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Marc Mézard - d’avoir accepte d’être les membres de jury. Je les suis très
reconnaissant pour leurs remarques, qui m’avaient permis d’améliorer ce
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Abstract

A typical liquid can be cooled down so as to avoid crystallisation resulting in
what is called a supercooled liquid. Its static properties are mere continuations
of those of a liquid. However several new phenomena emerges in dynamics.
The most prominent of them is the tremendous slowing down of the dynamics,
referred to as a glass transition. The global relaxation time grows from a pi-
cosecond scale at the crystallisation transition up to a macroscopic value for low
temperatures. Understanding of the phenomena in the low temperature state
of supercooled liquids, in particular the tremendous slowing down, is one of the
longstanding open problems of the out of equilibrium statistical physics.

Different scenarios were proposed to explain the observed low-T behaviour of
supercooled liquids. In this thesis we follow the one based on the results of gen-
eralised spin glass models (mean-field in nature) and the Mode-Coupling Theory
(MCT). This scenario reproduces well the initial slow down of the dynamics but
predicts a spurious transition to non-ergodic phase for low temperatures. Thus
a problem naturally arises: how to enhance the model so as to get a correct
behaviour at low temperatures and to eliminate the transition ?

The main aim of the thesis is to construct such a generalisation. The general
expectation is that corrections to MCT modify the low-T theory. However the
main drawback of the MCT-based scenario is the uncontrolled nature of the
approximation lying at the heart of MCT what makes the computation of cor-
rections within the original projector operator formalism an almost unsolvable
problem. A promising way to circumvent this problem is a rederivation of MCT
within a field theoretical context. Revision of previous attempts reveals their
inconsistency caused by the violation of the time-reversal symmetry (TRS) in
perturbation series. Resolving this issue results in a correct derivation of MCT
within a field theoretical context and yields perturbation series respecting TRS.
This provides a direct way to test a structural stability of MCT and, thus,
provides an insight on the very important problem of whether the transition
cutoff can be understood within some refined approximation or has more fun-
damental foundations. The result is that MCT is only a mean-field theory of
the glass transition, so that perturbative corrections are irrelevant. Within this
context we also explore the mapping via a Cole-Hopf transformation between
the supercooled liquids and reaction-diffusion systems.

The above mentioned results apply to the supercooled liquids above the
transition i.e. to equilibrium dynamics. The last chapter deals with their partial
generalisation to low temperatures where the system never reaches equilibrium
during the observation and the global relaxation time is, effectively, infinite.
Analysis turns out to be more complicated in that case since a bunch of new
phenomena like ageing of physical properties comes into play.



Abstrait

N’importe quel liquide peut être refroidi au-dessous de sa température de
cristallisation sans se cristalliser en devenant un liquide surfondu. Ces pro-
priétés statiques sont les continuations analytiques de celles d’un liquide ordi-
naire. Par contre la dynamique montre un ralentissement dramatique qu’on ap-
pelle la transition vitreuse: le temps de relaxation croit de picoseconds au voisi-
nage de la transition de cristallisation au temps macroscopique pour les basses
températures. Compréhension et explication de ce comportement des liquides
surfondus à basses températures est l’un des problèmes ouverts de mécanique
statistique hors d’équilibre.

Les scénarios divers ont été proposes pour expliquer ce comportement des
liquides surfondus. Dans cette thèse nous adoptons celui basé sur l’analyse
des modèles de verres de spins généralisés et la Théorie de Couplage de Modes
(MCT). Ce scénario reproduit bien le ralentissement initial de la dynamique.
Cependant il prédit une transition spurieuse vers une phase non-ergodique pour
les basses températures. Ça pose un problème naturel: comment peut-t-on
généraliser le modèle afin de reproduire le comportement aux basses températures
observe et éliminer la transition ?

Le but principal de la thèse était de construire une telle généralisation. Il est
suppose de façon générale que c’est les corrections aux MCT qui modifient la
théorie aux basses températures. Cependant le défaut principal de MCT est la
nature incontrôlée de l’approximation qui amène à MCT ce qui fait le calcul des
corrections à MCT un problème quasiment insoluble. Un méthode promettant
pour contourner cette difficulté est la rederivation de MCT dans le contexte
d’une théorie de champs. La révision des essaies précédents a relevé leur incon-
sistance à cause d’une violation de la symétrie par rapport de renversement de
temps (TRS) dans les séries perturbatives. La solution de ce problème amène à
une rederivation correcte de MCT et donne des séries perturbatives respectantes
TRS. Cette construction permet de vérifier directement la stabilité structurelle
de MCT ce qui permet de répondre à une question principale de la théorie: Est
ce que la transition est coupée par dans le cadre d’une approximation plus astu-
cieuse où il y a des raisons plus fondamentales ? Le réponse est que MCT n’est
qu’une théorie de champ moyen et, par conséquence, les corrections pertruba-
tives sont irrelevantes. Dans le mem̂e contexte on étudie aussi le mapping des
liquides surfondus sur les systèmes de reaction-diffusion.

Les résultats donnes au-dessus sont valables au-dessus de la transition vit-
reuse i.e pour les liquides en équilibre. Dans la dernière chapitre on étudie la
généralisation de ces résultats aux basses températures ou le système n’atteint
jamais l’équilibre pendant l’observation et le temps relaxation est, effectivement,
infini. L’analyse est plus complique dans ce cas car des nouveaux phénomène,
comme le vieillissement des propriétés physique, apparaissent.
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Introduction

Les phénomènes hors d’équilibre sont largement représentés dans la nature.
Ils ont attires beaucoup d’intérêt et ont été beaucoup étudiés ces dernières
dizaines d’années. Contrairement à l’équilibre ou les méthodes puissantes ont
été développés pendant la vingtième siècle les systèmes hors d’équilibre sont
beaucoup moins étudiés. Ils peuvent être divises en deux classes:

• Systèmes qui relaxent vers l’équilibre (par exemple les problèmes de crois-
sances des domaines tombent dans cette classe).

• Systèmes qui sont mis hors d’équilibre par une force externe (par exem-
ple les liquides sous l’étirement ou la croissance des surfaces décrit par
l’équation KPZ).

Les phases vitreuses tombent dans la première classe car ils relaxent vers
l’équilibre. Néanmoins cette relaxation est caractérisée par un temps de relax-
ation extrêmement grand et par présence de plusieurs échelles de temps dans
le système. Ça amène à une situation où le temps de relaxation dépasse le
temps d’observation du système. Comme conséquence le système n’atteint ja-
mais l’équilibre et des nouveaux phénomènes se présentent.

Verres: notions de base

Un verre se produit d’un liquide trempe. Donc, considérons un liquide. Le
temps de relaxation τREL est d’ordre 10−12 ps pour les températures élevées;
la viscosité η est d’ordre 10−3 Poise (C’est la viscosité de l’eau en conditions
ambiantes.). Lorsque la température baisse une transition de phase se produise:
le liquide devient un solide et se cristallise à une température bien précis Tm

(température de cristallisation). Cependant n’importe quel liquid peut être re-
froidis au-dessous de Tm sans se cristalliser. Dans ce cas on parle d’un liquide
surfondu c’est-à-dire un état métastable détruit éventuellement par une cristalli-
sation spontanée. En principe il peut être maintenu jusqu’à la limite instable
de stabilité, la où l’état devient instable par rapport aux fluctuations micro-
scopiques. La question importante concernant les liquides surfondus est ”Est ce
que un liquide surfondu présente des propriétés d’un liquide ordinaire, c’est-à-
dire ces propriétés se prolongent jusqu’à la limite instable ou il y a des particu-
larités ?” L’analyse des propriétés statiques ne relève pas des particularités: ils
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sont les prolongements continues de ceux d’un liquide ordinaire. Néanmoins la
situations est complètement diffèrent en cas de propriétés dynamiques, comme
la viscosité η, constant de la diffusion D ou le temps de relaxation τREL. Ils
présentent une comportement très sensible aux variations des paramètres de
contrôle comme la température. Les données expérimentales et les simulations
montrent un ralentissement extrêmement rapide de la relaxation structurelle
lorsque la température baisse: τREL surpasse le temps d’observation τEXP de
façon qu’une inégalité forte τREL ≫ τEXP s’établit. Ça gèle la relaxation struc-
turelle dans le liquide surfondu aux basse températures. Le dépendance en
température de la viscosité η dans divers liquides surfondus est présentée sur
Fig. [3]. Le ralentissement de la relaxation structurelle dans liquides surfondus
porte le nom transition vitreuse. Le liquide surfondu devient un solide amorphe
i.e. un verre.

Les quantités les plus simples associées avec la relaxation structurelle sont
le temps de relaxation τREL et la viscosité η. Cependant, valeurs de η varient
fortement d’un matériel à l’autre. Laughlin and Uhlmann [4] ont propose une
échelle réduite des température afin pouvoir comparer des liquides différents. Ils
ont introduit une température Tg telle que η(Tg) = 103 Poise. Leur idée était
de tracer la viscosité en echelle reduite de temperature i.e. en fonction de Tg/T .
Une telle représentation est appelée ”Angell plot” (voir Fig. ). On en déduit la
dépendance relativement simple dite ”activée” de η:

η(T ) = η0 exp

(

E(T )

T

)

.

Certains liquides sont bien approximés par une lois d’Arrhenius simple tant
que les autres montrent une dépendance plus compliquée avec E(T ) étant une
fonction de T . Cette différence inspirait Angell [5] à introduire une classification
des liquides surfondus et les divisés en deux classes: ”forte” et ”fragile”. Comme
E a un dimension d’énergie on peut imaginer näıvement que c’est une barrière
énergétique à franchir par le système pour pouvoir relaxer. Alors le valeur
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constant de E pour les verres dites ”fortes” peut être associer avec la coupure
d’une lien chimique. Pour les verres ”fragiles” E(T ) croit avec la décroissance
de T : la liquide sent des barrières des plus en plus élevés lorsque la température
diminue. Ça fait penser à la relaxation coopérative. Malheureusement il manque
encore la compréhension de la différence précise entre ces deux types de verres.

Plus d’information est fournie par l’analyse des fonctions à deux points qui
possèdent une courbe de relaxation bien particulière présentée sur la Fig. .
Pour les températures élevés on peut distinguer trois régimes différentes dans la
relaxation: temps courts/balistique ou la relaxation est déterminée par le mou-
vement libre des particules; intermédiaire ou l’interaction entre particules gou-
verne la relaxation; la relaxation exponentielle finale i.e. relaxation de Debye [6].
Une courbe de relaxation simple exponentielle présentée pour les températures
élevées se complique lorsque la température baisse. En baissant la température
plus de régimes apparaissent en formant l’image dite ”à deux pas”:

• Temps courts. C’est la même régime balistique.

• Relaxation β. Pour les températures suffisamment basses un plateau ap-
paraisse dans la courbe de relaxation. Ce régime comprend tous les temps
où la fonction reste proche de plateau. Il peut propager sur plusieurs ordre
de grandeur en temps (remarque l’échelle logarithmique sur Fig. ).

• Relaxation α. Dans ce régime le corrélateur quitte le plateau et décrôıt à
zéro. L’échelle de ce régime est τREL.

8
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Ce motif de relaxation est souvent interprété dans le contexte de l’effet de
cage. Le déplacement libre des particules aux stades initiales est supprime
par leur voisins qui sont bloques eux-mêmes par leur environnement. Cette
interprétation explique l’apparition du plateau dans le régime β. Les particules
restent bloquer par leur environnement très long temps avant pouvoir se déplacer
et oublier la configuration initiale. Ces actions représentent le régime α. Ce
dernier régime présente une autre spécialité de la dynamique lente: la relaxation
des fonction des corrélation est bien approximee par l’exponentielle simple pour
les températures élevées et les temps longues. Au contraire la décroissance des
correlateurs dans le régime α n’est plus une simple exponentielle. Ça forme
exacte n’est pas connue, cependant la fonction de Kohlrausch-Williams-Watts
(KWW) [7, 8] ou l’exponentielle étirée est souvent une bonne approximation:

Φ(t) = Φ0 exp
[

−(t/τREL)β
]

ou β est le paramètre KWW; β < 1 typiquement. A priori tous les paramètres
de cette approximation dépendent de température des observables entrant dans
le corrélateur. Néanmoins on trouve souvent qu’ils sont universels dans un
certain fenêtre de temps et ne dépendent pas de température. Ce fait est souvent
connue comme le principe de superposition de temps et de température. L’origine
de cette décroissance en exponentielle étirée dans les liquides surfondus n’est pas
bien expliquée en ce moment. Les deux scénarios possible sont discutées dans
la littérature [6]:

• Hétérogène. La dynamique devient hétérogène et le système se décompose
en régions ”rapides” et ”lentes” qui évoluent à des vitesses différentes.
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Tous ces régions contribuent à la relaxation globale qui devient non-
exponentielle suite à des différences entre les régions. Ce phénomène de
décomposition spontanée porte le nom de hétérogénéités dynamiques.

• Homogène. La relaxation est compliquée et non-exponentielle suite à la
dynamique complique de système.

Il est pas claire laquelle des deux possibilités est réalisée dans la nature. Il
semble que tous les deux contribuent dans la dynamique de relaxation des
liquides surfondus. L’analyse de ces scénarios avait inspirée l’étude des fonc-
tions à plusieurs points dynamique telle que les fonctions à quatre points dy-
namique [9, 10, 11] qui permettent de tester les hétérogénéités dynamiques et
étudier la coopérativité derrière la transition vitreuse. Cette coopérativité est
implique par les hétérogénéités: la dynamique des particules à l’intérieur d’une
domaine est forcement corrélée; la taille typique de domaines fixe la longueur
de corrélation.

Le ralentissement rapide de la dynamique pose la question sur la mécanisme
responsable de ce ralentissement. La coopérativité et le fait que l’arrêt struc-
turelle arrive pour des variations de la température réduites suggèrent une tran-
sition de phases cachée derrière ce phénomène. Un ralentissement de la dy-
namique est observe au voisinage d’une transition de second dégrée: on observe
une croissance en lois de puissance de temps de relaxation. Cependant les
quantités statiques ne montrent aucune singularité ce qui élimine la possibilité
d’une transition statique conventionnelle. La dépendance en température des
observables dynamiques peut être approximée dans certain cas par la lois de
Vogel-Fulcher(-Tamman) [12, 13, 14]:

η(T ) = η0 exp

[

A

T − T0

]

,

où T0 est le paramètre ajustable qu’on appelle ”la température de Vogel” [6].
Cette une dépendance super-Arrhenius: E(T ) ∼ T/(T − T0). Néanmoins cette
lois est une approximation. Les valeurs intermédiaires de la viscosité peuvent
aussi être approximées par une lois de puissance:

η(T ) ∼ η0(T − Tc)
−γ ,

où de façon générale Tc < T0 et T0/Tc ≈ 0.8. Des approximations similaires
existent pour τREL. Les deux approximation prédisent la divergence de la vis-
cosité à une température finie. Deux hypothèses différentes ont été proposées
pour expliquer la divergence:

• La transition statique non-conventionnelle à T = TK .

• La transition dynamique à T = Td.

La première hypothèse est basée sur l’extrapolation de l’entropie S du liq-
uide surfondu aux basses températures. L’entropie est calculée par l’intégration
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Figure 2: Un dessin schématique de la dépendance en température de la
différence normalisée entre les entropies de liquide et de cristal. Reproduit
de [6].

1

0
0 1

strong

fragile

mTT/

S∆
S∆

m

mTT /gmTT /K

thermale [6] de chaleur spécifique:

Sα(Tm) = Sα(T ) +

Tm
∫

T

dT

T
Cα α ∈ {liquide, cristal}.

Pour un liquide surfondu on suggère que l’entropie S est composée de deux
contributions:

S = SV IBR + SCONF

où SV IBR est la contribution des modes de vibration dans un état métastable.
Le deuxième terme, SCONF , ou l’entropie configurationnelle vient de l’existence
de plusieurs état métastables. L’hypothèse complémentaire impose que SV IBR

cöıncide avec l’entropie vibrationnelle de cristal. Alors SCONF ≈ S−SCRISTAL.
SCONF dd́écrôıt avec la décroissance de température (voir Fig. 2). L’extrapolation

de SCONF pour les verres fragiles aux basses températures (voire la ligne en
pointes sur Fig. 2) s’annule à une température TK (température de Kauzmann).
Les entropies de cristal et de liquide deviennent égales à T = TK (paradoxe de
Kauzmann, (1948)). Au-dessous de TK l’entropie du liquide est plus petite que
l’entropie du cristal ce qui pose un certain nombre de problèmes [15]. La solu-
tion de paradoxe proposée par Kauzmann reposait sur la cristallisation spon-
tanée. Cependant, la nucléation, qui est responsable de la cristallisation selon
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Kauzmann, est hautement supprimée aux basses températures à cause de l’arrêt
structurelle [6, 15]. Donc, la cristallisation ne peut pas être une solution uni-
verselle. L’autre solution de paradoxe a été proposée par Angell et Tucker [16].
Ils ont suppose que liquide n’existait plus au-dessous de TK et que une transi-
tion vers une nouvelle phase, dite le verre parfait [16], arrivait à TK . A nouveau
ce n’était pas la solution universelle. D’abord la construction entière repose
sur l’extrapolation de l’entropie aux basses températures. Dans ce domaine le
temps de relaxation montre une croissance gigantesque et le liquide tombe hors
d’équilibre bien avant on arrive à TK . Aussi SCONF = 0 implique un nombre
sous-exponentiel d’état dans la phase de verre parfait. Un argument simple
construit par Stillinger pour les systèmes en l’interaction à courte porte montre
que l’existence d’un seul état vitreux implique immédiatement l’existence d’un
nombre exponentiel d’états [17]. Ça semble donner une contradiction, cepen-
dant l’argument de Stillinger n’était pas une preuve rigoureuse. Selon Stillinger
les états metastables sont simplement les minimas de l’énergie potentielle, la
définition, qui semble être beaucoup trop restrictive [18, 19].

Finalement, les arguments pro et contra de l’existence d’un transition sta-
tique de nouveau type à TK ne sont pas décisifs et l’existence de la transition est
une question ouverte. Il est néanmoins remarquable que les valeurs numériques
de la température de Vogel, introduite quelques paragraphes plus haut, sont
souvent remarquablement proche de ceux de TK .

La deuxième hypothèse suggère une transition purement dynamique vers une
phase non-ergodique à une température T = Td > TK . Lorsque T → Td l’espace
de phases est de plus en plus dominé par les états marginalement stables. Il
prend de plus en plus de temps pour le système de les explorer tous. Au-dessous
de Td l’espace de phases est domine par le vrai minimas avec des barrières infinis
entre eux. L’espace de phases, donc, se décompose en domaines disjointes. Ce
scénario de la transition est base sur l’étude de certains modèles de champ moyen
de verres de spin généralisés. Le scénario est aussi supporte par des résultats
de la théorie de Couplage de Modes (Mode-Coupling theory) [20, 21] présentée
dans la Chapitre 2. Elle reproduit certaines propriétés de la dynamique des
liquides surfondus, comme la relaxation à deux pas. D’autre part aucune tran-
sition dynamique n’est observée expérimentalement. L’explication standard de
ce défaut de la théorie fait appel à l’image de l’espace de phase qui est domine
par des états différents en fonction de la température. Comme on l’avait discuter
quelques lignes plus haut, pour les températures suffisamment basses l’espace
de phases est domine par les minimas sépares par des barrières infinies. Cepen-
dant pour les systèmes en dimension finis et avec des interaction de portée finie
ces barrières ne peuvent pas l’être et ils sont toujours finies. Alors la transi-
tion est détruite par les évènements activées correspondantes à des transitions
entre les minimas différents. Cette explication suggère, donc, que la transition
vitreuse marque le passage de la relaxation de type flot à la relaxation de type
activée [22, 23, 24, 27].

Les deux approches aussi différentes ont une image en commune: l’image
d’un système bloque dans une configuration amorphe. Cette dernière agit
comme un désordre induit dans le système, dite le désordre auto-induit [25, 26].
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Ce phénomène relie les verres structuraux aux verres de spin où le désordre gèle
est implicite.

La discussion précédente portait sur les propriétés d’équilibre des liquides
surfondus. Le temps de relaxation τREL crois si extrêmement vite avec la
dd́écroissance de la température que il n’est pas possible d’équilibrer le liq-
uide à n’importe quelle basse température. Ça amène vite à une situation où
τREL dépasse le temps d’observation et le système n’arrive plus à s’équilibrer
pendant l’observation: il tombe hors d’équilibre. L’état hors d’équilibre du
système fait apparâıtre des nouveaux phénomènes physique dont le vieillisse-
ment. L’impossibilité d’équilibrer le système à une température arbitrairement
basse dans un temps accessible expérimentalement est l’obstacle principale pour
la preuve expérimentale de la température de Kauzmann TK . Les liquides
tombent hors d’équilibre bien avant le voisinage de TK .

Pour conclure, voici quelques remarques:

• Les basses températures sont définies par rapport à la température de
cristallisation Tm qui, elle-même, peut être bien élevé pour un liquide
particulier (Tm = 1723oC pour le silice).

• Le temps de relaxation peut prendre des valeurs géologiques dans les verres
pour les températures suffisamment basses ce qui permet de parler d’un
verre ou d’un état vitreux dans le sense pratique.

Le plot

La thèse se concentre sur l’amélioration la théorie de couplage de modes pour
les liquides surfondus. Bien qu’elle prédise la transition spurieuse, elle reproduit
certains aspects de la dynamique lente comme la courbe de relaxation à deux
pas. Ce succès partiel de MCT indique que on est sur la bonne piste et il
motive pour l’amélioration de MCT qui prend en compte les évènements actives
et la coupure de la transition. Dans la suite on se concentre sur 3 problèmes
principales:

• La mécanisme de coupure de la transition. La rôle centrale des
évènements activées discutée plus haut n’était pas qu’une hypothèse à
prouver. Une mécanisme différente a été proposée par Das et Mazenko [28]
avec le couplage aux courants étant responsable de coupure de la transition
dynamique.

• La stabilité de la MCT par rapport aux corrections. Ce problème
est relie au problème precedent: il n’est pas claire si la transition est
coupée par les corrections à l’approximation CT ou il y a des raisons plus
profondes pour son absence.

• La régime des basses températures. La version originale de MCT
ne peut pas être étendu au-dessous de la transition. Une rederivation
complète est nécessaire pour un tel extension.
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La difficulté additionnelle est l’absence des méthodes directes pour calculer
les corrections aux MCT dans le cadre de la formalisme d’opérateur de projection
qui est à la coeur de la dérivation de MCT. Par conséquence, il est extrêmement
difficile de tirer les conclusions sur la stabilité structurelle ou sur la mécanisme de
la coupure. L’extension de MCT aux basses températures est possibles [29] mais
il loin d’être trivial. La contrôle sur la symétrie par rapport aux renversement
du temps (TRS) est d’un grand importance en cette régime [30, 31]. Cependant,
dans MCT originelle TRS est imposée sans la prouver.

La résolution de ces problèmes est important pour la construction d’un
scénario consistant de la transition vitreuse. La théorie de champs propose
des solutions naturelles aux problèmes techniques mentionnes plus haut:

• Il existe toujours une méthode bien défini pour calculer les corrections à
n’importe quelle approximation faite dans la théorie de champs.

• Les symétries physiques, y compris TRS, sont facile à contrôler dans une
théorie de champs car ils correspondent à une certaine transformation de
champs.

• Théorie de champs est bien définies pour toutes les valeurs de la température.

La contenue des chapitres qui suivent représente l’analyse détaillé de ces
points.
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Chapter 1

Introduction

Out of equilibrium situations are widely present in nature. They have attracted
a lot of attention and have been widely studied in the last decades. Contrary
to equilibrium systems where reliable methods were developed in the last cen-
tury, non-equilibrium systems are much less understood. Roughly, the out of
equilibrium systems can be divided into two main classes:

• Systems relaxing towards equilibrium. A well-known example is the domain-
growth problem [1].

• Systems driven out of equilibrium by external force. An example is a
liquid under shear or the surface growth modelled by a KPZ equation [2].

Glassy phases fall into the first class i.e. they relax towards equilibrium.
However this relaxation is characterised by extremely large relaxation times
and the presence of many timescales in the system. This leads to a situation
when the relaxation time exceeds the observation time so that the system does
not equilibrate during the experiment and a variety of new phenomena appears.

1.1 Basic facts about glasses

Let’s consider a liquid. For high enough temperatures the relaxation time τREL

is of order 10−12 ps(picosecond) and viscosity η is of order 10−2 Poise (vis-
cosity of the water in ambient conditions). As the temperature is lowered the
liquid undergoes a phase transition: it crystallises below a well-defined tem-
perature Tm. However any liquid can be cooled below its melting temperature
Tm avoiding crystallisation. It becomes a supercooled liquid i.e a metastable
state unstable with respect to crystallisation. Such a state can be maintained in
principle down to the unstable limit of stability where it becomes unstable with
respect to any fluctuations. One might wonder if something particular happens
as the liquid is cooled below the melting point; or if the liquid characteristics
continue smoothly down to the unstable limit of stability. Analysis of static
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Figure 1.1: Temperature dependence of viscosity in several glass-forming liquids.
Reproduced from [3].

properties reveals no singularities: they extrapolate smoothly below Tm. How-
ever the situation is completely different for dynamic quantities, like viscosity
η, diffusion constant D or relaxation time τREL: they show a very pronounced
T -dependence - extremely large variations for only a mild variations of control
parameters i.e. temperature. Experiments and numerical simulations reveal an
extremely fast slowing down of the structural relaxation as the temperature is
lowered: τREL exceeds the observation time τEXP so that a strong inequality
τREL ≫ τEXP holds. This leads to a structural arrest in supercooled liquids
at low temperatures. Temperature dependence of η in various glass-formers is
presented on Fig. 1.1 [3]. This structural arrest in supercooled liquids for low
temperatures is referred to as a glass transition; a supercooled liquid becomes
an amorphous solid which is referred to as glass.

The simplest quantitative measures of the slowing down are the structural
relaxation time τREL and the viscosity η. However as one can see on Fig. 1.1,
values of η vary widely due to different characteristics of materials. Laughlin and
Uhlmann [4] proposed a reduced temperature scale in order to compare different
glass-formers: they suggested to define a temperature Tg as the temperature
where viscosity has the value of 1013 Poise (which is somewhat arbitrary) and
to plot the viscosity as a function of Tg/T . Such a representation (”Angell
plot”) is shown on Fig. 1.2. This plot shows a relatively simple activated-like
temperature dependence of viscosity:

η(T ) = η0 exp

(

E(T )

T

)

.

For certain liquids η is fitted well by a simple Arrhenius law while for others
the dependence is more complex and E depends on temperature. This inspired
Angell [5] to classify supercooled liquids into ”strong” and ”fragile” respectively
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Figure 1.2: Temperature dependence of viscosity in several glass-forming liquids.
Reproduced from [3].

to distinguish these two types of behaviour. The parameter E has a dimension
of energy. Naively one may think that E is an energy barrier system has to
overcome in order to relax. Then the constant value of E for ”strong” glasses
can be interpreted as an energy required to break a chemical bond. For ”fragile”
glass formers E(T ) increases as T is lowered, that is, the system ”sees” higher
barriers for lower temperatures: this suggests that relaxation becomes cooper-
ative. However the exact understanding of the difference between ”strong” and
”fragile” behaviours is still missing.

More information is provided by the analysis of two-point quantities which
show a particular two-step relaxation pattern like the one presented on Fig. 1.3.
A simple relaxation pattern for high temperatures changes to a more complex
pattern as the temperature is lowered. In high-temperature regime one can
define three different regimes in the relaxation pattern: short time or ballistic
where the relaxation is ruled by a free motion of the particles; intermediate
which is governed by an interaction between particles and a final exponential
decay i.e a Debye relaxation [6]. As the temperature is lowered more regimes
emerges:

• Short times. This is the same ballistic regime of the high-T region.

• β-relaxation. For low temperatures correlator shows a plateau; β-relaxation
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Figure 1.3: Schematic plot of the two-step relaxation of the correlators. Two
curves describe the high and the low temperature relaxation. Reproduced
from [6].

refers to a time window when the value of the correlator stays close to the
plateau. This regime propagates over many decades in time, note the
logarithmic scale on Fig. 1.3.

• α-relaxation. This regime refers to a time window when correlator leaves
the plateau and decays to zero. This happens on the timescales of order
τREL (global relaxation time).

The standard interpretation of the two-step relaxation pattern is provided by
the so called ”cage effect”. After the initial free motion particles get blocked by
their neighbours as the temperature is lowered, the neighbours are themselves
blocked by the environment. This explains the appearance of the plateau in
β regime. Only after a long time particles succeed to ”escape” from the cage
and information on initial configuration gets lost. This last regime corresponds
to α-relaxation. This time regime shows another peculiarity of slow dynamics.
Decay of correlation functions for long times is well approximated by exponential
for high temperatures but the decay in α regime follows a different law for low
temperatures. Its exact form is unknown but a good fit is provided by the
Kohlrausch-Williams-Watts function (KWW) [7, 8] (stretched exponential):

Φ(τ) = Φ0 exp
[

−(τ/τREL)β
]

where β is the KWW exponent. Although all parameters in this fit should
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depend on the temperature and observable it is often found that in a certain
time window this law has a universal form: parameters do not depend on the
temperature. This is often referred to as time-temperature superposition prin-
ciple. Exponent β is usually lesser than 1. The physical origin of the stretched
exponential decay in supercooled liquids is unclear. Two extreme scenarios are
discussed in the literature [6]:

• Heterogeneous. Dynamics becomes heterogeneous and system splits into
”fast” and ”slow” regions evolving at different rates. Consequently the
overall relaxation which results from contributions of many regions with
different relaxation times becomes a stretched exponential. Such sponta-
neous decomposition is referred to as dynamic heterogeneities.

• Homogeneous. The system shows a non-exponential relaxation due to
complicated dynamics.

It is unclear which scenario is realised and it seems that both the mosaic struc-
ture with ”fast” and ”slow” regions and complicated relaxation takes place in
supercooled liquids. This issue inspired analysis of multi-point functions like
four-point functions [9, 10, 11] which allow to probe dynamic heterogeneities
and to look for cooperativity underlying the glass transition. Cooperativity is
implied by the heterogeneities: dynamics of particles inside a region is correlated
and typical size of the regions defines a correlation length.

Tremendous slowing down of the dynamics motivates a question: what is the
mechanism responsible for the structural arrest ? The presence of cooperativity
in dynamics together with the above remark that the slowing down happens for
mild variations of temperature suggests an interpretation of the glass transition
as a phase transition. It is well-known that dynamics slows down close to the
second order phase transition: exponential relaxation changes to a power law.
However as we pointed out static quantities show no singularities below Tm.
This rules out a conventional static transition. Some insight is provided by the
analysis of temperature dependence of dynamic quantities. For fragile glasses
temperature dependence of the viscosity is well fitted in some cases by the
Vogel-Fulcher(-Tamman) law [12, 13, 14]:

η(T ) = η0 exp

[

A

T − T0

]

where T0 is referred to as ”Vogel temperature” [6]. This is a stronger than
Arrhenius dependence with E(T ) ∼ T/(T − T0). However this law is only a fit.
For intermediate values of viscosity a different, power-law fit is also compatible
with data:

η(T ) ≈ η0(T − Tc)
−γ

and Tc < T0 with T0/Tc ≈ 0.8. A similar fits exist for τREL [15, 6]. Both fits
predict a divergence of viscosity at a finite value of the temperature. There are
two different hypothesis explaining this issue:
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• There is an unconventional static transition at T = TK .

• There is a dynamic transition at T = Td > TK .

The first hypothesis is based on extrapolation of entropy S of supercooled
liquids down to low temperatures. The entropy is computed by means of thermal
integration [6] from the specific heat:

Sα(Tm) = Sα(T ) +

Tm
∫

T

dT

T
Cα α ∈ {liquid, crystal}

. For supercooled liquid one assumes that the entropy S is composed by two
contributions:

S = SV IBR + SCONF

where SV IBR is the entropy related to vibrational motion inside a metastable
state. The second term SCONF is a configurational entropy which accounts for
existence of multiple metastable states. It is further assumed that SV IBR is
equal to the entropy of a crystal, so that SCONF = S − SCRY STAL.

Thus defined SCONF decays as the temperature decreases as one can see
from Fig. 1.4; a reasonable extrapolation (see dotted lines on Fig. 1.4) for
fragile glasses vanish at some value T = TK which is referred to as Kauzmann
temperature. The entropies of a supercooled liquid and a crystal become equal
at T = TK (Kauzmann paradox, (1948)). The entropy of a supercooled liquid
becomes smaller that that of a crystal below TK leading to problems [15]. The
original solution to the paradox proposed by Kauzmann assumed that spon-
taneous crystallisation intervened below TK . However nucleation required for
crystallisation is highly suppressed for low temperatures because of the struc-
tural arrest [15, 6] and thus cannot be a universal solution. A different solution
to the paradox was proposed by Angell and Tucker [16] who suggested that
liquid cannot exist below TK and a phase transition to a new phase referred to
as idealised glass phase [16] takes place at TK . However there are several prob-
lems related to this solution. First, the whole construction relies entirely on the
extrapolation of the entropy to low temperatures. However in this region relax-
ation times increase fast and liquid falls out of equilibrium so that a direct test
of this hypothesis is impossible. Second, SCONF = 0 implies a non-exponential
number of states for an ideal glass phase. Stillinger has put forward a simple
argument for systems with short ranged interactions that existence of a single
glass state implies immediately existence of exponentially many of them [17].
However this is not a rigorous proof. Stillinger defined metastable states as
minima of potential energy which seems to be too restrictive [18, 19]. Finally
both the arguments in favour of and against the existence of a static transition
at TK are inconclusive and there is still no clear answer. It is worth noting
though that the Vogel temperature T0 is often found to be remarkably close to
the Kauzmann temperature TK .

The second hypothesis assumes a dynamic transition to a non-ergodic phase
at T = Td. As the temperature approaches Td an increasing number of marginally
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Figure 1.4: Schematic plot of the temperature dependence of the normalised en-
tropy difference between the liquid and crystalline states. Solid and dashed lines
represent the liquid state and the glass respectively. Two branches correspond
to strong and fragile glasses. Dotted line represents a reasonable extrapola-
tion of the entropy difference between the liquid and the crystal. Reproduced
from [6].
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stable states appear in phase space and it takes a long time to explore them
all. Phase space splits into disconnected domains corresponding the states for
T < Td. The support to this hypothesis is provided by results of Mode-Coupling
Theory [20, 21] presented in Chapter 2. It captures some of the properties listed
above, like the two-step relaxation pattern of the two-point correlators. Unfor-
tunately no transition was observed experimentally. This usual interpretation
of the absence of the transition consists in pointing out that the transition re-
quires appearance of states separated by infinite energy barriers for T < Td.
However such states does not exist in any finite dimensional system: energy
barriers between any two states are always finite and therefore the transition
is destroyed by an activated processes which provide an extra channel of relax-
ation. This lead to hypothesis that the glass transition marks a crossover from
flow-like relaxation mechanism to an activated relaxation [22, 23, 27, 24].

Both approaches however share the same idea of a system stuck in some
amorphous configuration. The latter acts as a dynamically induced disorder in
the system i.e. self-induced disorder [25, 26] and links the glass transition prob-
lem with a much studied theory of disordered systems with explicit quenched
disorder.

Previous discussion addressed the properties of the equilibrium state. How-
ever, the relaxation time τREL increases so fast with decreasing T that it is not
possible to equilibrate the system at arbitrarily low temperatures; at some mo-
ment relaxation time exceeds the observation time τEXP and the system never
relaxes towards equilibrium. Within this regime a variety of non-equilibrium
phenomena is observed like ageing. The fall out of equilibrium is also the main
reason which makes the direct experimental evidence for Kauzmann tempera-
ture problematic. Relaxation times in glasses increase extremely fast and exceed
times accessible experimentally well before the vicinity of TK .

It is worth noting finally that:

• The term low temperatures is defined with respect to the melting temper-
ature Tm which can be quite elevated for a given material (Tm = 1723oC
for silica SiO2).

• Relaxation times in glasses for low temperatures can reach geological val-
ues, which allows one to speak of a glass as a state of matter in a practical
sense.

1.2 The outline

In this work we focus on the analysis of the approach provided by the Mode-
Coupling Theory. The central problem of MCT is the absence of the transition.
Nevertheless as we stated and as we will see below it captures some aspects
of the slow dynamics in supercooled liquids. This motivates the research for
an improvement of MCT that accounts for the absence of the transition. Such
analysis suggests consideration of three related problems:
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• Mechanism responsible for the cutoff of the transition. The activated like
relaxation mentioned above is only an assumption and should be jus-
tified. A different mechanism for the cutoff was proposed by Das and
Mazenko [28]. They stated that it is the coupling to currents which was
responsible for the cutoff. However their statement was not confirmed
numerically.

• Stability of MCT with respect to corrections. This problem is related with
the previous one. It is unclear whether the transition is cutoff by system-
atic corrections to MCT i.e. whether refining the approximation leading
to MCT may cutoff the transition or not.

• Low temperature regime. As we will see the original derivation of MCT
cannot be extended directly to low temperatures and requires a complete
rederivation.

An additional difficulty is that the projection operator formalism used to
derive MCT provides no way to compute systematic corrections around MCT.
Therefore it is impossible neither to test the stability with respect to corrections
nor to conclude anything about the cutoff mechanism. Extension to low temper-
atures is possible but it is far from trivial [29] and requires extra approximations
with respect to the ones already done in the original MCT. However this is also
a problem within MCT. As we shall see TRS is assumed to hold within MCT
but it is not rigorously proven.

Solution to these problems is important because it allows one to construct a
consistent scenario for the glass transition. The central statement of the thesis
is that the natural context for analysis of these issues is a field theory:

• Any approximation within a field theory can be improved systematically.

• Physical symmetries are easy to control since they correspond to invariance
under certain fields transformations.

• Field theory is valid for any value of the temperature.

The content of the following chapters represent a step by step analysis of the
above three problems in the order they were presented.
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Chapter 2

Mode-Coupling theory

The Mode-Coupling Theory (MCT) introduced in this chapter represents a mi-
croscopic dynamical approach to the glass transition. Derivation of MCT relies
on the projection operator formalism [32] which exploits the idea of reduced
description: separate the variables into ”slow” and ”fast” and integrate out the
latter. This results into an effective theory in terms of ”slow” variables only.
However this formalism provides only a rearrangement of the initial theory and
has the same complexity; approximations are required in order to obtain results.

The projection operator formalism was first applied to high temperature
liquids [33] with density, currents and energy as a ”slow” variables. This led
to coupled integral equations for various correlators. These equations are not
closed since all the complexity is encoded into memory kernels which are the key
objects in the formalism and which rule the evolution. For high temperature
liquids anzats based on the knowledge of short time and long time hydrodynamic
behaviour of a system were used to approximate the kernels [33].

An important breakthrough was made by Götze [21] and Leutheusser [20]
who applied the formalism to the case of supercooled liquids. They considered
a simpler models with only one ”slow” variable - density. They proposed the
Mode-Coupling Factorisation [20, 21] (MCF)1: a rather successful first princi-
ple approximation of the memory kernel within the context of the projection
operator formalism. The resulting theory, known as Mode-Coupling theory,
has captured some aspects of the glass transition presented in the introduction.
Models based on a greater set of ”slow” variables: density + currents, were also
introduced later [34, 28].

This chapter is dedicated to the detailed introduction of MCT: in Section 2.1
we introduce the projection operator formalism for a generic case; the derivation
of MCT is considered in Section 2.2. In section 2.3 we present the results
derived in the context of MCT for supercooled liquids. Section 2.4 is dedicated
to the schematic version of MCT with no wavevector dependence; section 2.5

1We use a different name for what is usually known as the Mode-Coupling Approximation
in MCT to avoid confusion with the Mode-Coupling Approximation of the critical dynamics
which is presented later in the text.
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is dedicated to unveiling of a diverging correlation length hidden within MCT.
Finally Sections 2.6 and 2.7 deal with numerical/experimental evidences for
MCT and criticism of MCT, and an extension of MCT which accounts for more
slow variables respectively.

2.1 Projection operator formalism

Let’s consider a classical system with a Hamiltonian H(X) where X is a phase
space variable (which is a set of all positions and momenta X = (r,p) for a
system of point interacting particles). Then the time evolution of any phase
space function g(t,X) is governed by a Liouville equation:

∂g(t,X)

∂t
= iLg(t,X) (2.1)

where Lg = {H, g} and {, } are the Poisson brackets.
The space of all functions g(X) is transformed into a vector space by intro-

duction of an inner product:

(f, g) ≡ 〈f · g〉 =

∫

dXP (X)f(X)g∗(X) (2.2)

where star ∗ denotes a complex conjugate. The actual choice of the kernel
P (X) depends on many circumstances. One particular choice that we adopt
henceforth is the canonical equilibrium distribution: P (X) = exp(−βH(X))/Z
with the inverse temperature β although different definitions are possible [35].
This results into an infinite dimensional Hilbert space of phase space functions
g.

The full equation (2.1) is extremely complicated for direct analysis and we
are interested in a reduced description of the dynamics. For this purpose the
variables of the problem are divided into two sets of ”fast” and ”slow” variables.
The latter regroups all the variables of interest which we denote as {Ak}1..n or
by a column vector A(τ) for brevity. All the other variables which are considered
as irrelevant are included in the ”fast” set. To simplify the notation the time
dependence is denoted by a subscript: Aτ ≡ A(τ), so that A0 = A(0). Let’s
define the projection operator P on the subspace spanned by {Ak}1..n and the
orthogonal projector Q:

Pf = (A0, f)(A0,A0)
−1A0 =

∑

ln

An(0)(Al(0), An(0))−1(Al(0), f)

Q = 1 − P

where Q is the projection operator on the subspace orthogonal to {Ak}. It is
straightforward to check that P ,Q have the usual properties: P2 = P , Q2 = Q
and PQ = 0. It is worth noting that we only need to specify the relevant
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variables {Ak} in order to construct the projectors and do not need to enumerate
the irrelevant ones.

The starting point of the derivation of an effective theory is the Liouville
equation (2.1). We would like to describe the evolution of A(τ) in terms of
”slow” variables only and to eliminate all the irrelevant or ”fast” variables from
the equation with the help of P and Q. First we write the formal solution
of (2.1): Aτ = exp(iLτ)A0. Second, we insert this solution and the identity
decomposition 1 = P + Q into (2.1):

dAτ

dτ
= exp(iL)[P + Q]iLA0 = iΩ·Aτ + exp(iLτ)QiLA0 (2.3)

iΩ = (A0, iLA0)· (A0,A0)
−1 (2.4)

The second term is simplified with the help of the following operator identity:

exp(iLτ) = exp(iLτ)B(τ) + exp(iQLτ) (2.5)

where B is easily identified: indeed differentiating the identity with respect to t
yields consequently:

iLeiLτ = iLeiLτB(τ) + eiLτ Ḃ(τ) + iQLeiQLτ

iL
(

eiLτB(τ) + exp(iQLτ)
)

= iLeiLτB(τ) + eiLτ Ḃ(τ) + iQLeiQLτ

iLeiQLτ = eiLτ Ḃ(τ) + iQLeiQLτ

Ḃ(τ) = ie−iLτPLeiQLτ

B(τ) = i

τ
∫

0

due−iLuPLeiQLu

and B(0) = 0 from (2.5). Now applying (2.5) to the second term in the right
hand side of (2.3) yields:

exp(iLτ)QiLA0 =

τ
∫

0

eiL(τ−u)iPLf(u) + f(τ) (2.6)

where we introduced a new variable f(t) - the fluctuating force:

f(τ) ≡ eiQLτ iQLA0 (2.7)

We see that the evolution of f(τ) from its initial value iQLA0 (which is a ”fast”
variable) is ruled by an ”orthogonal” dynamics exp(iQLτ). For this reason f(τ)
is expected to be a pure ”fast” variable if Aτ is really ”slow”. The definition
of f implies that that it is always orthogonal to A0: (f(τ),A0) = 0 (indeed by
definition f(τ) = Q[· · · ] belongs to a subspace orthogonal to the one spanned
by A0).
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Finally (2.3) reads (after substituting (2.6) in (2.3)):

dAτ

dτ
= iΩ·Aτ −

τ
∫

0

duM(τ − u)Au + f(τ) (2.8)

M(τ) = −i(A0,Lf(τ))(A0 ,A0)
−1

This equation is called the generalised Langevin equation and M - the memory
function or the memory kernel. Indeed the structure of (2.8) resembles that of
a Langevin equation although f is not a noise. Using the following identity:

i(A0,Lf(τ)) = i(LA0, f(τ)) = i(QLA0, f(τ)) = −(f(0), f(τ))

We can rewrite M as:

M(τ) = (f(0), f(τ))(A0 ,A0)
−1 (2.9)

An equation on C(τ) = (Aτ ,A0), the matrix of the correlation functions,
follows immediately from (2.8) by multiplying it with A0:

dC(τ)

dτ
= iΩ·C(τ) −

τ
∫

0

duM(τ − u)·C(u) (2.10)

Note that the fluctuating force dropped out.
It is important to realise that (2.8) is just a rearrangement of the initial

Liouville equation (2.1) and has the same complexity. Therefore (2.10) is for-
mally exact but the formal definition of M (2.9) is too complicated to be used
directly for computation. Its advantage over the original Liouville equation is
that it focuses on a reduced set of variables. However it needs to be supplied
by an approximation for the kernel for any practical use. If A is a complete set
of the slow variables of the system (in the above context) then there are only
two possibilities for M: either it is a fast variable and it can be averaged over
short time scales to give a δ-function on a longer (”slow”) timescales so that
M(τ) = Mδ(τ), either it is a slow variable and it can be expanded in powers of
A.

Let’s also note that the overall success relies crucially on the clever choice
of the ”slow”/relevant variables. A good choice may lead to fine results. At
the same time the bad one while still being formally correct may lead to bad
results. It is not always possible to distinguish choices in advance. Existence
of different sharp separated timescales in a system can justify the separation in
”slow” and ”fast” variables for variables defined on different timescales.

2.2 Supercooled liquids

We would like to describe a supercooled liquid in the context of the above for-
malism with density as a slow variable. An extremely fast growth of relaxation
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time τREL for low temperatures defines two sharp separated timescales in the
problem: a microscopic time which describes processes at an atomic/molecular
level and the relaxation time. This defines naturally fast and slow variables.

2.2.1 Theory of dynamic density fluctuations

A liquid is a system of N interacting point particles with a pairwise interaction
U(r). Its Hamiltonian H reads:

H =
∑

l

p2
l

2m
+

1

2

∑

l 6=j

U(rl − rj)

where r and p are particles positions and momenta respectively, m is a particle
mass. The phase space is generated by the set of all coordinates and momenta
of the particles: X = (r,p).

Time evolution is governed by the Liouville equation (2.1). The operator L
in this particular case reads:

iL =
1

m

∑

l

(

pl
∂

∂rl

)

−
∑

l 6=j

(

∂U(rl − rj)

∂rl
· ∂

∂pl

)

We define the inner product as the canonical average i.e. the inner product
kernel (see (2.2)) is P (r) = exp(−βH) where β is the inverse temperature. The
density ρ, density fluctuations δρ and the longitudinal current are defined as:

ρq(τ) =
∑

j

exp(iq· rj(τ))

δρq(τ) = ρq(τ) − (2π)3ρδ(q)

ρ̇q(τ) = iq·
∑

l

pl(τ)

m
eiq·rl(τ) = iq· jq(τ) = i|q|jL

q (τ) (2.11)

where ρ ≡ (ρ, 1) is the average density. The last equation (2.11) is the density
conservation law implied by Hamiltonian dynamics. It implies in particular that
if ρ is a ”slow” variable than jL ∼ ρ̇ is also a ”slow” variable. We take δρq and

jL
q as relevant/”slow” variables and

A =

[

δρq
jL
q

]

,

which is an assumption. The matrix of correlators C reads:

C(τ) =

(〈δρ−q(0)δρq(τ)〉 〈δρ−q(0)jL
q (τ)〉

〈δjL
−q(0)δρq(τ)〉 〈jL

−q(0)jL
q (τ)〉

)

C(q, τ) =
1

N
〈δρ(−q)δρ(q, τ)〉
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The fluctuating force at zero time reads:

f(0) = QiLA = QdAτ

dτ
(τ = 0) =

[

dδρ
q

dτ
djL

q

dτ

]

−
[

0 iq
iqT
mSq

0

]

·
[

δρq
jL
q

]

=

[

0
djL

q

dτ − iqT
mSq

δρq

]

=

[

0
Rq(0)

]

and Sq = C(q, 0) is the static structure factor; recall that Rq(τ) evolves under
the projected dynamics exp(iQLτ). Applying the formal constructions of the
previous section one derives the following equation (see Appendix A for details)
for τ ≥ 0:

d2C(q, τ)

dτ2
+

q2T

mSq

C(q, τ) +
m

NT

τ
∫

0

duM(q, τ − u)
dC(q, u)

du
= 0 (2.12)

Rq(τ) = eiQLτ

[

djL
q

dτ
(0) − iqT

mSq

δρq(0)

]

(2.13)

M(q, τ) = 〈R−q(0)Rq(τ)〉 (2.14)

where M is the memory kernel and Rq is the current associated component of
the fluctuating force f (see Appendix A).

2.2.2 Mode-Coupling Factorisation

As we stated above equation (2.12) is a rearrangement of the Liouville equation
(2.1) and has equivalent complexity. As such it requires some approximation.
As we pointed out in the end of Section 2.1 the general form of M is

M(τ) = M0δ(τ) +M1[ρ, j
L]

where M1[ρ, j
L] is a functional of the correlation of slow variables: density and

longitudinal current. M1 cannot be zero: in that case solution of (2.12) presents
exponential relaxation for all temperatures and no slow dynamics emerges. Thus
M1 6= 0, and consequently the fluctuating force f is not a pure ”fast” variable: its
variance has a slow contribution. We are forced to conclude that the fluctuating
force has ”fast” and ”slow” components. The ”fast” component Mfast(q, τ) is
well approximated by a δ-function: Mfast(q, τ) = M0(q)δ(τ). This is the part
of the memory kernel responsible for the usual relaxation dynamics in liquids
but not important to describe the slow dynamics. Computation of its exact
functional form is a problem of the liquid state theory.

The original idea of Götze and Leuthesser [21, 20] was to expand the ”slow”
component Mslow(q, τ) in powers of δρ and jL. The fluctuating force is orthog-
onal to δρ and jL by definition. The next possible term in the expansion is
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quadratic in slow variables; an inspection of Rq supports this idea: recalling
that

Rq(0) =
djL

q

dτ
(0) − i

qT

mSq

δρq(0)

and (q̂ = q/q) leads to:

djL
q

dτ
=

1

m

d

dτ

{

∑

l

(q̂·pl)e
iq·rl

}

=
1

m

∑

l

(

q̂· dpl

dτ

)

eiq·rl +
i

m2

∑

l

(q̂·pl)
2
eiq·rl

The first term is easily evaluated recalling that dp/dτ is a force:

∑

l

(

q̂ · dpl

dτ

)

eiq·rl = −q̂ ·
∑

j 6=l

∇U(|rl − rj |)eiq·rl =

−q̂ ·
∫∫

dxdyeiq·xρ(x)ρ(y)∇U(x − y) ∼ i
∑

k

(q̂ · k)Ukρkρ−k

Clearly a product of slow modes δρ−qδρq appears in Rq(0) [36]. For τ > 0
Rq(τ) evolves under the projected dynamics and a similar evaluation is highly
non-trivial. However following Götze [21] and Leuthesser [20] we assume that
this contribution, δρ−qδρq, is dominant for all τ : Rq(τ) ∼ Vqδρqδρ−q. This
hypothesis is the base of the Mode-Coupling Factorisation. Below we present
briefly the steps of the approximation which are detailed afterwards (some de-
tails are presented in Appendix A). The first step is to use the ”dominant
contribution” hypothesis and to approximate M as:

Mslow(q, τ) = 〈R−q exp(iQLτ)Rq〉 ≈
∫

V 2〈δρ(0)δρ(0)eiQLτ δρ(0)δρ(0)〉

The wavevector dependence of the right hand side is detailed later. Still the
computation of the four-point density correlator in the right hand side of the
equation is complicated because of the presence of the ”projected” propagator.
We substitute it by the normal propagator eiLτ :

V 2〈δρ(0)δρ(0)eiQLτ δρ(0)δρ(0)〉 → V 2〈δρ(0)δρ(0)eiLτ [δρ(0)δρ(0)]

→ V 2〈δρ(0)δρ(0)δρ(τ)δρ(τ)〉 (2.15)

The resulting four-point function in Eq. (2.15) is then factorised into a product
of two-point correlators so that

Mslow(q, τ) ∼
∫

k

V 2(q,k)C(q − k, τ)C(k, τ).

The above neglection of ”projected” dynamics is not justified at all but it is
the only way to compute M . There is an associated subtlety indicating that
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the substitution should be done with care. Indeed if one neglects the projected
dynamics directly in the definition of Rq (see Eq. (2.13)) then one can express
Rq(τ) via jL

q (τ) and δρq(τ). Consequently M can be evaluated immediately:

Mslow(q, τ) ∼ C(q, τ) + Time derivatives of C

which provides completely wrong results.
Let’s now introduce more details to the above scheme. The computation of

V is done via introduction of a projection operator P2 that projects Rq onto its
(presumably) dominant contribution [36]: δρδρ:

P2 =
∑

k1,k2,k3,k4

δρk1
δρk2

〈δρ∗k3
δρ∗k4

· · · 〉〈δρ∗k1
δρ∗k2

δρk3
δρk4

〉−1

where a star denotes a complex conjugation. First, the fluctuating force is
projected onto its dominant contribution i.e. we replace eiQLτ → P2e

iQLτP2 in
the expression for M :

M(q, τ) = 〈Rq(0)eiQLτRq(0)〉 ≈ 〈P2Rq(0)eiQLτP2Rq(0)〉.

The projection P2Rq reads (all quantities are evaluated at τ = 0):

P2Rq =
∑

k1,k2

Vq(k1,k2)δρk1
δρk2

Vq(k1,k2) =
∑

k3,k4

〈δρk1
δρk2

Rq〉· 〈δρk1
δρk2

δρk3
δρk4

〉−1

Second, we neglect the projected dynamics of P2Rq(τ): we replace eiQLτ →
eiLτ so that δρ in P2Rq(τ) evolves under complete dynamics and not the pro-
jected one:

eiLτP2Rq =
∑

k1,k2

Vq(k1,k2)δρk1
(τ)δρk2

(τ).

We have already discussed the justification of such simplification. It is worth
pointing that the ”projected” dynamics is neglected only after projecting on the
dominant contribution. Now, the approximation for Mslow(q, τ) reads:

M(q, τ) ≈
∑

k1,k2

|V ∗(k1,q − k1)V (k2,q− k2)|〈δρ−k2
δρk2−qδρk1

(τ)δρq−k1
(τ)〉.

The four-point density correlator is factorised into products of two-point func-
tions by virtue of Wick’s theorem:

〈δρ−k2
δρk2−qδρk1

(τ)δρq−k1
(τ)〉 ≈

N2δk1,k1−qδk2,k2−qC
2(q/2, 0) +N2 [δk1,k2

+ δk2,q−k1
]C(k1, τ)C(q − k1, τ).
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The first term is a static contribution and therefore can be neglected. Plugging
this into the above expression for the memory kernel yields:

Mslow(q, τ) ∼
∑

k

|V (k,q − k)|2C(k, τ)C(q − k, τ).

The computation of V is presented in Appendix B.
Finally, the derived approximation for M is the famous Mode-Coupling fac-

torisation which closes Eq. (2.12):

M(q, τ) = Mslow(q, τ) +Mfast(q, τ)

Mfast(q, τ) = M0(q)δ(τ)

Mslow(q, τ) =
ρT

16π3m

∫

d3k

(2π)3
|V (q − k,k)|2C(q, τ)C(q − k, τ) (2.16)

V (q − k,k) = {(q̂·k)c(k) + q̂· (q − k)c(|q − k|)}

c(q) =
1

ρ

(

1 − 1

S(q)

)

Equation (2.12) with the total memory kernel M(q, τ) is known as Full MCT
equation:

d2C(q, τ)

dτ2
+

mM0(q)

NT

dC(q, τ)

dτ
+

q2T

mSq

C(q, τ) + (2.17)

+

τ
∫

0

duMslow(q, τ − u)
dC(q, u)

du
= 0 (2.18)

As we pointed out earlier the regular relaxation kernel M0 is not important for
the slow dynamics and can be dropped. Furthermore the second derivative term
can be replaced by the first derivative in Eq. (2.17) without qualitative change
of the results [6]:

dC(q, τ)

dτ
+ Ω2

qC(q, τ) + κq

τ
∫

0

duMsl(q, τ − u)
dC(q, u)

du
= 0 (2.19)

Msl(q, τ) =

∫

d3k

(2π)3
|V (q − k,k)|2C(k, τ)C(q − k, τ)

Ω2
q =

q2T

mS(q)
and κq =

ρT

15π3m

Or after Laplace transform: Ĉ(q, z) = LC =
∞
∫

0

dτ exp(−zτ)C(q, τ)

T Ĉ(q, z)

S(q) − zĈ(q, z)
=
κq

Ω2
q

M̂sl(q, z). (2.20)
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2.3 Ideal glass transition

The main MCT equation (2.19) is an equation of an over-damped oscillator with
self-consistent time-dependent damping. The non-linear feedback effect leads to
a strong dependence of the relaxation dynamics on the input parameters and
provides a qualitative explanation of the extremely fast slowing down of the
dynamics in glass-forming liquids for a mild variation of parameters. The only
input to (2.19) is the static structure factor S(q) and the temperature T .

Equation (2.20) is still too complicated for an analytical solution. Numerical
solutions of (2.20) provide an insight into its properties [37]: the relaxation time
grows beyond any bound as the temperature approaches a limit value T = Td

and the density-density correlator fails to decay to zero at infinite times. This
defines a non-ergodic parameter fq as an infinite time limit of the correlator:

fq =
1

Sq

lim
τ→∞

C(q, τ).

The limit τ → ∞ of (2.20) yields an equation on fq within MCT:

fq
1 − fq

=
κqSq

Ω2
q

∫

d3k

(2π)3
|V (q − k,k)|2SqSq−kfqfq−k (2.21)

This equations was analysed for certain class of potentials U , like hard spheres
or Lennard-Jones interaction. This analysis revealed that for high enough tem-
peratures there is a unique solution fq = 0. As the temperature is lowered a
non zero solution fq appears signaling a structural arrest: the liquid freezes in
an amorphous configuration which breaks translation invariance since fq 6= 0
implies 〈δρq〉 6= 0. This is not a liquid-solid transition because f(q) ≡ 0 in
solids but a transition to a non-ergodic phase when the phase space splits into
disconnected domains at T = Td.

The relaxation of C(q, τ) for T = Td(1 + ǫ) where ǫ ≪ 1 obtained from
numerical simulations and theoretical analysis is described in the context of a
two-step relaxation [6, 21, 39, 38]: a simple exponential decay for high temper-
atures is replaced by a complex relaxation with three timescales, a plateau fq
emerges in the relaxation pattern of C(q, τ) which extends to infinity as T → Td:

• Short times τ ∼ O(1): C(q, τ) relaxes from its initial value Sq to the
plateau fq.

• β-relaxation τ ∼ ǫ−1/2a: describes the relaxation close to the plateau;
C(q, τ) acquires a scaling form:

C(q, τ) = Sqfq + δC(q, τ)

∼ Sq(fq +
√
ǫ(1 − fq)2G1(q, τǫ

1/2a) + ǫ(1 − fq)2G2(q, τǫ
1/2a) · · · )

and G1(q, s) (s = τǫ1/2a) has singular asymptotics at s = 0 and s = ∞
where C deviates from the plateau and this anzats fails:

G(q, s → 0) ∼ s−a and G(q, s→ ∞) ∼ sb.
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G1(q, s) factorises into a product of a wave-vector dependent amplitude
and a time dependent part:

G1(q, s) = H1(q)g(s).

This property is referred to as a ”factorisation property”.

• α-relaxation τ ∼ ǫ−γ : describes the final decay to zero and τα is the
relaxation time; C(q, τ) takes a scaling form Cα(q, τǫγ). This scaling
form is referred to as the time-temperature superposition [6, 40] since the
master function Cα does not depend on T .

• The scaling function g satisfies a non-linear equation:

1

z
+
z

λ
ĝ2 = L[g2] (2.22)

where λ is a numerical constant fixed by Eq. (2.19); g has singular asymp-
totics: g(s→ 0) ∼ s−a and g(s→ ∞) ∼ −sb inherited from G1.

• The values of exponents a, b are fixed by an equation derived from (2.22):

Γ2(1 − a)

Γ(1 − 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
= λ (2.23)

and possible values of a are limited to a range [0, 0.5].

In the α-regime the solution of the MCT equation is well approximated by
a stretched exponential: Cα(q, s) ∼ fq exp(−Asb) [41]. This is an empirical
function used often to fit the data. It is supported by the asymptotics of the
late β-regime:

C(q, τ) ∼ fq −√
ǫ(1 − fq)2

(

τ

τβ

)b

∼ fq − (1 − fq)2
(

τ

τβǫ−1/2b

)b

∼ fq exp

[

− (1 − fq)2

fq

(

τ

τβǫ−1/2b

)b
]

However while MCT predicts a transition it provides little information about
the low temperature phase because the derivation presented in Sec. 2.2 is no
more valid in this phase. It is expected that the system falls out-of-equilibrium
for low temperatures so that time-translation invariance and time-reversal sym-
metry assumed within MCT no more hold. It is worth noting however that an
attempt to extend the derivation to low temperatures was made by Lätz [29].
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2.4 Schematic MCT

Equations (2.17) and (2.19) are very complicated for the analysis so that no
analytical solution is known. Numerical solution is also a formidable task due
to an extremely fast increase of relaxation time for low temperatures. This
reasons motivated to look for a simplification of MCT that would comply with
the following requirements:

• Essential results derived within MCT are preserved.

• Analysis of the theory should be simpler.

Such a simplification was first proposed by Bengtzelius, Götze et al. [37].
Analysing the numerical solution of (2.17) they found that the main contribution
to the kernel Msl(q, τ) comes from wave-vectors q ≈ q0 where q0 is the first
peak of the static structure factor Sq. They suggested to insert the structure
factor: Sq = 1+S0δ(q−q0) in Msl and evaluate C(q, τ) ∼ C(τ)δ(q−q0). This
eliminates the wave-vector dependence from (2.19):

dC(τ)

dτ
+ Ω2C(τ) + κ

τ
∫

0

duC2(τ − u)
dC(u)

du
= 0 (2.24)

This version of the MCT equation is referred to as schematic MCT [37]. As
we shall see in Chapters 3 and 6 the existence of the schematic MCT preserving
the essential properties of the full MCT has deep underlying reasons.

2.5 Diverging lengthscale

Let’s come back to the full wave-vector dependent theory. The interpretation
of the transition predicted within MCT as a transition to a non ergodic phase
suggests that the slowing down of the dynamics close to the transition is caused
by increasing cooperativity as T → Td when more and more particles have to
move simultaneously. This is associated with a growing correlation length which
links to the notion of the dynamic heterogeneities when the liquid splits into
regions evolving differently; this also suggests an analogy with critical phenom-
ena which could probably shed more light on the subtleties of the transition.
The idea of cooperativity behind the glass transition pervaded the literature for
years [42]. Surprisingly, MCT provides a different image at a first glance. Equa-
tions (2.17), (2.19) present no short wave-vector singularity and consequently
no correlation length can be extracted. The authors of MCT insisted on a local,
short lengthscale nature of the glass transition [34] caused by the self-blockage
of particles inside a cages formed by their neighbours. Particles rattle in in-
dependent cages before they finally escape. Because of assumed independence
cages were considered as short scale phenomena. The fact that sMCT given by
Eq. (2.24) which lacks any spatial dependence retains all the essential proper-
ties of the full MCT provided an additional argument in favour of the absence
of diverging lengthscale in MCT.
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y, s

ξ

x, t

Figure 2.1: Four-point function measures how the dynamics at a point y at a
time s correlates with a dynamics at a different point x at some different time t.
The lengthscale ξ then defines the distance at wich fluctuations at both points
are still correlated.

It is only recently that the proper measure of the cooperativity was identified
in experiments [43] and numerical simulations [44, 45, 46, 47, 48]: the idea is
to measure how events are correlated in space and time. The idea resembles
that used to define the correlation length in critical phenomena. Precisely if we
perturb the system at around a given point x at time t then we are interested
how this influences the dynamics at a different point y at some later time s.
The region affected by a perturbation defines a correlation length ξ. In the
context of supercooled liquids this amounts to an analysis of a divergence in a
multi-point correlation function [49].

The lengthscale also exists within MCT and it was identified 3 years ago [50].
The computation of the lengthscale was carried out in a context of field-theories
derived earlier in [51, 28] and was based on a resummation of a certain class of
diagrams in the expansion of the four-point correlation function. Recently the
growing lengthscale was also identified in the context of Inhomogeneous MCT
(IMCT) derived via the projector operator formalism [52] and directly related
to standard MCT. Inhomogeneous MCT extends MCT to spatially inhomoge-
neous situations and provides an access to the lengthscale via an analysis of the
influence of a perturbation at point x on the dynamics at a point y at a later
time (see Fig. 2.5).

Let’s reconsider a liquid introduced in 2.2 perturbed by an external potential
UEXT (x) that breaks the space translation invariance (STI). The derivation
follows that of section 2.2 although one should account for the broken space
translation invariance:
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ρ(q) =
1

N

N
∑

l=1

〈exp(iq· rl)〉

δρq =
N
∑

l=1

exp(iq· rl) − ρq

C(q1,q2; τ) =
1

N
〈δρ−q1

(0)δρq2
(τ)〉

Repeating steps of the Mori-Zwanzig formalism from 2.1 yields an equation:

∂2C(q1,q2; τ)

∂τ2
+

∫

dkΩ2(q1,k)C(k,q2; τ) (2.25)

+

∫

dk

τ
∫

0

duM(q1,k; τ − u)
∂

∂u
C(k,q2;u) = 0

where Ω2(q,k) = T
mq·kρ(q−k)S−1(q,k) and S(q,k) is the static structure fac-

tor. M(q1,q2; τ) is a memory kernel generalising the memory kernel from Sec.
2.2 which is expressed in terms of the fluctuating force. A Mode-Coupling ap-
proximation analogous to that of usual MCT can be done to close this equation
but the final equation is rather cumbersome[53]. Fortunately one can consider a
weakly inhomogeneous situation UEXT (x) ≪ T to access the correlation length.
The aim is to compute the susceptibility χp(q, τ) associated with the response
of the structure factor to a small external perturbation of an arbitrary structure,
in particular a localised perturbation:

δC(x,y; τ)

δUEXT (z)
|UEXT =0 =

∫

d3p

(2π)3

∫

d3q

(2π)3
e−iq·(x−y)+ip·(y−z)χp(q, τ).

For a perturbation localised at the origin UEXT (x) = U0δ(x) one finds:

δC(q1,y, τ) =

∫

dpeiq·yχp(q, τ).

The susceptibility χx(y, τ) probes the dynamic response for perturbations and
measures the retarded response of the dynamics in a point y to a perturbation
in a point x after time τ . This function has the same critical properties as the
previously considered four-point function from [50, 52, 53].

Assuming that UEXT is small one can expand all the quantities to the first
order in UEXT . An equation on χ is derived by differentiating (2.25) with
respect to UEXT [52, 53]:
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∂2χp(q, τ)

∂2τ
+

Tq2

mS(q)
χp(q, τ) +

τ
∫

0

duMslow(q, τ − u)
∂χp(q, u)

∂u
(2.26)

+

τ
∫

0

du
Tn2ρq

m|q + p|

∫

d3k

(2π)3
V (q;k,q − k)V (q + p;q − k,p + k) ×

×χp(k, τ − u)C0(q − k, τ − u)
∂C0(q + p, u)

∂u
= mp(q, τ)

where V is the usual MCT vertex (2.16): V (q;k1,k2) = q̂·k1c(k1)+ q̂·k2c(k2),
Mslow is the MCT memory kernel (2.16). The source term mp(q, τ) contains
C0 and static multi-point correlations but it does not depend on χ. Then (2.26)
is a linear equation of the form Lpχp = mp where L is a certain operator. The
lowest eigenvalues of Lp gives access to the diverging lengthscale.

An involved computation [52, 53] shows the following behaviour of χp(q, τ)
on different timescales (we use below the results presented in 2.2):

• β regime:

χp(q, τ) =
S(q)H1(q)

Γp2 +
√
ǫ
gβ

(

p2

√
ǫ
, τǫ1/2a

)

.

• α regime:

χp(q, τ) =
Θ(Γp2/

√
ǫ)√

ǫ(Γp2 +
√
ǫ)
gα(q, τǫγ)

where Θ(0) 6= 0 and Θ(x≫ 1) ∼ 1/x, gα(q, x) ∼ S(q)H1(q)x
b to match β

regime and gα(q, x≫ 1) → 0.

These results imply a diverging lengthscale ξ ∼
√

Γǫ−1/4 that governs the dy-
namics on β and α regimes. This shows that the interpretation of the β regime as
a rattling of particles in independent cages is misleading: close to the transition
the cages become more and more correlated.

2.6 Experimental evidences, numerics and prob-

lems with MCT

The success of the projection operator formalism and hence MCT relies on
assumption used to choose the slow variables and assumptions lying at the heart
of the Mode-Coupling Factorisation approximation. Up to now we focused on
analysis of mathematical properties of MCT equations and neglected whether
the theory applies to real systems. As we will see MCT is exact for mean-field
systems and it is expected to be only an approximation for short ranged systems.

The applicability of MCT has been tested for a wide class of systems like
molecular glasses, colloids, polymers [54], gels, · · · The general conclusion is
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that MCT does a remarkably good job in capturing dynamical properties quali-
tatively or even quantitatively for the first decades of slowing down [55]. Predic-
tions presented in Sec. 2.3 hold only in the immediate vicinity of the transition
i.e. they are asymptotic, and cannot be reliable for deviations T − Td/Td or
order one. A reliable method to check MCT predictions against experimental
data or numerical simulations is to compare them with a numerical solution of
(2.17). However this is a difficult task and is not often done. Usually data are
fitted by MCT so that parameters like λ/Td from (2.23) are computed from
data fits.

Predictions of MCT have been tested both numerically and experimentally
using different approaches [38, 55, 6]. Experimental techniques include neutron
or lightscattering, dielectric spectroscopy and analysis of a mechanical response
to external perturbations [55]. Numerical simulations divide into two classes:
molecular dynamics simulations and Monte-Carlo simulations. In the first case
on tries to solve directly the dynamic equation (2.1) governing the evolution of a
system. This allows in principle to compute various characteristics of the system
from first principles and it is the greatest advantage of this approach. At the
same time such simulations require immense computational resources because
a reliable solution of equation (2.1) over extended time ranges is requires. The
second method, Monte-Carlo simulations, does not require a solution of dynamic
equations but a different problem arises: how to equilibrate a system effectively
for low temperatures if one is interested in equilibrium dynamics ?

Typical tests aim at computing certain quantities or establishing some prop-
erties of a system:

• Position of the transition i.e. identify Td from data analysis. As antici-
pated this is done by data fit.

• Direct measurement of fq [38, 55].

• Check of the β-scaling, factorisation property and relation (2.23). This
is achieved by tracing curves of correlators at various wave-vectors and
collapsing them on a single master curve [55, 6].

• Check of the α-relaxation time τα divergence and time-temperature su-
perposition principle [55].

• Self-diffusion: the average 〈r2(t)〉 presents a diffusive behaviour for high
temperatures but deviates from Dt plot for low temperatures where a
plateau emerges indicating caging. This is a direct evidence for cage effect.
A distribution of displacements δr is also studied via measurement of the
van Hove function defined as:

G(r, t) =
1

N

∑

k

〈δ(r − |rk(t) − rk(0)|)〉.

A useful information is also provided by a non-Gaussian parameter

α2 =
3〈δr4〉
5〈δr2〉2 − 1
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which is zero identically for Gaussian distributions.

• Multi-point correlations: a direct experimental test of the growing corre-
lation length was performed in [9].

Results of these tests lead to the following classification of successes and
failures of MCT:
Successes:

• MCT captures the two step relaxation pattern.

• The scaling predicted in β-regime and time-temperature superposition in
α-regime work well. The value of exponents a and b is qualitatively correct:
0 < a < 0.5 and b < 1.

• Wave-vector dependence of the non-ergodic parameter fq predicted by
MCT is reproduced experimentally and numerically [55]. Fig. 2.1 shows a
curve fq vs q resulting from molecular dynamics simulations for silica [56].

• The growing lengthscale is extracted from the four-point function [52, 50,
9, 46, 57, 58, 59] although it shows only a mild increase.

Failures:

• The absence of the dynamic transition in real systems; first principle com-
putation of Td and data fits (like the above mentioned Tg) differs by a
factor 2.

• Self-diffusion described by 〈r2〉 fits well into the MCT image, but the dis-
tribution provided by the van Hove function G(r, t) does not. A peak
predicted for α2(t) for intermediate times within MCT [60] show a less
pronounced growth than observed experimentally and in numerical simu-
lations [61, 62, 63].

• Decoupling of self-diffusion coefficient D and viscosity η. In a high tem-
perature liquid they are related by the Stokes-Einstein relation stating
that Dη/T is a constant. However this ratio shows a fast growth for tem-
peratures below the onset of slow dynamics [43, 64]. Standard MCT fails
to account for this sharp increase [6, 65]. A possible explanation is the
arrival of critical fluctuations [66] which are completely neglected within
MCT as we will see later.

In general there is a time window where data fit quite well with MCT predictions
if the temperature is not too close to Td i.e. for finite ǫ. This is controversial
since the predictions are only valid asymptotically as ǫ→ 0.

The cut off of the dynamic transition is usually attributed to activated
events. The transition is interpreted as a transition to a non-ergodic phase
where the systems gets blocked in an amorphous configuration. However it can-
not freeze in such a configuration forever: finally a rearrangement arrives that
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Figure 2.2: Non-ergodic parameter for silica, comparison of molecular dynamic
simulations (points) and MCT predictions (c2 - a basic version, c3 - a more
refined version in which static three-point function is accounted for in the fac-
torisation approximation). Reproduced from [56].
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brings the system into a different state. This reflects the fact that configura-
tions are separated by a finite energy barriers. Now if a flow-like relaxation is no
more possible it is substituted by the relaxation via rearrangements or activated
events (because the system has to overcome a barrier). These events smooth
the transition into a crossover between different relaxation mechanisms.

2.7 Extending MCT

The problems with interpretation of experimental data and numerical simula-
tions within MCT led to the introduction of several extensions of MCT that
tried to address the difficulties and take into account the activated events.

2.7.1 Conserved quantities and Extended MCT

A possible origin of breakdown of MCT is that we have not taken into account
all the slow variables in the system. Recall that in Sec. 2.2 we assumed that the
only slow variables were the density and the longitudinal current. As we noted in
Sec. 2.2 the longitudinal current jL has been related to density by a conservation
law. A careful inspection tells that the same statement holds for all conserved
quantities coupled to density. Then we should treat all these quantities as ”slow”
variables. Practically this means that all conserved quantities should be treated
as a ”slow” variables because of the non-linear couplings between them.

A model extending MCT by considering a larger set of conserved/slow vari-
ables was first introduced by Das and Mazenko [28] in the context of a field
theory based on the Non-linear Fluctuating Hydrodynamics (FNH) which we
will consider later in Chapter 4. Das and Mazenko argued that FNH repro-
duced MCT in the lowest order of perturbation theory but corrections coming
from coupling to transverse currents (neglected in the derivation of Sec. 2.2)
which appear in higher orders of perturbation cut off the transition [28, 40, 38].
Therefore they stated that coupling to currents was responsible for cut off of
the transition.

These results were later reproduced in the context of the projection opera-
tor formalism and the theory known as extended MCT (eMCT) [34, 67]. The
derivation follows closely that presented in Sec. 2.2 but the set of ”slow” vari-
ables is enhanced to include two transverse currents jT in addition to the density
and longitudinal current jL. The derivation simplifies if one considers the phase
space density function which generates all these quantities instead:

φ(r,p, τ) =
∑

l

δ(r − rl(τ))δ(p − pl(τ)) (2.27)

φ(q,p, τ) =
∑

l

exp(iq· rl(τ))δ(p − pl(τ)) (2.28)

Now density and the currents read:
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ρ(r, t) =
1

N

∫

d3p

(2π)3
φ(r,p, t)

j =
1

N

∫

ddrpφ(r,p, t)

Repeating the steps of Sec. 2.1 an equation (2.10) for the phase space density
correlator is derived:

Cq(p1,p2; τ) = 〈φ−q(p1,p2; τ)φq(p1,p2; τ)〉 (2.29)

∂τCq(p1,p2; τ) =

∫

d3k

(2π)3
Ωq(p1,k)Cq(k,p2; τ) − (2.30)

−
τ
∫

0

du

∫

d3k

(2π)3
Mq(p1,k; τ − u)∂uCq(k,p2;u)

The phase space density correlator Cq(p1,p2; τ) encodes extra information we
are not interested in, like energy correlations, etc: our final goal is to derive equa-
tions on density and current correlators only. To simplify the above equation and
to separate explicitly density and current fluctuations, the momentum distribu-
tion φq(q, τ) is substituted by its irreducible moments [34]: φq(p, τ) → φα

q(τ)
labelled by index α = 0, 1, 2, · · · . The first four moments is the density and the
three components of the current correspondingly, the fifth moment is the energy.
Now Eq. (2.30) transforms into a set of equations for irreducible moments:

Cαβ(q, τ) = 〈φα
−qφ

β
q(τ)〉 (2.31)

∂τCαβ(q, τ) =
∑

γ

Ωαγ(q)Cγβ(q, τ) −
∑

γ

τ
∫

0

Mαγ(q, τ − u)∂uCγβ(q, u) (2.32)

This is an infinite set of equations that is too hard to analyse. We assume
several simplifications. First, only the first four tensors are retained; the others
are neglected i.e. they are assumed to be irrelevant. This limits the indices
to the range [0, 1, 2, 3] and leaves us only with 16 equations. Second, a Mode-
Coupling factorisation similar the one presented in Sec. 2.2 is used to compute
the kernels Mαβ :

Mαβ(q, τ) =
∑

α1β1α2β2

∑

k1,k2

V α1β1α2β2

αβ (q,k1,k2; τ)Cα1β1
(k1, τ)Cα2β2

(k2, τ)

(2.33)
Furthermore, if one neglects all the vertices V except V 0000

αβ then (2.32) reduces
to (2.19) and reproduces MCT plus a set of decoupled equations ruling the
evolution of other correlators. The authors of [34, 67] conjectured that the
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vertices V can be ordered with respect to the decay of the corresponding cor-
relators. Namely they assumed that only density-density correlator C00(q, τ)
has a non-trivial two-step relaxation pattern which extends over decades on
timescale while the other correlators which contains transverse currents were
assumed to show a faster decay: algebraic or exponential [67]. The leading or-
der is obtained by retaining V 0000

αβ only. The next to leading order is obtained

by retaining V 0γ0δ
αβ and V 000γ

αβ . After some algebra [34, 67] a unique equation on
density-density correlator is derived which generalises Eq. (2.20):

T Ĉ(q, z)

S(q) − [z + ∆(q)]Ĉ(q, z)
=
κq

Ω2
q

M̂sl(q, z) (2.34)

where ∆ has contributions from the vertices V 0γ0δ
αβ , V 000γ

αβ . Therefore it results
from the coupling to transverse currents. Results obtained in the framework of
FNH have a similar form [28]. A straightforward check shows that for ∆(q) 6= 0
the equation implies fq = C(q,∞) = 0 for any temperature. Therefore no
transition is present. Analysis of (2.34) shows that ∆(q) introduces an extra
timescale into the problem which delimits the region where MCT is valid: for
z ≪ 1/∆(q) one recovers MCT [34, 67]; for z ≫ 1/∆(q) Ĉ(q, z) decays from
the plateau to zero.

2.7.2 Criticism of eMCT

Nevertheless eMCT does not solve the problem. First, the validity of eMCT has
been criticised recently [68, 69]. We will return to this point later in Chapter
4. Second, the eMCT scenario assumes that the mechanism responsible for the
cut off of the transition is different for Newtonian dynamics where momentum
and energy are conserved and Brownian dynamics where only density is con-
served. However numerical simulations indicate no difference with respect to
dynamics [61, 71, 70].

2.8 Summary

In the previous sections we introduced the Mode-Coupling theory and presented
its main predictions. We also discussed its successes and failures in the descrip-
tion of the slowing down in supercooled liquids. The problem of the spurious
dynamic transition predicted within MCT motivated a research for extensions of
MCT. Therefore we considered an extension taking into account a larger set of
slow variables as compared to MCT. The results derived within eMCT indicate
the cut off of the transition. However this assumes that different mechanisms
smooth the transition for Newtonian and Brownian dynamics. This conclusion
is not confirmed neither experimentally nor numerically. This together with
several other issues forms a (incomplete) list of problems that we try to address
in the following chapters:
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• The Mode-Coupling Factorisation lacks a small parameter and represents
a non-perturbative approximation. It is unclear how to improve it and to
generate systematic corrections. Existence of a model within which this
factorisation is perturbative would shed some light on the approximation.
Precisely this would allow to analyse the stability of MCT with respect
to corrections. This analysis would indicate if the transition is cut off by
higher order corrections to MCF or by a different mechanism.

• The problem with eMCT indicates that something is wrong with it. As we
will see this is related to the violation of time reversal symmetry assumed
within eMCT. It is not clear how to control the preservation of the sym-
metry within projection operator formalism. This requires a development
of a different formalism which allows to control the preservation of TRS
perturbatively.

• Time reversal symmetry lies at the origin of a different problem with
standard MCT: the description presented in Sec. 2.2 fails below the tran-
sition. Time reversal symmetry and fluctuation-dissipation theorem as-
sumed within MCT no more hold in the low temperature phase if one
follows the non-ergodic interpretation of the transition. This requires a
complete rederivation of MCT without assumption of equilibrium [29].

Appendix A. Derivation of the full MCT equation

We present below the detailed derivation of (2.12) that follows the guidelines of
Section 2.1. We are interested in deriving equation (2.10) in the framework of
MCT of density fluctuations. It is a matrix equation however we concentrate
on the lower left element since it will lead to an equation on density-density
correlator (2.12). The matrix of the correlations reads:

C(τ) =

(

〈δρ−qδρq(τ)〉 〈δρ−qj
L
q (τ)〉

〈δL−qδρq(τ)〉 〈jL
−qj

L
q (τ)〉

)

At zero times it simplifies to:

C =

(

NS(q) 0
0 NT

m

)

Below we compute (2.10) term by term. We start from iΣ:

iΩ = 〈A∗Ȧ〉· 〈A∗A〉−1 =

(

〈δρ−qδρ̇q〉 〈δρ−q
djL

q

dτ 〉
〈jL

−qδρ̇q〉 〈djL
−q

dτ δρ̇q〉

)

·
( 1

NS(q) 0

0 m
NT

)

=

(

0 iNqT
m

iNqT
m 0

)

·
( 1

NS(q) 0

0 m
NT

)

=

(

0 iq

i qT
mS(q) 0

)
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where we used the fact that 〈AȦ〉 = 0, integration by parts and the identity:

〈jL
−qδρ̇q〉 =

i

m2

∑

l,n

〈

(q̂·pl)e
−iq·rl(q·pn)e−iq·rn

〉

=
iq

m

∑

l

〈p2
l 〉 = i

NqT

m

The fluctuating force at zero time reads:

f(0) = iQLA = (1 − P)Ȧ =
(

δρ̇q
djL

q

du

)

−
(

0 iq

i qT
mS(q) 0

)

·
(

δρq
jL
q

)

=

(

0
djL

q

du − i qT
mS(q)δρq

)

≡
(

0
Rq

)

Then:

iΩ·C(τ) =

(

0 iq

i qT
mS(q) 0

)

·
(〈δρ−qδρq(τ)〉 〈δρ−qj

L
q (τ)〉

〈δL−qδρq(τ)〉 〈jL
−qj

L
q (τ)〉

)

The memory matrix reads (see the definition (2.9)):

M(q, τ) =

〈(

0
Rq

)

·
(

0 Rq(τ)
)

〉

·
( 1

NS(q) 0

0 m
NT

)

=

(

0 0
0 m

NT 〈R−qRq(τ)〉

)

Now taking the lower left element of (2.10) we arrive at (2.12):

d2C(q, τ)

dτ2
+

q2T

mSq

C(q, τ) +
m

NT

τ
∫

0

du〈R−qRq(τ − u)〉dC(q, u)

du
= 0

Appendix B. Factorisation approximation

We should compute:

Vq(k1,k2) =
∑

k3,k4

〈δρk1
δρk2

Rq〉· 〈δρk1
δρk2

δρk3
δρk4

〉−1

The four-point function in the denominator is factorised in a product of
two-point functions. To compute the nominator we recall the expression for Rq:

Rq =
djL

q

dτ
− i

qT

mSq

δρq

Then the following terms appear in the numerator (where we have used the
integration by parts):
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〈

δρ−kδρk−q

djL
q

dτ

〉

= −〈δρ̇−kδρk−qj
L
q 〉 − 〈δρ−kδρ̇k−qj

L
q 〉

− iqT

mS(q)
〈δρ−kδρk−qδρq〉

The first two terms can be computed exactly:

−〈δρ̇−kδρk−qj
L
q 〉 = i〈

∑

jln

(k·pj)e
−ik·rjei(k−q)·rl(q̂·pn)eiq·rn〉 =

= i(k· q̂)
T

m

∑

jl

〈

ei(k−q)·rjei(q−k)·rl

〉

= i(k· q̂)
TN

m
S(k − q)

The second terms is computed similarly to give:

−〈δρ−kδρ̇k−qj
L
q 〉 = i(q̂· (q − k))

TN

m
S(k−−q)

The three point density fluctuation term is factorised within the convolution
approximation [33]:

〈δρ−kδρk−qδρq〉 ≈ NS(k)S(q)S(|k − q|)

and Vq(k1,k2) simplifies to V (k,q − k) as a consequence of translation invari-
ance. Combining together the above results yields:

V (k,q − k) =
iρT

2mN
[(q̂·k)c(k) + q̂· (q − k)c(|k − q|)]

where we introduced a direct correlation function c(k) = 1
ρ

(

1 − 1
Sk

)

.
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Chapter 3

Connection with disordered

systems

In previous chapter we introduced the Mode-Coupling theory that has captured
some aspects of the slow dynamics in supercooled liquids. However the nature
of the Mode-Coupling factorisation remained unclear. A reliable guide for this
approximation is necessary for several reasons:

• An uncontrolled closure leading to MCT might violate some physical con-
straints or symmetries. This will be discussed in relation with standard
MCT and eMCT in the next chapters. Such a possibility might also sug-
gest that results derived within MCT/eMCT are artifacts of the approxi-
mation.

• Insights into the Mode-Coupling Factorisation would shed more light on
the physical origins of the success of MCT.

• The guide would also provide an idea on how to generate a systematic
perturbation around MCT which would allow the structural stability test
of MCT with respect to corrections.

These points lead to an intensive research for models whose dynamics is
exactly described by MCT. Surprisingly such models exist [72, 73, 74]: examples
are Potts glasses with number of states greater than 4 and spherical p-spin
models on fully connected nets. Their high temperature dynamics are governed
by a schematic MCT equation (2.24). In this chapter we introduce the spherical
3-spin model and develop a field theory formalism for this model. The latter
allows us to derive dynamic equations and establish the results of 2.3 for the 3-
spin model. Finally Sec. 3.4 presents a physical interpretation of the transition
in the model.
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3.1 The spherical 3-spin model

The model is defined as a set of N continuous spins interacting by triplets (or
by p-multiplets in case of p-spin models) on a fully connected network. The
bonds have a Gaussian distribution of zero mean. The Hamiltonian reads:

H = − 1

3!

N
∑

k,l,m=1

Jklmφkφlφm (3.1)

Jklm = 0, J2
klm =

3!

2N2

The spins evolve under Langevin dynamics with the Gaussian white noise of
zero mean:

∂tφk = − ∂H

∂φk
− zφk + ξk (3.2)

〈ξk〉 = 0, 〈ξk(t)ξl(s)〉 = 2Tδklδ(t− s)

(3.3)

Spins are subject to the spherical constraint:
∑

k

φ2
k = N that is enforced by a

Lagrangian multiplier z(t). Initial conditions are fixed as follows: the system
is at equilibrium at T = ∞ at t = 0 and is quenched to a finite T for t > 0.
One could start from an equilibrated initial condition but the procedure is more
involved [75]. Henceforth thermal average is denoted by angular brackets 〈· · · 〉
and the average over the disorder is denoted by an overline · · ·.

A field theory is constructed from the Langevin equation (3.2) by the virtue
of the Martin-Siggia-Rose [76] formalism which is a standard method[77]. The
derivation is completely standard and yields a field theory for fixed disorder:

SJ [φ, φ̂] =

∞
∫

0

dt





N
∑

k=1

(

T φ̂2
k + φ̂k(∂t + z(t))φk

)

−
∑

jkl

Jjklφ̂jφkφl(t)



 (3.4)

We would like to carry out the average over disorder J . This average is
very delicate if one computes static quantities where it requires introduction of
replicas [78]. In the dynamic case this is not always necessary [30, 79]. The

average of a quantity A[φ̂, φ] reads:

〈A〉 =

∫

dJP(J)
∫

Dφ̂DφA[φ̂, φ]e−SJ

∫

dJP(J)
∫

Dφ̂Dφe−SJ

.

If initial conditions are uncorrelated with disorder there is no need to intro-
duce replicas: the generating functional which leads to the above expression
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for averages is constructed from a path integral which is independent of dis-
order [30]. Therefore the denominator is constant and can be absorbed in the
normalisation. Averages can be simply computed from

Z =

∫

DJP(J)

∫

Dφ̂Dφe−SJ .

But if the initial conditions are correlated with the disorder, then one has to
introduce replicas and work with replicated dynamic quantities. Our protocol
provides initial conditions uncorrelated with disorder so that the average over
J is just a Gaussian integration over the couplings Jijk . The action S for a field
theory averaged over disorder reads:

S[φ, φ̂] = S2 + SINT =

N
∑

k=1

∞
∫

0

dt[T φ̂2
k + φ̂k(∂t + z(t))φk] −

− 3

4N2

∑

klm

∞
∫

0

dt

∞
∫

0

ds (φ̂kφlφm)(t)(φ̂kφlφm)(s) − (3.5)

− 3

2N2

∑

klm

∞
∫

0

dt

∞
∫

0

ds (φ̂kφlφm)(t)(φ̂lφkφm)(s)

S2 =

N
∑

k=1

∞
∫

0

dt[T φ̂2
k + φ̂k(∂t + z(t))φk] (3.6)

SINT = − 3

4N2

∑

klm

∞
∫

0

dt

∞
∫

0

ds (φ̂kφlφm)(t)(φ̂kφlφm)(s) − (3.7)

− 3

2N2

∑

klm

∞
∫

0

dt

∞
∫

0

ds (φ̂kφlφm)(t)(φ̂lφkφm)(s)

where we introduced a perturbation expansion in powers of 1/N where N is

the total number of spins: the quadratic terms in φ̂,φ define the Gaussian part
S2 and the other terms compose an interaction SINT . Note that the average
over the disorder leads to an interaction non-local in time. Let’s present some
properties of the field theory. First, Eq. (3.2) is invariant under a local gauge
symmetry [80]: changing the sign of a single bond Jklm in (3.2) is compensated
by a flip of the spin φk associated to that bond. This implies that the one-point

quantities 〈φk〉 and 〈φ̂k〉 are zero identically; the two-point functions 〈φkφl〉 and

〈φkφ̂l〉 have a diagonal index structure:

〈φkφl〉 = δkl〈φkφk〉
〈φkφ̂l〉 = δkl〈φkφ̂k〉
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and the diagonal elements do not depend on the index value. These identities
hold in perturbation theory order by order. First, let’s note that the Gaussian
theory given by S2 has a diagonal index structure. Second, an attempt to

construct a diagram contributing to 〈φkφl〉 or 〈φkφ̂l〉 with k 6= l leads to the

appearance of bare lines 〈φmφn〉0 or 〈φmφ̂n〉0 with m 6= n within a diagram
(Here index 0 stands for a Gaussian average with S2). This is ensured by the
vertices of the interaction SINT . Then, we can define the following two-point
functions:

C(t, s) = 〈φk(t)φk(s)〉
R(t, s) = 〈φk(t)φ̂k(s)〉
R(t, s) = 〈φ̂k(t)φk(s)〉
Q(t, s) = 〈φ̂k(t)φ̂k(s)〉 (3.8)

where C is the spin autocorrelation function and R is the response function
(This is easily verified by adding a magnetic field to (3.1)) and by definition
R(t, s) = R(s, t)). The response functions have the usual causal structure:
R(t, s) ≡ 0 t < s, R(t, s) ≡ 0 t > s and Q(t, s) ≡ 0. Clearly this is true for
the Gaussian theory given by S2. This together with the causal structure of the
interaction SINT i.e. the fact that all vertices in Eq. (3.7) contain at least one

field φ̂ ensures that causality is preserved order by order in perturbation theory.

3.2 Self-consistent perturbation theory

The bare correlators implied by Eq. (3.6) show a simple exponential relaxation
at any temperature. The non-trivial dynamics appearing as the temperature is
lowered requires resummation of the perturbation series for C(t, s) and R(t, s)
in order to analyse their behaviour. This can be done in the context of the
Schwinger-Dyson equation which is derived in the context of the standard per-
turbation theory generated by the splitting of the action S into interaction SINT

(3.7) and Gaussian part S2 (3.6) [77]:

G−1
0 G = I + Σ[G0]

where G0 denotes the matrix of bare correlators and G denotes the matrix of
dressed correlators; Σ is a self-energy composed of all vacuum diagrams built
from the bare correlators with one line amputated. However, this is not sufficient
for our purpose since further resummation within Σ is required to access the
non-trivial dynamics of C and R. We would like to derive equations which
fixe C and R self-consistently in the spirit of the Mode-Coupling Theory. Such
equations are provided in the context of the self-consistent perturbation theory
where the bare correlator C0 and response function R0 are substituted by their
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dressed counterparts C and R in perturbation series. The latter are fixed self-
consistently by the Schwinger-Dyson (SD) equations:

G−1
0 G = I + Σ[G]

where Σ[G] is a self-energy given by the sum of all 2 particle irreducible vac-
uum diagrams built with dressed lines with one line amputated. A 2 particle
irreducible diagram remains connected under amputation of any two lines. The
construction of the perturbation theory is presented in Appendix as well as the
derivation of SD equations. The SD equations for the 3-spin case read:

(∂t + z(t))C(t, s) =

t
∫

0

duΣφ̂φ(t, u)C(u, s) +

s
∫

0

duΣφ̂φ̂(t, u)R(s, u)

(∂t + z(t))R(t, s) =

t
∫

s

duΣφ̂φ(t, u)R(u, s) (3.9)

where we set t > s so that the δ-function terms dropped out; the self-energies
Σφ̂φ and Σφ̂φ̂ are given by a sum of all 2PI vacuum diagrams with one line

cut off (R and Q respectively, see Appendix for details). The vertices of the
interaction are still given by SINT . It is worth mentioning here that the full SD
equations (with no constraints on the values of t, s) admit non-causal solutions
with Q(t, s) 6= 0 [19] although none is known so far.

The structure of Eq. (3.7) suggests a perturbation expansion in powers of
1/N . Naively, the order of a diagram in 1/N is determined by the number
of vertices since each vertex contributes a factor 1/N2. However the index
structure of the vertices also contributes. Two point correlators have diagonal
index structure and do not depend on indices. This fixes certain indices and
summation over the other indices gives a factor Nf where f is the number
of unfixed indices per vertex. It turns out that by an appropriate choice of
the topology of a diagram one can compensate these two contributions and
construct a diagram of a given order in 1/N with arbitrarily large number of
vertices. Therefore any order in 1/N contains infinitely many diagrams so that
a partial resummation is necessary to get a useful expansion in 1/N . This is
a difficult problem in general. The only exception is the lowest order in 1/N :
there are only two diagrams of order N and they are constructed from a single
vertex (see Fig. 3.2).

For high enough temperatures, time translation invariance (TTI) and time
reversal symmetry (TRS) (and consequently fluctuation-dissipation theorem
(FDT)) hold: R(t, s) = 1/T∂sC(t, s) [31]. Therefore there is a single inde-
pendent two-point function. A low temperature phase with different properties
will be considered later in Chapter 7. A limit t, s → ∞ with fixed τ = t − s
should be taken in perturbation expansions in order to forget the initial condi-
tions at t = 0. Under this assumptions the SD equations (3.9) reduce to a single
equation:
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Figure 3.1: Vertices of the 3-spin model. Arrow lines correspond to the field φ̂,
the simple lines correspond to the field φ; t and s denote times.

t s t s

Figure 3.2: The lowest order diagrams in perturbation theory. The wiggly line
denotes Q, simple line denotes C and directed lines stand for R.
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(∂τ + z(∞))C(τ) =
1

T



Σ(0)C(τ) −
τ
∫

0

duΣ(τ − u)∂uC(u)



 (3.10)

where we introduced Σ ≡ Σφ̂φ̂
1. The constant z(∞) is eliminated with the help

of the τ → 0 limit of the above equation: z(∞) = T + Σ(0)/T . Then (3.10)
reads:

(∂τ + T )C(τ) = − 1

T

τ
∫

0

duΣ(τ − u)∂uC(u) (3.11)

or after Laplace transform:

f̂(z) = L[f ] =

∞
∫

0

dτf(τ) exp(−zτ) T 2Ĉ(z)

1 − zĈ(z)
= T + Σ̂(z) (3.12)

Note that it looks remarkably similar to the schematic equation (2.24). However
this time the kernel Σ(τ) admits a systematic expansion in C contrary to the
sMCT case.

3.3 Local self-energy approximation.

The thermodynamic limit N → ∞ suppresses all the diagrams in the expansion
of Σ except a single one - the left diagram on Fig. 3.2:

Σ = = 3
2C

2(τ) (3.13)

Then (3.11) reads:

(∂τ + T )C(τ) = − 3

2T

τ
∫

0

duC2(τ − u)∂uC(u) (3.14)

T 2Ĉ(z)

1 − zĈ(z)
= T +

3

2
L
[

C2
]

(3.15)

This is the main result of the section: equations (3.14)/(3.15) are mathe-
matically identical to (2.24) up to a redefinition of constants. Thus, the ther-
modynamic limit N → ∞ of the 3-spin model exactly reproduces sMCT. The
same statement holds for a generic polynomial expression of Σ:

1This is different from [30, 31] where the same quantity is denoted as D
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Σ(τ) = Σ[C(τ)] =
∑

p>1

p

2
H2

pC
p(τ) (3.16)

where the underlying microscopic model is a generalised p-spin model:

H = −
∑

p>2

Hp

p!

N
∑

ki=1,i=1..p

Jk1k2···kpφk1
· · ·φkp .

3.4 Free-energy landscape interpretation

Analysis of the statics and the free energy landscape of the 3-spin model provided
an insight on physics underlying the MCT transition [74]. A careful analysis of
the 3-spin model revealed existence of two distinct transitions: a dynamic one
at T = Td which is the schematic MCT transition and a static one at T = Tc.
The slowing down of the dynamics close to Td is caused by the appearance of a
multiplicity of marginally stable states of the free energy F ; it takes more and
more time for the system to explore the phase space landscape. Finally below
T < Td the barriers between different metastable states diverge and phase space
splits into disconnected domains: the system gets trapped in a particular state.
The value of the non-ergodic parameter f = limτ→∞C(τ) (Edwards-Anderson
parameter in the spin glass terminology) corresponds to the average overlap
between the microscopic states inside the same domain. The static transition
at Tc is usually associated with the Kauzmann temperature TK .

3.5 Summary

The mapping between spin glasses and structural glasses represented by MCT
has several implications:

• Existence of models for which MCT is exact is a good sign. It explains
the partial success of MCT in capturing the slow dynamics and suggests
that MCT does not violate any physical constraints.

• The Mode-Coupling Factorisation is just the Mode-Coupling approxima-
tion (MCA) in the context of the 3-spin model. The former is well-known
in critical dynamics [81]. Thus, one may hope that the full MCT can also
be derived as an MCA within some density fluctuations theory.

• We only considered the lowest order of perturbation theory for the 3-spin
model. The self-consistent perturbation theory provides a systematic way
to compute higher order corrections to Eq. (2.24). Therefore it provides
a framework for the structural stability test of MCT.

• The absence of a similar mapping for eMCT suggests that something is
wrong with eMCT. As we will show in the next chapter, eMCT [28] violates
time reversal symmetry.
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• MCT is not valid at low temperatures i.e. below a transition where time
translation invariance and time reversal symmetry are broken. The map-
ping provides an insight into possible extensions of MCT to the low-T
phase. The 3-spin model considered above is well-defined for all tem-
peratures but as we will see in Chapter 7 the above analysis should be
completely reconsidered.

We cover these points one by one in the following chapters.

Appendix. Second Legendre Transform and self-

consistent perturbation theory

The derivation of the dynamical equations which lead to sMCT require the
introduction of the Second Legendre Transform [82, 83]. The latter allows to
construct the correct perturbation theory in terms of the dressed correlators
and it is in this sense self-consistent. It is worth noticing that higher order
Legendre Transforms are possible leading to a more elaborated perturbation
theories including dressed vertices. The main idea is to reformulate the problem
using the variational approach. In this subsection we present in detail the Second
Legendre Transform and construct the self-consistent perturbation theory for
the 3-spin model.

To simplify the notations we introduce the column vector Ψ(t) = (φ(t) φ̂(t))T

and general vertices Ak(t1, . . . tk), k = 1, 2, . . . which are supposed to be non-
zero. We also introduce:

m(t) = 〈Ψ(t)〉 =
(

〈φ〉 〈φ̂〉
)T

G(t, s) = 〈Ψ(t)Ψ(s)〉 =

(

C(t, s) R(t, s)
R(t, s) Q(t, s)

)

Then the action (3.5) reads:

S = −
∑

k

1

k!

∫

[

k
∏

l=1

dtl

]

Ak(t1, · · · tk)

k
∏

n=1

Ψ(tn),

Z[A] =

∫

DΨe−S, W [A] = logZ[A]

Let’s use the definition of W [A] to write the following equations which fix
m and G:

δW

δA1(t)
= m(t),

δW

δA2(t, s)
=

1

2
(G(t, s) − m(t)m(s)) (3.17)
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The main problem is to find the values of m and G given the vertices {Ak}.
To reformulate it as a variational principle we introduce Γ as the functional of
m and G:

Γ[A] = W [A] −
∫

dt m(t)A1(t) −
∫∫

dt ds
1

2
(G(t, s) − m(t)m(s))A2(t, s)(3.18)

where we inverted the equations (3.17) to define A1, A2 as functions of m,G.
This transformation corresponds to the passage from the bare averages and cor-
relators to the dressed averages m and correlators G as independent variables.
To fix the latter we derive Γ with respect to m,G. This yields [82, 83]:

δΓ

δm
− 2m

δΓ

δG
= −A1 (3.19)

2
δΓ

δG
= G−1 + Σ = −A2 = G−1

0 (3.20)

where we have denoted the bare propagator as G0. We also introduced a new
quantity Σ usually called self-energy. In these equations A1, A2 should be con-
sidered as the external sources. This can be reformulated as the variational
problem [82, 83] of finding the stationary points of the functional Γ[m,G] +
mA1 + 1

2 (G − mm)A2. In order to do that we need some method of recon-
structing the functional Γ: for this we can solve the equations (3.19),(3.20)
iteratively in the powers of the vertices {Ak}. This yields for Γ:

Γ =
1

2
tr logG +

sum of all 2-particle irreducible
diagrams with G-line and G−1m
tail

The G−1m tail means that m is attached directly to the vertex. As it was
mentioned above for the 3-spin model gauge invariance imply m = 0 and the
above expression simplifies to:

Γ =
1

2
tr logG +

sum of all 2-particle irreducible
diagrams with G-line

(3.21)

If we denote Φ[G] as the set of all 2-particle irreducible (2PI) diagrams then
equation (3.20) reads:

∫

duG0
−1(t, u)G(u, s) = I × δ(t− s) +

∫

duΣ(t, u)G(u, s) (3.22)

G0(t, s) =

(

0 −∂t + µ(t)
∂t + µ(t) 2T

)

× δ(t− s)

Σ(t, s) =
δΦ[G]

δG(t, s)
=

(

Σφφ(t, s) Σφφ̂(t, s)

Σφ̂φ(t, s) Σφ̂φ̂(t, s)

)

(3.23)

Each component of Σ is obtained by cutting one of the lines from the diagrams
of Γ we get the following expressions for these components:
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Σφφ =
sum of all 2-particle irreducible
diagrams with amputated C-line

Σφφ̂ =
sum of all 2-particle irreducible
diagrams with amputated R-line

Σφ̂φ =
sum of all 2-particle irreducible
diagrams with amputated R-line

Σφ̂φ̂ =
sum of all 2-particle irreducible
diagrams with amputated Q-line

(3.24)

It is easy to show using the causality of theory (3.5) that each 2PI diagram
contains either a Q-line either a loop of R/R-lines. This implies immediately
that Σφφ(t, s) ≡ 0 in all orders of perturbation theory. For the same reason i.e
causality we have: Σφφ̂(t, s) ≡ 0 t < s and Σφ̂φ(t, s) ≡ 0 t > s. Now there are

only two a priori independent correlators C(t, s) and R(t, s) since Q(t, s) = 0
and R(t, s) = R(s, t) as was argued in the end of the previous subsection. This
suggests that there are only two independent components of Σ namely Σφ̂φ̂ and

Σφ̂φ and consequently only two independent equations out of four (3.20) (we

impose t > s):

(∂t + µ(t))C(t, s) =

t
∫

−∞

duΣφ̂φ(t, u)C(u, s) +

s
∫

−∞

duΣφ̂φ̂(t, u)R(s, u)

(∂t + µ(t))R(t, s) =

t
∫

s

duΣφ̂φ(t, u)R(u, s) (3.25)

These equations provide the dynamic evolution of the correlators of the spherical
3-spin model.

Finally, let’s note that the generic SD equation (3.22) can be solved by
iterations in powers of the interaction vertices. This solution yields the standard
perturbation theory for the correlator G. This shows that the self-consistent
perturbation theory introduced above is just a partial resummation of the simple
perturbation theory.
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Chapter 4

Dynamical field theories for

glass-forming liquids

The problems with MCT considered in previous chapters inspired a research
aimed at the theory into there are related directions:

• Generation of systematic corrections. Analysis of the corrections would
allow to test the structural stability and shed more light on the problem
of the spurious transition and its cut off.

• Cut off of the transition: search for the mechanism responsible for smooth-
ing the transition.

• Extension to low temperatures where the liquid falls out of equilibrium.

Experiments and numerical simulations [55, 6] indicate that density fluc-
tuations are an adequate set of slow variables for describing the dynamics of
supercooled liquids. Field theory provides a convenient context for analysis of
the above three points. First, perturbation series which provide systematic cor-
rections are easy to obtain within a field theory and there exist developed tools
for dealing with them. This makes the structural stability analysis possible.
Second, a field theory description extends naturally to glassy phases where liq-
uid falls out-of-equilibrium and relaxation times become macroscopic. A similar
derivation within the projection operator formalism is still out of reach despite
the efforts [29]. Third, reconstruction of MCT within such a theory would shed
more light on its physical background. Fourth, as we will see the dynamic equa-
tions derived within the field theory also contain static equations. This provides
a possibility of simultaneous analysis of both static and dynamics properties con-
trary to the projection operator formalism where statics is merely an input for
dynamics. Next, multi-point functions which are essential for probing dynamic
heterogeneities are easily computed within this context. Finally, the results of
2.5 which identify the growing correlation length show that the glass transition
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is not a short scale phenomenon as it was stressed [34, 84]. This validates ap-
plication of a field theory description which is a long and intermediate scale
formalism to the problem of the glass transition.

The derivation of MCT within a field theory received a lot of attention and
several attempts were made [85, 28, 86, 38]. However the derivation seemed
to be problematic: analysis of these works shows that the main obstacle is the
preservation of the fluctuation-dissipation theorem (FDT) and therefore the un-
derlying time-reversal symmetry (TRS) [87]. The equations of motions preserve
TRS but an arbitrary approximation scheme does not necessarily. Within the
derivations FDT was either assumed [85, 28] or some important simplifications
had to be made [86] which as we will see, oversimplify the problem and lead
to a model which cannot have a transition. Our attempt to reanalyse these
works revealed a violation of TRS within the approximations used to construct
MCT. Time reversal symmetry is a key ingredient of equilibrium dynamics and
should not be violated: as we will see below in this chapter this may lead to
incorrect results. On the other hand, low-T analysis of glassy phases also relies
on time-reversal symmetry [31, 30, 88] and requires a theory that respects FDT
in the first place.

The resolution of these issues is the main content of the present chapter. It
is split into two big parts. In the first part we focus on formal symmetry related
properties of the field theories. Our aim is to control the symmetry in pertur-
bation expansions which would guarantee its preservation. We do that on the
examples of field theories used in [85, 28]: Brownian dynamics which parallels
MCT of 2.2 and Fluctuating Non-linear Hydrodynamics (eMCT). Time-reversal
symmetry has a non-trivial expression within these field theories and requires
much care. Neglecting this issue may lead to problems illustrated in Sec. 4.3.
We show how to resolve this problem and construct correct perturbation ex-
pansions that automatically preserve TRS. These results are used in the second
part where we highlight the problems with FDT appearing in [85, 28] and apply
the developed formalism to recover MCT within the field theories.

4.1 Field theories of density fluctuations

We start by introducing two field theories used to study glass-forming liquids:
dense colloidal systems which are represented well by Brownian dynamics and
supercooled liquids which are studied in the context of Fluctuating Non-linear
Hydrodynamics (FNH). FNH describes a compressible liquid which evolves un-
der Newton dynamics with several conserved quantities on long- and interme-
diate timescales. We do not include energy for simplicity but it can be incorpo-
rated easily.

4.1.1 Brownian dynamics and the Dean equation

The starting point is a set of Langevin equations for a system of N Brownian
particles in a 3d Euclidean space interacting via a pair potential U (lower case
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Greek letters label coordinates, lower case Roman letters label the particles):

∂txα = −
∑

α<β

∇U(xα − xβ) + ξα (4.1)

where ξα is a Gaussian white noise of zero mean and with the variance:

〈ξα,i(x, t)ξβ,j(y, s)〉 = 2Tδαβδij δ(x − y) δ(t− s) (4.2)

Using Itô calculus Dean showed that the local density ρ(x, t) =
∑

α δ(x −
xα(t)) of the system evolving under (4.1) obeys the following Langevin equa-
tion [89]:

∂tρ(x, t) = ∇·
(

ρ(x, t)∇ δF
δρ(x, t)

)

+ η(x, t) (4.3)

This time, η is a Gaussian multiplicative noise with zero mean. Its variance
reads:

〈ηα,i(x, t)ηβ,j(y, s)〉 = 2Tρ(x, t)∇x∇yδ(x − y)δ(t − s)

Appearance of the multiplicative noise is not surprising: density cannot fluctuate
in empty regions. The density functional F reads (for a fluid of average density
ρ0):

F [ρ(x)] = T

∫

d3x ρ(x)
(

ln ρ(x)
ρ0

− 1
)

+ 1
2

∫

d3x
∫

d3y ρ(x)U(x − y)ρ(y)(4.4)

= −TS[ρ] + Fint[ρ]

Now the dynamic average of an observable A over realisations of the noise
η can be expressed via a functional integral:

〈A〉 =

∫

DρA[ρ]〈δ(ρ− ρ(x, t)))〉η

=

∫

DρA[ρ]

〈

δ

[

∂tρ(x, t) −∇·
(

ρ(x, t)∇ δF
δρ(x, t)

)

− η(x, t)

]〉

η

This is a standard procedure to derive a field theory from a stochastic equation
(see [77]). The Jacobian arising from the transformation of δ-functions is con-
stant and is absorbed into the definition of the integral. This is possible since
(4.3) is defined in Itô sense and therefore has a Markov property.

The integral representation of the functional Dirac distribution through a
conjugated field ρ̂ allows one to carry out the average over the noise η. Then
the average of A reads:

〈A〉 =

∫∫ ∫

Dρ
∫

Dρ̂ A[ρ]eS[ρ,ρ̂]
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with

S[ρ, ρ̂] =

∫

d3x

∫

dt

{

ρ̂(x, t)
[

−∂tρ(x, t) + ∇ ·
(

ρ(x, t)∇ δF [ρ]
δρ(x,t)

)]

+Tρ(x, t)(∇ρ̂(x, t))2
}

(4.5)

or explicitly

S[ρ, ρ̂] =

∫

d3x

∫

dt

{

ρ̂(x, t)

[

−∂tρ(x, t) + T∇2ρ(x, t) (4.6)

+ ∇ ·
(

ρ(x, t)

∫

d3y ∇U(x − y)ρ(y, t)

)

]

+ Tρ(x, t)(∇ρ̂(x, t))2
}

For brevity we denote x = (x, t).

4.1.2 Fluctuating Non-linear Hydrodynamics

The equations of FNH are not derived from first principles contrary to the Dean
equation (4.3). They are meant to be a generalisation of the hydrodynamics
equations to intermediate time- and lengthscales. An accurate description of the
short time- and length scales is not expected. Hence they describe the dynamics
of a slow variables subject to a thermal noise generated by integrating the fast
degrees of freedom.

A phenomenological derivation and discussion can be found in [28, 90]. In
what follows we concentrate on FNH as presented by Das and Mazenko [28] in
their analysis of a glass transition in compressible liquids. Their equations read:

∂tρx =

∫

d3y{ρx, gi,y}
δF
δgi,y

(4.7)

∂tgi,x =

∫

d3x′{gi,x, ρy}
δF
δρy

+

∫

d3x′
∑

j

{gi,x, gj,y}
δF
δgj,y

+
∑

j

∫

d3yΓij(x − y)
δF
δgj,y

+ ηi,x (4.8)

where ρ and gi are density and the ith component of the momentum respectively.
ηi is a Gaussian white noise with variance: 〈ηi(x, t)ηj(y, s)〉 = 2TΓij(x−y)δ(t−
s). The effective free energy functional F reads:
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F = Fkin + Fint

Fkin[ρ,g] =
1

2

∫

d3x
g2(x)

ρ(x)
,

Fint[ρ,g] =
T

m

∫

d3xρ(x)(log[ρ(x)/ρ0] − 1)

− T

2m2

∫

d3xd3yc(x − y)(ρ(x) − ρ0)(ρ(y) − ρ0)

where ρ0 is the average density, m is the particles mass and c(x) is the di-
rect correlation function. The functional Fint is the Ramakrishnan-Youssouff
functional. The Poisson brackets {·, ·} and Γij are defined so that the continu-
ity equation is satisfied and the linearised versions of equations (4.7) and (4.8)
coincides with usual linear hydrodynamics equations:

Γij(x − y) =

[

−η0
(

1

3
∇i∇j + δi,j∇2

)

− ζ0∇i∇j

]

δ(x − y) = Lijδ(x − y)

{ρ(x), gi(x
′)} = −∇i

xδ(x − x′)ρ(x)

{gi(x), ρ(x′)} = −ρ(x)∇i
xδ(x − x′)

{gi(x), gj(x
′)} = −∇j

xδ(x − x′)gi(x
′) − gj(x)∇i

xδ(x − x′)

η0 and ζ0 are bare shear and bulk viscosity. Equations (4.7),(4.8) can be written
in a more explicit way:

∂tρx = −∇ · gx (4.9)

∂tgi,x = −ρx∇i
δFint

δρx
−
∑

j

∇j

(

gi,xgj,x

ρx

)

−
∑

j

Lij

(

gj,x

ρx

)

+ ηi,x

Note the difference with standard MCT where the longitudinal current was also
considered in the derivation: here all the three components of the current are
presented and coupled to density, like in EMCT considered in Sec. 2.7.

Starting from these equations and applying the same procedure as the one
used for Dean’s equation in Sec. 4.1.1 a field theory for ρ, g and conjugated
fields ρ̂ and ĝ is derived. The action reads: S =

∫

d3x
∫

dt sx

sx = −ρ̂x

[

∂tρx + ∇i

(

ρx
δF
δgi,x

)]

+ T ĝi,xLij ĝj,x (4.10)

−ĝi,x

[

∂tgi,x + ρx∇i
δF
δρx

+ ∇j

(

gi,x
δF
δgj,x

)

+ gj,x∇i
δF
δgj,x

+ Lij
δF
δgj,x

]

Note that Brownian dynamics has a multiplicative noise, but FNH does
not. However in both case the transformations corresponding to time-reversal
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symmetry are non-linear in fields which is due to the multiplicative noise for BD
and the coupling to currents for FNH. This is the origin of the problems with
preservation of time reversal symmetry in approximations [87]. In the following
we focus on the field theory for Brownian dynamics. The analysis of FNH
follows closely the one for Brownian dynamics and will be presented separately
in Sec. 4.5. We would refer to the field theory generated by Dean’s equation as
Brownian dynamics (BD) and to field theory generated by FNH equations as
FNH.

4.2 Time-reversal symmetry and fluctuation-dis-

sipation theorem

Time-reversal symmetry (TRS) relates the probabilities of a path in configu-
rational space and its time reversal counterpart. It plays an important role
in equilibrium dynamics: all the systems in equilibrium obey this symmetry.
All physical correlation functions are invariant under time reversal. For two
point functions this results into a well-known fluctuation dissipation theorem.
In context of field theory this symmetry is represented by a transformation of
the fields which leaves the action invariant.

In this section we derive the transformations associated to TRS, identify the
response function and derive the fluctuation-dissipation theorem (FDT) within
Brownian dynamics. To highlight the subtleties related to TRS for dynamical
theories of liquids we use the 3-spin model as a reference because it has a simple
transformation associated to TRS so that no subtleties appear.

4.2.1 Spherical 3-spin model

A straightforward check shows that the following transformation leaves the ac-
tion (3.5) invariant under time reversal t→ −t:

[

φ(−t)
φ̂(−t)

]

→
(

1 0
− 1

T ∂t 1

)[

φ(t)

φ̂(t)

]

= M

[

φ(t)

φ̂(t)

]

Note that this transformation is linear in fields. As we have seen in Sec. 3.1
conjugate fields φ̂l are also the response fields so that the response function
reads:

R(t, s) =

〈

δφk(t)

δh(s)

〉

h=0

= 〈φk(t)φ̂k(s)〉.

The above transformation implies Ward-Tahakashi identities for various corre-
lators. In particular for R and R (see (3.8)) it gives the fluctuation-dissipation
theorem:

64



R(s− t) = R(t− s) − 1

T
∂sC(t− s) → R(t− s) =

θ(t− s)

T
∂sC(t− s)

R(s− t) = R(t− s) − 1

T
∂tC(t− s) → R(t− s) =

θ(s− t)

T
∂tC(t− s)

where we have used causality of R and R. This identities is the standard form
of FDT.

4.2.2 Brownian dynamics

Let’s now repeat the analysis for Brownian dynamics. It is easy to see that the
transformations which leaves the action (4.5) invariant under time-reversal t→
−t should transform ρ̂ in a non-trivial way ρ̂(t,x) → ρ̂(−t,x) + · · · and should
not affect the density field: ρ(t,x) → ρ(−t,x). An explicit computation shows
that there are two different transformations that leave the action unchanged (up
to a border term −1/T

∫

x
∂tF [ρx]):

• First transformation:

T :

{

t → −t
ρ̂x → ρ̂x + fx,

(4.11)

where f verifies:

∇ · (ρx∇fx) = − 1

T
∂tρx. (4.12)

and plays a role similar to the longitudinal part of a current for the density
field (Indeed the above equation is the usual density conservation equation
with the ”current” ρ∇f).

• Second transformation:

U :







t → −t
ρ̂x → −ρ̂x + 1

T

δF
δρx

.
(4.13)

The above transformations ensure that any average of the type 〈∏i ρ(xi, ti)〉 is
invariant under time reversal. Although TRS has two different associated trans-
formations the latter provide the same identities when applied to correlation
functions. The most important fact is that these transformations are non-linear
in the fields. The origin of this issue is easily tracked down: multiplicative noise
in Eq. (4.3).

We now would like to derive FDT. This requires a definition of the response
function which describes a response of density fluctuations to a perturbation
by an external potential. The field ρ̂ is not a response field contrary to naive
expectations: applying U to a naive response function Gxy(t, s) = 〈ρ(x, t)ρ̂(y, s)〉
one gets:
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1

T

〈

ρ(x, t)
δF [ρ]

δρ(y, s)

〉

= Θ(t− s)Cρρ̂,xy(t− s) + Θ(s− t)Cρρ̂,yx(s− t) (4.14)

Clearly Cρρ̂ cannot be a response function since it is not related by a correct
FDT to a density correlator. A correct method to identify the response function
is to perturb density by adding a source term Fext[ρ] = −

∫

x
ρxµx to the free

energy F in Eq. (4.4). The response Rxy(t, s) at time t and position x to an
infinitesimal external force switched on at time u and position y is defined as

〈ρ(x, t)〉µ = 〈ρ(x, t)〉µ=0 +

∫

d3y

∫ t

s

du Rxy(t, u)µ(y, u) + o(µ), (4.15)

where 〈·〉µ is the average taken with the free energy functional F + Fext. Ex-
panding the path integral to first order in µ, one gets:

〈ρ(x, t)〉µ = 〈ρ(x, t)〉µ=0 +

∫

d3y

∫ ∞

s

du 〈ρ(x, t)ρ̂(y, u)∇ · (ρ(y, u)∇µ(y, u))〉 .

Due to causality time u in the integral runs until t only, and integrating twice
by parts, one obtains the response function:

Rxy(t, s) = −〈ρ(x, t)∇ · (ρ(y, s)∇ρ̂(y, s))〉. (4.16)

This is the same response function as the one studied in [87].
Applying any of the transformations T or U to (4.16) yields FDT:

1

T
∂sCxy(t− s) = Rxy(t− s) −Rxy(s− t) (4.17)

where Cρρ,xy(t− s) = 〈δρ(x, t)δρ(y, s)〉 and Cab,xy(t, s) = 〈a(x, t)b(y, s)〉1. Con-
trary to the 3-spin model the response function in Brownian dynamics looks like
a three-point function but it is still a two-point function; the correct response
field is ∇ · (ρ(y, s)∇ρ̂(y, s)) as implied by Eq. (4.16).

4.3 Non-linear symmetry and perturbation the-

ory

The fact that time reversal symmetry for BD is associated to non-linear trans-
formations of the fields has several important consequences. First, it makes
Mode-Coupling Approximations violate the symmetry and hence fluctuation-
dissipation theorem. Second, TRS plays an important role in field theory: it
provides a number of identities between correlation functions known as Ward-
Takahashi identities. As we will see below these identities hold perturbatively

1We adopt this notation in what follows for two point quantities
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for the 3-spin model and simplify greatly the perturbation theory. On the con-
trary these identities are hard to use in Brownian dynamics and bring almost no
simplification to perturbation theory. Furthermore as will be illustrated in Sec.
4.3.2 much care should be taken when considering a self-consistent perturbation
theory which is of interest to us in order to preserve TRS: a careless treatment
leads to violation of FDT. The illustration of these problems is the main focus
of the section.

4.3.1 Linear symmetry

Let’s consider again the 3-spin model and analyse the implications of TRS as
given by Eq. (4.11) for perturbation series introduced in Sec. 3.1 which are gen-
erated by the decomposition of the action S (Eq. (3.5)) into a Gaussian part S2

(Eq. (3.6)) and an interaction SINT (Eq. (3.7)). For convenience we introduce

the vector Ψ = (Ψ1Ψ2)
T with components Ψ = φ and Ψ = φ̂ (here and forth T

is a transpose of a vector or a matrix) so that the transformation given by Eq.
(4.11) reads in these notations as Ψk(−t) = MklΨl(t). The integration measure
DΨ1DΨ2 is invariant under the time reversal transformation. Therefore applied
to a correlation function TRS generates Ward-Takahashi (WT) identities:

〈Ψ̃k1
· · · Ψ̃kn〉 =

∑

l1···ln

Mk1l1 · · ·Mknln〈Ψl1 · · ·Ψln〉

where Ψ̃(t) = Ψ(−t) denotes a time-reversed quantity. These identities hold
non-perturbatively. However perturbation expansions of both sides of the iden-
tity generate terms with arbitrary powers m:

〈Ψk1
· · ·Ψkn (SINT [Ψ])

m〉0
averaged with eS2 . It is straightforward to check that S2 and SINT are sepa-
rately invariant under the transformation (4.11). Therefore every term in the
perturbative expansion is also invariant under TRS and the WT identities hold
perturbatively order by order. In particular the following identity holds pertur-
batively for two-point quantities:

G̃ = M ·G·MT (4.18)

and G̃ = 〈Ψ̃Ψ̃〉. Generally this result means that time reversal symmetry is
respected order by order in perturbation series.

This reasoning applied to the standard perturbation theory. As we have
seen in Sec. 3.1 analysis of dynamical properties requires a self-consistent per-
turbation theory. This theory also preserves the symmetry order by order: the
proof is based on the invariance of the functional Γ[G] which generates the self-
consistent series under time reversal transformation. This is expected because a
physical symmetry should not change the value of a functional. The invariance
is proved using the definition of Γ given by Eq. (3.18). One should pay attention
to the time independence of the vertices Ak: explicit time dependence of say,
A1 is equivalent to time dependent external field and breaks TRS explicitly.
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The invariance of Γ has several consequences:

• Any time-reverted solution G̃ of δΓ/δG = 0 (see (3.20)) is also a solution.
If time-reversal symmetry is unbroken which is certainly true at equilib-
rium, then there is a unique solution and FDT holds: G = MGMT .

• Any expansion of Γ in powers of its parameters is also invariant i.e. coeffi-
cients of the expansions are invariant. Therefore the diagrammatic repre-
sentation (3.21) is invariant under time-reversal because it is an expansion
of Γ in powers of interaction vertices.

This together with the definition of self-energy Σ given by Eq. (3.24) allows to
derive the transformation rule for the self-energy under time-reversal:

Σ̃ = M−T ·Σ·M−1

which gives explicitly:

Σφφ̂(t− s) =
θ(s− t)

T
∂tΣφ̂φ̂(t− s)

Σφ̂φ(t− s) =
θ(t− s)

T
∂sΣφ̂φ̂(t− s) (4.19)

Σφ̂φ̂(s− t) = Σφ̂φ̂(t− s)

Σφφ = 0

Summarising, TRS is respected in perturbative expansions either simple or self-
consistent order by order. A careful analysis of the above reasoning reveals
that the proof is based on the linear structure of the transformation (4.11). The
linearity assures that different powers of the fields do not mix under transforma-
tion so that the quadratic action S2 has no chances to mix with the interaction
SINT under TRS. To make this point even more clear let’s imagine that the
transformation (4.11) is;

Ψk = MklΨ
2
l .

Now S2 and SINT would be no more separately invariant under TRS since
different powers of the fields are mixed. Therefore WT identities would then
read:

〈Ψ̃k1
· · · Ψ̃kn〉 = Mk1l1 · · ·Mknln〈Ψ2

l1 · · ·Ψ2
ln〉.

They would mix correlation functions with different number of fields and would
no more hold perturbatively. Self-consistent perturbation theory would no more
preserve the symmetry order by order (in powers of the vertex) and the Mode-
Coupling approximation would violate the time reversal symmetry.

4.3.2 Violation of the fluctuation dissipation theorem in

the self-consistent perturbation theory for Brownian

dynamics

Brownian dynamics with the non-linear transformation falls under this case. In
this section we focus on the BD field theory and highlight the difficulties and the
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failures of perturbation theories vis à vis FDT. The case of FNH is conceptually
identical but practically more clumsy because of the larger number of fields.

Let us start with a bare perturbation theory. In order to do a perturbative
analysis it is convenient to separate the Gaussian zero mean part of the local
density field from the interacting one by introducing density fluctuations in (4.5)
δρx = ρx − ρ0. This gives:

S =

∫

x

(s2,x + sINT,x) , (4.20)

with:

s2,x = ρ̂x

(

−∂tδρx + T∇2δρx + ρ0

∫

y

U(x − y)∇2δρy

)

+ Tρ0 (∇ρ̂x)
2

sINT,x = Tδρx(∇ρ̂x)2 + ρ̂x ∇ ·
(

δρx

∫

y

∇U(x − y) δρy

)

. (4.21)

This may be written in a more compact form through the bidimensional
vector field (δρ, ρ̂)†. In Fourier space, the inverse of the propagator of this field
is:

G̃−1
0 =

(

0 iω + Tq2 (1 + βρ0U(q))
−iω + Tq2 (1 + βρ0U(q)) −2Tρ0q

2

)

. (4.22)

This gives the following Feynman rules:

• bare density correlator:
C0(q, ω)

• bare naive response:
G0(q, ω)

• potential vertex:

k

k’

k’’ 1
2 (k · k′U(k′) + k · k′′U(k′′)) = V(k,k′,k′′)

• noise vertex:

k’

k’’
k

−Tk′ · k′

The bare density correlator is

C0(q, ω) =
2Tρ0q

2

ω2 + (Tq2)
2
(1 + βρ0U(q))

2 , (4.23)
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and the bare naive response (as we have already seen this is not really a response
to an external perturbation)

G0(q, ω) =
1

−iω + Tq2 (1 + βρ0U(q))
(4.24)

Due to the form of the vertices, diagrams with tadpoles and hence corrections
to the average density ρ0 vanish to all orders (the momentum at the entrance
into the tadpole is zero). This is expected since density is a conserved quantity.

In terms of density fluctuations, the response (4.16) is

Rxy(t, s) = −〈δρ(x, t)∇ · (δρ(y, s)∇ρ̂(y, s))〉 − ρ0∇2〈δρ(x, t)ρ̂(y, s)〉
= χxy(t, s) − ρ0 ∇2Gxy(t, s), (4.25)

where G is the naive response introduced earlier and χ is an ”anomalous” re-
sponse. Having a look at (4.25), one sees that part of the non-triviality of
the FDT arises from the anomalous response χ, which itself comes from the
multiplicative aspect of the noise, or equivalently from the nonlinearity of the
transformation of the fields associated with time-reversal. Consequently both
transformations T and U mix quadratic action S2 and interaction SINT . There-
fore time-reversal symmetry is not preserved in the perturbation theory order by
order unlike in the 3-spin model. Indeed applying transformation to diagrams
of a fixed order would produce diagrams of higher orders. If one would like
to enforce the preservation then one has to take into account interaction ver-
tices non-perturbatively. This discussion makes it clear that any approximation
which neglects vertex renormalisation is expected to be in contradiction with
FDT. This is indeed what happens in self-consistent approximations as we shall
show below.

Let us now focus on a self-consistent perturbation theory and in particular
on a mode-coupling approximation introduced by Kawasaki [81] that consists
in neglecting vertex renormalisation.

First, we write the Schwinger-Dyson (SD) equations (3.20)

G−1
0 ·G = 1 + Σ ·G, (4.26)

where Σ is the self energy,

Σ(k, ω) =

(

Σρρ(k, ω) Σρρ̂(k, ω)
Σρ̂ρ(k, ω) Σρ̂ρ̂(k, ω)

)

, (4.27)

and the associative product ( · ) is defined as follows:

(A · B)(q, τ) =

∫ ∞

−∞

duA(q, τ − u)B(q, u).

assuming that initial conditions are set at τ = −∞. Causality and reality of
the density auto-correlator imply that the self-energies verify:

70



Σρρ̂(q, τ) = Σρ̂ρ(q,−τ)
Σρρ̂(q, τ) = 0 for τ < 0 (4.28)

Σρρ(q, τ) = 0

The first diagrams contributing to the self-energies are

Σ
(2)
ρ̂ρ =

Σ
(2)
ρ̂ρ̂ =

++ +

Diagrams of higher orders all contain vertex renormalisation. Hence, if one
neglects renormalisation of both vertices, the SD equations (4.26) become the
Mode-Coupling equations for (4.3) (for τ > 0):

∂τG(q, τ) = −ρ0Tq2 (1 + β U(q))G(q, τ) +
∫ τ

0 du Σρ̂ρ(q, τ − u) G(q, u)

∂τC(q, τ) = −ρ0Tq2 (1 + β U(q))C(q, τ) +
∫ 0

−∞
du Σρ̂ρ̂(q, τ − u) G(q, u)

+
∫ τ

−∞
du Σρ̂ρ(q, τ − u) C(q, u) (4.29)

with:

Σρ̂ρ(q, τ) = 4

∫

d3k

(2π)3
G(q, τ) C(q − k, τ)V(k,q,q − k)V(q,k,q − k)

−2

∫

d3k

(2π)3
G(q, τ) G(q − k, τ)k · (q − k)V(k,q,q − k)

Σρ̂ρ̂(q, t) = 2

∫

d3k

(2π)3
C(q, τ) C2(q − k, τ)

−8

∫

d3k

(2π)3
ℜG(q, τ) C(q − k, τ)k · qV(k,q,q − k) (4.30)

These equations are not compatible with FDT as can be seen from the
perturbative solution of SD equations in powers of the potential and noise ver-
tices [87]. FDT is trivially verified at order zero. At order one the MC equations
are exact and hence they are automatically compatible with FDT. Incompat-
ibilities appear at order two, where diagrams such as those shown in Fig. 4.1,
the first diagrams contributing to vertex renormalisation, have to be taken into
account in the non self-consistent perturbation theory and therefore also in the
self-consistent one (as discussed previously, in order to preserve FDT one has
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always to take into account the contributions at all orders of the vertices). This
suggests that if one wants to improve the approximation by keeping for instance
the first vertex corrections, one has to include at least all the diagrams of or-
der two in the self-energy. In that case, the incompatibility with FDT would
be an effect of order three. However, nothing guaranties that the violation of
FDT by the self-consistent approximation is attenuated when the order of the
approximation is increased. That is, the self-consistent perturbation theory is
not consistent with FDT and any approximation within this theory would also
violate TRS. Another consequence of practical importance is that times in the
integrals are not restricted in [0, τ ]. On the contrary, when time-reversal - and
thus FDT - is preserved, times in the integrals run from 0 to τ as we will see
later in this chapter and in Chapter 6 where this property is referred to as time
ordering.

Figure 4.1: Example of diagram which contribute at order U2 to FDT but is
absent in the MC equations.

To conclude this paragraph, we remark that incompatibilities with FDT
have arisen from an explicit breaking of the time-reversal symmetry by the
decomposition S =

∫

x
(s2,x + sINT,x) which is due to the nonlinearity of the

field transformations related to time-reversal symmetry.

4.3.3 Quadratic density functional

Let’s also illustrate another important subtlety related with the response func-
tion: even if the transformations T or U were linear so that the decomposition
S =

∫

x(s2,x + sINT,x) does not break TRS, the response function may still be
expressed via a multi-point (more than two) quantity.

Let’s consider a quadratic density functional F :

F [ρ] =
1

2

∫

x,y

ρxW (x− y)ρy (4.31)

This can be achieved by truncation of the expansion of the entropic part S up
to the order two:

S[ρ] ≈ S[ρ0] − T

∫

x

δρ2
x

2ρ0
So that W (x) = U(x) +

T

ρ0
δx

Then the equilibrium measure is also Gaussian:
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P [ρ] ∼ exp

[

−1

2

∫

d3q

(2π)3
ρ(−q)ρ(q)

S(q)

]

S(q) = 〈ρ(−q)ρ(q)〉 = T/W (q)

where we use the fact that the potential V is defined up to a constant (see (4.1))
and fixed this constant so that

∫

d3xU(x) = −T/ρ0 and
∫

xW (x) = 0.
Now δF/δρ is linear in ρ; therefore the transformation U given by Eq. (4.13)

becomes linear:

U :

{

t→ −t
ρ̂x → −ρ̂x + 1

T

∫

y W (x − y)ρy
(4.32)

The linearity of U ensures that TRS is preserved in perturbation theory (both
standard and self-consistent). Relation (4.14) simplifies to:

Wq

T
C(q, τ) = Θ(τ)G(q, τ) + Θ(−τ)G(q, τ) (4.33)

and holds perturbatively. Similarly self-energies (4.27) are now related by Eq.
(4.19) or explicitly:

Σρ̂ρ(q, t) = −S(q)Σρ̂ρ̂(q, t) t > 0 (4.34)

This makes (4.33) compatible with the SD equations (4.29) which reduce to a
single equation:

∂τC(q, τ) = −ρ0Tq2 (1 + β U(q))C(q, τ) − S(q)

∫ τ

0

du Σρ̂ρ̂(q, τ − u) C(q, u)

But the response function is still given by Eq. (4.25) and still looks like a
three-point quantity. Equivalently, the response field is a complicated two-field
quantity.

4.4 Restoration of time-reversal symmetry in per-

turbative expansion

The violation of TRS within the self-consistent perturbation theory which is
vital for reconstructing MCT is an important problem. Another related problem
is the expression of the response function via a three-point quantity so that FDT
is complicated and relates two-point quantity to a three-point one. Therefore it
is hard to control. In this section we show how to resolve these problems and
restore the symmetry in loop expansions.
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4.4.1 How to linearise the symmetry and FDT ?

The example of 3-spin model and quadratic density functional considered above
indicate that there are no symmetry related problems in perturbative expan-
sions if the associated transformation is linear. This suggests to linearise the
transformations T or U associated to TRS. The other point is to make the
response function R given by Eq. (4.16) a two-point quantity.

The solution to these problems is to introduce auxiliary fields associated with
the non-linear terms in the transformations T or U and define a response field
which makes the response function a two-point quantity explicitly. This solves
the problem at the price of a more complicated field theory with more fields.The
2 different transformations associated to TRS imply that one can construct three
different field theories by linearising either both transformations simultaneously
either only one of them. Below we present the latter case. The simultaneous
linearisation of T and U is presented in [91].

Let’s consider the time-reversal transformation T first: we start from the
identity:

〈A〉 =

∫

DρA[ρ]

〈

δ

(

∂tρ(x, t) −∇·
(

ρ(x, t)∇ δF
δρ(x, t)

)

+ η(x, t)

)〉

(4.35)

We now plug into the functional integral the representation of the identity to
introduce the field f from T (see (4.11))

∫

D
∏

x,t

δ

(

∇ · (ρx∇fx) +
1

T
∂tρx

)

(det [−∇ · (ρx∇)]) = 1. (4.36)

The minus sign is set in the determinant to assure the positivity of the operator
so that we do not have to take the absolute value of the determinant. We
exponentiate the delta function using an auxiliary field f̂ and we introduce
fermionic fields φ and φ to exponentiate the determinant. As a consequence
there are new terms to add to the previous action (4.5) that read:

∫

x

f̂x

(

∇(ρx∇fx) +
1

T
∂tρx

)

−
∫

x

ρx∇φx · ∇φx. (4.37)

Furthermore we introduce also the response field ψ = ∇·(ρ∇ρ̂) which makes the
response function a two-point quantity. This leads to introduce a conjugated
field ψ̂ for the Fourier representation of the delta function related to ψ. The
final action is the integral of

sx = −ρ̂x∂tρx + ψx
δF
δρx

− T ρ̂xψx + ψ̂x(ψx −∇x · (ρx∇xρ̂x)) (4.38)

+f̂x

(

1
T ∂tρx + ∇x · (ρx∇xfx)

)

− ρx∇x ·
(

φx∇xφx

)

. (4.39)
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This action now remains invariant up to the boundary terms under the following
linear transformation T1: first invert the time t → −t then transform the fields
in as follows:

T1 :























ρ̂x → ρ̂x + fx

ψx → ψx + 1
T ∂tρx

ψ̂x → ψ̂x + Tfx

f̂x → −f̂x + Tfx + ψ̂x + T ρ̂x

fx → −fx

(4.40)

Formally we can write this as Ψ̃ = M · Ψ, where Ψ = (ρ, ρ̂, ψ, ψ̂, f, f̂ , φ, φ)T

and Ψ̃(x, t) = Ψ(−x, t). Now the field transformation corresponding to TRS is
linear. As we already know the propagators transform following the rule:

〈Ψ̃Ψ〉 = M · 〈ΨΨ〉 ·MT (4.41)

This transformation has a determinant of modulus one, as a product of simple
transformations with this property.

Let’s now show that this transformation implies FDT. Consider Rxy(s −
t) = −〈ρ(x,−t)ψ(y,−s)〉. Under the transformation T1 this transforms into
Rxy(t − s) − 1

T ∂sCxy(t − s). Thus the equality (4.41) implies in particular
Rxy(t − s) = Rxy(s − t) + 1

T ∂sCxy(t − s) which is the fluctuation-dissipation
relation given by Eq. (4.17).

We now show how to linearise the second transformation U . Let’s introduce
the field θ = δF/δρ and the conjugate one θ̂ to exponentiate the delta function2.
The action S is then transformed into an integral of

sx = −ρ̂x∂tρx + Tρx(∇xρ̂x)2 + θ̂x

(

θx − δF
δρx

)

− ρx(∇xρ̂x)(∇xθx). (4.42)

The corresponding linear transformation U1 reads

U1 :

{

ρ̂x → −ρ̂x + 1
T θx

θ̂x → θ̂x − 1
T ∂tρx,

(4.43)

As before we write it as Ψ̃ = M · Ψ, where Ψ = (ρ, ρ̂, θ, θ̂)T this time and
Ψ̃(x, t) = Ψ(−x, t). The same identity (4.41) holds for time-reverted and usual
correlators. Again the transformation has a determinant of modulus one. In
the context of U1 the response function expresses as Rxy(t−s) = 〈ρ(x, t)θ̂(y, s)〉
so that there is no need to introduce a special response field. Applying the
transformation U1 to Rxy(t− s) we recover FDT

〈ρ(x,−t)θ̂(y,−s)〉 = Rxy(t− s) − 1

T
∂sCxy(t− s)

2The usefulness of introducing these two fields when dealing with the BD field theory was
noticed by Chamon and Cugliandolo from a slightly different perspective [92]

75



One might wonder how final results depend on a particular implementation
of the linearised field theory. As far as self-consistent perturbation theory and
MCT are concerned we derived dynamical equations within

a) completely linearised theory where both symmetries are made linear.

b) theory where only transformation T is made linear.

c) theory where only transformation U is made linear.

At the order of one loop, we have found the same sets of equations for cor-
relation and response function at long times in all cases. This is not surprising,
since the different transformations do not affect the physical fields and change
the response fields in the same way. We thus expect this to be valid at all
orders. Indeed, as we will show below, one gets closed equations for the dy-
namical evolutions of correlators involving only the fields ρ and θ. In addition,
this suggests that FDT makes the results robust with respect to the choice of
extra dynamical variables. This remark allows to focus in the following on the
simplest theory written above in terms of ρ, ρ̂, θ and θ̂ only, the choice of the
fields to work with being merely a matter of taste. For brevity we will refer to
it as a minimal theory.

4.4.2 Minimal theory and Ward-Tahakashi identities

Let’s consider the minimal theory and its properties. Our aim is to derive
explicitly the Ward-Tahakashi identities for two-point correlators and introduce
the perturbation theory. As the symmetry is preserved we expect a considerable
simplifications in computations related with perturbation theory. Indeed as we
shall see there are only 3 independent correlators although 4 fields suggests 16
correlators in general case.

The minimal theory is defined by the action (4.42); TRS transformation is
U1. Standard perturbation theory defined similarly to that considered in Sec.
4.3.2: we consider density fluctuations δρ around the constant average value ρ0.
This decomposes the action into Gaussian part s2,x and interaction sINT,x:

s2,x = −ρ̂x∂tδρx − Tρ0ρ̂x∇2ρ̂x + θ̂xθ − θ̂x

∫

y

W (x − y)ρy + ρ0ρ̂x∇2θx (4.44)

sINT,x = Tδρx(∇ρ̂x)2 − δρx(∇ρ̂x)(∇θx) + T θ̂x

∑

n>1

1

n

[

−δρx

ρ0

]n

(4.45)

where W is given by (4.31) and satisfies the constraint
∫

d3xW (x) = 0. The
physical background of such perturbation will be discussed later. Both the
Gaussian part s2 and the interaction sINT are separately invariant under U1.
Furthermore every term in the sum over n in sINT,x is also separately invariant.

Recalling the form of U1 (4.43) and the generic transformation rule for two-
point quantities (4.18) the following WD identities are derived:
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Cρρ̂(q, τ) =
Θ(τ)

T
Cρθ(q, τ) (4.46)

Cθρ̂(q, τ) =
Θ(τ)

T
Cθθ(q, τ)

Cθθ̂(q, τ) = − 1

T

∂

∂τ
[Θ(τ)Cρθ(q, τ)]

Cρθ̂(q, τ) = −Θ(τ)

T

∂

∂τ
Cρρ(q, τ) = R(q, τ)

where equilibrium and time translation invariance are supposed. Note the ex-
plicit causality of the correlators expressed by Θ-functions. It is worth noting
one more time that FDT appears among these identities. There are only three
independent correlators: Cρθ,Cθθ and Cρρ,xy while all the rest are either related
to these via (4.46) or vanish identically.

Bare propagators G0(q, ω) as implied by (4.44) read (rows and columns are

arranged in the following order ρ, ρ̂, θ, θ̂):















2Tρ0q2

(ω2+ρ2

0
q4W (q)2)

− 1
iω+ρ0q2W (q)

2Tρ0q2W (q)
(ω2+ρ2

0
q4W (q)2)

ρ0q2

iω+ρ0q2W (q)

− 1
−iω+ρ0q2W (q) 0 − W (q)

−iω+ρ0q2W (q) 0

− 2Tρ0q2W (q)
(ω2+ρ2

0
q4W (q)2)

− W (q)
iω+ρ0q2W (q) − 2Tρ0q2W (q)2

(ω2+ρ2

0
q4W (q)2)

− iω
iω+ρ0q2W (q)

ρ0q2

−iω+ρ0q2W (q) 0 iω
iω+ρ0q2W (q) 0















(4.47)
Bare propagators are also causal. This together with the structure of the in-
teraction sINT preserves causality in perturbation theory. The structure of the
bare propagator C0,θθ̂ explains the anomaly in the third identity in Eq. (4.46)
where time derivative of the Heaviside function appears. By definition C0,θθ̂

reads:
C0,θθ̂(k, ω) = −1 + function of (k, ω).

It is easy to prove using (4.44) and (4.45) that there are no diagrammatic
corrections to the −1 term so that it persists perturbatively. Then we can
write:

Cθθ̂,xy(τ) = −Θ(τ)

T

∂

∂τ
Cρθ,xy(τ) − δ(τ)

Since Cρθ,xy(0) = T (see Sec. 4.4.4) the last equation transforms into the
anomalous identity in Eq. (4.46).

4.4.3 The Schwinger-Dyson equations for minimal theory

The self-consistent perturbation theory constructed by standard methods from
s2 and sINT respects FDT and also the other WD identities considered above be-
cause of the linearity of U1. The Schwinger-Dyson equations read: G−1(k, ω) =
G−1

0 (k, ω) − Σ(k, ω) (note that this is a matrix equation) or
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G−1
0 ·G(q, τ) = I(q)δ(τ) + Σ·G(q, τ) (4.48)

and the self-energy is a matrix

Σ =









0 Σρρ̂ 0 Σρθ̂

Σρ̂ρ Σρ̂ρ̂ Σρ̂θ Σρ̂θ̂

0 Σθρ̂ 0 Σθθ̂
Σθ̂ρ Σθ̂ρ̂ Σθ̂θ Σθ̂θ̂









where Σab = δΓ/δCab and we used the identity Σab = 0 for a, b ∈ {ρ, θ}: all
diagrams contributing to these self-energies vanish because of causality of the
correlators.

The WD identities for the self-energies given by Eq. (4.19) read:

Σρ̂ρ(q, τ) = − 1

T

∂

∂τ

[

Θ(τ)Σρ̂θ̂(q, τ)
]

(4.49)

Σθ̂ρ(q, τ) = −Θ(τ)

T

∂

∂τ
Σθ̂θ̂(q, τ)

Σρ̂θ(q, τ) = −Θ(τ)

T
Σρ̂ρ̂(q, τ)

Σθ̂θ(q, τ) = −Θ(τ)

T
Σρ̂θ̂(q, τ)

The anomaly in the first identity on Σρ̂ρ(q, τ) has the same diagrammatic origin
as the one we considered before for C0,θθ̂: there are diagrams contributing to

Σρ̂ρ(q, τ) which produce a δ-function term. However this times their direct
resummation is cumbersome and we used the SD equations to fix the coefficient
of the δ-function.

Consistently with the case of correlators, these identities imply that there
are only three independent self-energies. Since there are only three independent
correlators one expects only three independent SD equations. It is easy to
prove that there are only 4 independent SD equations among the 16 given by
Eq. (4.48), the other being related to them by U1. Below we present these four
equations while their derivation is detailed in Appendix A. The proof that one
of the four equations is not independent is trickier and is left for Appendix B.
We take τ > 0 in Eq. (4.48) so that the δ-function terms drops out resulting
in equations valid only for strictly positive times. The τ = 0 version of (4.48)
provides static equations and is discussed Sec. 4.4.4.

We first consider (G−1
0 ·G− Σ ·G)ρ̂ρ = 0 which results into:

∂τCρρ(q, τ) + ρ0q
2Cρθ(q, τ) = − 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cρθ(q, u) (4.50)

− 1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρρ(q, u)
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Next consider (G−1
0 ·G− Σ ·G)ρ̂θ = 0:

∂τCρθ(q, τ) + ρ0q
2Cθθ(q, τ) =

1

T
Σρ̂θ̂(q, τ)Cρθ(q, 0) (4.51)

− 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cθθ(q, u) −
1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρθ(q, u)

and (G−1
0 ·G− Σ ·G)θ̂ρ = 0:

W (q)Cρρ(q, τ) − Cρθ(q, τ) =
1

T
Σθ̂θ̂(q, 0)Cρρ(q, τ) (4.52)

− 1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)Cρθ(q, u) −
1

T

∫ τ

0

duΣθ̂θ̂(q, τ − u)∂uCρρ(q, u)

Finally (G−1
0 ·G− Σ ·G)θ̂θ = 0:

W (q)Cρθ(q, τ) − Cθθ(q, τ) =
1

T
Σθ̂θ̂(q, 0)Cρθ(q, τ) −

1

T
Σθ̂θ̂(q, τ)Cρθ(q, 0)

− 1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)Cθθ(q, u) −
1

T

∫ τ

0

duΣθ̂θ̂(q, τ − u)∂uCρθ(q, u)(4.53)

As was pointed out above this system is redundant and the last equation is
related to the others (see Appendix B).

Finally the non-trivial result is that equations (4.50),(4.51),(4.52) are ex-
act self-consistent equations closed by self-consistent expansions for self-energies
which respect time-reversal symmetry and FDT. Therefore approximations made
within these equations would preserve TRS and FDT automatically.

4.4.4 Static limit

The dynamic equation (4.50),(4.51),(4.52) derived in the previous subsection
require initial conditions to fix their solutions. These conditions are fixed by
the limit τ = 0 of (4.48) which provides static equations (The derivation is
detailed in Appendix A):

Cρθ(q, 0) = T

Ċρρ(q, 0
+) = −ρ0q

2Cρθ(q, 0) = −Tρ0q
2

Cθθ(q, 0) = W (q)Cρθ(q, 0) = TW (k)

Ċρθ(q, 0
+) = −W (q)Tρ0q

2 − TΣθ̂θ(q, 0)

Cρρ(q, 0) =
T

W (q)
+

1

TW (q)
Σθ̂θ̂(q, 0)Cρρ(q, 0) (4.54)

where Ċ stands for ∂τC. The last equation was derived as a τ = 0 limit of (4.52)
where we have use the zero time value of Cρθ(q, 0). This is the advantage of the

79



field theory approach where the statics is contained in the dynamics contrary
to the projection operator formalism. We verified that the same equations are
obtained within the context of the static theory implied by the free energy F and
the perturbation theory generated by the decomposition of ρ into fluctuations
δρ and an average ρ0.

4.5 Fluctuating Nonlinear Hydrodynamics

Before analysing the self-consistent equations for Brownian dynamics we con-
sider the Fluctuating Non-Linear Hydrodynamics and repeat the above deriva-
tions. Since the latter follow closely those for BD, we just give the results.

4.5.1 Time-reversal symmetry and fluctuation-dissipation

theorem

This time there are four response functions produced by the extra term Fext =
−
∫

x(ρxµx + gx · px)

〈ρ(x, t)〉µ = 〈ρ(x, t)〉µ=0 +
∫

d3y
∫ t

s duRρρ,xy(t− u)µ(y, u) (4.55)

+
∫

d3y
∫ t

s duR
k
ρg,xy(t− u)pk(y, u) + o(µ,p) (4.56)

〈gi(x, t)〉µ = 〈gi(x, t)〉µ=0 +
∫

d3y
∫ t

s duR
ij
gg,xy(t− u)pj(y, u) (4.57)

+
∫

d3y
∫ t

s
duRi

gρ,xy(t− u)µ(y, u) + o(µ,p) (4.58)

which gives:

Rρρ,xy(t− s) = 〈ρ(x, t)∇ · (ρĝ)(y, s)〉 (4.59)

Rk
gρ,xy(t− s) = 〈gk(x, t)∇ · (ρĝ)(y, s)〉 (4.60)

Rk
ρg,xy(t− s) = 〈ρ(x, t)ρ(y, s)∇kρ̂(y, s)〉 + 〈ρ(x, t)gi(y, s)∇k ĝi(y, s)〉

+〈ρ(x, t)∇i(gkĝi)(y, s)〉 − 〈ρ(x, t)Lkiĝi(y, s)〉 (4.61)

Rkl
gg,xy(t− s) = 〈gk(x, t)ρ(y, s)∇lρ̂(y, s)〉 + 〈gk(x, t)gi(y, s)∇l ĝi(y, s)〉

+〈gk(x, t)∇i(glĝi)(y, s)〉 − 〈gk(x, t)Lliĝi(y, s)〉 (4.62)

Similarly to the BD case there are two different transformations correspond-
ing to TRS which leave the action invariant and provide FDT. However due
to larger number of fields we only consider the simpler transformation which is
the analogy of the U in the case of BD. Derivation within the context of the
other transformation becomes very involved technically due to a large number
of fields.

The transformation reads:
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V :























t → −t
gx → −gx

ρ̂x → −ρ̂x + 1
T

δF
δρx

ĝx → ĝx − 1
T

δF
δgx

(4.63)

It leaves the action invariant up to boundary terms:

∫

x

[

δF
δgx

· ∂tgx +
δF
δρx

∂tρx + ∇i

(

gj,x
δF
δgi,x

δF
δgj,x

)]

(4.64)

Following the procedure used for BD field theory one can see that density
correlation functions are invariant under time-reversal and derive FDT. The
naive self-consistent perturbation theory for FNH violates time-reversal sym-
metry in the same way as it does in case of the BD (see Sec. 4.3.2). The
solution to this problem is exactly the same: one should introduce extra fields
to linearise the symmetry and to include a response field.

4.5.2 Restoration of time-reversal symmetry in perturba-

tive expansions

In order to make the transformation V linear we introduce two additional fields
θ = δF

δρ and v = δF
δg . We are lead to add

−
∫

x

θ̂x

[

θx − δF
δρx

]

−
∫

x

v̂x ·
[

vx − δF
δgx

]

(4.65)

to the action, which becomes the integral of

sx =

{

−ρ̂x [∂tρx + ∇i (ρxvi)] + T ĝi,xLij ĝj,x (4.66)

−ĝi,x [∂tgi,x + ρx∇iθ + ∇j (gi,xvj) + gj,x∇ivj + Lijvj ]

−θ̂x

[

θx − δF
δρx

]

− v̂x ·
[

vx − δF
δgx

]

}

The corresponding linear time-reversal transformation reads:

V1 :







































t → −t
gx → −gx

vx → −vx

ρ̂x → −ρ̂x + 1
T θx

ĝx → ĝx − 1
T vx

θ̂x → θ̂x + 1
T ∂tρx

v̂x → −v̂x − 1
T ∂tgx

(4.67)

The response functions derived above now read:
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Rρρ,xy(t− s) = 〈ρ(x, t)θ̂(y, s)〉
Rk

gρ,xy(t− s) = 〈gk(x, t)θ̂(y, s)〉
Rk

ρg,xy(t− s) = 〈ρ(x, t)v̂k(y, s)〉
Rkl

gg,xy(t− s) = 〈gk(x, t)v̂l(y, s)〉

As before, the action is split into a Gaussian and an interaction parts by
introducing density fluctuations around the average ρ = ρ0 + δρ: we expand all
the terms in powers of δρ/ρ0:

s2,x = −ρ̂x(∂tδρx + ρ0∇ · vx) − ĝi,x [∂tgi,x + ρ0∇iθx + Lijvj,x] (4.68)

+T ĝi,xLij ĝj,x − θ̂xθx + θ̂x(WFNH ⋆ δρ)x − v̂x · vx +
1

ρ0
v̂x · gx

sINT,x = −ρ̂x∇ · (δρxvx) − δρxĝx · ∇θx − ĝi,x∇j(gi,xvj,x)

−ĝi,xgj,x∇ivj,x −
∑

p>1

(−1)p

p

T

m
θ̂x
δρp

x

ρp
0

+
∑

n>0

(−1)n

[

(v̂x · gx)δρx + nθ̂x
gx

2

2

]

δρn−1
x

ρn+1
0

(4.69)

with

WFNH(x) =
T

m

[

1

ρ0
δ(x) − c(x)

m

]

(4.70)

This expansion produces two series of vertices, each vertex being separately
invariant under the transformation V1. Applying V1 to two-point quantities
generates the Ward-Tahakashi identities for correlators. In particular, we re-
cover FDT relating the response functions and the correlators. The full set of
WD identities and dynamical equations is presented in Appendix C.

4.5.3 Static limit

The analysis of the singularities of the SD equations at short time difference
gives:
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Cρθ(q, 0) = T (4.71)

Cgv(q, 0) = T (4.72)

W (k)Cρρ(q, 0) = T +
1

T
Σθ̂θ̂(q, 0)Cρρ(q, 0) (4.73)

Cθθ(q, 0) = TW (q) (4.74)

1

ρ0
Cgg(q, 0) = T +

1

T
Σv̂v̂(q, 0)Cgg(q, 0) (4.75)

Cvv(q, 0) =
T

ρ0
(4.76)

4.6 Large density perturbation theory respect-

ing TRS and the glass transition

This section represents the second major part of the chapter. Previous sections
considered the formal symmetry related properties of the field theories for liq-
uids. Their main result is the self-consistent perturbation theories derived in
Sec. 4.4.2 and the similar theory for FNH derived in Sec. 4.5. These theories
respect time-reversal symmetry and provide a set of closed dynamic equations.
In the following we analyse the problem of glass transition and slowing of the
dynamics within this formalism aiming at reproducing MCT. Again the case of
Brownian dynamics is considered in detail while the analysis for FNH is only
sketched. We also compare our results to previous works [81, 28] and unveil the
violation of TRS within their context.

4.6.1 BD: The transition

As we have seen in Sec. 2.3 the MCT dynamic transition is characterised by a
non-zero limit of the non-ergodic parameter which signalises appearance of an
infinite time correlations. The non-ergodic parameter was defined in Sec. 2.3
as:

fq =
1

Sq

lim
τ→∞

Cρρ(q, τ)

where Sq = Cρρ(q, 0) is the static structure factor. Inspection of the limit
τ → ∞ of equations (4.50)-(4.52) implies that only Cρρ can have a non-zero
limit, the other correlators (Cρθ,Cθθ) have strictly zero limits at τ → ∞ for all
values of the temperature. This result has a physical interpretation provided by
an idea of a phase space decomposition into multiple ergodic components below
the MCT transition (if there is no transition there is only one such component).
Indeed Cρθ,Cθθ can be written using their definitions as:
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Cρθ(q,∞) =

〈

ρ(−q, 0)
δF

δρ(q,∞)

〉

=
∑

α

Pα〈ρ(−q, 0)〉α
〈

δF
δρ(q,∞)

〉

α

Cθθ(q,∞) =

〈

δF
δρ(−q, 0)

δF
δρ(q,∞)

〉

=
∑

α

Pα

〈

δF
δρ(−q, 0)

〉

α

〈

δF
δρ(q,∞)

〉

α

where we used the fact that averages decorrelate completely at long times within
a fixed ergodic component labelled by α and replaced averages of products by
products of averages; the weight of a component is equal to Pα. The average
force 〈δF/δρ(q,∞)〉α should vanish at infinity and therefore Cρθ(q,∞) and
Cθθ(q,∞) should vanish too. Note that expressing infinite time averages via
static quantities is only possible because our dynamic equations are consistent
with TRS which assures the Gibbsian measure in the limit τ → ∞. Similarly
all the self-energies except Σθ̂θ̂ vanish in the limit τ → ∞. Then there is only
one non-ergodic parameter fq which satisfies an exact equation:

f(q)

1 − f(q)
=
S(q)

T 2
Σθ̂θ̂(q,∞) (4.77)

This equation is of course to hard to analyse directly because Σθ̂θ̂(q,∞) contains
an infinite number of terms which cannot be resummed. One should resort to
approximation schemes in order to analyse (4.77).

4.6.2 BD: The Mode-Coupling approximation

The simplest approximation consist in truncating the expansion of self-energies
to the lowest order in diagrammatic series. By construction this approximation
is consistent with FDT. However there is a difficulty: the term

∫

x
θ̂x log(1 +

δρx/ρ0) which comes from the entropic part of F gives a non-polynomial inter-
action. One may expand it in powers of δρ/ρ0. This leads to a series of vertices
separately invariant under TRS. Since we are interested in one-loop theory we
consider that all these vertices are of the same order. Then there are two pos-
sibilities: either we retain all the vertices or we truncate the expansion at the
lowest non-trivial order. The first possibility requires a partial resummation
the meaning of which is not clear due to the presence of an infinity of tadpoles
which contribute to the static vertex renormalisation. For this reason we trun-
cate the expansion at order two which leaves us only one vertex θ̂δρ2 but the
computation is similar for any other truncation.

As we have pointed out within the field theory statics is consistent with
dynamics. It is instructive to check that the above approximation when applied
to static equations (4.54) derived from dynamic equations (4.50)-(4.52) coincides
with the static theory where the entropic part of F is truncated at order three
in δρ:
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Cρρ,xy =

∫

Dδρ ρ(x)ρ(y)e−βF3 [δρ]

∫

Dδρe−βF3[δρ]

with F3[δρ] =
1

6

∫

d3x
δρ(x)3

ρ3
0

− β

∫

d3x

∫

d3x′W (x − x′)δρ(x)δρ(x′)

where we used
∫

xW (x) = 0. A direct computation shows that Cρρ(q) satisfies
the equation (4.54).

The self-energies appearing in Eqs. (4.50)-(4.52) read within the approxi-
mation:

Σθ̂θ(q, t) =

∫

d3k

(2π)3
(q · k)

ρ2
0

Cρθ(k, t)Cρρ(q − k, t) (4.78)

Σρ̂θ(q, t) =
1

2T

∫

d3k

(2π)3

{

(q · k)2Cθθ(k, t)Cρρ(q − k, t) (4.79)

+(q · k)[q · (q − k)]Cρθ(k, t)Cρθ(q − k, t)

}

Σθ̂θ̂(q, t) =
T 2

4ρ4
0

∫

d3k

(2π)3
Cρρ(k, t)Cρρ(q − k, t) (4.80)

4.6.3 BD: Non-ergodicity parameter

The one-loop expressions for self-energies substituted in (4.77) yield a closed
equation on fq:

f(q)

1 − f(q)
=

1

2ρ4
0

∫

d3k

(2π)3
f(k)f(q − k)S(q)S(q − k)S(k) (4.81)

This equation looks very much like the corresponding MCT equation (2.21).
However it admits only two solutions fq = 0 and fq = 1. The first solution
corresponds to the liquid phase where ergodicity is not broken. The second
solution suffers from several important problems:

• fq = 1 implies Cρρ(q, τ) = S(q) for all times. This is clearly unphysical
and should be rejected.

• The integral in the right hand side of Eq. (4.81) is divergent. The wave-
vector dependence of the vertex V (k,q − k) given by Eq. (2.16) have
ensured the convergence within MCT. However this vertex is absent in
Eq. (4.81). Furthermore Eq. (4.54) for the structure factor S(q) is also
ill-defined for the same reason.

The numerical solution of Eq. (4.81) with an implied cut-off for large k is
remarkably similar to that of MCT. As the cut-off is sent to infinity the solution
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seems to converge to fq = 1 [91]. Although there is a physical cut-off for the
description in terms of Langevin dynamics providing Eq. (4.3) which is the
foundation of Brownian dynamics this cut-off dependence is clearly unphysical.
We will come back to this problem at the end of the Chapter.

4.6.4 FNH: Equation for the non-ergodicity parameter

In the following we repeat the above analysis for the Fluctuating Non-linear
Hydrodynamics. The only difference with respect to BD is the larger set of
dynamic equations (see Appendix C), but their formal structure is very similar
to the BD dynamic equations (4.50)-(4.52).

We focus on the equation for the non-ergodicity parameter. Due to long time
decorrelation inside ergodic components, only Cρρ, Cρg⊥ and Cg⊥g⊥ where g⊥ is
a transverse current, can have a non-zero limit as τ → ∞. This is also confirmed
by the analysis of limit τ → ∞ of the dynamical equations given in Appendix C.
However frozen currents are not expected to exist in glasses; therefore we assume
that Cρg(q,∞) and Cgg(q,∞) also vanish. Since at least one of these appear in
any diagram contributing to Σρ̂θ̂(q,∞), Σρ̂v̂(q,∞), Σĝθ̂(q,∞), Σĝv̂(q,∞) and

Σθ̂v̂(q,∞) these self-energies also vanish. Consequently only Σθ̂θ̂(q,∞) may
have a non zero value. The in the limit τ → ∞ one obtains the exact equation
for non-ergodicity parameter using (4.159) and its static limit (4.73):

f(q)

1 − f(q)
=
Sq

T 2
Σθ̂θ̂(q,∞) (4.82)

This equation looks identical to Eq. (4.77). Any general approximation (one
loop, two loops, etc) for the self-energy on the right hand side, leads to a non-
linear equation on f(q). As we will discuss later previous works have obtained
very different structures because the time-reversal symmetry was violated. This
may be very dangerous because it can generate spurious results. For example in
the analysis of [28] this modified strongly the general structure of the Schwinger-
Dyson equations and implied that the non-ergodic parameter had to vanish.
However, this has nothing to do with the physical mechanism that cuts off
the MCT transition; it is just an artifact of the violation of the time-reversal
symmetry.

4.6.5 FNH: Mode-Coupling approximation

We restrict ourselves to the approximation similar to the one used for BD,
truncating the series in δρ/ρ0 in Eq. (4.69) to the lowest order:

sINT,x = −ρ̂x∇ · (δρxvx) − δρxĝx · ∇θx − ĝi,x∇j(gi,xvj,x)

−ĝi,xgj,x∇ivj,x − v̂x · gx
δρx

ρ2
0

− θ̂x
gx

2

2ρ2
0

− T

2m
θ̂x
δρ2

x

ρ2
0

(4.83)

We do not write the set of all equations at one-loop level. Again the static
correlation functions can be obtained from dynamical equations and coincide
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with the ones obtained within the same approximation in static theory. At
one-loop, the expression of Σθ̂θ̂ coincides with the one-loop expression obtained
within BD (up to a multiplication by the mass). However this is a coincidence
which is absent when higher order corrections are considered. Finally we get
the same equation (4.81) on non-ergodic parameter which suffers from the same
problems. However contrary to BD there is a natural large wave-vector cutoff
within FNH which regularises the integrals over k because FNH is a long- and
intermediate lengthscales description which is not valid on short lengthscales.

4.6.6 Relation with previous works

In this section we would like to put our work in the context of field theory
derivations of MCT [85, 28] and discuss what can be learnt from the non-
perturbative structure of the equations which we derived, and from the resulting
mode-coupling equations.

The first issue we would like to discuss is derivations of the original mode-
coupling equation (2.19) within a context of a field theory that one can find in
the literature [85, 28]. They are all inconsistent with time-reversal symmetry
and FDT because some additional identities related to time-reversal symmetry
were assumed in the derivation. But these identities are incompatible with the
same mode-coupling equations as used to derive MCT.

First, Kawasaki and Miyazima [85] considered Brownian dynamics with the
potential U replaced by the direct correlation function c and the original per-
turbation theory introduced in Sec. 4.3.2. In their derivation they computed
Σρ̂ρ̂ and assumed that Σρ̂ρ is related to it by time reversal symmetry:

Σρ̂ρ(q, τ) = −Θ(τ)

T
∂τΣρ̂ρ̂(q, τ).

However the direct one-loop computation of both sides of this equations shows
that this is not true. Furthermore such an identity together with the structure
of Eqs. (4.29) imply FDT between Cρρ and the naive response G but as we have
seen G is not a valid response function. The field theory which respects TRS in
perturbation that we developed in Sec. 4.4.2 also predicts a different identity
for Σρ̂ρ:

Σρ̂ρ(q, τ) = − 1

T

∂

∂τ

[

Θ(τ)Σρ̂θ̂(q, τ)
]

.

The second derivation by Das and Mazenko [28] focused on FNH. A similar
inconsistency is present in their analysis where a linear relation is forced between
Cρρ and Cρρ̂ to close the equations:

Cρρ̂(q, τ) ∼ Θ(τ)

T
Cρρ(q, τ) (4.84)

which is only valid in the hydrodynamic limit. However it holds only in the
hydrodynamic limit i.e. for long time- and lengthscales. As we have seen time-
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reversal symmetry implies a different identity derived in 4.5 for Cρρ̂:

1

T
〈ρ(x, t)δF [ρ,g]

δρ(y, s)
〉 = Θ(t− s)Cρρ̂,xy(t− s) + Θ(s− t)Cρρ̂,yx(s− t)

where F is the free energy function of FNH (see 4.1.2).
Forcing a relation is useful to close the equations but it has several draw-

backs:

• This can lead to inconsistencies and spurious results.

• This breaks time-reversal symmetry: we have seen that it predicted dif-
ferent identities in both cases.

In contrast the formalism developed in Sec. 4.4.2 and Sec. 4.5 provides
dynamic equations closed by self-consistent series that automatically respect
time-reversal symmetry and FDT. This is important for the consistency of the
theory and for the analysis of out-of-equilibrium situation as we have pointed
out earlier.

There is another issue related to results of Das and Mazenko. Based on
results derived within FNH they insisted that corrections coming from the cou-
pling to currents cut off the transition. We have also discussed the projection
operator counterpart of this theory in Sec. 2.7 which predicted the same re-
sult. This implies that the cut off mechanism is different for Brownian particles
described by BD and Newtonian particles described by FNH since no currents
is present in the first case. However as we have discussed at the end of Sec.
2.7 numerical simulations do not confirm this conclusion and indicate that the
mechanism is the same for both types of dynamics [71, 70, 61]. The result of
[28] is an artifact of the forced relation (4.84) which violates time-reversal sym-
metry. Indeed forcing this relation in dynamic equations for FNH consistent
with TRS (presented in Appendix C) implies the zero non-ergodic parameter
for all temperatures. Let’s consider one of the SD equations (from Appendix
C):

∂τCρρ(q, τ) − iρ0qCvρ(q, τ) =
1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρρ(q, u)

+
1

T

∫ τ

0

duΣρ̂v̂(q, τ − u)∂uCgρ(q, u) − 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cθρ(q, u)

− 1

T

∫ τ

0

duΣρ̂ĝ(q, τ − u)Cvρ(q, u) (4.85)

If Cρρ̂ is related to Cρρ by (4.84) and fq 6= 0 then Cρρ̂ also has a non-zero
infinite value. Recalling an identity for Cρρ̂ implied by TRS (see Appendix C):

Cρρ(q, τ) =
Θ(τ)

T
Cρθ(q, τ)
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we see that a contradiction appears: in the limit τ → ∞ the left hand side of
Eq. (4.85) tends to zero while the right hand side remains non-zero. Therefore
we should conclude that fq ≡ 0 always. However this is only due to the enforced
relation (4.84) which is incompatible with TRS. Consequently the cut off of the
transition is spurious.

Finally the authors of [86] considered quadratic density functional and also
predicted the absence of the transition. We considered this case in Sec. 4.3.3.
Indeed within this theory the straightforward perturbation theory respects TRS;
the limit τ → ∞ of the dynamic equation (4.35) implies fq ≡ 0. However the
transition is absent because of a too simple structure of the theory: Σθ̂θ̂ ≡ 0
in this theory. If one considers non-quadratic functionals then this is no more
true.

4.6.7 Discussion of the ultraviolet divergence

We now come back to the discussion of the large wave-vector divergence pre-
sented in Sec. 4.6.3. This problem was addressed recently in a new work by Kim
and Kawasaki [93]. They reconsidered the field theory for Brownian dynamics
given by Eq. (4.42) but used a different definition for the field θ: θKK = θ−Wδρ
i.e. they extracted the linear part of δF/δρ. They suggested an approximation
scheme which have led to the following equation for the non-ergodic parameter
at one-loop order:

f(q)

1 − f(q)
=

1

2ρ0T 2q4

∫

d3k

(2π)3
|V (q,k)|2S(q)S(k)S(q − k)f(k)f(q − k)

V (q,k) = (q · k)U(k) + (q · (q − k)U(q − k))

which is similar to Eq. (2.21) and does not suffer from the divergence problem.
However there are several problems in their derivation of this result:

• The derivation employed an identity:

∇
(

δρ∇δS
δρ

)

= T∇2δρ = ∇ (ρ∇(θ − Uρ))

where S is given by Eq. (4.4). This non-perturbative identity implies a
relation between the terms of the action (4.42) and is only valid as an
insertion in perturbation theory. However Kim and Kawasaki used it to
eliminate certain vertices at one loop. But the identity mixes Gaussian
and interaction terms and therefore violates the time-reversal symmetry.
To restore TRS one should either include all the terms in the Gaussian
part and therefore treat the non-linearities non-perturbatively, or include
all the terms in interaction where quadratic terms become line insertions.
In both cases the new decomposition of the action should respect TRS
because as we have seen throughout this Chapter the preservation of FDT
in perturbation theory is a key component of a correct field theory.
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• The results of Kim and Kawasaki are one-loop only and extension to higher
orders is not trivial. However analysis of systematic corrections is one the
primary aims of the introduction of the field theory.

• Actually the problem of the divergence is not solved because the vertices
θδρn are still present. They do not appear at one loop, but they intervene
at higher orders leading to the same divergences.

In this context the results of Kim and Kawasaki do not solve the UV divergence
problem and even reintroduce the TRS preservation issue. Nevertheless the
results are promising since they provide a correct equation, and require further
analysis.

4.7 Summary

In this Chapter we focused on the rederivation of MCT within field theories
considered in earlier works [85, 28] and revealed problems within previous at-
tempts of rederivation. We found that straightforward perturbation theories
usually violate time-reversal symmetry. This violation is caused by the non-
linear structure of the transformations corresponding to the symmetry. Our
approach lead to self-consistent perturbation theories respecting TRS automat-
ically and dynamic equations for BD and FNH. This allows to analyse various
self-consistent approximations without worrying about the preservation of the
symmetry. Another advantage of the approach is that dynamics and statics are
automatically connected.

Both theories predict the same equation for the non-ergodic parameter:

fq
1 − fq

=
Sq

T
Σθ̂θ̂(q,∞).

Any approximation used to compute Σθ̂θ̂(q,∞) would result in a non-linear
functional of fq in the right hand side of the above equation. There are no
reasons which suppress the existence of a solution different from fq ≡ 0. The
persistence of a transition for higher orders was verified for a toy model [94]
such as a Langevin particle in a double well potential. This sets a problem
of analysis of a higher loop corrections to the one-loop results within BD and
FNH. This will be the main content of Chapter 6 where we will prove that the
transition persists at any order. This suggests that the coupling to currents
is not responsible for the cut off of the transition, and the cut off mechanism
is non-perturbative and cannot be captured within any order of self-consistent
perturbation theory. This was already found in a different context [69].

However there is a problem within our formalism: the ill-defined vertex
which causes a divergence for large wave-vectors k. This is an important issue
because the structure of MCT vertex is responsible for the quantitative success
of MCT. This divergence also requires to work with a cut off which regularises
the integrals and is not well justified for BD. Convergence of integrals involving
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the MCT vertex (2.16) is ensured by the direct correlation function appearing
in the vertex. Our vertex is different and does not contain any potential related
factor. This motivates to look for an interpretation of the perturbation theory
generated by the decomposition given by Eqs. (4.44)-(4.45) (BD) or Eqs. (4.68)-
(4.69) (FNH). In fact this perturbation is identified with the large density nature
expansion. The decomposition ρ = ρ0 + δρ together with the expansion of the
logarithm log(1 + δρ/ρ0) is valid for large densities ρ; the vertices θ̂δρn in the
interaction sINT (4.45) are generated by the expansion of entropic part of the
free energy F(4.4) which dominates for large densities. Description of liquids for
large densities is a problem of its own which is far from being solved. Therefore
perturbing around this state should be done with much care.

We will address this problem in the next Chapter where we consider differ-
ent perturbation theories which also respect TRS and try to fix the problem.
Before concluding let’s mention a possible alternative that we do not consider
in the present work. The above perturbation scheme perturbs around a uniform
density profile ρ0. However we expect that liquid is trapped in an amorphous
configuration close to the glass transition. Such configurations are characterised
by a non-uniform density profile. This suggests to analyse perturbation around
a static non-uniform profile ρ0(x) and repeat the derivations of this chapter
within this context.

Appendix A. Derivation of dynamical and static

equations

In this appendix we sketch the derivation of equations (4.51) and (4.54) (the
fourth one) as an example. Other dynamical or static equations can be obtain
following the same routes. We start from the SD equation

(G−1
0 ·G− Σ ·G)ρ̂ρ̂(q, τ) = δ(τ) (4.86)

for any value of τ . We have

(Σ ·G)ρ̂ρ̂(q, τ) = (Σρ̂ρ · Cρρ̂)(q, τ) + (Σρ̂θ · Cθρ̂)(q, τ) (4.87)

Indeed Cρ̂ρ̂ and Cθ̂ρ̂ vanish by causality. We then get:

(Σ ·G)ρ̂ρ̂(q, τ) = Θ(τ)
T

∫ τ

0 du
[

∂τΣθ̂θ(q, τ − u)Cρθ(q, u)

+Σρ̂θ(q, τ − t)Cθθ(q, t)] . (4.88)

Integrating by parts, one gets

(Σ ·G)ρ̂ρ̂(q, τ) =
Σθ̂θ(q,τ)

T Cρθ(q, τ = 0)

+Θ(τ)
T

∫ τ

0 du
[

Σθ̂θ(q, τ − u)∂uCρθ(q, u) + Σρ̂θ(q, τ − u)Cθθ(q, u)
]

(4.89)
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In addition we have

(G−1
0 ·G)ρ̂ρ̂(q, τ) = ∂τCρρ̂(q, τ) + ρ0q

2Cθρ̂(q, τ)

= 1
T ∂τ (Θ(τ+)Cρθ(q, τ)) + ρ0q

2

T Cθθ(q, τ) (4.90)

Equating the terms proportional to δ(τ) in (4.86) one gets

1

T
Cρθ(q, 0) = 1, (4.91)

and taking the limit τ → 0+, gives (4.54). Finally (4.51) is obtained by taking
τ > 0. All other equations for the dynamical evolutions and the statics can be
derived in the same way. When causality is not enough to restrict explicitly
time integrals between 0 and τ , one can verify that in all cases FDT makes it
possible to combine together different contributions of the same equations to
finally end up with integrals between 0 and τ .

Let us add here that careful analysis of the self-energies shows that Σθ̂ρ has
a tadpole contribution. However this tadpole can be eliminated by adding a
linear term −A

∫

d3x δρ(x) to the entropic part of the free energy and A to the
potential, with a suitable value of the constant A.

Appendix B. Proof of the linear dependence of

the Schwinger-Dyson equations

As we have already mentioned, it may appear unnatural to describe the evo-
lution of 3 correlators with 4 dynamical equations. A series expansions at low
τ > 0 of these equations makes this clearer. When expanded in series, they
become a cascade of equations for the successive derivatives of the correlators
at zero time difference. We start by expanding at first order, from which it is
easy to guess what is going on at higher orders. At order 1 in τ , (4.50)-(4.53)
read respectively:
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Ċρρ(q, 0) + ρ0q
2Cρθ(q, 0) + τ

[

C̈ρρ(q, 0) + ρ0q
2Ċρθ(q, 0)

]

=

τ
[

Σθ̂θ(q, 0
+)Ċρρ(q, 0) + Σρ̂θ(q, 0

+)Cρθ(q, 0)
]

(4.92)

Ċρθ(q, 0) + ρ0q
2Cθθ(q, 0) + τ

[

C̈ρθ(q, 0) + ρ0q
2Ċθθ(q, 0)

]

−Σθ̂θ(q, 0
+)Cρθ(q, 0) + τ

[

Σρ̂θ(q, 0)Cθθ(q, 0) − Σ̇θ̂θ(q, 0
+)Cρθ(q, 0)

]

(4.93)

W (q)Cρρ(q, 0) − Cρθ(q, 0) + τ
[

W (q)Ċρρ(q, 0) − Ċρθ(q, 0)
]

=

1

T
Σθ̂θ̂(q, 0)Cρρ(q, 0) + τ Σθ̂θ(q, 0

+)Cρθ(q, 0) (4.94)

W (q)Cρθ(q, 0) − Cθθ(q, 0) + τ
[

W (q)Ċρθ(q, 0) − Ċθθ(q, 0)
]

=

τ

[

Σθ̂θ(q, 0
+)Cθθ(q, 0) − 1

T
Σ̇θ̂θ̂(q, 0)Cρθ(q, 0)

]

(4.95)

In addition, the SD equations have an apparent singularity at τ = 0 which
comes from the δ(τ) in the RHS of (4.48). This gives an initial condition:
Cρθ(q, 0

+) = T . Thus there are 5 equations at order 0, which fix the values of

Cρρ(q, 0), Cρθ(q, 0), Cθθ(q, 0), Ċρρ(q, 0) and Ċρθ(q, 0). At order 1, there are 4

equations but 3 quantities only to be determined, namely Ċθθ(q, 0), C̈ρρ(q, 0)

and C̈ρθ(q, 0). Remark that the self-energies and their first derivatives appear
in the equations. However, as they can be expressed in terms of the correlators,
it can be checked that the successive derivatives of the self-energies can be ex-
pressed in terms of the quantities already computed at previous orders. This
guarantees that at every order self-energies do not give extra variables to be
determined. Now we show that in fact one of the equations obtained by identi-
fying the terms of order τ is trivially satisfied by the solution of the equations
at order 0. We focus on the term proportional to τ in the LHS of (4.94). We
then express this term by using a linear combination of the terms of order 0 of
(4.92) and (4.93):

W (q)Ċρρ(q, 0) − Ċρθ(q, 0) = −ρ0q
2 [W (q)Cρρ(q, 0) − Cρθ(q, 0)] (4.96)

+Σθ̂θ(q, 0
+)Cθθ(q, 0)

From order 0 of (4.94), the terms in brackets vanishes, and then we get:

W (q)Ċρρ(q, t) − Ċρθ(q, t)Σθ̂θ(q, 0
+)Cρθ(q, 0), (4.97)

which corresponds to the terms proportional to τ in (4.94). Therefore the num-
ber of equations obtained at order τ is equal to the number of variables to be
determined at this order.

The non perturbative generalisation of the previous approach comes from
the following remark: the SD equations form a linear system of equations which
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unknown variables are the correlators and coefficients are the components of
G−1

0 and Σ. The solution of this system of equations is found easily using the
Laplace transform. The SD equations read in Laplace transform:

Cρρ(q, 0+)

(

1 +
Σ̂ρ̂θ̂(q, z)

T

)

z

(

1 +
Σ̂ρ̂θ̂(q, z)

T

)

Ĉρρ(q, z)

+ (ρ0q
2 +

Σ̂ρ̂ρ̂(q, z)

T
)Ĉρθ(q, z)

(4.98)

z

(

1 +
Σ̂ρ̂θ̂(q, z)

T

)

Ĉρθ(q, z) + (ρ0q
2 +

Σ̂ρ̂ρ̂(q, z)

T
)Ĉθθ(q, z) = T (4.99)

1

T
Σ̂θ̂θ̂(q, z)Cρρ(q, 0+) = −

(

1 +
Σ̂ρ̂θ̂(q, z)

T

)

Ĉρθ(q, z)

+

(

W (q) +
zΣ̂θ̂θ̂(q, z) − Σθ̂θ̂(q, 0

+)

T

)

Ĉρρ(q, z)(4.100)

W (q) Ĉρθ(q, z) =

(

1 +
Σ̂ρ̂θ̂(q, z)

T

)

Ĉθθ(q, z)

− zΣ̂θ̂θ̂(q, z) − Σθ̂θ̂(q, τ = 0)

T
Ĉρθ(q, z)

(4.101)

For better clarity, we write formally this system as follows:

ACρρ(q, 0) = zAĈρρ(q, z) + BĈρθ(q, z) (4.102)

T = zAĈρθ(q, z) +BĈθθ(q, z) (4.103)

DCρρ(q, 0) = EĈρρ(q, z) −AĈρθ(q, z) (4.104)

0 = EĈρθ(q, z) −AĈθθ(q, z) (4.105)

The identity E (RHS)1 − A (RHS)2 − zA (RHS)3 − B (RHS)4 = 0, where
(RHS)i stands for the RHS of the ith equation above, is trivially verified. It
remains to prove that the LHS are linked by the same relation. Gathering the
terms of E (LHS)1 −A (LHS)2 − zA (LHS)3 −B (LHS)4 = 0 (with obvious
notation), one gets:

[

W (q) − 1

T
Σθ̂θ̂(q, 0

+)

]

Cρρ(q, 0) = T (4.106)

This is precisely the static equation (4.54), and the proof is complete.

94



Appendix C. Dynamical equations for Fluctuat-

ing Nonlinear Hydrodynamics

In this appendix we give the derivation of the dynamic equations for fluctuating
nonlinear hydrodynamics. The calculus and the ideas behind are the same as
the corresponding for BD although somewhat more cumbersome due to a larger
number of fields. We start with the Schwinger-Dyson equations and use time-
reversal to simplify them.

This time (4.18) applied to the transformation V1 gives the following equa-
tions for correlators:

Cρρ̂(q, τ) =
Θ(τ)

T
Cρθ(q, τ) (4.107)

Cρĝ(q, τ) =
Θ(τ)

T
Cρv(q, τ) (4.108)

Cρθ̂(q, τ) =
Θ(τ)

T
∂τCρρ(q, τ) (4.109)

Cρv̂(q, τ) =
Θ(τ)

T
∂τCρg(q, τ) (4.110)

Cgρ̂(q, τ) =
Θ(τ)

T
Cgθ(q, τ) (4.111)

Cgĝ(q, τ) =
Θ(τ)

T
Cgv(q, τ) (4.112)

Cgθ̂(q, τ) =
Θ(τ)

T
∂τCgρ(q, τ) (4.113)

Cgv̂(q, τ) =
Θ(τ)

T
∂τCgg(q, τ) (4.114)

Cθρ̂(q, τ) =
Θ(τ)

T
Cθθ(q, τ) (4.115)

Cθĝ(q, τ) =
Θ(τ)

T
Cθv(q, τ) (4.116)

Cθθ̂(q, τ) =
Θ(τ)

T
∂τCθρ(q, τ) (4.117)

Cθv̂(q, τ) =
Θ(τ)

T
∂τCθg(q, τ) (4.118)
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Cvρ̂(q, τ) =
Θ(τ)

T
Cvθ(q, τ) (4.119)

Cvĝ(q, τ) =
Θ(τ)

T
Cvv(q, τ) (4.120)

Cvθ̂(q, τ) =
Θ(τ)

T
∂τCvρ(q, τ) (4.121)

Cvv̂(q, τ) =
Θ(τ)

T
∂τCvg(q, τ) (4.122)

and (4.19) yields the following identities for self-energies:

Σρ̂ρ(q, τ) =
1

T
∂τ

[

Θ(τ)Σρ̂θ̂(q, τ)
]

(4.123)

Σρ̂g(q, τ) =
1

T
∂τ [Θ(τ)Σρ̂v̂(q, τ)] (4.124)

Σρ̂θ(q, τ) = − 1

T
Θ(τ)Σρ̂ρ̂(q, τ) (4.125)

Σρ̂v(q, τ) = − 1

T
Θ(τ)Σρ̂ĝ(q, τ) (4.126)

Σĝρ(q, τ) =
1

T
∂τ

[

Θ(τ)Σĝθ̂(q, τ)
]

(4.127)

Σĝg(q, τ) =
1

T
∂τ [Θ(τ)Σĝv̂(q, τ)] (4.128)

Σĝθ(q, τ) = − 1

T
Θ(τ)Σĝρ̂(q, τ) (4.129)

Σĝv(q, τ) = − 1

T
Θ(τ)Σĝĝ(q, τ) (4.130)

Σθ̂ρ(q, τ) =
1

T
Θ(τ)∂τΣθ̂θ̂(q, τ) (4.131)

Σθ̂g(q, τ) =
1

T
Θ(τ)∂τΣθ̂v̂(q, τ) (4.132)

Σθ̂θ(q, τ) = − 1

T
Θ(τ)Σθ̂ρ̂(q, τ) (4.133)

Σθ̂v(q, τ) = − 1

T
Θ(τ)Σθ̂ĝ(q, τ) (4.134)

Σv̂ρ(q, τ) =
1

T
Θ(τ)∂τ Σv̂θ̂(q, τ) (4.135)

Σv̂g(q, τ) =
1

T
Θ(τ)∂τ Σv̂v̂(q, τ) (4.136)

Σv̂θ(q, τ) = − 1

T
Θ(τ)Σv̂ρ̂(q, τ) (4.137)

Σv̂v(q, τ) = − 1

T
Θ(τ)Σv̂ĝ(q, τ). (4.138)
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One can get some additional identities:

Σĝρ̂(q, τ) = Σρ̂ĝ(q, τ) (4.139)

Σθ̂ρ̂(q, τ) = −Σρ̂θ̂(q, τ) (4.140)

Σθ̂ĝ(q, τ) = −Σĝθ̂(q, τ) (4.141)

Σv̂ρ̂(q, τ) = −Σρ̂v̂(q, τ) (4.142)

Σv̂ĝ(q, τ) = −Σĝv̂(q, τ) (4.143)

Σv̂θ̂(q, τ) = Σv̂θ̂(q, τ), (4.144)

and similar ones for correlators:

Cgρ(q, τ) = Cρg(q, τ) (4.145)

Cθρ(q, τ) = Cρθ(q, τ) (4.146)

Cθg(q, τ) = Cgθ(q, τ) (4.147)

Cvρ(q, τ) = Cρv(q, τ) (4.148)

Cvg(q, τ) = Cgv(q, τ) (4.149)

Cvθ(q, τ) = Cθv(q, τ). (4.150)

All these identities reduce the number of independent correlators to ten, which
are Cρρ, Cρg , Cρθ, Cρv, Cgg,Cgθ , Cgv , Cθθ, Cθv and Cvv.

In the case of FNH, there are in principle 64 Schwinger-Dyson equation. We
write 16 of these equations, the other being trivially linear dependent on these:

∂τCρρ(q, τ) − iρ0qCvρ(q, τ) =
1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρρ(q, u)

+
1

T

∫ τ

0

duΣρ̂v̂(q, τ − u)∂uCgρ(q, u) − 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cθρ(q, u)

− 1

T

∫ τ

0

duΣρ̂ĝ(q, τ − u)Cvρ(q, u) (4.151)

∂τCρg(q, τ) − iρ0qCvg(q, τ) =
1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρg(q, u)

+
1

T

∫ τ

0

duΣρ̂v̂(q, τ − u)∂uCgg(q, u) − 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cθg(q, u)

− 1

T

∫ τ

0

duΣρ̂ĝ(q, τ − u)Cvg(q, u) (4.152)

∂τCρθ(q, τ) − iρ0qCvθ(q, τ) = Σρ̂v̂(q, τ)

+
1

T

∫ τ

0

du

[

Σρ̂θ̂(q, τ − u)∂uCρθ(q, u) + Σρv̂(q, τ − u)∂uCgθ(q, u)

− Σρ̂ρ̂(q, τ − u)Cθθ(q, u) − Σρ̂ĝ(q, τ − u)Cvθ(q, u)

]

(4.153)
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∂τCρv(q, τ) − iρ0qCvv(q, τ) = Σρ̂v̂(q, τ)

+
1

T

∫ τ

0

du

[

Σρ̂θ̂(q, τ − u)∂uCρv(q, u) + Σρ̂v̂(q, τ − u)∂uCgv(q, u)

− Σρ̂ρ̂(q, τ − u)Cθv(q, u) − Σρ̂ĝ(q, τ − u)Cvv(q, u)

]

(4.154)

∂τCgρ(q, τ) − iρ0qCθρ(q, τ) + LCvρ(q, τ) =
1

T

∫ τ

0

duΣĝθ̂(q, τ − u)∂uCρρ(q, u)

+
1

T

∫ τ

0

duΣĝv̂(q, τ − u)∂uCgρ(q, u) − 1

T

∫ τ

0

duΣĝρ̂(q, τ − u)Cθρ(q, u) (4.155)

− 1

T

∫ τ

0

duΣĝĝ(q, τ − u)Cvρ(q, u)

∂τCgg(q, τ) − iρ0qCθg(q, τ) + LCvg(q, τ) = +
1

T

∫ τ

0

duΣĝθ̂(q, τ − u)∂uCρg(q, u)

+
1

T

∫ τ

0

duΣĝv̂(q, τ − u)∂uCgg(q, u) − 1

T

∫ τ

0

duΣĝρ̂(q, τ − u)Cθg(q, u)

− 1

T

∫ τ

0

duΣĝĝ(q, τ − u)Cvg(q, u) (4.156)

∂τCgθ(q, τ) − iρ0qCθθ(q, τ) + LCvθ(q, τ) = Σĝθ̂(q, τ)

+
1

T

∫ τ

0

du

[

Σĝθ̂(q, τ − u)∂uCρθ(q, u) − Σĝv̂(q, τ − u)∂uCgθ(q, u)

−
[

Σĝρ̂(q, τ − u)Cθθ(q, u) + Σĝĝ(q, τ − u)Cvθ(q, u)

]

(4.157)

∂τCgv(q, τ) − iρ0qCθv(q, τ) + LCvv(q, τ) = Σĝv̂(q, τ)

+
1

T

∫ τ

0

du

[

Σĝθ̂(q, τ − u)∂uCρv(q, u) + Σĝv̂(q, τ − u)∂uCgv(q, u)(4.158)

− Σĝρ̂(q, τ − u)Cθv(q, u) − Σĝĝ(q, τ − u)Cvv(q, u)

]

Cθρ(q, τ) −W (q)Cρρ(q, τ) = − 1

T

[

Σθ̂θ̂(q, 0)Cρρ(q, τ) + Σθ̂v̂(q, 0)Cgρ(q, τ)
]

+
1

T

∫ τ

0

du

[

Σθ̂θ̂(q, τ − u)∂uCρρ(q, u) + Σθ̂v̂(q, τ − u)∂uCgρ(q, u) (4.159)

− Σθ̂ρ̂(q, τ − u)Cθρ(q, u) − Σθ̂ĝ(q, τ − u)Cvρ(q, u)

]
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Cθg(q, τ) −W (q)Cρg(q, τ) = − 1

T

[

Σθ̂θ̂(q, 0)Cρg(q, τ) + Σθ̂v̂(q, 0)Cgg(q, τ)
]

+
1

T

∫ τ

0

du

[

Σθ̂θ̂(q, τ − u)∂uCρg(q, u) + Σθ̂v̂(q, τ − u)∂uCgg(q, u) (4.160)

− Σθ̂ρ̂(q, τ − u)Cθg(q, u) − Σθ̂ĝ(q, τ − u)Cvg(q, u)

]

Cθθ(q, τ) −W (q)Cρθ(q, τ) =
1

T
Σθ̂θ̂(q, τ)

− 1

T

[

Σθ̂θ̂(q, 0)Cρθ(q, τ) + Σθ̂v̂(q, 0)Cgθ(q, τ)
]

(4.161)

+
1

T

∫ τ

0

du

[

Σθ̂θ̂(q, τ − u)∂uCρθ(q, u) + Σθ̂v̂(q, τ − u)∂uCgθ(q, u)

− Σθ̂ρ̂(q, τ − u)Cθθ(q, u) − Σθ̂ĝ(q, τ − u)Cvθ(q, u)

]

Cθv(q, τ) −W (q)Cρv(q, τ) =
1

T
Σθ̂v̂(q, τ) (4.162)

− 1

T

[

Σθ̂θ̂(q, 0)Cρv(q, τ) + Σθ̂v̂(q, 0)Cgv(q, τ)
]

+
1

T

∫ τ

0

du

[

Σθ̂θ̂(q, τ − u)∂uCρv(q, u) + Σθ̂v̂(q, τ − u)∂uCgv(q, u)

− Σθ̂ρ̂(q, τ − u)Cθv(q, u) − Σθ̂ĝ(q, τ − u)Cvv(q, u)

]

Cvρ(q, τ) −
1

ρ0
Cgρ(q, τ) = − 1

T

[

Σv̂θ̂(q, 0)Cρρ(q, τ) + Σv̂v̂(q, 0)Cgρ(q, τ)
]

+
1

T

∫ τ

0

du

[

Σv̂θ̂(q, τ − u)∂uCρρ(q, u) + Σv̂v̂(q, τ − u)∂uCgρ(q, u) (4.163)

− Σv̂ρ̂(q, τ − u)Cθρ(q, u) − Σv̂ĝ(q, τ − u)Cvρ(q, u)

]

Cvg(q, τ) − 1

ρ0
Cgg(q, τ) = − 1

T
[Σv̂θ̂(q, 0)Cρg(q, τ) + Σv̂v̂(q, 0)Cgg(q, τ)]

+
1

T

∫ τ

0

du

[

Σv̂θ̂(q, τ − u)∂uCρg(q, u) + Σv̂v̂(q, τ − u)∂uCgg(q, u) (4.164)

− Σv̂ρ̂(q, τ − u)Cθρ(q, u) − Σv̂ĝ(q, τ − u)Cvg(q, u)

]
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Cvθ(q, τ) −
1

ρ0
Cgθ(q, τ) =

1

T
Σv̂θ̂(q, τ)

− 1

T

[

Σv̂θ(q, 0)Cρθ̂(q, τ) + Σv̂v̂(q, 0)Cgθ(q, τ)
]

(4.165)

+
1

T

∫ τ

0

du

[

Σv̂θ(q, τ − u)∂uCρθ(q, u) − Σv̂v̂(q, τ − u)∂uCgθ(q, u)

− Σv̂ρ̂(q, τ − u)Cθρ(q, u) + Σv̂ĝ(q, τ − u)Cvθ(q, u)

]

Cvv(q, τ) − 1

ρ0
Cgv(q, τ) =

1

T
Σv̂v̂(q, τ)

− 1

T

[

Σv̂θ̂(q, 0)Cρv(q, τ) + Σv̂v̂(q, 0)Cgv(q, τ)
]

(4.166)

+
1

T

∫ τ

0

du

[

Σv̂θ̂(q, τ − u)∂uCρv(q, u) − Σv̂v̂(q, τ − u)∂uCgv(q, u)

− Σv̂ρ̂(q, τ − u)Cθρ(q, u) + Σv̂ĝ(q, τ − u)Cvv(q, u)

]

As for BD, the number of independent correlators is smaller than the number of
equations, and there are here 6 redundant equations. The extension of the proof
of appendix B to the present equations is straightforward but very painful.

These are the exact non-perturbative dynamical equations preserving FDT.
One can then use different approximation schemes for self-energies to close the
equations. It is worth noting that whatever the approximation, the FDT is
always verified due to the way the equations were derived.
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Chapter 5

Interacting particles and

stochastic equations

Derivation of MCT within a field theory is a non-trivial problem. Previous
attempts suffered from violation of time-reversal symmetry. Our approach pre-
sented in the previous Chapter resolved this problem. However we found equa-
tions that looked similar to MCT but were not exactly the equations that we
were looking for: they suffered from a divergence and had to be regularised
by a large wave-vector cut off. In this chapter we address this problem on the
example of Brownian dynamics.

The divergence motivates to look for a different perturbation theory. As we
have discussed the perturbation theory considered in Sec. 4.4.2 is a large den-
sity expansion which is not well defined. In static liquid theory a well-defined
perturbation series are provided by a low density expansion [33]. However its
derivation relies on a purely static methods and does not extend to dynamics
easily. Let’s note that BD is a theory with a fixed number of particles and
conserved density. Derivation of a low density expansion requires a theory with
varying number of particles and, therefore, density. Therefore we should cou-
ple the system to a particle reservoir or, equivalently, include the processes of
particles creation-annihilation in the description. A priori it is not clear how
to do that in the context of BD. However this is easily done in the context of
reaction-diffusion systems [95]. This is a widely studied class of systems that
consider dynamics of interacting diffusing particles. Their interaction is usually
described by a chemical reaction like rules, for example A + A → Ø. Then
creation-annihilation of particles within BD can be approached by the following
rules: A → Ø and A→ A+ A. Reaction-diffusion systems are analysed within
a context of Döı-Peliti field theory [96, 97, 98] derived from ”second quantised”
ladder operator representation of master equations via coherent state represen-
tation. However this requires to work with field different from ρ that do not
have an immediate physical meaning; density correlations and response function
which are of primary interest to us have complicated multi-point representation
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in these fields. This sets a problem of construction of a description in terms of
density for such systems that we consider in this chapter.

As we will see the solution to this problem is related to a different perturba-
tion theory that has the required properties: it respects TRS and has a better
vertex which ensures the convergence for large wave-vectors. This theory is
based on the remark that the potential vertex in the straightforward perturba-
tion theory of Sec. 4.3.2 decreases to zero large wave-vectors and makes integrals
converge. This suggests to look for a perturbation in powers of the potential U
i.e. for a different decomposition of S (4.5). Recalling the conclusions of the pre-
vious chapter we also imply that every part of the decomposition is separately
invariant under TRS. Indeed, we have seen that a decomposition S = S2 +SINT

(see Sec. 4.3.2) violates time-reversal symmetry but we have not analysed if a
different decomposition is possible such that its parts are separately invariant
even under non-linear transformation. Surprisingly such a decomposition ex-
ists and it is exactly the expansion in powers of the potential U as we will see.
However the resulting theory is inconvenient for direct application because both
parts of the decomposition are not quadratic and the conventional perturbation
techniques cannot be used. Solution of this technical problem brings us back to
reaction-diffusion systems as we will show.

The overall aim of this chapter is to demonstrate how this two approaches can
be unified within the context of reaction-diffusion systems and provide technical
details of this demonstration. We start from the introduction of the expansion
in the powers of the potential within BD and discuss its symmetry related
properties; then we show how the resulting perturbation theory reduces to a
reaction-diffusion system in Sec. 5.1. In the following section the Döı-Peliti
derivation is presented in detail for BD with variable number of particles in
Sec. 5.2. We then show how a reaction-diffusion system can be described by a
stochastic equation on density. This allows us to use the standard method à la
Martin-Siggia-Rose [76] instead of a more elaborated Döı-Peliti formalism.

5.1 Brownian dynamics and expansion in pow-

ers of the potential

In this section we present the different decomposition for BD action (4.5) which
generates a perturbation expansion in powers of the potential U and preserves
TRS. We also show how to carry out computations within this theory.

Let’s recall the original field theory for interacting Brownian particles (4.5)
derived from Dean equation in 4.1.1:

S[ρ, ρ̂] =

∫

d3x

∫

dt

{

ρ̂(x, t)

[

−∂tρ(x, t) + T∇2ρ(x, t) (5.1)

+ ∇ ·
(

ρ(x, t)

∫

d3y ∇V (x − y)ρ(y, t)

)

]

+ Tρ(x, t)(∇ρ̂(x, t))2
}
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As was pointed out above the decomposition of the action into quadratic
part s0,x and interaction sINT,x is not invariant under non-linear transforma-
tions corresponding to time-reversal symmetry (TRS). However a perturbation
expansion in powers of the potential U preserves the symmetry. Indeed the
dynamical average of any function A[ρ, ρ̂] may be written as

〈A[ρ, ρ̂]〉 =

∫

Dρ
∫

Dρ̂ A[ρ, ρ̂] eSFREE [ρ,ρ̂]+SU [ρ,ρ̂]

=
∞
∑

p=1

∫

Dρ
∫

Dρ̂ A[ρ, ρ̂]
(SU [ρ, ρ̂])p

p!
eSF REE [ρ,ρ̂]

SFREE =

∫

d3x dtρ̂(x, t)
[

−∂tρ(x, t) + T∇2ρ(x, t)
]

+ Tρ(x, t)(∇ρ̂(x, t))2

SU =

∫

d3x

∫

d3y ρ̂(x, t)∇ (ρ(x, t) (∇U(x − y)) ρ(y, t)) (5.2)

where SFREE regroups the terms of the action which do not contain the poten-
tial. The key point is that both SFREE and SU are separately invariant under
transformation T given by Eq. (4.11):

T :

{

t → −t
ρ̂x → ρ̂x + fx,

(5.3)

where f verifies:

∇ · (ρx∇fx) = − 1

T
∂tρx (5.4)

Hence the symmetry is verified to any finite order in the expansion in powers
of SU . Note that transformation U given by Eq. (4.13) still mixes SFREE with
SU . Therefore the perturbation theory is not invariant under this transforma-
tion. This reveals a difference between these two transformations whose physical
origin is unclear.

There are however several problems within such perturbation theory. First,
the transformation T given by Eq. (4.11) is non-linear. This leads to problems
with the Ward-Tahakashi (WD) identities. Indeed, the naive response G(q, t−
s) = 〈ρ(−q, t)ρ̂(q, s)〉 transforms under T as:

G(q, s− t) = G(q, t − s) + 〈ρ(−q, t)f(q, s)〉

where the function f is fixed by Eq.(5.4). The latter is only defined within an
average i.e:

T 〈∇(ρ(x, t)∇f(x, t)) · · · 〉 = −∂t〈ρ(x, t) · · · 〉
and one should introduce at least extra fields f, f̂ and φ, φ̂ (see Sec. 4.4.1)
to compute G. However the naive response is not the function we are very
interested in. Second, the response function R is still a three-point quantity:

Rxy(t, s) = −〈ρ(x, t)∇ · (ρ(y, s)∇ρ̂(y, s))〉.
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Finally SFREE is not quadratic in the fields. The nonlinearity of the fields
transformation relate the noise cubic term to quadratic terms. Thus this vertex
must be taken into account non-perturbatively. In other words, to compute the
correlators at a given order in the power series expansion in SU , one has to
include contributions at all orders in the noise vertex. This is a difficult but not
impossible task because, at a given order p in SU , the diagrammatic expansion
contains a finite number of diagrams, due to the absence of the propagator
connecting two ρ̂’s. Indeed, if one considers a diagram with p potential vertices
and q noise vertices contributing to a correlation function of r ρ’s and s ρ̂’s, one
must have q + s ≤ p + r. Hence such a diagram must have less than p+ r − s
noise vertices. Thus a bare perturbation theory which preserves the nonlinear
symmetry can be set up but is considerably more complicated than the usual
one.

Let’s note however that the action SFREE (5.2) describes the case of non-
interacting Brownian particles particles. This follows from Eqs. (4.1) with
U = 0 which are equivalent to the field theory. Therefore there should be a
possibility to compute the averages with SFREE exactly. This is implemented
via a non-linear transformation of fields ρ and ρ̂:

ρ(q, t) = φ̂(q, t)φ(q, t−)

ρ̂(q, t) = log
[

φ̂(q, t)
]

(5.5)

The action (5.1) reads

S[φ̂, φ] = S2 + SINT (5.6)

S2 =

∫

d3x

∫

dtφ̂(x, t)
[

−∂tφ(x, t) + T∇2
xφ(x, t)

]

SINT = −
∫

d3x d3y dt(∇xφ̂(x, t))φ(x, t)(∇yU(x− y))φ̂(y, s)φ(y, s)

Note that the Jacobian of the transformation has a modulus one and that SFREE

and SU do not mix under this transformation also. This ensures that the theory
(5.6) also respects time-reversal symmetry in expansion in powers of U . Now
SFREE became S2 which is Gaussian and expansions in powers of the potential
becomes a standard perturbation theory. But physical quantities of primary
interest, the response function and the density-density correlator, became multi-
point quantities :

Cρρ(x − y, t− s) = 〈φ̂φ(x, t)φ̂φ(y, s)〉
The response function R given by 4.16 reads:

R(x − y, t− s) = −
〈

φ̂φ(x, t)∇
(

φ̂φ(y, s)∇ log φ̂(y, s)
)〉

= −
〈

φ̂φ(x, t)∇
(

φ(y, s)∇φ̂(y, s)
)〉
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And both the density-density correlator and the response function can be ex-
pressed through the same four-point function:

γ(x,y, z, r; t, s, u, v) = 〈φ̂(x, t)φ̂(y, s)φ(z, u)φ(r, v)〉

The TRS transformation T remains non-linear:

φ̂ → φ̂ ef

φ → φ e−f

T∇(φ̂φ∇f) = −∂t(φ̂φ)

The transformation given by Eq. (5.5) is not accidental and has a simple
interpretation related to reaction-diffusion systems as we will see below.

5.2 Grand canonical dynamics

The main aim of this section is to derive a low density expansion. This is done in
the context of the Döı-Peliti (DP) field theory which allow to take into account
variable number of particles in BD and will lead to such expansion for Brownian
dynamics. Another consequence is a better understanding of the origin of the
transformation (5.5).

5.2.1 Master equation

Let’s consider interacting diffusing particles on some regular lattice in a d di-
mensional space. The hopping rate Wij which describes the diffusive motion
and defines the probability for a particle to jump from site ı to site  is fixed by
an on site potential Hj where  labels the sites:

Wij = W0 exp

[

Hi −Hj

2T

]

Hi =
∑

l

U(xi − xl)nl.

We also suppose that detailed balance is satisfied. The interaction between
particles is defined by the description of reactions between particles on the same
site: A+A→ Ø, A→ 2A, etc. These formulae are supplied by the probability
rates at which these reactions happen. Let’s note that BD fits well into this
class of systems: particles only diffuse and there are no on site reactions.

We consider a particular system with particles interacting following two
rules: A→ Ø and A→ A+A with rates λ and µ respectively. That is particles
can either decay, or branch into two. The evolution of this system is described
by a master equation for the probability P(n, t) of realisation of a particular
repartition of particles {ni} at time t:
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∂tP(n, t) =
∑

i

∑

j∈v(i)

[

(nj + 1)WjiP(n : ni − 1, nj + 1, t)

+ (ni + 1)WijP(n : ni + 1, nj − 1, t) − (ni + nj)WijP(n : ni, nj, t)

]

+ λ
∑

i

[(ni + 1)P(n : ni + 1, t) − niP(n : ni, t)]

+ µ
∑

i

[(ni − 1)P(n : ni − 1, t) − niP(n : ni, t)] (5.7)

where the hopping is limited to nearest neighbours only; v(i) is a set of all the
neighbours of a site i. This equation is supplemented by an initial distribution
P(n, 0). For a uniform initial distribution with an average number n0 of particles
per site it equals:

P(n, 0) =
∏

i

(

nni
0

ni!
exp(−n0)

)

.

The master equation in this form is complicated and is hard to analyse because
one has to work in the space of all configurations.

5.2.2 Second quantisation representation

The master equation (5.7) admits a second quantisation representation in terms
of a creation-annihilation operators [96, 98]. This is possible because site occu-
pation numbers change by an integer number only.

Let’s introduce bosonic operators ai, a
†
i for every site i. Their definition is

pretty straightforward: a, a† are defined by their action on a state

ai|ni〉 = ni|ni − 1〉
a†i |ni〉 = |ni + 1〉

where |ni〉 denotes a configuration with ni particles on site i following the quan-
tum mechanics tradition. Note a different normalisation with respect to the
standard definition. The operators satisfy ”bosonic” commutation relations

[ai, a
†
j ] = δij , [ai, aj ] = [a†i , a

†
j ] = 0.

The vacuum is defined by the requirement ai|0〉 = 0 ∀i (empty lattice). Ex-
cited ket states i.e. lattice with-non zero occupation numbers, is generated by
a successive application of creation operators a† to a vacuum:

|ni〉 =
(

a†i

)ni

|0〉, and bra states 〈ni| = 〈0|a
ni

ni!
.
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Then a given repartition n = {ni} reads as |n〉 =
∏

i

(

a†i

)ni

|0〉. By definition

excited states are orthogonal: 〈n||m〉 = δnm and form a complete basis:

1 =
∑

n

|n〉〈n|.

The total probability P(n, t) is represented by a ket-vector

|P(t)〉 =
∑

n

P(n, t)|n〉

Within these notations the master equation (5.7) for |P(t)〉 reads:

∂t|P(t)〉 = H|P(t)〉 (5.8)

H =
∑

i

∑

j∈v(i)

[

Wjia
†
iaj −Wija

†
iai +Wija

†
jai −Wija

†
jaj

]

(5.9)

+λ
∑

i

(1 − a†i )ai + µ
∑

i

(a†i − 1)a†iai

This equation admits a formal solution |P(t)〉 = exp(Ht)|P(0)〉. The average of
a quantity A(n) reads

〈A(n)〉 =
∑

n

A(n)P(n, t) = 〈O|Â|P〉

where 〈O| is the projection state 〈O| =
∑

n
〈n| = 〈0|ea; operator Â is defined by

its action on a state Â|n〉 = A(n)|n〉. Note that all operators are diagonal in
the basis of |n〉 within this formalism. Also all averages are linear in |P〉 unlike
in quantum mechanics where they are quadratic in wavefunction.

5.2.3 Coherent states representation

It is possible to continue the analysis in the context of the second quantisation
formalism but as illustrated by quantum field theory computation in terms of
operators is more involved technically and is less convenient than a field theory
framework. Derivation of a field theory from a second quantisation represen-
tation is a standard procedure presented in textbooks [99, 100]. A particular
presentation of derivation via a coherent state formalism that we use below is
presented in [96].

Coherent states are defined as eigenvectors of the operator a: a|φ〉 = φ|φ〉
labelled by a complex number φ. An eigenstate for a† is 〈φ|a† = φ〈φ|. That is
the eigenvalue of a† is a complex conjugate of the eigenvalue of a. After some
algebra one derives their expression in the basis of |n〉:
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|φ〉 = exp

(

−|φ|2
2

)

∑

n≥0

φn

n!
|n〉 = exp

(

−|φ|2
2

+ φa†
)

|0〉

〈φ| = exp

(

−|φ|2
2

)

∑

n≥0

φ
n

n!
〈n| = 〈0| exp

(

−|φ|2
2

+ φ̂a

)

For obvious reasons 〈φ| is an eigenvector of a†with an eigenvalue φ̂ = φ (a
complex conjugate of φ). A generic coherent state is given by a product of
coherent states for every site. Coherent states form a complete basis like |n〉:

1 =
∑

n

|n〉〈n| =

∫

d2φ

2π
|φ〉〈φ|

where dφ = dℜφ dℑφ. However coherent states are not orthogonal:

〈ψ||φ〉 = exp

(

−|ψ|2
2

− |φ|2
2

+ ψ̂φ

)

and this basis is overcomplete. The projection state 〈O| is proportional to the
coherent state with all φ = 1 that is the coherent state 〈1|.

Computation becomes especially simple in the basis of coherent states with
the introduction of normal ordering. For a given operator Â(a†, a) its normal
ordered counterpart Ã(a†, a) is computed by commuting all the a† in Â(a†, a)
to the left and all a to the right. Then the bracket 〈ψ|Â|φ〉 is computed imme-
diately: 〈ψ|Â|φ〉 = Ã(ψ, φ)〈ψ||φ〉.

5.2.4 Field theory à la Döı-Peliti

The derivation is fairly standard and is only sketched below. The average of an
operator Â reads:

〈Â(t)〉 = 〈O|Â|P(t)〉 = 〈O|ÂeHt|P(0)〉 (5.10)

Let’s now slice the time interval [0, t] into N parts so that t = Nǫ. Then in the
limit N → ∞ factorisation takes place:

exp[Ht] ≈
∏

exp[Hǫ].

We use this identity in (5.10) and plug in representations of unity:

∏

i

t
∏

s=0

d2φi(s)

π
〈1|Â|φi(t)〉

∏

s

〈φi(s)| exp[Hǫ]|φi(s− ǫ)〉〈φi(0)||P(0)〉 (5.11)

The product 〈1|Â|φi(t)〉 is computed by normal ordering Â. Then

〈1|Â|φi(t)〉 = Ã(1, φi(t))〈1||φi(t)〉 ∼ Ã(1, φi(t)) exp(−|φi(t)|2/2 + φ̂i(t))
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and Ã(1, φ(t)) = Ã(a† → 1, a→ φ(t)). The initial distribution term 〈φi(0)||P(0)〉
can be computed exactly if |P(0)〉 is a coherent state.

To evaluate the rest we use the identity

〈φ(s)| exp(Hǫ)|φ(s− ǫ)〉 = 〈φ(s)||φ(s − ǫ)〉 exp
(

ǫH̃(a† → φ̂, a→ φ) +O(ǫ2)
)

where H̃ is the normal ordering of H. This yields:

〈A(t)〉 ∼
∏

i

t
∏

s=0

d2φi(s)

π
Ã(1, φi(t)) exp(−|φi(t)|2/2 + φ̂i(t))〈φi(0)||P(0)〉

×
∏

s

exp

[

−φ̂i(s)(φi(s) − φi(s− ǫ)) +
|φi(s)|2

2
− |φi(s− ǫ)|2

2
+ ǫH̃(φ̂i(s), φi(s− ǫ))

]

Quadratic terms in the exponential drop out when the product over s is taken
except at s = 0 and s = t resulting into:

〈A(t)〉 ∼
∏

i

t
∏

s=0

d2φi(s)

π
Ã(1, φi(t))e

φ̂i(t)〈φi(0)||P(0)〉

× exp

[

−
∑

s

φ̂i(s)(φi(s) − φi(s− ǫ)) + ǫ
∑

s

H̃(φ̂i(s), φi(s− ǫ)) − |φi(0)|2
2

]

Now the limit ǫ → 0 should be taken to yield a final theory. This limit can
hide a problem of a choice between Itô or Stratonovich calculus related to time
ordering of the fields if one works with a continuous theory. However in our case
normal ordering implies the Itô calculus:

〈A(t)〉 = N−1

∫

∏

i

Dφ̂iDφi〈φi(0)||P(0)〉eS

S =
∑

i







φi(t) +
∑

i



−
t
∫

0

duφ̂i∂uφi + H̃(φ̂i, φi)



− |φi(0)|2
2







(5.12)

Now φ and φ̂ are treated as independent variables. Taking the continuum limit
we get:

S =

∫

d3xdt

[

φ(x, t) − φ̂(x, t)∂tφ(x, t) + H̃(φ̂, φ) − |φ(x, 0)|2
2

]

(5.13)

Now let’s write the explicit expression for H̃ derived from (5.9):

H̃(φ̂, φ) = φ̂(x, t)∇2φ(x, t) − λ(φ̂(x, t) − 1)φ(x, t) + µ(φ̂(x, t) − 1)φ̂φ(x, t)

−T (∇φ̂(x, t))φ(x, t)

∫

d3y(∇U(x − y))φ̂(y, t)φ(y, t)(5.14)
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5.2.5 Field theory for the density

The goal of the above derivation was to account for creation and destruction of
particles in Brownian dynamics that are represented by λ and µ related terms
in the action (5.13). However we are interested in a field theory for the density.
The field φ is not density: while the first moment 〈φ〉 is equal to an average
density, higher moments of φ do not coincide with moments of density, for
example: 〈ρρ〉 = 〈φφ〉 + 〈φ〉.

For λ = µ = 0 in (5.13) we recover the action S[φ̂, φ] (5.6) derived in Sec.
5.1 for interacting Brownian particles. This sheds some light on the origin of
the transformation (5.5). Indeed now the fields φ and φ̂ from Sec. 5.1 can be
identified with the fields of the Döı-Peliti field theory. And the transformation
relates field theory in terms of φ, φ̂ and field theory in terms of ρ, ρ̂. This
provides a method to get a density field theory for λ, µ 6= 0: we should just use
the inverted transformation. There are however two different ways to proceed:

• Apply the transformation directly to the action (5.13). This is a simple and

efficient way to transform S[φ, φ̂] into S[ρ, ρ̂]. However this transformation
neglects completely the normal ordering of the fields.

• Another method is to make a canonical transformation of the operators
a, a†: a = exp[−ρ†]ρ, a† = exp[ρ†] such that [ρ, ρ†] = 1 and ρ is a density
operator. This gives a different representation of the master equation.
Repeating the steps of Sec. 5.2.3 and 5.2.4 gives a density field theory.
The advantage of this method is that the normal ordering of the fields is
conserved in the final action.

Finally the resulting action reads:

S[ρ, ρ̂] =

∫

d3x

∫

dt

{

ρ̂(x, t)

[

−∂tρ(x, t) + T∇2ρ(x, t) (5.15)

+ ∇ ·
(

ρ(x, t)

∫

d3y ∇V (x − y)ρ(y, t)

)

]

+ Tρ(x, t)(∇ρ̂(x, t))2

+ µ
(

eρ̂(x,t) − 1
)

ρ(x, t) − λ(1 − e−ρ̂(x,t))ρ(x, t)

}

Before we proceed to analysis of this field theory we present a direct method
to derive (5.15) from a stochastic equation.

5.2.6 Stochastic equations with Poisonnian noise

The Döı-Peliti formalism gives a field theory which is then transformed into
a density field theory but the derivation is quite involved in the general case.
After some practice one can skip most of the steps of Sec. 5.2.2, 5.2.3 and
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5.2.4 and write down directly the result in terms of φ, φ̂. One should rewrite
the action in terms of density and a conjugated field yet. A direct derivation
of a density field theory from stochastic equations á la Martin-Siggia-Rose is
more convenient. However there is no recipe for how to construct a stochastic
equation for φ in general case [101]. The structure of the action (5.13) together
with (5.14) resembles an action that is usually derived in the context of Martin-
Siggia-Rose formalism from a Langevin equation (on φ). We can assume that
such equation exists and try to reconstruct it by identifying terms in the action.
For simplicity we set λ = µ = 0. Then the identification suggests the following
stochastic equation:

∂tφ(x, t) = T∇2φ(x, t) + η(x, t) (5.16)

〈η(x, t)η(y, s)〉 = 2∇x[φ(x, t)](∇xU)(x − y)φ(y, s)]

where η is a multiplicative Gaussian noise with zero mean and an Itô calculus
is adopted. However if we take a uniform φ and an attractive U , like U(x) ∼
− exp(−x2/2), the noise variance acquires a negative part which signalise a non-
zero imaginary part of η. This makes the physical meaning of the noise η and
of the whole equation (5.16) unclear. The situation becomes even worse for a
system defined by reaction A+A→ Ø: the noise η is purely imaginary in that
case.

On the contrary well-behaved stochastic equations exist if one starts from
density ρ and allow a direct derivation of the field theory for density. Processes
of creation and destruction of particles are well described by Poissonian jump
processes [102]. Let’s consider a single site with fluctuating occupation number
n. Then the variation dn of n between t and t+ dt is given by dJ = 0,±1:

dn = dJ (5.17)

dJ =







1 nµdt
0 1 − n(λ+ µ)dt

−1 nλdt
(5.18)

While dJ is certainly not a small quantity it has a vanishing probability to be
non-zero as dt → 0. This description is very close in spirit to the one provided
by the master equation (5.7). Then the generating functional Z[n, n̂] à la MSR
reads:

Z[n, n̂] = 〈
∏

t

∫

Dn(t)

∫

Dn̂(t) exp [n̂(t)(dJ(t) − dn(t)]〉

where the angles denote the average over realisations of Poissonian jump pro-
cesses. From the above definitions the average 〈exp[n̂dJ ]〉 reads:

〈exp(n̂dJ)〉 =
(

1 − n(λ+ µ)dt+ en̂nµdt+ e−n̂nλdt
)

=
[

1 + nµ
(

en̂ − 1
)

dt+ nλ
(

e−n̂ − 1
)

dt
]

≈ exp
[

nλ
(

e−n̂ − 1
)

dt+ nµ
(

en̂ − 1
)

dt
]
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Then Z is equal to:

Z[n, n̂] =

∫

Dn̂Dn exp

[∫

dtS

]

S[n, n̂] = −n̂∂tn+ nλ
(

e−n̂ − 1
)

+ nµ
(

en̂ − 1
)

(5.19)

The above action has a λ- and µ- terms remarkably similar to those of (5.15).
Generalisation of the above construction to the model presented in Sec. 5.2.1

is straightforward by adding hopping rates Wij . This gives a set of equations
on variations of occupation numbers:

dni = dJi (5.20)

dJi =











































1

(

niµ+
∑

j∈v(i)

njWji

)

dt

0 1 −
[

ni(λ+ µ) − ∑

j∈v(j)

(niWij − njWji)

]

dt

−1 ni

(

λ+
∑

j∈v(i)

Wij

)

dt

(5.21)

Repeating the steps made for a single site yields the action:

S[n, n̂] = −
∑

i

[

n̂∂tn+ nλ
(

e−n̂ − 1
)

+ nµ
(

en̂ − 1
)]

+
∑

<ij>

niWij

(

en̂j−n̂i − 1
)

(5.22)
Taking the continuum limit when the lattice spacing a tends to zero gives:

S[ρ, ρ̂] =

∫

d3x

∫

dt

{

ρ̂(x, t)

[

−∂tρ(x, t) + T∇2ρ(x, t) (5.23)

+ ∇ ·
(

ρ(x, t)

∫

d3y ∇V (x − y)ρ(y, t)

)

]

+ Tρ(x, t)(∇ρ̂(x, t))2

+ µ
(

eρ̂(x,t) − 1
)

ρ(x, t) − λ(1 − e−ρ̂(x,t))ρ(x, t)

}

where we defined the local density field ρ(x, t) = ni(t)/a
d and the conjugated

field ρ̂(x, t) = n̂i(t). Thus stochastic equations with Poissonian jump processes
provide a direct derivation of a density field theory with variable number of
particles. Let’s also note that in some cases the scaling limit transforms Poisso-
nian noise to a Gaussian noise, for example for interacting Brownian particles
we considered in Sec. 4.1.1 and 5.1.
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5.2.7 Low density expansion

The ability to express any creation-annihilation processes for the particles in
terms of density field ρ and a conjugated field ρ̂ suggests a method to derive
the low density expansion for Brownian dynamics. Indeed, the λ and µ terms
in the action given by Eq. (5.23) fix the average density ρ0 so that it does not
drop out like in Chapter 4. Varying λ and µ one can fix ρ0 to arbitrary value.
However the resulting theory has two difficulties:

• λ and µ terms are not invariant under transformations T and U . This is
straightforward to check by applying the transformations given by Eqs.
(4.11) and (4.13). This suggests that the dynamics with variable num-
ber of particles has a different transformation associated to time-reversal
symmetry that has not been identified so far.

• The field theory has a complicated perturbation theory with exponential
vertices. Indeed perturbation in powers of λ and µ leads to the appearance
of extra terms like nρ̂ in the Gaussian action as the exp exp(ρ̂) terms are
developed in powers of exp(ρ̂). Therefore the Gaussian action is different
from order to order in perturbation theory.

These issues prevents application of the theory to the problem of glass transition
where preservation of TRS is of primary importance.

5.3 Summary

In this chapter we aimed at fixing the divergence problem we discussed in Chap-
ter 4. We focused on two different approaches to the problem. First, a different
decomposition of the action (4.5) was considered. This decomposition lead to
the perturbation theory in powers of the potential which respected TRS and
lacked of ultraviolet divergence. We introduced the transformation (5.5) which
provided a standard decomposition into Gaussian part and interaction at the
price of a complicated expressions for density-density correlator Cρρ and re-
sponse function R. The latter became four-point quantities. However now both
of them can be expressed via a single function γ. The primary aim within this
theory would be to construct self-consistent perturbation theory and analyse the
1-loop approximation in analogy with Sec. 4.6. Note that this time it is nec-
essary to construct a self-consistent perturbation theory not only with dressed
lines but also dressed vertices with 4 legs in order to derive a self-consistent
equation on γ.

The other part of the Chapter was focused on the attempt to derive a low
density expansion for Brownian dynamics. This required to derive a density
field theory with variable number of particles. Such a generalisation of BD
was implemented within a context of Döı-Peliti formalism. Although it has
not resulted into a correct field theory because of the explicit time-reversal
violation it provided some interesting side results. First, our analysis related
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the expansion in powers of the potential and the Döı-Peliti formalism and shed
light onto the origin of the transformation (5.5) which made quadratic the action
SFREE . Second, we developed a direct way to construct density field theories
from well-behaved stochastic equations avoiding a somewhat involved coherent
state representation.
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Chapter 6

Landau theory for the glass

transition

As was pointed out earlier in Sec. 2.6 MCT describes quite well the first decades
of the slowing of dynamics close to the glass transition and captures the two step
relaxation. It also predicts an ideal transition at T = Td which is not observed
in simulations nor experimentally; data deviate systematically from MCT as Td

is approached. As was discussed in Sec. 2.3 MCT transition describes freezing
in an amorphous configuration. In finite dimensions barriers between different
configurations are always finite so that rearrangement will take place for any
T > 0 albeit on very long scales. That’s why the absence of the transition is
usually explained by the appearance of activated events that come into play as
the temperature is lowered and provide an extra relaxation channel destroying
the transition. These facts imply that MCT is an incomplete theory which is
only valid in a certain time and temperature window. As such it needs to be
corrected and completed. This motivates to analyse several problems related
with MCT:

• Corrections and structural stability: MCT does not provide any system-
atic method to compute corrections because the Mode-Coupling Factori-
sation (MCF) is uncontrolled. However it is of crucial importance to be
able to compute them in order to improve MCT and to test the struc-
tural stability of MCT with respect to neglected contributions. Clearly
there is something MCT misses which is responsible for the absence of the
transition. But it is a priori unclear whether this factor is due to correc-
tions or is a non-perturbative effect. To put it another way: whether the
transition can be removed by refining the MCF or the procedure is more
subtle. Some steps in this direction have already been done in [69] where
higher-order correlations were incorporated in schematic MCT. The au-
thors found that once the correlations are truncated one recovered MCT
while no transition is present in the exact solution.
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• The problem of corrections can be understood in a broader sense. We
discussed earlier in Sec. 2.7 and 4.6 a possible mechanism for the cut off
of the transition which relied on inclusion of extra conserved quantities in
the dynamics. This is a fundamentally different type of corrections: within
the Brownian dynamics of Sec. 4.4.2 one cannot account for transverse
currents considered in FNH. At the same time as we have seen the glass
transition is actually insensitive to these details: coupling to currents does
not smear the transition.

• The growing lengthscale present within MCT which is accessed via a four-
point function: it suggests to consider the main MCT Eq. (2.19) as a
mean-field equation on an order parameter which is rather unconventional:
it is a two-point function rather than a one-point one. This is supported by
the fact that schematic MCT which lacks spatial dependence shows all the
essential properties of the full MCT. Further analysis shows that spatial
fluctuations become infinitely long-ranged at T = Td which is signaled by
a diverging lengthscale like in standard critical phenomena. These fluctua-
tions are expected to change the critical behaviour below the upper critical
dimension du which is du = 6 or du = 8 for no conserved quantities and for
dynamics with conserved quantities respectively (BD,FNH) [58, 59]. For
d < du the Ginzburg criterion delimits a region where critical fluctuations
dominate from a region where they can be neglected. However, above du

one should also worry about the stability of the refined theory (MCT +
corrections) with respect to spatial fluctuations. Such test was carried out
for the standard MCT within the context of Inhomogeneous MCT [52, 53].

In this Chapter we propose a Landau theory for the glass transition. Within
critical phenomena this is a mean-field theory which is stable with respect to
corrections and with respect to fluctuations. The main statement that we will
prove throughout the whole Chapter is that MCT is a Landau theory for the
glass transition. However, we only prove the structural stability; stability with
respect to fluctuations is left for a future work.

6.1 Critical phenomena

We start by recalling the definition of a Landau theory for critical phenomena.

6.1.1 Ising model

The Landau theory is a general phenomenological theory for the equilibrium
phase transitions [103, 104]. It relies on a number of natural hypotheses:

• There exists an order parameter m that distinguishes different phases
under variation of an external thermodynamic parameter (temperature,
magnetic or electric field, pressure) i.e. it takes distinct values in different
phases. The order parameter varies from system to system: magnetisation
for ferromagnets, director for liquid crystals, etc.
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• The free energy of the system F is analytic in m and can be expanded
in powers of the order parameter. Symmetries of the system can make
certain terms in the expansion vanish. This important hypothesis is known
to be violated below the upper critical dimension. The series are usually
truncated to the lowest non trivial term.

• The coefficients of the series are assumed to be regular functions of the
external thermodynamic parameters like temperature, magnetic/electric
field, pressure, etc. The critical point is defined as the point where one
of the coefficients vanishes. In some cases several coefficients can vanish
simultaneously like for a tricritical point. Such a coefficient is approx-
imated by a linear function of the external parameter with a zero at a
critical point. All the other coefficients are approximated by their val-
ues at the critical point. This reduces the validity of the theory to the
immediate vicinity of the transition.

In the classic example of the Ising model the order parameter is the mag-
netisation m(x). In the absence of magnetic field the system is invariant under
m → −m. Then the expansion of the free energy F in the homogeneous case
m(x) = m reads (we also included an external field related term −mh):

F [m] = F0 +
b

2
(T − Tc)m

2 +
g

4!
m4 −mh (6.1)

The extremum of F with respect to m defines an equilibrium magnetisation
m(T ):

δF

δm
= 0 −→

(

b(T − Tc) +
g

6
m2
)

m = h (6.2)

In zero field h = 0, the paramagnetic solution m = 0 is stable for T > Tc; a
non-zero solution m =

√

−6b(T − Tc)/g only exists for T < Tc and is stable in
this region. The linear susceptibility χ = dm/dh diverges as (T − Tc)

−1/2 for
T → Tc+; right at T = Tc, m behaves like h1/3 for small fields. These are the
predictions of the Landau theory for an homogeneous case. One can go a step
further and treat an inhomogeneous case by including a gradient expansion of
m(x) in F :

F [m(x)] =

∫

d3x

[

−m(x)h(x) +
a

2
(∇m(x))2 +

b

2
(T − Tc)m

2(x) +
g

4!
m4(x)

]

Minimising the free energy with respect to m(x) yields in Fourier space:

δF

δm(x)
= 0 −→

(

−a∆x + b(T − Tc) +
g

6
m2(x)

)

m(x) = h(x)

χ(q) =
1

aq2 + b(T − Tc) + g
6m

2
=

ξ2

1 + (ξq)2
ξ ∼ (T − Tc)

−1/2

and the divergence of the susceptibility is associated with infinite range corre-
lation of the magnetisation at Tc.
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6.1.2 Breakdown of the Landau theory

It is well-established that the Landau theory breaks down below the upper
critical dimension. It is instructive to classify the origins of this failure:

• Higher order terms in the expansion of F [m] could alter the predictions.
This happens, for example, if g → 0 produces a tricritical point or if
neglected terms induce a first order transition (this would be the case
of a cubic term in the above expansion). But if the transition remains
of second order than the neglected terms are irrelevant as |T − Tc| → 0
because m ∼ √

T − Tc → 0.

• Critical fluctuations: the Landau theory completely neglects the non-
linear feedback from spatial fluctuations which changes the critical ex-
ponents below du. On the other hand one can prove, for example using
diagrammatic theory, that for d > du the effect of spatial fluctuations is
negligible and the predictions of the Landau theory are correct.

Studies on growing correlation length and related multi-point functions pro-
vided an approach to MCT in a sense equivalent to that of previous section.
The aim of the following analysis is to show that in this complicated case correc-
tions do not modify the predictions and MCT can be understood as the Landau
theory for glass transition. The complicated proof of the structural stability
will be the scope of the following sections. The technical difficulty is that the
order parameter for MCT transition is a time-dependent, two-point correlator
C(q, τ). To complete the construction of the Landau theory we should also test
the stability with respect to spatial fluctuations for d > du. However we will
completely disregard this issue and focus on the proof of the structural stability
only. We also consider only the high temperature phase where time reversal
symmetry (TRS) hold and hence fluctuation-dissipation theorem (FDT) hold.
Although there are indications that the Landau theory can be generalised to a
low-T phase where these symmetries are broken this is an even more complicated
problem as we will see in Chapter 7.

6.2 Glass transition

The proof of structural stability is carried out in two steps. First, we provide a
general proof for structural stability of MCT. Since several important subtleties
appear in the derivation, we highlight them in a detailed proof of the Landau
theory within perturbative expansions of particular models.

6.2.1 The background

The case of the glass transition is quite different from critical phenomena. Sev-
eral formal differences prevent direct analogy. First, the glass transition is a
purely dynamical phenomenon: static, thermodynamic properties do not present
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any peculiarities as a liquid freezes into a glass. Indeed, the static structure fac-
tor 〈δρ(q, t)〉 presents no peculiarities as the dynamics slows down. Second,
the standard construction with the free energy as a main object simply does
not exist due to the absence of a clear analogy to the free energy in the dy-
namical case. The results of the previous chapters allow to assume that the
slowing down of the dynamics in a supercooled liquid is governed by density
fluctuations; energy/momentum fluctuations are less important and can be ne-
glected [91, 68, 105]. Density fluctuations are defined as δρ(q, t) = ρ(q, t) − 〈ρ〉
where angular brackets denote the thermal average and q is a wave-vector.
Contrary to critical phenomena where the order parameter is a static one point
function order parameter in glasses is a dynamic two point correlators: the main
objects are dynamic structural correlator C(q, τ) = 〈δρ(q, t)δρ(−q, s)〉 and re-
sponse function R(q, τ) = 〈δρ(q, t)/δU(−q, s)〉 at U = 0 (where τ = t − s)
which describes the reaction of the system on the external potential U .

Let’s recall briefly the phenomenology of the transition ( presented also as
MCT results 2.3). The slowing down of the dynamics is accompanied by the
appearance of a plateau fq in the relaxation pattern of C(q, τ) and of two
diverging timescales: one governing the approach to the plateau (β regime) and
the other controlling the decay off the plateau and corresponding to a structural
relaxation of the system (And which was denoted as α regime in the context of
MCT). Within MCT both timescales diverge at T = Td and C(q, τ) acquires a
non-zero limit at infinity

fq = lim
τ→∞

C(q, τ) T = Td.

The non-ergodic parameter fq does not provide access to important details of
the transition like diverging timescales. As we have seen in 2.3 as the timescales
increase the correlator C(q, τ) can be described as

C(q, τ) ≈ fq + δC(q, τ)

in an increasing time window as T approaches Td. MCT provided some explicit
predictions about δC(q, τ) (see 2.3) and various scaling laws. The underlying
idea of our Landau theory is to consider δC(q, τ) as the generalisation of the
order parameter to the case of the glass transition and to derive a structurally
stable dynamic equation for it which generalises (2.22).

Such a derivation is possible in the framework of the field theories (Brownian
dynamics and FNH) presented in 4 or 3-spin model presented in 3.1 which
provide exact dynamical equations for C and R and hence in principle, for δC.
These theories give a very different sets of equations however one can prove that
close to the transition they can all be reduced to a single equation:

∂τC(q, τ) + TC(q, τ) + κ

τ
∫

0

duΣ(q, τ − u)∂uC(q, u) = 0 (6.3)

with initial conditions: C(q, 0) = Sq. The Laplace transform reads:
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T Ĉ(q, z)

Sq − zĈ(q, z)
= 1 − κΣ̂(q, z) (6.4)

The self-consistent self-energy Σ(q, τ) (or memory kernel in MCT terminology)
is given by a sum of amputated 2 particle irreducible (2-PI) self-consistent dia-
grams built with C and R lines (see 4.4,4.5,3.1). We do not specify the details
of the field theory underlying this equation, nor the Feynman rules for the dia-
grams contributing to Σ: we just need that such a theory exists. As we specified
above we consider the high-T region so that the system is at equilibrium: both
R and C are time-translation invariant and FDT holds at a diagrammatic level:
R(q, τ) = −1/T∂τC(q, τ).

Note that (6.3) resembles structurally (2.19) derived in the context of MCT.
However, we have already stressed that within MCT there is no well defined
prescription on how to build consistent approximations for Σ. In this sense MCT
is a non-controlled approximation hard to improve: systematic corrections would
be hard to identify and to account for. The field-theoretic approach provides
approximations for Σ on a systematic basis (like the loop expansion of Σ).

6.2.2 1-loop approximation

In order to identify a candidate for a Landau theory one should find an approx-
imation for Σ that is stable structurally i.e. stable with respect to corrections.
Our main statement is that MCT is the Landau theory and further corrections
bring no qualitative changes. One should find an approximation for Σ that re-
produces (2.19). Fortunately this is an easy task as we have seen in 4.6: MCT is
reproduced in the context of (6.3) within the 1-loop approximation for Σ when
one retains only 1-loop diagram in the expansion of Σ:

Σ(q, t− s) = t s = (6.5)

=

∫

d3k

(2π)3
V (q,k)C(q − k, t− s)C(k, t − s)

where V (q,k) is the effective vertex that makes the integral over k convergent.
As we have seen earlier in Chapter 4 a problem of ultraviolet divergence related
to an ill-behaved V (q,k) appears within field theories. This divergence is regu-
larised by a large wave-vector cutoff which we imply henceforth. Note that the
cutoff should not be relevant for the proof of structural stability.

Now (6.4) reads:
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T Ĉ(q, z)

Sq − zĈ(q, z)
= 1 − κ

∫

d3k

(2π)3
V (q,k)L [C(q − k, τ)C(k, τ)] (6.6)

The resulting equation is identical to (2.19) up to a redefinition of the co-
efficients and an appropriate choice of the kernel V (q,k). The analysis of this
equation reproduces the results presented in 2.3.

6.2.3 The general case

Thus we have accomplished the first step and identified a candidate for the
Landau theory. The next step is to prove that extra terms in the expansion of
Σ do not modify this result. Let’s consider (6.3) with Σ given by a finite sum
of 2-PI diagrams including the one loop diagram. An important complication
appears compared to the one-loop case: beyond 1-loop, diagrams become non-
local in time. The proof is done in a self-consistent manner: we assume some
properties of the solution of (6.3) and demonstrate that they are consistent with
the results. Our assumptions about the solution of (6.3) parallel the results
found within MCT (Sec. 2.3), observed experimentally and in simulations:

• Structural arrest at a certain temperature Td with broken ergodicity below
this temperature. The correlator C(q, τ) tends asymptotically to a non-
zero value fq at τ = ∞.

• Appearance of a two-step relaxation pattern with three well separated
time scales for ǫ≪ 1 where ǫ = (T − Td)/Td > 0:

– Short times τ ∼ 1 where C(q, τ) = C0(q, τ) and C0(q, τ → ∞) → fq.

– β-relaxation τ = sτβ(ǫ) with s = O(1): δC(q, sτβ) = C(q, τ) − fq =
Sqm(ǫ)(1 − fq)2G(q, s)) where m(ǫ) measures a deviation from the
plateau and vanishes as ǫ→ 0.

– α-relaxation τ = xτα(ǫ) with x = O(1): C(q, τ) = Cα(q, x) (Cα(0)−
fq) describes a final fall off the relaxation.

• We further assume that G(q, s) can be expanded in powers of m(ǫ):

G(q, s) =
∑

n>0

mn−1(ǫ)Gn(q, s)

All the functions Gn are a priori singular at s = 0 and at s = ∞ since
they should match short times and α relaxation respectively where the
deviation from the plateau δC ceases to be small. A crucial remark for
what follows is that any function Gn is accompanied by a prefactor mn(ǫ).
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These hypotheses turn out to be sufficient to generalise MCT (1 loop) results
in the β regime. First, the expansion of C(k, τ/τβ) implies a similar expansion
of the self-energy Σ(k, τ/τβ) valid in the β-regime:

Σ(q, sτβ) = Σ0(q, s) +m(ǫ)Σ1(q, s) +m2(ǫ)Σ2(q, s) + · · · (6.7)

Σ̂(q, z/τβ) = Σ̂0(q, z) +m(ǫ)Σ̂1(q, z) +m2(ǫ)Σ̂2(q, z) + · · ·

The coefficients Σn are defined as:

Σn(q, s) =
dnΣ(q, sτβ(ǫ))

dm(ǫ)n

∣

∣

∣

∣

m(ǫ)=0

and therefore do not depend on ǫ, but are some functionals of C(q, τ). Namely,
their most general functional form a priori includes contributions from all the
scaling regimes introduced above:

Σn(q, s) = Σn

[

C0(p, sτβ), G(p, s), Cα(p, sτβ/τα)

]

.

However, the independence from ǫ puts constraints on the actual functional
form of Σn. We will illustrate this on the first three coefficients Σ0, Σ1 and Σ2.
The knowledge of these coefficients allows to fix G1 and the scaling laws; higher
order coefficients are actually irrelevant.

The zeroth order term Σ0(q, s) can only be a pure wave-vector function
Σ0(q). Since Σ0 = limǫ→0 Σ(q, sτβ) and the time scales separate the general
functional form for Σn simplifies for n = 0 to

Σ0(q) = Σ0[C0(q,∞), 0, Cα(p, 0)] = Σ0[fp]

and all the s-dependence drops out. Thus this term is irrelevant for the Landau
theory.

The first order term Σ1(q, s) has two contributions: an s-independent term
and an s-dependent term. The first one is irrelevant: it only renormalises the
temperature (which is not computed exactly in the context of the Landau theory
anyway). The second term admits a single representation

Σ1(q, s) =

∞
∫

0

du

∫

d3k

(2π)3
σ1(q,k; s, u)G1(k, u).

Any other combination containing higher Gn’s would produce an extra mn(ǫ):
this is a higher order contribution which can be safely neglected. The kernel
σ1 has a regular shape in the original time variables with a span fixed by a
microscopic timescale. Hence it should be local in the rescaled variables s, u. To
lowest order σ1 is a δ-function in s, u, derivatives of the δ-function corresponding
to higher order contributions. Finally:

Σ1(q, s) =

∫

d3k

(2π)3
σ1(q,k)G1(k, s)
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The second order term Σ2(q, s) has a richer structure. First, there is a term

similar to the first order term Σ1 with G2:
∫

d3k
(2π)3σ21(q,k)G2(k, s). The reason

for its local time structure is exactly the same as for Σ1. Second, there are
terms quadratic in G1:

∫

d3k

(2π)3

∫

d3p

(2π)3

∞
∫

0

du

∞
∫

0

dvσ2(q,k,p; s, u, v)G1(k, u)G1(p, v).

The time dependent part of σ2(q,k,p; s, u, v) is composed of δ-functions and
their derivatives (for simplicity the wave-vector dependence is dropped):

σ2(s, u, v) = σ2,locδ(s− u)δ(s− v) + σ2δ(v + u− s)(∂u + ∂v) + σ̃2(∂u + ∂v)δ(v + u− s)

The fact that only the u + v − s combination enters the above expression is a
direct consequence of the equilibrium. Another consequence is that in the above
time integrations the above limit is not an infinity but s. The full justification
is provided in Appendices A1 and A2. The first local term generalises the usual
MCT, ”1-loop like” contribution, but the other terms do not appear within a
standard MCT (at least at a first glance). The third term is related to the
second one by integration by parts:

s
∫

0

du[∂uG1(k, u− s)]G1(p, u) = G1(k, s)G1(p, s) −G1(k, 0)G1(p, 0) −

−
s
∫

0

du∂uG1(p, u)G1(k, u − s) (6.8)

The termG1(k, 0)G1(p, 0) looks divergent because of the singular asymptotics of
G1(q, s) at s = 0. However this divergence can be regularised as we demonstrate
below.

Finally (6.7) reads:

Σ(q, sτβ) = Σ0(q) +m(ǫ)

∫

d3k

(2π)3
σ1(q,k)G1(k, s) +

+m2(ǫ)

∫

d3k

(2π)3
σ2(q,k)G2(k, s) +

+m2(ǫ)

∫

d3k

(2π)3

∫

d3p

(2π)3
σ21,loc(q,k,p)G1(k, s)G1(p, s) + (6.9)

+m2(ǫ)

∫

d3k

(2π)3

∫

d3p

(2π)3
σ21,nl(q,k,p)

s
∫

0

du[∂uG1(k, u)]G1(p, s− u)

(6.10)
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Or after Laplace transform

Σ̂(q, z/τβ) =
Σ0(q)

z
+m(ǫ)

∫

d3k

(2π)3
σ1(q,k)Ĝ1(k, z) +

+m2(ǫ)

∫

d3k

(2π)3
σ2(q,k)Ĝ2(k, z) +

+m2(ǫ)

∫

d3k

(2π)3

∫

d3p

(2π)3
σ21,loc(q,k,p)L[G1(k, s)G1(p, s)](z) +

+m2(ǫ)

∫

d3k

(2π)3

∫

d3p

(2π)3
σ21,nl(q,k,p)(zĜ1(k, z) −G1(k, 0))Ĝ1(p, z)

where σ21,nl accounts for all non-local contributions.
This expansion is the central result in the construction of the Landau theory.

It allows to expand (6.3) in β regime in powers ofm(ǫ) using (6.9) and expansion
of C. After the Laplace transform expansion of (6.4) reads:

Tdfqǫ

z(1 − fq)
+m(ǫ)

[

Td(1 + ǫ)Ĝ1(q, z) + κ

∫

d3k

(2π)3
Σ1(q,k)Ĝ1(k, z)

]

+

+Td(1 + ǫ)m2(ǫ)

[

Ĝ2(q, z) + κ

∫

d3k

(2π)3
Σ2(q,k)Ĝ2(k, z)

]

+

m2(ǫ)Td(1 + ǫ)(1 − fq)zĜ2
1(q, z) = −m2(ǫ)κ

∫

d3k

(2π)3
Σ2,loc(q,k)Ĝ2(k, z) −

−m2(ǫ)κ

∫

d3k

(2π)3

∫

d3p

(2π)3
Σ21,loc(q,k,p) ∗ L[G1(k, τ)G1(p, τ)](z) −

−m2(ǫ)κ

∫

d3k

(2π)3

∫

d3p

(2π)3
Σ21,nl(q,k,p)zĜ1(k, z)Ĝ1(p, z)(6.11)

where we dropped the terms independent of ǫ which fix the non-ergodic param-
eter fq:

Tdfq
1 − fq

= −κΣ0(q) (6.12)

and Σ0(q) is a functional of f as we have proved above.
Identifying the coefficients of the expansion to zero produces series of equa-

tions. The first order fixes the yet unknown function m(ǫ): expansion (6.3) has
terms with explicit powers of ǫ. They should be matched with powers of m(ǫ).
Inspection of (6.11) shows that there are two possibilities: either m(ǫ) = ǫ,
either m(ǫ) =

√

(ǫ). The first choice yields a trivial solution for G1 which is
in contradiction the assumption of a two-step relaxation pattern with diverging
timescales. Namely if m(ǫ) = ǫ in (6.3) yields:
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Tdfq
z(1 − fq)

+

∫

d3k

(2π)3

[

Tdδ(q − k) + κσ1(q,k)Ĝ1(k, z)
]

Ĝ1(k, z) = 0 (6.13)

Tdfq
z(1 − fq)

+ KĜ1(q, z) = 0

where we introduced an operator K with the kernel K(q,k) = Tdδ(q − k) +
κσ1(q,k). Let’s suppose that we know the eigenvectors ĜΛ

1 (q, z) and the eigen-
values Λ of K. Then the above equation reads for any given eigenvalue Λ:

Tdfq
z(1 − fq)

+ ΛĜΛ
1 (q, z) = 0 (6.14)

This equations are immediately solved with respect to z implying that GΛ
1 (q, s)

do not actually depend on s. Therefore G1(q) contributes to the height of the
plateau fq but do not describe a non-trivial dynamics which imposes singular-
ities at s = 0 and at s = ∞, in contradiction with our hypothesis. We are
then forced to conclude that m(ǫ) =

√

(ǫ) like at 1-loop and corrections do not
renormalise this result. It is worth to mention that different solutions referred
to as Al singularities are possible for m(ǫ) [106, 107, 108].

The equation of order
√
ǫ reads:

TdĜ1(q, z) = −κ
∫

d3k

(2π)3
Σ1(q,k)Ĝ1(q, z) (6.15)

This is a classical eigenvalue problem within MCT (see 2.3). It shows that G1

is a product of wave-vector dependent and time dependent amplitudes thus re-
producing the well-know MCT ”factorisation property”: Ĝ1(q, z) = ĝ(z)H1(q)
where H1 is the eigenvector of −κσ1 with the largest eigenvalue Td. But the
scaling function ĝ(z) remains unfixed at this order and higher orders in

√
ǫ must

be considered.
The second order equation is trickier:

TdĜ2(q, z) + κ

∫

d3k

(2π)3
Σ2(q,k)Ĝ2(k, z) = −

− Tdfq
z(1 − fq)

− Td(1 − fq)zĝ2(z)H2
1 (q) − (6.16)

−κ
∫

d3k

(2π)3

∫

d3p

(2π)3
Σ21,loc(q,k,p, z)L[g2]H1(k)H1(p) −

−κzĝ2(z)

∫

d3k

(2π)3

∫

d3p

(2π)3
Σ21,nl(q,k,p)H1(k)H1(p)

An important remark is that the linear operator acting on Ĝ2 is exactly the same
as the one in (6.15). This can be seen from the following argument: expanding
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C as C(sτβ) = Sq(fq +
√
ǫ(1 − fq)2G(q, s)), Σ(sτβ) can itself be expanded in

powers of
√
ǫG(q, s):

Σ(q, sτβ) = Σ0(q) +
√
ǫ

∫

d3k

(2π)3
σǫ

1(q,k)G(k, s) + · · ·

where the superscript ǫ of σ1 denotes that it depends on ǫ contrary to previously
defined σn. The linear terms read:

Σ(q, sτβ) = Σ0(q) +
√
ǫ

∫

d3k

(2π)3
σ1(q,k)G1(k, s) + ǫ

∫

d3k

(2π)3
σ1(q,k)G2(k, s) + · · ·

proving the statement.
Following [21] we now multiply (6.16) by H1(q) and integrate over q. The

G2 part of the equation vanishes (G2 is also an eigenvector with the eigenvalue
Td like G1) and the remainder yields an equation on g. After some algebra and
a rescaling of z and ĝ one finds:

1

z
+
z

λ
ĝ2
1 = L[g2

1] (6.17)

where λ is a certain numerical constant including the non-local contributions.
Up to a shift of λ we recovered (2.22) found within MCT previously. We there-
fore know immediately its solution and properties: g has a singular power law
asymptotics at z → ∞: ĝ(z) ∼ za−1 and z → 0: ĝ(z) ∼ z−1−b in accordance
with our assumptions. The small time exponent a and long time exponent b
characterise the decay to and off the plateau fq and are related by a celebrated
equation (2.23):

Γ2(1 − a)

Γ(1 − 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
= λ (6.18)

which is a genuinely non-trivial MCT result. This result is thus quite general
and survives the introduction of an arbitrary number of loop corrections. On
the other hand the numerical values of a and b are not universal since they are
determined by λ which is clearly renormalised by corrections.

The fact that the form of g is the same as at 1-loop (MCT) has 2 conse-
quences. First, it fixes functional dependence of the time scales

τβ ∼ ǫ−1/2a τα ∼ ǫ−γ

with γ = 1/2a+ 1/2b. This stems from the matching of C(q, sτβ) at both ends
of β regime with the solutions at other regimes. Second, this allows to regularise
the above divergences by introducing a small time cut-off in the integrals (6.8).
in terms of the function g(s) one finds:

√
ǫ

s
∫

δǫ1/2a

dug′(u)g(s− u) =
√
ǫ

s
∫

δǫ1/2a

dug′(u)[g(s− u) − g(s)] +

+g2(s) −√
ǫg(s)g(δǫ1/2a)
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Now the first term is regular as ǫ → 0. The second term contributes to
the standard MCT while the last term should be computed in the limit ǫ → 0
followed by δ → ∞ (the order is important): it behaves like ∼ δ−a and tends
to zero as δ → ∞. This regularisation renormalises the parameters only and is
not relevant (See also Appendix C for details).

The conclusion is that the only extra contribution that can be constructed at
second order in g(s), namely the non-local term proportional to

∫

dug′(u)g(s−
u), leaves the basic MCT equation, Eq. (6.17), unchanged. Since higher order
terms in ǫ (cubic terms in g(s), etc.) are completely irrelevant to obtain Eq.
(6.17), there is a strong degree of universality in the above derivation, and in
the final MCT prediction, Eq. (6.18). This universality with respect to higher
order local (in time) corrections was of course already shown by Götze long
ago [109, 106]; here we have proven that this result is robust with respect to
non-local corrections as well.

6.2.4 Diverging lengthscale

We have seen in 2.5 how MCT equations are generalised in the presence of spatial
inhomogeneities, where the correlation function C becomes space dependent:
C(q, r). When the scale of the inhomogeneities is large, one can establish a
gradient expansion of the MCT equations [52] which parallels the derivation of
2.5. In the schematic limit where all wave-vector dependence is discarded, the
self-energy reads:

Σ[C](s) = C(r, s)2 + w1C(r, s)∇2C(r, s) + w2∇C(r, s) · ∇C(r, s) (6.19)

where w1 and w2 are some coefficients [52]. These gradient terms are very
important because they show how the MCT transition is in fact associated
with a diverging correlation length, which corresponds to the scale over which
a localised perturbation affects the surrounding dynamics. The corresponding
susceptibility χ(p, s) was computed in details in [52] (p is here the wavevector
conjugated to r and should not be confused with the wavevectors q,k used
above). The correlation length ξ diverges as ǫ−1/4, and the long-ranged critical
fluctuations renormalise the value of the MCT exponents in d < du [58, 59].
The above analysis, which was done in the homogeneous limit ∇ → 0, should
be repeated in the inhomogeneous case. We expect that the same conclusion
will hold, namely that the results obtained within inhomogeneous MCT are
stable against the addition of higher order corrections. This would complete
the proof of the structural stability of MCT and the validity of neglecting the
spatial fluctuations for d > du.

6.3 Brownian dynamics

The scope of the following sections is the illustration of the generic recipes pre-
sented above in the context of particular microscopic models of MCT transition.
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The main focus will the derivation of the kernel expansion (6.9) from diagram-
matic perturbation expansions for Σ(q, τ). We consider Brownian dynamics of
interacting particles as presented in 4 (see 4.4.2) and the schematic 3-spin model.
Derivation for the Fluctuating Hydrodynamics (Newtonian dynamics) follows
closely that of Brownian dynamics but is more involved technically because of
greater number of equations (see Appendix in chapter 4).

6.3.1 Reduction of the Schwinger-Dyson equations

Let’s first show how equations (4.50)-(4.52) of 4.4.3 reduce to a single equation
(6.3). Lets’ recall them first:

∂τCρρ(q, τ) + ρ0q
2Cρθ(q, τ) = − 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cρθ(q, u) (6.20)

− 1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρρ(q, u)

∂τCρθ(q, τ) + ρ0q
2Cθθ(q, τ) =

1

T
Σρ̂θ̂(q, τ)Cρθ(q, 0) (6.21)

− 1

T

∫ τ

0

duΣρ̂ρ̂(q, τ − u)Cθθ(q, u) −
1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)∂uCρθ(q, u)

W (q)Cρρ(q, τ) − Cρθ(q, τ) =
1

T
Σθ̂θ̂(q, 0)Cρρ(q, τ) (6.22)

− 1

T

∫ τ

0

duΣρ̂θ̂(q, τ − u)Cρθ(q, u) −
1

T

∫ τ

0

duΣθ̂θ̂(q, τ − u)∂uCρρ(q, u)

These exact equations are closed by self-consistent series for self-energies based
on the large density expansion presented in 4.4.2. We assume large wavevector
cut-off that regularises the expansion. Structural stability of MCT with respect
to high order corrections is sensitive to the time dependence structure of the per-
turbative series. This is confirmed by results of sMCT. Wavevector dependence
becomes important for the proof of stability with respect to fluctuations.

Only the density correlator Cρρ(q, τ) is expected to exhibit slow dynamics
characterised by a two-step relaxation pattern while the other correlators are
expected to be irrelevant: as we showed in 4.6 these correlators are related to
averages of the force; one does not expect to have frozen forces at the transition.
It is worth recalling that equation (6.22) fixes the non-ergodic parameter. It
is natural to assume that it is the most important; we only need to neglect
somehow the terms related to irrelevant quantities i.e. decouple it from the rest
of equations. The reduction to a single equation on Cρρ is made self-consistently:
we assume the 1-loop properties for Cρρ(q, τ) and Σθ̂θ̂, and prove that other
contributions are negligible; a similar hypothesis is assumed for self-energies
where only Σθ̂θ̂ is relevant. Let’s fix time behaviour of the Cρθ and Cθθ as T =
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Td(1+ǫ) and ǫ≪ 1. The limit τ → ∞ of (6.20)-(6.22) implies a zero infinite time

limit of Cρθ and Cθθ [91] because they are integrable:
∞
∫

0

dτCρθ,θθ(q, τ) < ∞.

The same statement holds for self-energies:
∞
∫

0

dτΣρ̂ρ̂(q, τ) <∞,
∞
∫

0

dτΣρ̂θ̂(q, τ) <

∞. Landau theory applies to the β-relaxation regime. Integrability imposes the
following scaling for these correlators and self-energies:

Cρθ(q, sτβ) .
1

τβ
C

(β)
ρθ (q, s)

Cθθ(q, sτβ) .
1

τβ
C

(β)
θθ (q, s)

Σρ̂ρ̂(q, sτβ) .
1

τβ
Σ

(β)
ρ̂ρ̂ (q, s)

Σρ̂θ̂(q, sτβ) .
1

τβ
Σ

(β)

ρ̂θ̂
(q, s)

This scaling is different from that of Cρρ(q, sτα) for ǫ≪ 1; it introduces an extra
small quantity τ−1

β (ǫ) because τβ diverges at Td. This introduces a problem of

comparison of powers of m(ǫ) =
√
ǫ with powers of τ−1

β = ǫ1/2a. Assuming

τ−1
β ≪ ǫ as it is the case if a verifies the equation on MCT exponents (2.23)

all the non-Cρρ and non-Σθ̂θ̂ related terms in (6.22) can be neglected and it
becomes (6.4):

Wq − 1
T Σθ̂θ̂(q, 0)

Sq − zĈρρ(q, z/τβ)
Ĉρρ(q, z/τβ) =

1

T
Σ̂θ̂θ̂(q, z/τβ) (6.23)

Extra correlators and self-energies contribute to higher orders. This is indeed the
case because of (6.18) which implies 0 < a < 1/2; therefore τ−1

β = ǫ1/2a ∼ o(ǫ).
Remark however that Σθ̂θ̂ still has numerical contributions from Cρθ and Cθθ

with no explicit dependence on τ like
∞
∫

0

duCρθ(u).

Finally, (6.23) holds only if the following assumptions are satisfied:

• Landau theory: this equation is a self-consistent assumption in the deriva-
tion of the Landau theory. It is validated by derivation of the

√
ǫ expansion

of Σθ̂θ̂(q, sτβ) (6.9).

• Equation (6.23) is only valid on the β-scale: on different scales neglecting
terms in (6.22) is not justified.

6.3.2 Kernel expansion

Let’s write an explicit expression for (6.23) in the β regime:
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TdW̃qfq
z(1 − fq)

+m(ǫ)TdW̃qĜ1(q, z) +m2(ǫ)TdW̃q(1 − fq)zĜ2(q, z) +

+m2(ǫ)TdW̃q(1 − fq)2Ĝ2(q, z) + ǫ
TdW̃qfq
z(1 − fq)

= Σ̂θ̂θ̂(q, zǫ
1/2a) (6.24)

where W̃q = Wq − Σθ̂θ̂(q, 0)/T . The equation on the non-ergodic parameter
fq is given by a zero order in m(ǫ) and it reproduces equation of fq that was
derived in 6.2.3:

T 2
d fq

1 − fq
= Σθ̂θ̂(q,∞) (6.25)

To close the expansion (6.24) one should compute the expansion Σθ̂θ̂(q, z/τβ) in
m(ǫ). In the context of Brownian dynamic Σθ̂θ̂(q, z/τβ) admits a diagrammatic
representation discussed in 4.4.2. The arguments of 6.2.3 give the series (6.9) for
Σθ̂θ̂(q, z/τβ) on general grounds. It is instructive to justify this result by a direct
derivation from perturbative series. This derivation can be accomplished for
Brownian dynamics. Nevertheless it is cumbersome because of the wavevector
dependence which obscures the derivation with irrelevant technical details. A
schematic model is better adapted for this purpose: we demonstrate the direct
computation on the example of the 3-spin model below for this reason.

6.4 Spherical 3-spin model

This section focuses on an explicit derivation of the expansion (6.9) for Σ(τ)
within the 3-spin model. The main point is to highlight the subtle technical
details in the derivation from perturbation theories. Let’s recall briefly the
basic results for the model. The evolution of the spin-spin correlator Ĉ(z) is
given by:

T 2Ĉ(z)

1 − zĈ(z)
= T + Σ̂(z) (6.26)

where Σ̂(z) is represented by a sum of 2 particle irreducible diagrams. Before
we present the derivation of (6.7) for Σ(sτβ) from the diagrammatic expansion.

6.4.1 Perturbative corrections to 1-loop

The lowest 1-loop order approximation for Σ was discussed in 3.3. Corrections
from higher orders of perturbation have two characteristic properties:

• Σ(τ) is no more local in time i.e. it is no more a polynomial in C(τ). A
typical 1/N diagram reads:
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=
18

NT 2

∞
∫∫

0

dxdyC′(x)C′(y)C(x − y)C(τ − x)C(τ − y)

• We discussed in 3.2 that perturbation theory in 1/N is not very suitable
for analysis because each order in 1/N has an infinite number of diagrams
and requires a preliminary partial resummation which is out of reach.

The first property breaks the derivation used for the local case and which
was used in (3.3). The second issue prevents from using the 1/N perturbation
theory. Instead we consider an approximation for Σ which consists in retaining
the 1-loop diagram and any finite set of higher order diagrams; this way the
resummation is avoided.

6.4.2 Time ordering in perturbation theory

A generic diagram of the self-consistent expansion contributing to Σ(τ) reads:

∫

du1 · · ·
∫

dunR1(u1) · · ·Rn(un) × Product of C lines depending on linear
combinations of {uk} and τ

where R is the response function. A priori internal times {uk} are contained
in [0,∞]. This can be further restricted to [0, τ ]. Furthermore all arguments
of correlators inside a diagram can be restricted to [0, τ ]. This property of
perturbation series which we refer to as time ordering, is a direct consequence
of equilibrium. A detailed proof is presented in Appendices A1 and A2. We will
see that neglecting this property of perturbation series may lead to an artificial
break down of the Landau theory.

Remark also a particular choice of internal times {uk}: they are defined
so that any uk appears once as dukR(uk) in a diagram i.e. uk span all the
independent internal times in a diagram. This is a direct consequence of the
structure of the interaction (3.7): for a given time u there is a single φ̂ line.
Therefore for any vertex there is always a single incoming and a single outgoing
R-line.

6.4.3 Diagrammatic derivation

In what follows we substitute the generic quantities m(ǫ), τα and τβ by their
MCT values for simplicity. The validity of such substitution is verified self-
consistently.

We are interested in an expansion of Σ(τ = sǫ1/2a) in powers of
√
ǫ up to

the second order. As we stated above the difficulty of the diagrams is the non-
local time dependence that mixes correlators at different times. This leads to a
coupling of different scaling regimes - short times, β and α which was absent for
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the 1-loop approximation where only local terms were present. This coupling
prevents from simple substitution C(sτβ + · · · ) → C(sτβ) because · · · can also
be of order O(τβ). To account for this extra contributions (as compared to
the local term case) it is convenient to split the integration domain of a given
internal time u into two disjoint intervals:

u ∼ O(1) u ∼ O(τβ)

which define on what timescale u is. Applying this procedure to all internal
times generates an expansion of the original diagram into a finite series:

sτβ
∫

0

du =

λ
∫

0

du+

sτβ
∫

λ

du

where the α-regime is absent because of the time ordering. Now all the internal
times are ordered in the following sense: for a given term every time u belongs
to a particular time scale.

This idea is illustrated for a particular diagram in Appendix B; however it
is quite cumbersome. For simplicity we illustrate it on a toy expression which
is simple enough but still non-trivial:

sǫ−1/2a
∫

0

duR(u)C(sǫ−1/2a − u) =

λ
∫

0

duR(u)C(sǫ−1/2a − u)

+ ǫ−1/2a

s
∫

λǫ1/2a

duR(u)C((s− u)ǫ−1/2a)

where we introduced the scale λ which delimits the limit of applicability of the
short time regime. It should be sent to infinity at the end after the ǫ → 0 is
taken.

Assuming a sharp timescale separation for ǫ ≪ 1 substitution of R and C
lines by their asymptotic values is justified:

u, v ∼ O(1) C(u+ v) ∼ C0(u + v) R(u+ v) ∼ R0(u + v)

u ∼ O(τβ), v ∼ O(1) C(u + v) ∼ Cβ(u) R(u+ v) ∼ ǫ1/2aRβ(u)

u, v ∼ O(τβ) C(u + v) ∼ Cβ(u+ v) R(u+ v) ∼ ǫ1/2aRβ(u+ v)

The the above splitting reads:

sǫ−1/2a
∫

0

duR(u)C(sǫ−1/2a − u) =
λ
∫

0

duR0(u)C(sǫ−1/2a − u)

+
√
ǫ(1 − q)2

s
∫

λǫ1/2a

du(g′(u) +
√
ǫg′2(u))C((s − u)ǫ−1/2a)

132



Note that the prefactor ǫ1/2a of Rβ was absorbed in du due to rescaling of u by
ǫ−1/2a in the second term. From the above expression one derives the following
rules:

• Integration over short time gives only a constant contribution. Indeed,
due to supposed sharp timescales separation short times decouple from
times of order τβ (including s).

• Integration over β-scale contributes to orders
√
ǫ and ǫ:

sǫ−1/2a
∫

λ

du∂uC(u) =

s
∫

λǫ1/2a

du∂uC(uǫ−1/2a)

=
√
ǫ(1 − q)2

s
∫

λǫ1/2a

du
[

g′(u) +
√
ǫg′2(u) + · · ·

]

The second rule implies that a diagram which contributes to at most the order ǫ
has at most two internal times of order τβ ; otherwise it contributes to an order
which is higher than ǫ. This remark leads to a case by case analysis: one internal
time and two internal times of order τβ in a diagram. Two times case admits
two different realisation on diagrammatic level: either integration domains are
independent either one of them contains the other. Indeed all the integration
domains are just a subsets of [0, sǫ−1/2a] because of the time ordering and they
are all of the form [0, x] i.e. they start from zero. Then any two of them are
either disjoint (case 1), either one is a subset of the other (case 2).

1. Integration domains when the times are independent:

ǫ(1 − q)4
s
∫

λǫ1/2a

du

s
∫

λǫ1/2a

dvg′(u)g′(v) × const =

ǫ(1 − q)4
(

g(s) − g(λǫ1/2a)
)2

× const

2. One integration domain is a subset of the other:

ǫ(1 − q)4
s
∫

λǫ1/2a

du

u
∫

λǫ1/2a

dvg′(u)g′(v) × const =

ǫ(1 − q)4
[

1

2

(

g2(s) − g2(λǫ1/2a)
)

− g(λǫ1/2a)
(

g(s) − λǫ1/2a
)

]

× const

Where const is a numerical contribution from the rest of the diagram: short
times integrations and C-lines depending on times u,v substituted by q.

The one time case also admits two distinct representations; there is one
R-line and one C-line. This resembles the toy expression considered above:
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• The C-line depends on s:

√
ǫ(1 − q)2

s
∫

λǫ1/2a

du(g′(u) +
√
ǫg′2(u))C((s − u)ǫ−1/2a) =

√
ǫq(1 − q)2

(

g(s) − g(λǫ1/2a)
)

+ ǫq(1 − q)2
(

g2(s) − g2(λǫ
1/2a)

)

+

+ǫ(1 − q)4
s
∫

λǫ1/2a

dug′(u)g(s− u)

• The C-line is independent of s

√
ǫ(1 − q)2

s
∫

λǫ1/2a

du(g′(u) +
√
ǫg′2(u))C(uǫ−1/2a) =

√
ǫq(1 − q)2

(

g(s) − g(λǫ1/2a)
)

+ ǫq(1 − q)2
(

g2(s) − g2(λǫ
1/2a)

)

+

+
1

2
ǫ(1 − q)4

(

g2(s) − g2(λǫ1/2a)
)

Finally if there is no internal times of order ǫ−1/2a then this is a zero order
contribution which fixes the equation on f .

Let’s now eliminate the arbitrary scale λ. The final results should not depend
on its value: a limit λ→ ∞ should be taken after ǫ→ 0:

lim
λ→∞

lim
ǫ→0

ǫg(λǫ1/2a) ∼ lim
λ→∞

λ−a = 0

This means that these terms can be substituted by zero directly. However the
order of the limits is important: higher orders produce vanishing corrections for
the right sequence and lead to divergences for the inverted order (see Appendix
C for more details).

This concludes the proof of (6.9) for the 3-spin spherical model:

Σ(sǫ−1/2a) = Σ0 +
√
ǫΣ1g(s) + ǫΣ2g2(s) + ǫΣ2,locg

2(s) + (6.27)

+ǫΣ2,nl

s
∫

0

dug′(u)[g(s− u) − g(s)] (6.28)

and justifies the Landau theory as well as the assumptions made during the
derivation, like the scaling of extra correlators for Brownian dynamics, substi-
tution of generic functions by their Landau theory counterparts, etc.
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6.5 Summary

Studies on growing correlation length within MCT and related analysis of multi-
point functions suggested that MCT equations are only mean-field equations
since they missed the correlation length completely. However this was an anal-
ogy only; a rigorous proof required analysis of corrections to MCT which in
turn, required a systematic perturbation around MCT. Such context was pro-
vided by the field theories derived in the previous chapters. In this chapter we
presented the proof of the mean-field character of the Mode-Coupling Theory
and identified it as the Landau theory for the glass transition. Structural sta-
bility analysis also provided an insight on universal properties of MCT which
persists against corrections:

• The factorisation property is universal.

• The exponents a and b are not universal, but equation (2.23) fixing the
scaling function g is.

• The
√
ǫ dependence survives.

The mean-field nature of MCT explains also the discrepancy in the value of Td

as predicted by MCT and by data fits: this is a usual drawback of any Landau
theory. However two important issues remained uncovered in this chapter. First,
we neglected critical fluctuations, only some initial steps were presented in the
analysis of stability with respect to critical fluctuations. Second, we focused
on the high temperature phase where the system reaches equilibrium during
observation so that equilibrium dynamics can be studied. This is no more true
for low temperatures as we discussed in the introduction and as we will see in
the next chapter.

A1. Time ordering: generic proof.

In this appendix we present a general proof of time ordering in diagrams of
perturbation theory for the 3-spin model. For that let’s consider the functional
integral which generates the perturbation series:

∫

DφDφ̂ exp(−S). Here there
is a boundary condition on φ(t) at t = 0 (and we denoted by φ the whole
ensemble of N fields). Let’s split the integral into a product of two integrals:

∫

φ(0)

DφDφ̂ exp(−S) =

∫

dφ(s)

φ(s)
∫

φ(0)

DφDφ̂ exp(−S)

∫

φ(s)

DφDφ̂ exp(−S) (6.29)

In fact the first integral is exactly the time dependent probability distribution
P (φ, s) = 〈δ(φ − φ(s))〉 where φ(s) is the solution of (3.2) and 〈〉 denotes the
average over the thermal and quenched disorder (See [77, 110] for detailed proofs.
The only subtlety is the presence of an extra average over the quenched disorder
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i.e. the couplings J). This distribution is known to satisfy the Fokker-Planck
equation and it tends to the equilibrium distribution Peq(φ) as s → ∞. Since
we are considering the high-T regime the equilibration time teq is finite meaning
that we can replace P (φ, s) by Peq(φ) = exp(−H/T ) for s≫ teq.

The second integral in the left part of (6.29) already generates the diagrams
with desired properties. Indeed the action reads S =

∫∞

s
duL(u) and all the

internal times in the diagrams are limited to [s,∞). The upper bound for the
internal times of the diagrams is induced once we consider the diagrams for the
two point functions. Namely if we consider the diagrams for C(t, s) with t > s
then this upper bound would be t. This is related to the casual structure of the
theory: the R-lines organise a tree structure in the diagram. The only possible
position of the root is the time t. The other possibility would be an end point
with time s and would have given a zero contribution.

Then the final expression reads:

∫

dφ(s)

∫

φ(s)

DφDφ̂ exp



−
∞
∫

s

L(u) − H(φ(s))

T





The perturbation series generated by this functional are indeed time ordered in
the sense that all the internal times run from s. The upper bound is t for the
expansion of C(t, s).

Unfortunately there is one problem in the proof: the time decomposition
used in (6.29) is not valid for the action (3.5). The main reason is that this
is the field theory averaged over the disorder. This results into the non-local
terms in (3.5) which make the above decomposition impossible.

In order to avoid this problem one should start from a field theory for a fixed
realisation of a disorder. Then the action reads (3.5):

Seff [φ, iφ̂] =

N
∑

k=1

∞
∫

0

dt[T φ̂2
k + iφ̂k(∂t + µ)φk] −

−
∑

klm

Jklm

∞
∫

0

dt iφ̂kφlφm(t) (6.30)

Now that there are no non-local terms the above proof applies and there is a
simple i.e. non self-consistent, time-ordered perturbation theory.

All one has to do is transform it into a self-consistent disorder averaged one.
Already one can carry out the average over the disorder for this perturbation
theory: due to the Gaussian nature of the integration over J in (6.30) the
resulting expansion coincides with the simple perturbation theory generated by
(3.5) with the exception that now it is time ordered i.e. all the internal times
are limited by s and t.
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The next step is to construct the self-consistent expansion. The generic pro-
cedure is presented in Appendix A1. The crucial note is that the self-consistent
Dyson equation presented below can be solved by iterations: it generates exactly
the simple perturbation theory. Thus the self-consistent perturbation theory is
in fact a partial resummation of the perturbation series. Reverting this argu-
ment and applying it to our case we restore the self-consistent Dyson equation
with time ordered diagrams since the integration in the Dyson equation are also
limited by s and t.

A2. Time ordering: explicit resummation.

This appendix is dedicated to an explicit demonstration of how a general con-
struction of time ordering presented above works. Precisely one might ask how
the time ordered perturbation theory presented above is related to the standard
perturbation theory. The answer is quite simple: the new expansion is just a
partial resummation of the ordinary perturbation series. The latter transforms
into time ordered series under resummation of all the diagrams with fixed topol-
ogy in the graph theory sense. To highlight this transformation let’s consider a
class of one loop diagrams of order 1/N with a fixed topology (Here undirected
links correspond to C-line, directed ones - to R lines and wiggly links - to Q
lines. We also omitted the common prefactor):

4 + 2 + 2

Here topology is defined as an invariance under exchange of directed and undi-
rected links. Then the position of the wiggly link define the topology.

The final diagrams are generated from the above diagrammatic sum by dif-
ferentiating with respect to the Q-line i.e. by cutting the wiggly links. The
result expressed via conventional integrals reads:

1

T 2

t
∫

0

du

s
∫

0

dv∂uC
2(t, u)C(u, v)∂vC

2(s, v) +

+
1

T

t
∫

0

du

u
∫

0

dv∂uC
2(t, u)R(u, v)C2(s, v) +

+
1

T

s
∫

0

dv

v
∫

0

du∂vC
2(s, v)R(v, u)C2(t, u)

We now should compute the limit t, s → ∞ with τ = t − s fixed. A simple
but tedious computation shows that this expression boils down in the limit to:
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1

T

t
∫

s

du

u
∫

s

dv∂uC
2(t− u)R(u− v)C2(v − s) +

+
1

T 2

t
∫

s

du∂uC
2(t− u)C(u− s) +

C2(t− s)

T 2
∼

C2(τ) −
τ
∫

0

du∂uC
2(u)C(τ − u) +

τ
∫

0

du

τ−u
∫

0

dv∂uC
2(u)∂vC(v)C2(τ − u− v)

B. Diagrammatic proof: example.

Using the results of the previous appendices we present below a very detailed
computation of the

√
ǫ-expansion of the self-energy Σ on the example of the

diagram presented in Eq. (6.27).
First we rewrite the above expression integrating by parts the second term:

C(τ) −
τ
∫

0

du∂uC(u)C2(τ − u) +

τ
∫

0

du

τ−u
∫

0

dv∂uC
2(u)∂vC(v)C2(τ − u− v)

Let’s proceed to a term by term analysis. The very first term is local and it is
treated in exactly the same way as in Section 3.3. The second term is non-local;
following the guidelines of 6.4.3 it is split into integrals over the timescales and
reads:
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sǫ−1/2a
∫

0

duC′(u)C2(sǫ−1/2a − u) =

λ
∫

0

duC′
0(u)

[

f2 + 2
√
ǫf(1 − f)2g(s− uǫ1/2a)

+ǫ(1 − f)4g2(s− uǫ1/2a) + 2ǫf(1 − f)2g2(s− uǫ1/2a)

]

+
√
ǫ(1 − f)2

s
∫

λǫ1/2a

du
(

g′(u) +
√
ǫg′2(u)

) [

f2 + 2
√
ǫf(1 − f)2g(s− u) + · · ·

]

=
[

f2 + 2
√
ǫf(1 − f)2g(s) + ǫ(1 − f)4g2(s) + 2ǫf(1 − f)2g2(s)

]

λ
∫

0

duC′
0(u)

+
√
ǫ(1 − f)2

s
∫

λǫ1/2a

du
(

g′(u) +
√
ǫg′2(u)

) [

f2 + 2
√
ǫf(1 − f)2g(s− u) + · · ·

]

→

→
[

f2 + 2
√
ǫf(1 − f)2g(s) + ǫ(1 − f)4g2(s) + 2ǫf(1 − f)2g2(s)

]

(1 − f)

+
√
ǫf(1 − f)2(g(s) +

√
ǫg2(s))

+2ǫf(1− f)4
s
∫

0

g′(u)[g(s− u) − g(s)] + 2ǫf(1 − f)4g2(s)

The third term is the most complicated because of the double integration:

sǫ−1/2a
∫

0

du

sǫ−1/2a−u
∫

0

dvC2′(u)C′(v)C2(sǫ−1/2a − u− v) =







λ
∫

0

du

λ
∫

0

dv +

λ
∫

0

du

sǫ−1/2a
∫

λ

dv +

sǫ−1/2a
∫

λ

du

λ
∫

0

dv +

sǫ−1/2a
∫

λ

du

sǫ−1/2a
∫

λ

dv






· · ·

There are 4 different cases possible:

139



1.

λ
∫

0

du

λ
∫

0

dvC2′
0 (u)C′

0(v)C
2(sǫ−1/2a − u− v) =

λ
∫

0

du

λ
∫

0

dvC2′
0 (u)C′

0(v)

[

f2 + 2
√
ǫfg(s− (u+ v)ǫ1/2a) +

+2ǫfg2(s− (u + v)ǫ1/2a) + ǫ(1 − f)4g2(s− (u+ v)ǫ1/2a)

]

→

→ (1 − f)(1 − f2)

[

f2 + 2
√
ǫf(1 − f)2g(s)

+2ǫf(1 − f)2g2(s) + ǫ(1 − f)4g2(s)

]

2.

λ
∫

0

du

sǫ−1/2a
∫

λ

dvC2′(u)C′(v)C2(sǫ−1/2a − u− v) =

√
ǫ(1 − f)2

λ
∫

0

du

s
∫

λǫ1/2a

dvC2′
0 (u)

[

g′(v) +
√
ǫg′2(v)

]

×

[

f2 + 2
√
ǫf(1 − f)2g(s− v − uǫ1/2a)

]

→
→ √

ǫf2(1 − f)3(1 + f)
(

g(s) +
√
ǫg2(s)

)

+

+2ǫf(1− f)5(1 + f)



g2(s) +

s
∫

0

dvg′(v)(g(s− v) − g(s))





3. Due to symmetry u ≡ v this case reduces to the previous one.

sǫ−1/2a
∫

λ

du

λ
∫

0

dvC2′(u)C′(v)C2(sǫ−1/2a − u− v)

4.

sǫ−1/2a
∫

λ

du

sǫ−1/2a
∫

λ

dvC2′(u)C′(v)C2(sǫ−1/2a − u− v) =

ǫf2

s
∫

λǫ1/2a

s
∫

λǫ1/2a

dudvg′(u)g′(v) → ǫf2g2(s)
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It is worth noting that in this particular case analysis via the Laplace trans-
form is easier due to the convolutive structure of the expression. Namely under
Laplace transform the second and the third terms of the time ordered diagram
read:

L





τ
∫

0

du∂uC(u)C2(τ − u)



 = (zĈ(z) − 1)L
[

C2
]

L





τ
∫

0

du

τ−u
∫

0

dv∂uC
2(u)∂vC(v)C2(τ − u− v)



 = Ĉ(z)
(

zĈ(z) − 1
)

(

zL[C2] − 1
)

Apparently there is only local terms and the analysis reduces to the local case
considered in 3.3. Note however that this is a peculiarity of the diagram; this
does not extend to a generic diagram.

C. Divergences.

The limit taken in the previous appendices - λ → ∞ has some subtle points
we would like to highlight in this appendix. Namely we present a part of the
computation with more focus on the limit λ → ∞. For the sake of simplicity
we consider the case of the second term (more precisely only the λ dependent
part)

√
ǫ(1 − q)2

s
∫

λǫ1/2a

du
(

g′(u) +
√
ǫ(1 − q)2g′2(u)

) [

q2 + 2
√
ǫq(1 − q)2g(s− u) + · · ·

]

=

√
ǫ(1 − q)2q2

(

g(s) − g(λǫ1/2a)
)

+ ǫq2(1 − q)4
(

g2(s) − g2(λǫ
1/2a)

)

+ · · ·

The scaling functions g(s) and g2(s) have singular asymptotics as s → 0: they
behave as s−a and s−2a respectively. This reflects the fact that for very short
times the scaling function description fails and we get into short times regime.
The the terms g(λǫ1/2a) and g2(λǫ

1/2a) are potentially divergent. However a
detailed inspection shows that this is not the case. Indeed:

lim
λ→∞

lim
ǫ→0

√
ǫg(λǫ1/2a) ∼ lim

λ→∞
lim
ǫ→0

√
ǫ(λǫ1/2a)

−a ∼ lim
λ→∞

λ−a = 0

That is, the possible divergence in ǫ is cancelled by a
√
ǫ prefactor. The origin of

this cancellation is again in the breakdown of the description. For s→ 0 (more
precisely for s ∼ o(ǫ1/2a)) the difference C(sǫ−1/2a) − q is no more of order

√
ǫ

but rather finite.
Let’s discuss the possible inversion of the limits λ → ∞ and ǫ → 0. In that

case λ is sent to zero rather than to infinity because it delimits short times
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from β regime; the limit of
√
ǫg(λǫ1/2a) becomes divergent. However one can

prove that this divergence is cancelled by divergences produced by short time
contributions.
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Chapter 7

Glassy phases

Throughout the previous Chapters we assumed time that translation invariance
and time reversal symmetry hold. This is true for high temperatures where
observation time can be always made greater than equilibration time so that
system equilibrates after a transient regime and equilibrium dynamics can be
observed. For very high temperatures the transient regime is so short that it
is almost impossible to observe. However as we stated in the introduction the
relaxation time grows tremendously for supercooled liquids as the temperature
is lowered. It is worth recalling that this growth happens for mild variations of
the temperature. The relaxation time becomes exceedingly long for low tem-
peratures so that equilibration is avoided on macroscopic timescales; the equi-
libration time can reach geological values. Therefore time-reversal symmetry is
broken and there is no more time translation invariance. In what follows we
refer to such states as glassy phases.

The absence of equilibrium changes the dynamic properties. Glassy phases
are characterised by an extremely slow relaxation processes and history depen-
dent phenomena. One example is ageing: dynamic properties depend explicitly
on the system’s age; the more the system is aged, the slower is the relaxation.
Non-equilibrium dynamics has been widely studied for systems with quenched
disorder i.e. spin glasses [88, 111, 31] which we already mentioned in Chapter 3.
The studies revealed some degree of universality in low-T dynamics and a par-
ticular scaling form for ageing instead of the time difference which is a standard
for equilibrium.

Within the Mode-Coupling Theory scenario of the glass transition the fall out
of equilibrium at low temperatures is approached by a dynamic transition to a
non-ergodic phase; the equilibration time is finite above the transition, diverges
at the transition and remains infinite below. That is, a supercooled liquid never
equilibrates below the transition. However the derivation presented in 2.2 is not
valid in the low-T phase since it relies on the assumption of equilibrium. An
extension of MCT to low temperature within the projector operator formalism
has been derived [29] and can be used for analysis. However field theories
developed previously in Chapter 4 or Sec. 5.1 provide a more convenient method
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to extend MCT to low temperatures. The dynamical equations derived in this
context are valid for any temperature unless one uses FDT to simplify them.
Therefore equations presented in Sec. 4.4.3 should be rewritten only in their
general two time form if one is interested in low temperature regime.

Analysis of the full wave-vector dependent case has not yet been done be-
cause of the involved derivation as we will see, and is a subject of future work.
Below we consider a simpler schematic case with no wavevector dependence.
Schematic MCT maps on the spherical p-spin model which has a field theory
representation valid at any temperature so that the general dynamic equations
(3.9) describe dynamics at any temperature. It is a reliable assumption that re-
sults derived within the 3-spin model hold also for a low-T extension of schematic
MCT.

The main aim of this chapter is twofold. First, we want to extend the
Landau theory to low temperatures. As we will see this problem requires to
define the analogy of the scaling function g (see Eq. (2.22)) and is quite involved
computationally mainly due to the presence of many timescales in the system.
For this reason we limit our analysis to the lowest order i.e. N → ∞ in the
context of the 3-spin model. Second, construction of the Landau theory for
low temperatures is tightly connected with the study of ageing in disordered
systems.

In the next section we present the phenomenology of glassy phases and
highlight the problems we will consider in detail in the following sections.

7.1 Phenomenology

Let’s introduce the phenomenology used to analyse glassy phases and men-
tioned in the introduction. As we have pointed out we focus on ageing. For
glassy phases the characteristics of dynamics evolve in time: system ages. This
is easily seen in experiments measuring time evolution. Typical example is
the measurements of a.c. magnetic susceptibility χ at a certain frequency
and ’Thermo-Remanent Magnetisation’ (TRM) m(t, tw) for magnetic materi-
als when a sample is quenched at t = 0 from a high temperature phase to low
value of T subject to an external magnetic field during cooling and from t = 0
up to t = tw. Experimental data clearly indicate that in both cases relaxation
of the observed quantities depends explicitly on the waiting time tw besides the
frequency or time t. The general trend is that the longer tw, the slower the re-
laxation. Analysis of experimental data shows that quantities can be split into
a stationary part independent of tw and an ageing component which depends
on tw:

χ(ω, tw) = χst(ω) + χag(ω, tw)

m(t, tw) = mst(t− tw) +mag(t, tw)

The time dependence of the ageing parts is not arbitrary and is to some degree
universal. Experimental data collapse on a master curve for a particular scaling
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mag(t, tw) = m̃ag(h(tw)/h(t)) where h(t) is referred to as an ageing function.
It is an increasing function of its argument. Several particular choices of h
have their own references: h(t) = t is referred to as simple or full ageing,
h(t) = exp(t1−µ) - as sub-ageing.

Ageing effects are also observed for correlation functions. A widely studied
example is a correlation function C(t, s), t > s. Like one-point quantities it
splits into stationary and ageing parts:

C(t, s) = Cst(t− s) + Cag(t, s)

in glassy phases. In equilibrium correlation is related to response by the Fluctuation-
Dissipation Theorem, but this is no longer true out of equilibrium: in general
correlation and response provide different information. Nevertheless one can
still relate them by a generalised relation [31]:

R(t, s) =
θ(t− s)X(t, s)

T
∂sC(t, s) (7.1)

where X(t, s) is the so called violation factor.
The decomposition of quantities into several parts reflects the appearance of

many regimes in the dynamics referred to as time sectors [88, 31], like stationary
and ageing in the above examples. This is directly related to the existence of
many timescales in the problem. Let’s remind that on top of the scale imposed
by tw there are, in general, at least two more timescales present in the system:
the microscopic time t0 that determines the scale of the microscopic events
and the equilibration time τREL providing the timescale on which the system
equilibrates completely. The latter is always finite for finite systems although it
can reach geological values. One can imagine that different physical mechanisms
act on these timescales and that there is a hierarchy of timescales: t0 < t1 < t2 <
· · · < τREL. A certain degree of universality like independence of microscopic
details emerges for times t0 ≪ t, tw ≪ τREL. The hierarchy of timescales implies
a complex decomposition of observables like a correlation function C(t, s) with
different scaling forms for different sectors [88]:

C(t, s) = Cst(t− s) +
∑

n

Cn

(

hn(s)

hn(t)

)

(7.2)

t− s ∼ O(1),
h1(s)

h1(t)
∼ O(1),

h2(s)

h2(t)
∼ O(1), etc (7.3)

and the functions hi are monotonically increasing and satisfy the constraints:

0 <
hi(s)

hi(t)
< 1 and

hj(s)

hi(t)
= 1 for j < i (7.4)

If τREL = ∞, that is the system never equilibrates, then various possible asymp-
totic regimes exist as t, tw → ∞ depending on the way t and tw are taken to
infinity. Note that for τREL = ∞ there can be systems with infinitely many

145



timescales. A particlar example is provided by the Sherrington-Kirkpatrick
model [112]. Glassy phases often have very large relaxation times so that
τREL = ∞ is a reliable assumption.

This decomposition was proved to hold for mean-field spin glasses [31] where
τREL = ∞ for low temperatures. However only two realisations of the above
hierarchies are known for mean-field models: two scales, t0 < t1, and infinitely
many scales. Consequently there are only two time sectors in the former case.
Systems with infinitely many timescales also show two sectors in the dynamics
but the ageing one is more complicated than for two scale case. This is connected
to the type of dynamic transition that the system exhibits at low temperatures:
discontinuous or continuous respectively. The difference is the behaviour of the
order parameter at the transition. In the first case the order parameter jumps
to a non-zero value at the transition like in the 3-spin model (which provides an
example of discontinuous transition). In the second case the order parameter
increases from zero at the transition like in the Sherrington-Kirkpatrick model.
No models with a finite number (but greater than 2) of sectors are known so
far1. One might wonder whether this classification exhausts all possibilities.

More details about non-equilibrium behaviour have been found analytically
for mean-field models due to their simplicity compared to realistic systems.
Namely it was shown that the violation factor X(t, s) depends on time only
through the correlator C: X(t, s) = X [C(t, s)] in the limit of long times t, s [30]
i.e. t, s ≫ t0. Furthermore X is constant within a given sector [31]. This
allows one to introduce an effective temperature T∗ within a sector through the
generalised FDT given by Eq. (7.1):

R(t, s) =
θ(t− s)

T/X∞

∂sC(t, s)

The system ”sees” a different temperature from that of a thermal bath within
a sector.

These results are based on the analysis of dynamic equations of various
mean-field models like the 3-spin model. Their solutions support the multi
timescale scenario and fix the functions Cn in the decomposition. However the
ageing functions hn(t) are left unfixed. More precisely their exact functional
form drops out in the derivation of the equations for Cn in the limit of long
times t → ∞. The final equations are invariant with respect to the choice of
h, what is referred to as time reparametrisation invariance [88, 30]. However
this is not true since experimental and numerical data collapse on a single curve
for a particular choice of h [111]. This is also in contradiction with causality
of the full dynamic equations which admit a unique solution for fixed initial
conditions. A generic recipe for fixing h has remained an open problem for a
long time. This invariance is an artifact of the derivation and of the long time
limit t→ ∞. This invites one to reanalyse the derivation and inspect the finite-t
corrections to the scaling equations.

1Right at the moment of editing of this thesis a class of models presenting 2RSB phase
was identified by Crisanti and Leuzzi [113]
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At this point the problem of the spurious symmetry crosses with the problem
of the low-T extension of Landau theory. Indeed, as we will see the analysis
of finite-t corrections leads to the introduction of a scaling function which is
exactly the generalisation of the scaling function g from the high temperature
regime. In this context we will analyse the spherical p-spin model which is an
obvious generalisation of the 3-spin model introduced earlier in Chapter 3.1.
As we stated earlier we only consider the limit N → ∞ where the dynamical
equations take a particularly simple form; extension to a general case is more
involved technically. The starting point of our analysis is the Schwinger-Dyson
equations (3.9) generalised to an arbitrary value of p.

7.2 Low-T phase of the spherical p-spin model

The dynamics of the p-spin model is ruled by the Dyson equations (3.9) with
minor modifications. The spherical p-spin model is defined similarly to the
3-spin model:

H = − 1

p!

∑

k1···kp

Jk1···kpφk1
· · ·φkp , J2 =

p!

2Np−1
.

Other definitions reflect those for the 3-spin model and lead to the following
Schwinger-Dyson equations:

(∂t + z(t))C(t, s) =

t
∫

0

duD(t, u)C(u, s) +

s
∫

0

duΣ(t, u)R(s, u)

(∂t + z(t))R(t, s) =

t
∫

s

duD(t, u)R(u, s)

z(t) = T +
p2

2

t
∫

0

duCp−1(t, u)R(t, u)

D(t, s) =
p

2
Cp−1(t, s) Σ(t, s) =

p(p− 1)

2
Cp−2(t, s)

They are valid for any value of the temperature T . The model exhibits a dy-
namical transition at temperature Td. The transition is of the continuous type
for p = 2 and of discontinuous type for p > 2 [31]. In what follows we only
consider p > 2. The transition is signalised by the appearance of a non-zero
limit of the spin-spin correlator C(t, s):

f = lim
t−s→∞

lim
t,s→∞

C(t, s)

which is an order parameter.

147



We keep the generic two time dependence in the equations since we expect
the time-reversal symmetry to be broken for T < Td. For convenience we rewrite
(3.9) in terms of the correlator C(t, s) and the integrated response F (t, s) =
t
∫

s

duR(t, u):

(∂t + z(t))F (t, s) = 1 −
t
∫

s

duD(t, u)F (u, s) (7.5)

(∂t + z(t))C(t, s) = −
t
∫

0

D(t, u)C(u, s) −
s
∫

0

duΣ(t, u)∂uF (s, u)

and Σ(t, s) = p
2C

p−1(t, s), D(t, s) = p(p−1)
2 Cp−2(t, s)∂sF (t, s) in the limit N →

∞. The Lagrange multiplier z(t) reads:

z(t) = T − p2

2

t
∫

0

duCp−1(t, u)∂uF (t, u).

This system cannot be solved analytically (except for p = 2) and numerical
solutions are non trivial to obtain. The source of complexity is the two time
dependence (instead of the one time like in equilibrium) that reflects the richer
dynamics contained in these equations. Let’s now analyse the different regimes
of these equations.

7.3 Time sectors.

The spherical p-spin is a mean-field model; below the transition the relaxation
time is infinite τREL = ∞. Therefore the different regimes of Eqs. (7.5) are
probed by various limits t, s → ∞. As we have stated one can enumerate
exactly all asymptotic regimes for T < Td. There are exactly 2 time sectors for
the p-spin model as t, s→ ∞ (t > s) [31]:

• t, s → ∞ and τ = t − s fixed: stationary regime which resembles equi-
librium; time-reversal symmetry is unbroken. Correlator and integrated
response are related by FDT: C(t, s) = CST (τ) and F (t, s) = FST (τ) =
(1 − CST (τ))/T .

• t, s→ ∞ and λ = h(s)/h(t) fixed: ageing regime. Time-reversal symmetry
is broken and FDT is substituted by Eq. (7.1). Correlator and integrated
response read:

C(t, s) = C(λ)

F (t, s) = F(λ) =
1 − f

T
+
f − C(λ)

T∗
1

T∗
= (p− 2)

1 − f

fT
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where T∗ is an effective temperature.

Assuming a sharp timescale separation one can derive dynamic equations for the
correlator and the integrated response within each sector from the full equations.
Due to FDT in the stationary regime and generalised FDT with effective tem-
perature T∗ in the ageing regime the two equations (7.5) reduce to a single
equation:

• Lagrange multiplier z(∞):

z(∞) = T +
p

2T
− p

2T
fp +

p

2T∗
fp (7.6)

• Stationary: the equation is supplemented by boundary conditions CST (0) =
1 and CST (∞) = f

(∂τ + T )CST (τ) =
pfp

2

[

1

T∗
− 1

T

]

(1 − CST (τ))

− p

2T

τ
∫

0

duCp−1
ST (τ − u)∂uCST (u) (7.7)

• Ageing: the boundary conditions are C(0) = 0 and C(1) = f

TC(λ) =
pfp−1

2
(1 − f)

[

1

T∗
− 1

T

]

C(λ) +
p(1 − f)

2T
Cp−1(λ)

− p

2T∗

1
∫

λ

dyCp−1(y)∂yC
(

λ

y

)

(7.8)

This equation can be transformed into a form similar to that of Eq. (7.7)
if one makes a change of variables x = − logλ:

TC(x) =
pfp−1(1 − f)

2

[

1

T∗
− 1

T

]

C(x) +
p(1 − f)

2T
Cp−1(x)

− p

2T∗

x
∫

0

dyCp−1(y)∂yC(x− y) (7.9)

The Edward-Anderson parameter f is fixed by both equations: either taking
the limit τ → ∞ of Eq. (7.7), or taking the limit λ → 1 of Eq. (7.8). Both
limits yield the same equation:

T 2f2

(1 − f)2
=
p(p− 1)

2
fp (7.10)

The sectors have the following physical interpretation: the system is in equilib-
rium for short times but falls out of equilibrium on longer times. Equation (7.7)
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resembles closely (3.11) for equilibrium dynamics and has similar properties but
CST (τ) decays from the initial value to f . For very long times τ ≫ 1 this decay
is described by a power law with exponent a:

CST (τ → ∞) ∼ f +A1τ
−a +A2τ

−2a + · · ·

The behaviour of C(λ) for λ ≈ 1 is described by a power law with exponent b:

C(1 − ǫ) ∼ f −B1ǫ
b −B2ǫ

2b + · · ·

In fact Eq. (7.8) has an exact solution:

C(λ) = qλν (7.11)

where exponent ν is left unfixed by the solution. This solution gives immediately
b = 1 independently of the temperature.

These definitions together with Eqs. (7.7),(7.8) fix the values of the expo-
nents a and b:

1

T

Γ2(1 − a)

Γ(1 − 2a)
=

1

T∗

Γ2(1 + b)

Γ(1 + 2b)
=

1

2T∗

where we used the fact that b = 1. This equation like the definitions for a,b
resembles highly Eq. (2.23) which holds in the high-T regime. This motivates
to look for a scaling function that generalises the scaling function g of a high-
T phase and inspect a crossover regime that interpolates between stationary
and ageing regimes acting as a generalisation of the β-regime of the equilibrium
phase.

Another reason to identify the crossover regime is the problem of the compu-
tation of the ageing function h(t). Clearly (7.8) is invariant under reparametri-
sation t → h(t) as was anticipated from the discussion of the generic scenario.
The only non-reparametrisation invariant term in (7.5) namely the derivative
term dropped out in the ageing limit t, s→ ∞:

∂tC(t, s) → ∂tC
(

h(s)

h(t)

)

= −h
′(t)

h(t)

h(s)

h(t)
C
(

h(s)

h(t)

)

→ 0

Apparently an analysis of the regime that interpolates between the stationary
and the ageing regimes for small and large arguments correspondingly should
fix h(t) since there is a unique solution in the stationary phase on one hand and
a multiplicity of solutions connected by time reparametrisations on the other
hand.

7.4 Crossover regime.

To identify a crossover regime we add an extra scale to the above picture.
Namely, we assume the existence of an exponent β that governs the position of
the plateau q with t (or equivalently s): C(t, t− tβ) ∼ q. Time differences t− s
of order tβ interpolate between stationary and ageing regimes and thus, β < 1.
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The thickness of the plateau with t or s is described by another exponent α.
The existence of this regime is confirmed numerically[114]. These definitions
generate expansions of the correlator and the integrated response:

C(t, s) = f + t−αg1

(

t− s

tβ

)

+ t−2αg2

(

t− s

tβ

)

+ · · ·

F (t, s) =
1 − f

T
+ t−αw1

(

t− s

tβ

)

+ t−2αw2

(

t− s

tβ

)

+ · · · (7.12)

R(t, s) = t−γr1

(

t− s

tβ

)

+ t−γ−αr2

(

t− s

tβ

)

+ · · ·

where γ = α + β is a consequence of (7.1); rl(x) = ∂xwl(x). Note the formal
similarity of the expansions to those of the high-T phase in Sec. 6.4. One also
introduces a ”temperature” T (x) that interpolates between T at x = 0 and T∗
at x = ∞ and generalises the temperature in the modified FDT (7.1) connecting
wl(x) and gl(x):

g′l(x) = −T (x)w′
l(x).

The finiteness of T (x) explains the same value of exponent α for C and F .
The scaling regime interpolates between the stationary and the ageing regime
for small and large arguments respectively. This gives a relation between the
different exponents and scaling laws via matching with other regimes. We start
from matching with the stationary regime: consider τ = t − s ∼ xtβ while
t → ∞ followed by x ≪ 1 (the order is important here and plays a similar
role to suppress diverging terms as in Sec. 6.4). Using the power law series
expansion of the late stationary regime yields:

t−lαgl(x) ∼x→0 Alx
−atlβa

t−lαwl(x) ∼x→0 −Al

T
x−atlβa

so that

gl(x→ 0) ∼ Alx
−a

wl(x) ∼ −Al

T
x−a (7.13)

and α = βa. Also quite naturally for small arguments wl and gl are related by
a ”real” FDT with temperature T . this analysis is quite similar to that of the
high temperature phase [106].

The matching with the ageing regime is more subtle: let’s take τ = xtβ but
this time x≫ 1. On one hand the early ageing regime expansion reads:

C(t, s) = C
(

h(t− xtβ)

h(t)

)

= f −B1(xt
βφ(t))b + · · ·
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with φ(t) = d log h(t)
dt . Comparing with the expansion (7.12) for C(t, s) yields:

Blx
bltlβbφb(t) ∼ t−αgl(x) (7.14)

This defines an asymptotics for gl, wl and fixes φ(t):

gl(x) ∼ −Bl(Dx)
bl

wl(x) ∼
Bl

T∗
(Dx)bl (7.15)

φ(t) ∼ t−µ

D
µ = β +

α

b
(7.16)

µ = β +
α

b
(7.17)

The last identity implies

h(t) = exp

[

t1−µ

D(1 − µ)

]

(7.18)

if φ(t)− t−µ ∼ o(1/t). Corrections to t−µ are provided by a subleading singular
terms in the expansion of gl, l > 1. Indeed for a given l > 1 the above matching
establishes only a leading term in the expansion of gl(x) around x = ∞. Since
the leading term is of order xbl one expects that wl(x) decomposes in this limit
into singular and regular parts:

gl(x→ ∞) = g∞l (xb) + greg
l (x)

where g∞l (x) is a polynomial of degree l in x and greg
l (x → ∞) → 0. A similar

decomposition holds for wl. Then Eqs. (7.14), (7.16) should be refined to
include these corrections; the result reads:

φ(t) ∼ Dt−µ

(

1 +
1

Dlb

∑

k>1

t−kαg∞l+k,l

)1/lb

Then the first correction to the leading term is φ(t)− t−µ ∼ O(t−µ−α). Because
h(t) is an increasing function of t the only relevant terms in this expansion are
the terms which have divergent integrals in t as t → ∞. That is, all the terms
with exponents greater than 1 (in absolute value) can be neglected: they give
a finite contribution after integration. Therefore only a finite number of terms
really contributes because µ+ kα becomes greater than 1 for some k. This also
imposes some constraints on possibles values of g∞l,k since the resulting function
h(t) should be independent of l. The the general form of h reads:

h(t) = exp

(

t1−µ

D(1 − µ)
P (t−α)

)

(7.19)

where P (x) is a polynomial of x and P (0) 6= 0. There is a numerical evidence
in case of p-spin model that µ + α > 1 so that Eq. (7.18) is correct. The
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increasing character of h imposes 0 < µ < 1 because infinity should be mapped
onto infinity. The constantD is set to unity by transformationD → D1 which is
equivalent to transformation C(λ) → C

(

λD/D1

)

i.e. the invariance with respect
to exponent ν in the exact solution in the ageing regime (see Eq. (7.11)). This
freedom to choose ν (or D) reflects the fact that the microscopic time scale
t0 is forgotten in the ageing regime. Indeed, t1−µ/D should be dimensionless
and hence D encodes some timescale. The only possibility is the microscopic
timescale t0 ∼ D1/1−µ. This provides further support to the absence of relevant
corrections to (7.18). Indeed log h(t) = t1−µ + D2t

δ with δ > 0 would fix the
microscopic time scale t0 through D2 ∼ t−δ

0 . The independence of C(t, s) from
the microscopic timescale t0 in the ageing regime can be used to fix directly the
form of h(t). Assuming C(λ) = qλν(t0), h = expφ(t/t0) and ∂t0C(t, s) = 0 in
the ageing regime yields:

∂t0

[

exp ν(t0)

(

φ

(

s

t0

)

− φ

(

t

t0

))]

= 0

t0(log ν(t0))
′φ

(

s

t0

)

+
s

t0
φ′
(

s

t0

)

= t0(log ν(t0))
′φ

(

t

t0

)

+
t

t0
φ′
(

t

t0

)

hence A(t0)φ(x) + xφ′(x) = B(t0)

where A(t0) = t0(log ν(t0))
′ and x = t/t0. The last equation is easily integrated

to give φ(x) = b(t0)x
−µ + a(t0). Thus h is either a stretched exponential either

a power law while other possibilities are ruled out. Note finally that matching
different regimes to fix h we integrated the large-time behaviour of φ(t) and
(7.18) holds only approximately for large t. However the ageing function h is
only defined for large values of t and in this sense Eq. (7.18) is exact.

To conclude let’s note that a similar decomposition into singular and regular
parts holds for gl(x) and wl(x) around x = 0. Again Eq. (7.13) identifies only
leading terms. By analogy with the x = ∞ case we write:

gl(x→ 0) = g0
l (x−a) + greg

l (x)

where g0
l is a polynomial of degree l in x and greg

l (x → 0) → 0. A similar
decomposition holds for wl.

Finally it is worth noting that these results hold provided that a late station-
ary and an early ageing expansions are valid. Also remark that similar matching
can be done in the high temperature phase for short time, β- and α regimes
and reproduces results of Sec. 3.1. In that case the appearance of power laws is
justified by the underlying criticality. For low temperatures power law scaling in
the crossover regime yields a self-consistent picture but a rigorous justification
is still missing.

Everything is now ready for derivation of scaling equations which fix the
functions gl and wl. Taking into account their definitions we expect these equa-
tions to be generalisation of the main Landau theory equation (6.17). Therefore
we only derive the equations for l = 1.
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7.5 Scaling equations.

The scaling functions g1 and w1 are fixed by Eqs. (7.5). The derivation gives
equations on g1 and w1 but the exponents α, β drop out and stay unfixed. Due
to a rich structure of the equations (7.5) where several distinct time sectors are
present the derivation is quite involved. The idea is to set t − s = xtβ in (7.5)
and decompose integrals into parts corresponding to time sectors in the same
manner that was used in diagrammatic derivation of Landau theory (see Sec.
6.4.3):

t
∫

0

=

ηt
∫

0

+

t−Λtβ
∫

ηt

+

t−ǫtβ
∫

t−Λtβ

+

t
∫

t−ǫtβ

t
∫

s

=

s+ǫ1tβ
∫

s

+

t−ǫ2tβ
∫

s+ǫ1tβ

+

t
∫

t−ǫ2tβ

where the first integral is separated into very short times, ageing, scaling and
stationary regimes. A similar decomposition is made for the second integral.
Assuming sharp time scale separation every integral is expressed via scaling
functions of the corresponding regime. One should also take into account time
dependence of the Lagrangian multiplier z(t):

z(t) = z(∞) − z1t
−α − z2t

−2α − z3t
−3α − · · · (7.20)

Finally one should take a limit t, s → ∞ followed by η → 0, Λ → ∞ and ǫ→ 0
afterwards. The ordering of the limits is important.

These decompositions generate expansions of (7.5) in powers of t−α, t−β

(the latter comes from derivative terms). Obviously higher orders are more
complicated to compute because of the increasing number and complexity of
terms. An extra source of complexity is the complex asymptotics of gl(x),
wl(x) at x = 0 and at x = ∞ since these terms also appear in the expansions.
All this makes computation of the equations for g1 and w1 lengthy and tedious.
Higher order equations are expected to be even more painful. Finally one should
identify all orders in t−α in the expansions of (7.5) to fix gl, wl. The initial parts
of expansions (at least up to the order 2) is in powers of t−α only. Derivative
terms generate a different powers of t. The order t0 of both equations (7.5)
reproduces Eq. (7.6) for z(∞). The order t−α reduces to a system of linear
equations:

(

z(∞) − T − p

2T
+

p

2T
qp − p

2T∗
qp

)

g1(x) = 0

(

z(∞) − T − p

2T
+

p

2T
qp − p

2T∗
qp

)

w1(x) = 0
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and leaves g1, w1 unfixed because of Eq. (7.6). This provides an extra argument
to the consistency of the picture with the extra scaling regime in addition to
the stationary and ageing regimes. Indeed, otherwise the order t−α would have
fixed g1 and w1 to an explicit expressions with wrong asymptotics at x = 0 and
at x = ∞. The order t−2α provides equations for g1, w1:

∞
∫

x0

dy[(p− 1)g(y)(w′(x+ y) − w′(y)) + w′(y)(g(x+ y) − g(y))] +

(p− 2)

∞
∫

0

dyw′(x+ y)(g(x+ y) − g(y)) +

x
∫

x0

dyw′(y)(g(x− y) + (p− 2)g(y)) +

x0
∫

0

dy[(p− 1)g(y)w′(x+ y) + w′(y)(g(x+ y) + g(x− y) − 2g(x))] +

g2(x)

2T∗
+ 2w(x0)g(x) −

(p− 1)ν

T∗
qg∞x+

(p− 2)q2ν2

2T∗
x2 = cg (7.21)

w2
1(x) +

x
∫

x0

dyw′(y)
g(y)

T∗
+

x
∫

0

dyw′(y)(w(x − y) − w(x)) = cw (7.22)

where x0 is such that g(x0) = 0, cg and cw contain all the contributions indepen-
dent of x; g∞ is a numerical constant. In the derivation of these equations we
had to assume that C(t, s) decays faster than t−2α in the very short times regime
where s is fixed and t → ∞. Again this decay is consistent with the stretched
exponential form of h(t). The behaviour of C(t, s) in the very short time regime
can be estimated from the late ageing regime where C(t, s) ∼ q(h(s)/h(t))ν .
Clearly decay of C(t, s) in the very short times regime is not slower than a
stretched exponential. This hypothesis was also checked numerically.

Derivation of (7.21),(7.22) also fixed the leading order asymptotics of g2 and
w2 and even some subleading terms. We were also able to conclude that z1 = 0
in the large time expansion of the multiplier z(t). It is easy to check that the
solution of Eq. (7.22) has a compatible asymptotic behaviours at x = 0 and at
x = ∞ with those obtained by matching with other regimes. A similar check
for Eq. (7.21) is harder.

We have not been able so far to provide any analytic or numerical solution
to Eqs. (7.21),(7.22). Neither were we able to prove the existence or uniqueness
of their solutions but the existence of solution is supported by numerical checks.
Also Eqs. (7.21),(7.22) are invariant under rescaling

ν → ∆ν, (g1, w1) → (∆g1,∆w1).
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A priori this is a peculiarity of the p-spin model where the solution (7.11) of Eq.
(7.8) leaves ν unfixed. Thus, Eqs. (7.21),(7.22) have a one parameter family of
solutions. Singular asymptotics of g1,w1 at x = 0 and at x = ∞ discussed above
provide also boundary conditions for these equations. The condition at x = ∞
(early ageing regime) is compatible with this invariance but the condition at
x = 0 (short-time or stationary regime) is not. Hence the rescaling invariance
is broken and ν is fixed to a particular value. This is not surprising since as it
was discussed above the invariance under the change of ν is related to the fact
the microscopic time scale is forgotten in the ageing regime. But this timescale
is still present in the stationary regime, and the crossover regime relates both
regimes.

Finally Eqs. (7.21),(7.22) is a low temperature generalisation of Eq. (6.17)
which is one of the central results of the Landau theory.

7.6 Numerical check.

Since many conclusions of the previous section relied on conjectures and one of
the exponents has left unknown we performed a series of numerical simulation
to test them. Namely the system (7.5) was integrated numerically using the
code provided to us by the authors of [52]. As was already discussed above the
main technical complexity of numerical integration is that one should treat the
two-time quantities. Taking into account that the timescales of interest (ageing
regime) extend over several orders in time, usual methods should be modified
and a variable time step in the integration procedure should be used.

We started from a direct measurement of α and β. The large time expansion
of the multiplier z(t) (7.20) provides a useful estimate for α. Since z(t) is a one
time quantity it is easy to compute numerically. The analysis of the corrections
to z(∞) for p = 3 at T = 0.5 (Td =

√

3/8 ≈ 0.6125) yielded α ≈ 0.3. The
exponent β can be estimated directly from its definition as a timescale of a
plateau: C(s + tβ(s), s) = q. This gave β ≈ 0.66 for the same p = 3 model
at T = 0.5. This is in a very good agreement with α = βa (a ≈ 0.448) and
yields ((7.17)) µ ≈ 0.96, which provides a good collapse of the data of the ageing
regime, as found empirically in [114].

This test was repeated for several values of T and p = 3, 4, 10 providing good
agreement with our analytic description. In Fig. 7.1 the exponents α, β and
µ are shown. The observed tendency is that they decrease with p and T . In
addition β and µ seem to saturate respectively, to 2/3 and 1 at T = 0. The
value µ(T = 0) = 1 corresponds to approximate simple ageing slightly above
T = 0. It is also clear from Fig. 7.1 that the working assumption µ + α > 1
that assures the validity (7.18) is reliable.

Finally we have also checked numerically the collapse of the data when we
use the scaling for the crossover regime: in Fig. 7.2 −T∂F/∂C is plotted vs.
(C(s + τ, s) − q)sα (τ = t − s) parametrised by τ for several values of waiting
time s, for p = 3 and T = 0.5. as a consequence of our scaling hypothesis data
on this plot should collapse onto a curve T/T (x) vs g1(x). Indeed we obtained a
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Figure 7.1: Exponents α (circles), β (triangles) and µ (squares) vs. temperature
for p = 3 (solid lines), p = 4 (dashes lines) and p = 10 (dotted lines).

master curve which represented an onset of FDT violation during the crossover.

7.7 Summary

Construction of the Landau theory for the glass transition for low temperatures
is much more complicated than in the high temperature phase because of the
absence of equilibrium and the presence of many timescales. We presented only
the first step in the construction and identified the candidate for the Landau
theory. In the spirit of the high-T phase we had to identify the intermediate
scale between the stationary and ageing regimes. For the moment the existence
of such a timescale is a conjecture which is confirmed by results of numerical
simulations. In order to confirm the existence analytically one has to compute
the exponent β within the model or equivalently prove of the existence of solu-
tions for Eqs. (7.21),(7.22). Another difficulty is the extension of the results to
higher orders of perturbation. The complexity of the scaling equations which
generalise Eq. (2.22) and the complexity of their derivation make such extension
quite involved.

Finally, the low temperature Landau theory has been related to studies of
ageing in spin glass models. Introduction of an extra scaling regime fixed the
problem of spurious time reparametrisation invariance because the regime inter-
polated explicitly between the stationary and ageing regimes; it also highlighted
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Figure 7.2: Test of the scaling hypothesis for p = 3 and T = 0.5. Inset: same
as main, but with C(t′ + τ, t′) as horizontal coordinate ; the crossing occurs at
q and corresponds to τ = x0t

β , with g(x0) = 0. Waiting times are t′ = 2197,
t′ = 4295, t′ = 8590, t′ = 17180 and t′ = 34359.

the origin of the particular scaling forms (sub-ageing) used to fit data in exper-
iments and simulations. Simple ageing wiht exponent µ = 1 is often used to
fit the data. However the 3-spin model provides an example where data can be
fitted with simple ageing but µ < 1 exactly. Let’s note that imposing µ = 1
would fix the value of β to 1/(1+a(T )). However a computation shows that this
is an increasing function of T while our numerical results suggest the contrary.

158



Chapter 8

Conclusions and

perspectives

The present work considered the problem of slowing down of the dynamics in
supercooled liquids. The main focus was the analysis of the Mode-Coupling
Theory based scenario of the glass transition. We aimed at resolving several
problems related to MCT and extending it within the context of dynamical
field theories:

• The uncontrolled nature of the Mode-Coupling Factorisation. It is vital
to recover MCT within a field theory to check the consistency of the
approximation with physical constraints.

• Analysis of corrections to MCT and test of structural stability of MCT
with respect to corrections.

• Mechanism responsible for the cut off of the MCT transition.

• Extending MCT to low temperatures where the liquid falls out of equilib-
rium.

The results presented in the previous chapters provided solutions to these
problems. The analysis of previous attempts to rederive MCT within a field the-
ory context revealed that the importance of time-reversal symmetry for these
derivations was overlooked and that these theories actually violated this symme-
try. We rebuilt the theories from the ground taking into account the preservation
of TRS and constructed perturbation theories that preserved TRS automatically
order by order. MCT was identified as a Mode-Coupling approximation in this
context. The perturbation series provided systematic corrections around MCT
and we carried out a structural stability test of the theory. The latter revealed
that MCT persists in all orders of perturbation theory. Thus the cut off mecha-
nism should be identified with non-perturbative effects within the field theories.
We also analysed the low temperature regime of a schematic model in order to
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extend MCT to low temperatures. Our main result was that it was likely that
the Landau theory generalised to this regime also.

Our analysis suggested some directions for a future research which we listed
briefly:

• Stability of MCT with respect to critical fluctuations. This is a problem
we discarded in Chapter 6: we need to show that critical fluctuations are
not important for d > du. As we discussed this requires a generalisation
of the proof presented in Chapter 6 to a non-uniform case. Initial steps
in that direction that provide the context in which the proof should be
generalised were presented in Sec. 6.2.4.

• MCT below the upper critical dimension. This problem is motivated by the
analogy of MCT with critical phenomena: how critical fluctuations modify
MCT predictions below du ? The answer is not expected to be simple nor
is the computation which can be more complicated compared to critical
phenomena. In general we expect that fluctuations modify the exponents
a, b and the related exponents for timescales or the

√
ǫ-dependence. It

is unclear whether the cutoff mechanism is related to the fluctuations or
not; that is, whether the transition is smoothed by critical fluctuations ?

• Generalisation of the Landau theory to low temperatures. As we have seen
in Chapter 7 the computations at 1-loop order are already quite involved
mainly because of the presence of many timescales in the system and the
breakdown of time-reversal symmetry. Adding more loops will complicate
the derivation even more. The scaling equations derived in Sec. 7.5 are
cumbersome and their generalisation to higher orders is clumsy.

• The analysis of the expansion in powers of the potential. This mainly aims
at the solution of the ultraviolet divergence problem discussed in Chapter
4. The expansion in powers of the potential was introduced in Sec. 5.1
without any analysis. Much care should be taken when dealing with this
theory: although time-reversal symmetry is preserved in perturbation, the
corresponding transformation is still non-linear. A first step would be to
reproduce MCT within this theory. Once this is accomplished the next
step is to construct the Landau theory and analyse the low temperature
regime.
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