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PRELUDE

Nice, février 2008

Carla, 4 ans : Tonton, Tonton, regarde, j’ai écrit ta thèse!
Moi : C’est très gentil ma puce, mais tu sais, dans une thèse, il y a plein

de pages! Tu veux bien en écrire d’autres pour m’aider?
Carla : Non, le reste, d’abord, tu le fais tout seul!





ONCE UPON A TIME...

Comme toutes les thèses, la mienne a commencé près d’une machine à café (c’est
une sorte de principe fondamental, l’équivalent pour une thèse de la croissance de
l’entropie ou de la chute de la tartine beurrée). Par un froid matin de décembre,
donc, Laurent et Denis m’ont proposé de travailler sur ce sujet. A l’époque, mes
certitudes étaient encore fragiles : s’en sont donc suivies quelques semaines de
réflexion pendant lesquelles j’ai sollicité les avis des uns et des autres. La réponse
(unanime) que j’ai obtenue tient en deux mots : Non. NOOOOOON! Rien de tel
qu’une réponse unanime pour piquer la curiosité... alors j’ai dit oui.

Dans le même temps, un peu par hasard, j’ai découvert l’escalade. Pour bien
débuter en escalade, il faut avoir de bons guides. La première fois que l’on doit passer
sa corde dans la dégaine, on se débrouille comme on peut. Ensuite, on apprend à être
patient et à réfléchier, à sentir le relief, à choisir entre la fluidité et la force. Parfois,
on tombe, et le plus souvent, on repart, sans avoir la certitude d’arriver tout en haut.
Pourtant, la sensation qu’on éprouve, suspendu par le bout des doigts au-dessus du
vide, est indescriptible. Pour cette ascension un peu particulière qu’a été la thèse, il
m’a fallu quatre ans pour accrocher la dernière dégaine. De temps à autre, je suis
tombé, et à l’occasion je me suis fait rudement mal (l’avantage, avec l’escalade, c’est
qu’on a très peu de chances de croiser la trajectoire d’une porte après avoir franchi
un dévers). Mais je garderai le souvenir de quatres années extraordinaires, intenses,
passionnantes et pleines de rebondissements.

Tout d’abord, merci à Jean-Marc, l’homme qui aime la science, le jazz, F’Murrr et
Franquin. Que demander de plus? Merci pour ta bonne humeur jamais démentie et
pour ta confiance sans faille. Je reste admiratif devant ton enthousiasme et ta passion
contagieuse. Merci pour tout le temps que tu m’as consacré, j’ai beaucoup appris et
j’ai pris beaucoup de plaisir à travailler avec toi.

Merci à Denis pour ta curiosité et ton énergie inépuisable, même au milieu d’une
tempête de cris d’enfants. Ce travail doit beaucoup à nos parties de ping-pong scien-
tifique, à tes conseils avisés, qui m’ont sorti de quelques fameuses ornières, et à ton
stoïcisme face à l’adversité numérique. Merci à Philippe et Hadrien, qui ont continué
à me faire confiance quand ce sujet s’est mis rebondir de manière non linéaire et dans
des directions vraisemblablement déroutantes. Merci enfin à Laurent qui m’a d’abord
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accueilli à Meudon en tant que stagiaire avant de m’intégrer à son commando de choc.

Merci aux membres du jury qui ont jugé et apprécié ce travail avec exigence et
pertinence. A Jeffrey Crouch et Jacques Magnaudet qui ont accepté de s’investir en
tant que rapporteurs de ce mémoire. A Jean-Paul Bonnet, qui a présidé ce jury, Dan
Henningson et Pierre Sagaut. L’intérêt et la curiosité que vous tous avez manifesté à
l’égard de ce travail sont un honneur et un plaisir.

Merci à Sabine, qui m’a confié ses groupes d’élèves en travaux dirigés à l’ENSTA.
Je me souviens avoir très peu dormi à la veille de ma première intervention. Depuis,
j’y prends beaucoup de plaisir, et enseigner m’apporte énormément, humainement et
scientifiquement.

Merci aux collègues étonnants et attachants que j’ai côtoyés au quotidien, beau-
coup d’entre vous sont devenus des amis. Dans le désordre, merci à Pascal, Yves &
Yves, Serge, Thierry et ses pépites jazzy, Florent, Patrick, Jean-Pierre et tous les autres,
pour votre sympathie, vos coups de main, votre bonne humeur et aussi vos coups de
gueule. Merci à Benji, P.Q., Bruno, Greg, Caro, Benoît, J.B., Raph, Olivier, qui m’ont
accompagné tout au long de l’aventure, qui en ont partagé les moments de grandeur
et de décadence. De nombreuses soirées à refaire le monde et quelques coups de
folie ont grandement contribué à la réussite de cette thèse. Merci à Adelaïde pour
son mot d’encouragement. Merci à Vince, avec qui j’ai partagé les affres du premier
amphi. Merci à Seb, celui dont il ne faut pas écouter la musique, avec qui j’ai ressuscité
les vamps. Et puis j’ai une pensée pour Pierre, je sais que dans d’autres circonstances,
nos chemins n’auraient pas fini de se croiser.

Pour terminer, merci à ma soeur Laurence, qui, avec sa petite tribu niçoise, a été
mon plus grand soutien. Tu as été d’une patience infinie pour supporter les doutes
et les angoisses qui m’ont assailli, bien au-delà du cadre de cette thèse. J’ai toujours
trouvé auprès de toi une oreille attentive, même (surtout?) à des heures indues. Merci
de t’être obstinée, merci d’avoir cru en moi. J’ai conscience de te devoir davantage
que ce que mes mots ne sauraient exprimer.

Philippe

Cette thèse a été réalisée à l’ONERA, au sein du Département d’Aérodyamique Fondamen-
tale et Expérimentale. Elle a été financée par le CNES et l’ONERA pendant trois ans, puis
par l’ONERA pendant 9 mois.



INTRODUCTION

Of afterbody flows

The flow around a space launch vehicle (Figure 1.1) exhibits a massive separation that
occurs owing to the abrupt change in the geometry of the first stage. The first conse-
quence of this geometry is a dramatic increase in the base drag which may represent
up to 70% of the total drag, owing to the low-pressure levels within the recirculation.
Furthermore, the unsteadiness of the separated flow triggers a complex dynamics
characterized by intense low-frequency wall-pressure fluctuations. As a result, the
base region is submitted to high dynamic loads or side-loads, that can be critical
during the transonic phase of flight and disturb the launcher stability, as experienced
by the Ariane V launcher. Such oscillations can excite structural vibrations that may,
amongst other disagreements, cause fatigue failure, resulting in early deterioration
of the materials, or affect the integrity of the payload. This unsteady behaviour is
also detrimental to the engineering application by limiting the maximum thrust,
whereas high-thrust delivering is precisely needed to face the increase in the payload
capabilities. The prediction for the occurrence of these undesirable flow conditions
is thus needed to guide the future engineering designs, in order to improve the
aerodynamic performances and reliability of launch vehicles. To alleviate or control
such unsteadiness, a better knowledge of the underlying physical mechanisms is also
required. Though, the understanding of the separated dynamics remains by now
somehow limited, as several unsteady aerodynamic phenomena are simultaneously
at work, including the dynamics of the recirculating bubble, the interaction of the
separated free-shear layer with the solid walls of the nozzle and the boosters, or the
aeroacoustic field radiated by the supersonic propulsive jets.

Unsteadiness in separated flows has been a subject of great interest in the last
decades. Model configurations have been investigated so as to ease the determination
of the major features of the mean flow structure and the predominant mechanisms in-
volved in the onset of unsteadiness. In particular, two-dimensional flows featuring
separation from a sharp edge, have been extensively studied, both numerically and
experimentally (Roshko [68]; Schumm et al. [71]; Roussopoulos & Monkewitz [69]).
Nevertheless, only a limited amount of data is available on axisymmetric geometries,
that model more appropriately the first stage of the launcher. The differences fea-
tured by two and three-dimensional wake flows is illustrated well by the study of
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(a) Ariane 5 (EU). (b) Proton-K (Russia).

(c) Delta IV (USA). (d) Primitive prototype (Gaul).

Figure 1.1. Space launch vehicles.
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Gai & Patil [32], who investigated the effect on a subsonic axisymmetrical blunt base
of various control devices, which had been proven fruitful to yield a significant drag
reduction in two-dimensional low-speed flows. As a result, the efficiency of these
devices was found to be questionable.

The base pressure properties of blunt axisymmetric bodies have been studied
in the early 1960’s (Eldred [25]; Merz [56]). Experimental results obtained on more
complex axisymmetric afterbodies have shown that the wall-pressure is highly
dependent on the geometry (Délery & Sirieix [19]). In particular, mainly two different
kinds of flow separation are to be considered, depending on whether a downstream
reattachment of the separated shear-layer on a solid surface occurs or not. This
has been confirmed by an experimental test campaign carried out in 2002 in the
ONERA/DAFE S3Ch transonic wind tunnel, presented in Figure 1.2 (Deprés [20],
see also Deprés et al. [21]). The wall-pressure properties of axisymmetric blunt-
based bodies modeling ideal launcher shapes have been investigated in the fully
turbulent and transonic regimes, in the framework of the research and technology
ATAC program on Afterbody and Nozzle Aerodynamics for Launchers, undertaken
by CNES and ONERA, with support of French research laboratories (Laboratoire
d’Études Aérodynamiques at Poitiers) and industrials (EADS Astrium, SNECMA).
Typical bodies used for these tests are presented in Figure 1.3. Figure 1.3(a) shows a
simple axisymmetric blunt base for which no reattachment occurs, a configuration
hereafter referred to as Type I. Figure 1.3(b) shows the same base, now equipped
with a rear-body extension of length L = 1.2D, modeling an ideal nozzle shape.
Such configuration, where a reattachment does occur close to the end of the pro-
truding wall, is hereafter referred to as Type II. The spectrum of the wall-pressure
fluctuations corresponding to these two bodies are presented in Figures 1.3(c) and
1.3(d). For Type I, the spectrum is clearly dominated by a well-defined energetic
peak at the Strouhal number St = 0.20 based on the body diameter, corresponding
to the low-frequency periodical shedding of large-scale vortices resulting from the
self-interaction of the axisymmetric separating shear-layer. Even in the presence of
a supersonic propulsive jet, which strongly modifies the flow topology owing to its
interaction with the external separated flow region, the latter vortex-shedding phe-
nomenon was found to be persistent. For Type II, the spectrum obtained in the core of
the recirculating bubble at a distance 0.72D from the base (black line in Figure 1.3(d))
exhibits a similar peak at the Strouhal number St = 0.19, meaning that the formation
of large-scale vortex structures in the wake is not inhibited. Though, at a distance
1.15D located in the vicinity of the reattachment point (grey line in Figure 1.3(d)),
the latter peak is barely visible, as the unsteady dynamics is now dominated by
broadband high frequencies that have been ascribed to the shear-layer vortices
impinging the downstream surface. It can be seen that the associated frequencies are
three to five times larger than the typical vortex-shedding frequency. Note that three-
dimensional afterbodies have also been investigated in 2004 in the S3Ch wind tunnel.
The dynamics of such complex configurations lies out of the scope of this disserta-
tion. Still, all results pertaining to these tests can be found in the dedicated report [54].
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Figure 1.2. View of the S3Ch transonic wind tunnel and of the upstream forebody used as sup-
porting device in the ATAC test campaigns.

(a) Type I configuration, made of an axisymmetric
blunt base of diameter D.

(b) Type II configuration: an additional rear-body ex-
tension of length L = 1.2 D is now mounted at the
rear of the base.

(c) Type I spectrum of the wall-pressure fluctua-
tions. The location of the experimental measure-
ments is shown as the triangle symbol in (a).

(d) Same as (c) for the Type II configuration shown
in (b).

Figure 1.3. Typical configurations issuing from the S3Ch wind tunnel tests and associated wall-
pressure fluctuations spectra, Re ' 106 - M = 0.7. Adapted from Deprés [20].
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From afterbodies to oscillators

The hydrodynamic stability theory provides a theoretical framework to investigate
the dynamics of free shear flows, such as wakes and jets. It relies on the existence of
an unperturbed solution called base flow, subjected to perturbations, and aims at de-
termining the long-time response of the flow to an initial condition, in order to assess
its ability to return to its unperturbed state. All flows are then divided into three cate-
gories: in response to perturbations, they may be stable, or otherwise act as amplifiers
or oscillators (Huerre & Monkewitz [40]). In stable flows, all external disturbances are
damped. An oscillator-type flow displays a self-excited behaviour. Starting from a
steady state, such flow develops persisting oscillations in response to any initial per-
turbation, and never returns to the unperturbed state. It is worthwhile emphasizing
that the long-time dynamics of an oscillator is intrinsic to the flow, i.e. it is insensitive
to low levels of external excitation for forcing frequencies far enough from the natural
one. On the contrary, a flow acts as an amplifier if disturbances are driven by external
excitation: perturbations then grow in time as they travel downstream. The control
parameter for amplifiers is the level of external noise. In perfectly quiet surroundings,
an amplifier-type flow remains unperturbed. In case there is noise in the system, the
associated spectra are generally broadband, as all noise components are amplified.

In most experimental set-ups, a flow is inherently subject to noise. In the case
of the S3Ch experiments presented above, the flow is subjected to noise owing to
the small-scale structures developing in the incoming turbulent boundary-layer. The
present study was originally motivated by the fact that the differences featured by
both kinds of separations, namely Type I and Type II, can be interpreted in the light of
the oscillator/amplifier dichotomy. Indeed, in this fully turbulent regime, although
the Type I configuration displays a low-level broad high frequency energy spectrum,
meaning that small-scales are indeed excited, it appears to be dominated by the well-
defined, intrinsic vortex-shedding frequency. This straightforwardly identifies Type I
flows as being of the oscillator kind. The case of the Type II separating-reattaching
configuration is more complex. Far from the reattachment point, its spectrum is dom-
inated by the vortex-shedding frequency, which is typical of oscillators. Though, close
to the reattachment point, it is dominated by broadband high frequencies, suggesting
that the flow rather acts as an amplifier, the small-scale turbulent eddies then acting
as external sustained perturbations.

The present study stands as a theoretical investigation of the dynamics of
Type I axisymmetric wakes in the high subsonic regime. Neither the reattaching
shear-layer, nor the propulsive jets are considered, as we deal with the simplest rear
geometry of revolution, whose unsteady dynamics is therefore fully dominated by
the vortex-shedding phenomenon. We have chosen not to study the flow at the
Reynolds numbers prevailing in the ‘industrial’ application, which would require
high resolution numerical simulations of the turbulent flow. As a step towards the
understanding of more complex flow configurations, we study instead the flow
dynamics at significantly lower Reynolds numbers, but still in the high subsonic
regime. We aim here at improving the knowledge of the physical mechanisms
responsible for the transition from steady to unsteady flow conditions, as well as the
specific compressible effects that may arise at flight conditions. Of course, such an
approach is questionable, as one may expect the effects owing to the high-Reynolds-
number shear-layer turbulence to be larger than that owing to compressibility. It is
worth mentioning here that the complex theoretical approaches that will be presented
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throughout this dissertation could not have been developed along with the turbulent
solvers at our disposal. Still, high-Reynolds-number effects will be discussed in
conclusion of this dissertation.

Figure 1.4. Bénard–Kármán alley in the wake of a cylinder.

The best-known archetype of oscillator is the wake of a circular cylinder, which
models water flowing past a submarine cable, or wind blowing past a high-rise build-
ing. At sufficiently low Reynolds numbers, the cylinder wake exhibits a steady recir-
culating bubble. At Reynolds numbers between 47 and 180, it is unstable to small-
amplitude disturbances, thus giving rise to the periodic shedding of counter-rotating
vortices under the form of the Bénard-Kármán vortex street pictured in Figure 1.4.
In this range of Reynolds numbers, the steady wake flow prevailing for Re < 47 is
unstable to any arbitrary perturbation and can never be observed, although it is still
a solution to the Navier-Stokes equations. Note that as long as the amplitude of dis-
turbances remains small, their growth can be investigated in the framework of linear
stability theory. The vortex-shedding state depicted in Figure 1.4 is reached under the
action of nonlinear effects occurring as the disturbances of largest growth rates reach
typically the same order of magnitude as the base flow, thus causing the fluctuation
amplitudes to saturate at finite levels. These intrinsic oscillations in the cylinder wake
were first observed and described by Bénard [6]. The main idea underlying this dis-
sertation is that in the absence of a downstream reattachment, axisymmetric wakes
may display a similar behaviour.

The large-scale structures developing in the lee of axisymmetric bodies have
been investigated for different model geometries, including spheres (Achenbach [2];
Thompson et al. [80]; Gumowski et al. [36]), circular disks (Fuchs et al. [31]; Berger et
al. [7]; Fabre et al. [28]) or axisymmetrical blunt bases (Schwarz & Bestek [72]; Siegel
& Fasel [74]). It was found that the dynamics of these bodies bears similarities, as
a self-excited vortex-shedding regime appears at low and moderate Reynolds num-
bers. It has been generally acknowledged that this class of flows is dominated by an
instability of the helical mode, resulting in the low frequency shedding of large-scale
coherent structures in the form of two superimposed modes of azimuthal wavenum-
bersm = ±1. The periodic regime is illustrated in Figure 1.5 by flow visualizations for
an axisymmetric blunt-based body at Re = 1500 and a sphere at Re = 300. The flow
organization is strikingly similar, taking the form of kinks developing into strongly
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(a) Blunt-based body at Re = 1500, taken from Siegel et al. [73].

(b) Sphere at Re = 300, taken from Johnson & Patel [45].

Figure 1.5. Dye visualizations of the periodic vortex-shedding regime in the wake of axisymmetric
bodies.

Figure 1.6. Spectrum of the streamwise velocity fluctuations measured by LDV in the wake of a
sphere at Re = 329, taken from Ormières & Provansal [62].
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skewed loops that move away downstream. A typical spectrum corresponding to
streamwise velocity fluctuations measured in the periodic regime of the sphere is
shown in Figure 1.6. It exhibits a fundamental frequency 6.24 Hz, corresponding to a
low Strouhal number of 0.13 based on the body diameter, characteristic of vortex-
shedding phenomena. Comparing the Type I spectrum in Figure 1.3(c) with the
present spectrum, one notes that the low Reynolds number prevailing in the sphere
flow results in a very sharp frequency selection, the magnitude of fluctuations at all
other frequencies being almost nil.

Interestingly, the vortex-shedding phenomenon is not restricted to this range of
Reynolds numbers, as it was shown to persist also at high Reynolds numbers. For
instance, Achenbach [1] and Taneda [77] investigated the turbulent wake past a
sphere. The flow visualization in Figure 1.7, reproduced from the latter study, evi-
dences vortex-shedding as a coherent phenomenon superimposed on the turbulent
flow field. It is worthwhile emphasizing that Kim & Durbin [46] have shown that
the turbulent self-excited regime arising in the wake of a sphere is intrinsic, a feature
typical of oscillators. Another study by Flodrops & Desse [29] considered the tur-
bulent flow past an axisymmetric base at high subsonic Mach numbers, and clearly
evidenced the vortex-shedding frequency St = 0.2, based on the body diameter.
These results suggest that the present low-Reynolds number approach can still be
pertinent to improve the understanding of the large-scale dynamics of the fully tur-
bulent flow.

Figure 1.7. Vortex-shedding at high Reynolds numbers: smoke visualization of the wake past a
sphere at Re = 23000, taken from Taneda [77].

Means & Objectives

This section is devoted to a review of the main theoretical concepts underlying the
present study, namely stability analyses, adjoint methods and their application to flow
control. The objectives of this dissertation are then presented in the light of this re-
view. Particular attention is paid to the connection between these concepts and the
previously introduced oscillator/amplifier dichotomy.
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Stability analyses

Open shear flows have first been studied in the framework of the local stability theory,
for which only the cross-stream flow direction is an eigendirection. The fate of pertur-
bations at each streamwise station is analysed by studying the stability of the fictitious
parallel flow obtained by extending to infinity the base flow profiles prevailing at each
streamwise station. In the local approach, the instability can be either convective or
absolute (Briggs [10], Bers [8]). The amplifier dynamics is associated with the exis-
tence of convectively unstable regions, where advection overwhelms the upstream
propagation of the small-amplitude wave packet generated by an arbitrary perturba-
tion, the latter being swept downstream with the flow while growing, as illustrated
in Figure 1.8(a). As a consequence, a base flow which is convectively unstable at all
streamwise locations may amplify external perturbations, but in the absence of con-
tinuous forcing, the flow eventually returns to its initial state, i.e. it behaves as an
amplifier. On the contrary, the oscillator dynamics is associated with the existence
of absolutely unstable regions, where the spreading of the wave packet withstands
the downstream advection, so that the latter propagates both upstream and down-
stream and ultimately grows in time at any fixed location. Such situation is depicted
in Figure 1.8(b). For synchronized oscillations to be observed, the size of the abso-
lutely unstable region must reach a critical size (Chomaz et al.. [14]; Monkewitz et
al. [58]; Le Dizès et al. [47]). In the long-time limit, energy is continuously extracted
from the base flow within this region and transferred to perturbations, making the
oscillations self-sustained. Consistently with experimental observations, the inviscid
analysis of Monkewitz [59] has shown that in the incompressible homogeneous limit,
axisymmetric wakes can sustain a helical absolute instability of azimuthal wavenum-
ber m = 1, thus supporting the idea that this class of flows is of the oscillator kind.

(a) Convective instability. (b) Absolute instability.

Figure 1.8. Amplification of a wave packet.

The use of local stability analysis has the advantage of requiring very little
computational cost. Though, in the case of oscillators, where the flow exhibits a
sharp spatial pattern and frequency selection, it has the disadvantage of needing
additional criteria to connect the local instability properties to the global dynamics,
where the term global emphasizes here that the oscillating solution encompasses the
entire flow field. This is done via a slowly varying or WKBJ approach, where one
assumes that the streamwise variations of the base flow are slow over an instability
wavelength, so that perturbations at any streamwise station develop as if the base
flow was locally parallel. A theoretical criterion for the onset and frequency of
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global oscillations has been derived from the analyses of Ginzburg-Landau model
equations in the fully nonlinear regime (Chomaz [12]; Couairon & Chomaz [16];
Pier & Huerre [64]), thus giving rise to the so-called theory of nonlinear global
modes. The main idea conveyed by these studies is that the flow is dominated by a
stationary front acting like a wavemaker, and that its frequency and spatial structure
are determined by the local linear stability properties at the upstream boundary of the
region of absolute instability. Many of the results pertaining to the model equations
have been shown to hold in real flows, despite the fact that the slow streamwise
variation assumption is not respected. In the case of the cylinder wake, the fre-
quency of the Bénard-Kármán alley, as observed in direct numerical simulations,
matches the theoretically predicted frequency within 10 % accuracy over the range of
Reynolds numbers 100 ≤ Re ≤ 180 (Pier [63]). Since then, several successful analyses
have been carried out in the context of swirling jets (Gallaire & Chomaz [33]; Gal-
laire et al. [34]), hot round jets (Lesshafft et al. [49]), or inter-disk flow (Viaud et al. [82]).

However, real wakes are strongly non-parallel and the assumption inherent to
the local approach is thus not valid. In the last decades, a global approach of linear
stability theory has been developed, for which both the streamwise and cross-stream
flow directions are eigendirections. The term global now refers to the specific stream-
wise structure of the base flow and disturbances. This approach has first been intro-
duced by Jackson [42] and Zebib [85]. Increased computer capacities together with
iterative Krylov-subspace methods, such as the Arnoldi method, has made it possible
to generalize this method, which has received much attention and has been applied
to a large variety of flows, including the cylinder wake (Ding & Kawahara [23]; Gi-
annetti & Luchini [35] among others), backward-facing steps (Barkley et al. [4]), open
cavities (Sipp & Lebedev [75]) or boundary-layer flows (Ehrenstein & Gallaire [24]).
The review by Theofilis [78] provides a view of the recent achievements in the field.
It is worthwhile emphasizing that the global stability of axisymmetric configurations
has received less attention, although Narajan & Acrivos [61] have studied the wake
past a disk and a sphere. In the global approach, the oscillator dynamics is studied
by examining the spectrum of perturbations. To that end, a global stability analysis is
performed assuming disturbances in the form of structures growing exponentially in
time. If the growth rate of the leading global mode is positive, the base flow is said
globally unstable and the flow may act as an oscillator, the frequency of the synchro-
nized oscillations being that of the unstable global mode. The amplifier dynamics,
characterized by the ability of the flow to exhibit large transient amplifications of
initial perturbations, is rather viewed as a superposition of damped global modes
(Ehrenstein & Gallaire [24]; Schmid [70]).

Nevertheless, these analyses have so far been applied almost exclusively to in-
compressible flows, whereas its application to transonic afterbody flows requires to
consider the effect of compressibility. This means higher computer capacities and
introduces a number of specific issues associated with the computation of the steady
base flow and the resolution of the eigenvalue problem for the unsteady disturbances.
A first attempt of compressible global stability analysis is that of Theofilis [79], who
considered the flow within a cavity as a crude approximation for the real and complex
problem of open cavity flows. Since then, only a very limited number of studies have
been carried out in the compressible regime, including that of Crouch et al. [18] on the
shock-induced buffet over a two-dimensional airfoil and of Robinet [67] on a shock
wave/boundary-layer interaction.
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Nonnormality and adjoint methods

Adjoint equations have recently attracted the increased attention of fluid dynamicists,
for a number of applications ranging from atmospheric sciences (Hall [37]) to shape
optimization (Pironneau [65]). They are widely used in the context of sensitivity
analyses which can be formulated as input/output problems aiming at evaluating
the gradient of an output variable with respect to an input variable. For instance, it is
of practical interest for the fluttering of wings to estimate the sensitivity of the posi-
tion of a shock with respect to the flow parameters, such as the Reynolds and Mach
numbers or the incidence of the wing (Di Cesare & Pironneau [22]). In this exam-
ple, the input variable is for instance the angle of attack, and the output variable is
the position of the shock. Such gradients can be obtained from forward calculations.
Namely for the previous example, one must solve the state equations once to obtain
the nominal shock position, and once more to find the shock position resulting from
each change in the flow parameters. Consequently, this approach can be extremely
time-consuming if the number of degrees of freedom is large. The main advantage
of adjoint methods is that the same gradient can be obtained by solving only once
the state equations and adjoint problem, with a relatively ‘low’ computational cost.
In optimal shape design, typical input and output are the shape of a given body and
its relative drag or lift coefficient. In this context, the adjoint-based optimal design
of transonic wings at realistic cruise conditions has been widely investigated (Jame-
son [43]; Jameson et al. [44]). Such studies now allow to optimize entire airplanes for a
criterion such as drag under geometric and aerodynamic constraints such as volume
and lift (see Mohammadi & Pironneau [57] for a review).

Adjoint methods are also widely used in the context of stability analysis, which
aims at understanding the mechanisms responsible for the growth of disturbances.
Indeed, such growth may be altered by some modifications encountered in the flow.
The flow region where the instability mechanisms are active can thus be identified
as the region where the sensitivity of the disturbance to modifications of the stability
problem is the highest, as discussed in Giannetti & Luchini [35]. If such modifica-
tions are due to surface inhomogeneities and forcing, sensitivity analyses are rather
termed receptivity. For instance, Crouch [17] studied the receptivity to acoustic forc-
ing of two-dimensional disturbances in a Blasius boundary-layer. The input is now
some forcing on the wall or in the flow, and the output is a measure of the disturbance
in the domain, for instance the disturbance growth rate or its energy at some down-
stream position or in the whole domain. The estimation of the corresponding gra-
dient therefore allows a straightforward identification of the flow regions which are
most receptive to a given forcing mechanism. Adjoint methods have naturally arisen
in the study of boundary-layer flows. Hill [39] studied the receptivity of Tollmien-
Schlichting waves in the local approach, whereas Pralits et al. [66] investigated in the
WKBJ approach the receptivity of two and three-dimensional disturbances to periodic
wall conditions and momentum forcing in the compressible regime.

Another interesting example is that of arbitrary modifications of the base flow,
the input variable being now the base flow itself. This point is of practical interest
for those aiming at turning theoretical predictions into practice. Indeed, they often
investigate the stability of imperfect experimentally measured base flow profiles,
meaning that the real flow generally departs from its ideal, theoretical counterpart.
Adjoint-based formalisms have thus been used to appraise the variations of a
disturbance growth rate owing to an arbitrary base flow modification, thus defining
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the so-called sensitivity analysis to base flow modifications (Bottaro et al. [9]; Marquet
et al. [53]).

It is worthwhile noting that some physical mechanisms cannot be straightfor-
wardly identified from the knowledge of the disturbances growth rates and eigen-
functions only. For instance, stability analyses, as governed in the local approach
by the Orr-Sommerfeld equation, fail to predict the experimentally observed bifur-
cations in the plane Couette and Poiseuille flows. Such transition in parallel shear
flows, even though the flow is stable, has been ascribed to the fact that the linearized
Navier-Stokes operator may be highly nonnormal (Trefethen et al. [81]). The transi-
tion can then be explained by considering a superposition of cooperating modes, as
introduced by Butler & Farrell [11] (see also Ehrenstein & Gallaire [24]; Schmid [70]).
The main idea underlying these studies is that because the eigenmodes issuing from
the stability analysis (also referred to as the direct modes) are not orthogonal one to
the other, linear transient amplification of some disturbances may trigger strong non-
linear effects and prevent the eventual decay of those disturbances predicted by the
only stability theory, thus inducing the observed flow transition. The nonnormalilty
of the evolution operator is also responsible for the ability of the flow to respond to
external noise, a specificity of the amplifier dynamics. In this context, the computa-
tion of adjoint eigenmodes has proven fruitful to provide additional insight into the
flow physics. It allows to establish a natural distinction between the lift-up and the
convective nonnormalities (Chomaz [13]; Marquet et al. [51]). The lift-up nonnormality
is associated with direct and adjoint eigenmodes that tend to be orthogonal one to
the other because concentrated on different components of the state vector. In simple
parallel shear flows, it gives rise to the so-called lift-up effect, linked to the generation
of strong streamwise velocity perturbations by small displacements along the direc-
tion of the base flow gradient. The convective nonnormality is associated with direct
and adjoint modes that tend to be orthogonal one to the other because localized in
different regions of the flow. Of course, for real non-parallel flows, both mechanisms
act and the spatial structures of the direct and adjoint modes result from their interac-
tions.

Flow control

Flow control has been a subject of great interest in the last decade. While the sub-
ject of hydrodynamic stability is to understand the mechanisms responsible for the
growth of disturbances, control aims at using this knowledge to appropriately alter
their dynamics. It can be performed in two ways, either open-loop for methods in-
volving actuators only, or closed-loop for methods involving actuators and sensors,
the control input being then real-time modified according to the response of the flow
as monitored by the sensors.

Closed-loop/feedback methods seem a priori an attractive choice over open-loop
controls, and many studies have been devoted to their numerical implementation,
with quite promising results. Practically, though, sensing and actuation rely on de-
vices whose time response has to be very short compared to the time scale of the
unsteady phenomenon to be controlled. Consequently, experimental implementa-
tion of feedback control often remains a challenge. On the contrary, open-loop strate-
gies are much easier to implement, and have been successfully applied to many flow
configurations. For instance, a small control cylinder has been shown to suppress un-
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(a) Natural flow.

(b) Open-loop control by means of a small cylinder above the upstream
separation point.

Figure 1.9. Strioscopy visualizations of a transonic cavity flow, Re ' 8 × 105 - M = 0.755.
Taken from Illy [41].

(a) Control disk mounted ar the rear of an
axisymmetric blunt base, taken from Weick-
genannt & Monkewitz [83].

(b) Gas discharge upstream of a conical body equipped with
a central pike, in the ONERA/DAFE R1Ch wind tunnel.
Taken from Elias [26].

Figure 1.10. A selection of open-loop controls used to alleviate flow unsteadiness.
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steadiness if suitably placed in the cylinder wake (Strykowski & Sreenivasan [76]) and
in a transonic cavity flow (Illy [41]). The latter case is illustrated in Figure 1.9, which
shows strioscopy visualizations of the cavity flow in the ONERA/DAFE S8Ch wind
tunnel. The unforced flow is presented in Figure 1.9(a): it exhibits large-scale vortical
structures impinging the downstream edge of the cavity, which causes the radiation
of high acoustic levels. Figure 1.9(b) shows to the same flow in the presence of the
control cylinder: strikingly, the previous flow pattern has disappeared, as one now
observes only the Bénard-Kármán alley in the wake of the control cylinder.

Similar techniques have been used in the context of afterbody flows. Revisiting a
problem originally studied in the mid-1960s by Mair [50], Weickgenannt & Monke-
witz [83] identified different regions of the flow where a control disk mounted at the
rear of the main body, as illustrated in Figure 1.10(a), triggers either a reduction or
a sharp increase of the vortex-shedding activity. Localized gas discharges acting as
volumetric heat sources have also been proven fruitful to significantly alter supersonic
airflows (Fomin et al. [30]). Elias [26] has studied the unsteady flow past a truncated
conical body with a central spike, characterized by a pulsating shock wave, and has
shown that the use of a discharge, such as that presented in Figure 1.10(b), allows to
inhibit the unsteadiness of the shock wave (see also Elias et al. [27]). Wall forcing has
also been considered since the early 1960s and the use of mass injection into the wake
of bluff bodies, also termed base bleed (Bearman [5]; Leal & Acrivos [48]; Motallebi &
Norbury [60], among others). Though, it is worthwhile noting that such approaches
are often empirical and may be extremely time-consuming, as they require exhaus-
tive investigations over wide ranges of control parameters. For the small cylinder
device used in the cavity flow, this means to test different sizes and locations of the
device, and for each case, evaluate the effect on the disturbances growth by carrying
out either experimental measurements or numerical simulations.

(a) Experimental results from Strykowski & Sreeni-
vasan [76].

(b) Theoretical results from Marquet et al. [53].

Figure 1.11. Open-loop control of the cylinder wake. A control cylinder 10 times smaller than the
main cylinder is placed at various locations in the flow. For each location of the control cylinder
and for various Reynolds numbers, the growth rate of the perturbations is measured. Contours
where the growth rate is nil are represented, along with the corresponding value of the Reynolds
number.

A systematic adjoint-based approach for the open-loop control of globally unstable
flows has been developed by Hill [38] and Marquet et al. [53]. In case undesirable flow
conditions arise owing to a global instability, for instance unsteadiness in the cylin-
der wake, their control is indeed closely connected to the damping of the instability.
These authors revisited the experimental study of Strykowski & Sreenivasan [76] by
investigating theoretically the effect of a small control cylinder on the incompressible
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cylinder wake. The main idea conveyed by their studies is that adjoint methods can
be used to predict beforehand the effect of a small-amplitude forcing on the growth of
the unstable global mode. The presence of the control cylinder being modeled by the
body force it exerts on the base flow, it becomes possible to identify specific flow re-
gions where the control cylinder, if suitably placed, alleviates or suppresses unsteadi-
ness. As seen in Figure 1.11, the theoretical predictions exhibit a striking agreement
with the experimental results. The main advantage of such adjoint-based formalisms
is that they can easily be extended to provide optimal control strategies with a rela-
tively low computational cost, using gradient-based optimization techniques as de-
scribed in Collis et al. [15].

Objectives

The main objective of this dissertation is to establish whether the intrinsic dynamics
observed in high-Reynolds number compressible axisymmetric wakes may be as-
cribed to a hydrodynamic instability occurring at low Reynolds numbers. A par-
ticular attention is paid to the question of the frequency and spatial pattern selected
by local and global stability analyses. Since it has been said that the effects of com-
pressibility are particularly interesting in the perspective of the engineering applica-
tion, the originality of this study lies in the use of a fully compressible approach of
global stability. The second objective is to use adjoint methods to identify the flow
regions that are of particular interest in the perspective of control. We aim at even-
tually extending the global formalism of Hill [38] and Marquet et al. [53] to the com-
pressible regime, so as evaluate the effect of realistic control methods on an afterbody
configuration.

Outline

The body of this dissertation is composed of five chapters, mainly dealing with
the question of flow dynamics (chapter 2 to 5), the question of flow control being
ultimately addressed in chapter 6.

The local stability of parallel axisymmetric wakes up to the high subsonic
regime is investigated in chapter 2 under the form of two publications. The first
article presents a characterization of the convective/absolute transition of axisym-
metric wake models, thus generalizing to variable density and compressible wakes
the results of Monkewitz [59]. A complete parametric study allows to identify the
modes of interest. We discuss the effect of varying the base flow and free-stream
Mach number on the stability of the latter modes, and a physical interpretation is
proposed, based on the competition between the production of disturbances and
their advection by the base flow. The azimuthal wavenumber and frequency of the
dominant mode, i.e. the mode that leads the convective-absolute transition, are also
compared to experimental observations. The second article investigates to what
extent these local instability properties can be used to reconstruct the dynamics of a
realistic spatially developing afterbody flow, computed via a high resolution Large
Eddy Simulation in the turbulent and compressible regimes. In particular, the global
frequency of the flow is compared to that predicted by the theory of nonlinear global
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modes.

The following chapters are devoted to the global stability of non-parallel ax-
isymmetric wakes. In chapters 3 and 4, the linear and nonlinear dynamics of model
geometries are studied in the incompressible regime. This part of the dissertation
takes the form of two self-contained articles. The global modes of largest growth rates
are first identified by investigating the stability of small disturbances superimposed
on the steady axisymmetric base flow developing past a disk and a sphere (chapter 3).
This analysis is completed by a discussion on the nonnormality of the evolution
operator. The receptivity of each bifurcating mode to particular initial conditions or
forcing is also estimated by the computation of its adjoint global mode. The dynamics
arising from the nonlinear interaction between these bifurcating modes is then
further investigated using the slow manifold theory and normal forms (chapter 4).
The resulting spatial pattern and frequency selection is discussed and compared to
numerical results existing in the literature.

Chapters 5 and 6 are structured under the form of two complementary articles
in preparation, presenting a theoretical framework for the study of global modes in
compressible flows, up to the high subsonic regime. In chapter 5, the equations for
the global modes and adjoint global modes are derived in a consistent way. This
formalism is then applied to an afterbody flow. The growth rates of the leading global
modes are investigated as functions of the base flow and of the free-stream Mach num-
ber by means of a sensitivity analysis. We discuss the effect of compressibility on the
flow dynamics, and a physical interpretation is proposed by generalizing the advec-
tion/production dichotomy introduced for parallel wakes in chapter 2 to the global
framework. Chapter 6 presents a systematical approach for the open-loop control
of compressible flows. The incompressible framework of Hill [38] and Marquet et
al. [53] is extended and applied to the control of the same afterbody. The effect of
small-amplitude forcing on the growth rate of the unstable global modes is discussed.
Various control techniques are considered, including body forces, heat sources and
mass injection. A physical interpretation for the stabilizing effect of base bleed is pro-
posed.



CHAPTER
TWO

ABSOLUTE INSTABILITY IN
COMPRESSIBLE AXISYMMETRIC WAKES

This chapter is presented under the form of two independent articles investigating
the local stability of axisymmetric wakes. In the first paper, published in the Journal of
Fluid Mechanics in 2008, it is demonstrated that model axisymmetric wake profiles can
sustain absolute instability up to the high subsonic regime. The effect of compressibil-
ity on the unstable modes is investigated, and the resulting frequency and azimuthal
wavenumber selection is discussed in the light of experimental observations.

The second article, currently submitted to Physics of Fluids analyzes the stability of
realistic profiles issuing from a high resolution Large Eddy Simulation, and evidences
the simultaneous occurrence of large-scale oscillations and absolute instability in the
fully turbulent and compressible regimes. The main objective is to examine whether
the frequency of the intrinsic oscillations measured in the numerical simulation can
be accurately estimated from theoretical predictions.

keywords: compressible flows, local stability, convective/absolute transition, fre-
quency selection.
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Lesshafft & Huerre (Phys. Fluids, 2007; vol. 19, 024102) have recently studied the transi-
tion from convective to absolute instability in hot round jets, for which absolute instability
is led by axisymmetric perturbations and enhanced when lowering the jet density. The
present paper analyses similarly the counterpart problem of wake flows, and establishes
that absolute instability is then led by a large-scale helical wake mode favoured when
the wake is denser than the surrounding fluid. This generalizes to variable density and
compressible wakes the results of Monkewitz (J. Fluid Mech. vol 192, 1988, p.561). Fur-
thermore, we show that in a particular range of density ratios, the large-scale helical wake
mode can become absolutely unstable by increasing only the Mach number up to high
subsonic values. This possibility of an absolute instability triggered by an increase of the
Mach number is opposite to the behaviour previously described in shear flows such as
plane mixing layers and axisymmetric jets. A physical interpretation based on the action
of the baroclinic torque is proposed. An axisymmetric short-scale mode, similar to that
observed in plane mixing layers, leads the transition in light wakes, but the corresponding
configurations require large counterflow for the instability to be absolute.

These results suggest that the low-frequency oscillation present in afterbody wakes may
be due to a non-linear global mode triggered by a local absolute instability, since the az-
imuthal wavenumber and absolute frequency of the helical wake mode agree qualitatively
with observations.

1. Introduction
Wake flows past axisymmetric bodies have been studied both experimentally and nu-

merically in the last decades - see for instance the studies of Achenbach (1974) on spheres,
of Fuchs et al. (1979) and Berger et al. (1990) on circular disks. It has been generally
acknowledged that this class of flow is dominated by an instability of the helical mode,
resulting in the low-frequency shedding of large-scale coherent structures in the form of
two superimposed modes of azimuthal wavenumbers m = ±1. Low Strouhal numbers of
0.2 and 0.135, characteristic of vortex-shedding phenomena, have been reported for the
sphere and the disk, respectively, based on the body diameter. Kim & Durbin (1988)
showed that the periodic shedding regime was intrinsic, i.e. insensitive to low levels of
external acoustic excitation for forcing frequencies far enough from the natural one.

The onset of this type of self-sustained synchronized oscillations in free shear flows,
such as wakes and jets, has been analyzed using the local stability theory, that computes
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the instability properties of a fictitious parallel flow obtained by extending to infinity the
velocity profiles measured at each streamwise station. Numerous theoretical approaches
have provided strong evidence that the transition from convective to local absolute in-
stability (Briggs 1964; Bers 1975) plays a crucial role in the existence of such oscillations.
The works of Koch (1985) and Monkewitz & Nguyen (1987), among others, have shown
that synchronized oscillations for the two-dimensional wake are linked to the existence
of a region of local absolute instability in the near wake, where the small-amplitude
wave packet generated by an arbitrary perturbation propagates both in the upstream
and downstream directions, and grows in time at any fixed location. Similar results have
been established for sufficiently light or heated jets in the theoretical and experimental
studies of Monkewitz & Sohn (1988) and Monkewitz et al. (1990). Striking results have
also been obtained in the context of flow control. The experimental and theoretical work
of Sevilla & Mart́ınez-Bazàn (2004) shows in particular that it is possible to suppress
the vortex shedding past an axisymmetric blunt-based body using a base bleed control
strategy aiming at promoting the convective nature of the instability.

Recent studies have extended these analyses to the fully non-linear regime, and have
provided theoretical predictions for the onset and frequency of such synchronized oscilla-
tions in spatially developing flows. The analyses of Chomaz (1992), Couairon & Chomaz
(1997); Tobias et al. (1997, 1998); Pier et al. (2001) on model equations in semi-infinite
and infinite domains have highlighted the connection between non-linear global modes
and front dynamics that characterize the propagation of a saturated instability wave into
a quiescent region (Dee & Langer 1983; van Saarloos 1987, 2003), provided the stream-
wise variations of the baseflow are sufficiently slow (see Chomaz (2005) for a review). The
main idea developed in these studies is that the non-linear global mode is dominated by
a stationary front acting like a wave-maker, and that its frequency and spatial structure
are determined by the local linear stability properties at the upstream boundary of the
region of absolute instability. These conclusions apply under the assumption that the
front velocity is linearly selected, i.e. the front is pulled under the action of linear mecha-
nisms at work in the upstream tail (van Saarloos 2003). In that case, if the flow displays
convectively unstable inlet conditions, so that absolute instability arises only beyond a
specific downstream station xca, then the associated spatial structure consists of a steep
front pinned at this position of marginal absolute instability. The front then separates an
upstream region of vanishing amplitude, where perturbations decay exponentially, from
the finite-amplitude downstream tail, made of a saturated wavetrain. The global fre-
quency is then given by the linear absolute frequency ω0ca

r at this transition station xca,
and the spatial growth rate upstream of the front is given by the absolute wavenumber
−k0ca

i . In the case where the flow displays an absolutely unstable inlet conditions, the
front is pinned against the body, where the perturbation amplitude is forced to be zero.
The same global frequency selection criterion applies at the threshold of global instabil-
ity, i.e. the global frequency is given by ω0inlet

r . Above the global instability threshold,
the criterion provides only a leading-order prediction of the global frequency (Couairon
& Chomaz 1999).

These theoretical predictions, rigorously derived only for these model equations, have
been shown to apply also to real flow configurations. In the case of a two-dimensional
synthetic wake - i.e. with no solid boundaries and no recirculation, Pier & Huerre (2001)
demonstrated that absolute instability arises beyond a specific downstream position xca.
They also found that the upstream front of the vortex street was located at xca and
that the frequency of the von Karman vortex street, as observed in direct numerical
simulations, matches the absolute frequency ωca

0 within 2 %. In the naturally develop-
ing wake behind a circular cylinder, despite the fact that the slow streamwise variation
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hypothesis is not valid in the separated region, Pier (2002) has shown that the same fre-
quency criterion provides a 10 % accurate prediction over the range of Reynolds numbers
100 6 Re 6 180. Similar work has been carried out by Gallaire & Chomaz (2003) in the
case of the double helix mode arising in swirling jets, by Lesshafft et al. (2006) in the
case of hot round jets and by Gallaire et al. (2006) in the case of spiral vortex breakdown.
Lesshafft et al. (2006) also considered the case of an absolutely unstable inlet condition,
where the frequency selection criterion is valid in the vicinity of the global instability
threshold. These studies show that, as for model equations, the global oscillations ob-
served in these flows may be interpreted as a non-linear global mode driven by a pulled
front located at the upstream station of marginal absolute instability xca or at the inlet
when the flow is absolutely unstable there, the global frequency being approximated well
by the absolute frequency at the front location, at least close to the global instability
threshold.

Following this line of thought, we view unsteadiness in the wake of axisymmetric bod-
ies as the manifestation of such a non-linear global mode induced by a region of absolute
instability. Therefore, only critical parameters at the transition between convective and
absolute instability matter in predicting the existence and the frequency of such unstable
modes. Consistently with experimental observations, the inviscid analysis of Monkewitz
(1988) has already shown that in the incompressible homogeneous limit, such axisym-
metric wakes can sustain a helical absolute instability of azimuthal wavenumber m = 1.
However, many applications, such as afterbody flows, require us to consider the effect
of compressibility and density variations, as in the experimental studies of Flodrops &
Desse (1985) and Deprés et al. (2004). The present study aims at generalizing the study
of Monkewitz to non-homogeneous compressible wakes, and at providing a complete
characterization of the convective/absolute transition of axisymmetric wake models and
eventually to predict the onset and frequency of self-sustained oscillations in more com-
plex flow configurations. In particular, physical interpretations are given in terms of a
baroclinic factor, that extends to non-axisymmetric perturbations and compressible flow
the effect of the baroclinic torque on the instability, discussed by Lesshafft et al. (2006)
and Nichols & Schmid (2007) in the case of jets. The paper is organized as follows: the
problem formulation for the base flow and its disturbances is given in § 2.1. Section 2.2
presents the numerical procedure used to determine the linear instability properties of
the base flow. In § 3, the different instability modes of interest are identified through an
investigation of the linear impulse response that highlights the wake/jet dichotomy and
the azimuthal wavenumber selection. In §§ 4.1 to 4.3, we provide a characterization of
the convective/absolute transition in terms of control parameter ranges (Mach number,
steepness parameter, velocity and density ratios), frequency and wavenumber.

2. Theoretical framework
2.1. Parallel base flow and disturbances

We consider a non-homogeneous compressible ideal gas with constant specific heat cp,
thermal conductivity κ, and dynamic viscosity µ, related by a unit Prandtl number.
All equations are formulated in cylindrical coordinates (r, θ, z). We use the upstream
quantities ρ∞, T∞ and P∞ as density, temperature and pressure scales respectively. The
fluid motion is governed by the compressible Navier-Stokes equations, written as

Dtρ + ρ∇.u = 0 (2.1)
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Re∞
∆u (2.2)
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γ

PrRe
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where Dt is the material derivative, d is the strain tensor given by

d =
1
2

(∇u + ∇uT
)

(2.4)

and the Reynolds, Mach and Prandtl numbers are defined as

Re∞ =
ρ∞RW∞

µ
, M∞ =

W∞√
γRgT∞

, Pr =
µcp

κ
, (2.5)

with Rg and γ the ideal gas constant and the ratio of specific heats.
The unperturbed wake is assumed to be steady, axisymmetric and uniform in the

axial direction. This holds under the assumption that the instability wavelength is short
compared to the viscous diffusion spatial scale. The base flow is therefore chosen as an
inviscid solution of (2.1)− (2.3). An analytical expression of the velocity profile is taken
from the studies of Monkewitz & Sohn (1988) and Monkewitz (1988). In dimensional
variables, indicated by an asterisk, the base flow under consideration reads:

W ∗
b (r∗) = W∞ + (Wc −W∞)F (r∗) , (2.6)

where F (r∗) is the distribution

F (r∗) =
1

1 +
(
2(r∗/R)2 − 1

)N
. (2.7)

In (2.6), subscripts c and∞ refer, respectively, to the centreline and free-stream velocities.
In (2.7), R is the wake radius R defined as W ∗

b (R) = Wm where Wm is the mean velocity
Wm = (Wc + W∞) /2. Using the mean velocity Wm as velocity scale and the wake radius
R as length scale, we introduce the velocity ratio Λ = (Wc − W∞)/(Wc + W∞). In
non-dimensional variables, the base flow reads

Wb(r) = 1− Λ +
2Λ

1 +
(
2r2 − 1

)N
. (2.8)

In the context of wakes, Λ varies in the range −∞ < Λ < 0, with Λ = −1 in the particular
case of a wake with zero centerline velocity. The centerline and free streams are coflowing
for −1 < Λ < 0 and counterflowing for Λ < −1. Positive values of Λ correspond to jet
velocity profiles. Figure 1 shows typical wake and jet profiles that are symmetric with
respect to the unity velocity, i.e. Wb(Λ, r) = 2 −Wb(−Λ, r). The thickness of the shear
layer is characterized by the steepness parameter D/θ, where D is the wake diameter
D = 2R and θ is the momentum thickness defined in the homogeneous limit as

(W∞ −Wc)2θ =
∫ ∞

0

(Wb(r)−Wc)(W∞ −Wb(r))dr . (2.9)

Considering variations of θ relative to a fixed diameter D, this parameter allows for
continuous variation between the top-hat wake bounded by a cylindrical vortex sheet
obtained for N →∞ (D/θ →∞), and the Gaussian profile obtained for N = 1 (D/θ =
6.5). For N < 1, this family of profiles is not appropriate, as the second-order derivative of
the velocity profile is singular at r = 0. The corresponding range of steepness parameters
accessible through (2.6)− (2.7) is therefore 6.5 6 D/θ < ∞.
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Figure 1. Typical velocity wake profile, and corresponding jet profile symmetric with respect
to the unity velocity.

In the absence of body forces, the pressure Pb is uniform throughout the flow. For a
fixed ratio of centerline to free-stream density S = ρc/ρ∞ (S > 1 for cold heavy wakes
and S < 1 for hot light wakes), the energy equation for the base flow is replaced by
the Crocco−Busemann relation (Schlichting 1978), obtained from the three-dimensional
steady boundary-layer equations, and modelling a heat transport across the shear layer
similar to the momentum transport. The temperature field is given by

Tb(r) = 1 +
(

1
S
− 1

)
F (r)− (γ − 1)M2

∞
2

(
2Λ

1− Λ

)2

F (r)(F (r)− 1) (2.10)

and the density is obtained from the ideal gas relation as

ρb(r) = Tb(r)−1 . (2.11)

In the framework of the linear stability theory, all flow field quantities are decomposed
into base flow and infinitesimal disturbances ( ρ′, u′, v′, w′, t′, p′ ) where u′, v′, w′ are the
radial, azimuthal and axial components of the velocity perturbation. Disturbances are
chosen in the usual normal mode form

φ(r, θ, z, t) = φb(r) + ε
(
φ′(r)ei(kz+mθ−ωt) + c.c.

)
(2.12)

where c.c. denotes the complex conjugate and φ′ stands for any disturbance quantity.
k = kr + iki is the complex axial wave number, ω = ωr + iωi is the complex pulsation, ωi

and −ki being, respectively, the temporal and spatial growth rates, and m is the integer
azimuthal wavenumber. Substitution of (2.12) into the governing equations (2.1)− (2.3)
linearized about the base flow and elimination of the pressure disturbances p′ lead to a
generalized eigenvalue problem for either k or ω, whose equations are given in Appendix
A. For all calculations, a complete set of eigenvalues and associated eigenfunctions is
obtained for a Reynolds number Re∞ = 2000, using a spectral Chebyshev−Gauss collo-
cation method.
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2.2. Numerical method

A mode of zero group velocity ∂ω/∂k = 0 is associated with a saddle point k0 and a
branch point ω0 = ω(k0) for the complex pulsation ω(k). The saddle point k0 must be
causal and be formed by the pinching of an upstream and a downstream propagating
branch, i.e. the spatial branches issuing from the saddle point must separate into the
upper and lower half of the complex k-plane when ωi > ωi,max, where ωi,max is the
maximum temporal growth rate, the largest ωi over all temporal waves with k ∈ R. A
mode of non-zero group velocity ∂ω/∂k = vg is associated with a wavenumber kv and a
pulsation ωv = ω(kv), corresponding to a saddle point k̃0 and a branch point ω̃0 = ω̃(k̃0)
in the Galilean frame travelling at the velocity vg for the accordingly modified velocity
scale and resulting dimensionless parameters, obtained as

ω̃0 = ωv − vgk
v , (2.13a)

k̃0 = kv . (2.13b)

In the present study, modes of zero group velocity are searched by an iterative pro-
cedure: owing to the saddle point singularity in the complex k-plane, ω(k) admits a
quadratic Taylor expansion around k0. The numerical procedure used follows that of
Deissler (1987): saddle points k0 are computed by fitting a generic quadratic expression
of the form

ω(k) = ω0 + l(k − k0)2 (2.14)

on the eigenvalues ω(k(i)) obtained for three wave numbers k(i) close to an initial guess
value of k0. All constants k0, ω0 and l are computed and three new wavenumbers are
chosen closer to the extrapolated value of k0. The procedure is repeated until both k0

and ω0 become stationary within the desired tolerance (four significant digits in the
present study). Note that the discrimination between pinching points and physically
impermissible k−/k− saddle points requires the computation of the spatial branches.
For modes of group velocity vg, kv and ωv are obtained similarly by using a quadratic
expression of the form

ω(k) = ωv + vg(k − kv) + l(k − kv)2 . (2.15)

This method was found to provide results matching the associated saddle point in the
co-moving frame (r̃∗, z̃∗) = (r∗, z∗ − v∗gt∗).

In the laboratory frame, the asymptotic impulse response of the flow at large times is
proportional to the quantity ei(k

0z+mθ−ω0t) - see Huerre & Monkewitz (1985). Therefore,
only the k+/k− pinching point of highest absolute growth rate is taken into account
in this study, as this mode will dominate in the long time limit. The base flow is then
classified as absolutely unstable if a mode of zero group velocity has a positive absolute
growth rate ω0

i and fulfils the pinching requirements. In the following, we use the Strouhal
number St built up from ω0

r , W∞ and D, and the absolute wavelength λ0 built up from
k0

r and D, defined by

St =
ω0

rD

2πW∞
, λ0 =

2π

k0
rD

. (2.16)

Similarly, for a non-zero group velocity, we use the wavelength λv built up from kv
r and

D.
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3. Linear impulse response of an incompressible wake
In the linear stability theory, an arbitrary perturbation generates a small-amplitude

wave packet composed, for any particular azimuthal wavenumber, of a continuous set
of spatio-temporal modes, each mode propagating with its own specific group velocity.
In this section, the linear impulse response of an axisymmetric wake is investigated in
the zero-Mach-number limit as a convenient way to identify the spatio-temporal modes
of interest. All results are provided in terms of the spatio-temporal growth rate σ =
ωv

i − vgk
v
i . Note that the linear impulse response for a wake flow represents also the

impulse response of the jet flow with Λjet = −Λwake (see figure 1), if a symmetry with
respect to vg = 1 is applied, i.e. σ(vjet

g ) = σ(2 − vwake
g ). This symmetry is of particular

importance when the absolute−convective transition is of interest, as the trailing edge
and the leading edge of the wave packet exchange roles. For clarity, the properties of
the trailing and leading edges are always discussed for a wake wave packet propagating
in a wake flow, i.e. the trailing edge is located at the ‘wake side’ of the wave packet,
and the leading edge at ‘the jet side’ of the wave packet. A wake of particular Λ will
then be absolutely unstable if the trailing edge of the impulse response travels with a
velocity vg < 0, whereas the jet counterpart will be absolutely unstable if the leading
edge travels with a velocity vg > 2. This section extends to the ‘wake side’ of the wave
packet the study of Lesshafft & Huerre (2007), where the impulse response is computed
and discussed only for the ‘jet side’.

3.1. Helical wave packet, m = 1
We choose a profile characterized by a velocity ratio Λ = −1.2 (corresponding to a
centerline counterflow of 9% of the free-stream velocity) and a steepness parameter D/θ =
60 to illustrate the physics of the impulse response. Figure 2(a) shows the spatio-temporal
growth rate σ of the helical modes (m = 1) as a function of the group velocity vg (thick
line).

At the trailing edge of the wave packet, the spatio-temporal growth rate distribution
exhibits an angular point for vg = 0.080 that divides the wave packet into two do-
mains, corresponding to two distinct modes. Modes dominating at low group velocities
vg 6 0.080 correspond to absolute instability modes which trigger the vortex-shedding
phenomenon in homogeneous wakes (Monkewitz 1988). These modes will be referred to
as wake modes. Modes dominating at higher group velocities vg > 0.080 continually
extend to the other side of the wave packet. These modes, that will be referred to as
shear-layer modes, are the equivalent for m = 1 of the short scale modes that have been
identified in hot jets by Jendoubi & Strykowski (1994) for axisymmetric disturbances
(m = 0).

This distinction between wake and shear-layer modes is confirmed by figure 3(a), where
the radial velocity eigenfunctions u′ of each mode are presented, respectively, for vg =
0 (wake mode) and vg = 0.15 (shear-layer mode). All velocity magnitudes have been
normalized with respect to the maximum radial velocity perturbation. For both modes, a
non-zero radial velocity component of the disturbance energy is allowed in the centerline
region by the boundary conditions that apply at r = 0 for m = 1. As expected for
the shear-layer mode, the perturbation is concentrated in the shear-layer region, decays
rapidly at large cross-stream distances and when approaching the centerline. For the wake
mode, the perturbation also peaks in the shear region, but maintains a significant level
at larger cross-stream distances. The large value of the perturbations at r = 0 indicates
that the shear layer can no longer be considered as isolated, but interacts strongly with
the boundary condition at the centerline. The wavelength λv at the angular point close
to the trailing edge of the m = 1 wave packet is also plotted in figure 3(b), all other

Absolute instability in compressible axisymmetric wakes 29



wa
ke jet

m

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1

0

1

2

3

σ

m=1
m=0

(a)

vg/2

0

2
3
4

0 0.1
-0.5

0

0.5

vg/2

σ

(b)

0

m=1
2

3
4

wa
ke jet

-0.5 0 0.5 1 1.5 2
-2

-1

0

1

2

3

4

5

σ

m=1

m=0

(c)

vg/2

m

4

3
2

0

-0.1 0 0.1
-0.5

0

0.5

σ

(d)

m=0

1

2
3

4

vg/2
Figure 2. Spatio-temporal growth rates σ of the helical mode m = 1 (thick line), and of
the modes of azimuthal wavenumbers m = 0, 2, 3, 4 (thin lines), for D/θ = 60, M∞ = 0 and
Re∞ = 2000. When the trailing edge of a wave packet (σ = 0) extends over the vg = 0 dotted
line, the corresponding wake is absolutely unstable. Symmetrically, when the leading edge of the
wave packet extends beyond the dotted line vg/2 = 1, the jet profile associated to Λjet = −Λwake

is absolutely unstable. (a) Homogeneous wake (S = 1) for Λ = −1.2. (b) Enlargement of the
vg = 0 shaded area of (a). (c) Light wake (S = 0.3) for Λ = −2.25. (d) Enlargement of the
vg = 0 shaded area of (c).

parameters being identical to that used in figure 3(a). For these parameter settings, the
angular point corresponds always to a group velocity vg > 0. The wake mode wavelength
is almost independent of D/θ, so that λv rescaled by D/θ varies proportionally to D/θ
in figure 3(b). The shear-layer mode rescaled wavelength is almost independent of D/θ,
confirming that λv scales on the momentum thickness θ and is insensitive to curvature
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Figure 3. Λ = −1.2, S = 1, M∞ = 0 and Re∞ = 2000 and azimuthal wavenumber m = 1. (a)
Normalized radial velocity eigenfunctions for D/θ = 60. Wake mode at vg = 0 (——–, WM1)
and shear-layer mode at vg = 0.15 (− − −, SLM1). (b) Wavelength λv renormalized by the
momentum thickness θ as a function of D/θ at the group velocity corresponding to the angular
point close to the trailing edge of the m = 1 wave packet.

effects, a result supporting the idea that this mode is analogous to the disturbances in
plane mixing layers, as D/θ goes to infinity.

Complete maps k(ω) obtained for contours parallel to the real axis of the ω-plane
(i.e. for different fixed values of ωi), are presented in figures 4(a) and 4(b) for vg = 0
and in figure 4(c) for vg = 0.15. The saddle points corresponding to the pinching events
producing the different instability modes documented in figure 3(a) are represented. k−1
denotes the spatial branch which, by pinching with the k+ branch, gives rise to a wake
mode, and k−2 its counterpart for the shear-layer mode. The saddle point associated with
the k−3 branch (open diamond symbol) is not considered here, as extensive computations,
carried out for different control parameters, show that this point displays the highest
absolute growth rate only in cases where it is a non-physical k−2 /k−3 point. For vg = 0,
the k+/k− pinching point of highest absolute growth rate is the wake mode, owing to
the pinching of the k+ and k−1 branches at k0 = 0.625− 1.401 i, for ω0 = 1.484 + 0.097 i.
Note that the k−1 branch issues from the kr < 0 domain, more clearly visible on the close-
up in 4(b). Studies by Healey (2005, 2006) have warned against the specific dynamics
that may be associated with such pinching with branches issuing from the kr < 0 half
domain, i.e. the other side of the branch cut, the other side of the looking-glass (Carroll
1872), where eigenmodes grow in the cross-stream direction. Fortunately, in the present
case, we observe that the wake mode saddle point remains at a distance kr ∼ 0.5 from
the kr = 0 axis, which is consistent with the idea that kr scales on the wake diameter.
Therefore, standard results remain valid. If ωi is decreased further below ω0

i = 0.097, the
shear-layer mode arises owing to the coalescence of the merged k+/k−1 branch with the
k−2 branch. Similar maps k̃(ω̃) are presented in figure 4(c) for vg = 0.15. In this case, the
pinching point of highest absolute growth rate is the shear-layer mode, formed by the
pinching of the k+ and the k−2 branch at k̃0 = 5.269 − 4.896 i, for ω̃0 = 5.016 + 2.262 i.
If ω̃i is decreased further, the wake mode arises owing to the coalescence of the merged
k+/k−2 branch with the k−1 branch. This existence of two distinct helical instability modes
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Figure 4. Spatio-temporal branches k(ω) in the complex k-plane for various values of ωi.
Λ = −1.2, D/θ = 60, S = 1, M∞ = 0 and Re∞ = 2000. The WM1 and SLM1 labels mark the
saddle points associated, respectively, to the wake mode and the shear-layer mode. (a) vg = 0.
(b) Enlargement of the shaded pinching area of (a). (c) vg = 0.15.

resulting from the pinching of a single unstable k+ branch with two distinct k− branches
is somehow reminiscent of that resulting in the competition between axisymmetric jet
column and shear-layer modes in heated jets, documented by Jendoubi & Strykowski
(1994), although there is no connection between the leading edge modes of the m = 0
wave packet and the trailing edge modes of the m = 1 wave packet. Similar results are
also discussed in the study of Juniper (2006) on confined two-dimensional jets (see figure
3 for instance).
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3.2. Overall wave packet : azimuthal wavenumber selection
The spatio-temporal growth rate for axisymmetric disturbances (m = 0) is also plotted
in figures 2(a) and 2(b). The angular point close to the leading edge corresponds to the
existence of the jet-column modes alluded to above, that lead the convective-absolute
transition for isothermal or hot jets, as discussed in Jendoubi & Strykowski (1994) and
Lesshafft & Huerre (2007). At the trailing edge, the m = 0 spatio-temporal growth rate
exhibits a second angular point (barely noticeable in figure 2b) corresponding to the
existence of axisymmetric wake modes at low group velocities.

The structure of the m = 2 wave packet is similar to that of the m = 1 modes, with
the possibility of the trailing edge being dominated by a large-scale wake mode (see the
close-up of figure 2a), but its growth rate is smaller at all group velocities than its m = 1
counterpart.

For higher azimuthal modes m > 2, the growth rate for each group velocity decreases
as m increases. If the curvature effect is neglected at leading order for this large steepness
parameter (D/θ = 60), the stabilization of the shear-layer mode for increasing azimuthal
wavenumbers may be interpreted as an effect of the Squire theorem, since the misalign-
ment of the local wave vector m/reθ +krez with the direction of the axisymmetric wave
vector ez increases with m. For the parameter settings of figure 2(a), the overall az-
imuthal wavenumber trailing edge is dominated by the absolutely unstable helical wake
mode (m = 1), whereas the overall leading edge is dominated by the axisymmetric jet
column mode (m = 0). To our knowledge, these results on three-dimensional jets and
wakes have never been shown since emphasis was put on jets, and even publications that
have shown the entire jet wave packet for both m = 0 and m = 1 (Lesshafft & Huerre
2007) have overlooked the possibility of a different mode at the ‘wake side’ of the wave
packet, corresponding to the existence of the wake modes described above. Extensive
calculations in the wide range of parameters investigated here suggest that the overall
trailing edge can be dominated by the axisymmetric shear-layer mode for sufficiently
light wakes. Figure 2(c) presents the modification of the wave packet when the density
is decreased down to S = 0.3. The trailing edge of the m = 1 wave packet is now led by
the shear-layer mode, and the overall wave packet is dominated by the m = 0 shear-layer
mode (see the close-up in figure 2d). Comparing figures 2(a) and 2(c), we see at the trail-
ing edge that the angular point of the m = 1 wave packet has moved to negative growth
rates, meaning that lightening the wake stabilizes the helical wake mode. The strong
negative value of the velocity ratio Λ used in figure 2(c) in order to show the wave packet
at the threshold of absolute instability demonstrates that, as in the two-dimensional case
(Yu & Monkewitz 1990), the lighter the wake, the stronger the backflow required for the
instability to be absolute. The effect is opposite at the leading edge, where the angular
point of the m = 0 wave packet has moved to large growth rates. This is in agreement
with the promotion of absolute instability in axisymmetric low-density jets (Jendoubi &
Strykowski 1994).

3.3. Evolution of the largest spatio-temporal growth rate
The top of the wave packet in figure 2, i.e. the mode of maximum spatio-temporal growth
rate σmax is of particular interest since it is identical to the mode of maximum temporal
growth rate ωi,max (Huerre & Rossi 1998). It defines the largest growth rate that may
be observed while moving with the perturbation at the velocity vgmax for which σ(vg) =
σmax. Values of σmax have been computed for different values of the steepness parameter
D/θ. The results are presented in figure 5, where the smallest physical value of D/θ
is 6.5, corresponding to the standard Gaussian velocity profile considered by Batchelor
& Gill (1962), which is here recovered for D/θ = 6.5 (N = 1). σmax is asymptotically
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Figure 5. (a) Maximum spatio-temporal growth rate σmax as a function of D/θ, for the helical
mode m = 1 (thick solid line), and the modes of azimuthal wavenumbers m = 0, 2, 3, 4. Λ = −1.2,
S = 1, M∞ = 0 and Re∞ = 2000. The dark shaded area corresponds to D/θ < 6.5, these values
not being allowed for profiles defined by (2.6)− (2.7). (b) Enlargement of the light shaded area
of (a).

proportional to D/θ, confirming that the shear-layer mode is closely related to the Kelvin-
Helmholtz instability. Consistently with the results previously discussed from figure 2,
the m = 0 and the m = 1 maximum spatio-temporal growth rates are remarkably similar,
although the axisymmetric mode is slightly more unstable for D/θ & 23. The maximum
spatio-temporal growth rate then slowly decreases as m is increased, in agreement with
the prediction of the Squire theorem that applies for large steepness parameters. Figure
5(b) shows that helical disturbances (m = 1) are the most amplified for sufficiently small
values of D/θ, namely D/θ . 23, and that only helical disturbances are amplified for
D/θ 6 8. Identical results can be found in the analysis of axisymmetric jets by Batchelor
& Gill (1962), showing that only helical disturbances are amplified when the shear region
of the jet is sufficiently thick. Figure 6 presents the variation of σmax as a function of S
and M∞, for D/θ = 60. All azimuthal wavenumbers display a maximum amplification for
M∞ = 0 and S ∼ 1. These results are typical of shear instability and have already been
documented in the context of plane vortex sheets, see for instance Miles (1958) for the
effect of the Mach number and Drazin & Reid (1981) for the effect of the density ratio.
Note that the effect of the density ratio on the most amplified spatio-temporal mode
contrasts with that described for the edges of the wave packet. Decreasing the density
ratio below S = 1 reduces the maximum spatio-temporal growth rate but accelerates
the wave packet, promoting convective instability at the trailing edge (‘wake side’) and
absolute instability at the leading edge (‘jet side’). Increasing the density ratio above
S = 1 also reduces the maximum spatio-temporal growth rate, but it slows down the
wave packet, promoting absolute instability at the trailing edge and convective instability
at the leading edge.
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4. Convective−absolute transition
A wake is absolutely unstable if the trailing edge of the linear impulse response propa-

gates at a negative group velocity. Therefore, it is deduced from the previous discussion
that the convective-absolute transition is led either by the axisymmetric shear-layer mode
m = 0 (SLM0) or the helical wake mode m = 1 (WM1). In this section, we investigate the
convective/absolute transition of axisymmetric wakes, and identify the selected dominant
mode that leads the transition in the laboratory frame (vg = 0), in a parameter space
including the velocity ratio Λ, the steepness parameter D/θ, the density ratio S, and the
Mach number M∞. For simplicity, a control parameter is said to be destabilizing (resp.
stabilizing) when its variation results in an extension (resp. reduction) of the domain of
absolute instability.

4.1. Effect of the density ratio
We study the effect of the density ratio and the velocity ratio on the stability properties
of the base flow, for a wake of steepness parameter D/θ = 60 at zero Mach number. The
boundary of the domain of absolute instability in the (S, Λ)-plane is presented in figure 7.
We use a dashed curve when the transition is led by the axisymmetric shear-layer mode
and a plain curve when it is led by the helical wake mode. The instability is absolute for
combinations of parameters located in the shaded region, labeled AU, and convective for
all other combinations of parameters (CU-labeled region).

The absolute instability boundary is reminiscent of that documented by Yu & Monke-
witz (1990) in the case of two-dimensional wakes, namely large high (resp. low) density
ratios are destabilizing (resp. stabilizing) and promote absolute (resp. convective) insta-
bility. A discontinuity in the boundary occurs at S = 0.396, a point marked by an open
circle in figure 7, where the dominant mode switches from the axisymmetric shear-layer
mode (S 6 0.396) to the helical wake mode (S > 0.396). In the following, this particular
point where both modes are simultaneously marginally absolutely unstable is referred
to as the crossover point. Note also that the marginal curve crosses the Λ = −1 line at
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Figure 7. Boundary separating the regions of absolute (shaded domain labeled AU) and con-
vective (domain labeled CU) instability in the (S, Λ)-plane, for D/θ = 60, M∞ = 0 and
Re∞ = 2000. The transition to absolute instability is led either by the axisymmetric shear-layer
mode (dashed line) or the helical wake mode (solid line). The open circle marks the crossover
point corresponding to the change in the selection of the dominant mode. The dash-dotted line
is the curve of marginal absolute instability in the absence of baroclinic effects.

S = 1.551. Therefore, wakes with sufficiently high density ratios can be absolutely unsta-
ble to m = 1 perturbations (wake mode), even with a coflow on the axis. The threshold
is found to be asymptotic to Λ = −0.9 as S increases, indicating that the critical velocity
ratio depends weakly on the density ratio: for instance, absolute instability occurs in
presence of a coflow rate of 5.3% at S = 10 and of 5.8% at S = 4. On the contrary,
for low density ratios, the critical velocity ratio required to reach absolute instability is
dramatically affected by small variations of S: for instance, absolute instability occurs in
presence of a counterflow rate of 22.5% at S = 0.5 and of 51.7% at S = 0.2.

This striking behaviour may be understood by considering the effect of the baroclinic
torque, as first suggested by Soteriou & Ghoniem (1995) for the stability of homogeneous
and non-homogeneous shear layers. The main idea is that a baroclinic torque arising from
base flow density gradients and from the pressure perturbations Γ = (∇ρ0 ×∇p′) /ρ2

0 can
act as a source for the vorticity perturbations, as discussed by Nichols & Schmid (2007)
in the case of non-homogeneous round jets, for instance. On similar jet configurations,
Lesshafft & Huerre (2007) have shown that the impact of baroclinic effects can be assessed
by solving a modified dispersion relation, in which the linearized momentum equations
are artificially forced in order to cancel the baroclinic torque, which has only one non-
trivial component Γθeθ due to the axisymmetry. This method is generalized here to the
case of non-axisymmetric disturbances, leading to a two-component baroclinic torque
Γθeθ + Γzez, where

Γθ = ik0 ∂rρ0

ρ2
0

p′(r)e(ik0z+mθ−ω0t) , (4.1a)

Γz = −i
m

r

∂rρ0

ρ2
0

p′(r)e(ik0z+mθ−ω0t) , (4.1b)

Γz being non-zero for m 6= 0. More details on the vorticity equations can be found in
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Figure 8. (a) Displacement η(r = 1, θ = 0, z) (drawn with an arbitrary finite amplitude) and
baroclinic torque Γt associated to the marginally absolutely unstable eigenmode, projected along
the vector t(r = 1) tangent to the phase lines of η, for S = 2.5. The rotation induced by the
torque is visualized by the white circles with arrows. (D/θ = 60, M∞ = 0 and Re∞ = 2000).
(b) Same as (a) but for S = 0.45. This figure extends to non-axisymmetric perturbations the
arguments of Lesshafft & Huerre (2007) and Nichols & Schmid (2007) (see their figures 5 and
8, respectively).

Appendix B. The absolute instability boundary associated to the modified dispersion
relation, where the two-component baroclinic torque has been cancelled, is shown in fig-
ure 7 (dash-dotted line). When the baroclinic effects are removed, the transition from
convective to absolute instability is led by the helical wake mode (m = 1) whatever the
value of the density ratio. For S = 1, forced and unforced marginal absolute instability
curves cross since the baroclinic torque vanishes in the homogeneous case. Surprisingly,
the convective-absolute transition is nearly independent of S when the baroclinic torque
is cancelled, even though the density ratio still enters the dispersion relation, the rela-
tive difference not being measurable for S > 1, and being negligible for S < 1 (0.9% at
S = 0.5 and 3.5% at S = 0.1). It may therefore be concluded that the baroclinic torque
Γ promotes the onset of absolute instability in heavy wakes and delays it in light wakes.
The physical mechanism proposed by Lesshafft & Huerre (2007) to explain the stability
of axisymmetric disturbances in hot jets may be extended to non-axisymmetric per-
turbations by examining how the baroclinic torque associated with the spatio-temporal
absolute eigenmode interacts with the associated displacement η of the shear layer at
r = 1, computed from the radial velocity perturbation as ∂tη + W∂zη = u′, so that

η =
−iu′

k0Wb − ω0
. (4.2)

Considering the vector tangent to the phase lines of η, defined as t = k0
reθ−m/rez, only

the component of the baroclinic torque along t

Γt = Γ.
t

‖t‖ (4.3)
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Figure 9. Baroclinic factor Υ at the absolute instability threshold, i.e. along the curve Λ(S)
plotted in figure 7, valid only in the non-shaded area where the wake mode leads the absolute
transition (D/θ = 60, M∞ = 0 and Re∞ = 2000). In the shaded area are reported the values of
Υ of the mode associated with the wake mode saddle point, followed by continuity.

plays a role in the displacement of the shear-layer. Figure 8(a) shows the shear-layer
displacement and the spatial distribution of Γt in a meridional plane, computed for the
helical wake mode at the absolute instability threshold, for a heavy wake of ratio S = 2.5.
All spatial amplifications are neglected for clarity by setting the spatial growth rate −k0

i

to zero. Results are reminiscent of that documented in Lesshafft & Huerre (2007) and
Nichols & Schmid (2007): the baroclinic torque is concentrated within the shear layer,
in regions of alternating sign. The baroclinic torque is destabilizing since it induces a
clockwise rotation when η decreases with z, and a counterclockwise rotation when η
increases with z. This effect of the baroclinic torque is thus determined by the relative
phase φ of the projected torque Γt, evaluated in the shear layer (r = 1), with respect to
the displacement η

φ = arg{Γt|r=1} − arg{η|r=1} . (4.4)

Because there is almost a quadrature advance between Γt and η (φ = 1.90), the baroclinic
torque tends to enhance the deformation of the shear layer, and is therefore destabilizing,
as indeed is predicted by the direct stability analysis. Figure 8(b) shows similar results
for a light wake of density ratio S = 0.45, but owing to the change of sign of the base flow
density gradient, we find in that case a quadrature delay between Γt and η (φ = −1.77),
so that Γt now induces stabilizing deformations that oppose the shear-layer deformation.
These results, generalizing the argument of Lesshafft & Huerre (2007) to the case of non-
axisymmetric disturbances, show that the action of the baroclinic torque may result in an
increase or in a decrease of the instability growth rate. This baroclinic effect depends on
the magnitudes of Γt and on its relative phase φ with the displacement η: the stabilizing
(resp. destabilizing) effect is maximum when φ is −π/2 (resp. φ = π/2). When φ is close
to 0 or π, the leading-order effect of the torque is neutral, as it then displaces upstream
or downstream the shear-layer undulation. Therefore, we propose to cast the effect of the
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Figure 10. (a) Strouhal number St and (b) absolute wavelength λ0 as a function of the density
ratio at the absolute instability threshold. D/θ = 60, M∞ = 0 and Re∞ = 2000. The curve is
dashed when the transition is led by the axisymmetric shear-layer mode, and solid when it is
led by the helical wake mode.

baroclinic torque in the single baroclinic factor

Υ = sin φ

∣∣∣∣
Γt

η

∣∣∣∣
r=1

, (4.5)

i.e. we consider baroclinic effects for a fixed amplitude of the displacement. Figure 9
shows the calculated value of Υ at the absolute instability threshold of the helical wake
mode. In agreement with the results discussed from figure 7, values of Υ indicate a
destabilizing effect of the baroclinic torque for S > 1 (positive values), and a strong
baroclinic stabilization as S decreases to zero (low negative values).

Figure 10 presents the Strouhal number St and wavelength λ0 as a function of the
density ratio at the absolute instability threshold, i.e. for parameter couples (S, Λ) varying
along the boundary of the absolutely unstable domain shaded in figure 7. At the crossover
ratio S = 0.396, both curves undergo a brutal discontinuity, owing to the change in
the selection of the dominant mode, from the axisymmetric shear-layer mode to the
helical wake mode. When the density ratio increases in the range 0.1 6 S 6 0.396, the
axisymmetric shear-layer mode dominates: the absolute wavelength remains constant, of
order 0.5 wake diameter, and the absolute frequency is high and decreases from 1 to
0.9. When S is increased above 0.396, the helical wake mode dominates: the absolute
wavelength jumps to 4 wake diameters and grows up to 10 diameters. At the same time,
the absolute frequency drops to 0.3 and keeps decreasing to 0.1 at S = 10.

4.2. Effect of the steepness parameter
We investigate the effect of varying the steepness parameter on the absolute instability
threshold of the flow, keeping M∞ = 0.

Figure 11 presents absolute instability boundaries when the steepness parameter varies
within the range 40 6 D/θ 6 160. The crossover points between the axisymmetric shear-
layer mode and the helical wake mode are marked by an open circle. All curves reflect
the same trend as for D/θ = 60 (figure 7). The steepness parameter has essentially no
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and crossover points (◦) in the (S, Λ)-plane for the steepness parameters 40, 80, 120 and 160,
at M∞ = 0 and Re∞ = 2000 (−−−, SLM0; ——–, WM1).
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Figure 12. Locus of the crossover point in the (S, D/θ)-plane, for M∞ = 0 and Re∞ = 2000.
This curve separates domains where the transition to absolute instability is led, respectively, by
the axisymmetric shear-layer mode (domain labeled SLM0) and the helical wake mode (domain
labeled WM1). Open circles correspond to the crossover points for the four values of D/θ plotted
in figure 11 and are labeled here with their corresponding velocity ratio Λ.

effect at high density ratios, where the helical wake mode leads the transition. However,
at low density ratios, increasing the steepness parameter has a stabilizing effect, and the
domain of absolute instability shrinks significantly. The density ratio at the crossover
point monotonically increases with D/θ, from 0.202 at D/θ = 40 to S = 0.673 at
D/θ = 160, whereas at the same time, the rate of counterflow necessary to reach absolute
instability decreases from 48.6% (Λ = −2.89) to 23.4% of the free-stream velocity (Λ =
−1.61). This effect is synthesized in figure 12, which shows the variations of the density
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ratio at the crossover point as a function of D/θ. Values of the critical velocity ratios
Λ below which the instability becomes absolute are reported along the crossover curve
for the four values of D/θ presented in figure 11. The axisymmetric shear-layer mode is
dominant for combinations of parameters located above the curve (region labeled SLM0),
and the helical wake mode is dominant for parameters located below the curve (region
labeled WM1). The convective−absolute transition is essentially led by the helical wake
mode, the axisymmetric shear-layer mode being dominant only at low density ratios and
large steepness parameters. For small values of the steepness parameter D/θ 6 32, the
helical wake mode is dominant for all density ratios 0.1 6 S 6 10 considered in this
study. Note that in the homogeneous case (S = 1), the absolute instability is led by
the helical wake mode for all steepness parameters, as reported in Monkewitz (1988) for
incompressible homogeneous wakes. Figure 13 shows the Strouhal number and wavelength
at the absolute instability threshold for different values of the steepness parameter D/θ.
The curve trends are similar to that presented in figure 10, namely the frequency and
the wavelength respectively increases and decreases when the density ratio increases,
and all curves are discontinuous at the crossover point characterizing the change in the
selection of the dominant mode. For low values of S, the axisymmetric shear-layer mode
is dominant and selects high frequencies increasing with D/θ (St ∼ 0.6 for D/θ = 40 and
1.5 6 St 6 1.9 for D/θ = 120), and short wavelengths decreasing with D/θ (of order 0.9
wake diameter for D/θ = 40 and 0.3 wake diameter for D/θ = 120, these values being
almost independent of S). For higher values of S, the helical wake mode is dominant
and is characterized by low frequencies 0.1 6 St 6 0.4 depending on S, but almost
independent of the steepness parameter, and by large wavelengths varying between 4
and 10 wake diameters, the values obtained for D/θ = 80 and 120 being equal.

The behaviour is different for smaller values of the steepness parameter. We present
in figure 14 the absolute instability threshold in the range D/θ 6 15. For all values of
D/θ in that range and for all density ratios, convective−absolute transition is led by the
helical wake mode, a result consistent with that discussed from figure 12. In opposition to
the behaviour described in figure 11, lowering D/θ has a stabilizing effect for all density
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the steepness parameter, the transition is led by the helical wake mode only (no crossover point
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Figure 15. Absolutely unstable domains (AU) in the (S, D/θ)-plane for three velocity ratios
Λ = −1, −1.2 and −1.5, at M∞ = 0 and Re∞ = 2000. For these values of Λ, the transition is led
by the helical wake mode only (no crossover point in the domain). The shaded area corresponds
to D/θ < 6.5, these values not being allowed for profiles defined by (2.6)− (2.7).

ratios S, and it results in a significant reduction of the absolutely unstable region. In
particular, absolute instability requires counterflowing streams at D/θ = 8, even for
heavy wakes, since the critical velocity ratios are located in this case below Λ = −1 for
all values of S.

The stability properties of the helical wake mode are further investigated by considering
regions of absolute and convective instability in the (S, D/θ)-plane for different values of
Λ. Figure 15 presents the absolute instability boundaries obtained for Λ = −1.5,−1.2, and
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at D/θ = 120 and Re∞ = 2000 (− − −, SLM0; ——–, WM1). (b) Enlargement of the shaded
area of (a). The M∞ = 0 curve has been removed for clarity.

−1, corresponding to counterflow rates of 20%, 9.1% and zero. Note that since velocity
ratios below −1.61 are required for the axisymmetric shear-layer mode to be dominant
(see figure 12), the transition to absolute instability is led by the helical wake mode for all
the values of Λ presented in figure 15. In the absence of counterflow (Λ > −1), the lowest
density ratio at which an absolute instability exists is S = 0.982, for D/θ = 19. For each
value of Λ, the critical density ratio for the helical wake mode increases slightly when
D/θ varies from 30 to 160, a behaviour corresponding to the stabilizing effect discussed
from figure 11. The trend is reversed when D/θ is decreased further below 15, as the
critical density ratio increases significantly, illustrating the stabilizing effect shown in
figure 14. For Λ = −1 (resp. Λ = −1.2), wakes with steepness parameters D/θ . 9 (resp.
D/θ . 7) are found to be convectively unstable for all density ratios (part of the curves
parallel to the S-axis in figure 15). For Λ = −1.5, absolute instability can be reached
by increasing sufficiently the density ratio, even for the smallest steepness parameter
D/θ = 6.5 accessible through profiles (2.6). This means that for Λ = −1.5, the gaussian
wake (associated to D/θ = 6.5 and N = 1) is absolutely unstable for S > 1.14, whereas
for Λ = −1.2 or larger, it is convectively unstable for all values of the density ratios.

4.3. Effect of the free stream Mach number
We consider now the effect of the Mach number on the stability properties of the flow.
Our calculations show that the effect of compressibility is negligible for free-stream Mach
numbers below 0.3, the variations of the critical parameters being less than 10%. Figure
16(a) presents the absolute instability boundaries in the (S, Λ)-plane for D/θ = 120 and
M∞ = 0, 0.5 and 0.8. In the homogeneous case (S = 1), increasing the Mach number to
high subsonic values is seen to weakly stabilize the helical wake mode, in agreement with
the intuitive idea that compressibility slows down the upstream propagation of distur-
bances and therefore favors convective instability. A similar stabilizing effect is observed
on the helical make mode when S & 0.65, and for light wakes when the axisymmetric
shear-layer mode is dominant. This stabilizing effect of compressibility on the shear-layer
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Figure 17. Effect of the Mach number on the normalized baroclinic factor Υn at the absolute
instability threshold, for D/θ = 120 and Re∞ = 2000. (a) Helical wake mode for S = 0.5, valid
only in the non-shaded area where the wake mode leads the absolute transition for this density
ratio. In the shaded area are reported the values of Υn of the mode associated with the wake
mode saddle point, followed by continuity. (b) Helical wake mode for S = 2 (for this value of
S, the transition is led by this mode only). (c) Axisymmetric shear-layer mode for S = 0.2 (for
this value of S, the transition is led by this mode only).

mode is consistent with the analysis of Pavithran & Redekopp (1989) on plane mixing
layers. For S . 0.65, the helical wake mode is destabilized by an increase of the Mach
number (solid lines in figure 16(b) when this mode is dominant), a behaviour in contrast
with that of the axisymmetric jet column modes, for which convective instability is pro-
moted by increasing the Mach number in the high subsonic regime, for all values of S
(Monkewitz & Sohn 1988; Jendoubi & Strykowski 1994). We propose to interpret these
different compressibility effects for light and heavy wakes as the result of a competition
between the classical stabilizing effect due to the decrease in the pressure wave speed,
and baroclinic effects discussed in § 4.1. Results are given in terms of the baroclinic
factor Υ defined by (4.5), normalized by the magnitude of the baroclinic factor of the
incompressible wake

Υn(M∞, S,Λ, D/θ,Re) =
Υ(M∞, S, Λ, D/θ,Re)

|Υ(M∞ = 0, S, Λ, D/θ,Re)| , (4.6)

so that Υn(M∞ = 0) = ±1. Figure 17 shows the evolution of Υn as a function of the
Mach number for wakes of different density ratios. The case of a moderately light wake of
density ratio S = 0.5 is presented in figure 17(a), where the transition is led by the helical
wake mode for M∞ > 0.63. The increase of the negative baroclinic factor corresponds
to a decrease of the stabilizing effect at this density ratio, i.e. to a destabilization. This
suggests that the absolute instability triggered by an increase of the Mach number arises
from a weakening of the stabilizing baroclinic torque. Figure 17(b) shows the case of a
heavy wake of ratio S = 2, where the transition is led by the helical wake mode for
all Mach numbers. The baroclinic torque remains positive and almost constant until
M∞ 6 0.5 and then decreases rapidly, inducing a decrease of the destabilizing effect
at this density ratio, i.e. a stabilization consistent with the effect observed in figure 16.
The case of a very light wake of density ratio S = 0.2 is presented in figure 17(c), the

44 Chapter 2



0

40

80

120

160

0.1 0.4 0.7

-1.61

-1.71

-2.58

D/θ

S

-1.71-1.71

-1.61-1.61

-2.58

SLM0

WM1

1

M∞

00.50.8
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spectively, by the axisymmetric shear-layer mode (SLM0) and the helical wake mode (WM1).
Open circles at D/θ = 120 correspond to the crossover points of figure 16 and are plotted
together with their corresponding velocity ratio Λ.

transition being led by the axisymmetric shear-layer mode for all Mach numbers. The
results are similar to those obtained for the S = 0.5 wake, namely the baroclinic effect is
destabilizing. Therefore, the global stabilizing effect observed in figure 16 for the shear-
layer mode does not result from a variation of the baroclinic torque and should be blamed
on the decrease in the disturbance wave speeds when the Mach number is increased.

As a result of the stabilizing effect of the Mach number on the axisymmetric shear-layer
mode, and of its destabilizing effect on the helical wake mode for light wakes, the crossover
point is displaced in the region of very low density ratios as M∞ is increased (figure
16). The corresponding critical velocity ratio drops to very small values, illustrating the
necessity of strong counterflows to achieve the transition to absolute instability at large
M∞ and small S. For instance, at M∞ = 0, the crossover density ratio is S = 0.625
with a critical counterflow rate of 23.7% of the free-stream velocity (Λ = −1.62). At
M∞ = 0.8, the crossover density ratio is S = 0.215 with a critical counterflow rate of
70.1% (Λ = −5.70).

This tendency is visible in figure 18, which generalizes the results presented in figure 12
to Mach numbers M∞ = 0.5 and 0.8. Values of the velocity ratio at the crossover point
are reported for the same values of D/θ as in figure 12. Consistently with the results
presented in figure 16, the helical wake mode (m = 1) is promoted as the dominant mode
for high subsonic Mach numbers, this effect being more pronounced for large values of
D/θ. For small values of D/θ, the helical wake mode leads the transition to absolute
instability at all density ratios, a trend already documented for M∞ = 0. Figure 19
presents the effect of the Mach number on the critical Strouhal number St and wavelength
λ0 at the absolute instability threshold for different values of the Mach number, at
D/θ = 120. The frequency of both modes are lowered at high subsonic Mach numbers,
whereas the wavelength increases slightly. For the axisymmetric shear-layer mode, we
hence find values of approximately St ∼ 1.8 for M∞ = 0 and ∼ 1.5 for M∞ = 0.8, with
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Figure 19. (a) Strouhal number St and (b) absolute wavelength λ0 at the absolute instability
threshold for Mach numbers M∞ = 0, 0.5 and 0.8, i.e. along the curves Λ(S) plotted in figure
16. D/θ = 120 and Re∞ = 2000 (−−−, SLM0; ——–, WM1).

wavelengths of order 0.3 wake diameter. For the helical wake mode, we find Strouhal
numbers 0.1 6 St 6 0.3, with wavelengths varying between 4 and 10 wake diameters.

The properties of the helical wake mode are finally investigated by considering the
combined effect of M∞ and S in the particular configuration of zero centerline velocity
(Λ = −1). The absolute instability boundaries in the (S, M∞)-plane are presented in
figure 20 for different values of D/θ. Since the axisymmetric shear-layer mode requires
a counterflow to become absolutely unstable, the helical wake mode leads the transition
for all the combinations of parameters examined here. For all values of the steepness
parameter, the range of absolutely unstable density ratios is significantly reduced by
increasing the Mach number. For instance, in the range of density ratios under consider-
ation, the lowest steepness parameter at which an absolute instability exists is D/θ = 12
for M∞ = 0.9, and D/θ = 9 for M∞ = 0. Note that the region of absolute instability,
quite limited for D/θ = 10, extends dramatically when D/θ is increased to 20, and then
shrinks again when D/θ is further increased from 20 to 160. This behaviour is associated
to the non-trivial effect of D/θ described for M∞ = 0 in § 4.2, both destabilizing and
stabilizing effects being more pronounced as the Mach number increases. For instance, in
the range of density ratios under investigation, no absolute instability occurs for Mach
numbers above 0.615 at D/θ = 10, and above 0.773 at D/θ = 160.

5. Conclusion
The convective−absolute transition in axisymmetric wakes has been investigated for

a fixed Reynolds number Re∞ = 2000, in a parameter space including the velocity and
density ratios, the steepness parameter and the free-stream Mach number. Depending
on the parameter settings, i.e. to the flow regime, the transition to absolute instability
is led either by a large-scale helical wake mode of azimuthal wavenumber m = 1, or by
a small-scale axisymmetric shear-layer mode (m = 0). An increase of the density ratio
or an increase of the velocity ratio promotes absolute instability, no matter which mode
leads the transition. Varying the Mach number has a more complex effect. For very light
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Λ = −1 and Re∞ = 2000. For this value of Λ, the transition is led by the helical wake mode
only (no crossover point in the domain).

or heavy wakes, increasing the Mach number promotes convective instability, but for
intermediate values of the density ratio, an increase of the Mach number promotes an
absolute instability of the helical wake mode, a behaviour strikingly different from that
documented for other shear flows. We show that this behaviour may be attributed to the
effect of the baroclinic torque. The axisymmetric shear-layer mode is dominant only for
low density ratios and high rates of counterflow on the wake axis (large negative velocity
ratios). In all other cases, and in particular for small rates of coflow or counterflow more
realistic of a real afterbody wake, the transition to absolute instability is led by the helical
wake mode. The frequency of the helical wake mode at the absolute instability threshold
is weakly dependent on the parameters, and is characterized by Strouhal numbers varying
in the range 0.1 6 St 6 0.3. These results give credence to the interpretation of the large-
scale oscillation observed in the experimental studies of flows past spheres, disks and more
complex axisymmetric afterbodies in terms of a non-linear global mode triggered by a
local transition to absolute instability. In the whole range of parameters explored here, the
azimuthal wavenumber and frequency selection is in qualitative agreement with such a
mode made of a front located at the upstream boundary of the absolutely unstable region
(separated or not from the body), and followed by a saturated wavetrain (Couairon &
Chomaz 1999; Pier 2002). In that case, the front region is the wave-maker and imposes
its azimuthal wavenumber and frequency to the entire flow.

Appendix A. Linearized equations of motion
The set of equations is presented for the eigenfunction ( ρ′, u′, v′, w′, t′ ).

(kWb − ω)ρ′ +

»
drρb + ρb

„
dr +

1

r

«–
(−iu′) + m

ρb

r
v′ + kρbw

′ = 0 (A1a)

− 1

γM2
(drTb + Tbdr) ρ′ + (kWb − ω)ρb(−iu′)− 1

γM2
(drρb + ρbdr) t′ =
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where dr and drr denote the r derivatives of first and second order. The pressure per-
turbation p′ is built from ρ′ and t′ by the linearized ideal gas relation

p′ = Tρ′ + ρt′ . (A 2)

Appendix B. Baroclinic effect and forced equations of motion
For clarity, we detail here the formalism only in the case of the compressible inviscid

problem. However, the method is identical for the viscous equations, although addi-
tional non-homogeneous terms arise due to the presence of dissipation. Note that non-
homogenous terms exist in the continuity and energy equations, but our calculations
strongly suggest that their effect is negligible compared to that of the baroclinic torque.

In the presence of volumic source terms Sr, Sθ and Sz, the momentum equations can
be written as

∂tu
′ = −Wb∂zu

′ − 1
γM2∞

1
ρb

∂rp
′ + Sr (B 1a)

∂tv
′ = −Wb∂zv

′ − 1
γM2∞

1
ρb

∂θp
′ + Sθ (B 1b)

∂tw
′ = −Wb∂zw

′ − 1
γM2∞

1
ρb

∂zp
′ + Sz . (B 1c)

The vorticity perturbation Ω = ∇× u evolves as

∂tΩ′r = −Wb

(
1
r
∂2

θzw
′ − ∂2

zzv
′
)

+
1
r
∂θSz − ∂zSθ (B 2a)

∂tΩ′θ = −Wb

(
∂2
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′
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where we recognize the expression of the baroclinic torque Γ = ∇ρb ×∇p′/ρ2
b .

In order to eliminate the effect of the baroclinic torque, the source terms are selected
so as to satisfy

1
r
∂θSz − ∂zSθ = 0 (B 3a)

∂zSr − ∂rSz =
1

γM2∞

∂rρb

ρ2
b

∂zp
′ = Γθ (B 3b)

∂rSθ −
1
r
∂θSr = − 1

γM2∞

∂rρb

ρ2
b

1
r
∂θp

′ = Γz . (B 3c)

All source terms are considered as additional variables of the generalized eigenvalue
problem. The modified dispersion relation is therefore constructed from the unforced
continuity and energy equations, the forced momentum equations (B 1) and the source
equations (B 3).
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Institut de Mécanique des Fluides de Lille, France.
Fuchs, H.V., Mercker, E. & Michel, U. 1979 Large-scale coherent structures in the wake

of axisymmetric bodies. J. Fluid Mech. 93, 185–207.
Gallaire, F. & Chomaz, J.-M. 2003 Mode selection in swirling jet experiments: a linear

stability analysis. J. Fluid Mech. 494, 223–253.
Gallaire, F., Ruith, M., Meiburg, E., Chomaz, J.-M. & Huerre, P. 2006 Spiral vortex

breakdown as a global mode. J. Fluid Mech. 549, 71–80.
Healey, J.J. 2005 Long-wave theory for a new convective instability with exponential growth

normal to the wall. Phil. Trans. R. Soc. Lond. A 363, 1119–1130.
Healey, J.J. 2006 A new convective instability of the rotating-disk boundary layer with growth

normal to the disk. J. Fluid Mech. 560, 279–310.

Absolute instability in compressible axisymmetric wakes 49



Huerre, P. & Monkewitz, P.A. 1985 Absolute and convective instabilies in free shear layers.
J. Fluid Mech. 159, 151–168.

Huerre, P. & Rossi, M. 1998 Hydrodynamics and Nonlinear Instabilities , chap. Hydrodynamic
instabilities in open flows, pp. 81–294. Cambridge University Press, edited by C. Godrèche
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Experiments and Large Eddy numerical Simulation (LES) of a fully turbulent afterbody flow in
the high subsonic regime, typical of that developing in the wake of a space launcher, exhibit a large-
scale low frequency oscillation of the wake. In the present paper, we investigate to what extent the
existence of the synchronized oscillations can be predicted, at the high Reynolds numbers prevailing
in this class of flows, by a local stability analysis of the mean flow, as measured in experiments
or computed in numerical simulations. This analysis shows the presence of a pocket of absolute
instability in the near wake, slightly detached from the body. The global frequency is strikingly
well predicted by the absolute frequency at the upstream station of marginal absolute instability,
this frequency selection being in agreement with the theory of nonlinear global modes. This result
strongly suggests that a so-called elephant mode is responsible for the intense oscillations observed
in the lee of space launcher configurations.

I. INTRODUCTION

Experimental and numerical studies have
shown that wake flows past axisymmetric bodies,
such as spheres1, disks2,3 or axisymmetric blunt
based bodies modeling an ideal rocket shape4,
are dominated by an instability of helical modes
of azimuthal wavenumbers m = ±1, resulting in
the low frequency shedding of large-scale coher-
ent structures. The use of local stability to ana-
lyze such self-sustained synchronized oscillations
in free shear flows5 at low Reynolds numbers sug-
gests that they are linked to the existence of a
region of local absolute instability in the near
wake.6,7

Recent studies have considered the fully non-
linear regime associated with the existence of a
pocket of absolute instability when the stream-
wise variations of the base flow are slow enough
to apply the WKBJ theory of slowly developing
flows. Chomaz8, Couairon and Chomaz9, Tobias
et al.10, Pier et al.11, have analyzed the solu-
tions of model equations in semi-infinite and in-
finite domains and discussed the connection be-
tween nonlinear global modes and front dynam-
ics that characterize the propagation of a sat-
urated instability wave into a quiescent region
(see Chomaz12 for a review). If absolute insta-
bility arises beyond a specific downstream posi-
tion zca, the nonlinear global mode, the so-called
elephant mode, consists of a front pinned at the
position zca. The front acts as the wavemaker

and separates an upstream region where pertur-
bations are evanescent, from a finite-amplitude
wavetrain downstream. The global frequency is
then given by the linear absolute frequency at the
transition station zca, i.e. ωG = ω0

r(zca), and the
spatial growth rate at the front location is given
by the absolute wavenumber −kG

i = −k0
i (zca).

In the case of an absolutely unstable inlet con-
dition, the same frequency selection criterion re-
mains valid only in the vicinity of the global in-
stability threshold, whereas above the threshold,
the front deforms to accommodate the inlet con-
dition and the global frequency shifts from the
absolute value.

Many of the results pertaining to the model
equations have been shown to hold also in
real flow situations, despite the fact that the
slow streamwise variation assumption is not re-
spected. In the case of the wake developing
past a circular cylinder, the von Kàrmàn vor-
tex street presents a front located at zca and its
frequency, as observed in direct numerical simu-
lations, matches the absolute frequency ω0

r(zca)
within 10% accuracy over the range of Reynolds
numbers 100 ≤ Re ≤ 180.13 Since then, several
successful analyses have been been carried out in
the context of swirling jets14, hot round jets15,
spiral vortex breakdown16, or inter-disk flow17,
but all these cases pertain to moderate Reynolds
numbers.

Recently, the stability analysis of compressible
non-homogeneous model wakes18 has shown
that the transition to absolute instability is led
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essentially by a low frequency, large-scale mode
of azimuthal wavenumber m = 1. These results
have given credit to the interpretation of the
large-scale oscillation observed in the wake of ax-
isymmetric bodies in terms of a nonlinear global
mode triggered by a local transition to absolute
instability of this helical wake mode, since its
azimuthal wavenumber and absolute frequency
match the observations. But agreement is only
qualitative and can be fortuitous, since at the
transition point, the model profiles are far from
representing the instantaneous or mean velocity
profiles. Therefore, the aim of the present study
is to analyze the stability of realistic velocity
profiles, and so to investigate to what extent the
dynamics of an afterbody flow, computed via a
high resolution Large Eddy Simulation (LES),
in the fully turbulent and compressible regimes,
may be interpreted using the local stability
theory. In the context of such ‘industrial’
applications, the steady axisymmetric base flow,
i.e. the flow that would be naturally observed if
all perturbations were damped, is not accessible
and Arclength continuation associated with
Newton methods19, widely used at low Reynolds
numbers to compute the base flow beyond the
threshold of instability, cannot be pursued to
such large Reynolds numbers. Only the mean
flow, obtained by time and azimuth average,
can be used to assess the stability properties,
keeping in mind that this mean flow is not a so-
lution of the steady axisymmetric Navier-Stokes
equations.

II. UNSTEADY DYNAMICS AND MEAN
FLOW

The afterbody retained for this numerical
study is taken from experiments carried out in
ONERA’s S3Ch wind tunnel20, and was origi-
nally designed to model the first stage of a space
launcher vehicle. The general configuration,
shown in Fig. 1(a), is a cylindrical body of di-
ameter D = 100 mm. The flow is subsonic, tur-
bulent, of free-stream velocity W∞ = 235 m/s,
the total pressure and temperature being respec-
tively of pi = 1.01 × 105 Pa and Ti = 310 K. In
the following, the diameter D and the free-stream
quantities are used as reference scales, leading to
a Mach number of 0.7 and a Reynolds number
of 1.2 × 106. The wind tunnel configuration is
detailed in the upper half of Fig. 1(b): a tur-
bulent boundary-layer develops on an upstream
forebody of length 2.2 m. Its nondimensional
thickness was measured to be δ = 0.2 at the
nondimensional upstream position z = −2.45,
identified by the red circle in Fig. 1(b). Fig. 2(a)

FIG. 1: Schematic of the axisymmetric afterbody
model. (a) Three-dimensional view: the orange cir-
cle is located 35 mm away from the revolution axis
and corresponds to the experimental power spectral
density (PSD) shown in Fig. 2(a). The purple circle
is located 14 mm away from the revolution axis and
corresponds to the numerical PSD shown in Fig. 2(b).
(b) Side view: the upper half shows the experimental
setup with the upstream forebody of length 2.2 m.
The thickness of the turbulent boundary-layer was
measured 245 mm upstream from the base (red cir-
cle). The lower half shows the numerical modelisa-
tion used for the LES simulation.

shows the power spectral density of wall-pressure
fluctuations G, measured experimentally 35 mm
away from the axis (orange circle in Fig. 1(a)),
plotted as St.G(St) in log/linear axes, where St
is the Strouhal number defined as St = fD/W∞,
so that the energy contained in a peak is given
by the area below that peak. The spectrum is
the average of 64 overlapping subtime intervals,
the nondimensional frequency resolution being
of 0.0085. In this fully turbulent regime, small-
scales are energetic and Fig. 2(a) shows a broad
high frequency energy spectrum. We note the
well defined energetic peak at St = 0.20, corre-
sponding to a low frequency oscillation. Similar
results have also been reported in Ref. [21].

A Large Eddy Simulation (LES) of this config-
uration has been carried out using the FLU3M
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FIG. 2: Power spectral density (PSD) of the wall
pressure fluctuations at the base. (a) Experimental
measurements. (b) LES simulation.

code developed by ONERA, which solves the
governing compressible Navier-Stokes equations
on multiblock structured grids. Details, includ-
ing time and space discretization and turbulence
modelling, can be found in Ref. [22], where the
agreement between numerical results and experi-
mental data is assessed, validating the use of the
LES solver. The retained configuration is shown
in the upper half of Fig. 1: an inlet condition
directly injects at the nondimensional upstream
position z = −2.45 a turbulent boundary-layer
around the cylinder shaped body, whose nondi-
mensional thickness δ = 0.2 corresponds to that
measured in the experiments. Turbulence is
forced by superimposing random fluctuations to
this leading-order inlet condition. It was found
that this inflow condition has little influence on
the numerical results. Fig. 2(b) shows the power
spectral density of the wall pressure fluctuations
obtained from the numerical simulation, 14 mm
away from the axis (purple circle in Fig. 1(a)).
The total duration of the numerical simulation
is about 20 ms, corresponding to ∼ 10 low
frequency cycles. The spectrum presented in
Fig. 2 is obtained by averaging 15 overlapping
samples, the frequency resolution being of 0.017.
Although the numerical simulation gives access
only to short time series, we obtain a good
agreement between both spectra, in particular,
we retrieve a well defined energetic peak at
St = 0.20, corresponding to the experimentally
observed large-scale oscillation. Note that the
high frequencies are more energetic in the LES
calculation, this being probably due to the small
discrepancy in the location of the experimental
and numerical measurements.

In the following, we use cylindrical coordi-
nates (r, θ, z) with origin taken at the center
of the base. ρ is the density, p the pressure,
T the temperature, and U = (U, V,W )T the
three-dimensional velocity field with U , V and
W its radial, azimuthal and streamwise compo-
nents. The fluctuating non-axisymmetric three-
dimensional field has been averaged in time and
azimuth on the fly, during the calculation. The
resulting mean flow Q = (ρ, U, V = 0, W , T , p)T

is therefore steady and axisymmetric. Fig. 3(a)
shows the mean axial velocity component: the
classical topology of wake flows is retrieved, with
a recirculation region of length ∼ 1.33 develop-
ing in the wake of the afterbody, and negative
values of axial velocity reaching approximately
30% of the freestream velocity. Fig. 3(b) de-

FIG. 3: LES mean flow obtained by time and az-
imuth average. (a) Axial velocity field. The dashed
line stands for the edge of the recirculating bub-
ble, marked by the streamline linking the separation
point to the stagnation point on the axis. The ax-
ial velocity profiles W (r) are superimposed for three
streamwise locations (z = 1, 3 and 5). (b) Stream-
wise evolution of the velocity ratio Λ(z) and of the
steepness parameter D/θ(z).

picts the streamwise evolution of the velocity ra-
tio Λ(z) = (Wc(z)−W∞)/(Wc(z) + W∞) and of
the steepness parameter D/θ(z), where θ is the
momentum thickness defined as

θ(z) =
∫ ∞

0

W (r, z)−Wc(z)
W∞ −Wc(z)

× W∞ −W (r, z)
W∞ −Wc(z)

dr

(1)
where subscripts c and ∞ refer to the center-
line and to the free-stream quantities, respec-
tively. The velocity ratio gets close to Λ = −2
in the recirculating bubble, whereas the steep-
ness parameter decays rapidly in the near-wake
and more slowly in the far-wake, indicating that
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FIG. 4: (a) Instantaneous spatial structure of the
m = 1 axial velocity coefficient Re(W1) extracted
from the LES calculations. (b) Close-up on the near
wake area depicted on Fig. (a)

the shear-layer thickens progressively as the flow
develops. Note that the density ratio defined as
S(z) = ρc(z)/ρ∞ departs little from unity (not
shown here).

An instantaneous velocity field U(r, θ, z) is de-
composed into the azimuthal Fourier series

U(r, θ, z) =
∞∑

m=−∞
Um(r, z)eimθ . (2)

The real part of the axial velocity coefficient
Re(W1) of the m = 1 component is presented
in Fig. 4(a). The large-scale structure is visible
downstream as an alternation of blue and red
hues. Though, it is strongly modulated by a sea
of small-scale turbulence close to the body, where
the colored strips are blurred, as seen in Fig. 4(b).

III. LOCAL STABILITY

The cross-stream and streamwise directions
are both inhomogeneous directions for the mean
flow, i.e. Q(r, z). At this point, we make the
classical weakly nonparallel approximation, and
consider the stability of the parallel flow, gen-
erated by neglecting the cross-stream velocity
and extending to infinity the streamwise veloc-
ity profiles.23 Disturbances q′ = (ρ′, u′, p′, t′)T

to the parallel flow are chosen as normal modes
q′(r)ei(kz+mθ−ωt) characterized by the complex
axial wavenumber k = kr + iki, the complex pul-
sation ω = ωr + iωi, ωi and −ki being respec-
tively the temporal and spatial growth rates, and
m the azimuthal wavenumber. q′ is the solu-
tion of the classical generalized eigenvalue prob-
lem for either k or ω. This eigenvalue problem

is solved using a Chebyshev collocation method,
as discussed in Ref. [18]. The local mean flow
velocity, temperature and density profiles, mea-
sured on the mesh of the LES simulation, are
first interpolated on the collocation points of the
stability solver using cubic spline interpolation.
Complex pairs (k0, ω0) corresponding to modes
of zero group velocity (i.e. ∂ω/∂k = 0) are then
computed by the iterative technique described in
Ref. [18]. For all streamwise positions, we find

FIG. 5: Streamwise evolution of the Strouhal num-
ber St and of the absolute growth rate ω0

i obtained
from the LES profiles. The solid horizontal lines rep-
resents the threshold of marginal absolute instabil-
ity ω0

i = 0. The dashed horizontal line marks the
global frequency of the observed large-scale oscilla-
tions St = 0.20. The shaded areas correspond to
convectively unstable domains. The dash-dotted line
indicates the locus of the saddle point predicted by
the linear global mode theory, that turns out to be
nearly real in the present case.

FIG. 6: Streamwise evolution of the absolute wave-
length λ0 and of the absolute spatial growth rate
−k0

i . The shaded areas correspond to convectively
unstable domains.

that the transition to absolute instability is led
by a large-scale m = 1 mode. This is consistent
with the results presented in Ref. [18], in which
the absolute instability has been shown to be led
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by the large-scale m = 1 wake mode for veloc-
ity ratios similar to that of the present LES ve-
locity profiles. The streamwise variations of the
Strouhal number based on the absolute frequency
St = ω0

r/2π and that of the absolute temporal
growth rate ω0

i are presented in Fig. 5. The solid
and dashed horizontal lines stand for the thresh-
old of marginal absolute instability ω0

i = 0 and
for the global frequency of the observed large-
scale oscillations St = 0.20, respectively. The
variations of the absolute wavelength λ0 = 2π/k0

r

and of the absolute spatial growth rate −k0
i are

shown in Fig. 6. The mean flow is convectively
unstable in an upstream region extending from
the base to zca = 0.23. Owing to the high rates
of reverse flow at the centerline, absolute instabil-
ity prevails in the domain zca < z < zac = 1.14.
Downstream of zac, the thickening of the shear-
layer and the decrease in magnitude of the coun-
terflow induce a decrease of ω0

i to negative val-
ues, and thus the mean flow is convectively un-
stable. The observed global frequency St = 0.20
is predicted with excellent accuracy, by the ab-
solute frequency ω0

r(zca) = 1.25 corresponding
to the same frequency St = 0.20 than that evi-
denced in the experimental and numerical spec-
tra. The absolute wavelength and spatial growth
rate at the transition station are λ0(zca) = 5.21
and k0

i (zca) = −2.41 respectively. The absolute
wavelength λ0(zca) is shown in Fig. 4(a), and
compares favorably with the spatial distribution
of the large-scale m = 1 component. A more pre-
cise measure of the spatial wavelength associated
to the St = 0.2 mode is presently not accessible
since it would require the storage and processing
of a time series of three-dimensional flow fields,
that would be far too glutton with the available
computer resources. For the same reason, the
spatial envelop of the St = 0.2 oscillation cannot
be retrieved from the numerics and comparison
of the front location and slope as in the stud-
ies of Gallaire et al.16 or Lesshafft et al.15 is not
possible.

IV. DISCUSSION

This study shows the existence of a pocket of
absolute instability of the mean flow in the near
wake of the afterbody, detached from the base.
Although the large-scale contribution is partially
overwhelmed by the small-scale turbulence at the
high Reynolds number under consideration, the
global frequency is well predicted by the absolute
frequency at the upstream station of marginal
absolute instability, which is located at the ori-
gin of the growing part of the m = 1 fluctuations.
These results agree with the theory of nonlinear
global modes, and make probable that a so-called

elephant mode develops in the wake of the after-
body and is responsible for the large-scale syn-
chronized oscillations.

In contrast, previous studies on the cylinder
wake13,23,24 have shown that up to the large
Reynolds number Re = 4600, the global fre-
quency ωG is well predicted by the linear sta-
bility theory of slowly varying flows, also applied
to the mean flow. In that case, the frequency ωG

is given by the saddle-point condition

ωG = ω0(zs) ,
∂ω0

∂z
(zs) = 0. (3)

Since derivatives of ω0(z) are known only along
the real z-axis, the location of the saddle point
zs is found through the use of the Cauchy-
Riemann equations and analytic continuation of
ω0(z) in the complex z-plane.25 Applying this
linear global mode prediction to the present case,
we obtain a saddle point at zs = 0.735 − 0.022i,
nearly on the real z axis, close to the position of
the maximum absolute growth rate (see Fig. 5),
associated with a Strouhal number St = 0.15,
different from that found in the experimental and
numerical spectra. We interpret this result in the
following manner: in the weakly nonlinear ap-
proximation, Sipp & Lebedev26 have shown that
in the case of the cylinder wake, resonance with
the harmonics is weak, i.e. the leading-order non-
linear effects are restricted to base flow modifi-
cations. In this particular case, the mean flow
is then approximately marginally stable and the
global frequency predicted by the linear stabil-
ity analysis of the mean flow approximates well
the observed frequency, which explains the suc-
cess of the saddle point condition (3). Though,
this is no more true if resonance occurs with the
harmonics of the global mode. In that far more
generic case, the linear stability analysis of the
mean flow fails, i.e. the mean flow is no more
marginally stable, and its frequency differs from
the observed one. Fig. 5 shows that the sad-
dle point zs is associated with a large growth
rate ω0

i (zs) = 0.19. This result indicates that
the mean flow is presently strongly linearly un-
stable, and suggests that this configuration ex-
hibits strong resonance with the harmonics of the
global mode. The elephant mode theory, which
predicts with amazing precision the observed fre-
quency, does not suffer similar restrictions, since
harmonics forcing is at work in the saturated
wave region downstream of the front, so that de-
parture from criticality can be arbitrary. It has
been derived assuming only the flow to be weakly
nonparallel, in order to use the WKBJ approxi-
mation.

The validity of this slowly varying approxima-
tion may be questioned, owing to the streamwise
development of the mean flow. This can be done
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FIG. 7: Streamwise evolution of the parameter η
measuring the nonparallelism of the spatially devel-
oping LES mean flow.

by considering the parameter η measuring the
nonparallism of the mean flow, defined as the ra-
tio

η =
1

kmax

1
θ

dθ

dz
, (4)

where kmax is the wavenumber of the most am-
plified temporal instability mode and θ is the mo-
mentum thickness of the velocity profile W (r, z),
so that the ratio θ−1dθ/dz characterizes the
streamwise variations of the mean flow.23 The
streamwise evolution of η is shown in Fig. 7. Al-
though η remains smaller than 5% for x > 2.5,
we find that the nonparallel effects are quite im-
portant close to the stagnation points. As al-
ready observed in other configurations15,17, the
elephant mode theory, which is solely an asymp-
totic theory in η, gives strikingly precise predic-
tions of the frequency and spatial distribution of
the nonlinear fluctuations, even in complex situa-
tions where high Reynolds numbers prevail, when
it is outside its validity domain. It represents a
guideline to understand the physical origin and
eventually propose control strategies of the large-
scale synchronized oscillations developing in the
wake of realistic afterbodies.

Such a control may be achieved through base
flow modifications, for instance base bleed.4,27
In this context, the implementation of optimiza-
tion procedures would be considerably eased if
predictions of the absolute frequency as a func-
tion of the streamwise position z could be ob-
tained using the known stability properties of
analytical profiles. Such an analysis is carried
out in Appendix A, using the model wake pro-
files introduced by Monkewitz & Sohn.28 We find
that the associated predicted Strouhal number
S̃t = 0.22 overestimates only by 10 % that issu-
ing from the experimental and numerical spectra.
In this context of flow control, the use of fitted
profiles hence provides with decent estimates of
the global frequency, that may be refined when
needed by carrying out the stability analysis on
the actual profiles.

APPENDIX A: FITTING OR NOT
FITTING, ABOUT THE INFLUENCE OF

THE MEAN FLOW PROFILES

Many experimental or numerical identification
of absolutely unstable regions rely on the sta-
bility properties of analytical model profiles on
which the actual mean flow measurements are
systematically fitted.14,24 The aim of the present
appendix is to investigate, in the present case,
to what extent such a fitting procedure alters
the results of the stability analysis. For clar-
ity, all results pertaining to the fitted profiles are
noted with a ˜ symbol. We have used the two-
parameter (Λ̃, Ñ) model velocity profiles taken
from Monkewitz & Sohn28, where the axial ve-
locity profile reads

W̃ (r, z) = 1 +
2Λ̃

1− Λ̃
F (r, z), (A1)

with

F (r, z) =
1

(2r2 − 1)Ñ(z)
. (A2)

Since we consider here compressible flows, the
temperature field is deduced from the fitted
velocity profile through the Crocco-Busemann
relation29 and from the density ratio S = ρc/ρ∞
computed at each streamwise station from the
LES calculations. Finally, the density is obtained
from the perfect gas state equation (see Ref. 18
for details).

For each streamwise position, the fitting pa-
rameters Λ̃(z) and Ñ(z) have been determined
using a standard least square method. The mo-
mentum thickness θ̃ of the fitted profile implicitly
depends on Ñ(z) as

θ̃(z) =
∫ ∞

0

F (r, z)(1− F (r, z))dr. (A3)

Fig. 8 depicts the streamwise evolution of Λ̃(z)
and of the steepness parameter D/θ̃(z) (dashed
lines). The values of the LES parameters Λ(z)
and D/θ(z) introduced in section II are also
reported for comparison (solid lines). We ob-
serve a good agreement between the real and
fitted velocity ratios, although the fitting pro-
cedure slightly underestimates the magnitude of
the counterflow. However, the evolution of the
shear parameter shows discrepancies, as the fit-
ted momentum thickness of the developing wake
systematically underestimates that of the real
profiles. Confirmation comes from Fig. 9 that
shows a comparison between the LES profile and
the corresponding fitted profile at the position
z = 0.05, within the recirculating bubble. We
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FIG. 8: Streamwise evolution of the fitted parameter

Λ̃ and of the fitted steepness parameters D/θ̃ (dashed
lines). The values already shown in Fig. 3(b) are
reported as solid lines for comparison.

FIG. 9: Comparison between the LES (solid line)
and the fitted (dashed line) velocity profiles at the
streamwise station z = 0.05.

notice that the fitted profiles account neither for
the small velocity overshoot existing just outside
of the shear-layer region, nor for the deformation
of the velocity field close to the axis.
Fig. 10 shows the streamwise variations of the

Strouhal number based on the absolute frequency
S̃t = ω̃0

r/2π and that of the absolute growth
rate ω̃0

i obtained using the fitted profiles (dashed
lines). The solid lines refer to the Strouhal num-
ber St and to the absolute growth rate ω0

i shown
in Fig. 5 for the exact LES profiles. The fre-
quencies obtained from the fitted profiles match
reasonably well with that obtained from the LES
profiles. We find that absolute instability pre-
vails in the domain z̃ca = 0.01 < z < z̃ac =
1.34, the amplification rates ω̃0

i being signifi-
cantly overestimated in the whole absolute do-
main. In the range of parameters (Λ, D/θ, S) in-
volved here, this can be explained by the fact

that a lower steepness parameter results in a
lower absolute growth rate ω0

i .18 As a result, us-
ing fitted profiles, the position of the upstream
transition station, that predicts the location of
the front in the elephant mode theory, is strongly
shifted downstream. The global frequency se-
lected at z̃ca, ω̃0

r(z̃ca) = 1.39, corresponds to a
Strouhal number of S̃t = 0.22 that slightly over-
estimates the global frequency obtained for the
real profiles by 10 %. Thus, the results obtained
by fitting the actual LES profiles by model ana-
lytical profiles (A1)− (A2) agree reasonably well
with the experimental observations and with the
results issuing from the stability analysis of the
exact LES profiles. In this specific case, this re-
sult therefore demonstrates the validity of the use
of model profiles to estimate the global frequency
with limited discrepancy.

FIG. 10: Streamwise evolution of the Strouhal num-
ber S̃t and of the absolute growth rate ω̃0

i obtained
using fitted velocity profiles (dashed lines). The
shaded areas correspond to convectively unstable do-
mains. The solid lines refer to the results (St, ω0

i )
presented in Fig. 5 for the real profiles. The solid
horizontal lines represents the threshold of marginal
absolute instability ω0

i = 0. The dashed horizon-
tal line marks the global frequency of the observed
large-scale oscillations St = 0.20.
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INTERLUDE: A TALE OF WHITE RABBITS
AND SADDLE POINTS

En 2007, j’ai soumis au Journal of Fluid Mechanics un prototype de l’article qui con-
stitue l’essentiel de ce second chapitre, avec sa référence au roman de Lewis Carroll,
Through the Looking-Glass, and What Alice Found There, qui fait suite à Alice’s Adventures
in Wonderland . En retour, l’un des rapporteurs s’est inspiré de son Jabberwocky pour
écrire ce poème.

Twas brillig in the complex plane
Of rolling hyperbolic hills,
With path of integration lain
Through points where group speed stills.

Beware the Saddlewok my son!
Which lurks at negative kay-r.
Its growth rate, hardly e’er outdone,
Runs perpendicular.

So take numeric tool in hand
And bend the branch cut from the axe.
Reveal that tulgey curious land
Where navely Briggs-Bers cracks.

Thou’ll findst the Saddlewok spits wrath:
My mode blows up. Thou can’st touch me!
Yet integrate ’long bended path,
I’ll wage thou’d disagree.

The Saddlewok, you’d be surprised,
Can be most easily explained:
Its growing mode is localised;
The wavepacket contained.

Twas brillig in the complex plane
Of rolling hyperbolic hills,
With path of integration lain
Through points where group speed stills.





CHAPTER
THREE

GLOBAL MODES IN THE WAKE OF
AXISYMMETRIC BODIES

This chapter is devoted to the linear dynamics of incompressible wakes, as predicted
by a global stability analysis of the axisymmetric state. Two model geometries of
blunt and bluff bodies are considered, namely the disk and the sphere. The global
modes of largest growth rates are first identified, and results are compared to that
existing in the literature. The receptivity of each mode to particular initial conditions
or forcing is also discussed, which allows to identify the flow regions that are of
particular interest in the perspective of control. This study takes the form of a paper
submitted to the Journal of Fluids and Structures.

keywords: incompressible flows, global modes, adjoint-methods, nonnormality, re-
ceptivity.
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Abstract

We consider the stability of the steady, axisymmetric wake of a disk and a sphere as
a function of the Reynolds number. Both the direct and adjoint eigenvalue problems are
solved. The threshold Reynolds numbers and characteristics of the destabilizing modes
agree with the study of Natarajan & Acrivos [17]: for both configurations, the first desta-
bilization occurs for a stationary mode of azimuthal wavenumber m = 1, and the second
destabilization for an oscillating mode of same azimuthal wavenumber. For both geome-
tries, the adjoint mode computation allows us to determine the receptivity of each mode
to particular initial conditions or forcing and to define control strategies. We show that
the adjoint global mode reaches a maximum amplitude close to the separation point for
both the disk and the sphere. In the case of the sphere, the optimal forcing corresponds
to a displacement of the separation point along the sphere surface with no tilt of the
separation line. However, in the case of the disk, its blunt shape does not allow such
displacement and the optimal forcing corresponds to a tilt of the separation line with no
displacement of the separation point. As a result, the magnitudes of the adjoint global
modes are larger for the sphere than for the disk, showing that the wake of the sphere
is more receptive to forcing than the disk. In the case of active control at the boundary
through blowing and suction at the body wall, the actuator should be placed close to the
separation point, where the magnitude of adjoint pressure reaches its maximum in the
four cases. In the case of passive control, we show that the region of the wake that is
most sensitive to local modifications of the linearized Navier-Stokes operator, including
base flow alterations, (Giannetti & Luchini [13]) is limited to the recirculating bubble for
both geometries and both instability modes. This region may therefore be identified as
the intrinsical wavemaker.

c© 2009 Elsevier Ltd. All rights reserved.

Keywords: axisymmetric wakes; instability; global mode; adjoint; nonnormality; receptivity; control
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1. Introduction

A large body of works has been devoted to the wake of axisymmetric bodies in the last
decades. For different objects, such as spheres, disks or bullet-shaped bodies [1, 4, 12, 21],
the dynamics bears similarities: at low Reynolds numbers, the steady separated flow field
is axisymmetric and consists of a toroidal recirculation eddy past the body. Increasing the
Reynolds number, a stationary bifurcation first occurs and breaks the axisymmetry, the
entire wake being shifted in one direction. The series of bifurcation that follows is complex
and body’s shape dependent [2], but eventually, for large enough Reynolds numbers, the
flow is dominated by helical modes of azimuthal wavenumbers m = ±1, resulting in the low
frequency shedding of large-scale coherent structures. These vortex shedding phenomena
are characterized by low Strouhal numbers based on the body diameter of order 0.1−0.2.

Natarajan & Acrivos [17] have carried out a global stability analysis of the axisym-
metric wake past a circular flat disk set normal to the flow and a sphere. In both cases,
they have shown that the axisymmetric base flow presents several successive destabiliza-
tions. The first instability is stationary and involves a global eigenmode of azimuthal
wavenumber m = 1. The associated bifurcation, breaking the axisymmetry but preserv-
ing the time invariance, leads to a 3D steady state. Above the threshold of instability,
these authors have not studied the stability of this 3D state but that of the axisymmetric
wake. They have shown that a second instability occurs at a larger Reynolds number,
for m = ±1 oscillating global eigenmodes that breaks the time invariance. From direct
numerical simulations (DNS) and experimental observations, it turns out that this second
instability mode dominates the dynamics of the fully 3D flow at large Reynolds numbers,
hence explaining the occurrence of a fully 3D periodic state [18]. Such a domination of
the periodic instability mode over the stationary mode, despite the fact that the latter
is the first to destabilize the axisymmetric base flow has recently been explained using
slow manifold theory and normal forms [10]. This nonlinear competition between modes
is not the scope of the present study that focuses instead on the respective sensitivity and
receptivity properties of these unstable global modes in two model geometries of blunt
and bluff bodies, namely the disk and the sphere.

This study extends the work of Natarajan & Acrivos [17] by carrying out an adjoint
analysis of the wake past a circular flat disk and a sphere. We compute the direct and
adjoint global modes associated to the first two instabilities. We discuss the nonnormality
of the flow and point out the role of the so-called convective nonnormality [5, 6, 15]
associated to the transport of the perturbations by the base flow. The paper is organized
as follows. The problems of direct and adjoint global modes are presented in § 2., where we
discuss the physical origin of the nonnormality of the linearized Navier-Stokes equations.
§ 3. presents the numerical method and the results of the direct and adjoint global stability
analysis. We finally discuss physical interpretations of the adjoint global mode in terms of
receptivity of the global mode to initial perturbations and forcing and, following Giannetti
& Luchini[13], we identify the ‘wavemaker’ region as the region of the flow where the
instability is sensitive to local modification of the linearized evolution operator. These
properties are crucial when control or, for instance, departure from the ideal axisymmetry
owing to imperfect experimental set-ups are concerned.

2. Problem formulation

We investigate the stability of the axisymmetric flow developing past an axisymmetric
body, that can be a flat circular disk normal to the incoming flow, or a sphere. Standard
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Fig. 1. Schematic of the mesh structure: z−∞, z∞ and r∞ are, respectively, the location of the inlet, outlet
and external boundaries. The inner solid lines delimit regions characterized by different vertex densities.
The grey shaded area correspond to the region of highest density.

cylindrical coordinates r, θ and z with origin taken at the center of the body are used. The
configuration is shown in Fig. 1 for the flow past a sphere. The body of boundary ∂Ωb is
located on the axis of an enclosing cylinder of radius r∞ = 25 defining the computational
domain Ω, with boundaries ∂Ωa and ∂Ωext representing respectively the revolution axis
of the base flow and the boundary of the enclosing cylinder. The inlet ∂Ωin and outlet
∂Ωout are located respectively at z−∞ = −100 and z∞ = 200.

All quantities are made nondimensional using the diameter of the body D and the free-
stream velocity U∞. The state vector q stands for the flow field (u, p)T , where T designates
the transpose, u = (u, v, w) is the fluid velocity where u, v and w are the radial, azimuthal
and streamwise components, and p is the pressure. The fluid motion is governed by the
incompressible Navier-Stokes equations that read

∇ · u = 0 , ∂tu + ∇u · u + ∇p− 1

Re
∇2u = 0 , (1)

where Re is the Reynolds number based on D and U∞. We use the inlet condition u =
(0, 0, 1)T on ∂Ωin, no-slip conditions u = 0 on the body wall ∂Ωb and no-stress conditions
−pn + Re−1∇u ·n = 0 on the outlet ∂Ωout. On the external boundary ∂Ωext, we impose
a free slip boundary condition u = v = ∂rw = 0, so that the body surface ∂Ωb is the only
source of vorticity, as it would be the case without this artificial boundary.

Base flow For Reynolds numbers below the threshold of the first instability, the flow can
be searched as a steady, axisymmetric solution q0 = (u0, 0, w0, p0)T satisfying equations

∇ · u0 = 0 , ∇u0 · u0 + ∇p0 − 1

Re
∇2u0 = 0 . (2)

On the axis ∂Ωa, we impose u0 = ∂rw
0 = 0, a condition given by mass and momentum

conservation as r → 0 for axisymmetric solutions.

Global mode analysis The stability of the steady axisymmetric base flow is examined
by considering small-amplitude three-dimensional perturbations q1 = (u1, v1, w1, p1)T

which satisfy the unsteady equations linearized about q0

∇ · u1 = 0 , ∂tu
1 + C(u1,u0) + ∇p1 − 1

Re
∇2u1 = 0 , (3)
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where C(a, b) = ∇a · b + ∇b · a is the advection operator. Note that C is symmetrical,
i.e. C(a, b) = C(b, a). When considering the perturbation and base flow velocity fields u1

and u0, this operator accounts for the advection of the perturbation by the base flow via
the term ∇u1 ·u0 and for the advection of the base flow by the perturbation via the term
∇u0 ·u1 . Since the base flow is axisymmetric, all perturbations are chosen in the form of
normal eigenmodes of azimuthal wavenumber m and complex pulsation σ + iω, σ and ω
being respectively the growth rate and pulsation of the eigenmode (σ > 0 for an unstable
eigenmode):

q1 = q̂1(r, z)e(σ+iω)t+imθ + c.c. , (4)

where q̂1 = (û1, v̂1, ŵ1, p̂1) is the so-called global mode, herein referred to as the di-
rect global mode, for which both the cross-stream and streamwise directions (r, z) are
eigendirections. Substitution of decomposition (4) in equations (3) leads to a generalized
eigenvalue problem for σ + iω and q̂1 that reads

(σ + iω)Bq̂1 +Amq̂1 = 0 , (5)

where Am and B are the linear operators defined by

Am =


 Cm(·,u0)− 1

Re
∇m

2 ∇m

∇m
T 0


 , B =


 I 0

0 0


 . (6)

For a normal mode â of azimuthal wavenumber m, the gradient operator and the velocity
gradient tensor read

∇m =




∂r

im
r

∂z


 , ∇mâ =




∂rû
im
r

û− 1
r
v̂ ∂zû

∂rv̂
im
r

v̂ + 1
r
û ∂zv̂

∂rŵ
im
r

ŵ ∂zŵ


 . (7)

The complex advection operator Cm in (6) is then defined as Cm(û1,u0) = ∇mû1 · u0 +
∇0u

0 · û1 and accounts for the specific azimuthal periodicity of the normal mode. In the
following, we restrict to the case of |m| = 1 disturbances. The associated global modes
satisfy the following boundary conditions

∂rû
1 = ∂rv̂

1 = ŵ1 = p̂1 = 0 on ∂Ωa (axis), (8a)

û1 = 0 on ∂Ωin ∪ ∂Ωb (inlet and body), (8b)

−p̂1n + Re−1∇1û
1 · n = 0 (no-stress) on ∂Ωout (outlet), (8c)

û1 = ∂rv̂
1 = ∂rŵ

1 = 0 (free slip) on ∂Ωext (external boundary), (8d)

the condition at the axis ∂Ωa being specific to the azimuthal wavenumbers |m| = 1.

Adjoint global modes The adjoint evolution operator A†
m is defined so that for any

vectors q̂1 fulfilling boundary conditions (8) and q̂1† fulfilling boundary conditions to be
determined, 〈

q̂1†,Amq̂1
〉

=
〈
A†

mq̂1†, q̂1
〉

, (9)

with 〈, 〉 the inner product on Ω defined by 〈â, b̂〉 =
∫
Ω â∗ · b̂ rdrdz, where â and b̂ belong

to Cn, the superscript ∗ stands for the complex conjugate, and · refers to the canonic
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hermitian scalar product in Cn. The adjoint equations are obtained using integration by
parts of equations (3) [20]. The boundary conditions to be fulfilled by adjoint perturbations
are such that all boundary terms arising during the integration are zero. For |m| = 1
disturbances, we obtain:

∂rû
1† = ∂rv̂

1† = ŵ1† = p̂1† = 0 on ∂Ωa, (10a)

û1† = 0 on ∂Ωin ∪ ∂Ωb, (10b)

(u0.n)û1† + p̂1†n + Re−1∇1û
1† · n = 0 on ∂Ωout, (10c)

û1† = ∂rv̂
1† = ∂rŵ

1† = 0 on ∂Ωext. (10d)

With our notation, q̂1† is then solution of an eigenvalue problem that reads

(σ − iω)Bq̂1† +A†
mq̂1† = 0 , (11)

where A†
m is the complex evolution operator defined as

A†
m =


 C

†
m(·, u0)− 1

Re
∇m

2 −∇m

∇m
T 0


 , (12)

and C†m(û1†,u0) = ∇0u
0 T · û1†−∇mû1† ·u0 is the adjoint advection operator. Compar-

ing Am and A†
m, we note that the nonnormality comes only from the advection operator

and can be split in two complementary effects. The lift-up type nonnormality is due to
the advection of the base flow by the perturbation, given by ∇0u

0 · û1 for the direct

operator Am and ∇0u
0 T · û1† for the adjoint operator A†

m. When the flow is a simple
parallel shear, this term gives rise to the so-called lift-up effect, linked to the generation
of strong streamwise velocity perturbations by small displacements along the direction
of the base flow gradient. The lift-up nonnormality is then associated to direct and ad-
joint global modes that tend to be orthogonal one to the other because concentrated on
different components of the velocity vector [15]. The convective nonnormality [5, 6, 15]
is due to the transport of disturbances by the base flow, given by ∇mû1 · u0 for the
direct operator Am and −∇mû1† · u0 for the adjoint operator A†

m, which have opposite
signs. Physically, this indicates that direct perturbations are convected downstream and
that adjoint perturbations are convected upstream [5]. As noticed in [6] in the case of the
Ginzburg Landau model equation, this nonnormality is specific to open flows and tends
to spatially separate the perturbation velocity fields, downstream for the direct pertur-
bations and upstream for the adjoint perturbations. The convective nonnormality is then
associated to direct and adjoint global modes that tend to be orthogonal one to the other
because localized in different regions of the flow. Of course, for real nonparallel flows, such
as those considered here, both mechanisms act and the spatial structures of the direct
and adjoint global modes result from their interactions (see § 3.).

As discussed in [5], the adjoint global mode may receive different physical interpreta-
tions. For an unstable flow, it defines the most dangerous initial perturbation of unit norm,
i.e. that maximizes the large-time amplitude of the direct global mode [5, 20]. Presently,
we will discuss only the physics of the initial perturbation but not its time evolution,
that may lead to possibly energetic transient regimes before the large-time dynamics is
reached.

For a marginally stable global mode, of growth rate σ < 0 (|σ| ¿ 1) and of frequency
ω, the adjoint global mode also characterizes the receptivity of the global mode to near-
resonance harmonic forcing. This point is crucial in the perspective of active control,
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where the idea is to produce a large effect in the flow by introducing a small amount of
energy, either by periodic blowing and suction at the wall, or by use of a volumic force.
If forcing occurs through a body force f̂ = (f̂r, f̂θ, f̂z) of frequency ωf close to ω and of
same azimuthal wavenumber as the global mode, the receptivity of the global mode, i.e.
the amplitude of the forced global mode, is given by

α =
1

σ + i(ω − ωf )

〈
q̂1†, (f̂ , 0)T

〉

〈q̂1†,Bq̂1〉 , (13)

In the case of boundary forcing, for instance by periodic blowing and suction at the
body wall ∂Ωb, also with the frequency ω and the same azimuthal wavenumber than that
of the global mode, Giannetti & Luchini [13] have computed the global mode amplitude
as a function of the velocity ûw imposed at the wall by modyfing equation (8b) on ∂Ωb

into û1 = ûw:

α =
1

i(ω − ωf )

1

〈q̂1†,Bq̂1〉
∫

∂Ω
b

(
p̂1†n +

1

Re
∇1û

1† · n
)
· ûwdl . (14)

Note that for sufficiently large Reynolds numbers, the term arising from the Reynolds
stresses can be neglected compared to the wall pressure p̂1† [15], implying that the ampli-
tude of the response to forcing is large, i.e. the forcing is efficient, in regions of the wall
where the magnitude of the adjoint wall pressure |p̂1†| is large. Note that the orientation
of the forcing velocity with respect to the wall also influences the response of the global
mode since, for a given magnitude of the wall velocity, the closer the orientation to the
normal vector to the wall, the larger the amplitude of the forced global mode. Note that
relations (13) and (14) are valid only for near-resonance forcing, when ω − ωf is small.
They can be generalized to the case of off-resonance forcing by solving for the norm of the
resolvent operator (ωfB+ iA1)

−1 when a body force is added to the momentum equations
[19].

The adjoint analysis is also useful to identify the region of the flow which acts as
the ‘wavemaker’. By considering small modifications of the evolution operator Am with
the form of a ‘force-velocity’ coupling, Giannetti & Luchini [13] have argued that the
sensitivity of the eigenvalue to such a local feedback is maximum in the region where
the product of the modulus of the direct and adjoint global modes is not zero, and that
this overlapping region therefore identifies the wavemaker. This concept of sensitivity
has been extended recently to assess how imposed steady base flow modifications or
addition of a steady volumic force may alter the stability properties of flows, leading
to the definition of the so-called sensitivity to base flow modifications or sensitivity to a
steady force, respectively [16]. In the present paper, as in the study of Giannetti & Luchini
[13], we present only results pertaining to the sensitivity to a ‘force-velocity’ coupling that
represents a straightforward identification of the wavemaker region, and can be also viewed
as a feedback induced by an actuator located at the same station as the sensor.

3. Results

The FreeFem++ software (http://www.freefem.org) is used to generate the triangu-
lation with the Delaunay-Voronoi algorithm. The mesh refinement is controlled by the
vertex densities on both external and internal boundaries. A schematic of the mesh struc-
ture is depicted in Fig. 1 in the case of the sphere, the mesh structure being similar in the
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Fig. 2. Base flow at the threshold of the first instability. Iso contours of streamwise velocity w0. The solid
line indicates the separated bubble. (a) Disk at ReA = 116.9. (b) Sphere at ReA = 212.6.

case of the disk, except that for computational reasons, the width of the disk L can not
be chosen strictly equal to zero, so that we have used the smallest possible value, corre-
sponding to an aspect ratio L/D = 10−3. To avoid any computational difficulty, a zone of
width 0.05 and high vertex density (250 vertex per unit length) is defined at the axis r = 0
and around the body, corresponding to the shaded area shown in Fig. 1. The base flow
equations, as well as the direct (5) and adjoint (11) generalized eigenvalue problems are
numerically solved by a finite-element method, using the same mesh. The unknown veloc-
ity and pressure fields are spatially discretized using a basis of Taylor-Hood elements, i.e.
P2 elements for velocities and P1 elements for pressure. All equations are first multiplied
by r to avoid the singularity on the r = 0 axis. The associated variational formulation
is then derived and spatially discretized on the mesh composed of triangular elements.
The sparse matrices resulting from the projection of the variational formulations onto the
basis of finite elements are built with the FreeFem++ software. The matrix inverses are
then computed using the UMFPACK library, which consists in a sparse direct LU solver
[7, 8].

Base flow For all the Reynolds numbers Re considered in this study, the base flow is
stable to axisymmetric stationary perturbations, and time-marching a direct numerical
simulation of equations (1), with imposed axisymmetry and required boundary conditions
provides us with an approximate guess solution of the steady base flow q0. The steady base
flow q0 solution of the nonlinear equations (2) is then obtained using an iterative Newton
method involving the resolution of simple linear problems. Details of the numerical method
may be found in [3] and [22]. In the present study, the iterative process is carried out until
the L2-norm of the residual of the governing equations for q0 becomes smaller than 10−12.
Fig. 2(a) shows iso contours of the base flow streamwise velocity w0 computed for the
disk at Re = 116.9. The solid line is the streamline linking the separation point to the
stagnation point on the r = 0 axis, it defines the separatrix delimiting the recirculation
bubble behind the disk. The negative values of the streamwise velocity close to the axis
reaches 60 % of the free-stream velocity, whereas in the case of the sphere, shown in Fig.
2(b) for Re = 212.6, this value does not exceed 40 %. In order to assess the accuracy of the
numerical method, the drag coefficient Cd and recirculation length L were computed for
the sphere wake. The values obtained at Re = 100 (L = 1.369, Cd = 1.087) and Re = 200
(L = 1.934, Cd = 0.770) show excellent agreement with the calculations obtained by
Fornberg [11] using finite-difference methods (L = 1.373, Cd = 1.085 at Re = 100 and
L = 1.934, Cd = 0.768 at Re = 200, respectively).

Stability analysis To compute the leading eigenvalues of operators A1 and A†
1, which

are responsible for the successive instabilities, we use a shift and invert strategy [9].
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The generalized eigenvalue problems are solved using the ‘Implicitly Restarted Arnoldi
method’ of the ARPACK library.

Since the adjoint problem (11) has been formulated for continuous operators with as-

sociated adjoint boundary conditions, the spatial discretization of operators A1 and A†
1

leads to discrete operators that are not hermitian one to the other because the operator B
involved in the right-hand side of problems (5) and (11) does not correspond to the scalar
product in cylindrical coordinates. We check a posteriori that the adjoint eigenvalues are
complex conjugate with the direct eigenvalues and that a bi-orthogonality relation [5],
is satisfied for the 10 leading global modes (i.e. that the scalar product of one of the 10
leading adjoint modes with any of the 10 leading direct global modes associated to a dif-
ferent eigenvalue is less that 10−8) , and conclude that our numerical procedure accurately
estimates the direct and adjoint global modes.

Direct global modes are normalized by imposing the phase of the radial velocity to be
zero at a particular location, i.e. û1(0, 1) must be real positive. The eigenmode energy is
then normalized to unity in a fixed domain Ωin defined arbitrarily as z ∈ [−2.5, 5.25] and
r < 2 and corresponding to the inner box in Fig. 1: 〈q̂1, δinBq̂1〉 = 1 with δin the function
defined by δin(r, z) = 1 if (r, z) ∈ Ωin and 0 otherwise. The adjoint global modes are then

normalized so that
〈
q̂1†,Bq̂1

〉
= 1. Note that owing to the symmetries of the problem,

equations (5) and (12) remain invariant under the transformation (û1, v̂1, ŵ1, p̂1,m) →
(û1,−v̂1, ŵ1, p̂1,−m), so that we need to investigated only the case m = 1.

Stationary global mode When the Reynolds number is increased from small values, a
first stationary mode (ω = 0) destabilizes the axisymmetric base flow at ReA, both for the
disk and the sphere. In the following, this mode is named mode A and the corresponding
eigenvector is referred to q̂1

A. The critical Reynolds number is ReA = 116.9 for the disk and
ReA = 212.6 for the sphere. Fig. 3(a) shows the spatial structure of the streamwise velocity
component ŵ1

A for the disk. The global mode is dominated by axially extended streamwise
velocity disturbances located downstream of the disk, that induce an off-axis displacement
of the wake [14, 23]. The associated adjoint global mode q̂1†

A is presented in Fig. 3(b). The

adjoint global mode presents high magnitudes of adjoint streamwise velocity ŵ1†
A within

the recirculating bubble and close to the body, and low magnitude disturbances upstream
of the disk. The downstream and upstream localizations of the direct and adjoint global
modes resulting from the convective nonnormality of the linearized Navier-Stokes operator
are further evidenced on Fig. 3(c) and 3(d). Fig. 3(c) shows the streamwise evolution of
the amplitude of the direct global modes, computed as the density energy integrated over
a vertical cross-section for each streamwise position, i.e. EA(z) =

∫ r∞
0 |û1

A(r, z)|2rdr, as
well as the contribution of the streamwise velocity to this amplitude EA(z), i.e. SA(z) =∫ r∞
0 |ŵ1

A(r, z)|2rdr. The direct mode is nil upstream of the body, reaches a maximum in
the recirculating bubble, and decreases slowly downstream of the body. The contribution
of the streamwise velocity to the direct global mode dominates the entire field. Fig. 3(d)
shows similarly the streamwise distribution of energy density for the adjoint global mode,
i.e. E†

A(z) =
∫ r∞
0 |ŵ1†

A (r, z)|2rdr, as well as the contribution of the cross-stream velocity

components to this amplitude E†
A(z), i.e. C†

A(z) =
∫ r∞
0 (|û1†

A |2 + |v̂1†
A |2)rdr. The adjoint

global mode vanishes downstream of the body, reaches a maximum in the recirculating
area. Upstream of the body, its energy density is two orders of magnitude smaller than
in the recirculation bubble and decreases exponentially. In regions of the flow where the
amplitude of the adjoint global mode is larger than 10−1, in particular in the whole
recirculating bubble, the contribution of the cross-stream velocity components to the
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Fig. 3. Steady direct and adjoint global modes A for the disk at threshold - ReA = 116.9. (a) Spatial
distribution of streamwise velocity ŵ1

A. (b) Spatial distribution of adjoint streamwise velocity ŵ1†
A . (c)

Streamwise distribution of energy density EA(z) for the direct global mode. The dashed line shows the
contribution SA(z) of the streamwise velocity component to the energy EA(z). The vertical grey line
marks the position of the separation point. (d) Streamwise distribution of energy density E†

A(z) for the
adjoint global mode. The dash-dotted line shows the contribution of the adjoint cross-stream velocity
components C†A(z) to the energy E†

A(z). The vertical grey line marks the position of the separation point.

adjoint global mode dominates the adjoint field. For this first unstable mode A, the
direct and adjoint global modes are concentrated on different components of the velocity
vector, the streamwise and cross-stream velocity components, respectively, suggesting that
the lift-up mechanism plays a significant role in the dynamics of the stationary mode.
Furthermore, the direct and adjoint global modes are mainly localized in the recirculation,
with respectively downstream and upstream tails showing the influence of the convective
nonnormality which, for the present flow, is moderate since the amplitude are small away
from the recirculation bubble. The nonnormality may be quantified by the angle θA defined
as

cos
(

π

2
− θA

)
=

〈q̂1†
A ,Bq̂1

A〉
〈q̂1†

A ,Bq̂1†
A 〉 × 〈q̂1

A,Bq̂1
A〉

, (15)

with 〈q̂1†
A ,Bq̂1

A〉 = 1 by convention here. The nonnormality is thus measured by the
departure θA to π/2 of the angle between the direct and adjoint global modes, i.e. the
larger the nonnormality, the smaller θA.

We define the streamwise amplitude of a complex velocity fields û(r, z) as the norm
||û||2L(z) =

∫ r∞
0 |û|2rdr. We propose to quantify the contribution of the convective non-
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Fig. 4. Same as Fig. 3 for the stationary direct and adjoint global modes A of the sphere - ReA = 212.6.

normality to the overall nonnormality by considering the parameter γ defined by

γ = 1−
∫ z∞
z−∞

||û1||L × ||û1†||Ldz
(∫ z∞

z−∞
||û1||2Ldz

)1/2 ×
(∫ z∞

z−∞
||û1†||2Ldz

)1/2
= 1−

∫ z∞
z−∞

||û1||L × ||û1||Ldz

〈q̂1†
A ,Bq̂1†

A 〉1/2 × 〈q̂1
A,Bq̂1

A〉1/2
.

(16)
Using a standard Cauchy-Schwartz inequality, it can be shown that 0 ≤ γ ≤ 1. A value
of γ close to 0 is reached if ||û1

A||L = α||û1†
A ||L meaning that the direct and adjoint

global modes have the same spatial distribution of energy. In that case, the convective
nonnormality is not active since it would imply a dissymmetry in the distribution of the
direct and adjoint modes. On the contrary , a value of γ close to 1 means that the direct
and adjoint global modes are spatially separated. For the disk, we find presently that
θA = 0.17 (10◦) and γA = 0.40, meaning that the nonnormality of mode A is moderate
and due to the convective nonnormality at most at 40 %, which confirms the importance
of the lift-up mechanism.

Fig. 4 shows the marginally stable stationary mode A and its adjoint global mode for
the sphere. The general dynamics is identical to that described on Fig. 3 in the case of
the disk, indicating that the instability results from similar physical mechanisms in both
flows. The direct mode is led by the streamwise velocity component downstream of the
sphere and the adjoint global mode is even more concentrated in the recirculation bubble,
reaching a maximum just downstream of the separation point marked by the vertical
grey line in Fig. 4(c) and 4(d). The cross-stream velocity components dominate in the
recirculating area. In the case of the sphere, the energy density of the direct global mode
decays downstream slower than in the case of the disk and the adjoint mode presents a
weaker upstream energy density. At the separation point, the adjoint global mode exhibits
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Fig. 5. Receptivity to local modifications of the linearized evolution operator (local ‘force-velocity’ cou-
pling [13]) for the stationary mode A, quantified by the field |û1†

A | × |û1
A|(r, z). (a) Disk at ReA=116.9.

(b) Sphere at ReA = 212.6.

Fig. 6. Receptivity of the global mode A to blowing and suction: adjoint pressure distribution on the wall
of the body for the stationary instability - (a) as a function of the radius for the disk at ReA = 116.9. The
solid line corresponds to the upstream wall of the disk and the dashed line to the downstream wall. (b)
as a function of the angle from the leading stagnation point for the sphere at ReA = 212.6. The vertical
grey line marks the position of the separation point.

an energy density larger by one order of magnitude than that found for the disk. The
nonnormality of the sphere, as quantified by θA = 0.07 (4◦), is significantly larger than
that of the disk. The contribution of the convective nonnormality evaluated by γA is 0.76,
and is also more important than in the case of the disk. This shows that the wake of the
sphere is more receptive to initial perturbation or forcing (both being m = 1 stationary),
in particular close to the separation line.

The magnitude of the product between the modulus of the direct and adjoint global
modes is shown for the disk and the sphere in Fig. 5(a) and 5(b), where the white solid
lines stand for the separation lines. For both bodies, the product is almost nil everywhere
in the flow, except close to the body, along the separation line, and in the center of the
recirculation bubble where the largest values are reached. This specific spatial localization
results from the convective nonnormality that induces the downstream and upstream
localizations of the direct and adjoint global modes. The similarity in the results for the
disk and the sphere suggests the existence of a single wavemaker for this instability for
both shapes of bodies, located in the core of the recirculation. Following the argument of
Giannetti & Luchini [13], passive control of the stationary m = 1 eigenmode should induce
modifications of the base flow close to the core of the recirculation to achieve a maximum
stabilizing or destabilizing effect. As already commented, the sensitivity quantified on
Fig. 5 is rigorously for a local ‘force-velocity’ coupling [13], i.e. the effect of a local body
force actuation proportional to the signal of a velocity sensor located at the exact same
station. By extrapolation, it describes the effect of a steady base flow modification but
only qualitatively since the modified advection operator involves also the gradients of the
perturbation velocity. Note that in the recirculating bubble, the sphere exhibits a ‘force-
velocity’ sensitivity larger than that of the disk, suggesting that the wake of the sphere
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would be more controlable through the use of passive devices.
Fig. 6(a) and 6(b) present the distributions of the magnitude of adjoint pressure p̂1†

A on
the body walls, which, following relation (14), quantifies the receptivity to a stationary
m = 1 blowing and suction. For the disk, results are presented as a function of the
radial position r, on the upstream and downstream walls of the body, corresponding to
the solid and dashed lines, respectively. The upstream wall exhibits significantly larger
receptivity to blowing and suction than the downstream wall. Moreover, the upstream
adjoint pressure distribution increases significantly close to the separation point, where
the maximum value is reached. Therefore, in the case of active control, an actuator that
imposes a stationary m = 1 blowing and suction, will achieve maximum efficiency if placed
at the edge of the forward facing side of the disk. One may note that a small permanent
tilt of the disk corresponds to a small m = 1 wall displacement that may be modelled as
an equivalent blowing and suction of magnitude proportional to the distance to the axis,
and may therefore force efficiently the stationary mode A.

For the sphere, results are presented as a function of the azimuthal position ϕ, the origin
of ϕ being taken at the leading stagnation point (−0.5, 0). The vertical grey line is located

at the separation point, corresponding to ϕs = 116◦. The adjoint pressure p̂1†
A is zero on

the axis, owing to the boundary conditions. The magnitude of adjoint pressure reaches
a maximum for ϕ = 102◦, upstream from the separation point. The level then decreases
slowly as one moves away from this optimal position, the magnitude of adjoint pressure
remaining significant in the range ϕ ∈ [80◦, 130◦]. The adjoint pressure level decreases
upstream and becomes zero at the leading stagnation point. The main difference with
the disk is that the region where the m = 1 blowing and suction is efficient is extremely
extended with large receptivity values everywhere, except close to the stagnation points.
Therefore, for the sphere, the actuator would be slightly more efficient if placed just
upstream from the separation (and not at the separation) but its precise location is less
important. In contrast, controlling the disk wake will be efficient solely if the actuator is
precisely positioned.

As mentioned previously, the adjoint global mode also represents the most dangerous
initial velocity perturbation, since for a fixed initial energy of the perturbation, it max-
imizes the large-time amplitude of the direct mode A. The effect of the optimal initial
perturbation may be physically interpreted by considering the flow reconstructed as the
linear superposition of the base flow q0 and the adjoint global mode q̂1†

A with a finite
amplitude ε. For the disk, ε is chosen equal to 1.7×10−2 so that the maximum streamwise
velocity perturbation represents 10 % of the maximum streamwise velocity w0

max. Fig. 7(a)
and 7(b) show the streamlines of the adjoint global mode in the region of the separation
point in the azimuthal planes θ = 0 and θ = π. The black and grey solid lines stand for
the separation line of the base flow and of the total flow q0 + εq̂1†

A , respectively. The levels
of adjoint velocity amplitude are indicated by the color shading, where dark regions stand
for high perturbation velocities. Close to the separation point, the streamlines are normal
to the separation line, and oriented upstream (resp. downstream) for θ = 0 (resp. θ = π).
Consequently, the separation line is tilted upstream and downstream as we move along in
the azimuthal direction, the extremity of the line remaining pinned at the disk rime. The
optimal initial perturbation corresponds therefore to a stationary azimuthal modulation
of the separation angle with respect to that of the base flow. In the case of the sphere,
owing to the larger receptivity of the wake, ε is chosen much smaller (ε = 6.5 × 10−4)
so that the maximum streamwise velocity perturbation represents 5 % of the maximum
streamwise velocity w0

max. Fig. 7(c) and 7(d) show that the streamlines of the optimal
initial perturbation are parallel to the sphere surface, and induce a displacement with no
tilt of the separation line, in agreement with the physical intuition that the separation
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Fig. 7. Optimal initial perturbation for the stationary instability. The black and grey solid lines stand for
the separation line of the base flow and of the total flow q0 + εq̂1†

A , respectively. (a) Disk at ReA = 116.9:
magnified view of the adjoint velocity field û1†

A close to the separation in the azimuthal plane θ = 0. Blue
and white regions correspond respectively to large and low values of the adjoint velocity magnitude, its
orientation being shown by the streamlines. (b) Same as (a) but for θ = π. (c)− (d) Same as (a)− (b) for
the sphere at ReA = 212.6.

line is no more pinned by the bluff geometry of the body. The separation point is hence
displaced upstream and downstream, so that the optimal initial perturbation, given by
the adjoint global mode, corresponds to a stationary displacement of the separation point
in the streamwise direction which ondulates in the azimuthal direction.

Oscillating global mode The second instability occurs at ReB for an oscillating mode
of frequency ω = ω0. The associated mode is named mode B and the corresponding eigen-
vector is referred to as q̂1

B. The critical Reynolds numbers and frequency are ReB = 125.3,
ω0 = 0.760 for the disk and ReB = 280.7, ω0 = 0.699 for the sphere, the corresponding
Strouhal numbers St = ω0D/(2πU∞) being 0.121 and 0.111, respectively. Fig. 8(a) and
9(a) show the spatial structure of the streamwise velocity ŵ1

B at the instability threshold
for the disk and the sphere. Since the frequency is not zero, the eigenmode q̂1

B is complex
but we restrict the description to the real part q̂1

Br of the eigenvector, as its imaginary part
displays a similar structure, but approximately in spatial quadrature, indicating that this
global mode B corresponds to a spiralling perturbation behind the body, which rotates
in time at the frequency ω0. Note that because of the symmetries of the problem, the
mirror spiral mode rotating in time at the same frequency but in the opposite azimuthal
direction also destabilizes the base flow. The general dynamics is identical for the disk and
the sphere, the direct modes B exhibiting periodic positive and negative velocity pertur-
bations downstream of the body. The adjoint global modes B are shown in Fig. 8(b) and

9(b). Again, we discuss only the real part of the eigenvector q̂1†
Br, as its imaginary part

displays a similar structure in spatial quadrature. The localization of the adjoint global
mode B is similar to that of the adjoint global mode A discussed above. For the disk
and the sphere, the oscillating adjoint global modes B exhibit large streamwise velocities
ŵ1†

B within the recirculating area and close to the body. They also display velocity dis-
turbances upstream of the disk and the sphere under the form of low magnitude periodic
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Fig. 8. Same as Fig. 3 for the oscillating instability of the disk - ReB = 125.3.

Fig. 9. Same as Fig. 3 for the oscillating instability of the sphere - ReB = 280.7.

structures, visible despite their low amplitude by an appropriate choice of the color look-
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Fig. 10. Same as Fig. 5 for the oscillating mode B. (a) Disk at Rech = 125.3. (b) Sphere at Rech = 280.7.

Fig. 11. Same as Fig. 6 for the oscillating mode B. (a) Disk at ReB = 125.3. (b) Sphere at ReB = 280.7.

up table in Fig. 8(b) and Fig. 9(b). Note that the absolute magnitude of these structures
is slightly larger in the case of the sphere compared to the disk. The downstream and
upstream localizations of the direct and adjoint global modes are further evidenced on
Fig. 8(c) and 8(d) for the disk and on Fig. 9(c) and 9(d) for the sphere. Fig. 8(c) and 9(c)
show the streamwise distribution of energy density EB(z) of the direct global modes (solid
line), as well as the contribution of the streamwise velocity SB(z) to this energy (dashed
line). We find that the direct mode is evanescent upstream of the body and reaches a
maximum in the recirculating area. The downstream evolution differs between the disk,
where the energy density decreases slowly, and the sphere, where the fluctuations keep
increasing downstream. Fig. 8(d) and 9(d) show similarly the streamwise distribution of

energy density E†
B(z) of the adjoint global mode (solid line), as well as the contribution of

the cross-stream velocity components C†
B(z) to this energy (dash-dotted line). The adjoint

global mode vanishes downstream of the body, reaches a maximum in the recirculating
area and decreases steadily upstream of the body. In the vicinity of the separation point,
the contribution of the cross-stream velocity components to the adjoint global mode dom-
inates. For both geometries, the contribution of streamwise velocity no more dominates
the entire direct field, so that the contribution of the lift-up mechanism to the structure of
the direct global mode B is less important than for the stationary global mode A. It can
be seen comparing Fig. 8(d) and 9(d) that in the case of the sphere, the oscillating adjoint
global mode B exhibits an amplitude close to the separation point larger by almost one
order of magnitude than that found for the disk. The overall nonnormality is important
as we find here that θB = 0.07 (4◦) for the disk and 0.02 (1◦) for the sphere. This indicates
that the oscillating global modes B are more receptive to initial perturbation or forcing
than the stationary global modes A, the wake of the sphere being more receptive than
that of the disk. We find for the convective nonnormality parameter γB = 0.88 for the
disk and 0.94 for the sphere. These values are significantly more important than in the
case of the stationary global mode A, suggesting that the overall nonnormality is almost
entirely due to the convective nonnormality resulting in the streamwise separation of the
direct and adjoint global modes.
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The magnitude of the product between the modulus of the direct and adjoint global
modes is shown for the disk and the sphere in Fig. 10(a) and 10(b). The similarity between
both flows suggests, for mode B also, the existence of a single physical mechanism for the
oscillating instability, with the recirculating bubble acting as the wavemaker. The results
are somehow reminiscent of that discussed for the first stationary instability of mode A,
with a product almost nil everywhere in the flow, except within the recirculation. However,
comparing to mode A, the largest values are reached along the separation line and no
more in the core of the recirculation. This suggests that shear instability is the physical
mechanism responsible for the development of spiral modes B. In the case of passive
control, the base flow modifications should therefore be induced close to the separation
line to achieve maximum efficiency. Note that in the recirculating area, the sphere exhibits
an amplitude significantly larger than that of the disk, indicating that the wake of the
sphere is more sensitive to local modifications of the evolution operator.

In the case of the boundary control of the oscillating instability, relation (14) indicates

that only the magnitude of adjoint pressure |p̂1†
B | determines the receptivity of the global

mode, whereas the individual real and imaginary parts p̂1†
Br and p̂1†

Bi are useful to predict
the phase of the response of the forced global mode relative to that of the oscillating
wall forcing. Fig. 11(a) and 11(b) present the distributions of the magnitude of adjoint

pressure |p̂1†
B | on the body walls. The distributions are amazingly similar to that found

for the stationary instability. For the disk, the magnitude is larger on the upstream wall
where the adjoint pressure distribution increases significantly at the edge. For the sphere,
the magnitude of adjoint pressure is maximum for ϕ = 86◦, upstream from the separation
point located at ϕs = 112◦. It decreases slowly as one moves away from this optimal posi-
tion, the magnitude of adjoint pressure remaining significant in the range ϕ ∈ [75◦, 115◦].
Therefore, in the case of active control, an actuator that imposes a periodic m = 1 blowing
or suction at the frequency ω0 should be placed at the rime on the forward facing side of
the disk, and upstream from the separation in the case of the sphere to be most efficient.
Similarly to the results obtained for the stationary instability of mode A, one may achieve
good efficiency by moving the actuator position around the separation point of the sphere,
as the region of receptivity is quite large. The main difference between both instabilities
is that the magnitude of adjoint pressure levels are higher for the oscillating instability
of mode B. Therefore, one may expect that the control of the oscillating instability will
be less expensive than that of the stationary instability, i.e. that one will obtain the same
amplitude of forced global mode by introducing less energy in the flow.

Finally, as for the stationary mode A, we investigate the physical interpretation of the
oscillating adjoint global mode interpreted as the optimal initial perturbation. For a time
t = 0, we reconstruct the linear superposition of the base flow q0 and the adjoint global
mode q̂1†

B with a finite amplitude ε. Similar to the stationary instability, ε = 2.4 × 10−2

for the disk and ε = 4.9× 10−4 for the sphere, so that the maximum streamwise velocity
perturbation represents 10 % of the maximum streamwise velocity w0

max in the case of the
disk, and 5 % in the case of the sphere. Fig. 12 shows the streamlines of the adjoint global
mode in the region of the separation point in the azimuthal planes θ = 0 and θ = π at
time t = 0. The black and grey solid lines stand for the separation line of the base flow
and of the total initial flow q0+εq̂1†

Br, respectively. Results are similar to that obtained for
mode A. In the case of the disk, the optimal initial perturbation corresponds to a periodic
tilting of the separation line around the fixed separation point. In the case of the sphere,
it corresponds to a displacement of the separation point along the sphere surface. Finally,
it can be seen comparing Fig. 7(a) and 12(a), or Fig. 7(c) and 12(c), for instance, that
for the same amount of perturbation, we obtain a larger deformation of the recirculation
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Fig. 12. Same as Fig. 7 for the oscillating mode B. (a) − (b) Disk at ReB = 125.3. (c) − (d) Sphere at
ReB = 280.7.

in the case of the oscillating instability, owing to the larger receptivity of the associated
global modes.

4. Conclusion

In this study, we have investigated the linear dynamics of the steady axisymmetric flow
past an axisymmetric body. Two cases, the disk and the sphere, modelling characteris-
tic geometries of blunt and bluff bodies, have been considered. A linear global stability
analysis has been carried out, whose results show good agreement with that of Natarajan
& Acrivos [17]. A first instability occurs for a stationary global mode A of azimuthal
wavenumber m = 1. The adjoint global mode A associated to this direct global mode has
been computed and the physical effect of this optimal perturbation on the recirculation
area is to modulate the separation angle around the disk edge or to displace the sepa-
ration point along the sphere surface with no tilting of the separation line. The spatial
separation of the direct and adjoint global modes has been interpreted as a result of the
convective nonnormality, resulting from the transport of the perturbations by the base
flow. Downstream from the body, the direct global mode A is dominated by the stream-
wise velocity component and in the recirculating bubble, and the adjoint global mode A
by the cross-flow components, which suggests that a lift-up mechanism is involved in the
energy production of the instability. A second instability occurs for an oscillating global
mode B of azimuthal wavenumber m = 1. The associated adjoint global mode B has
been computed and the physical effect on the recirculation area has been shown to be,
as for mode A, a periodic rotation of the separation line at the disk edge or a periodic
translation of the separation point along the sphere surface. For both bodies and both
instabilities, a detailed analysis of the adjoint global modes has allowed to identify dif-
ferent regions of the flow that are of particular interest in the perspective of control. The
recirculation, more specifically the vicinity of the separation point, is where all global
modes are most receptive to initial perturbations and forcing of azimuthal wavenumber
m = 1. As discussed in Giannetti & Luchini [13], considering the overlapping of the direct
and adjoint global modes A and B, the wavemakers for the stationary and oscillating
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instabilities have been identified as being located in the core of the recirculation, and the
vicinity of the separation line, respectively. If control is considered, this analysis suggests
different locations of the actuator depending on the control method. In the case of passive
control acting through steady, axisymmetric modifications of the base flow, the actuator
should be placed so as to modify the base flow in the wavemaker region, presently in
the recirculating bubble, to obtain a large impact on the dynamics. In the case of active
control by blowing and suction at the body wall, the adjoint pressure distributions show
that maximum efficiency is achieved placing the actuator precisely at the rime on the
upstream face of the disk, and upstream of the separation point for the sphere. However,
in the case of the sphere, the receptivity is one order of magnitude larger and the region
of receptivity is broad, so that one may achieve good efficiency by moving the position
of the sphere actuator around the separation point. Finally, the magnitude of the adjoint
pressure are higher for the oscillating mode B than for the stationary mode A. Therefore,
one may expect that the control of the oscillating instability requires less energy to be
introduced in the flow to achieve the same efficiency.
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CHAPTER
FOUR

GLOBAL MODE INTERACTION & PATTERN
SELECTION IN THE WAKE OF A DISK

Chapter 3 has shown that axisymmetric wakes can sustain two unstable m = 1 global
modes, namely a stationary and an oscillating global mode. The present chapter
investigates the three-dimensional dynamics of the disk flow resulting from the
concomitant instability of the latter modes. It shows in particular that the sharp
pattern and frequency selection exhibited by the real flow are accurately predicted
by use of a reduced order model describing the leading-order nonlinear interaction
of the leading eigenmodes. This chapter is structured as a self-contained article
submitted to the Journal of Fluid Mechanics.

keywords: incompressible flows, bifurcations, pattern and frequency selection,
weakly nonlinear expansion, normal forms.
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Direct numerical simulations (DNS) of the wake of a circular disk placed normal to
a uniform flow show that, as the Reynolds number is increased, the flow undergoes a
sequence of successive bifurcations, each state being characterized by specific time and
space symmetry breaking or recovering (Fabre et al. 2008). To explain this bifurcation
scenario, we investigate the stability of the axisymmetric steady wake in the framework
of the global stability theory. Both the direct and adjoint eigenvalue problems are solved.
The threshold Reynolds numbers Re and characteristics of the destabilizing modes agree
with the study of Natarajan & Acrivos (1993): the first destabilization occurs for a
stationary mode of azimuthal wavenumber m = 1 at ReA

c = 116.9, and the second
destabilization of the axisymmetric flow occurs for two oscillating modes of azimuthal
wavenumbers m ± 1 at ReB

c = 125.3. Since these critical Reynolds numbers are close
to one another, we use a multiple time scale expansion to compute analytically the
leading-order equations that describe the nonlinear interaction of these three leading
eigenmodes. This set of equations is given by imposing, at third order in the expansion,
a Fredholm alternative to avoid any secular term. It turns out to be identical to the
normal form predicted by symmetry arguments. Though, all coefficients of the normal
form are here analytically computed as the scalar product of an adjoint global mode with
a resonant third order forcing term, arising from the second order base flow modification
and harmonics generation. We show that all nonlinear interactions between modes take
place in the recirculation bubble, as the contribution to the scalar product of regions
located outside the recirculation bubble is zero. The normal form accurately predicts the
sequence of bifurcations, the associated thresholds and symmetry properties observed in
the DNS calculations.

1. Introduction
When a steady flow loses its stability owing to the variation of a control parameter, it

bifurcates towards a new state, that may be either steady or unsteady. If the bifurcation
is supercritical and a single eigenmode is responsible for the instability, the dynamics
close to the threshold will occur in the one-dimensional slow manifold spanned by the
destabilizing eigenmode. The only degree of freedom is then the amplitude along the
unstable eigenmode direction, which is ruled by a first order differential equation of
polynomial form, the normal form. When several eigenmodes are concomitantly respon-
sible for the destabilization of the steady state, the same reasoning holds, the dimension
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of the slow manifold being then equal to the number of bifurcating modes, and the nor-
mal form involves one degree of freedom per bifurcating mode. Such cases are known as
multiple codimension bifurcations, and usually require several independent parameters
to be tuned for the different modes to be simultaneously neutral. The normal form then
describes the nonlinear interactions between each bifurcating mode and reduces the dy-
namics of the whole system to a low dimensional model. For codimension larger than
one, the normal form may successfully predict complex behaviors (Crawford & Knobloch
1991). The analysis requires the following steps to be achieved:

(i) resolution of the linear stability problem to identify the marginally stable modes,

(ii) computation of the nonlinear terms governing the time-asymptotic evolution of
these modes,

(iii) truncation of the system at some given order and analysis of the resulting dy-
namics.

In many physical problems, the structure of the normal form may be directly deduced
from phase and symmetry considerations, and multiple codimension bifurcation theory
has been successfully used to unravel complex bifurcation structures (Golubitsky & Stew-
art 1985; Cross 1986; Iooss 1987; Crawford et al. 1988; Golubitsky & Langford 1988).
However, these problems were involving a base state inhomogeneous only in a single
direction, making the expansion procedure tractable. Wakes, and more generally open
flows are more complex since the base flow is usually strongly non-parallel. Analyzing
their stability thus requires to consider modes that are inhomogeneous in both the cross-
stream and the streamwise directions, called global modes in reference to their specific
streamwise structure, first introduced by Jackson (1987) and Zebib (1987) (see Chomaz
2005, for a review).

The flow past a circular cylinder is a simple example of codimension one bifurcation,
where the steady flow is destabilized by an oscillating global mode at the Reynolds
number Re = 47 (Ding & Kawahara 1999; Barkley 2006). The flow undergoes a Hopf
bifurcation, and the normal form reduces to the Stuart-Landau amplitude equation that
reads

Ȧ = λA− µA|A|2 , (1.1)

where A is the amplitude of the bifurcating mode and λ its linear complex growth rate.
In this case, the complex Landau coefficient µ has been computed by fitting methods
from experimental measurements (Provansal et al. 1987) or from direct numerical sim-
ulations (Dušek et al. 1994). In this context, the Landau coefficient is relative to the
particular point in space where the experimental or numerical signal is extracted, and
to the particular variable that is indeed measured. Recently, the Landau coefficient has
been obtained by a standard weakly nonlinear stability analysis based on the bifurcating
global mode (Sipp & Lebedev 2007), which showed that the nonlinear self-interaction was
mainly acting through base flow modification and not through harmonics generation.

We here consider the wake past a flat circular disk of diameter D, placed orthogonally
with respect to a uniform flow of velocity U∞, at low Reynolds numbers Re < 150, where
Re = DU∞/ν and ν is the kinematic viscosity of the fluid. This problem has been recently
addressed using DNS calculations by Fabre et al. (2008). When the Reynolds number is
increased from sufficiently low values, the flow undergoes several successive bifurcations.
A first steady bifurcation occurs for Re ' 115: it breaks the axisymmetry but preserves
the time invariance, leading to a 3D steady state with a reflectional symmetry. A Hopf
bifurcation then occurs for Re ' 121: it breaks the remaining reflectional symmetry and
the time invariance, leading to a fully 3D periodic state. A third bifurcation finally oc-
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curs for Re ' 140, where the flow remains unsteady, but restores a reflectional symmetry
normal to that preserved by the first bifurcation. Natarajan & Acrivos (1993) have car-
ried out a global stability analysis of the axisymmetric disk flow in the same range of
Reynolds number. These authors have shown that the axisymmetric state is successively
destabilized by a stationary mode of azimuthal wavenumber m = 1 at Re = 116.5 and by
an oscillating mode of same azimuthal wavenumber at Re = 126.5. One should note that
the DNS calculations and from the stability analysis provide consistent results concern-
ing the first steady bifurcation, but that the critical Reynolds numbers corresponding
to the onset of unsteadiness predicted by both approaches do not match. This could
have been expected, though, as the analysis of Natarajan & Acrivos (1993) considered
only small disturbances superimposed on the axisymmetric base flow, and not on the
three-dimensional state issuing from the first m = 1 bifurcation.

In this study, since the two critical Reynolds numbers associated to the destabilization
of the axisymmetric base flow are close to one another, we analytically compute the
dynamics in the three-dimensional slow manifold supported by the stationary m = 1
mode and the two oscillating m = ±1 modes identified by Natarajan & Acrivos (1993).
Owing to the specific symmetries of the flow, i.e. invariance under time translation and
O(2) symmetry, if we retain only the lowest-order nonlinear terms, the normal form
describing this interaction should read

Ȧ = λAA− µAA|A|2 − νAA|B+|2 − νA
∗A|B-|2 − χAB+B-∗A∗ , (1.2a)

Ḃ+ = λBB+ − µBB+|B+|2 − νBB+|B-|2 − ηBB+|A|2 − χBB-A2 , (1.2b)

Ḃ- = λBB- − µBB-|B-|2 − νBB-|B+|2 − ηBB-|A|2 − χBB+A∗2 , (1.2c)

where A is the complex amplitude of the stationary mode, B± are the amplitudes of
the two counter-rotating oscillating modes and the superscript ∗ stands for the complex
conjugate. The normal form (1.2) is therefore generic as being the leading-order system
of polynomial differential equations that remains invariant under a translation of t0 in
time (t → t + t0), a rotation of angle θ0 (θ → θ + θ0), and reflection (θ → −θ). This
imposes invariance of equations (1.2) under phase transformations

(A, B+, B-) −→ (A,B+eiψ, B-eiψ) (t → t + t0) , (1.3a)
(A, B+, B-) −→ (Aeiϕ, B+eiϕ, B-e−iϕ) (θ → θ + θ0) , (1.3b)
(A, B+, B-) −→ (A∗, B-, B+) (θ → −θ) , (1.3c)

that may be easily verified (see Golubitsky et al. 1988, for details). It may also be verified
that the normal form (1.2) is exhaustive, i.e. no other term of same polynomial order
can be added to any of equations (1.2) without breaking the phase invariance.

In their study, Fabre et al. (2008) have deduced, from symmetry breaking considera-
tions, a normal form of structure similar to (1.2) upon estimating all coefficients by a best
fit procedure based on their DNS calculations. It turns out that even if this approach
indeed leads to a successful model of the bifurcation sequence undergone by the real
flow, it can be shown that the actual analytical normal form is slightly different. This is
not too surprising since in the context of multiple codimension bifurcations, the number
of coefficients to be found by fitting is particularly large (here, 15 real coefficients), so
that agreement may be fortuitous. In the present study, we follow the line of thought
introduced in Sipp & Lebedev (2007) and carry out a thoroughly analytical asymptotic
expansion of the flow field based on the global modes destabilizing the axisymmetric
wake. The normal form (1.2) is then rigorously derived at the third order of a standard
weakly nonlinear analysis as the result of a Fredholm alternative applied to resonant
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terms. All coefficients of the normal form are analytically computed as the scalar prod-
uct between an adjoint global mode and a resonant forcing terms determined by the first
and second order solutions. These coefficients, which describe the nonlinear interactions
between modes, are of particular interest since they determine the effective bifurcation
sequence. Besides, we would like to emphasize here that performing the analytical deriva-
tion of this normal form provides additional insight into the flow physics. In particular,
the use of an asymptotic expansion makes it possible to investigate each nonlinear inter-
action independently. It completes the study of Fabre et al. (2008) by shedding new light
on the physical origin of the coupling terms between modes, as we show here that all
interactions take place only in the recirculating bubble, which can therefore be viewed
as the effective wavemaker. We also compute the analytical solution up to the second
order where base flow modification and harmonics forcing occur. As will be shown in § 4,
this is essential to discuss some realistic features of the bifurcated flow. The resulting
dynamics is then analyzed and compared to that observed in the DNS computations. It
turns out that our analytical study predicts with a remarkable precision the bifurcation
diagram observed in Fabre et al. (2008).

The paper is organized as follows. The problem formulation is presented in § 2. The
global linear stability analysis is presented in § 3, where we compute the leading modes
and their associated adjoint modes that are required to compute the coefficients of the
normal form. In § 4, we carry out the standard weakly nonlinear analysis: the values of all
coefficients of the normal form (1.3) are given and the associated sequence of bifurcations
is discussed and compared to that observed in the DNS calculations of Fabre et al. (2008).
The sensitivity of this sequence of bifurcations to experimental imperfections is discussed
in § 5.

2. Flow configuration and methodology
In the following, all quantities are made nondimensional using D and U∞. Standard

cylindrical coordinates r, θ and z with origin taken at the center of the disk are used.
The state vector q stands for the flow field (u, p)T , where T designates the transpose,
u = (u, v, w) is the fluid velocity where u, v and w are the radial, azimuthal and axial
components, and p is the pressure. The fluid motion is governed by the incompressible
Navier-Stokes equations

∇ · u = 0 , ∂tu + ∇u · u + ∇p− 1
Re

∇2u = 0 . (2.1)

with Re = U∞D/ν, as previously introduced. The computational domain is shown in
Figure 1. The disk is located on the axis of an enclosing cylinder of radius r = r∞. The
boundaries ∂Ωa and ∂Ωext represent respectively the revolution axis of the disk and the
boundary of the enclosing cylinder. The inlet ∂Ωin, outlet ∂Ωout are located respectively
at z = z−∞ and z = z∞ (see Table 1 for numerical values). We use the inlet conditions
u = (0, 0, 1) on ∂Ωin, no-slip conditions u = 0 on the body wall ∂Ωb and no-stress
conditions (−pI + Re−1∇u) · n = 0 on the outlet ∂Ωout. On the external boundary
∂Ωext, we impose a free slip boundary condition u = v = ∂rw = 0, so that the body
surface ∂Ωb is the only source of vorticity, as would be the case without this artificial
boundary. Note that for computational reasons, the width of the disk L cannot be chosen
strictly equal to zero, so that we use a very small width corresponding to an aspect ratio
L/D = 10−3.

The numerical approach is based on a finite element method. A given equation is
first multiplied by r to avoid the singularity on the r = 0 axis. Its associated variational
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Figure 1: Schematic of the mesh structure: z−∞, z∞ and r∞ are, respectively, the location
of the inlet, outlet and lateral boundaries. The inner solid lines delimit regions charac-
terized by different vertex densities. The black shaded area corresponds to the region of
highest vertex density and the grey shaded area is the near-wake region Ωin used for the
normalization of the global modes.

z−∞ z∞ r∞ nt DoF0 DoFm

M1 −100 200 25 397992 1802527 2603136
M2 −100 150 25 362672 1642617 2372198
M3 −70 200 25 394173 1784759 2577497
M4 −100 200 20 379576 1720445 2484574
M5 −100 200 25 290609 1316891 1901769

Table 1: Properties of the meshes as a function of parameters z−∞, z∞ and r∞, corre-
sponding to the inlet, outlet and lateral boundaries. nt is the number of triangles, DoF0

is the number of degrees of freedom for a state vector (u,w, p)T used in the base flow cal-
culations, and DoFm is the number of degrees of freedom for a state vector (u, v, w, p)T

used in the stability analysis. Meshes M1 and M2 have the same vertex densities but
with a different location of the outlet boundary. In the same way, M1 and M3 differ by
the location of the inlet boundary, while M1 and M4 differ by the location of the lateral
boundary. M1 and M5 have the same spatial extent but M5 is built with lower vertex
densities.

formulation is then derived, and spatially discretized using a mesh composed of triangular
elements. The FreeFem++ software (http://www.freefem.org) is used to generate the
triangulation with the Delaunay-Voronoi algorithm. The mesh refinement is controlled
by the vertex densities on both external and internal boundaries. Regions where the
mesh density varies are depicted in Figure 1. To avoid any computational difficulty, a
zone of width 0.05 and high vertex density (250 vertex per unit length) is defined at the
axis r = 0 and around the disk, corresponding to the black shaded area in Figure 1.
The unknown velocity and pressure fields (u, p)T are spatially discretized using a basis
of Taylor-Hood elements (P2 elements of velocities and P1 elements for pressure). The
sparse matrices resulting from the projection of the variational formulations onto the
basis of finite elements are built with the FreeFem++ software. The matrix inverses
are computed using the UMFPACK library, which consists in a sparse direct LU solver
(Davis & Duff 1997; Davis 2004). Five different meshes, denoted M1 to M5 have been
used to assess convergence in numerical results. These meshes exhibit various spatial
extents and vertex densities, detailed in Table 1. The corresponding number of degrees
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Figure 2: Steady axisymmetric base flow at the threshold of the first instability (Re =
116.9). The solid line in the flow indicates the separatrix of the recirculation zone.

of freedom for an axisymmetric and a three-dimensional state vector, such as those used
in the base flow calculations and the stability analysis respectively, are also provided. In
the following, we will focus on the finest mesh M1 to present all results. A comparison
of the results obtained with the meshes M1 to M5 is given in Appendix B.

3. Linear analysis
The aerodynamic flow field q = (u, p)T is decomposed into an axisymmetric steady

base flow q0 = (u0, 0, w0, p0)T and a three-dimensional perturbation q1 = ε(u1, v1, w1, p1)T

of amplitude ε assumed, in this section, infinitesimal.

3.1. Base flow calculations
The base flow q0 is sought as a steady axisymmetric solution of the Navier-Stokes

equations:

∇ · u0 = 0 , ∇u0 · u0 + ∇p0 − 1
Re

∇2u0 = 0 . (3.1)

On the axis ∂Ωa, the condition given by mass and momentum conservation as r → 0 for
axisymmetric solutions is u0 = ∂rw

0 = 0. An approximate guess solution q0 satisfying
the required boundary conditions is first obtained by time marching the axisymmetric
equations (2.1). The solution q0 of the steady nonlinear equations (3.1) is then obtained
using an iterative Newton method involving the resolution of simple linear problems, as
described in Barkley et al. (2002); Sipp & Lebedev (2007). In the present study, the iter-
ative process is carried out until the L2-norm of the residual of the governing equations
for q0 becomes smaller than 10−12. Figure 2 shows contours of axial velocity w0 of the
base flow for Re = 116.9. We observe a recirculation region of length ' 2.1 diameters,
developing in the lee of the disk, with negative values of the axial velocity close to the
axis reaching 60% of the free-stream velocity.

3.2. Global eigenmode analysis
At leading-order in ε, q1 = (u1, p1)T is a solution of the unsteady equations linearized

about q0 that read
B∂tq

1 +A q1 = 0 , (3.2)
where A and B are the linear operators defined by

A =
(
C(·, u0)− 1

Re∇2 ∇
∇T 0

)
, B =

(
I 0
0 0

)
, (3.3)

and C(a, b) is the advection operator ∇a · b + ∇b · a. Note that the operator C is
symmetric, i.e. C(a, b) = C(b,a). Since the base flow is axisymmetric, eigenmodes take
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the form of normal modes

q1 = q̂1(r, z)e(σ+iω)t+imθ + c.c. , (3.4)

where q1 = (û1, v̂1, ŵ1, p̂1) is the so-called global mode for which both the cross-stream
and streamwise directions are eigendirections. The azimuthal wavenumber of the global
mode is m, its growth rate and pulsation are σ and ω respectively. Substitution of the
development (3.4) in equations (3.2) leads to a generalized eigenvalue problem for σ +iω
and q̂1 that reads

(σ + iω)Bq̂1 +Amq̂1 = 0 , (3.5)
where Am is the linear operator

Am =
( Cm, 0(·,u0)− 1

Re∇m
2 ∇m

∇m
T 0

)
. (3.6)

In (3.6), ∇m is the gradient operator relative to the azimuthal wavenumber m, and
Cm, n(â, b̂) is the symmetric advection operator for a pair of normal modes â and b̂ of
respective azimuthal wavenumbers m and n, i.e. Cm, n(â, b̂) = ∇mâ · b̂+∇nb̂ · â. Owing
to the normal mode expansion (3.4), these operators are complex, since θ derivatives
introduce product by im, and a complete expansion of these operators can be found in
Appendix D. The global mode satisfies the boundary conditions

û1 = 0 on ∂Ωin ∪ ∂Ωb (inlet and body) , (3.7a)
(−p̂1I + Re−1∇mû1) · n = 0 on ∂Ωout (outlet) , (3.7b)

û1 = ∂rv̂
1 = ∂rŵ

1 = 0 on ∂Ωext (external boundary) . (3.7c)

The conditions at the axis ∂Ωa depend on the azimuthal wavenumber m: û1 = ∂rŵ
1 =

∂rp̂
1 = 0 for m = 0, ∂rû

1 = ∂rv̂
1 = ŵ1 = p̂1 = 0 for |m| = 1 and q̂1 = 0 for |m| > 2. This

eigenvalue problem is solved using an Arnoldi method based on a shift-invert strategy, as
in Ehrenstein & Gallaire (2005). Owing to the symmetries of the problem, one should note
that equations (3.5) are invariant under the (û1, v̂1, ŵ1, p̂1,m) → (û1,−v̂1, ŵ1, p̂1,−m)
transformation, so that we investigate only the case m > 0 in this section. Moreover,
if (q̂1, σ + iω) is solution of problem (3.5), then (q̂1 ∗, σ − iω) is also a solution, i.e.
eigenvalues are complex conjugates, so that all spectra in the (σ, ω)-plane are symmetric
with respect to the real axis.

In the following, 〈, 〉 is the inner product defined by 〈â, b̂〉 =
∫
Ω

â∗ ·b̂ rdrdz where â and
b̂ belong to Cn and · refers to the canonical hermitian scalar product in Cn. To normal-
ize the global modes, we define arbitrarily a near-wake domain Ωin as z ∈ [−2.5, 5.25]
and r < 2, corresponding to the grey shaded area in Figure 1. All global modes are
normalized by imposing first the phase of the radial velocity to be zero at a particular
location, namely û1(0, 1) must be real positive for m = ±1. The eigenmode energy is then
normalized to unity in Ωin by imposing that

〈
q̂1, δinBq̂1

〉
= 1, where δin is the function

defined as δin(r, z) = 1 if (r, z) ∈ Ωin and 0 otherwise. These normalization choices have
no effect on the dynamics but ease the comparison between results when the convergence
tests are carried out.

For a given global mode q̂1, we also compute its adjoint global mode q̂1† that verifies
the adjoint eigenvalue problem

(σ − iω)Bq̂1† +A†mq̂1† = 0 , (3.8)

where A†m is the adjoint of operator Am, obtained by integrating by parts system (3.5)
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(see Schmid & Henningson 2001, for details)

A†m =
(
C†m, 0(·, u0)− 1

Re∇m
2 −∇m

∇m
T 0

)
. (3.9)

C†m, n(â, b̂) = ∇nb̂
T · â − ∇mâ · b̂ is the adjoint advection operator. It is worthwhile

noting that C†m, n is not symmetric. We would like to emphasize that the terms describing
the convection of disturbances by the base flow, namely ∇mû1 · u0 and −∇mû1† · u0

have opposite signs between the direct and adjoint advection operators. As a result, dis-
turbances are convected downstream for Am and upstream for A†m, inducing a spatial
separation of direct and adjoint modes (Chomaz et al. 1990). This convective nonnor-
mality is specific to open flows (Chomaz 2005).

The adjoint boundary conditions are defined so that all boundary terms arising from
the integration by parts are nil. We obtain:

û1† = 0 on ∂Ωin ∪ ∂Ωb , (3.10a)
(u0.n)û1† + (p̂1†I + Re−1∇mû1†) · n = 0 on ∂Ωout , (3.10b)

û1† = ∂rv̂
1† = ∂rŵ

1† = 0 on ∂Ωext . (3.10c)

The condition on the axis ∂Ωa is identical to that applied to the direct global mode.
This eigenproblem is solved via the same Arnoldi method, and adjoint global modes are
normalized so that

〈
q̂1†,Bq̂1

〉
= 1. Since the adjoint problem (3.8) has been formu-

lated for continuous operators with associated adjoint boundary conditions, the spatial
discretizations of problems (3.5) and (3.8) are not hermitian to one another, because
operator B does not correspond to the scalar product in cylindrical coordinates. Conse-
quently, we check a posteriori that both problems have identical spectra, and that the
bi-orthogonality relation is satisfied for the 10 leading global modes, so that our numer-
ical procedure accurately estimates the direct and adjoint global modes.

In the linear framework, we compute the leading global modes and their adjoint global
modes, that will be used in section 4 to compute the coefficients of the normal form (1.2).
The threshold Reynolds numbers and characteristics of the destabilizing global modes
agree with the results of Natarajan & Acrivos (1993): the first instability is steady (i.e.
ωA = 0) and occurs at ReA

c = 116.9 for m = 1 and the second instability occurs at
ReB

c = 125.3 for an m = 1 oscillating mode of frequency ωB = 0.760, corresponding
to a Strouhal number StB = ωBD/(2πU∞) of 0.121. Figure 3(a) shows the eigenvalue
spectra at the first critical Reynolds number ReA

c . m = 1 modes are shown as diamonds
in the upper half-plane whereas m = 0 and m = 2 modes are shown respectively as +
and o symbols in the lower half-plane. The marginally unstable eigenvalue labelled A
vanishes at threshold and corresponds to the large closed diamond. In the following, the
eigenvector associated to this steady global mode is denoted q̂1

A. Figure 4(a) shows the
spatial structure of the axial velocity ŵ1

A: one observes a low speed region extending far
downstream. Since the azimuthal wavenumber of this global mode is m = 1, the axial
velocity perturbation is opposite on the other side of the revolution axis, which induces an
increase of the streamwise velocity of the total flow. The stationary global mode therefore
mainly induces an off-axis displacement of the wake. The associated adjoint global mode
q̂1†

A is presented in Figure 4(b). It is dominated by high magnitudes of adjoint axial
velocity ŵ1†

A within the recirculating area, the maximum value being reached close to
the separating streamline, but it is also intense far upstream of the disk. As mentioned
previously, the downstream localization of the global mode, and the upstream localization
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Figure 3: m = 0, 1, 2 eigenvalue spectra in the (σ, ω)-plane for the wake of a disk. (a)
Threshold of the first instability at ReA

c = 116.9. (b) Threshold of the second instability
at ReB

c = 125.3. All spectra are symmetric with respect to the real axis. The upper half-
plane shows m = 1 disturbances as diamonds, and the lower half-plane shows m = 0, 2
disturbances as + and o symbols, respectively. The large diamonds labelled A and B
correspond respectively to the steady and oscillating destabilizing m = 1 modes.

of the adjoint global mode result from the convective nonnormality of the linearized
Navier-Stokes operator (see Chomaz 2005). Figure 3(b) shows the eigenvalue spectra at
the second instability threshold ReB

c = 125.3. The eigenvalue corresponding to the first
destabilizing eigenmode q̂1

A has moved to the unstable (σ > 0) half-plane. Moreover, the
oscillating eigenvalue labelled B, corresponding to the large open diamond, which was in
the stable domain (σ < 0) in Figure 3(a), is now crossing the σ = 0 axis. The marginally
unstable eigenvalue iωB is associated to the eigenvector denoted q̂1

B+ , and q̂1

B- stands for
the symmetric eigenmode associated to the azimuthal wavenumber m = −1 for the same
eigenvalue iωB. Since these modes are oscillating, their eigenvectors are complex, and
Figure 5(a) shows the spatial structure of the real part of ŵ1†

B+ . One observes positive and
negative velocity perturbations alternating downstream of the disk, in a regular, periodic
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Figure 4: Steady global mode and adjoint global mode at the threshold of the first
instability, ReA

c = 116.9. (a) Spatial distribution of axial velocity ŵ1
A for the global

mode. (b) Spatial distribution of axial velocity ŵ1†
A for the adjoint global mode. The

black hue corresponds to vanishing perturbations.

Figure 5: Same as Figure (4) for the oscillating global mode at threshold. Only the real
part is shown here.

way that allows to define a local spatial wavelength of about 7 diameters. The imaginary
part of ŵ1†

B+ (not shown here) displays a similar structure, but is approximately in spatial
quadrature since its extrema are located where the real part vanishes. This global mode
corresponds therefore to a spiral perturbation in the lee of the disk, which rotates in time
at the frequency ωB. One should note that the eigenmode for the m = −1 perturbation
is similar, but has the opposite pitch and rotates in time in the opposite direction at the
same frequency ωB. As for the stationary mode, the adjoint global mode q̂1†

B+ shown in
Figure 5(b) is intense only in the recirculating area and a few diameters upstream of the
disk, where it presents a weak oscillation, and it vanishes downstream of the disk.
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4. Weakly nonlinear analysis
4.1. Presentation

Since the critical Reynolds numbers for both destabilizing modes are close to one
another, we implement here an asymptotic expansion where these three modes have the
same order of magnitude. The Reynolds number Re is assumed to vary in a range close
to the mean critical Reynolds number Rec = (ReA

c + ReB
c )/2 = 121.1. The departure

from criticality is assumed to be of order ε2. Therefore, we introduce the order unity
parameter δ, such that

1
Re

=
1

Rec
− ε2δ . (4.1)

The threshold Reynolds numbers ReA
c and ReB

c are then rescaled into the criticality
parameters δA and δB , so that

1
ReA

c

=
1

Rec
− ε2δA ,

1
ReB

c

=
1

Rec
− ε2δB . (4.2)

In practice, ε is chosen equal to 10−1, so that δA = −2.97 × 10−2 and δB = 2.77 ×
10−2. However, the results, and in particular the final bifurcation diagram, are mainly
insensitive to the precise choice of Rec and of ε, as shown in Appendix C. As mentioned in
the introduction, the weakly nonlinear analysis requires the introduction of multiple time
scales with a fast time scale t and a slow time scale t1 = ε2t. The ∂t term in equations
(2.1) is transformed into ∂t + ε2∂t1 . Note that the growth rates σA and σB are non zero
at Rec, since the stationary mode q̂1

A is slightly unstable and the oscillating modes q̂1
B±

are slightly stable. However, with the present scaling assumption, the growth rates σA,
σB of these modes differ from zero only at order ε2. We define ω0 as the frequency of
modes q̂1

B± at the mean critical Reynolds number Rec, i.e. ω0 = ωB(Rec) = 0.764, so
that at Rec:

σA = ε2σ̃A , (4.3a)
σB + iωB = iω0 + ε2σ̃B , (4.3b)

where the second order growth rates σ̃A, σ̃B are assumed to be of order unity. This
second order departure from neutrality is taken into account by replacing the leading-
order operator Ac

m = Am(Rec) defined in (3.6), for which q̂1
A and q̂1

B± are not neutral,

by the shifted operator Ãc
m = Ac

m − ε2Sm, where Sm is the shift operator defined by

S1q̂
1
A = σ̃Aq̂1

A , (4.4a)
S1q̂

1
B+ = σ̃Bq̂1

B+ , (4.4b)

S−1q̂
1

B- = σ̃Bq̂1

B- , (4.4c)

S±1q̂ = 0 for the remaining m = ±1 modes , (4.4d)
Smq̂ = 0 for all other m . (4.4e)

It is worthwhile emphasizing that Ãc
m has precisely the same spectra than Ac

m at the
critical Reynolds number Rec, excepted that q̂1

A and q̂1
B± are now neutral.

The flow field q is expanded as

q = q0 + εq1 + ε2q2 + ε3q3 + ... (4.5)

and the governing equations (2.1) then give rise to a series of equations at successive
order of ε.
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4.2. Orders 0 and 1
At order ε0, the equations are the nonlinear equations (2.1) for the Reynolds number

Rec, i.e. q0 is the steady axisymmetric solution computed, as in section 3.1, for Rec. The
equations at order ε1 are the linearized equations given by (3.2) at Rec:

B∂tq
1 + Ãc q1 = 0 , (4.6)

where Ãc is the shifted evolution operator acting in the real space, at the critical Reynolds
number Rec, obtained from Ãc

m by inverse Fourier transform in time and in the azimuthal
direction. Equations (4.6) specify that q1 is a superposition of eigenmodes destabilizing
the steady state q0:

q1 = Aq̂1
Aeiθ + B+q̂1

B+eiθ+iω0t + B-q̂1

B-e−iθ+iω0t + c.c. , (4.7)

where A is the complex amplitude of the steady mode q̂1
A, and B+ and B- are the complex

amplitudes of the oscillating mode q̂1
B+ and q̂1

B- respectively, (A,B+, B-) being, at this
stage, unknown functions of the slow time t1.

4.3. Order 2
At order ε2 we obtain the linearized Navier-Stokes equations applied to q2

B∂tq
2 + Ãc q2 = F 2 , (4.8)

forced by a term F 2 depending only on zero and first order solutions

F 2 = −
(
δ∇2u0 + C(u1, u1) , 0

)T
. (4.9)

The first term −δ∇2u0 in (4.9) is linear and arises from the Reynolds number variation,
quantified by δ and acting here on the base flow. The other contribution −C(u1, u1)
is nonlinear and is due to the transport of the first order solution q1 by itself. Since
the first order solution is made of six different contributions of respective amplitudes
A, A∗, B+, B+∗, B- and B-∗, its self-transport generates 21 different nonlinear terms.
Each of these terms, denoted F̂ 2

ije
(imθ+iωt) (the subscripts i, j standing for one of the

six first order amplitudes) exhibits a specific spatial periodicity m and frequency ω,
gathered in Table 2. These forcing terms are non-resonant, since associated to azimuthal
wavenumbers different from m = ±1, so that the forced equations (4.8) can be inverted.
The second order solution q2 is thus sought as the superposition of the response q2

δ to
the viscous forcing term −δ∇2u0 of (4.9), which describes the axisymmetric base flow
modification when the Reynolds number is varied, and of the 21 responses q̂2

ij to each
individual forcing terms F̂ 2

ij , i.e.

q2 = δq̂2
δ + |A|2q̂2

AA∗ + |B+|2q̂2
B+B+∗ + |B-|2q̂2

B-B-∗ (4.10a)

+ A2q̂2
AAe2iθ + B+B-∗q̂2

B+B-∗e2iθ + c.c. (4.10b)

+ B+A∗q̂2
B+A∗eiω0t + B-Aq̂2

B-A
eiω0t + B+B-q̂2

B+B-e2iω0t + c.c. (4.10c)

+ B+2q̂2
B+B+e2iθ+2iω0t + B-2q̂2

B-B- + c.c. (4.10d)

+ B+Aq̂2
B+A

e2iθ+iω0t + B-A∗q̂2

B-A∗e−2iθ+iω0t + c.c. . (4.10e)

Each response q̂2
ij is solution of a linear problem

(
iωB + Ãc

)
q̂2

ij = F̂ 2
ij , (4.11)
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AA∗ B+B+∗ B-B-∗ AA B+B+ B-B- B+A B+A∗ B+B- B+B-∗ B-A B-A∗

m 0 0 0 2 2 -2 2 0 0 2 0 -2
ω 0 0 0 0 2ω0 2ω0 ω0 ω0 2ω0 0 ω0 ω0

Table 2: Order 2 nonlinear forcing terms gathered by their amplitude dependency, and
corresponding azimuthal and temporal periodicity (m, ω). Nine terms have been omitted
as they are complex conjugated of the ones presented here.

with m and ω for each couple (i, j) being collected from Table (2). As already mentioned,
none of the combinations (m,ω) gathered in Table (2) is an eigenvalue in Figure 3
since none of them is m = ±1, so that iωB + Ãc are always non-degenerate linear
operators. The axial velocity components of some of the 21 forcing terms and of their
associated responses are shown in Figure 6. The transport of the stationary mode of
amplitude A by itself generates the forcing term F̂ 2

AA of azimuthal wavenumber m = 2
and zero frequency, shown in Figure 6(a), whose associated response q̂2

AA is shown in
Figure 6(b). The advection of the spiralling mode of amplitude B+ by the stationary
mode of amplitude A∗ (and vice versa) results in an axisymmetric forcing term beating
at the frequency ω0. As seen in Figures 6(c) and 6(d), the forcing term F̂ 2

B+A∗ and its
associated response q̂2

B+A∗ are nearly periodic in space with a local wavelength close to
that of the eigenmode q̂1

B+ . Finally, the advection of the spiralling mode of amplitude B+

by the co-rotating spiralling mode of amplitude B- (and vice versa) generates a second
order forcing term F̂ 2

B+B- of azimuthal wavenumber m = 2 and zero frequency presented
in Figures 6(e) and 6(f).

4.4. Order 3
The problem at order ε3 is similar to that obtained at order ε2, as the third order

solution q3 obeys the forced linear Navier-Stokes equations

B∂tq
3 + Ãcq3 = F 3 . (4.12)

The forcing term F 3 depends only on lower order solutions and reads

F 3 = −
(
∂t1q

1 − Sq1 + δ∇2u1 + C(u1,u2) , 0
)T

, (4.13)

where S is the shift operator acting in the real space obtained from the operator Sm

introduced in (4.4) by inverse Fourier transform in time and in the azimuthal direction.
The first term −∂t1q

1 in (4.13) corresponds to the slow time evolution of the unknown
amplitudes A, B+, B-, and will be referred to as the slow variation term. The second
term Sq1 comes from the fact that, at the critical Reynolds number Rec, the growth
rates of the eigenmodes are zero at leading-order, but depart from criticality at order ε2.
To ease the discussion, this term will therefore be referred to as the off-criticality term.
The third term −δ∇2u1 arises from the Reynolds number variation acting here on the
order ε1 solution. The last term −C(u1, u2) is due to the advection of the first order
solution q1 by the second order solution q2 and vice versa.

The first three forcing terms are linear and therefore resonate. The term −C(u1, u2)
splits into two contributions: the linear term −C(u1,u2

δ) takes into account the action
of the Reynolds number variation through modifications of the axisymmetric base flow,
and the nonlinear terms of various space and time periodicity generated through the
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Figure 6: Second order forcing terms and associated responses: representation of various
flow fields appearing at order ε2 in the weakly nonlinear analysis. Figures on the left
show the real part of the axial component of the forcing terms F̂ 2

ij , and figures on the
right show the real part of the associated response ŵ2

ij . (a)− (b) Flow field of amplitude
A2 (m = 2, ω = 0). (c) − (d) Flow field of amplitude B+A∗ (m = 0, ω = ω0). (e) − (f)
Flow field of amplitude B+B-∗ (m = 2, ω = 0).

combinations of the 6 contributions of the first order solution together with the 21 other
contributions of the second order solution. Each of these terms is denoted F̂ 3

ije
(imθ+iωt),

the subscripts i (resp. j) standing for the amplitude of the first order (resp. second order)
solution. Among these nonlinear forcing terms, many are resonant. This is for instance
the case of the terms corresponding to the advection of the stationary mode q̂1

A (m = 1,
ω = 0), by second order contributions satisfying (m = 0, ω = 0) (see table 2). To avoid
secular terms, or in other words, to be able to solve the expansion procedure at the
third order, compatibility conditions have to be enforced using the Fredholm alternative
(Friedrichs 1973). Specifically, the resonant forcing terms must be orthogonal to the kernel
of the adjoint linearized Navier-Stokes operator. The compatibility conditions impose A,
B+, B- to obey the relation

Ȧ = ε2
(
λ̃AA− µ̃AA|A|2 − ν̃AA|B+|2 − ν̃∗AA|B-|2 − χ̃AB+B-∗A∗

)
, (4.14a)

Ḃ+ = ε2
(
λ̃BB+ − µ̃BB+|B+|2 − ν̃BB+|B-|2 − η̃BB+|A|2 − χ̃BB-A2

)
, (4.14b)

Ḃ- = ε2
(
λ̃BB- − µ̃BB-|B-|2 − ν̃BB-|B+|2 − η̃BB-|A|2 − χ̃BB+A∗2

)
, (4.14c)

which turns out to be identical to the normal form (1.2) if all coefficients in (1.2) are
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Figure 7: Representation of various resonant forcing fields appearing at order ε3 in
the weakly nonlinear analysis. (a) Axial component of the forcing term of amplitude
B+B-∗A∗ responsible for coefficient χ̃A in equation (4.14a). (b) Coupling density field
χ̃A(r, z), defined as the scalar product between this forcing term and the adjoint global
mode q̂1†

A . (c) Real part of the axial component of the forcing term of amplitude B-A2

responsible for coefficient χ̃B in equations (4.14b) and (4.14c). (d) Real part of the cou-
pling density field χ̃B(r, z), defined as the scalar product between this forcing term and
the adjoint global mode q̂1†

B+ .

rescaled into their second-order counterparts defined as

(λA, µA, · · · , χB) = ε2(λ̃A, µ̃A, · · · , χ̃B) . (4.15a)

The values of all complex coefficients of system (4.14) are computed as scalar products
between the adjoint global modes q̂1† and the resonant forcing terms F̂ 3. For instance
the χ̃A coefficient arises from a forcing term of amplitude B+B-∗A∗, generated by three
different q1-q2 interactions:

F̂ 3

B+B-∗A∗ = −C1, 0

(
û1

B+ , û2∗

B-A

)
−C1, 0

(
û1∗

B- , û2
B+A∗

)
−C−1, 2

(
û1∗

A , û2

B+B-∗

)
. (4.16)

It can be easily checked that, for instance, the interaction between the spiralling mode
q̂1
B+ (m = 1, ω = ω0), and the axisymmetric response û2∗

B-A
(m = 0, ω = −ω0) is indeed

resonant with the stationary mode û1
A. The axial velocity component of F̂ 3

B+B-∗A∗ is
presented in Figure 7(a). This forcing is extended downstream but reaches a maximum
in the recirculating bubble. Since 〈q̂1†

A ,Bq̂1
A〉 = 1 with the present normalization, χ̃A is

given by

χ̃A =
〈
q̂1†

A , F̂ 3

B+B-∗A∗

〉
. (4.17)

It can be seen from (4.17) that the value of the second-order coefficient χ̃A is intrinsic,
i.e. it does not depend on the choice of ε, the same result pertaining to all coefficients
of the normal form (4.14). In particular, it is worthwhile noting that choosing a dif-
ferent value for ε would only result into a rescaling of the coefficients. Consequently,
all results will be hereinafter presented in terms of the second-order coefficients. Fig-
ure 7(b) shows the coupling density χ̃A(r, z) = q̂1†

A (r, z) · F̂ 3

B+B-∗A∗(r, z), such that the
coupling coefficient χ̃A reads χ̃A =

∫
Ω

χ̃A(r, z)rdrdz. One observes that the coupling
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density χ̃A(r, z) vanishes outside the recirculation bubble, since the adjoint global mode
is localized within the recirculation bubble and upstream of the disk (Figure 4b), and
the nonlinear forcing F̂ 3

B+B-∗A∗ is localized downstream (Figure 7a). This indicates that
the resonant forcing of mode q̂1

A owing to the B+B-∗A∗ interaction is efficient only in
the recirculation bubble. It is worthwhile emphasizing that this result can be generalized
to all nonlinear coefficients of the normal form (4.14), that are computed as the scalar
product of a forcing term localized downstream of the disk, with an adjoint global mode
localized upstream of the disk and in the recirculation bubble. They are therefore only
determined by a coupling that occurs within the recirculation bubble. The recirculation
region may therefore be viewed as the effective wavemaker since all nonlinear interactions
between the instability modes take place in this region. Even though nonlinear forcing
terms and nonlinear responses are all spatially extended downstream, the region outside
the recirculation bubble may be viewed as passive since values of the flow field there do
not influence the dynamics of the leading modes.

Similarly, χ̃B results from a forcing term of amplitude B-AA, whose real part of the
axial velocity component is shown in Figure 7(c). It arises from different contributions

F̂ 3

B-AA
= −C1, 0

(
û1

A, û2

B-A

)
− C−1, 2

(
û1

B- , û2
AA

)
, (4.18a)

χ̃B =
〈
q̂1†

B+ , F̂ 3

B-AA

〉
. (4.18b)

This means that the spiralling mode q̂1

B- can force the production of the counter-rotating
spiralling mode q̂1

B+ by its nonlinear interaction with the m = 2 stationary solution q̂2
AA

shown in Figure 6(b), or by interacting first with the stationary mode q̂1
A to produce the

second order solution q̂2

B-A
(m = 0, ω = ω0), which eventually interacts with q̂1

A again.

The real part of the associated coupling density field χ̃B(r, z) = q̂1
B+(r, z) · F̂ 3

B-AA
(r, z),

shown in Figure 7(d), is also localized in the recirculation region, meaning that the spi-
ralling mode q̂1

B+ is receptive to the forcing owing to the B-AA interaction only close to
the disk and in the recirculating bubble.

We obtain:

λ̃A = 2.01 + 71.4δ λ̃B = −1.85 + 76.4i + (66.7 + 9.35i)δ
µ̃A = 3.11 µ̃B = 2.42 + 0.0321i
ν̃A = 6.88− 1.11 i ν̃B = 3.13− 0.816i

η̃B = 0.955− 3.47i
χ̃A = 4.57 χ̃B = 1.62− 1.36i .

4.5. Bifurcation diagram

We set now A = |A|eiφA , B+ = |B+|eiφ+
B and B- = |B-|eiφ−B . An exhaustive description

of the solutions of system (4.14), up to ternary bifurcations, can be found in Golubitsky
et al. (1988). In this section, we comment only the solutions relevant to our problem.
The bifurcation diagram is shown in Figure 8, where the quantity Θ = |A|+ |B+|+ |B-|
is plotted as a function of the Reynolds number. Note that Θ has no particular physical
meaning but yields a convenient visualization of the bifurcation sequence. The solid thick
lines (resp. thin dashed lines) correspond to stable (resp. unstable) solutions that are of
three different kinds, as will now be explained.
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Figure 8: Theoretical bifurcation diagram associated to the normal form (4.14). Solid
(resp. dashed) lines denote stable (resp. unstable) branches.

4.5.1. Pure modes
In addition to the trivial steady axisymmetric solution (A,B+, B-) = (0, 0, 0), equa-

tions (4.14) have three types of solutions involving a single mode. The pure steady state
SS (A, 0, 0) is ruled by the real Landau equation for A

Ȧ = ε2
(
λ̃A − µ̃AA|A|2

)
, (4.19)

so that A2 = |A|2 = λ̃A/µ̃A and φ̇A = 0, and we can impose φA = 0 by choosing the phase
of the initial disturbance to be zero. The pure Hopf states RW (0, B+, 0) and (0, 0, B-) are
associated with spiralling modes, whose amplitude is governed by the complex Landau
equation for B±

Ḃ± = ε2
(
λ̃BB± − µ̃BB±|B±|2

)
, (4.20)

so that

|B±|2 =
λ̃Br

µ̃Br

, (4.21a)

φ±B = ε2
(
λ̃Bi − µ̃Bi|B±|2

)
t + φ±B

0
. (4.21b)

4.5.2. Standing waves
The standing wave SW (0, B+, B-) corresponds to the superimposition of two counter-

rotating spiralling modes of same amplitude |B±|2 governed by the amplitude equation

Ḃ± = ε2
(
λ̃BB± − (µ̃B + ν̃B)B±|B±|2

)
, (4.22)

of solutions

|B±|2 =
λ̃Br

µ̃Br + ν̃Br

, (4.23a)

φ±B (t) = ε2
(
λ̃Bi − (µ̃Bi + ν̃Bi) |B±|2

)
t + φ±B

0
. (4.23b)
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4.5.3. Mixed modes
Mixed modes MM (A,B+, B-) correspond to a superposition of the three global modes,

i.e. one stationary mode and two counter-rotating spiral modes of same amplitude |B±|.
Introducing the phase φ = φ+

B − φ−B − 2φA allows to reduce system (4.14) to a three-
dimensional polar system for |A|, |B±| and φ that reads:

˙|A| = ε2
(
λ̃A|A| − µ̃A|A|3 − (2ν̃Ar + χ̃A cos φ) |A||B±|2

)
, (4.24a)

˙|B±| = ε2
(
λ̃Br|B±| − (µ̃Br + ν̃Br) |B±|3 − (η̃Br + χ̃Br cos φ± χ̃Bi sin φ) |B±||A|2

)
,

(4.24b)

φ̇ = 2ε2
(
χ̃Br|A|2 + χ̃A|B±|2

)
sin φ . (4.24c)

The phase φ is thus solution of sin φ = 0, so that it comes from (4.24c) that φ is invariant.
The solutions of system (4.24) are such that

cosφ = ± 1 , (4.25a)

|A|2 =
λ̃A(µ̃Br + ν̃Br)− (2ν̃Ar + cos φχ̃A)λ̃Br

µ̃A(µ̃Br + ν̃Br)− (2ν̃Ar + cos φχ̃A)(η̃Br + cos φχ̃Br)
, (4.25b)

|B±|2 =
−λ̃A(η̃Br + cos φχ̃Br) + µ̃Aλ̃Br

µ̃A(µ̃Br + ν̃Br)− (2ν̃Ar + cos φχ̃A)(η̃Br + cos φχ̃Br)
, (4.25c)

φ±B (t) = ε2
(
λ̃Bi − (µ̃Bi + ν̃Bi)|B±|2 − (η̃Bi + χ̃Bi cos φ)|A|2

)
t± (φ + 2φA)/2 ,

(4.25d)

so that the mixed modes come in two different states, referred to as MM0 (cos φ = 1) and
MMπ (cos φ = −1) respectively. Note that since coefficient χ̃A is real, equation (4.14a)
leads to φ̇A = 0, so that we can again impose φA = 0 without particularizing the solution
of the system.

4.6. Bifurcating modes
Unless otherwise specified, all flow fields presented in this section refer to the second

order nonlinear solution q = q0+εq1+ε2q2, the term of order ε2 being essential to discuss
some realistic features. For the present coefficient values, the domains of existence and
the stability of the different modes are shown in Figure 8.

(a) For low Reynolds numbers Re < 117.1, the trivial steady axisymmetric solution
Θ = 0 is stable. It exhibits an infinite number of symmetry planes.

(b) The first bifurcation occurs at Res = 117.1, where the trivial state bifurcates to the
pure steady state SS. The threshold of this bifurcation, for which λ̃A = 0, departs slightly
from the critical Reynolds number issuing from the direct stability analysis ReA

c , as it
is obtained by considering the linear approximation of the growth rate. As discussed
previously, the stationary mode that bifurcates corresponds to a shift of the wake in
one direction, associated with the appearance of a pair of longitudinal vortices. If one
only looks at the first order solution, the longitudinal vortex dipole is centered, but the
asymptotic second order solution allows to describe the off-axis displacement of the dipole
under its self-induction (Figures 9a and 9b). Figure 9(a) shows cross-sectional contour
plots of the streamwise vorticity at a Reynolds number Re = 118.5 above threshold, the
section being taken 20 diameters downstream of the disk. We observe a counter-rotating
vortex dipole which is reminiscent of that observed experimentally in axisymmetric wakes
in this regime (Thompson et al. 2001), and usually designated as ‘vortex threads’. Note
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Figure 9: Streamwise vorticity of the SS-mode. (a) Cross-sectional contours of streamwise
vorticity, computed at the bifurcation threshold ReA

c , at the axial position z = 20. (b) For
the same axial position, trajectory of the vortex core in the (x, y)-plane as the Reynolds
number is increased in the range 117.1 < Re < 123, for the solution computed up to
the second order. This lateral shift of the longitudinal vortex dipole is due to the self-
induction of the perturbation, accounted for by the second harmonic term q̂2

AA in the
asymptotic expansion (4.10).

that the cores of the vortex dipole, defined as the points of extremal streamwise vorticity
of q, are located off the centreplane x = 0 at threshold, as each vortex induces a velocity at
the centreline of the other, hence causing them to be convected away from the centreplane.
This nonlinear effect is shown in Figure 9(b), where the position of the vortex core in
the (x, y) plane is plotted as a function of the Reynolds number. The vertical position of
the core barely changes, whereas the maximum horizontal deviation is zero at threshold
and increases when the Reynolds number is increased, i.e. when the amplitude of the
perturbation is increased. It finally reaches approximately 0.1 disk diameter for Re =
123. In the present asymptotic expansion procedure, this effect is taken into account
through the second order term C1, 1(q̂1

A, q̂1
A) corresponding to the generation of the m = 2

harmonic q̂2
AA. Indeed, when the nonlinear contribution of this harmonic is removed, the

vortex dipole remains on the y-axis (grey circular symbol in Figure 9b). When considering
the flow field, these vortex threads break the reflectional symmetry with respect to the
(y, z)-plane but preserve that with respect to the (x, z)-plane, as evidenced by the axial
velocity fields of the saturated flow field shown in Figure 10: one thus observes that
Figures 10(a) and 10(c), showing the (x, z)-plane, are not symmetric with respect to the
(y, z)-plane, whereas Figure 10(b) and 10(d), showing the (y, z)-plane, are symmetric with
respect to the (x, z)-plane. The breaking of the rotational symmetry is also evidenced
in Figure 11, which simulates an experimental dye visualization and shows numerically
computed dye lines emitted from the disk surface and transported by the second order
analytic solution. Note that the symmetry plane can be arbitrarily rotated as the phase
φA has been here arbitrarily selected.

(c) A second bifurcation occurs at ReA
π = 123.7, where the SS-state bifurcates to the

MMπ-branch where cos φ = −1 (φ = π). At threshold, the SS-branch loses its stability
to disturbances of small amplitudes |B+| = |B-| = |B±|, their second-order growth rate
being given by

σ̃A
π = λ̃Br − (η̃Br − χ̃Br)

λ̃A

µ̃A

. (4.26)
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Figure 10: (a) − (b) Streamwise velocity ŵ and (c) − (d) streamlines of the SS solution,
expanded up to the second order (i.e. q = q0 + εq1 + ε2q2) at Re = 123. (a) − (c)
x, z)-plane. (b)− (d) (y, z)-plane.

Figure 11: Numerically computed dye lines corresponding to the second order SS solution
shown in Figure 10. The dark grey line represents the revolution axis and the wake has
moved off-axis only in the (x, z) side view.

In the present case, the mode of invariant phase φ = π destabilizes first the SS-branch
since χ̃Br is positive (see Golubitsky et al. 1988, for more details) and the Hopf bifurcation
from the SS branch occurs in favor of the MMπ mode. The resulting pattern breaks the
reflectional symmetry of the SS-mode with a periodic flapping of the wake in the (y, z)-
plane, associated with a shedding of vortices, as seen in Figure 12, showing the axial
velocity component in the (x, z) and (y, z)-planes for the Reynolds number Re = 136.
The dye lines computed using the periodic flow given by the second order asymptotic
expansion are shown in Figure 12, and illustrate the loss of all symmetries of the flow.
Moreover, Figure 12 demonstrates the ability of such asymptotic expansion to represent
complex flows with dye lines exhibiting realistic knitted hairpin structures. Were χ̃Br

negative, then the SS mode would have bifurcated to the MM0-branch. In the present
case, this branch is not selected and is unstable. Still, the corresponding numerical dye
lines are shown in Figure 16 for comparison at the same Reynolds number Re = 136,
although one should keep in mind that the resulting flow is unstable and should not be
observed.

(d) A third bifurcation occurs at ReB
π = 143.7, where the MMπ-branch bifurcates to

the SW-branch, where A = 0. The critical Reynolds number is found by considering
the backward bifurcation from the SW to the MMπ states, i.e. by studying how the
SW-branch loses its stability to disturbances of small amplitude |A|, whose second-order
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Figure 12: Flow after the second bifurcation: axial velocity w of the MMπ solution,
expanded up to the second order - Re = 136. (a) (x, z)-plane. (b) (y, z)-plane.

Figure 13: Numerically computed dye lines based on the asymptotic expansion up to the
second order, corresponding to the MMπ solution shown in Figure 12. (a) (x, z)-plane:
the x −→ −x symmetry is broken by a drift of the wake towards positive values of x
downstream of the disk. (b) (y, z)-plane. (c) 3D representation.
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Figure 14: Flow after the third bifurcation: axial velocity w of the SW solution, expanded
up to the second order - Re = 144. (a) (x, z)-plane. (b) (y, z)-plane.

Figure 15: Numerical dye lines corresponding to the SW solution shown in Figure 14. (a)
(x, z)-plane: the x −→ −x symmetry is recovered. (b) (y, z)-plane. (c) 3D representation.

growth rate is given by

σ̃B
π = λ̃A − (2ν̃Ar − χ̃A)

λ̃Br

µ̃Br + ν̃Br

. (4.27)

As reported in Golubitsky et al. (1988), the SW-branch, rather than the RW-branch, is
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selected here, since ν̃Br > µ̃Br. The condition for this bifurcation to occur is χ̃A > 0,
i.e. the development of the standing wave must restabilize the stationary eigenmode
q̂1

A, which is the case here (more details on the branch selection point can be found in
Appendix A). Views of the axial velocity component at the Reynolds number Re = 144
are shown in Figure 14, and the associated numerical dye lines at this Reynolds number
are shown in Figure 15. Comparing to the analogous representation of the MMπ-branch
shown in Figures 12 and 13, the difference may appear subtle, but the symmetry with
respect to the (y, z)-plane is recovered, as shown in Figures 14(a) and 15(a), whereas the
wake was shifted up in Figures 12(a) and 13(a).

4.7. Comparison with the DNS calculations
Direct numerical simulations of the wake of a circular disk placed normal to a uniform

flow have been performed by Fabre et al. (2008). In this study, it has been observed
that, as the Reynolds number is increased, the flow undergoes a sequence of successive
bifurcations, each state being characterized by specific time and space symmetry breaking
or recovering. These authors report a first bifurcation at the Reynolds number Res ' 115,
leading to a steady state with a reflectional symmetry, corresponding to the present
SS-branch. Then, a Hopf bifurcation is found for ReA

π ' 121, leading to a so-called
reflectional symmetry breaking state, characterized by the periodic shedding of vortices
twisted around the symmetry axis, with no symmetry plane. The bifurcation threshold
and symmetry properties therefore agree with that of the present MMπ-branch. Finally,
a third bifurcation is observed for ReB

π ' 140 and allows the flow to recover a planar
symmetry, the recovered symmetry plane being found to be orthogonal to that initially
selected in the steady state. This bifurcation threshold and symmetry properties agree
with that of the present SW-branch.

The whole bifurcation sequence, including the third bifurcation, predicted by the
present asymptotic expansion matches qualitatively and quantitatively for threshold val-
ues with that found in the DNS calculations. Note that as mentioned in Section 1, there
exist other techniques to compute the coefficients of the normal form (4.14). For in-
stance, one could investigate experimentally or numerically the transient dynamics at
various Reynolds numbers. In the case of the cylinder wake, such procedure has allowed
Provansal et al. (1987) to compute with accuracy the Landau coefficient associated with
the Hopf bifurcation. Though, such methods can be expected to also yield results in good
agreement with that presented here, since we show in Appendix C that the sensitivity
of the bifurcation diagram to small variations in the different coefficients is remarkably
small.

4.8. Recirculation length and Strouhal number evolution
We investigate now the impact of the bifurcation sequence on the recirculation length

and frequency of the bifurcated flow. Figure 17(a) shows the evolution of the recirculation
length as a function of the Reynolds number. The vertical grey lines stand for the different
bifurcation thresholds. The solid line corresponds to that of the mean flow obtained
by time and azimuthal average, given in the present formalism by the axisymmetric
stationary solution up to the second order

q = q0 + ε2
(
δq̂2

δ + |A|2q̂2
AA∗ + |B+|2q̂2

B+B+∗ + |B-|2q̂2

B-B-∗

)
, (4.28)

and the dashed line corresponds to that of the axisymmetric base flow obtained as
q0 + ε2δq̂2

δ . The results sketched in this Figure show that increasing the Reynolds num-
ber yields an increase in the recirculation length of the base flow. Figure 18 shows the
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Figure 16: Numerical dye lines corresponding to the unstable MM0 solution expanded up
to the second order - Re = 136. (a) (x, z)-plane. (b) (y, z)-plane. (c) 3D representation.

axial velocity component ŵ2
δ of the base flow modification owing to the variation of the

Reynolds number. It can be seen that the increase in the recirculation length is due to
ŵ2

δ being negative in the wake. It is possible to note that on the SS-branch, this effect is
exactly counterbalanced by the positive values of ŵ2

AA∗ , so that the overall recirculation
length remains almost constant between Res and ReA

π . For Reynolds larger than ReA
π ,

the positive values of ŵ2
AA∗ and ŵ2

B±B±∗ in the wake (not shown here) become dominant
and the overall recirculation length continuously decreases down to 1.8 disk diameters.
Note that in the case of the wake past a circular cylinder, a similar decrease of the re-
circulation length as the Reynolds numbers is increased above the critical value Re = 47
has been shown to arise due to the strong mean flow correction induced by the existence
of an unstable mode (Zielinska et al. 1997).

Another consequence of this successive bifurcation scenario is the prediction of the
frequency at the onset of unsteadiness. The frequency of the bifurcated flow is given by
ω = ω0+ε2ω̃nl where ω̃nl is the second-order nonlinear correction obtained from equations
(4.23b) and (4.25d) as φ̇±B = ε2ω̃nl. Figure 17(b) shows the evolution of the Strouhal
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Figure 17: (a) Recirculation length Lr for the mean flow as a function of the Reynolds
number. (b) Strouhal number St of the unsteady flow as a function of the Reynolds
number.

Figure 18: Axial velocity component ŵ2
δ of the base flow modification owing to the vari-

ation of the Reynolds number. The solid line in the flow indicates the separatrix of the
recirculation zone.

number St = Dω/(2πU∞) as a function of the Reynolds number. The continuous line
represents the frequency of the selected MMπ and SW modes, and the dashed lines
represent the frequency of the unstable SW and RW modes. As already commented, the
bifurcation from the nonlinear SS-branch to the MMπ solution occurs earlier than that
from the axisymmetric state to the oscillating modes. The remarkable feature is that the
Strouhal number at the bifurcation is lower than that predicted solely by the stability
analysis of the axisymmetric state by approximately 10 % (0.11 at ReA

π on the MMπ-
branch and 0.12 at ReB

c on the SW-branch). This provides a simple explanation for the
discrepancy between the shedding frequency predicted by the linear stability theory and
by the full Navier-Stokes computations, as mentioned in Fabre et al. (2008).

5. Influence of external noise on the sequence of bifurcations
In experimental set-ups, the geometry of the apparatus, and in particular supporting

devices, induce steady perturbations that may affect the bifurcation properties. In this
section, we investigate the sensitivity of the theoretical bifurcation diagram shown in Fig-
ure 8 to such perturbations. We consider that the imperfections act as a small-amplitude
steady forcing term in the Navier-Stokes equations, that now read

∇ · u = 0 , ∂tu + ∇u · u + ∇p− 1
Re

∇2u = fs , (5.1)
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Figure 19: Bifurcation diagram for various forcing amplitudes |αf |.

where fs is the steady forcing term, which, anticipating on the dominant balance, may
be taken of order ε3. The associated disturbance fs can then be decomposed into the
superposition of perturbations of various azimuthal wavenumbers:

fs = ε3
∞∑

m=0

f̂m
s (r, z)eimθ . (5.2)

Being assumed of order three in ε, this steady external forcing directly adds on to the
third order forcing term in expansion (4.13). Among all contributions arising from fs,
only f̂1

s is resonant and adds the new term

αf =
〈
q̂1†

A , f̂1
s

〉
(5.3)

to the amplitude equation (4.14a) for the stationary mode q̂1
A, so that the perturbed

system reads

Ȧ = ε2
(
αf + λ̃AA− µ̃AA|A|2 − ν̃AA|B+|2 − ν̃∗AA|B-|2 − χ̃AB+B-∗A∗

)
, (5.4a)

Ḃ+ = ε2
(
λ̃B − µ̃BB+|B+|2 − ν̃BB+|B-|2 − η̃BB+|A|2 − χ̃BB-A2

)
, (5.4b)

Ḃ- = ε2
(
λ̃B − µ̃BB-|B-|2 − ν̃BB-|B+|2 − η̃BB-|A|2 − χ̃BB+A∗2

)
. (5.4c)

Interestingly, for |B±| = 0, the imaginary part of equation (5.4a) reduces to

φ̇A =
|αf |
|A| sin(φf − φA) , (5.5)

where φf = arg(αf ), so that a steady solution requires that φA = φf ± π. The plane
corresponding to the symmetry lost at the first bifurcation threshold is no more arbitrary,
but is selected by the forcing term, even if of very small amplitude (order ε3). Figure 19
shows the perturbed bifurcation diagrams for |αf | = 2.5×10−2 and 10−1. The first steady
bifurcation degenerates into an imperfect bifurcation, so that the amplitude A of the
steady mode q̂1

A is non-zero even at Reynolds numbers lower than the first threshold. The
Hopf bifurcation from the SS to the MMπ-branch is preserved and occurs at a Reynolds
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number very close to the threshold ReA
π = 123.7 found in the unperturbed case: we obtain

ReA∗
π = 123.6 for |αf | = 2.5× 10−2 and 123.4 for |αf | = 10−1. The bifurcation from the

MMπ to the SW-branch also degenerates into an imperfect bifurcation, so that the flow
ultimately remains three-dimensional without recovering its lost reflectional symmetry,
even for very low forcing amplitudes.

6. Conclusion

In this study, we have considered the nonlinear dynamics of the wake of a circular
disk placed normal to a uniform flow. The performed linear stability analysis agrees with
the results of Natarajan & Acrivos (1993). The first destabilization of the axisymmetric
steady flow occurs for a stationary global mode of azimuthal wavenumber m = 1 and the
second destabilization occurs for two oscillating global modes of azimuthal wavenumbers
m = ±1. Since the critical Reynolds numbers for these three bifurcating modes are close
to one another, we have assumed that the nonlinear dynamics close to these threshold
Reynolds numbers could be described by the slow manifold spanned by the three desta-
bilizing eigenmodes. To derive rigorously the normal form governing the dynamics in
the slow manifold, a multiple time scale expansion has been carried out. In this proce-
dure, the first order solution is made of the three modes with unknown amplitudes. The
second order is decomposed into the base flow modification owing to the variation in
the Reynolds number and harmonics generated by the nonlinear self-interaction of the
first order solution. At third order, resonant terms are generated and the resulting solv-
ability conditions impose the nonlinear equations that must be satisfied by the unknown
amplitudes, the so-called normal form. Coefficients of the normal form have been system-
atically computed. They are given by the scalar product between a resonant forcing term
arising at the third order and the adjoint of the forced mode. Owing to the convective
nonnormality of the linearized Navier-Stokes operator, we have shown that strikingly,
the region where all nonlinear interactions take place is located within the recirculating
bubble. Analyzing the dynamics resulting from the normal form, we find that the wake
undergoes a first bifurcation for Re=117.1, where the axisymmetry is lost but the time
invariance is preserved, leading to a 3D steady state with a reflectional symmetry. A
Hopf bifurcation then occurs for Re=123.7, where both the remaining reflectional sym-
metry and the time invariance are broken, leading to a fully 3D periodic state. A third
bifurcation then occurs for Re=143.7, where the flow remains unsteady, but recovers the
reflectional symmetry lost at the first bifurcation threshold. The nontrivial bifurcation
sequence involving nonlinear interactions between unstable modes of the axisymmetric
base flow agrees remarkably with the recent observations made by Fabre et al. (2008)
using direct numerical simulations. These authors have reported three successive bifur-
cations at Reynolds numbers Re ' 115, 121 and 140, giving rise to bifurcated states with
symmetry features identical to the ones found in this study. Furthermore, the frequency
they have observed for the mixed state is lower than the frequency of the oscillating
mode at threshold, an effect that results from the existence of the MMπ mixed mode in
the present study. This suggests that the 3D dynamics of the whole system is efficiently
captured using a reduced order model based on the destabilization of the axisymmetric
steady state.
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u1 - u2 ∇u1 · u2 ∇u2 · u1 C(û1, u2)
A - B-A 1.88 −0.747 1.14
B- - A2 0.495 −0.0105 0.485

χ̃Br 2.38 −0.758 1.62

Table 3: Detail of the different nonlinear interactions involved in the χ̃Br coefficient of
normal form (4.14).

u1 - u2 ∇u1 · u2 ∇u2 · u1 C(u1, u2)
A∗ - B+B-∗ 1.80 0.281 2.08
B-∗ - B+A∗ 1.72 −0.474 1.25
B+ - B-∗A∗ 1.72 −0.474 1.25

χ̃A 5.24 −0.667 4.57

Table 4: Detail of the different nonlinear interactions involved in the χ̃A coefficient of
normal form (4.14).

Appendix A. Analysis of the interactions selecting the bifurcation
scenario

In this appendix, we try to provide more details on the branch selection point intro-
duced in section 4.6. As previously mentioned, the Hopf bifurcation occurring on the
SS-branch selects either the MM0 or the MMπ-branch, depending only on the sign of the
coefficient χ̃Br. From (4.18), χ̃B can be decomposed into

χ̃B = −
〈
q̂1

B- , C1, 0

(
û1

A, û2

B-A

)〉

︸ ︷︷ ︸
A-B-A

−
〈
q̂1

B- , C−1, 2

(
û1

B- , û2
AA

)〉

︸ ︷︷ ︸
B--A2

, (A 1)

χ̃Br being determined by the real parts of these two scalar products. In the first two lines
of Table 3, we detail these specific interactions by computing separately the contribution
in the scalar product arising from the transport of q1 by q2, namely referred to as
column ∇u1 ·u2 and that arising from the transport of q2 by q1, referred to as column
∇u2 · u1. For each line, the sum of these contributions, corresponding to the real part
of the associated scalar product in (A 1) is given in the last column C(u1, u2). For each
column, the sum of all contributions has also been computed and the result is given in
the last line, where one ultimately retrieves the value of χ̃Br already given in Section 4.4.
Interestingly, it can be seen that both interactions select the MMπ-branch through the
∇u1 · u2 term, i.e. the transport of the first order modes by the second order modes,
whereas the ∇u2 · u1 contributions are negative and would tend to select the unstable
MM0-branch.

Similarly, the coefficient χ̃A, whose sign determines the bifurcation from the MMπ to
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σA σB ωB

M1 5.3× 10−6 4.7× 10−6 0.7604
M2 −9.9× 10−5 −9.0× 10−5 0.7605
M3 −5.5× 10−5 −4.0× 10−5 0.7604
M4 1.3× 10−5 1.6× 10−5 0.7605
M5 8.9× 10−5 6.6× 10−5 0.7604

Table 5: Dependence of the eigenvalues on the different meshes characterized in Table 1.
The real eigenvalue σA is computed at ReA

c = 116.9 and the complex eigenvalue σB +iωB

is computed at ReB
c = 125.3.

µ̃A ν̃Ar ν̃Ai χ̃A µ̃Br µ̃Bi ν̃Br ν̃Bi η̃Br η̃Bi χ̃Br χ̃Bi

M1 3.11 6.88 −1.11 4.57 2.42 0.0321 3.13 −0.816 0.955 −3.47 1.62 −1.36
M2 3.11 6.88 −1.11 4.57 2.42 0.0332 3.13 −0.814 0.955 −3.47 1.62 −1.36
M3 3.11 6.88 −1.11 4.57 2.42 0.0329 3.13 −0.815 0.955 −3.47 1.62 −1.36
M4 3.11 6.88 −1.11 4.57 2.42 0.0320 3.13 −0.817 0.955 −3.47 1.62 −1.36
M5 3.11 6.88 −1.11 4.56 2.42 0.0310 3.13 −0.807 0.962 −3.47 1.62 −1.36

Table 6: Coefficient values of normal form (4.14) obtained for the different meshes char-
acterized in Table 1.

the SW-branch, is decomposed into the sum of three scalar products reading

χ̃A =−
〈
q̂1

A , C1, 0

(
û1

B+ , û2∗

B-A

)〉

︸ ︷︷ ︸
A∗-B+B-∗

−
〈
q̂1

A , C1, 0

(
û1∗

B- , û2
B+A∗

)〉

︸ ︷︷ ︸
B-∗-B+A∗

−
〈
q̂1

A , C−1, 2

(
û1∗

A , û2

B+B-∗

)〉

︸ ︷︷ ︸
B+-B-∗A∗

.
(A 2)

These specific interactions are detailed in Table 4, where we have separated the contri-
bution arising from the transport of q2 by q1 from that arising from the transport of q1

by q2. Again, the sign of χ̃A is fully determined by the nonlinear term ∇u1 · u2, i.e. by
the transport of the first order modes by the second order modes.

Appendix B. Sensitivity of the results to mesh spacing
The eigenvalues, as well as the nonlinear coefficients of normal form (4.14) have been

calculated for the five meshes M1 to M5, differing by the location of the external bound-
aries and by the vertex densities. Results are given in table 5 for the values of the linear
growth rate σ and frequency ω at threshold, for both eigenmodes q̂1

A and q̂1
B± . Even for

the coarser mesh M5, the growth rate is zero down to the fourth digit, and the frequency
of the oscillating mode is converged down to the third digit. On table 6, the coupling
coefficients of normal form (4.14) are compared for the different meshes. Even for this
very involved computations, coefficients are converged down to the third digit. Therefore,
we can conclude that the present work is precise down to better than 1%. Note that this
is the numerical precision but not the convergence of the asymptotic expansion, whose
precision increases as |Re−Rec| decreases.
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Figure 20: Bifurcation diagram obtained for different choices of the reference Reynolds
number Rec = 116.9, 121.1 and 125.3.

Appendix C. Comparison of bifurcation diagrams obtained with
various choices of the reference Reynolds number

Figure 20 presents the bifurcation diagram obtained for different choices of the refer-
ence Reynolds number Rec. Computations for Rec = 116.9 and Rec = 125.3 yield slightly
different nonlinear coefficients, resulting in diagrams in good agreement with each other
(see Figure 20). It can be seen that the choice of Rec has no significant impact on the
dynamics, both in terms of mode selection and symmetry breaking. We find a small ef-
fect on the bifurcation thresholds related to the MMπ-branch: the second threshold ReA

π

varies by less that 0.5%, from 123.3 to 124.4, and the third threshold ReB
π varies by

approximately 3 %, from 140.9 to 146.7. This sensitivity is remarkably small since the
expansion procedure is meant for small departures from threshold, which is no more the
case at the third bifurcation threshold ReB

π .

Appendix D. Expression of the complex differential operators
For a normal mode â of azimuthal wavenumber m, the gradient operator and the

velocity gradient tensor respectively read

∇m =




∂r
im
r
∂z


 , ∇mâ =




∂rû
im
r û− 1

r v̂ ∂zû
∂rv̂

im
r v̂ + 1

r û ∂z v̂
∂rŵ

im
r ŵ ∂zŵ


 . (D 1)

For a couple of normal modes â and b̂ of respective azimuthal wavenumbers m and n,
the general form of the linearized advection operator Cm, n(â, b̂) therefore reads

Cm, n(â, b̂) =



ûb∂rûa + ûa∂rûb + i
r (mv̂bûa + nv̂aûb)− 2

r v̂bv̂a + ŵb∂zûa + ŵa∂zûb)
ûb∂rv̂a + ûa∂rv̂b + i

r (m + n)v̂bv̂a + 1
r (v̂bûa + v̂aûb) + ŵb∂z v̂a + ŵa∂z v̂b

ûb∂rŵa + ûa∂rŵb + i
r (mv̂bŵa + nv̂aŵb) + ŵb∂zŵa + ŵa∂zŵb


 .

(D 2)
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The linearized advection operator used in the order one problem (3.6) now reads

Cm, 0(û
1, u0) =




û0∂rû
1 + û1∂rû

0 + i
r mv̂1û0 + ŵ0∂zû

1 + ŵ1∂zû
0)

û0∂rv̂
1 + 1

r v̂1û0 + ŵ0∂z v̂
1

û0∂rŵ
1 + û1∂rŵ

0 + i
r mv̂1ŵ0 + ŵ0∂zŵ

1 + ŵ1∂zŵ
0


 . (D 3)

Finally, the adjoint linearized advection operator used in the adjoint problem (3.8)
reads

C†m, 0(û
1,u0) =




−u0∂rû
1 + û1∂ru

0 − w0∂zû
1 + ŵ1∂rw

0

−u0∂rv̂
1 + 1

r v̂1u0 − w0∂z v̂
1

−u0∂rŵ
1 + û1∂zu

0 − w0∂zŵ
1 + ŵ1∂zw

0


 . (D 4)
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CHAPTER
FIVE

GLOBAL MODES IN A COMPRESSIBLE
AFTERBODY FLOW

This chapter takes the form of an article in preparation. It presents a consistent
theoretical formalism for the study of global modes up to the high subsonic regime.
The latter formalism is applied to a compressible afterbody flow, for which the global
modes of largest growth rates are identified and compared to that introduced in
chapter 3 for incompressible flows. The effect of compressibility is investigated, and a
physical interpretation is proposed. Results suggest that the underlying mechanisms
are nonparallel in essence, thus outlining the importance of investigating wake flows
in the global approach of stability.

keywords: compressible flows, global stability, adjoint-methods, nonnormality,
sensitivity analysis.
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A general theoretical formalism is developed in this paper for the study of global eigen-
modes in complex compressible flows, up to the high subsonic regime. It is based on the
sensitivity analysis to base flow modifications, that aims at predicting the variations of
a given eigenvalue owing to a modification of the base flow, and relies on the evaluation
of gradients using adjoint methods.

We present first a unified formalism, valid for incompressible and compressible flows,
that generalizes sensitivity concepts originally formulated by Bottaro et al. (2003) and
Marquet et al. (2008b). This theoretical framework is then applied to a compressible
afterbody flow. We find that increasing the Mach number induces an increase of the
recirculation length of the steady base flow as the result of a purely inviscid mechanism,
triggered by the variation of the pressure gradient along the separation line. A global
stability analysis is carried out, and we find that whatever the value of the Mach num-
ber up to M = 0.7, a first instability occurs for a stationary global mode of azimuthal
wavenumber m = 1, and a subsequent instability occurs for an oscillating global mode
of azimuthal wavenumber m = 1. This bifurcation sequence is reminiscent of that docu-
mented by Natarajan & Acrivos (1993) in the incompressible wake past a sphere and a
disk. For both global modes, the adjoint global modes and sensitivity functions to base
flow modifications are computed. Owing to the convective nonnormality of the evolution
operator, the active zones are found to be located within the recirculating bubble which
thus may be identified as the ‘wavemaker’ region, where the characteristics of the flow
determines the properties of the instability.

The boundary separating the unstable and stable domains in the (M,Re)-plane have
been determined. We show that an increase of the Mach number induces a stabilization of
both eigenmodes, owing to a modification of the base flow. This effect is then investigated
in the light of the sensitivity analysis, and a physical interpretation is proposed, based
on the competition between production and downstream advection of disturbances. We
show that increasing the Mach number mainly enhances the downstream advection of
the disturbances. It turns out that this mechanism is strongly non-parallel, as it involves
both the cross-stream and streamwise momentum components. We also find that the
same mechanism induces an additional stabilization by weakening the production of
disturbances.
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1. Introduction

Predicting the bifurcation from a steady to an unsteady state is a problem of crucial
importance in many engineering flows. The transonic flow past a launcher afterbody is
characterized by a massive separated area that induces large-scale unsteadiness result-
ing in high fluctuating dynamic loads. These oscillations can trigger a response of the
structural modes termed buffet, that can be detrimental to the engineering application.
The prediction for the occurrence of these undesirable flow conditions is thus needed to
guide future designs, in order to improve the aerodynamic performances and reliability
of launch vehicles. To alleviate or control such unsteadiness, a physical understanding of
the underlying mechanisms is also required.

Large-scale structures in axisymmetric wakes have been studied experimentally and nu-
merically for different geometries of revolution, including spheres, disks or bullet-shaped
bodies (Achenbach 1974; Fuchs et al. 1979; Berger et al. 1990; Siegel & Fasel 2001; Sevilla
& Mart́ınez-Bazàn 2004). It has been generally acknowledged that this class of flow is
dominated by an instability of the helical mode, resulting in the low-frequency shedding
of large-scale coherent structures in the form of either one or two counter-rotating modes
of azimuthal wavenumbers m = ±1, corresponding to a flapping of the wake in a fixed
plane. Low Strouhal numbers based on the body diameter of order 0.1− 0.2 have been
reported. Though, these studies have not considered the transition to unsteadiness, and
have rather focused on the properties of the unsteady flow. Indeed, finding the boundary
between steady and unsteady flow conditions is not easily accessible using experimen-
tal set-ups or numerical simulations, as this would require either precise experimental
measurements or direct numerical simulations to be carried out over a wide range of
control parameters (Reynolds and Mach number, angle of attack...). Moreover, close to
the bifurcation threshold, disturbances grow or decay over large time scales, thus further
increasing the complexity of the task.

An alternative is to predict the onset of large-scale flow unsteadiness using the stability
theory, that rely on the existence of a steady base flow solution about which perturba-
tions are superimposed. The stable or unstable nature of these perturbations is then
determined by resolving a classical eigenvalue problem. In the past, numerous studies
have been conducted on the stability of parallel base states, i.e. base flows that are
inhomogeneous only in the cross-stream direction, thus defining the so-called local sta-
bility. Though, wakes, and more generally open flows, are more complex since the base
flow is usually strongly non-parallel. Analyzing their stability thus requires to consider
eigenmodes that are inhomogeneous in both the cross-stream and the streamwise di-
rections, called global modes in contrast to the local analysis of parallel flows. Global
stability has been extensively used to study the problem of vortex-shedding in the in-
compressible flow past a circular cylinder, starting with Zebib (1987) and Jackson (1987)
(see also Ding & Kawahara 1999; Barkley 2006; Sipp & Lebedev 2007). Since then, it
has been used to study a large variety of open flows (see Theofilis 2003, for a review),
though, the global stability of axisymmetric open flows has received less attention than
its two-dimensional counterparts. Natarajan & Acrivos (1993) have investigated the in-
compressible axisymmetric wake past a disk and a sphere, and have shown that both
dynamics bear similarities: at low Reynolds numbers, the steady separated flow field is
axisymmetric and consists of a toroidal recirculation eddy past the body. A first insta-
bility is stationary and involves a global eigenmode of azimuthal wavenumber m = 1.
The associated bifurcation, breaking the axisymmetry but preserving the time invari-
ance, leads to a three-dimensional steady state. A second instability then occurs at a
larger Reynolds number, for m = ±1 oscillating global eigenmodes that breaks the time
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invariance. From Direct Numerical Simulations (DNS) and experimental observations, it
turns out that this second instability mode dominates the dynamics of the fully three-
dimensional flow at large Reynolds numbers, hence explaining the occurrence of a fully
three-dimensional periodic state (see Ormières & Provansal 1998). Such a domination of
the periodic instability mode over the stationary mode, despite the fact that the latter
is the first to destabilize the axisymmetric base flow has recently been explained using
slow manifold theory and normal forms (Fabre et al. 2008; Meliga et al. 2008a). Never-
theless, all these analyses have so far been applied almost exclusively to incompressible
flows, whereas its application to the transonic afterbody-buffet requires to consider the
effect of compressibility, which requires high computational capacities and introduces a
number of computational issues associated with the numerical resolution of the steady
flow and of the eigenvalue problem for the unsteady disturbances. A first compressible
global stability analysis is that of Crouch et al. (2002) on the shock-induced buffet over
a two-dimensional airfoil. Since then, only a very limited number of studies have been
carried out in the compressible regime, including that of Theofilis & Colonius (2004) who
considered the flow within a cavity as a crude approximation for the complex problem of
open cavity flows, Crouch et al. (2007) on the shock-induced buffet and Robinet (2007)
on a shock wave/boundary-layer interaction.

In this study, we investigate unsteadiness in an afterbody flow at zero angle of attack
and high subsonic Mach numbers using a fully compressible global stability analysis. We
aim at understanding the physical mechanisms responsible for the growth of perturba-
tions, and particular attention is paid to the effect of the Mach number on the stability
properties of the flow. Though, as pointed out in Giannetti & Luchini (2006), the insta-
bility mechanism cannot be identified from the study of the disturbance eigenfunctions
only. Still, the wavemaker region, i.e. the flow region where the instability mechanisms
are active (Chomaz 2005), can be straightforwardly identified as the region where the
sensitivity of the eigenvalue with respect to generic structural modifications of the sta-
bility problem is the highest. Such modifications may arise for several reasons, including
changes in the base flow, in the body geometry or even in the numerical boundary condi-
tions imposed to solve the stability problem. We choose here to put particular emphasis
on the role of the base flow in the perturbation dynamics, as we show in § 4.5 that vary-
ing the Mach number acts on the leading eigenmodes through a modification of the base
flow. Variations of the eigenvalue are thus investigated with respect to small variations of
the base flow, thus defining the so-called sensitivity analysis to base flow modifications,
as formulated originally by Bottaro et al. (2003) and further discussed by Marquet et al.
(2008b). By investigating how the growth rate and frequency of the unstable modes are
affected by changes in the shape of the base flow profiles, this analysis is appropriate to
to investigate theoretically where and which mechanisms are responsible for the insta-
bility. It should be noted that such analysis, where one identifies the flow region where
small modifications in the flow conditions are susceptible to affect dramatically the flow
dynamics, is intimately linked to the perspective of flow control. Indeed, most open-loop
control strategies rely on the introduction of some fixed modification in the flow condi-
tions. For instance, Strykowski & Sreenivasan (1990) have succeeded in suppressing the
vortex-shedding phenomenon in the cylinder wake by placing a small control cylinder at
appropriate locations in the lee of the main cylinder.

Sensitivity analyses rely on the evaluation of a gradient with respect to some control
variable, and may be performed by forward calculations: in the case of the sensitiv-
ity analysis to base flow modifications, the stability problem has to be solved once to
identify the global modes of the unmodified base flow, and once more for each base
flow modification under consideration. Though, such procedure is not easily tractable
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for complex stability problems such as those solved in the present case, as it turns out
to be very computationally intensive. The main tool developed here is therefore based
on adjoint methods, where the gradient is obtained by solving only once the state and
adjoint problems, with a relatively ‘low’ computational cost. Adjoint equations have re-
cently attracted the increased attention of fluid dynamicists, for a number of applications
ranging from oceanography and atmospheric sciences (Hall 1986) to flow control (Collis
et al. 2002). In the context of shape optimization (Pironneau 1984), the optimal design
of transonic wings at realistic cruise conditions has been widely investigated (Jameson
1998; Jameson et al. 1998). Such studies now allow to optimize entire airplanes for a
criterion such as drag under geometric and aerodynamic constraints such as volume and
lift (see Mohammadi & Pironneau 2004, for a review). Similar methods are also used to
estimate the sensitivity of the position of a shock with respect to the flow parameters,
which is of practical interest for the fluttering of wings (Di Cesare & Pironneau 2000;
Bardos & Pironneau 2003).

It should be noted that in these studies, adjoint methods are used in conjunction with
computational flow simulations and that no particular attention has been paid to the par-
ticular knowledge of the adjoint state. On the contrary, in the context of hydrodynamic
stability, where one aims at understanding the mechanisms responsible for the growth of
disturbances, adjoint methods have proven fruitful to provide additional insight into the
flow physics. For instance, they naturally introduce the concept of nonnormality of the
flow, which is responsible for the energy of a perturbation to experience possibly large
transient growth even though the flow is stable (Trefethen et al. 1993; Schmid 2007),
or to lead to extreme sensitivity to forcing (see Chomaz 2005, for a detailed review on
global modes and nonnormality). As a consequence, adjoint-based sensitivity analyses
have naturally arisen in receptivity studies (Hill 1995; Tumin 1996). In the context of
boundary-layer flows, an adjoint-based sensitivity formalism has been developed to in-
vestigate the ability of wall forcing to delay the transition to turbulence both in the
incompressible and compressible regimes, assuming that both the base flow and the dis-
turbances develop slowly in the direction parallel to the wall so that parabolic equations
can be established to govern their evolution (Pralits et al. 2000, 2002; Airiau et al. 2003).
The aim of this work is to develop a consistent adjoint-based formalism for the study
of generic compressible spatially developing flows, in particular, departure from the slow
variation assumption can be arbitrary. To this end, we derive the global stability and ad-
joint stability equations, as well as the sensitivity functions to a modification of the base
flow. To the best of the authors knowledge, this is the first attempt to apply adjoint-based
methods to global stability problems governed by the compressible Navier-Stokes equa-
tions. Physical interpretations for the observed compressible effects are given in terms of
sensitivity of the leading eigenmodes. Following the line of thought introduced in Mar-
quet et al. (2008b), we show that the base flow affects the flow stability by modifying the
advection and production of the disturbances, the latter production terms being related
to the advection of the base flow by the perturbation and to the source terms existing
in the governing equations. One should note, though, that such competition between
mechanisms of advection and production of perturbations are not specific to the global
stability framework, since it has been introduced in local stability analyses through the
concepts of convective and absolute instability (Briggs 1964; Bers 1975). In that case, if
an arbitrary perturbation grows in time at any fixed location, or in other words if the
production of the perturbation dominates its advection by the base flow, then the flow is
said to be absolutely unstable. The existence of a global instability is then conditioned to
the existence of an absolutely unstable region of ‘sufficient’ spatial extent (see Chomaz
et al. 1988).

122



The paper is organized as follows. The theoretical formulation is presented in § 2. It
provides with a formal derivation of the perturbation equations in a global framework
and includes the presentation of the adjoint-based sensitivity analysis to generic base flow
modifications. It is worthwhile emphasizing here that these concepts are not restricted to
afterbody flows, but may be used for any open flow with two inhomogeneous directions.
In § 2, the analysis is derived in a general framework, and thus pertains indifferently
either to incompressible or to compressible flows. In § 3, we focus on an afterbody flow
in the high subsonic regime, and the explicit, analytical expression for the base flow,
perturbation, adjoint perturbation and sensitivity functions are detailed. In particular,
we discuss the physical origin of the nonnormality of the compressible evolution op-
erator. The numerical methods used throughout the study are presented in § 4. The
steady axisymmetric flow past the afterbody is described in § 4.3. The global stability
analysis is carried out in § 4.4, where we identify two unstable modes whose frequency
and azimuthal wavenumber selection are identical to that documented by Natarajan &
Acrivos (1993) in the wake of a disk and a sphere. The adjoint global modes necessary
to the computation of the sensitivity functions are also computed in § 4.4, and we dis-
cuss nonnormal effects in the present application. In § 4.5, we investigate the impact of
compressibility on both bifurcations, and appraise how the critical control parameters
are affected by a modification of the Mach number. As will be shown, compressibility
influences the stability of the leading eigenmodes mainly through the base flow. For both
instabilities, the wavemaker regions are identified by performing the analysis of sensitiv-
ity to base flow modifications. The outcome of the sensitivity functions is first described
in a general sense, i.e. we discuss the effect of generic modifications of the base flow on the
growth rate and frequency of the instabilities. A physical interpretation of the stabilizing
compressible effect is then proposed by applying the sensitivity analysis to the specific
base flow modification induced by a small change in the Mach number. Note that the
problem of flow control is out of the scope of this paper and will be treated in the second
part of this study, where we present a systematic formalism for the open-loop control of
compressible open flows, accounting for volumetric and wall forcing.

2. Theoretical formulation
This section is devoted to a description of the theoretical concepts used in the present

study. We investigate the general configuration of an open flow in a closed domain for
which we assume that suitable inlet, outlet, lateral boundaries and solid wall conditions
have been defined. The concept of sensitivity of an eigenvalue to base flow modifications
has been developed in Bottaro et al. (2003) and Marquet et al. (2008b) in the case of
incompressible flows. In this study, we extend this concept to compressible flows, and
propose a more general formalism that encompasses small modifications of the Mach
number (§ 2.2). We insist that the present formalism is unified, as it pertains to incom-
pressible and compressible flows indifferently. The problem of boundary conditions, that
may be particularly involved, is voluntarily omitted so as to keep a general point of view.
Therefore, we assume that all quantities fulfill ‘appropriate’ boundary conditions, that
will be specified in § 3, where the concrete application is considered. The total flow field
is described by a state vector q solution of a set of nonlinear governing equations, which
is conveniently written as

B(q)∂tq +M(q,G) = 0 , (2.1)

where M and B are differential operators and G is a set of relevant control parameters
(Reynolds and Mach numbers, angle of attack...).
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A stability analysis relies on the existence of a steady base flow solution about which
perturbations are superimposed. In the present study, q is decomposed into a steady
axisymmetric base flow q0 and a three-dimensional perturbation q1 of infinitesimal am-
plitude ε. q0 is solution of the steady, axisymmetric form of the nonlinear system (2.1)

M0(q
0,G) = 0 . (2.2)

Substituting q = q0 + εq1 into equations (2.1), and retaining only terms of order ε leads
to the linearized equations

B(q0)∂tq
1 +A(q0,G)q1 = 0 , (2.3)

where A = ∂M/∂q is a linear differential operator. Since the base flow is axisymmetric,
the perturbation is sought under the form of normal modes

q1 = q̂1(r, z)e(σ+iω)t+imθ + c.c. , (2.4)

where q̂1 is the so-called global mode for which both the cross-stream and streamwise
directions are eigendirections. The azimuthal wavenumber of the global mode is m, its
growth rate and pulsation are σ and ω respectively. Note that the same formalism holds
for two-dimensional configurations if one chooses the appropriate normal mode expansion
with a spanwise wavenumber k. Substituting (2.4) into (2.3) yields a system of equations
governing the normal mode under the form of a generalized eigenvalue problem for λ =
σ + iω and q̂1:

λB(q0)q̂1 +Am(q0,G)q̂1 = 0 , (2.5)
with Am the normal complex operator obtained from A by replacing the θ derivatives
by im.

Let us now consider a particular eigenpair {q̂1, λ = σ+iω} solution of the eigenproblem
(2.5). It is explicitly a function of the base flow variables q0 and of the set of control
parameters G. In the following, we investigate the effect of compressibility on the chosen
eigenpair, so that we assume the Mach number to be the only varying control parameter.
In particular, the Reynolds number is kept constant, though, we insist that the present
approach is general and can thus be extended to investigate the effect of any other
parameter. The eigenvalue λ can be written as λ = λ(q0,M), and the variation of a
given eigenvalue δλ reads formally

δλ =
∂λ

∂q0

∣∣∣∣
M

δq0

︸ ︷︷ ︸
δλ|M

+
∂λ

∂M

∣∣∣∣
q0

δM

︸ ︷︷ ︸
δλ|

q0

. (2.6)

where δλ|M (resp. δλ|
q0) is the variation of λ arising from a small modification of the base

flow δq0, the Mach number being kept constant (resp. a small modification of the Mach
number, the base flow being kept constant). The expression of each specific variation is
now derived in the framework of sensitivity analyses.

2.1. Sensitivity to base flow modifications
In this section, the Mach number is kept constant, and δλ refers to the specific variation

δλ|M to ease the notation. δλ is investigated with respect to a generic, small-amplitude,
steady axisymmetric modification of the base flow δq0, thus defining the sensitivity
analysis to base flow modifications. We emphasize on the fact that such a modification
is arbitrary, i.e. we do not require q0 + δq0 to be solution of equations (2.2). From a
physical point of view, the sensitivity function defined in (2.7) allows to determine the
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region of the flow where a small modification of the base flow is able to produce the
greatest drift of the eigenvalue. Therefore, it allows to identify which region of the flow
matters most to establish the dynamics of the global mode, i.e. the wavemaker region.
The variations δλ and δq0 are such that

δλ = δσ + iδω =
〈∇q0λ , δq0

〉
, (2.7)

where 〈 , 〉 is an inner product to be specified and ∇q0λ is a complex vector defining
the so-called sensitivity to base flow modifications. The sensitivity of the growth rate σ
and that of the frequency ω, denoted as ∇q0σ and ∇q0ω respectively, can be similarly
written as

δσ =
〈∇q0σ , δq0

〉
, δω =

〈∇q0ω , δq0
〉

, (2.8)

with ∇q0σ = Re(∇q0λ) and ∇q0ω = −Im(∇q0λ) being now real vectors. In order to
derive the analytical expression of these sensitivity functions, we use an approach based
on Lagrange multipliers or adjoint equations. For a given operator H and inner product
〈 〉, the adjoint operator H† is defined so that for any complex vectors â and b̂ fulfilling
‘appropriate’ boundary conditions,

〈
â,Hb̂

〉
=

〈
H†â, b̂

〉
. (2.9)

The derivation of an adjoint operator is always an exercise in part integration, and hence
depends on the inner product considered (this point will be discussed in § 4). Note that
the question of the boundary terms arising during the part integration process is not
considered in this section, as it is intrinsically connected to that of boundary conditions.
All details about the integration process are provided in Appendix D and E.

In the present formalism, the eigenpair {q̂1, λ} is the state variable, the base flow q0 is
the control variable and the eigenproblem (2.5) is the state equation, i.e. the constraint
to be satisfied. We introduce the Lagrange multiplier q̂1† (also known as the adjoint
or co-state variable) for the state equation, that is herein referred to as the adjoint
perturbation. We consider now the functional

L(q0, q̂1†, q̂1, λ) = λ−
〈
q̂1† , λB(q0)q̂1 +Am(q0)q̂1

〉
, (2.10)

whose gradient with respect to any variable s is defined as

∂L
∂s

δs = lim
ε→0

L(s + εδs)− L(s)
ε

. (2.11)

In the following, we assume that the state equation (2.5) is satisfied for any arbitrary
base flow modification. The eigenvalue variation δλ resulting from a modification of the
base flow δq0 can thus be expressed formally as

δλ =
(

∂L
∂q0

+
∂L

∂q̂1†
∂q̂1†

∂q0
+

∂L
∂{q̂1, λ}

∂{q̂1, λ}
∂q0

)
δq0 (2.12)

The gradient of the functional with respect to q̂1† reads

∂L
∂q̂1† δq̂1† = −

〈
δq̂1† , λB(q0)q̂1 +Am(q0)q̂1

〉
. (2.13)

Consequently, since {q̂1, λ} is solution of the state equation (2.5), this gradient is nil.
The gradient of the functional with respect to {q̂1, λ} can be formally expressed as the
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sum of two terms

∂L
∂{q̂1, λ}δ{q̂1, λ} =δλ−

〈
q̂1† , δλB(q0)q̂1

〉
−

〈
q̂1† , λB(q0)δq̂1 +Am(q0)δq̂1

〉

= δλ−
〈
q̂1† , δλB(q0)q̂1

〉
︸ ︷︷ ︸

(i)

−
〈
λ∗B†(q0)q̂1† +A†m(q0)q̂1† , δq̂1

〉
︸ ︷︷ ︸

(ii)

.

(2.14)

Defining the adjoint perturbation q̂1† as the solution of the new generalized eigenvalue
problem

λ∗B†(q0)q̂1† +A†m(q0)q̂1† = 0 , (2.15)

along with the normalization condition
〈
q̂1† , B(q0)q̂1

〉
= 1 . (2.16)

yields that both terms (i) and (ii) are nil in (2.14). Consequently, (2.22) can be rewritten
as

δλ =
∂L
∂q0

δq0 . (2.17)

The gradient with respect to the control variable q0 is now given by

∂L
∂q0

δq0 = −
〈
q̂1† , λR(q0, q̂1)δq0 + Sm(q0, q̂1)δq0

〉
(2.18a)

= −
〈
λ∗R†(q0, q̂1)q̂1† + S†m(q0, q̂1)q̂1† , δq0

〉
, (2.18b)

where R and Sm are the linear differential operators defined by

R(q0, q̂1) =
∂

∂q0

(
B(q0)q̂1

)
, Sm(q0, q̂1) =

∂

∂q0

(
Am(q0)q̂1

)
. (2.19)

Comparing (2.7) and (2.18), it turns out that the complex sensitivity function ∇q0λ is
given by the knowledge of the adjoint operator R† and S†m, according to

∇q0λ = −λ∗R†(q0, q̂1)q̂1† − S†m(q0, q̂1)q̂1† . (2.20)

The present approach is very similar to the Lagrangian technique classically used in
optimization problems, where one aims at enforcing the stationary of a Lagrangian in
order to minimize a given functional under specific constraints (Gunzburger 1997, 1999;
Airiau et al. 2003). Though, it should be noted that no such stationarity is enforced here,
and that the functional is only used as a mean to compute the gradient ∇q0λ. It is also
worthwhile noting that expression (2.20) can be retrieved by an alternative technique
based on a perturbation approach of the linear operators B and Am.

For a given base flow q0, the procedure to compute the variation of an eigenvalue
resulting from a modification of the base flow is the following:

–resolution of the base flow equations (2.2),
–resolution of the stability problem (2.5) and selection of an eigenpair {σ + iω, q̂1},
–resolution of the adjoint stability problem (2.15) and normalization of the adjoint

global mode using (2.16),
–derivation of operators {R,Sm} and of the adjoint operators {R†,S†m},
–computation of the sensitivity to base flow modifications using (2.20) and compu-

tation of the scalar product (2.7).
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2.2. Sensitivity to a modification of the Mach number in the perturbation equations

In this section, the Mach number varies but the base flow is kept constant. The variation
δλ, which refers to the specific variation δλ|

q0 for simplicity, is thus investigated with
respect to a small modification of the Mach number. A new problem can be defined for
which the Mach number is the new control variable, the associated functional reading

L(M, q̂1†, q̂1, λ) = λ−
〈
q̂1† , λBq̂1 +Am(M)q̂1

〉
, (2.21)

for which M is the new control variable. In the following, we assume that problem (2.5)
is satisfied for any modification of the Mach number. The eigenvalue variation δλ can
thus be expressed as

δλ =
(

∂L
∂M

+
∂L

∂q̂1†
∂q̂1†

∂M
+

∂L
∂{q̂1, λ}

∂{q̂1, λ}
∂M

)
δM (2.22)

As previously, the gradients of the functional with respect to the state and adjoint variable
is nil provided {q̂1, λ} and q̂1† are again solutions of eigenproblems (2.5) and (2.15), along
with the normalization condition (2.16). We obtain now that

δλ =
∂L
∂M

δM = −
〈

q̂1† ,
∂

∂M

(
Am(M)q̂1

)〉
δM . (2.23)

For a given base flow q0, the procedure to compute the variation of an eigenvalue resulting
from a small change in the Mach number can be summarized as follows:

–resolution of base flow equations (2.2),
–resolution of the stability problem (2.5) and selection of an eigenpair {σ + iω, q̂1}
–resolution of the adjoint stability problem (2.15) and computation of the scalar

product (2.23).

2.3. Sensitivity to a modification of the Mach number

We return now to the general case where both the base flow and Mach number can be
varied. The eigenvalue λ has been previously written as λ = λ(q0,M). From (2.6), we
can now express the full variation δλ as

δλ = δλ|M + δλ|
q0 =

〈∇q0λ , δq0
〉
−

〈
q̂1† ,

∂

∂M

(
Am(M)q̂1

)〉
δM . (2.24)

The variation δλ|M representing the variation of the eigenvalue owing to a base flow
modification, the Mach number being kept constant, is computed in the framework of
the sensitivity analysis to base flow modifications, which pertains to generic variation δq0.
Though, for the whole analysis to be physically relevant, one must take into account that,
when the Mach number is varied, the stability problem is altered owing to the specific
base flow modification δq0

M arising from the explicit modification of the Mach number
in the base flow equations. Provided operator A0 is non-degenerate, δq0

M is solution of
the linear problem

A0(q
0,M)δq0

M = − ∂

∂M

(
M0(q

0,M)
)
δM , (2.25)

so that the relevant expression for the variation δλ is finally obtained by substituting
δq0 by δq0

M into (2.6).
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Figure 1: Schematic of the configuration under study: the slender body of revolution has
a diameter D and a total length l = 9.8D. z−∞, z∞ and r∞ are, respectively, the location
of the inlet, outlet and lateral boundaries.

3. Application to compressible flows
We aim at applying the general formalism presented in the previous section to the

case of an afterbody flow. The body under study is shown in Figure 1: it models an ideal
rocket shape, made of an axisymmetric body of revolution with a blunt trailing edge of
diameter D placed into a uniform flow at zero angle of attack (Mair 1965; Weickgenannt
& Monkewitz 2000). The body used in this study is identical to that used by Sevilla
& Mart́ınez-Bazàn (2004), with a total length l = 9.8D and an ellipsoidal nose of as-
pect ratio 3 : 1. From the results of Weickgenannt & Monkewitz (2000), the estimated
Reynolds number for transition to turbulence in the boundary-layer developing on the
present body is Re ' 12000. The Reynolds number prevailing in the present work being
such that Re < 1500, we can therefore assume that the boundary-layer remains laminar
til the trailing edge.

Such afterbody flows require to consider the effect of compressibility, as in the exper-
imental studies of Flodrops & Desse (1985) and Deprés et al. (2004). The fluid is thus
taken as a non-homogeneous compressible perfect gas with constant specific heat cp, ther-
mal conductivity κ, and dynamic viscosity µ, related by a unit Prandtl number. To our
knowledge, no global stability results are available in the literature on this configuration.
Consequently, we have first revisited the low Mach number flow past a sphere as a test
case to validate this fully compressible global formalism on a more academic configura-
tion. All details are provided in Appendix A, including quantitative comparison with the
results of Natarajan & Acrivos (1993) and numerical convergence tests. All equations are
formulated in cylindrical coordinates (r, θ, z) with origin taken at the center of the body
base. The fluid motion is governed by the unsteady compressible Navier-Stokes equa-
tions, which leads to a set of six nonlinear equations (continuity, radial, orthoradial and
streamwise momentum, internal energy and perfect gas) formulated in non-conservative
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variables as

∂tρ + ρ∇ · u + u ·∇ρ = 0 , (3.1a)

ρ∂tu + ρ∇u · u +
1

γM2
∇p− 1

Re
∇ · τ (u) = 0 , (3.1b)

ρ∂tT + ρu ·∇T + p∇ · u− γ(γ − 1)
M2

Re
τ (u) : d(u)− γ

PrRe
∇2T = 0 , (3.1c)

p− ρT = 0 . (3.1d)

Note that a different set of equations can be obtained, as the internal energy equation
may be replaced by its total energy or entropy counterpart. Here, ρ is the density, p the
pressure, T the temperature, and u = (u, v, w)T the three-dimensional velocity field with
u, v and w its radial, azimuthal and streamwise components, so that the state vector is
q = (ρ,u, T, p)T . d(u) and τ (u) are the strain and viscous stress tensors defined as

d(u) =
1
2

(
∇u + ∇uT

)
, τ (u) = −2

3
(∇ · u ) I + ∇u + ∇uT . (3.2)

In the following, a particular attention will be payed to the advection terms, that are
gathered into the operator N defined by

N (q) =




ρ∇ · u + u ·∇ρ
ρ∇u · u
ρu ·∇T

0


 . (3.3)

Equations (3.1) have been made nondimensional using the body diameter D and the
upstream quantities W∞, ρ∞, T∞ and p∞ as respective velocity, density, temperature
and pressure scales. The Reynolds, Mach and Prandtl numbers are therefore defined as

Re =
ρ∞DW∞

µ
, M =

W∞√
γRgT∞

, Pr =
µcp

κ
, (3.4)

with Rg and γ the ideal gas constant and the ratio of specific heats.
A schematic of the physical configuration is sketched in Figure 1: the body is located

on the axis of a numerical enclosing cylinder of radius r = r∞. The inlet ∂Ωin and outlet
∂Ωout boundaries are located respectively at z = z−∞ and z = z∞ and boundaries ∂Ωa

and ∂Ωext represent respectively the revolution axis of the body and the boundary of the
enclosing cylinder. We shall use the following conditions

u = (0, 0, 1)T , ρ, T = 1 on ∂Ωin (inlet), (3.5a)
u = 0, ∂nT = 0 (adiabatic rigid wall) on ∂Ωb (body), (3.5b)

along with appropriate far-field radiation conditions whose implementation in the com-
pressible case requires particular attention. As a consequence, we postpone the question
of the boundary conditions to § 4 where we present details of the numerical method.
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3.1. Base flow

For the base flow q0 =
(
ρ0, u0, T 0, p0

)T , the axisymmetric steady base flow equations
(2.2) read

M0(q
0,M) =




ρ0∇ · u0 + u0 ·∇ρ0 ,
ρ0∇u0 · u0 + 1

γM2 ∇p0 − 1
Re∇ · τ (u0) ,

ρ0u0 ·∇T 0 + p0∇ · u0 − γ(γ − 1)M2

Re τ (u0) : d(u0)− γ
PrRe∇2T 0 ,

p0 − ρ0T 0


 = 0 .

(3.6)

3.2. Perturbation equations

The perturbation q̂1 = (ρ̂1, û1, T̂ 1, p̂1)T is solution of the generalized eigenvalue prob-
lem

λB(q0)q̂1 +Am(q0,M)q̂1 = 0 . (3.7)

Operator B is defined by

B
(
q0

)
=




1 0 0 0

0 ρ0I 0 0

0 0 ρ0 0

0 0 0 0




, (3.8)

where I is the identity operator. Operator Am is split into Am

(
q0,M

)
= Cm

(
q0

)
+

Pm

(
q0,M

)
with Cm the linearized advection operator and Pm the source/sink operator

encompassing the effect of the source terms of the governing equations, reading respec-
tively

Cm

(
q0

)
=

∂N
∂q0

(
q0

)
=




u0 ·∇ + ∇ · u0 ∇ρ0 ·+ρ0∇· 0 0

∇u0 · u0 ρ0∇[ • ] · u0 + ρ0∇u0· 0 0

u0 ·∇T 0 ρ0∇T 0· ρ0u0 ·∇ 0

0 0 0 0




,

(3.9)
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and

Pm

(
q0,M

)
=




0 0 0 0

0 − 1
Re∇ · τ [ • ] 0 1

γM2 ∇

0 −γ(γ − 1)M2

Re

(
τ (u0) : d [ • ] + τ [ • ] : d(u0)

) − γ
PrRe∇2 ∇ · u0

−T 0 0 −ρ0 1




.

(3.10)

Of course, these analytical expressions rely on the choice of non-conservative variables,
and alternative forms of the same operators could be derived using conservative vari-
ables. For incompressible flows, it turns out that the source/sink operator is independent
of the base flow quantities. The base flow thus influences the perturbation dynamics via
the advection operator only. One can then make the difference between terms associated
with the advection of the perturbation by the base flow, and terms of production coming
from the advection of the base flow by the perturbation (Marquet et al. 2008b). This is
no more true in the case of compressible flows, as one can see from (3.10) that the base
flow influences the disturbance dynamics via the source terms of the governing equa-
tions. For instance, Soteriou & Ghoniem (1995) have shown that the different instability
characteristics of homogeneous and non-homogeneous shear-layers may be ascribed to
the action of a baroclinic torque arising from base flow density gradients and from the
pressure perturbations.

To identify terms related to advection and production in the perturbation equations,
the latter set of equations is first recast in conservative variables and integral formulation.
This yields

δt,u0

(∫

V

ρ̂1dV

)
+ δt,u1

(∫

V

ρ0dV

)
+ · · · = 0 , (3.11a)

δt,u0

(∫

V

(ρ̂1u0 + ρ0û1)dV

)
+ δt,u1

(∫

V

ρ0u0dV

)
+ · · · = 0 , (3.11b)

δt,u0

(∫

V

(ρ̂1T 0 + ρ0T̂ 1)dV

)
+ δt,u1

(∫

V

ρ0T 0dV

)
+ · · · = 0 . (3.11c)

In (3.11), we consider only the advection terms originating from operator Cm, and the
source terms are omitted to ease the notation. δt,u is then the time derivative for a
volumetric domain V whose bounding surface ∂V is advected with the specific velocity
u. The leftmost terms δt,u0 in (3.11) therefore account for the perturbation advection
mechanism, i.e. the advection of the perturbation quantities by the base flow, and the
rightmost terms δt,u1 account for the perturbation production mechanism through the
reciprocal advection of the base flow quantities by the perturbation. When turning back
equations (3.11) into non-conservative variables using the base flow and perturbation
continuity equations, it is then possible to discriminate between terms accounting for
advection or production of the perturbation. We thus split the operator Cm into Cm =
C(A)

m +C(P )
m , operator C(A)

m being then the perturbation advection operator originating from
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the terms δt,u0 defined by

C(A)
m (q0) =




u0 ·∇ + ∇ · u0 0 0 0

∇u0 · u0 ρ0∇[ • ] · u0 0 0

u0 ·∇T 0 0 ρ0u0 ·∇ 0

0 0 0 0




, (3.12)

and operator C(P )
m being a perturbation production operator originating from the terms

δt,u1 reading

C(P )
m (q0) =




0 ∇ρ0 ·+ρ0∇· 0 0

0 ρ0∇u0. 0 0

0 ρ0∇T 0· 0 0

0 0 0 0




. (3.13)

Boxed terms refer to operators that have only diagonal terms. For conciseness, operators
C(A)

m and C(P )
m are hereinafter referred to as the advection and production operators.

Though, we insist that in the present compressible case, an exhaustive analysis of the
perturbation production mechanisms should not be restricted to the production operator
C(P )

m but should point at the operator C(P )
m + Pm that encompasses the additional effect

of the source terms of the governing equations.

3.3. Adjoint perturbation equations
We consider now the adjoint perturbation q̂1† = (ρ̂1†, û1†, T̂ 1†, p̂1†)T . Since we use here

only nondimensional variables, ρ̂1†, û1†, T̂ 1† and p̂1† can be referred to for simplicity
as the adjoint density, velocity, temperature and pressure disturbances. As mentioned
earlier, in order to derive adjoint operators, we must first define an inner product. In the
following, we use the standard inner product

〈
â, b̂

〉
=

∫

Ω

â · b̂ rdrdz , (3.14)

where â and b̂ are complex vectors and · refers to the canonic hermitian scalar product
on Cn. It should be noted here that this inner product is not physically motivated, as
will be discussed in § 4. For a complete discussion on the relevance of inner products in
compressible flows, the reader may refer to the study of Rowley et al. (2004). Though,
we emphasize here on the fact that if the definition of adjoint operators is inner product
dependent, the variations δλ computed in the sensitivity analysis are intrinsical.

We recall that the adjoint perturbation q̂1† is solution of the generalized eigenvalue
problem

λ∗B†
(
q0

)
q̂1† +A†m

(
q0, M

)
q̂1† = 0 , (3.15)

where the subscript ∗ stands for the complex conjugate. Operators B being diagonal,
we obtain simply that B† = B. The derivation of the adjoint operator A†m detailed in
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Appendix D yields A†m
(
q0,M

)
= C†m

(
q0

)
+ P†m

(
q0, M

)
with

C†m(q0) =




−u0 ·∇ (∇u0 · u0)· u0 ·∇T 0 0

−ρ0∇ −ρ0∇[ • ] · u0 + ρ0∇u0 T · ρ0∇T 0 0

0 0 −ρ0u0 ·∇ 0

0 0 0 0




. (3.16)

and

P†m
(
q0,M

)
=




0 0 0 −T 0

0 − 1
Re∇ · τ [ • ] −∇(p0[ • ]) + 2γ(γ − 1)M2

Re ∇ ·
(
[ • ]τ (u0)

)
0

0 0 − γ
PrRe∇2 −ρ0

0 − 1
γM2 ∇· ∇ · u0 1




,
(3.17)

C†m and P†m being the compressible adjoint operators obtained from the integration by
parts of the operators Cm and Pm.

As detailed in Appendix D, these equations have been derived for axisymmetric con-
figurations, along with the inner product (3.14). Though, it is striking to find out that
repeating the procedure for two-dimensional cartesian configurations leads to the exact
same set of equations, provided the natural inner product in cartesian coordinates is
used, namely 〈â, b̂〉 =

∫
Ω

â · b̂dxdy. This justifies the privileged use of this inner product
in adjoint related studies.

Operator C†m can also been split into C†m = C(A)†
m + C(P )†

m , with an adjoint advection
operator C(A)†

m and an adjoint production operator C(P )†
m obtained from the separate in-

tegration of operators C(A)
m and C(P )

m . These operators read

C(A)†
m (q0) =




−u0 ·∇ (∇u0 · u0)· u0 ·∇T 0 0

0 −ρ0∇[ • ] · u0 0 0

0 0 −ρ0u0 ·∇ 0

0 0 0 0




, (3.18)
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and

C(P )†
m (q0) =




0 0 0 0

−ρ0∇ ρ0∇u0 T · ρ0∇T 0 0

0 0 0 0

0 0 0 0




, (3.19)

where boxed terms designate again operators displaying only diagonal terms.

3.4. Nonnormality of the compressible evolution operator
In this section, we discuss the nonnormal effects originating from the advection and

production operators. Though, it should be kept in mind that in compressible flows,
the source terms of the perturbation and adjoint perturbation equations may trigger
additional nonnormality which is out of the scope of the present study. Note that this
discussion is only qualitative, as it mainly aims at pointing at the complex effects that
may be possibly encountered in compressible flows.

3.4.1. Convective nonnormality
As suggested by Chomaz et al. (1990) (see Chomaz 2005, for a discussion), a specific

type of nonnormality arises, owing to the advection of the perturbation by the base
flow. This nonnormal effect affects similarly all components of the state vector, and thus
arises due to diagonal terms of the advection operators. For incompressible flows, it is
associated with the change of sign in the advection terms

ρ0∇û1 · u0 , −ρ0∇û1† · u0 , (3.20)

in the momentum equations for the direct and adjoint advection operators C(A)
m and C(A)†

m ,
respectively (Marquet et al. 2008a). As a result, disturbances are convected downstream
by u0 for the direct evolution operator, and upstream by −u0 for its adjoint counterpart,
inducing a spatial separation of direct and adjoint modes. This convective nonnormality
(also termed convective modoki) is therefore associated to direct and adjoint global modes
that tend to be orthogonal one to the other because localized in different regions of the
flow (Chomaz et al. 1990). The concept of convective nonnormality can be generalized
to the case of compressible open flows by including similar diagonal terms existing in the
advection operators C(A)

m and C(A)†
m for the continuity and energy equations. One observes

from (3.12) and (3.18) that each of this term changes signs, thus inducing a spatial
separation between the direct and adjoint perturbations on all components of the state
vector.

3.4.2. Lift-up nonnormality
In incompressible flows, a second type of nonnormality complements the convective

nonnormality, and is classically associated to the perturbation production owing to the
advection of the base flow by the perturbation. This nonnormal effect affects differentially
the components of the state vector, and thus arises due to off-diagonal terms of the
production operators. For incompressible flows, it is encompassed by the terms

ρ0∇u0 · û1 , ρ0∇u0 T · û1† , (3.21)

arising in the momentum equations for the production and adjoint production operators,
respectively Marquet et al. (2008a). To ease the understanding of the physical mechanism
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associated to this nonnormal effect, let us consider the example of an incompressible
parallel shear flow, defined by u0 = w0(r)ez, in which a small radial velocity û1 is
applied along the direction of the base flow gradient. Retaining only the contribution of
terms 3.21 yields

λ(û1, v̂1, ŵ1)T = · · · − (0, 0, û1∂rw
0)T . . . (3.22a)

λ∗(û1†, v̂1†, ŵ1†)T = . . . ,−(ŵ1†∂rw
0, 0, 0)T . . . . (3.22b)

It can be seen that the small displacement û1 produces strong streamwise velocity pertur-
bations, thus giving rise to the so-called lift-up effect (Landahl 1980) and strong adjoint
velocity perturbations in the direction of the base flow gradient. This nonnormality is
therefore associated to direct and adjoint global modes that tend to be orthogonal one
to the other because concentrated on different components of the velocity vector.

This nonnormal effect can be generalized to the case of compressible flows by consider-
ing the additional off-diagonal terms arising in the production operators. If we consider
now a compressible parallel shear flow, with ρ0 = ρ0(r), u0 = w0(r)ez and T 0 = T 0(r),
a small displacement û1 tends to concentrate the direct perturbation on the density,
streamwise velocity and temperature components. In return, since off-diagonal terms in
the adjoint production operator C(P )†

m exist only in the adjoint momentum equations,
the adjoint perturbation tends to be concentrated along the velocity vector only, so that
direct and adjoint global modes are concentrated on different components of the state
vector. In the following, this effect is referred to as the kinematics lift-up nonnormality,
as it is due to small displacement of fluid particles along the direction of the base flow
gradients.

Moreover, in the case of real non-parallel axisymmetric flows, such as those considered
here, one can easily verify that the nondiagonal terms of the advection operators C(A)

m

and C(A)†
m are nonzero. It can be seen from equations (3.12)− (3.18) that a small density

perturbation ρ̂1 induces strong velocity and temperature perturbation through the off-
diagonal terms ρ̂1∇u0 · u0 and ρ̂1u0 ·∇T 0 respectively. For the adjoint perturbations,
since all off-diagonal terms in C(A)†

m are located in the adjoint continuity equation (3.15a),
one obtains in return strong adjoint density perturbations, so that direct and adjoint
global modes are concentrated on different components of the state vector, an effect
similar to the kinematics lift-up nonnormality. Since this additional nonnormality is due
to small density perturbations, it can thus be referred to as the thermodynamics lift-up
nornormality.

To summarize the various nonnormal effects existing for compressible flows, one can
distinguish between

(i) the convective nonnormality, owing to the diagonal terms of the advection operators,

(ii) the kinematics lift-up nonnormality, owing to the production operators,

(iii) the thermodynamics lift-up nonnormality, owing to the off-diagonal terms of the
advection operators.

3.5. Sensitivity to base flow modifications

We recall here that the sensitivity function ∇q0λ is related to the adjoint operators
R† and S†m defined in (2.19) by

∇q0λ = −λ∗R†(q0, q̂1)q̂1† − S†m(q0, q̂1)q̂1† . (3.23)

135



Following the Lagrangian technique detailed in § 2, we obtain a sensitivity function
∇q0λ = (∇ρ0λ, ∇u0λ, ∇T 0λ, , ∇p0λ)T , with

∇ρ0λ = − λ∗
(
û1† · û1 ∗ + T̂ 1†T̂ 1 ∗

)
− û1†T ·

(
∇u0 · û1 ∗ + ∇û1∗ · u0

)
+ ∇ρ̂1† · û1 ∗

− T̂ 1†
(
û1 ∗ ·∇T 0 + u0 ·∇T̂ 1 ∗

)
+ p̂1†T̂ 1 ∗ , (3.24a)

∇u0λ = ρ0
(
−∇û1∗ T · û1† + ∇û1† · û1 ∗

)
+ ρ̂1 ∗

(
−∇u0 T · û1† + ∇û1† · u0

)

− λ∗ρ̂1 ∗û1† + ρ̂1 ∗∇ρ̂1† − T̂ 1†(ρ̂1 ∗∇T 0 + ρ0∇T̂ 1 ∗) + ∇(T̂ 1†p̂1 ∗)

− 2γ(γ − 1)
M2

Re
∇ ·

(
T̂ 1†τ (û1)

∗)
, (3.24b)

∇T 0λ = ∇ ·
(
T̂ 1†(ρ̂1 ∗u0 + ρ0û1 ∗)

)
+ p̂1†ρ̂1 ∗ , (3.24c)

∇p0λ = −T̂ 1†∇ · û1 ∗ . (3.24d)

Note that in the limit of incompressible flows, this expression reduces to

∇u0λ = −∇û1∗ T · û1† + ∇û1† · û1 ∗ , (3.25)

which is precisely the expression of the sensitivity function found a posteriori by Mar-
quet et al. (2008b) using a fully incompressible framework. In this incompressible context,
these authors argued that the simple expression of the sensitivity function allowed to dis-
tinguish between a sensitivity of the eigenvalue ∇(A)

u0 λ to a modification of the advection
of perturbations by the base flow, and a sensitivity ∇(P )

u0 λ to a modification of the pro-
duction of perturbations by the base flow. To ease the reading, these specific sensitivity
functions will be referred to as the advection and production sensitivity functions. In the
present case, obviously no simple distinction can be made from the complex expressions
(3.24). We thus use operators C(A)

m and C(P )
m defined in (3.12) and (3.13) to generalize

these concepts to the fully compressible case and propose a systematic method allowing
the computation of complex sensitivity functions to a modification of the advection and
production operators. Using the same Lagrangian technique than that detailed in § 2, it
can be seen that C(A)

m contributes in the gradient (2.18) through the quantity

−
〈
q̂1† , S(A)

m (q0, q̂1)δq0
〉

= −
〈
S(A)†

m (q0, q̂1)q̂1† , δq0
〉

, (3.26)

where

S(A)
m (q0, q̂1) =

∂

∂q0

(
C(A)

m (q0)q̂1
)

. (3.27)

It is therefore immediate to define the sensitivity to a modification of the advection
operator ∇(A)

q0 λ as

∇(A)

q0 λ = −S(A)†
m (q0, q̂1)q̂1† . (3.28)
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We obtain the following expressions:

∇(A)

ρ0 λ = −
(
∇û1∗ · u0

)
· û1† − T̂ 1†u0 ·∇T̂ 1 ∗ , (3.29a)

∇(A)

u0 λ = ρ0
(
−∇û1∗ T · û1†

)
+ ρ̂1 ∗

(
−∇u0 T · û1† + ∇û1† · u0

)

+ ρ̂1 ∗∇ρ̂1† − ρ0T̂ 1†∇T̂ 1 ∗ − ρ̂1 ∗T̂ 1†∇T 0 , (3.29b)

∇(A)

T 0 λ = ∇ ·
(
ρ̂1 ∗T̂ 1† ∗u0

)
, (3.29c)

∇(A)

p0 λ = 0 . (3.29d)

The sensitivity to the modification of the overall production operator ∇(P )

q0 λ, including
source terms of the governing equations, is then defined as

∇(P )

q0 λ = ∇q0λ−∇(A)

q0 λ . (3.30)

In the incompressible limit, theses analytical expressions reduce to

∇(A)

u0 λ = −∇û1∗ T · û1† , ∇(P )

u0 λ = ∇û1† · û1 ∗ , (3.31)

which are precisely that introduced in the study of Marquet et al. (2008b).
At this point, it may be objected that the choice of using non-conservative variables

is not physically relevant to the case of a compressible flow, since the base flow density
modification δρ0 also integrates effects of the modification of the momentum ρ0u0 and
of the internal energy ρ0T 0. We insist here on the fact that, since

δλ =
〈∇q0λ , δq0

〉
=

∫

Ω

(∇ρ0λ · δρ0 + ∇u0λ · δu0 + ∇T 0λ · δT 0 + ∇p0λ · δp0
)

rdrdz ,

(3.32)
a set of conservative sensitivity functions ∇ρ0λ, ∇ρ0u0λ, ∇ρ0T 0λ and ∇p0λ can be
elegantly deduced from the non-conservative sensitivity functions ∇ρ0λ, ∇u0λ, ∇T 0λ
and ∇p0λ through

∇ρ0λ = ∇ρ0λ− u0

ρ0
·∇u0λ− T 0

ρ0
∇T 0λ , (3.33a)

∇ρ0u0λ =
1
ρ0

∇u0λ , (3.33b)

∇ρ0T 0λ =
1
ρ0

∇T 0λ , (3.33c)

the sensitivity function ∇p0λ being unchanged. The same transformation can finally be
used to derive the conservative advection and production sensitivity functions.

4. Numerical method
4.1. Spatial discretization

The numerical approach is based on a finite element method. Equations are first mul-
tiplied by r to avoid the singularity on the r = 0 axis. The associated variational for-
mulation is then derived and spatially discretized using a mesh composed of triangular
elements. The FreeFem++ software (http://www.freefem.org) is used to generate the tri-
angulation with the Delaunay-Voronoi algorithm. The mesh refinement is controlled by
the vertex densities on both external and internal boundaries. Regions where the mesh

137



Figure 2: Schematic of the computational mesh: z−∞, z∞ and r∞ are, respectively, the
location of the physical inlet, outlet and lateral boundaries shown in Figure 1. This
physical domain is padded into a two-dimensional sponge zone of width ls, shown as the
light grey shaded area. The inner solid lines delimit regions characterized by different
vertex densities. The black shaded area corresponds to the region of highest density and
the dark grey shaded area corresponds to the near wake domain used to normalize the
perturbation eigenmodes.

density varies are depicted in Figure 2. To avoid any computational difficulty, a zone of
width 0.05 and high vertex density (250 vertex per unit length) is defined at the axis
r = 0 and around the body, corresponding to the black shaded area shown in Figure 2.
All pressure quantities are eliminated from the governing equations using the perfect gas
state equation so that the state vector is from now on q = (ρ, u, T )T . The unknown
velocity, density and temperature fields are spatially discretized using a basis of Arnold-
Brezzi-Fortin MINI-elements (Matsumoto & Kawahara 2000), with 4-node P1b elements
for the velocity components and 3-node P1 elements for the density and the temperature.
The sparse matrices resulting from the projection of the variational formulations onto
the basis of finite elements are built with the FreeFem++ software. The matrix inverses
are computed using the UMFPACK library, which consists in a sparse direct LU solver
(Davis & Duff 1997; Davis 2004).

4.2. Numerical implementation of the boundary conditions

As mentioned previously, the question of boundary conditions may be particularly
involved in compressible flows. In the present study, the treatment of the inlet, lateral
and outflow boundaries does not involve any physical modeling: the physical domain is
padded with sponge regions, where all fluctuations are progressively damped to negligible
levels through artificial dissipation (see Colonius 2004). The purpose of these sponge
regions is to minimize numerical box size effects by gradually attenuating all vortical and
acoustic fluctuations before they reach the boundary of the computational domain. The
resulting domain Ω, corresponding to the azimuthal plane θ = 0, is shown in Figure 2:
the computational inlet ∂Ωs

in, outlet ∂Ωs
out and external ∂Ωs

ext boundaries are located at
z = z∞ + ls, z = z−∞ − ls and r = r∞ + ls. Considering the function defined by

f(x1, x2) = 1 + tanh (4 tan
{
−π

2

(
1− 2

|x1 − x2|
ls

)}
, (4.1)
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the viscosity is smoothly increased from the fluid viscosity µ = 1 in the inner domain to
a large value µs = 10/Re on ∂Ωs according to

µ̃(r, z) = 1 if r 6 r∞ and |z| 6 |z±∞| ,(4.2a)

µ̃(r, z) = 1 +
1
2

(µs − 1) f(z, z±∞) if r 6 r∞ and |z| > |z±∞| ,(4.2b)

µ̃(r, z) = µ̃(r∞, z) +
1
2

(µs − µ̃(r∞, z)) f(z, z±∞) if r > r∞ . (4.2c)

As a consequence, all viscous tensors d(u) and τ (u) introduced in (3.2) should be replaced
by the effective tensors reading

d̃(u) = µ̃ d(u) , τ̃ (u) = µ̃ τ (u) . (4.3)

In addition to this artificial damping, numerical dissipation in the sponge zones is in-
creased by significant progressive grid stretching. The mesh used for this study is build
using z∞ = −100 z∞ = 300, r∞ = 25 and ls = 200, resulting in 662816 triangles. In
particular, all vertex densities used to build this mesh are identical to that of the mesh
M1, which is shown in Appendix A to provide with the most accurate results in the
case of the sphere flow. Finally, the governing equations are solved using the following
boundary conditions:

u = (0, 0, 1)T , ρ, T = 1 on ∂Ωs
in ∪ ∂Ωs

ext ∪ ∂Ωs
out (inlet, external & outlet), (4.4a)

u = 0, ∂nT = 0 on ∂Ωb (body) . (4.4b)

The base flow satisfies identical boundary conditions, along with the additional condition
u0 = 0, ∂r(w0, ρ0, T 0) = 0 on ∂Ωa obtained from mass, momentum and internal energy
conservation as r → 0 for axisymmetric solutions. The perturbation satisfies the following
boundary conditions

û1 = 0, ρ̂1, T̂ 1 = 0 on ∂Ωs
in ∪ ∂Ωs

ext ∪ ∂Ωs
out, (4.5a)

û1 = 0, ∂nT̂ 1 = 0 on ∂Ωb , (4.5b)
ŵ1, ρ̂1, T̂ 1 = 0, ∂r(û1, v̂1) = 0 on ∂Ωa , (4.5c)

the condition at the axis being specific to m = 1 disturbances. All global modes are
normalized by imposing the phase of the radial velocity to be zero at a particular loca-
tion, namely û1(0, 1) must be real positive for m = ±1. The eigenmode energy is then
normalized to unity in the near-wake domain defined arbitrarily as z ∈ [−12.3, 5.25] and
r < 2 and corresponding to the dark grey shaded area in Figure 2:

〈
q̂1, δinBq̂1

〉
= 1 , (4.6)

with δin the function defined as δin(r, z) = 1 if (r, z) ∈ Ωin and 0 otherwise. This normal-
ization choice has no effect on the sensitivity analysis but eases the comparison between
results when convergence tests are carried out. Note that for incompressible flows, this
choice has a simple physical interpretation, since

〈
q̂1 , Bq̂1

〉
=

∫

Ω

|û1|2rdrdz , (4.7)

owing to the specific form of operator B (Marquet et al. 2008a; Meliga et al. 2008b) i.e.
the condition (4.6) imposes a unity kinematic energy in Ωin. For compressible flows, we
have already mentioned that the choice of the inner product was not physically motivated.
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Indeed, using (3.8), we obtain now

〈
q̂1 , Bq̂1

〉
=

∫

Ω

(
|ρ̂1|2 + ρ0|û1|2 + ρ0|T̂ 1|2

)
rdrdz , (4.8)

so that the ‘energy’ defined by the induced norm is not a meaningful physical quantity,
neither the total energy, nor the total enthalpy of the perturbation. In the following, the
associated instantaneous ‘energy density’ of the perturbation will be referred to as the
B-norm, denoted ‖ ‖B, thus defined by

〈
q̂1 , Bq̂1

〉
=

∫

Ω

‖q̂1‖2B(r, z)rdrdz . (4.9)

The conditions for the adjoint perturbation arising from the integration by parts of the
perturbation equations are identical to that of the perturbation (see Appendix D for the
details). Adjoint global modes are then normalized using condition (2.16).

4.3. Base flow calculations

The Reynolds and Mach numbers being fixed, we assume first that it is possible to find
an approximate guess q̄0 of the base flow q0, solution of the steady nonlinear equations
(3.6). q0 is then obtained using an iterative Newton method, i.e. it is searched as a
perturbation of this guess value q̄0 + δq̄0, as in Barkley et al. (2002). Such an approach
involves the resolution of simple linear problems reading

A0(q̄
0)δq̄0 = −M0(q̄

0) . (4.10)

At each step, a matrix inversion is performed by use of the UMFPACK library. The
iterative process is carried out until the L2-norm of M0(q̄

0) becomes smaller than 10−12.
Two strategies are used to find the guess q̄0:

–in the limit of low Mach numbers, we represent the solution of the base flow equa-
tions (3.6) as power series in ε = γM2 expanded about the steady condition of zero
Mach number

u0(r) = u0(r) + εu1(r, t) + · · · , (4.11a)
ρ0(r) = 1 + ερ1(r, t) + · · · , (4.11b)
T 0(r) = T0(r) + εT1(r, t) + · · · , (4.11c)
p0(r) = p0(r) + εp1(r, t) + · · · . (4.11d)

Substituting the power series (4.11) into the governing equations, and equating the
coefficients of powers of ε to zero yields the following lowest-order equations:

∇p0 = 0 , (4.12a)
p0 = T0 , (4.12b)
p1 = ρ1T0 + T1 , (4.12c)
∇ · u0 = 0 , (4.12d)

∇u0 · u0 + ∇p1 −
1

Re
∇2u0 = 0 . (4.12e)

Equations (4.12a)− (4.12b) mean that p0 and consequently T0 are uniform in space.
We can thus set p0 = T0 = 1. Moreover, it can be seen from equations (4.12d)−(4.12e)
that u0 and p1 satisfy the incompressible steady axisymmetric Navier-Stokes equa-
tions and can therefore be computed by time marching the incompressible equations.
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Figure 3: Steady axisymmetric base flow for Re = 400 and M = 0.5. The solid line in the
flow indicates the separatrix of the recirculation zone. (a) Spatial distribution of axial
velocity w0. (b) Spatial distribution of total pressure p0

i . The black hue corresponds to
the free-stream value p0

i∞ = 1.19. (c) Spatial distribution of total temperature T 0
i . The

black hue corresponds to the free-stream value T 0
i∞ = 1.05.

The guess solution q̄0 of the compressible equations may then be chosen as

u0 = u0, (4.13a)
ρ0 = 1 + γM2p1, (4.13b)

T
0

= 1. (4.13c)

–for values of the Mach number M > 0.3, the guess value q̄0 is simply chosen as
a steady axisymmetric solution of the compressible equations, computed for a lower
value of the Mach number.

Since we do not use the governing equations under their conservative form, the method
presented here is unable to account for the presence of shock waves in the computational
domain. Therefore, base flow computations can be carried out legitimately while the
local Mach number Ml = M‖u0‖/

√
T 0 remains smaller than unity at each point of the

grid mesh. Practically, the free-stream Mach number can be increased up to M = 0.7.
Figure 3(a), shows contours of axial velocity w0 of the base flow for Re = 400 and
M = 0.5. The solid line is the streamline linking the separation point to the stagnation
point on the r = 0 axis, and defines the separatrix delimiting the recirculation bubble
behind the base. The classical topology of wake flows is retrieved, with a recirculation
region of length ∼ 1.8 diameters developing in the wake of the afterbody, and negative
values of streamwise velocity reaching 30% of the free-stream velocity.
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Figure 3(b) shows contours of total pressure p0
i , computed as

p0
i = p0

(
1 +

γ − 1
2

M2
l

) γ
γ−1

. (4.14)

The total pressure at some given point is the pressure that would be measured if the local
velocity was set to zero through an isentropic process. In the case of low Mach numbers,
relation (4.14) allows to recover the usual incompressible expression p0 + ρ0‖u0‖2/2. In
the present compressible case, the total pressure remains constant only on isentropic lines
of the flow. In Figure 3(b), p0

i is approximately equal to its free-stream value p0
i∞ = 1.19

except in the depression zone located in the recirculating bubble, and in the boundary-
layer where irreversible processes (mainly viscous friction at the body wall) trigger an
increase of entropy. Similarly, Figure 3(c) shows contours of the total temperature T 0

i ,
which is a nondimensional measure of the total enthalpy of the base flow H0, according
to

T 0
i =

H0

ρ0
= T 0

(
1 +

γ − 1
2

M2
l

)
, (4.15)

and which is a conserved quantity throughout the computational domain, owing to the
adiabatic rigid wall condition imposed on ∂Ωb. One observes that the total temperature
increases with respect to its free-stream value T 0

i∞ = 1.05 at the front stagnation point,
but decreases in the boundary-layer, despite the viscous friction that tends to act as a
local heat source, and in the wake of the afterbody.

The recirculation length Lr has been computed as a function of the Mach number,
for the same value of the Reynolds number Re = 400. Results are presented in Fig-
ure 4(a) where we also provide the value obtained for M = 0 by the resolution of the
incompressible base flow equations on the same mesh than that used for the compressible
calculations, as described in Meliga et al. (2008a,b). The low Mach number regime ex-
hibits an excellent asymptotic behaviour with respect to the incompressible value. It can
be seen that increasing the Mach number yields an increase in the recirculation length of
the base flow. A similar effect has been observed by Bouhadji & Braza (2003) studying
the effect of an increasing Mach number on the wake developing past a NACA 0012 at
zero angle of attack by means of DNS calculations. Such an increase of the recirculation
length is similar to that observed when increasing the Reynolds number in incompress-
ible flows, where the mechanism is purely viscous, as it results from the thinning of the
developing shear-layers. In the present study, it is further investigated by considering
the effect on the base flow of a small increase in the Mach number 0 < δM/M ¿ 1,
the Reynolds number being kept constant. As will be shown in the incoming sections,
the azimuthal wavenumber of the leading eigenmodes is m = 1, so that operator A0

is non-degenerate for parameter settings (M,Re) considered throughout this study. As
a consequence, and as mentioned in (2.25), such an increase in M induces a base flow
modification δq0

M solution of the linear problem

A0δq0
M = δM(0, δFρu, δFρT )T , (4.16)

with

δFρu =
−2

γM3
∇p0 , (4.17a)

δFρT =
−2γ(γ − 1)M

Re
τ (u0) : d(u0) . (4.17b)

The streamwise velocity gradient δw0
M/δM is shown in Figure 4(b): it can be seen that
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Figure 4: (a) Recirculation length Lr for the base flow as a function of the Mach number -
Re = 400. (b) Streamwise velocity component of the base flow modification δq0

M resulting
from a small increase of the Mach number. The solid line in the flow indicates the
separatrix of the recirculation zone - Re = 400, M = 0.5. These values correspond to the
arbitrary choice δM = 10−1.

Figure 5: (a) Streamwise velocity gradient of the base flow modification induced by the
modification of the pressure gradient, δFρT being forced to zero - Re400, M = 0.5. (b)
Same as (a) for the base flow modification induced by the modification of the power of
the viscous forces, δFρu being forced to zero.

Figure 6: (a) Streamwise pressure force of the base flow −∂zp
0/γM2 - Re400, M = 0.5.

(b) Additional streamwise component of the force δFρu resulting from the increase in
the Mach number.

δw0
M/δM is negative in the recirculation, so that an increase in M (δM > 0) induces a

negative additional streamwise velocity δw0
M in this zone, thus explaining the observed

behavior of the recirculation length Lr. Though, it turns out from (4.16) − (4.17) that
δq0

M arises from two distinct effects, that are simultaneously at work: the first one is
the modification of the pressure gradient in the momentum equations, related to the
term δFρu, and the second one is the modification of the power of the viscous forces
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in the energy equation, related to the term δFρT . Since (4.16) is a linear problem, it is
thus possible to compute separately the base flow modification induced by each effect by
forcing alternatively δFρu and δFρT to zero in (4.16). The resulting streamwise velocity
gradients are depicted in Figures 5. One sees in Figure 5(b) that the streamwise velocity
gradient induced by the viscous forcing term of the energy equation δFρT is almost nil
along the separatrix. Consequently, it can be claimed that the total additional stream-
wise velocity responsible for the increase of the recirculation length is related to pressure
effects. We propose to interpret this result as follows. Consider the base flow at given
Reynolds and Mach numbers. The recirculating area is a depression zone that induces a
suction and thus tends to limit the spatial extension of the recirculating bubble. This is
shown in Figure 6(a) presenting the streamwise force induced by the pressure gradient
−∂zp

0/(γM2). We obtain negative values, i.e. the pressure force points in the direction
opposite to that of the flow, as shown by the arrows displayed along the separation line.
When increasing the Mach number, this effect is relaxed, as 1/γM2 decreases. This can
also be seen through the forcing term δFρu whose streamwise component is shown in
Figure 6(b): we obtain positive values along the separation line, resulting in an addi-
tional force that opposes the initial one, and thus allows the streamwise development
of the recirculating area. It is worth insisting here that the increase in the recirculating
length with the Mach number results from a pure inviscid mechanism, as this interpre-
tation is opposite to that prevailing in incompressible flows when the Reynolds number
is increased.

4.4. Eigenvalue calculations
The spatial discretization of the problems (3.7) − (3.15) results in large-scale gen-

eralized eigenvalue problems, solved using the ”Implicitly Restarted Arnoldi method”
of the ARPACK library (http://www.caam.rice.edu/software/ARPACK ) based upon a
shift and invert strategy (Ehrenstein & Gallaire 2005). Since the adjoint problem (3.15)
has been formulated for continuous operators with associated adjoint boundary condi-
tions, the spatial discretization of operators Am and A†m leads to discrete operators that
are not hermitian one to the other because the operator B defined in (3.8) does not
correspond to the scalar product in cylindrical coordinates. We check a posteriori that
the adjoint eigenvalues are complex conjugate with the direct eigenvalues and that a
bi-orthogonality relation (Chomaz 2005), is satisfied for the 10 leading global modes (i.e.
that the scalar product of one of the 10 leading adjoint modes with any of the 10 leading
direct global modes associated to a different eigenvalue is less that 10−8) , and conclude
that our numerical procedure accurately estimates the compressible direct and adjoint
global modes.

In the range of Mach numbers under investigation (M < 0.7), the axisymmetric wake
undergoes an intrinsical sequence of bifurcations identical to that previously documented
in the incompressible regime for other shape of bodies (Natarajan & Acrivos 1993). When
the Reynolds number is increased from small values, a first stationary mode (ω = 0)
destabilizes the axisymmetric base flow at ReA, for all values of the Mach number. In
the following, this mode is named mode A and the corresponding eigenvector is referred
to q̂1

A. For M = 0.5, we find a critical Reynolds number ReA = 483.5. Figure 7 shows the
spatial structure of the global mode A at the threshold of instability, which is dominated
by axially extended streamwise velocity ŵ1

A, density ρ̂1
A and temperature T̂ 1

A disturbances
located downstream of the body. However, the thermodynamic effects are moderate, since
the levels of density and of temperature perturbations remain significantly less impor-
tant than that found for the streamwise velocity. Since the azimuthal wavenumber of
this global mode is m = 1, the streamwise velocity perturbation is opposite on the other
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Figure 7: Stationary global mode at the threshold of the first instability, ReA = 483.5 -
M = 0.5. (a) Spatial distribution of axial velocity ŵ1

A for the global mode. (b) Spatial
distribution of density ρ̂1

A. (c) Spatial distribution of temperature T̂ 1
A. The black hue

corresponds to vanishing perturbations. (d) Streamwise distribution of energy density
EA(z) for the direct global mode. The dashed line shows the contribution EA

T (z) of
the thermodynamic components to the energy EA(z). The vertical grey line marks the
position of the separation point.

side of the revolution axis, which induces an increase of the streamwise velocity of the
total flow. Similarly, the temperature and density perturbation are opposite on the other
side of the revolution axis, where they induce a decrease of the temperature (or equiva-
lently an increase of the density) of the total flow. The stationary global mode therefore
mainly induces an off-axis displacement of the wake, as in the case of a sphere at zero
Mach number (Johnson & Patel 1999). Owing to the compressible effects, one observes
an additional heating of the flow in this direction of displacement. The downstream local-
ization of the global mode is evidenced in Figure 7(d), where we present the streamwise
evolution of the amplitude of the global mode, computed as the ‘density energy’ of the
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Figure 8: Same as Figure 7 for the stationary adjoint global mode at threshold. The
low amplitude upstream distribution is enhanced by an appropriate choice of the color
look-up. A close-up on the recirculating area is shown in the right frame.

perturbation, integrated over a vertical cross-section for each streamwise position, i.e.

EA(z) =
∫ r∞

0

(
|ρ̂1

A|2 + ρ0|û1
A|2 + ρ0|T̂ 1

A|2
)

rdr =
∫ r∞

0

‖q̂1
A‖2Brdr , (4.18)

as well as the contribution of the thermodynamic variables to this amplitude, i.e.

EA
T (z) =

∫ r∞

0

(
|ρ̂1

A|2 + ρ0|T̂ 1
A|2

)
rdr . (4.19)

The vertical grey lines mark the positions of the front and rear stagnation points. One
can observe that the direct mode is nil upstream of the body, reaches a maximum in the
recirculating bubble, and maintains a significant level even far downstream of the body.
The contribution of the momentum to this amplitude dominates the entire field, as the
thermodynamic contribution is two orders of magnitude smaller.

The associated adjoint global mode q̂1†
A is presented in Figure 8. It presents high

magnitudes of adjoint streamwise velocity ŵ1†
A , density ρ̂1†

A and temperature T̂ 1†
A within

the recirculating bubble and close to the body, and low magnitude disturbances upstream

146



of the body. The upstream localization of the adjoint global mode, resulting from the
convective nonnormality of the evolution operator, is further evidenced in Figure 8(d),
showing the streamwise distribution of energy density EA†(z) for the adjoint global mode
and the contribution of the thermodynamic variables EA†

T (z) to this amplitude. The
adjoint global mode vanishes downstream of the body and reaches a maximum in the
recirculating area. Upstream of the body, its energy density is two orders of magnitude
smaller than in the recirculation bubble and decreases exponentially. It should be noted
that the contribution of the thermodynamic variables to the total density energy is weak
in the whole domain, since it is seen to be two to three orders of magnitude smaller than
the total energy density.

Furthermore, the direct and adjoint global modes are mainly localized in the recir-
culation, with respectively downstream and upstream tails showing the influence of the
convective nonnormality. This point can be further investigated by quantifying the non-
normality as the angle θ defined as

cos
(π

2
− θA

)
=

〈q̂1†
A ,Bq̂1

A〉
〈q̂1†

A ,Bq̂1†
A 〉 × 〈q̂1

A,Bq̂1
A〉

, (4.20)

with 〈q̂1†
A ,Bq̂1

A〉 = 1 by convention here. The nonnormality is thus measured by the
departure θA to π/2 of the angle between the direct and adjoint global modes, i.e. the
larger the nonnormality, the smaller θA. It is possible to quantify the contribution of the
convective nonnormality to the overall nonnormality by considering the parameter γA

defined by

γA = 1−
∫
Ω
‖q̂1

A‖B × ‖q̂1†
A ‖Brdrdz

(∫

Ω

‖q̂1
A‖2Brdrdz

)

︸ ︷︷ ︸
〈q̂1

A,Bq̂1
A〉

1/2

×
(∫

Ω

‖q̂1†
A ‖2Brdrdz

)

︸ ︷︷ ︸
〈q̂1†

A ,Bq̂1†
A 〉

1/2
. (4.21)

Using a standard Cauchy-Schwartz inequality, it can be shown that 0 6 γA 6 1. A value
of γA close to 0 is reached if ‖q̂1

A‖B = α‖q̂1†
A ‖B in the whole spatial domain, meaning

that the direct and adjoint global modes have the same spatial distribution of energy. In
that case, the convective nonnormality is not active since it would imply a dissymmetry
in the distribution of the direct and adjoint modes. On the contrary, a value of γA

close to 1 means that the direct and adjoint global modes are spatially separated. The
results obtained at criticality show that the nonnormality is insensitive to the increase
in the Mach number. For the stationary eigenmode A, we find that θA barely decreases
from 0.041 (2.35◦) at M = 0 to 0.040 (2.32◦) at M = 0.7, with a constant parameter
γA = 0.888, meaning that the nonnormality of mode A is significant and due to the
convective nonnormality at approximately 90 %. Though, since the parameter γA remains
constant, the slight increase in the nonnormality with the Mach number is probably due
to a slight increase in the lift-up nonnormality discussed in § 3.4.

When the Reynolds number is increased above the threshold value ReA, a second
oscillating mode of frequency ω = ω0 destabilizes the axisymmetric base flow at ReB .
This mode is named mode B and is thus associated to a complex eigenvector denoted
q̂1

B. For M = 0.5, we find a critical Reynolds number ReB = 981.0 and a frequency
ω0 = 0.399 corresponding to a Strouhal number St = ω0D/(2πU∞) = 0.063. Figure 9(a)
shows the spatial structure of the real part of the streamwise velocity component ŵ1

B .
One observes positive and negative velocity perturbations alternating downstream of
the body, in a regular, periodic way that defines a local spatial wavelength of about 12
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Figure 9: Same as Figure 7 for the oscillating global mode at the threshold of the second
instability, ReB = 981.0 - M = 0.5. Only the real parts are shown.

diameters, i.e. significantly larger than that found for the sphere in Appendix A. The
imaginary part of ŵ1

B (not shown here) displays a similar structure, but is approximately
in spatial quadrature since its extrema are located where the real part vanishes. This
global mode corresponds therefore to a spiral perturbation in the lee of the body, which
rotates in time at the frequency ω0. Note that the density ρ̂1

B and temperature T̂ 1
B

perturbations shown in Figures 9(b) and 9(c) are one order of magnitude smaller than
that found for the streamwise velocity ŵ1

B shown in Figure 9(a). The adjoint global
mode q̂1†

B is shown in Figure 10: it is dominated by the adjoint velocity field, and is
intense only in the recirculating area and a few diameters upstream of the body, where it
presents a weak oscillation, and it vanishes downstream of the body. This downstream
and upstream localizations of the direct and adjoint global modes are further evidenced
on Figure 9(d) and 10(d). We find that the thermodynamic energy densities EB

T (z) and
EB†

T (z) are weak in the whole domain, the total energy densities EB(z) and EB†(z) being
thus dominated by the contribution of momentum. One observes that the direct mode is
evanescent upstream of the body, reaches a local maximum at the separation point, but
keeps increasing downstream of the recirculating area. The adjoint global mode vanishes

148



Figure 10: Same as Figure 8 for the oscillating adjoint global mode at threshold. Only
the real part is shown.

downstream of the body, reaches a maximum in the recirculating area and decreases
steadily upstream of the body. The nonnormality of this oscillating mode is large, as we
find low values of θB barely increasing from 0.0021 (0.12◦) at M = 0 to 0.0022 (0.13◦) at
M = 0.7. We also find a constant parameter γB = 0.992 indicating that the nonnormality
is entirely triggered by the convective nonnormality mechanism.

It turns out that in the present case, we deal with momentum modes, i.e. the density
and temperature components contribute weakly to the overall energy. In particular, the
nonnormal effects are entirely dominated by the contribution of convective nonnormality,
and the typical compressible effects introduced in § 3.4 are not active here. This can be
explained by considering that these modes do not originate from compressible effects, as
they already exist at M = 0. In particular, it may be inferred from this that the control of
these instabilities by thermodynamics means, i.e. heating or cooling for example, will be
quite difficult. It should be kept in mind, though, that all tools presented here, including
the nonnormal effects discussed in § 3.4, are general and that different results may be
obtained by considering configurations sustaining important thermal effects, such as the
self-sustained oscillations in hot jets, for instance (Monkewitz et al. 1990).
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Figure 11: Stationary global mode. (a) Boundary separating the unstable domain (U-
labeled shaded area) from the stable domain (S-labeled area) in the (M, Re)-plane . (b)
Recirculation length LA

r of the base flow at the threshold of the first instability, i.e. for
Reynolds and Mach numbers (M, Re) varying along the neutral curve shown in (a).

4.5. Impact of compressibility
We investigate now the effect of the free-stream Mach number on the stability prop-

erties of the flow. We show in Figure 11(a) the boundary of the stability domain in the
(M,Re)-plane for the stationary mode A, the flow being unstable for combinations of
parameters located in the shaded region, labeled U, and stable for all other combinations
of parameters (S-labeled region). The values for M = 0 issue from the resolution of the
incompressible stability problem on the same mesh than that used for the compressible
calculations, as described in Meliga et al. (2008a,b). Owing to the choice of the refer-
ence scales, we obtain an excellent asymptotic behaviour at low Mach numbers without
supplementary rescaling of the compressible values. It can be seen that increasing the
Mach number yields a significant increase of the critical Reynolds number ReA, which
varies significantly by approximately 10% from ReA = 460.5 to 507.5 when the Mach
number is varied from M = 0 to the maximum value M = 0.7. We thus find a stabilizing
effect of the Mach number. In the framework of local stability, similar stabilizing effects
have been documented, for instance in plane mixing layers (Pavithran & Redekopp 1989),
and interpreted in the light of the convective/absolute dichotomy: the generally admitted
idea is that an increase of the compressibility promotes convective instability by reducing
the pressure disturbances wave speed, which prevents their upstream propagation. The
extension of this argument to the present global framework will be further discussed in
§ 5.2. Figure 11(b) shows the evolution of the recirculation length LA

r at the threshold
of the first instability, i.e. for parameter couples (M,Re) varying along the neutral curve
shown in Figure 11(a). It can be seen that the recirculation length of the base flow in-
creases by 11 %, from 1.82 at M = 0 to 2.02 at M = 0.7. This could have been expected,
though, as both the increase of the Reynolds and the Mach number individually induce
an increase of the recirculation length. Similarly, Figure 12(a) shows the boundary of the
stability domain in the (M,Re)-plane for the oscillating mode. Again, the asymptotic
behavior at low Mach numbers is excellent, and we find that increasing the Mach num-
ber results in a stabilization of the instability, as the value of ReB increases significantly
by approximately 17 % as the Mach number is varied from M = 0 (ReB = 909.1) to
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Figure 12: Oscillating global mode. (a) Boundary separating the unstable domain (U-
labeled shaded area) from the stable domain (S-labeled area) in the (M, Re)-plane .
(b) Recirculation length LB

r of the base flow and frequency ω0 of the eigenmode at the
threshold of the second instability, i.e. for Reynolds and Mach numbers (M, Re) varying
along the neutral curve shown in (a).

M = 0.7 (ReB = 1061.1). Figure 11(b) shows the evolution of the recirculation length
LB

r and of the frequency ω0 at the threshold of this second instability. We find that LB
r

increases by 13 %, from 2.25 at M = 0 to 2.54 at M = 0.7, owing to both the effect of
the Reynolds and Mach numbers. The frequency ω0 of the eigenmode decreases by 9 %,
from 0.416 at M = 0 to 0.381 at M = 0.7.

This stabilizing effect of the Mach number on both eigenmodes is particularly inter-
esting. In their study on the wake of a NACA 0012, Bouhadji & Braza (2003) have thus
found that for a Reynolds number of 10000, the incompressible flow was steady, but
that increasing solely the Mach number was responsible for the onset of vortex-shedding.
These authors have then concluded that the Mach number mainly enhances the instabil-
ity mechanisms by increasing the recirculation length, as the Reynolds number would do
in a classical incompressible recirculating flow. Our results show a completely opposed
case where increasing the Mach number restabilizes the unstable modes, despite the fact
that it simultaneously triggers an increase of the recirculating length. It can be concluded
that one cannot understand these complex compressible effects by considering only the
variation of the recirculation length.

To further investigate the stabilizing effect of compressibility, we assume from now on
that the Reynolds number remains constant, so that eigenvalues are function of the base
flow quantities and the Mach number. At threshold of instability, we then investigate the
variation δλ resulting from a small increase of the Mach number 0 < δM/M ¿ 1 in the
framework of the sensitivity analyses developed in § 2.2. In other terms, considering the
(M,Re)-plane, we stand initially on the neutral curve and induce a slight displacement
to the right along an horizontal imaginary line, as depicted by the horizontal arrows in
Figures 11(a) and 12(a). We then try to interpret the reason why such displacement
systematically points to the stable domain. To this end, performing the decomposition
of δλ into the contributions δλ|M and δλ|

q0 introduced in § 2.2 will be shown to be
particularly fruitful.

In the following, δλ, δλ|M and δλ|
q0 are computed exclusively by use of the adjoint-
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Figure 13: Stationary global mode: variation of the growth σA owing to a small mod-
ification of the Mach number computed as a function of the Mach number along the
neutral curve shown in Figure 11(a). The solid curve stands for the overall variation δσA.
The dashed and dash-dotted curves represent the variations δσA|M and δσA|q0 denoting
respectively the variations of σA owing to the base flow modification δq0

M induced by
the modification of the Mach number, and that resulting from the modification of the
Mach number in the linearized Navier-Stokes operator. All values presented here have
been obtained for δM = 10−1, and the curves have been prolonged from M = 0.05 down
to 0 by linear regression.

Figure 14: Same as Figure 13 for the oscillating global mode. (a) Variation of the growth
rate σB. (b) Variation of the frequency ωB.

based expressions (2.24), so that we implicitely set δM to unity. The sensitivity formalism
being linear in essence since based on the evaluation of gradients, we compute first
the gradient δλ/δM and eventually obtain δλ as (δλ/δM)δM , so that this choice has
no physical effect. The correctness and accuracy of the adjoint method is discussed in
Appendix B, where we present a comparison between the values issuing from the adjoint
formalism and forward calculations.
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The variation of the growth rate δσA induced by a small modification of the Mach
number has been computed along the neutral curve of the stationary mode shown in
Figure 11(a). Results are presented in Figure 13. In the range 0 < M < 0.05, values
represented by the grey solid lines have been obtained by linear regression. We find
negative values of δσA, thus confirming that increasing the Mach number (δM > 0)
tends to stabilize the flow. Moreover, this effect is seen to increase with the Mach number,
as δσA reaches its largest magnitude for M = 0.7. Figure 13 also shows the respective
contributions to δσA of the variations δσA|M and δσA|q0 . For all values of the Mach
number, we find that the contribution δλ|

q0σA
arising from the modification of the Mach

number in the perturbation equations is negligible, and that the overall variation δσA

is due at 90 % to the modification of the base flow. Similarly, Figure 14 presents the
values of δσB and δωB computed along the neutral curve of the oscillating mode shown
in Figure 12(a). We find negative values of δσB and δωB , meaning that an increase of
the Mach number induces a slight decrease of both the growth rate and the frequency
of the eigenmode. These effects are seen to increase with the Mach number, as δσB and
δωB are maximum for M = 0.7.

Figure 14 also details the respective contributions to δσB (resp. δωB) of the sensitivities
δσB|M and δσB|q0 (resp. δωB|M and δωB|q0). We find that the variation δσB|M and δωB|M
induced by the base flow modification dominate in the whole range of Mach numbers
considered here, where it represents 90% of the overall variation, a result reminiscent
of that already discussed for the stationary mode. It is thus worthwhile emphasizing
here on the fact that sensitivity to base flow modification is of primary importance to
understand the dynamics of the unstable global modes, and in particular the underlying
compressible effects at work in the present case.

5. Sensitivity to base flow modification
The previous section has enlightened the importance of the base flow on the dynamics

of the unstable modes through the variation δλ|M induced by the base flow modification
δq0

M . The role of the base flow is now further investigated by performing the so-called
sensitivity analysis to base flow modifications. In the following, we discuss first the dif-
ferent sensitivity functions, and particular attention is paid to their spatial distributions,
which lead to a straightforward identification of the wavemaker regions. To this end,
we use the conservative set of sensitivity functions defined by (3.33). A more physical
interpretation of the results given in § 4.5 is then proposed by applying the sensitivity
analysis to the specific base flow modification δq0

M induced by the small change in the
Mach number.

5.1. Identification of the wavemaker regions
In this section, results are presented in terms of the magnitude of the various sensitivity

functions at the threshold of instability. The color look-up table has been cautiously set-
up so as to enhance the active zones where the growth rate σA is sensitive to base flow
modifications. Note that we do not consider the sign of the sensitivity, as its effect on
the eigenvalue variation also depends on a relevant base flow modification. For instance,
to consider an extreme case, the variation resulting from a momentum modification set
orthogonal to the orientation of the sensitivity field is zero, even if the magnitude of the
sensitivity function is high at this particular location.

Figure 15(a) presents the spatial distribution of magnitude of the momentum sensi-
tivity function ‖∇ρ0u0σA‖2(r, z) for the stationary mode at ReA

c = 483.5 and M = 0.5.
The sensitivity is almost nil everywhere in the flow, except in the recirculating bubble,
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Figure 15: Stationary global mode at the threshold of the first instability, ReA = 483.5 -
M = 0.5: sensitivity to base flow modifications of the growth rate σA. Spatial distribution
of the magnitude of the (a) momentum sensitivity function ‖∇ρ0u0σA‖2 and the (b) en-
ergy sensitivity function |∇ρ0T 0σA|2. The black hue corresponds to vanishing magnitudes
of sensitivity.

which acts as the wavemaker region. Since the sensitivity functions defined in (3.24) de-
pend both from the perturbation and adjoint perturbation quantities, this specific spatial
distribution results from the convective nonnormality of the linearized evolution opera-
tor, which induces direct global modes (resp. adjoint global modes) located downstream
(resp. upstream) of the body and in the recirculating bubble. High sensitivity is obtained
around the separation point, in the center of the recirculation bubble, and close to the
base, where the largest values are reached. Similarly, Figure 15(b) presents the spatial
distribution of magnitude of the energy sensitivity function |∇ρ0T 0σA|2(r, z), for which
we find similar active zones. Though, strikingly, it can be seen that the sensitivity of σA

to a modification of energy δ(ρ0T 0) is three orders of magnitude smaller than that to
a modification of momentum δ(ρ0u0), identical results being found for the density and
pressure sensitivity functions (not shown here).

The distribution of magnitude of the momentum sensitivity functions ‖∇ρ0u0σB‖2(r, z)
and ‖∇ρ0u0ωB‖2(r, z)are plotted in Figures 16(a) and 16(b) for the oscillating mode at
ReB

c = 981.0 and M = 0.5. Concerning the growth rate σB, results are reminiscent of
that discussed for the first stationary instability of mode A, with a sensitivity almost
nil everywhere in the flow, except within the recirculation which acts as the wavemaker.
The localization of the active zones is somehow slightly different, with large magnitude
of sensitivity found at the separation point and in the tail of the recirculating bubble,
whereas the region close to the base, which was the most sensitive for the stationary
mode, now exhibits low magnitudes of sensitivity. Interestingly, the active zones also
differ between the growth rate σB and the frequency ωB of the oscillating mode, since it
can be seen from Figure 16(b) that the largest magnitudes of sensitivity of ωB are reached
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Figure 16: Oscillating global mode at the threshold of the second instability, ReB = 981.0
- M = 0.5: sensitivity to base flow modifications of the eigenvalue σB + iωB. Spatial
distribution of the magnitude of the momentum sensitivity functions (a) ‖∇ρ0u0σB‖2
and (b) ‖∇ρ0u0ωB‖2. The black hue corresponds to vanishing magnitudes of sensitivity.

Figure 17: Same as 16 for spatial distribution of the magnitude of the temperature
sensitivity functions (a) |∇ρ0T 0σB|2 and (b) |∇ρ0T 0ωB|2.
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in the center of the recirculation, whereas the separation point is not active. Finally, it
can be seen from Figure 17 presenting the spatial distribution of the energy sensitivity
functions |∇ρ0T 0σB|2(r, z) and |∇ρ0T 0ωB|2(r, z) that the magnitudes of these sensitivities
is two to three orders of magnitude smaller than their momentum counterparts. Since
such results have also been obtained for the stationary mode, this point has an important
physical interpretation in terms of base flow calculations, as it indicates that small errors
in the computation of ρ0 and T 0 have almost no effect on the stability calculations.

5.2. Physical interpretation for the stabilizing effect of compressibility in terms of
advection and production mechanisms

It has been shown in § 4.5 that increasing the free-stream Mach number has a stabi-
lizing effect on the stationary and oscillating eigenmodes. This point is now discussed in
the light of sensitivity analyses. We consider a small modification of the Mach number
δM . Since we have already said that such a modification alters the stability problem by
acting at the base flow level, we further investigate the specific variation δλ|M , which is
from now on abusively denoted δλ to ease the notation.

Since δλ is obtained by integration over space of the integrand ∇q0λ · δq0
M(r, z), it is

possible to integrate separately the four integrands

δρ0λ =
∫

Ω

∇ρ0λ · δρ0
M rdrdz , (5.1a)

δρ0u0λ =
∫

Ω

∇ρ0u0λ · δ(ρ0u0)M rdrdz , (5.1b)

δρ0T 0λ =
∫

Ω

∇ρ0T 0λ · δ(ρ0T 0)M rdrdz , (5.1c)

δp0λ =
∫

Ω

∇p0λ · δp0
M rdrdz , (5.1d)

so that

δλ = δρ0λ + δρ0u0λ + δρ0T 0λ + δp0λ . (5.2)

This allows to distinguish between the contributions to the overall variation δλ issuing
from the modification of density, momentum, internal energy and pressure.

Moreover, the origin of the stabilizing effect is discussed in terms of the competition
between advection and production of disturbances, by use of the specific advection and
production sensitivity functions defined in § 2. δλ is thus decomposed into

δλ = δ(A)λ + δ(P )λ , (5.3)

where δ(A)λ and δ(P )λ measure the variation of the eigenvalue owing to the modification
of the advection operator C(A)

m and of the total production operator C(P )
m + Pm induced

by the base flow modification δq0
M . Similar dichotomy has proven fruitful to discuss the

effect of compressibility on the stability of axisymmetric wakes in the framework of the
local theory (Meliga et al. 2008c). Physically, a positive (resp. negative) value of δ(A)λ
indicates a destabilization (resp. a stabilization) of the eigenmode owing to a weakening
(resp. a strengthening) of the disturbances advection. Similarly, a positive (resp. negative)
value of δ(P )λ indicates a destabilization (resp. a stabilization) owing to an increase (resp.
a decrease) of the disturbances production. These terms are computed respectively as
the projection of δq0

M onto the advection and production sensitivity functions, i.e.

δ(A)λ =
〈
∇(A)

q0 λ , δq0
M

〉
, δ(P )λ =

〈
∇(P )

q0 λ , δq0
M

〉
. (5.4)
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Figure 18: Stationary global mode at the threshold of the first instability, ReA = 483.5
- M = 0.5. (a) Variation of the growth rate induced by the base flow modification
δq0

M computed as a funtion of the Mach number. The dashed line represents the overall
variation δσA|M . The solid line (resp. dash-dotted line) represents the contribution to
δσA|M of the variation δ(A)σA|M owing to the modification of the advection operator (resp.
the variation δ(P )σA|M owing to the modification of the production operator). δσA|M
is thus the sum of these two contributions. (b) Spatial distribution of the momentum
integrand ∇(A)

ρ0u0σA · δ(ρ0u0)M(r, z). The integration over space of this quantity yields
the variation δσA|AM that dominates the growth rate variation. The black hue corresponds
to vanishing magnitudes of the integrand.

The magnitude of these two sensitivity functions, as well as a discussion on the localiza-
tion of their respective active zones can be found in Appendix C.

5.2.1. Stationary eigenmode A

Figure 18(a) presents the adjoint-based values of δ(A)σA (solid line) and δ(P )σA (dash-
dotted line) computed as functions of the Mach number at threshold of instability. The
overall variation δσA, which appears as the dashed line in Figure 13 is also reported. One
observes that all variations are negative, suggesting that both the modifications of the
advection and production mechanism are stabilizing. Though, it can be seen that δ(P )σA

contributes little to the overall variation which is dominated by the δ(A)σA. For M = 0.5
and ReA

c = 483.5, we have carried out both decompositions (5.2) and (5.3). Results are
given in Table 1 and confirm that the variation δ(A)σA arising from the modification of the
advection operator is larger by one order of magnitude than its production counterpart.
The production mechanism is equally dominated by momentum and energy modifications
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δρ0σA|M δρ0u0σA|M δρ0T0σA|M δp0σA|M δσA|M
∇ −5.4× 10−4 −3.3× 10−2 −3.3× 10−3 −9.3× 10−5 −3.7× 10−2

∇(A) 6.7× 10−5 −3.1× 10−2 −1.1× 10−5 0 −3.1× 10−2

∇(P ) −6.1× 10−4 −2.3× 10−3 −3.3× 10−3 −9.3× 10−5 −6.3× 10−3

Table 1: Stationary global mode at the threshold of the first instability, ReA = 483.5 -
M = 0.5: variation of the growth rate σA induced by the base flow modification δq0

M .
δρ0σA|M , δρ0u0σA|M , δρ0T 0σA|M and δp0σA|M are the variations obtained by evaluating
individually the specific variation arising from the modification of density, momentum,
internal energy and pressure, so that the overall variation δσA|M is the sum of these four
contributions. Results obtained using the overall sensitivity functions are provided on
the first line. Results obtained using the advection/production decomposition (5.3) are
provided on the second and third lines respectively.

while the advection mechanism is entirely triggered by momentum, as the density, energy
and pressure modifications are seen to contribute for nothing in the overall variations.
This is consistent with the results discussed in § 5.1, where we have shown that the
magnitude of the sensitivity functions ∇ρ0λ, ∇ρ0T 0λ and ∇p0λ are very small compared
to that of their momentum counterpart. It can thus be claimed that the stabilizing effect
of compressibility comes from a strong strengthening of the advection of perturbations,
triggered by the variation of the base flow momentum. Interestingly, it turns out that the
additional slight weakening of the production mechanism arises both from the momentum
and energy contributions, i.e. specific compressible mechanisms are at work in this second
order stabilizing effect.

One also sees that δ(P )σA becomes asymptotic to the value 0.007 as M is increased
above M ' 0.5. In this range of Mach numbers, the magnitude of the production weaken-
ing mechanism thus becomes independent of the Mach number. On the contrary, δ(A)σA

is approximatively linear in M , so that the magnitude of the downstream advection
strengthening effect is larger at high subsonic Mach numbers, hence explaining the large
overall stabilizing effect previously documented in this specific parameter range.

To identify the regions in space which are responsible for the stabilization of the global
mode, we present in Figure 18(b) the spatial distribution of the advection momentum
integrand ∇(A)

ρ0u0σA · δ(ρ0u0)M(r, z). At a given station, a positive (resp. negative) value
indicates that the base flow modifications δq0

M contributes to the destabilization (resp.
stabilization) of the global mode. Several regions contributing either to a stabilization
or to a destabilization are visible in Figure 18(b), thus outlining the complex effect of
varying the Mach number on the variation of the growth rate. One sees for instance
that the vicinity of the separation line (in the region 0.5 < z < 1.5) contributes to a
a strong stabilization of the global mode, whereas the vicinity of the separation point
contributes to its destabilization. The dominating contribution being stabilizing, we can
though identify the front part of the recirculating bubble and the separation line as
responsible for the stabilizing effect of the modification of the advection operator.

5.2.2. Oscillating eigenmode B

Figure 19(a) presents the adjoint-based values of δ(A)σB (solid line) and δ(P )σB (dash-
dotted line) at threshold of instability, as functions of the Mach number. The overall
variation δσB already shown as the dashed line in Figure 14 is also reported. The curve
trends are similar to that presented in Figure 18(a) for the stationary mode, with neg-
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Figure 19: Same as Figure 18 for the growth rate of the oscillating global mode at the
threshold of the second instability, ReB = 981.0 - M = 0.5.

ative variations indicating that both the modifications of the advection and production
mechanism are stabilizing. In particular, it can be seen that advection still dominates over
production, but the contribution of δ(P )σB is larger than that found for the stationary
mode A, for instance it represent almost 35 % of the overall sensitivity δσB at M = 0.5.
The results of decompositions (5.2) and (5.3) at M = 0.5 and ReB

c = 981.0 are given in
Table 2, and show that both the advection and production mechanisms are dominated by
the contribution of momentum, so that it can be claimed that the stabilization arising
from an increase in the Mach number arises from a weakening of the production and
a strong strengthening of the advection of perturbations, both being triggered by the
variation of the base flow momentum.

Figure 19(b) shows the spatial distribution of the momentum advection integrand
∇(A)

ρ0u0σB · δ(ρ0u0)M(r, z). Again, the effect of varying the Mach number on the growth
rate is complex, as several regions contribute either to a stabilization or to a destabi-
lization of the flow. As discussed previously for the stationary mode, one notes that the
separation line (in the range 1 < z < 1.7) contributes to a a strong stabilization of the
global mode, whereas the very vicinity of the separation point and the core region (in
the range 0.4 < z < 1.1) both trigger a strong destabilizing effect.

Note that the compressibility effect on the frequency ωB can be investigated similarly.
For instance, Figure 20 presents the adjoint-based values of δ(A)ωB (solid line) and δ(P )ωB

(dash-dotted line) and δωB (dashed line) at threshold of instability. Interestingly, we now
observe that the advection and production mechanisms contribute both significantly to
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δρ0σB|M δρ0u0σB|M δρ0T0σB|M δp0σB|M δσB|M
∇ 8.0× 10−3 −5.3× 10−2 −2.6× 10−3 −4.9× 10−5 −4.8× 10−2

∇(A) 2.4× 10−4 −3.4× 10−2 −8.7× 10−6 0 −3.4× 10−2

∇(P ) 7.7× 10−3 −1.9× 10−2 −2.6× 10−3 −4.9× 10−5 −1.3× 10−2

δρ0ωB|M δρ0u0ωB|M δρ0T0ωB|M δp0ωB|M δωB|M
∇ 8.1× 10−2 −1.3× 10−1 −2.8× 10−3 1.1× 10−4 −5.0× 10−2

∇(A) −2.7× 10−4 −1.1× 10−1 −5.6× 10−5 0 −1.1× 10−1

∇(P ) 8.2× 10−2 −1.9× 10−2 −2.7× 10−3 1.1× 10−4 6.0× 10−2

Table 2: Same as Table 1 for the oscillating global mode at the threshold of the second
instability, ReB = 981.0 - M = 0.5.

Figure 20: Same as Figure 18 for the frequency of the oscillating global mode at the
threshold of the second instability, ReB = 981.0 - M = 0.5.

the overall variation δωB. Moreover, these mechanisms are competitive, since all values of
δ(A)ωB are negative and all values of δ(P )ωB are positive. This means that when the Mach
number is increased, the modification of the advection operator, that has been said to
strongly strengthen the disturbances advection, also induce a decrease in the frequency
ωB. Simultaneously, the modification of the total production operator, that weakens the
production of disturbances, also induces an increase of ωB. As a consequence, the observed
overall decrease of the frequency comes from the effect of advection being larger.

Table 2 also provides the results of decompositions (5.2)− (5.2) for ωB. Interestingly,
we find that the increase in the frequency by advection is entirely due to the modifica-
tion of momentum. Though, it is interesting to note that production acts mainly through
the modification of density. When considering the spatial distribution of the integrand
∇(A)

ρ0u0ωB · δ(ρ0u0)M(r, z) (not shown here for conciseness), we find that the region re-
sponsible for the decrease in the frequency mechanism is located along the separation
line, in the region 1 < z < 1.7 already identified as responsible for the stabilizing effect,
and visible in Figure 19(b). The study of the production integrand ∇(A)

ρ0 ωB · δρ0
M(r, z)

is less conclusive, as many different regions are found to induce either an increase or a
decrease of the frequency, outlining the complexity of the underlying mechanism.
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Figure 21: Specific base flow modification induced by a small increase in the Mach num-
ber, at the streamwise station z = 1 - ReA

c = 483.5 and M = 0.5. (a) Spatial distribution
of the streamwise momentum ρ0w0. (b) Spatial distribution of the cross-stream momen-
tum ρ0u0. The base flow quantities are depicted by the solid lines and the modified
quantities by the dashed lines.

5.3. Discussion
In the previous sections, the compressibility effect on the advection and production

mechanisms have been shown to be stabilizing for both eigenmodes. Though, we would
like to emphasize here that these are effects integrated over the whole recirculating bub-
ble. Indeed, investigating the spatial distribution of the total integrands ∇(A)

q0 λ ·δq0
M(r, z)

and ∇(P )

q0 λ · δq0
M(r, z), we find that these quantities can be of opposite signs at the same

location (not shown here). As a consequence, local effects can still be antagonist, with
for instance a same flow region contributing both to stabilize and destabilize the global
modes by locally increasing the advection of perturbations and strengthening their pro-
duction. Therefore, it cannot be concluded from the present results that both mechanisms
are cooperative.

It has also been mentioned that the localization of the zones responsible for the sta-
bilization of both eigenmodes is strikingly similar. As an attempt to gain more physical
insight at this mechanism, we now focus on the base flow modifications δq0

M itself, which
has not yet been analyzed in terms of its impact on the stability problem. We consider
here the case ReA

c = 486.5, M = 0.5. Figure 21 shows the cross-stream and streamwise
distributions of the momentum ρ0u0(r) at the streamwise station z = 1, i.e. in the core
of the region where the advection of disturbances induces the stabilizing effect. The solid
and dashed lines refer to the base flows q0 and q0 + δq0

M respectively, where δM has
been set to unity. For the streamwise momentum, the effect of the Mach number is quite
subtle, as seen from Figure 21(a). ρ0w0 slightly decreases in the free shear part of the
shear-layer and slightly increases in the reverse flow area, as outlined by the arrows.
Figure 21(b) shows a similar reduction of the cross-stream gradients acting now on the
cross-stream component, as one observes that the cross-stream momentum is significantly
reduced within the shear-layer region, and increased in its free-shear part over a large
cross-stream distance, presently larger than 3.5 body diameters. Though, the observed
effect is much more significant for the cross-stream component, where the maximum
relative variation reaches approximately 30 % of the momentum magnitude. As a conse-
quence, it may thus be argued that increasing the Mach number has a stabilizing effect
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δρ0u0σ|M δρ0w0σ|M δρ0u0σ|M
σA −3.7× 10−3 −2.9× 10−2 −3.3× 10−2

σB −6.5× 10−2 1.2× 10−2 −5.3× 10−2

Table 3: Variation of the growth rates σA and σB induced by the modification of the
cross-stream and streamwise momentum components. The variation δρ0u0σ|M already
provided in Tables 1 and 2 is therefore the sum of these two contributions.

because it tends to weaken the shear of the base flow by spreading out the momentum
cross-stream gradients, and to simultaneously decrease the intensity of the counterflow,
both effects being in favor of a stabilization. Identical effects are obtained at the thresh-
old of the oscillating instability. Though, despite the important similarities born by both
instabilities, important differences exist. For instance, the separate effect of cross-stream
and streamwise momentum in the variations δρ0u0σA and δu0σB is decomposed in Table
3. For conciseness, we do not carry out the advection/production decomposition, and
present only the overall variations δρ0u0σ and δρ0w0σ. It turns out that the stabilizing
compressible effect observed for the stationary mode is triggered by the streamwise com-
ponent, whereas that observed for the oscillating mode is triggered by the cross-stream
component, the effect of the streamwise component being even destabilizing, which may
seem rather counterintuitive. Though, it should be kept in mind that the effect on the
growth rate is not only triggered by the base flow modification, but also by its orien-
tation with respect to the sensitivity function. The latter point is probably responsible
for the striking effects displayed in Table 3. As a result, this shows that a single base
flow modification does not necessarily result in a a single stabilizing mechanism for both
instabilities. Moreover, in the context of afterbody flow unsteadiness, this result shows
that the effect of compressibility is non-parallel in essence, and may not be captured nor
interpreted by performing only local stability analyses.

6. Conclusion
In the present paper, we have developed a theoretical framework for the study of global

modes in compressible flows, up to the high subsonic regime. A sensitivity analysis to
base flow modifications, aiming at predicting the variations of the eigenvalue of these
global modes owing to a modification of the base flow, has been presented. It is based on
the evaluation of gradients using adjoint methods. The sensitivity functions have been
derived and depend on the base flow and perturbation quantities, as well as on the ad-
joint perturbation quantities, for which the adjoint stability equations have been derived
in a consistent way. This has allowed us to discussed the physical origin of nonnormal-
ity of open compressible flows. Extending the discussion of Marquet et al. (2008a), we
have shown that two types of nonnormality should be considered, namely the convective
nonnormality, and the lift-up nonnormality that can arises from kinematics of thermo-
dynamics mechanisms, the latter being specific to compressible flows. It has been seen
that the sensitivity functions can be derived in terms of either non-conservative or con-
servative variables, which is an important point for the physical interpretation of results
in the compressible regime. Moreover, when considering the variations of the eigenvalue
resulting from a base flow modification, it is possible to distinguish between the variation
owing to the respective modifications of the advection and production mechanisms. This
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extends the concepts of convective and absolute instability that are classically used in
the framework of parallel flows.

This framework has then been applied to gain insight at the dynamics of a subsonic
afterbody flow. It has first been shown that the increase of the Mach number triggers
that of the recirculating region, similar to what is commonly observed in incompressible
recirculating flows when the Reynolds number is increased. Though, this effect has been
shown to be purely inviscid, since it appears to be triggered by the variations of the
pressure gradients close to the separatrix. A consistent bifurcation sequence has been
found, whatever the value of the Mach number. A first instability occurs for a stationary
global mode A of azimuthal wavenumber m = 1, and a second instability occurs for an
oscillating global mode B of azimuthal wavenumber m = 1. The adjoint global modes and
sensitivity functions to base flow modifications have been computed, and the wavemaker
regions have been identified as being located within the recirculating bubble for both
instabilities, a result owing to the convective nonnormality of the evolution operator
which induces a spatial separation of the direct and adjoint global modes.

For both instabilities, the boundary separating the unstable and stable domains in the
(M,Re)-plane have been determined, and it has been shown that increasing the Mach
number has a stabilizing effect on both global modes. This effect has been investigated in
the light of the sensitivity analysis, and a physical interpretation has been proposed. We
have first shown that when the Mach number is increased, the stabilizing effect observed
in return is triggered by the underlying modification of the base flow. Then, using the
advection/production decomposition, we have shown that increasing the Mach number
mainly enhances the downstream advection of the disturbances by spreading out the
momentum cross-stream gradients. We also find that the same mechanism induces an
additional stabilization by weakly weakening the production of disturbances.

This approach can be easily applied to other compressible flow configurations, as for
instance cavity flows or hot jets that are known to sustain global instabilities. In par-
ticular, it would be of great interest to apply the present formalism to problems with
significant thermodynamical effects, such as wakes developing past heated objects, for
instance. Moreover, extending the present approach to the case of supersonic flows, in
which one must also take into account the effect of shock waves, is an extremely chal-
lenging question to which we will devote future efforts.

Appendix A. The axisymmetric steady wake past a sphere
The global stability of the incompressible wake past a sphere is known to sustain

a bifurcation sequence identical to that described here for an afterbody (Natarajan &
Acrivos 1993, see), with a first stationary bifurcation involving a global eigenmode q̂1

A

of azimuthal wavenumber m = 1 and a subsequent Hopf bifurcation occurring for a
m = 1 oscillating global eigenmode q̂1

B. We revisit here this problem at a low Mach
number as a simple test case for the current compressible formulation. In the following,
the Mach number is taken equal to M = 0.1. Contours of streamwise velocity for the
steady, axisymmetric flow past a sphere are shown in Figure 22, for the Reynolds number
Re = 200, where the flow is stable to small perturbations. The solid line is the streamline
linking the separation point to the stagnation point on the r = 0 axis, it defines the
separatrix delimiting the recirculation bubble behind the sphere. The negative values of
the streamwise velocity close to the axis reaches 40 % of the free-stream velocity. The drag
coefficient Cd and recirculation length L have been computed for this Reynolds numbers,
so as to assess the accuracy of the base flow calculations. The values obtained (L = 1.941,
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Figure 22: Steady axisymmetric base flow at Re = 200. The solid line in the flow indicates
the separatrix of the recirculation zone.

Figure 23: Spatial distribution of streamwise velocity ŵ1 of the leading eigenmodes for the
sphere, at their respective instability thresholds. (a) Stationary eigenmode, ReA = 212.6, M =
0.1. (b) Oscillating eigenmode, ReB = 280.6, M = 0.1.

Cd = 0.769) shows excellent agreement with the incompressible calculations of Fornberg
(1988) (L = 1.934, Cd = 0.768), Natarajan & Acrivos (1993) (L = 1.925, Cd = 0.79)
and Meliga et al. (2008b) (L = 1.934, Cd = 0.770). Note that in order to estimate the
effect of the sponge zone on the numerical results, we have recomputed these compressible
values with a constant viscosity µ within the sponge zones, which has resulted in identical
results down to the sixth digit. We find both bifurcations to occur at ReA = 212.6 and
ReB = 280.6, respectively, the frequency of the oscillating mode being ω = ωB = 0.698
(corresponding to a Strouhal number of St = ωB/2π = 0.111). Again, these values are
in good agreement with the incompressible calculations of Natarajan & Acrivos (1993)
(ReA = 210, ReB = 278, St = 0.113) and Meliga et al. (2008b) (ReA = 212.6, ReB =
280.7, St = 0.111). Figure 23(a) shows the spatial structure of the streamwise velocity
ŵ1

A at the first instability threshold. The result is reminiscent of that documented in the
latter studies, with a global mode dominated by axially extended streamwise velocity
disturbances located downstream of the sphere, that induce an off axis displacement
of the wake (Johnson & Patel 1999). The real part ŵ1

Br of the streamwise velocity at
the second instability threshold is shown in Figure 23(b), and exhibits a characteristic
periodic positive and negative velocity perturbations downstream of the body, that allows
to define a local spatial wavelength of about 4 diameters. Note that the imaginary part
ŵ1

Bi displays a similar structure, but approximately in spatial quadrature, its maximum
and minimum values occurring at the location of the zeros in ŵ1

Br. Six different meshes,
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z−∞ z∞ r∞ ls nt DoF0 DoFm

M1 −100 200 25 100 552513 2220938 3052429
M2 −100 150 25 100 504703 2028922 2788504
M3 −70 200 25 100 523038 2102572 2889734
M4 −100 200 20 100 524337 2108222 2897446
M5 −100 200 25 70 527048 2118780 2911999
M6 −100 200 25 100 433351 1742706 2395058

Table 4: Properties of the meshes as a function of parameters z−∞, z∞, r∞ and ls,
corresponding to the physical inlet, outlet and lateral boundaries, and to the size of the
sponge zone. nt is the number of triangles, DoF0 is the number of degrees of freedom for
an axisymmetric state vector used in the base flow calculations, and DoFm is the number
of degrees of freedom for a three-dimensional state vector used in the perturbation and
adjoint perturbation calculations. Meshes M1 and M2 have the same vertex densities but
with a different location of the outlet boundary. In the same way, M1 and M3 differ by
the location of the inlet boundary, while M1 and M4 differ by the location of the lateral
boundary and M1 and M5 differ by the size of the sponge zone. M1 and M6 have the
same spatial extent but M6 is built with lower vertex densities.

σA σB ωB

M1 −9.7× 10−7 −4.3× 10−7 0.6983
M2 −5.2× 10−7 −1.6× 10−5 0.6983
M3 1.2× 10−6 −9.3× 10−6 0.6983
M4 −2.0× 10−6 −1.7× 10−5 0.6983
M5 7.9× 10−6 −2.0× 10−6 0.6983
M6 7.6× 10−5 4.1× 10−5 0.6984

Table 5: Dependence of the eigenvalues on the different meshes characterized in Table 4.
The stationary eigenvalue σA is computed at the first instability threshold ReA = 212.6
and M = 0.1, and the oscillating eigenvalue σB + iωB at the second instability threshold
ReA = 280.6 and M = 0.1.

denoted M1 to M6 have been used to assess convergence in the numerical results. These
meshes exhibit various spatial extents and vertex densities, as well as various sizes for
the sponge zones, and are detailed in Table 4. All results presented in this appendix
correspond to the finest mesh M1. A comparison of the results obtained with the meshes
M1 to M6 is provided in Table 5 and shows that even for the coarser mesh M6, all results
converge to the same result within 3 significant digits.

Appendix B. Validation of the adjoint-based gradients
This appendix aims at assessing the correctness and accuracy of the adjoint method

presented in this study. We recall that the variation of a given eigenvalue δλ can be
expressed as δλ = δλ|M + δλ|

q0 where δλ|M (resp. δλ|
q0) is the variation of λ arising

from the small modification of the base flow δq0
M , the Mach number being kept constant

(resp. a small modification of the Mach number δM , the base flow being kept constant).
As mentioned previously, the sensitivity analysis is fundamentally linear since based on

the evaluation of a gradient. Therefore, the variation of the eigenvalue computed thanks
to the sensitivity analysis is exact in the limit of a modification of small amplitude, i.e.

165



Figure 24: . Variation of the (a) growth rate σB and (b) frequency ωB as a function of δM .
Comparison of the linear results obtained from the sensitivity analysis (solid, dashed and
dash-dotted lines) with the nonlinear results obtained from forward calculations (dark
grey, light grey and white circle symbols) - ReB = 981.0 and M = 0.5.

such that δM/M ¿ 1. In the present appendix, we increase progressively the amplitude
of δM . Considering the oscillating global mode at the threshold of the second instability,
for ReB = 981.0 and M = 0.5, we compute, for each value of δM , the linear estimation
of the growth rate and frequency variations thanks to the adjoint-based expressions
(2.24). These variations are then computed exactly by carrying out the following forward
calculations: Assuming q0

M is the base flow solution at the Mach number M , we compute
first for each value of δM the base flow q0

M + δM which is solution of the nonlinear base flow
equations (3.6) for the Mach number M + δM . According to the quantity to estimate,
we solve then the three stability problems

δλ −→ (λ + δλ)Bm(q0
M + δM)q̂1 +Am(q0

M + δM ,M + δM)q1 = 0 , (B 1a)
δλ|M −→ (λ + δλ|M)Bm(q0

M + δM)q̂1 +Am(q0
M + δM ,M)q1 = 0 , (B 1b)

δλ|
q0 −→ (λ + δλ|

q0)Bm(q0)q̂1 +Am(q0,M + δM)q1 = 0 . (B 1c)

Figure 24(a) depicts the growth rate variations computed as functions of the ampli-
tude δM . The dark grey (resp. light grey and white circle symbols) stand for the exact
nonlinear variation δσB (resp. δσB|M and δσB|q0) obtained by forward calculations. The
corresponding linear estimations issuing from the sensitivity analysis are presented as the
solid, dashed and dash-dotted curves respectively. Results for the frequency variations are
similarly presented in Figure 24(b). For small amplitudes δM < 10−4, the relative differ-
ence is not measurable and results are superposed, indicating that the linear assumption
holds, and in particular that the base flow modification δq0

M owing to the increase in
M is linear in this range. These results validate the sensitivity analysis and in particu-
lar the accuracy of the sensitivity functions computed in the present study. For larger
amplitudes, we observe small discrepancies for the variation δλB|M and for the overall
variation δλB, as the decrease in the growth rate and the frequency are slightly larger if
computed by forward calculations. This means that the true nonlinear stabilizing effect
of the Mach number is slightly larger than the one estimated by the sensitivity analy-
sis. Though, it should be noted that the variations obtained up to δM = 0.05 are very
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well approximated by the linear estimation, as the maximum relative difference being
approximately 6 % for σB and 5 % for ωB.

Appendix C. Advection and production sensitivity functions
In this section, we discuss the magnitude of the advection sensitivity function ∇(A)

q0 λ

and of its production counterpart ∇(A)

q0 λ for the growth rates of both global modes
investigated in this study. As previously, the color look-up is set-up so as to enhance the
active zones where the growth rate σ is most sensitive to a modification of the base flow.

We consider first the sensitivity of the stationary growth rate σA at ReA
c = 483.5

and M = 0.5. Figure 25(a) and 25(b) present the spatial distribution of magnitude for
advection and production sensitivity to momentum modifications, i.e. ‖∇(A)

ρ0u0σA‖2(r, z)
and ‖∇(P )

ρ0u0σA‖2(r, z). Similarly, Figures 25(c) and 25(d) present the spatial distribu-
tion of magnitude for advection and production sensitivity to energy modifications, i.e.
|∇(A)

ρ0T 0σA|2(r, z) and |∇(P )

ρ0T 0σA|2(r, z). As discussed previously for the overall sensitivity
functions, we find magnitudes of sensitivity almost nil everywhere in the flow, except
in the recirculating bubble, which acts as the wavemaker regions for both the advection
and production mechanisms. Concerning the momentum components, we find that in-
terestingly, regions of highest sensitivities are clearly distinct for both mechanisms, as
the momentum component of the advection sensitivity function reaches high magnitudes
rather close to the base and in the front part of the recirculation, whereas the momen-
tum component of the production sensitivity function is maximum in the rear part of
the recirculation. Moreover, it should be noted that the magnitude of both the advection
and production sensitivity functions are important, but that of the production sensitiv-
ity dominates if one compares Figures 15(a) and 25(a). Though, it has been said that
the advection mechanism is dominant in the stabilizing effect of the Mach number. This
shows that to be physically relevant, the sensitivity analysis must not only consider the
magnitude of the sensitivity functions alone, but also the shape of the associated base
flow modification δq0. Concerning the energy components |∇(A)

ρ0T 0σA|2 and |∇(P )

ρ0T 0σA|2
shown in Figures 25(b) and 25(d), it is striking to note that the magnitude of advection
sensitivity function is almost nil even within the recirculation bubble, and that the over-
all sensitivity observed in Figure 15(b) is entirely due to the sensitivity to modifications
of the production operator. This means that modifying the energy ρ0T 0 alters only the
disturbances production, but not their advection by the base flow. We consider now the
sensitivity of the oscillating growth rate σB at ReB

c = 981.0 and M = 0.5. Figure 26
displays the spatial distribution of magnitude for advection and production sensitivity to
momentum and energy. Results are very similar to that discussed of the stationary mode,
with magnitudes of sensitivity nil everywhere except within the recirculation. Though,
significant discrepancies should be noted here. Concerning the momentum components,
the different in the location of the highest sensitivity regions is less clear, as the advec-
tion sensitivity function now reaches high magnitudes in the core of the recirculation,
whereas the momentum component of the production sensitivity function is maximum in
the rear part of the recirculation. Moreover, the magnitude of the advection sensitivity
functions is now larger than that of the production in the whole recirculation. There-
fore, comparing Figures 16(a) and 26(a), it can be concluded that the overall magnitude
of sensitivity to a modification of momentum is dominated by the modifications of the
advection operator, a result opposite to that found for the stationary global mode. Com-
paring now the energy components |∇(A)

ρ0T 0σB|2 and |∇(P )

ρ0T 0σB|2, we find again that the
magnitude of the advection sensitivity function is almost nil even within the recirculation
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Figure 25: Sensitivity to base flow modifications of the stationary growth rate σA for the
critical Reynolds number ReA

c = 483.5 at M = 0.5. Spatial distribution of the magni-
tude of the (a) advection momentum sensitivity function ‖∇(A)

ρ0u0σA‖2, (b) production
momentum sensitivity function ‖∇(P )

ρ0u0σA‖2, (c) advection energy sensitivity function
|∇(A)

ρ0T 0σA|2, (d) production energy sensitivity function |∇(P )

ρ0T 0σA|2.

Figure 26: Same as Figure 25 for the oscillating global mode at the threshold of the
second instability, ReB = 981.0 - M = 0.5.

bubble, indicating that a modification of energy does not alter the downstream advection
of disturbances. Although both global modes bear similarities, these results outline the
complexity of the effects found in the present study.

Appendix D. Derivation of the adjoint perturbation equations
We define the r and z vector derivatives as ∂r,zq = (∂r,zρ, ∂r,zu, ∂r,zv, ∂r,zw, ∂r,zT )T .

We recall that the adjoint operators A†m and B† are such that
〈
q̂1† , λB(q0)δq̂1 +Am(q0)δq̂1

〉
=

〈
λ∗B†(q0)q̂1† +A†m(q0)q̂1† , δq̂1

〉
, (D 1)
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along with the inner product (3.14), where δq̂1 is a small modification of the global
mode. For convenience, the relevant terms are developed into a matrix form reading

Am(q0)δq̂1 = A1δq̂1 + A2∂rδq̂1 + A3∂zδq̂1

+
1

Re
∂r

(
V1∂rδq̂1 + V2∂zδq̂1 +

1
r
V3δq̂1

)

+
1

Re
∂z

(
V2

T ∂rδq̂1 + V4∂zδq̂1 +
1
r
V5δq̂1

)

+
1

Re

(
1
r
V6∂rδq̂1 +

1
r
V7∂zδq̂1 +

1
r2

V8

)
, (D 2a)

B(q0)δq̂1 = Bδq̂1 , (D 2b)

where A1...3, V1... 8 and B are real 5× 5 matrices whose coefficients depend on the base
flow variables and are detailed at the end of this Appendix. Integrating by parts to
remove the derivatives from the state variables yields

A†m
(
q0

)
q̂1† = A1

T q̂1† − 1
r
∂r

(
rA2

T q̂1†
)
− ∂z

(
A3

T q̂1†
)

+
1

Re

1
r

(
∂r

(
rV1

T ∂rq̂
1†

)
+ ∂r

(
V1

T q̂1†
)

+ ∂z

(
V2

T ∂r(rq̂
1†)

)
− 1

r
V3

T ∂r(rq̂
1†)

)

+
1

Re

(
1
r
∂r

(
rV2∂zq̂

1†) + ∂z

(
V4

T ∂zq̂
1†

)
− 1

r
V5

T ∂zq̂
1†

)

+
1

Re

1
r

(
−∂r

(
V6

T q̂1†
)
− ∂z

(
V7

T q̂1†
)

+
1
r
V8

T q̂1†
)

, (D 3a)

B†q̂1† (
q0

)
= BT q̂1† . (D 3b)

This leads to the adjoint perturbation equations (3.15). n = (nr, 0, nz)T being the vector
normal to the boundary ∂Ω, the boundary term then reads

BT =
∫

∂Ω

q̂1† ·A2δq̂1nrrdz +
∫

∂Ω

q̂1† ·A3δq̂1nzrdr

+
1

Re

∫

∂Ω

q̂1† ·
(

V1∂rδq̂1 + V2∂zδq̂1 +
1
r
V6δq̂1

)
nrrdz

+
1

Re

∫

∂Ω

(
−1

r
V1

T ∂r

(
rq̂1†) + V2∂zq̂

1† − 1
r
V3

T q̂1†
)
· δq̂1nrrdz

+
1

Re

∫

∂Ω

q̂1† ·
(

V2
T ∂rδq̂1 + V4∂zδq̂1 +

1
r
V7δq̂1

)
nzrdr

+
1

Re

∫

∂Ω

(
−V2

T 1
r
∂r

(
rq̂1†) + V4

T ∂zq̂
1† − 1

r
V5

T q̂1†
)
· δq̂1nzrdr .

(D 4)

To determine the boundary conditions that must be satisfied by the adjoint based flow,
it is necessary to take into account the boundary conditions of the problem itself. For
instance on ∂Ωb, the boundary condition being û1 = 0 and T̂ 1 = 0, admissible conditions
are such that δû1 = 0 and ∂nδT̂ 1 = 0. Cancellation of this boundary term gives rise to
the adjoint boundary conditions:

û1† = 0, ρ̂1†, T̂ 1† = 0 on ∂Ωs
in ∪ ∂Ωs

ext ∪ ∂Ωs
out , (D 5a)

û1† = 0, ∂nT̂ 1† = 0 on ∂Ωb , (D 5b)
ŵ1†, ρ̂1†, T̂ 1† = 0, ∂r(û1†, v̂1†) = 0 on ∂Ωa . (D 5c)
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Rearranging terms and using the continuity equation for q0 and q̂1 then yields expression
(3.24). Finally, the various matrices used for the computation of the adjoint perturbation
equations read:

− A1 =




∇ · u0 1
r
∂r(rρ

0) m
r

ρ0 ∂zρ0 0
u0 ·∇u0 + 1

γM2 ∂rT
0 ρ0∂ru

0 0 ρ0∂rw
0 1

γM2 ∂rρ
0

− 1
γM2

m
r

T 0 0 1
r
ρ0u0 0 − 1

γM2
m
r

ρ0

u0 ·∇w0 + 1
γM2 ∂zT 0 ρ0∂rw

0 0 ρ0∂zw0 1
γM2 ∂zρ0

u0 ·∇T 0 + T 0∇ · u0 ρ0 1
r
T 0 m

r
ρ0T 0 ρ0∂zT 0 ρ0∇ · u0




− 2γ(γ − 1)
M2

Re




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1

r
τ0

θθ
m
r

τ0
θθ 0 0


 ,

− A2 =




u0 ρ0 0 0 0
1

γM2 T 0 ρ0u0 0 0 1
γM2 ρ0

0 0 ρ0u0 0 0
0 0 0 ρ0u0 0
0 ρ0T 0 0 0 ρ0u0



− 2γ(γ − 1)

M2

Re




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 τ0

rr 0 τ0
rz 0


 ,

− A3 =




w0 0 0 ρ0 0
0 ρ0w0 0 0 0
0 0 ρ0w0 0 0

1
γM2 T 0 0 0 ρ0w0 1

γM2 ρ0

0 0 0 ρ0T 0 ρ0w0



− 2γ(γ − 1)

M2

Re




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 τ0

rz 0 τ0
zz 0


 ,

V1 = µ̃




0 0 0 0 0
0 4

3
0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 γ

Pr


 , V2 = µ̃




0 0 0 0 0
0 0 0 − 2

3
0

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0


 ,

V3 = −µ̃




0 0 0 0 0
0 2

3
2m
3

0 0
0 m 1 0 0
0 0 0 0 0
0 0 0 0 0


 , V4 = µ̃




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 4

3
0

0 0 0 0 γ
Pr


 ,

V5 = −µ̃




0 0 0 0 0
0 0 0 0 0
0 0 0 m 0
0 2

3
2m
3

0 0
0 0 0 0 0


 , V6 = µ̃




0 0 0 0 0
0 2 m 0 0
0 2m

3
2 0 0

0 0 0 1 0
0 0 0 0 γ

Pr


 ,

V7 = µ̃




0 0 0 0 0
0 0 0 0 0
0 0 0 2m

3
0

0 1 m 0 0
0 0 0 0 0


 , V8 = µ̃




0 0 0 0 0
0 −m2 − 2 −3m 0 0

0 − 10m
3

− 4m2

3
− 2 0 0

0 0 0 −m2 0
0 0 0 0 − γ

Pr
m2




,

B =




1 0 0 0 0
0 ρ0 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
0 0 0 0 ρ0


 .
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Note that the change of variables (v̂1, v̂1†) → (iv̂1, iv̂1†) has been used in order to deal
with real matrices only.

Appendix E. Derivation of the sensitivity functions to base flow
modifications

We recall that the adjoint operators S†m and R† are such that

〈
q̂1† , λR(q0, q̂1)δq0 + Sm(q0, q̂1)δq0

〉
=

〈
λ∗R†(q0, q̂1)q̂1† + S†m(q0, q̂1)q̂1† , δq0

〉
,

(E 1)
where δq0 is a small modification of the base flow. As previously, the relevant terms are
written into the matrix form

Sm

(
q0, q̂1

)
δq0 = A′

1δq0 + A′
2∂rδq0 + A′

3∂zδq0 , (E 2a)

R
(
q0, q̂1

)
δq0 = Rδq0 , (E 2b)

where A′
1...3 and R′ are real 5×4 matrices whose coefficients depend on the state variables

(q0, q̂1). Derivative terms in the right side of equation E 2 are integrated by parts. We
obtain

S†m
(
q0

)
q̂1† = A′

1
T
q̂1† − 1

r
∂r

(
rA′

2
T
q̂1†

)
− ∂z

(
A′

3
T
q̂1†

)
, (E 3a)

R†(q0)q̂1† = Rq̂1† . (E 3b)

Using boundary conditions (4.5) and (D 5), it turns out that the associated boundary
term is zero. Assuming that the change of variables (v̂1, v̂1†) → (iv̂1, iv̂1†) is used, the
various matrices used for the computation of the sensitivity functions read:

− A′
1 =




∇ · û1 1
r
∂r(rρ̂

1) ∂z ρ̂1 0
1

γM2 ∂rT̂
1 0 0 1

γM2 ∂rρ̂
1

− 1
γM2

m
r

T̂ 1 0 0 − 1
γM2

m
r

ρ̂1

1
γM2 ∂zT̂ 1 0 0 1

γM2 ∂z ρ̂1

0 0 0 0



− 2γ(γ − 1)

M2

Re




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

r
τ̂1

θθ 0 0




+




0 0 0 0
u0 ·∇û1 ρ0∂rû

1 ρ0∂rŵ
1 0

u0 ·∇v̂1 ρ0 1
r
∂r(rv̂

1) ρ0∂z v̂1 0
u0 ·∇ŵ1 ρ0∂rŵ

1 ρ0∂zŵ1 0

u0 ·∇T̂ 1 + T 0∇ · û1 ρ0 1
r
∂r(rT̂

1) ρ0∂zT̂ 1 ρ0∇ · û1




+




0 0 0 0
û1 ·∇u0 ρ̂1∂ru

0 ρ̂1∂rw
0 0

0 0 0 0
û1 ·∇w0 ρ̂1∂rw

0 ρ̂1∂zw0 0

û1 ·∇T 0 + T̂ 1∇ · u0 ρ̂1 1
r
∂r(rT

0) ρ̂1∂zT 0 ρ̂1∇ · u0


 ,
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− A′
2 =




û1 ρ̂1 0 0
1

γM2 T̂ 1 0 0 1
γM2 ρ̂1

0 0 0 0
0 0 0 0
0 0 0 0



− 2γ(γ − 1)

M2

Re




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 τ̂1

rr τ̂1
rz 0




+




0 0 0 0
0 ρ0û1 0 0
0 0 0 0
0 0 ρ0û1 0

0 ρ0T̂ 1 0 ρ0û1


 +




0 0 0 0
0 ρ̂1u0 0 0
0 0 0 0
0 0 ρ̂1u0 0
0 ρ̂1T 0 0 ρ̂1u0


 ,

− A′
3 =




ŵ1 0 ρ̂1 0
0 0 0 0
0 0 0 0

1
γM2 T̂ 1 0 0 1

γM2 ρ̂1

0 0 0 0



− 2γ(γ − 1)

M2

Re




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 τ̂1

rz τ̂1
zz 0




+




0 0 0 0
0 ρ0ŵ1 0 0
0 0 0 0
0 0 ρ0ŵ1 0

0 0 ρ0T̂ 1 ρ0ŵ1


 +




0 0 0 0
0 ρ̂1w0 0 0
0 0 0 0
0 0 ρ̂1w0 0
0 0 ρ̂1T 0 ρ̂1w0


 ,

R =




0 0 0 0
û1 0 0 0
v̂1 0 0 0
ŵ1 0 0 0

T̂ 1 0 0 0


 .
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Institut de Mécanique des Fluides de Lille, France.

Fornberg, B. 1988 Steady viscous flow past a sphere at high reynolds number. J. Fluid Mech.
190, 471–489.

Fuchs, H.V., Mercker, E. & Michel, U. 1979 Large-scale coherent structures in the wake
of axisymmetric bodies. J. Fluid Mech. 93, 185–207.

Giannetti, F. & Luchini, P. 2006 Structural sensitivity of the first instability of the cylinder
wake. J. Fluid Mech. 581, 167–197.

Gunzburger, M.D. 1997 Introduction into mathematical aspects of flow control and optimiza-
tion. In Lecture series 1997-05 on inverse design and optimization methods . Von Kármán
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CHAPTER
SIX

A STEP TOWARDS THE CONTROL OF
AFTERBODY FLOW UNSTEADINESS

This last chapter is devoted to the control of a compressible afterbody configuration.
It is presented under the form of a second article in preparation, closely connected
to that provided in chapter 5. A theoretical framework is derived, that allows to
predict beforehand the effect of a small-amplitude forcing on the growth rate of an
unstable global mode. The application to various open-loop controls is discussed,
including additional control devices acting as body forces, heat sources modeling gas
discharges, and mass injection. A physical interpretation for the effect of base bleed
is also proposed.

keywords: compressible flows, sensitivity analysis, control, base bleed.
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A general formalism is developed for the open-loop control of unstable global modes in
compressible flows, up to the high subsonic regime. It is based on the so-called sensitivity
analysis to steady forcing, which relies on the evaluation of gradients using adjoint meth-
ods and aims at predicting beforehand the effect of a steady forcing on a given eigenvalue.
Such a formalism has been originally formulated by Hill (1992) and Marquet et al. (2008),
who studied the effect of momentum forcing on the global stability of the incompressible
wake past a circular cylinder. In its present extension to the fully compressible regime,
it encompasses new control methods including mass and heat sources and wall forcing,
for instance base blowing or wall cooling.

This theoretical formalism is applied to a compressible afterbody flow. We show that
the oscillating global mode which triggers the periodic state arising at higher Reynolds
numbers can be stabilized if a small control ring is mounted past the main body along the
separation line, or if axisymmetric heat sources modeling localized discharges are added
within the recirculating bubble. The investigation of wall forcing at the base shows that a
stabilizing effect can be obtained by blowing fluid through the whole base, a method also
termed base bleed, or by cooling the inner region of the base. However, the sensitivity of
the global mode to a pure thermal control is found to be limited.

The stabilizing effect of base bleed is further investigated in the light of the sensitivity
analysis, and a physical interpretation is proposed, based on the competition between
production and downstream advection of disturbances. We show that blowing through the
base mainly enhances the advection of the perturbations by weakening the shear along the
separation line. Strikingly, it turns out that this mechanism mainly acts through the cross-
stream momentum component, whereas previous interpretations based on local stability
analyses involved only the streamwise component. These results show the importance of
studying such recirculating flows in a global framework.

1. Introduction
The transonic flow past an afterbody is dominated by an instability of helical modes of

azimuthal wavenumbers m = ±1, resulting in the low-frequency shedding of large-scale
coherent structures. This vortex-shedding may be detrimental to the engineering applica-
tion, as it may increase drag or induce flow vibrations. The prediction for the occurrence
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of these undesirable flow conditions is thus needed to guide future engineering designs,
so as to improve the aerodynamic performances and reliability of launch vehicles. To al-
leviate or control such unsteadiness, a better understanding of the physical mechanisms
is also required.

In the first part of this study, herein referred to as Part I, the flow past an axisymmetric
afterbody at zero angle of attack and high subsonic Mach numbers has been investigated
by means of a fully compressible global stability analysis. We have shown that the steady
axisymmetric wake that develops at low Reynolds numbers is first destabilized by a
stationary global mode of azimuthal wavenumber m = 1, leading to a 3D steady state,
and that a second instability eventually occurred at a larger Reynolds number, for an
oscillating m = 1 global eigenmode. From Direct Numerical Simulations (DNS) and
experimental observations carried out on other configurations of axisymmetric wakes, it
turns out that this latter instability mode dominates the dynamics of the fully 3D flow
at large Reynolds numbers, hence explaining the occurrence of a fully 3D periodic state
(Ormières & Provansal 1998). Such a domination of the periodic instability mode over the
stationary mode, despite the fact that the latter is the first to destabilize the axisymmetric
base flow has recently been explained using slow manifold theory and normal forms (Fabre
et al. 2008; Meliga et al. 2008). We are now interested in the problem of open-loop control
of the afterbody unsteadiness.

Control of vortex-shedding in the wake of bluff bodies has been a subject of great inter-
est in the last decades (see Roshko 1954; Schumm et al. 1994; Roussopoulos & Monkewitz
1996, among others). A review on the various methods used for experimental and nu-
merical control of the flow over bluff bodies can be found in Choi et al. (2008). In this
study, we focus on open-loop methods, which rely on the simple idea that some fixed
modification in the flow conditions is susceptible to affect the dynamics of the flow. In
the context of wake flows, a simple open-loop strategy is based on the action of a small
secondary body, referred to as the control device, generally placed past the main body
whose unsteadiness has to be controlled. Strykowski & Sreenivasan (1990) have experi-
mentally investigated how a small control cylinder placed in the wake of the main cylinder
could alter the vortex-shedding phenomenon. These authors determined the regions of
the flow where the placement of the control cylinder leads to a complete suppression
of the phenomenon over a specific range of Reynolds numbers. Moreover, they provided
evidence linking vortex-shedding to the onset of a global instability, and the effect of the
suitably positioned control device to a damping of this instability. Similar studies have
been conducted in the context of afterbody flows. For instance, Mair (1965) found that
a significant drag reduction could be achieved by adding a control disk mounted at the
rear of the main body and Weickgenannt & Monkewitz (2000) identified different regions
of the flow where the control disk can trigger either a sharp increase or a reduction of
the vortex-shedding activity.

Other methods can be used. Localized gas discharges acting as volumetric heat sources
have been proven fruitful to significantly decrease the drag coefficient and to prevent flow
separation for a number of configurations ranging from the cylinder wake to supersonic
airflows (Fomin et al. 2004; Moreau 2007, among others). As an example, Elias et al.
(2008) have studied the unsteady flow past a truncated conical body with a central
spike, characterized by a pulsating shock wave, and have shown that the use of such
discharges allows to completely inhibit the unsteadiness. Wall forcing strategies have also
been widely investigated. One could imagine to add porosity or surface roughness. In the
context of bluff bodies, it has been early recognized that a mass injection into the wake,
also termed base bleed, allows to alleviate unsteadiness (Bearman 1967; Leal & Acrivos
1969, among others), whereas wall cooling strategies were proven fruitful to delay the
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transition to turbulence in boundary-layer flows (Diaconis et al. 1957; Jack et al. 1957).
There is no doubt that such approaches can help develop successful controls. Though,
they are intrinsically empirical as they generally rely on a ‘trial and error’ process. Namely
one has to estimate the influence of the different control parameters by separately varying
each variable. If we take the example of base bleed, this means in practice to test different
control domains, bleed flow rates, distributions and further more. For a small control
device, it means to test different sizes and shapes of the device, and for each case, evaluate
the effect on the disturbance growth by carrying out either experimental measurements or
numerical simulations. Consequently, this can be an extremely time-consuming approach
if the number of degrees of freedom is large.

This study provides a more systematic approach for the open-loop control of vortex-
shedding, viewed as a global instability. We assume that the flow modifications resulting
from a steady forcing acts directly at the base flow level. The base flow modification, if
occurring in an appropriate region, is then expected to induce structural modifications
of the stability problem that may result in a stabilization of the unstable modes. Such an
approach is intimately connected with the sensitivity analysis to base flow modifications
presented in Part I, whose aim is precisely to identify regions of the flow where the
stability problem is most affected by small modifications of the base flow. This region
can then be identified as the wavemaker (Chomaz 2005; Giannetti & Luchini 2006),
i.e. the flow region where the instability mechanisms are active. Such an analysis allows
to investigate theoretically where and which mechanisms are responsible for the global
instability. Still, it fails to answer to the question “How to produce physically relevant
base flow modifications susceptible to stabilize the unstable modes?” To this end, seminal
studies have been carried out by Hill (1992) and Marquet et al. (2008), who investigated
theoretically the effect of a momentum forcing on the incompressible flow past a cylinder.
These authors modeled the presence of the control device by the steady force it exerts
on the base flow, and developed a consistent framework to predict the effect of this force
on the flow unsteadiness, thus defining the so-called sensitivity to a steady force. They
succeeded in identifying specific flow regions where the control cylinder proved fruitful
to suppress the vortex-shedding, these results exhibiting a striking agreement with that
of Strykowski & Sreenivasan (1990).

In this paper, these sensitivity concepts are extended to the case of nonparallel com-
pressible flows and applied to the control of an afterbody flow in the high subsonic regime.
We focus on the stabilization of the oscillating global mode, by predicting beforehand
the effect on this mode of a small-amplitude forcing. It should be noted that owing to
the complex bifurcation sequence leading to vortex-shedding in axisymmetric wakes, the
connection between a damping of this global instability and the suppression of vortex-
shedding is not as straightforward as it is in the case of the cylinder flow. However, this
investigation stands as a step in the perspective of the full control of afterbody flow
unsteadiness. Moreover, it is worthwhile emphasizing that in its compressible extension,
the present framework now encompasses the effect of additional mass and heat sources,
and also integrates the effect of boundary forcing, which allows to obtain predictive re-
sults for wall blowing and wall heating or cooling. In order to account for these different
aspects of forcing, the analysis is renamed sensitivity to a steady forcing. It should be
noted that such sensitivity analyses do not restrict to steady forcing, for instance Pralits
et al. (2000) characterized theoretically the sensitivity of disturbances to periodic wall
conditions and source of momentum in a compressible boundary-layer, assuming that
both the base flow and the disturbances develop slowly in the direction parallel to the
wall so that parabolic equations can be established to govern their evolution.

Sensitivity analyses may be performed by forward calculations. A stability problem
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must then be solved once to identify the global modes of the base flow, and once more
for each forcing under consideration. Though, such a procedure is not easily tractable for
complex stability problems such as those solved in the present case, as it turns out to be
very computationally intensive. As in Part I, the main tool developed here is based on
adjoint methods, whose advantage is that the sensitivity of a disturbance can be obtained
by solving the state and adjoint equations once (Bewley et al. 2000). This formalism
can thus be easily extended to provide optimal control strategies with a relatively low
computational cost by means of gradient based optimization techniques. Note however
that how to practically implement the theoretically predicted optimal controls remains
a thorny and open question, that lies out of the scope of the present study.

The paper is organized as follows. The theoretical formulation is presented in § 2,
where we recall first the main results issuing from Part I and pertaining to the derivation
of the stability eigenproblem and to the sensitivity analysis to base flow modifications
in a global compressible framework. We eventually introduce the sensitivity analysis to
a steady forcing, based on the determination of gradients through adjoint methods. It is
worthwhile emphasizing here that these concepts are not restricted to afterbody flows,
and may be used for any open flow with two inhomogeneous directions. We then consider
the case of an afterbody flow and its open-loop control, which stands as an application of
these techniques. In § 3, we detail the retained configuration and the numerical methods.
A description of the unforced steady axisymmetric flow is provided in § 4, where we
also present the stationary and oscillating global modes which are reminiscent of that
discussed in Part I. We then focus on the stability of the oscillating global mode, that
has been said to trigger the vortex-shedding phenomenon at larger Reynolds numbers.
Open-loop control by means of volumetric forcing is investigated in § 5.1 to 5.2, where
we consider successively the case of momentum forcing and volumetric mass and heat
sources. In the case of momentum forcing, the sensitivity analysis is particularized by
considering the effect on the oscillating global mode of a small control ring placed at
various positions in the wake, whose effect on the base flow is modeled as a pure resistance
force. The case of wall forcing is considered in § 5.4. Finally, base bleed strategies are
discussed in § 6, where we propose physical interpretations for the stabilizing effect in
the light of the sensitivity analysis to base flow modifications.

2. Theoretical formulation
This section is devoted to a description of the theoretical concepts used in the present

study. We generalize the framework of Hill (1992) and Marquet et al. (2008) to the case
of a generic compressible wake flow with suitable inlet, outlet, lateral boundaries and
solid walls. For a given eigenvalue, we revisit the concepts of sensitivity to base flow
modifications and to steady volumetric and wall forcing. For simplicity, the problem is
formulated in cylindrical coordinates (r, θ, z), but this approach can be generalized to
other orthogonal curvilinear coordinate systems.

2.1. Governing equations
The fluid is taken as a non-homogeneous compressible perfect gas with constant specific
heat cp, thermal conductivity κ, and dynamic viscosity µ, related by a unit Prandtl
number. The fluid motion is described by the state vector q = (ρ,u, T, p)T , where ρ is
the density, T the temperature, p the pressure and u = (u, v, w)T the three-dimensional
velocity field with u, v and w its radial, azimuthal and streamwise components. q obeys
the unsteady compressible Navier-Stokes equations, thus leading to a set of six nonlinear
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equations (continuity, momentum, internal energy and perfect gas) formulated in non-
conservative variables as

∂tρ + ρ∇ · u + u ·∇ρ = m, (2.1a)

ρ∂tu + ρ∇u · u +
1

γM2
∇p− 1

Re
∇ · τ (u) = f , (2.1b)

ρ∂tT + ρu ·∇T + p∇ · u− γ(γ − 1)
M2

Re
τ (u) : d(u)− γ

PrRe
∇2T = h , (2.1c)

p− ρT = 0 . (2.1d)

that can also be written formally as

B(q)∂tq +M(q,G) = (s , 0)T , (2.2)

where s = (m,f , h)T . B and M are differential operators and G is a set of relevant
control parameters (Reynolds and Mach numbers, angle of attack...) which is assumed to
be constant in the present study, so that the dependence in G is from now on omitted to
ease the notation. As mentioned previously, the present formalism accounts not only for
momentum forcing (f), but also for mass and heat sources (m, h). Physically, f (resp.
m and h) corresponds the volumetric momentum rate per time-unit (resp. volumetric
mass and internal energy rates per time-unit). Finally, d(u) and τ (u) are the strain and
viscous stress tensors defined as

d(u) =
1
2

(
∇u + ∇uT

)
, τ (u) = −2

3
(∇ · u) I + ∇u + ∇uT . (2.3)

Equations (2.1) have been made nondimensional using the body diameter D and the
upstream quantities W∞, ρ∞, T∞ and p∞ as respective velocity, density, temperature
and pressure scales. The Reynolds, Mach and Prandtl numbers are defined as

Re =
ρ∞DW∞

µ
, M =

W∞√
γRgT∞

, Pr =
µcp

κ
, (2.4)

with Rg and γ the ideal gas constant and the ratio of specific heats. The additional effect
of wall forcing is taken into account by defining a specific boundary Γc referred to as the
control surface, chosen by now as an arbitrary part of the body wall. On Γc, the flow is
required to satisfy the boundary condition

u = uW , T = TW , (2.5)

i.e. we impose a velocity and temperature uW and TW corresponding to a subsonic wall
injection. The other boundary conditions are for now voluntarily omitted for all other
boundaries so as to keep a general point of view. We thus assume in particular that
all quantities fulfill appropriate far-field radiation conditions. Note that the boundary
condition (2.5) may not be relevant to the case of a subsonic suction, as the number of
degrees of freedom corresponding to subsonic inlet and outlet conditions is not the same.

In the following, all governing equations are conveniently written as formal relations
between differential operators, whose detailed expressions have been provided in Part I
and are not be repeated here for conciseness. The state vector q = (ρ, u, T, p)T is decom-
posed into a steady axisymmetric base flow q0 and a three-dimensional perturbation q1

of infinitesimal amplitude ε. Furthermore the volumetric and wall forcing are assumed
to be steady and axisymmetric, so that q0 is solution of the forced steady, axisymmetric
equations, that are written as

M0(q
0) = (s , 0)T . (2.6)
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along with the boundary conditions on Γc

u0 = uW , T 0 = TW . (2.7)

In (2.6),M0 is the axisymmetric form of operatorM. Since the base flow is axisymmetric,
the perturbation is sought under the form of normal modes

q1 = q̂1(r, z)e(σ+iω)t+imθ + c.c. , (2.8)

where q̂1 is the so-called global mode for which both the cross-stream and streamwise
directions are eigendirections. The azimuthal wavenumber of the global mode is m, its
growth rate and pulsation are σ and ω respectively.

Substituting q = q0 + εq1 into equations (2.1) yields a system of equations governing
the normal mode under the form of a generalized eigenvalue problem for λ = σ + iω and
q̂1 = (ρ̂1, û1, T̂ 1, p̂1)T , reading

λB(q0)q̂1 +Am(q0)q̂1 = 0 . (2.9)

along with the conditions on Γc

û1 = 0 , T̂ 1 = 0 . (2.10)

In (2.9), Am is the complex operator obtained from A = ∂M/∂q by replacing the θ
derivatives by the product by im. It should be noted that since all forcing terms have
been assumed to be steady, they act only at the base flow level, but do not alter explicitly
the disturbance equations. Am can be written as Am = Cm+Pm where Cm is the advection
operator arising from the linearization of the advection terms in (2.1), and Pm is the
source/sink operator encompassing the effect of the source terms in (2.1). In part I, we
have shown that operator Cm can be further split into Cm = C(A)

m +C(P )
m , where operator C(A)

m

is the advection operator accounting for the advection of disturbances by the base flow,
and operator C(P )

m is the production operator accounting for the production of perturbation
through the reciprocal advection of the base flow quantities by the perturbation. The total
production operator can thus be defined as C(P )

m + Pm.
Consider now a particular pair {q̂1, λ = σ + iω}, associated to a base flow q0, solution

of the eigenproblem (2.9). It is explicitly a function of the base flow variables λ = λ(q0).
Though, as seen from equations (2.6 − 2.7), the base flow q0 itself is a function of the
volumetric and boundary sources s , uW and TW . The eigenvalue is thus also a function
of the steady forcing, i.e. λ = λ(q0(s ,uW , TW )).

2.2. Sensitivity to base flow modifications
If λ is viewed as a function of q0, variations of a given eigenvalue δλ can be investigated
with respect to small variations of the base flow δq0, thus defining the sensitivity analysis
to base flow modifications presented in Part I. We recall that δq0 is here generic, i.e. we
do not require q0 + δq0 to be solution of equations (2.6). δλ and δq0 are such that

δλ =
∫

Ω

(∇ρ0λ · δρ0 + ∇u0λ · δu0 + ∇T 0λ · δT 0 + ∇p0λ · δp0) rdrdz , (2.11)

where ∇ρ0λ , ∇u0λ , ∇T 0λ and ∇p0λ are complex quantities and define the sensitivities
of the eigenvalue λ to a small modification of the base flow density, velocity, temperature
and pressure, respectively, and · stands for the canonic hermitian scalar product in Cn.
The sensitivity to a small modification of the base flow δq0 is then defined as ∇q0λ =
(∇ρ0λ, , ∇u0λ , ∇T 0λ , ∇p0λ)T , so that

δλ =
∫

Ω

∇q0λ · δq0 rdrdz . (2.12)
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The sensitivity of the growth rate σ and that of the frequency ω, denoted as ∇q0σ and
∇q0ω respectively, can be similarly written as

δσ =
∫

Ω

∇q0σ · δq0 rdrdz , δω =
∫

Ω

∇q0ω · δq0 rdrdz , (2.13)

with ∇q0σ = Re(∇q0λ) and ∇q0ω = −Im(∇q0λ) being now real vectors.

In Part I, the sensitivity functions have been derived using a Lagrangian technique
that is classically used in flow control and optimization problems (Gunzburger 1997,
1999; Airiau et al. 2003). We have shown that these functions depend simultaneously on
the perturbation q̂1 and on the adjoint perturbation q̂1† = (ρ̂1†, û1†, T̂ 1†, p̂1†)T , solution
of the generalized eigenproblem

λ∗B(q0)q̂1† +A†m(q0)q̂1† = 0 , (2.14)

where the subscript ∗ stands for the complex conjugate, and operator A†m is the adjoint
operator of Am, so that

∫

Ω

â ·
(
Amb̂

)
rdrdz =

∫

Ω

(
A†mâ

)
· b̂ rdrdz , (2.15)

for any complex vectors â and b̂ fulfilling the disturbance and adjoint disturbance bound-
ary conditions. In particular on Γc, the boundary condition for the adjoint perturbation
reads

û1† = 0 , T̂ 1† = 0 . (2.16)

The adjoint perturbations are normalized with respect to the perturbation, so that
∫

Ω

(ρ̂1† ∗ρ̂1 + ρ0û1† ∗ · û1 + ρ0T̂ 1† ∗T̂ 1)rdrdz = 1 . (2.17)

All details concerning the specific derivation of the sensitivity functions are provided in
Part I, and are briefly recalled in Appendix A. We give here only the resulting analytical
expressions in terms of the sensitivity function ∇q0λ:

∇ρ0λ = − λ∗
(
û1† · û1 ∗ + T̂ 1†T̂ 1 ∗

)
− û1†T ·

(
∇u0 · û1 ∗ + ∇û1∗ · u0

)
+ ∇ρ̂1† · û1 ∗

− T̂ 1†
(
û1 ∗ ·∇T 0 + u0 ·∇T̂ 1 ∗

)
+ p̂1†T̂ 1 ∗ , (2.18a)

∇u0λ = ρ0
(
−∇û1∗ T · û1† + ∇û1† · û1 ∗

)
+ ρ̂1 ∗

(
−∇u0 T · û1† + ∇û1† · u0

)

− λ∗ρ̂1 ∗û1† + ρ̂1 ∗∇ρ̂1† − T̂ 1†(ρ̂1 ∗∇T 0 + ρ0∇T̂ 1 ∗) + ∇(T̂ 1†p̂1 ∗)

− 2γ(γ − 1)
M2

Re
∇ ·

(
T̂ 1†τ (û1)

∗)
, (2.18b)

∇T 0λ = ∇ ·
(
T̂ 1†(ρ̂1 ∗u0 + ρ0û1 ∗)

)
+ p̂1†ρ̂1 ∗ , (2.18c)

∇p0λ = −T̂ 1†∇ · û1 ∗ . (2.18d)

Moreover, considering the specific modifications of the advection operator C(A)
m , it has

been shown possible to define sensitivity functions to a modification of the advection
operator ∇(A)

q0 λ = (∇(A)

ρ0 λ,∇(A)

u0 λ, ∇(A)

T 0 λ,∇(A)

p0 λ)T . The following expressions have been
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obtained:

∇(A)

ρ0 λ = −
(
∇û1∗ · u0

)
· û1† − T̂ 1†u0 ·∇T̂ 1 ∗ , (2.19a)

∇(A)

u0 λ = ρ0
(
−∇û1∗ T · û1†

)
+ ρ̂1 ∗

(
−∇u0 T · û1† + ∇û1† · u0

)

+ ρ̂1 ∗∇ρ̂1† − ρ0T̂ 1†∇T̂ 1 ∗ − ρ̂1 ∗T̂ 1†∇T 0 , (2.19b)

∇(A)

T 0 λ = ∇ ·
(
ρ̂1 ∗T̂ 1† ∗u0

)
, (2.19c)

∇(A)

p0 λ = 0 . (2.19d)

We have also defined sensitivity functions to a modification of the total production oper-
ator C(P )

m +Pm encompassing both the production mechanism arising from the advection
of the base flow quantities by the perturbation and that owing to the source/sink terms of
the governing equations. These sensitivity functions ∇(P )

q0 λ, referred to as the production
sensitivity functions, are such that

∇(P )

q0 λ = ∇q0λ−∇(A)

q0 λ . (2.20)

An important point raised in Part I concerns the choice of primitive or conservative
variables to carry out such a sensitivity analysis. We have shown in particular that a set
of conservative sensitivity functions ∇ρ0λ, ∇ρ0u0λ, ∇ρ0T 0λ and ∇p0λ could be elegantly
deduced from the primitive sensitivity functions ∇ρ0λ, ∇u0λ, ∇T 0λ and ∇p0λ as

∇ρ0λ = ∇ρ0λ− u0

ρ0
·∇u0λ− T 0

ρ0
∇T 0λ , (2.21a)

∇ρ0u0λ =
1
ρ0

∇u0λ , (2.21b)

∇ρ0T 0λ =
1
ρ0

∇T 0λ , (2.21c)

the sensitivity function ∇p0λ being unchanged. The same transformation can finally be
used to derive the conservative advection and production sensitivity functions.

2.3. Sensitivity to a steady forcing

If λ is viewed as a function of the forcing terms s , uW and TW , the variation δλ can
similarly be investigated with respect to the small variations δs , δuW and δTW , thus
defining the sensitivity analysis to a modification of the steady forcing, which is termed
sensitivity analysis to a steady forcing for conciseness. The variations are now such that

δλ =
∫

Ω

(∇mλ · δm + ∇fλ · δf + ∇hλ · δh) rdrdz

+
∫

Γc

(∇uW
λ · δuW + ∇TW

λ · δTW )rdl ,
(2.22)

where ∇mλ , ∇fλ and ∇hλ now define the sensitivities of the eigenvalue λ to mass,
momentum and heat sources, respectively. Similarly, ∇uW

λ and ∇TW
λ define the sen-

sitivities of the eigenvalue λ to wall velocity and temperature forcing. In the follow-
ing, we will also use the sensitivity to a volumetric forcing δs defined as ∇s λ =
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(∇mλ, , ∇fλ , ∇hλ)T , so that

δλ =
∫

Ω

∇s λ · δs rdrdz +
∫

Γc

(∇uW
λ · δuW + ∇TW

λ · δTW )rdl . (2.23)

As above, the corresponding sensitivities of the growth rate σ and frequency ω can
be obtained by considering separately the real and imaginary parts of these complex
fields. The derivation of the sensitivity functions ∇s λ, ∇uW

λ and ∇TW
λ is detailed in

Appendix B, and yields the following expression:

∇s λ = (ρ0†, u0†, T 0†)T , (2.24a)

∇uW
λ = ρ0ρ0†n +

1
Re

τ (u0†) · n , (2.24b)

∇TW
λ =

γ

PrRe
∇T 0† · n , (2.24c)

where n is the normal to the control surface oriented from the body to the fluid, and
q0† = (ρ0†,u0†, T 0†, p0†)T is the adjoint base flow, solution of the non-homogeneous,
non-degenerate, linear problem

A†0
(
q0

)
q0† = ∇q0λ , (2.25)

along with the boundary condition on Γc:

u0† = 0 , T 0† = 0 . (2.26)

In (2.25),A†0 is the adjoint operator for the axisymmetric linearized operatorA0. We insist
that these equations have been derived for axisymmetric configurations, along with the
specific inner product

〈â, b̂〉 =
∫

Ω

â · b̂ rdrdz . (2.27)

It can be shown, though, that repeating the procedure for two-dimensional cartesian
configurations, for instance, leads to the exact same set of equations, provided the nat-
ural inner product in cartesian coordinates is used, namely 〈â, b̂〉 =

∫
Ω

â · b̂ dxdy. This
consistency justifies the privileged use of this inner product in adjoint related studies. It
should be noted that the sensitivity to base flow modifications acts as a source term in
the adjoint base flow equations (2.25). The determination of ∇q0λ is thus a prerequisite
to the determination of the sensitivity to a steady volumetric forcing. The procedure to
compute the sensitivity of an eigenvalue to a steady forcing is the following:
• resolution of the base flow equations (2.6),
• resolution of the stability problem (2.9) and selection of an eigenpair {σ + iω, q̂1},
• resolution of the adjoint stability problem (2.14) and normalization of the adjoint

global mode using (2.17),
• computation of the sensitivity to base flow modifications (2.18),
• resolution of the adjoint base flow equations (2.25),
• computation of the adjoint wall quantities defined from the adjoint base flow by

(2.24).

2.4. Connection between both sensitivity analyses
Both sensitivity analyses are closely connected, as seen from (2.25). Consider a small
variation in the forcing δs , δuW , δTW : it induces a specific base flow modification δq0

F ,
solution of the linear problem

A0δq0
F = (δs , 0)T , (2.28)
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Figure 1: Schematic of the configuration under study: the slender body of revolution has
a diameter D and a total length l = 9.8D. z−∞, z∞ and r∞ are, respectively, the location
of the inlet, outlet and lateral boundaries.

along with the boundary condition on Γc:

δu0 = δuW , δT 0 = δTW . (2.29)

The resulting modification of the eigenvalue δλ can be calculated using both sensitivity
analyses. In the framework of the sensitivity to base flow modifications, it reads

δλ =
∫

Ω

∇q0λ · δq0
F rdrdz . (2.30)

In the framework of the sensitivity to a steady forcing, we obtain

δλ =
∫

Ω

∇s λ · δs rdrdz +
∫

Γc

(∇uW
λ · δuW + ∇uW

λ · δTW )rdl. (2.31)

The sensitivity analysis to a steady forcing can then be seen as particularizing the sen-
sitivity analysis from generic base flow modifications δq0 to the specific base flow mod-
ifications δq0

F induced by a small modification of the steady forcing. Though, the main
interest of the sensitivity analysis to a steady forcing is that the variation δλ can be
directly determined from the knowledge of the sensitivity functions ∇s λ, ∇uW

λ and
∇TW

λ, without having to compute the specific base flow modification δq0
F .

3. Flow configuration and numerical approach
The body under study is shown in Figure 1: it models an ideal rocket shape, made of

an axisymmetric body of revolution with a blunt trailing edge of diameter D placed into
a uniform flow at zero angle of attack (Mair 1965; Weickgenannt & Monkewitz 2000).
The body used in this study is identical to that used by Sevilla & Martínez-Bazàn (2004),
with a total length l = 9.8D and an ellipsoidal nose of aspect ratio 3 : 1. A schematic of
the physical configuration is sketched in Figure 1: the body is located on the axis of a
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Figure 2: Schematic of the configuration for boundary forcing and localization of the
control surface Γc at the base.

numerical enclosing cylinder of radius r = r∞. The origin of the cylindrical coordinates
is taken at the center of the body base. The inlet ∂Ωin and outlet ∂Ωout boundaries are
located respectively at z = z−∞ and z = z∞ and boundaries ∂Ωa and ∂Ωext represent
respectively the revolution axis of the body and the boundary of the enclosing cylinder.

The computational domain and mesh used for this study are identical to that presented
in Part I, with z∞ = −100 z∞ = 300 and r∞ = 25. Boundary conditions are enforced
by use of a sponge zone of length ls = 200 padding the physical domain (see Figure
2 of Part I). In the following, all pressure quantities are eliminated from the governing
equations using the perfect gas state equation so that the state vector is q = (ρ, u, T )T .
The governing equations (2.1) are thus solved using the following boundary conditions:

u = (0, 0, 1)T , ρ, T = 1 on ∂Ωs
in ∪ ∂Ωs

ext ∪ ∂Ωs
out (inlet, external & outlet), (3.1a)

u = uW , T = TW on Γc (subsonic injection) , (3.1b)
u = 0, ∂nT = 0 on ∂Ωb\Γc (adiabatic body wall) . (3.1c)

The base flow satisfies identical boundary conditions, along with the additional condition
u0 = 0, ∂r(w

0, ρ0, T 0) = 0 on ∂Ωa obtained from mass, momentum and internal energy
conservation as r → 0 for axisymmetric solutions. The perturbation satisfies the following
boundary conditions

û1 = 0, ρ̂1, T̂ 1 = 0 on ∂Ωs
in ∪ ∂Ωs

ext ∪ ∂Ωs
out, (3.2a)

û1 = 0, ∂nT̂ 1 = 0 on ∂Ωb , (3.2b)
ŵ1, ρ̂1, T̂ 1 = 0, ∂r(û1, v̂1) = 0 on ∂Ωa , (3.2c)

the condition at the axis being specific to m = 1 disturbances, and the conditions for the
adjoint perturbation arising from the integration by parts of the perturbation equations
are identical. All details pertaining to the numerical method can be found in Part I,
including space discretization, base flow computations and resolution of the eigenvalue
problems. We recall that global modes are normalized by imposing the phase of the radial
velocity to be zero at a particular location, namely û1(0, 1) must be real positive for m =
±1. The eigenmode energy is then normalized to unity in the near-wake domain defined
arbitrarily as z ∈ [−12.3, 5.25] and r < 2, and adjoint global modes are normalized using
condition (2.17).

4. Global stability results
We intend to apply the sensitivity analyses presented in Section 2 to the afterbody

flow configuration described in Section 3. From now on, all results pertain to the same
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Figure 3: Spatial distribution of axial velocity w0 of the steady axisymmetric base flow
for Re = 983.0 and M = 0.5. The solid line in the flow indicates the separatrix of the
recirculation zone.

configuration for which the base is chosen as the control surface, as depicted in Figure 2.
The afterbody flow refers to as the unforced afterbody flow which is solution of the
governing equations (2.1) with

f = 0 , m = h = 0 , (4.1a)
uW = 0 , T = TW , (4.1b)

TW being chosen equal to the free-stream total temperature

TW = 1 +
γ − 1

2
M2 (4.2)

Similarly, the base flow refers to as the unforced base flow which is solution of the steady
equations (2.6) along with conditions (4.1). Since we do not use the governing equations
under their conservative form, the method presented here is unable to account for the
presence of shock waves in the computational domain. Therefore, base flow computations
can be carried out legitimately while the local Mach number Ml = M‖u0‖/

√
T 0 remains

smaller than unity at each point of the grid mesh. Practically, the free stream Mach
number can be increased up to M = 0.7. From now on, the Mach number is taken equal
to M = 0.5, so that TW = 1.05. Figure 3, shows contours of the base flow axial velocity
w0 for Re = 983.0 and M = 0.5. The solid line is the streamline linking the separation
point to the stagnation point on the r = 0 axis, and defines the separatrix delimiting the
recirculation bubble behind the base. The classical topology of wake flows is retrieved,
with a recirculation region of length ∼ 2.5 diameters developing in the wake of the
afterbody, and negative values of streamwise velocity reaching 30% of the free-stream
velocity.

In Part I, we have investigated the global stability of this afterbody flow with no con-
trol surface. It has been mentioned for introductory purposes that in the range of Mach
numbers under investigation (M < 0.7), the axisymmetric wake undergoes a consistent
sequence of bifurcation identical to that previously documented in the incompressible
regime for other geometries of revolution (Natarajan & Acrivos 1993). Namely, when the
Reynolds number is increased from small values, the axisymmetric base flow is first desta-
bilized at ReA by a stationary mode (ω = 0) whose eigenvector is referred to q̂1

A (not
shown here). A subsequent destabilization occurs at ReB > ReA for an oscillating mode
of frequency ω = ω0, whose complex eigenvector is denoted q̂1

B. This sequence is not
modified by the introduction of the control surface. For M = 0.5, the critical Reynolds
number for the Hopf bifurcation is ReB = 983.0 and the frequency of the oscillating global
mode is ω0 = 0.399 corresponding to a Strouhal number St = ω0D/(2πU∞) = 0.063.
These values are almost identical to that found in Part I in the absence of control surface,
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Figure 4: Oscillating global mode at the threshold of the first instability, ReB = 983.0 -
M = 0.5. (a) Spatial distribution of axial velocity ŵ1

B for the global mode. (b) Spatial
distribution of density ρ̂1

B . (c) Spatial distribution of temperature T̂ 1
B . The black hue

corresponds to vanishing perturbations. Only the real parts are shown.

the shift in the Reynolds number representing a variation of only 2‰, and show that
the effect of the additional base temperature condition (4.1b) barely affects the results of
the stability analysis. This is consistent with the results documented in Part I showing
that small discrepancies in the base flow density, temperature and pressure do not alter
significantly the stability problem, due to low magnitudes of the associated sensitivity
functions. Figure 4 shows the spatial structure of the real part of the streamwise veloc-
ity component ŵ1

B . One observes positive and negative velocity perturbations alternating
downstream of the body, in a regular, periodic way that defines a local spatial wavelength
of about 12 diameters. The imaginary part of ŵ1

B (not shown here) displays a similar
structure, but is approximately in spatial quadrature since its extrema are located where
the real part vanishes. This global mode corresponds therefore to a spiral perturbation
in the lee of the body, which rotates in time at the frequency ω0. Note that the density
ρ̂1

B and temperature T̂ 1
B perturbations shown in Figures 4(b) and 4(c) are one order of

magnitude smaller than that found for the streamwise velocity ŵ1
B shown in Figure 4(a).

The adjoint global mode q̂1†
B has been computed and is depicted in Figure 5: it is domi-

nated by the adjoint velocity field, and is intense only in the recirculating area and a few
diameters upstream of the body, where it presents a weak oscillation, whereas it vanishes
downstream of the body. The specific downstream localization of the global mode, as
well as the upstream localization of the adjoint global mode, results from the convective
nonnormality of the evolution operator, which has been discussed in Part I and is out of
the scope of the present study.
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Figure 5: Same as Figure 4 for the oscillating adjoint global mode at threshold.

5. Sensitivity to steady forcing
In this section, the oscillating global mode is marginally unstable, i.e. Re = 983.0 and

M = 0.5. In the perspective of control, we aim at appraising how the stability of the
oscillating global mode q̂1

B can be affected by a small-amplitude forcing (δs , δuW , δTW ),
assumed to act only at the base flow level. Such forcing induces a specific base flow
modification δq0

W that results in a modification of the stability problem, and in particular
in a modification of the growth rate δσB. In order to estimate this modification, we use
here the sensitivity analysis to a steady forcing developed in § 2, in which the knowledge
of the base flow modification δq0

W is not needed. § 5.1 to 5.3 deal with pure volumetric
forcing, so that we impose δuW = 0 and δTW = 0. On the contrary, § 5.4 considers the
case of pure boundary forcing, along with δs = 0.

5.1. Sensitivity to momentum forcing
We set for now δm = δh = 0, and investigate the effect of momentum forcing on the
stability of the oscillating global mode. We consider first the growth rate variation δσB re-
sulting from an axisymmetric punctual momentum source localized at the station (rc, zc).
Since the global mode is marginally stable, negative variations δσB < 0 (resp. positive
variations δσB > 0) therefore correspond to a stabilization (resp. a destabilization) of
the global mode. In order to achieve a maximum stabilizing effect, the orientation of the
momentum source is chosen opposite to that of the sensitivity function ∇fσB, so that
δf can be modeled as

δf(r, z) = − 1
2πrc

δf̂
∇fσB(r, z)
‖∇fσB(r, z)‖δ(r − rc, z − zc) , (5.1)
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Figure 6: Oscillating global mode at the threshold of the second instability, ReB =
983.0 - M = 0.5: spatial distribution of the growth rate variation δσB(rc, zc) obtained
with a momentum source modeled by (5.1). Negative variations δσB < 0 (resp. positive
variations δσB > 0) therefore correspond to a stabilization (resp. a destabilization) of
the global mode. The black hue corresponds to vanishing magnitudes of sensitivity.

where the constant δf̂ > 0 corresponds to the momentum rate per time-unit applied by
the control device, since ∫

‖δf(r, z)‖ rdrdθdz = δf̂ . (5.2)

To each position of the source (rc, zc) corresponds a variation of the oscillating growth
rate δσB(rc, zc), given by

δσB(rc, zc) =
∫

Ω

∇fσB(r, z) · δf(r, z) rdrdz = − 1
2π
‖∇fσB(rc, zc)‖δf̂ , (5.3)

so that δσB is directly proportional to the momentum rate and to the magnitude of
the sensitivity function. Figure 8 presents the spatial distribution of the growth rate
variation for δf̂ = 10−2, i.e. the control δf̂ represents 1% of the free-stream momentum
rate. The black hue corresponds to vanishing variations of the growth rate, so that one
can observe that the magnitude of sensitivity is almost nil everywhere in the flow, except
in the recirculating bubble. This is not too surprising, though, as we have shown in Part
I that the recirculation acts as the wavemaker of the instability, a result that has been
shown to result from the convective nonnormality of the linearized evolution operator,
which induces a downstream localization (resp. upstream) of the direct global modes
(resp. adjoint global modes) illustrated in Figures 4 and 5. It can be seen that the a
maximum stabilizing effect is obtained by placing the momentum source in the vicinity
of the separation line and in the core of the recirculating bubble, where the effect is
however lower.

We consider now the action of a small control device, whose presence is modeled by the
force it exerts on the flow. We assume that whatever its location, the wake of the control
device remains steady. This means that the Reynolds number based on the typical size of
the control device and the magnitude of the local base flow velocity must be low enough,
i.e. that the control device must be small. For instance, in the studies of Strykowski &
Sreenivasan (1990) and Marquet et al. (2008), the diameter of the control cylinder is ten
times smaller than that of the main cylinder. Of course, disks such as those used in Mair
(1965) and Weickgenannt & Monkewitz (2000) are not precisely small control devices,
since the ratio between of their diameter to that of the main body is even close to unity.
Therefore, we do not claim that our approach provides a full interpretation of the results
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Figure 7: View of a control ring mounted at the rear of the main body, whose action on
the base flow is modeled by (5.4).

documented by these authors. Though, it consists in a more systematic approach for the
open-loop control of vortex-shedding by means of an additional control device.

The latter device is chosen as a small control ring of radius rc and width e = 0.1,
mounted at the rear of the main body, at a distance zc from the base, as shown in
Figure 7. We assume that such the width e is small enough for the force to be punctual,
i.e. localized at the station (rc, zc). As in Hill (1992) and Marquet et al. (2008), we
consider that the base flow exerts a steady drag force on the control ring, and that the
ring exerts in return an opposite force, modeled as

δf(r, z) = −1
2
Ceρ0(r, z)‖u0(r, z)‖u0(r, z)δ(r − rc, z − zc) , (5.4)

where C is a drag coefficient depending on the value of the Reynolds number Ree based
on the ring width. Typical values of the Reynolds number in the recirculating bubble are
of order Ree ' 30. Consequently, we set here C = 1, an empirical value determined from
the drag coefficient for a cylinder at low Reynolds numbers. To each position of the ring
(rc, zc) corresponds a variation of the oscillating growth rate δσB(rc, zc), given by

δσB(rc, zc) = −1
2
Cercρ

0(rc, zc)‖u0(rc, zc)‖∇fσB(rc, zc) · u0(rc, zc) . (5.5)

Figure 8 presents the spatial distribution of the resulting growth rate variations δσB. It
can be seen that the control ring has a significant stabilizing effect if it is placed along
the separation line. However, these results also outline the complex effect of momentum
forcing, as several regions contributing either to a weaker stabilization or destabilization
of the global mode are visible around the main stabilizing region.

5.2. Sensitivity to a heat source
We set now δm = 0 and δf = 0, and investigate the growth rate variation resulting from
an axisymmetric punctual volumetric energy source, modeled as

δh(r, z) =
1

2πrc

δĥ δ(r − rc, z − zc) , (5.6)

where the constant δĥ corresponds to the energy rate per time-unit. Positive values of
δĥ (resp. negative values) therefore correspond to a local heating (resp. a local cooling)
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Figure 8: Same as Figure 6 for the growth rate variation δσB(rc, zc) obtained when the
presence of a small control ring is modeled by (5.4).

Figure 9: Same as Figure 6 for the growth rate variation δσB(rc, zc) obtained with a heat
source modeled by (5.6).

of the flow. The variation of the growth rate is then given by

δσB(rc, zc) =
∫

Ω

∇hσB(r, z) · δh(r, z) rdrdz =
1
2π

∇hσB(rc, zc) · δĥ . (5.7)

We consider the case of heating in order to mimic the effect obtained using an axisym-
metric gas discharge and set δĥ = 10−2, i.e. the control δĥ now represents 1% of the
free-stream internal energy rate. Figure 9 presents the spatial distribution of the result-
ing variations of the oscillating growth rate δσB(rc, zc) as given by (5.7).

We find that forcing the base flow in the separation region has a stabilizing effect for
almost all positions of the discharge (δσB < 0) whereas forcing in the outer region has no
effect. It should be noted that the opposite effect would have been obtained in the case
of cooling, since the variation δσB is directly proportional to δĥ. It is worthwhile noting
that the maximum stabilization achieved by means of the heat source is δσB = −0.03, i.e.
lower to that documented in § 5.1 by means of a momentum source representing 1% of
the free-stream momentum rate. Though, such effect is not negligible. Since it has been
said that modifying the thermodynamic base flow within the recirculation has almost no
effect on the oscillating growth rate σB, it might thus be inferred that the effect of such
energy source is non-thermal, i.e. it mainly acts by modifying the base flow momentum.
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Figure 10: Same as Figure 6 for the growth rate variation δσB(rc, zc) obtained with a
mass source modeled by (5.8).

5.3. Sensitivity to mass injection
Finally, we set δf = 0 and δh = 0 and investigate the growth rate variation δσB resulting
from an axisymmetric localized mass injection, modeled by

δm(r, z) =
1

2πrc

δm̂ δ(r − rc, z − zc) , (5.8)

where the constant δm̂ corresponds to the mass rate per time-unit. Positive values of δm̂
(resp. negative values) correspond to a mass source (resp. a mass sink). The variation of
the growth rate is thus given by

δσB(rc, zc) =
∫

Ω

∇mσB(r, z) · δm(r, z) rdrdz =
1
2π

∇mσB(rc, zc) · δm̂ . (5.9)

In the following, we set δm̂ = 10−2, i.e. the control δm̂ represents 1% of the free-stream
density rate. A map of the variation δσB(rc, zc) is depicted on Figure 10. It can be seen in
particular that the region sensitive to mass injection are localized within the recirculation
bubble only. Figure 10 also shows that a mass injection close to the base or along the front
part of the separation line has a stabilizing effect (δσB < 0), the most sensitive region
being located close to the separation point. On the contrary, a mass injection in the core
and in the rear part of the recirculating bubble has a destabilizing effect (δσB > 0). Note
that an additional destabilizing region of moderate sensitivity exists within the boundary-
layer region, upstream from the blunt edge. Though, implementing an axisymmetric mass
injection in the inner region of a flow is not very realistic, and practically, such injection
is rather achieved through boundary forcing, as will be discussed in the following section.

5.4. Sensitivity to steady wall forcing
We aim now at characterizing the effect of wall forcing, by setting s = 0. We recall that
the variation of the eigenvalue resulting from the small-amplitude boundary forcing are
such that

δσB =
∫

Γc

(
ρ0ρ0†n +

1
Re

τ (u0†) · n
)
· δuW rdl +

∫

Γc

γ

PrRe
(∇T 0† · n) · δTW rdl (5.10)

When a modification of the wall velocity occurs, the variation of the eigenvalue δσB

is determined by the product of the wall density and adjoint densities ρ0ρ0† and by
the viscous stress tensor τ (u0†) weighted by the inverse of the Reynolds number. The
orientation of the forcing velocity with respect to the wall also influences the eigenvalue
variation. Indeed, when the viscous term in (5.10) is neglected, for a given magnitude of
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Figure 11: Oscillating global mode - M = 0.5: spatial distribution of (a) streamwise wall
velocity ∇wW

σB and (b) wall temperature ∇TW
σB sensitivity functions. Solid lines (resp.

dashed lines) stand for the functions at threshold of instability, i.e. ReB = 983.0 (resp.
at the supercritical Reynolds number Re = 2000).

the wall velocity, the closer the orientation to the normal vector to the wall, the larger
the variation. In the following, we thus consider only the case of wall velocities oriented
normal to the control surface. For the configuration under consideration, this corresponds
to a steady streamwise blowing δuW = δwW ez , for which the sensitivity functions read

∇wW
σB = ρ0ρ0†δwW +

1
Re

(
−2

3
∇ · u0† + 2∂zw

0†
)

(5.11a)

∇TW
σB =

γ

PrRe
∂zT

0†δTW (5.11b)

The distributions of the sensitivity functions as a function of the radial position r on
the base are presented at threshold of instability as the solid lines in Figures 11(a) and
11(b). The vertical grey line on Figure 11(b) corresponds to the axis ∇TW

σB = 0. It
should be noted that the magnitude of these sensitivities is quite different, since the wall
temperature sensitivity is one order of magnitude lower than its velocity counterpart.
As a consequence, it may be inferred that a small-amplitude heating or cooling of the
base will have only a limited effect on the eigenvalue. We find negative values of the
wall velocity sensitivity whatever the location at the base. This means that for a steady
blowing (δwW > 0) we obtain a negative variation δσB, consistently with the stabilizing
effect of base bleed strategies. The sensitivity is seen to be almost invariant at the center
of the base, namely for r < 0.3. Then, its magnitude increases significantly close to the
separation point, where the maximum value is reached. Therefore, an actuator imposing
a steady blowing will achieve maximum efficiency if placed at the edge of the base. Con-
cerning the wall temperature sensitivity, we find positive values at the center decreasing
down to negative values at the edge, where the maximum magnitude is reached. To ob-
tain a stabilizing effect, one should thus cool the base in its inner region (r < 0.2) and
heat it in its external region.
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Figure 12: Spatial distribution of the bleed velocity δuW . (a) Uniform bleed. (b)
Piecewise-constant distribution.

Figure 13: Spatial distribution of axial velocity w0 of the base flow obtained for different
values of wall velocities. (a) δwW = 0.001, (b) δwW = 0.02, (c) δwW = 0.04, and (d)
δwW = 0.06. The solid line in the flow indicates the separatrix of the recirculation zone.

6. Application to wall blowing - Base bleed
Base blowing is a simple and well-known means of stabilizing various shapes of bluff-

bodies at supercritical Reynolds numbers (Motallebi & Norbury 1981; Higuchi 2005).
We consider in this section such an unstable configuration, with a Reynolds number
Re = 2000, the Mach number still being M = 0.5. For this parameter setting, the
growth rate of the unforced oscillating global mode is σB ' 8.5 × 10−2. For this value
of the Reynolds number, the distributions of the sensitivity functions are represented
as the dashed lines in Figures 11(a) and 11(b). It can be seen that the sensitivity to a
streamwise wall velocity has significantly increased, which makes it possible to control
unstable configurations. On the contrary, the sensitivity to wall temperature is only
weakly modified. It can thus be inferred that controlling this specific instability by means
of pure wall heating or cooling will be quite difficult. Such control has been investigated
in the framework of the present study, and it turns out that the effect is indeed very
limited. Consequently, in the following, the wall temperature is kept constant and only a
uniform bleed velocity is applied at the base, as seen in Figure 12(a). For different values
of the wall velocity δwW = 0.001, 0.01, 0.03 and 0.06, we present on Figure 13 axial
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velocity contours of the forced base flow q0
W , obtained by solving the nonlinear base flow

equations (2.6) for the corresponding wall velocity. It can be observed that increasing the
blowing velocity affects the wake by progressively shifting downstream the recirculating
bubble. For δwW = 0.001, which is close to the natural unforced wake, we find a single
stagnation point on the r = 0 axis, meaning that the recirculating bubble is still stuck
against the base. It can thus be delimited by the streamline linking the separation point
to the stagnation point, shown as the solid line in Figure 13(a). On the contrary, for
δwW = 0.06, we find two stagnation points, meaning that the recirculating bubble has
been advected downstream under the effect of base bleed. It is thus delimited by the
streamline linking both stagnation points, as shown by the solid line in Figure 13(d).
This displacement of the separated area occurs along with a simultaneous increase in
the recirculating length defined as the distance between both stagnation points, from 2.7
diameters at δwW = 0.001 to 3.9 diameters at δwW = 0.06. Another effect of base blowing
can be noticed, as the magnitude of counterflow rate is seen to be severely weakened, from
37 % to only 17% for δwW = 0.06. Such results are not new, as similar ideas were already
conveyed in the early study of Bearman (1967), for instance. Though, new insights in the
physics of vortex-shedding have arisen from the stability theory, as numerous theoretical
approaches have evidenced a strong connection between the synchronized oscillations
observed in wakes and the existence of a region of local absolute instability in the near
wake, where the small-amplitude wave packet generated by an arbitrary perturbation
withstands advection and grows in time at any fixed location. This has given rise to
renewed discussions about the mechanisms underlying this successful control strategy.
Since it is well known that reverse flow promotes absolute instability (see Monkewitz
1988, among others), it is now generally acknowledged that base bleed stabilizes the flow
by inhibiting absolute instability, as discussed in Sevilla & Martínez-Bazàn (2004). We
propose now to characterize the effect of base blowing in the global framework. To this
end, we use the advection/production dichotomy introduced in Part I, which stands as
the global counterpart of the local concepts of convective/absolute instability.

6.1. Analysis of the stabilization mechanism in terms of modifications of the advection
and production mechanisms

Consider first the case δwW = 0.01. It has been said previously that such blowing is
expected to have a stabilizing effect, owing to the negative values of ∇wW

σB at the base.
From a theoretical point of view, δσB can be indifferently estimated in the framework of
the sensitivity analyses to steady forcing and base flow modifications, according to

δσB =
∫

Γc

∇wW
σB · δwW =

〈∇q0σB , δq0
W

〉
, (6.1)

where δq0
W is the linear base flow modification obtained by resolution of equation (2.28)

along with the following boundary condition on Γc:

δu0 = δwW ez , δT 0 = 0 . (6.2)

In the present case, we obtain the expected stabilization, with δσB = −3.02×10−2 using
the sensitivity function ∇wW

σB and δσB = −3.10 × 10−2 using the sensitivity function
∇q0σB. These results are consistent and validate the present computations since the
relative error is less than 3%. The relative error on the frequency is even smaller, of
order 1% (not shown here). It should be noted that if the estimation of δσB requires
integration over space in the case of the sensitivity to base flow modifications, it relies
on wall integration in the case of the sensitivity to forcing. In such blunt configurations
where integration up to the edge is carried out, this formalism is thus more demanding,
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as sufficient precision in the numerical results must be enforced at this specific location,
which may be quite involved. This certainly accounts for the small discrepancies between
both sensitivity approaches.

It is worth recalling that the main interest of the sensitivity analysis to steady forcing
is that δσB can be directly determined from the knowledge of the sensitivity functions
∇wW

σB, without having to compute the specific base flow modifications δq0
W . Though,

the knowledge of δq0
W is of great interest if one aims at gaining insight into the underlying

physical mechanisms. Since δσB is obtained by integration over space of the integrand
∇q0σB · δq0

W (r, z), it is possible to integrate separately the four integrands

δρ0σB =
∫

Ω

∇ρ0σB · δρ0
W rdrdz , (6.3a)

δρ0u0σB =
∫

Ω

∇ρ0u0σB · δ(ρ0u0)W rdrdz , (6.3b)

δρ0T 0σB =
∫

Ω

∇ρ0T 0σB · δ(ρ0T 0)W rdrdz , (6.3c)

δp0σB =
∫

Ω

∇p0σB · δ(p0)W rdrdz , (6.3d)

so that
δσB = δρ0σB + δρ0u0σB + δρ0T 0σB + δp0σB . (6.4)

This allows to distinguish between the contributions to the overall variation δσB issuing
from the modification of density, momentum, internal energy and pressure. Moreover, the
stabilizing effect of base bleed can be investigated in terms of the competition between
advection and production of disturbances, using the specific advection and production
sensitivity functions defined in § 2. δσB can then be decomposed into

δσB = δ(A)σB + δ(P )σB , (6.5)

where δ(A)σB and δ(P )σB measure the variation of the eigenvalue owing to the modification
of the advection operator and of the total production operator induced by the base
flow modification δq0

W . Physically, a positive (resp. negative) value of δ(A)σB indicates
a destabilization (resp. a stabilization) of the eigenmode owing to a weakening (resp. a
strengthening) of the disturbances advection. Similarly, a positive (resp. negative) value
of δ(P )σB indicates a destabilization (resp. a stabilization) owing to an increase (resp. a
decrease) of the disturbances production. These terms are computed respectively as the
projection of δq0

W onto the advection and production sensitivity functions, i.e.

δ(A)σB =
〈
∇(A)

q0 σB , δq0
W

〉
, δ(P )σB =

〈
∇(P )

q0 σB , δq0
W

〉
. (6.6)

Results of the decompositions (6.4) and (6.5) are provided in Table 1. It can be seen
first that both variations δ(A)σB and δ(P )σB are negative, meaning that the modifications
of the advection and production mechanisms are both stabilizing, and that the main
stabilization comes from the advection mechanism. Furthermore, both mechanisms are
entirely triggered by the contribution of momentum, as the density, energy and pressure
modifications are seen to contribute for nothing in the overall variation. As a result, it can
be claimed that the stabilizing effect of base bleed arises simultaneously from a weakening
of the production and a strong strengthening of the advection of perturbations, both being
triggered by the variation of the base flow momentum. Note that at the high Reynolds
numbers considered here, the contribution to these variations of the terms weighted
by the inverse of the Reynolds number in (5.11) has been estimated, and accounts for
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δρ0σB δρ0u0σB δρ0T0σB δp0σB δσB

∇ 7.0× 10−4 −3.2× 10−2 1.2× 10−4 −1.6× 10−6 −3.1× 10−2

∇(A) 4.1× 10−6 −2.1× 10−2 6.5× 10−6 0 −2.1× 10−2

∇(P ) 7.0× 10−4 −1.1× 10−2 1.2× 10−4 −1.6× 10−6 −1.0× 10−2

Table 1: Evaluation of the oscillating growth rate variation δq0σB from the base flow
modification δq0

W owing to the modification of the wall forcing velocity δwW . δρ0σB,
δρ0u0σB, δρ0T 0σB and δp0σB are the variations obtained by evaluating individually the
specific variation arising from the modification of density, momentum, internal energy
and pressure, so that the overall variation δq0σB is the sum of these four contributions.
Results obtained using the overall sensitivity functions are provided on the first line.
Results obtained using the advection/production decomposition (6.5) are provided on
the second and third lines respectively - Re = 2000, M = 0.5, δwW = 0.01.

δρ0u0σB δρ0w0σB δρ0u0σB

∇ −2.7× 10−2 −4.6× 10−3 −3.2× 10−2

∇(A) −2.5× 10−2 4.2× 10−3 −2.1× 10−2

∇(P ) −2.2× 10−3 −8.8× 10−3 −1.1× 10−2

Table 2: Decomposition of the momentum variation δρ0u0σB displayed in Table 1 in terms
of the cross-stream and streamwise momentum components.

Figure 14: Spatial distribution of the momentum integrand ∇(A)

ρ0u0σB · δ(ρ0u0)M(r, z)
that dominates the overall growth rate variation. The integration over space of this field
yields the variation δ(A)σB and the black hue corresponds to vanishing magnitudes of the
integrand - Re = 2000, M = 0.5, δwW = 0.01.

approximatively 1% of the overall variations documented in Table 1, despite the fact
that the components of the symmetrical tensor τ (u0†)/Re may grow up to order-one
quantities in the vicinity of the edge. As a consequence, it can be claimed that the wall
sensitivity is triggered by the product of the wall density and adjoint densities ρ0ρ0†.

To identify the regions in space which are responsible for the stabilization of the global
mode, we present in Figure 14 the spatial distribution of the advection momentum inte-
grand ∇(A)

ρ0u0σB · δ(ρ0u0)W (r, z), whose integration over space yields the variation δ(A)σB

that dominates the overall variation δσB. At a given station, a positive (resp. negative)
value indicates that the base flow modification δq0

W contributes to the destabilization
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Figure 15: Effect of a base bleed at the streamwise station z = 0.1 - Re = 2000, M = 0.5,
δwW = 0.01. Spatial distribution of the (a) streamwise momentum ρ0w0 and (b) cross-
stream momentum ρ0u0. The base flow quantities, i.e. q0, and the modified quantities,
i.e. q0 + δq0

W , are depicted by the solid and dashed lines respectively.

Figure 16: Same as Figure 15 for the streamwise station z = 1.5.

(resp. stabilization) of the global mode. Several regions contributing either to a stabi-
lization or to a destabilization are visible in Figure 14, thus outlining the complex effect
of base blowing on the variation of the growth rate. For instance the vicinity of the
base, as well as the separation line contribute to a strong stabilization of the global
mode, whereas the core of the recirculation contributes to its destabilization. Figure 15
shows the cross-stream and streamwise momentum distributions at the streamwise sta-
tion z = 0.1, i.e. in the core of the stabilizing region located close to the base. The solid
and dashed lines refer to the base flows q0 and q0 + δq0

W respectively. Blowing reduces
the streamwise counterflow velocity by approximatively 16%, whereas the effect on the
cross-stream component is more subtle. It turns out that at this location, the effect of
base bleed is due to the streamwise momentum variation. Figure 16 shows similar mo-
mentum distributions at the station z = 1.5, i.e. in the core of the second stabilizing
region. It can be seen now that the effect of blowing on the streamwise component is
now barely visible, whereas it significantly spreads out the cross-stream momentum gra-
dients over a large cross-stream distance. It can be claimed as well that at this location,
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the effect of base bleed is triggered by a weakening of the cross-stream gradients, that
occurs through cross-stream momentum variations. Since variations of both momentum
components are involved in the overall stabilizing effect, we have further investigated
their specific contribution to the variation δρ0u0σB. Results are provided in Table 2.
Strikingly, we find that base bleed acts mainly through the cross-stream component, the
contribution of the streamwise component to the overall variation δσB being smaller by
one order of magnitude, and the contribution of the streamwise component relative to
the advection variation δ(A)σB being even slightly destabilizing. It is worth noting that
the latter effect is opposite to that relative to the production variation δ(P )σB which is
stabilizing. These results are very interesting with regards to the interpretations usually
made in the framework of the local theory. Although they might seem counterintuitive,
we recall that the effect on the growth rate is not only triggered by the magnitude of the
base flow modification but also by its orientation with respect to the sensitivity function.
This strongly suggests that the action of base bleed is non-parallel in essence, and may
not be fully captured nor interpreted by performing only local analyses, although there
is no doubt that useful insight at the underlying physics can be gained from the local
theory.

6.2. Discussion
It should be kept in mind that the sensitivity analysis is fundamentally linear since it
is based on the evaluation of a gradient. In particular, it is assumed that the forced
base flow q0

W can be sought for as a linear modification of the unforced base flow q0.
Though, it has been seen that for large wall velocities, the modification of the base flow
is large as it results in a significant displacement of the recirculation and reduction of
the counterflow rate. This means that the amplitude of forcing being not infinitesimal
anymore, the induced base flow modification δq0

W may become large enough to invalidate
the linear assumption. Consequently, the variation of the eigenvalue computed by means
of the sensitivity analysis is exact only in the limit of small wall velocities. For wall
velocities of larger magnitude, it consists in a linear estimation of a variation of unit
order of magnitude.

As a way to investigate the effect of nonlinearities on the present problem, we consider
now different magnitudes of wall velocities, still with uniform distribution at the base.
The growth rate σB of the oscillating global mode is depicted in Figure 17(a) as a function
of δwW . Results are also presented in terms of the flow rate through the base δD, defined
as

δD = 8
∫

Γc

ρ0δwW rdr . (6.7)

The solid line corresponds to the evaluation of σB issuing from the adjoint-based gradient
(5.11a). Practically, the sensitivity analysis provides the linear estimation of the growth
rate variation δσB which, added to the unforced growth rate σB, yields the linear estima-
tion of the growth rate of the forced base flow. For each wall velocity, the real growth rate
can also be computed exactly by performing the standard global stability analysis on the
base flow which satisfies the nonlinear equations (2.6) for the corresponding wall velocity,
i.e. the base flow depicted in Figure 13. Results of these forward calculations are shown
in Figure 17(a) as the grey circle symbols. We find that σB decreases as the wall velocity
increases, thus illustrating the stabilizing effect of base blowing. The small-amplitude
range δwW 6 0.01 is more clearly visible on the close-up in Figure 17(b). It can be seen
that the relative difference between linear and nonlinear estimations of the growth rate
is not measurable for δwW 6 0.001, a result indicating that the linear assumption holds

201



Figure 17: (a) Growth rate σB as a function of the wall velocity δwW/flow rate δD.
Comparison of the linear results obtained from the sensitivity analysis (solid line) with
the nonlinear results obtained from forward calculations on the real forced base flow
(circle symbols). The dashed line stands for the linear results obtained by applying the
sensitivity analysis to the forced base flow, along with wW = 0.03. (b) Enlargement of
the small velocity shaded area of (a). - ReB = 2000 and M = 0.5.

and thus validating the correctness of the sensitivity functions computed in the present
study. For larger wall velocities, we observe small discrepancies, as nonlinearities set in.
We observe in particular that the decrease in the growth rate computed by the sensi-
tivity analysis slightly overestimates the stabilizing effect of forcing, meaning that the
linear and non-linear mechanisms are competitive. As a result, the critical wall velocity,
for which the zero-growth rate is achieved, is shifted from δwW ' 0.048, which stands
from the value predicted by forward calculations, to 0.028, as predicted by the sensitivity
analysis.

In order to understand the origin of the discrepancies observed between the linear and
nonlinear growth rate predictions, we present in Figure 18(a) the location of the front
stagnation point zu

r (resp. the rear stagnation point zd
r ) computed as a function of the

wall velocity. The solid lines (resp. the dashed lines) correspond to the forced base flow
q0

W (resp. the linear approximation q0+δq0
W ). It can be seen that the position of the rear

stagnation point is quite well estimated in the linear approach, the maximum difference
being of 4% for δwW = 0.06. However, the position of the front stagnation point is
significantly underestimated in the linear approach, as soon as δwW > 0.03, which results
in a large overestimation of the recirculating length. Figure 18(b) presents the evolution of
the counterflow rate for different values of wall blowing. Again, the solid and dashed lines
refer to the nonlinear and linearly approximated forced base flow. Strikingly, we find that
the linear approach fails to reproduce the significant reduction of reverse flow velocity
that has been previously illustrated. Even more surprising, we find that the linear and
nonlinear effects are opposed when the wall velocity exceeds δwW = 0.03, a range where
the linearly predicted counterflow rate is seen to increase. These arguments are not fully
conclusive, though. In particular, in terms of local stability, it remains quite unclear why
the linear approach finally slightly overestimates the stabilizing effect of base blowing, as
an overestimation of the counterflow rate would be expected to favor the growth of the
instability rather than its damping. This outlines the complexity of the mechanisms at
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Figure 18: (a) Location of the front (resp. rear) stagnation point zu
r (resp. zd

r ) on the
r = 0 axis for the base flow in presence of base bleed. (b) Same as (a) for the magnitude
of counterflow as a function of the wall velocity. The solid lines (resp. the dashed lines)
correspond to the real base flow q0

W solution of the forced base flow equations (resp. the
linear approximation of the forced base flow q0 + δq0

W ).

work and comes in support of the idea that the stability and control of this class of flows
should be achieved in a global framework.

Moreover, it should be kept in mind that in the framework of optimal control, one does
not necessarily have to violate the linear assumption. For instance, an optimal distribu-
tion of possibly large-amplitude base bleed can be found by departing progressively from
the unforced case, following a naive steepest descent technique. To this end, one does
not directly infer the effect of the ultimate distribution from the gradient of the unforced
eigenvalue. Considering for simplicity the case of uniform bleed, one jumps from one cir-
cle symbol to another in Figure 17, and at each symbol, the present sensitivity analysis
provides with an accurate estimation of the sensitivity with respect to a modification of
the wall velocity. For instance the dashed line in Figure 17(a) corresponds to the values
of σB issuing from the sensitivity analysis applied to the forced base flow along with
wW = 0.03: it is seen to lead a good estimation of the real growth rate prevailing close
to this specific value. This formalism therefore stands as a promising tool for the design
of future control laws, even at realistic parameter settings were nonlinear effects may be
non-negligible.

Finally, it has been said previously that the present sensitivity formalism can be ex-
tended and used to derive optimal control strategies. Such an extension is out of the
scope of this study. Though, as very a simple illustration of this point, we propose to
conclude this study by considering the effect on the growth rate σB of two alternative
velocity distributions δwW (r), the question of nonlinearities being now left aside. The
first distribution is depicted in Figure 12(b): it consists in a piecewise-constant distribu-
tion, with low speed blowing in the center region (r < 0.2) where the sensitivity is the
lowest, and high speed blowing close to the edge, and stands for a roughly optimized
distribution. The second one is chosen so as to achieve the maximum stabilizing effect,
namely we set

δwW = −α∇wW
σB , (6.8)

where α is a normalization coefficient. The variations δσB associated to these two dis-
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Figure 19: Growth rate σB as a function of the flow rate δD. Comparison of the linear
results obtained from the sensitivity analysis with a uniform velocity distribution (solid
line), the piecewise-constant velocity distribution pictured in Figure 12(b) (dashed line),
and the gradient-based distribution (6.8) (dash-dotted line) - ReB = 2000 and M = 0.5.

tributions have been computed for the unforced base flow (wW = 0), and are shown
in Figure 19 as the dashed and dash-dotted lines respectively. Results are presented
in term of the flow rate δD only, so as to allow comparison with the case of uniform
bleed described previously, also shown as the solid line in Figure 19. One notes that it
is possible to achieve a stronger stabilization using the optimized blowing distribution,
as the critical flow rate drops by approximately 8% from δD ' 0.027 to 0.025 with the
piecewise-constant distribution, and 0.022 using the gradient-based distribution (6.8),
thus illustrating the importance of using physically motivated blowing distributions.

7. Conclusion
Following the line of thought of the seminal studies by Hill (1992) and Marquet et al.

(2008), this paper develops sensitivity analyses whose aim is to predict variations of the
eigenvalue of global modes in compressible flows, up to the high subsonic regime. This
stands for a systematic approach of open-loop control, in which the eigenvalue variations
are viewed as resulting from a specific modification of the base flow induced by a steady
volumetric and/or wall forcing. The variation can then be investigated as a function of
the base flow modification, defining the sensitivity analysis to base flow modifications, or
directly as a function of forcing, thus defining the sensitivity analysis to steady forcing.
Both analyses are based on the evaluation of gradients using adjoint methods.

The sensitivity functions to base flow modification depend on the base flow and per-
turbation quantities, as well as on the adjoint perturbation quantities, for which adjoint
stability equations have been derived in a consistent way. Extending the study of Mar-
quet et al. (2008), it has also been shown possible to distinguish between the variation
owing to the respective modifications of the advection and production mechanisms, which
extend to spatially developing flows the concepts of convective and absolute instability
pertaining to parallel flows. The sensitivity functions to volumetric forcing are derived
by introducing, on top of the sensitivity to base flow modifications, an adjoint base flow
problem which is forced by a source term involving the sensitivity to base flow modifi-
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cations. Finally, the sensitivity functions to wall forcing can then be deduced from the
knowledge of the base flow and of their volumetric counterpart.

The sensitivity to steady forcing has been applied to a subsonic afterbody flow at
M = 0.5. In Part I, it has been previously shown that the axisymmetric base flow that
develops past such bodies is first destabilized by a stationary global mode of azimuthal
wavenumber m = 1 and then, at a larger Reynolds, by an oscillating global mode, the
latter being responsible for the occurrence of a fully 3D periodic state at large Reynolds
numbers. In this study, we use the sensitivity functions to steady forcing to assess the
efficiency of various open-loop control techniques, whose aim is to restabilize this oscil-
lating global mode, as a possible way to alleviate afterbody unsteadiness. It has been
shown that for all techniques, the global mode is most sensitive to forcing within the re-
circulating bubble. High sensitivity to an axisymmetric punctual momentum source has
been found close to the separation line. In this particular flow region, a small control ring,
whose presence has been modeled by the force it exerts on the base flow, has been shown
to be stabilizing. Axisymmetric heat sources mimicking axisymmetric gas discharges are
also stabilizing for almost all positions in the recirculation, as well as mass sources close
to the base or along the separation line. The latter case being not very realistic, mass
injection has been further investigated in the framework of wall control at the base. The
sensitivity of the global mode has been shown to be fully dominated by the product of
the base flow and adjoint base flow densities. The spatial distribution of the sensitivity
functions shows that a stabilizing effect can be obtained if fluid is blown through the
whole base, or if the base is cooled in its inner part and heated at its periphery. However,
the latter technique has been found to produce only very limited results, owing to the
sensitivity being weighted by the inverse of the Reynolds number.

Base bleed has finally been investigated in the framework of the sensitivity analy-
sis to base flow modifications. We have shown that its stabilizing effect arises from a
strengthening of the disturbances advection occurring through variations of the base
flow momentum components. Further investigation has shown that this effect is simul-
taneously at work in two distinct flow regions, namely close to the base, where it is
due to a reduction of the counterflow rate, and further downstream, where it is due to
the cross-stream momentum gradients being spread out. Moreover, the contribution of
the cross-stream momentum in the stabilizing effect of base bleed has been shown to be
dominant, which outlines the importance of studying such spatially developing flows in
a global framework.

This approach consisting in the open-loop control of a global instability can be easily
applied to other compressible flow configurations, as for instance cavity flows or hot jets
that are known to sustain global instabilities. Extending the present approach to the case
of transonic and supersonic flows, where one must deal with the presence of shock waves
in the flow, also deserves future efforts, as it may for instance open new ways to explore
the problem of the shock-induced transonic-buffet onset on airplanes.

Appendix A. Derivation of the sensitivity functions to base flow
modifications

We recall here that the base flow equations have been written as

M0(q
0) = (s , 0)T . (A 1)
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Similarly, the direct stability problem has been written as

λB(q0)q̂1 +Am(q0)q̂1 = 0 . (A 2)

The eigenvalue variation δλ and the base flow modification δq0 are such that

δλ = δσ + iδω =
〈∇q0λ , δq0

〉
, (A 3)

where we use 〈â , b̂〉 =
∫
Ω

â · b̂ rdrdz for compact notation.
In the present formalism, the eigenpair {q̂1, λ} is the state variable, the base flow q0 is

the control variable and the eigenproblem (A 2) is the state equation, i.e. the constraint
to be satisfied. We introduce a Lagrange multiplier q̂1† (also known as adjoint or co-state
variable) for the state variable, that are herein referred to as the adjoint perturbation,
and define the functional

L(q0, q̂1†, q̂1, λ) = λ−
〈
q̂1† , λB(q0)q̂1 +Am(q0)q̂1

〉
. (A 4)

The gradient with respect to any variable s, is defined as

∂L
∂s

δs = lim
ε→0

L(s + εδs)− L(s)
ε

. (A 5)

In the following, we assume that the state equation is satisfied for any arbitrary base
flow modification. Under this assumption, it has been shown in Part I that defining the
adjoint perturbation as the solution of the adjoint eigenproblem (2.14), along with the
normalization condition (2.17) yields

δλ =
∂L
∂q0

δq0 . (A 6)

The gradient of the functional with respect to the base flow can be expressed as

∂L
∂q0

δq0 = −
〈
q̂1† , λR(q0, q̂1)δq0 + Sm(q0, q̂1)δq0

〉
(A 7a)

= −
〈
λ∗R†(q0, q̂1)q̂1† + S†m(q0, q̂1)q̂1† , δq0

〉
, (A 7b)

so that the sensitivity function ∇q0λ is given by

∇q0λ = −λ∗R†(q0, q̂1)q̂1† − S†m(q0, q̂1)q̂1† . (A 8)

where R and Sm are the linear differential operators defined by

R(q0, q̂1) =
∂

∂q0

(
B(q0)q̂1

)
, Sm(q0, q̂1) =

∂

∂q0

(
Am(q0)q̂1

)
. (A 9)

This yields the expressions given in (2.18). Using the same Lagrangian technique, it can
be seen that the advection operator C(A)

m contributes in the gradient (A 7) through the
quantity

−
〈
q̂1† , S(A)

m (q0, q̂1)δq0
〉

= −
〈
S(A)†

m (q0, q̂1)q̂1† , δq0
〉

, (A 10)
where

S(A)
m (q0, q̂1) =

∂

∂q0

(
C(A)

m (q0)q̂1
)

. (A 11)

It is therefore immediate to define the sensitivity to a modification of the advection
operator ∇(A)

q0 λ

∇(A)

q0 λ = −S(A)†
m (q0, q̂1)q̂1† , (A 12)

thus yielding expressions (2.19).
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Appendix B. Derivation of the sensitivity functions to a steady
forcing

For simplicity, we consider here that the volumetric term s forces all governing equa-
tions, including the perfect gas relation, although this has no real physical interpretation.
The formalism used in this study can thus be viewed as a subset of this more general
approach. The base flow q0 and the eigenpair {q̂1, λ} are now the state variables, the
forcing {s , uW , TW} are the control variables, and the base flow equations (A 1) and the
eigenproblem (A 2) are the state equations. In addition to the adjoint perturbation q̂1†,
we thus introduce a new Lagrange multiplier for the base flow q0†, herein referred to as
the adjoint base flow. A new functional is defined as

L(s , q0†, q0, q̂1†, q̂1, λ) = λ−
〈
q̂1† , λB(q0)q̂1 +Am(q0)q̂1

〉
−

〈
q0† , M0(q

0)− s 〉
−

∫

Γc

(u†
W · (u0 − uW ) + T †W (T 0 − TW )rdl .

(B 1)

We consider the variation of the eigenvalue δλ resulting from a modification of the forcing
terms δF = δ{s , uW , TW}, assuming that the state equations remain satisfied . δλ can
then be expressed formally as

δλ =
(

∂L
∂F

+
∂L

∂q0†
∂q0†

∂F
+

∂L
∂q0

∂q0

∂F
+

∂L
∂q̂1†

∂q̂1†

∂F
+

∂L
∂{q̂1, λ}

∂{q̂1, λ}
∂F

)
δF (B 2)

The gradients of the functional with respect to the adjoint variables read

∂L
∂q0† δq0† = −

〈
δq0† , M0(q

0)− s 〉 , (B 3a)

∂L
∂q̂1† δq̂1† = −

〈
δq̂1† , λB(q0)q̂1 +Am(q0)q̂1

〉
. (B 3b)

Since q0 and {q̂1, λ} are solutions of the state equations, both gradients are nil. Moreover,
it can be checked that the adjoint perturbation being solution of the adjoint eigenproblem
(2.14) along with the normalization condition (2.17), the gradient of the functional with
respect to the state variable {q̂1, λ} is still zero. If we enforce that the gradient of the
functional with respect to the base flow q0 is nil, as will be discussed in the following,
(B 2) can be rewritten as

δλ =
∂L

∂{s ,uW , TW}
δ{s ,uW , TW} =

∂L
∂s δs
︸ ︷︷ ︸

(i)

+
∂L

∂uW

δuW +
∂L

∂TW

δTW

︸ ︷︷ ︸
(ii)

, (B 4)

so that the sensitivity functions can be expressed from the gradient of the functional
with respect to the different forcing terms as

∂L
∂s δs = 〈∇s λ , δs 〉 , (B 5a)

∂L
∂uW

δuW =
∫

Γc

∇uW
λ · δuW dΓ , (B 5b)

∂L
∂uW

δTW =
∫

Γc

∇TW
λ · δTW dΓ . (B 5c)

In (B 4), term (i) and (ii) stand for the eigenvalue variations arising from volumetric
forcing and wall forcing. These specific variations, respectively denoted δλ|W and δλ|s
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are now derived in the framework of sensitivity analyses. As stated in Part I, such an
approach is very similar to that used in optimization problems, where one enforces the
stationary of a Lagrangian as a mean to minimize a given functional under specific
constraint. Again, we would like to insist that no such stationarity is enforced here, and
that the functional is only used as a mean to compute the different gradients of interest.

B.1. Sensitivity to volumetric forcing

We consider first the variation of the eigenvalue as a function of the volumetric forcings , the wall quantities uW and TW being kept constant. The gradient with respect to q0

reads

∂L
∂q0

δq0 = −
〈
q̂1† , λR(q0, q̂1)δq0 + Sm(q0, q̂1)δq0

〉
−

〈
q0† , A0(q0)δq0

〉
(B 6a)

= −
〈
λ∗R(q0, q̂1)q̂1† + S†m(q0, q̂1)q̂1† , δq0

〉
−

〈
A†0(q0)q0† , δq0

〉
(B 6b)

Details on the integration by parts are given in Appendix C. Cancelling this gradient,
we obtain that the adjoint base flow q0† is solution of the non-degenerate, linear, non-
homogenous problem reading

A†0(q0)q0† = −λ∗R(q0, q̂1)q̂1† − S†m(q0, σ, q̂1)q̂1† = ∇q0λ (B 7)

where one recognizes in the right-hand side the sensitivity to base flow modifications
computed in the previous section. The boundary conditions to be fulfilled by the adjoint
base flow are such that all boundary terms arising during the integration are zero. Since
admissible variations δu0 and δT 0 are therefore such that δu0 = 0 and δT 0 = 0 on Γc,
we obtain after elimination of the pressure terms:

u0† = 0, ρ0†, T 0† = 0 on ∂Ωs
in ∪ ∂Ωs

ext ∪ ∂Ωs
out , (B 8a)

u0† = 0, ∂nT 0† = 0 on ∂Ωb\Γc , (B 8b)
u0 = 0, ∂r(w0, ρ0, T 0) = 0 on ∂Ωa . (B 8c)

In the unforced case solved in the present study (uW = 0), the condition on the control
surface Γc simply reads

u0† = 0, T 0† = 0 . (B 9)

Since the gradient with respect to the control variable s is simply given by

∂L
∂s δs =

〈
q0† , δs 〉 , (B 10)

it can be deduced from (B 5a) and (B 10) that ∇s λ = q0†, i.e. the sensitivity function
to a modification of the volumetric forcing ∇s λ is precisely given by the adjoint base
flow q0†.
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B.2. Sensitivity to wall forcing
We consider now that only the sensitivity to boundary forcing where the volumetric force
is assumed to remain constant, i.e. δf = 0. The gradient with respect to q0 now reads

∂L
∂q0

δq0 = −
〈
q̂1† , λR(q0, q̂1)δq0 + Sm(q0, q̂1)δq0

〉
−

〈
q0† , A0(q

0)δq0
〉

−
∫

Γc

u†
W · δu0dΓ−

∫

Γc

(u†
W · δu0 + T †W δT 0)rdl (B 11a)

= −
〈
λ∗R(q0, q̂1)q̂1† + S†m(q0, q̂1)q̂1† , δq0

〉
−

〈
A†0(q0)q0† , δq0

〉
︸ ︷︷ ︸

(i)

−
∫

Γc

(u†
W · δu0 + T †W δT 0)rdl + BT

︸ ︷︷ ︸
(ii)

(B 11b)

Since q0† is solution of (B 7), the volumetric term (i) in (B 11b) is zero. Though, on Γc,
admissible variations δu0 and δT 0 are now such that δu0 = δuW and δT 0 = δTW , so that
the boundary term BT arising during the integration is not zero anymore. Cancellation
of the gradient (B 11b) thus yielding the adjoint wall quantities u†

W and T †W as functions
of q0 and q0†. Again, all details are provided in Appendix C. We find

u†
W = ρ0ρ0†n +

1
Re

τ (u0†) · n , (B 12a)

T †W =
γ

PrRe
∇T 0† · n . (B 12b)

Since the gradients with respect to uW and TW are simply given by

∂L
∂uW

δuW =
∫

Γc

u†
W · δuW rdl ,

∂L
∂TW

δTW =
∫

Γc

T †W δTW rdl , (B 13)

it can be deduced from B5 and (B 13) that ∇uW
λ = u†

W and ∇T 0λ = T †W , i.e. the sensi-
tivity function to a modification of the boundary forcing ∇uW

λ and ∇TW
λ are precisely

the adjoint wall velocity u†
W and temperature T †W .

B.3. Link between both approaches
It has been said previously that both approaches are connected through the base flow
modification δq0

F induced by a small variation of the steady forcing δs , δuW , δTW , δq0
F

being solution of the linear problem

A0δq0
F = δs (B 14)

along with the boundary condition on Γc:

δu0 = δuW , δT 0 = δTW . (B 15)

The modification of the eigenvalue δλ can be expressed in the framework of the sensitivity
to base flow modifications as

δλ =
〈∇q0λ , δq0

F

〉
(B 16)

Using (B 7), and since ∇s λ = q0†, this relation can be rewritten as

δλ =
〈
A†0∇s λ , δq0

F

〉
=

〈∇s λ , A0δq0
F

〉
+ BT = 〈∇s λ , δs 〉+ BT , (B 17)
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according to (B 11) and (B 14). The boundary term (ii) in (B 11) being zero, we thus
have

δλ = 〈∇s λ , δs 〉+
∫

Γc

(∇uW
λ · δuW + ∇uW

λ · δTW )rdl , (B 18)

and retrieve the variation (2.23) defined formally in the framework of the sensitivity to
steady forcing.

Appendix C. Derivation of the adjoint base flow equations

The complete derivation of the adjoint perturbation equations (2.14) is provided in
Part I. We focus here on the derivation of the adjoint base flow equations (2.25) and
recall that the adjoint operator A†0 is such that

〈
q0† , A0(q

0)δq0
〉

=
〈
A†0(q0)q0† , δq0

〉
(C 1a)

where δq0 is a small modification of the base flow. We define the r and z vector deriva-
tives as ∂r,zq = (∂r,zρ, ∂r,zu, ∂r,zv, ∂r,zw, ∂r,zT )T . For convenience, the relevant terms
are developed into a matrix form reading

A0(q
0)δq0 =A′′

1δq0 + A′′
2∂rδq0 + A′′

3∂zδq0

+
1

Re
∂r

(
V ′′

1 ∂rδq0 + V ′′
2 ∂zδq0 +

1
r
V ′′

3 δq0

)

+
1

Re
∂z

(
V ′′

2
T
∂rδq0 + V ′′

4 ∂zδq0 +
1
r
V ′′

5 δq0

)

+
1

Re

(
1
r
V ′′

6 ∂rδq0 +
1
r
V ′′

7 ∂zδq0 +
1
r2

V ′′
8

)
,

(C 2)

where A′′
1...3 and V ′′

1... 8 are real 4×4 matrices whose coefficients depend on the base flow
variables and are detailed at the end of this Appendix. Integrating by parts leads to

A†0
(
q0

)
q0† =A′′

1
T
q0† − 1

r
∂r

(
rA′′

2
T
q0†

)
− ∂z

(
A′′

3
T
q0†

)

+
1

Re

1
r

(
∂r

(
rV ′′

1
T
∂rq

0†
)

+ ∂r

(
V ′′

1
T
q0†

)
+ ∂z

(
V ′′

2
T
∂r(rq

0†)
)
− 1

r
V ′′

3
T
∂r(rq

0†)
)

+
1

Re

(
1
r
∂r

(
rV ′′

2 ∂zq
0†) + ∂z

(
V ′′

4
T
∂zq

0†
)
− 1

r
V ′′

5
T
∂zq

0†
)

+
1

Re

1
r

(
−∂r

(
V ′′

6
T
q0†

)
− ∂z

(
V ′′

7
T
q0†

)
+

1
r
V ′′

8
T
q0†

)
.

(C 3)
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Rearranging terms and using the continuity equation for q0 and q̂1 then leads to

A†0
(
q0

)
q0† =




−u0 ·∇ρ0† + (∇u0 · u0) · u0† + (u0T 0†) ·∇T 0 − T 0p0†

−ρ0∇ρ0† − ρ0∇u0† · u0 + ρ0∇u0 T · u0† + ρ0T 0†∇T 0

− 1
Re∇ · τ (u0†)−∇(p0T 0†) + 2γ(γ − 1)M2

Re ∇ ·
(
T 0†τ (u0)

)

−ρ0u0 ·∇T 0† − γ
Pr

1
Re∇2T 0† − ρ0p0†

− 1
γM2 ∇ · u0† + T 0†∇ · u0 + p0†




,
(C 4)

which yields equation (2.25).

n = (nr, 0, nz)T being the vector normal to the boundary ∂Ω, the boundary term then
reads

BT =
∫ ′′
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q0† ·A′′
2δq0n′′r rdz +
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(C 5)

To determine the boundary conditions that must be satisfied by the adjoint based flow, it
is necessary to take into account the boundary conditions of the problem itself. Indeed, on
the control surface Γc, the boundary condition being u0 = uW and T 0 = TW , admissible
conditions are such that δu0 = 0 and δTW = 0 in case one considers only volumetric
forcing. Cancellation of this boundary term gives rise to the adjoint boundary conditions
(B 8)− (B 9). and to the determination of the adjoint base flow quantities.
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Finally, the various matrices used for the computation of the sensitivity functions read:

− A′′
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0
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ÉPILOGUE

Conclusions

The main objective of this dissertation has been to establish whether the intrinsic syn-
chronized oscillations observed in high-Reynolds number compressible axisymmetric
wakes may be ascribed to a hydrodynamic instability occurring at low Reynolds num-
bers. Different approaches of the stability theory have been used: parallel wakes have
first been investigated in the framework of the WKBJ theory (chapter 2), and realis-
tic spatially developing wakes have then been considered (chapters 3 to 6). Results
have been presented for both incompressible and compressible flows. Although some
questions remain open, as will be discussed in the following, the stability theory has
provided converging lines of evidence for the onset of a periodic regime exhibiting
large-scale oscillations at sufficiently high Reynolds numbers.

Linear and nonlinear local instability

A numerical method for the linear local stability analysis of ideal parallel axisymmet-
ric wakes has been implemented. A parametric study carried out at low Reynolds
numbers has shown that the transition to absolute instability is essentially led by
a large-scale mode of axisymmetric wavenumber m = 1, whose frequency and az-
imuthal wavenumber are in qualitative agreement with experimental observations.
Various regimes of compressibility effects have been interpreted in terms of a compe-
tition between an advection mechanism, that tends to favor convective instability by
decreasing the pressure disturbances wave speed, and a production mechanism trig-
gered by the baroclinic torque. The stability of realistic velocity profiles, computed at
ONERA via a high resolution LES simulation in the fully turbulent and compressible
regimes, has also been considered. Results show that the axisymmetric mean flow
sustains a pocket of absolute instability, detached from the base. Even at these highly
supercritical parameter settings, the global frequency of the oscillations, as measured
by a spectral analysis of time series of the numerical data, is predicted with striking
accuracy by the absolute frequency at the upstream station of marginal absolute insta-
bility, in agreement with the theory of nonlinear global modes. This makes probable
that a nonlinear global mode, the so-called elephant mode, develops in the lee of the
afterbody and is responsible for the synchronized oscillations.
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Linear and weakly nonlinear global stability

The global stability of the steady axisymmetric wake developing past model geome-
tries of blunt and bluff bodies, namely the disk and the sphere, has first been con-
sidered in the incompressible limit (chapter 3). As already outlined in Natarajan &
Acrivos [61], the dynamics are somehow similar, as both flows undergo the same
sequence of bifurcations. Namely, the first bifurcation involves a stationary global
mode of azimuthal wavenumber m = 1, and the second Hopf bifurcation, occurring
at a higher Reynolds number, involves two oscillating modes of azimuthal wavenum-
bers m± 1. The stability analysis has been completed by an adjoint stability analysis,
that allowed to discuss the nonnormality of this class of flows, and to identify the
recirculating bubble as the intrinsical wavemaker for both global modes and both ge-
ometries. However, this analysis fails to consider the fully three-dimensional state
prevailing after the first bifurcation, as it focuses on the steady axisymmetric state.

In order to assess the role of the oscillating global mode identified in chapter 3
in the onset of unsteadiness, the leading-order equations describing the nonlinear
interaction of the bifurcating eigenmodes have been analytically computed for the
disk flow, using the slow manifold and normal form theories (chapter 4). It has
been demonstrated that the whole bifurcation sequence predicted by this approach
matches qualitatively and quantitatively that found in Fabre et al. [28] by means of
direct numerical simulations, both for threshold values and symmetries featured by
the stable solutions. This indicates that the three-dimensional dynamics of the real
flow, in particular the global frequency of the large-scale oscillations, is efficiently
captured using a reduced order model based on the destabilization of the axisymmet-
ric steady state. Another conclusion of this study is that unsteadiness arises due to the
destabilization of the three-dimensional steady state by the oscillating global mode,
the latter mode dominating the dynamics of the three-dimensional flow at larger
Reynolds numbers, hence explaining the occurrence of a fully three-dimensional
periodic state. However, whether a similar approach can be used to study bodies of
any particular shape remains an open question. As an attempt to provide a small part
of the answer, we have computed the normal form pertaining to the sphere flow. It
was disappointing to find that the resulting sequence of bifurcation is identical to that
of the disk, whereas the study of Fabre et al. [28] points at subtle differences existing
between both flows in terms of the symmetry properties of the stable solutions.
A possible explanation for this result lies in the amplitude of the saturated global
modes, which have been found to depend strongly on the choice of the critical
Reynolds number for the sphere, a result opposite to that discussed in chapter 4
for the disk. This may result from the nonnormality of the bifurcating modes being
larger in the case of the sphere, as documented in chapter 3.

In the last two chapters of this dissertation, a consistent framework has been
developed in order to extend the classical tools of global stability and adjoint methods
to the fully compressible regime. This formalism has been applied to investigate the
dynamics of a subsonic axisymmetric afterbody flow. For all Mach numbers up to
M = 0.7, the bifurcation sequence is identical to that discussed in the incompressible
disk and sphere flows (chapter 3). A parametric study has shown that when the Mach
number is increased, the associated stationary and oscillating global modes are both
stabilized. A sensitivity analysis has demonstrated that this effect is driven by the
underlying modification of the base flow that occurs within the recirculating bubble.
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A physical interpretation has been proposed in terms of an advection/production di-
chotomy that stands for the global counterpart of the discussion held in chapter 2 in
the framework of the local approach. It turns out that increasing the Mach number
mainly thickens the shear-layer region by spreading out the cross-stream gradients of
the base flow momentum. In return, this mechanism, which acts on both the stream-
wise and cross-stream components, enhances the downstream advection of the dis-
turbances. We also find that the same non-parallel mechanism induces an additional
stabilization by slightly weakening the production of disturbances.

Flow control

Chapter 6 has put emphasis on the question of flow control, following the line of
thought of Hill [38] and Marquet et al. [53]. A systematical approach for the open-
loop control of unsteady flows has been presented, in case unsteadiness results from a
global instability. The main result is that the use of adjoint methods makes it possible
to predict beforehand the effect of forcing on the stability of a global mode. In the
compressible regime, different forcing methods can be considered, including body
forces, mass and heat sources, blowing at the body wall or wall heating and cooling.
This formalism has been applied to the subsonic afterbody flow studied in chapter 5.
The oscillating global mode has been shown to be most sensitive to forcing within
the recirculating bubble. A small control ring mounted at the rear of the afterbody
has been proven efficient to stabilize the latter global mode if placed in the vicinity of
the separated shear-layer. Similar stabilization has been obtained using axisymmetric
heat sources within the recirculation or by blowing fluid through the base, the latter
case corresponding to the well-known base bleed strategy. The sensitivity analysis to
base flow modifications presented in chapter 5 has evidenced that the stabilizing effect
of base bleed is strongly non-parallel, and arises from the simultaneous strengthening
of disturbances advection and weakening of disturbances production, involving both
the streamwise and cross-stream momentum components.

Suggestions for future works

The insights gained from the investigation of the global dynamics of axisymmetric
wakes immediately lead on to the question: how do these analyses, presented for low
Reynolds numbers, pertain to the engineering application?

It should be kept in mind that all conclusions drawn at this point regarding the de-
velopment of unsteadiness remain only partial, as they result from linear and weakly
nonlinear analyses carried out at low Reynolds numbers, thus valid only close to the
bifurcation threshold. At practically meaningful high Reynolds numbers, though,
nonlinear effects may be important. For instance, it is obvious that owing to the low
Reynolds numbers considered in the present dissertation, the frequencies predicted
by the linear global stability analysis of afterbody flows, which are found to be of
order St ' 0.05, do not match the Strouhal number St ' 0.2 found in experimen-
tal set-ups or numerical simulations. Such result is not too surprising, though, as an
increase in the Reynolds number is known to yield a significant modification of the
frequency of the saturated state. As a result, the Strouhal number measured in the
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cylinder wake increases from St = 0.12 at the threshold of instability (Re = 47) to
St = 0.2 at Re = 180 (Williamson [84]).

The taking into account of the high Reynolds numbers prevailing in the engi-
neering application will certainly represent a main issue to be addressed in future
works. The simplest idea would be to investigate the linear stability of global modes
sought as perturbations to a high Reynolds number laminar base flow, and to com-
pare the unsteady dynamics to that observed in the wind tunnel experiments. It has
been mentioned in chapter 2 that pursuing the presently used Newton methods up
to large Reynolds numbers may be particularly involved. Though, other numerical
approaches exist to obtain steady solutions beyond the threshold of instability. An
alternative has been proposed by Åkervik et al. [3] based on a simple time-marching
method, along with an artificial damping of the most dangerous temporal frequen-
cies. Such a strategy opens new ways to compute the base flow underlying all stability
analyses, as it can be simply implemented into existing numerical codes, such as the
elsA and FLU3M solvers developed by ONERA. For blunt geometries, where the sep-
aration point is imposed by the geometry of the body, it seems possible to compute
a high-Reynolds number laminar steady state. Though, in the most general case, the
existence of such a solution is not guaranteed. For instance, in the problem of the
shock-induced transonic-buffet over an airfoil, the flow exhibits a shockwave on the
upper surface of the airfoil. The boundary-layer interestingly separates from the up-
per surface downstream of the shock foot and upstream of the trailing edge. Though,
a laminar incoming boundary-layer would tend to separate upstream of the shock
foot, even close to the leading edge, so that a laminar base flow most likely does not
exist for this configuration. The existence of a high-Reynolds number laminar steady
state may therefore constitute a critical question.

A possible alternative is to investigate the stability of global modes sought as
perturbations to a turbulent base flow. In this perspective, the analysis of the fully
turbulent transonic LES simulation in chapter 2 stands as a first and promising step.
Though, it has focused on the stability of the axisymmetric mean flow, obtained by
time and azimuth average of the time-dependent three-dimensional solution. We re-
call that such mean flow may not be relevant to a stability analysis, as it departs from
the base flow by encompassing nonlinear interactions under the form of base flow
modifications and resonance with the harmonics. Still, it is possible to investigate the
stability of a steady axisymmetric RANS solution, as performed by Crouch et al. [18],
who successfully predicted the occurrence of the shock-induced buffet phenomenon
over a NACA 0012 airfoil in high-Reynolds number turbulent compressible flows.
Though, the implementation of such an approach requires a substantial modification
of the present formalism, namely the addition of an eddy-viscosity equation.

Moreover, we recall here that the present study has considered only the case of
Type I configurations, where no reattachment of the separated shear-layer occurs. In
the perspective of dealing with more realistic afterbody configurations, there is no
doubt that Type II separating-reattaching configurations are to be considered in the
future. For introductory purpose, we have proposed to interpret the differences fea-
tured by these two classes of flows in terms of the oscillator/amplifier dichotomy. It
has been said that Type I flows act as oscillators, whereas Type II flows are more com-
plex: far from the reattachment area, their unsteady dynamics is typical of oscillators.
Close to the reattachment point, their specific spectra make probable that they rather
act as amplifiers excited by small-scale turbulent eddies developing in the incoming
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boundary-layer, amplified while traveling downstream along the separated shear-
layer, impinging on the downstream surface and ultimately decaying when leaving
the recirculation bubble. Though, this remains unproved. Evidence may come from
experimental measurements or numerical simulations of the response of such flows
to harmonic forcing.

(a) Schematic of a model Type II configuration. The main body is identical to that studied in
chapters 5 and 6, i.e. the slender body of revolution has a diameter D and a total length l = 9.8D.
The rear-body extension has a length L = 1.2D and a diameter d = 0.4D, as in the S3Ch tests.

(b) Spatial distribution of axial velocity for the oscillating global mode (only the real part is
shown). The black hue corresponds to vanishing perturbations.

Figure 7.1. Global stability analysis of a Type II configuration, Re = 1800 - M = 0.1.

Preliminary computations have been carried out during this PhD on the model
Type II configuration pictured in Figure 7.1(a), based on the axisymmetric body of
diameter D studied in chapters 5 and 6. A cylindrical extension of diameter d = 0.4D
and length L = 1.2D is now mounted at the rear of the main body, so as to mimic
the experimental configuration introduced in Figure 1.3(b). It turns out that even if
the separated flow reattaches, the sequence of global instabilities undergone by the
axisymmetric steady state is identical to that documented for the blunt base alone.
Figure 7.1(b) shows the spatial structure of the oscillating global mode, namely the
real part of the streamwise velocity component, computed for the slightly supercriti-
cal settings Re = 1800 and M = 0.1. One immediately recognizes the typical pattern
evidenced for Type I flows, with a global mode exhibiting positive and negative ve-
locity perturbations alternating downstream of the body. Such similarity indicates the
existence of a single oscillator dynamics for by both kinds of separations.

To explain the differences featured by these classes of flows, future studies should
be devoted to the amplifier dynamics of Type II configurations. This can be done
by means of optimal growth analyses, as in the recent study by Ehrenstein & Gal-
laire [24]. These authors investigated the amplifier dynamics of boundary-layer flows
and showed that the appropriate superposition of a moderate number of global
modes gives rise to a spatially localized wave packet that experiences large tran-
sient energetic growth, characteristic of amplifiers. A possible line of research, that
is certainly worth being pursued, lies in this application of such formalism to model
axisymmetric separating-reattaching flows, for instance an axisymmetric backward-
facing step. The idea is that the complex Type II dynamics may be interpreted as a
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competition between the oscillator and the amplifier dynamics, as discussed by Mar-
quet et al. [52] in the case of two-dimensional recirculating bubbles. Indeed, it has
been said that realistic afterbody flows are inherently subject to noise, owing to the
small-scale turbulent eddies that develop in the incoming boundary-layer and act as
external sustained perturbations. The amplifier dynamics, which characterizes the
transient behaviour of the flow, may thus become dominant if the time necessary to
amplify the small-scale turbulence is sufficiently short compared to that needed by
the leading global modes to achieve the same energy growth. If so, it would be of
great interest to consider developing sensitivity analyses able to encompass transient
behaviours, for instance by predicting beforehand the variation of the transient en-
ergy gain due to small modifications of the flow conditions.

(a) Serrated and plain cylindrical skirts. (b) So-called LBS protuberances.

Figure 7.2. A selection of devices used for afterbody flow control.

A last but very exciting point concerns the ability of the present sensitivity
analyses to design efficient open-loop control laws at practically meaningful parame-
ter settings. Figure 7.2 presents a selection of devices, whose ability to reduce the lev-
els of wall-pressure fluctuations has been evaluated in the S3Ch wind tunnel, in the
framework of the ATAC program. Two classes of devices were investigated, namely
plain/serrated cylindrical skirts and small protuberances mounted at the base, both
approaches relying on the introduction of some fixed modification in the flow condi-
tions. Though, it has been said previously that the experimental implementation of
such open-loop control is often empirical. In the case of the LBS protuberances, for
instance, it means in practice to choose the number of protuberances (even or odd),
their shape and orientation with respect to the incoming flow.

In the following, we focus on the effect of the serrated skirt shown in Figure 7.2(a).
This skirt, made of 12 teeth for a total length of 0.33D, has been tested in 2004 on the
Type II configuration introduced in Figure 1.3(b). Details, including experimental set-
up, wall-pressure distributions and spectral analysis, can be found in Meliga et al. [55].
The spectra of the wall-pressure fluctuations measured 0.72 diameter downstream of
the base are shown in Figure 7.3, for the nominal configuration (black line) and in the
presence of the skirt (grey line). As a matter of fact, if the question of the reattachment
phenomenon is left aside, the effect of the skirt on the vortex-shedding activity is dis-
appointing. As an attempt to interpret such results, we have further investigated the
model Type II configuration pictured in Figure 7.1(a) by appraising how the addition
of a cylindrical skirt of same length than that used in the S3Ch experiment, would
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Figure 7.3. Wall-fluctuations spectra of the Type II configuration shown in Figure 1.3(b) in the
absence and in the presence of a short serrated skirt. The black line corresponds to the spectrum
obtained for the nominal configuration, 0.72 diameter downstream of the base, which is therefore
identical to that already shown in Figure 1.3(d). The grey line corresponds to the spectrum obtained
at the same location with the additional skirt.

(a) Magnitude of sensitivity to modifications of the base flow momentum
for the oscillating global mode shown in Figure 7.1(b).

(b) Base flow momentum modification resulting from the addition of a
plain cylindrical skirt of length 0.33D.

Figure 7.4. Sensitivity analysis of the afterbody shown in Figure 7.1(a), Re = 1800 - M = 0.1.
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affect the growth rate σB of the oscillating global mode. The underlying assumption
is that the effect of such a skirt is to induce a modification of the base flow, as does
the small control cylinder in the studies of Strykowski & Sreenivasan [76] and Mar-
quet et al. [53]. Figure 7.4(a) shows the magnitude of the sensitivity function to base
flow modifications of the growth rate σB, at Re = 1800 and M = 0.1. This spatial
distribution is reminiscent of that discussed in chapter 5 for the blunt base, with large
magnitudes of sensitivity found at the separation point and in the tail of the recirculat-
ing bubble, but low magnitudes of sensitivity close to the base. Figure 7.4(b) presents
the base flow modification resulting from the addition of a cylindrical skirt of length
0.33D, that has been roughly estimated as the difference between the base flow com-
puted with and without the skirt. It can be seen that interestingly, the magnitude of
the base flow modification in the shear-layer region lies at the external periphery of
the recirculating bubble, but that the modification of the base flow within the bubble is
actually weak. Consequently, it can be predicted beforehand that the effect of the skirt
on the oscillating global mode will be somehow limited. Of course, several points re-
main questionable, for instance, is the base flow modification induced by such a skirt
small enough for the linear assumption underlying the sensitivity analysis to hold?
At the high Reynolds numbers prevailing in the wind-tunnel tests, the forcing acts
both at the level of the steady axisymmetric state and at the perturbation level, as it
also modifies the unsteady dynamics of the small-scale turbulence. In this context, is
the effect of forcing stationary at leading-order? However, it should be kept in mind
that these are only qualitative results, aiming at illustrating the possible fields of ap-
plication of the sensitivity analysis.

A last possible line of investigation concerns the extension of the compressible
adjoint formalism presented in this dissertation to the field of shape optimization.
This approach would be particularly well adapted to afterbody flows, as it can be seen
that most control strategies consist in a modification of the base geometry. It would
thus be of great interest to try implementing adjoint-based sensitivity algorithms into
existing solvers. Such procedure may not be easily tractable, though, it may open
promising ways to design entirely optimized afterbodies.







POSTLUDE

Nice, juillet 2008 (et aussi août 2008, septembre 2008)

Carla : Tonton, tonton, tu viens à la plage avec nous?
Moi : Ah euh... non, là, tu sais, je dois finir de rédiger ma thèse... (lire avec

des trémolos dans la voix)
Carla : Alors tu vas pas à la plage, il fallait finir ta thèse avant de venir!
Moi : ...
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