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1. Overview 

Silicon oxides, nitrides and oxynitrides are used in a variety of applications, such 

as optical, protective, corrosion resistant and passivation layers, diffusion 

barriers, coatings for photovoltaic applications and most importantly, dielectric 

(isolating) thin films. While SiO2 remains the pillar of optical and electronic 

technology as the main material for optical fibers, filters and gate and interlayer 

dielectric in ultra-large scale integration (ULSI) circuits, the search for materials 

that have higher or lower dielectric constants, better chemical stability and 

hardness continues[1,2]. Silicon oxide and nitride films and multi-layers of these 

materials have also received a lot of attention recently as transparent 

encapsulating films to improve the barrier properties of various polymers against 

water and gas permeation [3-6].

For the manufacturing of dielectric, optical, functional and protective thin films 

and especially for roll-to-roll applications, there is an increasing demand for high 

rate low-temperature deposition technology. Planar optical waveguides or scratch 

resistant coatings require growth rates exceeding 10 nm per second, for example 

[7]. These thin films can be deposited by almost all coating techniques currently in 

use, such as: Thermal and e-beam evaporation, triode and magnetron sputtering, 

ion plating and ion beam sputtering and Chemical Vapour Deposition (CVD) 

techniques such as atmospheric pressure CVD (APCVD), Low Pressure CVD 

(LPCVD) and Plasma Enhanced CVD (PECVD) including Radio Frequency, Dual 

frequency and Electron Cyclotron Resonance (ECR) PECVD, though not all of 

these techniques are capable of providing the required deposition rates [8-10]. The 
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latter is a microwave-based PECVD technique operating at low pressures, which 

forms part of the group of the so-called High Density Plasma (HDP) techniques.  

Regardless of the plasma conditions, silica films will all have an amorphous 

structure with an oxygen atom to silicon atom ratio close to 2. The quality of the 

film material does however differ between the different deposition techniques in 

terms of hydroxyl (OH) content in the film and void fraction (density) which in turn 

influence the optical, electrical and mechanical properties of the films[11,12]. The 

density (2.27 g cm-3), refractive index (1.457 at 2 eV) and p-etch rate (1.5 Å/s) of 

thermal silica [13,14] can be used as benchmarks for assessing the quality of silicon 

oxide films manufactured using other CVD techniques. Table 1 contains a 

summary of some material properties of silicon dioxide films fabricated using 

different CVD techniques [12,15-18].

Film parameter APCVD PECVD Dual frequency 
PECVD

HDP
(ECR-PECVD) 

Refractive index 1.45 1.45-1.46 1.45-1.46 1.46 

Hydrogen content 
Form

1-2 % 
Si-H

1-2%
Si-H

1%
Si-H

<1% 
Si-OH

Dielectric Strength (MV/cm) 6-7 6-7 6-7 11 

Table 1. Properties of SiO2 films deposited using different CVD techniques. 

Silicon dioxide films deposited using various PECVD techniques have been 

studied extensively during the last two decades. This research has made 

significant contributions to the fundamental understanding of the deposition 

processes in different PECVD systems [19-28]. In general, HDP techniques are 
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able to provide higher quality thin film materials than their counterparts which 

operate at higher pressure. This is in part due to the possibility of de-coupling the 

creation and sustaining of the plasma from the control over the ion flux onto the 

substrate, and secondly in part due to changes in the plasma chemistry. The 

higher plasma density and lower pressure leads to a non-collisional sheath with a 

reduced width and a larger flux of ions of which the energy can be controlled, that 

facilitate the removal of reaction byproducts from the surface [8, 9]. The use of low 

pressure also increases the mean free path and suppresses most of the 

secondary volume reactions [11, 29]. In addition to this, an increased ion 

bombardment in HDP systems can be achieved by applying an RF bias to the 

substrate holder. As the electrons in the plasma have a higher mobility than the 

ions, a negative potential (DC self-bias) will form at the sample surface with 

respect to the plasma potential and result in a greater flux of positive ions onto 

it[30]. This ensures excellent step coverage of highly complex surface structures 

due to the partial re-sputtering of the film. This will both lead to densification of 

the film [13,14,16] and also assists in the removal of reaction by-products, for 

example hydroxyl groups that affect the optical properties of the materials [31, 32].

HDP systems have become increasingly popular in the micro electronics industry, 

due to the high quality of the films deposited at moderate and low wafer 

temperatures [33, 19]. They are however expensive and have a high cost of 

ownership, due to the expensive high-throughput pumping system. Increasing the 

process uniformity over larger surfaces is considered a crucial issue in HDP 

systems [34]. The possibility of very high deposition rates could however make 

HDP systems a competitive technology for “low-tech” coating applications, if the 

pumping requirements can be reduced [35] or the throughput can be substantially 

increased. Additional studies are however required in order to clarify the 
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mechanisms responsible for the decrease in the quality of the films that is in 

general observed when the process is done at high deposition rates, and to 

obtain a clear understanding of the influence the process conditions have on the 

material properties. The industrial objective is clearly to deposit the highest 

quality silica layer at the highest possible deposition rate, while avoiding 

damaging any structures that are already present on the substrate. The majority 

of academic studies however make use of noble gas diluted SiH4 precursors 

injected through a gas ring.  This dilution, that in some cases is as low as 0.1 

percent, has an adverse effect on the deposition rate.  

In order to explain this statement, the deposition of a silica layer from an 

undiluted SiH4 and O2 gas mixture can be considered [36]. For a 1 cm2 surface 

with a deposition rate of 10 nm/sec the necessary minimal silane and oxygen 

flow rates are 0.057 sccm and 0.114 sccm respectively. This assumes that all the 

precursors are consumed during the deposition, by the balanced reaction: 

)(2)()(2)( 2224 gOHsSiOgOgSiH .

For a 300 mm diameter wafer, these flows scale to 42 sccm and 84 sccm 

respectively. At an operating pressure of 2 mTorr, which is typical for the HDP 

system used in this study, a pumping speed at the substrate plane of 800 l/s will 

be needed. Taking into account that the precursors are not entirely consumed 

and that deposition may take place on all surfaces in the system, it is clear that 

the required pumping speed is in fact much higher. Add to this the effect of 

diluting the silane in a noble gas and the required pumping system will be entirely 

unrealistic. All of this places an extreme importance on the choice of the 

precursor gases and the silane injection system’s design [1,37-39].
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A large amount of work has been done in recent years to understand the 

complex nature of HDP CVD processes. The correct comparison and 

interpretation of data is however complicated, if not made entirely impossible, by 

differences in either the deposition systems themselves or the deposition 

conditions used. In addition to this, descriptions of specific installations and their 

designs are mostly withheld due to intellectual property (IP) issues. For the same 

reason, research done inside companies is frequently not fully reported. 

Moreover, industrial systems are usually not designed with the same objectives 

in mind as experimental setups in research laboratories, and do not allow the use 

of complex diagnostic equipment in the best configurations possible. Research 

consequently needs to be done not only in system conditions ideally adapted to 

the diagnostic techniques, but also in conditions appropriate to industrial 

applications, for both the process and reactor configuration. 

Comparisons of the gas flow simulations of the precursor injection with 

experimental deposition thickness profiles also offer a method to improve the 

precursor distribution and consumption at the substrate level. The modeling of 

HDP systems have usually considered them to be well-mixed, assuming that the 

gas composition is uniform across the system due to the low pressures used and 

the resulting large mean free path of the species [40,41].  The precursor 

consumption at the substrate level and on the walls are sometimes neglected [42].

Other studies have concentrated on radical and ion densities, neglecting the 

directionality of the primary precursor injection [43-45].  Thus far, there have been 

only a few studies that have taken into account the effect of the real geometry of 

the high density plasma vessel and the injection of the precursor [42,44,46]. Due to 

the low pressures used in HDP systems, the local characteristic dimensions of 

the reactors are mostly smaller than the mean free path of the precursor gas and 
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areas with sharp density gradients exist near the gas injection points. Continuum 

models* are not entirely applicable in these cases as the Knudsen† number 

approaches unity, though they do sometimes provide meaningful results. A 

statistical method is consequently the technique the best adapted to simulate 

these systems.  

The Direct Simulation Monte Carlo (DSMC) method [47] can be used if a system 

falls in the transition flow regime, defined as having a Knudsen number between 

0.1 and 10. This method allows one to simulate dilute gases using a probabilistic 

approach [48], by tracking a number of statistically representative particles. It has 

proven very interesting for investigating free jets injecting gas into vacuum [49, 50]

or to study the precursor flow from a showerhead injection system into a portion 

of the reactor over a wide range of Knudsen numbers [51] and has found good 

accuracy when compared to experimental results [52].

                                                          
* Which model gas flows at the macroscopic level and make use of the Navier-Stokes equations. 
† The Knudsen number is a dimensionless number defined as the ratio of the molecular mean free 
path , to a physical length scale L, representative of the system. Dimensions of local features are 
sometimes taken as the value L to calculate the local Knudsen number. 



INTRODUCTION

9

2. Research objectives 

The primary goal of this project is to couple research on large area plasma 

sources and the physics and chemistry of the plasma and the material properties, 

to ensure a better understanding of the oxygen and silane deposition plasma, 

and especially the role of water in the deposition process. The gas phase 

composition in a High Density Plasma (HDP) source is investigated using Optical 

Emission Spectroscopy (OES) and differentially pumped Quadrupole Mass 

Spectrometry (QMS). Films are investigated using phase modulated 

spectroscopic ellipsometry, Fourier Transform Infrared (FTIR) spectroscopy, 

transmission spectroscopy and electrical measurements in order to characterize 

them in terms of deposition rate, refractive index, hydroxyl content and 

breakdown voltage.

The obtained OES and QMS results are then compared with each other, as well 

as with the FTIR and SE results in order to validate the experimental findings, to 

increase the understanding of the relationship between the deposition rate, layer 

properties and the plasma conditions and to ultimately optimize the deposition 

process. Though the primary focus of the study is silicon oxide, silicon nitride and 

oxynitride are also studied. Silicon oxide and nitride films used as water barrier 

coatings for polyethylene terephthalate (PET) are also investigated. 

In order to study and improve the precursor’s consumption at the substrate level, 

various sets of experiments are performed. The precursor delivery to the 

substrate surface for the deposition of SiO2 is investigated for both the SiH4 and 
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O2 precursors. In order to remove any possible ambiguity about the uniformity of 

the plasma and the active oxygen flux onto the surface, the ashing of photoresist 

in a pure oxygen plasma is studied over a broad range of plasma conditions and 

thus the uniformity of the ion and radical flux onto the substrate surface is 

verified. The positioning and design of the silane gas injection system are 

investigated using a capillary jet injection system and a uniform gas injection ring. 

The influence the precursor delivery to the substrate surface has on the 

deposition rate and material properties of silicon oxide films, with special 

emphasis placed on the Si-OH content, is then studied experimentally. These 

results are then used to prove that HDP systems can not be considered as well 

mixed reactors, as the growth is highly dependant on the positioning of the 

injection point and the direction of the primary precursor flux.  

In order to gain further insight into how the precursor utilization at the substrate 

level can be improved and what the fluxes towards the substrate surface consist 

of, a Direct Simulation Monte Carlo (DSMC) method is employed to calculate the 

flux of precursors onto the substrate plane. These results are then compared to 

the experimental results to verify the physical model presented for the deposition 

process.
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3. Structure of the thesis 

The thesis is organized as follows: 

Chapter I will give an overview of PECVD systems currently in use, before 

focusing on the advantages and different types of HDP systems. The MDECR-

PECVD reactor used during this thesis, Venus, is also presented. The various 

film characterization techniques employed during the course of the thesis will 

also be reviewed. The influence of various process parameters, such as the 

microwave power, RF substrate bias, gas flows and pressure, on the plasma and 

material properties in a Matrix Distributed ECR-PECVD system are investigated 

in Chapter II. The study of the gas injection in the MDECR-PECVD system, for 

both pure oxygen plasmas as well as deposition plasmas containing 

silane/oxygen gas mixtures are presented in Chapter III. The hydroxyl content of 

silicon oxide films deposited using the different injection systems and process 

parameters are also presented in this chapter.  Chapter IV starts by giving an 

overview of the Direct Simulation Monte-Carlo method used to simulate the flux 

of precursors onto the substrate surface. The modeled structures and simulation 

parameters are then presented, followed by the obtained results.  Chapter V 

recapitulates what has been accomplished in the thesis and correlates it with the 

set research objectives. The chapter concludes with some recommendations for 

future work and improvements. 

For the purpose of being unambiguous and concise, the author has placed any 

further information she considers relevant to the study in the appendices. 
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I-1 HDP systems for the deposition of dielectrics 

I-1.1 Chemical vapour deposition  

Chemical vapour deposition (CVD) is the process of depositing a solid film from 

gaseous precursors [1,2]. CVD processes can be divided into two groups [1,3,4].

Thermal CVD processes include hot-wire and laser techniques, metalorganic 

CVD (MOCVD) processes and atmospheric-pressure CVD. Plasma enhanced 

CVD (PECVD) processes make use of glow-discharge plasmas and gaseous 

precursors to attain the chemical reactions necessary for film deposition to take 

place. A plasma discharge is created by supplying energy to the free electrons in 

a neutral gas. The electric field imposed across the volume of the gas will cause 

these electrons to be accelerated. If an electron has accelerated to a high 

enough velocity and collides with a neutral gas atom or molecule in the feed gas, 

it may cause electron-impact ionisation and dissociation and in the process 

release a new electron. These electrons are then again accelerated due to the 

electric field and will generate more ions and electrons. This effect leads to an 

avalanche current and a consequent breakdown of the gas.  

Plasmas used for PECVD are not in thermal equilibrium, as the temperatures of 

the electrons are much higher than the temperatures of the ions and neutrals. 

They can thus cause chemical reactions to occur at lower temperatures than with 

thermal activation and were initially developed for encapsulation and passivation 

of microelectronic devices [1]. Different PECVD reactor configurations exist. They 

are classified by the frequency of the electric field (DC, RF or microwave 
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frequencies), whether the energy is coupled directly, capacitively or inductively to 

the plasma, where the substrate is placed with respect to the plasma volume, etc.  

The latter refers to the difference between a direct process, where the injected 

gas mixture, by-products, plasma and substrate are in close proximity, and a 

remote or downstream process, where the substrate is placed a distance away 

from the plasma generation zone[1,5]. PECVD techniques can use pressures in 

the range of 1 mTorr to 100 Torr, with substrate temperatures from 100 up to 

900°C. PECVD-deposited films such as silicon oxide, silicon nitride and silicon 

oxynitride are used in various applications, ranging from optical filters and 

coatings, permeability coatings and scratch-resistant coatings to gate dielectrics 

in ULSI MOSFETs and thin film transistors (TFTs). The broad variety of 

applications makes it clear that the exact PECVD system design will depend on 

the application it will be used for. For instance, deposition on plastic substrates 

will require a technique that provides good quality films at a substrate 

temperature less than its glass transition temperature (~70°C for PET, for 

example), while applications which require a low concentration of bonded 

hydrogen incorporation, like waveguides, will benefit from using a high 

temperature and downstream process configuration.  

Changes in the various deposition parameters such as the choice of precursor 

gases, the ratio and dilution of the gases, the pressure, power and temperature, 

can also be used to change the film properties. This flexibility in depositing films 

with tailored properties is a major advantage of plasma deposition techniques [6].



CHAPTER 1  Theoretical background and experimental techniques 

19

I-1.2 Advantages of HDP systems  

The charge densities of plasmas [2,7] used in manufacturing technology are in the 

range of 108 to 1012 cm-3. HDP CVD systems are usually classified as those that 

have densities higher than 1010 cm-3, but what really set them apart are their very 

low pressures of operation. The increase in charge densities coupled with the low 

pressure operation of HDP systems, which is typically between 1 and 80 mTorr, 

lead to a greatly increased ratio of activated-to-background state fluxes of 

species arriving at the substrate surface. In this range of pressures, the charged-

particle recombination is slower than the gas diffusion. The high electron 

densities will in turn lead to high levels of dissociation and fractional ionisation*.

The reduced pressure leads to an increase in the mean free path (MFP) that 

suppresses most of the volume reactions. Since the sheath has a width which is 

much smaller than the MFP, the low pressure operation will also lead to the 

sheath becoming non-collisional and results in a highly directional flux of ions 

onto the substrate, with a narrow energy distribution.  

I-1.3 Different HDP systems  

Inductively coupled plasma (ICP) systems, helicon resonator systems and 

electron cyclotron resonance (ECR) plasma systems are the main types of HDP 

sources currently in use. These systems have certain features in common.  

                                                          
* Dissociation can approach 100%, while fractional ionisation can be up to 10%. 
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All three operate at pressures in the millitorr range and consequently have a non-

collisional sheath. They also typically use two power sources. The purpose of this 

is to have one power source sustaining the plasma and controlling the plasma 

density, and another controlling the energy of the ions striking the substrate 

surface [2,8]. ICP and helicon reactors make use of radio frequencies in the MHz 

range to create the plasma, either via inductive coupling or helicon (whistler) 

waves. ECR systems use 2.45 GHz microwave frequency in the presence of a 

strong magnetic field to achieve resonant coupling.  

I-1.3.1 ICP sources 

Figure I-1 depicts an inductive driven source with a planar geometry. Contrary to 

helicon and ECR systems, inductive discharges (also referred to as transformer 

coupled plasmas) do not require a magnetic field, which makes them the simplest 

design.

Figure I-1. Schematic of an inductive coupled plasma source. 
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I-1.3.2 Helicon sources 

Helicon sources combine a DC axial magnetic field of 50 to 200 G with an RF 

antenna placed around a dielectric cylinder, as shown in Figure I-2 [2]. The 

magnetic field increases the skin depth in order to ensure that the inductive field 

can penetrate the entire plasma, as well as to confine the electrons. By varying 

the magnetic field the operator can also ensure a uniform plasma density 

distribution [7].

RF
power

Magnetic coils

R
y          x

RF
power

Magnetic coils

R
y          x

Figure I-2. A schematic example of a remote helicon source [2].

The energy from the wave launched by the antenna† is transferred to the plasma 

by propagating along the magnetic field lines, leading to high ionisation and high 

electron densities. 

                                                          
† Also referred to as a helicon wave. 
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I-1.3.3 ECR PECVD systems 

By applying a static magnetic field the plasma can be confined. In the presence 

of a constant magnetic field B, a charged particle will gyrate at a cyclotron 

frequency c defined by [2,7]

(I-1)

For electrons, the cyclotron frequency equals‡

       (I-2)

The Larmor radius, also called the gyration radius, rL is the radius of the circle of 

gyration of the charged particle in such a constant magnetic field, and is given 

by§

        

                                         (I-3)

If a microwave field with a frequency equal to the Larmor frequency is applied [2],

microwave energy can be coupled to the plasma electrons. The electrons will 

then undergo one orbit during one period of the microwave field [1].

A linearly polarized electromagnetic wave launched into a vacuum chamber can 

be decomposed into its constituent right-hand and left-hand circularly polarized 

waves. For a wave polarized linearly in the x-direction, this is given by  

                                                          
‡ Where TeslaG 4101 .
§ Where 0  denotes the velocity component perpendicular to the magnetic field. 
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(I-4)

An electron will be accelerated along its orbit throughout the entire period of the 

RHP wave field, while there will be no energy gain for the LHP wave field. This 

effect is shown in Figure I-3 [9].  Figure I-4 shows a schematic representation of 

an ECR-PECVD system. 
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Figure I-3. The ECR heating principle, for RHP and LHP waves. 

Figure I-4. A schematic representation of a divergent ECR-PECVD system. 
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The common microwave frequency of 2.45 GHz is used with a magnetic field of 

875 Gauss to produce electron cyclotron resonance conditions. The low pressure 

operation of these systems is essential to ensure that the electrons will undergo 

resonant heating due to efficient absorption of the microwave field, and will not 

suffer elastic collisions with other particles, contributing to the ohmic heating of 

electrons.

I-1.4 The MDECR PECVD reactor Venus 

The MDECR-PECVD system Venus, shown in Figure I-5, was used in this thesis 

and is an example of a HDP CVD system. The concept of an MDECR plasma 

source was originally developed by the group of Jacques Pelletier[10] in INP, 

Grenoble, France.

The MDECR-PECVD reactor consists of a 50 litre cylindrical vacuum chamber, 

placed above an Alcatel ATP 1600 l/s turbomolecular pump. Two 2 kW 

continuous wave magnetron generators each supply the 2.45 GHz microwave 

power to eight-way waveguide-to-coaxial splitters. These are connected by 

coaxial lines to 16 water-cooled microwave antenna applicators, each with an 

integrated SmCo5 magnet, arranged in a matrix configuration. Sixteen circulators 

equipped with water cooled dummy loads protect the microwave circuitry from the 

power that may be reflected from the antennas. A substrate holder with a 22 cm 

diameter is placed horizontally inside the chamber. It is equipped with a 13.56 

MHz RF substrate bias source and can also be heated to 300°C.   
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The distance from the antennas to the substrate holder is approximately 12 cm. 

The different components of the system are depicted schematically in Figure I-6.  

Figure I-5. Left: The MDECR-PECVD system, Venus. Right: An argon 
plasma with the resonant zones formed around some of the integrated 

magnets of the microwave antennas. 
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Figure I-6. Schematic of the MDECR-PECVD system. 

A   Microwave connections  
B   Impedance matching unit  
C   Microwave antenna & magnet 
D   Injection of oxidants  
E   ECR region
F    Pyrophoric gas injection line 
G    Substrate holder 
H    Pumping system 
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I-1.4.1 The microwave antenna matrix configuration 

As mentioned above, the deposition system used in the experiments has a 4 x 4 

magnet matrix configuration of the microwave injection antennas. Of the 16 

antennas, the integrated magnets have different polarities, as shown in Figure I-

7. Initially a configuration such as shown in Figure I-7 (a) was used, where 4 

similar polarities were placed on the corners of the 4 x 4 matrix. This 

configuration was later changed to the configuration shown in Figure I-7 (b), with 

one polarity being placed along the diagonal of the matrix[11].

The distance between the centres of two antennas is 8 cm, meaning that a 200 

mm Si-wafer can fit entirely under the four central antennas of the matrix 

configuration, as indicated in light grey on the figure.   

Figure I-7. Two arrangements of the ECR magnet matrix configuration. 
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Mappings of the thickness of SiO2 layers deposited onto 200 mm diameter wafers 

can be seen in Figure I-8. They show the uniformity of the deposition in the 

different antenna configurations shown in Figure I-7. The arrangement of the 

antennas in Figure I-7 (a) resulted in a uniformity of  10.4%. The changed 

configuration in Figure I-7 (b) improved the uniformity of the deposition to  3.3% 

across the 200 mm diameter wafer.  

The multi-polar confinement due to the extension of the magnetic field lines 

between the neighbouring antennas thus considerably improves the uniformity of 

the ion flux onto the surface. The uniformity could probably be improved even 

further if 8 of each magnet polarity were to be used, which is unfortunately not 

available to us at present. 

Figure I-8. Uniformity contours of thickness normalized SiOx depositions 
onto 200 mm diameter wafers. (a) corresponds to the layout shown in Figure 

I-7(a), while (b) is the result of the arrangement in Figure I-7(b).
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I-2. Film characterization techniques 

I-2.1 Phase modulated spectroscopic ellipsometry 

Ellipsometry is the method of choice for calculating the thickness and optical 

constants of thin transparent or absorbing films, semiconductor and dielectric 

films [1,12,13]. The technique is based on measuring the change in polarization 

state of a light beam after its reflection from a film surface.  

Consider the case shown in Figure I-9, where linearly polarized light is incident at 

an angle of  on a film with refractive index n1 and then reflected. The reflected 

light in the general case will be elliptically polarized.  

Figure I-9. Reflection of a linearly polarized light beam from a surface. 
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The fundamental equation of standard ellipsometry defines  as the ratio of the 

complex Fresnel reflection coefficients rs and rp, and is given by 

      (I-5)

Where  and  are the ellipsometric angles and Ep and Es the parallel and 

perpendicular components of the electromagnetic wave. In a phase modulated 

spectroscopic ellipsometer [14] such as the Uvisel (Jobin-Yvon Horiba) shown in 

Figure I-10 and used for the purpose of this study, a silica bar fused to a quartz 

transducer works as a photoelastic phase modulator at an operating frequency of 

50 kHz.

Measurements are taken in the wavelength range from either 1700 nm (0.73 eV) 

or 826.6 nm (1.5 eV) to 248 nm (5 eV) with a spectral resolution specified by the 

user. The polarizer and analyzer angles are in most cases set to 0 and 45 

degrees respectively.

Figure I-10. Schematic view of a phase modulated ellipsometer: S: source, P: 
polarizer, M: modulator, A: analyzer, D: detector. 
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If the modulated phase is given by )sin()( tAt  then the measured intensity 

at the detector is given by 

(I-6)

The DC component I0, first and second harmonics of the modulation frequency, Is

and Ic, are recorded during phase modulated spectroscopic measurements. 

Phase modulated ellipsometry determines the values of the ellipsometric angles 

 and  from the harmonics values through the complex Fresnel reflection 

coefficients as follows: 

(I-7)

The measured ellipsometric data were interpreted by comparing them to a 

calculated response of an optical model based on an Abelès matrix approach [15],

specific dispersion relation** and the Bruggeman Effective Medium 

Approximation[16]. The model of the structure was developed using the DeltaPsi II 

software package supplied by the ellipsometer manufacturer and consists of a 

substrate (either with a specified or semi-infinite thickness), a film (or stacks of 

films) and a surface roughness layer. The surface roughness was taken into 

account by adding a layer consisting of a 50% material and 50% void mixture and 

fitting on its thickness. 

                                                          
** Appendix A discusses the classical Lorentz-oscillator and Tauc-Lorentz models. 
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I-2.2 Fourier Transform Infrared Spectroscopy

Infrared (IR) spectroscopy is a widely used, non-destructive technique supplying 

information about the chemical composition and bonding in thin films [17]. The 

vibrational excitation of molecules usually cause absorption in the IR region, as 

shown in Table I-1 for some chemical bonds of interest in this study  [18-20]. If the 

radiation incident on a sample thus has the frequency corresponding to the 

resonance frequency of a specific chemical bond found in the sample, the 

molecular bonds will vibrate. This vibration can take many forms, such as a 

stretching, bending or rocking action. If the vibration causes a change in the 

dipole moment of the molecule, in other words causes a charge imbalance, it is 

said to be IR active and will absorb the incident radiation[17].

A FTIR spectrometer consists of a light source, interferometer, movable and 

stationary mirrors and a detector, as shown in Figure I-11. The light is split into 

two beams, after which one beam is reflected from a stationary mirror and the 

other is reflected from a movable mirror, which introduces a time delay. The light 

is then recombined and traverses the sample. This interference signal gives the 

temporal coherence, which is then recorded by the detector at different positions 

of the movable mirror, thus at different time delays.  The Fourier transform is then 

taken of the temporal coherence at these different time delays, which enables us 

to reconstruct the spectrum.  
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Chemical bond Wavenumber (cm-1)

Si-O-Si (Rocking) 450 

Si-O-Si (Bending) 800 

Si-O-Si (Stretching) 1075 

Si-N (Stretching) ~880 

N-H (Bending) 1175 

N-H (Stretching) ~3200 

Si-OH 950  

Si-OH (water symmetric feature) 3350 band 

Si-OH (asymmetric feature) 3650 band 

Si-H ~2300 

Table I-1. Absorption bands of different chemical bonds in the IR range. 
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Figure I-11. The operation of an FTIR spectrometer. 
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The detection limit of the instrument, which is usually specified in absorption, 

depends on the path length and the signal to noise ratio and is usually in the 

vicinity of 1 percent. A thicker film will allow a lower concentration of a specific 

bond to be quantified; however interference effects in the film-substrate system 

will severely complicate the analysis at larger thicknesses. 

FTIR measurements were taken using a Bruker Equinox 55 spectrometer with a 

resolution of 4 cm-1 in the 400 to 4000 cm-1 wavenumber range. The device was 

purged with dry nitrogen before and during each measurement to remove 

absorption peaks due to atmospheric water. During analysis of the recorded 

signal the baseline and absorption of the crystalline silicon substrate are 

subtracted and the samples are thickness normalized using the thickness 

calculated from spectroscopic ellipsometry measurements.  

I-2.3 Transmission spectroscopy 

As the OH content in the films deposited during the experiments was typically 

less than the FTIR detection limit mentioned above, transmission measurements 

were performed on thick SiO2 layers deposited onto Infrasil fused quartz 

substrates with dimensions of 72 mm x 24 mm x 1 mm. In transmission 

spectroscopy measurements a monochromator is used instead of an 

interferometer, as used in an FTIR spectrometer.

For the purpose of this study a Varian Cary 500 UV/visible/NIR 

spectrophotometer was used. Baseline corrected measurements were taken 
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between 3040 and 4000 cm-1 with a data interval of 4.10 cm-1. During analysis of 

the transmission measurements the transmission of the substrate is subtracted 

and the samples are thickness normalized to make comparison between the 

different samples possible.  

In both FTIR and transmission spectroscopy, information can be obtained from 

the chemical bond’s peak position, width and integrated peak intensity. The first 

two parameters supply qualitative information of the film, concerning the 

identification of the chemical bonds shown in Table I-1, the possible stresses in 

the film, defects and bond strain, while the latter directly relates to the 

concentration†† of a specific chemical bond [17,21].

I-2.4 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) supplies information on feature dimensions and 

the roughness of a surface. This technique traces the topography of a surface by 

detecting the Van der Waals force interaction between a probe tip and the 

surface. Since it detects a force, it can be used on metal, semiconductor and 

insulator surfaces [1]. A sharp tip is mounted on a cantilever spring which has a 

spring constant‡‡ k that is smaller than the spring constant between the atoms. 

                                                          
†† For quantitative values the Beer-Lambert law, that relates the absorbance Aw to the transmittance 
Tw, needs to be used . It is given by ))((log bcTA www with w referring to a 
proportionality constant, b the sample thickness and c the chemical bond concentration. 
‡‡ Where Hooke’s law defines the spring constant k by: F=kx. F is the restoring force exerted by 
the material and x is the quantity by which the spring has been stretched or compressed. The 
atomic spring constant k is defined in terms of the atomic spacing a, the atom’s mass m, the bulk 

modulus K  and the density   as 
m
kaK .
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The applied force is also kept small enough to avoid displacement of the surface 

atoms. The nanometre-sized tip is usually made of silicon or silicon nitride. The 

cantilever deflection is detected using a laser spot reflected from the cantilever 

onto photodiodes, as shown in Figure I-12.  

Laser diode Position
photodiode

Cantilever with tip

Sample

Scanning transition stage 

Laser diode Position
photodiode

Cantilever with tip

Sample

Scanning transition stage 

Figure I-12. The cantilever tip, laser diode and detector photodiodes of an 
atomic force microscope. 

Measuring in tapping (or non-contact) mode entails vibrating the cantilever with a 

piezoelectric element at a frequency close to its resonance frequency. Close to 

the surface the Van der Waal forces will reduce the oscillation’s amplitude. These 

changes in the vibrational amplitude due to the topography are consequently 

detected and recorded as surface images. 
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I-3. Plasma  characterization techniques 

I-3.1 Optical emission spectroscopy  

During an electrical discharge, electron impact may lead to a subsequent transfer 

of energy to the atoms or molecules and consequent excitation or ionization of 

the particles. This will lead to a population of the electronic, rotational and 

vibrational excited states of the atoms or molecules. A decay from these excited 

states can either take place through the radiative emission of photons at different 

wavelengths or by the molecule breaking up [2]. The vibrational spectra form a 

series of bands in the infrared wavelength range. The rotational spectra are 

grouped as a set of lines in bands of rotation in the microwave range. The 

emission spectra for a SiH4 and N2 plasma is shown in Figure I-13, with the 

different electronic excited state bands of nitrogen in the UV clearly visible. 

Figure I-14 shows the UV-Vis-NIR emission spectra of a SiH4 and O2 deposition 

plasma, with a small quantity of Ar added.    

Figure I-13. Optical emission spectra of a silane, nitrogen and argon plasma.
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Figure I-14. Optical emission spectra of a silane, oxygen and argon plasma. 

Optical spectroscopy offers several advantages[2,21,22]. It is a non-invase 

technique, meaning that it doesn’t influence the process, and is robust. 

Compared to techniques such as quadrupole mass spectrometry, it is relatively 

easy to implement, though sometimes difficult to interpret. As shown in Figure I-

13 the spectra of a diatomic molecule such as nitrogen is however very 

complicated due to the large quantity of vibrational and rotational states, making 

the identification of emission lines difficult when using an optical spectrometer 

with an inadequate optical resolution. 

Collisional excitation and de-exciation of atoms can be represented by the 

following equation:  

(I-8)
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where E represents the transferred kinetic energy. The excitation can only take 

place if the electron kinetic energy is higher than the separation between the 

energy levels, meaning that there is a threshold energy Eth (and thus a 

corresponding threshold velocity vthr) for excitation. The excitation cross section 

(v) will have a zero value below the threshold velocity, then increase with 

increased velocity and start to decrease again due to the interaction time 

between the particle and the electron being too small for the efficient transfer of 

energy to take place. 

 Figure I-15(a) shows the excitation cross section’s overlap with the Maxwellian 

electron velocity distribution f(v). The product f(v) v (v) represents the probability 

of a collision transition per atom and per electron with a specific velocity v, as 

shown in figure I-15(b). Taking the area under this curve results in the rate 

coefficient, in other words the total collision probability per atom and per electron.  

Optical emission spectrometry can be used for qualitative measurements, where 

the emission lines for the electronically excited state of the precursors are 

identified. In order to obtain quantitative values of the density of a specific radical 

in the plasma, a technique called actinometry can be used if emission is due to 

excitation of the ground state of the atom or molecule.  It involves adding a small 

quantity of an inert gas to the plasma. If the excitation threshold for a specific 

excited state of the inert gas at wavelength ’ is close to that of an excited state 

of the radical at wavelength , they will have a similar overlap with the electron 

velocity distribution function, as shown in Figure I-15.  
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The cross sections are then approximated with values close to the threshold, ’Ar

and rad, using proportionality constants[2]:

(I-9)

From the ratio of these quantities the density of the radical under investigation 

can be extracted: 

(I-10)

Even if the proportionality constant C is unknown, the trend in the radical’s 

density with changing plasma parameters can be seen[2].

Figure I-15. (a) Overlap of the excitation cross section (v) with the Maxwellian 
electron velocity distribution f(v). (b) The product f(v) v (v) is the rate coefficient. 
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I-3.1.1 Experimental setup 

For the purpose of this study, an Ocean Optics USB4000 fibre-optic optical 

emission spectrometer was used. Measurements were taken at the level of the 

substrate holder, as indicated on Figure I-16 and Figure I-17. The device allows 

measurements in the range of 200 to 850 nm with an optical resolution of 2 nm.  

The emission lines of the radicals investigated in this study are summarized in 

Table I-2 [24 – 30].

A small quantity of argon, less than 5 % of the gas mixture, was added in order to 

perform actinometry. The threshold energy for the argon emission line is 13.47 

eV, while it is 10.98 eV for the oxygen emission line at 844 nm and 12.06 eV for 

the atomic hydrogen Balmer line at 656.6 nm. 

Species Wavelength (nm) 

OH 306.4 system 

O 844  

Ar 750.4  

H 656.6

Table I-2. Emission wavelengths of radicals investigated. 
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T o  p u m p i n g  s y s t e m
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Figure I-16. System setup for OES measurements. 

Figure I-17. OES device and positions where measurements were taken. 
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I-3.2 Differentially pumped quadrupole mass spectrometry 

Mass spectrometry is a technique that allows us to detect all the plasma 

produced radicals, ions, neutral atoms and molecules. Two methods can be used 

to detect these species [31]:

1. In electron impact ionisation of neutral species electrons are produced by 

thermo-ionic emission from a hot filament, such as a Tungsten or 

thoriated iridium wire. These electrons are then accelerated to the chosen 

electron energy, which is typically 70 eV. This is higher than the maximum 

ionisation efficiency curve for most atoms and molecules.  

2. Ion mass spectrometry involves measuring the ions created within a 

discharge by switching off the electron impact source in the QMS head. 

This technique is less reliable as the low concentrations of the created 

species can be very difficult to detect. 

In both of these cases the effect of mass dependent sampling efficiencies needs 

to be taken into consideration, as higher mass particles will usually have a lower 

detection. The different ionisation cross-sections of the various species and the 

pressure differences between the plasma chamber and the QMS should also be 

taken into account. 

The most common mass spectrometry technique used in plasma processing and 

in most residual gas analysis applications is quadrupole mass spectrometry 

(QMS) [32]. It consists of 4 symmetrically arranged parallel cylindrical rod 

electrodes, arranged as shown in Figure I-18. The filament is usually made from 

thoriated iridium wire, though tungsten can also be used. By using this 
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configuration, together with specific DC and AC voltages, an ionisation source 

and a detector, ions can be identified by their mass. As the DC and AC voltages 

are superimposed, an ion with a specific mass to charge (m/z) ratio will pass 

along the central axis of the quadrupole until it reaches the detector. Lighter or 

heavier ions will not reach the detector, as they will be deviated from the central 

axis towards the electrodes and be neutralized. Changing the AC and DC 

voltages or frequency makes it possible to detect different ions. A mass spectrum 

is simply a plot of the detector output as a function of m/z. For a specific molecule 

there also exists a cracking pattern that defines which ions are more likely to 

form. Mass spectrums and cracking patterns may vary if measured by different 

spectrometers with different settings and can also change with time. 

Figure I-18. Quadrupole mass spectrometer operation. 

To get accurate data of the basic chemistry in the plasma, the mass spectrometer 

must be kept as sensitive as possible. A gas such as silane can for example 

react on the hot filament surface and create a silicon layer, which will change the 

work function and consequently the electron emission from the filament.  
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Another factor that needs to be taken into account when using electron impact 

ionisation, is that the electron energy is usually high enough to ionise the atom or 

molecule, as well as cause dissociative ionisation. It is thus better to operate the 

ion source at a lower electron energy, which is still above the ionisation potential 

(IP) of the specific atom or molecule, but not high enough to lead to dissociative 

ionisation. 

I-3.2.1 Experimental setup 

For the purpose of this study, a Thermco VGQ Residual Gas Analyser (RGA) 

system was used. It was placed behind the turbo-molecular pump of the 

deposition system, as shown in Figure I-19. A large pressure differential exists 

between the reactor chamber which operates in the millitorr range§§ and the 

pressure necessary for the QMS’s operation, which is smaller than 1e-5 mbar. To 

achieve this, the mass spectrometer samples the exhaust gas flow of the system 

through a 100 m knife-edge orifice, and is differentially pumped with a 1000 

l/sec turbo-molecular pump and rotary vane backing pump.  Though orifice 

sampling is difficult to implement, it is the method of choice for quantitative in-situ 

measurements[32].  A photograph of the Thermco mass spectrometer used in this 

study can be seen in figure I-20. The QMS was differentially pumped to a 

pressure of less than 2 x 10-6 mbar before use. A thoriated iridium filament and 

emission current of 1.6 A was used to perform the electron impact ionisation 

measurements [33].

                                                          
§§ Where  0.750 torr = 1 mbar = 100 Pa and  760 torr = 1 standard atmosphere 
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Electron energy was set to 70 eV which is, as mentioned before, higher than the 

maximum ionisation energy for most atoms and molecules. It can however also 

create doubly charged ions [31]. A repeller voltage of -110 V, applied to the 

outside cage of the QMS, ensures that most of the electrons in the ionisation 

chamber are kept inside. Resolution was set by the DC offset, which was kept at 

-0.2593V in this study. A pole bias voltage of 2V retards the ions and ensures a 

uniform peak shape and efficient ion extraction [33].

T o  r o t a r y  b a c k i n g  p u m pDi f fe ren t ia l
p u m p i n g
s y s t e m
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Figure I-19. System setup for QMS measurements. 

Figure I-21 shows an example of a QMS mass spectrum of air which forms the 

background when the system is pumped. Table I-3 contains a summary of ions 
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that were looked at during this study, together with their corresponding mass 

values [34-38].

Figure I-20. Experimental setup of differentially pumped QMS system. 

Figure I-21. Example of a QMS mass spectra taken in air. 
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Ion m/z Source gas 

H2O
+ 18 H2O

N2
+ 28 N2

O2
+ 32 O2

SiH2
+ 30 SiH4

Ar+ 40 Ar 

Table I-3. QMS ions monitored during this study. 
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I-4 Conclusion 

The aim of this chapter was to provide the reader with background concerning 

the high density plasma system Venus employed in this study, its design and 

capabilities and to present the key characterization techniques used. In     

Section I-1 a brief introduction to chemical vapour deposition (CVD) and plasma 

assisted techniques, focussing on high density plasma (HDP) sources, was 

given. The operation of an electron cyclotron resonance plasma enhanced 

chemical vapour deposition (ECR-PECVD) system was discussed, with specific 

emphasis placed on the matrix distribution configuration. The major film 

characterization techniques used during the study were shown in Section I-2. The 

chapter concludes in Section I-3 with a discussion of the optical emission 

spectroscopy and differentially pumped quadrupole mass spectrometry plasma 

characterization techniques, together with an overview of their implementation in 

the MDECR-PECVD system.  
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II-1 Introduction 

In this Chapter, the characterization of the MDECR-PECVD system for the 

deposition of SiO2, SiNx and SiOxNy thin films is reported. The influence that 

changes in the gas flow ratios and other process parameters, such as the 

pressure, microwave power and RF biasing of the substrate holder, have on the 

films composition, deposition rate and optical properties are discussed. The 

plasma breakdown products are investigated by studying the plasma’s optical 

emission and taking quadrupole mass spectrometer measurements. The Chapter 

concludes with a brief review of the applications these films were used for during 

the course of this thesis. 

 

 

II-2 Changing the gas flow ratio 

II-2.1 Silicon dioxide 

 

To study what would be the ideal deposition conditions for silicon dioxide, a 

series of films were deposited at different silane gas flows, while initially keeping 

the pressure and microwave power constant at 1.5 mTorr and 1 kW, respectively. 

The system was pumped to a base pressure of less than 1 10-6 mBar before all 

depositions. The substrate was not intentionally heated, nor was an RF bias 

applied to the substrate holder for the purpose of investigating the influence of 
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the silane flow. An O2 flow of 40 sccm was used as it ensures that there is not an 

excess of silane (though this question requires a separate discussion and will be 

delt with later), even at the highest flow used in this study, as this may lead to 

non-stoichiometric films or porous films [1]. In order to achieve the highest 

possible deposition rate, the precursors are not diluted. Stoichiometric silicon 

dioxide films with index values matching that of thermal silica (~1.46 at 2 eV) 

were deposited with rates exceeding 2 nm/s[2]. Figure II-1 (a) and (b) shows TEM 

images of a SiO2 film grown in the reactor Venus.  

 

(a) 
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(b)

Figure II-1. TEM images of an MDECR PECVD deposited 100 nm SiO2 film, 
with an enlargement of (a) 60 000 times and (b) 360 000 times.

 

 

The deposition was done using a 10 sccm SiH4 and 40 sccm O2 gas mixture with  

1 kW microwave power and a pressure of 2 mTorr. No RF substrate bias was 

applied during the deposition. The images show the perfect glassy amorphous 

structure of the film, with no evidence of a columnar structure or phase 

separation. 
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The refractive index and deposition rate of the samples deposited at different 

silane flow rates were obtained from the spectroscopic ellipsometry 

measurements and are shown in Table II-1. As the silane flow increases, the 

deposition rate increases, as the process is limited by the silicon precursor 

delivery [3,4]. 

 

The density of silica films can be estimated using the Lorentz-Lorentz formula [5-8] 

if the composition of the sample is considered to be basically constant. It is given 

by 

       (II-1) 
 

 

For thermal oxide grown at 920 °C the constant K is equal to 8.1145 [5,6], where 

the material’s refractive index taken at 1.96 eV is 1.465 and the density  is equal 

to 2.25 g cm-3.  As can be seen from Table II-1 the films deposited with different 

silane gas flows have refractive indices at 1.96 eV that are all close to that of the 

thermal silica value quoted above.  

 

 

SiH4 gas flow 
[sccm]

SiH4/(O2+ SiH4)
flow ratio 

Refractive index 
at 1.96 eV 

Deposition rate 
[Å/s]

3 0.070 1.464 1.5 

5 0.111 1.460 2.7 

7 0.149 1.456 3.9 

10 0.2 1.456 5.6 

Table II-1. Refractive index and deposition rate of silica depositions done at 
different silane flows. 
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FTIR measurements were made on the different silane flow samples, as shown in 

Figure  II-2. The Si-H absorption bands in the 650 cm-1 (wagging) and 2100 cm-1 

(stretching) vicinity, the OH band peaks at 950 cm-1 and in the 3200 – 3700 cm-1 

region that has been observed in silica films deposited from argon diluted 

precursors[9] or nitrous-oxide instead of oxygen[10] and H-O-H band at 1650 cm-1 

could not be observed in any of the films deposited in this study,  leading us to 

conclude that the hydrogen impurity is below the detection limit[11] discussed in 

chapter I. There is thus a low level of silanol incorporated into the films. A large 

quantity of silanol can cause films to be porous and can lower the refractive 

index[12]. As the hydrogen impurity level in the films is thus very low and the 

refractive index value is close to the thermal silica value, it can be concluded that 

the deposited silica films have densities comparable to values shown in 

literature[13] of 2.2 g/cm3,  for the investigated silane flow regime. 
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Figure II-2. Thickness normalized IR spectra showing the Si-O rocking, 
bending and stretching peaks, for depositions done with different SiH4 flows. 
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The IR spectra seen in Figure II-2 were deconvoluted into their constituent 

absorption bands, as shown in Figure II-3. Table II-2 contains the peak 

frequencies extracted from the deconvoluted spectra of the different depositions. 

The positioning of the absorption bands remain constant with changes in the SiH4 

flow rate, with the exception of the 1180 cm-1 stretching peak that undergoes a 

slight shift to lower wavenumbers with increased silane flow. Thermal silica has a 

Si-O asymmetric stretching peak frequency in the vicinity of of 1075 cm-1 [14,15]. 

Shifts or deformation of the stretching peak from the thermal silica value are due 

to the variations of the Si-O-Si bond angle, and the composition of SiOx 

deposition is also directly related to the stretching frequency. The shift to lower 

wavenumbers can also indicate a slightly less dense material than thermal silica. 
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Figure II-3. Positioning of the rocking, bending and deconvoluted Si-O 
stretching peaks. 
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Peak frequency [cm-1]Vibration type 

3 sccm 5 sccm 7 sccm 10 sccm Thermal 
SiO2

[15]

Si-O (Rocking)  453 453 453  453 450 

Si-O (Bending) 814  813  814  812  800 

Si-O (Stretching) 1060  1059  1059  1060 1075 

Si-O (Stretching) 1180  1177  1176  1172  1180 

Table II-2. Changes in the peak frequencies of silica films deposited at 
different silane flows and 40 sccm oxygen flow. 

 

 

Table II-3 contains the peak amplitude and full width at half maximum values for 

the main Si-O stretching peak in the 1075 cm-1. A slightly narrower peak at low 

silane flows can be seen, which indicates a marginally better ordering in the 

film[16]. Increasing the silane flow reduces the Si-O peak amplitude. This is due to 

a slight decrease in the Si-O-Si bond angle and thus a slight decrease in the 

density of the films [5]. The density thus decreases as the silane flow rises, which 

is confirmed by the lowering in refractive index which was shown in Table II-1. 

 

 

SiH4  flow 

[sccm]

Peak amplitude [a.u.]

(  0.2) 

FWHM  [cm-1]

(  0.5) 

3  31.2 69 

5  29.1 71 

7  27.9 71.6 

10  27.8 72 

Table II-3. Changes in the Si-O asymmetric stretching peak amplitude and 
FWHM values of SiO2 films deposited at different SIH4 flows. 
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The film composition discussed above can be linked to the plasma properties and 

the gas phase composition observed during similar plasma conditions as the 

silane gas flow series that was deposited. Figure II-4 and II-5 shows the OES and 

QMS measured data. The intensity of the hydrogen Balmer line, H , rises with 

increasing silane flux, as it is a silane and water fragmentation product [17], as 

shown in Figure II-4. The production of water also increases as it is the main by-

product during the deposition of SiOx from a silane and oxygen gas mixture.  

 

 

 

 

 

 

 

 

 

Figure II-4. OH, O and H  Optical emission intensities for varying silane gas 
flows, at 1 kW microwave power, 1.5 mTorr pressure, 40 sccm O2, 3sccm Ar. 
 

 

The mass spectrometry measurements shown in Figure II-5 depict the increase 

in the fraction of silane and oxygen used during deposition, with increasing silane 

flow. The normalized intensity here refers to the ratio of the O2
+ or SiH2

+ ion 

intensity when a deposition plasma exists in the reactor chamber, to its intensity 
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without a plasma (in other words, when no silane or oxygen consumption is 

taking place).  

 

The O2
+ intensity shows an almost linear decrease with rising silane flow, due to 

a greater availability of silicon bonding sites and higher water production [18]. The 

decrease in SiH2
+ normalized intensity start to saturate at higher flow rates. At the 

moment no explanation for the high consumption of SiH4 at high SiH4 flow rates 

can be given. A distinct difference in the scales of the O2
+ and SiH2

+ intensities 

can be seen, due to the fact that the silane is almost entirely consumed while the 

excessive oxygen is fed to the chamber in order to guarantee stoichiometric SiO2 

deposition. 
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Figure II-5. Mass spectrometry measurements of O2
+ and SiH2

+ intensities 
during a plasma discharge, normalized with respect to measurements taken 

without a discharge, at different silane flows. 
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II-2.2 Silicon nitride 

 

A series of SiNX films were deposited at different silane flows and ellipsometric 

measurements used to determine the refractive index and deposition rates, as 

can be seen in Table II-4. As was the case with the silicon oxide films, the 

deposition rate increases as the silane flow is increased, again due to the 

process being limited by the silicon precursor delivery [20,21]. The decrease in 

refractive index of the SiNx films when raising the silane flow is not reported in 

studies using NH3 or He diluted N2 as oxidizing precursor [21,22]. The SiH4/N2 

mixture used here, results in a larger quantity of hydrogen being incorporated into 

the growing film as the silane flow is increased. This statement will be discussed 

together with the FTIR results shown in Figure II-4 for the different SiNx films.  

 

 

SiH4 gas flow [sccm] Refractive index at 2 eV Deposition rate [Å/s] 

3 1.855 1.2 

5 1.790 2.1 

7 1.767 3.1 

10 1.735 4.7 

Table II-4. Refractive index and deposition rate of SiNx depositions done at 
different silane flows. 

 

 

The IR spectra seen in Figure II-6 were deconvoluted into their constituent 

absorption bands that were discussed in Chapter I, as shown in Figure II-7. The 

main absorption in the 700 to 1200 cm-1 wavenumber range, consists of the Si-N 
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stretching vibrations and the Si-NH-Si bending vibration. A Si-H2 stretching mode 

at 2090 cm-1 that has been seen in ECR-PECVD SiNx films deposited using He 

dilution[21] was not be observed in this study. The absence of the Si-H  peak at 

2100 cm-1 is due to the nitrogen rich conditions used during all the deposition, 

leading to a preferred creation of the N-H bonds at ~3300cm-1 [23].  

 

The presence of Si-O bonds is not excluded, as depositions are done at room 

temperature and some oxygen present in the system due to the history of 

depositions could be incorporated. The system was however pumped for at least 

two hours before each SiNx deposition to reduce the oxygen contamination.  
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Figure II-7. Deconvoluted FTIR spectra of a silicon nitride deposition. 
 

 

Table II-5 contains the Si-N stretching peak frequencies, amplitudes and FWHM 

values extracted from the deconvoluted spectra of the different SiNx depositions. 

An increase in the FWHM values of the films deposited at higher silane flows is 

due to less ordering in the films.  

 

The lowering in peak amplitude of the Si-N stretching peak and a simultaneous 

increase in the NH bonds as shown in Figure II-6, indicate a higher hydrogen 

content in the films deposited at higher silane flows. This confirms the statement 

made earlier that a decrease in the refractive index values with higher silane 

flows indicates an increase in the hydrogen incorporation. The shift in the peak 

frequency of the Si-N absorption band and the strengthening of the Si-NH-Si 

peak on Figure II-6 also confirm that the quantity of hydrogen incorporated into 

the silicon nitride films is dependent on the silane gas flow, and that the hydrogen 
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is preferentially bonded to nitrogen, as the Si-H peak is absent. Other 

researchers consider this preferential bonding to be due to hydrogen bonding to 

nitrogen in the gas phase [21]. It is more probable that hydrogen is removed from 

the growing surface via the creation of NH3 molecules, which form strong 

physisorption bonds* that have a bonding energy of 0.63 eV [24]. 

 

 

SiH4 flow 
[sccm]

Peak amplitude [a.u.]
(  0.6) 

FWHM  [cm-1]
(  2) 

Peak frequency  
[cm-1]

3  21.2 113 858 

5  17.8 141 870 

7  16.0 162 894 

10  15.5 166 896 

Table II-5. Changes in the peak frequencies, amplitude and FWHM of Si-N 
peaks in SiNx films deposited at different silane flows. 

 

 

In Figure II-8 QMS measurements of the N2
+ and SiH2

+ ions can be seen. Similar 

to the SiO2 case, an increase in the fraction of silane and nitrogen used during 

deposition can be observed when increasing the silane flow. The silane precursor 

consumption is however very high over the entire gas flow range investigated, 

though still less than when depositing SiO2. This is logical due to the higher 

reactivity of oxygen. The N2
+ normalized intensity shows the fraction of nitrogen 

consumed changing much more drastically as larger silane flows are added. 

 

                                                          
* A strong smell of ammonia can also be perceived in the system after depositing silicon nitride, 
amd even after pumping the system to below 1e-6 mBar after deposition. 
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Figure II-8. Mass spectrometry measurements of N2
+ and SiH2

+ intensities 
during a plasma discharge, normalized with respect to measurements taken 

without a discharge, at different silane flows. 
 

 

II-2.3 Silicon oxynitride 

 

Figure II-9 shows the optical index dispersion curves of a series of SiOxNy films 

deposited using 5 sccm SiH4 and an 80 sccm O2+N2 gas flow. The ratio 

O2/(O2+N2) was varied from 0 (pure SiNx) to 0.25, which constitutes an oxygen 

rich SiOxNy. 1 kW microwave power and 2 mTorr pressure were used in all 

depositions. 

 

Figure II-10 shows the refractive index and deposition rate data as a function of 

the O2/(O2+N2) gas ratio, for both 5 sccm and 10 sccm SiH4 gas flows [25]. The 

refractive index can be varied precisely by varying the precursors ratio over a 
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broad range of values, from SiOx to SiNx, which makes these films ideal for 

depositing optical filters [26].  

 

Since the oxidizing potential of oxygen is higher than nitrogen, a ratio of 0.1 for a 

5 sccm silane flow is enough to produce an oxynitride with a refractive index and 

deposition rate close to that of pure silicon dioxide. The 10 sccm silane flow leads 

to a silicon nitride film with a refractive index that is lower than the 5 sccm case 

due to higher hydrogen content. 

 

 

1.5 2 2.5 3 3.5 4 4.5 5

1.5

1.6

1.7

1.8

1.9

2

Photon energy (eV)

R
ef

ra
ct

iv
e 

in
de

x 0

0.025

0.0625

0.0825

0.125

0.25

 

Figure II-9. Optical dispersion curves for SiOxNy films deposited at different 
O2/(O2+N2) flow ratios. 

 

 



CHAPTER II   Influence of process parameters on plasma and material properties

70

0.00 0.05 0.10 0.15 0.20 0.25
1.4

1.5

1.6

1.7

1.8

1.9

O2/(O2+N2)

R
ef

ra
ct

iv
e 

in
de

x

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

D
eposition rate (nm

/s)

5 sccm SiH4

(a)

 

 

0.00 0.05 0.10 0.15 0.20 0.25

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

0.48

0.51

0.54

0.57

0.60

0.63

R
ef

ra
ct

iv
e 

in
de

x

O2/(O2+N2)

D
eposition rate(nm

/s)

10 sccm SiH4

(b)
 

Figure II-10. Refractive index and deposition rate as a function of the 
oxidants flow ratio, for (a) 5 sccm SiH4 and (b) 10 sccm SiH4 gas flows. 

 

 

FTIR measurements of the various oxidant ratio films shown in Figure II-10 (a) 

can be seen in Figure II-11. The shift from the Si-N stretching peak at an oxidants 

ratio of 0 to the Si-O stretching peak at the oxidants ratio 0.25 is apparent.  
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It is interesting to observe that at a 0.25 oxidants ratio the material already 

exhibits almost the same FTIR spectra and refractive index as the silicon oxide 

material shown in Section II-2.1. As the oxygen molecules have a lower 

dissociation energy than the nitrogen molecules, more atomic oxygen than 

nitrogen will link with the silicon atoms at the growing surface[10,14,27]. 

 

 

 

Figure II-11. FTIR absorption spectra for SiOxNy filmd deposited at 
different O2/(O2+N2) flow ratios with 5 sccm SiH4, 1 kW microwave power 

and 2 mTorr pressure. 
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II-3 The influence of the applied microwave power 

A series of depositions were done in order to study the influence of the 

microwave power on the quality of the silicon oxide films[28]. Gas flows of 5 sccm 

SiH4 and 40 sccm O2 were used, with 3 sccm Ar added for actinometry purposes. 

The process pressure was set to 2 mTorr for all depositions, and no RF biasing 

or intentional heating of the substrate holder was used. Figure II-12 shows the 

FTIR measurements of films deposited with the microwave power varied from 

500 W to 1500 W, while the OES measurements of the plasma emission and the 

QMS residual gas measurements results can be seen in Figures II-13 and   

Figure II-14.  

 

The FTIR results indicate a slight increase in the Si-O stretching peak intensity 

when the deposition is done with a high microwave power. From the optical 

emission shown in Figure II-13 (a) it is found that the atomic oxygen emission in 

a SiH4/O2 plasma at 844 nm remains constant with increased microwave power. 

To get a better insight into this phenomenon the oxygen emission in an O2 

plasma (with 3 sccm Ar) was also analyzed, as shown in Figure II-13 (b). Here, 

the oxygen radical emission does in fact increase linearly with increased power. It 

can be concluded that the additional atomic oxygen generated with increased 

microwave power in the SiH4/O2 gas mixture is consumed during the deposition. 

This will in turn lead to an increase in the deposition rate.  
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Figure II-12. Thickness normalized IR absorbance spectra for SiOx
depositions done with assorted microwave powers. 
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Figure II-13. (a) OH, O and H  optical emission intensities for varying 
microwave powers, at 1.5 mTorr pressure,5 sccm SiH4, 40 sccm O2 and 

3sccm Ar. (b) O emission intensities with varying microwave powers, both 
with and without silane in the gas mixture. 
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The OES results in Figure II-13(a) also show a marked rise in the hydrogen 

emission at 656 nm due to the more effective breaking of the H2O and SiH4 

molecules with increased microwave power, as well as an increase in the 

hydroxyl emission system at 306.4 nm with increased microwave power. As a 

consequence of this, one might expect to see a lowering in the hydroxyl content 

in the deposited film with increased microwave power, which will be elaborated 

on in Chapter III. The QMS measurements seen in Figure II-14 show an excellent 

consumption of the silane precursor even at low microwave powers, as well as a 

slight rise in the oxygen consumption as higher microwave power is used. The 

H2O intensity peak at m/z = 18 was found to follow a trend similar the OH 

emission shown in Figure II-13(a), as is also reported when using a 

tetraethoxysilane/oxygen gas mixture[18]. 
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Figure II-14. Mass spectrometry measurements of O2
+ and SiH2

+ intensities 
during a plasma discharge, normalized with respect to measurements taken 

without a discharge, at different microwave powers. 
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Three SiNx films were deposited at 600 W, 1000 W and 1400 W, respectively. 

The refractive index that can be seen in Figure II-15 is found to increase 

considerably with increased power, while the deposition rate decreases. This can 

be attributed to the SiNx films being denser at high powers. This might be due to 

an increased removal of NH3 from the surface due to N2
+ bombardment and the 

higher temperature of the surface at increased microwave powers. The increase 

in the density of the material then leads to the observed rise in the refractive 

index. The densification assumption is confirmed by the infrared spectra shown in 

Figure II-16, where it can be seen that the Si-N peak gains intensity, shifts 

towards lower wavenumbers and becomes narrower with increased power. The 

mass spectrometry measurements seen in Figure II-17 show very small 

variations in the SiH2
+ normalized intensities and a slight improvement in the N2

+ 

consumption, pointing to an almost complete utilization of the silane precursor 

even at low microwave powers, as evidenced by the deposition rates as well [4]. 
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Figure II-15. Refractive index and deposition rates for SiNx films deposited at 
different microwave powers. 
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Figure II-16. Thickness normalized IR absorbance spectra for SiNx
depositions done with assorted microwave powers. 
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Figure II-17. Mass spectrometry measurements of N2
+ and SiH2

+ intensities 
during a plasma discharge, normalized with respect to measurements taken 

without a discharge, at different microwave powers. 
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II-4 Process pressure and substrate heating 

Figure II-18 shows the dependence of the refractive index of an oxynitride 

deposition on the oxidants flow ratio, for a SiH4 flow of 5 sccm and two different 

pressures. The pressure is found to have only a minor influence and the index is 

mainly controlled by the gas flow ratio. The OES measurements seen in Figure II-

19 also show that the investigated pressure range does not have a strong 

influence, except for a slight rise in the OH emission intensity when the pressure 

is increased up to 8 mTorr. It must be noted here that the pressure was regulated 

by closing the gate valve, thus reducing the effective pumping rate of the 

turbomolecular pump. The influence of pressure changes was investigated using 

QMS measurements of the silane and oxygen consumption between 1 and 3 

mTorr, as seen in Figure II-20. A negligible change in the silane consumption and 

a very slight decrease in the oxygen utilisation with rising pressure are observed. 

 

 

Figure II-18. Refractive index at different O2/(O2+N2) gas flow ratios. 
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Figure II-19. O, OH and H normalized optical emission of a 5 sccm SiH4, 40 
sccm O2 and 3 sccm Ar gas mixture at varying pressure. 

 

Figure II-20. Pressure dependence of the O2
+ and SiH2

+ intensities. 
 

 

As this study is mainly concerned with the deposition of silicon oxide without 

intentional heating of the substrate holder, a very brief discussion of the influence 

of heating the substrate holder is given here. Table II-6 shows the deposition rate 

and refractive index of two depositions, one done with heating the substrate 
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holder to 150 °C and one with no intentional heating. The deposition rate 

decreases with increased substrate temperature, which could be due to changing 

gas concentrations (as the heating of the gas will lead to a decrease of its density 

at a constant pressure) or a decrease in the residence time of the SiH4 on the 

substrate surface. The FTIR measurements in Figure II-21 also show that the two 

depositions have a very similar composition, with the film heated during 

deposition having only a slightly narrower peak. This points to a slightly better 

ordering in the film. 
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Figure II-21. IR spectra of SiO2 deposited at room temperature and 150 °C.
 

 

Substrate temperature Deposition rate (Å/s) Refractive index (2eV) 
Unheated 6.3 1.461 

150°C 5.2 1.46 

Table II-6. Deposition rate and refractive index of silicon dioxide (10 sccm 
SiH4, 40 sccm O2) deposited on heated and unheated substrates. 
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II-5 Radio frequency biasing of the substrate holder 

The influence of applying an RF bias to the substrate holder was investigated by 

FTIR measurements done on three silica films deposited with different bias 

voltages[28], as presented in Figure II-22.   

 

The Si-O-Si stretching peak was found to shift from 1074 cm-1 when no bias was 

applied to 1080 cm-1 at a -50V substrate bias, due to compressive stress 

developing in the film, which has also been reported in other studies [29]. The 

slight narrowing in the peak with increased substrate biasing is due to better 

ordering in the film. No Si-H bonds were observed in the vicinity of 2100 cm-1 in 

all spectra. 
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Figure II-22. Infrared spectra of three SiO2 films deposited at 0 V, -25 V and 
-50 V substrate bias, respectively. 
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The OES measurements shown in Figure II-23 demonstrate a distinct increase in 

the hydroxyl emission, which might indicate efficient removal of the water 

symmetric feature (the associated SiOH vibration mode) from the deposition 

surface, due to the increased bias voltage that results in a higher ion energy and 

flux. The QMS measurements that can be seen in Figure II-24 show an increased 

consumption of the silane precursor, evidenced by the reduced intensity of the 

SiH2
+ normalized intensity, when a low RF substrate bias is applied. There is a 

slight decline in the quantity of oxygen consumed when the substrate bias is 

increased. This can be explained by the increased ion bombardment energy 

caused by raising the substrate bias.  The threshold for physical sputtering of 

thermally grown SiO2 in an oxygen plasma has been found to be 25V [30]. A too 

high substrate bias will thus lead to physical sputtering, as also found by other 

researchers [31-33]. A low RF substrate bias thus contributes to the deposition 

process by ensuring a high flux of low energy ions and consequently the efficient 

removal of hydrogen from the growth surface and densification of the film [29]. 
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Figure II-23. Changes in the H, OH and O optical emissions as a function of 
the RF bias applied to the substrate holder. 
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Figure II-24. Mass spectrometry measurements of the O2
+ and SiH2

+ ions. 
 

 

Refractive index values of SiOxNy depositions done with a substrate bias of -20V, 

at both 5 sccm and 10 sccm silane gas flows, are depicted in Figure II-25. The 

refractive index is found to increase slightly due to the RF bias applied to the 

substrate holder, which lead to a higher density due to an increase in the energy 

of the positive ions bombarding the surface[34]. 

 

FTIR measurements on silicon nitride depositions done with and without a 

substrate bias applied are shown in Figure II-26. 2 mTorr pressure, 1 kW 

microwave power and a 10/80 sccm SiH4/N2 gas mixture was used. A significant 

increase in the Si-N stretching peak with a shift to a lower wavenumber, as well 

as a reduced N-H stretching peak, indicates the reduced incorporation of 

hydrogen in the film when applying the substrate bias. 
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Figure II-25. SiOxNy depositions done at different O2/(O2+N2) flow ratios, for 
5 sccm and 10 sccm SiH4 flows. 
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Figure II-26. Infrared transmission spectra of SiNx depositions done with and 
without a substrate bias applied.  
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II-6 Applications 

To conclude, a few applications of the parameter study done in this Chapter is 

presented. The gas flow study in section II-2 on the SiOx and SiNx films was used 

to deposit several filters[26,35]. An example of a 5 cm x 5 cm Bragg mirror’s 

transmission is shown in Figure II-27. The slight discrepancy between the 

theoretical curve and the measured transmission is due to the refractive index of 

the deposited SiNx films being lower than the expected refractive index, since 

residual oxygen is included in the SiNx films when alternating the deposition 

between SiO2 and SiNx layers. 
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Figure II-27. Transmission of a Bragg mirror at 660 nm deposited on 
Corning glass[35].
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Silicon dioxide and nitride films were deposited as impermeability coatings onto 

12 m thick PET substrates in the frame of the ENCAPSAT project. PET has a 

permanent water flux (or Water Vapour Transmission Rate, WVTR) of 9.8 

g/m2/day. As applications such as organic photovoltaïcs or OLEDs require WVTR 

of the order of 10-6 g/m2/day[36], a water barrier coating is required for the PET 

substrate. In addition to this the melting temperature of PET [36,37] is in the vicinity 

of 250°C with the glass transition temperature at approximately 80°C, making the 

use of a low temperature process for depositing the barrier coating essential.  

 

Table II-7 summarizes the results of a series of depositions done, either onto 

uncoated or titanium coated 12 m thick PET substrates, as indicated in the 

table. The Barrier Improvement Factor (BIF) indicated is the ratio of the 

measured water permanent flux of an uncoated PET substrate to the coated 

PET’s water permeation.  A gas mixture of 10 sccm SIH4 and 40 sccm O2 was 

used for the silicon dioxide depositions and an 10 sccm SIH4 and 80 sccm N2  

mixture for the silicon nitride film. No rf bias was applied to the substrate holder 

and the substrate holder was not heated intentionally during the depositions.  

 

 

Sample Substrate Material Microwave power  Thickness  BIF 
V250707-1 PET SiNx 500 W 530 nm 72 
V240707-2 PET SiO2 500 W 530 nm 9 
V240707-1 PET/Ti SiO2 500 W 530 nm 43 
V200707-1 PET/Ti SiO2 1000 W 531 nm 179 

Table II-7. BIFs for SiO2 and SiNx depositions done onto PET and Ti-coated 
PET substrates. 
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It can be seen that using titanium coated PET improves the BIF significantly. 

Most likely the 50 nm Ti-layer sufficiently protects the underlying PET from the 

oxygen plasma and the plasma generated UV light. For the depositions done 

onto uncoated PET substrates, the best results were obtained with the silicon 

nitride deposition, which had a BIF of 72. Two 200 nm depositions of SiO2/SiNx 

gradients were done onto uncoated PET substrates, with the material gradually 

changed from silicon oxide to nitride in the one deposition, and from silicon nitride 

to oxide in the other. Figure II-28 shows the measured water flux of these 

depositions, as well as the WVTR of an uncoated PET substrate. The BIF for the 

two depositions were 3 and 3.5, respectively, which is low compared to the 

values that were listed in Table II-7. 
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Figure II-28. Water flux measurements for two 200nm SiO2/SiNx gradient 
depositions, with the WVTR of clear PET indicated. 
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A 320 nm SiO2 deposition was done using a 5 sccm SiH4 and 40 sccm O2 gas 

mixture and 1.5 mTorr pressure, 1 kW microwave power and -40V RF substrate 

bias, in order to fabricate an aluminum capacitor test structure for current-voltage 

measurements. Figure II-29 shows the breakdown field distribution of the fifteen 

1.77 x 10-8 m2 capacitor points measured. As can be seen the majority of the 

points had breakdown fields in the vicinity of 4.1 MV/cm, which is acceptable but 

still low in comparison with the best values reported in literature [38]. Pinholes in 

the film, due to the vertical orientation of the reactor chamber (face-up substrate 

position) leads to dust falling onto the sample during deposition that reduces the 

quality of the dielectric. A 5.67×10 5 m2 aluminum capacitor test structure with a 

107 nm silicon nitride layer was also used for electrical characterization. The 

obtained dielectric constant of the silicon nitride layer (with refractive index 1.832) 

was found to be 5.4 and the breakdown field 4.1MV/cm [2]. 
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Figure II-29. Breakdown field distribution for a 320 nm SiOx film deposited 
from 5 sccm SiH4, 40 sccm O2 at 1 kW microwave power, a 1.5 mTorr 

pressure and a substrate bias of – 40V. 
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Conclusion

In this Chapter, the influence of various process parameters on the deposited 

material and plasma properties was presented. Section II-2 discussed the 

influence the gas flow ratio has on the deposition of silicon oxide, oxynitride and 

nitride films. The second process parameter investigated in Section II-3 was the 

microwave power. It was found that additional atomic oxygen is generated in the 

SiH4/O2 gas mixture when the microwave power is increased, but is consumed 

during the deposition and thus leads to an increase in the deposition rate. 

Applying a higher microwave power was also found to improve the density of 

SiNx films, leading to a higher refractive index and higher precursor utilization. 

Section II-4 discussed the influence the process pressure and heating of the 

substrate holder have on the composition of the depositions and their 

corresponding plasma characteristics. The influence of applying an RF biasing to 

the substrate holder was explained in Section II-5 and the results compared to 

those shown in literature. To conclude the Chapter, three applications of the 

process parameter study were shown: 1) The computer controlled deposition of a 

Bragg mirror using alternating layers of SiO2 and SiNx; 2) the application of SiO2, 

SiNx and gradients of these materials as water barrier coatings for PET and 3) 

the use of SiO2 and SiNx as dielectrics for interlayer isolation.  

 

Chapter III will elaborate further on the influence the silane injection system has 

on the precursor consumption, deposition rate and quality of the films, with 

special emphasis placed on their silanol content. 
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III-1  Introduction 

In the previous Chapter, the deposition and characterization of silicon dioxide, 

nitride and oxynitride in the MDECR-PECVD system, using a gas ring for the 

silane injection, was described. This Chapter will focus on the high-rate 

deposition of silica films using directional jet injection of the silane precursor [1].

The aim is to study the importance the primary SiH4 flux has on the SiO2

deposition. The influence the silane delivery to the substrate has on the 

deposition rate and the hydroxyl incorporation into the film is also of interest. This 

study is done by replacing the gas ring for silane injection with a capillary jet.  

The study starts by looking at the uniformity and intensity of the flux of oxygen 

radicals and ions onto the substrate surface as a function of the different process 

parameters. Section III-3 then presents the different silane injection systems 

used during the study, and the influence they have on the deposition rate. The 

well-mixed reactor hypothesis is then discussed. Section III-4 reports the 

influence of the directionality of the primary silane flux on the deposition of silicon 

dioxide, by combining phase modulated spectroscopic ellipsometry, AFM, FTIR 

and transmission measurements with QMS measurements. The deposited 

materials’ properties, with special emphasis placed on the films hydroxyl content, 

are studied at different distances from the injection point, while also looking at 

how changes in the process parameters influence the depositions.  
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III-2 The ashing of photoresist using an O2 plasma 

In order to study the uniformity of the oxygen radical flux onto the substrate 

surface, the stripping of photoresist using an oxygen plasma was investigated. 

For this purpose, 1 m of Shipley Microposit S1400 positive photoresist [2] was 

spin-coated onto a set of crystalline silicon wafers. The thickness of the 

photoresist was measured before etching, and the end point of the etching 

process detected using in-situ spectroscopic ellipsometry.  

The ashing of photoresist in ECR systems using oxygen plasmas have been 

reported by other researchers [3-6]. The results concerning the oxygen plasma are 

consequently not novel, but the study is necessary to ensure that the active 

oxygen flux onto the substrate is uniform. This is important for the DSMC 

simulation, which will be described in Chapter IV. The ash rate results with 

different process parameters can be seen in Fig. III-1.  

Figure III-1. Ashing of photoresist in oxygen plasma, with (a) increasing 
pressure, (b) oxygen flow and (c) different microwave powers. 
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The effect the process pressure and oxygen flow rate have on the ash rate are 

shown in Fig. III-1(a) and (b). They are found to have only a slight influence on 

the stripping of the photoresist. The etch rate as a function of the microwave 

power can be seen in Fig. III-1(c). It increases approximately 3 times when the 

power is increased from 500 to 1500 W. The flux of oxygen radicals onto the 

substrate surface is thus the determining factor during the photoresist etching 

process. The uniformity of the oxygen flux onto the substrate holder was 

estimated by mapping the photoresist thickness across a 150 mm silicon wafer 

before etching and re-measuring the photoresist thickness after etching in an 

oxygen plasma, but stopping before the resist is stripped entirely. A flow rate 40 

sccm O2 was used, together with 1 kW microwave power and a pressure of 3 

mTorr. The etch rate across the wafer can be seen in Figure III-2 and is found to 

have a uniformity of 4.2%. It is interesting to note the similarity between the etch 

map presented here and the SiO2 deposition map across a 200 mm wafer that 

was discussed in Chapter I. 
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Figure III-2. Uniformity of photoresist ashing over a 150 mm diameter wafer. 
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III-3 Gas ring versus capillary jet injection of silane 

The design of the gas injection manifold in vacuum systems has been the subject 

of studies for several years [7-9]. Most systems make use of a tubular gas ring with 

holes spaced at regular intervals around its edge. These systems are usually 

designed either by trial and error, previous experience or simple rules of thumb.  

Using such a gas ring it is possible to attain a relatively uniform gas distribution in 

the vacuum chamber. It is thus understandable that for a gas, such as silane, that 

has dissociation products with high sticking coefficients[3], the correct positioning 

and design of the injection system is very important for optimizing the process. 

The precursor injection system in a commercially available HDP CVD machine 

from Novellus is shown in Figure III-3. It uses volume injection in the direction 

pointing away from the substrate. It assures uniform deposition, but needs to rely 

on re-sputtering to achieve high deposition rates. In such a system, re-sputtering 

accounts for a large part of the deposition rate.  

Though other studies have made use of a jet injection system for the deposition 

of silicon nitride [10] and for the injection of helium diluted silane[11], a detailed 

experimental study of the different silane distribution systems is still required, in 

order to understand how a particular gas is dispersed in the vacuum system and 

what influence its distribution has on the deposition rate. A simulation of the gas 

flow in the vacuum system also allows us to gain further insight into the ideal 

design of the injection system and will be presented in Chapter IV. 
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Figure III-3. The Novellus HDP CVD system with a volume injection system. 

The three different SiH4 injection systems used during this study can be seen in 

Figure III-4. Regardless of the SiH4 injection system used, the O2 precursor gas 

was always introduced into the vacuum chamber in the antenna region, as was 

indicated on Figure I-6 in Chapter I.  

The gas ring injection system shown in Figure III-4 (i) was used to attain uniform 

depositions across 200 mm wafers, as was discussed in Chapter I. The results 

contained in Chapter II all made use of this injection system. It was then first 

replaced by a 20° angled capillary jet and then by a vertical capillary jet, both with 

an internal diameter of 1 mm, as shown in Figure III-4 (ii) and (iii).

Figure III-5 shows the thickness mapping results of silicon dioxide films deposited 

using the angled and the vertical positioning of the capillary jet shown below. The 
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aim of this is to study an intentionally non-uniform deposition at different 

distances from the injection point, as indicated on Figure III-4. This makes it 

possible to gain insight into the deposition mechanism [1].

(i)

(ii)

(iii)

Figure III-4. (i) : SiH4 gas ring around the periphery of substrate holder.
(ii) Angled jet injection system with transmission measurements done at four 

points on the substrate (a) 1.5cm, (b) 3.5cm, (c) 6cm and (d) 7.5cm. 
(iii) Vertical SiH4 injection system, measurements were done at (a) 1.5cm, (b) 

3cm, (c) 4.5cm and (d) 6cm. 
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Figure III-5. Thickness scans of two SiO2 depositions with (a) the angled 
capillary and (b) the vertical injection point. The capillary was positioned at 

the edge of the substrate in (a) and over the centre of the substrate in (b).

The relation between the deposition rate and the water incorporation into the film 

at the different positions is studied as a function of the various process 

parameters, and will be shown in Section III-4. Previous studies done on the Si-

OH concentration in deposited SiO2 films made use of silane and oxygen 

precursors that were highly diluted in argon, while entirely disregarding the partial 

pressure of water as a possible source for OH inclusion into the film [12,13]. This 

can not be correct, as the water flux is at least comparable to the silane flux. In 

Figure III-6, QMS measurements taken in the vicinity of the microwave antennas, 

(a) 

(b) 
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with and without a deposition plasma, show the drop in SiH4 concentration and 

the corresponding rise in H2O production in the gas phase in the presence of a 

plasma. The production of water, which is the main byproduct produced during 

the deposition process, will be practically constant at a given set of oxygen and 

silane flows, irrespective of the design of the injection system. The flux of H2O

onto the substrate surface will thus be uniform, while the flux of silane from the 

capillary jet will not be uniform across the substrate area. The deposition rate will 

consequently vary over the entire substrate. As a result of this the quantity of 

water incorporated into the film will be constant across the substrate, but as the 

deposition rate depends on the primary silane flux, the regions of high deposition 

rate will contain a lower quantity of hydroxyl bonded species per volume than the 

lower deposition rate regions. In Section III-4 the deposited films Si-OH 

absorption is studied at different distances from the capillary tube, while varying 

the deposition conditions. This helps to shed light on the contribution of the H2O

partial pressure on the hydroxyl concentration in the SiO2 films. 
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III-3.1 Deposition rate, precursor consumption and the 

well-mixed reactor 

The deposition rate of silicon dioxide films deposited using the different silane 

injection systems shown in Figure III-4 was found to vary tremendously. While the 

highest deposition rate using the gas ring injection system was found to be 21 

Å/s  at a SiH4 flow of 35 sccm and 120 sccm O2,  the angled jet injection was able 

to achieve higher deposition rates with lower SiH4 and O2 flow rates, as shown in 

Figures III-7 and III-8. The increase in the deposition rate with a rise in the silane 

gas flow is observed as expected. The refractive indices however remained 

constant and equal to that of stoichiometric silica. As would be anticipated, the 

uniformity of the jet injected films are by far not as good as the films deposited 

with the gas ring injection system, but this is intentional.  
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along the infrasil substrate as shown in Figure III-4(ii) for the angled 

capillary jet. 
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Figure III-8. Deposition rate profiles for different silane flows measured 
along the infrasil substrate as shown in Figure III-4(iii) for the vertical 

capillary jet. 

The difference between the deposition rates when using the gas ring and the 

capillary jet injection point can be understood by considering the data contained 

in Table III-1. Here, the deposition of silicon dioxide onto four silicon wafers 

placed at different positions in the HDP system, when using the gas ring for 

silane injection, is shown. It can be seen that deposition takes place on all 

surfaces in the system. As was mentioned before, the dissociation products of 

the silane precursor have high sticking coefficients, leading to deposition on all 

surfaces with which they come into contact [14]. However, it is not only the 

dissociation products that need to be taken into consideration, but first and 

foremost the neutral silane molecules, as they may get oxidized on the surface 

by incoming oxygen radicals and ions. It is clear from Table III-1 that the initial 
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flux of silane molecules are participating in the deposition and could even be 

considered as having the largest influence on the deposition. 

Sample position Deposition rate 

Substrate holder 5.3 Å/s 

On top of the gas ring 1.1 Å /s 

Bottom of reactor chamber 0.7 Å /s 

Reactor wall - different conditions as sample is 
placed vertically 

0.4 Å /s 

Table III-1. Deposition rate at different positions in the system when using 
the gas distribution ring shown in Figure III-4(i). A 10 sccm SiH4 and 40 
sccm O2 gas mixture, 1kW MW power and 0.5 mTorr pressure was used. 

The normalized QMS measurements in Figure III-9 show the ratio of the SiH2
+ ion 

intensity with a deposition plasma in the reactor chamber, to its intensity without 

a plasma (in other words, when no silane consumption is taking place). It can be 

seen that over the entire range of microwave powers investigated, the 

consumption of the silane precursor improves slightly when the gas ring is 

replaced by the vertical capillary jet injection system. The difference between the 

two injection systems lies in the fact that a larger quantity of the precursor is 

consumed at the substrate level when using the capillary, thus leading to a higher 

deposition rate. When using the gas ring, the loss of precursors to the walls has 

to be compensated by increasing the silane flow, if the deposition rate on the 

substrate surface is to be increased. Though this fact might seem intuitive to the 

reader, it is of fundamental importance to take it into account when designing the 
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gas injection system, as it must provide a directed flux of precursors onto the 

depositing surface.  

Figure III-9. The SiH4 consumption at different MW powers when using 
either a gas ring, or a vertical capillary tube for the precursor injection. 

Error bars show the standard deviation observed. 

The currently accepted paradigm is that very low pressure PECVD systems that 

are based on HDP principles, are well-mixed[15,16], meaning that the deposition 

onto all the surface are equal due to the large mean free path of the species. This 

assumption, that states that there is an equal quantity of fluxes onto all surfaces 

in HDP systems,  holds true for noble gases which do not react in the volume or 

on surfaces and to a certain extent for nitrogen and oxygen, which can be 

dissociated in the volume but recombines on surfaces and returns to the volume. 

It is however not the case for silane, especially in the presence of oxygen, as can 

be seen from the results shown in Table III-1.  
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From the above discussion it is seen that the primary silane flux onto the 

substrate surface, which depends on the positioning of the jet injection point, has 

an important influence on the film’s deposition rate. HDP systems can thus not be 

considered as well-mixed for gases such as SiH4 that have dissociation products 

with high sticking coefficients and ground-state molecules that have the 

possibility to be consumed on the surface through reactions with oxygen radicals 

and ions.

To conclude the comparison of the injection systems, Figure III-10 shows AFM 

images of SiO2 depositions done with the gas ring and the vertical capillary jet 

shown in Figure III-4 (i) and (iii). The surface rms roughness for the deposition 

done with the gas ring is found to be 0.224 nm on a 1330 nm thick layer, which 

increases up to 1.3 nm for the capillary jet deposition, which had a thickness of 

8140 nm.

Figure III-10. AFM images of SiO2 depositions, done using a (i) gas ring and 
a (ii) capillary jet for injecting the SiH4 precursor gas. 

(i)      (ii) 
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III-4 Silanol content in films deposited with different 

silane injection systems 

Contamination of deposited silicon dioxide layers by hydroxyl is known to cause 

strong absorption, due to its fundamental absorption band at 2.72 m (about 

3650cm-1) and overtone at ~1.38 m which is in the optical communication 

window[17]. Different low temperature processes that provide Si-OH 

concentrations below the IR detection limit, either due to ion bombardment or, in 

some cases, optimized desorption kinetics as a result of low deposition rates or 

the use of hydrogen meditated abstraction, have been reported [18-22]. In this 

section it is shown that the distance between the deposition surface and the 

silane injection point is an important factor determining the quantity of silanol 

incorporated into the deposited film.  

Transmission and spectroscopic ellipsometry measurements were performed on 

various silicon dioxide films deposited onto Infrasil fused quartz substrates with 

the different injection systems, in order to determine the type and quantity of 

silanol bonds. Measurements of all the samples were taken directly after 

deposition. Selected samples were re-measured after approximately a month, 

which revealed no noticeable changes due to atmospheric exposure.  

The hydroxyl that is chemically bonded to the silica network is observed as a 

fundamental absorption band between 3000 cm-1 and 3800 cm-1. It can be 

deconvoluted into three Gaussian bands[23], as shown in Figure III-11. The 
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Gaussian band around 3650 cm-1 corresponds to the isolated silanol content, 

while the lower Gaussian bands in the 3450 cm-1 vicinity represent the associated 

Si-OH vibration mode which is also sometimes called the water symmetric 

feature, near-neighbour or partially shielded Si-OH.  

Transmission measurements showed the majority of the films to be stoichiometric 

silica, while a few of them were slightly silicon rich. Modeling of the ellipsometric 

measurements using the Bruggeman effective index approximation and a 

combination of SiO and SiO2 materials, revealed that these films consist of at 

least 97 percent SiO2, though the accuracy of these results are close to the 

accuracy of ellipsometric measurements. 
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Figure III-11. Deconvolution of the Si-OH stretching absorption peak into 
three Gaussian bands.  
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III-4.1 The influence of varying the process parameters  

Figure III-12 shows the linear decrease of the Si-OH peak intensity with 

increased growth rate for four points on four different depositions. All samples 

were thickness normalized. These depositions were done using the angled jet 

injection system depicted in Figure III-4(ii), while measurement were taken on the 

points indicated by (a) to (d). A SiH4 flow of 8 sccm, 40 sccm O2, 1 kW microwave 

power, 3 mTorr pressure and no substrate bias were used, unless otherwise 

indicated on the figure.  Numerous tendencies can be seen on this figure. Silanol 

inclusion into the deposited film is found to increase when the oxygen flow rises, 

which is similar to results reported by other researchers [24,25].
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Figure III-12. Deposition rate measurements at four points along the  
depositions shown in Figure III-4, with their corresponding Si-OH 

absorption peak intensities. 



CHAPTER III Investigating the gas injection in a HDP system 

111

Rising microwave power leads to a reduced Si-OH content, though the effect is 

not prominent as the deposition rate increases. Applying a low RF power 

resulting in a DC self-bias of -10V to the substrate holder is found to be an 

effective way of reducing the Si-OH content [22]. However applying an RF bias is 

not always an option. 

If the deposition conditions are kept within the range discussed in Chapter II, it is 

found that the hydroxyl content in the film always increases linearly with 

decreasing deposition rate. The explanation for this lies in the quantity of water 

produced in the system during the deposition. When the plasma is ignited, the 

partial pressure of water will stabilize after a short transitional period [26] and the 

water flux onto all the surfaces in the vacuum chamber will remain constant and 

uniform. The deposition rate is determined by the position of the substrate 

relative to the silane injection point, as was discussed in Section II-3.1. This 

means that though the flux of water incorporated into the growing film will be the 

same across the substrate, the high deposition rate under the silane injection 

point will lead to a low concentration of silanol, while for the low deposition rate 

observed further away from the silane injection point the concentration of silanol 

in the deposited film will be relatively high. The ideal design of the silane gas 

injection system consequently needs to maximize the flux of primary SiH4 onto 

the substrate area with a minimum flux onto the surfaces outside of the substrate, 

while providing a sufficiently large flux of oxidizing species onto the surface. This 

will ensure that the total silane flow rate, and thus the generation of water, is kept 

as low as possible. 
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In addition to the four depositions that were shown in Figure III-12 a variety of 

SiO2 films were deposited using the different capillary jet injection systems, while 

changing several process parameters such as the microwave power, silane gas 

flow, pressure and RF substrate bias. The influence these parameters have on 

the silanol content, the deposition rate as well as the oxygen and silane 

consumption for the various silane injection systems, are discussed in the 

subsequent sections. 

III-4.1.1 Silane and oxygen gas flows 

A series of films were deposited using different silane gas flows. Initially this was 

done using the angled and later the vertical jet injection systems, shown in  

Figure III-4(ii) and (iii). Depositions were characterized in terms of refractive 

index, deposition rate and Si-OH content, as can be seen in Figure III-13 for the 

depositions done with the angled jet, and in Figure III-14 for the vertical jet 

samples. A microwave power of 1000 W was used, while keeping the oxygen 

flow constant at 40 sccm. For the angled jet depositions, a 3 mTorr pressure was 

used, while for the vertical jet it was set to 2 mTorr. No RF bias or heating were 

applied to the substrate holder during these depositions. The refractive index* of 

the deposited material was found to remain between 1.45 and 1.46 for all 

depositions. For both injection systems, the deposition rate as well as the Si-OH 

content increases with increased silane flow (as the total water production goes 

up).

                                                          
* Refractive index will be quoted at 2eV for the remainder of this Chapter. 
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Figure III-13. Deposition rate and normalized integrated Si-OH intensity for
SiO2 depositions done using 8 and 16 sccm SiH4, respectively, with the angled 

jet injection system.  
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Figure III-14. Deposition rate and normalized integrated Si-OH intensity for 
SiO2 depositions done with different SiH4 flows and using the vertical 

injection system. 
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The QMS measurements in Figure III-15 show the ratio of the O2
+ ion intensity 

when a deposition plasma is ignited in the reactor chamber, to its intensity 

without a plasma. In other words, the higher the O2
+ normalized intensity†, the 

less oxygen is consumed during the deposition, and vice versa. The process 

parameters and oxygen flow were set to those mentioned above for the capillary 

jet. There is a marked improvement in the oxygen consumption with increased 

silane flow.  The influence an increased oxygen flow has on the deposition rate 

and silanol content of films can be seen in figure III-16 and III-17. The silane flow 

was kept constant at 8 sccm, with the other parameters kept as defined for the 

silane flow series. 
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Figure III-15. The consumption of O2 when using either a gas ring, or a 
vertical capillary tube for the precursor injection. 

                                                          
† As was mentioned before, the term normalized intensity refers to the ratio of the O2

+ or SiH2
+ ion 

intensity when a deposition plasma exists in the reactor chamber, to its intensity without a plasma 
(in other words, when no oxygen and silane consumption is taking place). 
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Figure III-16. Deposition rate and normalized absorption peak intensity for 
SiO2 depositions done using 40 and 80 sccm O2, respectively, with the angled 

jet injection system. 3 mTorr pressure and 1kW microwave power with 8 
sccm SiH4 was used. 
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Figure III-17. Deposition rate and normalized integrated Si-OH intensity for 
SiO2 depositions done with different O2 flows and using the vertical injection 

system at 3 cm from the substrate plane. 2 mTorr pressure and 1kW 
microwave power with 8 sccm SiH4 was used.  
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QMS measurements of the silane and oxygen consumption when increasing the 

oxygen flow rate, is depicted in Figure III-18. The oxygen consumed during the 

deposition can be seen to decrease with rising oxygen flow rate. While 

approximately 30 percent of the O2 is consumed at a 40 sccm gas flow, it 

reduces to 15 percent at an 80 sccm flow. In both cases 12 sccm of O2 is thus 

consumed. It can be concluded that there is not enough available silane 

molecules to react with the oxygen radicals. This is confirmed by the silane 

measurements that show the precursor to be almost entirely consumed at all 

oxygen flow rates, and which remains at a relatively constant value. During the 

deposition process the oxygen atoms, which are long-lived species, are able to 

consume the silane almost completely [27].
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Figure III-18. The consumptions of O2 and SiH4 when using either a gas ring, 
or a vertical capillary tube for the precursor injection at different oxygen 

flow rates. 
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III-4.1.2 Microwave power 

The deposition rate and silanol content of films deposited at different microwave 

power using the angled (Figure III-19) and the vertical capillary jet (Figure III-20) 

are shown. In both cases increased microwave power leads to a higher 

deposition rate and a corresponding decrease in silanol content.  
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Figure III-19. Depositions done at two different microwave powers, using the 
angled injection system shown in Figure III-4(ii).

As was discussed in Chapter II, optical emission measurements show an 

increases in the atomic oxygen fraction with microwave power that in turn leads 

to higher deposition rates. This fact explains the change in the gradient of the 

deposition rate observed at different microwave powers, as can be seen on 

Figure III-20. The flux of oxygen radicals onto the substrate surface is increased 



CHAPTER III Investigating the gas injection in a HDP system 

118

at high microwave power. As there will be an abundance of oxygen atoms 

available at the growth surface, a part of the SiH4 molecules arriving to the 

surface will immediately be oxidized on the surface and the Si atom be 

incorporated into the growing film. The higher microwave power will lead to a 

higher surface temperature, which in turn will lower the residence time of the H2O

on the surface and thus its incorporation into the film and lowering the hydroxyl 

content. At a low microwave power there will be a smaller flux of oxygen atoms 

onto the substrate surface and the SiH4 molecule will have a higher chance to be 

desorbed from the substrate surface before being oxidized and consequently the 

Si atom incorporation is less probable and thus the deposition rate is lower.  As 

the refractive index rises from 1.45 at 500 W up to 1.46 at 1500 W, it can be 

concluded that the decreased silanol content leads to a slight increase of the 

deposited film’s density. 
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Figure III-20. Depositions done at 500, 1000 and 1500 Watt, using the vertical 
capillary jet shown in Figure III-4(iii).
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The O2
+ and SiH2

+ intensity ratios when there is a deposition plasma in the 

reactor chamber, to their intensities without a plasma, at different microwave 

powers, are shown in Figure III-21 for measurements taken at the back of the 

turbo-molecular pump, as described in Chapter I.  From these figures it can be 

seen that both the oxygen and silane consumption remains constant with 

changes in the microwave power, as the changes are small and it is reasonable 

to assume they are due to fluctuations and drift in the equipment.  

Increasing the microwave power thus does not change the utilisation of the 

precursor in the vacuum chamber, but does improve its consumption on the 

substrate surface, as was shown by the increase in the gradient of the deposition 

rate profiles in Figures III-19 and 20.  
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Figure III-21. The consumptions of O2 and SiH4 when using either a gas ring 
or a vertical capillary tube for the precursor injection and varying the 

microwave power. 
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III-4.1.3 Pressure 

Depositions at different pressures were done using the angled and vertical jet 

injection systems. The resulting deposition rates and normalized Si-OH 

absorption, with the corresponding pressure used, are depicted in Figures III-22 

and 23. Gas flows of 8 sccm SiH4, 40 sccm O2 and a microwave power of 1 kW 

were used. A pressure increase is found to result in a higher deposition rate and 

Si-OH content for both injection systems. The refractive index remains in the 

range of 1.45 to 1.46.  

Others have attributed the increased silanol content to the hydroxyl groups in the 

TEOS precursor being incorporated to a greater extent at higher pressures[23].

Since this study makes use of silane as precursor gas which does not contain 

hydroxyl groups, the more likely reason is the increased residence time of the 

precursors in the reactor chamber when the pressure is increased. The 

concentration of water in the vacuum chamber is consequently increased, which 

leads to a higher level of water being incorporated. 

The oxygen and silane consumptions with changing pressure can be seen in 

Figure III-24. As the oxygen consumption slightly decreases while the silane 

consumption remains constant, one would expect the deposited films to have a 

higher OH content to compensate for the lower oxygen usage. These results thus 

corroborate the higher Si-OH content found by the transmission measurements. 
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Figure III-22. Depositions done at 1.5 and 3 mTorr pressure, using the angled 
jet shown in Figure III-4(ii).

Figure III-23. Depositions done at 1 and 2 mTorr pressure, using the vertical 
capillary jet shown in Figure III-4(iii).
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Figure III-24. The consumptions of O2 and SiH4 when using either a gas ring 
or a vertical capillary tube and varying the pressure. 

III-4.1.4 Applying an RF bias to the substrate holder 

The influence of applying an RF bias to the substrate holder, on the deposition 

rate and silanol content of silica films, was investigated by depositing three films 

at varying bias voltages with the angled jet, as presented in Figure III-25, and six 

films at different bias voltages with the vertical jet (see Figure III-26).  The 

microwave power was set to 1 kW and the gas flows to 8 sccm and 40 sccm for 

the silane and oxygen gases, respectively. For the angled jet the pressure was 

set to 3 mTorr and for the vertical jet it was set to 2 mTorr. It can be seen that an 

RF bias applied to the substrate holder effectively removes the associated Si-OH 

vibration mode absorption peak located in the vicinity of 3400 cm-1. A low RF bias 

is very effective at removing the hydroxyl contaminants, while a higher bias again 

increases the isolated silanol content. The refractive index remained between 

1.45 and 1.46 for all depositions done. 
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Figure III-25. Thickness normalized Si-OH absorption of SiO2 films 
deposited using the angled jet system, at different RF substrate bias values. 
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Figure III-26. Thickness normalized Si-OH absorption of SiO2 films 
deposited using the vertical jet injection system, at different RF substrate 

bias values. 
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The RF bias series of films deposited with the vertical jet were etched chemically 

in a [HF(48%) : HNO3(70%) : H20 = 3:2:60] p-etch solution. Figure III-27 shows 

the etch results and the corresponding Si-OH peak position shift of the films, from 

the associated vibration mode to the isolated Si-OH vibration band. Applying any 

RF bias to the substrate is found to lower the p-etch rate significantly, suggesting 

an increase in the density of the film. The p-etch rate results are comparable to 

values of films deposited in other HDP systems [22,28-31].

The QMS measurements of the oxygen and silane consumptions are shown in 

Figures III-28. While the O2
+ ratio remained constant with changes in the 

substrate bias, the SiH2
+ ratio was found to decrease slightly, thus pointing to an 

increase in the silane precursor’s consumption.  
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Figure III-27. Si-OH peak position and P-etch rate for depositions done with 
different substrate bias values. The vertical capillary jet was used. 
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Figure III-28. The consumptions of O2 and SiH4 when using either a gas ring, 
or a vertical capillary tube for the precursor injection and varying the 

substrate bias. 

Figure III-29 shows AFM images of two SiO2 depositions done with the vertical jet 

injection. The rms roughness when no substrate bias was applied was 1.3nm and 

can be seen in Figure III-29(i). Applying a -10V bias to the substrate holder       

(Figure III-29(ii)) did not influence the rms roughness.  

Figure III-29. AFM images of SiO2 depositions done with the vertical 
capillary jet for injecting the SiH4 precursor gas, with (i) no applied rf 

substrate bias and (ii) -10V rf substrate bias. 
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III-5 Conclusion 

As evidenced from a large number of publications, high density low pressure 

plasmas are very sensitive to the nature of the precursors and the process      

parameters [1,32,33] . While having the same power input into the plasma and the 

same process pressure and precursor flows, subtle specifics - such as the 

residence time in the reactor, the state of the walls, the direction of the injection 

of precursors, the type of pumps used (as the pumping speed for different gases 

may vary for different makes and models of pumps not based on the volume 

displacement principle) - can not only have an influence on the deposition or 

etching rates, but can also drastically affect the nature of the process. In these 

situations it is very important to not only report all the details of the experiments, 

but to also take extreme care when generalizing the trends and making 

extrapolations onto different discharge chemistries.  

This chapter presented a detailed study of the gas injection in a low-pressure 

high-density plasma system. Section III-2 contained a parametric study of 

photoresist stripping using an oxygen plasma. This study confirmed the 

uniformity of the active oxygen flux onto the substrate surface. In section III-3 the 

different silane injection systems investigated were discussed and their influence 

on the precursor flux and deposition rate shown. The well-mixed reactor 

hypothesis was discarded at the hand of experimental evidence, which shows the 

occurrence of beam-like transport of the silicon precursors.  In section III-4, using 

the different jet injection systems and studying the associated Si-OH content of 
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the material at different points on the substrate, it was possible to separate the 

influence of the water-rich atmosphere created during the SiH4/O2 deposition 

plasma from the influence of the primary silane flux at distinct points on the 

depositing surface. This study of the non-uniform SiO2 films shows that the 

primary silane flux has a large influence on the deposition, which suggests that 

the correct positioning of the silane injection point is vital for optimizing both the 

deposition rate and the quality of the films. The remainder of the chapter focused 

on how the changes in the process parameters influence the films silanol content, 

deposition rate and oxygen and silane consumption for the different injection 

systems. A low RF bias applied to the substrate holder was found to be an 

effective method for reducing the associated Si-OH vibration mode content in the 

film. 
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IV-1 Overview of the DSMC technique 

Continuum models making use of the conservation equations, model a gas flow 

at the macroscopic level, that is to say the gas is considered to be a continuous 

medium and is described in terms of spatial and temporal variations of the 

velocity, density, pressure and temperature [1]. Gas flows can however also be 

modeled at the microscopic (molecular) level, which entails considering the gas 

as discrete molecules with specific positions and velocities at a given time and 

solving the Boltzmann equation for the velocity distribution function. A physical or 

direct simulation approach can also be used in this case, due to the discrete 

nature of the gas at the microscopic level [1]. DSMC is consequently a tool for the 

analysis of practical, non-linear gas flows at the molecular level[1,2]. 

 

In the DSMC technique, a large number of statistically representative particles* 

are tracked. The motion and interaction (both elastic and inelastic) of these 

particles lead to changes in their velocities, positions and chemical composition, 

while taking mass, momentum and energy conservation into account[3-5]. The key 

approximation of DSMC is “to uncouple the molecular motions and intermolecular 

collisions over small time intervals” [5]. This allows one to model the motion of the 

particles deterministically while the treatment of collisions is of a statistical nature. 

This probabilistic process of simulating the collisions is the major difference 

between DSMC and molecular dynamics. The technique is based on dividing the 

                                                          
* Each simulated particle has the properties of one molecule, and is statistically respresentative of a 
larger amount of molecules. It is not simulated as a cluster of molecules, but as a single molecule. 
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simulated region into a grid of cells. The local collision rates are calculated for 

each cell. An adequate number of collisions are then simulated by randomly 

selecting molecule pairs in each cell [5]. Collisions between molecules are 

modeled using either a Variable Hard Sphere (VHS) model or more complex 

models.  

 

The DSMC method thus allows one to simulate gases using a probabilistic 

approach [5]. The computational burden is however more affordable for dilute 

gases. It has been used with great success to model problems in rarefied        

gas[3,4,6-14], such as the gas flow around the substrate in low pressure CVD 

processes used for semiconductor growth. As it is straightforward to implement 

and can easily be adapted, it is ideally suited for solving engineering physics 

problems. In deposition and CVD systems, the precursor transport of the plasma 

excited species to the substrate, their interactions with surfaces and the removal 

of the created by-products can be modeled. These simulations allow one to 

predict the gas phase composition near the substrate, which is of utmost 

importance to ensure greater control of the film’s growth process and quality. 

 

 

IV-2 Details of the implementation of the technique 

The DSMC method [1] is very efficient if a system falls in the transition flow 

regime[2], defined as having a Knudsen number, the ratio of the mean-free-path , 

and the characteristic length L, between 0.1 and 10. The characteristic 



CHAPTER IV Direct Simulation Monte Carlo modeling 

135

dimensions of low pressure, high density plasma systems are mostly larger than 

the mean free path of the precursor gas, but in some cases it is better to make 

use of a local Knudsen number, where L can be a length scale of the 

macroscopic gradients in temperature, pressure, density or velocity[5]. 

Alternatively, DSMC can be described as being suitable for modeling dilute fluids 

if the ratio of the mean-free-path to the molecular diameter[5] is at least /d 10. In 

addition to this, systems may have large pressure gradients in them, with 

continuum equations only being accurate in certain parts of the system. The 

DSMC method is of particular interest in these cases, as it is applicable over a 

large range of Knudsen numbers.  

 

Figure IV-1 shows a flow chart of the DSMC procedure. Initially, a set of 

conditions are used to describe the particles velocities and positions. The 

boundary conditions of the system are also defined. The procedure then moves 

through the different steps of moving the particles, indexing and cross-

referencing them, sorting the particles into a grid of cells and simulating the 

collisions, and finally sampling the flow field [1, 5]. Several factors should be taken 

into account to ensure the accuracy of the results obtained from a DSMC model. 

The global time step increment tg must be chosen to be less than the mean 

collision time, and the linear cell dimensions in each spatial direction must be 

smaller than the mean-free-path  [1]. The cell dimensions are of particular 

interest in order to correctly predict the large gradients of the macroscopic flow 

variables. Also, as the collision partners are taken randomly from the same cell, 

they should ideally be nearest neighbours. The statistical error in the sampled 

macroscopic flow properties is given to be inversely proportional to the square 
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root of the total number of simulated particles. If the value of the ratio of the 

actual number of particles (calculated from the given value of pressure) to the 

simulated number of particles is too high, it can lead to too high levels of 

statistical scatter. It is recommended to keep this value within the range of [5] 1014 

to 1018. Proper boundary conditions determine the accurate treatment of the 

particle-surface interactions and can be a determining factor of the model’s 

success. The boundary conditions of the vacuum system must take into account 

that the impinging particles at the walls can be reflected elastically (specular 

reflection) or inelastically (diffusive reflection), can stick to the surface or create a 

new particle. The outflow region should likewise remove particles from the 

system. In the case of diffuse reflection the reflected molecules normal velocity 

components are distributed with a Maxwellian distribution based on the 

temperature of the surface from which it is reflected[5]. 

 

 

Figure IV-1. Flow chart of the DSMC method [5].
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For collisions between molecules, either a relatively simple hard-sphere model or 

more complex models can be used. The variable hard-sphere (VHS) model is 

considered to be an accurate representation of the total collision cross section 

and is very popular due to its ease of use[5]. In the VHS model a hard sphere 

molecule, with a diameter d that is a function of the relative velocities of the 

colliding species cr  and the viscosity-temperature index v, is used. It is given by[1] 

  (IV-1) 

 

Where the subscript ref denotes reference values for the thickness and relative 

velocities.  

 

Though chemical reactions (in a kinetic sense) can be treated in the DSMC 

model, it falls outside of the scope of this thesis and only a simple 

phenomenological treatment is realized here.  

 

The FORTRAN software using the DSMC technique is included with G.A. Bird’s 

book[1] entitled “Molecular Gas Dynamics and the Direct Simulation of Gas Flow”, 

with the latest corrections available from the author’s website[15]. This code was 

modified according to the process conditions, capillary and reactor geometries. In 

order to estimate the velocity at which the SiH4 precursor gas exits from the 

capillary tube into the vacuum chamber, the gas flow through the capillary tube 

used during experiments is modeled. DSMC calculations are then implemented 

to model the flux of the SiH4 and O2 precursor gases onto the substrate plane. 

This supplies information on the spatial distribution of the reactant gases near the 

substrate surface. The experimentally determined quantity of silicon that is 

vrrefrref ccdd )/( ,
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incorporated into the growing film is compared with the simulated silane molecule 

fluxes onto the surface. The following section will show the modeled capillary 

tube and the simulation results obtained, after which the modeled vacuum 

chamber and its simulation results will be presented.  

 

 

IV-3 The capillary gas injection tube  

A first order estimate of the maximum velocity with which gas can exit from the 

capillary jet can be obtained from the one-dimensional equations for isentropic† 

flow of a compressible fluid: 

                        (IV-2) 

 

(IV-3) 

  

where P0 is the pressure at the capillary tube’s entrance, Pd - the pressure at the 

exit,  - is the ratio of specific heat capacities‡, M - the Mach number, U - the gas 

stream speed (m/s), T - the absolute temperature (K) and Rs - a specific gas 

constant, which for SiH4 equals 260 J kg-1 K-1.  

 

                                                          
† An isentropic flow is adiabatic and reversible, meaning no energy is added or lost due to, for 
example, friction. 
‡ This is the ratio of the heat capacity at constant pressure (CP) to the heat capacity at constant 
volume (CV). It is also sometimes called the adiabatic index. For ideal diatomic gases that have no 
variations in Cp and Cv with temperature,  = 7/5. 
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The existence of multidimensional shock waves downstream of the jet, the “zone 

of silence” where there are supersonic velocities and a “Mach disk” at which the 

gas has a rapid decrease in velocity to less than Mach = 1, makes it impossible 

for the above equation to accurately predict the gas velocity[16]. Using a very low 

pressure value for Pd in equation (IV-2) will lead to a very large Mach number. 

Figure IV-2 shows a schematic of the capillary tube which has the same cross 

section diameter along the axis, so it can not be considered as a convergent-

divergent nozzle. It is known from fluid dynamics that choked flow or Mach = 1 

conditions will exist at the exit of the capillary tube. The velocity at the exit will 

consequently be less than or equal to that at Mach = 1, which is equal to 288 m/s 

in our conditions, when using equation (IV-3). Hence, increasing the capillary 

pressure ratio further will not increase the exit Mach number above unity. 

 

The exact velocity at which the SiH4 precursor gas exits from the capillary tube 

into the vacuum chamber is consequently needed, as it is necessary for the 

accurate simulation of the precursor flow in the vacuum chamber and the flux of 

the different molecules onto the substrate surface, which will be shown in Section 

IV-4. The rarefied gas flow of silane through the capillary tube used during the 

experiments shown in Chapter III was thus simulated using the DSMC method. 

 

 

 

Figure IV-2. (a) 2D and (b) 3D Schematic of the capillary tube, with a radius 
of 0.05 cm and length 6 cm. 
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IV-3.1 Model and computational results 

 

The capillary flow is axisymmetric and because of this symmetry, the three 

dimensional flow can be treated as two dimensional in the R-Z plane, with 

collisions being treated as 3 dimensional events. As indicated on Figure IV-2 (a), 

the boundaries were defined as 1) the SiH4 stream, 2) the vacuum end of the 

capillary, 3) the axis of the capillary tube and 4) the capillary wall, which is a 

diffusively reflecting surface. The simulated region shown in Figure IV-2 (a) is 

divided into a grid of 80 elements in the radial (R) direction, and 800 elements 

along the z-axis of the capillary tube, which forms 64 000 cells. This is shown 

schematically in Figure IV-3, for the case of (a) a uniform grid (UG) of cells and 

(b) a non-uniform grid (NUG) of cells. Each cell represents a circular element 

around the axis of the capillary tube.  

 

According to Bird [1], the most severe practical problem associated with DSMC 

simulations making use of axially symmetric flows is the difference in sample size 

between the cell at the axis and the outermost cell. To overcome this problem, 

either a weighting factor can be added to make sure the distribution of particles 

over the cells is equal, or a non-uniform grid can be used, as shown in          

Figure IV-3(b) with the vacuum end of the capillary tube located at 6cm. The 

change in the radial and axial cell dimension is indicated on the figure. The 

largest cell in the radial (R) direction is located at the capillary axes, at boundary 

number 3 on Figure IV-2(a), and the largest cell in the axial (Z) direction, at the 

SiH4 stream boundary, number 1.  
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Figure IV-3. (a) Uniform and (b) non-uniform grid used during simulation of 
the capillary jet injection system. 

 

 

For the purpose of the simulation, the pressure in the capillary tube used in 

Chapter III was measured at different silane flows, as can be seen in Figure IV-4. 

For comparison with experimental results, a value of 8 sccm SiH4 was chosen in 
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time of 3.16 s. The time step DTM used during the simulation was equal to 1E-8 

seconds, which is well below a third of this value. Another parameter to set is the 

number of real molecules that are represented by each simulated particle, FNUM. 

It is recommended [3] to keep a minimum amount of between 10 to 20 particles 

per cell. Several simulations were run to find the ideal value of the parameter 

FNUM to ensure low statistical error in the density distribution along the capillary 

tube’s radius. A final FNUM value of 2E10 molecules was chosen. When the 

simulation reached a steady state, a total number of ~900 000 particles were 

being simulated. Table IV-1 shows other user-configurable parameters used in 

the developed DSMC model. The initial state in the capillary tube was set to 

vacuum. The simulation was consequently run until a steady state was obtained. 

 

 

 

 

 

Figure IV-4. Pressure measurements at the entrance to the capillary tube and 
in the reactor chamber. 
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Parameter Value 

Reference diameter of SiH4 4.722E-10 m 

Reference temperature of SiH4 273 K 

Molecular mass of SiH4 5.3E-26 kg 

Viscosity of SiH4 0.8826 

Variable Hard Sphere or Soft Sphere  VHS 

Table IV-1. DSMC model parameters used for simulating the capillary tube. 
 

 

The results of simulating the above structure are shown in Figure IV-5 at the 

vacuum end of the capillary tube, where there are large gradients of the velocity 

field, density and temperature.  

 

 

 

 

 

Figure IV-5. Exit velocity of the simulated particles from the capillary tube, 
using both the (a) uniform and (b) non-uniform grids shown in Figure IV-3. 
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The lower value of the exit velocity for the simulation run with a UG is due to the 

fact that the cell dimensions exceed the mean free path value and the exit 

velocity was sampled over a bigger particle set, which contains more slow 

particles than when using a smaller cell size such as for the NUG. Due to this the 

value of the exit velocity was underestimated in the case of a UG. The density, 

velocity stream traces and temperature distribution in the capillary tube can be 

seen in Figure IV-6 for the simulation performed with a NUG. 

 

 

Figure IV-6. (a) Density [molecules/cm3], stream traces and (b) temperature 
[°K] of the stream in the capillary tube. The simulation was done for 30 ms 

with a NUG. 
 

 

By using the results shown in Figure IV-5 and taking the density distribution of 

the silane molecules along the radius of the capillary into account, the average 

velocity of the gas stream exiting the capillary tube was calculated to be 255 m/s. 

This value was consequently used for the SiH4 jet injected into the reactor 

chamber, as discussed in the following section. 
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IV-4 Reactor chamber 

The DSMC code was modified to model the injection of the SiH4 precursor from 

the capillary tube into the vacuum system. This can be computed in a reasonable 

time and compared with real deposition profiles. However, the question that 

arises is how gas flow simulations may be relevant to the prediction of the 

behaviour of a plasma process, and how it can assist with the analysis of the 

results of a real deposition process.  

 

 In the reactor configuration which makes use of a capillary tube for the SiH4 

injection, the flux of SiH4 is the biggest source of non-uniformity in the deposition 

rate across the sample. Due to the position of the capillary at a distance from the 

substrate which is close to the mean free path, a very low electron temperature 

and a rather low electron density in the proximity of the substrate can be 

expected, due to multipolar confinement of the fast electrons in the source 

area[17]. For a hydrogen plasma at comparable conditions[17] values of 

approximately 1 eV for the electron temperature and 2 1010 cm-3 for the electron 

density have been reported. No considerable dissociation in the primary flux of 

SiH4 is consequently expected. Indeed, most of the dissociation and ionization 

take place in the ECR zones in the antenna plane, located 10 cm above the 

substrate holder. The contribution of species created in the antenna region to the 

deposition rate may however be expected to be quite uniform at the substrate 

plane, as was evidenced by the uniform etch profiles observed in an O2 plasma 

(Section III-2) and the uniform deposition of SiO2 when using a gas distribution 
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ring for the injection of SiH4 (Section I-1.4.1). Though gas flow simulation is 

certainly a crude approximation for the prediction of a plasma process, it does 

allow one to observe the trends of the fluxes of H2O and SiH4 onto the wafer and 

how they affect the deposition of SiO2. 

 

For the purpose of the simulation, the O2 and SiH4 flows were chosen to be 40 

sccm and 8 sccm respectively, with a 3 mTorr pressure in the vacuum chamber, 

to make the results comparable with the experimental measurements. To simplify 

the model, geometric asymmetries, such as ports for SE or OES measurements, 

were disregarded. The user-defined model parameters were set to the values 

shown in Table IV-2. 

 

 

Parameter Value 

Reference diameter of SiH4 4.722E-10 m 

Reference temperature of SiH4 273 K 

Molecular mass of SiH4 5.3E-26 kg 

Reference diameter of O2 3.558E-10 m 

Reference temperature of O2 273 K 

Molecular mass of O2 5.3E-26 kg 

Viscosity of SiH4 0.8826 

Viscosity of O2 0.77 

SiH4 reactive sticking coefficient Varied 

Variable Hard Sphere or Soft Sphere  VHS 

Table IV-2. User-defined DSMC model parameters. 
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IV-4.1 Model and computational results 

 

The volume of the system that was initially modeled can be seen in Figure IV-8. 

For the schematic in Figure IV-8 a SiH4 and O2 gas mixture was used without 

taking the production of H2O into account and surface 5 was considered to be a 

diffusively reflecting surface for all molecules coming into contact with it.  
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Figure IV-8. 2D model of the volume of the reactor simulated with an O2 and 
SiH4 gas mixture, indicated in grey. The boundaries and surfaces used in the 

simulation are shown on the right. 
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The simulation results of the model structure shown in Figure IV-8 can be seen in 

Figure IV-9 (a) - (d). The SiH4 and O2 density and velocity stream traces are 

indicated, while the fraction of silane molecules that stuck to the various surfaces 

with which they came into contact was varied from 0 to 1.  

 

The results show the uniform density distribution of O2 in the system and the 

large density variation induced by even a small SiH4 reactive sticking coefficient 

value (Figure IV-9 (b)). There are almost no SiH4 molecules pumped out of the 

reactor when the sticking coefficient is set to a non-zero value (Figure IV-9 (b) - 

(d)). The volume of the system above the substrate holder needs to be taken into 

account to confirm that well-mixed conditions do not exist. 

 

Using these results as a starting point, the model was modified in the axial 

direction to represent the upper part of the system as well, while not taking the 

antenna region into account. As shown in the simulated structure in Figure IV-10, 

an extra 8 cm was added above the injection point in order to make the modeled 

structure a more accurate representation of the experimental system. 



CHAPTER IV Direct Simulation Monte Carlo modeling 

149

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-9. Simulated SiH4 (left) and O2 (right) density [molecules/cm3] and 
velocity stream traces using the structure shown in Figure IV-8. The reactive 
sticking coefficient value for silane was set to (a) zero (b) 0.033 (c) 0.1 and (d)
1, with the exception of the back of the substrate holder where it was set to 

zero throughout all simulations. 
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Figure IV-10. 2D model of the volume of the reactor simulated with water 
production incorporated, indicated in grey. 

 

 

The removal of two oxygen molecules and the creation of two water molecules in 

their place for each silane molecule that sticks to any surface were taken into 

account by the balanced reaction: 

   (IV-4) 

The oxygen molecules are removed from the same computational cell where the 

silane molecule sticks to the surface. Two water molecules are then created in 

the cell from which the silane molecule was removed. This allows one to see the 

variation in the amount of silicon incorporated into the growing film and what 

influence it has on the oxygen distribution and the production and distribution of 

)(2)()(2)( 2224 gasOHsolidSiOgasOgasSiH
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water in the system. The fraction of the silane molecules sticking to the various 

surfaces, also referred to as the reactive sticking coefficient , was varied during 

the different simulations.  

 

As there was no deposition of SiO2 observed on the back of the substrate holder 

(surface 2) during experiments, the reactive sticking coefficient for this surface 

was kept at zero in all the simulations. In addition to this, surface 5 was set to 

diffusively reflect oxygen molecules and to remove any silane molecules that 

might reach it, in other words the reactive sticking coefficient of silane for this 

surface was set to one and the corresponding removal of two oxygen molecules 

and creation of two water molecules took place for every silane molecule 

reaching surface 5.  

 

The user-defined parameters for water molecules were set to the values shown 

in Table IV-3. The simulated flux of the H2O, O2 and SiH4 species onto the 

substrate holder for different SiH4 flow rates are shown in Figure IV-11 (a) - (d). 

 

 

Parameter Value 

Reference diameter of H2O 2.75E-10 m 

Reference temperature of H2O 273 K 

Molecular mass of H2O 3.0E-26 kg 

Viscosity of H2O 1.16 

Table IV-3. User-defined H2O parameters used in the DSMC model. 
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In Section III-4 it was claimed at the hand of experimental evidence that a 

uniform flux of H2O onto the substrate holder will lead to the same amount of H2O 

incorporated into the growing film across the substrate. The high flux of SiH4 – 

and consequently the high deposition rate - under the injection point, will then 

lead to a low concentration of silanol in these areas, while for the regions further 

away from the injection point the concentration of silanol in the deposited film will 

be relatively high. While the simulated SiH4 flux in Figure IV-11 changes by 

almost two orders of magnitude across the substrate holder, the H2O and O2 flux 

only changes slightly, confirming the validity of the above claim.  

Figure IV-11. Simulated SiH4, O2 and H2O flux onto the substrate holder at 
(a) 1 sccm, (b) 2 sccm, (c) 4 sccm and (d) 8 sccm SiH4 flow rates. 
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The increase in the density of water created in the system at different SiH4 flow 

rates can be seen in Figure IV-12 (a) - (d), with the surfaces from Figure IV-10 

indicated on Figure IV-12 (b). The increase in H2O production with rising SiH4 

flow rates can be clearly seen, as well as the homogeneous nature of the density 

distribution along the substrate surface. 

 

 

 

 

Figure IV-12. Density [molecules/cm3] distribution of H2O molecules at (a) 1 
sccm, (b) 2 sccm, (c) 4 sccm and (d) 8 sccm SiH4 flow rates. 
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The simulated SiH4 density distributions are depicted in Figure IV-13 (a) - (d) with 

the surfaces defined as in the figure above. The reactive sticking coefficient value 

was set to 0.1 for all surfaces, with the exception of surface 5 which was set to 1. 

A much stronger variation in the density distribution of the SiH4 gas can be 

observed than in the H2O density shown in Figure IV-12. 

 

 

 

Figure IV-13. Density [molecules/cm3] distribution of SiH4 molecules at (a) 1 
sccm, (b) 2 sccm, (c) 4 sccm and (d) 8 sccm SiH4 flow rates. 
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Figure IV-14 shows the simulated quantity of SiH4 molecules incorporated into 

the growing film per second, at different SiH4 flow rates. A reactive sticking 

coefficient value of 0.1 was used during these simulations, with the exception of 

surface 5 which was set to 1.  
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Figure IV-14. Simulation results of the SiH4 molecules incorporated into the 
growing film, at different SiH4 flow rates. 

 

 

In Figure IV-15 (a)-(d) a comparison of the amount of silane molecules 

incorporated into the growing film for different reactive sticking coefficient values 

can be seen. Here, 8 sccm SiH4 and 40 sccm O2 was used for all four 

simulations. In (a), (b) and (c) each SiH4 molecule that reaches surface 5, as 

indicated on Figure IV-10, is removed, together with two O2 molecules, while two 

H2O molecules are created in its place. The fraction of SiH4 sticking to the other 

surfaces was changed between (a) 0.01, (b) 0.03 and (c) 0.1. The lower reactive 
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sticking coefficient value has the obvious effect of decreasing the fraction of 

silane sticking to the substrate surface, but also leads to a decrease in the 

gradient of the curve and thus a more uniform radial distribution of the silicon 

sticking to the surface. Comparing these results with the experimental values 

obtained for the flux of silicon atoms incorporated, as shown in Figure IV-16, it is 

estimated that the reactive sticking coefficient of the SiH4 molecules is between 

0.01 and 0.03. The influence of changing the reactive sticking coefficient  of 

surface 5 can be seen in Figure IV-15 for (c) = 1 and (d)  = 0.1. While the 

lower amount of SiH4 sticking to this surface will have an influence at the edge of 

the substrate holder, the region on which samples are placed during deposition 

(until a radius of 5 cm) are not influenced significantly.  
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Figure IV-15. Simulated SiH4 flux sticking to the substrate surface, for the 
reactive sticking coefficient set to (a) 1 for surface 5 and 0.01 for all the other 

surfaces, (b) 1 for surface 5 and 0.03 for all the other surfaces (c) 1 for 
surface 5 and 0.1 for all other surfaces and (d) 0.1 for all surfaces.
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Figure IV-16. Experimental results of the flux of silicon atoms incorporated 
into the growing film, at different SiH4 flow rates. 
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IV-5 Conclusion 

In this Chapter, the high-density plasma system described in the preceding 

chapters is investigated using a DSMC model developed for this purpose. The 

Chapter starts with a brief overview of the DSMC method and an assessment of 

the factors that need to be taken into consideration when using it. The silane flow 

in the capillary jet used for injection of the precursor in the reactor was then 

studied numerically with a DSMC model. This model was modified to study the 

silane and oxygen precursor flux in the deposition chamber and was then 

extended to include the removal of two oxygen molecules and the creation of two 

water molecules when a silane molecule sticks to a surface.   

 

Modeling results show the flux of water onto the substrate holder to be relatively 

uniform, confirming the claim made in section III-4 that a uniform flux of H2O onto 

the substrate holder will lead to the same amount of H2O incorporated into the 

growing film across the substrate and a consequent lower Si-OH content in the 

regions of higher deposition rate. Comparing the simulation results with 

experimental values of the fraction of silane molecules incorporated into the 

growing film per second, the silane reactive sticking coefficient is found to be 

between 0.01 and 0.03. 
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V-1 Summary of the results

This thesis reports on the deposition of silicon dioxide, oxynitride and silicon 

nitride, with specific focus on the influence of the SiH4 injection system, in a low-

pressure, high-density MDECR-PECVD system. The precursor gases used were 

silane, oxygen and nitrogen with argon occasionally added as tracer gas. 

Depositions were done onto glass, crystalline silicon and PET substrates. 

Chapter I gave an overview of the state-of-the-art in HDP systems, with special 

emphasis placed on the MDECR-PECVD system used during this thesis. The 

various characterization techniques used were also briefly discussed. The 

influence of the magnetic field configuration on the uniformity of silica deposited 

onto a 200 mm wafer was studied. Applying an RF bias and using an optimized 

magnetic field configuration a uniformity better than 3.3 % across the 200 mm 

wafer diameter was obtained.  

In Chapter II, the influence of the gas flow rates, reactor pressure, microwave 

power and radio frequency bias on the properties of the silica, silicon nitride and 

oxynitride films were investigated with FTIR and SE, while the plasma was 

characterized with OES and differentially pumped QMS. It was found that using a 

SiH4/(SiH4+O2) gas flow ratio of 0.25 and the gas ring injection system for the 

silane gas, silica films with optical properties comparable with those of thermal 

silica and with deposition rates of up to 2.1 nm/s could be deposited. This 

process parameter study was used for the deposition of optical filters and Bragg 

mirrors, as well as silicon dioxide and nitride water barrier coatings on PET. 
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 The directional jet injection of the undiluted silane was investigated in Chapter 

III. Residual gas measurements using differentially pumped QMS were performed 

for the different injection systems. This showed the precursor’s consumption in 

the reactor chamber to be similar when using the different injection systems. The 

amount of silane precursor consumed at the substrate level however increases 

when using a capillary jet instead of a gas ring. This could be seen by the 

deposition rate that increased to 3.5 nm/s when using the capillary jet injection 

system and similar gas flow rates as with the gas ring. The MDECR-PECVD 

system can thus not be considered as well mixed for gases with dissociation 

products that have high sticking coefficients. This conclusion is in contradiction 

with the currently accepted paradigm that considers low-pressure, high-density 

plasma systems to be well-mixed reactors. This work showed that the low 

pressure used in the MDECR-PECVD system prevented mixing of the gases and 

led to beamlike transport of the silicon precursors. The influence the different 

process parameters have on the hydroxyl content of the oxide films was studied 

using transmission measurements. Measurements were taken at various points 

across Infrasil fused quartz substrates in order to see the influence the distance 

from the injection point has on the thickness–normalized Si-OH concentration. It 

was found that there is a decrease in the silanol concentration in the areas of 

higher deposition rates. These results show that the primary silane flux onto the 

surface, which depends on the positioning of the injection point and the gas flow 

rate, plays an important role in determining both the deposition rate and the Si-

OH content of the film. The correct positioning of the silane injection point is 

found to be vital for optimizing the quality of the films.  



CHAPTER V  Conclusion 

165

The Direct Simulation Monte Carlo method developed by G.A. Bird was used in 

Chapter IV to simulate the exit velocity of the silane molecules from the capillary 

tube into the vacuum chamber of the HDP system, as well as to simulate the flux 

of precursors and their utilization in the vacuum chamber and on the substrate 

surface. It was found that the flux of H2O onto the substrate holder is uniform, 

while the SiH4 flux varies considerably along the substrate surface. The SiH4

reactive sticking coefficient was estimated by comparing the simulated amount of 

silicon atoms incorporated into the growing film for different reactive sticking 

coefficients with experimental values. This resulted in an estimate for the reactive 

sticking coefficient of between 0.01 and 0.03.   

V-2 Recommendations for future work 

The DSMC simulation presented in Chapter IV currently makes use of SIH4 and 

O2 precursors that create H2O via a surface reaction. The simulation has the 

possibility to be improved by including the plasma physics and chemistry. As a 

first step, the atomic oxygen flux can be added (the O*/O2 ratio can be a free 

parameter or can be deduced from OES measurements). At a later stage the 

charged species in the plasma and the electromagnetic field can be taken into 

account.  This last point is however a very complex problem that has not yet 

been resolved anywhere. 
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While the optical emission measurements used in this study were useful for 

identifying the different radicals in an oxide deposition plasma, measurements 

taken with a device that offers a higher resolution will be useful for characterizing 

the SiNx and SiOxNy deposition plasmas.  

Changing the configuration of the MDECR-PECVD system in a way that 

substrate is positioned “face-down” to reduce the flakes falling on the substrate 

during deposition and thus suppress the creation of pinholes and other particle-

related growth defects in the films will improve the integrity of the dielectric and 

increase the breakdown voltage of both the SiO2 and SiNX films.  

The experience gained during this work could be used to design an injection 

system that will ensure a high deposition rate over large surfaces while 

minimizing OH incorporation. This will however require a full 3D implementation 

of the model. 

V-3 List of publications

 R. Botha, P. Bulkin, P. Swart, Deposition of Ge-doped silica thin films for an 
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resonance PECVD reactor, Optical Materials, 30 (2007) 244.
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density low-pressure plasma system and its influence on the deposition 

kinetics and material properties of SiO2, Journal of Vacuum Science & 

Technology A,  26 (2008) 1115. 

 B. Haj Ibrahim, R. Botha, J.E. Bourée, P. Bulkin, B. Drévillon, Correlation of 
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A-1 The Lorentz Classical Oscillator Model 

The classical Lorentz oscillator[1,2] is a widely used approximation for the 

modeling of the wavelength-dependent complex refractive index of amorphous 

materials in spectroscopic ellipsometry. It can be described by the following two 

equations[3]: 

 

(A-1) 

 

0 is the oscillator central wavelength, g the damping factor, A the oscillator 

strength and n,k the the refractive index real and complex parts. This set of 

coupled equations for n and k is consistent with the Kramers-Kronig relations*.  

 

The right hand side of the first equation is the dielectric function at infinite energy 

(zero wavelength).A fitting parameter  is usually used in its place to represent 

the dielectric function at smaller wavelengths than measured. The classical 

Lorentz oscillator model looks as follows in the Delta-Psi software that was used 

to fit the spectroscopic ellipsometry data: 

 

(A-2)

  

                                                          
* The Kramers-Kronig relations relate the real part of an analytical complex function to an integral 
containing the imaginary part of the function, and vice versa. 
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A-2 The Tauc-Lorentz Model 

 

Jellison et al.[4] implemented the Tauc-Lorentz model in ellipsometry. As with the 

Lorentz oscillator model, it is Kramers-Kronig consistent [5]. The Tauc expression 

for the imaginary part of the dielectric function near the band edge, is given by [6]: 

(A-3)

 

Here Eg represents the band gap of the material and  the Heaviside function, 

with (E<0) = 0 and (E 0) = 1.  We can obtain the Tauc-Lorentz expression for 

the imaginary part of the complex dielectric function by multiplying this function 

with the complex dielectric function for a Lorentz oscillator: 

(A-4)

 

E0 is the peak in the joint density of states,  the broadening parameter 

and a the pre-factor. Performing Kramers-Kronig integration on the above 

equation, the Tauc-Lorentz dielectric function’s real part can be obtained: 

(A-5)

Here, P is the Cauchy principle part of the integral and 1( ) = 1. 
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