.
As shown in Fig. 2.16a, the Raman resonance condition allows for a selective addressing of
the different regions in k by tuning the frequency Ω. The number of Raman-scattered atoms
with final momentum k is proportional to the integrand nF (εkβ − Ω)A(k − q, εkβ − Ω) of
Eq. 2.15.
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Figure 2.16: (a) Color plot illustrating the selective addressing of βk-space
by a proper choice of Ω. (b) Time of flight βk-map obtained by integrating
the Raman intensity for ∆Ω varied in the range [2.4tα, 6.8tα]. The dispersion
relation of the β-atoms is taken as εkβ = εβ − 2tβ(2 + cos kx + cos ky) with
tβ = 1.5tα (note that interactions will renormalize downwards the effective tα
even if bare values are equal). Parameters are as in the last measurement and
q = 0.

In right panel of the Fig. 2.16, we present the superposition of the time selective TOF
image of out-going β-atoms for many Raman frequency satisfied Ω−ΩT ∈ [2.4tα, 6.8tα]. The
transfer momentum is chosen as q = 0. In this simulation, we assume that both atoms in
α-state and β-state are confined by two different optical lattices. Fig. 2.16 shows that the
resulting k-map of the intensity also reveals the pseudogap physics.

2.5 Harmonic trap

During an experiment the quantum gas is confined by a harmonic potential due to the mag-
netic trap, optical trap or the gaussian profile of the laser beam. This additional potential,
a priori, modifies the measurement of the system in comparison to the homogeneous one. In
particular, the harmonic potential breaks the translation invariance, so the k-momentum is
no longer a good quantum number. In presence of the trap, the Fermi surface is not well-
defined even in the non-interacting case. For the interacting case, the sharpness of Fermi
surface is modified by two contributions. The first one is the interaction which makes the
life-time of quasiparticle become finite. The second one is the contribution of the harmonic
trap potential. In this section we discuss how this additional potential modify the Fermi
surface.

One way to treat the cold atoms in presence of the harmonic potential is using the local
density approximation (LDA). The idea of this approximation is to consider the a spatially
varying chemical potential for the atoms in α-state µαR = µ0−Vα(R) with µ0 is the chemical
potential at the center of the trap. Observables of the system are then calculated by using
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locally the solution for the homogeneous system at corresponding chemical potential. For
example, the Green’s function of the inhomogeneous system is approximated by the homoge-
neous Green function with local chemical potential µR.

G(k, ω,R) ≈ Ghom(k, ω;µR) (2.45)

this leads directly to the approximation of the spectral function

A(k, ω,R) ≈ Ahom(k, ω;µR). (2.46)

This approximation is the same as the semi-classical description in [Stringari and Pitaevskii]
which supposes to write the Fermi-Dirac distribution for a particle in the phase-space (~R,k)
as n(R,k) = 1/(eβ[εk−µR] + 1). In fact, this density distribution can be obtained within
the LDA approximation of the spectral function by using the expression of spectral function
for the free fermions gas A(k, ω;µR) = δ(ω − εk + µR). The local density distribution in
momentum space reads

n(R,k) =
∫
dωnF (ω)A(k, ω;µR). (2.47)

For general case including the strong correlation effect, the spatial dependent spectral
function reads

A(k, ω;µR) =
1
π

Γk

(ω − ξRk)2 + Γ2
k

,

where ξRk = εk−µR is the quasiparticle dispersion energy with energy reference determined
by the Fermi level. The LDA is good approximation if the trap potential is smooth with
respect to all the macroscopic length scales of the system. Both Raman spectroscopy and RF
spectroscopy discussed above are local processes. They consist of changing locally the internal
state of atom. Therefore, we expect the LDA to give a good description of the system.

2.5.1 Untrapped out-going atoms

Let us apply this approximation for estimating the Raman transfer rate in a harmonic trap.
We assume in the first case that only the atoms in the α-state are trapped. The scattered
atoms in the β-state are free particles. That the harmonic trap for the atoms in α-state can
be written in the cylindrical coordination (R, θ, z) as

Vα(R, z) =
1
2
mω2

RR
2 +

1
2
mω2

zz
2. (2.48)

Considering the case of 2D system, the system is strongly confined in the z direction ωz � ωR,
then the gases are confined in 2D, with the Thomas-Fermi radius RTF in the plan. Taking
the energy reference to be µ0 (the same choice with the homogeneous analysis), the amplitude
of Raman scattering reads

R(q,Ω) =
|C|2n1n2

(2π)d~

∫
ddk

∫
ddR nF (

~2k2

2M
+ ε0

β − Ω)A(k− q,
~2k2

2M
+ ε0

β − Ω;µR), (2.49)

in which Ω = ω1 − ω2 + µ0 is the difference of frequencies including the energy reference of
the β-state. The resonance condition of this equation can be translated directly to the energy
conservation

εk−q − µR =
~2k2

2M
+ ε0

β − Ω. (2.50)

It shows an explicit dependence on the the distance from the center of the trap (Fig. 2.17). The
threshold condition determined by the Fermi factor in Eq. 2.49 reads (~2k2/2M+ε0

β−Ω) ≤ 0.
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This condition leads to the threshold frequency of Raman process ΩT = ε0
β . The Fig. 2.17

shows the Raman process for two different positions R1 > R2 (i.e. R2 is closer to the
center than R2) in the harmonic trap. For α-atoms seeing a harmonic potential, the energy
dispersion of the position R1 is higher than the position R2. The true chemical potential is
the same for the whole system, therefore the position R2 has a higher filling than R1. Within
the hypothesis of no trap potential for β-atoms, the threshold frequency ΩT for non vanishing
signal (distance from the Fermi level to the lowest energy level of the β-states) is the same for
all the positions in the trap. Assume that we are at zero temperature T = 0, the Fermi-Dirac

Figure 2.17: The upper band is the β-state dispersion without any trap ef-
fect (same dispersion for two positions R1 > R2. The lower bands are α-state
dispersions for two position R1 > R2 which are shifted by the trap effect. For
different position, we always find the same threshold energy)

distribution becomes Θ(Ω + µR − ~2k2/2M − ε0
β). Let us consider a measurement close to

the threshold of the extinction (∆Ω = Ω − ΩT ≈ 0). The Raman spectrum will be related
directly to the spectral function of one-particle excitation via an integration over the radius
of the trap

R(q,Ω) =
|C|2n1n2M∆Ω
(2π)d−2~2mω2

R

∫
dV A(−q,−∆Ω;µ0 − V ). (2.51)

In this expression, we have performed a change of variable R → V = mω2
RR

2/2. Evaluating
this formula numerically, we obtain a superposition of many Fermi surfaces at different fillings
as shown in the right panels of Fig. 2.18. The up panel is for the non-interacting system while
the down panel is for the system with d-wave pseudogap. Although the presence of the trap
breaks the homogeneity of the system, the Raman scattering map still gives useful information
of the Fermi surface of the center of the trap. In particular, the d-symmetry observed explains
the feature of the d-wave pseudogap phase.

We can event extract the Fermi surface for the density of the center of the trap by per-
forming two measurements with fixed chemical potentials µ and µ′ = µ + ∆µ. Then the
difference of these two maps contains the information about the Fermi surface of the center
part of the trap

R(µ′)−R(µ) ∝
∫ µ′

0
dV A(q,Ω;µ′ − V )−

∫ µ

0
dV A(q,Ω;µ− V ) = ∆µA(q,∆Ω;µ).

This is shown in the left panels of Fig. 2.18 for a non-interacting system (upper panel) and a
system with d-wave pseudogap (lower panel).
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Figure 2.18: The right panel shows the Fermi in a harmonic trap with LDA
calculation. The left panel shows the image by taking the difference of maps
which gives the Fermi surface image of the center of the trap

2.5.2 Trapped out-going atoms

The second situation is that atoms in both internal states α and β are confined the the trap
potentials. The energy dispersion of the scattered atoms in the β-state becomes εβk(R) =
~2k2/2m+ε0

β−Vβ(R). With same energy reference as µ0, the amplitude of Raman scattering
reads

R(q,Ω) =
|C|2n1n2

(2π)d~

∫
ddk

∫
ddR nF (εβk(R)− Ω)A(k− q, εβk(R)− Ω;µR), (2.52)

in which Ω = ω1 − ω2 + µ0. The resonance condition of the spectroscopy now becomes

εk−q − µ+ Vα(R) =
~2k2

2M
+ ε0

β + Vβ(R)− Ω. (2.53)

The threshold condition determined by the Fermi factor now depends explicitly on the position
in the trap

~2k2/2M + ε0
β + Vβ(R))− Ω ≤ 0. (2.54)

The Raman process is illustrated by Fig. 2.19. For two different positions in the trap
R1 > R2, the Fermi level is always fixed by the bare chemical potential µ0. As the β-atoms
now see also the confined potential, the lowest energy level for β-atoms at R1 and R2 are
different (εmin(R1) 6= εmin(R2)). Therefore, the threshold frequency ΩT for sizable Raman
signal is different for R1 and R2.

We remark that the form of the trap decides whether we obtain the threshold correspond-
ing to the center of the trap or the boundary of the trap. Assume that the trap potential for
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Figure 2.19: The upper bands is the β-state dispersions for two positions R1

and R2. The lower bands are α-state dispersions for two position R1 and R2.
For both α and β states, the bands are shifted by the trap effect. For different
position, we find now threshold frequency)

both α and β states are the same form (with the minimal potential in the center of the trap)
as shown in the Fig. 2.19, the first signal will correspond to the probe of the center with the
threshold of extinction ΩT = ε0

β . The Raman transfer rate now reads

R(q,Ω) ∝ A(−q,ΩT − Ω;µ0). (2.55)

Considering an ideal case where the traps for α and β states are exactly the same. For a
Raman frequency Ω > ΩT , it corresponds to the threshold frequency of the position R in the
trap satisfied Ω−Vβ(R) = ΩT . The intensity image of the measured Raman signal now again
is a superposition of different signals obtained from the center of the trap to the position R.
Performing two Raman measurement two different frequencies Ω and Ω + ∆ for systems with
the same number of atoms, therefore we are able to image the Fermi surface at of the shell
at position R in the trap by making the difference between these two measured images.

2.6 Experimental conditions for the measurement

We discuss in this section the possibility to realize the proposed measurements. The main
approximation we used in our discussion is that the initial |α〉 and final |β〉 states do not
interact. We show how to choose the states |α〉 and |β〉 for a gas of Potassium K40 or
Lithium Li6 atoms.

2.6.1 Experimental conditions for Lithium

According to the measurement of scattering length of Li6 in [2, 114], we have the two typical
scattering lengths for singlet and triplet channels at zero magnetic field

singlet channel: as = 45a0 triplet channel: at = −2160a0. (2.56)

So the two atoms in the same spin state (triplet channel) interact much more than two atoms
in different spin state (singlet channel). The natural choice for our problem is that the two
hyperfine states for the mixture |α〉 and |α′〉 are the two lowest energy state

|α〉 = | − 1/2, 1〉 |α′〉 = | − 1/2, 0〉, (2.57)
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Figure 2.20: Hyperfine states of Li6. Reprinted from Ref. [50]

and the internal state |β〉 is the one with the spin state 1/2. One take the following state
because of its well-known properties in atomic physics β〉 = |1/2, 1〉. The Raman diffusion
makes the transition from |α〉 to |β〉. In order to control the interaction between two internal
states |α〉 and |α′〉, we introduce a magnetic field near the Feshbach resonance located at
B = 850G.
In addition, the collision between these two states |α〉 and |α′〉 can make the transition to
these other hyperfine state. Let us consider the one from |α〉 → |β〉. The main interaction
term which causes this transition is the center term V c (spin exchange). In the [2], we have
this decay rate is of the order of 10−12cm3/s which means the life-time is of the order of a
few second (� time of experience).

We present here some detail estimations for the realizability of the experiment. One
considers the Lithium atom with the Feshbach resonance is about B ≈ 850G. With the
choice of the three state as above, one can do some following estimations.

• Energy shift in the final state |β〉 (Hartree mean field energy)

〈Hαβ〉 '
4π~2a62

m
n2, (2.58)

where n2 is the density of atom in the state |α〉. If we have one atom per site then
n2 = (2/λ)3 (λ is the wave length of the laser which constructs the optical lattice).

〈Hαβ〉 =
4π~2a62

m

( 2
λ

)3
=

~2

2m

(2π
λ

)2 16a62

πλ
=

16a62

πλ
εrec

Let’s take a62 = 45a0 = 25nm and λ = 800nm, then we have: ∆ε = 1.6 10−2εrec

• Cross section of the elastic collision in the singlet channel is σ62 = 4πa2
62 thus the

collision rate is γc = n2σ62vrec in which vrec is recoil velocity h/(Mλ). Numerical
estimation of the collision rate gives

γc =
( 2
λ

)3
4πa2

62vrec ≈ 102s−1. (2.59)

• Inelastic collision from |α〉 state to β〉 state
According to the data in [2, 114] we have G62 = 10−12cm3s−1, thus the rate of inelastic
transition reads

Γ = n2.G62 =
( 2
λ

)3
G62 ≈ 15s−1. (2.60)
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The typical time for atom to stay in the lattice is

τ =
L

vrec
=

Lm

2~krec
= 6 10−5s. (2.61)

So the loss by inelastic collision is about: Γτ ≈ 9 10−4 which does not cause any problem
for the experiment.

2.6.2 Experimental conditions for Potassium

Another candidate of fermionic atom for the choice of the three proposed states in our Raman
spectroscopy measurement is potassium 40 (40K). In the experimental point of view, this is a
well-known atom with the presence of different Feshbach resonances. In a series of experiments

Figure 2.21: Hyperfine structure of Potassium 40K. Reprinted from Ref. [125]

on the BEC-BCS crossover [82, 113], D. S. Jin’s group has used the mixture of potassium
atoms in two hyperfine states:

|α〉 = |f,mf 〉 = |9/2,−7/2〉 and |α〉 = |f,mf 〉 = |9/2,−9/2〉.

The Feshbach resonance between these two state is located at B = 202.10± 0.07G [96].
For the choice of the β-state, the hyperfine state |9/2,−5/2〉 is a very good candidate.

In fact, its interaction with the two others states is very small. At zero magnetic field,
the two-body scattering length between |9/2,−5/2〉 and |9/2,−7/2〉 (|α〉 and |β〉) is about
a1s = 130aO ≈ 78nm while the one between |9/2,−5/2〉 and |9/2,−9/2〉 (|α′〉 and |β〉) is
about a2s = 250a0 ≈ 134nm (a0 is the Bohr radius). The interaction between the two
hyperfine states α and α′ are controlled by the Feshbach resonance, therefore can be tuned
to be very large in comparison to the other interactions. In the 40K this resonance is out of
the region in which we have the Feshbach resonance between β and α, α′.

Let us now estimate the energy of the interaction between β-atoms with α and α′ atoms
and the lost of elastic collision. The spectroscopy will excite a small number of atoms from
α-state to β-state but enough to be counted or observed by TOF image.

• Within the Hartree approximation, we obtain the interaction energy for gases in con-
tinuum (discussed in next section)

〈Hαβ〉 ∝ aαβkFEF , (2.62)
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in which kF is the Fermi wave vector and EF is the energy at the Fermi level. Using
the experimental conditions in D. S. Jin’s group, we have kF ≈ 8.6µm−1, then we have
〈Hαβ〉 ∼ 0.007EF and 〈Hα′β〉 ∼ 0.014EF .

• The rate of elastic collision is estimated by γc = nασvF . For the experiment with
nα ≈ 1015m−3, σ = 4πa2

αβ ' 10−13m−2 and the Fermi velocity vF ≈ 2.4× 10−3m/s 3,
the collision rate reads: γc ≈ 0.24s−1.

2.7 Experiment in D. S. Jin’s group

Recently, the first observation of the one-particle excitation with momentum resolution in
a two component fermionic gases has been realized in D. S. Jin’s group [112]. They have
used this technique to follow the BEC-BCS crossover in order to exploit different features like
excitation dispersion, the pairing gap and to compare to some phenomenological models.

2.7.1 Experimental measurement

In their experimental setup, they have used the quasi-equal mixture of potassium in two
hyperfine states |9/2,−7/2〉, |9/2,−9/2〉 as discussed above. The Fermi gas mixture consists
of 3 × 105 potassium atoms. By using the RF (radio-frequency) technique with ωrf ≈ 47
MHz, they transferred atoms in the initial state |9/2,−7/2〉 to the final state |9/2,−5/2〉.
Immediately after the RF pulse, they switched off the optical trap and let the atoms expand
ballistically during 3 to 6.5 ms before taking a selective resonant absorption image (TOF). The
time of flight image gives a direct access to the momentum distribution of the out-going atoms
in the β-state. The idea is essentially the same used in our proposition of direct measurement
by time of flight in the last section. This experiment corresponds to the case where we do
the Raman spectroscopy with zero transferred momentum (q = 0) and the RF frequency is
the difference of frequency of two lasers ω = ω1 − ω2. This experiment has shown very nice
results of the one-particle excitation spectrum for different interaction strength Fig. 2.22. The
energy conservation in this case is given by

εαk =
~2k2

2m
+ εβ − ωrf . (2.63)

In experiment, by using the information of the momentum distribution near the resonance
(maximum of the RF signal), one can reconstruct the energy dispersion of single atom in
the initial α-state Es = ~2k2/2m + εβ − ωrf . Performing this measurement for both the
non-interacting gases and over the BEC-BCS crossover, D. S. Jin has shown that this kind
probe on one-particle excitation can give direct access to the physics quantity like the energy
dispersion, the pairing-gap, or different kind of excitations (single fermionic excitation, pair
destroyed excitation . . . ).

2.7.2 Explanation of experimental spectra

We now analyze the experimental data and make some comparison between our proposed
measurement applied in the case of zero transferred momentum with the experiment realized
by D. S. Jin’s group. As shown in the section 2.1.4, the rate of transferred atoms in the
β-state is

R(k,Ω) =
|C|2n1n2

~
nF (εβ + ~k2/2M − Ω)A(εβ + ~k2/2M − Ω,k), (2.64)

3This velocity corresponds to the Fermi wave vector kF ≈ 8.6± 0.3µm−1 in the experiment of Jin’s group
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Figure 2.22: Single-particle excitation spectra obtained using RF spectroscopy
for ultracold atoms. Plotted are intensity maps (independently scaled for each
plot) of the number of atoms out coupled to a weakly interacting spin state as a
function of the single-particle energy Es and wave vector k. The black lines are
the expected dispersion curve for an ideal Fermi gas. The white points (*) mark
the center of each fixed energy distribution curve. a) Data for a very weakly-
interacting Fermi gas. The Fermi wave vector kF is 8.6 ± 0.3 µm−1. b) Data
for a strongly interacting Fermi gas 1/kFa = 0 and T ≈ Tc. The white line is
a fit of the centers to a BCS-like dispersion. c) Data for a gas on the BEC side
of the resonance where 1/kFa ≈ 1 and the measured two-body binding energy
is h · (25 ± 2) kHz. The upper feature is attributed to unpaired atoms and the
lower feature is attributed to molecules. The white line is a fit to the centers
using a quadratic dispersion. Reprinted from Ref. [112].

where Ω = ωrf + µ. Here the energy origin is taken as the Fermi level of the system in the
α-state. For a fixed momentum, the maximal peak of the RF signal corresponds to the RF
resonance in which the following condition is satisfied: ξαk = εβ + ~k2/2M −Ω where ξαk is
measured from the Fermi level. In this relation, we remark that ξαk < 0 which means that
by using this spectroscopy technique, we have the same access as ARPES to the negative
frequency part of the spectral function.

Non-interacting Fermi gases BCS-side

The first experiment has been performed at the limit of weakly interacting gases in which
the experimental temperature is higher than the BCS-critical temperature. In this case, the
system is in the normal phase and the atoms in the α-state and the β-state have the same
energy dispersion which is ~2k2/2m. Thus the RF resonance occurs when ωRF = εβ . In the
intensity plot, we see clearly the resulting dispersion Es = ~2k2/2m.



50 Spectroscopy of one-particle excitations

Preformed molecular BCS-like behavior at Feshbach resonance

Another measurement is on the BCS side but with a temperature higher than Tc. In this case,
we do not expect any property of superfluidity. However, as proposed by theory, we expect
to see a pseudogap of preformed BCS-molecular. This phase has a similar spectral function

Figure 2.23: The pseudogap model for the gas at unitary limit. The black
line is the free dispersion while the blue and red curves are two branches of
quasiparticle dispersion separated by 2∆ at the Fermi level. The pseudogap
comes from the presence of preformed pairs of fermions.

with BCS phase but without any superfluid order 〈c†k↑c
†
−k↓〉 = 0. The energy dispersion of

this phase can be obtained in replacing the superfluid gap ∆SF = 0 by the pseudogap ∆ps

(see Fig. 2.23).
A(k, ω) = u2

kδ(ω − E−k ) + v2
kδ(ω − E+

k ) (2.65)

in which E±k = ±
√

(εk − µ)2 + ∆2
ps are the quasiparticle excitation energies and u2

k, v
2
k are

the spectral weights. Similar to the ARPES technique, this measurement probes only the
negative energy part with the dispersion ξk = E−k . Replacing this dispersion in the resonance
condition, we obtain

E−k = ~2k2/2m+ εβ − ωRF − µ. (2.66)

Thus the quantity defined in the experiment Es = ~2k2/2m + εβ − ωRF can be now fitted
with the dispersion µ+ E−k .

BEC side with double branches

In the BEC side, we have a phase where fermionic atoms of different hyperfine states start to
pair up to form molecules under the effect of strong interaction. The one-particle spectrum
consists then of one part single unpaired atoms and another part from the breaking up of
molecules. The first part is the excitation at low energy while the second part concerns high
energy excitation (Fig. 2.24).

In order to figure out the energy dispersion of the second excitation, we use an energy
conservation argument at resonance as shown in Fig. 2.25. In the initial state, we have a
system of N atoms with energy ENi which can be decomposed in the sum of N-2 atoms EN−2

i
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Figure 2.24: RF spectrum of the Fermi gases on the BEC-side. The spectrum
presents two energy scales: (i) low energy scale characterizes the single unpaired
atom excitation, (ii) high energy scale characterizes the excitations of breaking
up of molecules. Reprinted from Ref. [112].

Figure 2.25: Energy conservation for the RF spectroscopy in BEC limit.

and one molecule Eb (binding energy). We suppose that the molecule in the condensed state
at zero-momentum. In the final state after applying the RF pulse, the molecule is destroyed
and breaks into two singles atoms of momentum k and −k (one in kβ-state other in −kα′-
state). Thus we obtain a system of N-1 particles EN−1

f = EN−2
i + ε−kα′ and an out-going

atom in the β-state with energy ~2k2/2m+ εβ . The energy conservation law reads

EN−2
i + Eb + ωrf = EN−2

i + ε−kα′ + ~2k2/2m+ εβ. (2.67)

Thus the single particle excitation energy Es which can determined from RF experiment reads

Es = ~2k2/2m+ εβ − ωrf = Eb − ε−kα′ . (2.68)

In the experimental data on the BEC side, we observe the structure of two branches. The first
one is quite similar to the free fermion dispersion which is the unpaired particle excitation
while the second one with an negative effective mass corresponds to Eb − ε−kα′ = Eb −
~2k2/2m∗ dispersion with m∗ is the effective mass of the α′ atoms (see Fig. 2.22 right panel).

2.7.3 Effect of the harmonic trap on the RF experiment

All the analysis above has been done in the homogeneous case. In the following, we would
like now to study the effect of the optical trap (harmonic trap) on the obtained data obtained
in D. S. Jin’s experiment. So during the spectroscopy, the whole system is trapped by the
harmonic potential. In particular as well the out-going atom is trapped. The initial atoms
and the out-going atoms see respectively the trap potentials Vα(r), Vβ(r). The transfer rate
is estimated within local density approximation

R(k, ωrf ) =
|C|2n1n2

~

∫
drdnF (εβk(r)− Ω)A(εβk(r)− Ω,k;µr), (2.69)
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Figure 2.26: The upper bands is the β-state dispersions for two positions R1

and R2. The lower bands are α-state dispersions for two position R1 and R2.
For both α and β states, the bands are shifted by the trap effect. For different
positions, we find different threshold frequencies)

where Ω = ωRF − µ0 with µ0 the energy reference and εβk(r) = εβ + ~k2/2M + Vβ(r). The
energy conservation relation now reads

ξαk(r) = εβ + ~k2/2M + Vβ(r)− ωRF − µ0. (2.70)

In the free Fermi gases, ξαk(r) = εαk − µr with µr = µ0 − Vα(r). Therefore, this resonance
condition becomes εαk = εβ + ~k2/2M + Vβ(r) − Vα(r) − ωRF . For the pseudogap case, we
have ξαk(r) = E−k (r) = −

√
(εαk − µr)2 + ∆2

ps and resonance condition becomes

µr + E−k (r)− Vβ(r) = εβ + ~k2/2M − ωRF , (2.71)

We now take two situations:

• Let us first assume that the harmonic trap is the same for the initial atom and the
out-going atom, i.e. Vα(r) = Vβ(r) = Vtrap(r). Thus the signal intensity in the case
with the trap is

R(k, ωrf ) =
|C|2n1n2

~

∫
drdnF (εβk − ωrf − µr)δ(εβk − ωrf − ξαk(r)− µr), (2.72)

• Assuming that the β-state do not see any trap potential, we obtain

R(k, ωrf ) =
|C|2n1n2

~

∫
drdnF (εβk − ωrf − µ0)δ(εβk − ωrf − ξαk(r)− µ0). (2.73)

2.7.4 Numerical simulation including the trap compared to experimental
data

We now simulate the RF transfer rate within the local density approximation for a ultracold
fermionic gas confined in an isotropic optical trap. Different physics that occur along the BEC-
BCS crossover under the effect of the trapping potential can be observed. Our theoretical
results obtained by phenomenological models along the BCS-BEC crossover agree quite well
with the experimental data obtained by Jin’s group.
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Free Fermi gases (BCS-side)

In the first example, we consider the experiment on weakly interacting gases. The set of
parameters in the experiment on the free Fermi gases is

• Fermi energy EF = h.(9.4± 0.5)kHz

• The Fermi wave vector kF = 8.6± 0.3 µm−1

• Temperature T/TF = 0.18 where TF = EF /kB
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Figure 2.27: Contour plot of the RF intensity in the plane of (Es,k) for free
Fermi gases. The left panel is for the homogeneous system while the right one
is for experimentally realizable conditions with a harmonic trap. The curve of
maximum signal corresponds to the resonance condition which gives a parabolic
form of the single-particle excitation.

We simulated the model for different configurations discussed above in the trap with the choice
in which the trap potential acts more and less in the same way for atoms in both the α and β
states. In order to see the trap effect on the measurement, we compare the signal obtained in
the trap to the homogeneous case (see Fig. 2.27) for a system with the same Fermi wavevector
kF . The comparison is shown in the Fig. 2.28 in which the left panel is the simulation for a
homogeneous system while the right panel is for the system in a harmonic trap. We remark
that for the homogeneous system the intensity of system along the resonant curve is uniform
till the Fermi level. We do not observe a clear jump at the Fermi level because of the finite
temperature. In contrast, for the non-homogeneous system, the signal density is maximal for
small momentum and very weak for high momentum near the Fermi level. In fact, the small
momentum state is filled every in the trap while the high momentum close to the Fermi level
is essentially filled only in the center of the trap. That explains why the obtained signal is
very weak near kF . By integrating the RF intensity over the k-space, we obtain the density
distribution in frequency. Fig. 2.28 left panel shows the density distribution in the trap for
the free Fermi gases. It is very good agreement with the experimental result obtained in
Fig. 2.28 right panel.

BCS-like behavior at Feshbach resonance

The second experiment is realized at the Feshbach resonance. At this special point, there’s
no typical energy scale and the scattering parameter as is divergent. This limit is situated in
the middle of the BCS limit and the molecular BEC limit. Under a critical temperature Tc,
we have a super fluid formed by pairs of Fermi gas while at higher temperature the superfluid
order disappears but the gap still remains in the spectral function. The appearance of this
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Figure 2.28: RF spectral function after integrating over the momentum. This
distribution is calculated in the presence of the trap potential (left panel). The
main form agrees to the one measured from Jin’s experiment (right panel).

pseudogap can be interpreted as the signature of the preformed pairs even in the normal state
of the mixture. In the simulation, we supposed it has the same behavior as the BCS gap.
The parameters of the experiment on the interacting Fermi gases at this resonant point are:

• Temperature T/Tc = 0.9 ± 0.1 or T = 0.18TF (other measurement for non-interacting
initial gas at temperature Tint/TF = 0.1 which leads to T < Tc at unitary limit).

• Before ramping the magnetic field to tune the interaction, the Fermi energy is EF =
h.(9.4± 0.5)kHz and the Fermi wave vector is kF = 8.6± 0.3 µm−1.
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Figure 2.29: Contour plot of the RF intensity in the plane of (Es,k) for Fermi
gases at Feshbach resonance (1/kFas = 0). The left panel is for the homogeneous
system while the right one is the experimentally realizable conditions with an
isotropic harmonic trap. The curve of maximum signal for fixed momentum
corresponds to the resonance condition which gives the energy dispersion the
single-particle excitation.

In the Fig. 2.29, we present the comparison of the intensity plot of the RF signal of a ho-
mogeneous system (left panel) to the system confined in an optical trap. We remark that in
this case the trap effect deforms a lot the energy dispersion of quasiparticle excitations. Two
main effects happened with the presence of the trap. The first one is the enhancement at
low momentum as above. The second one is that the RF distribution in frequency for fixed
momentum is more broad than the homogeneous case. This effect comes from the fact that
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the pseudogap is different for different fillings (maximal in the center of the trap and minimal
on the boundary).

The lowest energy level (corresponding to k = 0)of the energy dispersion of the phe-
nomenological model for pseudogap phase Es(k) = µr −

√
(εαk − µr)2 + ∆2

r is shifted by
µr −

√
µ2

r + ∆2
r. Therefore the lowest level for the energy dispersion corresponding to the

shifted in the center of the trap µ0 −
√
µ2

0 + ∆2. In order to compare the LDA approxima-
tion result to the experimental data, we need to fit with three variables: chemical potential
µ, the pseudogap ∆ and temperature T in the center of the trap. In the fit, we fixed the
shift from zero origin µ0 −

√
µ2

0 + ∆2 by the experimental value. The most difficult thing
is to determine the dependence of the pseudogap at unitary limit on the temperature4 and
the spatial dependence chemical potential ∆r = ∆(T, µr) within LDA. In trying to interpret
qualitatively the experimental data, we accept that the pseudogap respects the behavior of
the BCS-gap5.

The integrating image over the k-space of the RF spectral gives the direct access to the
density distribution in frequency. In this RF spectrum we recognize the pseudogap which
shifts the whole spectrum to the left in comparison with the non-interacting gases.

Figure 2.30: RF spectral function after integrating over the momentum. This
distribution is calculated in the presence of the trap potential (left Fig). This
measurement shows clearly the existence of a pseudogap which is different from
the non-interacting case Fig. 2.28.

Molecular limit (BEC-side)

We turn now to the opposite side of the Feshbach resonance (the BEC limit), the set of
experimental parameters is:

• Molecular binding energy Eb = h.(25± 2)Hz.

• Temperature of non-interacting gas T = 0.18TF .

• Scattering length 1/kFa = 1.

In order to understand the double branch structure obtained in the experiment at the tem-
perature T = 0.18TF , we used the most simple model explaining the physics of the BEC-BCS

4The temperature of the interacting system at unitary limit is unknown parameter. The only controlled
temperature is the one of the initial non-interacting gases before tuning to the Feshbach resonance.

5The BCS-gap is quite correct even in the limit of strong interaction.
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crossover in Ref. [32]. The simulation was performed for different configurations discussed
above with the same choice for the trapping potential. Within this theory, below the critical
temperature Tc, the effects of fluctuations are small even for strong coupling. Therefore the
quasiparticle dispersions in a homogeneous system can be obtained by BCS mean-field theory:

E±k = µ±
√

(εk − µ)2 + ∆2 (2.74)

in which µ and ∆ are solutions of the self-consistency equations. At zero temperature, we
have µ = −Eb/2 + 2εF (kFas)/3π and ∆ = (16/π)1/2εF /

√
kFas. Here, Eb is the pair binding

energy Eb = 1/ma2
s. On Fig. 2.31, we obtained two branches of quasiparticles. The upper
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Figure 2.31: Contour plot of the RF intensity in the plane of (Es,k) for Fermi
gases on the BEC-side (1/kFas = 1). The left panel is for the homogeneous
system while the right one is the experimentally realizable conditions with an
isotropic harmonic trap. The curve of maximum signal for fixed momentum
corresponds to the resonance condition which gives the energy dispersion the
single-particle excitation.

branch corresponds to the thermal excitations of single particle while the lower branch reflects
the excitation of molecules. The integrated RF signal over the momentum space is presented
in Fig 2.32.

Figure 2.32: RF spectral function after integrating over the momentum. This
distribution is calculated in the presence of the trap potential. This measure-
ment shows clearly the existence of two energy scales corresponding to the two
branches obtained in Fig. 2.31.



2.8 Conclusions and perspectives 57

2.8 Conclusions and perspectives

In conclusion, we have proposed a Raman spectroscopy technique which, analogously to
ARPES in solid-state physics, is able to probe the one-body Green’s function. Via various
illustrations from simple systems without interaction to strongly correlated systems, we have
shown that within Raman spectroscopy we can perform two possibles measurements. The first
one consists of measuring the Raman spectrum near the extinction threshold both in energy
resolved and momentum resolved. This measurement gives access to the quasiparticles just
near inside the Fermi surface thus provides directly the image of the Fermi surface. The
second measurement consists of performing the energy resolved Raman spectroscopy with a
fixed transfer momentum (or RF spectroscopy with zero transfer momentum). The time of
flight imaging of the excited cloud can help to reconstruct the Fermi surface of the interacting
system and understand the single particle excitations in all energy scale.

The problem of a harmonic trap which is encountered frequently in an ultracold atom ex-
periment is also discussed. We have shown that, the measured Raman signal in this condition
will be much more different from a homogeneous system. However, some main properties
of the quasiparticle excitations are still preserved. For example, the d-wave symmetry of
the pseudogap can be observed even with the presence of the harmonic trap. Within the
reasonable experimental condition, the experimental can be interpreted by the local density
approximation.

With the success of the first experiment of momentum resolved RF spectroscopy realized
in Jin’s group, we believe that this technique will play an important role in the experimental
characterization of the novel quantum states of matter that can be obtained with ultracold
atoms both in continuum and optical lattices such as the d-wave pseudogap phase, the phase
with preformed pairs or the phase with long-range order (the gapless superfluid in a polarized
fluid).
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The remarkable advances in handling ultracold atomic
gases have given birth to the new field of ‘‘condensed
matter physics with light and atoms.’’ Key issues in the
physics of strongly correlated quantum systems can be
addressed from a new perspective in this context. The
observation of the Mott transition of bosons in optical
lattices [1], the superfluidity of fermionic gases [2], and
the recent imaging of Fermi surfaces [3] have been impor-
tant milestones in this respect. Ultimately fermionic atoms
in optical lattices [4,5] could help in understanding some
outstanding problems of condensed matter physics, such as
high-temperature superconductivity. In this context, a key
issue is the nature of the low-energy excitations of low-
dimensional strongly interacting Fermi systems. There is
abundant experimental evidence that those are highly un-
conventional, departing from standard Fermi-liquid theory.

In this Letter, we study how to probe the one-particle
excitations of interacting ultracold fermionic atoms using
stimulated Raman spectroscopy. This technique has been
considered previously in the context of cold atomic gases,
as an outcoupling technique to produce an atom laser [6],
and also as a measurement technique for bosons [7–10]
and fermions [11,12]. Here, we demonstrate that this tech-
nique provides, for strongly interacting fermion gases, a
momentum-resolved access to key properties of the quasi-
particle excitations, such as their dispersion relation and
lifetime. It also allows for a determination of the Fermi
surface itself in strongly interacting regimes, whereas pre-
viously demonstrated methods [3] apply to the noninter-
acting case. Furthermore, it is shown that the suppression
of quasiparticles due to a pseudogap in the excitation
spectrum can also be detected by this method.

In a conventional Fermi liquid, low-energy excitations
are built out of quasiparticles [13]. Those are characterized
by their dispersion relation, i.e., the energy �k (measured
from the ground-state energy) necessary to create such an
excitation with (quasi)momentum k. The interacting sys-
tem possesses a Fermi surface (FS) defined by the location
in momentum space on which the excitation energy van-

ishes: �kF � 0. Close to a given point on the FS, the
quasiparticle energy vanishes as: �k � vF�kF� � �k�
kF� � � � � , with vF the local Fermi velocity (inversely
related to the effective mass). Quasiparticle excitations
have a finite lifetime ��1

k and are well defined provided
�k vanishes faster than �k as the FS is approached (�k �
�2

k in Fermi-liquid theory). In contrast, one-particle exci-
tations in the ‘‘normal’’ (i.e., nonsuperconducting) state of
the cuprate superconductors (SC) reveal strong deviations
from this behavior [14]. Reasonably well-defined quasi-
particle excitations only exist close to the diagonal direc-
tion of the Brillouin zone (the ‘‘nodal’’ direction along
which the d-wave gap vanishes in the SC phase), and
even there �k is rather large. Away from this direction
(in the ‘‘antinodal’’ region), excitations appear to be short-
lived and gapped already above the SC critical temperature
(the so-called pseudogap phenomenon). This momentum-
space differentiation is a key to the physics of cuprates.

Experiments probing directly nondiagonal one-particle
correlators h y�r; t� �r0; t0�i of a many-body system are
therefore highly desirable but also relatively scarce. Most
physical measurements indeed provide information on
two-particle correlators of the form h y�r; t� �r; t��
 y�r0; t0� �r0; t0�i [15]. Examples are neutron scattering
or transport measurements in the solid-state context [13]
and Bragg scattering [18] or noise correlations measure-
ments [19] in the cold atom context. For Bose systems with
a finite condensate density n0, the two-particle correlator is
closely related to the one-particle correlator via terms such
as n0h y�r; t� �r0; t0�i. By contrast, in Fermi systems, the
distinction between one- and two-particle correlators is
essential and specific measurement techniques of the for-
mer are requested.

In solids, angle-resolved photoemission spectroscopy
(ARPES) provides a direct probe of the one-particle spec-
trum [20], and has played a key role in revealing
momentum-space differentiation in cuprates [14]. It con-
sists in measuring the energy and momentum of electrons
emitted out of the solid exposed to an incident photon
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beam. In the simplest approximation, the emitted intensity
can be related to the single-electron spectral function, de-
fined at T � 0 and for !< 0, i.e., for holelike excitations
by A�k; !� �

P
njh�

N�1
n j kj�

N
0 ij

2��!��� En � E0�.
In this expression,  k is a destruction operator for an
electron with momentum k, �N

0 is the ground state of
the N-particle system, and �N�1

n are the eigenstates of
the system with one less particle. In a conventional Fermi
liquid, and for momenta close to the FS, the spectral
function can be separated [13] into a coherent quasiparticle
contribution and an incoherent contribution: A � AQP �

Ainc, with �AQP�k; !� ’ Zk�k=	�!� �k�
2 � �2

k
 and Ainc

widely spread in frequency. Only a finite fraction Zk < 1 of
the total spectral weight corresponds to long-lived quasi-
particle excitations.

In this Letter, we consider stimulated Raman spectros-
copy on a two-component mixture of ultracold fermionic
atoms in two internal states � and �0. Atoms are trans-
ferred from � into another internal state � � �;�0,
through an intermediate excited state �, using two laser
beams of wave vectors k1;2 and frequencies !1;2. If !1 is
sufficiently far from single photon resonance to the excited
� state, we can neglect spontaneous emission. Eliminating
the excited state, we write an effective Hamiltonian, V̂ �
C
R
dr y��r� ��r�ei�k1�k2��ray1a2 � H:c:, in which ay1 (a2)

denotes the creation (destruction) operator of a photon,
respectively, in mode 1 (2) and the constant C is propor-
tional to the product of the dipole matrix elements d�� and
d�� of the optical transitions and inversely proportional to
the detuning from the excited state.

The total transfer rate to state � can be calculated [7–9]
using the Fermi golden rule:
 

R�q;�� � jCj2n1�n2 � 1�
Z 1
�1

dt
Z
drdr0ei	�t�q��r�r0�


� g��r; r0; t�h �� �r; t� ��r0; 0�i: (1)

Here q � k1 � k2 and � � !1 �!2 �� with � the
chemical potential of the interacting gas and n1;2 the pho-
ton numbers present in the laser beams. Assuming that no
atoms are initially present in � and that the scattered atoms
in� do not interact with the atoms in the initial �;�0 states,
the free propagator for �-state atoms in vacuum is to be
taken: g��r; r0; t� � h0�j ��r; t� 

y
��r
0; 0�j0�i. The correla-

tion function entering (1) is proportional to the one-particle
Green function [21] h �� �r; t� ��r0; 0�i � �iG<

� �r0; r;�t�
of the strongly interacting Fermi system. For a uniform
system, the rate (1) can be related to the spectral function
A�k; !� of atoms in the internal state � by [8]

 R�q;�� /
Z
dknF�"k� ���A�k� q; "k� ���; (2)

in which the Green function has been expressed in terms of
the spectral function and the Fermi factor nF as [13]
G<
� �k; !� � inF�!�A�k; !�, and "k� is the band disper-

sion of �-state atoms.

In order to physically understand which information can
be extracted from a measurement of the rate (2), let us first
approximate the spectral function by A�k; !� �
��!� �k�, i.e., neglect the incoherent part and consider
quasiparticles with an infinite lifetime. The Raman rate
then reads at T � 0: R �

R
�k<0 dk��"k�q;� � �k ���.

Contributions to this integral come from momenta inside
the FS (�k < 0) which satisfy the Raman resonance con-
dition "k�q;� � �k � �. When the frequency shift � is
small, R vanishes since there is no available phase space
satisfying these constraints. The smallest frequency at
which a signal starts to be observed is �T � mink"k� �

"0
� [22]. This corresponds to a momentum transfer q �
�kF which lies itself on the FS (i.e., �kF

� 0) [23]. For �
very close to the extinction threshold (�� � ���T *

0), the region in momentum space inside which a sizable
transfer rate R is measured consists of a shell surround-
ing the FS, centered at a momentum q such that �� �

���q � vF�kF� � �q� kF�, and of width �qk �����������������
2M��
p

. In these expressions, M is the effective mass at
the bottom of the � band and vF is the Fermi velocity.

This analysis remains unchanged when considering qua-
siparticles with a finite lifetime ��1 (uniform along the
FS), the width of the momentum shell being simply re-
placed by �qk �

����������������
2M��
p

� �=vF. Hence, measuring the
Raman signal for � close to the extinction threshold �T
and sweeping over q provides a determination of the FS in
an interacting system (while the method of [3] applies to
noninteracting fermions). It also gives access to the veloc-
ity of quasiparticles (from the displacement of the mea-
sured signal as a function of �) and to their lifetime (from
the width of the momentum shell).

Examples of numerically simulated spectra for uniform
interacting systems are given in Figs. 1(a) and 1(b), where
a color intensity plot of the Raman rate (2) is shown for a
fixed value of the frequency shift close to threshold. In
1(a), we consider the case of a Lorentzian spectral function
centered around the free dispersion relation of a two-
dimensional square lattice: �k � �2t��coskx � cosky� �
�. In 1(b) a phenomenological form [24] of the spectral
function is used, which captures the main aspects of the
ARPES data in the non-SC (normal) state of high-
temperature superconductors. The key feature entering
this phenomenological form is a pseudogap with d-wave
symmetry �k � �0�coskx � cosky�, corresponding to a
depletion of low-energy excitations even when no long-
range SC order is present. �k vanishes along the zone
diagonal (nodes) and is maximum along �0; 0� � ��; 0�
(antinodes). A self-energy �2

k=�!� �k� is a convenient
modelization of this effect. In addition, finite lifetime
effects are introduced, resulting in the form �A�k;!��
�Im	!��k� i�1��2

k=�!��k� i�0�

�1. This corre-

sponds to a quasiparticle dispersion which is gapped out
except at the nodes. The width �k � �1 ��2

k�0=	�!�
�k�

2 � �2
0
 is largest near the antinodes. This form of
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A�k; !� also provides a reasonable qualitative description
of recent theoretical results for the two-dimensional
Hubbard model [25]. The momentum-space differentiation
encoded in the model spectral function is clearly visible in
Fig. 1(b), with nodal regions displaying quasiparticles
while antinodal ones are gapped out and short-lived. This
illustrates how the Raman spectroscopy method can be
used to determine the FS not only of a Fermi liquid but
also of a strongly interacting system with suppressed qua-
siparticles. In Fig. 2 we further show that the line shape of
the Raman signal for a fixed value of q does reveal the
essential features of the spectral function, namely, quasi-
particles at the nodes and a pseudogap at the antinodes.

Since most cold atom experiments are performed in a
trap, it is important to verify that the spatial inhomogeneity

does not spoil the predicted signatures. Within the local
density approximation, and assuming that the trap potential
only acts on the �;�0 states, the observed signal is the sum
of the contributions of the different points R of the trap,
with a local chemical potential �R � ��M!2

0R2=2.
The results are summarized in Figs. 1(c) and 1(d) for
physical situations such that the value of the chemical
potential at the trap center coincides with that of the
homogeneous system in Figs. 1(a) and 1(b). As expected,
the intensity map is now a superposition of the Fermi
surfaces corresponding to all the densities realized in the
trap. The outer shell delimited by the extinction of the
signal still gives a direct access to the FS corresponding
to the highest densities at the center of the trap. The typical
signatures of an unconventional state remain clearly visible
in the trap as well: in Fig. 1(d), the nodal-antinodal differ-
entiation is apparent in the outer shell of this plot, as seen
from the suppressed intensity along the antinodal direction.
A possible way of revealing the region around the Fermi
surface is to measure the intensity maps for two, slightly
different values of the frequency and/or the total atom
number, and then take their difference: the resulting dif-
ferential images for the trapped system (not shown) re-
cover the same qualitative features of the homogeneous
system shown in Figs. 1(a) and 1(b).

The discussion so far has assumed that it is possible to
repeat the measurement of the total rate R for several
different values of q. In some cases, a different scheme
with a momentum-selective detection of the scattered �
atoms may be instead favorable, quite similar to ARPES in
solids. A single value of q is used, and a time of flight
expansion of the � atoms cloud is performed (after sud-
denly turning off the trap and the lattice potential) in order
to reconstruct the momentum distribution of the atoms. As
shown in Fig. 3(a), the Raman resonance condition allows
for a selective addressing of the different regions in k by
tuning the frequency �. The number of Raman-scattered
atoms with final momentum k is proportional to the inte-
grand nF�"k� ���A�k� q; "k� ��� of (2). Figure 3(b)
shows that the resulting k-space intensity map is able to
reveal the details of the pseudogap physics, in particular, its
k dependence. By varying both � and q, Raman scattering
offers more possibilities for probing the system in a
momentum-selective way than microwave spectroscopy
techniques [26].

FIG. 2 (color online). Comparison be-
tween the spectral function A and the
Raman rate R=�� for two points in
momentum space indicated in Fig. 1. In
the nodal direction (N, left), the spec-
trum displays a quasiparticle peak, while
in the antinodal direction (A, right) a
depletion of the signal is observed at
low energy, corresponding to the pseu-
dogap.

qy
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−π 0 π
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FIG. 1 (color online). Intensity plots of the Raman rate
R�q;��, for � close to threshold �T (�� � 0:01t�). (a) Non-
interacting fermions on the homogeneous 2D square lattice with
density n� � 0:22 and a Lorentzian broadening of the spectral
function ��0:4t� uniform in k space. (b) Model d-wave pseu-
dogap state (see text), with �0�0:1t�, �0�0:05t�, �1�0:4t�.
The plot is for a hole-doped system (n� � 0:45) with a nearest
(t�) and next-nearest neighbor (t0�) hopping, with t0�=t� � �0:3
(typical for cuprates, but similar effects are expected also for
smaller jt0�=t�j). (c),(d) Same as (a) and (b) in the presence of a
harmonic trap (!0 � 0:02t�). The pseudogap and nodal-
antinodal differentiation are clearly visible in both (b) and (d).
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As a final point, we discuss some orders of magnitude
which are important for the actual feasibility of the experi-
ments proposed in this Letter. Specifically, we consider 6Li
atoms (see also Ref. [12]) in the two lowest hyperfine states
j�i � jIz � 1; m � �1=2i and j�0i � j0;�1=2i. The
coupling between these two states can be made very large
thanks to the Feshbach resonance at 834 G. On the other
hand, if we choose the final state of the Raman process to
be j�i � j1; 1=2iwith the same nuclear spin component as
�, the interaction of j�i with both j�i and j�0i is non-
resonant, corresponding to a low value of the scattering
length a�;� ’ a�0;� ’ 2:5 nm [27]. This yields a typical
scale for the interaction energy between an atom in �
and the background in �;�0 which is smaller than the
typical bandwidth, and hence negligible. Furthermore, tak-
ing typical values for the lattice wavelength �� 800 nm,
the atomic density 	� �2=��3, and the recoil velocity v�
h=�M�� of atoms in state �, we evaluate the collision rate
to be �c � 	
v� 102 s�1. The Raman detection se-
quence can therefore be performed in a time scale of the
order of a few milliseconds, yielding an energy resolution
in the 100 Hz range. Losses due to inelastic transitions
from state � have a rate �10�12 cm3 s�1 and can be
neglected on this time scale.

In summary, we have proposed a Raman spectroscopy
technique which, analogously to ARPES in solid-state
physics, is able to probe the one-body Green function.
This technique can be used to obtain information on the
Fermi surface, and on the quasiparticles (or absence
thereof) of a gas of fermionic atoms, even in strongly
correlated states. In the near future, this technique may
play an important role in the experimental characterization
of the novel quantum states of matter that can be obtained
with ultracold atoms in optical lattices.
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FIG. 3 (color online). (a) Color plot illustrating the selective
addressing of k space by a proper choice of � (cf. color scale on
the left). (b) Time of flight k map obtained by integrating the
Raman intensity for �� � ���T varied in the range
	2:4t�; 6:8t�
. The dispersion relation of the � atoms is taken
as "k��"

0
��2t��2�coskx�cosky� with t� � 1:5t� (note that

interactions will renormalize downwards the effective t� even if
bare values are equal). Parameters are as in Fig. 1(c) and q � 0.

PRL 98, 240402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
15 JUNE 2007

240402-4



Chapter 3

Many-body methods for models of
two-component fermionic mixtures

We describe the various mean-field techniques that will be used in the following to analyze
the properties of two-component fermionic mixtures confined in optical lattices. We begin by
discussing the Hubbard model and the possible phases that may occur. We then show that
for the weak-coupling regime of the model, a usual Hartree-Fock mean-field theory can be
applied by neglecting particle fluctuations. In the opposite limit of a very strong coupling,
we map the initial model to an effective spin model, which can be treated by classical mean-
field theory. At intermediate couplings, correlations cannot be neglected and the competition
between the kinetic and the interaction energy induces many fascinating effects. In this regime,
a simple description by static mean-field theory is not sufficient. More sophisticate methods
that fully treat quantum fluctuations are required for solving the many-body problem. We
present the slave-boson and the dynamical mean-field theory that are better suited to describe
this intermediate-coupling regime.
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66 Many-body methods for models of two-component fermionic mixtures

3.1 Hubbard model

3.1.1 Hubbard model for mixtures of ultracold fermionic atoms

Recent progress in experiments on fermionic mixtures has allowed to have a direct access to
many interesting properties of strongly correlated fermions. Thanks to the Feshbach reso-
nance, one can tune the s-wave interaction from the BCS to the BEC side, and even study
the universality of the unitary limit. With the introduction of an optical lattice, phenomena
related to solid state physics are observed as, for example, the BCS superfluid, the Mott insu-
lator, etc. Mixtures of two-component atoms with different masses (e.g. 6Li, 40K) introduce
an additional parameter, namely the difference between the hopping amplitudes associated
with each species in the optical lattice. As we have shown in Chapter 1, such a mixture of two
fermionic components can be expressed by an extended Hubbard model. In order to avoid
working directly in canonical ensemble with fixed atom number, we propose to study of the
ground state in the grand canonical ensemble then come back to the canonical system by the
Legendre transform (see Section 3.2.1).

H = −
∑

〈i,j,σ〉

(tσc
†
iσcjσ +H.c) + U

∑

i

ni↑ni↓ −
∑

iσ

µσniσ. (3.1)

Here, the spin index σ refers to the two different species. The first term of the model represents
the tunneling of the atoms on the lattice (the kinetic term), while the second represents the
local interaction when two atoms of different species meet on an identical site. µσ is the
chemical potential used to fix the atom number for the species σ. We introduce the new
variables µ = (µ↑+ µ↓)/2, h = (µ↑− µ↓)/2 which are the chemical potential and the effective
magnetic field, respectively. They are used to fix the total atom number for both species
n = n↑ + n↓ and the polarization p = n↑ − n↓ (population imbalance).

In experiments on ultracold atoms, the parameters of this model are very well controlled.
One can change the geometry or the dimensionality of the optical lattice by changing the
orientation of the laser beams. The hopping (tunneling parameter) for each species tσ/ERσ =
4π−1/2(V0σ/ERσ)3/4e−2(V0σ/ERσ)1/2 can also be controlled by the depth of the optical lattice
or by the intensity of the laser beams. The interaction strength is related to the scattering
length as by U/ER =

√
8/πaskL(V0/ER)3/4. Thus, it depends both on the scattering length

and on the depth of the lattice. In Fig. 3.1, we plot the hopping of the different species (6Li
and 40K) tσ and the interaction coupling U as a function of V0/ER. Defining the hopping
imbalance parameter as z = (t↑− t↓)/(t↑+ t↓), we can vary this quantity from z = 0 to z = 1
by changing the intensity of the optical lattice as shown in the right panel of Fig. 3.1.

The number of atoms of each species is fixed in the experiment and can be controlled
by various methods, for example by applying a radio-frequency (RF) pulse to add or extract
atoms of one species. Therefore, we can decide to study the problem as a function of the
filling. Two classes of mixture that one can consider are: (i) Mixtures with an equal number of
particles for both species (n↑ = n↓); (ii) Mixtures with a density imbalance (p = n↑−n↓ > 0).

3.1.2 Particle-hole transformation

Let us introduce here a particle-hole transformation of the Hubbard model that will turn out
to be very useful in the following in order to formulate different mean-field theories. As we will
see, the particle-hole transformation maps the model with attractive interactions (U < 0) to
a model with repulsive interactions (U > 0). In this section, we establish a dictionary for this
mapping. Assuming that the Hubbard model is defined on a bipartite lattice which consists
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Figure 3.1: Left panel: Hopping tσ and interspecies interaction strength U
for the mixture of 6Li and 40K as a function of the depth of the optical lattice
V0/ER. Right panel: Hopping imbalance parameter z as a function of V0/ER.

of two sublattices A and B, the particle-hole transformation is defined as follows
{
c†i↑ → d†i↑
c†i↓ → (−1)idi↓

where (−1)i = 1 when i ∈ A and (−1)i = −1 when i ∈ B. Hence, the number operator of
each species and the kinetic terms are transformed according to nc↑ → nd↑; nc↓ → 1 − nd↓
and c†i↓cj↓ → (−1)i+jdi↓d

†
j↓ = d†j↓di↓. Let us start with the attractive model in the grand

canonical ensemble

H = −
∑

〈i,j,σ〉

(tσc
†
iσcjσ +H.c)− |U |

∑

i

ni↑ni↓ −
∑

i

µ(ni − n)−
∑

i

h(pi − p). (3.2)

In this Hamiltonian, the chemical potential µ is used to fix the total number of atoms and
the effective magnetic field h is used to set the polarization. Applying the particle-hole
transformation described above, one obtains a new Hamiltonian with a repulsive interaction

H = −
∑

〈i,j,σ〉

(tσd
†
iσdjσ +H.c) + |U |

∑

i

ndi↑ndi↓ − h′
∑

i

(ndi − nd)− µ′
∑

i

(pdi − pd), (3.3)

where h′ = h + |U |/2, nd = 1 + p, µ′ = µ + |U |/2 and pd = n − 1. We can summarize this
transformation in a dictionary that expresses the correspondence of two models.

For example, let us focus on the negative-U model with n↑ = n↓ away from half-filling
(n↑ + n↓ = 1 + δ). We see that after the particle-hole transformation, this model is mapped
to a positive U model at half-filling in a magnetic field with a polarization p = δ.

3.1.3 Possible phases of the Hubbard model

In the following chapters, we will be interested in establishing the phase diagram of the
Hubbard model for different kind of mixtures of fermionic atoms. As we will show in this
chapter, the tools we use are all based on different mean-field theories and it is important
to know the phases that one might expect in order to formulate the mean-field equations
for each of them. The competition between the phases can then be addressed by comparing
their energy. Let us enumerate here the phases that we will consider. Note that phases
breaking a symmetry have a different interpretation in the original U < 0 model and after the
particle-hole transformation, therefore, we will discuss their realization in both frameworks.
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Model -|U| |U|

Creation operator ↑ c†i↑ d†i↑
Creation operator ↓ c†i↓ (−1)id†i↓
Number of particle ↑ nc↑ nd↑
Number of particle ↓ nc↓ 1− nd↓

Doping nc − 1 = δ pd
Polarization pc nd − 1 = δd

Chemical potential µ µ
′

= h+ |U |/2
External magnetic field h h

′
= µ+ |U |/2

Paring operator c†i↑c
†
i↓ (−1)i+1d†i↓di↑ = (−1)i+1S−di

Charge density c†i↑ci↑ + c†i↓ci↓ 1− (d†i↑di↑ − d
†
i↓di↓) ∝ −Szdi

Table 3.1: Particle-hole transformation mapping the U < 0 model onto the
U > 0 model.

Normal phase

The normal phase is a phase that does not spontaneously break any symmetry. It has the
same interpretation for U < 0 and U > 0. Even though it might look trivial, this phase is
already very rich in the Hubbard model. For example, let us consider the Hubbard model at
half-filling with positive coupling and no spin or hopping imbalance. It is now well-known
that in the weak-coupling regime the normal phase is a Fermi liquid while in the strong-
interaction regime (the atomic limit) we obtain an insulator. The origin of the insulator is
an effect driven by the strong correlations: When the on-site interaction U is big enough, the
many-body system tries to avoid configurations with double occupancies. As a consequence,
it becomes very difficult for a particle to move to a neighboring site, with energy cost of order
U (which is the gap in the spectral function). The competition between the kinetic and the
interaction energy generates a critical value of U where one finds a phase transition (the Mott
metal-insulator transition). Whenever we change the other parameters of the system such
as the temperature, the doping or the hopping imbalance, the physics driven from this Mott
transition becomes more and more interesting.

Charge-density wave (CDW) / Antiferromagnetism (AF)

Charge-density wave (U < 0): When the interaction is attractive, the CDW phase has a
ground state with a density modulation for both species. This phase is stabilized when it
is favorable to gain interaction energy by having ↑-atoms and ↓-atoms on the same sites
(Fig. 3.3). In the sketch 3.3, we see a the possible configuration of this phase with density
modulation of wave vector q = (π/a, . . . π/a).
Antiferromagnetism (U > 0): When the interaction is repulsive, the phase that corresponds
to the commensurate CDW is the antiferromagnetic phase. In this phase, the many-body
system stabilizes a state, where the densities of both species are modified in order to gain
interaction energy. The Fig. 3.4 shows a classical image of the antiferromagnetic state in a
cubic lattice which is stabilized by the positive spin exchange coupling.
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Figure 3.2: Phase diagram of half-filling Hubbard model in the plane (T,U)
obtained by DMFT. Above the red region (ordered phase at low temperature),
there is a first order phase transition from a Fermi liquid regime (weak coupling)
to a paramagnetic insulator (Mott insulator) below some critical temperature
Tc. Above this Tc, the phase transition becomes a crossover from a bad metal
to a bad insulator. Reprinted from Ref. [42]

Figure 3.3: Commensurate charge density wave. The left panel shows a con-
figuration of charge density wave with two particles every two lattice sites. The
right panel shows the density modulation in one direction.

Superfluid (SF) / In-plane spin-density wave (SDWxy)

Superfluid (U < 0): In the attractive model, one can also expect to stabilize a ground state
with superfluid long-rang order. In weak coupling, this phase (called the BCS phase) can
be explained by the formation of Cooper pairs with zero total momentum q = k1 + k2 = 0.
At low temperature, the pairs of fermions condensate in order to gain potential energy. In
the strong coupling limit instead, the particles of different species form local bosons which
become a Bose-Einstein condensate (BEC) at low temperatures. These states have a phase
coherence and are at the origin of the superfluidity.
In-plane spin-density wave (U > 0): The equivalent of the superfluid phase in the positive-U
language is the in-plane spin-density wave (SDWxy). In this phase there is an ordering of the
spins within the x − y plane [54]. We can write the spin ordering of this phase as 〈SxRi

〉 =
m cos q.Ri and 〈SyRi

〉 = ±m sin q.Ri. Here the choice of the sign + or - corresponds to the
sense of the rotation (i.e. a circular polarization in the clockwise rotation or counterclockwise
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Figure 3.4: Commensurate spin density wave-Antiferromagnetic phase. Left
panel shows the effective spin exchange coupling in the limit U � t. Right panel
shows the possible SDW (AF) configuration stabilized by the effective exchange
coupling J = 4t2/U .

Figure 3.5: Superfluidity with zero total momentum pairing. This figure shows
how the pairing changes across the BEC-BCS crossover. The left panel shows
the BEC superfluid of the effective local bosons. The right panel shows the
weak-coupling limit with the formation of the BCS superfluid with pairing at
large distances. The middle panel shows the unitary regime with pairing at
intermediate distances.

rotation). Within this thesis, we consider only the case of the commensurate spin density
wave corresponding to q = (π/a, . . . , π/a).

3.2 Hartree-Fock mean-field theory

As our objective is to study the model for mixtures of cold atoms with fixed atom numbers, we
briefly recall the Legendre transform which is very useful for switching from a grand-canonical
system with a fixed chemical potential to a canonical system with fixed number of atoms. We
then give a general introduction on the strategy of static Hartree-Fock mean-field theory. We
use this method to construct the framework for the mean-field study of the aforementioned
phases.
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3.2.1 Legendre transform

Let g(x) be a convex function (i.e. g”(x) > 0). The Legendre transform ḡ(p) of g(x) is defined
by

ḡ(p) = xp− g(x). (3.4)

Here x is a function of the variable p. x(p) is defined by the root of the equation: p =
∂g(x)/∂x. The condition of convexity is necessary for the existence of a unique solution x(p)
for all p ∈ [min g′(x),max g′(x)].

Another way to define the Legendre transform, which is the starting point of functional
mean-field theory, is to define the two-variable function

G(x, p) = xp− g(x), (3.5)

where g(x) is still supposed to be convex. Then the Legendre transform is ḡ(p) = G(x(p), p),
where x(p) is the stationary point of G(x, p) when p is fixed, i.e. x(p) is solution of the
equation

∂G(x, p)
∂x

= p− ∂g

∂x
= 0. (3.6)

In thermodynamics, we define couples of conjugated variables such as (P, V ), (T, S), (h,m),
(µ, n). In fact, in the thermodynamic limit, we can always determine one variable when the
other is given. Here we denote this couple as (x, p). Assuming that F (T, x) is the free energy
of the system when x is fixed, then its Legendre transform is G(T, p), the (Gibbs potential)
energy of the system for fixed p

G(T, p) = F (T, x(p)) + x(p)p. (3.7)

The reason for this transformation of the free energy is that we do not have the same Hamil-
tonian for the system when we fix different variables. For example, in the grand-canonical
ensemble we fix the chemical potential µ and the Hamiltonian is Ĥ = Ĥ0 − µN̂ , while the
Hamiltonian for the canonical ensemble (n is fixed) is simply Ĥ0.

Working directly with the canonical ensemble is very difficult, therefore the strategy is
that we work in the grand canonical ensemble (we get the free energy F (T, µ)) then we use
the Legendre transform to determine the free energy in the canonical ensemble (G(T, n)).
We must keep in mind the condition of validity, namely that the free energy is concave with
respect to µ

− ∂2F (T, µ)
∂µ2

=
∂n(µ)
∂µ

> 0. (3.8)

3.2.2 Mean-field theory strategy

As discussed above, all the phases except the normal phase break a symmetry that can be
characterized by an order parameter. Let us assume that we have a system in the canonical
ensemble (i.e. the number of particles is fixed) with an order parameter ∆ which corresponds
to the static average of the operator ϕ̂. For example, we have ϕ̂ = N−1

∑
k c
†
k+Qσckσ for a

charge-density-wave order or ϕ̂ = N−1
∑

k c
†
k↑c
†
−k↓ for the BCS-superfluid order. Within a

variational method, the ground state of the problem is found by fixing the mean value of the
number of particle per site to n, and then by optimizing the energy with respect to the value
of 〈ϕ̂〉 = ∆.
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General mean-field approach

From the Legendre transform ḡ(p) of a free energy g(x), we can construct a free-energy
functional G(x, p) of both variables (x,p). The Legendre transform is then determined by
is value at the stationary point. We do not need to impose any condition of convexity of
g(x), but the existence of the transformation depends on the invertibility of the stationary
equation. We present here a method that allows to construct this functional of the energy
with an initial Hamiltonian Ĥ. We define a Hamiltonian Âµ,ψ that realizes two conditions on
the mean values of the density and the order parameter with two Lagrange multipliers (µ, ψ)

Âµ,ψ = Ĥ −Nµ(n̂i − n)−Nψ(ϕ̂−∆). (3.9)

Its energy is obtained as a function of two couples of variables (µ, n) and (ψ,∆). This energy
has exactly the same form as the function G(x, p) constructed above

Ω[∆, n, ψ, µ] = − 1
Nβ

logTr(e−βÂµ,ψ) = F [ψ, µ] + µn+ ψ∆. (3.10)

Here, we have Ω[∆, n, ψ, µ] playing the same role as the function G(x, p) in the Legendre
transform. The stationary points of this function with respect to the two variables µ and ψ
will give the two constraints on the average values

∂Ω
∂µ

= n− 〈n̂〉ψ,µ = 0 and
∂Ω
∂ψ

= ∆− 〈ϕ̂〉ψ,µ = 0. (3.11)

These equations are reduced to two mean-field self-consistency equations n(ψ, µ) = n and
ϕ(ψ, µ) = ∆. If these relations are invertible, we get the functions µ = µ(∆, n) and ψ =
ψ(∆, n). Replacing these functions in the total energy, we get the energy of the system with
fixed density n and fixed order parameter ∆. This energy G(∆, n) = Ω[∆, n, ψ(∆, n), µ(∆, n)]
is the Legendre transform of free energy F [ψ, µ]

G(∆, n) = F [ψ(∆, n), µ(∆, n)] + µ(∆, n)n+ ψ(∆, n)∆. (3.12)

Until now, we have decided to compute the energy of a state whose particle number and
order parameter are fixed. In order to find which order parameter is the optimal one in
the canonical system, we have to minimize the energy G(∆, n) with respect to ∆. The gap
equation for fixed n reads dG(∆, n)/d∆ = 0.

Note that for the case of a Hubbard Hamiltonian Ĥ = Ĥ0 +U
∑

i ni↑ni↓, all the Lagrange
multipliers are functions of the interaction U because Ω[∆, µ, ψ, µ] depends on U . In addition,
the calculation of the energy is not trivial because of the non-quadratic interaction term.
Hence, in practice, we suppose that U is small enough to do a perturbation development of
all the functionals in powers of U (for more detail, see [45]).

Variational approach

Another strategy to do mean-field theory and which can help to overcome the difficulty of the
non-quadratic Hamiltonian is to use a variational method. Assuming that U is small enough
for neglecting the fluctuations, we approximate the Hamiltonian by a quadratic Hamiltonian
with a variational parameter ∆. The initial Ĥ is now approximated to the class of mean-field
Hamiltonians ĤMF , characterized by an order parameter ∆. The choice of the variational
parameter depends on the symmetry which we decide to break. This method is similar to
the method in which we consider subspaces of variational wave functions characterized by an
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order parameter. We apply the same construction of the general energy functional proposed
above for the mean-field Hamiltonian

Âµ = ĤMF −Nµ(n̂− n). (3.13)

We now have a similar problem as above, but with only one Lagrange multiplier µ and the
energy can be calculated easily for the quadratic Hamiltonian ĤMF . The total energy is

Ω[∆, n, µ] = −(Nβ)−1 logTr(e−βÂµ) = FMF [∆, µ] + µn, (3.14)

where F [∆, µ] is the free energy of the grand canonical Hamiltonian ĤMF −µn̂. The equation
of the stationary point (saddle point) of Ω[∆, n, µ] now reads

∂Ω
∂µ

= n− 〈n̂〉∆,µ = 0. (3.15)

From this equation, we can extract the relation n = n(∆, µ). If this relation can be inverted
we can then calculate the energy of the system with fixed number of particle n

GMF (∆, n) = Ω[∆, n, µ(∆, n)] = FMF [∆, µ(∆, n)] + µ(∆, n)n. (3.16)

By comparing this energy to the one obtained with the initial Hamiltonian, G(∆, n), we can
demonstrate that GMF (∆, n) is the first-order approximation in U of the true energy G(∆, n)
(this is demonstrated in [45])

G(∆, n) = GMF (∆, n) +O(U2). (3.17)

In order to determine the phase diagram of the system, we need to minimize this mean-field
energy with respect to ∆ for n fixed. This optimization leads to the gap equation

dG

d∆
=
∂F

∂∆
+
∂F

∂µ

∂µ

∂∆
+ n

∂µ

∂∆
. (3.18)

Inserting the condition of stationarity for the chemical potential ∂F/∂µ+ n = 0, we recover
the usual form of the gap equation

∂F [∆, µ(∆, n)]
∂∆

= 0. (3.19)

The ground state of a system with fixed number of particles and spontaneous broken symmetry
is determined by the set of self-consistency equations

∂F [∆, µ]
∂µ

+ n = 0 and
∂F [∆, µ]
∂∆

= 0. (3.20)

This is exactly the same gap equation as for the grand canonical ensemble, but here we do
not fix the chemical potential µ. The Lagrange multiplier µ is a free parameter given by the
equation µ = µ(∆, n).

Second-order versus first-order transition

Let us suppose that we consider the grand-canonical system at temperature T , with a fixed
chemical potential µ. In general, the gap equation can have several solutions and in particular
∆(T ) = 0, which corresponds to the normal phase without any long-range order. A typical
configuration of the free energy and of the gap for a second-order transition are shown in
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Figure 3.6: Typical energy and gap configurations in a second-order phase
transition. Left panel: Free energy F as a function of ∆. Right panel: Gap ∆
as a function of the temperature T . There is a second-order phase transition at
T = Tc. Reprinted from Ref. [86]

Figure 3.7: Typical energy and gap configurations for a first-order phase tran-
sition. Left panel: Free energy F as a function of ∆. Right panel: Gap ∆ as
a function of the temperature T . In a coexistence region around the critical
temperature Tc one can still stabilize solutions that are locally stable even if
they do not have the lowest energy. Reprinted from Ref. [86]

Fig. 3.6. For large temperatures, ∆(T ) = 0 is the only solution of the gap equation. When T
is lowered below the critical temperature Tc, the gap equation starts to have several solutions
and the ones with lowest energy have ∆ 6= 0. When the transition is second order, there is
no jump in ∆ at Tc.

The situation is different in a first-order transition, see Fig. 3.7. When the temperature
reaches T = Tc, the gap equation has three solution but they are not degenerate as would be
the case in a second-order transition. As a consequence, the optimal value for ∆ jumps when
T is below Tc. Note that there can be a coexistence region around Tc where some solutions
that are not energetically most favorable are still locally stable.

3.2.3 Mean-field theory for the BCS phase

The BCS theory for conventional superconductors at low temperatures, shows that the Hub-
bard model with an attractive interaction (U < 0) has a stable BCS ground state [9, 116].
Here, we present this BCS mean-field theory extending it to the more general case in which
there might be a density or a mass imbalance. The BCS ground state is characterized by
the formation of pairs of electrons with opposite spin and momentum (Cooper pair). In the
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variational approach, the ground state wave function has the form

|φ〉 =
∏

k

(uk + vkc
†
k↑c
†
−k↓)|0〉, (3.21)

where uk and vk are defined by the mean-field approximation. In the Hartree-Fock mean
field for the BCS phase, one only keeps the Hartree term in the channel with q = 0:
(|U |/N)

∑
k,k′ c

†
k↑ck↑c

†
k′↓ck′↓ and the term with k = −k′ in the "particle-particle" channel.

Within this approach, we decouple the interaction in a quadratic form by introducing the or-
der parameter ∆ = (|U |/N)

∑
k〈c
†
k↑c
†
k↓〉. The interaction can then be written in the following

form which neglects the fluctuations

|U |
N

∑

k,k′

c†k↑ck′↑c
†
−k↓c−k′↓ = ∆

∑

k

(c†k↑c
†
−k↓ + c−k↓ck↑)−

N∆2

|U | .

It is convenient to work with Nambu spinors ψ†k = (c†k↑, ck↓) to describe the superfluid phase.
Inserting the decoupled interaction in the initial Hamiltonian, we obtain the following mean-
field Hamiltonian for the BCS phase

HBCS =
∑

k

ψ†k

[
ξk↑ −∆
−∆ −ξk↓

]
ψk + E0 +N(µ↑n↑ + µ↓n↓) (3.22)

Here, ξkσ = εkσ − µ̃σ, µ = (µ↑ + µ↓)/2 and µ̃σ ≡ µ − Un−σ is the renormalized chemical
potential including the Hartree correction. The energy E0 =

∑
k ξk↓+N |U |n↑n↓+N∆2/|U |.

In this quadratic form, for a given value of the order parameter, we can easily diagonalize
this mean-field Hamiltonian. The diagonalization of 3.22 yields the Bogoliubov modes with
eigenvalues

E±k = ±(ξk↑ − ξk↓)/2 +
√

(ξk↑ + ξk↓)2/4 + ∆2.

The creation operators a†k and b†k corresponding to the two Bogoliubov branches E±k are
related to the original basis by

a†k = ukc
†
k↑ − vkc−k↓

b†k = ukc−k↑ + vkc
†
k↓

in which the normal and superfluid fractions are given by

u2
k, v

2
k =

1
2

(1± ξk↑ + ξk↓√
(ξk↑ + ξk↓)2 + 4∆2

).

Let us now rewrite the BCS mean-field Hamiltonian in the new diagonal basis of Bogoliubov
modes

ĤBCS =
∑

k

(E†ka
†
kak + E−k b

†
kbk) + EG +N(µ↑n↑ + µ↓n↓) (3.23)

where EG = N∆2/|U |+N |U |n↑n↓+
∑

k[(ξk↑+ ξk↓)v2
k − 2∆ukvk]. In order to obtain the free

energy as a function of the order parameter ∆, we follow the MFT strategy discussed above
and compute the partition function for the diagonalized Hamiltonian. This partition function
reads

Z[∆, nσ, µσ] =
∏

k

(1 + e−βE
+
k )(1 + e−βE

−
k )e−βEG−βN(µ↑n↑+µ↓n↓). (3.24)
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The grand potential is Ω[∆, nσ, µσ] = −β−1 logZ = F (∆, µσ) + N(µ↑n↑ + µ↓n↓) where
F (∆, µσ) is the free energy. In order to determine the ground state of the Hamiltonian, we look
for the extrema condition in the grand potential with respect to µσ′ and ∆. This optimization
leads to a set of self-consistency equations ∂F (∆, µσ)/∂µσ′+nσ′ = 0 and ∂F (∆, µσ)/∂∆ = 0.
These three equations yield the set of self-consistency equations for the filling, the density
imbalance and the gap equation, respectively

1
N

∑

k

(ξk↑ + ξk↓)[1− f(E+
k )− f(E−k )]√

(ξk↑ + ξk↓)2 + 4∆2
+ δ = 0 (3.25)

1
N

∑

k

[f(E+
k )− f(E−k )]− p = 0 (3.26)

1
N

∑

k

1− f(E+
k )− f(E−k )√

(ξk↑ + ξk↓)2 + 4∆2
=

1
|U | , (3.27)

where δ = n↑ + n↓ − 1 is the doping of the system away from half-filling and p = n↑ − n↓
is the density imbalance. At zero temperature T = 0, the energy of the ground state in the
canonical ensemble is simplified to

EBCS [∆, nσ, µσ] =
∑

k

[f(E+
k )E+

k + f(E−k )E−k ] + EG +N
∑

σ

µσnσ, (3.28)

where (µ,∆) is the solution of the self-consistency equations.

3.2.4 Mean-field theory for the CDW phase

As we have discussed above, a system with an attractive interaction might display a ground
state with CDW order [54]. We will only consider the commensurate order here, but the
incommensurate case could be addressed by an analysis of the linear response functions.
Analogously to the BCS mean field, we can decouple the interaction in the CDW channel
defined by the order parameter ∆σ = (|U |/N)

∑
k〈c
†
k+Qσckσ〉 with Q = (π, π, π). The in-

teraction term in the particle-hole channel can be rewritten by neglecting the fluctuations
as

|U |
N

∑

k,k′

c†k+Q↑ck↑c
†
k′↓ck′+Q↓ =

∑

k

(∆↓c
†
k+Q↑ck↑ + ∆↑c

†
k↓ck+Q↓)−

N∆↑∆↓
|U | .

Introducing the spinor ψ†kσ = (c†kσ, c
†
k+Qσ), and using the condition εk+Q,σ = −εk,σ to

compute the sum in the reduced Brillouin zone (RBZ), the mean-field Hamiltonian reads

HCDW =
∑

k∈RBZ,σ

ψ†kσ

[
εkσ − µ̃σ −∆σ̄

−∆σ̄ −εkσ − µ̃σ

]
ψkσ + E0, (3.29)

with E0 = N∆↑∆↓/|U | + N |U |n↑n↓. It is readily diagonalized, with eigenvalues: E±kσ =

±
√
ε2
kσ + ∆2

σ̄ − µ̃σ. Hence, we obtain the diagonalized Hamiltonian

HCDW = E0 +N(µ↑n↑ + µ↓n↓) +
∑

k∈RBZ,σ

(E+
kσa
†
kσakσ + E−kσb

†
kσbkσ). (3.30)

The partition function is easily computed from the free modes in the diagonalized Hamiltonian

Z[∆σ, nσ, µσ] =
∏

k∈RBZ,σ

(1 + e−βE
+
kσ)(1 + e−βE

−
kσ)e−βE0 . (3.31)
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As in the BCS case, the grand potential reads Ω[∆σ, nσ, µσ] = − 1
β logZ = F (∆σ, µσ) +

N(µ↑n↑ + µ↓n↓), where F (∆σ, µσ) is the free energy. The self-consistency equations are
obtained by minimizing the energy with respect to µ↑, µ↓ and ∆

1
N

∑

k∈RBZ

[f(E+
kσ) + f(E−kσ)] = nσ (3.32)

∆σ

N

∑

k∈RBZ

f(E−kσ̄)− f(E+
kσ̄)√

ε2
kσ̄ + ∆2

σ

=
∆σ̄

|U | . (3.33)

At zero temperature T = 0, the ground state energy for a system with a given number of
atoms for each species and an imbalance of density is

ECDW [∆σ, nσ, µσ] = E0 +
∑

σk∈RBZ

[f(E+
kσ)E+

kσ + f(E−kσ)E−kσ] +N
∑

σ

µσnσ, (3.34)

in which (∆σ, µσ) are solutions of the self-consistency equations.
We remind that in all the MFT of this section, both the densities and the order parameters

are treated self-consistently. In the next chapters, we will explain why this treatment gives a
more reliable physics and we will compare it with more sophisticated mean-field theories like
the slave-boson mean field theory and dynamical mean-field theory.

3.2.5 The density of states

When the lattice is cubic, the non-interacting band dispersion is given by εσk = −∑µ 2tσ cos kµ.
In the mean-field theories introduced above, summations over the momenta (k) of the Bril-
louin zone (BZ) frequently enter the self-consistency equations. In order simplify the calcula-
tions, we show here that it might be convenient to work with the density of the states (DOS),
which is the distribution of states in an infinitesimal window of energy of the non-interacting
system. The DOS is defined as

D(E) =
1
N

∑

k∈BZ

δ(E − εk) ≈ 1
(2π)d

∫

BZ
δ(E − εk)dkd. (3.35)

Using this quantity, the k-sum are replaced by an integration over the energies, weighted by
a density of states N−1

∑
k∈BZ . . . →

∫
D(E)dE . . . . In numerical calculations, using the

DOS can strongly reduce the computational time. In addition, some limits offer a simple rep-
resentation of the DOS. For example, in the limit of infinite dimensions, there is an analytical
form for the DOS. We can thus obtain some analytical or asymptotic results. In some rough
approximations, one can also treat the irrelevant part of the integral over the energy by a
simplified form of the DOS, while the relevant part is treated more carefully. This can help
to get a rapid guess for the physical properties without the loss of time due to a sophisticated
numerical calculation.

Within this thesis, we study models of fermionic mixture with different DOS. For the
2D, 3D and infinite dimensional cases, numerical results will be presented. For an analytical
understanding of problem, we propose to use the flat DOS

Dσ(ε) =
{

1/Wσ if ε ∈ [−Wσ/2,Wσ/2]
0 if ε /∈ [−Wσ/2,Wσ/2]

In general, this simple DOS does not estimate exactly the values of physical quantities such
as the gap, the critical temperature, the critical field, etc. However, it provides a qualitatively
good physical description of the models such as the phase transitions, the phase diagram, etc.
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3.3 Strong-coupling mean-field theory

The weak-coupling MFT is based on the decoupling of the interaction motivated by the
condition |U |/t � 1, which allows to neglect fluctuations. In the opposite limit |U |/t � 1,
a perturbation theory based on the development in powers of t/|U | is also possible. In the
following, we show that this degenerate perturbation theory can map the Hubbard model to
some well-known models which were already treated by mean-field theory.

3.3.1 Positive coupling (U > 0)

Limit of strong coupling at half-filling

Let us first consider the large repulsive-U limit at half-filling. In this limit (|U | � t), the
Hubbard model with t↑ = t↓ = t map onto a quantum Heisenberg spin model. Indeed,
when the interaction strength is big enough, the atoms tend to stay on the same lattice site.
They are distributed regularly over the lattice (one particle per site). In order to show the
mapping, we propose to consider the problem of two atoms on two sites. There are only four
possible configurations: i) one atom per site with two up-atoms, ii) one atom per site with
two down-atoms, iii) one atom per site with one up and one down (2-fold degenerate), iv)
two atoms (one up and one down) on one site and the other site empty (2-fold degenerate).
If there is no hoping (t = 0) then the three states i, ii, iii are eigenstates of energy 0 and the
last state is an eigenstate of energy U . When the hopping is small t� U , the tunneling term
of the Hamiltonian couples the two states iii and iv with an amplitude t. In this case, up and
down atoms can make a local move to the neighboring site and then hop back. This move
makes the antiferromagnetic (AF) configuration iii lower in energy by a amount of the order
of 2t2/U when compared to the ferromagnetic (F) configurations i and ii. By introducing
the spin-exchange coupling energy J = 4t2/U for the 1/2-spin model, we also find an energy
difference between an AF configuration and an F configuration of the order of 2t2/2.

In the extended Hubbard model, this result is slightly modified by the fact that there is
a mass imbalance. This mass imbalance induces an anisotropy of the AF spin coupling in
different directions. The effective model is now an XXZ model in an external field. This
external field is used to fix the imbalance of density.

H = J
∑

〈i,j〉

~Si. ~Sj + γJ
∑

〈i,j〉

Szi S
z
j − 2h

∑

i

(Szi −m), (3.36)

where the spin operators and the couplings are defined by ~S = 1/2c†α~σαβcβ , J = 4t↑t↓/U
and γ = (t↑ − t↓)2/2t↑t↓. Here, for the convenience of the spin model, we introduce the
magnetization m which measures the average value of the operator Sz. The magnetization
is related to the polarization simply by m = 〈Sz〉 = (n↑ − n↓)/2 = p/2. In order to study
the phase diagram of this model, we can use a classical spin mean-field approach. One can
then go beyond MFT using the spin-wave theory [5, 101] (see also Appendix A.1 for detailed
discussion).

The mean-field approach [101] amounts to treat the spin variables as classical. In order
to study the commensurate spin density wave ordering, we break the translation invariance
and consider a unit cell of two neighbor sites A and B. We define θA, θB as the orientations
of the spins on the two sites A and B, respectively (Fig. 3.8). The MFT strategy consists of
minimizing the total energy over the angles θA, θB. The energy per site reads

E =
Nζ

2
JS2 sin θA sin θB+

Nζ

2
J(1+γ)S2 cos θA cos θB−

Nh

2
(S(cos θA+cos θB)−2m). (3.37)
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Figure 3.8: Spin configuration on the two neighbor sites which belong two
sublattices A and B respectively. θA and θB are the orientation of spins on these
sites.

Here, ζ is the number of nearest neighbors of a site in the lattice and S = 1/2 is the spin of
the models. The spin configuration which minimizes the total energy with respect to h, θA, θB
must satisfy the mean-field equations ∂E/∂h = 0, ∂E/∂θA = 0 and ∂E/∂θB = 0, or

cos θA + cos θB =
2m
S

(3.38)

NzJS2

2
cos θA sin θB −

NzJ(1 + γ)S2

2
sin θA cos θB +

NhS

2
sin θA = 0 (3.39)

NzJS2

2
sin θA cos θB −

NzJ(1 + γ)S2

2
cos θA sin θB +

NhS

2
sin θB = 0. (3.40)

The solution of these equations gives the optimal value of the two angles θα and θβ . We now
define the two order parameters

∆AF =
1
N

∑

i

(−1)iSzi =
SzA − SzB

2
(3.41)

∆XY =
1
N

∑

i

(−1)iSxi =
SxA − SxB

2
. (3.42)

Here, ∆AF is the order parameter of the antiferromagnetic phase, while ∆XY is the order
parameter of the in-plane (XY ) SDW. In the presence of a fixed external field, the self-
consistency Eq. 3.39 and Eq. 3.40 become

sin
θA + θB

2

[
zJγS cos

θA + θB
2

− h cos
θA − θB

2

]
= 0 (3.43)

sin
θB − θA

2

[
zJ(2 + γ)S cos

θA − θB
2

− h cos
θA + θB

2

]
= 0. (3.44)

Limit of strong coupling away from half-filling

When the system is doped, the problem becomes more difficult. Even in the strong coupling
limit, similar arguments lead to a complicated model. In this case, localized atoms still
realize a spin-exchange interaction while the extra atoms (or holes) can move on this spin
background. The extended Hubbard model away from half-filling maps to a t−J model with
a spin-anisotropic coupling

H = −
∑

〈i,j,σ〉

(tσPc
†
iσcjσP +H.c) + J

∑

〈i,j〉

~Si. ~Sj + γJ
∑

〈i,j〉

Szi S
z
j , (3.45)
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in which the definitions of J , γ and ~S are the same as in the XXZ model and P is the
projector on the subspace with one particle per site. In this model, the first term describes
the dynamics of the extra atoms, while the last terms are used for the spin interaction just
as in the XXZ model. The isotropic t − J model has been studied with Schwinger-boson
mean-field theory and slave-fermion methods by Auerbach [8].

3.3.2 Negative coupling (U < 0)

Effective boson model for mixtures with the same density

We now consider the negative-U strong coupling MFT. As we have shown above, this model
can be mapped to the positive-U one via a particle-hole transformation. Here, when the
attractive interaction between the two species of atoms becomes strong enough, the species
form a bound state in order to gain potential energy. The model becomes an effective hard-core
boson model (with bound states formed by a pair of local fermions) with bosons b+i = c+

i↑ci↓.
When the mixture has the same density of both species, we obtain a effective model that only
has hard-core bosons [22]. The hopping of the atoms in the initial model induces an effective
hoping of the bosons tb = 4t2/U . The asymmetry of the hopping instead generates an effective
interaction between nearest-neighbor bosons V = 4γt2/U . The resulting Hamiltonian is

H = −
∑

〈i,j〉

tbb
+
i bj + V

∑

〈i,j〉

nbinbj + hard-core boson constraint. (3.46)

When there is no hopping imbalance, one obtains a gas of bosons in an optical lattice which
can condense in high dimensions (D=3) to the ground state of a Bose-Einstein condensate.

Effective boson-fermion mixture for the density imbalanced model

When the mixture presents a density imbalance, we recover a model with a boson-fermion
mixture. In this case, the available two species of atoms form hard-core bosons as above. The
extra fermions still keep their fermionic statistics and contribute to the fermionic part for the
total Hamiltonian

H =
∑

〈i,j〉

tσc
+
iσcjσ −

∑

〈i,j〉

tbb
+
i bj + V

∑

〈i,j〉

nbinbj + hard-core boson constraint. (3.47)

This model is relevant for a recent series of experiments on spin imbalanced mixtures realized
in the MIT group and in the Rice group.

3.4 Slave-boson mean-field theory

The Hartree-Fock mean-field theory is formulated around the non-interacting limit and ne-
glects all the quantum fluctuations. The validity of the theory is limited to the weak-coupling
regime where |U | � tσ. Here, we introduce another analytical approach, the slave-boson
mean-field theory which allows to extend the domain of validity of the mean-field approach.
A solid formalism of the slave-boson MFT has been recently given in [75]. For a matter of sim-
plicity, we use here the basic formalism that has first been introduced in the work of Kotliar
and Ruckenstein [71]. In order to further simplify the calculation, we only present the deriva-
tion of the mean-field equations for the model with no mass imbalance. The generalization
for a mass imbalanced system is straightforward.
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3.4.1 Formalism of the slave-boson mean-field theory

It is possible to develop the slave-boson mean-field theory directly for the negative-U Hub-
bard model, see Bulka et al [17]. However, we choose a different route and prefer to construct
the mean-field theory in the case of positive coupling and then apply the particle-hole trans-
formation to map it to the negative-U model [7, 108]. Let us recall that if, in the negative-U
case, the model has a polarization, then, in the positive coupling, it is doped with no external
magnetic field.

The basic idea of the slave boson mean-field approach is that in strongly-correlated sys-
tem, the process of hopping of particle is accompanied by a backflow of spin and charge
excitations of the medium. This effect is equivalent to the renormalization of mass for the
quasiparticles. This idea can be realized by representing the original Hamiltonian in a new
basis of quasiparticles with slave bosons which describe the effect of mass renormalization.
We define the for bosonic operators: e†, d†, p†↑, p

†
↓ which allow to compute the occupation

numbers in each of for possible states available for hopping process: |0〉, | ↑↓〉, | ↑〉, | ↓〉. In
the new enlarged space with bosons and quasiparticles, the creation operator becomes

c†iσ = z†iσf
†
iσ with ziσ = e†ipiσ + p†iσ̄di, (3.48)

and the Hamiltonian reads

HSB = −
∑

〈i,j〉σ

tσ(f †iσfjσz
†
iσzjσ + h.c) + U

∑

i

d†idi −
∑

i,σ

µ̃σ(d†idi + p†iσpiσ). (3.49)

Note that we are working in an enlarged space and therefore there is more than one way to
express the Hamiltonian in this new basis. We chose here the simplest way, and write the
local part of the Hamiltonian by in the boson basis. This simplifies the expression of the
Hamiltonian and gives very good control in some limits of the mean-field approximation. It is
always possible to write the Hamiltonian in a more complicated form. For instance, the part
with the chemical potential could be written as

∑
i µ̃σf

†
iσfiσz

†
iσziσ. Since we are working in

an enlarged space, one must impose the following constraints in order to recover the physical
subspace

p†i↑pi↑ + p†i↓pi↓ + e†iei + d†idi = 1 (3.50)

p†iσpiσ + d†idi = f †iσfiσ. (3.51)

With this construction of the slave-boson MFT, one does not recover the correct non-interacting
limit at the saddle-point approximation. As mentioned above, one has many ways to write
the Hamiltonian in the new basis. In order to correct this problem, we introduce a unitary
transformation on the boson ziσ which does not affect the construction of the enlarged space

z̃iσ = (1− d†idi − p
†
iσpiσ)−1/2ziσ(1− e†iei − p

†
iσ̄piσ̄)−1/2. (3.52)

Finally, the correct Hamiltonian including the constraints with the corresponding Lagrangian
multipliers λ0, λiσ is given by

HSB = −
∑

〈i,j〉σ

tσ(f †iσfjσz
†
iσzjσ + h.c) + U

∑

i

d†idi −
∑

i,σ

µ̃σ(d†idi + p†iσpiσ)

−
∑

i

λ0i(p
†
i↑pi↑ + p†i↓pi↓ + e†iei + d†idi − 1)−

∑

iσ

λσi(f
†
iσfiσ − p

†
iσpiσ − d

†
idi).
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Normal phase

In the normal phase, we preserve the translational invariance. Therefore, the slave bosons are
the same over the whole lattice: ei = e, di = d, piσ = pσ. In the system with spin symmetry
SU(2), we have the additional condition pσ = p.

Phase with long-range order

In the case of an isotropic hopping, the SU(2) spin symmetry is conserved. An SDWxy

order is equivalent to an antiferromagnetic order (SDWz). In order to be able to describe a
situation with a broken symmetry as well, we will extend the formalism of the slave bosons
on a bipartite lattice with two sublattices A (B). The four slave bosons and quasiparticles for
each sublattice are eA(B), dA(B), p↑A(B)p↓A(B), fA(B). We can restore the symmetry between
these two sublattices with

eA = eB = e, dA = dB = d, pσ = pσA = pσ̄B. (3.53)

The AF order parameter (staggered magnetization) is defined by

∆AF = p2
A↑ − p2

A↓ = p2
↑ − p2

↓. (3.54)

3.4.2 Saddle-point approximation

The simplest approximation that we can envisage is the saddle-point approximation which
consists in replacing the bosonic operators by their average value. We consider here the
case without hopping imbalance (z = 0) as an example. The result for case with hopping
imbalance case (z 6= 0) can be generalized straight forward. In addition, we suppose that the
system is homogeneous over each sublattice1: 〈φiA(B)〉 = 〈φA(B)〉 where φi = ei, di, pσi. We
then define q = 〈z̃iσ z̃jσ〉, the quasiparticle weight

q =
e2pAσpBσ + d2pAσ̄pBσ̄ + ed(e2pAσpBσ̄ + e2pAσ̄pBσ)

(1− d2 − p2
Aσ)−1/2(1− d2 − p2

Bσ)−1/2(1− e2 − p2
Aσ̄)−1/2(1− e2 − p2

Bσ̄)−1/2
. (3.55)

Using the symmetry of the two sublattices A and B, we have pσ = pAσ = pBσ̄, λσ = λAσ =
λBσ̄. Performing the Fourier transform in the reduced Brillouin zone and defining the spinor
ψ†k = (f †Ak, f

†
Bk), the Hamiltonian can be expressed in the following matrix form

HSB =
∑

k∈RBZ,σ
ψ†k

[
−λσ qεk
qεk −λσ̄

]
ψk + E0, (3.56)

with E0 = N(Ud2− λ0(p2
↑+ p2

↓+ e2 + d2) + λ↑(p2
↑+ d2) + λ↓(p2

↓+ d2)− µ̃(p2
↑+ p2

↓+ 2d2− 1)).
The sum is done over the half of the Brillouin zone. We define the new variables Λ =
(λ↑ + λ↓)/2, ∆ = (λ↑ − λ↓)/2. In this quadratic form, we can now easily diagonalize the

mean-field Hamiltonian and obtain the following eigenvalues E±kσ = ±
√
q2ε2

k + ∆2 − Λ. The
Hamiltonian in the diagonal basis now reads

HSB =
∑

k∈RBZ,σ
(E+

kσα
†
kσαkσ + E−kσβ

†
kσβkσ) + E0. (3.57)

1The translation invariance on each sublattice is preserved.
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The partition function can be evaluated Z =
∏
k∈RBZ,σ(1 + e−βE

+
kσ)(1 + e−βE

−
kσ)e−2βE0 . The

free energy is given by F = −β−1logZ and the self-consistency equations read

∂F

∂λ
= 0,

∂F

∂φ
= 0 (3.58)

where φ = e, d, pσ and λ = λ0, λσ. In order to simplify the calculation, we define the following
variables

∆AF = p2
↑ − p2

↓, δ = d2 − e2, Λ̃ = Λ/q, ∆̃ = ∆/q. (3.59)

With these new variables, we can simplify the expression of the energy E0 and the quasiparticle
weight

E0/N = Ud2 + Λ(1 + δ)− µ̃δ + ∆∆AF

q =
2(2d2 − δ)

√
(1 + δ − 2d2)2 −∆2

AF + 4d
√
d2 − δ(1 + δ − 2d2)

√
(1 + δ)2 −∆2

AF

√
(1− δ)2 −∆2

AF

.

After some algebra, we obtain the set of self-consistency equations for the Slave Bosons mean-
field theory

d2 − e2 = δ (3.60)
1
N

∑

k∈RBZ,σ
[f(E+

kσ) + f(E−kσ)] = 1 + δ (3.61)

1
N

∑

k∈RBZ,σ

qε2
k[f(E+

kσ)− f(E−kσ)]√
q2ε2

k + ∆2

∂q2

∂δ
+ Λ− µ̃ = 0 (3.62)

1
N

∑

k∈RBZ,σ

qε2
k[f(E+

kσ)− f(E−kσ)]√
q2ε2

k + ∆2

∂q2

∂∆AF
+ ∆ = 0 (3.63)

1
N

∑

k∈RBZ,σ

∆[f(E+
kσ)− f(E−kσ)]√
q2ε2

k + ∆2
+ ∆AF = 0 (3.64)

1
N

∑

k∈RBZ,σ

qε2
k[f(E+

kσ)− f(E−kσ)]√
q2ε2

k + ∆2

∂q2

∂d2
+ U = 0. (3.65)

At zero temperature T = 0, the energy of the ground state of the canonical system is given
by

EG[∆AF ,∆, δ] = E0 +
∑

k∈RBZ,σ
[E+

kσf(E+
kσ) + E−kσf(E−kσ)]. (3.66)

in which the order parameter ∆AF is the solution of the self-consistency equations. We
remark that within this analysis the normal phase corresponds to the case where there is
trivial solution ∆AF = 0. Therefore, the study on stability of the solutions of the self-
consistency equations gives directly the condition for the phase transition from the normal
phase to the phase AF phase.

3.5 Dynamical mean-field theory

Dynamical mean-filed theory (DMFT) is one of the most popular modern theoretical ap-
proaches designed to treat correlated fermions on a lattice [33, 43, 44]. The idea of the method
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is to extend the classical mean-field strategy to quantum systems, replacing static mean-field
averages by frequency-dependent (dynamical) objects. Just like classical mean-field theory,
DMFT freezes spatial correlations, but allows for an unbiased treatment of the dynamics. A
practical implementation of DMFT requires the self-consistent solution of a quantum impu-
rity model, i.e., a model of a single interacting site coupled to a bath that allows for quantum
fluctuations on the correlated site. In the mean-field spirit, a given site is representative of

Figure 3.9: DMFT schema in which we replace a lattice model by a model
with single site coupled to a self-consistent bath. Reprinted from Ref. [33]

any site of the original lattice. This correspondence is implemented via a self-consistency con-
dition which contains the information about the original lattice through its non-interacting
density of states. The self-consistency condition relates the frequency-dependent ‘Weiss field’
which describes the dynamics of the bath (analogous to the static Weiss field in the mean-field
theory of magnetism) Ĝ(iω) to the Green’s function of the correlated site [44].

In the normal phase, DMFT is able to describe a Mott metal-insulator transition. The
technique allows to address the strongly-correlated regime where the interaction is comparable
to the kinetic energy of the system (U ∼ t). For phases with long-range order, the advantage
of this method is that it gives a very good description of the BEC-BCS crossover when both
species have the same density [120]. It means that the off-diagonal order not only contains
the BCS channel which is relevant for weak coupling but also the condensation of bosons
formed by local fermionic pairs in the strong coupling limit. In addition, when the local
fluctuations are frozen by replacing frequency-dependent objects by their average value, one
recovers exactly the static mean-field description.

3.5.1 DMFT self-consistency equations

In order to keep the formalism easy, we will derive the self-consistency equations using the
cavity method for the model defined on an infinite-dimensional Bethe lattice. In this part,
we first discuss the DMFT of a normal phase without symmetry breaking. For the standard
Hubbard model, the partition function reads

Z =
∫ ∏

i

Dc†iσDciσe
−S[c†iσ ,ciσ ], (3.67)

where S[c†iσ, ciσ] is the action of the Hubbard Hamiltonian defined by

S[c†iσ, ciσ] =
∫ β

0
dτ
[∑

iσ

c†iσ(∂τ − µσ)ciσ −
∑

〈i,j〉σ

tijσc
†
iσcjσ + U

∑

i

ni↑ni↓

]
. (3.68)
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Figure 3.10: Illustration of the cavity method. The cavity is created in the full
lattice by removing a given site and its adjacent bonds. Reprinted from Ref. [44]

.

We divide the system in two parts: the site "0" and "the lattice without site 0". We then
integrate over all the degrees of freedom of the cavity in order to obtain the effective action

e−Seff [c†iσ ,ciσ ] =
∫ ∏

i 6=0

Dc†iσDciσe
−S[c†iσ ,ciσ ]. (3.69)

Therefore, the partition function can now be written as

Z =
∫
Dc†0σDc0σe

−Seff [c†iσ ,ciσ ]. (3.70)

In order to evaluate this expression, we divide the total action in three parts: S = S(0) +
∆S + S0. Here, S(0) is the action of the lattice with the cavity (this is the bath), S0 is the
action of the decoupled site "0" and ∆S is the action representing the hybridization of the
decoupled site with the bath. We have

S0 =
∫ β

0
dτ
(∑

σ

c†0σ(∂τ − µσ)c0σ + Un0↑n0↓

)

∆S = −
∫ β

0
dτ
∑

〈i,0〉σ

ti0σ(c†iσc0σ + h.c).

Here, we can define ηiσ = ti0σc0σ as a source which couples to c†iσ. Using the gaussian
integration, we obtain

Seff [c†0σ, c0σ] = S0 +
∞∑

n=1

∑

i1...jnσ

∫
η†i1σ . . . η

†
inσ
G

(0)
i1...jnσ

(τi1 . . . τjn)ηj1σ . . . ηjnσ + const. (3.71)

When we take the infinite-dimension limit (d→∞) and the Fourier transform, all terms of
order higher than 1 vanish and we get a very simple relation

Seff [c†0σ, c0σ] = S0 +
∑

σ

c†0σG−1
0σ (iωn)c0σ + Un0↑n0↓, (3.72)

where
G−1

0σ (iωn) = iωn + µσ −
∑

〈i,j〉σ

t0iσt0jσG
(0)
ijσ(iωn). (3.73)

In the Bethe lattice, the hopping t0iσ → t0iσ/
√
d is renormalized in order to have a non-

trivial physical limit when d → ∞. When the site "0" is removed, then G
(0)
ij = 0 with
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Figure 3.11: Bethe lattice (depicted here with connectivity z = 3). Reprinted
from Ref. [44]

i 6= j and Giiσ = Gσ because of the translational invariance. Finally, we have the following
self-consistency equation

G−1
0 (iωn) = iωn + µσ − t2σGσ(iωn). (3.74)

So far, we have discussed the main ideas of DMFT and established the self-consistency
equations. Although this theory turns the many-body problem into a much simpler version,
it still remains a complicated quantum problem to solve. An analytical solution within this
mean-field theory can only be obtained in some specific limits such as the atomic limit or the
Falicov-Kimball limit. Fortunately, the reduced problem with less degrees of freedom can be
solved using various numerical methods. The schema of the procedure to solve a one-band
Hubbard model within DMFT is shown in Fig. 3.12. We start with a guess for the non-

Figure 3.12: Schema of the DMFT iteration loop.

interacting Green’s function G0(iωn) which is enough to define the effective action of the local
impurity problem. Next, we solve this effective problem to get the local Green’s function
Gimp(iωn). The local self-energy is then obtained by Σ(iωn) = G−1

0 (iωn−Gimp(iωn. Inserting
this local Green’s function and its self-energy in the DMFT self-consistency equations, we
obtain a new guess Green’s function G0(iωn) for the next iteration. The solution is achieved
when these iterations converge. Finally, the different physical quantities are computed from
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the Green’s functions. As we are working on the imaginary Matsubara frequency axis, in
order to obtain the spectral function we need then to do an analytical continuation to the
real axis [117].

3.5.2 DMFT for phases with a broken symmetry

We now discuss the possibility to study phases with broken symmetries within DMFT [44].
We propose to divide our model into two classes: (i) the model with positive coupling and (ii)
the model with negative coupling. As discussed above, in the positive coupling limit we will
establish the framework to study the stability of the antiferromagnetic ground state, while in
the negative coupling regime, we will include both the CDW and SF order.

DMFT for the positive-U Hubbard model

Let us consider this model on a bipartite lattice with two sublattices A and B. In order
to study the phases with symmetry breaking, we introduce an external field to break the
translational invariance. The external magnetic field has a modulation over the lattice such
as to form an antiferromagnetic phase (AF)

h = hs
∑

iσ

eiQ.Ric†iσciσ with Q = (π, . . . π).

This way, we break the translation invariance of the lattice but we can restore it for an elemen-
tary cell with two sites (A,B). The external field added in the Hamiltonian just changes the
chemical potential on the two sublattices, therefore we can apply the DMFT self-consistency
equations obtained in the last section

G−1
0A(B)(iωn) = iωn + µσ ∓ σhs − t2GB(A)σ(iωn). (3.75)

We introduced the field h in order to break the translational symmetry, but we will set it to
zero in the actual calculation and obtain

G−1
A(B)0(iωn) = iωn + µσ − t2GB(A)σ(iωn). (3.76)

When the hopping is the same for both species and there is no external magnetic field, we
have an SU(2) spin rotational invariance. This symmetry is reduced when the field is non-
zero (when the translational symmetry is broken) and we have cA↑ → cB↓ or i ∈ A, σ → i ∈
B,−σ, which induces an additional relation on the Green’s function on the two sublattices
GAσ(iωn) = GB−σ(ωn). Finally, the self-consistency equation is simplified to

G−1
0 (iωn) = iωn + µσ − t2G−σ(iωn). (3.77)

DMFT for the negative-U Hubbard model

Instead of studying the Hubbard model in the positive coupling limit for the half-filled model,
we can also study directly the phases in the attractive model. In this case, the Hamiltonian
reads

H = −
∑

〈i,j〉

tσ(c†iσcjσ + h.c)− |U |
∑

i

ni↑ni↓ −
∑

i

µσc
†
iσciσ. (3.78)

We define the Nambu spinor ψ†i = (c†i↑, ci↓), and the Hamiltonian becomes

H = −
∑

〈i,j〉

(ψ†iTψj + h.c)− |U |
∑

i

ni↑ni↓ −
∑

i

ψ†iµψi + const, (3.79)
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where T and µ are diagonal matrices of the hopping and of the chemical potential for the
Nambu spinors. They are defined as

T =
[
t↑ 0
0 −t↓

]
, µ =

[
µ↑ 0
0 −µ↓

]
(3.80)

In this representation, the action of the Hamiltonian reads

S = −
∫ β

0
dτ
∑

〈i,o〉

(ψ†iTψo + h.c) +
∫ β

0
dτψ†o(∂τ − µ)ψo + |U |no↑no↓ + S(o), (3.81)

where S(o) is the action of the lattice without site "o". We define the Green’s function for
these Nambu spinors by

G(k, τ) = 〈Tτψk,τψ
†
k,0〉 =

[
〈Tτ ck↑(τ)c†k↑(0)〉 〈Tτ ck↑(τ)c−k↓(0)〉
〈Tτ c†−k↓(τ)ck↑(0)〉 〈Tτ c†−k↓(τ)c−k↓(0)〉

]
(3.82)

The Fourier transform yields

G(k, iωn) =
[
G↑(k, iωn) F (k, iωn)
F (k, iωn) −G↓(−k,−iωn)

]
(3.83)

As in the first part of DMFT, we calculate the effective action in the d → ∞ limit and we
have

Soeff =
∫ β

0
dτψ†o(∂τ − µ)ψo +

∑

〈ij,o〉

ψ†oT
+G

(o)
ij Tψo − |U |no↑no↓ + const. (3.84)

Again, we consider the Bethe lattice for simplicity and get the final result

Soeff = −
∑

iωn

ψ†o[iωn + µ− T+G(iωn)T ]ψo − |U |no↑no↓. (3.85)

Here G(iωn) is the Green’s function of the neighboring site. The self-consistency finally reads

G−1
A (iωn) = iωn + µ− TGB(iωn)T. (3.86)

The most difficult part in solving the DMFT equations comes from the quantum impurity
problem. Fortunately, many different techniques have been developed in order to treat the
physics of impurities embedded in a bath. In the context of this thesis, we will consider
the exact diagonalization (ED) solver that uses the Lanczos algorithm (see Appendix B.2)
and the continuous-time quantum Monte Carlo (CTQMC, see Ref. [122]) algorithm. The
exact diagonalization solver is geared at the zero-temperature problem, while the CTQMC
algorithm is able to address a wide range of temperatures (from high down to very low
temperatures).



Chapter 4

Mass-imbalanced mixtures in optical
lattices

In this chapter, we consider two-component fermionic mixtures confined in an optical lattice.
The two species have different masses and are subject to an attractive on-site coupling. Using
dynamical mean-field theory, we first establish the phase diagram as a function of the coupling
strength and mass imbalance. In order to have more insight into the weak-coupling regime,
we use a Hartree-Fock mean-field theory. We also address the strong-coupling limit with a
static mean-field theory and describe the ground state and its stability. Finally, we consider
the experimentally-relevant effect of a trapping potential. We include the trap by using the
local density approximation (LDA) and verify its validity by a Monte Carlo simulation in a
finite inhomogeneous system. The two methods show a very good agreement and reveal the
presence of a phase with spatial segregation between a superfluid and a charge density wave
phase.

89



90 Mass-imbalanced mixtures in optical lattices

4.1 Introduction

The remarkable advances in handling ultracold atomic gases have given birth to the new
field of “condensed matter physics with light and atoms”. Cold atoms in optical lattices,
with tunable and controllable parameters, have been studied in many different contexts (for
reviews, see [12, 58, 123]). Mixtures of two-component atoms with different masses (e.g
6Li, 40K) introduce an additional parameter, namely the difference between the hopping
amplitudes associated with each species in the optical lattice. This may affect the stability of
the possible quantum phases or even induce new ones. Recently, a phase diagram has been
worked out in the one-dimensional (1D) case [22] and in continuum models [78].

As discussed in Section 1.1.1, the mixture of two fermionic components in optical lattices
can be described by an extended Hubbard model. In this chapter we consider this model to
describe a mixture with mass imbalance. Under the conditions discussed in [31, 58, 121], the
mixture with mass imbalance is described by

H = −
∑

〈i,j〉,σ

tσ(c+
iσcjσ + h.c.) − |U|

∑

i

ni↑ni↓. (4.1)

Here, the (pseudo-) spin index σ refers to the two different species. Feshbach resonances
between 6Li and 40K have been investigated in the Innsbruck group (see Ref. [124]), and can
generate an attractive interaction (i.e. U < 0) with a tunable strength. To parametrize the
hopping imbalance we define the parameter z = (t↑−t↓)/(t↑+t↓). In the following, we consider
a bipartite optical lattice made of two interpenetrating (A,B) sublattices arranged such that
the neighbors of A sites are all of the B type and viceversa (this happens for instance in the
cubic lattice). In order to simplify the numerical calculation, we use a semi-circular density
of states (corresponding to the Bethe lattice) in order to approximate the 3D lattice [44].

We study the phase diagram of this model at zero temperature as a function of the
interaction strength and the hopping imbalance parameter (|U |, z). The number of atoms for
each species is well controlled in ultracold atom experiments. Here, we consider the case with
equal number of atoms for each species (n↑ = n↓) both at half-filling and away from half-
filling. In the following, the doping will be denoted by δ. We will establish a complete phase
diagram at zero temperature using the dynamical mean-field theory (DMFT). Then for some
special limits, we will use static mean-field theory to reach a better analytical understanding
of the physical properties. We also consider the experimentally relevant effect of the trap
potential, which is shown to induce a spatial segregation between a superfluid (SF) and a
charge density wave (CDW) phase. The effect of the trapping potential will be treated within
local-density approximation and compared to the result of Monte Carlo simulations.

4.2 Generic phase diagram obtained by dynamical mean-field
theory

Let us begin by presenting the DMFT phase diagram of the uniform system, displayed in
Fig. 4.1. When the fermions have the same mass (i.e. z = 0), the ground state is a superfluid
for all |U | (with a crossover from BCS to BEC as |U | is increased). In the weak-coupling
regime, the system is in a superfluid phase of Cooper pairs while in the strong coupling
regime, we have the condensation of hard-core local bosons. A competing ordering exists,
namely a charge density wave, considered here in the simplest (commensurate) case in which
the charge is modulated with an alternating pattern on the A and B sublattices. At half-
filling, i.e., when the number of fermions is equal to the number of lattice sites (〈n↑+n↓〉 = 1),
the SF and the CDW states are degenerate.
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Figure 4.1: Phase diagram of the uniform system in the (z, |U |) plane, ob-
tained from DMFT. Below the curves (displayed here for two doping levels
δ ≡ n − 1 = 0.1, 0.2), the SF is stable. Above the curves, the system is phase-
separated into a half-filled charge density wave and a SF. The arrows indicate
the analytical strong-coupling values. The dotted lines are the weak-coupling
mean-field approximation (see text). |U | is normalized to the bandwidth W of
(εk↑ + εk↓)/2 [29].

This no longer applies in the ‘doped’ system, in which the number of fermionic atoms
no longer coincides with the number of sites in the optical lattice: for equal masses, the SF
phase is stabilized by doping for all |U | , but a large mass imbalance may favor the CDW
phase over a SF state in which the Cooper pairs must be formed by fermions with different
mobilities [22]. Hence the SF/CDW competition becomes more interesting in the presence of
mass imbalance. As displayed in Fig. 4.1, we find that the uniform system has a SF ground-
state for all values of |U | as long as the mass imbalance z ≡ (t↑− t↓)/(t↑+ t↓) is smaller than
a limiting value zc (which depends on the average density). For z > zc, a (first-order) phase
boundary is crossed as |U | is increased, beyond which the uniform system undergoes a phase
separation (PS) between a doped SF and a half-filled CDW phase.

4.2.1 Determination of the phase diagram

This diagram has been obtained by comparing the energies of the different possible states
described above (see Section 3.1.3): normal, SF, CDW and phase separation in a canonical
ensemble (i.e. the total number of particles is fixed).

A normal ground state is never stable towards a superfluid phase at zero temperature
when there is equal number of particle for each species. For a weak attractive interaction be-
tween the fermionic species, the Fermi surface becomes unstable. A Bardeen-Cooper-Schrieffer
(BCS) ground state is stabilized with a pairing between species of opposite momentum near
their common Fermi surface. When the correlations are stronger, the species bind into local-
ized pairs and form a Bose-Einstein condensate (BEC) [119, 120].

At half-filling, the nesting of the Fermi surface favors the stabilization of the commensurate
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CDW phase. When the hoppings of both species are the same, this CDW phase has the
same energy as the SF phase. As soon as the hopping imbalance increases (i.e. one species
becomes less mobile), it is more difficult to form the superfluid phase with pairing and the
CDW becomes more favorable in energy. In the Falicov-Kimball limit (z = 1), the heavy
species is completely frozen on the lattice and therefore it is no longer possible to form a SF
phase, while the CDW phase is more stable because of the periodic charge distribution [40].
Therefore, at half-filling a CDW is always more stable than a SF phase when z 6= 0.

Figure 4.2: Construction of the phase separation (PS) between CDW and SF.
Left panel: the PS has a lower energy than the SF. Right panel: the SF phase
has a lower energy. In both panels, the gray line corresponds to the construction
of the PS phase with a fixed average doping δ0 as a function of the doping δ of
the SF phase. The point of tangency δ∗ corresponds to the critical doping at
which the phase transition between SF and PS occurs.

For a system away from half-filling, a configuration with a phase separation between the
CDW and the SF might have a lower energy than a pure SF state. This means that it is more
convenient to separate the system into a fraction 1− x with CDW order (at half-filling) and
a fraction x with a doped SF order (its doping is δ). The total average doping of the phase
separation is determined by δ0 = xδ. The optimal configuration is reached by minimizing
over x the expression EPS(x)(δ0) = (1 − x)ECDW + xESF (δ). These two conditions lead to
the determination of the PS by minimizing over the doping δ

EPS(δ0) = min
δ

[
(1− δ0

δ
)ECDW +

δ0

δ
ESF (δ)

]
. (4.2)

In practice, we will determine the energy of the superfluid phase for different doping ESF (δ).
The energy of the phase separation can be obtained by the construction shown in the Fig. 4.2.
In this figure, the gray line shows how to construct a PS with average doping δ0 (gray point)
from a CDW phase (red point) and a SF phase at fixed doping δ (blue point on the gray
line). The optimization of this energy over the doping variable δ defines a critical doping δ∗

corresponding to the point of contact of the tangent starting from ECDW to the curve ESF (δ).
For δ0 < δ∗, the optimal configuration of PS obtained by CDW and SF at critical doping
δ∗ has a lower energy than the SF phase (Fig. 4.2 left panel). When δ0 ≥ δ∗, the energy of
the optimal PS has zero volume of CDW, therefore the SF has a lower energy and it is the
stable ground state (Fig. 4.2 right panel). For each value of the interaction and the hopping
imbalance, we will obtain a value δ∗(U, z) which determines the phase transition from SF to
PS.
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4.2.2 Dynamical mean-field theory

We briefly recall the main result obtained in Chapter 3 for the DMFT method [20, 65, 73].
In order to describe the superconducting phase, we work with Nambu spinors ψ+ = (c+

↑ , c↓).
The key quantity in DMFT is the local (on-site) Green’s function at finite temperature:
Ĝ(τ) = 〈Tτψi(τ)ψ+

i (0)〉1. Here, τ is defined as the imaginary time and the Green’s function
Ĝ(τ) is antiperiodic of period 2β = 2/kBT because of the anticommutation for fermions. Its
Fourier transform for imaginary frequencies reads

Ĝ(iω) =
[
G↑(iω) F (iω)
F (iω) −G↓(−iω)

]
, (4.3)

where G(τ) = −〈Tτ c(τ)c†(0)〉 is the normal Green’s function on a given site, and F (τ) =
−〈Tτ c↑(τ)c↓(0)〉 is the anomalous Green’s function associated to superfluid order. The su-
perfluid order parameter is indeed given by ∆SF = 〈ci↑ci↓〉 = F (τ = 0) =

∑
ω F (iω). In the

case of a CDW state the local Green’s function takes different values (ĜA and ĜB) on the
two alternating sublattices A and B. The CDW order parameter is the difference of densities
on the two sublattices ∆CDW = 〈nA − nB〉. The self-consistency equations in DMFT for a
Bethe lattice reads

Ĝ−1
A(B)(iω) = iω 1̂ + µ̂− T̂ ĜB(A)(iω) T̂ , (4.4)

where 1̂ is the identity matrix, while T̂ = diag[t↑,−t↓] and µ̂ = diag[µ↑,−µ↓] are diagonal
matrices, whose elements are the half-bandwidths and the chemical potentials of the two
species.

Since we are able to study all the different broken-symmetry phases, the T = 0 phase
diagram is easily determined by comparing the energies of the different solutions [119, 120].
The energy is evaluated as

〈H〉 = 〈K〉 − |U |
∑

i

〈ni↑ni↓〉, (4.5)

where 〈K〉 is the kinetic part of the Hamiltonian. The expectation value of the interaction
term is easily computed through the calculation of the expectation value of

∑
i ni↑ni↓, while

the the kinetic energy in the SF and the CDW phases reads respectively

〈K〉SF = β−1
∑

ω,σ

t2
σ[G2

σ(σiω)− F2(iω)]

〈K〉CDW = β−1
∑

ω,σ

t2
σGAσ(iω)GBσ(iω).

Finally, the energy of the PS phase is computed by the Maxwell construction presented in the
last section. The ground state will be obtained by the comparison of energy between these
phases.

4.2.3 Superfluid phase

We perform the DMFT calculation at zero temperature T = 0 employing the exact diagonal-
ization solver (see Appendix B.2) for the phase with superfluid ordering. For a mixture with
hopping imbalance, we always find a converged solution for the superfluid phase with a non-
zero paring parameter determined from the off-diagonal Green’s function ∆SF =

∑
n F (iωn).

In order to determine the critical line of the phase transition as displayed in Fig. 4.1 (see

1Tτ is the time order product and defined as Tτc(τ)c†(τ ′) ≡ θ(τ − τ ′)c(τ)c†(τ ′)− θ(τ ′ − τ)c†(τ ′)c(τ).
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also [29]) for a fixed set of parameter (|U |, z) we compute the energy of the of the SF phase
for different doping EU,zSF (δ) (see Fig. 4.3). It can be very well fitted by the relation

EU,zSF (δ) ≈ EU,zSF (0) + c(z)δ2. (4.6)

As an example, in Fig. 4.3, we compute the energy curve EU,zSF (δ) versus δ for |U | = 1.5W
and z = 0.3. We obtained c(z) = 2.937W and EU,zSF (0) = −0.827W .

Figure 4.3: Energy of the superfluid phase versus doping δ within DMFT for
z = 0.3, |U |/W = 1.5.

In order to understand the physics of the SF phase, we look at the Green’s functions
Gσ(iωn) and F (iωn) (Fig. 4.4). From these quantities, we can compute the superfluid order
parameter and the doping for a given chemical potential. In Matsubara frequencies, we find
that the imaginary part of the Green’s function tends to zero when ωn → 0 (Fig. 4.4 left
panel) which is the signature of the gap in the spectral function. In order to measure the gap

Figure 4.4: Left panel: The imaginary part of the Green’s function in the
imaginary axes of Matsubara frequency. Right panel: The spectral function
obtained in DMFT with the exact diagonalization solver

of the SF phase, we compute the Green’s function in real frequency, then take the analytical
continuation to obtain the spectral function (Fig. 4.4 right panel). As the discrete Anderson
impurity model is truncated with a finite number of sites in the bath (ns ∼ 6−10), the spectral
function is represented by a set of discrete peaks. However, from this spectral function we
can directly measure the superfluid gap ∆G. Notice that in DMFT the gap in the spectral
function is not the same as the order parameter ∆SF , while these two quantities are imposed
to be the same in a static MFT treatment. In varying the doping parameter δ, we remark
that for very different interaction coupling, even in the strongly-correlated regime (|U | = 4D),
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the order parameter still respects the asymptotic behavior for small doping obtained in MFT
(Fig. 4.5 left panel)

∆SF = ∆0(1− δ2

2
) + o(δ4). (4.7)

Figure 4.5: Left panel: Relation between the order parameter ∆/∆0 and the
doping δ. It shows a good agreement with the fitting function 1− δ2/2 obtained
in static MFT. Right panel: Relation between the doping δ and the chemical
potential µ. It shows a good agreement with the renormalization of the quasi-
particle mass obtained in improved MFT by including the Fermi liquid effects.

We now compute the dependence of the doping on the external chemical potential. In
plotting this relation (Fig. 4.5 right panel), we see that the slope of these curves changes
when we vary the value of the interaction strength. This observation shows the effect of the
interaction on the effective mass of the quasiparticles.

4.2.4 Charge density wave phase

For the charge density wave, we set the pairing parameters of the bath in the ED solver to
zero ∆k = 0 (see discussion in the Appendix B.2), then iterate the DMFT procedure on
two neighboring sites belonging to two sublattices A and B. In contrast to the superfluid
solution which exists for any doping, a converged CDW solution is obtained only at half-
filling. We compute the energy of this phase as a function of the interaction and the hopping

z (hopping imbalance)
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Figure 4.6: Energy of the CDW phase obtained within DMFT for |U|=1.5W

imbalance. For a fixed interaction strength, this phase becomes energetically more favorable
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as the hopping imbalance increases (see Fig. 4.6). The reason for this energy gain is that
when the hopping imbalance is increased, the heavy species becomes less mobile and has a
larger CDW order parameter. This value goes to 0.5 when the heavy species is completely
frozen in the lattice (Fig. 4.7).

Figure 4.7: Order parameters of the up and down species in the CDW phase
obtained within DMFT. A different behavior is found for weak interactions (left
figure with |U |/W = 0.5) and at strong coupling (right figure |U |/W = 2).

Phase separation and critical line of phase transition

Solving DMFT with exact diagonalization, we only find a stable CDW solution at half-filling.
Away from half-filling we do not find a stable CDW phase. Later, in the analytical discussion
of the MFT solution, we will demonstrate that a stable CDW phase away from half-filling can
be found only very close to the Falicov-Kimball limit with small couplings. In this region, the
ED algorithm is not able to resolve low energy scales because of the discretized bath, making
it very difficult to capture this phase. For small and intermediate couplings, we can construct
the phase separation between the half-filled CDW and a doped SF. For instance, taking |U | =
1.5W , we determine the critical line of the phase transition δ∗(z) ≈

√
(EU,zSF (0)− EU,zCDW )/c(z)

as shown in Fig. 4.8. Repeating this calculation for different z, we then establish the relation
zc(δ).

Figure 4.8: Determination the critical point z(δ) for |U | = 1.5W . Left panel:
Critical value of the doping for z = 0.3 obtained by DMFT. Right panel: Rela-
tion z(δ).

Fig. 4.1 shows the phase diagram obtained within DMFT. For a better understanding,
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we can address different limits using analytical methods. For example, in the strong-coupling
regime, we can map our initial model to an effectiveXXZ spin model and apply various meth-
ods designed for Heisenberg-like models (MFT, Spin-wave theory etc). The weak-coupling
limit can be understood by the Hartree-Fock mean-field theory, neglecting the fluctuations.
Note that the limit which z = 1 is mapped to a Falicov-Kimball model, which has an analytical
solution within DMFT [40].

4.3 Strong-coupling regime, mapping on a spin model

In this section, we describe analytical mean-field calculations for the strong coupling which
help understanding the DMFT phase diagram established numerically. This strong-coupling
analysis holds for |U | � t↑, t↓. In order to analyze this limit, we find it useful to resort to
a particle-hole transformation that maps our negative-U model onto the positive-U Hubbard
model and work in the repulsive interaction framework. We emphasize that we are not
switching to truly repulsive interactions, but we simply exploit a mathematical property
to gain information on the physical system of interest. As shown in Chapter 3, under the
particle-hole mapping, our model is transformed, at large |U | � t↑, t↓, into an XXZ quantum
spin-1/2 model [22, 31]

H = J
∑

〈i,j〉

~Si. ~Sj + γJ
∑

〈i,j〉

Szi S
z
j − 2h

∑

i

Szi , (4.8)

where ~S ≡ 1
2d

+
α~σαβdβ , J = 4t↑t↓/|U | and γ = (t↑ − t↓)2/2t↑t↓ = 2z2/(1 − z2). Hence,

the mass imbalance turns into a spin exchange anisotropy. The effective magnetic field h
and the polarization p correspond respectively to the chemical potential µ − |U |/2 and the
doping δ in the original model. For convenience, we introduce the magnetization m = 〈Sz〉 =
(n↑−n↓)/2 = p/2. Therefore a magnetization m = p/2 in this model corresponds to half the
doping in the attractive model.

We use the results presented in Chapter 3 for the XXZ spin model to establish the phase
diagram in the strong positive-U limit and then switch to the negative coupling limit via
the particle-hole transformation. We remind the self-consistency equation of the mean-field
theory for the spin model

sin
θA + θB

2

[
zJγS cos

θA + θB
2

− h cos
θA − θB

2

]
= 0 (4.9)

sin
θB − θA

2

[
zJ(2 + γ)S cos

θA − θB
2

− h cos
θA + θB

2

]
= 0. (4.10)

We first consider the different solutions of the mean-field equations in an ensemble with
fixed magnetic field, then turn to the canonical ensemble with fixed polarization by the Leg-
endre transformation (see Chapter 3). The solution of these equations are the local extrema
of the free energy, therefore in order to obtain the true ground state (with lowest energy) we
need to compare the energy of the different solutions.

Ferromagnetic phase

A trivial solution of the equations is θA, θβ satisfying sin[(θA ± θB)/2] = 0. These equations
give θA = θB = 0 (or π) which is simply a ferromagnetic phase. This phase becomes a stable
solution only in the limit where the external field is strong enough to polarize all the spins.
The energy of this state simply reads FFM = NζJ(1 + γ)S2/2−NhS.
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Spin density wave in the XY plane (SDWXY )

This solution corresponds to the case where θA and θB satisfy the following equations

sin
θA + θB

2
= 0 (4.11)

zJ(2 + γ)S cos
θA − θB

2
− h cos

θA + θB
2

= 0. (4.12)

Therefore, we obtain θA = −θB and cos θA = h/zJ(2 + γ)S. The order parameters which are
defined in Section 3.3.1 can be estimated

m =
cos θA + cos θB

2
S =

h

zJ(2 + γ)

∆AF =
S

2
(cos θA − cos θB) = 0

∆XY =
S

2
(sin θA − sin θB) =

√
S2 − h2

z2J2(2 + γ)2
.

This phase has a non-zero total magnetization with a spin density wave order in the x − y
plane. The free energy of this local minimum reads

FXY = −NζJS
2

2
− Nh2

2ζJ(2 + γ)
. (4.13)

Normal phase

The third solution is the one satisfying the following equations

sin
θA − θB

2
= 0

zJγS cos
θA + θB

2
− h cos

θA − θB
2

= 0.

Thus, we obtain θA = θB and cos θA = h/ζJγS. Again, we compute the order parameters in
this case and obtain

m =
cos θA + cos θB

2
S =

h

zJγ

∆AF =
S

2
(cos θA − cos θB) = 0

∆XY =
S

2
(sin θA − sin θB) = 0.

In this case, the solution is a normal phase without any long rang order parameter. The free
energy of this phase reads: FN = NζJS2/2−Nh2/2ζJγ.

Antiferromagnetic phase (AF)

The fourth solution of the self-consistency equations is the one satisfying

h cos
θA − θB

2
= JSzγ cos

θA + θB
2

h cos
θA + θB

2
= JSz(2 + γ) cos

θA − θB
2

.
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There is a unique solution to these equations: θA = 0 and θB = π. This solution does
not depend on the magnitude of the external magnetic field. We can estimate the order
parameters in this case

m =
cos θA + cos θB

2
S = 0

∆AF =
S

2
(cos θA − cos θB) = S

∆XY =
S

2
(sin θA − sin θB) = 0.

This solution describes an antiferromagnetic phase with modulation of the density in the z
direction. The free energy of this AF phase is: FAF = −NζJ(1 + γ)S2/2

Phase diagram

Here, we study the spin model at zero temperature with an external magnetic field. In order
to determine the ground state of the system, we compare the energy of the four states above.
Let us first start with the energy comparison of the AF state and a SDWXY state

FAF − FXY = −NζJ(1 + γ)S2

2
+
NζJS2

2
+

Nh2

2ζJ(2 + γ)
. (4.14)

This equation gives a critical value for the external field hc = ζJS
√
γ(γ + 2). When h < hc

the stable state is one with AF order while h > hc the stable state is one with SDWXY

order. The relation between the magnetization and the external field is m = 0 for h < hc and
m = h/ζJ(2 + γ) for h > hc, see Fig. ??.

Figure 4.9: Curve of magnetization versus the magnetic field.

As discussed above, there is also a locally stable normal phase with magnetization m =
h/ζJγ. Within this normal phase, there is a critical field h∗ = ζJSγ < hc such that for
h < h∗ we obtain a polarized normal phase with m < S = 1/2 while for h > h∗ the system
becomes ferromagnetic with m = 1/2. Let us note that the energetic competition between
SDWxy and the ferromagnetic phase shows that the ferromagnetic phase is always unstable
except for strong enough external magnetic fields h > 2ζJS(2 +γ). Moreover, for any h < hc
the AF phase is always the most stable phase and therefore the normal phase is never stable.

We now consider the problem with fixed magnetization. The relation between the mag-
netization and the external field shows that, when h > hc or m > mc = Sγ/(γ + 2), we can
use the Legendre transform from the grand canonical system to the canonical system. So
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Figure 4.10: Left panel: phase diagram of the positive coupling model on the
plane (m,γ). Right panel: phase diagram of the negative coupling model on the
plane (δ,z).

for m > mc we have the SDWXY phase in the canonical system. When m < mc we can
only form a solution with phase separation. In this solution part of the system has AF order
without magnetization, and part has SDWXY order with magnetization. The phase diagram
of the XXZ model (see Fig. 4.10 left panel) can be summarized as follows

• p = 0 → AF phase.

• 0 < p < 2S
√
γ/(γ + 2) → phase separation between the AF order and the SDWXY

order.

• 2S
√
γ/(γ + 2) < p < 2S → SDWXY phase.

• p = 2S → ferromagnetic phase.

Let us come back to the original model in the negative limit via the particle-hole transfor-
mation. The phase diagram consists of the competition between the superfluid phase and the
phase separation of CDW and SF. We have a first order transition between SF and PS (see
Fig. 4.10 right panel). Within this classical mean-field treatment, we have shown that there
is a phase transition at zero temperature when the hopping imbalance parameter varies. The
critical value of the mass imbalance is zc = δ which is consistent with the value obtained in
the DMFT in the strong interaction regime. In order to further understand the low-energy
excitations, we can use the spin-wave approximation (see Appendix A.1).

4.4 Weak-coupling regime, Hartree-Fock mean-field theory

We now consider the problem of mass-imbalanced mixtures in the weak-coupling regime
(|U |/tσ � 1). In this limit, as shown in Chapter 3, we can ignore the quantum fluctuations and
solve the problem by Hartree-Fock mean-field theory. We will study the energetic competition
of the four potential candidates for the ground state which are the normal phase, the BCS
phase with Cooper pairs, the charge density wave phase and the phase separation between
the CDW phase and the BCS superfluid.
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4.4.1 BCS superfluid

First, we study the MFT equations for the conventional superfluid phase (BCS). As shown
in Chapter 3, the set of self-consistency equations read

δ = − 1
N

∑

k

ξk[1− f(E+
k )− f(E−k )]√

ξ2
k + ∆2

(4.15)

p =
1
N

∑

k

[f(E+
k )− f(E−k )] (4.16)

2∆
|U | =

1
N

∑

k

[1− f(E+
k )− f(E−k )]∆√
ξ2
k + ∆2

, (4.17)

where δ = n− 1 is the doping of the system away from half-filling, p is the polarization of the
system and the last self-consistency equation (Eq. 4.17) defines the superfluid order parameter
∆. Here f(E) is the Fermi-Dirac statistic distribution and N is the number of lattice sites.
E±k = ±(zεk − h̃) +

√
(εk − µ̃)2 + ∆2 are the eigenvalues of the BCS Hamiltonian defined in

the Section 3.2.3 (the Bogoliubov excitation modes). Within this MFT description, we have
included the Hartree corrections in the renormalized chemical potential µ̃ = µ − U(1 + δ)/4
and in the renormalized magnetic field h̃ = h − Up/4. We remind that µ = (µ↑ + µ↓)/2,
h = (µ↑ − µ↓)/2 are defined as the chemical potential and effective magnetic field.

We will prove that for the system with no polarization p = 0, the excitation spectrum of
the Bogoliubov modes must be gapped: E±(εk) > 0. From Eq. 4.16 the condition of equal
density induces that

∑
k f(E+

k ) =
∑

k f(E−k ). Let us solve the self-consistency equations
assuming that h̃ > 0 and, ad absurdum, that these two sums have non-zero values. At zero
temperature T = 0, we have f [E±(ε)] = 0 whenever E±(ε) > 0 and f [E±(ε)] = 1 whenever
E±(ε) < 0. Therefore, there is a domain of ε in which E±(ε) < 0. In fact, the inequality
E+(ε) < 0 gives the solution E1 < ε < min(E0, E2) while E−(ε) < 0 gives the solution
max(E0, E1) < ε < E2. Here, E0 = h̃/z while E1,2 is obtained by the condition E±(ε) = 0

E1,2 =
µ̃− h̃z ∓

√
(h̃− µ̃z)2 − (1− z2)∆2

1− z2
. (4.18)

When E0 > E1, E2, we deduce that f(E−k ) > 0 for all εk, thus
∑

k f(E−k ) = 0 and f(E+
k ) = 1

for E1 < εk < E2, thus
∑

k f(E−k ) > 0. Therefore, this case induces an imbalanced population
p > 0. By a similar argument, the other case E0 < E1, E2 induces a polarization p < 0. In
order to have a non-zero value for both sums

∑
k f(E±k ), we need to have E1 < E0 < E2.

This condition induces the following inequality: |h̃− µ̃z| < z
√

(h̃− µ̃z)2 − (1− z2)∆2 which
is impossible. Therefore, for the mixture without polarization at zero temperature, we have
E±k > 0 for every εk. From this condition, we can write the constraint on the external field

∆ > |h̃− zµ̃|/
√

1− z2. (4.19)

In the case without mass imbalance (z = 0), this condition simply requires that the external
field has to be smaller than the superfluid gap. In the general case, in order to be sure that
we always obtain a unpolarized system for any solution ∆ of the gap equation, we need to
impose the condition h̃− zµ̃ = 0 which is equivalent to a system with equal hoppings and no



102 Mass-imbalanced mixtures in optical lattices

external field. The self-consistency set of equations is simplified now and reads

δ = −
∫ ∞

−∞

(ε− µ̃)D(ε)√
(ε− µ̃)2 + ∆2

dε (4.20)

2∆
|U | =

∫ ∞

−∞

∆D(ε)dε√
(ε− µ̃)2 + ∆2

., (4.21)

where D(ε) is the density of states. At zero temperature, we can compute the energy of
the ground state in the canonical ensemble by applying the Legendre transform on the free
energy. The energy of the BCS ground state reads

E[∆, δ] = −N |U |
4

(1 + δ)2 − N∆2

|U | −N
∫ ∞

−∞

E(E − µ̃)D(E)dE√
(E − µ̃)2 + ∆2

. (4.22)

Let us consider now two possible cases when the system is at half-filling and away from
half-filling.

a. At half-filling, n↑ = n↓ = 1/2

At half-filling, the different sites are equally populated with one particle per site and δ = 0.
The trivial solution of the Eq. 4.20 is µ̃ = 0. The verification is very simple: the function
under the integration is odd when µ̃ = 0 and the DOS is symmetric with respect to zero.
Therefore, the real chemical potential at half-filling is µ = U/4. Inserting this result into
the gap equation (Eq. 4.21) and using a flat DOS, we obtain an analytical expression for the
order parameter

∆0 =
W

2sinh(W/|U |) . (4.23)

The energy difference between the BCS and the normal phase reads

EBCS − En ≡ E[∆0, δ = 0]− E[∆ = 0, δ = 0] = −∆2
0/2W. (4.24)

One can clearly see that, at weak coupling, the normal phase is unstable towards the BCS
superfluid phase for any attractive interaction.

b. Away from half-filling, n↑ = n↓ 6= 1/2

For a flat DOS, the Eq. 4.20 can still be solved analytically and it gives the dependence of
the renormalized chemical potential on the doping

Wδ =
√

(W/2 + µ̃)2 + ∆2 −
√

(W/2− µ̃)2 + ∆2. (4.25)

In the low doping limit, δ � 1 the above expression can be simplified to µ̃ = Wδ/2 =
µ− U(1 + δ)/4. Therefore, the doping reads

δ ≈ (2µ− U/2)/(W − U/2). (4.26)

We note that this result is in very good agreement with the mass renormalization effect
obtained within the DMFT calculation, see Fig. 4.5. Substituting this chemical potential into
the gap equation (Eq. 4.21), we obtain

2
|U | =

1
W

arcsinh
W (1 + δ)

2∆
+

1
W

arcsinh
W (1− δ)

2∆
. (4.27)
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Taking the Taylor development of Eq. 4.27 in the limit δ � 1, we derive a simple expression
for the order parameter2: ∆ = ∆0(1 − δ2/2) + O(δ4). The energy per site of the BCS state
compared to the initial normal state reads

EBCS − En ≡ E[∆, δ]− E[∆ = 0, δ] = −∆2/2W. (4.28)

Here, En = U(1 + δ)2/4 − W (1 − δ2)/4 and ∆ is the solution of the gap equation. This
BCS mean-field analysis shows that for a negative coupling, a superfluid phase with Cooper
pairing is always more stable than a normal phase.

4.4.2 Charge density wave

We now discuss the possibility to realize a phase with commensurate density modulation
using a flat density of states at zero temperature. The MFT study for this phase is more
complicated than the BCS phase considered in the previous discussion where we have found
a second-order transition from the normal state to the BCS phase (at U = 0). Here, even
for the mixture with the same mass (z = 0), we will show that there is a first-order phase
transition from the CDW phase to the normal phase. As soon as we tune the mass imbalance
parameter away from zero (z 6= 0), a richer physics appears within MFT, so that the phase
transition between the CDW phase and the normal phase becomes second order whenever z
is bigger than some critical value. Let us study the solutions of the self-consistency equations
and their stability.

We remind the filling equation and the gap equation obtained by MFT for the CDW phase
in Chapter 3

nσ =
1
N

∑

k∈RBZ

[f(E+
kσ) + f(E−kσ)] (4.29)

∆σ

|U | =
∆σ̄

N

∑

k∈RBZ

f(E−kσ)− f(E+
kσ)√

ε2
kσ + ∆2

σ̄

, (4.30)

where nσ and ∆σ are the populations and gaps for the different atomic species. E±kσ =

±
√
ε2
kσ + ∆2

σ̄−µ̃σ are the eigenvalues of the CDW mean-field Hamiltonian (see Section 3.2.4).
∆σ is the order parameter for the commensurate CDW3 for the species σ, while µ̃σ = µσ −
|U |(1 + δ)/4 is the renormalized chemical potential (due to the Fermi liquid effects). At zero
temperature, the Fermi-Dirac statistic distribution f(E) becomes a step function. We recall
that the system has the same filling for both species of atoms nσ = (1 + δ)/2.

Let us consider the particle-doped case with δ ≥ 0. In fact, when |µ̃σ| < ∆σ̄, we
have E+(ε) > 0 and E−(ε) < 0. Therefore, the system is at half-filling because nσ =
N−1

∑
RBZ f(E−kσ) = 1/2. In contrast, when µ̃σ > ∆σ̄, the system is doped (nσ > 1/2)

because the lower band E−k < 0 is completely filled (i.e f(E−kσ) = 1 for every k ∈ RBZ)
while the upper band E+

kσ must be partially filled. We have E+
kσ < 0 when εkσ satisfies

−
√
µ̃2
σ −∆2

σ̄ < εkσ < 0. We set ξσ =
√
µ̃2
σ −∆2

σ̄ and rewrite the set of self-consistency
equations (with a DOS) as

δ

2
=
∫ 0

−ξσ
Dσ(ε)dε (4.31)

∆σ

|U | =
∫ −ξσ
−∞

∆σ̄Dσ(ε)dε√
ε2 + ∆2

σ̄

. (4.32)

2In MFT, the order parameter is the same to the gap in spectral function.
3The charge density is modulated with wave vector q = (π, ..π).
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The energy of the CDW phase for the canonical system can be computed using the Legendre
transform. This energy reads

ECDW [∆σ, δ] =
N∆↑∆↓
|U | − N |U |(1 + δ)2

4
−N

∑

σ

∫ −ξσ
−∞

√
ε2 + ∆2

σ̄Dσ(ε)dε. (4.33)

Without loss of generality, we use a flat DOS to simplify the self-consistency equations. In
order to study the number of solutions of this equation, we propose to calculate the instability
of the normal state by imposing ∆σ = 0 in the gap equation. Hence, for a given value of the
doping δ, the renormalized chemical potential µ̃σ is simply µ̃σ = δWσ/2 = (1+σz)δW/2. We
obtain a condition on the interaction strength |U |. When the interaction strength |U | < |Uc|,
the normal phase is more stable than any CDW phase while when |U | > |Uc|, we start to
have CDW order in the mixture. The critical value Uc for the flat DOS is given by

1
U2

0

=
1

W 2(1− z2)
ln

2µ̃↑
W (1 + z)

ln
2µ̃↓

W (1− z) . (4.34)

a. Limit with mass balance z = 0

As an example, let us consider the case with z = 0, thus we recover the symmetry between
up and down species which leads to µ̃↑ = µ̃↓ = µ̃ and ∆↑ = ∆↓ = ∆. Using the flat DOS, the
gap equation now becomes

∆
|U | =

∆
W

arcsinh
W

2∆
for ∆ > µ̃ (4.35)

∆
|U | =

∆
W

[
arcsinh

W

2∆
− arcsinh

√
µ̃2 −∆2

∆

]
for ∆ < µ̃. (4.36)

The critical value for the interaction strength in this case simply reads Uc = W/ ln(2µ̃/W ).

Figure 4.11: The solution of the gap equation for the mass-balanced mixture
(z = 0) is obtained by finding the intersection between the curve ∆/|U | (the
blue dashed line) with the right-hand side (RHS) of the gap equation (the red
continuous line). Left panel: When |U | < |Uc|, there is only one solution ∆ = 0
corresponding to the normal phase. Right panel: When |U | > |Uc|, there are
three solutions ∆ = 0,∆∗,∆0. The solution in the middle corresponds to a local
maximum.

In order to study the solution of the gap equation, we plot the left-hand side (LHS) and the
right-hand side (RHS) of the gap equation and look for the intersection points. When the
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interaction is small |U | < |Uc|, the gap equation has only one solution ∆ = 0 (see Fig. 4.11,
left panel). In contrast, when |U | > |Uc|, we find in the right panel of Fig. 4.11 three points
of intersection corresponding to ∆ = 0 (the normal phase), ∆ = ∆∗ (a doped CDW) and
∆ = ∆0 (the CDW at half-filling). In fact, only ∆ = 0,∆0 are local minima for the energy.
The solution in the middle ∆ = ∆∗ corresponds to a local maximum of the energy and is
unstable. So the phase transition is obtained by comparing the energy of the normal state
and the half-filled CDW.

Let us now turn to the general case with mass imbalance (z 6= 0). As shown in the gap
equation above, whenever the gap (the CDW order parameter) is greater than the renormal-
ized chemical potential, the chemical potential is included in the gap and there is no way to
dope the system. Thus, we always obtain a solution of CDW at half-filling. However, when
the chemical potential is greater than the gap we can expect a doped CDW. The question is
whether such a solution is stable4. In order to understand the effect of the additional hopping
imbalance parameter z on the stability of this solution, we consider two cases:

b. At half-filling, n̄↑ = n̄↓ = 1/2 (z 6= 0)

At half-filling, the renormalized chemical potential µ̃σ is located inside the two dispersions
E±kσ thus f(E+

kσ) = 0, f(E−kσ) = 1 which means that the lower band is completely filled while
the upper band is empty. The gap equations for a flat DOS have a solution ∆0σ which satisfies

∆0σ

|U | =
∆0σ̄

Wσ
arcsinh

Wσ

2∆0σ̄
. (4.37)

In Fig. 4.12, we show the behavior of the CDW order parameter for both species at weak

Figure 4.12: Order parameters of the up and down species in the CDW phase
obtained within MFT. A different behavior is found for weak interactions (left
figure with |U |/W = 0.5) and at strong coupling (right figure |U |/W = 2)

coupling (|U | = 0.5W ) and at intermediate coupling (|U | = 2W ). We find that in both limits
the order parameter of the down atom (the heavy one) is monotonously increased when z
increases. When z goes to 1, ∆0↓/|U | goes to 1/2. In this limit, the atoms of the heavy species
are frozen on the lattice and distributed in a checkerboard pattern. The order parameter of
the light species is not the same for |U | = 0.5W and |U | = 2W . This result is in very good
agreement with the DMFT calculations (see Fig. 4.7) which indicates that the gaps ∆σ are
quite well estimated within MFT even at relatively strong coupling.

4In the case without mass imbalance, this doped CDW is always a local maximum and hence unstable.
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The energy of commensurate CDW at half-filling reads5

E0
CDW − E0

n ≡ E[∆0σ, δ = 0]− E[∆σ = 0, δ = 0] = −1
4

(∆2
0↑

W↑
+

∆2
0↓

W↓

)
. (4.38)

We clearly see that at zero temperature, for the system at half-filling, the normal phase is
always unstable towards the CDW phase.

c. Away from half-filling, n̄↑ = n̄↓ 6= 1/2 (z 6= 0)

Again without loss of generality, in order to study the analytical properties of the solution,
we use the integrable square DOS. The Eq. 4.31 reads

√
µ̃2
σ −∆2

σ̄ = δWσ/2, (4.39)

Substituting the relation 4.39 into the gap equations 4.32 and using the definition Wσ =
(1 + σz)W , we obtain

∆σ

(1− σz) =
|U |∆σ̄

(1− z2)W
(arcsh

(1 + σz)W
2∆σ̄

− arcsh
(1 + σz)δW

2∆σ̄
). (4.40)

Fig. 4.13 shows the solution of the gap equation for a strong hopping imbalance z = 0.9 and

Figure 4.13: Solution of the gap equation for the mass-imbalanced mixture
z = 0.9 and |U | = 0.2W . Left panel: The solution for the CDW order parameter
for the up atoms ∆1 = ∆↑/(1 − z). Right panel: The solution for CDW order
for the down-atom ∆2 = ∆↓/(1 + z).

a small interaction |U | = 0.2W . In this case, we have ∆↑ � ∆↓. We define new variables
in order to scale the order parameter of both species to a comparable order of magnitude:
∆1 = ∆↑/(1 − z) and ∆2 = ∆↓/(1 + z). In the figure, the solution is determined by the
intersection of the line ∆1(2) with the right-hand side of Eq. 4.40. In this case, the gap
equation has a stable doped-CDW solution and an unstable solution ∆σ = 0 corresponding
to the normal phase. The difference in energy per site between the doped-CDW phase and
the normal phase reads

ECDW−En ≡ E[∆σ, δ]−E[∆σ = 0, δ] = −
∑

σ

1− σz
4W

[√ ∆2
σ

(1− σz)2
+
W 2δ2

4
−Wδ

2

]2
. (4.41)

5We used the following formula to get the integral:
∫

E2dE√
E2+∆2

= E
2

√
E2 + ∆2 − ∆2

2
arcsh(E

∆
).
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Here, En = U(1 + δ)2/4 −W (1 − δ2)/4 is the energy of the normal phase with doping δ.
This energy comparison between the normal phase and the doped-CDW phase shows that
the normal phase is always an unstable state at zero temperature.

4.4.3 Phase separation, Maxwell construction

In the previous discussion on the doped CDW, we saw that structure of the solution of the gap
equation is very rich. Depending on the choice of the imbalance of hopping, we can stabilize
a phase with a doped-CDW order or not.

For small hopping imbalance, we saw that the gap equation does not have a stable doped-
CDW solution. In the grand canonical system, there are only two competing phases: the
superfluid phase and the CDW at half-filling. Indeed, we have shown that the normal phase
is always unstable towards a BCS superfluid phase within the MFT analysis for the BCS phase.
For ultracold atom system, the number of atoms is fixed and it may be more convenient to
separate the system into a fraction of CDW at half-filling and a doped-BCS phase. The
stable phase separated configuration is found by minimizing the total energy of the phase
over the volume ratio of these two parts (with a constraint on the total number of atoms in
the system).

On the contrary, in the strong hopping imbalance limit (z → 1), a doped-CDW solution
can be stabilized within MFT. In order to understand the phase transition from the PS at
small z � 1 to the stable doped CDW at strong hopping imbalance, we compute the energy
of these two states in both limits and compare them.

We suppose that the PS state is composed by a BCS part of volume xV and a half-filled
CDW part of volume (1− x)V . Then, the total energy of this phase reads

EPS(δ) = xEBCS(δ) + (1− x)E0
CDW , (4.42)

where δ is the doping of the BCS part and δ0 is the expected doping of our mixture. The
mixture must respect the condition of fixed number of atoms or the fixed doping xδ = δ0.
We can then minimize this total energy over the variable δ instead of x

EPS(δ) =
δ0

δ

[
En(δ)− ∆2

BCS

2W

]
+ (1− δ0

δ
)
[
En(0)− 1

4W
(

∆2
0↑

1− z +
∆2

0↓
1 + z

)
]
. (4.43)

The quantities ∆BCS ,∆0σ are the solutions of the gap equations for the BCS phase (Eq. 4.27)
and the half-filled CDW phase (Eq. 4.37). En(δ) = −|U |(1+δ)2/4−W (1−δ2)/4 is the energy
of the normal state with doping δ. In fact, in the limit δ � 1, we can take the Taylor expansion
of the BCS gap equation around δ = 0, and get the solution for the gap

∆BCS = ∆0(1− δ2

2
) +O(δ4), (4.44)

where ∆0 is the solution of the BCS gap equation for δ = 0. The optimal value of doping
which minimizes the above energy is

δ =
1
W

[ ∆2
0↑

1− z +
0∆2
↓

1 + z
− 2∆2

0

]1/2
,

and the optimal energy difference between the normal and the PS state reads

EPS − En(δ0) = −∆2
BCS

2W
− 1

4W

[
√

∆2
0↑

1− z +
∆2

0↓
1 + z

− 2∆2
0 − δ0W

]2
. (4.45)
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4.4.4 Hartree-Fock mean-field phase diagram

Before figuring out the phase diagram by making an energy comparison, we would like to
discuss the validity condition for the Hartree-Fock mean-field theory. The decoupling of the
local Hubbard interaction is correct if we can ignore the quantum fluctuations around the
mean value of the order parameter. This condition is valid only for small coupling strengths
|U | �W↑,W↓ (see [45]). In our notation, the unit of energy is (t↑ + t↓)/2 and we have

|U |/W↓ = |U |/(1− z)� 1 ⇒ |U | � (1− z) (4.46)

In the MFT phase diagram discussed below, we will extend the result to the strongly-
correlated regime, far from the validity of this theory.

Phase diagram at half-filling

At half-filling, in a mixture with the same mass for both species, it is well-known that there is
a degeneracy between the BCS and the CDW phase [54]. Under the effect of a mass imbalance,
we clearly see that the gap equation (Eq. 4.23) and the energy for the BCS phase (Eq. 4.24)
have no dependence on z, while the energy for the CDW phase (Eq. 4.38) is decreasing when
the asymmetry of the hopping gets bigger. Thus, we expect to have a CDW phase which is
more stable in energy whenever the hoppings of the two species are different. Comparing the
energies EBCS and ECDW we obtain

ECDW − EBCS = − 1
4W

[ ∆2
0↑

1− z +
∆2

0↓
1 + z

]
+

∆2
BCS

2W
. (4.47)

In Appendix A.3, we demonstrate the inequality ECDW −EBCS ≤ 0 for any ∆BCS and ∆0σ

that are solutions of the gap equations for the BCS phase (Eq. 4.23) and the CDW phase
(Eq. 4.37). In conclusion, the CDW phase is the dominating phase when U is negative (by
particle-hole symmetry, we have that the SDW in the z direction is also the dominating phase
when U is positive).

Phase diagram away from half-filling

Away from half-filling, there are three competing phases for the ground state: the BCS state,
the doped CDW and the phase separation between a doped-BCS superfluid and a half-filled
CDW phase. We compare the energy of these three states and figure out the phase diagram
as a function of the interaction strength |U |/W and the hopping imbalance z.

Competition between BCS and phase separation: Using the above calculation of the energy
of a phase separated state between a CDW and a BCS state, it is possible to find the transition
line between the BCS state and the PS state, by analyzing when the ratio of the BCS part
in the PS state goes from 1 to x < 1. Therefore, the transition line is given by δ = δ0 or

δ0W =

√
∆2

0↑
1− z +

∆2
0↓

1 + z
− 2∆2

0BCS . (4.48)

Here, ∆0σ is the solution of gap equation for the half-filled CDW phase (Eq. 4.37) and
∆0BCS = W/2sinh(W/|U |). This condition yields the transition line (the red line with tri-
angular symbols in Fig. 4.14) between the BCS superfluid phase and the PS between the
half-filled CDW and the superfluid. Below this line, the superfluid phase is energetically
more stable than the PS.
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Competition between doped CDW and BCS: The transition line between these two phases
is determined by the energetic comparison ∆E = ECDW − EBCS = 0. For a fixed doping δ,
we substitute the expressions of ECDW and EBCS obtained above and obtain

∆2
BCS −

δ2

2
− 1

2
(

∆2
↑

1 + z
+

∆2
↓

1− z ) +
∑

σ

δ

2

√
δ2(1 + σz)2

4
+ ∆2

σ = 0. (4.49)

Here, ∆BCS is the solution of the gap equation for the BCS phase (Eq. 4.27) and ∆σ is the
solution of the gap equation for the doped-CDW phase (Eq. 4.40). The numerical result of
energy competition between these two phases is represented by the black curve with circles in
Fig. 4.14 for δ = 0.05. Below the back curve the BCS superfluid phase is stable, while above
this curve the doped CDW has a lower energy.

z (hopping imbalance)
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Figure 4.14: Phase diagram for δ = 0.05 obtained by weak-coupling mean
field theory (its validity is questionable above the dotted line). For simplicity, a
square density of states was used here.

Competition between doped CDW and phase separation: Here, we consider the difference
in energy between the PS and the CDW phase: ∆E = EPS − ECDW . Substituting the two
expressions for the energy calculated above, we derive the transition line between the PS and
the doped-CDW phase

∆E = −∆2
BCS

2W
− 1

4W

[
√

∆2
0↑

1− z +
∆2

0↓
1 + z

− 2∆2
0 − δ0W

]2

+
∑

σ

1− σz
4W

[√ ∆2
σ

(1− σz)2
+
W 2δ2

4
− Wδ

2

]2
.

In this expression, the order parameter ∆0σ is obtained from the gap equation for the half-
filled CDW phase (Eq. 4.37), ∆σ is obtained from the gap equation for the doped-CDW phase
(Eq. 4.40) and ∆BCS is the solution of Eq. 4.27. The transition line between these two phases
is represented by the green curve in Fig. 4.14.

We recall that the weak-coupling mean-field is justified only when |U | . t↑, t↓, i.e.,
|U |/W . (1 − z). An indicative line (the dotted line in Fig. 4.14) defines a region below
which the weak-coupling static mean-field is reliable. In order to obtain the phase diagram,
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we performed a detailed comparison of the ground-state energies of three mean-field solutions:
the homogeneous SF, the phase separated SF/CDW phase, and the homogeneous CDW with
δ 6= 0 (when it exists). We first compared the ground-state energies of two mean-field solu-
tions: the homogeneous SF, and the SF/half-filled CDW phase-separated solution obtained
from a Maxwell construction. The resulting phase boundary (Fig. 4.1) is seen to be qualita-
tively reasonable, and even quantitatively accurate (in comparison to the numerical DMFT
result) for some intermediate range of z. For a strong hopping imbalance, the comparison
of the energy between these three phases yields a small region of parameters, for large z, in
which a doped CDW is stable.

Here, we obtained the phase diagram by looking at the state with lowest energy in a certain
range of parameters (|U |, z). Therefore, we do not know the nature of the phase transition
between the SF phase and the doped CDW. The nature of this phase transition could be
better understood by a more sophisticate mean-field approach allowing simultaneously for
both CDW and BCS orders (see Appendix A.2). Within this approach a different scenario
from a first-order transition could be realized. Namely CDW and BCS orders can coexist in
the same solution for some range of parameters, giving rise to a supersolid phase, which here
becomes favored by the presence of the underlying optical lattice.

4.5 Ultracold atoms in the presence of a harmonic potential

So far, we discussed the phase diagram of mass-imbalanced ultracold atoms in a homogeneous
system. In this section, we consider the effect produced by the harmonic potential due to the
magneto-optical trap (MOT) or due to the gaussian profile of the laser beam. This potential
can be understood as an added chemical potential which varies in real space. By particle-
hole transformation, we turn the attractive Hubbard model into an XXZ spin model with
strong positive coupling, where the external magnetic field varies in real space. In order to
understand the influence of the trap on the density profile and on the ground state, we propose
to apply a local-density approximation which is, in general, valid for smooth variations of the
trapping potential (see also Section 1.1.2). A full numerical minimization of the energy on a
finite system is finally computed using a Monte Carlo algorithm.

4.5.1 Local density approximation for the trapping potential

Above, we have seen that the phase diagram that one obtains in the strong-coupling limit is
actually quite generic at a qualitative level. This motivates us to consider this specific limit
in the following in order to simplify the calculations. Our aim is then to discuss the density
profile of the two species using the spin model obtain after particle-hole transformation. The
presence of the harmonic trap potential can be modeled by a magnetic field which favors the
spin down orientation, and has the form

h(r) = h− 1
2
mω2

hor
2,

where ωho is the frequency of the harmonic trap. Let R0 be the radius of the trap, we
define h0 = mω2

hoR
2
0/2. Therefore, the local magnetic field now reads h(r) = h − h0r

2/R2
0.

From the MFT for the homogeneous system, we see that when the magnetic field |h(r)| <
hc = JSζ

√
γ(γ + 2), we obtain a SDWz phase, otherwise we have a SDWxy phase. When

the average magnetization per site is m, the external magnetic field satisfies the condition
m =

∫
m(r)dr2/V . According to the polarization in the system, we have the following phases:



4.5 Ultracold atoms in the presence of a harmonic potential 111

Antiferromagnetism (CDW in the attractive model)

We can realize an antiferromagnetic phase (CDW in the attractive model) in the trap when the
system is at half-filling without polarization and the local magnetic field satisfies |h(r)| < hc.

Spin density wave XY (SF in the attractive model)

We consider now the case where the local magnetic field satisfies |h(r)| > hc for any position
in the trap. We have the two following situations:

• If we have h < −hc then h(r) < −hc for any r < R0. We obtain a configuration with only
the SDWxy phase (SF phase in the negative-coupling limit). The profile of the magnetic
field reads m(r) = h/2Jζ(γ+ 2). The condition on h is equivalent to a condition on the
average polarization m for which we obtain a SDWxy (SF): m < −(h0 +2hc)/2Jζ(γ+2)

• If h − h0 > hc then h(r) > hc for any r < R0. In this case, there is also a SDWxy

phase everywhere with the polarization profile m(r) = h/2Jζ(γ+ 2). In this phase, the
average value of the polarization satisfies m > (h0 + 2hc)/2Jζ(γ + 2).

Phase separation

Let us now consider the situation where the variation of the local magnetic field in the trap
induces a phase separation in real space. Depending on the total spin imbalance, we obtain
different situations of phase separation. We note that in the trap 0 < r < R0, the local
magnetic field h(r) = h− h0r

2/R2
0 satisfies h > h(r) > h− h0.

Figure 4.15: LDA calculation for the spatial phase separation configuration.
(a) The PS with SDWz in the center. (b) The PS with SDWxy in the center.
(c) The three shell structures.

• Phase separation with a SDWxy in the center: If we have h > h0 and |h − h0| < |hc|
(see Fig. 4.15, left panel), then there is a zero R1 = R0

√
(h− hc)/h0 for the equation

h(r) = hc. Therefore, the region in the center of the trap (r < R1) will be a SDWxy

phase, while in the exterior ring we obtain a SDWz. This case corresponds to the
polarization

max{0,− h0 − 2hc
2Jζ(γ + 2)

} < m <
h0 + 2hc

2Jζ(γ + 2)
.

• Phase separation with a SDWz in the center: If we have |h| < hc and h−h0 < −hc (see
Fig. 4.15, middle panel) then there is a solution R2 = R0

√
(h+ hc)/h0 for h(r) = −hc.

The region in the center of the trap r < R2 has a local magnetic field h(r) < −hc.
Therefore, a SDWz phase is present in the center of the trap while the exterior ring will
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be occupied by a SDWxy phase. This case corresponds to the condition on the average
polarization

− h0 + 2hc
2Jζ(γ + 2)

< m < min{0,− h0 − 2hc
2Jζ(γ + 2)

}.

• Phase separation with three shells structure: If we have h0 > 2hc (see Fig. 4.15, right
panel), there is a solution R1 for the equation h(r) = hc and a solution R2 for the
equation h(r) = −hc. In this case, we can obtain a more exotic phase with SDWz in
the region R1 < r < R2 and a SDWxy in the region r < R1 and r > R2. The condition
for the magnetization in this case reads

− h0 − 2hc
2Jζ(γ + 2)

< m <
h0 − 2hc

2Jζ(γ + 2)
.

4.5.2 Monte Carlo simulation for the Heisenberg model

We note that within the LDA approach, we obtained a sharp jump in the profile of the
polarization for the phase separated configurations, which means that there is sharp jump
in the density in the initial problem with negative coupling. The jump of the polarization
(resp. density) occurs at the frontier between the AF and SDWxy. In order to justify the
LDA calculation, we perform a Mont Carlo simulation for the classical Heisenberg model on
a finite size system. We concentrate here on the comparison between these two methods in
the case with a phase separation both in the 1D spin chain and in a 2D system.

In both cases, the numerical calculation shows a good agreement with the LDA approx-
imation. In the one-dimensional spin chain (Fig. 4.16), the comparison gives a very good
agreement despite the finite size of the Mont Carlo system. As shown in the DMFT phase
diagram, the phase transition between a SDWz and the phase separation is generic for any
coupling (only the critical value of the hopping imbalance is changed). Therefore, the density
profile of the PS phase at intermediate coupling in the presence of the harmonic trap will be
similar to the physics at strong coupling. For the system in two dimensions, we also obtain

Figure 4.16: Density profile obtained both by Monte Carlo and within the
LDA approximation for the 1D XXZ model.

three different configurations for the profile of the phases in the harmonic trap.

4.6 Conclusion

In this chapter, we have studied the phase diagram of mixtures of fermionic atoms with dif-
ferent masses confined in an optical lattice with an attractive interaction. In the case of equal
masses (z = 0), the system forms a stable superfluid state. As soon as the mass imbalance is
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Figure 4.17: Density profile obtained by Monte Carlo in the 2D XXZ model.

non-zero but still close to this limit, the system remains in a homogeneous superfluid phase.
When the anisotropy exceeds a given critical value, which depends on the density of fermions,
the system is a pure superfluid at weak-coupling, while increasing the coupling induces a
phase separation between a doped superfluid state and a commensurate charge density wave.
We note that, within the static mean-field including the Hartree correction, we find a small
window of parameters, close to the Falicov-Kimball limit, where the doped CDW becomes
stable.

When the harmonic trap potential is taken into account, the phase separation is actually
realized in different regions of the trap (for example the superfluid can be present in the
central region, while the charge density wave is confined to the outer part of the trap), with
rapid variations of the local density at the phase boundaries. We finally note that, in the
case of an 6Li/40K mixture, a simple estimate shows that the mass imbalance z can be varied
over a large range by changing the lattice depth V0/ER (z � 1 at small V0/ER and z ' 0.9
for V0/ER ' 15), so that the effects discussed in this work can actually be observed.
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I. INTRODUCTION

The remarkable advances in handling ultracold atomic
gases have given birth to the new field of “condensed matter
physics with light and atoms.” Cold atoms in optical lattices,
with tunable and controllable parameters, have been studied
in many different contexts �for reviews, see Ref. 1�. Mixtures
of two-component atoms with different masses �e.g., 6Li and
40K� introduce an additional parameter, namely, the differ-
ence between the hopping amplitudes associated with each
species in the optical lattice. This may affect the stability of
the possible quantum phases or even induce new ones. Re-
cently, a phase diagram has been worked out in the one-
dimensional �1D� case2 and in continuum models.3

In this paper, we consider such fermionic mixtures in
three dimensions, with an attractive on-site coupling. Using
analytical and numerical techniques, we establish a ground-
state phase diagram as a function of coupling strength and
mass imbalance, in all regimes of couplings. We also con-
sider the experimentally relevant effect of the trap potential,
which is shown to induce a spatial segregation between su-
perfluid and density-wave phases.

Under conditions discussed, e.g., in Refs. 1, 4, and 5,
fermionic mixtures are described by a Hubbard model,

H = − �
�i,j�,�

t��ci�
† cj� + H.c.� − �U��

i

ni↑ni↓. �1�

The �pseudo�spin index � refers to the two different species.
Feshbach resonances between 6Li and 40K are currently un-
der investigation,6 and it would allow for an attractive inter-
action with a tunable strength, as assumed in Eq. �1�. For an
example of heteroatomic resonances in the boson-fermion
case, see e.g., Ref. 7. In the following, we consider a bipar-
tite optical lattice made of two interpenetrating �A ,B� sublat-
tices arranged such that the neighbors of A sites are all of B
type and vice versa �this happens, for instance, in the cubic
lattice�. For simplicity, we consider an equal number of at-
oms for each species, leaving for future work the study of
imbalanced populations.

The paper is organized as follows: in Sec. II, we antici-
pate the phase diagram obtained by means of dynamical

mean field theory �DMFT�, and we introduce the DMFT
method itself; in Sec. III, we discuss the results of weak- and
strong-coupling static mean-field methods; in Sec. IV, we
consider the effect of the trapping potential within local den-
sity approximation; while Sec. V is dedicated to concluding
remarks.

II. GENERIC PHASE DIAGRAM AND DYNAMICAL
MEAN-FIELD THEORY

In order to study the zero temperature ground-state phase
diagram of model �1�, we use DMFT,8 together with analyti-
cal mean-field theory calculations for both weak and strong
couplings. Let us anticipate the DMFT phase diagram of the
uniform system, displayed in Fig. 1. When the fermions have
the same mass, the ground state is a superfluid �SF� for all
�U�. A competing ordering exists, namely, a charge-density
wave �CDW�, considered here in the simplest �commensu-
rate� case in which the charge is modulated with an alternat-
ing pattern on A and B sublattices. At half-filling, i.e., when
the number of fermions is equal to the number of lattice sites
��n↑+n↓�=1�, it is well known that the SF and CDW states
are degenerate. This no longer applies in the “doped” system,
in which the number of fermionic atoms no longer coincides
with the number of sites in the optical lattice; for equal
masses, the SF phase is stabilized by doping for all �U�, but a
large mass imbalance favors the CDW phase over a SF state
in which the Cooper pairs must be formed by fermions with
different mobilities.2 Hence, the SF/CDW competition be-
comes more interesting in the presence of mass imbalance.
As displayed in Fig. 1, we find that the uniform system has a
SF ground state for all values of �U� as long as the mass
imbalance z��t↑− t↓� / �t↑+ t↓� is smaller than a limiting value
zc �which depends on the average density�. For z�zc, a
�first-order� phase boundary is crossed as �U� is increased,
beyond which the uniform system undergoes a phase separa-
tion �PS� between a SF and a CDW phase. As discussed later
in this paper, this implies that, in the presence of a harmonic
trap, the CDW and SF phases may both exist in different
regions of the trap.
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DMFT is one of the most popular modern theoretical ap-
proaches designed to treat correlated fermions on a lattice.
The idea of the method is to extend to the quantum domain
the mean-field strategy by replacing the static mean-field av-
erages with frequency-dependent �dynamical� objects. Just
like classical mean-field theory, the method freezes the spa-
tial correlations, but the DMFT allows for an unbiased treat-
ment of the dynamics. A practical implementation of DMFT
requires the self-consistent solution of a quantum impurity
model, i.e., a model of a single interacting site coupled to a
bath that allows for quantum fluctuations on the correlated
site. In the mean-field spirit, the site is representative of any
site of the original lattice. This correspondence is imple-
mented via a self-consistency condition which contains in-
formation about the original lattice through the noninteract-
ing density of states. The self-consistency condition relates
the frequency-dependent “Weiss field” which describes the
dynamics of the bath �analogous to the static Weiss field in

mean-field theory of magnetism� Ĝ�i�� entering the effective
“impurity model” to the Green’s function.

The general form of the self-consistency equation �we
write it for simplicity for the normal metallic phase, but the
generalization to the broken-symmetry phases is straightfor-
ward� is

G�i�� =� d�
D���

i� + � − � − ��i��
, �2�

where ��i��=G−1�i��−G−1�i�� is the local self-energy and
D��� is the noninteracting density of states. For the case of a
semicircular density of states D���=2/	��D�	4t2−�2 with
bandwidth W=4t, this equation is greatly simplified, and it
becomes

G�i�� = i� + � − t2G�i�� . �3�

In this work, we use this density of states, which has been
shown to satisfactorily reproduce results in d=3 in the con-

text of solid state physics. For more details on DMFT, we
refer to Ref. 8.

A crucial property of DMFT is that it does not require any
assumption on the values of the coupling terms appearing in
the Hamiltonian, and it indeed becomes exact both in the
small interaction limit and in the strong interaction one. This
has been explicitly shown in DMFT studies of the attractive
Hubbard model with equal masses, where the crossover from
Bardeen-Cooper-Schrieffer superconductivity to Bose-
Einstein condensation of preformed pairs has been studied
both in the normal9 and the superconducting,10 and both the
limiting regimes are basically exactly reproduced.

To describe the superconducting phase, it is convenient to
work with Nambu’s spinors 	+= �c↑

+ ,c↓�. The key quantity in

DMFT is the local �on-site� Green’s function, Ĝ�
�
= �T
	i�
�	i

+�0��, and its Fourier transform for imaginary fre-
quencies is

Ĝ�i�� = 
G↑�i�� F�i��
F*�i�� − G↓�− i�� � , �4�

where G�
�=−�Tc�
�c†�0�� is the normal Green’s function on
a given site, and F�
�=−�Tc↑�
�c↓�0�� is the anomalous
Green’s function associated with superfluid ordering. The su-
perfluid order parameter is indeed given by �SF= �ci↑ci↓�
=F�
=0�=��F�i��.

In this work, we also consider the possibility of a CDW
state which establishes on our bipartite lattice. In this case,

the local Green’s function takes different values �ĜA and ĜB�
on the two alternating sublattices. The CDW order parameter
is the difference of densities on the two sublattices: �CDW
= �nA−nB�.

We can generalize the self-consistency of Eq. �3� to the
case where both SF and CDW are possible. The result is

ĜA�B�
−1 �i��= i�1̂+ �̂− T̂ĜB�A��i��T̂, in which T̂=diag�t↑ ,−t↓

z (hopping imbalance)
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FIG. 1. �Color online� Phase diagram of the
uniform system in the �z , �U�� plane obtained
from DMFT. Below the curves �displayed here
for two “doping” levels ��n−1=0.1,0.2�, the
SF is stable. Above the curves, the system is
phase separated into a half-filled CDW and a SF.
The arrows indicate the analytical strong-
coupling values. The dotted lines are the weak-
coupling mean-field approximation �see text�. �U�
is normalized to the bandwidth W of ��k↑
+�k↓� /2.
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and �̂=diag��↑ ,−�↓ are diagonal matrices, whose elements
are the half-bandwidths and the chemical potentials of the
two species.

Since we are able to study all the different broken-
symmetry phases, the T=0 phase diagram is easily deter-
mined by comparing the energies of the different solutions.
The energy is evaluated as �H�= �K�− �U ��i�ni↑ni↓�. The ex-
pectation value of the interaction term is easily computed
through the calculation of the expectation value of �ini↑ni↓,
while the kinetic energies �K� in the SF and CDW phases
read �K�SF=−1��,�t�

2�G�
2��i��−F2�i�� and �K�CDW

=−1��,�t�
2GA��i��GB��i��, respectively.

We performed DMFT calculations14 exploiting the non-
perturbative nature of DMFT to span the whole range of
coupling �U� and imbalance z. We focused on the vicinity of
half-filling and found the phase diagram of the uniform sys-
tem �Fig. 1� to be qualitatively independent on the “doping
level,” i.e., the relative difference between the number of
atoms and optical lattice sites, �= �n↑+n↓−1�. For small
enough values z�zc��� of the mass imbalance, a pure SF
solution is stable for all �U�. In contrast, for z�zc, the pure
SF phase is stable only for small interactions �below the line
drawn in Fig. 1�. Above this line �which depends on ��, the
pure SF solution becomes unstable toward phase separation
between a SF and a CDW phase. �Note that we did not find
a homogeneous CDW solution out of half-filling, except at
z=1�. This means that it is more convenient to separate the
system into a fraction 1−x with CDW order and �=0 and a
fraction x with SF order accommodating the rest of the par-
ticles. This conclusion is reached by minimizing over x the
expression EPS�x�= �1−x�ECDW+xESF. We note that the SF
phase is more stable than in the 1D case2 �in which nesting
favors a CDW with Q=2kF�. We underline that this diagram
has been obtained by comparing the energies of the different
possible states �normal, SF, and CDW�, and that a normal
ground state is never stable, either as a pure state or as one of
the phases in the case of phase separation. No solution with
coexistence of SF and CDW in the same homogeneous state
has, instead, been found.

III. MEAN FIELD THEORY ANALYSIS

A. Strong-coupling mean-field theory

In this section, we describe analytical mean-field calcula-
tions for both weak and strong couplings which help in un-
derstanding the DMFT phase diagram established numeri-
cally. We first present a strong-coupling analysis, which
holds for �U�� t↑ , t↓. In order to analyze this limit, we find it
useful to resort to a particle-hole transformation �Table I�
that maps our negative-U model onto the positive-U Hub-
bard model and work in the repulsive-U framework. We em-
phasize that we are not switching to truly repulsive interac-
tions, but we simply exploit a mathematical property to gain
information on the physical system of our interest. Under
this mapping, our model is transformed, at large �U � � t↑ , t↓,
into an XXZ quantum spin-1 /2 model:2,5

H = J�
�i,j�

Si
� · Sj

� + �J�
�i,j�

Si
zSj

z − h�
i

�2Si
z − m� , �5�

in which S� � 1
2d�

+�� �d, J=4t↑t↓ / �U�, and �= �t↑− t↓�2 /2t↑t↓
=2z2 / �1−z2�. Hence, the mass imbalance turns into a spin
exchange anisotropy. The uniform magnetic field h corre-
sponds to the original chemical potential �− �U� /2 and the
magnetization to the doping � �Table. I�. The mean-field
approach11 amounts for treating the spin variables as classi-
cal and minimizes the energy over the angles �A, �B describ-
ing the orientation of the spins in the two sublattices. The
energy per site reads �with � the lattice connectivity and
cA,B�cos �A,B and sA,B�sin �A,B�

E

N
=

�

8
JsAsB +

�

8
J�1 + ��cAcB −

h

2
�cA + cB − 2m . �6�

The phase diagram is characterized by the competition be-
tween the xy spin-density wave �SDWxy� with order param-
eter �xy = ��−1�iSi

x� �corresponding to SF ordering for U�0�,
and Néel order �SDWz� �z= ��−1�iSi

z� �corresponding to
CDW�. The solution changes according to the magnetization
m of the system �i.e., the doping of our physical model�. The
m vs h curve has a discontinuity of amplitude mc

=	� / ��+2�=z. For m=0 �half-filling �=0�, a SDWz �CDW�
state is obtained. For m� �mc ,1, the homogeneous SDW
SDWxy �SF� state is stable, while for 0�m�mc phase sepa-
ration takes place between the two types of ordering. Thus,
when working at fixed magnetization �corresponding to fixed
doping ��, one finds a SF for z�zc=m=� and phase separa-
tion for z�zc=�. This strong-coupling value �indicated by
arrows in Fig. 1� agrees very well with our DMFT results.

B. Weak-coupling mean-field theory

We now turn to the opposite weak-coupling limit. We de-
couple the interaction term in the SF and the CDW channels
and determine the regions of stability of each phase. We first
consider the BCS decoupling of the interaction, introducing
the order parameter �BCS= ��U� /N��k�ck↑

† ck↓
† � to make the

Hamiltonian quadratic. In Nambu formalism, it reads

HBCS = �
k

	k
†
 �k↑ − �BCS

− �BCS − �k↓
�	k + EG. �7�

Here, �̃���−Un−�, �k�=�k�− �̃�, and EG=�k�k↓
+N�U�n↑n↓+N�BCS

2 / �U�. The diagonalization of Eq. �7�

TABLE I. Particle-hole transformation mapping the U�0
model with �n↑�= �n↓� onto a half-filled U�0 model with a mag-
netic field.

−�U��0 �U��0

ci↑
+ , ci↓

+ di↑
+ , �−1�idi↓

nc↑, nc↓ nd↑, 1−nd↓
��nc−1= �nc↑+nc↓�−1 md= �nd↑−nd↓�
Chemical potential �c Field hd=�c− �U� /2

hc �d=hc+ �U� /2

SF: �ci↑
+ ci↓

+ � SDWxy: �−1�i�di↑
+ di↓�

CDW: �−1�i�n̂ci� SDWz: �−1�i�Sdi
z �

COMPETING SUPERFLUID AND DENSITY-WAVE GROUND-… PHYSICAL REVIEW B 76, 104517 �2007�

104517-3



yields the Bogoliubov modes with eigenvalues Ek
±= ± ��k↑

−�k↓� /2+	��k↑+�k↓�2 /4+�BCS
2 . Defining new variables �k

= ��k↑+�k↓� /2 and �̃= ��̃↑+ �̃↓� /2, the usual form of the BCS
gap equation is recovered. We can readily compute the en-
ergy of BCS phase, obtaining EBCS−En=−�BCS

2 /2W, which
tells us that the normal state is always unstable toward SF
ordering.

Analogously, we can decouple the interaction in the CDW
channel defined by the order parameter ��

= ��U� /N��k�ck+Q�
† ck�� with Q= �� ,� ,��. Introducing the

spinor 	k�
† = �ck�

† ,ck†Q�
† �, the mean-field Hamiltonian reads

HCDW = �
k�RBZ,�

	k�
† 
�k� − �̃� − ��

− �� − �k� − �̃�
�	k� + E0,

�8�

with E0=N�↑�↓ / �U�+N�U�n↑n↓. It is readily diagonalized,

with eigenvalues, Ek�
± = ±	�k�

2 +��
2 − �̃�. This yields the fol-

lowing two self-consistent conditions:

1

N
�

k�RBZ
�f�Ek�

+ � + f�Ek�
− � = n�,

��

N
�

k�RBZ

f�Ek
−� − f�Ek

+�
	�k�

2 + ��
2

=
�−�

�U�
. �9�

At a fixed value of the chemical potential, these CDW equa-
tions have the following solutions: �i� for all �U� and z, a
normal solution with �CDW=0, which is unstable toward SF;
�ii� for large enough �U�, a half-filled �commensurate� CDW;
and �iii� for large values of z close to 1, a homogeneous
CDW solution is also found with a density different from
unity ���0�.

We first compare the ground-state energies of the two
mean-field solutions: the homogeneous SF and the SF/half-
filled CDW phase-separated solution obtained from a Max-
well construction. The resulting phase boundary �Fig. 1� is
seen to be qualitatively reasonable and even quantitatively

accurate �in comparison to the numerical DMFT result� for
some intermediate range of z. Indeed, the weak-coupling
mean field is justified only when �U�� t↑ , t↓, i.e., �U� /W
� �1−z�.12 An indicative line below which weak-coupling
static mean field is reliable is shown in panel �b� of Fig. 3

In Fig. 2, we perform a more detailed comparison of the
ground-state energies of three mean-field solutions: the ho-
mogeneous SF, the phase-separated SF/CDW, and the homo-
geneous CDW with ��0 �when it exists�. This comparison
yields a small region of parameters, for large z, in which a
homogeneous CDW with a density different from one atom
per site is stable. The phase transition between SF and CDW
could be studied by a more sophisticate mean-field approach
allowing simultaneously for both CDW and BCS orders.
Within this approach, a different scenario from a first-order
transition can be realized. Namely, CDW and BCS orders
can coexist in the same solution for some range of param-
eters, giving rise to a supersolid phase, which here becomes
favored by the presence of the underlying optical lattice. In
light of the absence of a supersolid state in DMFT, we did
not consider this possibility in the weak-coupling mean-field
theory.

IV. LOCAL DENSITY APPROXIMATION
FOR THE HARMONIC TRAP POTENTIAL

We finally discuss the effect of the trap potential. For
simplicity, we perform an explicit calculation only in the
strong-coupling limit, using again the particle-hole transfor-
mation �Table I� and considering the effective spin model
�Eq. �5�. A harmonic trap potential yields a position-
dependent chemical potential which corresponds under the
particle-hole transformation to a spatially varying magnetic
field h�r�=h−h0r2 /R0

2. Here, R0 is the radius of the circular
trap, h0=m�0

2R0
2 /2, and h=�− �U� /2 is related to the chemi-

cal potential at the center of the trap, which must be adjusted
so that the local density n�r� integrates to the total number of
atoms. We start from a local density approximation �LDA�
and also compare with a Monte Carlo solution of the strong-

z (hopping imbalance)
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FIG. 2. �Color online� Phase diagram for �
=0.05 from weak-coupling mean field �whose va-
lidity is questionable above the dotted line� �see
text�. For simplicity, a square density of states
was used here.
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coupling model in the presence of h�r�. As described above,
the strong-coupling analysis of the uniform system yields a
critical magnetic field �chemical potential� at which m�h� is

discontinuous. For �h � �hc=J�	���+2�= 8z�

1−z2

t↑t↓
�U� , we have a

SDWz �CDW� phase; otherwise we have a SDWxy �SF�
phase. Within the LDA approximation, this implies that in a
region where �h�r�� is smaller �larger� than hc, we locally
observe SDWz /CDW ordering �SDWxy /SF�. According to
the values of the parameters h and h0, and noting that h
−h0�h�r��h, one finds several different regimes:

�i� h−h0�hc or h�−hc. The trap potential is always
larger than hc, or smaller than −hc, so that the system is in a
SDWxy �SF� phase everywhere inside the trap, and the den-
sity profile varies smoothly.

�ii� h�hc and �h−h0��hc. In this case, h�r��hc inside a
circle of radius R1=R0	�h−hc� /h0 centered at r=0. Hence,
one has phase separation into two distinct regions:
SDWxy�SF� ordering within this circle and SDWz�CDW� in
the outer ring �Fig. 3, left panel�.

�iii� h−h0�−hc and �h��hc. We find again phase separa-
tion with the opposite spatial arrangement. The SDWxy�SF�
part is stable out or a circle of radius R2=R0	�h+hc� /h0,
inside which there is a SDWz�CDW� phase �Fig. 3, middle
panel�.

�iv� h�hc and h−h0�−hc. Then, the magnetic field pro-
file crosses both hc and −hc, so that there are three spatial
regions: R�R1 where we find SDWxy�SF�, then the ring
R1�r�R2 where SDWz�CDW� establishes, and finally an
outer ring r�R2 with SDWxy�SF� ordering �Fig. 3, right
panel�.

In the three last cases ��ii�–�iv�, in which phase separa-
tion occurs, the LDA approximation predicts a jump of the
magnetization at the phase boundaries R1 and R2, corre-
sponding to a jump of the density in the original U�0 model
�see also Refs. 13�. In order to test this prediction and assess
the validity of LDA, we performed a classical Monte Carlo
simulation of model �Eq. �5� in the presence of a spatially

dependent field h�r�. For simplicity, this test was performed
in a one-dimensional geometry. We find a remarkable agree-
ment between the LDA density profiles and the Monte Carlo
solution, which confirms that very sharp variations of the
local density indeed takes place at the boundary between
domains in cases ��ii�–�iv�.

V. CONCLUSION

In this paper, we have studied the phase diagram of mix-
tures of fermionic atoms with different masses in a cubic
optical lattice in the case in which the interaction is attrac-
tive. For small values of the unbalance, the system remains
in a homogeneous superfluid phase, exactly as in the case of
equal masses. When the anisotropy exceeds a given critical
value, which depends on the density of fermions, the system
is a pure superfluid only in weak coupling, and increasing the
coupling determines a phase separation between a superfluid
state and a commensurate charge density wave, in which an
alternated pattern of atoms is observed. Once the harmonic
trap potential is taken into account, the phase separation is
actually realized in different regions of the trap �for example,
the superfluid can be present in the central region, while the
density wave is confined to the outer part of the trap�, with
rapid variations of the local density at the phase boundaries.
We note finally that, in the case of the 6Li/ 40K mixture, a
simple estimate shows that the mass imbalance z can be var-
ied over a large range by changing the lattice depth V0 /ER
�z�1 at small V0 /ER and z�0.9 for V0 /ER�15�, so that the
effects discussed in this work can indeed be actually observ-
able in these systems.
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FIG. 3. �Color online� Density
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tom panels�, as discussed in text.
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potential intersects the character-
istic values of the chemical poten-
tial in each case.
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Chapter 5

Density-imbalanced mixtures in
optical lattices

In this chapter, we consider a two-component fermionic mixture confined in a three dimen-
sional optical lattice. The mixtures interact via an on-site attractive coupling and have the
same mass but different densities. Using both static and dynamical mean-field theory, we es-
tablish the phase diagram as a function of temperature and density imbalance for weak- and
intermediate-coupling strengths. We focus mainly on the stability of the polarized superfluid
phase, a uniform phase where both superfluidity and a finite polarization coexist. We show
that at weak coupling both techniques yield very similar results and that at low temperatures,
the polarized superfluid phase is unstable against a phase separation between a superfluid and
a polarized normal fluid formed by the excess fermions of the majority species. Instead, the
intermediate-coupling regime is not addressed properly by static mean-field theory and our
analysis shows that in that case, contrary to its predictions, the polarized superfluid phase can
be stabilized down to extremely low temperatures. We trace back the stabilization of the phase
to the reduced polarizability of the underlying normal phase due to the formation of preformed
local pairs.
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124 Density-imbalanced mixtures in optical lattices

5.1 Introduction

Mixtures of two-component atoms with different densities have attracted a lot of interest. In-
deed, a fundamental challenge for both theorists and experimentalists is to clarify the phase
diagram when a difference in the densities is introduced. Until now, there is no clear answer
to this problem. However, progresses in experiments on ultracold atoms offer new clues. Re-
cently, the Rice and the MIT group have observed superfluidity in spin imbalanced mixtures,
in the strongly-correlated regime. Although the physics of such mixtures has intensively
been addressed by static mean-field and variational studies for the gases in continuum ( see
Ref. [79, 93, 104, 109]), much less studies treating correctly the correlation in the strong
coupling regime has been done on the lattice.

5.1.1 Experiments on polarized Fermi gases

The possibility to tune experimental parameters in ultracold atomic system allows to enter
regimes that are forbidden in other solid state physics systems. The spin-polarized mixture
with two hyperfine states in Lithium 6 was used in the experiments of both the MIT and the
Rice group. In the following, we briefly describe the setups of these experiments and their
main results.

Experiment in the MIT group

The observation of superfluidity in the MIT group has been realized via the imaging of the
vortices present in a rotating gas [107, 126, 127]. The degenerate gases were initially prepared

Figure 5.1: Superfluidity in a strongly-interacting Fermi gas with imbalanced
populations. The upper (lower) pair of rows shows clouds prepared at 812 G
(853 G), where 1/kFa = 0.2 (1/kFa = −0.15). In each pair of rows, the upper
picture shows state |1〉, the lower one state |2〉. For the 812 G data, from left
to right the value of p was consequently 100%, 90%, 80%, 62%, 28%, 18%, 10%
and 0%. For the 853 G data, the mismatch was 100%, 74%, 58%, 48%, 32%,
16%, 7% and 0%. Reprinted from Ref. [126].

by using the usual methods of cooling, such as the laser cooling, the sympathetic cooling by
sodium atoms and optical trapping. A radio-frequency sweep created a variable spin mixture
with two lowest spin states |1〉, |2〉. The interaction between atoms in these internal states
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is controlled by a 300G-wide Feshbach resonance located at B0 = 834G. In this continuum
limit, the interaction strength is described by the parameter 1/askF , where as is the s-wave
scattering length and kF is the Fermi momentum for the non-interacting system. In order to
observe the presence of superfluidity in the mixture around the Feshbach resonance (in both
BEC and BCS sides), the optical trap is rotated symmetrically around the cloud. In this
experiment, it is possible to control both the interaction and the spin imbalance. To image
the fermion pair condensate, the optical trap is released and binding energy of the pairs is
increased by switching the magnetic field deep in the BEC side (far from the resonance). The
TOF image shows the presence of vortices which is the proof of the superfluidity.

Figure 5.2: Observation of the superfluid-to-normal phase transition in the
experiment of the MIT group. The profiles indicate the distribution of the gas
in the harmonic trap. Reprinted from [125].

The experimental results are presented in Fig. 5.1. Two series of images of the rotating
mixtures were taken in presence of a magnetic field B = 812G (1/kFa = 0.2 BEC-side)
and B = 853G (1/kFa = −0.15 BCS-side). The population imbalance is defined by p =
(N2 − N1)/(N1 + N2), where N1 is the number of atoms in state |1〉 and N2 the number
of atoms in state |2〉. For different p, the total number of atoms varied only within 20%
around N = 7× 106, with the exception of the fully polarized cases p = 100% (N = 1× 107)
and p = 0% (N = 1.2 × 107). The evidence of the superfluidity can be observed by the
the emergence of vortices in the polarized gas both in the BEC side and BCS side when the
polarization p is greater than some critical value pc. We observe that this value is of the
order pc ∼ 80% for 1/kFa = 0.2 and pc ∼ 48% for 1/kFa = −0.15. However, near the phase
boundary, it is quite difficult to create and observe the vortices. In order to obtain the phase
diagram shown in Fig. 5.2, the pair condensation was used as an indicator for superfluidity.

Experiment in the Rice group

At the same time, another evidence of the normal-superfluid transition was realized in the
group of Rice University. Using the same mixture of two hyperfine states of Lithium atoms
(F = 1/2,mF = ±1/2), the spin imbalance is controlled by adjusting the radio-frequency.
The mixture has approximately N ∼ 105 atoms per spin state. The temperature must be
inferior to 0.1TF . The BEC-BCS crossover is realized by tuning the interaction strength
via a Feshbach resonance. The real-space distribution of atoms in the trap are obtained by
in-situ absorbing imaging where each spin state is sequentially and independently imaged.
The resulting column density distribution are fit to model distributions in order to obtain
estimates for N1, N2 as well as the temperature T .
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Figure 5.3: Experiment of the Rice group on the evidence of superfluidity in
the polarized gas. Absorption images of trapped atoms were taken selectively for
atoms in different hyperfine states. The field of view for these images is 1654µm
by 81µm. Reprinted from [77]

The Fig. 5.3 shows the experimental images of the density distributions for the atoms in
the trap. The difference of density distributions between atoms in state |1〉 and atoms in
state |2〉 shows that paring of an equal number of atoms occurs in the center of the trap up
to very high polarization.

5.1.2 Standard BCS-BEC crossover

Let us first consider simple mixtures without spin imbalance. At low temperature, they
exhibit superfluidity which has the form of a BCS state at weak coupling or of a BEC state at
strong coupling. The physics of the crossover between these two limits is a fascinating topic
which has attracted a lot of interest. Here, we will discuss some important results about this
BCS-BEC crossover.

For the problem in the continuum, this crossover is quite well understood both in experi-
ments on ultracold Fermi gases (see Refs. [14, 61, 82, 128]) and theoretically by both analytical
approaches and Monte Carlo simulations (see Refs. [13, 18, 55, 76, 85, 91]). In the analytical
approaches, two main directions have been followed. The first approach consists in using a
one-channel model [76, 85, 91] with a contact potential defined by a bare coupling constant
g. The divergence of the energy at first order in perturbation is eliminated by absorbing the
divergent term into the definition of the s-wave scattering length as

m

4πas
=

1
g

+
∑

k

1
2εk

. (5.1)

Therefore, the only control parameter in this theory is the scattering length as. The sign of the
scattering length is changed from negative to positive whenever one crosses the unitary limit
from the BCS to the BEC side. The second theoretical approach is based on a two-channel
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model [55] in which the open channel describes the fermion gas while the closed channel
describes the formation of the bound state. This model is described by the Hamiltonian

H =
∑

k,σ

(εkσ − µσ)a†kσakσ +
∑

q

(
εq
2

+ δ0 − 2µ)b†qbq + g
∑

k,q

(b†qak+q
2
↓a−k+q

2
↑ + h.c). (5.2)

The s-wave scattering length can be related to the detuning of the bound state to the energy
level of two free fermions. The sign of the scattering length depends on the sign of the
detuning. In fact, both approaches give a qualitative picture of the BEC-BCS crossover which
is comparable to numerical simulation [13]. As the main physical properties of this crossover
is very similar to the one occurring in the lattice model. Therefore, we will concentrate more
on the explanation of this phenomenal for the lattice model.

Let us now switch to the situation where the atoms are confined in an optical lattice. Also
in this case, there is a BCS-BEC crossover as a function of the interaction strength, which can
be described in a Hubbard model with an on-site attractive coupling (see Refs. [65, 119, 120]).
In the weak-coupling regime the superfluidity is due to the instability of the Fermi surface
towards the the formation of BCS-pairs, while in the strong-coupling regime, the system
prefers to form local bosonic pairs which condense at low temperature. These two regimes
can be addressed using static mean-field theory both in the weak- and the strong-coupling
limit (see Fig. 5.4). In the weak-coupling limit, as predicted by the MFT analysis of the

Figure 5.4: Critical temperature as a function of |U | at n = 0.75: the DMFT
data (dot) are compared with the BCS both the bare (circle) and the rescaled
one (asterisk)and the BE mean-field predictions (triangle) for a hard-core boson
system. Reprinted from Ref. [119]

superfluid phase, the critical temperature is proportional to the gap opened at Fermi surface
Tc ∝ ∆BCS ∝ e−W/|U | (red curve). The strong-coupling regime with |U | �W is characterized
by the formation of local bosons and can be described by effective bosonic model in which
the tunneling is proportional to t2/|U |. The critical temperature for the condensation is of
the same order as this hopping (blue curve). The intermediate-coupling regime cannot be
described by these static MFT. We therefore need to go beyond the MFT to explain the
crossover from the BCS (with Cooper pairs of long healing length) to the BEC (with local
bosonic pairs of short healing length). In the next sections, we will demonstrate that by
taking local fluctuations into account, it is possible to connect these two limits (black curve
in Fig. 5.4). At high temperatures, the fermions which are uncorrelated at weak coupling
start to couple as the interaction is increased. They produce a pseudogapped normal state
characterized by preformed pairs (using the particle-hole transformation, this corresponds to
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a Mott insulator in the repulsive Hubbard model). As a function of the interaction strength
there is therefore a transition between a Fermi liquid and a pseudogapped normal phase.
When we cool down the system, in the weak-coupling regime, there is a phase transition
from the normal Fermi liquid to the BCS phase. Instead, in the strong-coupling regime, the
transition is from the phase with preformed pairs to the BEC condensate.

5.1.3 Mixture with spin imbalance, novel physics?

When a spin imbalance is introduced in the system, the question of the nature of the ground
state in the mixture is a very non-trivial issue. Indeed, in spin imbalanced mixtures, either
superfluidity disappears in favor of a polarized normal fluid or more exotic forms of pairing
might occur. One candidate that has been proposed is the Fulde-Ferrell-Larkin-Ovchinnikov
state (FFLO) [41, 74] in which Cooper pairs appear at a non-zero total momentum. Another
possible kind of pairing is the polarized superfluid namely Sarma phase (or breached-pair
phase at zero temperature) [79, 100], which is a non-BCS polarized superfluid state with
gapless fermionic excitations.

The FFLO phase has first been studied in [41, 74] and is described as a phase with a
superfluid order parameter varying in real space. The formation of Cooper pairs produces
a gain in condensation energy but it is difficult to enter a polarized phase with these pairs.
A solution, which maintains the superfluidity and allows for a polarization, is to have a
superfluid order parameter varying in space. In the node of this variation ∆(r) = 0, there are
no Cooper pairs and a polarization can occur. More detailed studies on the critical behaviors
of the FFLO phase were presented in the works done by C. Mora and R. Combescot [25, 106].

At zero temperature, two other possible phases that exhibit both a non-zero superfluid
order parameter and a finite polarization have been proposed: the Sarma (or breached-pair
BP2) phase [79, 100] and the BP1 phase [93, 104, 109]. At weak-coupling, the Sarma phase is
unstable unless specific types of interactions are considered [39]. The BP1 has been proposed
as a stable ground state deep in the BEC regime of trapped fermionic gases, where the system
is described by a Bose-Fermi mixture. While both of these phases are polarized superfluids
with gapless excitations, their nature is different: the Sarma phase has two Fermi surfaces
while the BP1 phase has a single Fermi surface for the unpaired fermions. These non-standard
phases are in general unstable at weak coupling, resulting in phase separation between an
unpolarized superfluid and a polarized normal fluid formed by the excess fermions, an effect
which has been observed experimentally [92, 126, 127]. At zero temperature T = 0, the Sarma
and BP1 phases are signaled by a non-zero superfluid order parameter together with a finite
polarization. When T > 0, this criterion is no longer valid because a standard BCS or BEC
state also acquires a small polarization coming from thermally excited quasiparticles.

Finally, a possibility to see both superfluidity and a finite polarization is to have a phase
separation between a superfluid state and a polarized normal liquid. As we will see, at weak
coupling at low temperature, this phase has been shown to be the most stable in energy
within a static MFT of the Hubbard model. However, when we enter into the strong-coupling
regime, the picture described by the BCS-MFT is no longer valid and we expect that the
phase separation competes with other phases described above.

5.1.4 Polarized mixture in the continuum

The phase diagram for the spin-imbalanced system has been studied intensively in the con-
tinuum after the great debate on the interpretation of the experimental results obtained by
the Rice and the MIT groups. Until now, there is no final conclusion on the phase diagram
as a function of all the experimental parameters: temperature, polarization and interaction



5.1 Introduction 129

strength. At zero temperature, the most convincing results have been discussed in an ana-
lytical approach by Daniel E. Sheehy et al. for the two-channel model (Ref. [104]) and in a
numerical approach by the Trento group for the one-channel model (Ref. [93]). Both works
show very similar phase diagrams.

Let us first discuss the analytical results obtained in the two-channel model. The control
parameter is the detuning δ0 which can be related to the s-wave scattering length as. The
phase diagram is shown in Fig. 5.5). It is constituted by the competition of the following

Figure 5.5: Detuning, δ-population difference, p = (n↑ − n↓)/(n↑ + n↓) phase
diagram (for coupling γ=0.1) in (a) displaying "normal" (N), magnetized super-
fluid (SFM ), FFLO (thick red line) and SF-N coexistence states, (b) showing the
FFLO wave-vector Q(δ) along the FFLO-N phase boundary, and (c) zoom-in on
the FFLO state, stable only for δ > δ∗ ' 2.2EF .

phases: (i) the normal state (the phase without any long-range ordering); (ii) an unpolarized
superfluid (the BCS superfluid or BEC condensate of molecules); (iii) a phase separation (PS)
between the normal state and the unpolarized SF; (iv) the FFLO state (with pairing at non-
zero momentum); (v) a polarized superfluid (pSF). The phase diagram is as follows. In the
negative weak-coupling limit (the BCS limit), the phase competition can be understood by the
BCS theory. The four phases in competition are the normal phase, the BCS, the FFLO and
the PS. At p = 0 and zero temperature, we obtain a BCS superfluid. When the polarization
is close to 0 (p < pc1) the stable phase is the phase separation. For pc1 < p < pc12, the
FFLO phase is the most stable phase (see Ref. [86]). Finally, when the polarization is high, a
normal fluid is stabilized. In the opposite limit, deep in the BEC side, the phase diagram is
characterized by the competition of three phases: the BEC superfluid, the polarized superfluid
and the phase separation. When we are in molecular regime, the phase transition is smooth
from the BEC to the polarized superfluid and then to the fully polarized normal state. By
contrast, close to the unitary limit, this phase transition changes and is first-order between
the polarized superfluid and the normal state. The first-order transition induces a phase
separation when the total atom number and the polarization are fixed.

The numerical results for the one-channel model were obtained using a fixed node Monte
Carlo. They are shown in Fig. 5.6. The phase diagram at zero temperature is qualitatively
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Figure 5.6: Qualitative phase diagram as a function of the interaction strength
-1/kF a and of the polarization P. The circle at unitarity corresponds to the
critical value Pc = 0.39 discussed in Sec. IXB. The Fermi wave vector corre-
sponds here to the total average density: kF = [3π2(n↑ + n↓)]1/3. Notice that
the possible occurrence of the FFLO phase is not considered on this diagram.

comparable to the analytical result discussed above. However, the QMC simulation displays
a normal phase which is much more larger than in the analytical model. In the unitary limit
(1/askF = 0 or δ = 0), the normal phase in QMC is obtained for p > pc = 0.4 while in the
two-channel model, the phase separation is stable up to full polarization p = 1. This is also
the main point in the debate between the two experiments described in the first section. In our
view, the mean-field theory approach in the two-channel model is not able to fully take into
account the strong correlation effects in the Fermi gas. In fact, the Fermi gas in this model is
described as a free Fermi gas where the superfluid order parameter is zero. Therefore, all the
effects of strong interactions, which could make the normal state energetically more stable,
are neglected. Indeed as we shall see, the effect of preformed pairs can make the energy of the
normal state become favorable in a larger domain. Instead, the fixed-node QMC approach can
include the strong correlation effects in the normal state and, as a consequence, the normal
state solution appears earlier.

5.2 Polarized mixture in an optical lattice

In this chapter, we want to focus on mixtures that are confined in an three-dimensional
optical lattice and we will address the stability of the polarized superfluid phase at weak and
intermediate coupling. Note that we will not consider the FFLO phase in the following. Our
goal is to study the competition between the polarized normal fluid, the unpolarized superfluid
and the polarized superfluid by treating the effect of correlations beyond static mean-field
theory. For intermediate coupling, we show that the pSF phase can be stabilized down to
very low temperatures due to the reduction of the polarizability of the normal fluid. The
pSF phase turns out to be profoundly different from the unpolarized BEC superfluid which
holds at the same coupling strength in the absence of imbalance. Indeed, the unpolarized
BEC phase is stabilized by a kinetic energy gain in comparison to the normal fluid, while the
pSF phase has a higher kinetic energy with respect to the normal state, and is stabilized by
a potential energy gain, as in BCS.

We start with some energetic considerations, which clarify the general conditions under
which a pSF phase can be stable at T = 0. In order to control the imbalance between
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the populations of the two species, we introduce a chemical potential difference (or effective
‘magnetic field’) h ≡ (µ↑ − µ↓)/2 between them. In Fig. 5.7, we show two typical behaviors
of the energy in different phases as a function of the magnetic field. In both cases, a small

Figure 5.7: (Color online) Sketches of the energy E vs h, for the normal state,
the unpolarized superfluid (SF) and the pSF phase. Two situations can appear
as function of the external parameters (e.g. the interaction strength). Left panel
(a): the pSF branch is unstable and the system undergoes a phase separation.
Right panel (b): the pSF branch is stable.

magnetic field h is expelled from the unpolarized superfluid, and the energy is independent
of h. This unpolarized superfluid is locally stable up to a critical value hc. For h > hc the
magnetic field breaks the pairs, leading to the disappearance of this solution. On the other
hand, the energy of the polarized normal state is a decreasing function of h: its derivative p ≡
−∂E/∂h > 0 is the polarization (population imbalance) and its curvature χ ≡ −∂2E/∂h2 =
∂p/∂h defines the polarizability of the normal fluid.

In general the pSF phase can bridge between these two solutions. The way in which this
connection occurs depends on the two key parameters hc and χ. When hc and χ are large,
we anticipate the situation in Fig. 5.7a. In this case, the pSF branch is expected not to be
stable, and the system undergoes a first-order transition as a function of h which results in
a phase separation if we try to prepare the system with a polarization corresponding to the
unstable branch. In contrast, if hc and χ are small enough, the energies of the unpolarized
superfluid and polarized normal solutions do not cross, and the pSF phase can be stable in
a region bridging these two states, as shown in Fig. 5.7b. Therefore, a stable pSF phase is
likely to form when χ or hc are small. Interestingly, this suggests that an increasing attractive
coupling may help stabilizing the pSF phase. Indeed, in the BEC regime, the normal state
presents preformed pairs in a singlet state that strongly reduce χ, hence stabilizing a pSF
phase.

5.3 Model and methods

Here, we present the analytical and numerical techniques that we use in order to establish
the phase diagram as a function of temperature and density imbalance.

5.3.1 Model for mixtures in an optical lattice

Let us first describe the model for fermionic mixtures in an optical lattice under the conditions
discussed in Refs. [31, 58, 121]. In this work, we consider the half-filled, three-dimensional
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attractive Hubbard model in order to describe unbalanced fermionic fluids in an optical lattice

H = −t
∑

〈i,j〉

c†iσcjσ − U
∑

i

ni↑ni↓ − µ
∑

i

(ni↑ + ni↓)− h
∑

i

(ni↑ − ni↓).

The (pseudo-) spin index σ refers to the two different species. In experiments, Feshbach
resonances between two hyperfine states of 6Li or 40 K are very well controlled and allow
to change the interaction strength. Here, the coupling is controlled by the local attraction
U . The hopping amplitude t gives rise to a band of width W = 12t. We fix the chemical
potential µ in order to set the right number of fermions. Finally, h is a magnetic field that
controls the polarization of the fluid, i.e., the unbalance between the two fermionic species.
In the following, all energies will be expressed in units of the half-bandwidth D = 6t = 1.
The relation between the model parameters and the properties of the optical lattice has been
discussed in Chapter 1.

5.3.2 Dynamical mean-field theory

In order to address all interaction regimes we use the dynamical mean-field theory (DMFT)
This method is able to give a good description of the BCS-BEC crossover when both species
have the same density. It means that the off-diagonal order contains not only the BCS
channel which is relevant for weak-coupling but also the condensation of bosons formed by
local fermion pairs in the strong-coupling limit.

The main idea of DMFT has been presented in Section 3.5 for the Bethe lattice within the
cavity method. In this chapter, we use the set of DMFT self-consistency equations established
for a three-dimensional lattice (see Appendix B.1 for a more detailed discussion). Within this
framework, we can obtain the local Green’s function in a matrix form and the off-diagonal
elements correspond to the particle-particle channel. The average value of physical observables
can be obtained from the Green’s function.

Our goal is to study the energetic competition between different phases in the context of
a lattice model. Our strategy is to compute the energy of the system in these different phases
and to study its evolution when the external magnetic field is increased. The internal energy
per site can be computed by

〈H〉 = 〈K〉+ U〈n↑n↓〉. (5.3)

Here, the kinetic energy and the interaction term are obtained using Eq. 26.10 and Eq. 26.11
in Ref. [62]

〈K〉 = −
∑

〈i,j〉,σ

tσ〈c+
i cj〉 = β−1

∑

k,σ,n

εkσGσ(iωn, k) (5.4)

〈Hint〉 = U〈n↑n↓〉 =
∑

n

Tr[Σ(iωn)G(iωn)]. (5.5)

5.3.3 BCS-Stoner mean-field theory

We will also treat the weak-coupling regime using the static mean-field theory described in
Chapter 3. We will suppose that h > 0 and use the density of statesD(ε) = (2π)−d

∫
ddk δ(εk−

ε). For a mixture of atoms with equal mass and density imbalance, the self-consistency equa-
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tions read

p =
∫

[f(E+)− f(E−)]D(ε)dε (5.6)

δ = −
∫

(ε− µ̃)[1− f(E+)− f(E−)]√
(ε− µ̃)2 + ∆2

D(ε)dε (5.7)

2∆
|U | =

∫
∆[1− f(E+)− f(E−)]√

(ε− µ̃)2 + ∆2
D(ε)dε, (5.8)

where E± = ∓(h − |U |p/4) +
√

(ε− µ̃)2 + ∆2 and f(E) = 1/(1 + e−βE) is the Fermi-Dirac
distribution. In these self-consistency equations, all the variables ∆, p, δ are treated self-
consistently. As we will see, this is quite different from the standard BCS mean-field analysis
which treats only one variational parameter ∆.

5.3.4 Mean-field theory for the strong-coupling regime

We can also address the strong-coupling limit in this half-filled model using a static mean-
field theory. The strong-coupling regime, |U | � W , is situated on the BEC side. In this
limit, for a system without polarization, we can obtain an effective model of free bosons (see
Chapter 3). In order to gain the kinetic energy, the composite bosons condense around the
zero-momentum state and form a BEC of molecules. When a small polarization is introduced,
we can modify this model into an effective model of fermions and hard-core bosons. At low
polarization (small density of fermions), the hare-core bosons can move easily in the lattice
with an effective hopping tb = 4t2/|U |. We obtain a two-fluid model: the fluid of extra
fermions and the fluid of hard-core bosons. At low temperature, the bosons can condense to
form a superfluid while the extra fermions form a normal fluid. These two fluids stabilize a
homogeneous polarized superfluid. As the polarization increases, the density of fermions in
this mixture increases while that of the bosons decreases. When one reaches the limit p ' 1,
the density of the up-atoms is almost 1 and the density of the down-atoms is very small. In
this case, the up-atoms will be distributed over every site of the lattice. The description by
effective bosons is still valid, however, it becomes very difficult for a boson to hop in this
lattice and the gain in kinetic energy of the condensate is very small. Because of the Pauli
principle, the atoms will be distributed regularly over the lattice except for some unfilled sites.
Therefore, the density fluctuations for both up- and down- particles is small. If the interaction
energy satisfies |U |〈n↑〉〈n↓〉 = |U |(1+p)(1−p)/4�W , we can treat the interaction by MFT.

5.4 Weak-coupling regime

We start our study in the weak-coupling regime using the BCS-Stoner mean-field theory. In
order to fix the density of both species, we consider a grand-canonical ensemble where the
number of atoms for each species is controlled by the external chemical potentials µσ. Using
the Legendre transform, we can go back to the mixture with fixed number of particles and its
total energy. We also solve the problem using the standard BCS mean-field which is used in
many other works (Ref. [31, 70, 100]). We then compare these results to those obtained by
the improved BCS-Stoner MFT [69, 86]), which takes the Fermi liquid effects into account.

5.4.1 Phase diagram in temperature and polarization

The (T, p)-phase diagram at weak coupling is shown in Fig. 5.8 for the BCS-Stoner and the
standard BCS approaches. In both approaches, we find the same generic phase diagram with
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Figure 5.8: Comparison of the phase diagrams obtained by the standard BCS
and the BCS-Stoner approaches for the weak-coupling regime |U | = 0.5D. The
polarized-superfluid phase is shown to be more stable within the BCS-Stoner
MFT. This is because the polarizability is calculated more accurately in the
improved mean-field theory.

three competing phases: the normal phase, the polarized superfluid phase (Sarma phase) and
the phase separation between an unpolarized superfluid and the normal fluid. The normal
phase is more favorable at high temperatures and strong polarization, while a polarized su-
perfluid phase can be stabilized in a region of low polarization for temperatures T < TSF . At
lower temperatures, a phase separation configuration is shown to be the most stable state. In
this phase diagram, we do not discuss the stability of the FFLO phase. The main difference
between the results obtained by the two static mean-field methods is that the pSF phase is
more stable in the BCS-Stoner approach. For U = 0.5D, the tricritical temperature obtained
by the BCS-Stoner MFT is almost half that predicted by the standard BCS theory.

Figure 5.9: Relation between the superfluid order parameter and the magnetic
field h for a weak interaction |U | = 0.5D. The left panel shows the SF order
parameter ∆SF (h) obtained by the BCS-Stoner mean-field theory. The right
panel shows ∆SF (h) obtained by the standard BCS mean-field theory. The
region where one can find a coexistence of solution is reduced in the BCS-Stoner
approach.

Next, we compare the superfluid order parameter ∆(h) and the polarization p(h) obtained
as a function of the external magnetic field h. In Figs. 5.9 and 5.10, we see that both
calculations give a similar picture for the weak-coupling regime: (i) the superfluid order
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parameter (which is the same as the gap in the excitation spectrum1) ∆0 for an unpolarized
mixture at T = 0 is the same. In addition, the critical polarization pc at which the normal
phase becomes unstable towards the superfluid phase is again the same pc; (ii) Above a critical
temperature T c, the phase transition from the SF to the normal phase is second-order, while
below Tc the phase transition is first-order; (iii) For T > Tc the polarized superfluid is a
stable phase. However, the fact that we treat the polarization as a variational parameter in

Figure 5.10: Relation between the polarization and the magnetic field p(h) for
weak interaction |U | = 0.25W = 0.5D. The left panel shows the polarization
versus the external field within the BCS-Stoner approach. The right panel shows
the relation p(h) obtained by standard BCS approach.

the Stoner-BCS gives a renormalization effect to the susceptibility. In including the Hartree
correction term, the system becomes more resistant to the external magnetic field. Therefore
we obtain two different behaviors in these calculations: (i) when T > Tc we see that χ = ∂p/∂h
in the Stoner-BCS is smaller than the standard one for both the superfluid and the normal
phases. That is also the reason why we have a lower critical temperature Tc in the Stoner-BCS.
(ii) Given that χ is smaller in the improved MFT, the critical magnetic field hc corresponding
to pc is greater, while the critical value for the stability of the superfluid phase is always
h0 = ∆bcs < ∆0. Therefore, the region with coexistence of a normal and a superfluid
solutions is reduced.

5.4.2 Nature of the polarized-superfluid phases

Let us now discuss the nature of these polarized-superfluid phases. The BCS-Stoner mean-
field calculation shows that in the phase-separated region, with T < Tc, the free-energy as a
function of h has three branches (Fig. 5.11a) as in the scenario of Fig. 5.7a. If T is small, the
properties of the three branches are directly linked to their T = 0 counterparts. One branch
corresponds to the BCS superfluid with thermal excitations. It has a small polarization
that comes from thermally excited Bogoliubov quasiparticles in a small momentum-range
around the Fermi momentum kF of the unpolarized state. As a consequence, the density
n(k) deviates from the standard BCS distribution around kF over a range of order T/vF (see
A in Fig. 5.11c). This branch is connected to the unstable thermally excited Sarma phase.
In contrast to the BCS state, the Sarma phase has two Fermi surfaces at T = 0, which are
individually broadened when T > 0. This is clearly visible in n(k) (see B in Fig. 5.11d)
which displays two humps associated with each Fermi momentum, with a separation set by
the polarization instead of the thermal broadening.

1This is very particular result of the static MFT. In general, the superfluid order parameter 〈c↑c↓〉 =∑
n F (iωn) is different from the gap in the excitation spectrum ∆bcs.
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Figure 5.11: Upper panels (a-b): free-energy vs. h below and above the critical
temperature Tc. Lower panels (c-d): momentum distribution n(k) at the black
and the red point indicated on the free-energy curves of panel (a).

As the temperature T is increased, the unstable branch becomes smaller and eventually
disappears at T = Tc. For T > Tc, the pSF phase is stable and the free-energy has the
behavior shown in Fig. 5.11b with only two solutions. Because Tc is rather large, there is no
clear distinction between the thermally excited BCS and the Sarma phases: as h is increased
along the superfluid branch a crossover takes place between the BCS regime and the Sarma
regime. However, because T is large, no particular structure appears in the density n(k), even
close to the normal phase. Therefore, at weak coupling, the stable pSF phase has essentially
a thermal nature and its properties cannot be linked to the physics of the Sarma phase.

5.4.3 Extrapolation of the MFT to intermediate coupling

We now extend our mean-field results to intermediate couplings. Although this extrapolation
violates the condition of validity of the mean-field theory, we can expect to see more difference
between the two mean-field calculations and extract the major effect of the correlations. The
extrapolation of the mean-field calculation to the intermediate coupling limit (see Fig. 5.12)
gives us a similar picture as in the weak-coupling limit. However, we note that within the
BCS-Stoner approach, the polarized superfluid becomes more robust and the region occupied
by the phase separation in the temperature-polarization phase diagram is strongly reduced.
Both the critical temperature Tc and the critical polarization pc in this case are smaller than
in the usual MFT result.

The region of the phase separation is characterized by the negative value of the slopes of
the ∆(h) and p(h) curves at low temperature, i.e. d∆/dh < 0, dp/dh < 0 (see Fig. 5.13).
In the improved MFT calculation, there is a tendency to reduce the width of the coexistence
region when the interaction strength increases. In the limit |U |/W → ∞ the width of this
region goes to zero and a vertical jump occurs in both curves ∆(h), p(h) at the critical value
hc of the unpolarized superfluid to normal state transition.
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Figure 5.12: Comparison of the phase diagrams obtained by the standard
BCS and the BCS-Stoner approaches for an intermediate coupling |U | = 2.5D.
The polarized superfluid is much more stable in the BCS-Stoner MFT. The the
tricritical temperature in BCS-Stoner approach is one order of magnitude smaller
than in the standard BCS approach.

Figure 5.13: The superfluid order parameter and the polarization versus the
effective magnetic field for an intermediate interaction |U | = 2.5D obtained by
the BCS-Stoner mean-field theory. The left panel shows the SF order parameter
∆SF (h), while the right panel shows p(h). The region where we can find a
coexistence of solution is reduced in the BCS-Stoner approach.

5.5 Strong-coupling limit and high polarization

We now consider the limit of a very strong coupling and a high polarization. We demonstrate
by a simple MFT calculation that the normal phase is the most stable in this limit.

Let us consider first the normal phase at strong polarization (Fig. 5.14, left panel). At
strong polarization, we have a very low density of down-atoms n↓ = (1− p)/2 which are very
mobile. For the up-atoms, the density is close to one particle per site n↑ = (1+p)/2 and they
are mostly distributed over all the lattice except for some unfilled sites (the up-holes). The
up-atom are essentially frozen on the lattice and do not contribute to the kinetic energy except
for the up-hole. The density of up-holes is (1−p)/2. Given that the up-atoms are distributed
over all the lattice, the mean value of the interaction energy is −|U |〈n↑〉〈n↓〉 = −|U |(1−p2)/4.
The total energy of the normal state for a simple square DOS reads

EN = −W
8

(1− p2)− W

8
(1− p2)− |U |

4
(1− p2). (5.9)

The superfluid phase is described by a mixture of localized fermion pairs (hare-core bosons)
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Figure 5.14: Left panel: Normal state with one mobile down-atom and one
mobile up-hole. Right panel: Superfluid state with a bound molecule and one
mobile up-hole.

with density (1− p)/2 and extra up-atoms. In the limit of strong interactions, the formation
of bosons yields an energy gain (1 − p)|U |/2. The hard-core bosons can only hop to the
empty sites with a hopping amplitude 4t2/|U |. Given that the lattice is almost filled by the
up-atoms, it is very difficult for bosons to hop and they are trapped in a bath of up atoms.
The gain in condensation energy is now negligible. There are always some up-holes with very
low density (1− p)/2, and therefore this phase gains kinetic energy through these holes. The
total energy of the polarized superfluid phase reads

ESF = −W
8

(1− p2)− |U |
2

(1− p) (5.10)

Figure 5.15: The phase diagram obtained in static MFT at zero temperature
T = 0. In the limit of weak interactions, we have a competition between the
normal phase (N) and the phase separation (PS) (red curve). In the strong
polarization limit, the competition between the normal phase and the polarized
superfluid phase is presented by the blue curve. The extrapolation of these two
results to strong coupling gives a qualitative phase diagram. Here, we did not
study the phase transition from PS to pSF.

We now study the energetic competition between these two phases by computing the
difference in their energies

∆E = EN − ESF = −W (1− p2)/8 + |U |(1− p2)/4.
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For 2|U |/W < (1 + p)/(1− p) or p > (2|U |/W − 1)/(2|U |/W + 1), we have ∆E < 0 and the
normal phase is more stable. Otherwise, the polarized superfluid phase is more stable. This
result leads to the phase diagram presented in Fig. 5.15. In the limit of strong polarization
p ≈ 1, the most stable phase is the normal phase. This result is derived from the fact that
we are at half-filling (one particle per site). Indeed, the half-filling restricts the appearance
of composite bosons and reduces the gain in kinetic energy when the bosons condense. In
contrast, for a dilute gas of fermions (in the continuum or in the lattice), the hard-core
bosons can move more easily. They have a bigger effective mass (for example M = 2m in
the continuum). The condensation of these bosons at low temperature makes an important
gain in kinetic energy and that is the reason why the polarized superfluid is more stable (see
Figs. 5.5 and 5.6).

5.6 Intermediate-coupling regime

5.6.1 Phase diagram

We recall that in the weak-coupling BCS theory the phase separation scenario is realized
at low temperatures. Increasing the temperature the critical field decreases and stabilizing
the pSF phase. While the behavior at weak coupling is now quite clear, much less is known
about stronger couplings, where the superfluid state is evolving towards a BEC state. On a
qualitative level, we expect that, as |U | is increased, an increasing number of bosons (local
pairs) in a spin-singlet state are formed. Spin degrees of freedom are therefore blocked (this
leads to the opening of a pseudogap above Tc ). Hence, the polarizability χ of the normal
fluid is expected to decrease dramatically, leading to a situation closer to the right panel of
Fig. 5.7, hence favoring the pSF phase.

Figure 5.16: Phase diagram in the (T-p) temperature-polarization plane at
weak coupling U = 0.5 (upper panel) and U = 2.5 (lower panel), obtained using
DMFT, BCS and BCS-Stoner mean-field. TSF and pc are defined in the text.
pSF, PS and N label polarized superfluid, phase separation and normal phase,
resp. For U = 0.5, the results are plotted against p/(pc/pDMFT

c ) to allow both
a comparison in relative units between the three approaches at small U and
a direct comparison between the DMFT results of the two panels. Note that
in the lower panel the PS phase is only found using the BCS and BCS-Stoner
mean-field approaches.

We now analyze the model within dynamical mean-field theory (DMFT) [44], which as we
have shown above, realizes a quantum (dynamical) mean field of the lattice model in terms of
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a single correlated site embedded in a self-consistent bath. We solve this correlated problem
using continuous-time quantum Monte Carlo (CTQMC) [122]. Contrary to static mean-field
approximations, whose validity is expected to be limited to weak interactions, DMFT allows
to study all the interaction regimes. We will compare the DMFT results with the simpler
static mean-field calculations shown above, namely a standard BCS mean field [70, 100] and
the more accurate BCS-Stoner mean field [69, 86].

The phase diagram obtained by using the BCS, BCS-Stoner and DMFT approaches is
presented in Fig. 5.16. First, we consider a rather weak coupling U = 0.5 (upper panel).
For large p or at high T the stable phase is the polarized normal fluid. As T is decreased
the system enters the pSF phase which exhibits both a non-zero superfluid order parameter
∆ = |U |〈∑i c

†
i↑c
†
i↓〉 and a finite polarization, as we shall see in more details below. When T is

further lowered, the pSF phase becomes unstable towards a phase separation between a BCS
superfluid and a polarized normal fluid. While the overall phase diagram is the same in all
approaches, the BCS mean-field underestimates the extent of the pSF phase with respects to
DMFT, mainly because it overestimates χ in the normal state. As we have discussed above,
this effect is substantially reduced by the BCS-Stoner mean-field, in which the population
imbalance is determined self-consistently. This leads to a lower χ, which extends the stability
of the pSF phase and improves the agreement with DMFT. Note that, for each approach,
the temperature is normalized by TSF , the superfluid critical temperature at h = 0. In the
upper panel, the polarization is normalized by pc/pDMFT

c , where pc is the polarization of the
normal phase at T = 0, h = hc and pDMFT

c is value of pc obtained by DMFT. The values of
TSF and pc are indeed different in the three approaches (see the insets of Fig. 5.16) and they
are overestimated in static mean-field approximations, making a comparison in relative units
more appropriate. The BCS-Stoner phase diagram is seen to be in good agreement with the
DMFT result in this weak-coupling regime.

We now turn to an intermediate coupling U = 2.5 (lower panel), where for identical
populations the superfluid state is on the BEC side of the BCS/BEC crossover [73, 119, 120].
The DMFT results clearly show that the interaction strongly increases the stability region of
the pSF phase compared to the small U case: it exists for a larger range of polarization (up
to p . 16 % instead of p . 3% for U = 0.5) and is stable down to the lowest temperature we
could investigate by DMFT (T/TSF = 0.049). From our present CTQMC solutions of DMFT,
we can not determine whether a phase separation eventually appears at lower temperatures,
as in the mean-field approaches. In this intermediate coupling region, the static mean-field
approximations are not expected to be accurate, and indeed the agreement with DMFT results
is quite poor. In particular, the BCS mean-field approximation misses the stabilization of the
pSF state, and gives rise to a wide range of phase separation. The effect is partially corrected
in the BCS-Stoner approximation, which reduces the phase separation region, but largely
overestimates the stability region of the pSF phase as a function of p.

5.6.2 Stability of the polarized superfluid phase

The CTQMC solver can reach very small temperatures (∼ T = D/300) and therefore allows
to account for the complicated structure of the local Green’s function at low energy. This
low-energy structures are relevant to describe the stability of the polarized superfluid.

We now analyze the properties of this phase focusing on the polarization as a function of
the chemical potential difference h both in the weak- and intermediate-coupling limits. The
behavior of the polarization p(h) is displayed in Fig. 5.17 for U = 0.5D in the left panel and
for U = 2.5D in the right panel.

In Fig. 5.17 we plot the superfluid order parameter ∆ and the polarization as a function
of h for different temperatures. At high temperatures, the polarization gradually increases
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Figure 5.17: Polarization as a function of the external magnetic field h for
different temperatures T . Left panel: the coupling is U = 2.5 and TSFis the
critical temperature below which the BCS superfluid is stable. Right panel: the
coupling is U = 2.5 and TSF is the critical temperature below which the super-
fluid BEC phase is stable in the absence of a magnetic field. Inset: superfluid
order parameter over the same range of magnetic fields.

with h and the pSF phase smoothly connects to the normal phase. As the temperature is
decreased, two regimes appear in the pSF phase, even though there is no phase transition
between them. At small h . 0.75, the polarization is very small and can be traced back to
thermal excitations in the BEC state. Around h ∼ 0.75 a stable branch connects to the normal
phase. The polarization in this branch is too large to originate from thermal fluctuations and
it has a different nature.

Indeed, the density n(k) in this region (see Fig. 5.18) displays two humps, just like in the
weak-coupling Sarma phase (Fig. 5.11d). This is very different from what is expected at low
temperature in a standard thermally excited superfluid where n(k) is broadened around kF
over a small range ∼ T/vF . The two humps also indicate that the underlying T = 0 phase
has two Fermi surfaces, unlike the BP1 phase proposed deep in the BEC regime of trapped
fermionic gases. This shows that at intermediate couplings on a lattice, it is not possible to
reduce the problem to a simple Bose-Fermi mixture.

Figure 5.18: Density distribution nk in the diagonal direction for both species.
The red curve is for the "up" species while the black curve is for the "down"
species.
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5.6.3 Energy behavior across the phase transition

Finally, we study quantitatively the energetic balance underlying the stabilization of the pSF
phase, in connection with the qualitative arguments presented above. The total internal
energy and the kinetic energy of each phase are displayed in Fig. 5.19 as a function of h,
for U = 2.5 and T = 0.148 TSF . The total energy curve follows nicely the second scenario

Figure 5.19: Energetic balance in strong coupling U = 1.25W . In the left panel
we plot the kinetic energy for the three phases (SF: solid line with open squares,
pSF red dashed line and open circles, Normal blue dashed line with triangles),
and in the right panel the internal total energy for the same solutions.

described above (we are at low-T , so we neglect the entropy term and replace the free energy
by the energy in this discussion). A stable pSF phase bridges between the flat energy of the
superfluid and the energy curve of the polarized normal fluid. We have checked that the total
energy branch corresponding to the normal phase has a reduced curvature compared to weaker
couplings, indicating a small χ of the normal fluid. Moreover, this branch is shifted towards
higher magnetic fields because the normal phase is gapped up to a critical field h ∼ 0.4. These
combined effects strongly favor the stability of the pSF phase.

A very important point is apparent from the kinetic energy plot in Fig. 5.19. For small h,
the superfluid state has a lower kinetic energy than the normal state. Indeed, in contrast to
the weak-coupling BCS regime, the BEC superfluid is stabilized by a gain of kinetic energy [73,
120]. Instead, we see that the pSF phase has a higher kinetic energy and a smaller potential
energy than the normal state. Therefore, the pSF phase is stabilized by a gain in the potential
energy, as in the BCS regime, even though we are not in the weak-coupling regime. As a
function of the imbalance of populations, the system will turn from a regular BEC system
which gains kinetic energy in the superfluid state to a pSF phase which loses kinetic energy.
Measurements of energies are experimentally possible in cold atomic systems [113] and it
would be of great interest to investigate these energetic considerations for polarized gases.

5.7 Conclusion

In conclusion, we have studied in this chapter the problem of fermionic mixtures with im-
balanced populations. General arguments based on energy considerations suggest that a
polarized gapless superfluid phase can be stabilized by the formation of preformed pairs with
a reduced polarizability, on the BEC side of the BCS-BEC crossover.

For the model in the continuum, via the analysis of some recent works, we have shown
that the physics of the BCS-BEC crossover is fundamental for the stability of novel phases
when the polarization increases. We also argued that the non-trivial physics of the normal
phase at the unitary limit induces the critical polarization.
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We have also substantiated these arguments with a DMFT solution of the half-filled
Hubbard model on the cubic lattice, which demonstrates the stabilization of the pSF phase
down to very low temperatures for an intermediate coupling U/(6t) = 2.5. The nature of this
phase is closely connected to the physics of the Sarma (BP2) phase that has been previously
discussed at weak coupling by static mean-field theory, but is usually unstable in this regime.
We have shown that the stabilized pSF phase is clearly distinct from a BP1 phase and from
a standard thermally excited superfluid state. While the BEC superfluid (in contrast to
the weak-coupling BCS one) is stabilized by the kinetic energy, the pSF-phase condensation
energy corresponds to a potential energy gain in comparison to the polarized normal fluid.

Finally, at high polarizations deep inside the BEC limit, we have shown that, in the
lattice model at half-filling, a polarized normal fluid is always stable against a polarized
gapless superfluid which is different from the continuum limit. This is simply because the
effective molecules (the bound states) have more mobility in the continuum than in the lattice
model at half-filling.
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The study of superfluid phases is a fundamental is-
sue in condensed matter physics. It has received a re-
vived interest with the experimental realization of cold
atomic systems that allow to probe such phases with a
remarkable controllability [1–3]. It is for instance pos-
sible to address a large range of interaction strengths
or to control the population imbalance between atoms
in different hyperfine states. For fermionic fluids com-
posed of two species, the latter parameter, which intro-
duces a mismatch in the Fermi surfaces, raises exciting
questions about the stability of the conventional super-
fluid phase and the possible generation of more exotic
ones. Indeed, in the absence of imbalance, a weak attrac-
tive interaction between the fermionic species stabilizes
a Bardeen-Cooper-Schrieffer (BCS) ground state, with a
pairing between species of opposite momentum near their
common Fermi surface. When the interaction is strong,
the fermions pair in real space, and superfluidity is as-
sociated with the Bose-Einstein condensation (BEC) of
pairs. The BEC-BCS crossover has been studied inten-
sively both experimentally [4–6] and theoretically [7–10].

The situation is far less clear when a population im-
balance introduces a mismatch between the Fermi sur-
faces. At small imbalance, the species are expected to
still form a standard BCS or BEC state. At larger im-
balance, either superfluidity disappears in favor of a po-
larized normal fluid or more exotic forms of pairing occur.
One candidate is the Fulde-Ferrell-Larkin-Ovchinnikov
state [11–14] in which Cooper pairs appear at a non-zero
total momentum. At zero temperature, two other possi-
ble phases that exhibit both a non-zero superfluid order
parameter and a finite polarization have been proposed:
the Sarma (or breached-pair BP2) phase [15, 16] and the
BP1 phase [17–19]. At weak-coupling, the Sarma phase
is unstable unless specific types of interactions are consid-
ered [20]. The BP1 has been proposed as a stable ground
state deep in the BEC regime of trapped fermionic gases,
where the system is described by a Bose-Fermi mixture.
While both of these phases are polarized superfluids with

gapless excitations, their nature is different: the Sarma
phase has two Fermi surfaces while the BP1 phase has
a single Fermi surface for the unpaired fermions. These
non-standard phases are in general unstable at weak cou-
pling, resulting in phase separation between an unpolar-
ized superfluid and a polarized normal fluid formed by
the excess fermions, an effect which has been observed
experimentally [21–23]. At zero temperature T = 0, the
Sarma and BP1 phases are signaled by a non-zero super-
fluid order parameter together with a finite polarization.
When T > 0, this criterion is no longer valid because a
standard BCS or BEC state also acquires a small polar-
ization coming from thermally excited quasiparticles.

In this paper, we focus on polarized superfluid phases
(pSF) in a three-dimensional cubic lattice. We study
their nature at weak and intermediate coupling as a func-
tion of the temperature, treating the effect of correla-
tions beyond static mean field. Our main result is that,
at intermediate coupling, a pSF phase can be stabilized
down to very low temperatures, with properties which
are clearly associated with the Sarma phase. The mech-
anism responsible for this stabilization is the reduction
of the polarizability of the normal fluid due to the exis-
tence of preformed pairs. We will show that this phase
is profoundly different from the unpolarized BEC super-
fluid which holds at the same coupling strength in the
absence of imbalance.

We start with some energetic considerations, which
clarify the general conditions under which a pSF phase
can be stable at T = 0. In order to control the imbal-
ance between the populations of the two species, we in-
troduce a chemical potential difference (or effective ‘mag-
netic field’) h ≡ (µ↑ − µ↓)/2 between them. In Fig. 1,
we show two typical behaviors of the energy in different
phases as a function of the magnetic field. In both cases,
a small magnetic field h is expelled from the unpolarized
superfluid, and the energy is independent of h. This un-
polarized superfluid is locally stable up to a critical value
hc. For h > hc the magnetic field breaks the pairs, lead-
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FIG. 1: (Color online) Sketches of the energy E vs h, for the
normal state, the unpolarized superfluid (SF) and the pSF
phase. Two situations can appear as function of the external
parameters (e.g. the interaction strength). Left panel (a):
the pSF branch is unstable and the system undergoes a phase
separation. Right panel (b): the pSF branch is stable.

ing to the disappearance of this solution. On the other
hand, the energy of the polarized normal state is a de-
creasing function of h: its derivative p ≡ −∂E/∂h > 0
is the polarization (population imbalance) and its curva-
ture χ ≡ −∂2E/∂h2 = ∂p/∂h defines the polarizability
of the normal fluid.

In general the pSF phase can bridge between these two
solutions. The way in which this connection occurs de-
pends on the two key parameters hc and χ. When hc and
χ are large, we anticipate the situation in Fig. 1a. In this
case, the pSF branch is expected not to be stable, and the
system undergoes a first-order transition as a function of
h which results in a phase separation if we try to prepare
the system with a polarization corresponding to the un-
stable branch. In contrast, if hc and χ are small enough,
the energies of the unpolarized superfluid and polarized
normal solutions do not cross, and the pSF phase can be
stable in a region bridging these two states, as shown in
Fig. 1b. Therefore, a stable pSF phase is likely to form
when χ or hc are small. Interestingly, this suggests that
an increasing attractive coupling may help stabilizing the
pSF phase. Indeed, in the BEC regime, the normal state
presents preformed pairs in a singlet state that strongly
reduce χ, hence stabilizing a pSF phase.

In order to explore the validity of these qualitative ar-
guments we study an attractive Hubbard model at half-
filling, on a three-dimensional cubic lattice with nearest-
neighbor hopping:

H = −t
∑

<ij>σ

(c†iσcjσ + h.c.)− U
∑

i

ni↑ni↓ −
∑

i

µσniσ

where c†iσ (ciσ) creates (destroys) a fermion of species σ
on the site i, niσ = c†iσciσ is the number operator, t is the
hopping amplitude and U > 0 is the Hubbard on-site at-
traction. When the total number of fermions is identical
to the number of lattice sites (half-filling) µ↑ = −U/2+h
and µ↓ = −U/2 − h. In the following, all energies will
be expressed in units of the half-bandwidth D = 6t = 1.

We analyze the model within dynamical mean-field the-
ory (DMFT) [24], which realizes a quantum (dynami-
cal) mean field of the lattice model in terms of a single
correlated site embedded in a self-consistent bath. This
correlated local problem is then solved using continuous-
time quantum Monte Carlo (CTQMC) [25]. Contrary
to static mean-field approximations, whose validity is ex-
pected to be limited to weak interactions, DMFT allows
to study all the interaction regimes [24]. We compare
the DMFT results with simpler static mean-field calcu-
lations, namely with a standard BCS mean field and a
more accurate ‘BCS-Stoner’ mean field [13, 26], which in-
troduces a mean-field decoupling of the interaction both
in the particle-particle channel (as in BCS) and in the
particle-hole channel (as in Stoner theory) in order to
compute both the superfluid order parameter and the
polarization self-consistently.

We first consider a rather weak coupling U = 0.5.
The phase diagram obtained by using the BCS, BCS-
Stoner and DMFT approaches is presented in Fig. 2e.
For large p or at high T the stable phase is the polar-

FIG. 2: (Color online) Lower panel (e): Phase diagram in the
T − p plane at weak coupling U = 0.5 (lower panel) obtained
using DMFT, BCS and BCS-Stoner mean-field. TSF and pc
are defined in the text. pSF, PS and N label polarized super-
fluid, phase separation and normal phase, resp. The results
are plotted against p/(pc/pDMFT

c ) to allow for a comparison
in relative units. Upper panels (a-b): free-energy vs. h below
and above the critical temperature Tc. Middle panels (c-d):
momentum distribution n(k) at three points (A), (B), (C)
indicated on the free-energy curves of panel (a).

ized normal fluid. As T is decreased the system enters
a pSF phase which exhibits both a non-zero superfluid
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order parameter ∆ = (U/N)〈∑i c
†
i↑c

†
i↓〉 and a finite po-

larization. When T is further lowered, the pSF phase
becomes unstable towards a phase separation between
a thermally excited BCS superfluid and a polarized nor-
mal fluid. While the overall phase diagram is the same in
all approaches in relative units (defined below), the BCS
mean-field underestimates the extent of the pSF phase
with respects to DMFT, mainly because it overestimates
χ in the normal state. This effect is substantially reduced
by the BCS-Stoner mean-field, in which the population
imbalance is determined self-consistently. This leads to a
lower χ, which extends the stability of the pSF phase and
improves the agreement with DMFT. Note that, for each
approach, the temperature is normalized by TSF, the su-
perfluid critical temperature at h = 0. The polarization
is normalized by pc/p

DMFT
c , where pc is the polarization

of the normal phase at T = 0, h = hc and pDMFT
c is the

value of pc obtained with DMFT. The values of TSF and
pc are overestimated in static mean-field approximations,
making a comparison in relative units more appropriate.
In these units, the BCS-Stoner phase diagram is seen
to be in good agreement with the DMFT result in this
weak-coupling regime.

Let us now discuss the nature of these phases. The
BCS-Stoner mean-field calculation shows that in the
phase-separated region, with T < Tc, the free-energy as
a function of h has three branches (Fig. 2a) as in the
scenario of Fig. 1a. If T is small, the properties of the
three branches are directly linked to their T = 0 coun-
terparts. One branch corresponds to the BCS superfluid
with thermal excitations. It has a small polarization that
comes from thermally excited Bogoliubov quasiparticles
in a small momentum-range around the Fermi momen-
tum kF of the unpolarized state. As a consequence, the
density n(k) deviates from the standard BCS distribution
around kF over a range of order T/vF (see A in Fig. 2c).
This branch is connected to the unstable thermally ex-
cited Sarma phase. In contrast to the BCS state, the
Sarma phase has two Fermi surfaces at T = 0, which are
individually broadened when T > 0. This is clearly visi-
ble in n(k) (see B in Fig. 2c) which displays two humps
associated with each Fermi momentum, with a separation
set by the polarization instead of the thermal broadening.

As the temperature T is increased, the unstable branch
becomes smaller and eventually disappears at T = Tc.
For T > Tc, the pSF phase is stable and the free-energy
has the behavior shown in Fig. 2b with only two solu-
tions. Because Tc is rather large, there is no clear distinc-
tion between the thermally excited BCS and the Sarma
phases: as h is increased along the superfluid branch a
crossover takes place between the BCS regime and the
Sarma regime. However, because T is large, no particu-
lar structure appears in the density n(k), even close to
the normal phase (see C in Fig. 2d). Therefore, at weak
coupling, the stable pSF phase has essentially a thermal
nature and its properties cannot be linked to the physics

of the Sarma phase.
We now turn to an intermediate coupling U = 2.5,

where for identical populations the superfluid state is on
the BEC side of the BCS/BEC crossover [27–29]. In this
regime, the static mean-field approximations are not ex-
pected to be accurate and we only describe our DMFT
results. As is clear from Fig. 3e, the interaction strongly

FIG. 3: (Color online) Lower panel (e): Phase diagram in the
T − p plane at intermediate coupling U = 2.5 obtained using
DMFT. Inset of (e): momentum distribtion n(k) for p = 0.12
at the lowest temperature T/TSF = 0.049. Upper panels:
kinetic energy Ek (a) and total internal energy Etot (b) as a
function of h for T = 0.148 TSF. Middle panels: polarization
(c) and superfluid order parameter (d) as a function of h.

increases the stability region of the pSF phase compared
to the small U case: it exists for a larger range of polar-
ization (up to p . 16 % instead of p . 3% for U = 0.5)
and is stable down to the lowest temperature we could
investigate with DMFT (T/TSF = 0.049). From our
present CTQMC solutions of DMFT, we cannot deter-
mine whether a phase separation eventually appears at
lower temperatures, as in the weak coupling regime, but
extrapolations of our numerical data are consistent with
a stable pSF phase down to T = 0.

In Fig. 3c-d we plot the superfluid order parameter
∆ and the polarization as a function of h for different
temperatures. At high temperatures, the polarization
gradually increases with h and the pSF phase smoothly
connects to the normal phase. As the temperature is
decreased, two regimes appear in the pSF phase, even
though there is no phase transition between them. At
small h . 0.75, the polarization is very small and can
be traced back to thermal excitations in the BEC state.
Around h ∼ 0.75 a stable branch connects to the normal
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phase. The polarization in this branch is too large to
originate from thermal fluctuations and it has a differ-
ent nature. Indeed, the density n(k) in this region (Inset
in Fig. 3e) displays two humps, just like in the weak-
coupling Sarma phase (Fig. 2). This is very different from
what is expected at low temperature in a standard ther-
mally excited superfluid where n(k) is broadened around
kF over a small range ∼ T/vF . The two humps also in-
dicate that the underlying T = 0 phase has two Fermi
surfaces, unlike the BP1 phase proposed deep in the BEC
regime of trapped fermionic gases. This shows that at
intermediate couplings on a lattice, it is not possible to
reduce the problem to a simple Bose-Fermi mixture.

Hence, our results show that a larger coupling stabi-
lizes a region which displays properties very similar to
the Sarma phase discussed at weak coupling, in agree-
ment with the qualitative energetic arguments that a re-
duced polarizability and preformed pairs help stabiliz-
ing the pSF phase at low temperatures. This is actu-
ally confirmed by a direct computation of the energetic
balance underlying this stabilization. The total inter-
nal energy and the kinetic energy of each phase are dis-
played in Fig. 3a-b as a function of h, for U = 2.5 and
T = 0.148 TSF. For this very low temperature, the en-
tropy term can be neglected and we consider the energy
instead of the free-energy. The total energy curve nicely
follows the second scenario described above (Fig. 1b). A
stable pSF phase bridges between the flat energy of the
unpolarized superfluid and the energy curve of the polar-
ized normal fluid. The total energy branch corresponding
to the normal phase is seen to have a reduced curvature in
comparison to weaker couplings, indicating a small χ of
the normal fluid (within DMFT, this branch has actually
vanishing polarization up to to a field h ∼ 0.4). These
effects strongly favor the stability of the pSF phase.

The energetic balance of the transition to the pSF state
is particularly interesting. In the absence of imbalance it
has been shown that for U = 2.5 the system is in the BEC
regime and the superfluid state is stabilized by a gain of
kinetic energy [27–29], in contrast with the BCS state
which gains potential energy. Here we find, as shown in
Fig. 3a, that the pSF has instead higher kinetic energy
than the normal state and it is therefore stabilized by po-
tential energy, even though we are not in the BCS regime.
Therefore, as a function of the imbalance of populations,
the system will turn from a regular BEC system which
gains kinetic energy in the superfluid state to a pSF phase
which loses kinetic energy. Measurements of energies are
experimentally possible in cold atomic systems [30] and
it would be of great interest to investigate these energetic
considerations for polarized gases.

In conclusion, general arguments based on energy con-
siderations suggest that a polarized superfluid phase can
be stabilized by the formation of preformed pairs with
a reduced polarizability on the BEC side of the BCS-
BEC crossover. We have substantiated these arguments

with a DMFT solution of the half-filled attractive Hub-
bard model on the cubic lattice, which demonstrates the
stabilization of a pSF phase down to very low temper-
atures for an intermediate coupling U/(6t) = 2.5. The
nature of this phase is closely connected to the physics
of the Sarma (BP2) phase that has been previously dis-
cussed at weak coupling by static mean-field theory, but
is usually unstable in this regime. We have shown that
the stabilized pSF phase is clearly distinct from a BP1
phase and from a standard thermally excited superfluid
state. Finally, while the BEC superfluid (in contrast to
the weak-coupling BCS one) is stabilized by a gain in
kinetic energy, the pSF-phase condensation energy cor-
responds to a potential energy gain in comparison to the
polarized normal fluid.
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Conclusion

This thesis is concerned with the theoretical study of strongly correlated quantum states of
ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in
recent years, following the experimental progress made in cooling and controlling atomic gases,
which has led to the observation of the first Bose-Einstein condensation (in 1995 [4]). The
trapping of these gases in optical lattices has opened a new field of research at the interface
between atomic physics and condensed matter physics. The observation of the transition
from a superfluid to a Mott insulator for bosonic atoms [46] paved the way for the study of
strongly correlated phases and quantum phase transitions in these systems. Very recently, the
investigation of the Mott insulator state of fermionic atoms [63] provides additional motivation
to conduct such theoretical studies. This thesis can be divided broadly into two types of work:

• On the one hand, we have proposed a new type of spectroscopy to measure single-particle
correlators and associated physical observables in these strongly correlated states.

• On the other hand, we have studied the ground state of the fermionic Hubbard model
under different conditions (mass imbalance, population imbalance) by using analytical
techniques and numerical simulations.

In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I.
Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for
the measurement and characterization of single particle excitations (in particular, the low
energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy
and momentum resolution. This type of spectroscopy is an analogue of angular-resolved
photoemission in solid state physics (ARPES). We have shown, via simple models, that this
method of measurement can characterize quasiparticles not only in the "conventional" phases
such as the weakly interacting gas in the lattice or in Fermi liquids, but also in unusual phases
such as the normal state of high-temperature superconductivity with a pseudogap (leading
to a differentiation between nodes and anti-nodes) observed in condensed mater physics. The
first experiment implementing a type of spectroscopy (RF spectroscopy) very closely related
to our proposal has been recently realized at Boulder in D. S. Jin’s group, just as this thesis
was being written up.

In the second part of this thesis, we have performed theoretical studies of several phases of
strongly correlated fermions in optical lattices in the framework of theoretical models such as
the Hubbard model. We have implemented and developed analytical methods (Hartree-Fock
mean field theory at weak coupling, mapping on a effective spin model at strong coupling)
and numerical methods (the dynamic mean field theory approach). This work has led to two
particular types of studies. The first one studies the competition between a superfluid phase
and a density wave (or phase separation) for fermions with mass imbalance and attractive
interaction. We have shown that the superfluid phase is unstable beyond a certain value
of the mass ratio, which depends on the interaction. The second study treats a gas with
imbalanced populations (polarized gas) with an attractive interaction in a three dimensional
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optical lattice. The main result is a phase diagram showing the stability of a uniform super-
fluid phase with polarization (Sarma phase or breached pair phase) in a certain parameter
regime. Via an energetic argument, we concluded that the stability of the polarized superfluid
phase is due to the reduction of the polarizability and the critical field of the non-polarized
superfluid phase. In the strong coupling regime of the Hubbard model, within the DMFT
method, we have shown that the formation of the preformed pair in the normal state reduces
the polarizability and favors the stability of the breached pair phase.

Although some aspects have been addressed in this thesis, many interesting questions
still remain open for future work. In the first part, the framework of the novel spectroscopy
method established in chapter 2 can allow for different concrete studies of the nature of
strongly correlated states. For example, it should be very interesting to understand the
spectra of single particle excitation in non trivial phases such as the Mott insulator, the
preformed-pairs or phases with long range order. In the second part, the construction of the
improved (BCS-Slater) mean field theory including the Hartree correction allows for a better
comparison to modern methods (DMFT and Slave Bosons). For the system with the same
population for both species, the region close to the Falicov-Kimball model is not yet well
understood in our DMFT analysis because of problems in numerical convergence within the
exact-diagonalization method. However, within the mean field theory analysis, we see that a
novel uniform phase of charge density wave (doped-CDW) can be stabilized thanks to the high
asymmetry of hopping. In order to clarify this question, a study by Slave Boson mean-field
theory could be very useful. This method has two advantages: First, it contains the strongly
correlated physics (including quantum fluctuations); second, in some simple cases we can
extract the analytical behavior of the solution. In addition, a full treatment within MFT
for both order parameters, the superfluid and the CDW, should be useful for understanding
the nature of the phase transition in this limit. Another perspective of this thesis is the
understanding of the nature of the polarized superfluid phase. The mismatch of the Fermi
surfaces considered in this thesis is due to the population imbalance. We can always control
this mismatch by introducing furthermore a mass imbalance. In the region with high mass
imbalance, it is likely that the stability of the polarized uniform superfluid phase may be
further enhanced.

Within this thesis, the effects of the confining potential have been included via the local
density approximation. For a weak and smooth potential, this approximation is expected to
be accurate. However, for stronger confinement, it may become more questionable. Indeed,
this issue has been recently debated in the literature, in the context of the interpretation
of experiments with population imbalance [92, 126]. Dynamical Mean-Field Theory can be
implemented in an inhomogeneous framework, beyond LDA [53, 95, 102] and this could be
used to assess the validity of the LDA approximation for problems such as those studied in
this thesis. This could be relevant in particular to the current debate on the phases of the
fermionic systems with population imbalance.



Appendix A

Appendix on mean-field theory

A.1 Spin-wave study

We study here by spin-wave theory for this XXZ model to determine the spectrum of exci-
tations at low energy. In fact, it must be a semi-classical calculation because the spin-wave
study is performed around the classical fundamental state which is found in the last section.
This study is very similar to the work of R. T. Scalettar [101]. Considering a rotation of angle

q

z
z’

x

x’

O

Figure A.1: Rotation of the spin vector

θA(B) in the plane (x− y), in the classical representation, the spin vector ~S is transformed to

Sz = cos θAS′z − sin θAS′x
Sx = cos θAS′x + sin θAS′z
Sy =S′y.

We propose to study the small fluctuations characterized by creation operators a†, b† around
the direction Oz′ on the two different sites A and B.

S′zA =S − a†a S′zB = S − b†b
S′+A =a† S′+B = b†

S′−A =a S′−B = b
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Including these fluctuations in the spin vector ~S obtained by the rotation from Oz’ axis to
the Oz axis, we have the following expression

SzA = cos θA(
1
2
− a†a)− sin θA

a† + a

2

SxA = cos θA
a† + a

2
+ sin θA

a† + a

2
(
1
2
− a†a)

SyA =
a† − a

2
.

The Hamiltonian of our model in the strong interaction limit reads

H = J
∑

〈i,j〉

~Si. ~Sj + γJ
∑

〈i,j〉

Szi S
z
j − h

∑

i

(Szi −m) (A.1)

Let us calculate the different terms in this Hamiltonian in the semi-classical representation

J
∑

〈i,j〉

~Si~Sj = J
∑

〈i,j〉

[
cos(θA − θB)(

1
2
− a†iai)(

1
2
− b†jbj) + cos(θA − θB)

(a†i + ai)(b
†
j + bj)

4

+ sin(θB − θA)
a†i + ai

2
(
1
2
− b†jbj) + sin(θA − θB)

b†j + bj

2
(
1
2
− a†iai)−

(a†i − ai)(b
†
j − bj)

4

]

γJ
∑

〈i,j〉

Szi S
z
j = γJ

∑

〈i,j〉

[
cos θA cos θB(

1
2
− a†iai)(

1
2
− b†jbj) + sin θA sin θB

(a†i + ai)(b
†
j + bj)

4

− sin θA cos θB
a†i + ai

2
(
1
2
− b†jbj)− sin θB cos θA

b†j + bj

2
(
1
2
− a†iai)

]

h
∑

i

Szi = h
∑

i∈A

[
cos θA(

1
2
− a†iai)− sin θA

a†i + ai
2

]
− h

∑

i∈B

[
cos θB(

1
2
− b†ibi)− sin θB

b†i + bi
2

]
.

Let us assume two hypothesis in this spin-wave approximation:

• We suppose that 〈a†iai〉 and 〈b
†
jbj〉 are small, so we neglect all the terms with order more

than 2

• The coefficients of the first order terms are zero because we evaluate this Hamiltonian
around the classical fundamental state

If we impose the coefficients of the first order term to zero, we get also mean field equations
in the last section





(2h/z) sin θA = J sin(θA − θB) + γJ sin θA cos θB

(2h/z) sin θB = J sin(θB − θA) + γJ sin θB cos θA
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Therefore the Hamiltonian can be written as follow

H = E0 +
∑

i∈A

[
h cos θA −

Jz

4
cos(θA − θB)− Jγz

2
cos θA cos θB

]
a†iai

+
∑

j∈B

[
h cos θB −

Jz

4
cos(θA − θB)− Jγz

2
cos θA cos θB

]
b†jbj

+
∑

〈i,j〉

J

4

[
cos(θA − θB) + γ sin θA sin θB − 1

]
(a†ib

†
j + aibj)

+
∑

〈i,j〉

J

4

[
cos(θA − θB) + γ sin θA sin θB + 1

]
(a†ibj + b†jai),

in which E0 = NJz
8 cos(θA− θB)− Nh

4 (cos θA+ cos θB) +Nhm. We define a set of parameters

H1 =h cos θA −
Jz

4
cos(θA − θB)− Jγz

2
cos θA cos θB (A.2)

H2 =h cos θB −
Jz

4
cos(θA − θB)− Jγz

2
cos θA cos θB (A.3)

H3 =
J

4

[
cos(θA − θB) + γ sin θA sin θB − 1

]
(A.4)

H4 =
J

4

[
cos(θA − θB) + γ sin θA sin θB + 1

]
, (A.5)

Finally we obtain a quadratic spin-wave Hamiltonian

H = E0 +
∑

i∈A
H1a

†
iai +

∑

j∈B
H2b

†
jbj +

∑

〈i,j〉

H3(a†ib
†
j + aibj) +

∑

〈i,j〉

H4(a†ibj + b†jai). (A.6)

The diagonalization this Hamiltonian gives us the whole picture of the excitation spectrum
at low energy. The detailed calculation of the spectrum for this model were performed by
R.T.Scalettar in Ref. [101].

A.2 Coexistence of CDW and BCS orders

In order to better understand the nature of the phase transition between the CDW and the
superfluid phase, we propose to study the possibility of the coexistence of a phase with both
CDW order and superfluid BCS order. In mean field theory, we keep three relevant terms of
the interaction: the Hartree term (renormalization effect on the normal liquid), the particle-
hole channel (CDW ordering) and the particle-particle channel (BCS superfluid ordering).

H =N(µ↑n̄↑ + µ↓n̄↓) +
∑

k,σ

(εkσ − µσ)c†kσckσ −
|U |
N

∑

k,k′

c†k↑ck↑c
†
k′↓ck′↓

− |U |
N

∑

k,k′

c†k↑ck′↑c
†
−k↓c−k′↓ −

|U |
N

∑

k,k′

c†k+Q↑ck↑c
†
k′↓ck′+Q↓

As done in the last sections, we define the order parameter for the BCS superfluid ordering
as ∆b = |U |N−1

∑
k〈c
†
k↑c
†
−k↓〉 and the CDW ordering as ∆cσ = |U |N−1

∑
k〈c
†
k+Qσckσ〉. Then

using the Hartree-Fock approximation, we have

HMF = E0 +
∑

k,σ

ξkσc
†
kσckσ −∆b

∑

k

(c†k↑c
†
−k↓ + c−k↓ck↑)−

∑

k,σ

∆cσc
†
k+Qσckσ, (A.7)
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in which E0/N = (µ↑n̄↑+µ↓n̄↓)+|U |n̄↑n̄↓+∆2
b/|U |+∆c↑∆c↓/|U | and ξkσ = εkσ−µσ−|U |nσ̄ =

εkσ− µ̃σ. Defining the spinor ψ†k = (c†k↑, c−k↓, c
†
k+Q↑, c−k−Q↓) we can rewrite the Hamiltonian

as
HMF = E0 −Nµ̃↓ +

∑

k∈RBZ

ψ†kMkψk, (A.8)

where the matrix Mk has the form

Mk =




εk↑ − µ̃↑ −∆b −∆c↑ 0
−∆b −εk↓ + µ̃↓ 0 −∆c↓
−∆c↑ 0 −εk↑ − µ̃↑ −∆b

0 −∆c↓ −∆b εk↓ + µ̃↓


 (A.9)

We suppose that the matrix 4×4 can be diagonalized, and the eigenvalues: E1,k,−E2,k, E3,k,−E4,k

and eigenvectors are: ϕ† = (a†1,k, a2,k, a
†
3,k, a4,k). Therefore we obtain the diagonal Hamilto-

nian
HMF = E0 −Nµ̃↓ −

∑

k∈RBZ

(E2,k + E4,k) +
∑

k∈RBZ,ν

Eνka
†
νkaνk. (A.10)

In fact, we can not obtain an analytical expression of the eigenvalues, so we can not minimize
the free energy to get the self-consistency equations. We will try to solve this problem in the
following by numerical method. We suppose a lattice with a finite number of sites, then for
each wave vector k we diagonalize the matrix Mk, and calculate the functional of free energy

F [∆b,∆c↑,∆c↓] = E0 −Nµ̃↓ −
∑

k∈RBZ

(E2,k + E4,k)− β−1
∑

ν,k∈RBZ

log(1 + e−βEνk). (A.11)

When T = 0 the functional of energy of the ground state is

E[∆b,∆c↑,∆c↓] = E0 −Nµ̃↓ −
∑

k∈RBZ

(E2,k + E4,k) +
∑

ν,k∈RBZ

Eνkf(Eνk). (A.12)

For each couple (U, z), we plot the energy of the ground state, and determine all the local
minima. The global minimum gives the order parameters of the ground state. In this general
approach, there is no explicit form of the self-consistency equations. We proposed to use
a numerical scheme to solve the problem. The self-consistency condition relates the static
average value of the observable to a parameter. Therefore, we can start with a certain guess
for the order parameter, compute the static average value of the observable then reenter it
into the mean-field Hamiltonian as a new guess of order parameter. The iteration finishes
whenever a converged solution is reached.

A.3 Energy competition at half-filling

In the CDW phase, at half-filling the energy and the gap equations read

ECDW − En = −1
4

(
∆2
↑

W↑
+

∆2
↓

W↓
) (A.13)

1
N

∑

k∈RBZ

∆σ√
ε2
kσ + ∆2

σ

=
∆−σ
|U | . (A.14)

In the BCS phase, we have the energy and the gap equations

EBCS − En = − ∆2
BCS

W↑ +W↓
(A.15)
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1
N

∑

k

1√
ε2
k + ∆2

BCS

=
2
|U | . (A.16)

where εk is defined as (ε↑ + ε↓)/2. The energy difference between EBCS and ECDW reads

ECDW − EBCS = −1
4

(
∆2
↑

W↑
+

∆2
↓

W↓
) +

∆2
BCS

W↑ +W↓
. (A.17)

In the mean-field strategy, the energy of the CDW phase is obtained by minimizing over two
parameters ∆↑ and ∆↓

ECDW = min
(∆↑,∆↓)

ECDW [∆↑,∆↓].

Let us now consider the energy E∗CDW defined as

E∗CDW = min
∆

ECDW [∆,∆] = −∆2
CDW

4

( 1
W↑

+
1
W↓

)
≥ ECDW .

The minimization over the parameter ∆ induces that ∆CDW is solution of the following gap
equation:

2
|U | =

∑

k,σ

1√
ε2
kσ + ∆2

CDW

. (A.18)

We will compare this energy E∗CDW to the energy of the BCS phase EBCS . As the function
g(x) = 1/

√
x2 + ∆2 is convex, therefore

1√
ε2
k↑ + ∆2

+
1√

ε2
k↓ + ∆2

≥ 2√
ε2
k + ∆2

⇒ 1
N

∑

k∈RBZ,σ

1√
ε2
kσ + ∆2

CDW

≥ 1
N

∑

k

1√
ε2
k + ∆2

CDW

∆BCS and ∆CDW are satisfied the gap equations Eq.A.16 and Eq.A.18, respectively. Thus
we obtain:

1
N

∑

k

1√
ε2
k + ∆2

CDW

≤ 2
|U | =

1
N

∑

k

1√
ε2
k + ∆2

BCS

. (A.19)

The function 1/
√
x2 + ∆2 is positive and monotonously decreased in variable ∆, therefore we

have: ∆CDW ≥ ∆BCS . In addition, we have the following inequality for all W = W↑ +W↓:

1
W↑

+
1
W↓
≥ 4
W↑ +W↓

We conclude that

E∗CDW − EBCS = −∆2
CDW

4
(

1
W↑

+
1
W↓

) +
∆2
BCS

W↑ +W↓
≤ 0, (A.20)

which means that ECDW − EBCS ≤ 0 for all z = (W↑ −W↓)/(W↑ +W↓).





Appendix B

Appendix on dynamical mean-field
theory

B.1 DMFT for the phase with long range order

Here, we use the DMFT description for the study of the super-fluid phase with off-diagonal
long rang order in presence of an external field.

H = −
∑

〈i,j〉

tσ(c†iσcjσ + h.c)− |U |
∑

i

ni↑ni↓ −
∑

i

µσc
†
iσciσ (B.1)

We define the Nambu spinor: ψ†i = (c†i↑, ci↓), then the Hamiltonian is

H = −
∑

〈i,j〉

(ψ†iTψj + h.c)− |U |
∑

i

ni↑ni↓ −
∑

i

ψ†iµψi + C, (B.2)

where C is a constant and T = diag[t↑,−t↓], µ = diag[µ↑,−µ↓]. We define the Green function
for these Nambu spinors: G(k, τ) = 〈Tτψk,τψ

†
k,0〉. Its Fourier transformation is

G(k, iωn) =
[
G↑(k, iωn) F (k, iωn)
F (k, iωn) −G↓(−k,−iωn)

]
. (B.3)

The effective impurity action reads

Soeff =
∫ β

0
dτ

∫ β

0
dτ ′ψ†o(τ)G−1

0 (τ − τ ′)ψo(τ ′)

− |U |
∫ β

0
dτno↑(τ)no↓(τ).

We define the on-site self-energy as following

Σimp(iω) = G−1
0 (iω)−G−1(iω), (B.4)

this local self-energy in this case has the matrix form

Σimp(iωn) =
[

Σ↑(iωn) S(iωn)
S(iωn) Σ↓(iωn)

]
. (B.5)

The DMFT consists to approximate the lattice self-energy to the impurity self-energy. In the
real space, this means that we neglect the non-local component of Σij and approximate the
on-site one by Σimp

Σii ' Σimp, Σi6=j ' 0.
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Hence, it yields the mean field self-consistency equation

Gimp(iω) =
∑

k

[
ζ↑(iωn)− εk↑ −S(iωn)
−S(iωn) ζ↓(iωn) + εk↓

]−1

, (B.6)

where ζσ(iωn) = iωn +σµσ −Σσ(iωn). In the limit d→∞ for the Bethe lattice, this relation
can be simplified to

G−1(iωn) = iωn + µσz − TG(iωn)T. (B.7)

B.2 Exact diagonalization solver, Lanczos method

In order to study the ground state at zero temperature, we propose to use the exact diago-
nalization by the Lanczos method to solve the Anderson’s impurity model.

B.2.1 Anderson impurity model

We consider an effective Anderson local impurity model in which the local site (note "d") is
in contact with a bath with ns (<10) sites via the hopping parameters tkσ (k = 1, 2 . . . ). The
bath has the energy distribution εkσ without interaction. In the impurity site, the interaction
is Und↑nd↓. In order to study the paring state in the impurity site, we introduce the paring
coupling on the bath ∆kck↑ck↓ + h.c. The Anderson’s impurity model reads

Figure B.1: Discrete Anderson’s impurity model where the impurity site "d"
(gray site) is connected with all the sites in the conduction bath (blue sites) via
the hopping Vkσ.

HAIM =
∑

k,σ

εkσc
†
kσckσ +

∑

k,σ

∆k(ck↑ck↓ + h.c) +
∑

k,σ

tkσ(c†kσdσ + h.c)−
∑

σ

µσndσ + Und↑nd↓,

(B.8)
where ndσ = d†σdσ and the creation operator of a particle in conduction band is noted by c†kσ.
Again, in the Nambu representation, the Hamiltonian can be rewritten

HAIM =
∑

k

(ψ†k

[
Vk↑ 0
0 −Vk↓

]
ψd+h.c)+

∑

k

ψ†k

[
εk↑ ∆k

∆k −εk↓

]
ψk−ψ†dµ̂ψd+Und↑nd↓. (B.9)

The starting Green’s function (non-interaction Green’s function) for DMFT iteration can be
computed from the Anderson’s parameters of this impurity model εkσ, Deltak, Vkσ

G−1
0AIM (iωn) = iωn −

∑

k

V̂kG
bath
k (iωn)V̂k, (B.10)
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where V̂k = diag[Vk↑, Vk↓], and Gbath
k is the Green’s function of the conduction bath

Gbath
k (iωn) =

[
iωn − εk↑ −∆k

−∆k iωn + εk↓

]−1

. (B.11)

Thus we have finally the guessed Green’s function for the effective model

[G−1
0AIM ]σσ = −

∑

k

V 2
kσ(iωn − σ̄εkσ̄)

(iωn − σεkσ)(iωn − σ̄εkσ̄)−∆2
k

+ iωn + σµσ

[G−1
0AIM ]σσ̄ =

∑

k

VkσVkσ̄∆k

(iωn − σεkσ)(iωn − σ̄εkσ̄)−∆2
k

.

B.2.2 Lanczos algorithm

The idea of the Lanczos method is to construct a basis in which the Hamiltonian has the form
of a tridiagonal matrix [26]. The procedure consists of iterating the basis from an initial state
|φ0〉. In order to obtain the ground state, the guessed state must have a non-zero overlap
with the ground state. If we do not known any thing about the ground state, it should be
the random summation of all the states in the Hilbert space. Otherwise, if we know some
information about the symmetry (quantum number), the spin, charge or paring of the ground
state, then we can start from a specific sector (subspace). We start with the initial state |φ0〉,
then the new vector is defined by the vector H|φ0〉 subtracted by its projection on the initial
state

|φ1〉 = H|φ0〉 −
〈φ0|H|φ0〉
〈φ0|φ0〉

|φ0〉. (B.12)

This state is orthogonal with the initial state: 〈φ1|φ0〉 = 0. We construct the new one which
is orthogonal with both states |φ0〉, |φ1〉

|φ2〉 = H|φ1〉 −
〈φ1|H|φ1〉
〈φ1|φ1〉

|φ1〉 −
〈φ1|φ1〉
〈φ0|φ0〉

|φ0〉. (B.13)

The orthogonality 〈φ2|φ1〉 = 0 comes directly the definition and the orthogonality of |φ1〉 and
|φ0〉 while the one 〈φ2|φ0〉 comes from the hermitian property of the Hamiltonian: 〈φ0|H|φ1〉 =
〈φ1|H|φ0〉. By recurrence, we can define the vector |φn+1〉 from the couple |φn〉 and |φn−1〉

|φn+1〉 = H|φn〉 − an|φ1〉 − b2n|φn−1〉, (B.14)

where n = 0, 1, 2 . . . and the coefficients are

an =
〈φn|H|φn〉
〈φn|φn〉

, b2n =
〈φn|φn〉
〈φn−1|φn−1〉

. (B.15)

In this basis the Hamiltonian has the tridiagonal matrix form

H =




a0 b1 0 0 . . .
b∗1 a1 b2 0 . . .
0 b∗2 a2 b3 . . .
0 0 b∗3 a3 . . .
...

...
...

...
. . .



. (B.16)

The diagonalization of this tridiagonal matrix can be done by using some standard library. In
fact, the convergence of the ground state (the lowest energy state) is quite rapid. Within this
algorithm, we do not need to construct the whole basis of the Hilbert space in order to find
the ground state and the low energy excitations state. As shown in [26], when the number
of iteration is around 100, the ground state is already accurate enough. Thus this method is
convenient to study the low-temperature physics.
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