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Pr. Marc Yor Université Pierre et Marie Curie, France

Examinateurs Alain Destexhe UNIC-CNRS, Gif-sur-Yvette, France

Yves Fregnac UNIC-CNRS, Gif-sur-Yvette, France

Wulfram Gerstner LCN-EPFL, Lausanne, Switzerland

Claude Viterbo Ecole Polytechnique, Palaiseau, France



ii



iii

A Rose,

A ses histoires qui ont éveillé ma curiosité,
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Abstract

The brain is a very complex system in the strong sense. It features a huge amount

of individual cells, in particular the neurons presenting a highly nonlinear dynamics,

interconnected in a very intricate fashion, and which receive noisy complex informa-

tions. The problem of understanding the function of the brain, the neurons’ behav-

ior in response to different kinds of stimuli and the global behavior of macroscopic

or mesoscopic populations of neurons has received a lot of attention during the last

decades, and a critical amount of biological and computational data is now available

and makes the field of mathematical neurosciences very active and exciting.

In this manuscript we will be interested in bringing together advanced mathe-

matical tools and biological problems arising in neuroscience. We will be particularly

interested in understanding the role of nonlinearities and stochasticity in the brain,

at the level of individual cells and of populations. The study of biological problems

will bring into focus new and unsolved mathematical problems we will try to address,

and mathematical studies will in turn shed a new light on biological processes in play.

After a quick and selective description of the basic principles of neural science

and of the different models of neuronal activity, we will introduce and study a gen-

eral class of nonlinear bidimensional neuron models described from a mathematical

point of view by an hybrid dynamical system. In these systems the membrane poten-

tial of a neuron together with an additional variable called the adaptation, has free

behavior governed by an ordinary differential equation, and this dynamics is cou-

pled with a spike mechanism described by a discrete dynamical system. An extensive

study of these models will be provided in the manuscript, which will lead us to define

electrophysiological classes of neurons, i.e. sets of parameters for which the neuron

has similar behaviors for different types of stimulations.

We will then deal with the statistics of spike trains for neurons driven by noisy

currents. We will show that the problem of characterizing the probability distribu-

tion of spike timings can be reduced to the problem of first hitting times of certain

stochastic process, and we shall review and develop methods in order to solve this

problem.

We will eventually turn to popoulation modelling. The first level of modelization

is the network level. At this level, we will propose an event-based description of the

network activity for noisy neurons. The network-level description is in general not

suitable in order to understand the function of cortical areas or cortical columns, and

in general at the level of the cell, the properties of the neurons and of the connectivi-

ties are unknown. That is why we will then turn to more mesoscopic models. We first

present the derivation of mesoscopic description from first principles, and prove that

the equation obtained, called the mean-field equation, is well posed in the mathe-

matical sense. We will then simplify this equation by neglecting the noise, and study

the dynamics of periodic solutions for cortical columns models, which can be related
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to electroencephalogram signals, with a special focus on the apparition of epileptic

activity.



Résumé

Le cerveau est un système très complexe au sens fort. Il est composé d’un nom-

bre immense de cellules, en particulier les neurones, qui présentent une dynamique

fortement non-linéaire, interconnecté de façon très complexe, recevant des entrées

bruitées et très complexes. Comprendre le fonctionnement du cerveau et le compore-

ment des neurones en réponse à différents types de stimulations et le comportement

global de populations macroscopiques ou mésoscopiques de neurones a été l’objet

d’intenses recherches depuis les dernières décénies, et une quantité critique de don-

nées biologiques et computationnelles est maintenant disponible, faisant du domaine

des neurosciences un champ de recherche actif et passionant.

Le but de ce manuscrit est d’utiliser des outils mathématiques avancés afin de

résoudre des problèmes biologiques pertinents émergeant dans le domaine de la neu-

roscience. Nous nous intéresserons particulièrement au rôle des nonlinéarités et aux

aspects stochastiques dans le cerveau, tant au niveau de cellules individuelles que de

populations neuronales. L’étude théorique de récents problèmes biologiques pose de

nouveaux problèmes matématiques non encore résolus que nous cherchons à traiter,

et l’étude mathématique de problèmes biologiques nous permettra d’avoir un nouveau

regard sur les processus biologiques en jeu.

Après une description rapide et sélective des connaissances en neuroscience et de

différents modèles d’activité neuronale, nous introduirons et étudierons une classe

générale de modèles de neurones bidimensionnels décrits mathématiquement par un

système dynamique hybride. Dans ces sytèmes, le potentiel de membrane d’un neu-

rone est couplé avec une variable additionnelle, dite d’adaptation. La dynamique

libre est gouvernée par une équation différentielle ordinaire, et cette dynamique

est couplée avec un système dynamique discret modélisant l’émission de potentiels

d’action. Une étude extensive de ces modèles est développée dans cette dissertation,

et les résultats obtenus nous permettent de définir des classes électrophysiologiques

de neurones, c’est-à-dire des jeux de paramètres pour lesquels le système a des com-

portements similaires en réponse à différents types de stimuli.

Nous nous intéressons ensuite aux statistiques de trains de potentiels d’actions

émis par un neurone recevant des entrées bruitées. Nous montrons que caractériser

les distributions des temps de spikes peut se ramener à un problème de temps d’atteinte

d’une courbe par un processus stochastique. Nous présentons différentes techniques

existantes et développons de nouvelles méthodes afin de résoudre ces problèmes.

Enfin, nous nous intéresserons au problème de la modélisation de populations de

neurones. Le premier niveau de modélisation est le réseau. A ce niveau de descrip-

tion, nous proposons unmodèle événementiel de l’activité du réseau décrite en termes

de temps d’impulsions de potentiels d’actions. Ce niveau de description ne permet

pas en général de comprendre le fonctionnement d’aires ou de colonnes corticales.

De plus, les connectivités et le fonctionnement d’une cellule unique dans un réseau
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sont assez mal connues, alors qu’elles forment des structures identifiables à l’échelle

d’une population. Pour cette raison nous nous intéressons ensuite aux modélisations

mésoscopiques de populations de neurones. Tout d’abord nous présentons la façon de

passer d’une description microscopique à une description macroscopique, et démontrons

que l’équation ainsi obtenue, appelée équation de champ-moyen, est mathématiquement

bien posée. Enfin, nous simplifions ces modèles en négligeant le bruit, et étudions la

dynamique des solutions périodiques dans certains modèles de colonnes corticales,

qui peut être mis en relation avec les signaux d’électroencéphalogrammes, et nous

intéressons particulièrement à l’apparition d’une activité épileptiforme.
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Introduction

Neuroscience is undoubtedly a fascinating field of research. It is aimed to understand

the nervous system, and in particular the brain and the spinal cord that govern the

way we perceive, move, think, remember, learn, speak and feel. This domain is tra-

ditionally considered as a branch of biological sciences. However, it recently aroused

the interest of other scientific disciplines, including cognitive and Nero-psychology,

computer science, physics, and even mathematics. It is agreed that the studies of

the brain date back to the Edwin Smith surgical papyrus written in the 17th century

BC, where symptoms, diagnosis, and prognosis of two patients wounded in the head

are described. Evidence of trepanation dates back to Neolithic times and has been

found in various cultures throughout the world. After these pioneering works, the

knowledge about the brain structure and function accumulated progressively until

the late 1890s. At this time, the invention and the use of the microscope as well

as the introduction of Golgi’s staining procedure revolutionized our knowledge of the

brain. This technique opened the way to the seminal studies of the Spanish histolo-

gist and physician Santiago Ramón y Cajal who introduced the neuron doctrine, the

hypothesis that the functional unit of the brain is the neuron. These works are the

basis of the modern neuroscience theory. Since then, the molecular description of the

brain and especially of the neurons has become increasingly precise, and has greatly

expanded our understanding of the brain function. Imaging techniques, developed in

the second half of the twentieth century, gave access to a huge amount of data, and

provided a better understanding of the brain anatomy and function. Today, in the

early XXI st century, biology, physics, technology and now mathematics combine in a

joint effort to understand neurons and the brain. We are probably in the phase that

the American epistemologist Thomas Kuhn calls a scientific revolution, since theo-

retical findings feed both biological and technical research, which in turn shed light

on new theoretical problems.

The present manuscript builds upon these recent findings, and is essentially aimed

to better understand different models widely used in computational neuroscience

from a mathematical viewpoint. This thesis is also aimed to better understand the

effects of noise in these models. It is made of four parts.

PART I: MODELIZATION OF NEURAL ACTIVITY

The first part of this thesis is devoted to describe the basic principles of the brain

functioning, and to introduce the main models used in order to emulate these pro-

cesses. After a very short description of the brain, its organization and function, we

will turn to the description of the nerve cells, which are the elementary units pro-

cessing the information in the brain. The understanding of the biophysical processes

opens the way to model the cell’s activity. As any physical system, the nerve cell and

the measures are subject to noise. We present the possible origin of variability in the

xxiii
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nervous system and different models of randomness. We then introduce the theory

of neuronal excitability: nerve cells can be gathered into classes having the same

behavior in response to certain kinds of stimulations. Based upon this phenomeno-

logical description, and upon the fact that, as we shall see, neurons communicate

by exchanging stereotyped signals called action potentials (or spikes), we eventually

introduce phenomenological neuron models aimed to reproduce the input/output re-

lation of nerve cell not taking into account the molecular processes involved.

PART II: BIDIMENSIONAL NONLINEAR NEURON MODELS

Among the wide variety of phenomenological neuron models, two models stand out

for their relative simplicity and their ability in reproducing many behaviors observed

in cortical neurons, and which are defined by planar nonlinear dynamical systems.

We introduce a new class of nonlinear neuron models providing a unified framework

in order to study the properties of these two models in particular, and more generally

of some nonlinear bidimensional neuron models with adaptation. We first introduce

in chapter 2 the class of models and study their essential properties when no spike is

emitted (subthreshold regime). The detailed description of the subthreshold dynam-

ics we obtain enables us to understand the origin of the main excitability properties of

the neuron in relation with the bifurcations structure of the model. This information

leads us to introduce a new model called the quartic model, able to reproduce all the

possible behaviors for the neurons of this class. In the simulations we perform in this

chapter, we observe that such neurons reproduce many spike signatures observed in

cortical neurons. Chapter 3 is devoted to the detailed study of the spike patterns

and the mathematical mechanisms leading to the emergence of these behaviors. This

study is based on the introduction of a discrete-time map governing the spike pattern

produced for a given stimulation and a given initial state. A summary of all these re-

sults is provided in chapter 4 where we relate the different results we obtained with

electrophysiological properties of the neurons. We finally end this section by showing

that among these models, the quadratic integrate-and-fire model sensitively depends

on the definition of a hard threshold, the cutoff value.

PART III: STATISTICS OF SPIKES TRAINS

These nonlinear effects are very important to understand the neural code. But it is

generally agreed that an important aspect of the neural code is the spike variabil-

ity. Part III is dedicated to the study of the spikes statistics when the neuron is

submitted to a random excitation. We begin in chapter 6 by presenting a key theo-

retical principle, consisting in stating that the problem of describing spike statistics

can be expressed as a first-hitting time problem for different stochastic processes.

We then review many different techniques of stochastic analysis in order to char-

acterize the probability distribution of spike timings for different classical models.

Existing mathematical material does not solve the problem of the spikes statistics

for integrate-and-fire neuron with non-instantaneous synaptic integration. Solving

this problem is the main focus of chapter 7. To this end, we introduce a new class of

stochastic processes, which we call double integral processes, corresponding to the set

of processes defined as primitive of a Brownian martingale, and we develop a semi-

analytical method in order to solve the problem of the first hitting times of these

processes to general smooth boundaries.
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PART IV: NEURAL POPULATION MODELS

After these studies of single neurons properties, we turn to neural population mod-

eling. As a general remark, a very large number of neurons accounts for the infor-

mation coding and to a given function, and these sets of neurons present a columnar

structure transverse to the brain split into different layers. These systems might be

globally apprehended, since structures and functions generally do not appear at the

cell level but emerge at different spatial scales.

Because of the complexity of this structuring, realistic neural networks accounting for

special functions are in general intractable. We introduce in the first chapter of this

part an event-based description of neuronal networks based on modeling the times of

the spikes in a network. This model allows to simulate efficiently large sets of spiking

neurons in noisy environments. Nevertheless mathematical properties for a large but

finite number of neurons are very hard to get. Therefore the other two sections are

aimed to developmesoscopic scale descriptions of such networks. Chapter 9 discusses

the way to get such a mesoscopic description, called the mean field equation, in noisy

networks. We show that these equations are well posed in the mathematical sense,

i.e. that there exists a unique solution to the mean field. Chapter 10 is devoted to a

preliminary study of a deterministic approximation of the mean field equations cor-

responding to some classical mesoscopic models of cortical columns, namely Jansen

and Rit’s and Wendling and Chauvel’s models. We focus in particular on the periodic

solutions of these systems, and this study gives us a new insight on the origin of the

oscillatory activity observed in electroencephalogram recordings and the emergence

of epileptiform activity.
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Introduction (version française)

La neuroscience est sans aucun doute un champ de recherches fascinant. Son but est

de comprendre le système nerveux, et en particulier le cerveau et la moelle épinière,

qui gouverne notre façon de percevoir, de se déplacer, de penser, se souvenir, ap-

prendre, parler et ressentir. Ce domaine est traditionnellement considéré comme

une branche de la biologie. Néanmoins, elle retient depuis peu de temps l’intérêt

de multiples disciplines scientifiques, en particulier la science cognitive, la neuro-

psychologie, l’informatique, la physique et même les mathématiques. Le premier

document retrouvé traitant du cerveau est le papyrus de chirurgie trouvé et déchiffré

par l’égyptologue Edwin Smith, écrit au 17eme siècle avant notre ère, où sont décrits

symptômes, diagnostics, et pronostics de deux patients blessés à la tête. Les premiers

cas de trépanation découverts datent de l’époque Néolithique et ont été retrouvés

dans différentes régions du monde et différentes cultures. Après ces travaux, les

connaissances sur la structure du cerveau et sur sa fonction se sont progressive-

ment accumulées jusqu’à la fin des années 1890. À cette époque, la découverte et

l’usage de la microscopie et de la coloration de Golgi ont révolutionné notre connais-

sance du cerveau. Cette technique ouvrit la voie au travaux séminaux de histol-

ogiste et physicien Santiago Ramón y Cajal qui introduisit la doctrine neuronale,

c’est-à-dire l’hypothèse selon laquelle l’unité fonctionnelle du cerveau est le neurone.

Cette vision est un principe de base de la neuroscience moderne. Depuis, les de-

scriptions moléculaire du cerveau et des neurones sont devenues de plus en plus

précises, et ont grandement accru notre compréhension de leur fonctionnements.

Les méthodes d’imagerie développées dans la seconde moitié du XXe siècle nous

ont permis d’accéder à un grand nombre de données, et par tant à une meilleure

compréhension de l’anatomie et du fonctionnement du cerveau. Aujourd’hui au début

du XXIe siècle, la biologie, la physique, la technologie et maintenant les mathématiques

convergent dans un effort concerté afin de comprendre les neurones et le cerveau.

Nous nous trouvons probablement dans la phase que l’épistémologue américain Thomas

Kuhn appelle la révolution scientifique: les découvertes théoriques alimentent à la

fois la recherche biologique et technique, ce qui à son tour met en lumière de nou-

veaux problèmes théoriques.

Ce manuscrit se base sur ces découvertes récentes, et a pour but principal de

mieux comprendre d’un point de vuemathématique différents modèles communément

utilisés, essentiellement dans des simulations numériques. Cette thèse vise aussi à

mieux comprendre les effets du bruit dans ces modèles. Elle est composée de quatre

parties.

PARTIE I: MODÉLISATION DE L’ACTIVITÉ NEURONALE

La première partie de cette thèse est consacrée à la description des principes de

base du fonctionnement du cerveau, et introduit les modèles principaux pour émuler
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ces processus. Après une très courte description du cerveau, de son organisation et

de ses fonctions, nous nous intéresserons aux cellules nerveuses qui sont les unités

élémentaires traitant les informations dans le cerveau. La compréhension des proces-

sus biophysiques ouvre la voie à la modélisation de l’activité de ces cellules. Comme

dans tout système physique, les cellules nerveuses et les mesures faites sont sujètes

au bruit. Nous présentons rapidement l’origine de la variabilité observée à différents

niveaux de l’activité corticale et les différentes façons de modéliser cette composante

aléatoire. Nous introduisons ensuite la théorie de l’excitabilité neuronale: les cel-

lules nerveuses peuvent être classifiées en fonction de leur comportement en réponse

à différents types de stimulations. En ce basant sur ces observations et sur le fait que

les neurones communiquent en échangeant des signaux stéréotypés appelés poten-

tiels d’action (spikes), nous terminons cette partie en présentant des modèles de neu-

rones phénoménologiques ayant pour but de reproduire les relations entrée/sortie des

cellules nerveuses ne prenant pas en compte les processus moléculaires impliquées.

PARTIE II: MODÈLES NONLINÉAIRES PLANAIRES DE NEU-
RONES

Parmi le grande gamme de modèles de neurones phénoménologique, deux modèles

semblent sortir du lot pour leur relative simplicité et leur capacité de reproduire

de multiples comportements observés dans des neurones. Ces modèles sont définis

par des systèmes dynamiques nonlinéaires planaires. Nous introduisons une classe

générale de modèles de neurones nonlinéaires constituant un cadre unifié permet-

tant d’étudier les propriétés ce ces deux modèles en particulier, et plus généralement

de modèles de neurones nonlinéaires avec adaptation. Nous introduisons d’abord

dans le chapitre 2 la classe générale de modèles et étudions leur propriétés princi-

pales quand les potentiels d’action ne sont pas émis (régime sous-liminaire). Cette

étude détaillée du régime sous-liminaire nous permet de comprendre l’origine des pro-

priétés principales d’excitabilité du neurone en fonction des bifurcations du système.

Cette information nous mène à introduire un nouveau modèle appelé quartique, ca-

pable de reproduire tous les comportements possibles des neurones de cette classe.

Les simulations produites dans ce chapitre mènet à la conclusion que de tels modèles

reproduisent de multiples signatures de trains de potentiels d’actions observées dans

des neurones corticaux. Le chapitre 3 est consacré à l’étude détaillée des types de

trains de spikes et des méchanismes mathématiques à l’origine de l’émergence de

ces comportements. Cette étude est basée sur l’introduction d’un système dynamique

discret qui gouverne la forme du train de spikes produit en réponse à une certaine

stimulation et un état initial. Un résumé de ces proprétés est produit au chapitre 4

dans lequel nous mettons en relation les différents résultats mathématiques obtenus

avec les propriétés electrophysiologiques des neurones. Nous terminerons cette partie

en démontrant que le modèle quadratique dépend très sensible d’un seuil constant,

le cutoff.

PARTIE III: STATISTIQUES DE TRAINS D’IMPULSIONS

Les nonlinéarités modélisées dans la partie précd́ente sont essentiels à la compréhension

du code neuronal. Il est généralement admis qu’une grande partie du codage est

également contenu dans la variabilité des trains d’impulsions. La partie III est con-

sacrée à l’étude des statistiques de trains de potentiels d’actions de neurones soumis

a des excitations aléatoires. Dans un premier temps, nous présenterons au chapitre 6
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un aspect essentiel du problème: la distribution de probabilité des trains d’impulsions

peut se ramèner à un problème de premier temps d’atteinte de certains processus à

des courbes continues. Nous présenterons différentes techniques d’analyse stochas-

tique afin de caractériser la distribution de probabilité des trains d’impulsion et les

appliquerons à quelques modèles classiques de neurones. Les techniques usuelles ne

permettent pas de résoudre le problème des statistiques de trains d’impulsions quand

l’intégration synaptique n’est pas instantanée. La résolution de ce problème sera

l’objet du chapitre 7. Afin de résoudre ce problème, nous introduirons une nouvelle

classe de processus stochastiques, les processus doublement intégrés, qui correpon-

dent à l’ensemble des processus définis comme la primitive d’une martingale brown-

ienne. Nous développerons dans ce chapitre une méthode semi-analytique afin de

résoudre le problème des premiers temps d’atteinte de ces processus à des frontières

lisses générales.

PARTIE IV: MODÈLES DE POPULATIONS DE NEURONES

Aprés ces deux études de neurones isolés, nous nous intéresserons à la modélisation

de populations de neurones. Un très grand nombre de neurones codent l’information

dans le cervau, et ces ensembles de neurones presentent une structure columnaire

composée de différentes couches. Ces sytèmes doivent être appréhendés globale-

ment, puisque certaines structures et fonctions n’existent pas au niveau cellulaire

mais émergent à difféntes échelles échelles spatiales.

À cause de la complexité de cette structuration, des modèles réalistes de neurones re-

produisant certaines fonctions ne sont pas en général traitables mathématiquement.

Nous introduirons au chapite 8 une description événementielle de réseau de neu-

rones basée sur la modélisation des instants d’impulsions dans le réseau. Ce modèle

nous permettra de simuler efficacement de grands ensembles de neurones à impul-

sions bruités. Cependant, les propriétés mathématiques de ce réseau pour un grand

nombre de neurones sont très difficiles à obtenir. C’est pour cette raison que nous

nous interesserons dans les deux dernières parties de ce manuscrit à des descriptions

mésoscopiques de tels réseaux. Le chapitre 9 traitera de la façon de calculer l’équation

de champ moyen, une équation mésoscopique représentant le comportement global

d’un réseau stochastique. Nous prouvons que ces équations sont bien posées au

sens mathématique, c’est à dire qu’il existe une unique solution. Le chapitre 10 est

une étude préliminaire de d’approximations déterministes de l’équation de champ

moyen correspondant à des modèles classiques de colonnes corticales, les modèles

de Jansen et Rit et de Wendling et Chauvel. Nous nous intéresserons principale-

ment aux solutions périodiques de ces systèmes, et ces études projètent une nou-

velle lumière sur l’origine de l’activité oscillatoire observée dans des enregistrements

d’électroencephalogrammes et sur l’activité épileptiforme.
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CHAPTER 1

PRINCIPLES OF NEURAL SCIENCE

AND MODELIZATIONS BASICS

Life itself is still beautiful.

– Pontus Alv.

OVERVIEW

Neural science is undoubtedly a fascinating field of research. It is aimed to under-

stand the nervous system, and in particular the brain and the spinal cord that govern

the way we perceive, move, think, remember, learn, speak and feel. It processes sen-

sory inputs and recognizes danger, good food, identify potential mates. It controls

movements, the voluntary ones (via the motor cortex, the cerebellum, and the basal

ganglia) as well as the involuntary ones (nuclei in the brain stem control many in-

voluntary muscle functions such as heart rate and breathing). Evidence strongly

suggests that developed brains derive consciousness from the complex interactions

between numerous systems within the brain. Almost1 every animal have either a cen-

tralized brain, collections of individual ganglia playing the role of distributed brains

or a diffuse nervous system. In this chapter we very roughly introduce several ele-

mentary notions of neural science and present the basic function of neurons from a

biological and electrophysiological viewpoints. Modeling these processes in order to

understand their origin and nature in order to reproduce them efficiently and accu-

rately are the main motivation of the present dissertation.

After describing very briefly the brain and its basic organization, we will be in-

terested in the main cells involved in the brain’s information processing: the nerve

cells, or neurons. We will describe these cells anatomically, explain its function from

a biophysical point of view, characterize the signal they produce and convey, and dis-

cuss the electrophysiological basis of these processes. Based on these observations,

we will introduce what we will call detailed neuron models, mainly based on a pre-

cise description of each process involved in the nerve signal generation. We will then

turn to a more functional description of the nerve cells, and introduce classical phe-

nomenological model.

The aim of this chapter is clearly not to give a comprehensive introduction to such

a complex structure as the brain, nor of such a passionating field as neurobiology,

1Some animals, such as cnidarians and echinoderms do not have a centralized brain, but present

instead a decentralized nervous system. Very few primitive animals such as the poriferans (sponge)

lack nervous system entirely.

3



4 CHAPTER 1. PRINCIPLES OF NEURAL SCIENCE

but to provide the reader with the basic concepts we will deal with in the rest of this

document. The presentation of the biological background will be therefore highly sim-

plistic, selective and lacunar, but I believe it provides the reader with the minimum of

information necessary to appreciate the biological discussions of the theoretical work

presented in this dissertation. For more details on the fundamental principles of

neural science from a biological point of view, we refer the interested reader to the ex-

cellent book of Kandel, Schwartz and Jessell [158] where we got the main information

developed here. The reader interested in neuronal modeling is referred to the great

books of Koch and colleagues [164, 165], Peter Dayan and Larry Abbott [67]. The

reader interested in ionic exchanges in play in the nerve cell to the very interesting

book of Bertil Hille [124]. A review of different neuron models viewed as dynamical

systems can be found in the excellent book of Izhikevich [146], and phenomenological

models of spiking neurons are discussed in depth in [105].
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1.1 BRAIN

1.1.1 General overview

The brain is an unresting assembly of cells that continually receives information,

elaborates and perceives it, and makes decision. It is a very complex system. It

is composed of an immense number of different cells. Among these cells, the nerve

cells, or neurons, are the elementary processing units. Neurons are electrically ex-

citable cells that process and transmit information. There are roughly 100 billion

neurons for the human brain (≈ 1011 cell bodies), that can be of different types (about

forty types of neurons have been identified through the cortex, thousands according

to [158]). Besides neurons, the brain is also composed of “supporter” cells, so-called

glial (or neuroglial) cells. These cells are divided according to anatomical criteria into

(1) neuroglial cells in the brain, further subdivided into oligodentrocytes and astro-

cytes, and (2) Schwann cells, or neurolemmocytes, in the periphery. Neuroglial cells

make up almost one half the volume of the brain and outnumber neurons by about

10 to 1. They play an essential role in the brain function: they provide nutrition and

energy, maintain homeostasis (regulates their internal environment), form myelin

(electrically-insulating dielectric phospholipid layer that surrounds only the axons of

some neurons), participate in signal transmission, ensures structural stabilization of

brain tissues, destroy pathogens and remove dead neurons. For years, specialists con-

sidered that these cells were not involved in information processing, and this vision

seems to be contradicted by some recent studies2. The study of these cells and of their

influence in the signal processing would be very interesting, but in this dissertation

we will concentrate on neuronal cells.

The huge number of nerve cells in the brain is interconnected in a very intricate

fashion. In the human brain for instance each neuron is typically connected to 104

other. All these cell bodies and connections are packed into a very dense and complex

network. To get a grasp of the complexity of the network, in a cubic millimeter of

human brain there are more than 104 cell bodies and several kilometers of wires.

And the high level of structuring of the cerebral cortex makes this system even more

complex.

1.1.2 Basic organization of the cerebral cortex

The cortex, superficial part of the encephalon, is mainly composed of grey matter

formed by neurons and their unmyelinated fibers. The white matter below the grey

matter of the cortex is formed predominantly by myelinated axons interconnecting

different regions of the central nervous system. First of all, it has been proved that

the grey matter has an horizontal organization in layers (laminae) composed of dif-

ferent cell types (see figure 1.1). The number of layers, their cell composition, their

thickness and organization are not the same over the whole surface of the cortex.

These differences led neuroanatomists to divide the cortex into small regions called

2 Recent studies tend to prove that astrocytes glial cells interact with neurons and affect their ability

to communicate with each other. This suggests that they may influence the information processing. For

instance Newman in [205] showed that activated glial cells (i.e. excited by focal injections of certain

chemical substances) can inhibit neurons by releasing ATP. He proves for instance in the rat retina us-

ing this technique a subsequent reduction of the firing rate of those neurons that displayed spontaneous

spike activity.
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Figure 1.1: Layer organization of the cortex (a) Weigert’s coloration shows myelinated

fibers (axons) and so the connections inside and between layers, (b) Nissl’s coloration

only reveals cell bodies (c) Golgi’s coloration shows the whole cells (From [209]).

areas (figure 1.2) where those characteristics are homogeneous and that correspond

to different functions, e.g., vision or motion. Generally speaking, most of the cortex is

made up of six layers of neurons, from layer I at the surface of the cortex to layer VI,

deeper, that lies close of the white matter. For humans, its thickness varies from 3 to

6 mm.

More detailed information about cortical structure and function can be found in [113,

156, 158, 214]. The organization of the cortex is not only laminar. It has been

observed that neurons tend to be strongly connected in columnar structures perpen-

dicular to the surface of the cortex responding to precise stimulations and having

similar activities, called cortical column. Several studies provided biological evidence

of such small aggregates of about one hundred neurons, 20 up to 50 µm wide, called
minicolumns (see e.g. [44, 200]). Larger columnar structures of 300 to 500 µm of
diameter displaying similar activities (macrocolumns) were studied by Mountcastle

in [199].

Let us now zoom further into the brain and describe individual nerve cells.

1.2 NEURONS

The information processing in the brain is mainly accomplished through the nerve

cells and the connections between them. The neuron’s place as the primary functional

unit of the nervous system was first recognized in the late 19th century through the

work of the Spanish histologist Santiágo Ramon y Cajal. He proposed that neurons

were discrete cells acting as metabolically distinct units communicating via special-

ized circuits and junctions. This vision, known as the neuron doctrine, is one of the

central dogma of modern neuroscience. He was the first to provide a suitable descrip-
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Figure 1.2: In 1909, Brodmann [34] divided the cortex into 52 cytoarchitectonic areas

according to the thickness of the cortical layers. For example, layer IV is very thin in

the primary motor cortex (area 4) while it is very thick in the primary visual cortex

(area 17).

Figure 1.3: The giant axons of the European squid (Loligo vulgaris) were crucial for

scientists to understand the action potential (picture: Hans Hillewaert)

tion of the structure nerve cells [219, 220], using Golgi’s silver staining method. He

showed that all nerve cells share the same basic architecture. Hence the complexity

of the brain function depends less on the specialization individual neurons and more

on the fact that a great number of these cells form precise and intricate anatomical

circuits. The main electrophysiological features of the neurons were obtained by the

pioneering works of Hodgkin and Huxley at the same period.

Substantial early knowledge of neuron electrical activity came from experiments

on the squid’s (see his photo figure 1.3) giant axons. As they are much larger than

human neurons, but similar in nature, it was easier to study them with the tech-

nology of the first half of the twentieth century. This poor squid suffered pressure,

stretch, injections of chemical substances and electrocutions, to record its axon’s elec-

trical activity by inserting electrodes into it. The accurate measurements obtained

opened the way to the current neural science theory. I solemnly acknowledge the

squid 1.3 here for being, to my point of view, a science hero.

1.2.1 Anatomical overview

A typical neuron has four morphologically defined regions: the cell body, dendrites,

the axon, and presynaptic terminals. Each of these regions has a distinct role in

the communication or generation of signals (see figure 1.4). The cell body (soma)

is the metabolic center of the cell. It contains the nucleus which stores the genetic
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Figure 1.4: Diagram of a typical nerve cell (image: Mariana Ruiz Villarreal,

Wikipedia)

information of the cell as well as the endoplasmic reticulum and the whole metabolic

apparel for the cell’s proteins synthesis. The nucleus ranges from 3 to 18 micrometers

in diameter.

The cell body is connected to other nerve cells via cellular extensions called den-

drites. Dendrites branch out in a tree-like fashion. It is where the majority of input

to the neuron occurs. In some few cases, information outflow from dendrites to other

neurons can also occur3.

The information communicated by the nerve cell to other neurons is transmitted

by a long tubular structure called the axon. An axon can transmit electric signals

along distances ranging from 0.1mm to meters. It is a thin structure compared with

the cell body. Most neurons have only one axon, but this axon may - and usually will

- undergo extensive branching, enabling communication with many target cells. The

part of the axon where it emerges from the soma is called the axon hillock. Besides

being an anatomical structure, the axon hillock is also the part of the neuron that has

the greatest density of voltage-dependent sodium channels (see below). This makes

it the most easily excited part of the neuron.

Near its ends, the axon divides into branches forming communication sites with

other neurons. This structure is referred as the axon (or presynaptic) terminal. It con-

tains the synapses (see section 1.2.6), specialized structures where neurotransmitter

chemicals are released in order to communicate with target neurons. The signal is

emitted from the presynaptic cell and received by the postsynaptic cell. The presy-

naptic cell transmits signals from the swollen end of its axon. Two communicating

3This transmission cannot be held via chemical synapses: there, the backflow of a nerve impulse is

impossible since an axon does not possess chemoreceptors and dendrites cannot secrete neurotransmit-

ter chemicals. This unidirectionality of a chemical synapse explains why nerve impulses are conducted

only in one direction.
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Figure 1.5: Schematic diagram of a section of the nerve cell’s membrane with two ion

channels embedded in it. The membrane is 3 to 4 nm thick and the ion channels are

about 10 nm long. (Adapted in [67] from [124]).

cells are generally not in contact anatomically. The small space between these cells is

named the synaptic cleft. Most presynaptic terminals end on a postsynaptic neuron’s

dendrite, but terminals may also end on the soma or less often on the axon of the

postsynaptic cell.

Like other cells, neurons are composed and surrounded of a huge number and

variety of ions and molecules. A typical cubic micron of cytoplasm might contain,

for example, 1010 water molecules, 108 ions, 107 small molecules like amino acids

and nucleotides, and 105 proteins. Many of these molecules carry charges, either

positive or negative. Most of the time there is an excess concentration of negative

charge inside the neurons. The nerve cell’s membrane is mainly composed of a lipid

bilayer 3 to 4 nm thick essentially impermeable to most charged molecules. This

bilayer is spanned by highly specialized proteins called ion channels (see figure 1.5).

These ion channels recognize and select specific ions and conduct them through the

membrane. They can be open or closed in response to specific electrical, mechanical

or chemical signals. They conduct ions very fast (up to 108 ions per second in a single

channel) in a very selective way: each type of ion channel allows only one4 type of

ions to pass. Many channels are regulated (or gated); they open and close in response

to different stimuli: changes in the voltage (voltage-gated channels), presence of a

chemical transmitter (ligand-gated channel) and pressure or stretch (mechanically

gated channels). Non-gated channels also exist, and are called resting channels. The

gates can either activate (open) or inactivate (close) the channels (see figure 1.6). For

a precise description of the structure and function of the ionic channels, we refer to

[158, Chapter 6].

1.2.2 The zoo of neurons

Though nerve cell have the same overall organization, many types of nerve cells can

distinguished. Eric Kandel in [158, Chapter 2] speaks of at least a thousand of dif-

ferent cells types. Nerve cells can be classified according to different criteria. The

4in some rare case few species are selected.
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Figure 1.6: Structure of voltage-gated ion channels: voltage sensors open an acti-

vation gate and allow selected ions to flow through the channel according to their

electrochemical gradients. The inactivation gate blocks the channel. (Taken from

[146] where it was modified from [14].)

first classification that can be performed is a structural classification. More precisely,

most of neurons can be characterized by their polarity (see figure 1.7). They can be

one of three main types:

• Unipolar or pseudounipolar when the dendrite and axon emerge from same pro-
cess.

• Bipolar when the axon and a single dendrite emerge on opposite ends of the
soma.

• Multipolar when it has more than two dendrites. In the multipolar cells there
exists a further subdivision in function of the length of the synaptic projec-

tions. Neurons with long-projecting axonal processes such as the pyramidal

cells, Purkinje cells, and anterior horn cells are called Golgi I and neurons

whose axonal process projects locally such as the granule cell are called Golgi

II.

Different types of neurons can be distinguished also by the function they play in

the nervous system. Neurons conveying informations from tissues and organs to the

central nervous system are called afferent (or sensory) neurons. The cells transmitting

signals from the central nervous system to the effector cells are called efferent (or

motor) neurons, and the cells connecting neurons within the central nervous system

are called interneurons.

The action of a neuron on other neurons is also important to understand the role

of each individual cell. This role is primarily driven by the type of synapse (see sec-

tion 1.2.6) and the neurotransmitter used. We distinguish excitatory neurons that

depolarize their target neurons and inhibitory neuron that hyperpolarize their tar-

get cell. Nevertheless, this is not a very precise classification, since the action of a

presynaptic neuron on a postsynaptic cell does not only depend on the type of neu-

rotransmitter substance released to transmit information, but also the postsynaptic

receptor. Eventually modulatory neurons evoke more complex effects termed neuro-

modulation. These neurons use often such neurotransmitters as dopamine, acetyl-

choline, serotonin.
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Figure 1.7: Neurons can be classified according to the number of processes that orig-

inate from the cell body (their polarity): they can be unipolar, bipolar or multipolar

(image taken from [158])
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Eventually, another classification, which will be specifically used in this disserta-

tion, distinguishes neurons according to their electrophysiological characteristics, i.e.

their spiking signature in response to different kinds of stimulations. This classifica-

tion will be further studied in section 1.5.

1.2.3 Electrophysiology of neurons

The first thing one notice when penetrating into the cell with an intracellular elec-

trode is the existence of an electrical potential across this membrane (this observation

dates back to the late 1930’s [53, 127]). The difference of electrical potential between

the intracellular and the extracellular potential is an essential measurement of the

nerve cell’s activity.

Passive properties of nerve cells

The neuron as all cells of the body have passive electrical properties which do not de-

pend sensitively on the neuron’s activity, and that affect the cell’s electrical signaling:

the resting membrane resistance and the membrane capacitance. These character-

istics can be acquired by intracellular measurements of the membrane potential in

response to current inputs.

Membrane resistance Injecting a negative charge through the an electrode re-

sults in most neurons in a subsequent hyperpolarization proportional to the injected

current. The slope of this linear relation defines the neuron’s input resistance. To

compare the membrane properties of neurons of different size, electrophysiologists

often use the resistance of a unit area of membrane, the specific membrane resistance.

This quantity depends on density of resting ion channels and on their conductances.

Membrane capacity The dynamical properties of the input integration when in-

jecting a negative charge in the cell resembles to the one of capacitor. This property

is linked with the structure of the the nerve cell’s membrane: it is made of two layers

of phospholipid molecules, with their polar head facing the intracellular cytoplasm,

and the extracellular space, separating the internal and external conducting solu-

tions by a 35−50 Å thin insulating layer5. To understance how a capacitance slows
down the voltage response, we need to recall that the voltage across a capacitor V is
proportional to the charge Q stored in it:

Q = CV

In membrane biophysics, the capacitance is usually specified in terms of the specific

membrane capacitance Cm expressed in microfarad per square centimeter of mem-

brane area. When the voltage across the capacitance changes, a current will flow,

and this current is obtain via the charge equation:

IC = C
dVm(t)
dt

The capacitance depends on the didelectric constant of a medium and on the geometry

of the conductors on either side. In a simple capacitor formed by two parallel plates

5It is known from elementary physics that whenever a thin insulator is keeping charges apart, it will

act like a capacitance.
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Figure 1.8: Historic oscilloscope record of a net increase of ionic conductance in the

membrane of the axon simultaneously to the emission of an action potential by Cole

and Curtis [54]. The time marks at the bottom are 1 millisecond apart. The upper-

most curve is the action potential.

of area A separated by an insulated of dielectric constant ε0 and thickness d, the
capacitance is:

C =
ε ε0A

d

where ε is the polarizability of free space universal constant. Cell membranes can
be considered as parallel plate capacitors with specific capacitance near 1.0µF/cm2

(see [52]), which is just slightly higher than a pure lipid bilayer, 0.8µF/cm2. The high

electric capacitance of biological membranes appears to be a direct consequence of

their molecular dimensions.

Note that these two properties can also be expressed for the axons and the den-

drites, and the quantitative differences between the values in the soma and the pro-

cess plays a role in the propagation properties of the signal (see [158, chapter 8]).

Active properties of the neurons: Ionic exchanges

Neurons are excitable cells, and their specific properties of generating signals and

transmitting them are linked with active properties of the cell. From the electro-

physiological point of view, we just saw that the nerve cell’s membrane acts like a

capacitor and can conduct electrical signals with a given conductivity. We are now

interested in the ionic exchanges that drive the cell’s activity and that lead to the

emission of action potentials.

An important clue about how action potentials are generated came from another

experiment performed by Kenneth Cole and Howard Curtis[54]. While recording

from the giant axon of the squid, they found that the ion conductance across the

membrane increases dramatically during the emission of action potentials (see figure

1.8). This discovery provided the first evidence that the action potential results from

changes in the flux of ions through the channels of the membrane. It raised hence a

new question: which ions are responsible for the action potential?

A key to this problem was provided by Alan Hodgkin and Bernard Katz. They

found in 1949 [129] that the amplitude of the action potential was reduced when the

external Na+ concentration is lowered, indicating that Na+ influx is responsible for

the rising of phase of the action potential. Their data also suggested that the falling
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phase of the action potential was caused by a later increase in K+ permeability. To

test this hypothesis, Alan Hodgkin and Andrew Huxley conducted a second series of

experiments. They systematically varied the membrane potential of the squid giant

axon and measured the resulting changes in the membrane conductance to Na+ and

K+ (see [128]). It is now understood that four ionic currents are responsible for the

electrical activity of the neuron: sodium (Na+), potassium (K+), chloride (Cl−), and
calcium (Ca2+). The concentrations of these ions are different on the inside and the

outside of a cell. These ionic gradients are the major forces driving neural activity.

The extracellular medium has a high concentration of sodium and chloride ions (it

is salty medium similar to seawater), and a relatively high concentration of calcium

ions. The intracellular medium has high concentrations of potassium and different

negatively charged molecules (denote generically A− for anions) trapped in the intra-
cellular medium (there is no ion channel adapted to send them in the extracellular

medium). The flows of sodium and calcium ions appears to be not very significant,

at least at rest, while the flows of potassium and chloride ions are quite important.

There exist two different kinds of ionic flows through the membrane:

• The passive redistribution, linked with the fact that the impermeable anions A−

attract more K+ into the cell and repel more Cl− out of the cell, thereby creating
concentration gradients.

• The active transport, linked with ionic pumps acting on the cell membrane: for
example, the Na+-K+ pump depicted in figure 1.10 pumps out three Na+ ions for

every two K+ ions pumped in, thereby maintaining concentration gradients.

Two forces drive each ion species through the membrane channel: the concentra-

tion and the electric potential gradients. First, the ions diffuse down the concentra-

tion gradient. For example, the K+ ions depicted in figure 1.9.a. diffuse out of the cell

because K+ the internal concentration of potassium is higher than that the external

one. While exiting the cell, K+ ions carry a positive charge and leave a net negative

charge inside the cell, thereby producing an outward current. The positive and nega-

tive charges accumulate on the opposite sides of the membrane surface, creating an

electric potential gradient across the membrane, which we call the transmembrane

potential or membrane voltage. This potential slows the diffusion of K+ since these

ions are attracted towards the negatively charged interior and repelled from the pos-

itively charged exterior of the cell (figure 1.9.b.). At some point an equilibrium is

achieved: the concentration gradient and the electric potential gradient exert equal

and opposite forces that counterbalance each other, and the net cross-membrane cur-

rent is zero, as in figure 1.9.c. The value of such an equilibrium potential depends on

the ionic species, and it is given by the Nernst equation (see e.g. [124]):

Eion =
RT
zF

log
[Ion]out

[Ion]in
, (1.1)

where [Ion]out and [Ion]in are the ion concentrations outside and inside the cell, respec-
tively; R is the universal gaz constant (8.315mJ/(K◦ ·Mol)), T is the temperature in
degrees Kelvin, F is Faraday’s constant (96,480coulombs/Mol) and z is the valence of
the ion.

Figure 1.10 shows the different ionic species together with the equilibriumNernst

potential for different ionic species for a typical mammalian neuron.

The Nernst equation gives the equilibrium voltage corresponding to a unique ionic

specie only considering the ionic concentrations. It did not take into account the ease
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Figure 1.9: Diffusion of K+ ions through the cell’s membrane: (a) creates and electric

potential force pointing in the opposite direction, (b) until the diffusion and electri-

cal forces compensate each other (c). The resulting transmembrane potential 1.1 is

referred to as the Nernst equilibrium potential for potassium ion (from Izhikevich

[146]).

Figure 1.10: Ion concentrations and Nernst equilibrium potentials in a typical mam-

malian neuron at a temperature of 37◦C (figure taken from [146] where it was adapted
from [154]).
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with which ions cross the membrane. In terms of electrical current flow, the mem-

brane’s conductance provides a convenient measure of how readily the ion crosses the

membrane. Another convenient measure is the permeability P of the membrane to a
given ion, in velocity unit (cm/s). This quantity measures the rate of solute movement
in solution. David Goldman in 1943 published a formula linking of the equilibrium

potential, the ionic permeabilities and the intracellular and extracellular ionic con-

centrations taking into account different ionic species (see [109]):

Em =
RT
F

log

(
PK [K+]out + PNa [Na+]out + PCl [Cl−]in
PK [K+]in + PNa [Na+]in + PCl [Cl−]out

)
(1.2)

This equation is known as Goldman, or Goldman-Hodgkin-Katz (GHK) equation.

Alan Hodgkin and Bernard Katz used this equation to analyze changes to compute

this potential, which is often known as the reversal potential (instead of equilibrium

potential) because the direction of current flow through the channel switches as the

membrane potential passes through this value.

This dynamical equilibrium named the “rest” state is achieved when ionic cur-

rents are flowing across the membrane and balance each other so that the net cur-

rent flowing across the membrane is zero. Maintaining this equilibrium is a major

power expenditure for the nervous system. Half the metabolic energy consumed by

a mammalian brain is has been estimated to be due to the membrane ionic pumps

responsible for the balance of ionic gradients (see [9]), all nerve cell present a quite

stable negative potential, ranging from −70mV to −30mV . This value is not necessar-
ily fixed and under some condititons where the resting potential dynamically adjusts

in function of a network activity (see [67]).

1.2.4 The nerve signal

The signals produced and conveyed by the nerve cell are called action potentials, or

spikes. They are rapid transient nerve electrical impulses with an amplitude of 100mV
and a duration of about 1ms (see figure 1.11). Action potentials are initiated at a
specialized trigger region at the origin of the axon, the axon hillock (see section 1.2.1).

From this region, the action potential is transported down the axon without failure

or distortions at speeds ranging from 1 to 100 meters per second. The amplitude of

the action potential travelling along the axon remains almost constant (as we will

see in the case of long connections, axons are generally wrapped in a fatty insulating

sheath of myelin, which is interrupted at regular intervals by the Ranvier nodes

where the action potential is regenerated). The fact that these action potential are

highly stereotyped implies that the information conveyed is not in the shape of this

signal but rather in the relative times of spike emission and the pathway of the signal

through the network.

The course of the action potential can be divided into four parts closely linked

with the dynamics of ion channels: the rising phase, the falling phase, the undershoot

phase, and the refractory period.

(i) The spike generation and the rising phase : A sufficiently strong depolariza-

tion of the membrane potential at the axon hillock initiates the action potential.

This depolarization is often caused by the injection of extra sodium cations into

the cell; these cations can come from a wide variety of sources, such as chemical
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Figure 1.11: First intracellular recording of an action potential obtained in 1939 by

Hodgkin and Huxley from the squid giant axon, using glass capillary electrodes filled

with sea water. The sinusoid corresponds to a time marker of 500 Hz. The verti-

cal scale indicates the potential in millivolt, the sea water outside being taken as a

reference (From [127]).

synapses, sensory neurons or pacemaker potentials. In this phase, the mem-

brane permeability to potassium is low, but much higher than that of other

ions, making the resting potential close to EK .

The depolarization causes the voltage-gated sodium and potassium channels to

open, allowing the ions to flow into and out of the axon, respectively. If the

depolarization is small, the outward potassium current overwhelms the inward

sodium current and the membrane repolarizes back to its normal resting poten-

tial around −70mV . However, if the depolarization is large enough, the inward
sodium current increases more than the outward potassium current and a pos-

itive feedback results: the increasing voltage in turn causes even more sodium

channels to open, which pushes V still further towards ENa. This positive feed-

back continues until the sodium channels are fully open and V is close to ENa.

(ii) The falling phase : the same raised voltage that opened the sodium channels

initially also slowly shuts them off, by stoppering their pores; the sodium chan-

nels become inactivated. This lowers the membrane’s permeability to sodium,

driving the membrane voltage back down. At the same time, the raised volt-

age opens voltage-sensitive potassium channels; the increase in the membrane’s

potassium permeability drives back V towards EK. Combined, these changes in

sodium and potassium permeability cause V to drop quickly, repolarizing the
membrane and producing the “falling phase” of the action potential.

(iii) The hyperpolarizing phase : The raised voltage opened many more potassium

channels than usual, and these do not close right away when the membrane

returns to its normal resting voltage. The potassium permeability of the mem-

brane is transiently unusually high, driving the membrane voltageV even closer
to the potassium equilibrium voltage EK . Hence, there is a hyperpolarization

persisting until the membrane potassium permeability returns to its usual value.

(iv) The refractory period : The opening and closing of the sodium and potassium

channels during an action potential may leave some of them in a “refractory”
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state, in which they are unable to open again until they have recovered. In the

absolute refractory period, so many ion channels are refractory that no new ac-

tion potential can be fired. Significant recovery (desinactivation) requires that

the membrane potential remain hyperpolarized for a certain duration. In the

relative refractory period, enough channels have recovered that an action poten-

tial can be provoked, but only with a stimulus much stronger than usual. These

refractory periods ensure that the action potential travels in only one direction

along the axon.

Some neurons do not generate action potentials, but instead generate a graded

electrical signal, which in turn causes graded neurotransmitter release. Such non-

spiking neurons tend to be sensory neurons.

Now that we explained briefly the mechanisms of spike generation, let us present

the way the signal propagates along the axons to reach other nerve cells.

1.2.5 Propagation of action potentials

The action potential generated in the soma of the nerve cell propagates as a wave

along the axon. Like the soma’s membrane, the axon’s membrane contains voltage-

gated ion channels which allowing propagation of the electrical impulse. These im-

pulses are propagated by charge-carrying ions including the same ionic species as

the spike generation, namely the sodium (Na+), potassium (K+), chloride (Cl−), and
calcium (Ca2+) ions. The ionic currents flowing towards the intracellular medium at a

point on the axon during an action potential spread out along the axon, and depolar-

ize the adjacent sections of its membrane. If sufficiently strong, this depolarization

provokes a similar action potential generation in the neighboring membrane patches.

This basic mechanism was demonstrated again by Alan Hodgkin in the late 30’s: he

inhibited by crushing or cooling nerve segments of the squid giant axon and showed

that an action potential arriving on one side of the inhibited zone could provoke an-

other action potential on the other side, provided that the inhibited segment was

sufficiently short.

Once an action potential has occurred at a patch of membrane, the membrane

patch needs time to recover before it can fire again. At the molecular level, this

absolute refractory period corresponds to the time required for its ion channels to

return to their normal open or closed states. Hence the absolute refractory period

ensures that the action potential moves in only one direction along an axon. The

currents flowing in due to an action potential spread out in both directions along the

axon. However, only the the part of the axon that has not fired yet an action potential

can respond: the part that has just fired is unresponsive until the action potential

is safely out of range and cannot restimulate that part. Hence the action potential

propagates from the axon hillock towards the axonal terminals6.

The axons of some neurons are ensheathed in myelin regularly interrupted by

myelin gaps (Ranvier’s nodes). Myelin prevents ions from entering or leaving the

axon along myelinated segments. As a general rule, myelination increases the con-

duction velocity of action potentials and makes them more energy-efficient. The

current passively spreads from one Ranvier’s node to another. The myelin inhibits

6propagation in the opposite direction, known as antidromic conduction, exists and is very rare.

However, if a laboratory axon is stimulated in its middle, both halves of the axon are unfired, and then

two action potentials will be generated, one traveling towards the axon hillock and the other traveling

towards the synaptic knobs.
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Figure 1.12: Structure and function of gap junctions at electrical synapses. (A) Gap

junctions consist of hexameric complexes connecting two similar structure of the pre-

and postsynaptic membranes. The pores of the channels connect to one another, cre-

ating electrical and chemical continuity between the two cells. (B) Rapid transmis-

sion of signals at an electrical synapse in the crayfish (see [102]). An action potential

in the presynaptic neuron causes the postsynaptic neuron to be depolarized within a

fraction of a millisecond (figure taken from [218]).

charge leakage, and hence when the current reaches another Ranvier node, the depo-

larization it provokes is sufficient to generate a new action potential at this node; this

“hopping” of the action potential from node to node is known as saltatory conduction7,

in contrast with the unmyelinated axons where the action potential is continuously

transmitted down the axon like a wave.

Now that the signal has been transported from the soma to the axonal terminal,

let us describe the way the signal is transmitted to other neurons, in order to close

the loop of neuronal processing.

1.2.6 Synaptic Transmission

For communicating with another cell, the neurons make use of one of two basic forms

of synaptic transmission: the electrical and the chemical synapses. The strength of

the synaptic transmission can be enhanced or reduced, depending of the history of

the cellular activity. This plasticity of the nerve cells is crucial to memory, learning

and other higher brain functions.

The electrical synapse transmission is rapid and stereotyped, and is mainly used

to send simple depolarizing signals for systems requiring the fastest possible re-

sponse. At the location of an electrical synapse, the separation between two neurons

is very small (≈ 3.5nm). This narrow gap is bridged by the gap junction channels, spe-

7The mechanism of saltatory conduction was suggested in 1925 by Ralph Lillie in his article [181],

the first experimental evidence for saltatory conduction came from Ichiji Tasaki, Taiji Takeuchi and

from Andrew Huxley and Robert Stämpfli [138, 250, 251, 252].
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Figure 1.13: Cascade of events involved in the signal transmission at a typical chem-

ical synapse.(from [218]).

cialized protein structures that conduct the flow of ionic current from the presynaptic

to the postsynaptic cell (see figure 1.12). Electrical synapses thus work by allowing

ionic current to flow passively through the gap junction pores from one neuron to an-

other. The usual source of this current is the potential difference generated locally

by the action potential. Without the need for receptors to recognize chemical mes-

sengers, signaling at electrical synapses is more rapid than that which occurs across

chemical synapses, the predominant kind of junctions between neurons. The rela-

tive speed of electrical synapses also allows for many neurons to fire synchronously.

Because of the speed of transmission, electrical synapses are found in escape mech-

anisms and other processes that require quick responses, such as the response to

danger of the sea hare Aplysia, which quickly releases large quantities of ink to ob-

scure enemies’ vision.

This mechanism of electrical transmission, though rapid, is not the most widely

used transmission process between neurons. In most of neural connections, the sig-

nal transmission is performed via chemical synapse, or synapse (without qualifier).

Chemical synapses transmit information directionally from a presynaptic cell to a

postsynaptic cell and are therefore asymmetric in structure and function. In the case

of the chemical synapse, there is no structural continuity between pre- and post-

synaptic neurons. The region separating these two cells, called the synaptic cleft, is

usually wider than the mean adjacent intercellular space, and ranges between 20 and

40nm. The chemical synaptic transmission is based on the release by the presynaptic
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neuron of neurotransmitter, a chemical substance that binds to specific receptors on

the postsynaptic cell membrane. To this purpose, the presynaptic terminals contain

discrete collections of synaptic vesicles, each of which filled with several thousand of

transmitter molecules. During the discharge of a presynaptic action potential, Ca2+

enters the presynaptic terminal through voltage-gated Ca2+ channels at the active

zone. The rise of Ca2+ concentration causes the vesicles to fuse with the presynaptic

membrane and thereby release their neurotransmitter into the synaptic cleft (exo-

cytosis). The neurotransmitter molecules then diffuse across the synaptic cleft and

bind to their receptors on the postsynaptic cell membrane. This in turn activates the

receptors, leading to the opening or closing of ion channels. The resulting flux alters

the membrane conductance and potential of the postsynaptic cell (see figure 1.13).

These several steps account for the synaptic delay at chemical synapses, which

can be as short as 0.3ms, but that often lasts several milliseconds. Hence it lacks

the speed of electrical transmission. Nevertheless, it has the important property of

amplifying the signal and hence even a small presynaptic nerve terminal generating

a weak current can release thousands of transmitter molecules that can depolarize

even a large postsynaptic cell.

When the receptors of the postsynaptic cell bind neurotransmitter molecules, they

respond by opening nearby ion channels, causing ions to flow in or out and changing

the local transmembrane potential of the cell. The resulting change in voltage is

called a postsynaptic potential. The result of this process can be excitatory in the case

of depolarizing currents (this is the more general case), or inhibitory in the case of

hyperpolarizing currents. The excitatory or inhibitory nature of a synapse depends

on the types of ion channel conduct the postsynaptic current displays, which in turn

is a function of both the type of receptors and the type of neurotransmitter employed

at the synapse. If a signal is transmitted at an excitatory synapse, then the depolar-

ization of the cell can be strong enough so that an action potential can be initiated

in the postsynaptic cell. If the depolarization induced by the excitatory postsynap-

tic potential is not be sufficient for an action potential initiation, then the effect of

the depolarization will be last for some time, and will be progressively attenuated.

Therefore, if the neuron receives other signals from the same or other neurons, the

postsynaptic potentials (PSP) they provoke will be summed. This phenomenon is

known as the synaptic integration.

All these phenomena can be modeled independently, and result in what we call

the detailed neuron models

1.3 ELECTROPHYSIOLOGICALMODELIZATION OF THE NEU-
RONAL ACTIVITY

In the previous section, we described from a biological point of view the basic mech-

anisms in play inside the neurons and the transmission mechanisms between neu-

rons. In this section, we present physical and mathematical models for each of these

process. The models built upon these considerations will be called detailed neuron

models since they will be based on a detailed description of the neuron and of each

structure’s dynamics. We try to keep the presentation intuitive and try to make ex-

plicit all the simplifications and their biological origins. This section is only devoted

to present models of the neuronal activity itself. Modelizations of synaptic inputs will

be presented later.

From a biophysical point of view, action potentials are the result of currents that



22 CHAPTER 1. PRINCIPLES OF NEURAL SCIENCE

pass through ion channels in the cell’s membrane. In their extensive series of exper-

iments on the giant axon of the squid, Hodgkin and Huxley succeeded in measuring

these currents and described their dynamics in terms of differential equations.

1.3.1 Models of ionic currents

The total current flowing across the membrane through all of its ion channels is called

themembrane current of the neuron. By convention, the membrane current is defined

as positive when positive ions leave the neuron and negative when positive ions en-

ter the neuron. The total membrane current is determined by summing currents due

to all of the different types of channels within the cell membrane, including voltage-

dependent and synaptic channels. We label the different types of channels in a cell

membrane with an index i. As discussed in the last section, the current carried by a

set of channels of type i with reversal (Nernst) potential Ei, vanishes when the mem-

brane potential satisfies V = Ei. For many types of channels, the current increases

or decreases approximately linearly when the membrane potential deviates from this

value. The difference (V −Ei) is called the driving force, and the membrane current
per unit area due to the type i channels is written as gi(V −Ei) in this linear approx-
imation, where the factor gi is the conductance per unit area related to the channel.

Summing over the different types of channels, we obtain the total membrane current:

Im = ∑
i

gi (V −Ei)

In the linear model, it is easy to compute the resting potential of the neuron, i.e.

the membrane potential corresponding to a null total ionic current. This current

reads, considering the 4 ionic species introduced:

Vrest =
gNa ENa + gCa ECa + gCl ECl + gK EK

gNa + gCa + gCl + gK

This quite simplistic model is the most commonly used to described ionic currents,

and is also chosen in this dissertation. It is valid for small changes of the voltage.

More precise models of voltage-ionic currents relations take into account the ion

permeability and the selectivity of membranes. This formalism know as the Goldman-

Hodgkin-Katz (GHK) formulation, was developed by Goldman in [109] and used by

Hodgkin and Katz [129]. The GHK equations involve the membrane permeability to

ions, a variable that quantifies the membrane’s ability to let ions flow in and out the

cell (see [124, Chapter 14]). The GHK current equation says that the current carried

by ion S is equal to the related membrane’s permeability PS multiplied by a nonlinear

function of the voltage:

IS = PS zS
V F2

RT
[S]in− [S]out exp(−zS F E/RT )

1−exp(−zS F E/RT )
(1.3)

With this model one can derive of the reversal potential equation (1.2) that we used to

explain the spike mechanism. For more details on the GHK equation and its deriva-

tion, we refer to [124, Chapter 14].

1.3.2 Models of gated ionic channels

As described in section 1.2.1, many ion channels are voltage-gated and their proper-

ties depend on the membrane potential. Gates can activate or inactivate the channel
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(i.e. open or close it respectively, see figure 1.6). To model their function, Hodgkin and

Huxley introduced two variables: the probability m of an activation gate to be in the
open state, and the probability h of an inactivation gate to be in the open state. These
variables are probabilities, hence real numbers in [0, 1]. When channels are partially
open, m ∈ (0, 1), when the channels are completely activated, m = 1, and when it is
completely deactivated, m = 0. The proportion of open channels in a large population
is hence given by:

p = ma hb ; (1.4)

where a (resp. b) is the number of activation (resp. inactivation) gates per channel.
Some channels do not have inactivation gates (b = 0), hence p = ma. Such channels do

not inactivate, and they result in persistent currents. In contrast, channels that do

inactivate result in transient currents.

The dynamics of the activation variable m is classically described by a general
first-order differential equation:

dm
dt

=
m∞(V )−m

τ(V )
(1.5)

where m∞(V ) is called the steady-state activation function, and τ(V ) the activation
time constant. These two functions can be measured experimentally. The activation

function has a sigmoidal shape and the time constant a unimodal shape (see figure

1.14).

The dynamics of the inactivation variable h can also be described by the first-order
differential equation

dh
dt

=
h∞(V )−h

τ(V )
(1.6)

Here again we call where h∞(V ) is called the steady-state inactivation function, and
τ(V ) the inactivation time constant. For the inactivation function, h∞ is an inverted

sigmoidal function (decreasing, tends to 1 at −∞ and to 0 at +∞, see figure 1.14).

1.3.3 The Hodgkin-Huxley model and its reductions

The original Hodgkin-Huxley model

The original Hodgkin-Huxley model is a very classical and widely used detailed neu-

ron model. Though we do not study this model in depth, it is an important model and

will be referred to in discussions for being a reference model.

Using pioneering experimental techniques of that time, Hodgkin andHuxley [128]

determined that the squid axon curries three major currents: voltage-gated persis-

tent K+ current with four activation gates, voltage-gated transient Na+ current with

three activation gates and one inactivation gate, and Ohmic leak current, IL, which is

carried mostly by chloride ions Cl−.
The basic electrical relation between the membrane potential and the currents

read:

C
dV
dt

= I(t)− IK− INa− IL,

This equation, considering the linear model of I−V relations, the model of voltage-
gated channels we just introduced and considering the maximal conductance for each

ionic specie instead of the real conductance, can be written as follows:
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ion Eion (mV) ¯gion (mS/cm2)

Na 115 120

K -12 36

L 10.6 0.3

Table 1.1: Parameters of Hodgkin-Huxley model: (shifted) Nernst potentials and

maximal conductances. The membrane capacity is C = 1µF/cm2. The voltage scale is

shifted so that the resting potential is 0 (i.e. shifted by approximately +65mV )

Figure 1.14: Steady state (in)activation functions (left) and time constants (right) in

the Hodgkin-Huxley model.





CV̇ = I(t)− ḡKn4(V −EK)− ¯gNam3h(V −ENa)− ḡL(V −EL)

ṅ = αn(V )(1−n)−βn(V )n

ṁ = αm(V )(1−m)−βm(V )m

ḣ = αh(V )(1−h)−βh(V )h

(1.7)

In this equation, the we denoted ẋ the derivative dx/dt for a variable x. The func-
tions αi and βi result of instantiations of the steady-state activation and inactivation

functions and of the time constant functions. The equations are presented this way

for historical reasons. The related steady-state (in)activation functions of the variable

x simply reads x∞ = αx/(αx + βx) and its time constant τx = 1/(αx + βx). The functions
αx and βx classically chosen are:





αn(V ) = 0.01 10−V
exp( 10−V

10 )−1
βn(V )) = 0.125exp

(
− V

80

)

αm(V ) = 0.01 25−V
exp( 25−V

10 )−1
βm(V )) = 4exp

(
− V

18

)

αh(V ) = 0.07exp
(
− V

80

)
βh(V )) = 1

exp( 30−V
10 )+1

(1.8)

In the original model proposed by Hodgkin and Huxley, these functions and con-

stant are set as in table 1.1.

The related steady state (in)activation function and time constants are plotted in

figure 1.14.

This model is widely used in the neuroscience community. It is quite precise, and

has the advantage of being based on the main biophysical principles it emulates. It

is now quite well understood from a dynamical systems point of view. Its bifurcations

have been identified numerically, and this model presents a very interesting bifurca-

tion portrait (see e.g. [47]) including an incredible zoology of bifurcations and even



25

chaos. It is able to generate spikes, which are very similar to intracellular record-

ings, presenting the four phases described in section 1.2.4, bursts, and different other

electrophysiological signals, when varying its parameters. Its main drawback is its

high complexity and dimensionality that prevent from analytical studies and efficient

simulations. The literature about Hodgkin-Huxley model is huge, and this model is

still very actively used in the top neuroscience research. Many variants of this model

have been proposed (new ion channels considered, different dynamics – [105, Chap-

ter 2.3] – introduction of additional biophysical parameters such as the temperature

–see e.g. [93]–).

Many reductions of these models have been proposed in order to be mathemati-

cally tractable or more efficient computationally. These reduced models include the

famous Fitzhugh–Nagumo andMorris–Lecar models. These two models are bidimen-

sional approximations of the original Hodgkin–Huxley model based on quantitative

observations (them variable, which is the fastest, is here considered as instantaneous,
i.e. simply equal to its asymptotic value m∞(V ), the time constants of h and n are al-
most the same, and the graphs of the functions n∞(V ) and m∞(V ) are very similar,
therefore n and 1−h are identified, . . . ). These two-dimensional models are way more
tractable. One of their main advantage is the low dimensionality allowing one to per-

form a phase plane analysis. This type of models have been extensively studied, from

a mathematical and simulation points of view. We will not present here the equations

and the results obtained by analyzing these models, and refer to [47, 105, 146, 164].

1.3.4 Models of spike propagation

Themodels we presented in this section considered only punctual neurons. It is based

on the assumption that the membrane potential is constant all along the neuron.

Models taking into account the spatial extension of the axon or models of dendrites

have been also developed in order to emulate the signal propagation along the axons.

These models involve in general reaction-diffusion partial differential equations and

models of dendritic tree structures (the interested reader is referred to [67, 105] and

mostly to [164]).

1.3.5 Models of synapses

The synaptic signal and its integration will be of particular importance in the study

of neuronal networks and noise integration. We will always consider in this disserta-

tion that the contributions of different incoming spikes or input current are linearly

summed. More precisely, we consider an incoming impulse (Dirac pulse) will gen-

erate a typical postsynaptic pulse (PSP) of current or conductivity. The current or

conductance at the level of the postsynaptic cell is considered as the convolution of

the incoming signal (spike train or continuous firing rate) with the PSP. Different

models of PSPs will be considered (see figure 1.15):

• Instantaneous postsynaptic current (conductance) : the impulse response of the
synapse is a Dirac pulse of current (conductance). This model is mainly used in

chapter 6.

• Exponentially decaying postsynaptic current (conductance): the inputs received
at a given synapse generate an exponentially decaying synaptic current (con-

ductance) of type exp(−t/τ)1t≥0. Chapter 7 builds upon this model.



26 CHAPTER 1. PRINCIPLES OF NEURAL SCIENCE

Figure 1.15: Typical postsynaptic (current or conductance) pulses with the same time

constant. Blue: exponentially decaying PSP and Red: second-order PSP.

• Second-order postsynaptic current (conductance) pulse : the impulse response is
the solution of a second order linear differential equation, taking into account

both the rise time and the decay time of real PSPs. This model introduced by

Rotterdam et al [275] and is of type αβ te−βt1t≥0. These functions have been

successfully applied to neural mass models and will be used in chapters 8, 9

and 10.

• General postsynaptic current (conductance) pulse :In [105, section 4.1.3], the
authors consider general postsynaptic pulses α(t), and will be used in chapter
8.

1.4 NOISE IN NEURONS

In vivo recordings of neuronal activity are characterized by their high variability.

Different studies of the spikes trains of individual neurons indicate that the firing

patterns seem to be random. The origin of the irregularity in the electrical activity

of cortical neurons in vivo has been widely studied and has received no satisfactory

answer so far. Nevertheless it is commonly admitted that a) part of this variability

can be considered as noise [235, 239], and b) that a large part of the noise experienced

by a cortical neuron is due to the intensive and random excitation of synaptic sites.

We describe some of the biological evidence that supports these statements and

propose mathematical models of the synaptic noise.

1.4.1 Sources of variability

It is generally agreed that a large part of the noise experienced by a cortical neuron

is due to the intensive and random excitation of synaptic sites.

It has been observed from in vivo recordings of cortical neurons in awake [43]

and anesthetized animals [69] that a spontaneous activity exists and that the related

spike process can be considered as Poisson. This Poisson model of independent synap-

tic inputs, or rather its diffusion limit approximation, is the model we will mainly use

is this dissertation.

The origin of irregularities is still poorly known. Gerstner and Kistler in [105]

discuss this question at length. They obtain an interesting classification, and show
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that we can distinguish between intrinsic noise sources that generates stochastic

behavior at the level of the neuronal dynamics and extrinsic sources arising from

network effects and synaptic transmission. We briefly summarize the main points:

• A permanent noise source is the thermal noise linked with discrete nature of
electric charge carriers. Fluctuations linked with this phenomenon are however

of minor importance compared to other noise sources in neurons.

• The finite number of ion channels is another noise source.Most of the ion chan-
nel have only two states: they are open or closed. The electrical conductivity of

a patch of membrane is proportional to the number of open ion channels. The

conductivity therefore fluctuates and so does the potential8

• Noise is also due to signal transmission and network effects (extrinsic noise):
synaptic transmission failures, randomness of excitatory and inhibitory con-

nections, for instance, and global networks effects (see for instance [36]) where

random excitatory/inhibitory connectivity can produce highly irregular spikes

trains even in the absence of noise.

To account for the variability in spike trains, many models have been proposed.

Some are based on random point processes, mainly input dependent renewal systems

(see [105]). These models are quite hard to handle mathematically and often lack of

biological plausibility, and therefore will not be used in the rest of the dissertation.

We will be particularly interested in this thesis in diffusion approximations of noisy

spike trains, and chapters 6, 7 and 8 build upon these models.

1.4.2 Point processes

The simplest point process used in order to model spike train is a non-homogeneous

Poisson processes. This process has the property of being forgetful, which is an ad-

vantage from the mathematical point of view, but a great drawback for modeling

spike trains which do not reflect this absence of memory. For instance, refractory pe-

riod and intrinsically bursting cells cannot be taken into account in a inhomogeneous

Poisson process. Given an instantaneous firing rate r(t), the inhomogeneous Poisson
process with intensity r(t) is a random distribution of tops (discrete events) modeling
the spike time sequence (Tn)n≥0. Of all renewal processes sharing the same mean

firing rate
∫ t

0 r(s)ds, the Poisson process is the one which has the maximum Shannon
entropy, and for this reason if no other information is known about a spike train,

Poissonian model minimize artificial correlations. But if spike coding in concerned, it

has to be noted that no information is embedded in its precise spike times: condition-

ally on the fact that there are N spikes in a given interval, the times of the spikes are
uniformly distributed.

Intracellular spike trains recordings present many differences with Poisson spike

trains. In particular, spikes cannot be fired arbitrarily fast because of the cell’s re-

fractoriness9, wether it has a strictly positive probability for Poisson processes. Other

models, for instance from the class of “simple modulated renewal processes” [221]

such as Gamma processes, can be used. They are more biologically plausible (see e.g.

[286] and references herein).

8There exists models taking into account the finite number of ion channel, and that they can repro-

duce the observed variability in some cases(see for instance [50]).
9Note that the refractory period prevents from modeling spike trains with unidimensional Markov

processes.
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1.4.3 Diffusion approximation

In term of neuron models we concentrate on several classes of integrate-and-fire spik-

ing neuron models because they bring together a relative mathematical simplicity

and a great power for reproducing many observed neuronal activities [141]. In this

field, Knight [163], pioneered the study of the effect of noise with a simplifiedmodel in

which the threshold was drawn randomly after each spike. Gerstner [105] extended

these results and studied both slow noise models, in which either the threshold or

the reset is drawn randomly after each spike, and fast escape rate noise models. In

the context of synchrony in neuronal networks, Abbott et al [1] studied a phase noise

model. However, none of these models can represent in a realistic way the synaptic

noise as experienced by cortical neurons.

We concentrate on the effect of synaptic currents. Synaptic currents can be de-

scribed by a simple system of ordinary differential equations (see for instance [68]).

We study the impact of noise originating from realistic synaptic models on the dy-

namics of the firing probability of a spiking neuron.

We only explore two levels of complexity for the synaptic currents, 1) instanta-

neous (described by delta function) synaptic currents, and 2) synaptic currents de-

scribed by an instantaneous jump followed by an exponential decay. The dynamics

of the firing probability of a neuron receiving a bombardment of spikes through such

synaptic currents is studied in the framework of the diffusion approximation (in the

neuronal context, see [270]). This approximation is justified when a large number of

spikes arrive through synapses that are weak compared to the magnitude of the firing

threshold, which is the relevant situation in the cortex. In the diffusion approxima-

tion, the random component in the synaptic currents can be treated as a Brownian

motion in the case of instantaneous synapses. On the other hand, when synapses

have a finite temporal response, as in the more realistic models, synaptic noise has a

finite correlation time and thus becomes “colored” noise. Thanks to the diffusion ap-

proximation, the dynamics of the firing probability can be studied in the framework

of the stochastic calculus theory (see for instance [160]).

Many mathematical descriptions of the synaptic current Isyn have been proposed
(see Destexhe et al [68] or [105]). We consider two types of increasingly complex

synaptic current models:

(i) Instantaneous synapses: if we neglect the synaptic integration, considering that

the synaptic time constants are small with respect to the membrane interaction,

the post-synaptic input can be described by a Brownian motion, which is the

diffusion approximation of a rescaled sum of Poisson processes. For this we

assume that the synaptic inputs are spikes arriving at N synapses i∈ {1, . . . , N},
each with a synaptic efficiency ωi, at the spikes times tk

i . The input synaptic

current can be written:

dIsynt =
N

∑
i=1

ωi ∑
k

δ (t− tk
i )

def
=

N

∑
i=1

ωidSi(t), (1.9)

where the Si(t)s are point processes representing the spikes trains arriving in
each synapse.

Neurons are connected to thousand of neurons (in general, N ≈ 103−104). If we

assume that the synaptic input spikes times follow a probability law with mean

µi and variance σ2
i (for instance Poisson processes, σ2

i = µi) and are pairwise
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independent10, Isyn is the sum of N independent Poisson processes, of mean ωiµi

and of variance ω2
i µi. We assume that the ωis are such that there exist µ , σ in

(0,∞) such that11: 



∑N
i=1ωiµi −→

N→∞
µ

∑N
i=1ω2

i µi −→
N→∞

σ2

By Donsker’s theorem [23]

N

∑
i=1

ωi

(
Si(t)−µit

)
L−→ σWt (1.10)

where (Wt)t≥0 is a standard Brownian motion (see Appendix C for a definition),

and the symbol
L−→ indicates that the process on the lefthand side converges in

law to the process on the righthand side when N→ ∞.
The diffusion approximation consists in approximating the synaptic jump pro-

cess (1.9) by the continuous process:

Isynt = µt + σWt (1.11)

(ii) Exponentially decaying synaptic current: because the postsynaptic interaction

has a finite integration time, say τs, the following equation arises naturally

τsdIsynt =−Isynt dt +
N

∑
i=1

ωi ∑
k

δ (t− tk
i ) (1.12)

Note that we have assumed that τs was the same for all synapses and neglected

the rise time of the synaptic current. The second assumption is justified on the

ground that the rise time of a synapse is typically very short compared to the

relaxation time.

A diffusion approximation similar to the one in the previous paragraph yields

the following diffusion approximation of the synaptic noise with exponential

decay:

τsdIsynt = (−Isynt + µ)dt + σdWt (1.13)

(iii) More realistic models of the synaptic current Isyn introduce a dependency on the
membrane potential. A classical model is the transmitter-activated ion chan-

nels. The current that passes through the ion channels depends on a synaptic

conductivity gs(t) and on the difference between the actual value of the mem-
brane potential and the reversal potential Vrev: Isyn(V, t) = gs(t)(V −Vrev). The
synaptic conductivity gs accounts for the noise, either instantaneous or not. A

diffusion approximation similar to the one above yields the following represen-

tations for the synaptic current:

(a) For instantaneous synaptic conductivities:

dIsynt = (λg

√
Ndt + µg

√
NdWt)(V (t)−Vrev). (1.14)

10The independence hypothesis is a key hypothesis and is quite difficult to justify biologically. Never-

theless, the same result would hold under very technical and strong conditions on the decorrelation of

the process. It is a very intricate theory and we will not deal with it here.
11In general this condition can be achieved by a rescaling and a change of time applied to the process
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(b) For synaptic conductivities with exponential decay:
{

dIsynt = gs(t)(V (t)−Vrev)

τsdgs(t) = (−gs(t)+ λg
√

N)dt + µg
√

NdWt .
(1.15)

1.4.4 Validations of the models

Along with proposed models for random spike trains comes the need for theoretical

and mathematical tools to confront the models to experiments. There are many tools

to quantify the likelyhood of a given model.

• Trial-averaged firing rate.

• Inter-spike interval histogram

• Interval maps: two-dimensional of all couples (Tn,Tn+1− Tn) over successive
trials. It combining trial-averaged firing rates (projection on the abscissa), ISI

histograms (projection on the ordinates) and supplementary statistical informa-

tion (see [221]).

• Fano factor: scalar estimator equal to the empirical variance of the spike train
divided by its empirical expectation over multiple trials. Poisson process always

has a Fano factor equal to 1. For general point processes, Fano factors has no
simple expressions. For renewal processes, it appears to be constant depending

on the statistics of the process (see [286]). In real neurons, and for instance for

ganglion cells, the spike trains Fano factor is not constant. and depends on the

average firing rate (see figure 1.16).

1.5 SPIKE PATTERNS AND NEURONAL EXCITABILITY

In this section we now turn to more phenomenological models, based on

spike times description. Spikes are the elementary unit of the neural code, and there-

fore the neural code can be considered binary (all-or-none). We have seen that neu-

rons are excitable systems, in the sense that they are typically at rest but can fire

spikes in response to certain forms of stimulation. The evoked firing pattern, in rela-

tion to the type of stimulation, characterize the cell’s computational properties. From

this point of view, the cell can either simply sum (integrate) the inputs or respond to

some precise types of stimulation (resonators), and fire precise spike patterns.

These characteristics will be fundamental throughout the dissertation. Indeed,

chapters 2, 3 and 4 are aimed to reproduce spike patterns, excitability and sub-

sthreshold behavior with simple formal models, and chapters 6 and 7 to reproduce

spike statistics, upon which is built up chapter 8.

1.5.1 Excitability

Alan Hodgkin in 1948 [126] studied the spiking behavior of excitable membranes

in response to the injection of steps of currents of various amplitudes. His experi-

ments are illustrated in figure 1.17 using recordings of rat neocortical and brainstem

neurons. When the injected current amplitude is small, the neurons are quies-

cent. When it becomes larger, the nerve cell fires spike trains, and depending on

the average frequency of these spike trains, Hodgkin identified two major classes of

excitability:
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Figure 1.16: Fano factors in the cat visual system, responding to a drifting grating.

(A) Mean spike count (firing rate) of different cat visual cells, using binning windows

of 50 ms. (B) Corresponding Fano factors (FF) calculated from the same 50 ms in-

tervals. The clear anti-correlation between spiking activity and Fano factor reveals

that spikes are relatively more regular at high firing rates. The high FF of LGN cells

is attributable to spike bursts. (C) Mean spike count versus variance, for all 50 ms

intervals and all measured cells from each area. The scalloped curve at the bottom

is a theoretical lower bound for the spike count, due to the fact that it can only take

integer values. From [159, 286].
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Figure 1.17: (Top) Typical responses of membrane potentials of two neurons to steps

of DC-current of various magnitudes. (Bottom) Related frequency-current (F − I)
curves qualitatively different (recordings of layer 5 pyramidal neurons of the rat’s pri-

mary visual cortex (left) and mesV neuron from rat brainstem (right)). From Izhike-

vich 2007 [145]
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• Class 1 excitability: action potentials can be generated with arbitrarily low fre-
quency, depending on the strength of the applied current.

• Class 2 excitability: action potentials are generated in a certain frequency band
that is relatively insensitive to changes in the strength of the applied current.

Class 1 neurons, sometimes called type I neurons, fire with a frequency that may

vary smoothly over a broad range, starting from 0 Hz to high firing rates as high as
100Hz or even higher. In contrast, the frequency band of class 2 excitable neurons
is quite limited, typically ranging from 150 to 200Hz, but it can vary from neuron to
neuron. The qualitative distinction between the classes noticed by Hodgkin is that

the frequency-current relation starts from zero and continuously increases for Class

1 neurons, and is discontinuous for class 2 neurons. Obviously, the two classes of

excitability have different neuro-computational properties. Class 1 excitable neurons

can smoothly encode the amplitude of the stimulation it gets into the frequency of

their spiking output, and class 2 neurons act as threshold elements reporting when

the strength of input is above a certain value.

1.5.2 Frequency preference and resonance

Some neurons simply integrate the input they get and fire a spike if the inputs where

high enough or received consecutively fast. This type of neuron is named integrator.

This type of neuron responds to high-frequency inputs, and therefore acts as a coin-

cidence detector because it is most sensitive to the pulses arriving simultaneously.

Some neurons react to pulses when received at a certain frequency, and are named

resonators (e.g. mesV neuron). These behaviors have been observed in many in-vitro

recordings (see [141, 143] and references herein). The same selectivity exists in vivo

as shown by Bryant and Segundo [40]: bursts having a precise frequency added to a

noisy signal are detected.

Subthreshold PSP oscillations can explain this behavior. Such behaviors have

been observed in many cortical cells [5, 6, 10, 22, 157, 183, 184, 186, 187, 188]. As-

sume that a presynaptic pulse evokes an (exponentially decaying) oscillatory post-

synaptic behavior. The effect of the second pulse depends on its timing relative to

the first pulse: if the interval between the pulses is near the natural period, the sec-

ond pulse arrives during the rising phase of oscillation and increases the amplitude

of oscillation further. In this case the effects of the pulses add up. If the interval

between pulses is near half the natural period the second pulse arrives during the

falling phase of oscillation, and it leads to decrease the oscillations amplitude.

1.5.3 Thresholds and action potentials

As we will see in section 1.6, a common model of spike emission consists in consid-

ering that neurons have firing thresholds: when their membrane potential reaches

a given threshold, the neuron fires. Great efforts have been made to determine such

thresholds experimentally. Unfortunately, the concept of firing threshold is not well

defined, in experimental studies as well as in models. Most of the time, the membrane

potential value that separates subthreshold depolarizations from action potentials (if

accurately detected) depends on the prior activity of the neuron. For example, if a

neuron having transient Na+ current just fired an action potential, the current is par-

tially inactivated, and a subsequent depolarization above the firing threshold might
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Figure 1.18: Slow subthreshold oscillation of membrane potential of cat thalamocor-

tical neuron evoked by slow hyperpolarization (modified from Roy et al. 1984).

not evoke another action potential. Conversely, if the neuron was briefly hyperpolar-

ized and then released from hyperpolarization, it could fire a rebound post-inhibitory

spike.

1.5.4 Spike latency

An interesting neuronal property is the latency-to-first-spike. A barely superthresh-

old stimulation can evoke action potentials with a significant delay, which could be

as large as a second in some cortical neurons. Usually, such a delay is attributed

to slow charging of the dendritic tree or to the action of the A-current, which is a

voltage-gated transient K+ current with fast activation and slow inactivation. The

current activates quickly in response to a depolarization and prevents the neuron

from immediate firing. With time, however, the A-current inactivates and eventually

allows firing. We see that the existence of long spike latencies is an innate neuro-

computational property of integrators. It is still not clear how or when the brain is

using it. Two most plausible hypotheses are 1) Neurons encode the strength of in-

put into spiking latency. 2) Neuronal responses become less sensitive to noise, since

only prolong inputs can cause spikes. Interestingly, resonators do not exhibit long

latencies

1.5.5 Subthreshold oscillation

Interactions between fast and slow conductances can result in low-frequency sub-

threshold oscillation of membrane potential, such as the one in figure 1.18, The

oscillation is caused by the interplay between activation and inactivation of the slow

Ca2+ current and inward h-current. Subtreshold oscillations are discussed further in

chapter 2.

1.5.6 Firing patterns of cortical neurons

Cortical neurons exhibit numerous firing patterns, i.e. characteristic trains of ac-

tion potentials in response to stimulation by current injections (usually depolarizing

pulses). Three main notions will be discussed in order to distinguish different spike

patterns (see figure 1.19):

• Tonic and phasic spiking: Tonically spiking cells fire continuous trains of action
potentials for the duration of the depolarizing pulse of injected current (see fig-

ure 1.19-B/D). On the contrary, phasically spiking cells respond to a sustained
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Figure 1.19: Various firing behaviors in response to a sustained depolarizing pulse.

Upper panel. Phasic patterns (B,D), tonic patterns (A,C), spiking patterns (A,B) and

bursting patterns (C,D). Lower panel. Accommodation of the discharge pattern: in-

terspike intervals increase (From [145]).

depolarizing current pulse with a very brief train of action potentials followed

by no further firing (see figure 1.19-A/C).

• Bursting: Sometimes neurons use rapid clusters of two or more action poten-
tials, called bursts, as basic signaling events instead of simple spikes (see fig-

ure 1.19-C/D).

• Accommodation: Neurons sometimes show spike frequency adaptation, i.e. a
decrease of firing frequency in response to a sustained depolarizing pulse. They

are said to be accommodating (see figure 1.19). In contrast, non-accommodating

neurons keep a constant discharge frequency to such current injections.

As explained in [145], cortical neurons exhibit six major discharge patterns.

• Regular spiking (RS) is a tonic spiking with possible adapting frequency that
present a stationary firing rate in response to a sustained depolarizing pulse.

This firing pattern is the most spread among excitatory neurons (see figure 1.20).

• Chattering (CH) corresponds to high frequency bursts with a relatively short
interburst period. This behavior has mainly been observed in layer III Purkinje

cell but also concerns excitatory cells in layers II and IV (see figure 1.20).

• Intrinsically bursting (IB) neurons respond with bursts of action potential at
the beginning of a strong depolarizing injection, followed by tonic spiking. The

main representatives of this firing pattern are found among layer V PCs (see

figure 1.21).

• Fast spiking (FS) is a high frequency tonic spiking with little adaptation, ob-
served in inhibitory cells (mostly basket and chandelier cells). Fast spiking cells

show irregular spiking when injected with weak currents (see figure 1.22).
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Figure 1.20: Regular spiking (left) and chattering (right) in response to sustained

depolarizing pulses of various amplitudes (shown at the bottom of the recordings)

(From [145]).

Figure 1.21: Intrinsic bursting in response to a sustained depolarizing pulse. Initial

bursting is followed by tonic spiking (From [145]).
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• Low-threshold spiking (LTS) neurons have a tonic firing pattern with strong ac-
commodation. Their name comes from their tendency to exhibit post inhibitory

rebounds (spontaneous emission of spikes consecutive to an hyperpolarizing

current injection). They can show low frequency firing and phasic responses

to weak stimulations (see figure 1.22). LTS neurons are inhibitory interneurons

(mostly Martinotti, double bouquet and bitufted cells).

• Late spiking (LS) neurons respond to a depolarizing pulse with a slow increase
of membrane potential followed, after a delay possibly as long as one second,

by low frequency tonic spiking. Late spiking mainly concerns neurogliaform

inhibitory interneurons (see figure 1.22).

Figure 1.22: Fast spiking (left), low-threshold spiking (center) and late spiking (right)

in response to sustained depolarizing pulses of various amplitudes (From [145]).

It appears from the above description that excitatory and inhibitory cells can both be

divided into three electrophysiological classes (RS, CH and IB for excitatory neurons,

and FS, LTS and LS for inhibitory interneurons). Actually, the firing patterns dis-

played by inhibitory cells are way more diversified and an alternative classification

has been proposed for them.

In [194], the authors propose the following electrophysiological classes and subclasses

to characterize interneurons firing patterns (see figure 1.23).

• Non-accommodating (NAC) neurons show tonic firing without spike frequency
adaptation in response to a wide range of depolarizing current injections. Many

FS and LS neurons exhibit this behavior. This class of discharge patterns has

three subclasses: c (classic discharge), b (discharge with initial burst) and d

(discharge with initial delay).

• Accommodating (AC) neurons fire tonically with spike adaptation. Hence they
do not reach as high discharge frequencies as NAC cells do. While FS and LS

interneurons can exhibit this behavior, most cells of this type are LTS neurons.

This class admits the same subclasses as NAC discharges (c,b and d).

• Stuttering (STUT) can be displayed by some FS and LS cells. It consists in the
firing of high frequency clusters of spikes (which are not bursts) separated by

unpredictable periods of quiescence. The three subclasses c, b and d are also

represented in stuttering patterns.
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Figure 1.23: The five electrophysiological classes of interneurons (top to bottom) with

their subclasses (left to right, see text). In the dashed-lined square at the bottom right

corner of the table, examples of regular spiking from excitatory cells are shown for

comparison (From [194]).
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• Bursting (BST): Large basket cells are the only interneurons using bursting
(BST) as their main signaling event. They fire bursts of spikes after a slow

depolarizing wave, followed by strong slow hyperpolarization. This class has

three subclasses: i (initial burst followed by regular spike emissions) , r (repeti-

tive bursting) and t (transient, i.e. phasic burst).

• Irregular spiking (IS) cells fire single spikes, in a random fashion, and show
strong accommodation. c and b subclasses are represented among irregular

firing patterns.

1.6 PHENOMENOLOGICAL NEURON MODELS

The models presented in section 1.3 are based on a precise description of the neu-

ronal basis of spike emission and are able to reproduce a wide class of neuronal be-

haviors, but are quite complex to handle mathematically and numerically. The aim of

this section is to present simpler models aimed to reproduce the “pertinent informa-

tion” of a neural code: the spike times. Phenomenological neuron models consist in

modeling the times of emission of the action potential rather than the precise value

of the membrane potential for any time.

1.6.1 Linear integrate-and-fire neuron models

Integrate-and-fire (IF) models are based on the assumption that a spike is emitted as

soon a cell’s membrane potential reaches a certain potential threshold. These mod-

els were first investigated by Lapicque [171, 172] who introduced those models be-

fore any substantial knowledge on the impulse generation mechanisms was acquired.

These models have been widely studied and they keep very popular for their simplic-

ity and their ability to reproduce many neuronal behaviors [148, 163, 243, 244, 270].

The simplest integrate-and-fire model passively integrates the input. When the mem-

brane potential reaches a threshold, a spike is emitted and the membrane potential

is reset. From a biophysical point of view, the existence of a threshold is not clear.

Platkiewitz and Brette currently try to define a threshold in a precise model such as

the Hodgkin and Huxley model, and they showed that a certain separatrix curve in

the phase plane can be considered as a spike threshold. We will see that we can get

rid of this threshold by considering nonlinear models.

The Perfect Integrate-and-Fire model

The perfect integrate-and-fire model is the simplest model of this class. In this model,

the membrane potential basically integrates the input current, fires when it reaches

a constant threshold value θ and is subsequently reset a fixed value Vreset .

{
C dV

dt = I(t)
V (t−0 ) = θ ⇒V (t0) = Vreset

⊕
spike emitted

(1.16)

This model is highly simplistic and unrealistic. Assume that the membrane po-

tential is reset at time t0. The next spike time for a general input current I(·) is given
by

t1
def
= inf{t > t0,Vreset +

∫ t

t0
I(s)ds≥ θ)}.
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For a constant positive input current I, spikes are emitted at regular intervals of time,
at a frequency I/(C(θ −Vreset)), and therefore has type I excitability. Nevertheless, the
fact that the input–frequency relation is linear is quite unrealistic. Moreover, we

observe that second arbitrary small positive input current elicit spikes and spike

trains generated by a constant input are perfectly regular.

The Leaky Integrate-and-Fire neuron

Incorporating the leak resistance of the membrane yields to the famous leaky integrate-

and-fire model. The standard equation governing the membrane potential of a LIF

neuron is given by:

C
dV
dt

+
V
R

= I(t) (1.17)

If the membrane potential reaches a threshold value θ at time t0 (i.e. V (t−0 ) = θ ) then
a spike is emitted and the membrane potential is instantaneously reset to a constant

value (V (t0) = Vreset ).

In its general version, the leaky integrate-and-fire model may incorporate an ab-

solute refractory period. In this case, if V reaches θ at time t0, the dynamics of V is
frozen during a period of time ∆abs. The classical integration (1.17) starts afresh at
time t0 + ∆abs with the new initial condition Vreset .

This equation is linear, the related Green’s function reads e−t/RC, andV (t) is deter-
mined in a closed form in function of the input current I(t). For constant inputs one
can readily prove that the neuron will spike only for inputs greater than (θ−Vreset)/R,
and in that case, the time of the first spike reads:

Tth =−τm log

(
1− θ −Vreset

RI

)

which gives the input-spike frequency relation. In the case where an absolute refrac-

tory is considered, the spike frequency f satisfies for subthreshold inputs:

f =
1

∆abs− τm log
(

1− θ−Vreset
RI

)

In that case again, the neuron has type I excitability. This input–frequency is more

realistic than the one of the perfect integrate-and-fire. Indeed, for currents below Ith
no spike is triggered, at I = Ith, the slope of the f–I curve is infinite. For large currents,
the firing rate saturates to the inverse of the refractory period, which means that the

neuron spikes almost immediately after the refractory period. In the case where

there is no refractory period, the frequency is unbounded, and has a linear asymptote

of slope 1
VthC (identical to the slope of the nonleaky unit).

Adaptation

In order to better account for the adaptation, Wehmeier and colleagues [279] intro-

duced a time dependent shunting conductance gadapt with reversal potential equal to

the resting potential set at zero. Each spike increases the conductance by a fixed

amount Gspike, and between the spikes, gadapt decreases exponentially with a time con-

stant τadapt . Such a variable emulates both the absolute and the relative refractory
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periods, and is referred in general as an adaptation parameter:

{
C dV
dt =−V

R −gadapt V + I

τadapt
dgadapt

dt =−gadapt

When V reaches the threshold θ at time t∗, a spike is generated and subsequently:
gadapt is increased by a fixed value Gspike (i.e. gadapt (t∗) = gadapt (t∗−)+ Gspike) and V is
reset to a constant value Vreset .

Time-dependent threshold

An alternative to these models is to consider a varying voltage threshold (see e.g.

[45, 130]). A usual way to take it into account is to consider the threshold function

θ(1+ αe−(t−t ′)/τadapt).

Resonate-and-fire neuron

The simplest model presenting type II excitability is called the resonate-and-fire (or

Young) model (see [92, 287]). It is a two-dimensional extension of the integrate-and-

fire model incorporating a second variable often interpreted as accounting for the low

threshold persistant potassium current. LetW denote the magnitude of this current.
The equation of the linear resonate-and-fire model reads:

{
C dV
dt = I−gleak(V −Vleak)−W

Ẇ = (V −V1/2)

In this model again, when the potential reaches a threshold, a spike is elicited and

both the variables V andW are reset to constant values.
Random variability is often added to the parameters of these models (reset volt-

age, threshold, . . . ) in order to reproduce the variability observed in intracellular

recordings. Nevertheless, all these models fail in reproducing some behaviors which

are fundamentally nonlinear. This is what motivated some authors to introduce and

study nonlinear integrate and fire neurons.

1.6.2 The nonlinear integrate-and-fire neuron models

Unidimensional models

These models were developed mainly to take into account the nonlinearities observed

in the spike generation mechanisms. The most general nonlinear unidimensional

integrate-and-fire model is governed by the equation:

τm
dV
dt

= F(V )+ G(V ) I (1.18)

As before, when the solution of this equation reaches the threshold θ , V is reset
to a fixed value Vreset and a spike is emitted. G(·) can be interpreted as a voltage-
dependant input resistance and −F(V )/(V −Vrest) correspond to a voltage-dependant
decay constant. The simplest of these models features a quadratic nonlinearity [37,

174, 175] given by the equation (1.19):

dV
dt

= V 2 + I (1.19)
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This equation can blow up in finite time, i.e. the solution of this equation diverges

to infinite for a finite time value. This explosion time is often considered as the spike

time. Indeed, the solution of this equation with initial condition V (t0) = V0 reads:

V (t) =−
√

A tan

(
−(t− t0)

√
A−arctan

(
V0√

A

))

and since the tangent function diverges when its argument is k π
2 for k ∈ Z.

Notice that ẋ = b+ x2 is a topological normal form for the saddle-node bifurcation

as discussed in appendix A. The properties of the bifurcation will drive the properties

of the system when considering constant inputs. The right-hand side of the model is

strictly greater than b, and hence if b > 0, the neuron will fire a periodic train of action
potentials with a period

T =
1√
b
(Arctan

θ√
b
−Arctan

Vreset√
b

)

where θ is the spike threshold which can be possibly infinite. Hence the frequency
scales as

√
b, as in the typical class 1 excitable systems. When b < 0, the system

presents two equilibria, one of which being stable and corresponding to the neuron’s

resting state, and the other unstable and corresponding to the spike threshold. Un-

like its linear predecessor, the quadratic integrate-and-fire neuron is a genuine inte-

grator. It exhibits saddle-node bifurcation, it has a soft threshold, and it generates

spikes with latencies, like many mammalian cells do. Besides, the model is canonical

as proved by Ermentrout and Kopell [82] in the sense that the entire class of neuronal

models near saddle-node on invariant circle bifurcation can be transformed into this

model by a piecewise continuous change of variables

Nicolas Fourcaud-Trocmé and colleagues [95] proposed a similar model based on a

modelization of the dynamic of the sodium activation variable which yields the expo-

nential integrate-and-fire neuron, as an approximation of conductance based models,

and show that this model reproduces the dynamics of simple conductance-based mod-

els and also intrinsic neuronal properties. The equation of the membrane potential

in that case reads:

C
du
dt

=−gl(u−El)+ gl∆te
u−Vt

∆t + I (1.20)

Romain Brette studied in [32] the general integrate-and-fire models. In this paper

he models the spike map (i.e. the map giving the next interspike interval in function

of the current one) and finds that, under conditions satisfied in particular by the

periodically and aperiodically driven leaky integrator as well as some of its variants,

the spike map is increasing on its range, which leaves no room for chaotic behavior,

derives a rigorous expression of the Lyapunov exponent, and analyzes the periodically

driven perfect integrator. He shows that the restriction of the phase map to its range

is always conjugate to a rotation, and provides an explicit expression of the invariant

measure.

Some of these models, complemented with adaptation, are presented in the next

sections, together with a precise subthreshold potential and spikes mathematical

studies.

Bidimensional Nonlinear IF models

Bidimensional nonlinear neuron models feature both the nonlinearity of the spike

generation and a additional recovery variable. This type of phenomenological models
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Figure 1.24: Phase portrait for a model having a potential variable V and a recovery
variable u. The principle of the approximation is to focus on the dynamics around the
fixed point (from [145]).

will be discussed in depth in the following chapter.

One of these models is quite extensively studied by Eugene Izhikevich in his book

[146]. This model is called the quadratic integrate-and-fire model (or Izhikevich’

model). In this book Izhikevich explains how to derive these equations from more

detailed neuron models. The principle of his derivation consist in considering that

the decision for spiking or not is made at the resting state, and fully depends on the

shape of the nullclines around this point (see figure 1.24). To model the subthreshold

behavior of such neurons and the initial segment of the up-stroke of an action poten-

tial, the principle is to consider only a small neighborhood of the rest state confined

to the shaded square in figure 1.24, since the rest of the phase space is considered to

encode only the peak and the down-stroke of the action potential. Since the shape of

the action potential is stereotyped, it is less important than the subthreshold dynam-

ics leading to this action potential, then we can retain detailed information about the

left knee and its neighborhood and simplify the vector field outside the neighborhood.

Quadratic Adaptive Integrate-and-fire (Izhikevich’) model Eugene Izhike-

vich [141] proposed a model combining both Latham’s quadratic nonlinearity and an

adaptation variable. Because of the quadratic term, the membrane potential variable

can escape to infinity in finite time. This corresponds to the upstroke corresponding

to the firing of an action potential. The modeling of the downstroke is quite sharp:

it is considered as an instantaneous reset for the membrane potential variable V ,
while the adaptation variable w is augmented by a fixed amount wreset modeling the

spike-triggered adaptation. Appropriate rescalings lead to the more classical minimal

quadratic model:
{

v̇ = v2−w + I

ẇ = a(bv−w)

This model can be also derived via the analysis of I–V relationships. This point of
view allows one to derive the parameters of the simple model using instantaneous

(peak) and steady-state I-V relations. More precisely, let us write the system in the



44 CHAPTER 1. PRINCIPLES OF NEURAL SCIENCE

Figure 1.25: The relationship between the parameters of the simple model and in-

stantaneous and steady state I–V relations, I0(V ) and I∞(V )

following equivalent form:

{
Cv̇ = k(v− vr)(v− vt)−w + I if v≥ vpeak then

u = a{b(v− v+ r)−w} v← c; u← u+ d

where v is the membrane potential, w is the recovery current, and C is the mem-
brane capacitance. The quadratic polynomial k(v− vr)(v− vt) approximates the sub-
threshold part of the instantaneous I–V relation I0(V ). Here, vr is the resting mem-

brane potential, and vt is the instantaneous threshold potential, as in Fig. 1.25. That

is, instantaneous depolarizations above vt result in spike response. The polynomial

k(v− vr)(v− vt)+ b(v− vr) approximates the subthreshold part of the steady-state I–V
relation I1(V ). When b < 0, its maximum approximates the rheobase current of the
neuron, i.e., the minimal amplitude of a DC-current needed to fire a cell. Its deriva-

tive with respect to v at v = vr, i.e., b− k(vr − vt)s, corresponds to the resting input
conductance, which is the inverse of the input resistance. Knowing both the rheobase

and the input resistance of a neuron, one could determine the parameters k and b.
This model nevertheless loses the good property of having a soft threshold, as

discussed in chapter 5.

Adaptive exponential integrate-and-fire model Following the ideas of Izhike-

vich, Romain Brette and Wulfram Gerstner [30] used the exponential nonlinearity

proposed by Fourcaud-Trocme and collaborators [95] together with an adaptation

variable. This model is interesting because its parameters can be easily related to

physiological quantities, and the model has been successfully fit to a biophysical

model of a regular spiking pyramidal cell and to real recordings of pyramidal cells

[51, 155].

1.7 CONCLUSION

In this chapter we briefly presented the functioning of nerve cells and the

overall structure of the brain. Related to these phenomena, we presented some mod-

els to emulate the processes in play, from detailed models emulating the behaviors of

each component of the nerve cell to the phenomenological models aimed to reproduce

globally the behavior of nerve cells. We also discussed the origin of noise and differ-

ent types of modelizations for noisy synaptic inputs. Phenomenological models such

as the adaptive nonlinear models will be studied in depth in part II, the statistics of

action potentials in part III and population models in part IV.
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This part is dedicated to the study of nonlinear bidimensional neuron models,

which from a mathematical point of view are hybrid dynamical systems, i.e. whose

dynamics is defined by a continuous-time dynamical systemmodelling the subthresh-

old behavior of the neuron, coupled with a discrete dynamical system corresponding

the spike emission. The subthreshold dynamics is studied in chapter 2, the spike dy-

namics related with the discrete dynamical system in chapter 3 and all these results

are reviewed in chapter 4 in which we provide an electrophysiological-class descrip-

tion of the model, i.e. a partition of the parameter space corresponding to different

neurological behaviors.
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CHAPTER 2

SUBTHRESHOLD DYNAMICS OF

BIDIMENSIONAL NONLINEAR

INTEGRATE-AND-FIRE NEURONS

Desperation is a necessary ingredient to learning anything or creating anything.

If you ain’t desperate at some point, you ain’t interesting.

– Jim Carrey

OVERVIEW

In this chapter we define a new class of bidimensional integrate-and-fire neuron mod-

els being computationally efficient and biologically plausible, i.e., able to reproduce a

wide range of behaviors observed in in vivo or in vitro recordings of cortical neurons.

This class includes, for instance, two models widely used in computational neuro-

science, the Izhikevich’ quadratic integrate-and-fire model and the Brette–Gerstner’s

adaptive exponential models we introduced in section 1.6.2. These models are hy-

brid dynamical systems defined both by a continuous dynamics, the subthreshold

behavior, and a discrete dynamics, the spike and reset process. This chapter is de-

voted to the study of the subthreshold system. We provide the full local subthreshold

bifurcation diagram of the members of this class and show that they all present the

same bifurcations: an Andronov-Hopf bifurcation manifold, a saddle-node bifurcation

manifold, a Bogdanov-Takens bifurcation, and possibly a Bautin bifurcation, i.e., all

codimension two local bifurcations in a two-dimensional phase space except the cusp.

Among other global bifurcations, this system shows a saddle homoclinic bifurcation

curve. We show how this bifurcation diagram generates the most prominent cortical

neuron behaviors. This very general study will lead us to introduce a new neuron

model, the quartic model, able to reproduce all the behaviors of the Izhikevich and

Brette-Gerstner models and also self-sustained subthreshold oscillations, which are

of great interest in neuroscience and that the two classical models cannot reproduce.

This work was published in SIAM Journal on Applied Mathematics [255], and is the

first part of the full study of this class of models. The next chapter will be devoted to

the study of the spiking mechanism and will provide a better understanding of the

spike patterns generated. The full study of these models will eventually lead us to

define electrophysiological classes of neurons, i.e. sets of parameters for which the

model behaves the same way in response to different kinds of stimulations. We deal

with classifying the models with respect to their electrophysiological class in chapter

49
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INTRODUCTION

During the past few years, in the neurocomputing community, the problem of

finding a computationally simple and biologically realistic model of neuron has been

widely studied, in order to be able to compare experimental recordings with numer-

ical simulations of large-scale brain models. The key problem is to find a model of

neuron realizing a compromise between its simulation efficiency and its ability to

reproduce what is observed at the cell level, often considering in-vitro experiments

[144, 165, 225].

Among the numerous neuron models, from the detailed Hodgkin–Huxley model

[128] still considered as the reference, but unfortunately computationally intractable

when considering neuronal networks, down to the simplest integrate-and-fire model [105]

very effective computationally, but unrealistically simple and unable to reproduce

many behaviors observed, two models seem to stand out [144]: the adaptive quadratic

(Izhikevich [141] and related models such as the theta model with adaptation [80,

123]) and exponential (Brette and Gerstner [30]) neuron models. These two models

are computationally almost as efficient as the integrate-and-fire model. The Brette–

Gerstner model involves an exponential function, which needs to be tabulated if we

want the algorithm to be efficient. They are also biologically plausible, and reproduce

several important neuronal regimes with a good adequacy with biological data, es-

pecially in high-conductance states, typical of cortical in vivo activity. Nevertheless,

they fail in reproducing deterministic self-sustained subthreshold oscillations, a be-

havior of particular interest in cortical neurons for the precision and robustness of

spike generation patterns, for instance in the inferior olive nucleus [22, 186, 187], in

the stellate cells of the entorhinal cortex [5, 6, 157], and in the dorsal root ganglia

(DRG) [10, 183, 184]. Some models have been introduced to study from a theoretical

point of view the currents involved in the generation of self-sustained subthreshold

oscillations [284], but the model failed in reproducing lots of other neuronal behav-

iors.

The aim of this chapter is to define and study a general class of neuron models,

containing the Izhikevich and Brette–Gerstner models, from a dynamical systems

point of view. We characterize the local bifurcations of these models and show how

their bifurcations are linked with different biological behaviors observed in the cor-

tex. This formal study will lead us to define a new model of neuron, whose behaviors

include those of the Izhikevich–Brette–Gerstner (IBG) models but also self-sustained

subthreshold oscillations.

In the first section, we introduce a general class of nonlinear neuron models

which contains the IBG models. We study the fixed-point bifurcation diagram of

the elements of this class, and show that they present the same local bifurcation di-

agram, with a saddle-node bifurcation curve, an Andronov–Hopf bifurcation curve, a

Bogdanov–Takens bifurcation point, and possibly a Bautin bifurcation, i.e., all codi-

mension two bifurcations in dimension two except the cusp. This analysis is applied

in the second section to the Izhikevich and the Brette–Gerstner models. We derive

their bifurcation diagrams and prove that none of them shows the Bautin bifurca-

tion. In the third section, we introduce a new simple model—the quartic model—

presenting, in addition to common properties of the dynamical system of this class,

a Bautin bifurcation, which can produce self-sustained oscillations. Last, the fourth

section is dedicated to numerical experiments. We show that the quartic model is

able to reproduce some of the prominent features of biological spiking neurons. We
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give qualitative interpretations of those different neuronal regimes from the dynam-

ical systems point of view, in order to give a grasp of how the bifurcations generate

biologically plausible behaviors. We also show that the new quartic model, presenting

supercritical Hopf bifurcations, is able to reproduce the oscillatory/spiking behavior

presented, for instance, in the DRG. Finally, we show that numerical simulation re-

sults of the quartic model show a good agreement with biological intracellular record-

ings in the DRG.

2.1 BIFURCATION ANALYSIS OF A CLASS OF NONLINEAR
NEURON MODELS

In this section we introduce a large class of formal neurons which are able to

reproduce a wide range of neuronal behaviors observed in cortical neurons. This

class of models is inspired by the review made by Izhikevich [144]. He found that

the quadratic adaptive integrate-and-fire model was able to simulate efficiently a lot

of interesting behaviors. Brette and Gerstner [30] defined a similar model of neuron

which presented a good adequacy between simulations and biological recordings.

We generalize these models, and define a new class of neuron models, wide but

specific enough to keep the diversity of behaviors of the IBG models.

2.1.1 The general class of nonlinear models

In this chapter, we are interested in neurons defined by a dynamical system of the

type {
dv
dt = F(v)−w + I,
dw
dt = a(bv−w),

where a, b, and I are real parameters and F is a real function.1

In this equation, v represents the membrane potential of the neuron, w is the
adaptation variable, I represents the input intensity of the neuron, 1/a is the char-
acteristic time of the adaptation variable, and b accounts for the interaction between
the membrane potential and the adaptation variable.2

This equation is a very general model of neuron. For instance when F is a polyno-
mial of degree three, we obtain a FitzHugh–Nagumo model, when F is a polynomial
of degree two the Izhikevich neuron model [141], and when F is an exponential func-
tion the Brette–Gerstner model [30]. However, in contrast with continuous models

like the FitzHugh–Nagumo model [105], the two latter cases diverge when spiking,

and an external reset mechanism is used after a spike is emitted.

In this chapter, we want this class of models to have common properties with the

IBG neuron models. To this purpose, let us make some assumptions on the function

F. The first assumption is a regularity assumption.

Assumption 2.1.1. F is at least three times continuously differentiable.

1The same study can be done for a parameter-dependent function. More precisely, let E ⊂ R
n be a

parameter space (for a given n) and F : E×R→R a parameter-dependent real function. All the properties

shown in this section are valid for any fixed value of the parameter p. Further p-bifurcations studies can
be done for specific F(p, ·). The first equation can be derived from the general I-V relation in neuronal
models: C dV

dt = I− I0(V )−g(V −EK), where I0(V ) is the instantaneous I-V curve.
2See, for instance, section 2.2.2, where the parameters of the initial equation (2.26) are related to

biological constants and where we proceed to a dimensionless reduction.
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A second assumption is necessary to ensure us that the system would have the

same number of fixed points as the IBG models.

Assumption 2.1.2. The function F is strictly convex.

Definition 2.1.1 (convex neuron model). We consider the two-dimensional model de-

fined by the equations {
dv
dt = F(v)−w + I,
dw
dt = a(bv−w),

(2.1)

where F satisfies Assumptions 2.1.1 and 2.1.2 and characterizes the passive proper-
ties of the membrane potential.

Many neurons of this class blow up in finite time. These neurons are the ones we

are interested in.

Remark 1. Note that all the neurons of this class do not blow up in finite time. For

instance if F(v) = v log(v), it will not. For F functions such that F(v) = (v1+α)R(v) for
some α > 0, where limv→∞ R(v) > 0 (possibly ∞), the dynamical system will possibly
blow up in finite time. We prove this property in chapter 3, and we will further

prove that if F(v) = (v2−α)R(v) for some α > 0 where R(v) tends to a finite limit, the
adaptation value at the explosion time of v also blows up whereas if F(v) = (v2+α)R(v)
for some α > 0, where limv→∞ R(v) > 0 (possibly ∞), then the adaptation at the explosion
times of the spike will have finite limits.

If the solution blows up at time t∗ or reaches a finite cutoff value, a spike is emit-
ted, and subsequently we have the following reset process:

{
v(t∗) = vr,

w(t∗) = w(t∗−)+ d,
(2.2)

where vr is the reset membrane potential and d > 0 a real parameter. Equations (2.1)
and (2.2), together with initial conditions (v0,w0), give us the existence and unique-
ness of a solution on R

+.

The two parameters vr and d are important to understand the repetitive spiking
properties of the system, and will be studied in depth in chapter 3. In the present

chapter we focus on the bifurcations of the subthreshold dynamical system with re-

spect to (a,b, I), in order to characterize the behavior of the neuron before spiking
(and blowing up).

2.1.2 Fixed points of the system

To understand the qualitative behavior of the dynamical system defined by (2.1) be-

fore the blow up (i.e., between two spikes), we begin by studying the fixed points and

analyze their stability. The linear stability of a fixed point is governed by the Jacobian

matrix of the system, which we define in the following proposition.

Proposition 2.1.1. The Jacobian of the dynamical system (2.1) can be written

L := v 7→
(

F ′(v) −1
ab −a

)
. (2.3)
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The fixed points of the system satisfy the equations

{
F(v)−bv+ I = 0,

bv = w.
(2.4)

Let Gb(v) := F(v)− bv. From 2.1.1 and 2.1.2, we know that the function Gb is

strictly convex and has the same regularity as F. To have the same behavior as the
IBG models, we want the system to have the same number of fixed points. To this

purpose, it is necessary that Gb has a minimum for all b > 0. Otherwise, the convex
function Gb would have no more than one fixed point, since a fixed point of the system

is the intersection of an horizontal curve and Gb.

This means for the function F that infx∈R F ′(x)≤ 0 and supx∈R F ′(x) = +∞. Using the
monotony property of F ′, we write Assumption 2.1.3.

Assumption 2.1.3. 



lim
x→−∞

F ′(x)≤ 0,

lim
x→+∞

F ′(x) = +∞.

Assumptions 2.1.1, 2.1.2, and 2.1.3 ensure us that for all b ∈ R
∗
+, Gb has a unique

minimum, denoted m(b), which is reached. Let v∗(b) be the point where this minimum
is reached.

This point is the solution of the equation

F ′(v∗(b)) = b. (2.5)

Proposition 2.1.2. The point v∗(b) and the valuem(b) are continuously differentiable
with respect to b.

Proof. We know that F ′ is a bijection. The point v∗(b) is defined implicitly by the
equationH(b,v) = 0, where H(b,v) = F ′(v)−b. H is aC1-diffeomorphism with respect to

b, and the differential with respect to b never vanishes. The implicit function theorem
(see, for instance, [84, Annex C.6]) ensures us that v∗(b) solution of H(b,v∗(b)) = 0 is
continuously differentiable with respect to b, and so does m(b) = F(v∗(b))−bv∗(b).

Theorem 2.1.3. The parameter curve defined by {(I,b); I = −m(b)} separates three
behaviors of the system (see Figure 2.1):

(i) If I >−m(b), then the system has no fixed point.

(ii) If I = −m(b), then the system has a unique fixed point, (v∗(b),w∗(b)), which is
nonhyperbolic. It is unstable if b > a.

(iii) If I < −m(b), then the dynamical system has two fixed points (v−(I,b),v+(I,b))
such that

v−(I,b) < v∗(b) < v+(I,b).

The fixed point v+(I,b) is a saddle fixed point, and the stability of the fixed point
v−(I,b) depends on I and on the sign of (b−a):

(a) If b < a, the fixed point v−(I,b) is attractive.

(b) If b > a, there is a unique smooth curve I∗(a,b) defined by the implicit equa-
tion F ′(v−(I∗(a,b),b)) = a. This curve reads I∗(a,b) = bv∗(a)−F(v∗(a)), where
v∗(a) is the unique solution of F ′(v∗(a)) = a.
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Figure 2.1: Number of fixed points and their stability in the plane (I,b) for the expo-
nential adaptive model.

(b.1) If I < I∗(a,b), the fixed point is attractive.

(b.2) If I > I∗(a,b), the fixed point is repulsive.

Proof.

(i) We have F(v)−bv ≥ m(b) by definition of m(b). If I >−m(b), then for all v ∈ R we

have F(v)−bv+ I > 0 and the system has no fixed point.

(ii) Let I =−m(b). We have already seen that Gb is strictly convex and continuously

differentiable and for b > 0 reaches its unique minimum at the point v∗(b). This
point is such thatGb(v∗(b)) = m(b), and so it is the only point satisfying F(v∗(b))−
bv∗(b)−m(b) = 0.

Furthermore, this point satisfies F ′(v∗(b)) = b. The Jacobian of the system at
this point reads

L(v∗(b)) =

(
b −1

ab −a

)
.

Its determinant is 0, and so the fixed point is nonhyperbolic (0 is eigenvalue of

the Jacobian matrix). The trace of this matrix is b− a. So the fixed point v∗(b)
is attractive when b > a and repulsive when b > a. The case a = b, I =−m(b) is a
degenerate case which we will study more precisely in section 2.1.3.

(iii) Let I < −m(b). By the strict convexity assumption, Assumption 2.1.2, of the
function G together with Assumption 2.1.3, we know that there are only two
intersections of the curve G to a level −I higher than its minimum. These two
intersections define our two fixed points. At the point v∗ the function is strictly
lower than −I, and so the two solutions satisfy v−(I,b) < v∗(b) < v+(I,b).

Let us now study the stability of these two fixed points. To this end, we have

to characterize the eigenvalues of the Jacobian matrix of the system at these

points.
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We can see from formula (2.3) and the convexity assumption, Assumption 2.1.2,

that the Jacobian determinant, equal to −aF ′(v)+ab, is a decreasing function of
v and vanishes at v∗(b), and so det(L(v+(I,b))) < 0 and the fixed point is a saddle
point (the Jacobian matrix has a positive and a negative eigenvalue).

For the other fixed point v−(I,b), the determinant of the Jacobian matrix is
strictly positive. So the stability of the fixed point depends on the trace of the

Jacobian. This trace reads F ′
(
v−(I,b)

)
−a.

(a) When b < a, we have a stable fixed point. Indeed, the function F ′ is an
increasing function equal to b at v∗(b), and so Trace

(
L(v−(I,b))

)
≤ F ′(v∗(b))−

a = b−a < 0 and the fixed point is attractive.

(b) If b > a, then the type of dynamics around the fixed point v− depends on the
input current (parameter I). Indeed, the trace reads

T (I,b,a) := F ′
(
v−(I,b)

)
−a,

which is continuous and continuously differentiable with respect to I and
b, and which is defined for I <−m(b). We have





lim
I→−m(b)

T (I,b,a) = b−a > 0,

lim
I→−∞

T (I,b,a) = lim
x→−∞

F ′(x)−a < 0.

So there exists a curve I∗(a,b) defined by T (I,b,a) = 0 and such that

• for I∗(b) < I <−m(b), the fixed point v−(I,b) is repulsive;

• for I < I∗(b), the fixed point v− is attractive.

To compute the equation of this curve, we use the fact that point v−(I∗(b),b)
is such that F ′(v−(I∗(b),b)) = a. We know from the properties of F that there
is a unique point v∗(a) satisfying this equation. Since F ′(v∗(b)) = b, a < b,
and F ′ is increasing, the condition a < b implies that v∗(a) < v∗(b).

The associated input current satisfies fixed points equation F(v∗(a))−bv∗(a)+
I∗(a,b) = 0, or equivalently

I∗(a,b) = bv∗(a)−F(v∗(a)).

The point I = I∗(a,b) will be studied in detail in the next section, since it is
a bifurcation point of the system.

Figure 2.1 represents the different zones enumerated in Theorem 2.1.3 and their

stability in the parameter plane (I,b).

Remark 2. In this proof, we used the fact that F ′ is invertible on [0,∞). Assump-
tion 2.1.3 is the weakest possible to ensure that this will be the case and that F has
a unique minimum.
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2.1.3 Bifurcations of the system

In the study of the fixed points and their stability, we identified two bifurcation curves

where the stability of the fixed points changes. The first curve I =−m(b) corresponds
to a saddle-node bifurcation and the curve I = I∗(a,b) to an Andronov–Hopf bifur-
cation. These two curves meet in a specific point, b = a and I = −m(a). This point
has a double 0 eigenvalue (a nilpotent Jacobian matrix), and we show that it is a

Bogdanov–Takens bifurcation point.

Let us show that the system undergoes these bifurcations with no other assump-

tion than 2.1.1, 2.1.2, and 2.1.3 on F. We also prove that the system can undergo
only one other codimension two bifurcation, a Bautin bifurcation, and that there is

no other bifurcation of codimension two or three.

Saddle-node bifurcation curve

In this section we characterize the behavior of the dynamical system along the curve

of equation I =−m(b), and we prove the following theorem.

Theorem 2.1.4. The dynamical system (2.1) undergoes a saddle-node bifurcation

along the parameter curve:

(SN) : {(b, I) ; I =−m(b)} , (2.6)

when F ′′(v∗(b)) 6= 0.

Proof. We derive the normal form of the system at this bifurcation point. Following

the works of Guckenheimer and Holmes [118] and Kuznetsov [167], we check the

genericity conditions to ensure that the normal form at the bifurcation point will

have the expected form (see appendix A).

Let b∈R
+ and I =−m(b). Let v∗(b) be the unique fixed point of the system for these

parameters. The point v∗(b) is the unique solution of F ′(v∗(b)) = b. At this point, the
Jacobian matrix (2.3) reads

L(v∗(b)) =

(
b −1

ab −a

)
.

This matrix has two eigenvalues 0 and b− a. The pairs of right eigenvalues and
right eigenvectors are

0,U :=

(
1/b
1

)
and b−a,

(
1/a
1

)
.

Its pairs of left eigenvalues and left eigenvectors are

0,V := (−a,1) and b−a,(−b,1) .

Let fb,I be the vector field

fb,I(v,w) =

(
F(v)−w + I

a(bv−w)

)
.

The vector field satisfies

V

(
∂
∂ I

fb,I(v
∗(b),w∗(b))

)
= (−a,1) ·

(
1
0

)

=−a < 0.
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So the coefficient of the normal form corresponding to the Taylor expansion along

the parameter I does not vanish.
Finally, let us show that the quadratic terms of the Taylor expansion in the normal

form does not vanish. With our notations, this condition reads

V
(

D2
x fb,−m(b)(v

∗(b),w∗(b))(U,U)
)
6= 0.

This property is satisfied in our framework. Indeed,

V
(

D2
x fb,−m(b)(v

∗(b),w∗(b))(U,U)
)

= V







U2
1

∂ 2 f1
∂v2 +2U1U2

∂ 2 f1
∂v∂w

+U2
2

∂ 2 f1
∂w2

U2
1

∂ 2 f2
∂v2 +2U1U2

∂ 2 f2
∂v∂w

+U2
2

∂ 2 f2
∂w2







= V

(( 1
b2 F ′′(v∗)

0

))

= (−a,1) ·
( 1

b2 F ′′(v∗)
0

)

=− a
b2 F ′′(v∗) < 0.

So the system undergoes a saddle-node bifurcation along the manifold I =
−m(b).

Remark 3. Note that F ′′(v∗(b)) can vanish only countably many times since F is
strictly convex.

Andronov–Hopf bifurcation curve

In this section we consider the behavior of the dynamical system along the parameter

curve I = I∗(b), and we consider the fixed point v−.

Theorem 2.1.5. Let b > a, v∗(a) be the unique point such that F ′(v∗(a)) = a and A(a,b)
be defined by the formula

A(a,b) := F ′′′(v∗(a))+
1

b−a

(
F ′′(v∗(a))

)2
. (2.7)

If F ′′(v∗(a)) 6= 0 and A(a,b) 6= 0, then the system undergoes an Andronov–Hopf bi-
furcation at the point v∗(a), along the parameter line

(AH) :=
{
(b, I) ; b > a and I = bv∗(a)−F(v∗(a))

}
. (2.8)

This bifurcation is subcritical if A(a,b) > 0 and supercritical if A(a,b) < 0.

Proof. The Jacobian matrix at the point v∗(a) reads

L(v∗(a)) =

(
a −1

ab −a

)
.

Its trace is 0 and its determinant is a(b− a) > 0, and so the matrix at this point
has a pair of pure imaginary eigenvalues (iω ,−iω), where ω =

√
a(b−a). Along the

curve of equilibria when I varies, the eigenvalues are complex conjugates with real
part µ(I) = 1

2 Tr
(
L(v−(I,b))

)
which vanishes at I = I∗(a,b).
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We recall that from Proposition 2.1.2, this trace varies smoothly with I. Indeed,
v−(b, I) satisfies F(v−(I,b))−bv−(I,b)+ I = 0 and is differentiable with respect to I. We
have

∂v−(I,b)

∂ I
(F ′(v−(I,b))−b) =−1.

At the point v−(I∗(b),b) = v∗(a), we have F ′(v∗(a)) = a < b, and so for I close to this
equilibrium point, we have

∂v−(I,b)

∂ I
> 0.

Now let us check that the transversality condition of an Andronov–Hopf bifurca-

tion is satisfied (see [118, Theorem 3.4.2]). There are two conditions to be satisfied:

the transversality condition
dµ(I)
dI 6= 0 and the nondegeneracy condition l1 6= 0, where

l1 is the first Lyapunov coefficient at the bifurcation point.
First of all, we prove that the transversality condition is satisfied:

µ(I) =
1
2

Tr(L(v−(I,b)))

=
1
2
(F ′(v−(I,b))−a),

dµ(I)
dI

=
1
2

F ′′(v−(I,b))
dv−(I,b)

dI
> 0.

Let us now write the normal form at this point. To this purpose, we change vari-

ables: {
v− v∗(a) = x,

w−wa = ax+ ωy.

The (x,y) equation reads
{

ẋ =−ωy+(F(x+ v∗(a))−ax−wa) =:−ωy+ f (x),

ẏ = ωx+ a
ω (ax−F(x+ v∗(a))+wa− I) =: ωx+ g(x).

(2.9)

According to Guckenheimer in [118], we state that the Lyapunov coefficient of the

system at this point has the same sign as B, where B is defined by

B :=
1
16

[ fxxx + fxyy + gxxy + gyyy]+
1

16ω
[ fxy( fxx + fyy)−gxy(gxx + gyy)− fxxgxx + fyygyy].

Replacing f and g by the expressions found in (2.9), we obtain the expression of A:

B =
1
16

F ′′′(v∗(a))+
a

16ω2 (F ′′(v∗(a)))2

=
1
16

F ′′′(v∗(a))+
1

16(b−a)
(F ′′(v∗(a)))2

=
1
16

A(a,b).

Hence when A(a,b) 6= 0, the system undergoes an Andronov–Hopf bifurcation.
When A(a,b) > 0, the bifurcation is subcritical and the periodic orbits generated by
the Hopf bifurcation are repelling, and when A(a,b) < 0, the bifurcation is supercrit-
ical and the periodic orbits are attractive (the formula of A has also been introduced
by Izhikevich in [146, eq. (15), p. 213]).
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Remark 4. The case A(a,b) = 0 is not treated in the theorem and is a little bit more
intricate. We fully treat it in section 2.1.3 and show that a Bautin (generalized Hopf)

bifurcation can occur if the A-coefficient vanishes. Since the third derivative is a priori
unconstrained, this case can occur, and we prove in section 2.3 that this is the case

for a simple (quartic) model.

Bogdanov–Takens bifurcation

We have seen in the study that this formal model presents an interesting point in

the parameter space, corresponding to the intersection of the saddle-node bifurcation

curve and the Andronov–Hopf bifurcation curve. At this point, we show that the

system undergoes a Bogdanov–Takens bifurcation.

Theorem 2.1.6. Let F be a real function satisfying Assumptions 2.1.1, 2.1.2, and 2.1.3.
Let a ∈ R

∗
+ and b = a, and let v∗(a) be the only point such that F ′(v∗(a)) = a. Assume

again that F ′′(v∗(a)) 6= 0.
Then at this point and with these parameters, the dynamical system (2.1) under-

goes a subcritical Bogdanov–Takens bifurcation of normal form:




η̇1 = η2,

η̇2 =
(

8F ′′(v∗(a))aI1
(a+b1)3

)
−
(

2(2b1 a+I1 F ′′(v∗(a)))
(a+b1)2

)
η1 + η2

1 + η1η2 +O(‖η‖3),
(2.10)

where b1 := b−a and I1 = I + m(a).

Proof. The Jacobian matrix (2.3) at this point reads

L(v∗(a)) =

(
a −1
a2 −a

)
.

This matrix is nonzero and has two 0 eigenvalues (its determinant and trace

are 0). The matrix Q :=
( a 1

a2 −a

)
is the passage matrix to the Jordan form of the Jaco-

bian matrix:

Q−1 ·L(v∗(a)) ·Q =

(
0 1
0 0

)
.

To prove that the system undergoes a Bogdanov–Takens bifurcation, we show that

the normal form reads
{

η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 + ση1η2 +O(‖η‖3)

(2.11)

with σ = ±1. The proof of this theorem consists of (i) proving that the system un-
dergoes a Bogdanov–Takens bifurcation, (ii) finding a closed-form expression for the

variables β1 and β2, and (iii) proving that σ = 1.
First of all, let us prove that the normal form can be written in the form of (2.11).

This is equivalent to showing some transversality conditions on the system (see, for

instance, [167, Theorem 8.4]).

To this end, we center the equation at this point and write the system in the

coordinates given by the Jordan form of the matrix. Let
(y1

y2

)
= Q−1

(v−v∗(a)
w−wa

)
at the point

b = a+ b1, I =−m(a)+ I1. We get
{

ẏ1 = y2 + b1
a (ay1 + y2),

ẏ2 = F(ay1 + y2 + v∗(a))−wa−m(a)+ I1−a2y1−ay2−b1(ay1 + y2).
(2.12)
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Let us denote v1 = ay1 + y2. The Taylor expansion on the second equation gives us

ẏ2 = F(v1 + v∗(a))−wa−m(a)+ I1−a2y1−ay2−b1(ay1 + y2)

= F(v∗(a))+F ′(v∗(a))v1 +
1
2

F ′′(v∗(a))v2
1−wa−m(a)

+ I1−a2y1−ay2−b1(ay1 + y2)+O(‖v1‖3)

= (F(v∗(a))−wa−m(a))+ I1+(F ′(v∗(a))−a)v1−b1v1 +
1
2

F ′′(v∗(a))v2
1

+O(‖v1‖3)

= I1−b1(ay1 + y2)+
1
2

F ′′(v∗(a))(ay1 + y2)
2 +O(‖y‖3). (2.13)

Let us denote for the sake of clarity α = (b1, I1) and write (2.12) as

{
ẏ1 = y2 + a00(α)+ a10(α)y1 + a01(α)y2,

ẏ2 = b00(α)+ b10(α)y1 + b01(α)y2 + 1
2b20(α)y2

1 + b11(α)y1y2 + 1
2b02(α)y2

2 +O(‖y‖3).
(2.14)

From (2.12) and (2.13), it is straightforward to identify the expressions for the

coefficients ai j(α) and bi j(α).

Let us now use the change of variables:

{
u1 = y1,

u2 = y2 + b1
a (ay1 + y2).

The dynamical system governing (u1,u2) reads

{
u̇1 = u2,

u̇2 = (1+ b1
a )−b1au1 + 1

2
a3F ′′(v∗(a))

a+b1
u2

1 + a2F ′′(v∗(a))
a+b1

u1 u2 + 1
2

aF ′′(v∗(a))
a+b1

u2
2.

The transversality conditions of a Bogdanov–Takens bifurcation [118, 167] can

easily be verified from this expression:

(BT.1) The Jacobian matrix is not 0.

(BT.2) With the notations of (2.14), we have a20 = 0 and b11(0) = aF ′′(v∗(a)) > 0, and so
a20(0)+ b11(0) = aF ′′(v∗(a)) > 0.

(BT.3) b20 = a2F ′′(v∗(a)) > 0.

(BT.4) We show that the map

(
x :=

(
y1

y2

)
, α :=

(
I1
b1

))
7→
[

f (x,α),Tr
(
Dx f (x,α)

)
,Det

(
Dx f (x,α)

)]

is regular at the point of interest.

From the two first assumptions, we know that the system can be put in the form

of (2.11). Guckenheimer in [118] proves that this condition can be reduced to

the nondegeneracy of the differential with respect to (I1,b1) of the vector
(β1

β2

)
of

(2.11).
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In our case, we can compute these variables β1 and β2 following the calculation

steps of [167], and we get





β1 = 8F ′′(v∗(a))aI1
(a+b1)3 ,

β2 =−2(2b1 a+I1 F ′′(v∗(a)))
(a+b1)2 .

(2.15)

Hence the differential of the vector
(β1

β2

)
with respect to the parameters (I1,b1) at

the point (0,0) reads

Dαβ |(0,0) =

(
8F ′′(v∗(a))

a2 0

−2F ′′(v∗(a))
a2 −4/a

)
.

This matrix has a nonzero determinant if and only if F ′′(v∗(a)) 6= 0.

Therefore we have proved the existence of a Bogdanov–Takens bifurcation under

the condition F ′′(v∗(a)) 6= 0.
Let us now show that σ = 1. Indeed, this coefficient is given by the sign of

b20(0)
(
a20(0) + b11(0)

)
which in our case is equal to a3F ′′(v∗(a))2 > 0, and so the bi-

furcation is always of the type (2.10) (generation of an unstable limit cycle) for all the

members of our class of models.

The existence of a Bogdanov–Takens bifurcation point implies the existence of

a smooth curve corresponding to a saddle homoclinic bifurcation in the system (see

[167, Lemma 8.7]).

Corollary 2.1.7. There is a unique smooth curve (P) corresponding to a saddle ho-
moclinic bifurcation in the system (2.1) originating at the parameter point b = a and
I =−m(a) defined by the implicit equation:

(P) :=

{
I =−m(a)− 12

25F ′′(v∗(a))
(b−a)2; b > a

}
. (2.16)

Moreover, for (b, I) in a neighborhood of (a,−m(a)), the system has a unique and
hyperbolic unstable cycle for parameter values inside the region bounded by the Hopf

bifurcation curve and the homoclinic bifurcation curve (P), and it has no cycle outside
this region.

Proof. As noticed, from the Bogdanov–Takens bifurcation point, we have the exis-

tence of this saddle homoclinic bifurcation curve. Let us now compute the equation

of this curve in the neighborhood of the Bogdanov–Takens point. To this purpose we

use the normal form we derived in Theorem 2.1.6 and use the local characterization

given, for instance, in [167, Lemma 8.7] for the saddle homoclinic curve:

(P) :=

{
(β1,β2) ; β1 =− 6

25
β 2

2 + o(β 2
2 ), β2 < 0

}
.
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Using the expressions (2.15) yields

(P) :=

{
(I =−m(a)+ I1, b = a+ b1) ;

8F ′′(v∗(a))aI1
(a+ b1)3 =

24
25

(2b1 a+ I1F ′′(v∗(a)))2

(a+ b1)4 + o(|b1 |+ | I1 |)

and b1 >− I1F ′′(v∗(a))

2a

}
.

We can solve this equation. There are two solutions but only one satisfying I1 = 0
when b1 = 0. This solution is the curve of saddle homoclinic bifurcations, and reads:

(P) :=

{
I =−m(a)+ I1, b = a+ b1) ;

I1 =

(
−25

6 a− 37
6 b1 + 5

6

√
25a2 +74b1 a+49b1

2
)

a

F ′′(v∗(a))
+ o(|b1 |+ | I1 |)

and b1 >− I1F ′′(v∗(a))

2a

}
.

which is equivalent to formula (2.16)

Bautin bifurcation

In the study of the Andronov–Hopf bifurcation, we showed that the sub- or super-

critical type of bifurcation depended on the variable A(a,b) defined by (2.7). If this
variable changes sign when b varies, then the stability of the limit cycle along Hopf
bifurcation changes stability. This can occur if the point v∗(a) satisfies the following
condition.

Assumption 2.1.4. For v∗(a) such that F ′(v∗(a)) = a, we have

F ′′′(v∗(a)) < 0.

Indeed, if this happens, the type of Andronov–Hopf bifurcation changes, since we

have 



lim
b→a−

A(a,b) = +∞,

lim
b→+∞

A(a,b) = F ′′′(v∗(a)) < 0.

In this case the first Lyapunov exponent vanishes for

b = a− (F ′′(v∗(a)))2

F ′′′(v∗(a))
.

At this point, the system has the characteristics of a Bautin (generalized Hopf) bifur-

cation. Nevertheless, we still have to check two nondegeneracy conditions to ensure

that the system actually undergoes a Bautin bifurcation:

(BGH.1) The second Lyapunov coefficient of the dynamical system l2 does not vanish
at this equilibrium point.
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(BGH.2) Let l1(I,b) be the first Lyapunov exponent of this system and µ(I,b) the real
part of the eigenvalues of the Jacobian matrix. The map

(I,b) 7→ (µ(I,b), l1(I,b))

is regular at this point.

In this case the system would be locally topologically equivalent to the normal

form: {
ẏ1 = β1y1− y2 + β2y1(y2

1 + y2
2)+ σy1(y2

1 + y2
2)

2,

ẏ2 = β1y2− y1 + β2y2(y2
1 + y2

2)+ σy2(y2
1 + y2

2)
2.

We reduce the problem to the point that checking the two conditions of a BGH

bifurcation becomes straightforward.

Let (v∗(a),wa) be the point where the system undergoes the Bautin bifurcation
(when it exists). Since we already computed the eigenvalues and eigenvectors of the

Jacobian matrix along the Andronov–Hopf bifurcation curve, we can use it to reduce

the problem. The basis where we express the system is given by





Q :=

(
1
b

ω
ab

1 0

)
,

(x
y

)
:= Q−1

(v−v∗(a)
w−wa

)
.

Let us write the dynamical equations satisfied by (x,y):

{
ẋ = ωy,

ẏ = ab
ω
(
F
(
v∗(a)+ 1

bx+ ω
ab y
)
−wa− x+ Ia−ay

)
.

To ensure that we have a Bautin bifurcation at this point we will need to per-

form a Taylor expansion up to the fifth order, and so we need to make the following

assumption.

Assumption 2.1.5. The function F is six times continuously differentiable at (v∗(a),wa).

First, let us denote v1(x,y) = 1
bx+ ω

aby; the Taylor expansion reads

ẏ =
ab
ω
(
F(v∗(a))−wa + I

)
+

ab
ω
[
F ′(v∗(a))v1(x,y)−ay

]
+

1
2

ab
ω
[
F ′′(v∗(a))v1(x,y)

2]

+
1
6

ab
ω

F ′′′(v∗(a))v1(x,y)
3 +

1
4!

ab
ω

F (4)(v∗(a))v1(x,y)
4

+
1
5!

ab
ω

F(5)(v∗(a))v1(x,y)
5 +O

(∥∥∥∥
(

x
y

)∥∥∥∥
6
)

.

This expression, together with the complex left and right eigenvectors of the Ja-

cobian matrix, allows us to compute the first and second Lyapunov coefficients and to

check the existence of a Bautin bifurcation.

Nevertheless, we cannot push the computation any further at this level of gener-

ality, but, for a given function F presenting a change in the sign of A(a,b), this can
easily be done through the use of a symbolic computation package. In the following

proof we show that the quartic model undergoes a Bautin bifurcation.
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Proof. To prove that the quartic model undergoes a Bautin bifurcation at the point





b = 5
2 a,

I =−3
(

a
4

)4/3
(2a−1) ,

v∗(a) =−
(

a
4

)1/3
.

(2.17)

we compute the first and second lyapunov exponents and prove that the conditions

given to characterize Bautin bifurcations are satisfied.

The first Lyapunov exponent: Using a suitable affine change of coordinates

having for origin the point (2.17), we can readily write the dynamical system in the

form: 



ẋ = ωy,

ẏ = ab
ω
(
6v∗(a)2v1(x,y)2 +4v∗(a)v1(x,y)3 + v1(x,y)4

)

= 1
2F2
((x

y

)
,
(x

y

))
+ 1

6F3
((x

y

)
,
(x

y

)
,
(x

y

))
+ 1

24F3
((x

y

)
,
(x

y

)
,
(x

y

)
,
(x

y

))
,

(2.18)

where v1(x,y) = 1
b x+ ω

aby. Let us denote F2(X ,Y ), F3(X ,Y,Z), and F4(X ,Y,Z,T) the multi-
linear symmetric vector functions of (2.18) (X ,Y,Z,T ∈ R

2):

{
F2
((x

y

)
,
(z

t

))
=
( 0

12ab
ω v∗(a)2v1(x,y)v1(z,t)

)
,

. . .

To compute the two first Lyapunov exponents of the system, we follow Kuznetsov’s

method [167]. In this method we need to compute some specific right and left complex

eigenvectors, which can be chosen in our case to be





p =

(
1

−i
√

ab−a2+a

1

)
,

q =




1
2

(i
√

a(b−a)+a)b

b−a−i
√

a(b−a)

1/2
(i
√

a(b−a)+a)2

a(b−a−i
√

a(b−a))


 .

(2.19)

We now put the system in a complex form letting z = x+ iy.

We can now compute the complex Taylor coefficients gi j:





g20 = 〈p,F2(q,q)〉,
g11 = 〈p,F2(q, q̄)〉,
g02 = 〈p,F2(q̄, q̄)〉,

g30 = 〈p,F3(q,q,q)〉,
g21 = 〈p,F3(q,q, q̄)〉,
g12 = 〈p,F3(q̄, q̄, q̄)〉,
g03 = 〈p,F3(q̄, q̄, q̄)〉,
. . .

(2.20)
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So the Taylor coefficients (2.20) read





g20 = 12ab
ω v∗(a)2v1

(
1
2

(i
√

a(b−a)+a)b

b−a−i
√

a(b−a)
, 1

2
(i
√

a(b−a)+a)2

a(b−a−i
√

a(b−a))

)2

,

g11 = 12ab
ω v∗(a)2v1(q)v1(q̄),

g02 = 12ab
ω v∗(a)2v1(q̄)v1(q̄),

. . .

(2.21)

Now let S(I,b) := F ′(v−(I,b)) be the value of the derivative of the function F , defined
around the bifurcation point we are interested in.

The Jacobian matrix in the neighborhood of the point (2.17) reads

L(v) =

(
S(I,b) 1

ab −a

)
.

Let us denote α =
(I

b

)
the parameter vector and λ (α) = µ(α)± iω(α) the eigenval-

ues of the Jacobian matrix. We have
{

µ(α) = 1
2 (S(α)−a) ,

ω(α) = 1
2

√
−(S(α)−a)2 +4ab.

With these notations, let c1(α) be the complex defined by

c1(α) =
g20g11(2λ + λ̄)

2|λ |2 +
|g11|2

λ
+
|g02|2

2(2λ − λ̄)
+

g21

2

(in this formula we omit the dependence in α of λ for the sake of clarity).
The first Lyapunov exponent l1(α) eventually reads

l1(α) =
Re(c1(α))

ω(α)
− µ(α)

ω(α)2 Im(c1(α)) (2.22)

The second Lyapunov exponent : The method to compute the second Lya-

punov exponent is the same as the one we described in the previous section. The

expression is given by the following formula:

2l2(0) =
1

ω(0)
Re[g32]

+
1

ω(0)2 Im

[
g20 ¯g31−g11(4g31+3 ¯g22)−

1
3

g02(g40+ ¯g13)−g30g12

]

+
1

ω(0)3

{
Re

[
g20

(
¯g11(3g12− ¯g30)+ g02( ¯g12−1/3g30)+

1
3

¯g02g03

)

+ g11

(
¯g02

(
5
3

¯g30+3g12

)
+

1
3

g02 ¯g03−4g11g30

)]

+3Im[g20g11] Im[g21]

}

+
1

ω(0)4

{
Im
[
g11 ¯g02

(
¯g20

2−3 ¯g20g11−4g2
11

)]

+ Im[g20g11]
(
3Re(g20g11)−2|g02|2

)}
.
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This expression is quite intricate in our case. Nevertheless, we have a closed-form

expression depending on the parameter a, vanishing for two values of the parameter
a. We evaluate numerically this second Lyapunov exponent. We get the following
expression:

l2(a)≈−0.003165a−
28
3 −0.1898a−

22
3 +0.3194a−16/3

−0.05392a−
25
3 +0.1400a−

19
3 −0.3880a−7/3 +0.5530a−10/3

+0.7450a−13/3.

(2.23)

We can see that this numerical exponent vanishes only for two values of the pa-

rameter a which are
{0.5304,2.385}.

The expression of the determinant of the matrix DI,b (µ(I,b), l1(I,b)) is even more
involved, and so we do not reproduce it here (it would take pages to write down its

numerical expression!). Nevertheless, we proceed exactly as we did for the second

Lyapunov exponent and obtain again the rigorous result that this determinant never

vanishes for all a > 0.

2.1.4 Conclusion: The full bifurcation diagram

We now summarize the results obtained in this section in the two following theorems.

Theorem 2.1.8. Let us consider the formal dynamical system

{
v̇ = F(v)−w + I,

ẇ = a(bv−w),
(2.24)

where a is a fixed real, b and I bifurcation parameters, and F : R 7→ R a real function.

If the function F satisfies the assumptions that

(A.1) the function F is three times continuously differentiable,

(A.2) F is strictly convex, and

(A.3) F ′ satisfies the conditions 



lim
x→−∞

F ′(x)≤ 0,

lim
x→∞

F ′(x) = ∞,

then the dynamical system (2.24) shows the following bifurcations:

(B1) A saddle-node bifurcation curve:

(SN) : {(b, I) ; I =−m(b)} ,

where m(b) is the minimum of the function F(v)− bv (if the second derivative of
F does not vanish at this point).

(B2) An Andronov–Hopf bifurcation line:

(AH) :=
{
(b, I) ; b > a and I = bv∗(a)−F(v∗(a))

}
,



68 CHAPTER 2. SUBTRESHOLD DYNAMICS

where v∗(a) is the unique solution of F ′(v∗(a)) = a (if F ′′(v∗(a)) 6= 0). This type of
Andronov–Hopf bifurcation is given by the sign of the variable

A(a,b) = F ′′′(v∗(a))+
1

b−a
F ′′(v∗(a))2.

If A(a,b) > 0, then the bifurcation is subcritical, and if A(a,b) < 0, then the bifur-
cation is supercritical.

(B3) ABogdanov–Takens bifurcation point at the point b = a and I =−m(a) if F ′′(v∗(a)) 6=
0.

(B4) A saddle homoclinic bifurcation curve characterized in the neighborhood of the

Bogdanov–Takens point by

(P) :=

{
I =−m(a)− 12

25F ′′(v∗(a))
(b−a)2; b > a

}
.

Theorem 2.1.9. Consider the system (2.1), where a is a given real number, b and I are
real bifurcation parameters, and F : E ×R 7→ R is a function satisfying the following

assumptions:

(A.5) The function F is six times continuously differentiable.

(A.2) F is strictly convex.

(A.3) F ′ satisfies the conditions 



lim
x→−∞

F ′(x) ≤ 0,

lim
x→∞

F ′(x) = ∞.

(A.4) Let v∗(a) be the unique real such that F ′(v∗(a)) = a. We have

F ′′′(v∗(a)) < 0.

Furthermore, consider the following conditions:

(BGH.1) The second Lyapunov coefficient of the dynamical system l2(v∗(a)) 6= 0.

(BGH.2) Let l1(v) denote the first Lyapunov exponent and λ (I,b) = µ(I,b)± iω(I,b) the
eigenvalues of the Jacobian matrix in the neighborhood of the point of interest.

The map (I,b)→ (µ(I,b), l1(I,b)) is regular at this point.

Having these, the system undergoes a Bautin bifurcation at the point v∗(a) for the

parameters b = a− F ′′(v∗(a))2

F ′′′(v∗(a)) and I = bv∗(a)−F(v∗(a)).

Remark 5. Theorem (2.1.8) enumerates some of the bifurcations that any dynamical

system of the class (2.1) will always undergo. Together with Theorem 2.1.9, they

summarize all the local bifurcations the system can undergo, and no other fixed-point

bifurcation is possible. In section 2.3 we introduce a model actually showing all these

local bifurcations.
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2.2 APPLICATIONS: IZHIKEVICH AND BRETTE–GERSTNER
MODELS

In this section we show that the neuron models proposed by Izhikevich in [141]

and Brette and Gerstner in [30] are part of the class studied in section 2.1. Using the

results of the latter section, we derive their bifurcation diagram and obtain that they

show exactly the same types of bifurcations.

2.2.1 Adaptive quadratic IF model

We produce here a complete description of the bifurcation diagram of the adaptive

quadratic integrate-and-fire model proposed by Izhikevich in [141] and [146, Chap-

ter 8]. We use here the dimensionless equivalent version of this model with the fewest

parameters: {
v̇ = v2−w + I,

ẇ = a(bv−w).
(2.25)

Equation (2.25) is clearly a particular case of (2.1) with

F(v) = v2.

F is clearly strictly convex andC∞. F ′(v) = 2v, and so it also satisfies Assumption 2.1.3.
Furthermore, the second derivative never vanishes, and so the system undergoes the

three bifurcations stated in Theorem 2.1.8.

(Izh.B1) A saddle-node bifurcation curve defined by
{

(b, I) ; I =
b2

4

}
.

For (I,b) ∈ R
2, the fixed point is given by (v∗(b) = 1

2b, w∗(b) = 1
2b2).

For I < b2

4 , the fixed point(s) are

v±(b, I) =
1
2

(
b±
√

b2−4I
)
.

(Izh.B2) An Andronov–Hopf bifurcation line:
{
(I,b) ; b > a and I =

a
2

(
b− a

2

)}
,

whose type is given by the sign of the variable

A(a,b) =
4

b−a
.

This value is always strictly positive, and so the bifurcation is always subcriti-

cal.

(Izh.B3) A Bogdanov–Takens bifurcation point for b = a and I = a2

4 , v
∗(a) = a

2.

(Izh.B4) A saddle homoclinic bifurcation curve satisfying the quadratic equation near

the Bogdanov–Takens point:

(P) :=

{
I =

a2

4
− 6

25
(b−a)2; b > a

}
.

Figure 2.2 represents the fixed points of this dynamical system, and their stability,

together with the bifurcation curves.
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Figure 2.2: Representation of the v fixed point with respect to the parameters I and b
in the Izhikevich model. The reddish component is the surface of saddle fixed points,

the purplish one corresponds to the repulsive fixed points, and the greenish/bluish

one corresponds to the attractive fixed points The yellow curve corresponds to a

saddle-node bifurcation and the red one to an Andronov–Hopf bifurcation.

2.2.2 Adaptive exponential IF model

In this section we study the bifurcation diagram of the adaptive exponential neuron.

This model has been introduced by Brette and Gerstner in [30]. This model, inspired

by the Izhikevich adaptive quadratic model, can be fitted to biological values, takes

into account the adaptation phenomenon, and is able to reproduce many behaviors

observed in cortical neurons. The bifurcation analysis we derived in section 2.1 allows

us to understand how the parameters of the model can affect the behavior of this

neuron. We show that this model is part of the general class studied in section 2.1,

and we obtain the fixed-point bifurcation diagram of the model.

Reduction of the original model

This original model is based on biological constants and is expressed with a lot of

parameters. We first reduce this model to a simpler form with the fewest number of

parameters.

The basic equations proposed in the original paper [30] read





C dV
dt =−gL(V −EL)+ gL∆T exp

(
V−VT

∆T

)

−ge(t)(V −Ee)−gi(t)(V −Ei)−W + Im,

τW
dW
dt = κ(V −EL)−W.

(2.26)

First, we do not assume that the reversal potential of the w equation is the same
as the leakage potential EL, and we write the equation for the adaptation variable by

τW
dW
dt

= a(V −V̄)−W.
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Next we assume that ge(·) and gi(·) are constant (in the original paper it was assumed
that the two conductances were null).

After some straightforward algebra, we eventually get the following dimension-

less equation equivalent to (2.26):

{
v̇ =−v+ ev−w + I,

ẇ = a(bv−w),
(2.27)

where we denoted





g̃ := gL + ge + gi,

τm := C
g̃ ,

B := κ
g̃

(
EL
∆T

+ log(gL
g̃ e−VT /∆T )

)
,

v(τ) := V (ττm)
∆T

+ log
(

gL
g̃ e−VT /∆T

)
,

w(τ) := W(ττm)
g̃∆T

+ B,

a := τm
τW

,

b := κ
g̃ ,

I := Im+gLEL+geEe+giEi
g̃∆T

+ log(gl
g̃ e−VT /∆T )+ B

(2.28)

and where the dot denotes the derivative with respect to τ .
The differential equations and the parameters have a physiological interpreta-

tion. The first equation is the membrane equation, which states that the capacitive

current through the membrane (C is the membrane capacitance) is the sum of the
injected current I and of the ionic currents. The first term is the leak current (gL is

the leak conductance and EL is the leak reversal potential), the membrane time con-

stant is τm = C/gL. The second (exponential) term approximates the sodium current,

responsible for the generation of action potentials [95]. The approximation results

from neglecting the inactivation of the sodium channel and assuming that activation

is infinitely fast (which is reasonable). Because activation curves are typically Boltz-

mann functions [12], the approximated current is exponential near spike initiation.

The voltage threshold VT is the maximum voltage that can be reached without gener-

ating a spike (without adaptation), and the slope factor ∆T quantifies the sharpness

of spikes. In the limit of zero slope factor, the model becomes an integrate-and-fire

model with a fixed threshold VT . Quantitatively, it is proportional to the slope con-

stant k in the activation function of the sodium current. The second variable w is
an adaptation current with time constant τw, which includes both spike-triggered

adaptation, through the reset w→ w + d, and subthreshold adaptation, through the
coupling (variable b). It may model ionic channels (e.g. potassium) or a dendritic
compartment. Quantitatively, the coupling variable b can result from a linearization
of the dynamics of a ionic channel, or from the axial conductance in the case of a den-

dritic compartment. We generally assume b > 0 in this chapter, although the analysis
also applies for b < 0when |b| is not too large.

Remark 6. These expressions confirm the qualitative interpretation of the param-

eters a, b, and I of the model (2.1). Indeed, a = τm
τw
accounts for the time scale of the

adaptation (with the membrane time scale as reference), and the parameter b = κ
g̃ is

proportional to the interaction between the membrane potential and the adaptation
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variable and inversely proportional to the total conductivity of the membrane poten-

tial. Eventually, I is an affine function of the input current Im and models the input

current of the neurons.

Bifurcation diagram

From (2.27) we can clearly see that the Brette–Gerstner model is included in the

formal class studied in the present chapter with

F(v) = ev− v.

This function satisfies Assumptions 2.1.1, 2.1.2, and 2.1.3. Furthermore, its second

order derivative never vanishes.

Theorem 2.1.8 shows that the system undergoes the following bifurcations:

(BG.B1) A saddle-node bifurcation curve defined by

{(b, I) ; I = (1+ b)(1− log(1+ b))} .

So v∗(b) = log(1+b). For I ≤ (1+b)(1− log(1+b)), the system has the fixed points





v−(I,b) :=−W0

(
− 1

1+be
I

1+b

)
+ I

1+b ,

v+(I,b) :=−W−1

(
− 1

1+be
I

1+b

)
+ I

1+b ,
(2.29)

where W0 is the principal branch of Lambert’s W function3 and W−1 the real

branch of Lambert’sW function such thatW−1(x) ≤−1, defined for −e−1≤ x < 1.

(BG.B2) An Andronov–Hopf bifurcation line for

{(b, I) ; b > a and I = I∗(a,b) = (1+ b) log(1+ a)− (1+ a)}

at the equilibrium point (v∗(a) = log(1+ a), wa = bv∗(a)). This type of Andronov–
Hopf bifurcation is given by the sign of the variable

A(a,b) = F ′′′(v∗(a))+
1

b−a
F ′′(v∗(a))2 = (1+ a)+

4
b−a

(1+ a)2 > 0.

So the bifurcation is always subcritical, and there is not any Bautin bifurcation.

(BG.B3) A Bogdanov–Takens bifurcation point at the point b = a and I = log(1+ a).

(BG.B4) A saddle homoclinic bifurcation curve satisfying, near the Bogdanov–Takens

point, the equation

(P) :=

{
I = (1+ a)(log(1+ a)−1)− 12

25(1+ a)
(b−a)2; b > a

}
.

In Figure 2.3 we represent the fixed points of the exponential model and their

stability, together with the bifurcation curves, in the space (I,b,v).

3The LambertW function is the inverse function of x 7→ xex.
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Figure 2.3: Representation of the v fixed point of the Brette–Gerstner model with
respect to the parameters I and b. The reddish/pinkish component is the surface of
saddle fixed points, the purplish one corresponds to the repulsive fixed points, and

the bluish/greenish one corresponds to the attractive fixed points The yellow curve

corresponds to a saddle-node bifurcation and the red one to an Andronov–Hopf bifur-

cation.

2.3 THE RICHER QUARTIC MODEL

In this section, we introduce a new specific model having a richer bifurcation dia-

gram than the two models studied in section 2.2. It is as simple as the two previous

models from the mathematical and computational points of view. To this end, we

define a model which is part of the class studied in section 2.1 by specifying the func-

tion F.

2.3.1 The quartic model: Definition and bifurcation map

Let a > 0 be a fixed real and α > a. We instantiate the model (2.1) with the function
F a quartic polynomial:

F(v) = v4 +2av.

Remark 7. The choice of the function F here is just an example where all the for-
mulas are rather simple. Exactly the same analysis can be done with any F function
satisfying F ′′′(v∗(a)) < 0 and the transversality conditions given in Theorem 2.1.9.
This would be the case, for instance, for any quartic polynomial F(v) = v4 + αv for
α > a.

The function F satisfies Assumptions 2.1.1, 2.1.2, and 2.1.5. F ′(v) = 4v3 +2a satis-
fies Assumption 2.1.3.

Nevertheless, we have to bear in mind that the second order derivative vanishes

at v = 0: {
v̇ = v4 +2av−w + I,

ẇ = a(bv−w).
(2.30)

Theorem 2.1.8 shows that the quartic model undergoes the following bifurcations:
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(B1) A saddle-node bifurcation curve defined by

(SN) :=

{
(b, I) ; I = 3

(
b−2a

4

)(4/3)
}

.

Proof. Indeed, the function G reads G(v) = v4 + (2a− b)v and reaches its mini-
mum at the point v = (b−2a

4 )(1/3). So the minimum of G is m(b) =−3(b−2a
4 )(4/3).

The point v∗(b) is (b−2a
4 )(1/3), and we have closed-form expressions (but rather

complicated) for the two fixed points for I < 3(b−2a
4 )(4/3) since the quartic equa-

tion is solvable in radicals. The closed form expression can be obtained using a

symbolic computation package like Maple using the command

S:=allvalues( solve( xˆ4 + (2 * a - b) * x + I0 = 0,x));

(B2) An Andronov–Hopf bifurcation curve for b > a along the straight line

(AH) :=

{
(I,b) ; b > a and I =−

(a
4

)1/3
b−
(a

4

)4/3
}

.

The fixed point where the system undergoes this bifurcation is v∗(a) = −(a
4)1/3.

The kind of Andronov–Hopf bifurcation we have is governed by the sign of

α =−24
(a

4

)1/3
+

144
b−a

(a
4

)4/3
.

Finally, the type of bifurcation changes when b varies.

• When b < 5
2 a, then α > 0, hence l1 > 0, and the Andronov–Hopf bifurcation

is subcritical.

• When b > 5
2 a, then α < 0, hence l1 < 0, and the Andronov–Hopf bifurcation

is supercritical.

We prove below that the change in the type of Hopf bifurcation is obtained via

a Bautin bifurcation.

(B3) A Bogdanov–Takens bifurcation point is located at b = a and I =−3(a
4)(4/3).

(B4) A saddle homoclinic bifurcation curve satisfying, near the Bogdanov–Takens

point, the equation

(P) :=

{
I =−7

(a
4

) 4
3 − 1

25

(
4
3

) 2
3

(b−a)2; b > a

}
.

(B5) A Bautin bifurcation at the point
(
b = 5

2a, I =−3(a
4)4/3 (2a−1)

)
and a saddle node

bifurcation of periodic orbits coming along (see section 2.3.2).

Figure 2.4 represents the bifurcation curves and the fixed point of the quartic

model in the space (I,b,v).
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Figure 2.4: v fixed points and their stability in function of I and b. The reddish/pinkish
component is the surface of saddle fixed points, the purplish one corresponds to the

repulsive fixed points, and the bluish/greenish one corresponds to the attractive fixed

points. The yellow curve corresponds to a saddle-node bifurcation, the red curve

to a subcritical Andronov–Hopf bifurcation, and the greyish one to the supercritical

Andronov–Hopf bifurcation. The intersection point between the yellow and the red

curve is the Bogdanov–Takens bifurcation point, and the intersection point of the red

and greyish curves is the Bautin bifurcation point.

2.3.2 The Bautin bifurcation

As we have seen in the last section, at the point





v∗(a) =−
(

a
4

)1/3
,

I =−3
(

a
4

)4/3
(2a−1) ,

b = 5
2a

(2.31)

the Jacobian matrix of the system has a pair of purely conjugate imaginary eigenval-

ues and a vanishing first Lyapunov exponent.

The proof that the quartic model undergoes a Bautin bifurcation at this point is

provided in section 2.1.3. We prove that the system actually undergoes a Bautin bi-

furcation except for two particular values of the parameter a. With this same method
we obtain a closed-form expression for the second Lyapunov exponent. We show that

this second Lyapunov exponent vanishes for two values of a, whose expressions are
complicated. These calculations are rigorous, but nevertheless, the interested reader

can find numerical expressions of this exponent to get a grasp on its behavior in the

appendix (see (2.23)) and of the two numerical values of a such that l2(a) vanishes.
Things are even more involved when we are interested in the regularity of the

map (I,b) 7→ (µ(I,b), l1(I,b)). Nevertheless, we obtain that this determinant never
vanishes.

Eventually, for all a different from the critical values where the second Lyapunov
exponent vanishes, the system undergoes a Bautin bifurcation.

Note finally that the Bautin bifurcation point separates two branches of sub- and

supercritical Hopf bifurcations. For nearby parameter values, the system has two
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coexisting limit cycles, an attractive one and a repelling one, which collide and disap-

pear via a saddle-node bifurcation of periodic orbits.

2.4 ELECTROPHYSIOLOGICAL CLASSES

In the previous sections we emphasized the fact that the class of models we defined

in section 2.1 was able to reproduce the behaviors observed by Izhikevich in [144]. In

this section, first we show that the quartic model indeed reproduces the behaviors

observed by Izhikevich and which correspond to cortical neuron behaviors observed

experimentally. We also produce some simulations of self-sustained subthreshold os-

cillations which occur only when the dynamical system has attracting periodic orbits,

which is not the case in the other usual models of this class.

Izhikevich in [144] explains the main features we obtain in numerical simulations

from the neurocomputational point of view. In chapter 4, we comment on these same

features from the dynamical systems point of view mainly for the adaptive exponen-

tial model for its physiological relevance in that its parameters can be easily related

to physiological quantities. By study different quantities of the model as a dynamical

system, we will be able to define electrophyisiological classes, i.e. sets of parameters

where the model responds qualitatively the same way to different current inputs.

2.4.1 Simulation results

Simulation results for the quartic model introduced in section 2.3 are provided here.

In the simulated model, the spike is not represented by the blow up of the potential

membrane v, but we consider that the neuron emits a spike when its membrane
potential crosses a constant threshold. Note that the numerical simulations are very

robust with respect to the choice of the threshold, if taken large enough, since the

underlying equation blows up in finite time, and the adaptation variable converges.

This issue is specifically discussed in chapter 5 and in the paper [256]. This is also

the case for the exponential model, but not for the quadratic model (see discussions

herein).

Let θ be our threshold. The simulated model considered in this section is the
solution of the equations {

v̇ = v4 +2av−w + I,

ẇ = a(bv−w)
(2.32)

together with the spike-and-reset condition

If v(t−) > θ ⇒
{

v(t) = vr,

w(t) = w(t−)+ d.
(2.33)

Simulations have been done using an Euler numerical scheme, with a time step

ranging from 10−1 to 10−2 depending on the precision needed, and with time inter-

vals ranging from 10 to 500. This method is very efficient numerically and remains

precise. Other integration methods could be used, and the qualitative results we ob-

tained do not depend on the integration scheme, as soon as the time step is small

enough.

Remark 8. Note that we did not reproduce the last three behaviors presented by

Izhikevich in [144, Figs. 1.(R), 1.(S), and 1.(T)]. Indeed, these behaviors are not in

the scope of the present chapter and do not correspond to the model we studied.
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Figure 2.5: Different remarkable neurocomputational interesting behaviors of the

neuron model (2.32) with the reset condition (2.33) for different choices of the pa-

rameters (a,b, I,vr,d). The higher curve represents the membrane potential v and the
lower one the input current I (see table 2.1) for the numerical values of each simula-
tions).
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(i) Tonic Spiking (ii) Phasic Spiking (iii) Tonic Bursting

a = 1; b = 0.49; vr = 0; a = 1; b = 0.76; vr = 0.2; a = 0.15; b = 1.68; vr = (−2a+b)
1
3 ;

I(t) = 1.561t>1(t); d = 1; I = 0.371t>1(t); d = 1; I = 4.671t>1(t); d = 1;
T = 10; dt = 0.01; θ = 10; T = 10; dt = 0.01; θ = 10; T = 30; dt = 0.01; θ = 10;
(iv) Phasic Bursting (v) Mixed Mode (vi) Spike Freq. Adaptation

a =1.58; b =1.70; vr =− a
4

1
3 ; a =0.07; b =0.32; vr =0; a =0.02; b =0.74; vr =0;

I(t) =0.731t>1(t); d = 0.01; I(t) =3.841t>1(t); d = 1.50; I(t) =4.331t>1(t); d = 0.36;
T =50; dt =0.01; θ =10. T =50; dt =0.01; θ =10. T =50; dt =0.01; θ =10.

(vii) Class 1 Excitability (viii) Class 2 Excitability (ix) Spike Latency
a =4; b =0.67; vr =−1.3; a =1; b =1.09; vr =−1.2; a =0.02; b =0.42; vr =0;
I(t) =−0.1+0.23t; d = 1; I(t) =0.06t; d = 5; I(t) =5δ7.5(t); d = 1;
T =30; dt =0.01; θ =10. T =50; dt =0.01; θ =20. T =15; dt =0.01; θ =10.

(x) Damped Subthr. Oscill. (xi) Resonator (xii) Integrator
a =2.58; b =4.16; vr =0.1; a =5.00; b =7.88; vr =−1.28; a =1.00; b =1.10; vr =−0.97;

I(t) =2δ2(t); d = 0.05; I(t) =δ6,6.8,15,16.5,24,26(t); d = 0.5; I(t) =δ2.5,3.3,17.5,19(t); d = 0.5;
T =20; dt =0.01; θ =10. T =30; dt =0.01; θ =10. T =25; dt =0.01; θ =10.

(xiii) Rebound Spike (xiv) Rebound Burst (xv) Threshold variability
a =1; b =2; vr =−0.63; a =1; b =2; vr =1.3; a =1; b =1.23; vr =−0.91;

I(t) =−0.48−5δ2.5(t); d = 1; I(t) =−0.48−30δ6.5(t); d = 1; I(t) =δ2,16.5−δ15; d = 1;
T =50; dt =0.1; θ =10. T =20; dt =0.01; θ =10. T =20; dt =0.01; θ =10.

(xvi) Bistability (xvii) Depol. after-pot (xviii) Self-sustained oscill.
a =1; b =1.2; vr =0.8; a =1; b =1.5; vr =0.06; a =1; b =2.5; vr =−0.63;

I(t) =−0.47+20∗ (δ10−δ30); d = 0.5; I(t) =2δ3; d = 0.01; I(t) =−0.475+10∗δ10 ; d = 1;
T =50; dt =0.01; θ =10. T =30; dt =0.01; θ =10. T =100; dt =0.01; θ =10.

(xix) Mixed Chatter/ C1 exc. (xx) Purely oscill.
a =0.89; b =3.65; vr =1.12; a =1; b =2.6; vr =−0.63;

I(t) =0.07t; d = 1; I(t) =−0.471t>1; d = 1;
T =50; dt =0.01; θ =10. T =500; dt =0.01; θ =10.

Table 2.1: Simulation parameters to produce figure 2.5.

More precisely, in the study of the general model (2.1), we considered for phe-

nomenological reasons a > 0, modelling the leak of the adaptation variable: the adap-
tation would converge to its rest value if it was not influenced by the membrane

potential v. If we considered a < 0, this adaptation variable would diverge exponen-
tially from this rest value if it was not controlled by the membrane potential v. The
inhibition-induced behaviors [144, Figs. 1.(S) and 1.(T)] require a to be strictly nega-
tive, and so we will not comment on these behaviors any further.

Similarly, the accommodation behavior presented by Izhikevich in [144, Fig. 1.(R)]

is a limit case when w is very slow and the adaptation efficiency b very high. Mathe-
matically speaking, it corresponds to a case where a→ 0 and ab→ λ 6= 0. This case is
not taken into account in our study and amounts to replacing (2.1) by an equation of

the type {
dv
dt = F(v)−w + I,
dw
dt = ab(v− v0),

(2.34)

and the study of this equation is not in the scope of the present chapter.

In table 2.1, we provide the numerical values used to obtain the simulations of

figure 2.5. In this table, the δu(t) function is defined by

δu1,...,uN (t) =





1 if t ∈
⋃

k∈{1,...,N}
[uk,uk +0.3],

0 else.

The simulated behaviors we obtained in Figure 2.5 have been obtained playing

with the bifurcation parameters in the phase plane. The way the parameters were set

was based on a qualitative reasoning on the phase plane and the bifurcation diagram
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Figure 2.6: Tonic spiking: phase plane trajectory. The dotted curve is the v nullcline
at the initial time. It is shifted to the dashed one when applying a constant input

current. The new dynamical system has no fixed point and spikes regularly. We can

see the spiking cycle appearing.

in a way we describe in chapter 4. The simulations presented in the figure 2.5 are

done with the quartic model.

2.4.2 Bifurcations and neuronal dynamics

In this section we link the neuronal behaviors shown in Figure 2.5 with the bifurca-

tions of the system. We are first interested in behaviors generated by applied current

steps to the neuron. These behaviors consist in studying the effect of the initial con-

dition on the dynamics, as we will see in the following chapters.

• (i), (iii), (v), (vi) Tonic behaviors : Tonic behaviors correspond to a sustained
destabilization of the resting voltage. In the four cases we discuss here, the

voltage of a neuron is at rest for a given value of input current I. Then a current
step is applied to the neuron and subsequently, the neuron emits an infinite se-

quence of spikes (as long as the current step is applied). This behavior hence

can correspond to destabilizing on a permanent basis the resting state, which

can be achieved either by crossing the saddle-node or the Andronov-Hopf bifur-

cation, or to be permanently reset outside the attraction basin of the fixed point.

When the system does not returns to the attraction basin of the resting state,

two cases can occur depending on the parameters: either the system has a sta-

ble limit cycle (it is the case when the system undergoes a Bautin bifurcation).

In this case, the destabilization can result in the generation of self-sustained

subthreshold oscillations, as in the case (xx). If there is no stable limit cycle nor

stable non-spiking trajectory, then the neuron will emit infinitely many spikes,

as in the cases cited. The different spike patterns observed are a result of the

interplay between the subthreshold dynamics and the reset process. It will be

studied further in chapter 3. The phase plane orbits give a grasp on the phenom-

ena occurring. We observe that the case of tonic regular spiking is linked with

the existence of what we will call a limit spiking cycle, i.e. a trajectory including

spikes similar to a cycle containing a spike point (v = ∞, or v = threshold in the
numerical case). In that case the adaptation variable w converges to an attract-
ing stable value wspike. This value satisfies the relation ws(tspike) + b = wspike,
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Figure 2.7: Tonic bursting: phase plane trajectory. The dotted curve is the v nullcline
at the initial time. It is shifted to the dashed one when applying a constant input

current. The new dynamical system has no fixed point. We can see the multiple spike

limit cycle here.

where ws(·) is solution of (2.32) with the initial conditions
{

v(0) = vr,

w(0) = wspike

and where tspike denotes the time of the spike.

The mixed mode (v) and the spike frequency adaptation (vi) are particular cases

of tonic spiking differing by the way they converge to this spiking limit cycle.

While in the spike frequency adaptation the convergence is smooth, in the mixed

mode the convergence happens quite fast, the system sends a burst of few spikes

before converging to the spiking cycle.

The case of the tonic bursting is induced by the same mechanism. Nevertheless,

in that case (see figure 2.7(a)) the generalized cycle towards which the trajec-

tory converges contains few (≥ 2) spikes. It is interesting to note that in that
case if we consider the reset locations, they form a cycle, with at least a point

in the zone {(v,w);w > F(v) + I}. So the system emits quickly a precise num-
ber of spikes and then crosses the v nullcline. At this point, the membrane
potential decays before spiking. We can see numerically that the system con-

verges to a stable bursting cycle (see Figure 2.7(a)) Interestingly enough, the

two-dimensional system is able to reproduce the diagrams presented by Izhike-

vich in [142] in an (at least) three-dimensional space, because of the singularity

of the model (explosion or threshold/reinitialization). If the system was regular,

this behavior would not have been possible because it would have contradicted

the Cauchy–Lipschitz theorem of existence and uniqueness of a solution.

Note that we can choose exactly the number of spikes per burst by changing
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the adaptation parameter d and that the bursting can be of parabolic or square-
wave type as defined in Hoppensteadt and Izhikevich [133] (see Figure 2.7(b)).

These tonic behaviors will be studied further in section 3.

• (ii), (iv) Phasic behaviors: In these behaviors the current step applied is not
high enough to destroy all the stable subthreshold orbits (fixed points or limit

cycles). In that case there exists a subthreshold orbit, and the system will fall

after emitting a finite number of spikes in the attraction basin of this stable

trajectory. If the “initial condition” of the system, i.e. the previous stable fixed

point, is inside the attraction basin of the new fixed point, then no spike will be

emitted. If it is outside this attraction bass in, then the neuron will elicit spikes.

If the trajectory goes back in the attraction basin of the stable fixed point, then

we will have a return to equilibrium after the emission of few spikes. This is

what we call a phasic behavior. These behaviors will be also studied a little bit

more in depth in chapter 3.

• (vii)/(viii) Excitability types: The excitability properties of these types of neurons
will be discussed in chapter 4. These behaviors are linked with the way the

equilibrium loses stability, i.e. either via saddle-node bifurcation (type I) or via

Andronov-Hopf bifurcation (type II excitability), and on the parameters of the

model.

All the other behaviors are generated using current pulses, and are linked with

the local behavior around the destabilized fixed point. These behaviors will mainly

be studied in the chapter 4. It corresponds to the integration of perturbations at the

stable equilibrium point.

• (ix)/(xvii) Spike latency/DAP: It is a particular case of phasic spiking when the
equilibrium v∗ or the reset point vr is near a point such that F(v) = F ′(v) = 0.
The membrane potential dynamics is very slow around this point. In the spike

latency behavior, the initial point is close to this point, which generates the

observed latency. In our case, it is around the minimum of the function F (see
Figure 2.9(ix)). In the depolarized after-potential (DAP) case, the reset occurs

near this point, which is also in the attraction basin of the stable fixed point.

• (x), (xi), (xii), (xv) Damped subthreshold oscillations, resonator and integrator,
threshold variability are linked with the imaginary part of the eigenvalues of

the Jacobian matrix at the fixed point. When this imaginary part is non null,

then a perturbation will result in damped subthreshold oscillations, and multi-

ple excitations will respond stronger to particular frequency inputs (resonator).

The oscillations around the fixed point also generate the threshold variability

behavior. When this imaginary part is null, the neuron will be an integrator:

since it returns monotonously to equilibrium, the more two excitations are close

the more it will depolarize the neuron.

• (xiii)/(xiv) Rebound spike or burst: These behaviors are linked with the topology
of the attraction basin of the fixed point as discussed in chapter 4

• (xvi) Bistability: The bistability behavior (Figure 2.8) is quite interesting since it
presents two stable trajectories: the stable fixed point (stable for the subthresh-

old dynamics) and a stable tonic spiking trajectory (stable from the spikes point

of view).
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Figure 2.8: Bistability phenomenon: The first impulse induces a self-sustained tonic

spiking behavior while the system has a stable fixed point. The second impulse per-

turbs this regular spiking behavior, and the system falls in the attraction basin of the

stable fixed point.

• (xviii)/(xx) Self-sustained subthreshold oscillations and purely oscillating
mode: They are linked with the supercritical Hopf bifurcation and its stable

periodic orbit. These two behaviors cannot be obtained in the IBG models since

the Hopf bifurcations are always subcritical.

2.4.3 Self-sustained subthreshold oscillations in cortical neurons

In this study we gave a set of sufficient conditions to obtain an IBG-like model of neu-

ron. In this framework we proposed a model that displays a Bautin bifurcation the

IBG neurons lack; as a consequence our model can produce subthreshold oscillations.

In this section, we explain from a biological point of view the origin and the role of

those oscillations and reproduce in vivo recordings.

In the IBG models, the Andronov–Hopf bifurcation is always subcritical. The only

oscillations created in these models are damped (see Figure 2.10(a)) and correspond

in the phase plane to the convergence to a fixed point where the Jacobian matrix

has complex eigenvalues. Our quartic model undergoes supercritical Andronov–Hopf

bifurcations, and so there are attracting periodic solutions. This means that the neu-

rons can show self-sustained subthreshold oscillations (Figures 2.10(b) and 2.10(c)),

which is of particular importance in neuroscience.

Most biological neurons show a sharp transition from silence to a spiking behavior,

which is reproduced in all the models of class (2.1). However, experimental studies

suggest that some neurons may experience a regime of small oscillations [184]. These

subthreshold oscillations can facilitate the generation of spike oscillations when the

membrane gets depolarized or hyperpolarized [186, 187]. They also play an important

role in shaping specific forms of rhythmic activity that are vulnerable to the noise in

the network dynamics.

For instance, the inferior olive nucleus, a part of the brain that sends sensory

information to the cerebellum, is composed of neurons able to support oscillations

around the rest potential. It has been shown by Llinás and Yarom [186, 187] that the
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(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency
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Figure 2.9: Phase diagrams corresponding to the behaviors presented in Figure 2.5.
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Figure 2.10: The quartic model shows damped subthreshold oscillations like the IBG

models (Figure 2.10(a)): the trajectory collapses to a fixed point (parameters: a = 1,
b = 1.5, I = 0.1, Tmax = 100, dt = 0.01). The upper (blue) curve represents the solution
in v, the middle (red) one w, and the lower one (green) the trajectory in the plane
(v,w). Self-sustained subthreshold oscillations of the quartic model (Figures 2.10(b)
and 2.10(c)): the trajectory is attracted towards a limit cycle (parameters: a = 1,
b = 5/2, I =−3(a/4)4/3(2a−1), Tmax = 150000, dt = 0.01, I = (−3(a/4)4/3(2a−1)+0.001).
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Figure 2.11: Subthreshold membrane oscillations, qualitatively reproducing the

recordings from [183] in DRG neurons. Traces illustrate (2.11(a)) oscillations with-

out spiking, (2.11(b)) oscillations with intermittent spiking, and (2.11(c)) oscillations

with intermittent bursting (in the figures, spikes are truncated). The noisy input

is an Ornstein–Ulhenbeck process. The biological recordings 2.11(d) are reproduced

from [183, Fig. 1] and used with permission.

precision and robustness of these oscillations are important for the precision and the

robustness of spike generation patterns. The quartic model is able to reproduce the

main features of the inferior olive neuron dynamics:

i. autonomous subthreshold periodic and regular oscillations (see intracellular

recordings of inferior olive neurons in brain stem slices in [187]),

ii. rhythmic generation of action potentials.

The robust subthreshold oscillations shown by in vivo recordings [22, 184, 187]

correspond in our quartic model to the stable limit cycle coming from the supercrit-

ical Hopf bifurcation. The oscillations generated by this cycle are stable, and they

have a definite amplitude and frequency. This oscillation occurs at the same time as

the rhythmic spike generation in the presence of noisy or varying input. Note that

other neuron models such as those studied above, even if they do not undergo a su-

percritical Hopf bifurcation, can also exhibit oscillations in the presence of noise, for

instance near a subcritical Hopf bifurcation. Nevertheless, these oscillations do not

have the regularity in the amplitude and the frequency linked with the presence of
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an attracting limit cycle. The results we obtain simulating the quartic model are very

similar to those obtained by in vivo recordings (see Figure 2.11).

But the inferior olive neurons are not the only neurons to present subthreshold

membrane potential oscillations. For instance, stellate cells in the enthorhinal cortex

demonstrate theta frequency subthreshold oscillations [5, 6, 157], linked with the

persistent Na+ current INaP.
We now conclude this section on the specific example of subthreshold self-sus-

tained oscillations given by the dorsal root ganglia (DRG) neuron. This neuron presents

subthreshold membrane potential oscillations coupled with repetitive spike discharge

or burst, for instance in the case of a nerve injury [10, 183]. Figure 2.11(d) shows bi-

ological in vivo intracellular recordings performed by Liu et al. [183] from a DRG

neuron of an adult male rat. The recorded membrane potentials exhibit high fre-

quency subthreshold oscillation in the presence of noise, combined with a repetitive

spiking or bursting. These behaviors can be reproduced by the quartic model, as we

can see in Figure 2.11, around a point where the system undergoes a supercritical

Hopf bifurcation.4

CONCLUSION

In this chapter we defined a general class of neuron models able to reproduce

a wide range of neuronal behaviors observed in experiments on cortical neurons.

This class includes the Izhikevich and the Brette–Gerstner models, which are widely

used. We derived the bifurcation diagram of the neurons of this class and proved that

they all undergo the same types of bifurcations: a saddle-node bifurcation curve, an

Andronov–Hopf bifurcation curve, and a codimension two Bogdanov–Takens bifur-

cation. We proved that there was only one other possible fixed-point bifurcation, a

Bautin bifurcation. Then using those theoretical results we proved that the Izhike-

vich and the Brette–Gerstner models had the same bifurcation diagram.

This theoretical study allows us to search for interesting models in this class of

neurons. Indeed, Theorem 2.1.8 ensures us that the bifurcation diagram will present

at least the bifurcations stated. This information is of great interest if we want to

control the subthreshold behavior of the neuron of interest.

Following these ideas, we introduced a new neuron model of our global class un-

dergoing the Bautin bifurcation. This model, called the quartic model, is computa-

tionally and mathematically as simple as the IBG models and able to reproduce some

cortical neuron behaviors which the IBG models cannot reproduce.

This study focused on the subthreshold properties of this class of neurons. The

adaptative reset of the model is of great interest and is a key parameter in the repet-

itive spiking properties of the neuron. Its mathematical study is very rich. A new

insight of its properties is given in chapter 3. This study also allows us to define new

electrophysiological classes of neuron, i.e. sets of parameters for which the neuron

has the same qualitative behaviors in response to different stimulations. These re-

sults are provided for the general model and in the particular case of the adaptive

exponential model [30] in chapter 4, were we explain the origin of different behaviors

observed in the neuron.

4The amplitude and frequency of the subthreshold oscillations can be controlled choosing a point on

the supercritical Hopf bifurcation curve.
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CHAPTER 3

SPIKING DYNAMICS OF

BIDIMENSIONAL

INTEGRATE-AND-FIRE NEURONS

Craziness is like heaven.

– Jimi Hendrix

ABSTRACT

The class of non-linear integrate and fire neuron models introduced in the previ-

ous chapter are hybrid dynamical systems combining differential equations and dis-

crete resets, which generate complex dynamics. The dynamical properties of the sub-

threshold system has studied in chapter 2. This previous study does not account

for the spiking properties of the model. We study in this chapter the spike patterns

produced by these models. These patterns of activity are the result of an interplay be-

tween the continuous subthreshold dynamics and the reset process. Interestingly, the

reset induces in bidimensional models behaviors only observed in higher dimensional

continuous systems such as bursting and chaos.

This is why in the first section we study in depth the subthreshold dynamical

system, and characterize its main dynamical properties. We then introduce a suit-

able framework in order to study the spike dynamics through the use of a discrete

map, called the adaptation map. The relationship between spiking behavior and dy-

namical properties of the map is then investigated. We show in particular that the

system can exhibit a transition to chaos via a cascade of period adding including

chaotic transitions, which was previously observed in Hodgkin-Huxley models and in

Purkinje cells.

This work was done in collaboration with Romain Brette, has been published as a

research report [259] and is still in preparation for publication.
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3.1 INTRODUCTION

As stated in chapter 2, finding a computationally simple and biologically re-

alistic model of neuron has been a great endeavor in computational neuroscience, the

main interest being to be able to obtain mathematically tractable models in order to

understand the nature of the nerve cell activity, and computationaly simple in order

to be able to compare experimental recordings with large scale brain models. The

class of nonlinear bidimensional spiking neuron models with adaptation defined in

section 2 and also studied for instance in [30, 144, 255] seems to present the advan-

tages of being mathematically tractable, efficiently implemented, and able to repro-

duce a large number of electrophysiological signatures such as bursting or regular

spiking. These models emulate the membrane potential of the nerve cell v together
with an adaptation variable w, and distinguishes between to phases of the neuronal
activity: the subthreshold behavior corresponding to the input integration at the level

of the cell, and the emission of action potentials (spikes). The subthreshold dynamics

is governed by the following ordinary differential equation:

{
dv
dt = F(v)−w + I
dw
dt = a(bv−w)

(3.1)

where a,b are real parameters accounting respectively for the time constant ratio
between the adaptation variable and the membrane potential and to the coupling

strength between these two variables, I is a real parameter modeling a DC-input
current in the neuron, and F is a real function accounting for the leak and spike
initiation currents. Following [255], we assume F to be regular (at least three times
continuously differentiable), strictly convex, and its derivative to have a negative

limit at −∞ and an infinite limit at +∞. In order to ensure that the neuron will elicit
spikes, we add the following assumption:

Assumption 3.1.1. There exists ε > 0 such that F(v) grows faster than v1+ε when

v→ ∞ (i.e. there exists α > 0 such that F(v)/v1+ε ≥ α when v→+∞).

We prove in section 3.2.4 that the membrane potential blows up in finite time in

these cases. Among these models, the quadratic adaptive model [144] corresponds

to the case where F(v) = v2, and has been recently used by Eugene Izhikevich and

coworkers [147] in very large scale simulations of neural networks. The adaptive

exponential model [30] corresponds to the case where F(v) = ev − v, is based on an
electrophysiological description of the sodium current responsible for the generation

of action potentials following the work of [95], has the interest that its parameters can

be related to electrophysiological quantities, and has been successfully fit to intracel-

lular recordings of pyramidal cells [51, 155]. The quartic model [255] corresponds to

the case where F(v) = v4+2av and has the advantage of being able to reproduce all the
behaviors featured by the other two and also self-sustained subthreshold oscillations

which are of particular interest to model certain nerve cells.

As we proved in [256] and in chapter 5, in the case of the quadratic adaptive model

(or when the function F diverges slower than v2 when v→ ∞, i.e. when there exists
VF > 0 such that F(v)/v2 is bounded for v ≥ VF ), the adaptation variable blows up at

the same time as the membrane potential. In these cases one is led to introduce a

hard threshold, the cutoff value θ , which has no biophysical interpretation. A spike
is emitted at the time t∗ when the membrane potential v reaches a cutoff value θ ,
and the membrane potential is instantaneously reset to a constant value vr and the
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adaptation variable is updated to w(t∗)+ d where w(t∗) is the value of the adaptation
variable at the time of the spike and d > 0 is the spike-triggered adaptation param-
eter. The spiking properties are highly sensitive to changes in this cutoff parameter

(see chapter 5), and therefore constitutes a new bifurcation parameter which artifi-

cially adds complexity to the model.

In this chapter, we are interested in models for which the adaptation variable does

not blow up. In this case, spikes are emitted when the membrane potential blows

up. Therefore we shall consider models with an F function satisfying the following
assumption:

Assumption 3.1.2. There exists ε > 0 such that F grows faster than v2+ε when v→∞
(i.e. there exists α > 0 such that F(v)/v2+ε ≥ α when v→ ∞).

In these cases as proved in [256] (see also section 3.2.4), the membrane potential

blows up in finite time and at this explosion time the adaptation variable will con-

verge to a finite value. A spike is emitted at the time t∗ when the membrane potential
blows up. At this time, the adaptation variable converges to the value

w(t∗−)
def
=
(

lim
t→t∗

w(t)
)

.

At spike time, the membrane potential is reset to a constant value vr and the adap-

tation variable is incremented by a positive quantity, the spike-triggered adaptation

parameter:

v(t)−−→
t→t∗

∞ =⇒
{

v(t∗) = vr

w(t∗) = w(t∗−)+ d
(3.2)

In these models, the reset mechanism makes the value of the adaptation variable at

the time of the spike critical. Indeed, when a spike is emitted at time t∗, the new
initial condition of the system (3.1) is (vr,w(t∗) + d). Therefore, this value governs
the subsequent evolution of the membrane potential, and hence the spike pattern

produced.

These models are hybrid dynamical systems, in the sense that they are defined by

both a continuous and a discrete dynamical system. This structure make these mod-

els very interesting. Indeed the addition of the reset to the bidimensional continuous

dynamical systems makes possible behaviors which cannot appear in autonomous

bidimensional nonlinear ordinary differential equations, such as bursting and chaos

(see [30, 141, 255] and figure 2.5). In this chapter we will rigorously study from a

mathematical point of view these different behaviors, in order to understand their

origin and to get insights about the related parameter ranges.

To this end, we precisely study in section 3.2 the orbits of equation (3.1) in the

phase plane (v,w) in order to characterize the value of the adaptation variable at
the time of the spike. We will be particularly interested in the attraction basins of

the subthreshold attractors (SA), i.e. non spiking (bounded) attractors of the models.

We will also introduce an essential tool to study the spike patterns, the adaptation

map Φ. We will show that the properties of this map are closely linked with the
dynamical properties of the subthreshold system. Section 3.3 will be devoted to the

case where the subthreshold system has no fixed point. In that case, the neuron will

fire whatever its initial condition. Therefore the study of the iterations of the map Φ
will allow us to discriminate between different modes of tonic spiking. Section 3.4 is

devoted to the case where there exist non-spiking (subthreshold) orbits. In this case,
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(a) Fixed Points and Stability (b) Nullclines and symbolic dynamics

Figure 3.1: (a): Number of fixed points and their stability in the plane (I,b) for the
exponential adaptive model. (b): Nullclines of the dynamical system (horizontal axis:

v; vertical axis: w). A. The nullclines intersect in two points, and divide the phase
space into 5 regions. The potential V increases below the V -nullcline, w increases
below the w-nullcline. The direction of the flow along each boundary gives the possible
transitions between regions (right). Spiking can only occur in the South region. B.

The nullclines do not intersect. All trajectories must enter the South region and

spike.

depending on the initial condition, the system can either fire infinitely many spikes

(tonic spiking) or finitely many spikes (phasic spiking). In the last section 3.5 we

comment these results from a neurocomputational viewpoint.

3.2 DETAILED STUDY OF THE SUBTHRESHOLD DYNAMICS

In order to study the spike dynamics, we first need to understand the underly-

ing continuous dynamical system defined by the differential equations. We shall

call subthreshold orbits the orbits that do not spike (i.e., bounded orbits for posi-

tive time). Among these orbits, we will be particularly interested in the subthreshold

attractors (SA), which are the non spiking (bounded) attractors of the subthreshold

system. Since the subthreshold system is a bidimensional continuous dynamical sys-

tem, these SAs are either fixed points or limit cycles.

3.2.1 Subthreshold Attractors

The number and stability of fixed points were studied in [255], and this study ac-

counts for many excitability properties of these models, as described in [258]. The

basic local bifurcation structure is given in figure 3.1(a). The parameter a is a scal-
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ing parameter, and as a function of b and I the set of fixed points has the following
structure: let us denote v∗(x) the unique solution, when it exists, of the equation
F ′(v∗(x)) = x, and by F ′−∞ the limit of F ′(x) for x→−∞. This value can be either finite
(but nonpositive) or equal to −∞. Note that because of the strict convexity assump-
tion, if there exists a solution, it is unique. Furthermore, v∗(x) is defined for any
x ∈ (F ′−∞,∞). For x in this interval, we denote m(x) = F(v∗(x))− xv∗(x) the unique mini-
mum of the application t 7→ F(t)− xt. We have:

i. If I >−m(b), the system has no fixed point.

ii. If I =−m(b), the system has a unique fixed point, (v∗(b),w∗(b)), which is nonhy-
perbolic. It is unstable if b > a. Along this curve in the parameter space (I,b),
the system undergoes a saddle-node bifurcation provided that F ′′(v∗(b)) 6= 0.

iii. If I < −m(b), then the dynamical system has two fixed points (v−(I,b),v+(I,b))
such that

v−(I,b) < v∗(b) < v+(I,b).

The fixed point v+(I,b) is a saddle fixed point, and the stability of the fixed point
v−(I,b) depends on I and on the sign of (b−a):

(a) If b < a, the fixed point v−(I,b) is attractive.

(b) If b > a, it depends on the input current I with respect to the value IH(a,b) =
bv∗(a)−F(v∗(a)).

(c) At the point b = a and I =−m(a), the system undergoes a Bogdanov-Takens
bifurcation provided that F ′′(va) 6= 0. Therefore, from this point, there is a
saddle homoclinic bifurcation curve characterized in the neighborhood of

the Bogdanov–Takens point by

(P)
def
=

{
(I,b ≥ a) ; ISh =−m(a)+−12

25
(b−a)2

F ′′(v∗(a))
+ o(|(b−a)2 |)

}
. (3.3)

(c.1) If I < IH(a,b), the fixed point v−(I,b) is attractive.

(c.2) If I > IH(a,b), the fixed point v−(I,b) is repulsive.

(c.3) On the parameter line given by

(AH)
def
=
{

(b, I) ; b > a and I = IH(a,b) = bv∗(a)−F(v∗(a))
}

,

the system undergoes an Andronov Hopf bifurcation, whose type is

given by the sign of the variable

A(a,b) = F ′′′(v∗(a))+
1

b−a
F ′′(v∗(a))2.

If A(a,b) > 0, then the bifurcation is subcritical, and if A(a,b) < 0, then
the bifurcation is supercritical. If furthermore we have F ′′′(v∗(a)) < 0
and some technical conditions fulfilled, then the system undergoes a

Bautin bifurcation at the point v∗(a) for b = a− F ′′(v∗(a))2

F ′′′(v∗(a)) and I = bv∗(a)−
F(v∗(a)).
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Figure 3.2: Unstable limit cycles in the case where there is no Bautin bifurcation.

The system has no periodic orbit in the blue zone, and a unique unstable periodic

orbit in the orange zone. For a fixed b > a, the family appears via Hopf bifurcation at
I = IH and disappears via saddle-homoclinic bifurcation at I = ISh. BT is the Bogdanov-

Takens bifurcation point.

Let us now discuss the number and stability of periodic orbits. First of all, when

the subthreshold system has no fixed point, it is clear that no limit cycle can exist,

because in planar systems, the existence of a cycle implies the existence of at least

one fixed point inside the cycle. In the case where the Hopf bifurcation is always

subcritical the system will present unstable cycles originating from the Hopf bifurca-

tion for b > a, which will collide with the saddle fixed-point manifold and disappear
via saddle-homoclinic bifurcation around the Bogdanov-Takens bifurcation (see fig-

ure 3.2). For input currents between the current value corresponding to the Hopf and

the saddle-homoclinic bifurcation, there exists an unstable cycle in the system. The

saddle-homoclinic bifurcation curve can then be continued, and it either remains fi-

nite for all b > a, or tend to −∞, in which case cycles would exist for any I smaller than
the current associated with the Hopf bifurcation. Because of the structure of the vec-

tor field presented in figure 3.1(b).A., cycles necessarily contains the fixed point v−,
and do not include the fixed point v+, because the intersection of the South zone and

the set {v ≥ v+} is stable and therefore no trajectory can escape from this zone. At
a subcritical Hopf bifurcation, cycles appear around the fixed point v−, and inflate
when decreasing the input current until reaching the saddle fixed point v+.

In the cases where the system undergoes a Bautin bifurcation, the structure of the

limit cycles is slightly more complex. Indeed, in addition to the subcritical Bogdanov-

Takens bifurcation, the system undergoes a Bautin bifurcation. Locally around this

point, a family of stable limit cycles and family of unstable ones coexist, collide and

disappear via a fold (saddle-node) bifurcation of limit cycles. We numerically com-

puted these two curves in the case of the quartic model using the MatCont toolbox

[71, 72] and present the results in figure 3.3. We observe that for b < a, there is no
limit cycle (zone (0)).

I. For a < b < bCLC, there is one family of limit cycles, starting from Hopf bifurcation

and disappearing via saddle-homoclinic bifurcation.

II. For bCLC < b < bGH the family of limit cycles undergoes two folds of limit cy-

cles. There are two branches of unstable limit cycles and a branch of stable
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(a) Bifurcation Diagram (generated with MatCont) (b) Zoom and Limit Cycles

Figure 3.3: Limit cycles in the case where a Bautin bifurcation exist. The saddle-node

of limit cycles presents a singular point corresponding to a cusp of limit cycles. From

this point emerge two branches of saddle-node of limit cycles. The lower branch of

folds of limit cycles connects to the Bautin point, while the upper branch connects

with the saddle-homoclinic bifurcation. (a) The orange curve represents the fold of

limit cycles, the singular point CLC corresponds to a cusp of limit cycles. In the blue

region there is no limit cycle. Zone (0) : No cycle. Zone (I): There exists a unique fam-

ily of limit cycles in the orange zone, starting from Hopf bifurcation and disappearing

via saddle-homoclinic bifurcation. Zone (II) the family of limit cycles undergoes two

folds of limit cycles. There are two branches of unstable limit cycles and a branch

of stable limit cycles. The family appears via subcritical Hopf bifurcation and dis-

appears via saddle-homoclinic bifurcation. In zone (III) there is a unique family of

stable limit cycles in the yellow zone for inputs between the saddle-homoclinic and

the supercritical Hopf bifurcation, disappearing via saddle-homoclinic bifurcation. (b)

Families of limit cycles in each case. Green cycle = saddle-homoclinic orbit, red cycle=

fold of limit cycle.
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Figure 3.4: Families of limit cycles in zone (II) of the diagram corresponding to bCLC <
b < bGH . Dashed cycles correspond to unstable periodic orbits, plain cycles to stable

periodic orbit, the black dot symbolizes the fixed point. Red orbits are those attracted

by the stable limit cycles or fixed point, and green orbits the other ones.

limit cycles. One of the branches of unstable limit cycles disappears via saddle-

homoclinic bifurcation.

III. For b > bGH there is a unique family of stable limit cycles in the green zone

emerging from a supercritical Hopf bifurcation and disappearing via saddle-

homoclinic bifurcation.

In zones (0),(I) and (III) the structure of limit cycles is quite simple. Case (II)

is more complex and needs some attention (see figure 3.4). In this case, the Bautin

bifurcation generates a fold of limit cycles bifurcation in its neighborhood. We observe

numerically that the curve of fold of limit cycles has a singular point where the system

undergoes a cusp of limit cycles. Between the Bautin bifurcation point and the cusp of

limit cycles point, the curve of folds of limit cycles can be parameterized as the graph

of a function of b: {(I,b); I = Fi(b)}. The second branch of fold of limit cycles branching
to the first one at the cusp point disappears via saddle-homoclinic bifurcation. It can

also be characterized as the graph of a function of b: {(I,b); I = Fs(b)}. For IH < I < Fs

there is a unique unstable limit cycle around the stable fixed point. For Fs < I < ISh

there are three limit cycles, two unstable limit cycles circle a stable limit cycle. For

ISh < I < Fi there are two limit cycles: an unstable around the fixed point, circled by a

stable one. Therefore, in that case, the system presents self-sustained subthreshold

oscillations before the Bautin bifurcation. Note eventually that zone (II) is relatively

small in the parameter space.

The presence of periodic orbits shapes the structure of the stable manifold of the

saddle-fixed point. We describe now the topology of this stable manifold and the shape

of the attraction basins of the possible subthreshold attractors.

3.2.2 Stable manifold and attraction basins

We are now interested in the structure of the attraction basins of SAs. A point (v,w)
belongs to the attraction basin of a SA if and only if the system (3.1) starting from

this point converges towards this attractor. The topology of this set is governed by the

subthreshold dynamics, and the problem of identifying in a closed form the attraction

basin of the SAs is very hard to handle formally. Nevertheless in our particular case,

the structure of these attraction basins can be characterized because the system has
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the property that the shape of this attraction basin is closely related to the structure

of the stable manifold of the saddle fixed point (SMSFP).

The first order expansion of the SMSFP around the saddle fixed point is given by

the eigenvalues and eigenvectors of the Jacobian matrix at this point. The SMSFP

is composed of two submanifolds: one of them is locally contained in the zone v ≥ v+

which we denote Γ+ and the other in the zone v ≤ v+ and will be denoted Γ−. In
all the cases, the submanifold Γ+ is fully above the v-nullcline (i.e. w ≥ F(v) + I),
because of the direction of the eigenvectors of the Jacobian matrix at this point and

of the shape of the vector field. This submanifold stays in the North zone described

in figure 3.1(b) and this curve is the graph of an increasing function of v. The shape
of the submanifold Γ− locally in the zone v≤ v+ and below the v-nullcline, depends on
finer properties of the vector field, as we discuss in the sequel and in section 3.2.3.

Subcritical case:

We are first interested in the case where the system presents a unique repulsive

periodic orbit. The description of the shape of the SMSFP is based on qualitative

arguments including Cauchy–Lipschitz and Poincaré–Bendixon theorems. Since this

orbit is a trajectory of the dynamical system, no solution can cross it because of the

Cauchy-Lipschitz theorem. The attraction basin of the stable fixed point will there-

fore be delineated by the periodic orbit: any trajectory having its initial condition

inside this closed orbit will necessarily converge to the fixed point because of the

Poincaré-Bendixon theorem, and no solution starting outside this zone can converge

towards this fixed point because it cannot cross the periodic orbit. Therefore, the at-

traction basin of the stable fixed point is the zone in the phase plane delineated by

the unstable limit cycle. In that case, the submanifold Γ− winds around this cycle.
Indeed, this submanifold can be computed using the backward equation related to

(3.1). If it is an unbounded orbit, this stable manifold will split the phase plane into

two zones, one of which containing the unstable limit cycle and the stable fixed point.

Any trajectory starting in the zone containing the stable fixed point will either con-

verge to the fixed point if it is inside the attraction basin of this fixed point delineated

by the unstable periodic orbit, or will be trapped inside this zone and will not enter

inside the periodic orbit. In the latter case, this trajectory cannot diverge because of

the structure of the trajectories and the shape of Γ+. The Poincaré-Bendixon theorem

would imply that there exists a stable fixed point or a stable periodic orbit in this

zone which is not the case. Therefore the shape Γ− will necessarily be bounded, and
because of Poincaré-Bendixon’s theorem, it will either converge to a fixed point or to

a periodic orbit. Since there is no stable fixed point reachable by the stable manifold

(the stable fixed point is repulsive for the backwards dynamics, and is trapped in the

limit cycle), this orbit will converge to the limit cycle (see figure 3.5(a)).

In the cases where there is no unstable limit cycle around the SA (i.e. for b < a, or
b > a and I < ISh), the attraction basin of the SA will be unbounded, and its shape will

be deduced from the shape of the SMSFP.

For the submanifold Γ−, several cases can occur, depending on the limit of the
derivative of F at −∞, which we denote F ′−∞.

• The stable manifold of the saddle fixed point can cross both nullclines (see figure
3.5(b)). As proved in [258], this will be the case when F ′−∞ >−∞ and if b≥ (F ′−∞+a)2

4a ,

• It can cross the w-nullcline (which will always be the case when a < −F ′−∞) but
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(a) Stable Manifold and limit cycle (b) Fixed point, separatrix crosses both null-

cline

(c) Fixed point, separatrix crosses no nullcline (d) Periodic orbit, separatrix crosses the w-
nullcline

Figure 3.5: Representation of the attraction basin and the stable manifold of the sad-

dle fixed point in different cases. (a): A repulsive limit cycle (red curve) exists around

the stable fixed point (black circle), the SMSFP (green line) converges towards the

cycle, and the attraction basin (blue zone) is bounded. The black dashed lines corre-

sponds to the nullclines. (b): Case where the separatrix crosses both nullclines (same

color code), in the case of the adaptive exponential model with original parameters

except a = 2gL and τm = τw; (c): Case where the stable manifold crosses no nullcline:

it is the graph of an increasing function of v which delineates the attraction basin of
the stable fixed point (case of the dimensioned adaptive exponential model with the

original parameters except a = 2gL and τw = τm/3); (d): Case where the stable man-
ifold only crosses the w-nullcline. It was represented in the case where the stable
trajectory is a periodic orbit (quartic model, a = 1, b = 2.51> bGH , I =−0.5).
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not the v-nullcline. In this case, the SMSFP is the graph of a function of v, that
will be decreasing before it crosses the nullcline and increasing after this point

(see figure 3.5(d)),

• It can cross no nullcline, and in this case the separatrix is the graph of an in-
creasing function of v (see figure 3.5(c)). This case never occurs when F ′−∞ =−∞.

In these cases, the SMSFP is unbounded, and splits the phase plane into two con-

nected components, one of which containing the SA. This component is the attraction

basin of the SA.

Hence we conclude that the attraction bassin of the stable fixed point is either

bounded and delineated by the unstable limit cycle, or unbounded and delineated by

the stable manifold of the saddle fixed point.

Bautin case

This dichotomy also applies in the case where the system undergoes a Bautin bifur-

cation: if the SA (fixed point or stable periodic orbit) is circled by an unstable limit

cycle, then the attraction basin of the SA will be delineated by this cycle, and if not,

the attraction basin will be delineated by the SMSFP.

Consider for instance the case of figures 3.3 and 3.4. Using the notations of figure

3.3 we can prove that:

• When there is no fixed point, the system has no SA and there is no saddle fixed
point.

• For b < a and I < −m(b), the system has a unique stable fixed point whose at-
traction basin is unbounded and delineated by the SMSFP.

• For a < b < bCLC, the case is very similar to the subcritical case and the behavior

depends on the input current:

– If IH < I <−m(b) the system has no SA and two unstable fixed points. This
case is treated in section 3.2.3.

– If ISh < I < IH where ISh is the value of the current at the saddle-homoclinic

bifurcation, the system has a unique SA which is a stable fixed point, cir-

cled by an unstable limit cycle. This periodic orbit delineates the attraction

basin of the stable fixed point and the SMSFP winds around it

– If I < ISh the system has a unique stable fixed point whose attraction basin

is unbounded and delineated by the SMSFP.

• For bCLC < b < bGH , we have:

– For ISN < I < max(IH ,Fs) there are two unstable fixed points and no periodic
orbit, hence no SA.

– For max(IH ,Fs) < I < Fs, the system has a unique SA which is a stable fixed

point, circled by an unstable limit cycle. This periodic orbit delineates the

attraction basin of the stable fixed point and the SMSFP winds around it

(case of figure 3.5(a)).
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– For Fs < I < ISh the system has two SAs: a fixed point and a stable limit

cycle (see figure 3.4(B)). The stable fixed point is circled by an unstable

limit cycle which delineates its attraction basin. The stable periodic orbit

is contained in a ring delineated by two unstable limit cycles. This ring is

the attraction basin of the stable limit cycle. The submanifold Γ− of the
SMSFP winds around the exterior unstable limit cycle.

– For ISh < I < Fi the system has a stable fixed point whose attraction basin

is delineated by an unstable periodic orbit circling around it (see figure

3.4(C)). Around this cycle there is a stable limit cycle, whose attraction

basin is an unbounded zone with one hole delineated by the unstable limit

cycle and the SMSFP which is unbounded.

– For I < Fi the system has a stable fixed point whose attraction basin is

unbounded and delineated by the SMSFP.

• In the case b > bGH , we have:

– if ISh < I <−m(b) the system has no SA and two unstable fixed points.

– if IH < I < ISh the system has two unstable fixed points and a stable periodic

orbit whose attraction basin is unbounded and delineated by the SMSFP.

– if I < IH the system has a stable fixed point with an unbounded separatrix.

3.2.3 Heteroclinic orbits

In the case where there are two unstable fixed points, one of which is repulsive and

the other saddle, then the component Γ+ of the SMSFP is the graph of an increas-

ing function of v for v ≥ v+ and stays above the v-nullcline. The submanifold Γ− will
connect to the repulsive fixed point, for the same reasons as mentioned in the case

of the presence of an unstable limit cycle. Indeed, if we consider the backward equa-

tion starting in the neighborhood of the saddle fixed point, the repulsive fixed point

of the forward dynamics becomes attractive, and it is the unique bounded trajectory

possible. The stable manifold when considering the backward equation will either

converge to the fixed point, or will diverge, according to Poincaré-Bendixon’s theorem.

But assuming that it is unbounded leads to a contradiction: if it was unbounded, it

would separate two zones of the phase plane (see figure 3.5), one of which containing

the unstable fixed point. A trajectory having its initial condition in this zone will be

trapped in it for all t > 0. But in this zone, the trajectory will be bounded because of
the structure of the vector field, but there is neither fixed point nor stable periodic

orbit. Therefore Poincaré-Bendixon’s theorem leads to a contradiction, and the stable

manifold necessarily connects to the repulsive fixed point. This connection can be one

of two types (see figure 3.6): a monotonous connection in the case where the eigen-

values of the Jacobian matrix of the repulsive fixed point are real, and an oscillating

connection when the eigenvalues have a non-null imaginary part. This branch of sta-

ble manifold is therefore a heteroclinic orbit, connecting a repulsive equilibrium to a

saddle equilibrium. It is structurally stable, and disappears at the Hopf bifurcation.

In the case where the Hopf bifurcation is subcritical, the heteroclinic orbit connect-

ing the repulsive fixed point and the saddle fixed point converts into a heteroclinic

orbit connecting the saddle fixed point with the repulsive limit cycle and we are in

the case of figure 3.5(a). In the case where the Hopf bifurcation is supercritical (after

the Bautin bifurcation) the heteroclinic orbit will simply disappear. By continuity,

the SMSFP will be, after the bifurcation, of type 3.5(b).
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(a) Monotonous connection to equilibrium (b) Oscillatory connection to equilibrium

Figure 3.6: Stable manifold of the saddle fixed point in the case of two unstable

equilibria. Dashed black curves are the nullclines of the system and the red curve

is the stable manifold.

3.2.4 Symbolic dynamics and spiking regions

This detailed description of the subthreshold dynamics allows us to get a better in-

sight of the dynamics and to make the diagram 3.1(b) more precise. Indeed, we are

now able to provide a Markov partition of the phase plane (see fig.3.7).

• In the case I > −m(b), there is no SA, and the phase plane is partitioned into
the up zone above the v-nullcline, i.e. defined by {(v,w);w ≥ F(v)+ I}, the cen-
ter zone between the two nullclines and the spiking zone below the w-nullcline
{(v,w); w ≤ bv}. We observe that any trajectory having its initial condition in
the up zone enters in finite time the center zone. Indeed, while the orbit is

in the up zone, the derivative of the adaptation variable is strictly inferior to

−d(F(v)+ I,bv) the distance between the two nullclines. In the center zone, w is
decreasing and v is increasing. Because of the vector field along the v-nullcline,
we observe that the orbit cannot go back to the up zone. Since in this zone w
is a decreasing function of v and the boundary bv an increasing function, it will
enter in finite time the spiking zone. In this spiking zone defined by w≤ bv, the
trajectory is trapped, and the membrane potential blows up in finite time.

• In the case where there are SAs, we reviewed the different shapes of the related
attraction basins. These regions correspond to what we call the rest region, in

the sense that any orbit starting inside this zone will never fire. This zone is

stable under the dynamics, and does not communicate with the other zones (see

figures 3.7(b), 3.7(c) and 3.7(d)). We define here again the spiking zone below

both the w-nullcline and the SMSFP. This zone is also stable under the dynam-
ics. The right zone is the zone above the w-nullcline and below the SMSFP. In
this zone, for any initial condition below the v-nullcline, v is increasing and w
decreasing. Therefore, the derivative of v increases, and the orbit will enter the
spiking zone in finite time, since the orbit is a non-increasing function of v and
the boundary is strictly increasing. If the initial condition is in the right zone

below the SMSFP and above the v-nullcline, both v and w will be decreasing and
therefore the orbit cannot stay above the v-nullcline indefinitely, because of the



101

presence of the unstable manifold of the saddle fixed point, and therefore will

be in the right zone below the v nullcline after a finite time, and therefore in the
spiking zone in finite time. The up zone is the rest of the phase plane. In this

zone, orbits do not stay indefinitely, and cannot enter either the rest zone or the

right zone, hence enter in finite time the spiking zone.

• In the cases where are two unstable fixed points and no stable limit cycles (Fig-
ures 3.7(e) and 3.7(f)), there is no SA except from the SMSFP. We define the up

zone above both the w-nullcline and the SMSFP, the right zone the zone between
the SMSFP and the w-nullcline and the spiking zone below both the w-nullcline
and the SMSFP. In the spiking zone, as we will see, the system will fire. For

any initial condition in the right zone, since the orbit will not cross the SMSFP,

it will necessarily enter the spiking zone in finite time.

This is very important in terms of spikes. Indeed, we can prove that for any initial

condition in the spiking region, the membrane potential v will blow up in finite time,
and therefore a spike will be emitted. Indeed, let (v0,w0) be a given initial condition in
the bottom region at time t0. According to the shape of the vector field, as presented
in our Markov partition, the whole trajectory will be trapped in this zone. But in this

zone, we always have w≤ v and therefore for all t ≥ t0 we have w(t)≤ bv(t). According
to Gronwall’s theorem, the membrane potential at time t ≥ tS will be greater than or
equal to the solution of: {

˙̃v = F(ṽ)−bṽ+ I

ṽ(tS) = v(tS)

which blows up in finite time by the virtue of assumption 3.1.1.

Therefore any trajectory entering the bottom region will spike, and furthermore

any trajectory having its initial condition outside the rest region will enter the bottom

region in finite time, and elicit a spike. As we have seen, the dynamics of the reset

after a spike depends on the value of the adaptation variable at the times of the

spikes, which we describe in the following section.

3.2.5 Behavior of the adaptation variable at spike times

In the spiking zone, we saw that the membrane potential blew up in finite time. This

zone does not intersect the v-nullcline. Therefore, in this zone, the orbit (v,w) with
initial condition (v0,w0) at time t0 inside the spiking zone can be written as the graph
of a function of v for all t ≥ t0, i.e. w(t) = W (v(t)) where the function W is the solution
of the differential equation: {

dW
dv = a(bv−w)

F(v)−w+I

W (v0) = w0
(3.4)

Proof. Let δ (t) = W (v(t))−w(t). We have δ (t0) = 0 and furthermore, since the value of
F(v)−w + I > 0, dδ

dt = dW
dv
dv
dt − dw

dt = 0, and hence δ (t)≡ 0.

To study the value of the adaptation variable at the explosion time of the mem-

brane potential, we simply study the limit of the equation of the orbits when v→ ∞.
Here we prove that this value is finite under assumption 3.1.2, and that if F(v)/v2 is

asymptotically bounded, the adaptation value tends to infinity. This theorem justifies

the introduction of this assumption.
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(a) No fixed point case (b) Unstable limit cycle

(c) Unbounded attraction basin crossing both

nullclines

(d) Unbounded attraction basin crossing no

nullcline

(e) Monotonous heteroclinic orbit (f) Oscillatory heteroclinic orbit

Figure 3.7: Markov partition of the dynamics: the bottom region is a stable region

where each trajectory starting from the up or right region will end up in finite time.

The rest region composed of the attraction basin of the possible stable trajectory is

an isolated region.
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Theorem 3.2.1. Under assumption 3.1.2, the adaptation variable is finite at the times

of the spikes. If F(v)/v2 is bounded when v→ ∞, the adaptation variable at the times
of the spikes tends to infinity.

Proof. In section 3.2.4, we proved that all the orbits of the system that are not in

the attraction basin of the (possible) stable fixed point enter after a finite time the

spiking zone where they are trapped. This spiking zone is fully included in the half

space {w < bv}, and in this zone the membrane potential blows up in finite time.
The value of the adaptation variable at the time of the spike can therefore be

computed using the orbital equation (3.4). We consider (v(t),w(t)) an orbit of the
differential system (3.1) such that the membrane potential blows up at time t∗. Let
(v1 = v(t1),w1 = w(t1)) be a point of the orbit inside the spiking zone. We recall that in
the spiking zone, we have w(t)≤ bv(t) and w(t) is non-decreasing. Hence we have

dW
dv
≤ a(bv−w1)

F(v)−bv+ I
(3.5)

and therefore

W (v) ≤ w1 +
∫ v

v1

a(bu−w1)

F(u)−bu+ I
du

If F satisfies assumption 3.1.2, this integral converges when v→ ∞. Therefore, W (v)
(resp. w(t)) is an upperbounded nondecreasing function of v (resp. time), and therefore
has a finite value when v→ ∞ (resp. t→ t∗).
In the case where F(v)/v2 is bounded, this integral does not converge. Using the

same technique, we lowerbound this value:

dW
dv
≥ a(b −W )

F(v)−w1+ I
. (3.6)

Gronwall’s theorem [117] ensures us that the solution of equation (3.4) will be lower-

bounded for v≥ v1 by the solution of the linear ordinary differential equation:

{
dz
dv = a(b−z)

F(v)−w1+I

z(v1) = w1
(3.7)

that reads:

z(v) =

(∫ v

v1

abu
F(u)−w1+ I

e−g(u) du+ w1)

)
eg(v)

where g(v) =
∫ v

v1
− adu

F(u)−w1+I . Because of assumption 3.1.1, the integrand is integrable,

and the function g has a finite limit g(∞) when v→ ∞. The exponential terms will
hence converge when v→ ∞. But the integral involved in the particular solution di-
verges in the case where F(v) grows slower than v2, since the integrand is equivalent

when u→ ∞ to
abu
F(u)

e−g(∞)

When F(u) grows slower than v2 there exists α > 0 such that F(v) ≤ αv2 asymp-

totically and therefore the solution of the linear differential equation (3.7) tends to

infinity when v→ ∞ faster than a logarithmic function of v, and so does W (v), and
hence w(t) blows up at the time when v(t) blows up. In the case where F(v) grows
slower than v2−ε , the solution of the differential equation diverges faster than vε .
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We conclude that in the case of the quadratic adaptive model, the adaptation vari-

able blows up at the explosion time of the membrane potential variable v, and in the
case of the quartic and exponential models, the adaptation variable remains bounded.

For the quadratic model, and models such that the nonlinear function F(v) grows
slower than a quadratic function when v→ ∞, the system can only be defined using a
cutoff value for the spikes. The value of the adaptation variable at the cutoff θ will
be given by W (θ), and therefore will heavily depend on the cutoff value, in a very
sensitive way as discussed in [256].

In the quartic and exponential models, and for any model such that F(v) grows
faster than v2+ε for a given ε > 0, the adaptation variable converges, and hence the
model can be defined with an infinite threshold.

In these cases, for technical reasons we will use a transformed version of the

orbital equation (3.4) obtained by changing variables. For (v0,w0) in the spiking zone,
we consider u = (v− v0 + 1)−ε/2 where ε > 0 is given by assumption 3.1.2. When v(t)
blows up, u(t) tends to zero, and the orbit in the plane (v,u) satisfies the equation:

{
dW̃
du =− 2a(bu−2/ε−W̃+β)

εu1+2/ε(F(u−2/ε+v0−1)−W̃+I)
def
= g(u,W̃ )

W̃ (1) = w0

(3.8)

where β = b(v0−1)

As we can see in equation (3.1), at the times where the membrane potential blows

up and since the adaptation variable remains bounded, the derivative of the adap-

tation variable tends to infinity when v blows up. For this reason, accurate numer-
ical simulations are quite hard to perform. But since in the phase plane the orbit

has a regular equation, an accurate algorithm based on the simulation of the orbital

equation as soon as the orbit enters the spiking zone provides a precise and stable

evaluation of the adaptation value at the time of the spike using standard simula-

tion algorithms (Runge-Kutta, Euler, . . . ). This method was implemented in order to

produce our numerical simulations.

3.2.6 Existence and uniqueness of a solution

We first discuss the well-posedness of these equations. Mathematically, the prob-

lem is well-posed if the system defined by equations (3.1) and (3.2) together with an

initial condition (v0,w0) at time t0 has a unique solution defined for all t ≥ t0. The
precise study we just performed gives us a better understanding of the dynamics of

the subthreshold system. In particular, we saw that the solutions of the subthresh-

old equation (3.1) blew up in finite time, and under assumption 3.1.2, the adaptation

variable at these times has a finite value. The solutions of the subthreshold equations

are hence not defined for all time. The reset condition is therefore essential to have a

forward solution to the problem defined for all t ≥ t0. The reset condition is sufficient
for the problem to be well posed, as we prove in the following:

Proposition 3.2.2. The equations (3.1) and (3.2), together with initial conditions

(v0,w0) at time t0 have a unique solution defined for t ≥ t0.

Proof. Because of the regularity assumption on F, Cauchy-Lipschitz theorem of exis-
tence and uniqueness of solution applies for equation (3.1) up to the explosion time. If

the solution of (3.1) does not blow up in finite time, we have existence and uniqueness

of solutions for the problem. If the solution blows up at time t∗, then we are reset to
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a unique point, defined by the reset condition (3.2), and we are again in the case we

already treated starting from (vr,w(t∗)+ d) at time t∗. We can apply this mechanism
again provided since the value of w(t∗) is finite. Furthermore, to be able to prove the
existence and uniqueness of solution for all t ≥ t0, we need to ensure that the inter-
spike interval does not tend to 0 (i.e. spikes do not accumulate at a given time). The
spike time decreases when the value of the adaptation on the reset line decreases.

Therefore we have to ensure that the adaptation value at the times of the spike do

not tend to −∞. But for w0 in the spiking zone, the value of the adaptation variable

is increasing all along the trajectory and therefore the new adaptation value after a

spike is emitted will be greater than the former value plus d, and hence it is impossi-
ble that this reset value tends to −∞. We conclude that the interspike interval has a
lower bound on this trajectory, and between two spike times, there is a unique solu-

tion. Therefore we have existence and uniqueness of a solution starting from (v0,w0)
which is defined for all t ≥ t0.

Another interesting question from the mathematical and neural coding points of

view would be to solve the related Cauchy problem. This problem consists in proving

that there exists a unique solution defined for all t ∈ R. The Cauchy problem was

addressed by Romain Brette in [33] in the case of spiking models defined by a one

dimensional ODE with a finite spiking threshold and a reset condition. He found that

the reset introduced a countable and ordered set of backward solutions for a given

initial condition, and that this structure of solutions had important implications in

terms of neural coding. The case of the system given by (3.1) and (3.2) can be treated

in the same fashion as done in [33] and one obtains the same results as Brette in [33].

It is done in appendix D.

3.2.7 The adaptation map

Now that we are ensured that there exists a unique solution to the forward prob-

lem given by equations (3.1) and (3.2), we are interested in characterizing the spike

patterns fired by a neuron of this type. These patterns are governed by the initial con-

dition of the system after each spike, and this is why we now introduce an essential

element of our work, a discrete map called the adaptation map.

Definition 3.2.1 (The adaptation map). We denote by D the domain of adaptation
values w0 such that the solution of (3.1) with initial condition (vr,w0) blows up in finite
time. Let w0 ∈ D , and denote (v(t),w(t)) the solution of (3.1) with initial condition
(vr,w0) and t∗ the blowing time of v. The adaptation map Φ is the unique function
such that

Φ(w0) = w(t∗)+ d

The adaptation map gives the next reset location of a spiking orbit with initial

condition on the reset line v = vr. If we are interested in the spike patterns generated

from an initial condition (v0,w0) where v0 6= vr, the analysis will be valid after the first

spike is emitted. More precisely, if (v0,w0) is in the attraction basin of a bounded
trajectory or on the stable manifold of the saddle fixed point, then it will not elicit a

spike. If it is not, then it will fire in finite time and be reset on the line v = vr at a

given value w1. From this point, the study of the iterations of the map Φ will be valid.
Moreover, assume that in the dynamical system defined by (3.1) starting from the

initial condition (vr,w0) is in a tonic spiking behavior (i.e. fires infinitely many spikes).
Then let (tn)n≥0 be the sequence of spike times, and define the sequence of adaptation
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reset points by wn
def
= w(tn) = w(t−n )+ d. The adaptation map of this dynamical system

is the function Φ such that
Φ(wn) = wn+1

Hence we will be able to apply techniques of nonlinear analysis of iterations of maps

to study the spiking location sequences and the spiking times.

For these reasons, we will be interested in the sequel in the dynamics of the itera-

tions of the map Φ which corresponds to a trajectory starting from an initial condition
on the reset line. The intersections of the nullclines with the reset lines are of partic-

ular interest in the study of Φ. We define:
{

w∗ = F(vr)+ I

w∗∗ = bvr
(3.9)

Both points depend on the reset voltage vr. Interestingly enough, besides vr, the point

w∗ only depends on the input current and the nonlinearity, while the point w∗∗ only
depends on the parameter b. The figure Fig.3.8 represents bundles of trajectories for
w0 < w∗ or w0 > w∗ in the case where the nullclines do not intersect. It illustrates the
qualitative distinctions linked with the relative location of w with respect to w∗.

(a) Phase plane for w0 < w∗ (b) Phase plane for w0 > w∗

Figure 3.8: Phase plane and trajectories for the quartic model in the no-fixed point

case. The trajectories starting from w < w∗∗ have an increasing w all along the tra-
jectory, which is not the case for w > w∗∗. For w > w∗, we observe that the trajectory
turns around the point (vr,w∗) and crosses again the line v = vr before spiking.

The sequence of interspike intervals is the image of the orbit under Φ by the
application T : w ∈D 7→ t∗(w), where t∗(w) is the spike time if the membrane potential
starts at (vr,w) at time t = 0. Although this map is not always injective, the spike
patterns are qualitatively governed by the adaptation map.

Now that we introduced the main framework of our study, we will study more

precisely the properties of the adaptation map Φ and its links with the spike patterns
produced. The different spike patterns are linked with the topology of the domain D
and with properties of the map Φ. We chose here to present our results in function of
the subthreshold dynamical properties, since it will make our mathematical analysis

clearer. We will summarize the different regions of parameters for which a given

spike pattern is produced in section 3.5.2.
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3.3 NO FIXED POINT CASE

In this section we consider the case where there is no fixed point in for the sub-

threshold dynamical system. This case corresponds to the case where I > −m(b).
In that case the system has neither stable fixed point nor limit cycle, and hence

no bounded trajectory, and the neuron will fire whatever its initial condition, which

means that the definition domain D of the adaptation map Φ is R.

3.3.1 Description of the adaptation map

We prove the following theorem.

Theorem 3.3.1. In the case I > −m(b) and under the condition 3.1.2, the adaptation
map satisfies the following properties (see figure Fig.3.9):

• It is increasing on (−∞,w∗] and decreasing on [w∗,∞),

• For all w < w∗∗ we have Φ(w)≥ w + d≥w,

• Φ is regular (at least continuously differentiable),

• It is concave for w < w∗,

• It has a unique fixed point in R,

• It has a horizontal asymptote (plateau) when w→+∞

This theorem is important to understand the main properties of the adaptation

sequence (wn)n≥0 starting from a given initial condition w0 ∈D defined by:

wn+1 = Φ(wn) n≥ 0 (3.10)

These properties would be straightforward if we had a spiking threshold, the only

technical intricacy is the fact that the spike occurs when the membrane potential

blows up.

Proof. The proof of this theorem is mainly based on a characterization of the orbits in

the phase plane, given by equations (3.4) and (3.8). Using these equations, the orbit

of the system with initial condition (vr,w0) in the spiking zone (i.e. w0 ≤ w∗) can be
written as:

W̃ (u;w0) = w0−
∫ 1

u
g(s,W̃ (s,w0))ds. (3.11)

We have in particular

Φ(w0) = lim
u→0

W̃ (u,w0)+ d. (3.12)

• Monotony: Let w1(0) < w2(0) ≤ w∗. The orbits (v1(t),w1(t)) having initial condi-
tion (vr,w1(0)) at time t = 0 and (v2(t),w2(t)) having initial condition (vr,w2(0)) at
time t = 0will never cross because of Cauchy-Lipschitz theorem. Since they both
are in the center or in the spiking zone of diagram 3.7(a), they satisfy equation

(3.4) and since they do not cross, we will always have W̃1(v) ≤ W̃2(v), and thus
Φ(w1(0))≤Φ(w2(0)).
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Figure 3.9: The adaptation map Φ in the case of the quartic model for I > −m(b) (no-
fixed point). The blue line corresponds to the map Φ, the red line to the identity map
and the black line localizes w∗. We represent on this diagram the main properties of
Φ stated in theorem 3.3.1 (w∗∗ is smaller than −1 in this case and does not appear in
this plot.)

Let us now assume that w∗ ≤ w1(0) < w2(0). In that case, the initial condition is
in the up zone of diagram 3.7(a). In this zone, we have seen that both variables v
and w decrease. The orbit enters in finite time the center zone where v increases
and w keeps decreasing. The orbits will therefore cross one time the reset line
before spiking. This reset line is a Jordan section, and Jordan’s theorem (see

for instance [74, Chap. 9, appendix, p. 246]) implies that the solutions are

always ordered on this section, and the order of the adaptation value at the two

new crossing positions w1
1 and w1

2 is inverted, i.e. w1
2 < w1

1. By application of the

previous case, we obtain

Φ(w1(0)) = Φ(w1
1)≥Φ(w1

2) = Φ(w2(0)).

We conclude that the map Φ is increasing on (−∞,w∗] and decreasing on [w∗,∞).

• Behavior for w < w∗∗ : If w < w∗∗, then w will increase all along the trajectory,
and hence for all t smaller than the spike time ts, we have w(t)≥ w and therefore
w(ts)≥ w and hence Φ(w)≥ w + d.

• Regularity: The regularity of Φ for w < w∗ comes from the theorem of regularity
of the solution of an ordinary differential equation with respect to its initial

condition. Since in the region w < w∗ (center and spiking regions of diagram
3.7(a)) the value of F(v)−w+ I never vanishes, the orbit starting from the initial
condition (vr,w0) satisfies equations (3.4) in the plane (v,w) and equation (3.8)
in the plane (u,w). In order to apply the regularity theorem with respect to
the initial condition, we consider here equation (3.8) and check the regularity

conditions.

The function g isC∞ with respect to its two variables on (0,1]×R. We prove that

it is regular at the point u = 0. First, the map g tends to 0when u→ 0 because of
condition 3.1.2, since it is equivalent when u→ 0 to −2ab/(εu1+4/ε F(u−2/ε + vr−
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1)) which tends to 0 (F(u−2/ε +vr−1)≤ αu−4/ε−2). Furthermore it is Lipschitz on

[0,1] with respect to W̃ since the partial derivative of this function reads:

∂g

∂W̃
=

2a

εu1+2/ε
(F(u−2/ε + vr−1)−b(u−2/ε + vr−1)+ I)

(F(u−2/ε + vr−1)−W̃ + I)2

This derivative is therefore positive, and because of assumption 3.1.2 tends

to zero when u→ 0+. Therefore, this function can be extended as a continu-

ously differentiable function in the neighborhood of 0 and using the theorem of
Cauchy-Lipschitz with parameters, we conclude that the map W̃ is continuous
with respect to the initial condition.

We can obtain even more regularity, provided that we prove that the map g
has limits for its partial derivatives of higher order. The higher order partial

derivatives of g with respect to W̃ will converge to zero when u→ 0+ using the

same argument, and by induction, we can prove that this is true for all the

derivatives with respect to W̃ at u = 0+. The partial derivative with respect to u
are slightly more intricate in the general case, but in the case of the quartic and

exponential model, we can readily prove that g is C∞ in (u,W̃ ) and therefore the
theorem of Cauchy-Lipschitz with parameters implies that the map W̃ (·, ·) and
Φ(·) are C∞.

For w ≥ w∗, the orbit will turn around the point (vr,w∗). Hence Φ is the compo-
sition of the application giving the first crossing location of the orbit with the

curve {v = vr} andΦ for w < w∗. The second is continuously differentiable or even
more regular because of the latter argument, and the first one is C∞ because of

the standard theory of Poincaré applications (Cauchy-Lipschitz theorem with

parameters for the system 3.1).

• Concavity: As already stated, for w < w∗, the solution of equation (3.1) will
never cross the v nullcline, and the equation of the orbits in the phase plane
(u,W̃ ) is given by equation (3.8), whose solution can be formally written using
equation (3.11). We have:





∂g
∂W̃

= 2a
εu1+2/ε

F(u−2/ε+vr−1)−b(u−2/ε+vr−1)+I
(F(u−2/ε+vr−1)−W̃+I)2 > 0

∂ 2g
∂W̃ 2 = 4ab

εu1+2/ε
F(u−2/ε+vr−1)−b(u−2/ε+vr−1)+I

(F(u−2/ε+vr−1)−W̃+I)3 > 0
(3.13)

using the fact that F(v)−w + I > 0 and w < bv. Because of (3.8) the following
formula for the second derivative of Φ with respect to w0.

∂ 2W̃

∂w2
0

=−
∫ 1

u

∂ 2g

∂W̃ 2

(
∂W̃
∂w0

)2

+
∂g

∂W̃

∂ 2W̃

∂w2
0

,

Because of the second inequality (3.13) we have ∂ 2W̃
∂w2

0
≤−∫ 1

u
∂g
∂W̃

∂ 2W̃
∂w2

0
, and further-

more ∂ 2W̃
∂w2

0
(1,w0) = 0. Thus using Gronwall’s theorem we obtain the convexity of

the function W̃ (u, ·) for all u.

The adaptation map Φ is defined by

Φ(·) = lim
u→0

W̃ (u, ·)+ d
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Since g is at least C2 in the second variable, so is the flow (Cauchy-Lipschitz

theorem with parameters) and hence Φ has the same convexity property for
w < w∗.

• Existence and uniqueness of fixed point: Since Φ(w) ≥ w + d for all w < w∗∗ and
Φ(w) is a non-increasing function for w > w∗, we have existence of at least one
fixed point. If Φ(w∗) < w∗, then there exists a fixed point w f p ≤ w∗. Because of
the concavity property of Φ, there is no other fixed point in (−∞,w∗), and since Φ
is decreasing on (w∗,∞), it has no fixed point for w > w∗. If Φ(w∗) > w∗, the map
Φ has no fixed point for w ≤ w∗ because of the concavity of Φ and has a unique
fixed point for w > w∗ since Φ is non-increasing for w > w∗.

• Horizontal asymptote (plateau) : The principle of the proof is to show that there
exists a solution whose membrane potential diverges to −∞ when integrating
the backward equation (i.e. changing t by −t), so that the solution separates
the phase plane into two subdomains, and the orbits are trapped in one of the

two domains. In the zone above this solution, the map Φ will be decreasing and
lowerbounded, hence will converge when w→+∞.
To prove the existence of such a solution, we search for an invariant subspace

of the phase plane for the backwards dynamics (i.e for the dynamical system

(vb(t) = v(−t),wb(t) = w(−t))) below the v-nullclineN (i.e. included in the center

or spiking zones).

It is sufficient to consider domains bounded by two lines, of type:

B
def
= {(v,w) | v≤ v0,w ≤ w0 + α(v− v0)}

where the real parameters α ,v0,w0 are free.

We show that we can find real parameters (v0,w0,α) such that this domain is
invariant by the backwards dynamics and does not cross N . We will search for
non positive values of α .
First of all, for the boundary {v = v0,w≤ w0}, we want dvb

dt ≤ 0, which only means
wb ≤ w∗(v0) = F(v0)+ I.

Now we have to characterize both v0 , w0 and α such that the vector field is
flowing out of the affine boundary B. This means that 〈

( v̇
ẇ

)
|
( α
−1

)
〉 ≤ 0 where 〈·|·〉

denotes the Euclidean dot product. This condition simply reads α v̇− ẇ ≤ 0 and
has to be fulfilled on each point of the boundary, which is equivalent to:

{
Hα(v)

def
= α(F(v)−w + I)−a(bv−w)≤ 0 with

w = w0+ α(v− v0)
(3.14)

We first fix α and v0 so that B is fully included in the center or spiking zones.
This condition is achieved by taking v0 < v∗(0), the value where F achieves its
minimum, and limv→−∞ F ′(v) < α < F ′(v0) < 0. Because of the convexity assump-
tion and the fact that the limit of the derivative of F at −∞ is strictly negative,
there exists Fmin such that for all v ∈ R we have F(v) ≥ Fmin. We have on the

boundary of the domain:

Hα(v)≤ α (Fmin−w + I)−a(bv−w)

≤ α(Fmin−α(v− v0)−w0+ I)−a(b(v− v0)−α(v− v0)+ bv0−w0)

≤ (v− v0){−α2−ab+ αa}+{−αw0+ αI + αFmin−abv0 + aw0}
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Therefore the lefthand term of condition (3.14) is bounded by an affine function

of v. The slope coefficient is negative. Therefore a sufficient condition for (3.14)
to be satisfied is that the second term is negative. This affine term reads:

(a−α)w0+ αI + αFmin−abv0

and hence involves a term proportional to w0 with a positive coefficient, and w0

is the last free parameter of the boundary. Choosing a large negative value for

w0 solves the problem.

We have defined a domain B on the boundary of which the vector field flows
outwards, and hence the backward equation’s vector field flows inwards this

zone. Therefore, B is flow invariant for the backward solution, and every solu-
tion having its initial condition in this zone does not cross the nullcline, hence

goes to infinity with a speed lowerbounded by the minimal distance between le

nullcline andB.

We have proved that there is an orbit such that the membrane potential of the

backward solution goes to −∞, and whose forward solution spikes (since the
initial condition in the spiking zone). This solution necessarily crosses the line

{v = vr}; denote wL the value of w at this intersection. This solution splits the
phase space in two subspaces which do not communicate: every orbit starting

in one of the two subspaces will stay in this subspace by application of Cauchy-

Lipschitz theorem. Hence for all w > w∗, Φ(w) ≥ Φ(wL), hence Φ is decreasing
and lowerbounded, hence converges to a finite value when w→+∞ and its graph
presents an horizontal asymptote.

We characterized the shape of the adaptation map in the case where the sub-

threshold system has no fixed point. In this case, the spiking will necessarily be

of tonic type, i.e. the neuron will fire infinitely many spikes (this will be the case

whenever Φ(D) ⊂ D ). Since the system has a tonic spiking behavior, the study of
the adaptation sequence of iterations of Φ provides a good way to understand the
different tonic spiking patterns observed in these models.

3.3.2 Regular spiking

As observed numerically in the previous chapter, and as we can see in figure 3.10, the

regular spiking is linked with the presence in the hybrid system of a generalized limit

cycle, the regular spiking limit cycle, virtually containing one point having an infinite

value of the membrane potential. From a mathematical point of view, this property

simply corresponds to the convergence of the adaptation sequence (3.10). Indeed, if

this sequence converges, then the frequency of the spikes will also converge1.

Since we do not have closed form expressions for the map Φ, we provide here
sufficient conditions on the dynamics of Φ leading to a regular spiking behavior.
1If the adaptation sequence does not converge, the only way for the neuron to fire spikes regularly

corresponds to the case where the sequence jumps between points corresponding to the same spike

time. This occurs when the ISI map T is not one-to-one. In that particular case, there is necessarily

a point lower than w∗ which corresponds to a sharp after-potential and the a point greater than w∗

corresponding to a broad after potential, and the sequence will then be considered as a regular bursting

from a biophysical point of view as well as from our mathematical point of view.
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Figure 3.10: Spiking generalized limit cycle, case of the quartic model. In the simu-

lation, we have cut the trajectories to a given threshold. Threshold has been taken

large enough to ensure we simulate the intrinsic system. Green dotted curves rep-

resent the nullclines, the red circles the sequence of reset positions, the solid black

curves the orbit of the solution of the differential equation and the dotted lines the

reset.

Theorem 3.3.2. Assume that Φ(w∗) ≤ w∗. Then the adaptation sequence (3.10) con-
verges for any initial condition.

Proof. First of all we note that the interval (−∞,w∗] is stable under Φ. Indeed, Φ is
increasing on this interval, therefore for all w∈ (−∞,w∗], Φ(w)≤Φ(w∗)≤w∗. Similarly,
we necessarily have w∗∗ < w∗, since theorem 3.3.1 ensures us that for all w < w∗∗ we
have Φ(w) > w, and the interval [w∗∗,w∗] is invariant under Φ since w∗∗ ≤ Φ(w∗∗) ≤
Φ(w∗)≤ w∗. Therefore, the fixed point of Φ is contained in this interval.
Moreover Φ maps the interval [w∗,∞) on the interval (−∞,Φ(w∗)] since Φ is de-

creasing on this interval, and therefore for all w ∈ [w∗,∞), we have Φ(w)≤Φ(w∗)≤ w∗.
Therefore, is is sufficient to prove that the sequence of iterates of Φ converges on
(−∞,w∗].
For w0 ∈ [w∗∗,w∗], the sequence (wn)n≥0 is a monotonous sequence (since Φ is in-

creasing on this interval) in a compact set, and hence will necessarily converge to the

unique fixed point of Φ.
If w0 < w∗∗ then Φ(wn) ≥ wn + d while wn ≤ w∗∗ and hence there exists an index N

such that w∗∗ ≤ wN ≤ w∗, and the previous result applies and gives us the convergence
of the sequence.

We conclude therefore that for any initial condition w≤ w∗ the sequence converges
to the unique fixed point of Φ, and since Φ maps the interval [w∗,∞) on (−∞,w∗], for
any initial condition in this interval, the sequence (3.10) will converge to the fixed

point of Φ.

The following theorem provides a sufficient condition on the map Φ to get regular
spiking or bursts of period two.

Theorem 3.3.3. Assume that Φ(w∗) ≥ w∗ and Φ2(w∗) ≥ w∗. Then the adaptation se-
quence either converges to the fixed point of Φ or to a period two cycle.
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Figure 3.11: Regular spiking. The different transient phases (initially bursting, spike

frequency adaptation) are linked with the relative position of the fixed point with

respect to w∗.

Proof. Let w0 be a given initial condition for the sequence (3.10). Necessarily this

sequence (wn) will enter the interval [w∗,Φ(w∗)] after a finite number of iterations.
Indeed, assume that w0 < w∗. Since there is no fixed point in (−∞,w∗), Φ is increasing
and Φ(w) ≥ w in this interval, the sequence cannot be upperbounded by w∗. Hence
there will be an integer p such that Φp(w0) ≤ w∗ and Φp+1(w0) ≥ w∗. Then because of
the monotony of Φ on (−∞,w∗) we have Φp+1(w0) ≤ Φ(w∗). Thus wp+1 ∈ [w∗,Φ(w∗)]. If
w0 > w∗, because of the monotony of Φ on (w∗,∞) we have Φ(w0)≤Φ(w∗) and hence the
sequence will enter the interval [w∗,Φ(w∗)] after a finite number of iterations.
Moreover, the interval [w∗,Φ(w∗)] is stable under Φ, since Φ is decreasing on this

interval, and

Φ([w∗,Φ(w∗)]) = [Φ2(w∗),Φ(w∗)]⊂ [w∗,Φ(w∗)].

Let w ∈ [w∗,Φ(w∗)] and wn = Φn(w) the related adaptation sequence. Since Φ2 is

increasing on this invariant bounded interval, the sequences (w2n) and (w2n+1) are
monotonous and both converge to a fixed point of Φ2, hence (wn) either converges to
a fixed point of Φ or to a periodic orbit of period two depending on the stability of the
fixed point.

We have identified two simple sufficient conditions on Φ to obtain a regular spik-
ing behavior. These criteria are not directly related to the parameters of the model,

but they will be useful in order to describe mathematically the dependency with re-

spect to the parameters as done in section 3.3.4. They can also be used in numerical

simulations to compute the zones of parameters corresponding to this regular spiking

behavior, as we do in section 3.5.2.

This analysis accounts for the stationary spiking behavior as well as for the tran-

sient phase, i.e. before the convergence of the sequence. In the spike patterns anal-

ysis, we generally distinguish between two types of regular spiking: the spike fre-

quency adaptation that corresponds to the case where the spike frequency smoothly

converges to its stationary value, and initial bursting mode (or mixed mode) where

the neuron transiently fires a burst before spiking regularly. From the biological

point of view, the distinction between these behaviors is not so clear, and we can con-

tinuously go from one behavior to the other. Mathematically, the difference between
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Figure 3.12: Bursting generalized limit cycle. Trajectories are cut to a given threshold

high enough to approximate the behavior of the system with explosion. The red curve

corresponds to the bursting limit cycle, and the red circles the reset locations on

this cycle. The black trajectory is the transient phase, and the green dotted curves

correspond to the nullclines of the system.

these two behaviors corresponds to the value of the fixed point of the adaptation map.

Indeed, assume that the fixed point of the map Φ is smaller than w∗. In this case,
when the sequence will converge towards the fixed point, the value of the adaptation

sequence will always be smaller than w∗, and the orbit will present a sharp after
potential. The interspike interval in this zone is quite smooth and therefore the con-

vergence towards the fixed point will result in the smooth adaptation of the spike

frequency. If the fixed point is greater than w∗, when we apply a current step to the
system, it will fire spikes with a sharp after-potential before converging to the fixed

point where the system will present a broad after potential, therefore the system will

present a typical transient phase corresponding to the initial bursting mode.

We conclude that if the neuron satisfies theorem 3.3.2, it will be in an adapting

mode, and if not, it will be in an initial bursting mode. This criterion predicts the

results numerically obtained by Naud and collaborators [203], as discussed in more

details in section 3.5.2.

3.3.3 Tonic Bursting

As observed numerically in the previous chapter and as we can see in figure 3.12,

the bursting activity is linked with the existence of a generalized limit cycle of the

hybrid system, the bursting limit cycle, virtually containing a few points having an

infinite membrane potential. The regular bursting behavior, whatever the transient

behavior, is related to the presence of such a cycle, and this cycle corresponds exactly

to periodic orbits for the adaptation map Φ.
We can provide a condition for having cycles of any period. Indeed, one of the

simplest application of Sarkovskii’s theorem (see e.g. [70]) is that if there exists a

periodic point of period 3, then there exist periodic points of any period, hence bursts

with any number of spikes per burst. Theorem 3.3.4 provides a simple criterion on Φ
to have a period 3 cycle.
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Theorem 3.3.4 (Cycles of any period). Let w1
def
= min{Φ−1(w∗)}. Assume that:





Φ(w∗) > w∗

Φ2(w∗) < w1

Φ3(w∗) > w∗
(3.15)

Then there exists a non-trivial period 3 cycle, hence the reset process has cycles of any

period.

Proof. The only thing to prove is that there exists a point x ∈ R such that

{
Φ3(x) = x

Φ(x) 6= x

We know that there exists a unique fixed point of Φ, which we denote w f p and which

lies in the interval [w∗,Φ(w∗)]. Here we prove that there exists another solution of
Φ3(x) = x. Indeed, let us describe the function Φ3:

• It is increasing on (−∞,w2) where w2 = min{Φ−2(w∗)}, and Φ3(w) > w on this in-
terval by concavity

• decreasing on (w2,w1) and Φ3(w1) = Φ2(w∗) < w1 hence the curve crosses once the

curve y = x, at a point strictly lower than w∗.

Hence we proved that there exists a period 3 cycle. Sarkovskii’s theorem (see e.g.

[70]) ensures us that there are cycles of any period for the map Φ .

Remark 9. This theorem gives us a simple condition on Φ to get period 3 cycles.
This implies that the system has periodic points of any period, but also that it has

an uncountable number of non asymptotically periodic points, which is referred as

chaos in the paper of Li and Yorke [180]. Nevertheless this property can be rather

defined as topological chaos, and does not correspond to the usual definition of chaos

in mathematics and in neuroscience where it is understood as sensitive dependency

on the initial condition.

Simple sufficient conditions such as the ones given in theorem 3.3.4 in the case

of periodic points of period three can be provided to for cycles of any given period.

The difficulty is to prove that these conditions are satisfied, since we have no closed

form expression for the map Φ, and in this case numerical simulation is helpful.
As we will see in section 3.3.4, the system will undergo a period-adding bifurcation

structure with respect to the reset value of the membrane potential, and therefore

bursts of many periods will be observed.

3.3.4 Dependency on the parameters

We have seen that in the case where the subthreshold dynamics has no fixed point,

the spike patterns produced can correspond to tonic spiking or tonic bursting depend-

ing on the parameters of the system. The question we address in this section is to

characterize the dependency of the spike patterns with respect to the parameters of

the model, and the bifurcations from one behavior to the other.
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Figure 3.13: Bursting in the quartic model: bursts with different number of spike per

bursts and related periodic orbit of Φ.

Bifurcations with respect to the spike-triggered adaptation parameter

The parameter having the simplest effect on the dynamics is the spike-triggered

adaptation parameter d: it simply shifts vertically (i.e. along the y-axis) the adap-
tation map, and does not modify its shape. This simple behavior allows us to under-

stand qualitatively the changes in the behavior of the adaptation sequence.

First of all, note that the unique fixed point of the map Φ is an increasing function
of the spike-triggered adaptation d. We denote it w f p(d).

If the adaptation map is globally contracting (i.e. maxv∈R |Φ′(v)| < 1), we will not
observe bifurcations in the parameter d, and the sequence will always converge to the
unique fixed point.

If the map is not globally contracting, bifurcations can appear with respect to

the parameter d. Denote by I1 the set of w ∈ R such that |Φ′(w)| > 1. This set is a
bounded closed set included in [w∗,∞), because of the convexity property of Φ and the
presence of the plateau. Indeed, if w f p < w∗, then since Φ is increasing we would have
0 < Φ′(w f p) < 1. Furthermore, because of the plateau region, we have Φ′(w f p(d))→ 0
when d→ ∞. As stated, since the shape of Φ does not depend on d, neither does I1.

If w f p(0) > max{I1}, then the fixed point of the system is always stable for all d > 0
and there is no bifurcation in d.
If w f p(0) ∈ I1, we denote by d1 = inf{d > 0;w f p(d) 6∈ I1}. The fixed point will be

unstable and the neuron will be bursting or chaotically spiking while d < d1, and for

d > d1, the fixed point becomes stable and the neuron will fire regularly. At the point

where d = d1, the fixed point has a multiplier equal to −1 because of the negativity
and continuity of the derivative, and the map undergoes a non-generic doubling bi-

furcation. The transversality condition (see e.g. [167, section 4.5]) is never satisfied

since we have ∂Φ
∂d ≡ 1 (see equation (3.12)) and hence ∂ 2Φ

∂w∂d ≡ 0.
If w f p(0) < min{I1}, we similarly define d1 = inf{d > 0,w f p(d)∈I1} and d2 = sup{d ≥

d1,w f p(d) ∈ I1}. The system will undergo a degenerate period doubling bifurcation
at the point w f p(d1) for d = d1 and a period doubling bifurcation at the point w f p(d2)
for d = d2. For d ∈ (d1,d2), the system does not have a stable fixed point. It can emit
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(a) vr =−48.2mV (b) vr =−47.7mV

Figure 3.14: Orbits under Φ for different initial conditions, varying the spike-
triggered adaptation parameter d, in the case of the dimensioned Adaptive Exponen-
tial model. We can observe that for d small enough the system converges towards the
fixed point of Φ. When increasing d, as described in the text, the fixed point loses sta-
bility via a period doubling bifurcation and a cycle of period 2 appears. In the case (a)

the system presents another period doubling bifurcation for d ≈ 0.8, and then returns
to equilibrium via an inverted period doubling bifurcation. In the second simulation

for a larger value of vr , the system involves chaotic spiking patterns.

bursts, or even have a chaotic behavior in this zone (see figure 3.14).

Stabilization by the input current

The input current is a very interesting parameter, since it can be related to a bio-

physical value that can be controlled in in vitro experiments. Moreover, the set of

input currents such that the system has no fixed point has a very simple shape, cor-

responding to the semi-infinite interval (−m(b),∞).

Interestingly, we prove that increasing the input current has a stabilizing effect

on the behavior of the neuron: we prove in theorem 3.3.5 that for I large enough the
adaptation sequence always converges to a fixed point.

Theorem 3.3.5. Let the parameters a, b, vr, d be fixed. There exists Is such that for all

I > Is all orbits under Φ converges.

Proof. The proof of this theorem is based on the changes induced by increasing the

current around the point (vr,w∗). We prove that increasing I enough will make the
system satisfy the hypothesis of theorem 3.3.2.

The point w∗ depends on I, and therefore we denote it w∗(I) in this proof for the
sake of clarity. We change variables and consider ŵ = w− I. The change of variables
maps w∗ to ŵ∗ = F(vr). The equations satisfied by (v, ŵ) are readily deduced from the
original system, the new adaptation map can be written as:

Φ̂(ŵ) = Φ(ŵ + I)− I,

and the condition of theorem 3.3.2 simply reads Φ̂(ŵ∗)≤ ŵ∗.
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The equation of the trajectory in the phase plane (v, ŵ) for any initial condition in
the spiking zone can be parametrized as a function of v: ŵ(t) = Ŵ (v(t),v0,w0, I), where
Ŵ satisfies the equation:

{
∂Ŵ
∂v = a(bv−Ŵ )

F(v)−Ŵ
− aI

F(v)−Ŵ

def
= ĝ(v,Ŵ , I)

Ŵ (v0,v0,w0, I) = w0

Let I0 > −m(b) a fixed current, δ > 0 a given real and ∆ = d + 1 where d is the
spike-triggered adaptation parameter. Because of the shape of the vector field, the

trajectories with initial condition (vr,w∗) can be parameterized as a function of v with
a singularity at v = vr. We consider the trajectories on the interval [vr,vr + δ ], and we
prove that the infimum of the variable Ŵ with initial condition (vr, ŵ∗), for I ≥ I0 and
v ∈ [vr,vr + δ ] is smaller than F(vr)−∆.
To this end, let us characterize the orbits starting from this point (vr, ŵ∗) as a func-

tion of the input current I. First of all, it is clear using Gronwall’s theorem that I 7→
Ŵ (v,vr, ŵ∗, I) is decreasing. Therefore we have Ŵ (vr + δ

2 ,vr, ŵ∗, I)≤ Ŵ (vr + δ
2 ,vr, ŵ∗, I0)

def
=

ŵ0 and hence Ŵ (vr + δ ,vr, ŵ∗, I)≤ Ŵ (vr + δ ,vr + δ
2 , ŵ0, I).

Assume now that the infimumof Ŵ for all v∈ [vr +
δ
2 ,vr +δ ] is greater than F(vr)−∆.

We have:

ĝ(v,Ŵ , I)− ĝ(v,Ŵ , I0) =− a(I− I0)

F(v)−Ŵ

and hence:

Ŵ ≥ F(vr)−∆
F(v) ≤ max

v∈[vr ,vr+δ ]
F(v)

F(v)−Ŵ ≤ max
v∈[vr ,vr+δ ]

F(v)−F(vr)+ ∆

1

F(v)−Ŵ
≥ 1

maxv∈[vr ,vr+δ ] F(v)−F(vr)+ ∆

− a(I− I0)

F(v)−Ŵ
≤− a(I− I0)

maxv∈[vr ,vr+δ ] F(v)−F(vr)+ ∆

which is constant and strictly negative. Therefore, using Gronwall’s theorem, we

have

Ŵ (vr + δ ,vr, ŵ
∗, I)−Ŵ (vr + δ ,vr, ŵ

∗, I0)≤−
a(I− I0)δ

maxv∈[vr ,vr+δ ] F(v)−F(vr)−∆

Therefore there exists I1 such that for all I > I1, we have minv∈[vr ,vr+δ ]Ŵ (v) < F(vr)−
∆. This contradicts the assumption that the infimum of Ŵ for all v ∈ [vr + δ

2 ,vr + δ ]
is greater than F(vr)− ∆. Hence there exists I1 such that for all I > I1, we have
minv∈[vr ,vr+δ ]Ŵ (v) < F(vr)−∆, which means in particular minvW (v) < F(vr)+ I−∆. This
minimal value is reached when the trajectory crosses the w-nullcline, and denote by
v1 the value of the variable v at this crossing time. We have, for all I > I1:
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Φ(w∗(I)) = lim
v→∞

W (v)+ d

= W (v1)+
∫ ∞

v1

a(bv−W )

F(v)−W + I
dv+ d

Moreover, we haveW (v)≥ bvr for all v andW (v) ≤ bv for v≥ v1. Therefore, we have:

∫ ∞

v1

a(bv−W )

F(v)−W + I
dv≤

∫ ∞

v1

ab(v− vr)

F(v)−bv+ I
dv.

The integrand is positive between vr and v1, hence we have in particular:

Φ(w∗(I))≤ F(vr)+ I−∆ + d +

∫ ∞

vr

ab(v− vr)

F(v)−bv+ I
dv

= F(vr)+ I−1+

∫ ∞

vr

ab(v− vr)

F(v)−bv+ I
dv

The integrand tends to zero when I→∞ and is bounded by an integrable function (for
instance the same function with I = I0), hence by Lebesgue’s theorem tends to 0when
I → ∞. Therefore, there exists Is > I0 such that for all I > Is, the integral is strictly

smaller than 1, and therefore:

Φ(w∗(I))≤ F(vr)+ I = w∗(I).

Hence theorem 3.3.2 applies, which ends the proof.

Therefore, we can see that increasing the input current has a stabilizing effect

on the dynamics. We present in figure 3.15 some numerical results illustrating this

stabilization effect in the case of the exponential integrate-and-fire model. We observe

for two different values of vr that the system undergoes bifurcations with respect to

the input current, sometimes involving chaotic spiking, but above a given value of the

input current, the system spikes regularly, and the adaptation sequence converges

towards its fixed point. Moreover, we have seen in the proof that when I ≥ Is, theorem

3.3.2 applies. Hence for I large enough, the system will present a spike frequency
adaptation transient phase. Decreasing it will make the system switch to the case

where there are two fixed points treated in section 3.4.

Cascade of period adding bifurcations and chaos with respect to vr

Another parameter preserving the number of fixed point is the reset value of mem-

brane potential vr. The dependency of the adaptation map with respect to this param-

eter is very intricate. The effect of increasing the reset value sharpens the adapta-

tion map, and therefore can destabilize the possible stable fixed point or stable cycles.

This qualitative observation is confirmed by numerical simulations. In the case of the

exponential model, for vr small enough, the adaptation map is smooth, because the

slope of the exponential function for small v values tends to zero. But in the case of
the quartic model, decreasing vr also sharpens F because of the fast divergence of the
quartic function.

We provide in figure 3.16 a graph of the stationary adaptation sequence (i.e. re-

moving the transient phase) as a function of the reset voltage vr corresponding to the
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(a) d = 0.1nA (b) d = 0.5nA

Figure 3.15: Orbits under Φ when varying the input current I in the case of the
dimensioned Adaptive Exponential model. (a): Small vr, the dynamics only presents a

loss of stability via period doubling and then returns to equilibrium. (b): greater value

of vr: a period two cycle appears at the saddle-node current, immediately followed by

a period 3 cycle, then via period-adding bifurcation the system returns to a period

two cycle, and then by period doubling bifurcation to regular spiking. The transition

from period three to period two shows a chaotic behavior.

quartic model. A similar diagram was given in the case of the adaptive exponential

model in [258]. We observe that the system present sharp transitions from rest (reg-

ular spiking) to cycles of period two (bursts with two spikes per burst) via a period

doubling bifurcation, and from cycles of period n to cycles of period n+1 for n ≥ 2 via
period adding bifurcations involving chaotic spiking regions.

3.3.5 Multistability

In section 3.3.2, we gave a sufficient condition on the map Φ for the convergence
of the sequence (3.10) to the fixed point of Φ whatever the initial condition, which
implies that the fixed point of Φ is stable and that its attraction basin is equal to R.

Nevertheless, in the case where the map Φ is not globally contracting, multistable
behaviors could appear, corresponding to the coexistence of stable spiking orbits.

The study of periodic orbits is quite intricate in general systems, and this study

in our case is even more complex since we do not have a closed form for the map Φ.
We nevertheless observe numerically that cases of this type do not seem to occur:

the stationary behavior of the adaptation sequence is the same whatever the initial

condition.

3.4 EXISTENCE OF FIXED POINTS

In the case where I < −m(b), the system has two fixed points, one of which is
always a saddle fixed point. We already studied in section 3.2 the stable manifold

of this saddle fixed point (SMSFP) and explained in the cases where there exist SAs

(fixed points or periodic orbit) how this manifold shaped the related attraction basin.

This stable manifold is essential for characterizing the definition domain and the
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Figure 3.16: The period adding bifurcation cascade in the adaptation sequence for the

quartic model, a = 0.03, b = 0.7, d = 1.15, and vr ∈ [0,2], and a zoom on the transitions
from period 2 to period 3 and period 3 to period 4. The same phenomenon appears in

the adaptive exponential model, see [258].

the dynamics of Φ. The map Φ will only be defined for values of w such that (vr,w) is
neither in the attraction basin of the possible SA nor on the SMSFP. We will study

different cases in function of the topology of the intersection of the reset line with

these sets, and mainly distinguish the cases where there is no intersection, finitely or

countably many intersections or a continuous uncountable set of intersections.

3.4.1 Unconditional tonic behaviors

We are first interested in the cases where the reset line {v = vr} neither crosses the
SMSFP nor the attraction basin of the possible SA. We know that the SMSFP is the

graph of an unbounded increasing function of v for v ≥ v+ where v+ is the greatest

fixed point of the system. The cases where the SMSFP do not cross the reset line

necessarily correspond to the cases where the stable manifold is included in a half

plane {v≥ vmin}. This corresponds to the cases where:

• the subthreshold system has two unstable fixed points and no stable limit cycle
(Figs. 3.6(a) and 3.6(b)).

• an unstable limit cycle circles the stable fixed point (Fig. 3.5(a))

• the stable manifold crosses both nullclines (Fig. 3.5(b)).

In these cases, for all vr ≤ vmin, the reset line does not intersect the SMSFP nor any

possible attraction basin. Therefore, the adaptation map Φ is defined on R and the

proof of theorem 3.3.1 readily extends to this case. Hence in these cases Φ is a regular
map increasing and concave on (−∞,w∗] and decreasing on [w∗,∞), having a unique
fixed point, a horizontal asymptote at infinity and such that Φ(w) ≥ w + d for all w ≤
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w∗∗. Since the map Φ is defined on R (and therefore Φ(D) ⊂ D), if the neuron fires a
spike, then it will fire infinitely many spikes. In that case, the map satisfies the same

properties as when the subthreshold system has no fixed point, and theorems 3.3.2,

3.3.3 and 3.3.4 apply.

3.4.2 Phasic behaviors

In this section, we consider the cases where the reset line intersects the attraction

basinB of SA and denote by C the SMSFP. The set of adaptation values on the reset
line that do not lead the system to fire is given by:

A = {w ∈R ; (vr,w) ∈B or (vr,w) ∈ C } .

The definition domain of the adaptation map in this case is

D = R\A ,

the set of initial conditions corresponding to a phasic spiking (i.e. emission of a finite

number of spikes) is given by

P =
∞⋃

n=0

Φ−n(A )

and the complement of this set corresponds to the tonic spiking cases.

To study further the behavior of the system in this case, we discuss different cases

depending on the shape of the stable manifold and the position of vr with respect to

the fixed point v+. Interestingly, the shape of the stable manifold only depends on the

parameters of the subthreshold system.

3.4.3 The stable manifold Γ− does not cross the v-nullcline

We first consider the case where the manifold Γ− does not cross the v-nullcline. We
distinguish two cases depending on wether vr ≤ v+ or not.

Proposition 3.4.1. If the manifold Γ− does not cross the v-nullcline and vr > v+,

the manifold Γ+ separating the spiking and non-spiking regions is the graph of an

increasing function of v, and is above the two nullclines. The definition domain D of
the adaptation map Φ is an open interval (−∞,wmax(vr)) with wmax(vr) > w∗(> w∗∗). We

denote Φ(wmax(vr)
−)

def
= lim

w→wmax(vr)
Φ(w) the left limit of Φ at the point wmax(vr). We have:

• If Φ(wmax(vr)
−) > wmax(vr) the system fires finitely many spikes whatever the

initial condition in D ,

• If Φ(wmax(vr)
−) < wmax(vr) and Φ(w∗) < wmax(vr) the system fires infinitely many

spikes whatever the initial condition in D ,

• Else, the system will either fire finitely or inifinitely many spikes depending on
the initial condition.

Proof. First of all, we note that Φ satisfies the same properties on D as the one given
in theorem 3.3.1. The shape of the domain D is readily deduced from the shape of the
separatrix.
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• In the case where Φ(wmax(vr)
−) > wmax(vr) (see figure 3.18(d)) there exists a real

ε > 0 such that Φ(w)−w ≥ ε for all w ∈ D . Indeed, because of the monotony
of Φ on (w∗,wmax(vr)) we have for all w in this interval Φ(w) ≥ Φ(wmax(vr)

−) >
wmax(vr)≥ w and because of the convexity property of Φ and the fact that Φ(w)≥
w + d for all w ≤ w∗∗, the distance between Φ and the identity map is lower-
bounded. Hence Φ(w)≥ w+ε , and there exists N > 0 such that ΦN(w)≥ wmax(vr),
thus the system has a phasic spiking behavior (see figure 3.18(g)).

• In the case whereΦ(wmax(vr)
−)< wmax(vr) andΦ(w∗)< wmax(vr) (see figure 3.18(c)),

then we have Φ(D) ⊂D , since the maximum of the map Φ is reached at w∗, and
therefore the system will fire infinitely many spikes. Depending on the proper-

ties of the map Φ and of its fixed point, the system can either spike regularly
(when the fixed point is stable), generate bursting or chaotic spike patterns. Fig-

ure 3.18(g) corresponds to this case when the fixed point is stable and generates

a regular spiking behavior.

• In the case where Φ(w∗) ≥ wmax(vr), we do not have Φ(D) ⊂ D . In this case, D
can be split into two different sets that can have quite intricate shapes: a set

of values of the adaptation variable where the neuron fires finite many spikes

and a set where the neuron fires infinitely many spikes. To study these sets, we

define

P1 = {w ∈D ; Φ(w)≥ wmax(vr)}

This set corresponds to the set of adaptation values w such that Φ(w) 6∈ D and
hence that will fire one spike and then return to a subthreshold stable orbit.

We then define recursively the set Pn+1 = Φ−1(Pn) of initial conditions such that
the neuron will fire exactly n+1 spikes before being attracted by the stable sub-
threshold orbit. The set of phasic spiking initial conditions is therefore defined

by

P =
∞⋃

n=1

Pn,

and the set of tonic spiking is D \P. In figure 3.17 we represented the construc-
tion of these two sets until T3, and we observe the complexity of the set we will

obtain. If the fixed point is stable, both the tonic spiking and the phasic spik-

ing sets will be a countable union of non-empty intervals, and the adaptation

sequence will jump from one interval to the other until reaching the attrac-

tion basin of the fixed point of Φ, where they keep trapped. If the fixed point is
unstable, the tonic spiking set will be countable, defined by the union of the con-

secutive reciprocal images of the unstable fixed point under Φ . Therefore the
neuron will not present cycles. In this case, the behavior of Φ strongly depends
on the initial condition.

Proposition 3.4.2. If vr ≤ v+ and Γ− does not cross the v-nullcline, the definition
domain D is an open interval (−∞,wmax(vr)) with wmax(vr) ≤ w∗. The neuron fires
infinitely many spikes if and only if Φ(wmax(vr)

−) ≤ wmax(vr). In this case the neuron
is in a regular spiking mode with spike frequency adaptation.
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Figure 3.17: Construction of the phasic spiking set in the case of an unbounded sep-

aratrix when Φ(w∗) > wmax, for three iterations. The red curve is the map Φ and the
black line the first bissector. The green construction line correspond to the contribu-

tion of the set T2 for w > w∗ to T3.

Proof. If vr ≤ v+ and Γ− does not cross the v-nullcline, it is clear that the definition
domainD of the adaptation map Φ an open interval (−∞,wmax(vr)) where wmax(vr)≤w∗

is the value of the adaptation variable at the intersection point of the reset line with

Γ−. The maximal value of Φ on its definition domain is given by Φ(wmax(vr)
−).

• if Φ(wmax(vr)
−) ≤ wmax(vr), then we have Φ(D) ⊂ D and hence the system is al-

ways in a regular spiking mode if it fires one spike. Moreover, the proof of

theorem 3.3.2 readily extends to the present case and therefore the system will

be in a regular spiking mode with spike frequency adaptation.

• If Φ(wmax(vr)
−) > wmax, because of the convexity property (which can be proved in

exactly the same way as in theorem 3.3.1), there exists ε > 0 such thatΦ(w)−w≥
ε and therefore the system will return to rest after firing finitely many spikes.

In the case where Γ− intersects no nullcline (e.g. in the case of figure 3.18(a)), we
will have wmax(vr) ≤ w∗∗ and hence Φ(wmax(vr)

−) ≥ wmax(vr)+ d, hence the system will
always be in a phasic spiking mode. In the tonic spiking cases of propositions 3.4.1

and 3.4.2 the system presents a bistable behavior: a stable subthreshold behavior

and a stable spiking one coexist.

The stable manifold Γ− crosses the v-nullcline

If the stable manifold crosses the v-nullcline as in figure 3.5(b), then there exists
vmin ≤ v− such that the SMSFP is included in the half plane {v ≥ vmin}. For each
v≤ vmin, we have D = R and the results of section 3.4.1 apply. For v≥ vmin, the spiking

behavior of the system satisfies the following:
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(a) Unbounded separatrix crossing no nullcline

(b) Adaptation map for vr = vr1 (c) Adaptation map for vr = vr2
and d = d1

(d) Adaptation map for vr = vr2
and d = d2

(e) Trace of v for v = vr1 (f) Trace of v for v = vr2 and d =
d1

(g) Trace of v for v = vr2 and d =
d2

Figure 3.18: Case of an unbounded separatrix: unconditional phasic behavior for

v < v−. In the case v > v+, the behavior can either be phasic or tonic depending on

the parameters of the system. It can also depend on the initial condition. Case of

the adaptive exponential model, original parameters, a = .2gL and τw = τm/3, d1 =
0.01nA and d2 = 3nA. We chose vr1 = −70.6mV (value of the original model) and vr2 =
−36mV which is unrealistically high for biological applications, and results in very
fast spiking behaviors as in the case of figure (f).
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(a) Tonic spiking case (b) Phasic spiking case

(c) Dependency on initial condition

Figure 3.19: Case where the SMSFP crosses the v-nullcline, in the case of the quartic
model, a = 1, b = 2.5, I =−0.5, vr = 0 and different values of d. (a): Tonic spiking mode,
the adaptation sequence converges towards the fixed point of Φ. (b): Phasic spiking
mode: for any initial condition the adaptation sequence will enter the zone [wmin,wmax]
and the neuron stops firing. (c): the spiking behavior is tonic or phasic depending on

the initial condition. The blue boxes represent the zones of initial conditions related

to a phasic behavior with zero or one spikes emitted.

Proposition 3.4.3. For v ≥ vmin, the reset line intersects the attraction basin on a

bounded interval (wmin(vr),wmax(vr)) and the definition domain of the adaptation map
is the union of two semi-infinite intervals:

D = (−∞,wmin(vr))∪ (wmax(vr),∞)
def
= I1∪I2.

The spiking pattern satisfies the following classification (see figure 3.19):

• If supw∈I1
Φ(w) ∈ [wmin(vr),wmax(vr)], the system fires finitely many spikes

• If supw∈I1
Φ(w) < wmin(vr), the system fires infinitely many spikes. If vr ≤ v+, the

system presents regular spiking with spike frequency adaptation.

• If supw∈I1
Φ(w) > wmax(vr), the system fires finitely or infinitely many spikes de-

pending on the initial condition.

Proof. The shape of the domain D is a direct consequence of the assumption on Γ−.
First of all, we note that any orbit starting from (vr,w) with w ∈I2 will cross the reset

line on I1 after a finite time, and therefore we have Φ(I2)⊂Φ(I1).

• If supw∈I1
Φ(w) ∈ [wmin(vr),wmax(vr)] (see figure 3.19(a)), then there exists ε > 0

such that supw∈I1
Φ(w)−w≥ ε and therefore any orbit will exit D and enter the
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subthreshold orbits set after firing few spikes. For any initial condition w ∈I2

we have Φ(w)⊂Φ(I1) and therefore either Φ(w) is in the attraction basin of the
subthreshold equilibrium, or it is in I1 and the above analysis applies and the

system is in a phasic spiking mode.

• If supw∈I1
Φ(w) < wmin(vr) (see figure 3.19(b)), then necessarily Φ(I1) ⊂ I1 and

the map Φ has a fixed point in I1. Furthermore, we have Φ(D) ⊂I1 and there-

fore the system will be in a tonic spiking behavior. If vr ≤ v+, we have wmin < w∗,
the fixed point is attracting and for any initial condition the adaptation se-

quences converge to this fixed point (see proof of theorem 3.3.2). Moreover in

that case the transient phase is characterized by spike frequency adaptation.

If vr > v+, the type of tonic spiking depends on the properties of the map, the

system is in a regular spiking mode with initial bursting, a bursting mode or a

chaotic spiking mode.

• If supw∈I1
Φ(w) > wmax(vr) (see figure 3.19(c)), then there exists an interval J ⊂D

such that all the trajectory with initial condition (vr,w)with w∈ J will stop firing
after one spike. We can build the phasic and the tonic subspaces ofD recursively
as done in the previous case. The shape of this set can be quite complex, and

the behavior of the adaptation sequence depends on the initial condition on this

set.

Bounded attraction basin

In the case where the attraction basin of the SA is delineated by a periodic orbit, we

denote by vmin the minimal value of the membrane voltage on the cycle and by vmax

its maximal value. The behavior of the system for vr ∈ (vmin,vmax) is very complex.
Indeed, the reset line will cross the attraction basin on an interval of values for the

adaptation (wmin,wmax), but since the stable manifold spirals around the orbit and
converges to it, there is a countable sequence of intersection points of the reset line

with the stable manifold: (mi, i ∈ N) converging to wmin and (Mi, i ∈ N) converging to
wmax. At each of these points the map Φ is undefined and there is a jump of the values
of the map Φ. Hence the definition domain of the map Φ has a complex shape, and Φ
an intricate discontinuous dynamics on it.

For vr > vmax the reset line will cross the stable manifold on a finite set of adapta-

tion values, and at these points the map Φ is undefined and has a unique discontinu-
ity, case we now generalize and study.

3.4.4 Case D = R\A where A is a finite or countable set

The case where the reset line crosses the SMSFP but not any attraction basin of SA

is more intricate (see figure 3.20). It corresponds to the cases where:

• the subthreshold system has two unstable fixed points and no stable limit cycle,
and vr ≥ vmin (cases of Figures 3.6(a) and 3.6(b)). When the stable manifold

oscillates around the fixed point, there is a countably many intersection points.

• the subthreshold system has a stable fixed point and an unstable periodic orbit.
In that case let us denote by vp,max (respectively vp,min) the maximal (respectively
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minimal) value of the variable v or the periodic orbit. The line {v = vr} crosses
the SMSFP but not the attraction basin when vmin≤ vr < vp,min or vr ≥ vp,max.

In these two cases, the reset line {v = vr} has finitely many intersections with the
stable manifold (except if vr = v−), and we denote by A the set of intersection points.
The map Φ is defined on R \A . This set is a finite union of open intervals. On
each interval, the map Φ satisfies the properties given in theorem 3.3.1 for the same
reasons as the ones given in the related proof. At the intersection points of the reset

line with the SMSFP, the shape of the orbits of the differential system (3.1) changes,

and this implies that at these points the map Φ is discontinuous.
If vr > v+ then the map Φ will have a unique discontinuity point where the map is

undefined (see figure 3.20(e)). For vmin < vr < v− it will have an odd number of such
points (figures 3.20(c) and 3.20(d)) and for vr > v−, an even number. In the case where
the Jacobianmatrix has complex eigenvalues at the equilibrium v−, the Poincaré map
will have an infinite countable set of discontinuity points for vr = v−. The dynamics
of Φ in this region of parameters will therefore be very complex. It can have multiple
fixed points, no fixed point, and the map is discontinuous.

The set of adaptation values such that the system stops firing after a finite number

of spikes emitted (phasic spiking regime) is given by:

∞⋃

n=0

Φ−n(A )

It is the set of initial conditions such that the orbits are exactly on the SMSFP after

a finite number of iterations.

Therefore, the topology and the dynamics of Φ on these sets is quite complex. The
related spiking sequence is also extremely complex in these cases:

• If the map Φ has not fixed point, regular spiking is impossible, and the system
will either present bursts or irregular spiking.

• If there is a unique fixed point, then regular spiking and bursts can coexist
depending on the initial condition on the reset line.

• The case where there are many fixed points (see figure 3.20(d)) is even more
complex. In this case the system could have different regular spiking frequen-

cies, depending on the initial condition. In this case of multiple attractors, the

system could switch between these attractors, be chaotic, present hysteresis and

its sensitivity increases.

3.5 DISCUSSION

3.5.1 Physiological relevance

The first two-dimensional spiking neuron model with diverging spiking dynamics

was introduced by Izhikevich [141], who showed that these models could qualita-

tively reproduce many different electrophysiological features of real neurons, such

as spike-frequency adaptation, bursting, resonance, rebound spiking. . . A variation of

that model, the adaptive exponential integrate-and-fire model [30], includes an expo-

nential spike initiation current [95], which is a realistic approximation of the sodium
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(a) Nullclines and different reset locations vr1, vr2, vr3, vr4 corresponding to

different qualitative behaviors for the map Φ.

(b) vr = vr 1: Φ is continuous (c) vr = vr 2: 2 discontinuity points

(d) vr = vr 3: 6 discontinuity points, 7 fixed

points

(e) vr = vr 4: 1 discontinuity point

Figure 3.20: Case of two unstable fixed points for the classical adaptive exponential

model. Phase plane and graph of the map Φ for different values of vr, for the same

set of parameters.
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current (whose activation function is a Boltzmann function). That model (and vari-

ants) is able to quantitatively predict the responses of real neurons to injected cur-

rents in terms of spike times, with a millisecond precision [16, 51, 155]. The quartic

model [255] is another variant which can exhibit sustained subthreshold oscillations.

Thus, a mathematical analysis of those models has direct biological relevance. That

analysis was first addressed in [255, 258], mainly in terms of subthreshold dynam-

ics. Here we studied the patterns of spikes, which correspond to orbits under the

adaptation map.

Dynamical properties of that map can be related to electrophysiological features

of the neuron model. When the differential system has a stable fixed point, orbits

are generally finite, i.e., a finite number of spikes are emitted, which is called phasic

spiking (one spike) or phasic bursting (several spikes). In some situations, typically

when the reset value is high, finite and infinite orbits can coexist, i.e., the system is

bistable.

When the differential system has no stable fixed point, orbits are infinite, an

infinite number of spikes are emitted, which is called tonic spiking. This is the

most interesting aspect of the dynamics, where we must look at the properties of

the adaptation map. When orbits converge to a fixed point of that map, spikes be-

come regularly spaced, which corresponds electrophysiologically to the regular spik-

ing behavior. Thus, theorem 3.3.2 provides conditions under which the neuron model

has a regular spiking behavior. Periodic orbits translate to repeating spike patterns,

which corresponds electrophysiologically to the bursting behavior, where the period

is the number of spikes per burst. The existence of fixed points or periodic orbits de-

pends in a complex way on the parameters. In particular, a period-adding bifurcation

structure appears when increasing the reset parameter. It is particularly interest-

ing to see that these two-dimensional models can exhibit chaos, whose electrophys-

iological signature is irregular spiking. Chaos has been observed in higher dimen-

sional continuous neuron models such as the Hodgkin-Huxley model and variants

[91, 121, 226]. It has also been observed in real neurons in vitro, such as the Purkinje

cell [83, 135, 185, 193], where period doubling was observed in experiments when

increasing the temperature with a fixed input current.

3.5.2 Classifications

In [258], the authors defined electrophysiological classes for the subthreshold dynam-

ics in the case of the adaptive exponential model2. These classes are sets of parame-

ters such that the neuron has the same qualitative behavior in response to different

levels of input currents. We know that when I is smaller than −m(b) the neuron
will be in a phasic spiking behavior and when I is large enough, it will fire regularly.
Classes are therefore distinguished depending on what is happening between these

two stages, and three cases are possible:

0. The neuron always fires regularly (no transition).

1. The neuron first bursts then fires regularly (1 transition, see e.g. figure 3.15(b)).

2. The neuron fires regularly, then bursts, then fires regularly again (2 transitions,

see e.g. figure 3.15(a)).

2their classification readily generalizes to the whole class of models we study here
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Figure 3.21: Electrophysiological classes for the quartic model with d = 10 and vr = 1,
as a function of the parameters a and b. Class 2 dissapears when d is small enough.
Both classes 1 and 2 disappear when vr is close to the minimum of F (or small enough
in the case of the exponential model). Sample members of these classes have been

represented in the small figures around the classification figure: we represented the

adaptation sequence after a given elapsed time, as a function of the input current.

Parameters are marked with stars: class 0: a = 8.5, b = 4.5, class 1: a = 6, b = 3.2, and
class 2: a = 2.5, b = 4.5.

Classes 0 and 1 are observed in general whatever vr and d for given values of a
and b. Class 2 exists less often, and is generally observed for large values of the spike
triggered adaptation d. We numerically compute the transitions between regular
spiking and bursting. In Figure 3.21 we represented the number of transitions (i.e.

the class of neuron) as a function of the parameters a and b for different pairs (vr,d).

Let us now be more specific and define zones of parameters corresponding to a

unique given behavior. The criteria for regular spiking given in theorems 3.3.2 and

3.3.3 rely on some very simple properties of the map Φ. We apply here the results
of these theorems in order to define sets of parameters corresponding to different

classes of behaviors: regular spiking with spike frequency adaptation, regular spik-

ing with initial bursting, burst of period two, and a class of burst of unspecified period

and chaotic spiking. The case where theorem 3.3.2 applies corresponds to the case of

regular spiking with spike frequency adaptation. In the case where theorem 3.3.3

applies, we check the stability of the fixed point of Φ by computing the related mul-
tiplier: if it is smaller than one in absolute value, the system is in a regular spiking

mode with intial bursting, and if not, the neuron fires bursts of period two. Eventu-

ally, in the cases where none of the theorems applies, the system is necessarily in a

bursting or chaotic mode.

We have seen that when I is high enough or when d is high enough, the neuron
fires regularly. Figure 3.22(c) helps us specify the parameter sets related to regu-

lar spiking (with initial bursting or spike frequency adaptation) and bursting. We

observe in figure 3.22(c) that the input current has a stabilizing effect on the whole
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dynamics: we simulated a case where the map Φ is not globally contracting for input
currents close to −m(b). When increasing the current, we observe that the map be-
comes globally contracting when the input current is high enough, which results in a

regular spiking behavior. Therefore the electrophysiological class depends on d.
Another pair of interesting parameters is the pair of reset parameters (vr,d). The

influence of these two parameters was numerically studied by Naud and collaborators

in the case of the dimensioned adaptive exponential model (see [203]) for a current

value twice the value of the saddle-node bifurcation current. They numerically simu-

lated the spike trains and classified them as chaotic spiking, bursting, regular spiking

with spike frequency adaptation and initial bursting. The mathematical criteria we

have presented predict these zones, as shown on figure 3.22.

3.5.3 Perspectives

In this chapter we studied the spike patterns produced by neurons in the class of

models introduced in [255] in the case where the spike is emitted when the mem-

brane potential blows up. We introduced a discrete map called the adaptation map,

which is a generalization of the usual Poincaré applications in dynamical systems

corresponding to the case where the Poincaré section is set a infinity.The rigorous

mathematical study of this map allowed us to distinguish between the different spike

patterns fired, and to derive simple criteria to characterize different spiking regimes

of the neuron. These criteria can be easily applied in order to derive classes of param-

eters corresponding to different kinds of behaviors. We also proved that the system

presented bifurcations as a function of the reset value of the membrane potential.

This study of a hybrid dynamical system opens the way to the study of different

spiking models, such as bidimensional compartment models or bidimensional spik-

ing models with or without explosion. In particular, this study readily applies to the

case of Izhikevich’ quadratic integrate-and-fire model which is a bidimensional non-

linear spiking neuron model where spikes are emitted when the membrane potential

reaches a finite threshold. This framework may also be interesting in other fields

of applied mathematics, and in particular in mathematical biology, ecology, economy

and generally in any nonlinear system where discrete events occur depending on the

state of the variables of the system.
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(a) Exponential Model (b) Quartic Model

(c) Quartic Model

Figure 3.22: Parameter zones corresponding to different spiking behaviors. (a): Re-

duced adaptive exponential model with a = 1, b = 2 and I = 3. (b): Quartic model,
a = 1, b = 2, I = −m(b)+ 2. (c): a = 1, b = 1, vr = 1.5. Regular spiking is indicated in
blue. The dark blue zone corresponds to spike frequency adaptation, and the other

blue regions correspond to initial bursting. The color intensity is proportional to the

multiplier of the fixed point: the smaller the multiplier the darker the region. The

separatrix we obtain in figure (a) is very close to the one found numerically by Naud

and collaborators in [203]. Bursts and chaotic spiking are indicated in red/orange.

The orange region corresponds to bursts with two spikes per burst (according to theo-

rem 3.3.3). The green dotted line corresponds to the period doubling bifurcation. The

brown zone corresponds to burst and chaos and the green solid line corresponds the

initiation of the cascade of period doubling at the transition from period two to period

three. In (c) the electrophysiological classes are represented as a function of d.
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CHAPTER 4

APPLICATION: DEFINING

ELECTROPHYSIOLOGICAL

CLASSES

ABSTRACT

In the last two sections we discussed the mathematical properties of a class of neuron

models and explained briefly the reasons why they were able to reproduce the diver-

sity of electrophysiological features displayed by real neurons while keeping a simple

model, for simulation and analysis purposes. Among these models, the adaptive ex-

ponential integrate-and-fire model is physiologically relevant in that its parameters

can be easily related to physiological quantities. The interaction of the differential

equations with the reset results in a rich and complex dynamical structure. In this

chapter we relate the subthreshold features of the model to the dynamical properties

of the differential system and the spike patterns to the properties of a Poincaré map

defined by the sequence of spikes. We build upon the results obtained in the chapters

2 and 3 an electrophysiological class description for the models of this class, i.e. the

sets of parameters where the model responds qualitatively the same way to different

current inputs. We are particularly interested in the Adaptive Exponential Model,

for which we provide the closed-form equations in the parameter space of the separa-

trix we obtain between electrophysiological classes. This work is a collaboration with

Romain Brette to be published in Biological Cybernetics [258].
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4.1 INTRODUCTION

As reviewed in the previous two chapters, several authors recently studied

two-variable spiking models [30, 144, 254] which, despite their simplicity, can repro-

duce a large number of electrophysiological signatures such as bursting or regular

spiking. Different sets of parameter values correspond to different electrophysiologi-

cal classes.

All these two-dimensional models are qualitatively similar, and we will be in this

chapter especially interested in the adaptive exponential integrate-and-fire model

(AdEx, [30]) because its parameters can be easily related to physiological quantities,

and the model has been successfully fit to a biophysical model of a regular spiking

pyramidal cell and to real recordings of pyramidal cells [51, 155]. As already in-

troduced, this model is described by two variables, the membrane potential V and
an adaptation current w, whose dynamics are governed by the following differential
equations: 




C dV
dt =−gL(V −EL)+ gL∆T exp

(
V−VT

∆T

)

−w + I

τw
dw
dt = b(V −EL)−w

(4.1)

When the membrane potential V is high enough, the trajectory quickly diverges be-
cause of the exponential term. This divergence to infinity models the spike (the shape

of the action potential is ignored, as in the standard integrate-and-fire model). For

displaying or simulation purposes, spikes are usually cut to some finite value (e.g. 0

mV). When a spike occurs, the membrane potential is instantaneously reset to some

value Vr and the adaptation current is increased:

{
V →Vr

w → w + d
(4.2)

Remark 10. The spike-triggered adaptation parameter denoted by d corresponds to
the parameter denoted by b in the original article of Brette and Gerstner [30], and
the parameter b of (4.1) corresponds to the parameter a of the original paper. We
choose here to keep the same notations as in the previous chapters in order for the

dissertation for the sake of consistency.

Although the differential system is only two-dimensional, the reset makes the

resulting dynamical hybrid system very rich, as discussed in chapter 3.

The differential equations and the parameters have a physiological interpreta-

tion. The first equation is the membrane equation, which states that the capacitive

current through the membrane (C is the membrane capacitance) is the sum of the
injected current I and of the ionic currents. The first term is the leak current (gL is

the leak conductance and EL is the leak reversal potential), the membrane time con-

stant is τm = C/gL. The second (exponential) term approximates the sodium current,

responsible for the generation of action potentials [95]. The approximation results

from neglecting the inactivation of the sodium channel and assuming that activation

is infinitely fast (which is reasonable). Because activation curves are typically Boltz-

mann functions [12], the approximated current is exponential near spike initiation.

The voltage threshold VT is the maximum voltage that can be reached without gener-

ating a spike (without adaptation), and the slope factor ∆T quantifies the sharpness

of spikes. In the limit of zero slope factor, the model becomes an integrate-and-fire
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model with a fixed threshold VT . Quantitatively, it is proportional to the slope con-

stant k in the activation function of the sodium current. The second variable w is
an adaptation current with time constant τw, which includes both spike-triggered

adaptation, through the reset w→ w + d, and subthreshold adaptation, through the
coupling (variable b). It may model ionic channels (e.g. potassium) or a dendritic
compartment. Quantitatively, the coupling variable b can result from a linearization
of the dynamics of a ionic channel, or from the axial conductance in the case of a den-

dritic compartment. We generally assume b > 0 in this chapter, although the analysis
also applies for b < 0when |b| is not too large.
The interaction of the differential equations with the reset results in a rich dy-

namical structure. There are 9 parameters plus the injected current I, but these can
be reduced to 4 variables plus the current I by changes of variables (e.g. setting VT

as the reference potential, ∆T as the voltage unit, τm as the time unit, etc.). Thus, the

electrophysiological class of the model, defined loosely here as the set of qualitative

behaviors for different values of I, is parametrized in a 4-dimensional space. In this
chapter, we will make this definition more precise by explaining different electrophys-

iological signatures in terms of dynamics of the model. Because we are dealing with

a hybrid dynamical system, we shall study here two distinct dynamical aspects of the

model: the subthreshold dynamics, defined by the differential equations (section 4.2),

and the spiking dynamics, defined the sequence of resets (section 4.4). The former

case was addressed in chapter 2 in a more general setting: we apply these results in

order to derive new specific results, in particular about oscillations, attraction basins

and rebound properties, that are interesting from a biological point of view. In the

latter case, we will see that the spike patterns of the model correspond to orbits un-

der a Poincaré map, which we shall call the adaptation map Φ. Interestingly, we find
that this map can have chaotic dynamics under certain circumstances, as studied in

chapter 3.

All simulations shown in this chapter were done with the Brian software [112]

The code is available on ModelDB at the following URL:

http://senselab.med.yale.edu/modeldb/ShowModel.asp? model=114242 .

4.2 SUBTHRESHOLD BEHAVIOR

The equations of the AdExp model can be written in dimensionless units by

expressing time in units of the membrane time constant τm = C/gL, voltage in units of

the slope factor ∆T and with reference potential VT , and rewriting both the adaptation

variable w and the input current I in voltage units. We already did this transforma-
tion in the chapter 2, but write it down here again for the sake of completeness, and

for keeping interpreting a little bit more the results obtained.

We obtain the following equivalent model:

{
dV̄
dt̄ =−V̄ + eV̄ − w̄+ Ī

τ̄w
dw̄
dt̄ = b̄V̄ − w̄

(4.3)

and when a spike is triggered:
{

V̄ → V̄r

w̄ → w̄ + d̄
(4.4)

http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=114242
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Figure 4.1: Nullclines of the dynamical system (horizontal axis: V ; vertical axis: w).
A. The nullclines intersect in two points, and divide the phase space into 5 regions.

The potential V increases below the V -nullcline, w increases below the w-nullcline.
The direction of the flow along each boundary gives the possible transitions between

regions (right). Spiking can only occur in the South region. B. The nullclines do not

intersect. All trajectories must enter the South region and spike.

where





τ̄w := τw
τm

= gLτw
C

b̄ := b
gL

Ī := I
gL∆T

+(1+ b
gL

)EL−VT
∆T

t̄ := t
τm

d̄ := d
gL∆T

V̄r := Vr−VT
∆T

V̄ (t̄) := V(t)−VT
∆T

w̄(r̄) := w(t)+b(EL−VT )
gL∆T

(4.5)

Thus, as already mentioned in 2 only two parameters characterize the subthresh-

old dynamics: the ratio of time constants τw/τm and the ratio of conductances b/gL

(note: b can be seen as the stationary adaptation conductance), and the rescaled
model belongs to the class studied in this chapter with F(v) = ev− v, i.e., F is con-
vex, three times continuously differentiable, has a negative derivative at −∞ and an
infinite derivative at+∞. Therefore it has the same bifurcation structure, which is re-
lated as we develop here to electrophysiological properties, excitability type, rheobase

current, voltage threshold, I-V curve. Besides, we give quantitative conditions for the

occurrence of oscillations, along with a formula for their frequency. Finally, we exam-

ine the rebound properties of the model, in relationship with the attraction basin of

the stable fixed point.
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A

B

C

D

Class A (saddle-node) Class B (Andronov-Hopf)

Figure 4.2: Excitability types. A,B. Type I: b
gL

< τm
τw
(here: b = .2gL, τm = 3τw). When

I is increased, the resting point disappears through a saddle-node bifurcation: the
two fixed points merge and disappear. The current-frequency curve is continuous

(B). C,D. Type II: b
gL

> τm
τw
(here: b = 3gL, τm = .5τw). When I is increased, the resting

point becomes unstable through an Andronov-Hopf bifurcation: the stable fixed point

becomes unstable. The current-frequency curve is discontinuous, there is a non-zero

minimum frequency (D).

4.2.1 Excitability

The dynamics in the phase plane (V,w) are partly determined by the number and
nature of fixed points, which are the intersections of the two nullclines (Fig. 4.1):

w = F(v)+ I (V-nullcline)

w = bv (w-nullcline)

and that read in the original parameters for the AdExp model:

w = −gL(V −EL)+ gL∆T exp

(
V −VT

∆T

)
+ I (V-nullcline)

w = b(V −EL) (w-nullcline)

Because the membrane current (first equation) is a convex function of the mem-

brane potentialV , there can be no more than two fixed points. When the input current
I increases, the V-nullcline goes up and the number of fixed points goes from two to
zero, while the trajectories go from resting to spiking. The excitability properties of

the model depend on how the transition to spiking occurs, that is, on the bifurcation

structure.

Excitability types

When I is very negative, there are two fixed points, one of which is stable (the resting
potential). It appears that, when increasing I, two different situations can occur de-
pending on ratio b/a, more precisely in the AdExp model, depending on the quantity
bτw
C = b

gL

τw
τm
(ratio of conductances times ratio of time constants).

If b < a ( b
gL

< τm
τw
), then the system undergoes a saddle-node bifurcation when I is

increased, i.e., the stable and unstable fixed points merge and disappear at the point

I = −m(b) = F(v∗(b)). When the fixed points disappear, the vector field is almost null
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around the former fixed point (the ghost of the fixed point). Since the vector field

can be arbitrarily small close to the bifurcation, the trajectory can be trapped for an

arbitrarily long time in the ghost of the fixed point, so that the firing rate can be

arbitrary small when I is close to the bifurcation point (threshold). This property also
explains the phenomenon of spike latency. This fact generally implies that the model

has type I excitability, that is, the current-frequency curve is continuous (Fig. 4.2),

but type II excitability may occur if the reset Vr is high (so that trajectories do not

enter the ghost zone). However, we note that this latter case corresponds to bistable

spiking before the bifurcation (4.4.3).

If b > a (i.e. b
gL

> τm
τw
), then the system undergoes a subcritical Andronov-Hopf bifur-

cation before the saddle-node one, meaning that the stable fixed point first becomes

unstable before merging with the other fixed point. This fact implies generally that

the model has type II excitability, that is, the current-frequency curve is discontinu-

ous at threshold, the firing rate suddenly jumps from zero to a finite value when the

bifurcation point is crossed (Fig. 4.2). It is however possible to have type I excitability

in very specific cases, when the trajectory resets close to the stable manifold of the

saddle fixed point.

In the following, we shall refer to the first case as class A and to the second one

as class B. As noted above, excitability types I and II are related but not identical

to classes A and B (for example, the model may belong to class A but have no well-

defined excitability type when it is bistable).

For the limit case b = a (i.e. b
gL

= τm
τw
), the system undergoes a Bogdanov-Takens

bifurcation. It has codimension two, i.e. it appears when simultaneously varying the

two parameters b̄ and Ī. At this point, the family of unstable periodic orbits gener-
ated around the Andronov-Hopf bifurcation collides with the saddle fixed point and

disappears via a saddle-homoclinic bifurcation. There is no other bifurcation in this

model (as well as in Izhikevich model [144]). Other similar models such as the quartic

model may also undergo a Bautin bifurcation, associated with stable oscillations (see

chapter 2).

As already discussed, the system can have zero, one or two fixed points depending

on the input current. When it has two fixed points, we denote by x+ < x− the two fixed
points for the general model and by V+ and V− in the AdExp model. The fixed points
in the case of the original AdExp model are deduced from the expressions given in

section 2.2.2 using the Lambert functionW :




V− := EL + I
gL+b −∆TW0

(
− 1

1+b/gL
e

I
∆T (gL+b)

+
EL−VT

∆T

)

V+ := EL + I
gL+b −∆TW−1

(
− 1

1+b/gL
e

I
∆T (gL+b)

+
EL−VT

∆T

) (4.6)

whereW0 is the principal branch of the Lambert function andW−1 the real branch of

the Lambert function such thatW−1(x) ≤−1, defined for −e−1≤ x < 1.
The fixed point x+, or V+, is always a saddle fixed point (hence unstable), i.e. its

Jacobian matrix has an eigenvalue with positive real part and an eigenvalue with

negative real part. The fixed point V− is stable if the model has class A parameters,
otherwise it depends on the current I, as we discuss below.

Rheobase current

The rheobase current is the minimum constant current required to elicit a spike. This

electrophysiological definition could be ambiguous because it depends on the initial
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condition. If we consider that the current is slowly increased until a spike is elicited,

then it corresponds to the first point when the stable fixed point becomes unstable,

which depends on the parameter class (note that this is true only when the Andronov-

Hopf bifurcation is subcritical).

For class A (b < a), it corresponds to the saddle-node bifurcation point:

IA
rh =−m(b) (4.7)

which is obtained by calculating the intersection of the nullclines when these are

tangent. It corresponds in the AdExp model for class A ( b
gL

τw
τm

< 1) to the curve:

IA
rh = (gL + b)

[
VT −EL−∆T + ∆T log

(
1+

b
gL

)]
. (4.8)

For class B parameters (b > a), it corresponds to the Andronov-Hopf bifurcation
point:

IB
rh = bv∗(a)−F(v∗(a)) (4.9)

that reads for the AdExp model in the case b
gL

τw
τm

> 1 to the curve:

IB
rh = (gL + b)

[
VT −EL−∆T + ∆T log(1+

τm

τw
)
]
+ ∆T gL(

b
gL
− τm

τw
) (4.10)

It is important to note that the saddle-node bifurcation also occurs in the class B case

at the point ISN = II
rh (> IB

rh; for class B we use ISN instead of II
rh to avoid ambiguities).

Voltage threshold for slow inputs

For a parametrized input Ib(t), the threshold is the minimum value of the parameter
b for which a spike is elicited. For example, the rheobase current is the threshold
constant current. However, the notion of a spike threshold for neurons is often de-

scribed as a voltage threshold, although the voltage is not a stimulation parameter

(thus, it implicitly refers to an integrate-and-fire model). It is nevertheless possible

to define a meaningful voltage threshold for the case of constant current inputs as

follows: the voltage threshold is the maximum stationary voltage V for subthreshold
constant current inputs (I ≤ Irh). For the exponential integrate-and-fire model [95],
this is simply VT . For the present model, it corresponds to the voltage V− at the first
bifurcation point, when the stable fixed point becomes unstable.

Not surprisingly, its value depends on the excitability type. In the general case,

for class A parameters (b < a), the voltage threshold is

V slowthreshold = v∗(b),

which reads for the AdExp model in the case b/gL < τm/τw

V slowthreshold = VT + ∆T log(1+ b/gL)

and for class B parameters (b > a)

V slowthreshold = v∗(a)

and for the AdExp model for b/gL < τm/τw

V slowthreshold = VT + ∆T log(1+ τm/τw)

Interestingly, the threshold for class A parameters depends on the ratio of conduc-

tances (b), while the threshold for class B parameters on the ratio of time constants
(a).
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Voltage threshold for fast inputs

For short current pulses (I = qδ (t), where q is the total charge and δ (t) is the Dirac
function), the voltage threshold is different, but the same definition may be used: it

is the maximum voltage V that can be reached without triggering a spike. Injecting
short current pulses amounts to instantaneously changing the membrane potential

V , i.e., in the phase space (V,w), to moving along an horizontal line. If, by doing
so, the point (V,w) exits the attraction basin of the stable fixed point, then a spike
is triggered. Therefore, the threshold is a curve in the phase space, defined as the

boundary of the attraction basin of the stable fixed point (for which we have unfortu-

nately no analytical expression, although it can be computed numerically). Therefore

the model displays threshold variability: the voltage threshold depends on the value

of the adaptation variable w, i.e., on the previous inputs. The boundary of the attrac-
tion basin of the stable fixed point is either the stable manifold of the saddle fixed

point (separatrix) or a limit cycle.

4.2.2 I-V curve

The I-V curve of a neuron is the relationship between the opposite of the (constant)

injected current and the stationary membrane potential (it may also be defined for

non-constant input currents, see e.g. [16]). Experimentally, this curve can be mea-

sured with a voltage-clamp recording. We obtain a simple expression by calculating I
at the intersection of the nullclines:

I(v) = bv−F(v)

that can be written for the AdExp model in the form:

I(V ) = (b+ gL)(V −EL)−gL∆T exp

(
V −VT

∆T

)

Thus, far from threshold, the I−V curve is linear and its slope is the leak conductance
plus the adaptation conductance.

4.2.3 Oscillations

Because of the coupling between the two variables V and w, there can be oscilla-
tions near the resting potential. For the AdExp model or the Izhikevich’ model, only

damped oscillations exist, and self-sustained oscillations are not possible, except via

Bautin bifurcation that exists for instance in the quartic model. Oscillations occur

when the eigenvalues associated with the stable fixed point are complex; when they

are real, solutions converge (locally) exponentially to the stable fixed point.

Because of the nature of the bifurcations, near the rheobase current (section

4.2.1), the model is non-oscillating if it has class A parameters (b < a, or b/gL < τm/τw)

and oscillating if it has class B parameters. Far from threshold, these properties can

change. In this section we give explicit expressions for the parameter zones corre-

sponding to both regimes.

The parameter zones depend on the excitability types, on the finiteness of F ′−∞
def
=

lim
v→−∞

F ′(v), the ratio a = τw/τm and the following condition:

b <
(F ′−∞ + a)2

4a
(4.11)
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translated for the AdExp model in:

b
gL

<
τm

4τw

(
1− τw

τm

)2

(4.12)

These results are summarized in Fig. 4.3.

Identification of the oscillating regions

Oscillations around a stable equilibrium appear only when the systems has a stable

fixed point, i.e. if I <−m(b) for b < a and I < bv∗(a)−F(v∗(a)) for b > a. Furthermore,
the system will oscillate around the stable equilibrium v− if and only if the imaginary
part of the eigenvalues of the Jacobian matrix of the system at this point is non-null.

This condition can be written at the stable equilibrium v− via the discriminant δ
defined by:

δ =
(
F ′(v−)+ a

)2−4ab.

The system will oscillate around the stable fixed point v− if and only if δ < 0. To invert
this inequality, we compute the zones where we have

(x+ a)2−4ab < 0 (4.13)

and check that a solution v− exists. There exists a v− such that F ′(v−) = x if and only
if F ′−∞ := lim

u→−∞
F ′(u) < x < F ′(v∗(b)) = b, since v− < v∗(b) and F ′ is increasing.

The solution of (4.13) is x ∈ {x−,x+} where

x± =−a±2
√

ab

First of all we are interested in the apparition of oscillations in the class A case.

We know that when the input current I is close to the rheobase current II
rh given by

(4.7), the system returns monotonously to the resting potential. The system begins to

oscillate when there exist solutions to the equation F ′(v−) = x+. It is straightforward

to check that x+ is always lower than b, since this condition is equivalent to the
condition (a−b)2≥ 0, which is always true.
If F ′−∞ = −∞, as it is the case in the quadratic and quartic models, the condition

x+ > F ′−∞ is trivial and always satisfied. If F ′−∞ > −∞, then this condition can be writ-
ten:

{(a,b) ; a <−F ′−∞ or 0 > F ′−∞ >−a and b >
(F ′−∞ + a)2

4a
}

In this zone, oscillations occur when the current I is below I+, where:

¯I+ = bv∗(x+)−F(v∗(x+))

Hence it appears for class A parameters. After the Bogdanov-Takens point, the

equilibrium associated with x+ is unstable, hence does not give rise to damped sub-

threshold oscillations.

In the case where F ′−∞ >−∞ and F ′−∞ >−a, we always have (F ′−∞+a)2

4a < a. When b = a,
we have x+ = a and hence I+ = I−v (v∗(a)), which is the current at the Bogdanov-Takens



145

a
/g

L

a/ gL a/ gL

τ
m

/τ
w

RESONATOR

CLASS ACLASS B

INTEGRATOR

M
IX

ED

a/gL a/gL

I/
g

L
 (

m
V

) SN

Hopf

SH

I+

I-

SH
SN

Hopf

A

B

C

D

Figure 4.3: Oscillations. A. Behavior of the model as a function of a/gL and τm/τw.

Light (dark) colors indicate class A (class B) parameters. Blue: resonator mode (oscil-

lations for any or almost any I). Green: integrator mode (oscillations for any I). Pink:
mixed mode (resonator if I is large enough, otherwise integrator). B. Behavior of the
model as a function of a/gL and I/gL for τm = .2τw (left) and τm = 2τw (right). White:

spiking; blue: oscillations; green: no oscillation. Spiking occurs when I is above the
saddle-node curve (SN) in the class A regime, and above the Hopf curve (Hopf) in

the class B regime. A repulsive limit cycle (circle) exists when I is above the saddle-
homoclinic curve (SH; only for class B). Oscillations occur when I−< I < I+ (on the left,
I+ ≥ ISN ; on the right, I− = −∞). C,D. Response of the system to a short current pulse
(Dirac) near the resting point, in the resonator regime (C; a = 10gL, τm = τw) and in

the integrator regime (D; a = .1gL, τm = 2τw). Left: response in the phase space (V,w);
right: voltage response in time.
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bifurcation point. This result was predictable since around the saddle node bifurca-

tion the system does not oscillate around the fixed point and around the Andronov-

Hopf bifurcation the system does oscillate, and these two curves meet at the Bogdanov-

Takens point. Furthermore, after the Bogdanov-Takens point, the equilibrium asso-

ciated with x+ is no more stable, hence damped subthreshold oscillations associated

with this separatrix only appear for class A parameters.

The oscillations possibly disappear when a solution to F ′(v−) = x− exists. Since
x− =−a−2

√
ab < 0, the condition x− < b is always satisfied. The condition x− > F ′−∞ is

always satisfied when F ′−∞ = −∞. If F ′−∞ > −∞, then the condition x− > F ′−∞ is equiva-

lent to the set of conditions

a <−F ′−∞ and b <
(a+ F ′−∞)2

4a
.

In these cases, oscillations disappear when Ī < ¯I−, where:

¯I− = bv∗(x−)−F(v∗(x−))

In the case of the AdExp model with the original parameters, the expression of I±
reads:

I± = (gL + a)∆T log
(gLτw−C±2

√
aCτw

gLτw

)

−∆T
gLτw−C±2

√
aCτw

τw
− (gL + a)(EL−VT ) (4.14)

Hence there are two qualitatively different cases.

First of all, if F ′−∞ =−∞, then the currents I± exist whatever the parameters of the
model.

1. For class A parameters, the neuron oscillates around its stable equilibrium if

and only if I− < I < I+.

2. For class B parameters, the neuron oscillates around the stable equilibrium if

and only if I− < I < IB
rh.

If F ′−∞ > −∞, then the behavior of the system depends on the parameters a and b
and on the inequality

b >
(F ′−∞ + a)2

4a
(4.15)

1. For class A parameters, we have:

(a) if a < −F ′−∞, then I+ always exists. If condition (4.15) is satisfied, then I−
does not exist and the system oscillates for I < I+. If condition (4.15) is not
satisfied, both I+ and I− are defined, and the system oscillates for I−< I < I+.

(b) if a > −F ′−∞, then I− is undefined and I+ only exists when condition (4.15)
is satisfied. Hence if condition (4.15) is satisfied, the system oscillates for

I < I+ else it never oscillates.

2. For class B parameters, only the existence of I− is important. When I− is defined,
then the system oscillates for any I > I−. If I− is not defined, the system always
oscillates. In the class B regime, note that condition (4.15) is always satisfied.

Hence we have:
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(a) if a < −F ′−∞ and condition (4.15) is not satisfied then I− exists and the sys-
tem oscillates for any subthreshold current greater than I−.

(b) else it oscillates for any subthreshold current.

When the system oscillates, the oscillation (angular) frequency is given by ω̄ =−δ .
If F ′−∞ = −∞, then the frequency of the oscillations is bounded. If F ′−∞ > −∞, then in
the low-voltage approximation (far from v− << 0), reads:

ω̄ ≈ 4ab− (F ′−∞ + a)2

When the system oscillates, the time constant of the decay is the inverse of the

opposite of the real part of the eigenvalues, which is 2
a−F ′(v−) .

It becomes infinitely fast in the low voltage approximation if F ′−∞ = −∞, else con-
verges to

2
a−F ′−∞

Oscillations for class A parameters in the AdExp model

Three cases appear:

• If inequality (4.12) is false, then the model oscillates when I < I+, where the
formula for I+ is given in Appendix 4.2.3. In practice, we observe that I+ is very
close to the rheobase current, so that the model almost always oscillates below

threshold.

• If inequality (4.12) is true and τm > τw, then the model never oscillates near the

fixed point.

• If inequality (4.12) is true and τm < τw, then the model oscillates when I−< I < I+,
where the formula for I− is given in Appendix 4.2.3.

Oscillations for class B in the AdExp model

Two cases appear:

• If inequality (4.12) is false, then the model always oscillates near the fixed point,
for any subthreshold input current I.

• If inequality (4.12) is true, then the model oscillates only when I > I−.

We call the occurrence of oscillations the resonator regime and their absence the

integrator regime (see 4.2.4). The model is called a resonator when it is always (for

all I) or almost always (for I < I+) in the resonator regime, i.e., when inequality (4.12)
is false; it is called an integrator when it never oscillates, i.e., when τm > τw and

inequality (4.12) is true; it is said to be in a mixed mode when it oscillates only above

some value I− (see Fig. 4.3).
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Frequency of oscillations in the AdExp model

When the model oscillates, the frequency of the oscillations is:

F =
ω
2π

=
2b

πgLτw
− 2

πτm

(
e

V−−VT
∆T −1+

τm

τw

)2

, (4.16)

which can be approximated far from threshold (V−≪VT ) as follows:

F =
ω
2π
≈ 2b

πgLτw
− 2

πτm

(
1− τm

τw

)2

. (4.17)

4.2.4 Input integration

The way the model integrates its inputs derives from the results above.

Resonator vs. integrator

On the temporal axis, the integration mode can be defined locally (for a small input

I(t)) as

V (t) = V0 +(K ⋆ I)(t)

where the kernel K is the linear impulse response of the model around V0, and K ⋆ I is
a convolution. This impulse response is determined by the eigenvalues of the stable

fixed point. When these are complex, the kernel K oscillates (with an exponential
decay), as discussed in section 4.2.3 (see Fig. 4.3C). In that case the model acts as a

resonator: two inputs are most efficient when separated by the characteristic oscilla-

tion period of the model (given by eq. 4.16). The membrane time constant is −1/λ ,
where λ is the real part of the eigenvalues, that reads:

τ =
2

a−F ′(v−)
.

Far from threshold (v≪−1), this time constant tends to 0 when F ′−∞ = −∞, else it
tends to:

τ ≈ 2
a−F ′−∞

,

or, for the AdExp model in the case V ≪VT :

τ = 2
τmτw

τm + τw

When the eigenvalues are real, the kernel K is a sum of two exponential functions,
and the model acts as an integrator. In that case there are two time constants, given

by the real part of the eigenvalues. It is interesting to note that there is a parameter

region where both integration modes can exist, depending on the (stationary) input

current I: oscillations arise only when the model is sufficiently depolarized (I > I−).
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Adaptation

There are two sorts of adaptation in the model: threshold adaptation and voltage

adaptation. The former one comes from the orientation of the separatrix in the (V,w)
plane, as we discussed in section 4.2.1. The latter one derives from the fact that in

the integrator mode (no oscillation), the model kernel K is a sum of two exponential
functions. If the slower one is negative, then the response to a step shows an over-

shoot (as in Fig. 4.4D for a negative current step), which is a form of adaptation (the

voltage response is initially strong, then decays). That overshoot in the AdExp model

can be seen when there is no oscillation and τm < τw (see section 4.3), i.e., in themixed

mode shown in pink in Fig. 4.3, when the input current is low (I < I−).

4.2.5 The attraction basin of the stable fixed point

Limit cycle

The existence of a repulsive limit cycle arises for class B parameters from the Andronov-

Hopf bifurcation. The saddle-node and Andronov-Hopf bifurcations collide via a Bogdanov-

Takens bifurcation. In the neighborhood of this bifurcation, the family of limit cycles

disappears via a saddle-homoclinic bifurcation. The normal form of the Bogdanov-

Takens bifurcation gives us a local approximation of this saddle-homoclinic bifurca-

tion curve around the point in parameter space given by (4.18) (see [254]), and the

full saddle-homoclinic curve can be computed numerically using a continuation al-

gorithm. The current I above which a limit cycle exists is locally approximated at

the second order around the Bogdanov-Takens point b = a, I = IBT
def
= −m(a) by the

following expression:

Icycle = IBT −
12
25

(b−a)2

aF ′′(v∗(a))
+ o
(
(b−a)2) , (4.18)

for b > a, which has the expression for the AdExp model:

Icycle = IBT −
12
25

∆T τ2
w

C(τm + τw)
(b− C

τw
)2 + o(b2

1) (4.19)

for b > C
τw
, where IBT is the rheobase current at the Bogdanov-Takens bifurcation:

IBT = (gL +
C
τw

)
[
VT −EL−∆T + ∆T log

(
1+

C
gLτw

)]

Below the threshold current Icycle, there is no limit cycle (see next section). Above
the Icycle, there is a family of limit cycles, which are repulsive in the case of the AdExp
model or the quadratic adaptive model, and that depend on the location of the pa-

rameters with respect to the Bautin bifurcation in the cases where it exists, circling

anti-clockwise around the stable fixed point (see Fig. 4.3B and 4.4A); the saddle fixed

point is outside that cycle. Interestingly, it appears that one can exit the attraction

basin of the stable fixed point (and thus generate a spike) not only by increasing V ,
but also by decreasing V or w (or increasing w). This phenomenon is sometimes called
rebound, and we discuss it further in section 4.2.6.
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A
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D

Figure 4.4: The attraction basin of the stable fixed point and rebound properties.

Left column: the dashed lines represent the nullclines, each panel corresponds to a

different set of parameter values; the red line delimits the attraction basin of the

stable fixed point; the black line is the trajectory of the model in response to a short

negative current pulse, while the blue line is the trajectory in response to a long neg-

ative current step. Right column: voltage response of the model to the a short pulse

(black) and to a long step (blue). A. Class B resonator (a = 3gL, τw = 2τm) close to

the rheobase current. A repulsive limit cycle appears. Trajectories can escape the

attraction basin and spike with fast or slow hyperpolarization. B. Class A resonator

(a = 10gL, τm = 12τw). The separatrix crosses both nullclines (for both branches, V
and w go to +∞). In theory trajectories can escape the attraction basin with hyper-
polarization, but one would need to reach unrealistically low voltages (< −200mV).
C. Integrator (a = .2gL,τm = 3τw). The separatrix does not cross the nullclines. No re-

bound is possible. D. Class B mixed mode (a = gL, τw = 10τm). The separatrix crosses

the w-nullcline. Rebound is possible with long hyperpolarization (short hyperpolar-

ization can also induce rebounds, but with unrealistically low voltages).
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Separatrix

Some information about the stable manifold of the saddle fixed point can be obtained

from the nullclines (when these intersect). The nullclines cut the plane in 5 connected

zones, which we call North, South, West, East and Center, as shown in figure 4.1. The

stable manifold consists in two trajectories which converge to the saddle fixed point.

Near the saddle point, these two trajectories must lie in the North and South zone,

or in the Center and East zones.

First we remark that all the trajectories starting from the East zone must spike.

Indeed, in that region, V increases and w decreases, until it crosses the w-nullcline
horizontally and enters the South zone. From that point, V keeps on increasing and
w increases, which implies that the trajectory can only remain in the South zone or
enter the East zone. However, the direction of the vector fields along the border does

not allow crossing from South to East. Therefore, the trajectory will remain in the

South zone and will spike. It follows that no part of the stable manifold can be in the

East zone. Therefore it has to be locally in the North and South zones. By following

the manifold from the saddle point to the North, we can see that V and w increase
and, since the manifold cannot enter the East zone, it remains in the North zone

and goes to infinity. In practice, it is in fact very close (but slightly to the left) of the

V-nullcline, as shown in Fig. 4.4.

By following the manifold from the saddle point to the South, we can see that it

has the same orientation as in the North zone, as long as it remains in the South

zone. It may however cross the w-nullcline (Fig. 4.4D), and possibly the V-nullcline

again (Fig. 4.4B).

For class A regime, or class B when I < Icycle, there is no limit cycle. In that case the
stable manifold of the saddle fixed point is an unbounded separatrix, i.e., it delimits

the attraction basin of the stable fixed point. From the position of the nullclines, it

appears that the stable manifold must cross the saddle fixed point from above both

nullclines (North) to below both nullclines (South). It follows that the side above

the nullclines is the graph of an increasing function of V (see Fig. 4.4). As for the
other part of the manifold, several cases can occur: it may cross the w-nullcline, both

nullclines or none. We can show that if condition (4.11) is false, then both nullclines

are crossed, and if τm < τw, then at least the w-nullcline is crossed. These conditions

cover all parameter regions except the zone where the model is always an integrator

(no oscillations); in particular, it includes class B parameters. The position of the

separatrix has important implications for the rebound property (section 4.2.6).

To understand whether the stable manifold can cross the w-nullcline and possibly

the V-nullcline, we study the asymptotic behavior of the solutions when t→−∞. The
idea is the following: if the manifold goes to −∞ (for V ), then the derivative of the
nonlinear term vanishes tends to its limit F ′−∞ which can either be finite, or −∞. In
the following we shall assume that the manifold does not cross the V-nullcline. In

that case, the voltage V (t) of the manifold, seen as a solution of the system, goes to
−∞ as t→−∞, and we will look for possible contradictions.
If we have F ′−∞ =−∞, the trajectories are asymptotically horizontal and hence will

necessarily cross the w-nullcline, but not necessarily the v-nullcline. In the case where
F ′−∞ >−∞, the approximated dynamics can be solved analytically. Asymptotically, the
differential equations satisfied by a given solution (v,w) of the rescaled model can be
approximated by:
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{
v̇ = F ′−∞v−w + I

ẇ = a(bv−w)
(4.20)

When t → −∞, the solutions of the linear system either spiral around the fixed
point (complex eigenvalues) or align asymptotically to the direction of eigenvector

associated to the smallest negative eigenvalue of the matrix L governing the dynamics
of the linear system (4.20):

L =

(
F ′−∞ −1
ab −a

)

If the eigenvalues of this matrix are complex, i.e., when b >
(a+F ′−∞)2

4a , then the so-

lutions spiral around the fixed point. Therefore the trajectories cross the V-nullcline,

which contradicts our initial hypothesis. Thus when b >
(a+F ′−∞)2

4a (resonator regime),

the stable manifold crosses both nullclines.

If the eigenvalues are real, the trajectories of the linear system align asymptoti-

cally to the direction of the lower eigenvalue

λ− =−1
2
(a−F ′−∞ +

√
(F ′−∞ + a)2−4ab)

This eigenvalue is always strictly negative hence solutions will diverge when t→
−∞. The eigenvector associated with this eigenvalue is:

(
2

a+F ′−∞+
√

(F ′−∞+a)2−4ab

1

)

The slope of that eigenvector is always inferior to F ′−∞, so that (linearized) trajec-

tories do not cross the V-nullcline. However they can cross the w-nullcline when the

slope of the eigenvector is smaller than b, i.e.:

a+ F ′−∞ +
√

(F ′−∞ + a)2−4ab

2
< b

and this condition is satisfied when b > 1
2(a+ F ′−∞). Assuming ā > 0, the inequality is

always true if τ̄w > −F ′−∞; when when τ̄w < −F ′−∞, the inequality is never true given

that the eigenvalues are real (b >
(a+F ′−∞)2

4a ).

In summary, the stablemanifold crosses both nullclines when b > 1
2(a+F ′−∞)(resonator

regime), and it crosses at least the w-nullcline when τ̄w >−F ′−∞ or F ′−∞ =−∞.

4.2.6 Rebound

The term rebound refers to the property that a spike can be triggered by hyperpo-

larizing the membrane. This can be done either by sending a short negative current

pulse, which amounts to moving the state vector (V,w) horizontally to the left, or by
slowly hyperpolarizing the membrane with a long negative current step (or ramp)

and releasing it, which amounts to moving the state vector along the w-nullcline.

For class A parameters, there is no limit cycle and there is an unbounded sep-

aratrix. If τm < τw or if condition (4.11) is false, then the separatrix crosses the w-

nullcline. It follows that both types of rebounds are possible. Otherwise the model

is in the integrator regime, and the the separatrix may not cross the w-nullcline. In
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that case it is only possible to trigger a spike by increasing the voltage: there is no

rebound.

For class B parameters, there is either a repulsive limit cycle which circles the

stable fixed point when the input current is close enough to the rheobase current

(I > Icycle), or the separatrix crosses both the w-nullcline and the v-nullcline. In both
cases, it is possible to exit the attraction basin of the stable fixed point and thus

trigger a spike by changing any variable in any direction. Therefore, both types of

rebound are possible. Note that with short current pulses, a more negative voltage

must be reached in order to trigger a spike.

4.2.7 After-potential

After a spike, the state vector resets to a certain point in the state space. The sub-

sequent trajectory is determined by this initial state. We will discuss the spike se-

quences in more details in section 4.4, but here we simply note that if the state vector

is reset above the V-nullcline, then the membrane potential V will first decrease then
increase (broad after-potential, or after-potential hyperpolarization); if the state vec-

tor is reset below the V-nullcline, V will increase (sharp after-potential).
The depolarizing after potential (figure 2.5.(xvii).) is linked with the position of

the reset in the oscillatory case. In that case, if the neuron elicits a spike and is

reset in the attraction basin of the stable fixed point, then the return to equilibrium

will present oscillations around the fixed point. If the reset occurs on a point of a

converging trajectory for which the voltage is increasing, the return to equilibrium

will be characterized by a depolarizing afterpotential, i.e. the voltage will increase

before returning to equilibrium.

4.3 OVERSHOOT

As discussed in section 4.2.4, the response of the neuron to a current step can

present an overshoot when the coefficient of the slower exponential term is negative.

In this section we show that in the low-voltage approximation (V ≪ VT ), there is an

overshoot if and only if τm < τw and there is no oscillation, thus, in the mixed mode

regime (Fig. 4.3).

Indeed, in the low voltage approximation, the dynamics is linear and is governed

by the operator:

L =



−1 −1

ā
τ̄w
− 1

τ̄w




which can be diagonalized. The overshoot appears only when the eigenvalues are

real. In this case, the voltage response to a short pulse (Dirac) is a sum of two ex-

ponential functions v(t) = αe−t/τ1 + βexp−t/τ2 (we set the resting potential to 0) where
−1
τ1
and −1

τ2
are the two real eigenvalues of L. The coefficient of the slower exponential

term is
ε

2δ
(
√

δ (1− τ̄w)+ δ )

with δ = (1− τ̄w)2−4āτ̄w. We now write the negativity condition of this coefficient:

√
δ (1− τ̄w)+ δ < 0⇔ 1− τ̄w <−

√
δ
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Figure 4.5: The adaptation map. A, B. Response of a class A model to a suprathresh-

old constant input (A: membrane potential V ; B: adaptation variable w). The value of
w after each spike defines a sequence (wn). C. The adaptation map Φ maps the value
of the adaptation variable from one spike to the next. The sequence (wn) is the orbit
of w0 under Φ.

A necessary condition for this inequality to be satisfied is τ̄w > 1. In this case, the
condition reads:

(1− τ̄w)2 > δ = (1− τ̄w)2−4āτ̄w

which is always true since āτ̄w > 0. Hence the overshoot appears in the low voltage
approximation (far from threshold) when τ̄w > 1, i.e., when τm < τw.

4.4 SPIKE PATTERNS

In the previous section, we analyzed the subthreshold dynamics of the model

and found a rich structure, with the two parameters b and a, i.e. b/gL and τm/τw for

the AdExp model, controlling excitability, oscillations and rebound properties. Here

we turn to the patterns of spikes, such as regular spiking, tonic/phasic bursting or

irregular spiking, and explain them in terms of dynamics. Compared to the previous

section, two additional parameters play an important role: the reset value Vr and the

spike-triggered adaptation parameter d.
To study the spike sequences, use the Poincaré map (or adaptation map) intro-

duced in chapter 3 which transforms the continuous time dynamics of the system

into the discrete time dynamics of that map.

4.4.1 The adaptation map

In this section we recall the definition of this map and present some of its main

features in the specific case of the AdExp model. v

We recall that after a spike emission, the potential V is always reset to the same
valueVr, therefore the trajectory is entirely determined by the value of the adaptation

variablew at spike time: the sequence of values (wn), wn = tn (tn = time of spike number
n) uniquely determines the trajectory after the first spike. The adaptation function Φ



155

A

B

C

D

Figure 4.6: The spiking domain D for the same cases as in Fig. 4.4, when the

nullclines (dashed lines) intersect. The attraction basin of the stable fixed point is

bounded by the red curve. The blue and purple vertical lines indicate the reset line

V = Vr. When that line is outside the attraction basin (blue), then D = R and the

model is bistable (tonic/resting). When the line intersects the attraction basin (pur-

ple), then D is an interval or the union of two intervals. In that case, the model is
generally phasic (C,D) but may be bistable (A,B). In practice, with realistic values of d
(spike-triggered adaptation), bistability essentially occurs when there is a limit cycle

(A).

mapping wn to wn+1 introduced in chapter 3 will therefore be used to characterize the

spikes. We define again D as the domain of the adaptation variable w such that the
solution of (4.1) with initial condition (Vr,w) spikes (blows up in finite time). Then the
adaptation map Φ is

Φ :

{
D 7→ R

w0 7→ w∞ + d
(4.21)

where w∞ is the value of w at divergence time (spike time) for the trajectory starting
from (Vr,w0), as illustrated in Fig. 4.5. The sequence (wn) is the orbit of w0 under Φ,
as shown in Fig. 4.5C. Note that this sequence may be finite if for some n, wn /∈ D .
The property that the sequence is infinite (resp. finite) is called tonic spiking (resp.

phasic spiking). The spike patterns are determined by the dynamical properties of Φ
(fixed points, periodic orbits, etc.), as we show in next section. First, we examine the

spiking domain D .
When there is no stable fixed point, i.e., when I is above the rheobase current

(section 4.2.1), either IA
rh or IB

rh depending on the excitability type, then any trajectory

spikes, except that starting at a countable number of points in the case IB
rh < I <
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IA
rh: the unstable fixed points or the intersections of the line V = Vr with the stable

manifold of the saddle fixed point.(D = R \ {these points}. When there is a stable
fixed point, all trajectories starting inside the attraction basin of that fixed point will

not spike. The spiking domain D is then the complementary of the intersection of the
reset line V = Vr with the attraction basin of the stable fixed point (up to a projection

onto the w axis), as shown in Fig. 4.6. We previously found (4.2.5) that the attraction
basin of the stable fixed point is either a limit cycle or the stable manifold of the

saddle fixed point. In the latter case, it may have a minimum voltage (resonator) or

not (integrator or mixed). Fig. 4.6 shows how these different cases determine the

spiking domain D . We summarize these findings below, and describe the adaptation
map Φ.
We first define two special values w∗ and w∗∗ as follows: the reset line V = Vr inter-

sects the V-nullcline and w-nullcline at the points (Vr,w∗) and (Vr,w∗∗), respectively,
where {

w∗ =−gL(Vr−EL)+ gL∆T exp
(

Vr−VT
∆T

)
+ I

w∗∗ = b(Vr−EL)

Nearby spiking trajectories starting on the reset line V = Vr above w∗ (i.e., above
the V-nullcline) may spike only after half a turn (since V initially decreases), or pos-
sibly an odd number of half-turns, which implies that the vertical order of the trajec-

tories is reversed at spike time: Φ is locally decreasing above w∗. Spiking trajectories
starting below w∗ spike either directly or after an even number of half-turns, so that
Φ is locally increasing below w∗. It follows that the sequences (wn) are bounded.
We now describe the map Φ and the spiking domain D for the two excitability

types, depending on the input current I.

1. Class A:

(a) (subthreshold) if I < IA
rh, then there is a stable fixed point and no limit cycle

(see section 4.2.5). If the separatrix has no lower bound (typically: integra-

tor or mixed regime), then the domain D is an interval (−∞,wmax) where
wmax is the value of the adaptation variable on the separatrix for V = Vr.

The map Φ is continuous on that set. We note that if V− < Vr < V+, then

there can only be phasing spiking: indeed, wn+1 > wn + b for all n, therefore
at some point the orbit exits D .

When the separatrix has a lower voltage bound Vmin (typically: resonator),

then there are two cases. If Vr < Vmin, then D = R and Φ has the same prop-
erties as in case 1b. If Vr > Vmin, then D = (−∞,wmin)∪ (wmax,+∞). Besides,
Φ((wmax,+∞))⊂Φ((−∞,wmin)).

(b) (suprathreshold) if I > IA
rh, all trajectories spike. Therefore, D = R. The

adaptation map is concave for w < w∗, regular, has a unique fixed point and
an a horizontal asymptote when w→+∞.

2. Class B:

(a) (subthreshold) if I < Icycle, then there is a stable fixed point and no limit
cycle, so that the situation is similar to case 1b.

(b) (subthreshold) if Icycle < I < IB
rh, then there is a stable fixed point and a re-

pulsive limit cycle bounding the attraction basin of the stable fixed point.

Let Vmax and Vmin be the two extremal voltage values of the limit cycle. For

Vr < Vmin or Vr > Vmax, D = R and Φ has the same properties as in case 1b.
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(c) (suprathreshold) if IB
rh < I < ISN , then there are two unstable fixed points

and no limit cycle, hence all trajectories spike. Therefore D = R. When

Vr ∈ (V−,V+), the adaptation map is discontinuous at some point wmax < w∗,
and Φ(wmax) < Φ(w−max) (when trajectories start circling around the fixed
point). Thus Φ is locally but not globally increasing on (−∞,w∗). The map
Φ also has a horizontal asymptote when w→+∞.

(d) (suprathreshold) if I > ISN , then D = R and Φ has the same properties as in
case 1b (class A).

Tonic spiking occurs for any initial w0 ifD = R (in particular, in the suprathreshold

regime). In other cases, spiking is generally phasic but there can be tonic spiking if

the set
⋂∞

n=0Φn(D) is not empty. When it occurs, the model is bistable.

The sequence (wn)n≥0 of values of the adaptation variable at spike times is the

orbit of w0 under Φ: wn = Φn(w0). Since there is a mapping from w to the interspike
interval, the properties of Φ determine the spike patterns. In the following, we exam-
ine the relationship between the adaptation map Φ and the spike patterns.

4.4.2 Tonic Spiking

Regular Spiking

Regular spiking means that interspike intervals are regular, possibly after a tran-

sient period of shorter intervals. For the adaptation variable, it means that the se-

quence (wn) converges, i.e., Φ has a stable fixed point. This situation is shown in Fig.
4.5. For low initial values of the adaptation variable, Φ is increasing and Φ(w) > w, so
that the sequence (wn) is increasing, implying that the duration of interspike inter-
vals decreases (this implication is true for w < w∗, i.e., before the maximum of Φ).
The shape of after-potentials (broad or sharp) depends, as we previously saw,

on whether (Vr,w) is above or below the V-nullcline, i.e., whether w > w∗ or w < w∗.
Asymptotically, the condition for broad resets is thus wfp > w∗, where wfp is the fixed
point of Φ. Given the properties of Φ, this means Φ(w∗) > w∗. Since the parameter
d (spike-triggered adaptation) shifts the curve of Φ vertically, there is a minimum d
above which resets are (at least asymptotically) broad.

When Φ is continuous (cases 2d and 1b), it always has a fixed point (since Φ(w) >
w + d for low w and Φ converges to a finite limit when w→ +∞), but that fixed point
may not be stable. That property depends on all parameter values; in particular, the

fixed point is an attraction basin when d or I is large enough (for large d, the fixed
point is on the plateau of Φ, which implies broad resets). If the fixed point is not
stable, then the sequence (wn) may converge to a periodic orbit or be irregular.

Bursting

A bursting response is a sequence of shortly spaced spikes, separated by longer in-

tervals. For the adaptation variable w, it corresponds to a periodic orbit, where the
period equals the number of spikes per burst. For the adaptation map, p-periodic or-
bits are associated with stable fixed points of Φp. This situation is illustrated in Fig.

4.7. Typically, bursting occurs for large reset values Vr: the first spike resets the tra-

jectory to a high voltage value, which induces a fast spike, and the adaptation builds

up after each spike, until the trajectory is reset above the V -nullcline (after the peak
of Φ at w∗). At that point dV/dt < 0 and the trajectory must turn in phase space before



158 CHAPTER 4. ELECTROPHYSIOLOGICAL CLASSES

Time (ms) Time (ms)300 300

A

B

C

D

w
n

w
n

w
n

+
1

w
n

+
1

w
n

+
1

w
n

+
1

0

0 0

0

0.35

0.40

0.45

0.40

Figure 4.7: Bursting and chaos. Each panel shows a sample response (V and w) from
the model, with different values of Vr (parameters: C = 281pF, gL = 30nS, EL =−70.6
mV, VT = −50.4 mV, ∆T = 2 mV, τw = 40ms, b = 4 nS, d = 0.08 nA, I = .8 nA). A burst
with n spikes corresponds to an n-periodic orbit under Φ. The last spike of each burst
occurs in the decreasing part of Φ, inducing a slower trajectory. A. Bursting with 2
spikes (Vr =−48.5mV). B. Bursting with 3 spikes (Vr =−47.7mV). C. Bursting with 4
spikes (Vr =−47.2mV). D. Chaotic spiking (Vr =−48mV).

it spikes, producing a long interspike interval. Thus, the number of spikes per burst

increases when Vr increases (since w∗ increases with Vr) and when d decreases. Thus
the bifurcation diagram with respect to Vr (Fig. 4.8) shows a period adding structure.

Interestingly, when zooming on a transition from n to n+1 spikes, a period doubling
structure appears, revealing chaotic orbits.

Chaotic spiking

The period doubling structure shown in Fig. 4.8B implies that orbits are chaotic

for some parameter values. A sample response of the model for one of those values

is shown in Fig. 4.7D. It results in irregular, unpredictable firing, in response to a

constant input current.

4.4.3 Phasic spiking

Phasic spiking or (bursting) can occur in subthreshold regimes (I < IA
rh for class A

parameters, I < IB
rh for class B), when there is a stable fixed point and D 6= R. In

that case, the system needs to be destabilized (e.g. a short current pulse, which may

be positive or negative, as explained section 4.2.6). The situation depends on the

properties of the attraction basin of the stable fixed point, and can be understood

from Fig. 4.6.

We can distinguish two cases:

1. If D = (−∞,wmin) (C,D: integrator or mixed regime), then when V− < Vr < V+

there can only be phasic spiking, otherwise tonic spiking is possible. Indeed, if

V− < Vr < V+, then the sequence (wn) is such that wn+1 > wn + d, so that it must
exit D in finite time.
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A B

Figure 4.8: Bifurcation structure with increasing Vr (same parameters as in Fig. 4.7).

A. Bifurcation diagram showing a period adding structure (orbits under the adapta-

tion map Φ with varying values for Vr). Fixed points indicate regular spiking, periodic

orbits indicate bursting, dense orbits indicate chaos. B. Zoom on the bifurcation dia-

gram A (as indicated by the shaded box), showing a period doubling structure.

2. If D = (−∞,wmin)∪ (wmax,+∞) (A,B: resonator or mixed regime), then there can
only be phasic spiking Φ(wmin) > wmax, otherwise tonic spiking is possible.

When tonic spiking (or bursting) is possible, then the model is bistable (it can be

turned on or off with current pulses).

4.5 DISCUSSION

The adaptive exponential integrate-and-fire model [30] is able to reproduce

many electrophysiological features seen in real neurons, with only two variables and

four free parameters. Besides, its parameters have a direct physiological interpreta-

tion. In the framework of this model, we can define an electrophysiological class as

a set of dynamical properties for different values of the input I (for given parameter
values). In this chapter, we tried to provide a classification of the parameter space as

complete as possible, which is summarized for subthreshold dynamics in Fig. 4.3. The

subthreshold dynamics depends only on the ratio of time constants (τm/τw) and on the

ratio of conductances (b/gL), but is already non-trivial. The model can have excitabil-

ity type I or II depending whether it leaves the resting state through a saddle-node or

an Andronov-Hopf bifurcation. It may act as an oscillator or an integrator depending

on the eigenvalues associated to the resting point. It may spike in response to hyper-

polarizing currents (rebound), depending on the properties of the attraction basin of

the stable fixed point, which is bounded by either a limit cycle or a separatrix.

The spiking dynamics is even more rich, as it also depends on the reset param-

eters d and Vr. We related the spike patterns with orbits under a discrete Poincaré

map Φ, and found a rich bifurcation structure including even chaos. Regular spiking
corresponds to a stable fixed point of Φ, bursting corresponds to periodic orbits under
Φ and irregular spiking corresponds to chaotic orbits under Φ.
Most of the results shown in this chapter generalize to two-dimensional spiking

models in which the first (membrane) equation is dV/dt = F(V ) + I−w, where F is
a smooth convex function whose derivative is negative at −∞ and infinite at +∞ (in
particular, Izhikevich model and the quartic model have these properties). We are
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currently working on the mathematical proofs of these results in that more general

setting and on a more complete picture of the spiking dynamics [258]. This work will

provide both a dynamical system understanding of the the spiking properties of the

model and analytical methods to relate the parameter values with electrophysiologi-

cal classes. Another interesting line of research is the investigation of the responses

of such bidimensional models to time-varying inputs, as was done in [32] for one-

dimensional integrate-and-fire models.



CHAPTER 5

SENSITIVITY TO THE CUTOFF

VALUE IN THE QUADRATIC

ADAPTIVE INTEGRATE-AND-FIRE

MODEL

OVERVIEW

As already discussed, the quadratic adaptive integrate-and-fire model [141, 145] is

recognized as very interesting for its computational efficiency and its ability to re-

produce many behaviors observed in cortical neurons. For this reason it is currently

widely used, in particular for large scale simulations of neural networks. This model

is part of the general class of models studied in chapter 2: it emulates the dynamics

of the membrane potential of a neuron together with an adaptation variable. The

subthreshold dynamics is governed by a two-parameter differential equation, and a

spike is emitted when the membrane potential variable reaches a given cutoff value.

Subsequently the membrane potential is reset, and the adaptation variable is added

a fixed value called the spike-triggered adaptation parameter. We show in this chap-

ter that when the system does not converge to a resting state, both variables of the

subthreshold dynamical system blow up in finite time. The cutoff is therefore essen-

tial for the model to be well defined and simulated. The divergence of the adaptation

variable makes the system very sensitive to the cutoff: changing this parameter dra-

matically changes the spike patterns produced. Furthermore from a computational

viewpoint, the fact that the adaptation variable blows up and the very sharp slope

it has when the spike is emitted implies that the time step of the numerical simula-

tion needs to be very small (or adaptive) in order to catch an accurate value of the

adaptation at the time of the spike. It is not the case for the similar quartic [255] and

exponential [30] models whose adaptation variable does not blow up in finite time,

and which are therefore very robust to changes in the cutoff value.
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5.1 INTRODUCTION

During the past few years, in the neuro-computing community, the problem

of finding a computationally simple and biologically realistic model of neuron has

been widely studied, in order to be able to compare experimental recordings with

numerical simulations of large-scale brain models. The key problem is to find a

model of neuron realizing a compromise between its simulation efficiency and its

ability to reproduce what is observed at the cell level, often considering in-vitro ex-

periments [144, 165, 225]. Among the variety of computational neuron models, non-

linear spiking models with adaptation have recently been studied by several authors

[30, 144, 255] and seem to stand out. They are relatively simple, i.e. mathematically

tractable, efficiently implemented, and able to reproduce a large number of electro-

physiological signatures such as bursting or regular spiking. These models satisfy

the equations: {
dv
dt = F(v)−w + I
dw
dt = a(b −w)

(5.1)

where a and b are non-negative parameters and F(v) is a regular strictly convex func-
tion satisfying assumption:

Assumption 5.1.1. There exists ε > 0 and α > 0 for which F(v) ≥ αv1+ε when v→ ∞
(we will say that F grows faster than v1+ε when v→ ∞).

A spike is emitted at the time t∗ when the membrane potential v reaches
a cutoff value θ . At this time, the membrane potential is reset to a constant

value c and the adaptation variable is updated to w(t∗)+ d where w(t∗) is the value
of the adaptation variable at the time of the spike and d > 0 is the spike-triggered
adaptation parameter.

For these models we prove in section 5.2 that the membrane potential blows up

in finite time. Among these models, the quadratic adaptive model [144] corresponds

to the case where F(v) = v2, and has been recently used by Eugene Izhikevich and

coworkers [147] in very large scale simulations of neural networks. The adaptive ex-

ponentialmodel [30] corresponds to the case where F(v) = ev, has the interest that its

parameters can be related to electrophysiological quantities, and has been success-

fully fit to intracellular recordings of pyramidal cells [51, 155]. The quartic model

[255] corresponds to the case where F(v) = v4 +2av and has the advantage to of being
able to reproduce all the behaviors featured by the other two and also self-sustained

subthreshold oscillations which are of particular interest to model certain nerve cells.

In these models, the reset mechanism makes critical the value of the adaptation

variable at the time of the spike. Indeed, when a spike is emitted at time t∗, the
new initial condition of the system (5.1) is (c,w(t∗)+d). Therefore, this value governs
the subsequent evolution of the membrane potential, and hence the spike pattern

produced. For instance in [258, 259], the authors show that the sequence of reset

locations after each spike time shapes the spiking signature of the neuron.

Hence characterizing the reset location of the adaptation variable is essential to

characterize the spiking properties of these models. To this end, we precisely study in

this chapter the orbits of equation (5.1) in the phase plane (v,w) in order to character-
ize the value of the adaptation variable at the time of the spike. We prove in section

5.2 that the adaptation variable diverges when v→ ∞ in the case of the quadratic
model and converges in the cases of the exponential and of the quartic model, and
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study in section 5.3 the consequences of this fact on the spiking signatures and on

numerical simulation methods.

5.2 ADAPTATION VARIABLE AT THE TIMES OF THE SPIKES

As we can see in equation (5.1), the greater the membrane potential the greater

the derivative of the adaptation variable. When the membrane potential blows up,

the adaptation variable may either remain bounded or blow up, depending on the

shape of the divergence of v. When this divergence is not fast enough, the adaptation
variable simultaneously blows up.

We prove here that for the models satisfying assumption 5.1.1 the membrane po-

tential blows up in finite time. We also prove that for quadratic adaptive model1

the adaptation variable blows up at the same time as a logarithmic function of v,
whereas if there exists ε > 0 such that F(v) grows faster than v2+ε when v→ ∞, then
the adaptation variable remains bounded when v→ ∞.
In [255], we have seen that there exists possibly one stable fixed point for system

5.1, which corresponds to a resting state. In [259], we prove that all the orbits of the

system that do not converge to this stable fixed point will be trapped after a finite time

in a zone fully included in the half space {w < bv} called the spiking zone2. Denote t0
a time such that the orbit is inside the spiking zone. In this zone, we have

dv
dt
≥ F(v)−bv+ I

It is simple to prove that the solution of the equation

{
du
dt = F(u)−bu+ I

u(t0) = v(t0)

blows up in finite time under the assumption 5.1.13. Using Gronwall’s theorem [117]

we conclude that v(t) ≥ u(t) and hence v blows up in finite time.
To prove the divergence of the adaptation variable when the membrane potential

blows up in the case of the quartic model, we study the orbit of a solution (v(t),w(t))
of the differential system (5.1) such that the membrane potential blows up at time t∗,
and characterize the behavior of w(t) in function of v(t). In the spiking zone, we have
seen that w(t)≤ bv(t) and therefore F(v)−w + I ≥ F(v)−bv+ I which tends to infinity
when v tends to infinity. Since v(t) blows up there exists a time t1∈ [t0, t∗) such that we
will have F(v(t))−w(t)+ I ≥ k > 0 for all t ∈ [t1, t∗). We denote (v1 := v(t1),w1 := w(t1)).
After time t1, because of this inequality, the trajectory in the phase plane can be

1We can prove more generally that when F(v)/v2 tends to a finite constant (possibly 0), the adaptation
variable will blow up when the membrane potential blows up
2In the case where the subthreshold system has no fixed point this property can be derived from the

shape of the vector field in the phase plane, as well as in the case where the initial condition (v,w) is
such that v is greater than the largest v-value of the fixed points (the biggest solution of F(v)−bv+ I = 0)
and w ≤ bv: in this case the vector field on the line w = bv implies that the trajectory keeps trapped in
this zone. In the case where there exist fixed points, the proof is slightly more complex and involves the

description of the stable manifold of the saddle fixed point.
3For the quadratic model we can get analytic expressions of the solutions involving the tangent

function, and therefore can derive an upperbound of the explosion time.
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written as the graph of a functionW (v) that satisfies the equation:
{
dW
dv = a(b−W )

F(v)−W+I

W (v1) = w1
(5.2)

(i.e. w(t) = W (v(t)) for t ∈ [t1, t∗)). Since w(t) is increasing for t ∈ [t1, t∗), we necessarily
have:

dW
dv
≥ a(b −W)

F(v)−w1 + I
(5.3)

Therefore Gronwall’s theorem [117] ensures us that the solution of equation (5.2) will

be lowerbounded for v≥ v1 by the solution of the linear ordinary differential equation:
{
dz
dv = a(b−z)

F(v)−w1+I

z(v1) = w1
(5.4)

that reads:

z(v) =

(∫ v

v1

abu
F(u)−w1 + I

e−g(u) du+ w1

)
eg(v)

where g(v) = −∫ v
v1

adu
F(u)−w1+I . Because of assumption 5.1.1, the integrand is integrable,

and the function g has a finite limit g(∞) when v→ ∞. The exponential terms will
hence converge when v → ∞. But the integral involved in the particular solution
diverges in the quadratic case4, since the integrand is equivalent when u→ ∞ to

ab
u

e−g(∞)

Hence the solution of the linear differential equation (5.4) tends to infinity when

v→ ∞ faster than a logarithmic function of v, and so doesW (v), and hence w(t) blows
up at the time when v(t) blows up.
Let us now upperbound the adaptation variable on the orbits of the system. Using

the same notations, since w1≤ w(t)≤ bv(t) for t ∈ [t1, t∗), we have:

dW
dv
≤ a(bv−w1)

F(v)−bv+ I
(5.5)

and hence

W (v)≤ w1 +
∫ v

v1

a(bu−w1)

F(u)−bu+ I
du

In the case where F(u) = u2 this integral is bounded by a logarithmic function of

v and in the case where F(u) grows faster than u2+ε , this integral converges when

v→ ∞. Furthermore, since W is an increasing upperbounded function, it converges

when v→ ∞.
We therefore conclude that in the case of the quadratic adaptive model, the adap-

tation variable blows up at the explosion time of the membrane potential variable v
and this divergence is logarithmic in v, and in the case of the quartic and exponential
models, the adaptation variable converges. The value of the adaptation variable at

the cutoff θ is simply given by W (θ), that depends on the parameters of the system
and of the initial condition. In the case of the quadratic model it is an unbounded

increasing function of θ , and in the quartic and exponential models, a converging
function of θ .

4or when F(v) grows slower than v2,
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5.3 CONSEQUENCES

The divergence of the adaptation variable at the times of the spikes signifi-

cantly impacts the theoretical, qualitative and computational analysis of the model.

We have seen that changing the cutoff value resulted in changing the value of

the adaptation variable at the times of the spikes. Let (v0,w0) be an initial condition
for the system (5.1). If the neuron fires, its membrane potential will reach the cut-

off value θ at a given time. Since the membrane potential blows up in finite time,
the time of the first spike emitted will not be very sensitive to changes in the cutoff

value provided it is high enough. But the after-spike reset location (c,W (θ)+ d) will
significantly change when varying θ . The whole subsequent evolution of the system
is therefore affected, as soon as the second spike is emitted. Thus the spike pattern

produced depends on the cutoff value.

In the case of the quartic and exponential models, the adaptation variable con-

verges when the cutoff tends to infinity. Therefore, the model defined by (5.1) with an

infinite cutoff value is mathematically well defined. In that case, a spike is emitted

when the membrane potential blows up and subsequently we reset the membrane

potential to a fixed value c and add to the value of adaptation variable at the explo-
sion time the spike-triggered adaptation parameter. We call this system the intrinsic

system. The behavior of the system and the spike patterns it produces can be math-

ematically studied (see [258, 259]). Interestingly, these intrinsic spike patterns un-

dergo bifurcations with respect to the parameters of the model. When considering a

finite cutoff, the model (or the numerical simulation) will approximate these intrinsic

behaviors provided that the cutoff threshold is high enough. The sensitivity to the

cutoff in these cases will hence be very limited except in very small regions of the

parameter space around the bifurcations of the intrinsic system. Unfortunately, for

the quadratic model, no intrinsic behavior can be defined because of the divergence

of the adaptation variable: the behaviors it produces will depend on the choice of the

threshold.

First of all, we have seen that the dependency of this reset location in the quadratic

model is a logarithmic function of θ , which makes the variations of the reset value in
function of the cutoff unbounded but quite slow. Small changes in the cutoff slightly

impact the value of the reset adaptation variable. For instance if we consider the

firing rate of a neuron in the case where the system has no fixed point, increasing

the cutoff value results in the case of the quadratic model in a a slow continuous

decrease of the firing rate of the neuron that tends to zero as the cutoff increases,

whereas the firing rate converges for the quartic model to the related intrinsic firing

rate (see figure 5.1.(g)).

When considering the spike patterns produced, the effects of changes in the cut-

off value for the quadratic model are much more dramatic. Indeed, the sequence of

adaptation values at the times of spikes shapes the spike pattern produced: for in-

stance, regular spiking corresponds to the convergence of this sequence, and bursting

to cycles in this sequence. These properties are very sensitive to changes in the pa-

rameters of the model: bifurcations between different spike patterns, and even chaos

appear when the model’s parameters vary (see [204, 258, 259]). In the case of the

quadratic model, we have seen that these adaptation values strongly depend on the

cutoff. Therefore, since the dependency on the cutoff is unbounded, from a given ini-

tial condition and for fixed values of the parameters, increasing the cutoff may result

in crossing many bifurcation lines, and hence in producing many different behaviors.

We present in figure 5.1 a graph showing that bifurcations and chaos occur with re-
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spect to the cutoff value, in the usual range of simulation parameters. For instance,

a period doubling bifurcation appears when varying the cutoff value (in figure 5.1(e)

we give a graph of the stationary reset values in function of the threshold θ ), that
results in abruptly switching from a regular spiking behavior to a bursting behavior

(figures 5.1(a) and 5.1(b)). More complex bifurcation structures involving chaotic pat-

terns also appear, and in this case, infinitesimal changes in the cutoff value result

in dramatic changes in the behavior. This raises the question of the meaning of the

cutoff value in these ranges of parameters (see figure 5.1(f)). Changing the cutoff

in that case makes the system switch between chaotic spiking, bursts with 8, 4 and
eventually 2 spikes, for the cutoff values considered. And this behavior will not be
observed only for very particular values of the parameters of the system. Depending

on the extension of the interval where the cutoff value varies, quite a large set of

parameters will present bifurcations in the nature of the emitted spike train.

Because of this sensitivity, the cutoff value and the different parameters of the

model have to be very carefully evaluated in order to quantitatively fit datasets. In

this context the meaning of the threshold and therefore the problem of its accurate

evaluation has to be specifically addressed in the case of the quadratic model, since

it has no clear biophysical interpretation.

Eventually, from the numerical viewpoint, the unboundedness of the adaptation

variable and of its time derivative at the explosion times of the membrane potential

makes the accurate computation of this value very difficult. In particular, the time

step necessary to accurately estimate this value has to be very small (or to be adaptive

as a function of the value of the membrane potential variable) in order to obtain the

right spike pattern. These remarks relativize the statement that this model can be

efficiently simulated since very accurate methods have to be implemented in order to

correctly evaluate the adaptation variable at the time of the spike.

These remarks do not apply for the models where the adaptation variable con-

verges at the times of the spikes. In these cases, the system has intrinsic properties

that make the times of the spike and the adaptation variable at these times robust to

the choice of the cutoff value provided it is big enough and the numerical simulations

less sensitive to the choice of the time step.

CONCLUSION

In this chapter we proved that the adaptation variable of the adaptive quadratic

model blew up at the times of the spikes whereas it converged for the quartic and the

adaptive exponential models. This property has some important implications that

are discussed in the chapter. From a theoretical point of view, we showed that the na-

ture of the spike patterns produced undergoes bifurcations with respect to the cutoff

value, and this made the system very sensitive to this parameter: small changes in

the value of this parameter can deeply affect the nature of the spiking pattern. From

a quantitative viewpoint, it raises the question of how to evaluate this threshold in

order to fit datasets, and from a numerical viewpoint, it has implications on the effi-

ciency of the simulation algorithms to use. The convergence of this value for models

having a faster blow up at the times of the spike, such as the quartic or the exponen-

tial adaptive models, implies that the system presents intrinsic spiking properties

which can be mathematically studied, efficiently simulated and robust to changes in

the cutoff value.
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Figure 5.1: Sensitivity of the spike patterns with respect to the cutoff value for the

quadratic model, for different set of parameters. Parameters used: (A) = {a = 0.02;b =
0.19;c = −60;d = 1.419}; (B) = {a = 0.1;b = 0.26;c = −60;d = 0;}, (C) = {a = 0.02,b =
0.19,c = −57.7,d = 1.15}. For figure (a) and (b) the parameters used are (A) with
cutoff of 36 and 38 respectively: a small increase of the cutoff results in a sharp
transition from spiking to bursting, linked with a period doubling bifurcation for the

adaptation value at the reset represented in figure (e). Figures (c) and (d) corresponds

to the parameters (B) with cutoffs value 32.9 and 33 respectively. Changing the cutoff
results in two very different global behaviors. Fig. (e) and (f) represent the stationary

sequence of reset values as functions of the threshold θ . Figure (f) corresponds to the
set of parameters (C) for cutoff values ranging from 20 to 100: an intricate bifurcation
structure appears. Figure (g) shows the convergence of the firing rate to the intrinsic

firing rate in the case of the quartic model, while the firing rate of the quadratic

model regularly decreases to 0.
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This part is dedicated to the study of the spike statistic under the diffusion ap-

proximation of the noise. In chapter 6 we show how the problem of describing spike

statistics can be expressed as a first-hitting time problem for different stochastic pro-

cesses, and review many different techniques in order to characterize the probability

distribution of spike timings. One of the problem which is unsolved by usual tech-

niques is the problem of the statistics of integrate-and-fire neuron models when con-

sidering a non-instantaneous synaptic integration. Solving this problem is the main

focus of chapter 7. We introduce a class of processes, which we call double integral

processes, corresponding to the set of processes defined as primitive of a Brownian

martingale, and develop a semi-analytical method in order to solve the problem of

the first hitting times of these processes to general smooth boundaries. An approxi-

mation formula is provided together with the related convergence rate.
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Si j’avais été mieux au fait de la guerre littéraire,

j’aurais mis mon gilet pare-balles en velours côtelé.

– Pierre Assouline.

ABSTRACT

We discuss the statistics of spikes trains for different types of integrate-and-fire neu-

rons and different types of synaptic noise models. In contrast with the usual ap-

proaches in neuroscience, mainly based on statistical physics methods such as the

Fokker-Planck equation or the mean-field theory, we chose the point of the view of the

stochastic calculus theory to characterize neurons in noisy environments. We present

seven stochastic calculus techniques that can be used to find the probability distri-

butions attached to the spikes trains. We illustrate the power of these techniques

for five types of widely used neuron models. Despite the fact that these techniques

are mathematically intricate we believe that they can be useful for answering ques-

tions in neuroscience that naturally arise from the variability of neuronal activity.

For each technique we indicate its range of applicability and its limitations. This

work was done together with Olivier Faugeras, and the main results presented in

this chapter were published in the Journal of Physiology, Paris [260]. In this chap-

ter we nevertheless bring some new results: we present, extend and apply Brunel’s

method to different kinds of neuron models, provide a new insight of Durbin’s method

and extend its application domain, and discuss the problem of noisy synaptic conduc-

tances.
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6.1 INTRODUCTION

During the past forty years, modelling and understanding the effects of noise

in cortical neurons has been a central and difficult endeavor in neuroscience. Many

approaches have been used in order to characterize the spikes trains, most of them

borrowed from statistical physics. At the level of the cell, the effects of noise have

been studied first by Gerstein and Mandelbrot [103] who proposed random walk mod-

els to emulate the stochastic activity of a neuron, and Stein [243] who first modeled

and simulated the neuronal variability. Knight [163] in 1972 introduced and studied

the first noisy integrate-and-fire neuron model. His work has been generalized by

Gerstner [105]. Brunel and colleagues used the Fokker-Planck equation to charac-

terize the effect of noise at the level of the cell [37, 38] and of the network [35, 36].

Samuelides and his colleagues used the meanfield and large deviations framework to

characterize large sets of randomly connected neurons driven by noise [233]. In the

present chapter we adopt the point of view of the theory of stochastic calculus in an

attempt to characterize the stochastic properties of neuron models and the statistics

of the spikes trains they generate. We illustrate these techniques with five types of

widely used neuron models.

The techniques are mathematically quite intricate. Nevertheless, we believe that

they can be useful for answering questions in neuroscience that naturally arise from

the variability of neuronal activity. For instance, they can give access to the probabil-

ity distribution of the spikes trains, while other methods only give partial informa-

tions on this distribution. Moreover, the use of stochastic calculus methods enables us

to get rid of such technical hypotheses as the stationarity of the process, the sparsity

of the networks or the time scales approximations, which are generally required. It is

for instance applied in chapter 8 to propose an event-based modelization of stochas-

tic neuron networks and a very efficient way to simulate stochastic spiking neuron

models. Moreover, characterizing the law of the ISI gives very important informa-

tions to fit and validate models. For each technique presented we indicate its range

of applicability and its limitations.

In section 1.4.3, we discussed the origin of the variability in cortical neurons and

their mathematical modelling, and justified the use of the Brownian motion through

the use of a diffusion approximation. In this chapter we first present different clas-

sical mathematical models, which differ in their intrinsic dynamics or in the noise

models used. We then present few important stochastic methods for computing spikes

trains statistics, and apply them to the different types of neurons we consider, and

eventually compare the accuracy and the efficiency of these methods.

6.2 NEURON MODELS

In this chapter, a stochastic neuron model is defined by (i) a membrane

potential dynamics and (ii) a synaptic dynamics. The neuron emits a spike when its

membrane potential reaches a, possibly time-varying, threshold function θ(t). We
are interested in characterizing the sequence {ti}, i = 1, · · · , ti > 0, ti+1 > ti when the
neuron emits spikes. We present four simple models of spiking neurons submitted to

noisy synaptic input, discuss their biological relevance and perform a basic stochastic

analysis of the spikes times. In detail, a neuron model is defined by an equation:

τmdVt = f (t,Vt)dt + Ie(t)dt + dIsyn(Vt , t) (6.1)

where f (t,v) governs the free membrane potential dynamics, Ie(t) is the injected or ex-



176 CHAPTER 6. STATISTICS OF SPIKE TRAINS

ternal current and the deterministic term of synaptic integration, and Isynt represents

the noisy synaptic inputs due to background synaptic activity.

In the following sections, we review different models of neuronal dynamics in

which the synaptic current can be described by one of the models discussed in sec-

tion 1.4.3.

6.2.1 Model I: The noisy leaky integrate-and-fire model with instan-
taneous synaptic current

The simplest model we consider is the integrate and fire where the membrane poten-

tial V follows the following stochastic differential equation:

{
τmdVt = (Vrest−Vt + Ie(t))dt + σdWt

V0 = 0
(6.2)

where τm is the time constant of the membrane, Vrestthe rest potential andWt a Brown-

ian process representing the synaptic input. This equation is the Ornstein-Uhlenbeck

equation. The neuron emits a spike each time its membrane potential reaches a

threshold θ or a threshold function θ(t). When a spike is emitted, the membrane
potential is reinitialized to the initial value, e.g. 0.

This is the simplest continuous noisy spiking model. The leaky integrate-and-fire

neuron was first introduced by Lapicque [171] in a discussion on membrane polariz-

ability. It idealizes the neuron as a capacitor in parallel with a resistor and driven by

a current Ie (see e.g. [105]).

The noisy integrate-and-fire neuron with instantaneous synaptic current (6.2) has

recently received a lot of attention to investigate the nature of the neural code [41,

195, 234, 269]. As shown in section 1.4.3, equation (1.11), it can be seen as the

diffusion approximation of Stein’s model [103, 242] where the synaptic inputs are

considered as Poisson processes.

It is one of the few neuronal models for which analytical calculations can be per-

formed. Indeed, equation (6.2) can be solved in closed form:

Vt = Vrest(1− e
− t

τm )+ 1
τm

∫ t
0 e

s−t
τm Ie(s)ds+ σ

τm

∫ t
0 e

s−t
τm dWs (6.3)

The stochastic process Vt is Gauss-Markov. It is the sum of a deterministic part and

the product of e−t/τm with the random process
∫ t

0 es/τmdWs defined by a stochastic inte-

gral (see appendix C). Thanks to a change of time scale through the Dubins-Schwarz’

theorem C.1.6, it can be turned into a Brownian motion. It is easy to show that it is

a centered Gauss-Markov process with covariance function ρ(t) = τm
2

(
e
2 t

τm −1
)
. This

function is used in the application of the Dubins-Schwarz’ theorem to change the time

scale to obtain a Brownian motion:
∫ t

0 es/τmdWs
L
= Wρ(t).

The spiking condition of this neuron, Vt = θ(t), can be written in terms of this
simpler stochastic process:

∫ t

0
e

s
τm dWs = Wρ(t) = τm

σ

[
(θ(t)−Vrest)e

t
τm +Vrest− 1

τm

∫ t
0 s e

s
τm Ie(s)ds

]
def
= a(t) (6.4)

In order to fulfill our program we are thus naturally led to study the first hitting time

of the Brownian motionWρ(t) to the curved boundary a(t).
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6.2.2 Model II: The noisy leaky integrate-and-fire model with expo-
nentially decaying synaptic current

We modify the model of section 6.2.1 to include an exponentially decaying synaptic

current as described in section 1.4.3, equation (1.13):

{
τmdVt = (Vrest−Vt)dt + Ie(t)dt + Isynt dt

τsdIsynt = −Isynt dt + σdWt

This model is a more precise description of the synaptic current and is still simple

enough to be analyzed mathematically. Nevertheless, its analytical study is quite

challenging and only a few results are available.

We integrate this system of two stochastic differential equations in closed form

(see section 7.2.1 for the calculations). The synaptic current is simply an Ornstein-

Uhlenbeck process and reads:

Isynt = Isyn0 e
− t

τs +
σ
τs

∫ t

0
e

s−t
τs dWs,

where Isyn0 is a given random variable, and the membrane potential reads:

Vt = Vrest(1− e
− t

τm )+ 1
τm

∫ t
0 e

s−t
τm Ie(s)ds+

Isyn0

1− τm
τs

(e
− t

τs − e
− t

τm )+
σ

τmτs
e
− t

τm

∫ t

0
e

s
α

(∫ s

0
e

u
τs dWu

)
ds

where 1
α = 1

τm
− 1

τs
. Therefore, the membrane potential is the sum of a deterministic

process and a function of the non-Markov Gaussian differentiable process1 Xt defined

by:

Xt =
∫ t

0
es/α

(∫ s

0
eu/τs dWu

)
ds (6.5)

The spiking condition can be written:

Xt =−ατs

σ
Isyn0 (e

t
α −1)+

τmτs

σ

[
(θ −Vrest)e

t
τm +Vrest−

1
τm

∫ t

0
e

s
τm Ie(s)ds

]
. (6.6)

Studying the spikes sequence of the LIF model with exponentially decaying synaptic

currents amounts to studying the first hitting time of the process Xt defined by (6.5)

to a continuous deterministic boundary. This non-Markov process will lead us in

section 7.2.1 to introduce a general class of processes which we call the double integral

process (DIP), defined by:

Xt
def
=

∫ t

0
g(s)Msds =

∫ t

0
g(s)

(∫ s

0
f (u)dWu

)
ds (6.7)

for some real measurable functions f and g.
We already noted that the process Xt was non Markovian. We show in chapter 7

that the two-dimensional process (Xt ,Mt) is a Gaussian Markov process, and further-
more, conditionally to Ms, that the increments (Xt−Xs,Mt−Ms) are independent of the
σ -field Fs (see appendix C for the definitions of these terms).

1The proof that Xt is non-Markov is given in chapter 7.
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For a given t, the random variable Yt
def
= (Xt ,Mt) is a Gaussian two-dimensional

variable of parameters:





E(Yt) = (0,0)E[Y T
t ·Yt ] =

(
ρX(t) C(X ,M)(t)

C(X ,M)(t) ρM(t)

)
(6.8)

where the functions ρX(t), C(X ,M)(t) and ρM(t) are defined by:





ρM(t)
def
=
∫ t

0 f (s)2ds

ρX(t)
def
= 2

∫ t
0 g(s)(

∫ s
0 g(u)ρM(u)du)ds

C(X ,M)(t)
def
=
∫ t

0 g(s)ρM(s)ds

(6.9)

It can be checked that the Markov process (Yt)t transition measure (see Appendix

C.1.2 for a definition) has a Gaussian density w.r.t. Lebesgue’s measure ds:

N

((
xs + ms

∫ t
s g(u)du

ms

)
,C̃(s, t)

)
(6.10)

where the correlation matrix C̃(s, t) reads:

C̃(s, t) =

(
2
∫ t

s g(u)
(∫ u

s g(v)
∫ v

s f (w)2 dw dv
)

du
∫ t

s g(u)
(∫ u

s f (v)2dv
)

du∫ t
s g(u)

(∫ u
s f (v)2dv

)
du

∫ t
s f (u)2du

)
(6.11)

We now define the simplest non trivial double integral process, which turns out to

be of great interest for the study of the spike train statistics of the present model of

neuron: the Integrated Wiener Process (IWP) where the functions f and g are identi-
cally equal to 1:

Xt
def
=

∫ t

0
Ws ds (6.12)

The transition measure of the process (Xt ,Wt) can be written:P[Xt+s ∈ du,Wt+s ∈ dv
∣∣Xs = x,Ws = y

]
def
= pt(uv; x,y)dudv =

√
3

πt2 exp
[
− 6

t3 (u− x− ty)2 +
6
t2 (u− x− ty)(v− y)− 2

t
(v− y)2

]
dudv (6.13)

6.2.3 Model III: The noisy nonlinear integrate-and-fire neuron with
instantaneous synaptic current

The models studied so far are linear and cannot be used to model nonlinear behaviors

of neurons. For instance, it is known that many neuron models such as the INa,P, IK

current model (with a persistent Na+ current with instantaneous activation kinetics

and a slower persistent K+ current, see [146, Chapt. 4] for a good review) or the

Hodgkin-Huxley model present an Andronov-Hopf bifurcation. To model the behavior

of such neurons in the vicinity of these bifurcations, Ermentrout and Kopell in [82]

and Izhikevich in [146] proposed the following one-dimensional model:

{
dVt = (V 2

t + Ie(t))dt + σdWt

V0 = Vreset
(6.14)
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together with the spiking condition:

V (t−)≥ θ ⇒V (t) = Vreset and a spike is emitted.

Note that in the analytical model it can be useful to take θ = ∞ and in this case, the
problem is an explosion time problem and not a boundary crossing problem. Other

types of nonlinearities can generate other possibly interesting bifurcations. This is

an area of active research.

This model can be generalized to more complex nonlinearities:

{
dVt = (F(Vt)+ Ie(t))dt + σdWt

V0 = Vreset
(6.15)

The quadratic model has been studied analytically for constant inputs. The non-

linear stochastic differential equation is quite intricate to analyze in general. We

review some of its main properties. First, without spiking mechanism, the process

blows up almost surely in finite time, hence the neuron will fire almost surely in fi-

nite time. Secondly, there exists a weak solution up to the explosion time but the law

of the process is unknown apart from the fact that is not Gaussian. Its transition

density is unknown so far. Usual approaches like the Fokker-Planck equation (see

appendix C.1.2) fail in finding this law as we show next.

If the external current is constant, the infinitesimal generator of the process (6.14)

is defined by L
def
= 1

2σ2∂ 2
x + (x2 + Ie)∂x (see appendix C.1.2). Its transition probability

density p(t,x0,x) is formally solution of the Fokker-Planck equation:

∂ p
∂ t

(t,x0,x) = L ∗p(t,x0,x) (6.16)

=
1
2

σ2∂ 2
y p(t,x0,x)−∂x

[
(x2 + Ie)p(t,x0,x)

]
. (6.17)

A formal solution is provided byHeun’s triconfluent function ht (see [230] andMaple10
R©

documentation). The solution can be written p(t,x0,x) = f1(x) f2(t) where:





f1(x) = α1 ht

(
−
(

3
2

)2/3 c1
σ2/3 ,−3, Ie

3√12
σ4/3 ,− 3

√
2

3σ2 x
)

+β1e−
2x(3Ie+x2)

3σ2 ht

(
−
(3

2

)2/3 c1
σ2/3 ,3, Ie 3√12

σ4/3 ,1/3 3

√
2

3σ2

)

f2(t) = α2 e
c1
2τ t

where α1, β1, β2 and c1 are real constants depending on the initial condition x0. Un-

fortunately Heun’s triconfluent function is a very fast-diverging function which is not

integrable on R. Hence the function p(t,x0,x) = f1(x) f2(t) is not a transition probability
density: there is no solution of the Fokker-Planck equation for this process.

Another way of characterizing its law is to use the generalized Girsanov formula

(see theorem C.1.7 or [160]). More precisely, let S denote the first explosion time of
the process Vt , and Γ be a Borelian subset of R . We have for any t < T :P[Vt ∈ Γ,S > T ] =E[exp

(∫ T

0
(W 2

s + Ie)dWs−
1
2

∫ T

0
(W 2

s + Ie)
2ds

)1Wt∈Γ

]
(6.18)

This formula characterizes the law of the process between two spikes, but unfortu-

nately does not yield a usable form of the transition probability. This difficulty is
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intrinsic to the problem which blows up in finite time. Nevertheless we show in sec-

tion 6.3.5 that we can characterize the statistics of the spikes trains for this model of

neuron.

6.2.4 Model IV: Nonlinear integrate-and-fire models with decaying
synaptic current

The previous model is a special case in a larger class of nonlinear models defined by

the two equations

{
τmdVt = ( f (Vt)+ Ie(t))dt + Isyn(t)dt

dIsyn(t) =−Isyn(t)dt + σdWt
(6.19)

together with the spiking condition:

V (t−)≥ θ ⇒V (t) = Vreset and a spike is emitted.

f is a non-linear function, for instance a quadratic function f (v) = v2 ([146], contains

an exponential function f (v) = ev− v ([30]), or a quartic function f (v) = v4 ([254]).

As expected from the previous discussion very little can be obtained analytically,

since the model combines the difficulties of the last two models: as in the LIF model

with exponentially decaying synaptic current of section 6.2.2, themembrane potential

is non Markovian and, as in the quadratic IF model, it blows up in finite time almost

surely.

Despite these negative remarks, we can write down the corresponding Kolmogorov

(Fokker-Planck) equation. Let p(t,v0, i0,v, is) be the transition probability density of
the full process (6.19) and assume that the input current Ie(t) is constant. The Kol-
mogorov (Fokker-Planck) equation for this model reads:

τm∂t p+ ∂v{( f (v)+ Ie + is)p}+ τm

τs
∂is{−is p}=

σ2τm

2τ2
s

∂ 2
is p, (6.20)

where we have omitted the dependence in the variables for the sake of clarity.

6.2.5 Model V: Leaky integrate-and-fire neuron with instantaneous
synaptic conductances

We consider the leaky integrate-and-fire neuron with instantaneous synaptic con-

ductivities. According to equation (1.14) in section 1.4.3, the membrane potential

satisfies the equation:

dVt = (−λ (Vt −Vrest)+ Ie(t))dt + σ(Vt −Vrev)dWt , (6.21)

which we can write by a simple change of origin for V and a subsequent modification
of Ie:

dVt = (−λVt + Ie(t))dt + σVtdWt

This equation is a linear non-homogeneous stochastic differential equation which can

be solved in closed form. The homogeneous solution is seen to be:

Xt = exp

(
−(λ +

σ2

2
)t + σWt

)
,
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and the solution is:

Vt = V0 Xt +
∫ t

0
Ie(s)Xt−s ds (6.22)

Studying the spikes sequence of the LIF model with instantaneous synaptic conduc-

tivities amounts once again to studying the first hitting time of the process Vt defined

by (6.22). This process is quite difficult to study in its general formulation since the

noise and the input current are mixed.

Finally, we can consider a model of neuron having both noisy synaptic conduc-

tances and noisy current. In the most general case of this model, the equation of the

membrane potential reads:

dVt = (−λ (t)(Vt −Vrest)+ Ie(t))dt +(σg(t)(Vt −Vrev)+ σI(t)dWt , (6.23)

which can also be solved in closed form:

Vt = Xt

[
V0 +

∫ t

0
X−1

u {Ie(u)−σg(u)σI(u)} du+

∫ t

0
X−1

u σI(u)dWu

]

where

Xu
def
= exp

[∫ t

0

(
−λ (u)− 1

2
σ2

g (u)

)
du+

∫ t

0
σg(u)dWu

]

6.3 STOCHASTIC APPROACH FOR THE STATISTIC OF SPIKE
TRAINS

In this section we characterize the spikes trains statistics of the five types of neurons

defined in the first part of this chapter.

We have seen that the problem was equivalent to the first hitting time problem,

also called the first passage time, for stochastic processes (see equations (6.4) and

(6.6)). The information we would like to obtain is the probability density function of

the spikes times, which contains all the information on the statistics of the spikes

trains (mean, variance, higher order moments, when they exist).

First passage time problems for one-dimensional diffusion processes through time-

dependent boundary have received a lot of attention over the last three decades. Un-

fortunately, the evaluation of the first passage time pdf through a constant or time

dependent boundary is in general an arduous task which has still not received a sat-

isfactory solution. Analytic results are scarce and fragmentary, even if closed form

solutions exist for some very particular cases. A review of the different methods to

compute first hitting times of stochastic processes is given in the introductory section

of chapter 7.

In two or higher dimensions, the problem is even more complex and results can

hardly be found. For the simplest two dimensional process, the Integrated Wiener

Process (IWP) defined in (6.12), people like McKean [197] Goldman [110], Lachal

[168, 169, 170] solved the problem for a constant boundary with stochastic calculus

methods. Lefebvre used the Kolmogorov (Fokker-Planck) equation to find in some

special cases closed-form solutions [108]. Generalizations of these formulas to other

boundaries and other kinds of processes are simply not available. We have recently

proposed a formula for approximating these hitting times for general Double Integral

Processes (DIP) and general boundaries [262].

We focus on analytical or partially analytical methods. The main goal is to com-

pute the probability distribution of the spikes times. When this is not possible one
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can be satisfied to obtain some statistics of the spikes trains, such as the mean firing

rate [37, 38, 94].

Table 6.1 shows in its left column different methods we emphasize in this chap-

ter together with their possible use for solving the problem for the neuron models

presented in section 6.2. The letter “Y” indicates that the method can be applied to

completely solve the problem, i.e. to get the pdf of the hitting time in an analytical

or computational way for general boundaries, the letter “N” that it cannot. Ques-

tion marks “?” are used for open problems that have no known solution, and the ∼
symbols are used for problem that are partially solved by the method. This symbol

is used for instance if the method only provides statistics on the law of the hitting

time (expectation, standard deviation, . . . ) or only provides the law for some specific

inputs. The bold face indicates the problems we provide solutions for in this disser-

tation, including negative results. The star, “*”, is used if the result is new, to our

knowledge.

Methods \Models I II III IV V

Volterra Y N∗ ? ? ∼∗
(Durbin)

Feynman-Kac ∼ ? N ? N

Martingales ∼ ∼ ? ? ∼∗
Brunel etal ∼ ∼ ∼ ∼ ∼∗

Girsanov’s approach∗ Y∗ Y∗ ? ? Y ∗

Table 6.1: Analytical and semi-analytical methods which can be applied to find spike

statistics for different models. The symbols used in the table are explained in the

text.

6.3.1 The Volterra Method

This method consists in finding a Volterra integral equation satisfied by the proba-

bility density function p of the first hitting time τ of a stochastic process (Xt)t≥0 to a

curved boundary. It has been applied by Plesser to the leaky integrate-and-fire neu-

ron in [215] to find the pdf of the first hitting time of a leaky IF neuron driven by a

general input current.

In this section we first describe the method and generalize Plesser’s result to the

problem of an IF neuron modeled as a continuous one dimensional Gauss-Markov

process (Xt)t≥0 where the spiking condition is given by a smooth curved boundary

denoted by a(t). We then apply this to the models I and II.

Gauss-Markov processes

By Doob’s theorem [75], we know that there exist a Brownian motion W , a non-zero
real function g and a non-decreasing real function h such that :

∀t ≥ 0 Xt = g(t)Wh(t),

and hence the transition probability density function q(t,x|s,y) of this process can be
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Figure 6.1: Principle of the Volterra’s method: conditioning the transition probability

density by the location of the first hitting time s of the curve θ .

written using that of the standard Brownian motion (see appendix C):

q(t,x|s,y) =
1√

2π(h(t)−h(s))
exp


−

(
x

g(t) −
y

g(s)

)2

2(h(t)−h(s))


 (6.24)

The smoothness of the functions h and g determines that of the covariance function
of the process. Indeed we have, for s≤ t:E[XtXs

]
= g(t)g(s)h(s)

We assume that this autocorrelation function is continuously differentiable with re-

spect to s and t, which is the case for most of the processes encountered in practice.
Let x0 < a(0) the starting point at t = 0 of the process (Xt). By the strong Markov prop-
erty (see Appendix C for the definition) of Xt , conditioning on the first hitting time s
of the process to a (see figure 6.1), we can write:

q(t,a(t)|0,x0) =

∫ t

0
P(t,a(t),τ ∈ ds|0,x0) (6.25)

=

∫ t

0
q(t,a(t)|s,a(s))p(s)ds

=

∫ t

0

1√
2π(h(t)−h(s))

exp


−

(
a(t)
g(t)−

a(s)
g(s)

)2

2(h(t)−h(s))


 p(s)ds (6.26)

This equation is a weakly singular Volterra equation of the first kind with a square

root singularity at s = t since we have:




h(t)−h(s) ∼
s→t

h′(t)(t− s)

(
a(t)
g(t) −

a(s)
g(s)

)2

2(h(t)−h(s))
∼

s→t

([
a
g

]′
(t)

)2

h′(t)
(t− s)
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Hence the Volterra equation can be solved: we have existence and uniqueness of a

solution (see e.g. [182]) which is necessarily the pdf we are looking for.

Different algorithms can be used to numerically solve this problem. They are

reviewed for instance in Linz’ book [182]. We have used in our simulations a two

points block-by-block method which amounts to solving a linear system. This method

appears to be computationally very efficient and rather robust.

Other Volterra equations have been proposed, for instance in [42] or [73]. The

equation proposed in [73] is a second-kind Volterra equation which can be deduced

straightforwardly from (6.26). The formula proposed by Buonocore in [42] is slightly

different, and has the advantage of removing the singularity of the kernel in the

Volterra equation.

Note that this approach can be applied to any other kind of neuron model which

has a Markovian membrane potential dynamics. Nevertheless the main difficulty is

to find the transition probability density of the underlying process and to check if the

singularity of its transition kernel is integrable or not. For instance the transition

probability density of the quadratic integrate-and-fire neuron is not known and the

Fokker-Planck’s theorem C.1.12 cannot be applied (see section 6.2.3).

LIF neuron with instantaneous synaptic currents

The previous method applies directly to the LIF neuron with instantaneous synaptic

conductances (model I) since we have seen in section 6.2.1 that the membrane poten-

tial of such a neuron is governed by a Gauss-Markov process (an Ornstein-Uhlenbeck

process). Consider the Gauss-Markov process

Ut
def
=
∫ t

0
e

s−t
τm dWs.

it has the covariance function:E(UtUs) =
τm

2
e−(t+s)

(
e

2s
τm −1

)
0≤ s≤ t

With the notations of the last section, we have:

{
g(t) = e−t

h(t) = τm
2

(
e

2t
τm −1

)

The associated Volterra kernel is weakly singular, hence the method described in the

last section applies directly.

Indeed, according to equation (6.3), the membrane potential of such a neuron can

be written:

Vt = Vrest(1− e
− t

τm )+ 1
τm

∫ t
0 e

s−t
τm Ie(s)ds+ σ

τm
Ut

and hence the spiking condition reads:

Ut = a(t)
def
=

τm

σ

{
θ(t)−Vrest(1− e

− t
τm )− 1

τm

∫ t
0 e

s−t
τm Ie(s)ds

}
,

where θ(t) is a time varying threshold.
The block-by-block algorithm of [182] for computing the solution of a weakly sin-

gular Volterra equation can be applied to compute the probability distribution of the

spikes for any input current and any (autonomous) threshold function. This method
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is very general and converges very fast towards the expected solution. The mid-point

approximation can also be used, and its precision is O(
√

k) where k is the mesh step
used for the integral approximation. Nevertheless the observed convergence order

is higher. For the block-by-block method, the precision of the algorithm cannot be

computed easily since the kernel is not Lipschitz continuous. Nevertheless, it is com-

monly accepted that it has a higher precision than the mid-point method. These two

quadrature methods amount to solving a linear system, which can be implemented

in a very efficient way. On a an Intel R©Core 2 CPU 6700 2.66GHz, it takes less than
0.02 seconds for around for a time step of 0.01 on the interval [0,5].

Figure 6.2 shows some examples of the pdfs associated to various inputs. When

the variance is high the law of the first hitting time of the LIF neuron converges to

that of the standard Brownian motion. In the small variance case, the behavior of

the first hitting time depends on the existence of a spike in the deterministic case

(σ = 0). When there is no deterministic spike, an interesting phenomenon appears:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

LIF neuron wtih deterministic spike,
Influence of the variance.

t

pd
f

 
σ = 0.1
σ = 0.5
σ = 1
σ = 2
σ = 4
Deterministic case

Figure 6.2: Influence of the noise standard deviation for the LIF neuron with instan-

taneous synaptic currents: case where a spike is emitted in when there is no noise:

the pdf of the first hitting time ranges from a Dirac distribution located at the de-

terministic spike time in the small variance case, to the distribution of the Brownian

motion first hitting time in the large variance case. [ Ie(t) = 2+2sin(2πt), τm = 1, θ = 1,
Vr = 0 ]

the probability distribution of the spike is very diffuse over R and vanishes slowly,

see figure 6.3.

Exponentially decaying synaptic currents

The problem becomes more difficult for two-dimensional processes such as the ones

arising with the linear or nonlinear neuron models with exponentially decaying synap-

tic currents. In this section we derive the equation satisfied by the probability density
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(a) Influence of the noise standard deviation for the LIF neuron with in-

stantaneous synaptic currents when no spike is emitted in the determin-

istic case. Case of a moderate variance. Same neuronal parameters as in

Fig.6.2 but Ie(t) = 0.5+ sin(2πt)
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(b) No deterministic spike emitted and very

small standard deviation: The distribution is

almost uniform, hence the spike time contains

very little information
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(c) No deterministic spike emitted and small

standard deviation: the pdf very slowly decays

(standard deviation slightly greater than case

(b)).

Figure 6.3: Different simulations with Volterra’s method of the pdf of the hitting time

of the LIF neuron with instantaneous synaptic currents,when no spike is emitted in

the deterministic case (see text).
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of the first hitting time for the LIF model with exponentially decaying synaptic cur-

rents, model II, show that this equation is not well-posed and that classical methods

for solving the resulting integral equations fail.

The main difficulty is that the stochastic term Xt defined in (6.5) of the membrane

potential Vt of the neuron is non-Markovian, but the pair (Xt , I
syn
t )t≥0 is. As usual we

denote by τ the first hitting time of the process Xt to a curved boundary a(t). We prove
in [262] that the pair (τ , Isynτ ) has a density p with respect to Lebesgue’s measure:

p(t,x;0,x0,y0)dt dx =P(τ ∈ dt, Isynτ ∈ dx
∣∣∣V0 = x0, I

syn
0 = y0

)

We use an adapted version of the Markov argument of section 6.3.1 to obtain the

following integral equation:P(Xt ≥ a(t)
∣∣X0 = x0, I

syn
0 = I0

)
=

∫ t

0

∫

R

P(Xt ≥ a(t)
∣∣Xs = a(s), Isyns = y

)
p(s,y;0,x0, I0)dsdy (6.27)

This equation is a Fredholm integral equation with respect to y and a Volterra equa-
tion of type I with respect to s. The kernel, noted K(t,z;s,y), is equal toP(Xt ≥ a(t)

∣∣Xs = a(s), Isyns = y
)
.

The term on the lefthand side of the equation, noted g(t,z), is equal toP(Xt ≥ a(t)
∣∣X0 = x0, I

syn
0 = I0

)
.

With these notations, equation (6.27) can be rewritten as

g(t,z) =
∫ t

0

∫

R

K(t,z;s,y)p(s,y;0,x0, I0)dyds (6.28)

Expressions for g and K can be deduced from the law of the underlying two-dimensional
process and the results of section 6.2.2. The process Xt is a Gaussian process of mean

x0 + I0
∫ t

0 g(u)du of variance ρX(t) given by (6.9).
Since g can be written:

g(t,z) =P(Xt ≥ a(t)
∣∣X0 = x0, Isyn(0) = I0

)

=
1
2

(
erf
(a(t)− x0− I0τs(et/τs −1)√

2πρX (t)

)
−1

)

it is regular for all values of (t,z).
The kernel K can be written:

K(t,z;s,y)
def
= P(Xt ≥ a(t)

∣∣Xs = a(s), Isyn(s) = y
)

=
1

2π
√

D(s, t)
exp

(
−1

2
(X(t,y)−µ(s, t,z))T C(s, t)−1(X(t,y)−µ(s, t,z))

)
,

where 



D(s, t) = det(C(s, t))

µ(s, t,z) =

(
a(s)+ z

∫ t
s g(u)du

z

)

X(t,y) =

(
a(t)

y

) ,
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and C(s, t) is the cross-correlation matrix (6.8).
The general theory for finding solutions to such an integral equation relies on the

regularity and integrability of g and K and on the reduction to an integral equation of
the second type. The reduction to the second type can be achieved formally by taking

the partial derivative of both sides of (6.28) with respect to the variable t. Reordering
the terms this yields

gt(t,z)−
∫

R

K(t,z; t,y)p(t,y;0,x0, I0)dy =
∫ t

0

∫

R

Kt(t,z;s,y)p(s,y;0,x0, I0)dyds

Because K(t,z; t,y) = δ (y− z) (δ is the Dirac delta function), this can be rewritten as

gt(t,z)− p(t,z;0,x0, I0) =

∫ t

0

∫

R

Kt(t,z;s,y)p(s,y;0,x0, I0)dyds

A Taylor expansion at s = t shows that Kt is singular of order (t − s)−3 and hence

does not satisfy the integrability conditions that are necessary for this equation to be

well-posed.

Nonlinear Models III and IV

The membrane potential for models III and IV is non-Gaussian and hence the previ-

ous method cannot be applied directly. For the model IV, the method would probably

fail for the same reason as for Model II. For the model III, the only problem is to get

an expression of the transition probability density involved in equation (6.25). As

already discussed in 6.2.3, the transition probability density is very hard to charac-

terize, probably because of the explosion of the process. Generally speaking when

the process is non Gaussian, provided that the transition density is known, one has

to check that the kernel of the Volterra’s equation is L2, and that the affine term

deduced from the transition probability density is continuous. Because of the singu-

larities of the solutions of these equations (that blow up in finite time with positive

probability), these integrability and regularity conditions are not guaranteed.

Noisy synaptic conductances (Model V)

We wrote in section 6.2.5 the solution of the equation of the membrane potential

with noisy synaptic conductances. It is a non-Gaussian Markov process, hence the

framework developed so far cannot apply directly. Nevertheless we can solve in closed

form the problem in the case of a constant specific “equilibrium” current Ie(t)≡Vrest −
Vrev. In this case, the membrane potential starting at Vreset at t = 0 reads:

Vt = Vrev +(Vreset −Vrev)exp

(
−(λ +

σ2

2
)t + σWt

)

Therefore the spike time probability distribution has the law of the first hitting

time of the Brownian motion to the boundary

1
σ

log

(
θ −Vrev

Vreset −Vrev

)
+

1
σ

(
λ +

σ2

2

)
t (6.29)

and therefore could be computed via Volterra’s method. Nevertheless as we can see

the boundary here is affine and hence we can use the Martingale’s approach described

later in section 6.3.4 to obtain a closed form expression for the probability density

function.
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6.3.2 Durbin’s Method

The problem of the first hitting time of the Brownian motion to a general boundary

has also been studied by Durbin [76, 78]. His formula involves the product of two

terms, one of which being very hard to compute numerically and to characterize for-

mally. He uses this integral equation to deduce a series approximation of the pdf and

proves convergence under the restriction that the boundary considered is concave or

convex (see appendix [253] for a detailed explanation of the original proof of Durbin’s

formula).

We show that Durbin’s complex formula is a consequence of the simpler Volterra’s

formula, that the algorithm propose by Durbin is valid whatever the boundary con-

sidered (with no convexity restriction), and that this method is way less efficient than

the one proposed in Volterra’s section.

Let us first state Durbin’s theorem in the most general case.

Theorem 6.3.1. Consider a Gauss-Markov process Y of mean 02 and covariance func-
tion ρ(s, t), and let a(t) be the general boundary considered. Assume that

1. The boundary function a(t) is continuous in [0, t) and left differentiable at t.

2. The covariance function ρ(s,u) is positive definite and has continuous first order
partial derivatives on the set : {(s, t);0≤ s≤ u≤ t}3

3. The variance of the increment Yt −Ys satisfies the condition:

lim
sրt

1
t− s

E[(Yt −Ys)
2]= λt (6.30)

where 0 < λt < ∞ 4

Then the first passage density of Yt to the boundary a(t) is given by:

p(t) = b(t) f (t) (6.31)

where b(t) is the limit, when it exists, defined by:

b(t)
def
= lim

sրt

1
t− s

E[1τa(Y )≥s (a(s)−Ys)|Yt = a(t)
]

(6.32)

and f is the density of Y on the boundary, i.e.:

f (t)
def
=

1√
2πρ(t, t)

e−
a(t)2

2ρ(t,t)

Durbin’s formula is equivalent to the following Volterra’s equation:

(
a(t)

t
−a′(t)

)
q(t,a(t)|0,0) = p(t)+

∫ t

0
p(s)

(
a(t)−a(s)

t− s
−a′(t)

)
q(t− s,a(t)|0,a(s))ds,

2if it is not the case, we only have to substract the mean function m(t) :=E [Yt ] to the process Yt and

study the process Yt −m(t) instead of Yt crossing the boundary a(t)−m(t) instead of a(t).
3where appropriate left (resp. right) derivatives are taken at s=t (resp. s = 0) and u = t
4Note that since E[(Yt −Ys)

2
]

= ρ(t,t)− 2ρ(s,t) + ρ(s,s), (6.30) is equivalent to the requirement:

lim
sրt

[
∂ ρ(s,t)

∂ s − ∂ ρ(s,t)
∂ t

]
= λt
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We perform the proof in the case of the Brownian motion for the sake of compact-

ness of expressions, but the proof is exactly similar in the general case of a Gauss-

Markov process (or can be deduced from the present one using Doob’s representation

theorem for Gauss-Markov processes).

We have:

b(t) = lim
sրt

1
t− s

E [1τa≥s (a(s)−Ys)|Yt = a(t)]

= lim
sրt

1
t− s

E [(a(s)−Ys)|Yt = a(t)]− lim
sրt

1
t− s

E [1τa<s (a(s)−Ys)|Yt = a(t)] (6.33)

def
= E1 + E2

Then we know that the conditional expectation of Ys knowing Yt is
s
t Yt for the Brow-

nian motion.

So the first term of (6.33) simply reads:E [Ys|Yt = a(t)] =
s
t
a(t) = a(t)+

s− t
t

a(t)

Hence we get:

b(t) = lim
sրt

(
a(s)−a(t)

t− s
+

a(t)
t

)
+ E2

=
a(t)

t
−a′(t)+ E2

Conditioning on the first hitting time u of the process Y to the barrier a(t), we
obtain the following expression for the term E2:

E2 = lim
sրt

1
t− s

E [1τa<s (a(s)−Ys)|Yt = a(t)]

= lim
sրt

∫ s

0

1
t− s

E [(a(s)−Ys)|Yu = a(u), Yt = a(t)]
p(u)

q(t,a(t)|0,0)
du.

Using the strong Markov property of Y and the properties of the conditional expecta-
tion, recalling that the regression coefficient of Ys on Yt given Yu = a(u) is given by s−u

t−u ,

we have E [Ys|Yt = a(t), Yu = a(u)] = a(u)+
s−u
t−u

(a(t)−a(u)) .

= a(t)+
s− t
t−u

(a(t)−a(u))

So we get:

lim
sրt
E [a(s)−Ys|Yt = a(t), Yu = a(u)] = lim

sրt

a(s)−a(t)
t− s

+
a(t)−a(u)

t−u

=
a(t)−a(u)

t−u
−a′(t)



191

So eventually the following formula for E2 holds:

E2 =
∫ t

0

(
a(t)−a(u)

t−u
−a′(t)

)
p(u)

q(t−u,a(t)|0,a(u))

q(t,a(t)|0,0)
du

So finally, using the formula (6.31), we have the fixed point equation searched:

p(t) =

(
a(t)

t
−a′(t)

)
q(t,a(t)|0,0)+

∫ t

0

(
a(t)−a(u)

t−u
−a′(t)

)
p(u)q(t−u,a(t)|0,a(u))du

(6.34)

Hence we have equivalence between Durbin’s formulation (6.32) and the Volterra’s

equation (6.34).

This equation is a straightforward consequence of Volterra’s equation (6.26), as

proved by David Williams in the appendix of [78].

Durbin provides an algorithm to compute the solution of his equation. This ap-

proximation method consist in truncating the following series expansion:

p(t) =
∞

∑
j=1

(−1) j−1q j(t)

where

q j(t) =

∫ t

0

∫ t1

0
· · ·
∫ t j−2

0

[
a(t j−1)

t j−1
−a′(t j−1)

]

×
j−1

∏
i=1

[
a(ti−1)−a(ti)

ti−1− ti
−a′(ti−1)

]
f (t j−1, · · · , t1, t)dt j−1 · · ·dt1 (t0 = t)

He shows in [78] that this series converges, under the condition that the boundary

a(·) is convex or concave, using the fact that its remainder tends to zero. This repre-
sentation of the solution, from the viewpoint of Volterra’s theory, is very well known:

it is simply the iterated kernels formula for the equation (6.34). It is very classical,

and is valid whenever the kernel of the Volterra’s equation is continuous. The princi-

ple is to consider this equation as a fixed point equation on a functional space: p is a
fixed point of the functional:

L : f 7→
(

a(t)
t
−a′(t)

)
q(t,a(t)|0,0)−

∫ t

0

(
a(t)−a(s)

t− s
−a′(t)

)
p(s)q(t− s,a(t)|0,a(s))du

and building an iterative approximation via the iteration of the operator L (also

known as Picard’s method when the operator is contracting). Here the kernel of the

Volterra’s equation reads:

K(s, t) =

(
a(t)−a(s)

t− s
−a′(t)

)
q(t− s,a(t)|0,a(s)).

It is clearly continuous, since the only possible discontinuity is on the line s = t, but
on this line we have, when a is C2,

(
a(t)−a(s)

t− s
−a′(t)

)
∼ (t− s)a′′(t)

q(t− s,a(t)|0,a(s)) ∼ 1√
2π(t− s)
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and therefore the kernel is continuous on the line t = s. Furthermore, the affine term
in the equation, (a(t)

t −a′(t))q(t,a(t)|0,0), is also continuous. Indeed, the only possible
discontinuity would be at t = 0, but since we assumed that a(0) > 0, this function is
continuous at t = 0 and is 0 at this point. Hence there exists a unique fixed point for
the functional equation (6.34) in the set of continuous functions, and this solution can

be computed with the resolvent kernel, which is the limit given in the theorem (these

results are quite classical, see for instance [39, 182]).

We provide here a sketch of the proof, details can be found for instance in [182,

Theorem 3.1].

We have seen that the kernel and the affine terms of the equation are continuous

on R
+. Therefore they are bounded on any bounded interval. We consider the solution

of this equation on a time interval [0,T ], and denote by Q and K two positive constants
such that: {∣∣∣

(
a(t)

t −a′(t)
)

q(t,a(t)|0,0)
∣∣∣ ≤ Q

|K(s, t)| ≤ K

We consider for a given initial condition f the iterated kernels:
{

f0 = f

fn+1 = L fn

and we introduce ϕn := fn− fn−1 the difference between two consecutive iterates (ϕ0 =
f ). We obtain the equation:

ϕn =
∫ t

0
K(s, t)ϕn−1(s)ds

We then prove easily that |ϕn(t)| ≤ Q (K t)n

n! for any given t in [0,T ]. Therefore the series

converges and we denote by ϕ def
= ∑∞

n=0ϕn. Since this series converges absolutely, we

can readily prove that this function ϕ satisfies the fixed point equation. Hence we
have existence of a fixed point and convergence of the iterates to a fixed point. To

prove the uniqueness of solution, we proceed exactly the same way using a reductio

ad absurdum, assuming that there exist two fixed points and showing that in reality

these two fixed point are identical (this involves exactly the same estimations as for

proving the existence of a fixed point).

We hence proved that Durbin’s equation was a direct consequence of Volterra’s

equation (6.26), but to derive this equation we further need to assume that the bound-

ary has a Lipschitz derivative. Nevertheless, with Volterra’s point of view we do not

need to assume that the boundary has to be convex or concave: it can be any regular

boundary function. The formula provided by Durbin is way more complex than the

intuitive Volterra’s equation. Its application domain is a little bit more restricted,

and eventually the algorithm proposed by Durbin to compute the pdf of the hitting

time is very inefficient compared to the method proposed in section 6.3.1. Indeed, it

involves successive integrals on spaces of increasing dimensions, which is very heavy

to implement numerically.

6.3.3 The Feynman-Kac’s Method

Feynman-Kac’s formula (see appendix C.1.2) gives a representation of the Laplace

transform of the first hitting time of a stochastic process. This technique partially

solves problems I and III for constant inputs and constant boundaries, and are very

difficult to generalize to other models or types of boundaries.
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Leaky Integrate-and-fire neuron with constant external current and instan-

taneous synaptic currents

We consider a leaky integrate-and-fire neuron with constant current input Ie and

instantaneous synaptic white noise current. LetW
def
= (Wt)t≥0 be a standard Brownian

motion. Thanks to a change of origin of Vt in equation (6.2), the associated membrane

potential process is an Ornstein-Ulhenbeck (OU) process V
def
= (Vt)t≥0 with parameter

λ ∈ R, solution of the linear SDE:

{
dVt =−λVtdt + dWt

V0 = x ∈ R
(6.35)

The process Vt is a diffusion process with infinitesimal generator denoted by L ,
given by (see appendix C.1):

L f (x) =
1
2

∂ 2 f
∂x2 (x)−λx

∂ f
∂x

(x), x ∈ R (6.36)

This equation is central to the theory of Hermite’s functions, see [260, appendix B].

The properties of the first hitting time of the OU process have been widely studied.

For instance, in [4], the authors give three representations of the probability density

of these processes, and in [224] we find an explicit expression of the moments of those

hitting times.

Let a ∈ R be a given fixed real number and denote by τa the first passage time of

the process Vt to the constant a.
The Laplace transform of τa can be computed as follows [29, 237].

Proposition 6.3.2. For x < a the Laplace transform of τa is given byEx
[
e−ατa

]
=

H−α/λ (−x
√

λ )

H−α/λ (−a
√

λ )
=

eλx2/2D−α/λ (−x
√

2λ )

eλa2/2D−α/λ (−a
√

λ )
(6.37)

whereHν stands for the Hermite function and D−α/λ for the parabolic cylinder func-

tions respectively (see Lebedev [177, chapter 10 ] for a detailed study of these func-

tions).

Proof. We use the hitting time characterization given by the Feynman-Kac equations,

obtained in section 6.4. The Laplace transform of the first passage time is given by

theorem C.1.9 as the unique solution of the boundary value problem:





L u(x) = αu(x), for x < a
u(a) = 1
lim

x→−∞
u(x) = 0

(6.38)

The theory of parabolic equations applies since the coefficients of the diffusion oper-

ator L are C ∞. This is a singular value problem since the interval is not bounded.

Nevertheless one can prove that the solution can be written (see theorem C.1.10):Ex
[
e−ατa

]
=

ψα(x)
ψα(a)

where ψα(·) is, up to some multiplicative constant, the unique increasing positive
solution of the equation L u = αu which is, up to a change of variable, the equation
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for the Hermite’s functions, see [260, appendix B]. The two fundamental solutions of

this linear differential equations are H−α/λ (x
√

λ ) and H−α/λ (−x
√

λ ). The function
ψα is up to a positive constant the one that is increasing. With the series expansion

of the Hermite’s functions, it is clear that ψα(x) = H−α/λ (−x
√

λ ). This proves the first
equality in (6.37). The second equality relies on the relation between Hν and Dν .

From this characterization, we can compute all the moments of the law of τa by dif-

ferentiating the Laplace transform at 0. This provides the first three moments which
are used later to validate some of our numerical techniques, see [224] for a proof of

this:

Theorem 6.3.3. Let us define α def
= µ

σ and β def
= σ

θ
√

τ and the three following functions:

Φ1(z)
def
=

1
2

∞

∑
n=1

(
2
β

)n 1
n!

Γ(
n
2
)(z−α)n

Φ2(z)
def
=

1
2

∞

∑
n=1

(
2
β

)n 1
n!

Γ(
n
2
)
(

Ψ(
n
2
)−Ψ(1)

)
(z−α)n

Φ1(z)
def
=

3
8

∞

∑
n=1

(
2
β

)n 1
n!

Γ(
n
2
)(z−α)nρ (3)

n

where Γ is the gamma function, Ψ(z) = Γ′(z)
Γ(z) is the digamma function, and

ρ (3)
n =

(
Ψ(

n
2
)−Ψ(1)

)
2+
(

Ψ′(
n
2
)−Ψ′(1)

)

If τθ is the hitting time of an OU process starting at 0 to the barrier θ , we have:E[τθ ] = τ(Φ1(1)−Φ1(0))E[τ2
θ ] = τ2(2Φ1(1)2−Φ2(1)−2Φ1(1)Φ1(0)+ Φ2(0))E[τ3
θ ] = τ3{6Φ1(1)3−6Φ1(1)Φ2(1)+ Φ3(1)

−6(Φ1(1)2−3Φ2(1))Φ1(0)+3Φ1(1)Φ2(0)−Φ3(0)
}

Quadratic Integrate-and-fire neuron

The Feynman-Kacmethod relies heavily on the very strong assumption that there ex-

ists a solution satisfying the limit condition lim
x→−∞

u(x) = 0. This assumption is in effect

satisfied only in very few cases. Furthermore, this method can only be applied to au-

tonomous systems, and hence cannot be applied to neuron models with deterministic

time-dependent synaptic inputs. For instance we show here that it cannot be applied

to the one-dimensional quadratic integrate-and-fire neuron defined in section 6.2.3,

even in the simple case of a constant external current.

Assume that the membrane potential of the neuron satisfies the stochastic differ-

ential equation:

dXt = f (Xt)dt + σdWt

The infinitesimal operator of the associated semigroup L is givenby:

L h(x) =
1
2

σ2d2h
dx2 (x)+ f (x)

dh
dx

(x), x ∈ R (6.39)
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Let uλ be the Laplace transform of the first hitting time τa to a constant a:

uλ (x) =E(e−λτa

∣∣∣X0 = x
)

uλ is a solution, when it exists, of the Feynman-Kac differential equation (C.11), which

in the case of the quadratic integrate-and-fire neuron can be written:





1
2σ2 d2 uλ (x)

dx2 +(x2 + Ie)
duλ (x)
dx −λuλ (x) = 0

uλ (a) = 1

uλ (x) −→
x→−∞

0

(6.40)

This ordinary differential equation is a triconfluent Heun equation with boundary

conditions (see e.g. [230, Prop.1.3.6] and Maple R©documentation). As in section 6.2.3
we denote by ht the triconfluent Heun function. We have

uλ (x) = αht

(
−32/3λ

3
√

a
,3,

b 3
√

3

a2/3
,
−x
3
√

3a

)
+ βht

(
−32/3λ

3
√

a
,−3,

b 3
√

3

a2/3
,

x
3
√

3a

)
e−1/3

x(3b+x2)
a (6.41)

It can be verified again that the triconfluent Heun function ht(α ,3,β ,x) diverges very
fast when |x| → ∞. Hence there is no solution to the boundary problem (6.40).
For the same type of reasons it appears that Feynmann-Kac’s method fails in find-

ing the Laplace transform of the spike probability distribution in the case of Model

V. In that case, the solution of the differential equation involves Kummer’s functions,

that are also fast diverging.

6.3.4 Martingale Methods

This method consists in finding a martingale related to the membrane potential pro-

cess. The optimal stopping theorem applied at the first hitting time gives a functional

related to the law of the first hitting time. If this functional is not trivial, we can get

interesting informations on the law of the first hitting time (in general its Laplace

transform). This method is applied classically to characterize the Laplace transform

of the first hitting times of the Brownian motion to a constant boundary, for instance

in [160].

The most general ways for finding martingales related to processes is to use an

associated partial differential equation linked with the infinitesimal generator of the

process. Nevertheless, this method is quite particular and can be applied only to

very particular cases. One of the simplest example illustrating this technique is the

problem of the first hitting time of the Brownian motion to a constant boundary (see

e.g. [160, pages 79–81]). Indeed, as straightforward application of Itô’s theorem, it

is well known that the process eθ Bt− θ2
2 t is a martingale for all θ . Let us denote by

τa the first hitting time of the Brownian motion with the constant a. It is clear that

this hitting time is almost surely finite. Furthermore, it is clear that eθ Bt∧τa− θ2
2 t∧τa

is a bounded martingale so a uniformly integrable martingale, hence the optional

sampling theorem C.1.1 applies, hence we have for any t > 0E[eθ Bt∧τa− θ2
2 t∧τa

]
= 1
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Eventually, letting t→∞ and using Lebesgue’s theorem, we obtain the Laplace trans-
form of τa: E[e−

θ2
2 τa

]
= e−θ a

which is known as the Laplace transform of the inverse normal distribution, whose

probability density reads:

p(t) =
|a|√
2πt3

e−a2/2t t > 0

An alternative method, based on the properties of the Brownian motion, can be

used to compute this density. This method is based on the the reflection principle for

the Brownian motion, which is the consequence of the Markov and the time-inversion

properties of the Brownian motion. We have:P [τa < t] =P [τa < t;Bt > a]+P [τa < t;Bt < a]

=P [Bt > a]+P [τa < t;Bt < a]

=P [Bt > a]+E[1τa<tP[Bt < a
∣∣Fτa

]]

=P [Bt > a]+E[1τa<tP[Bt−τa+τa−Bτa < 0
∣∣Fτa

]]

=P [Bt > a]+E[1τa<tP[B̃t−τa < 0
∣∣Fτa

]]
(Strong Markov property)

=P [Bt > a]+
1
2
P [τa < t]

Therefore the repartition function of τa readsP [τa < t] =

√
2
π

∫ ∞

a/
√

t
e−x2/2 dx

and differentiating w.r.t. t we get the probability density function of τa:

p(t) =
|a|√
2πt3

e−a2/2t t > 0.

Exponentially decaying synaptic currents

A more interesting example of this technique is provided by Lachal in [168] who

solved the problem for the perfect integrator neuron without deterministic input cur-

rent and with exponential synaptic conductances5:

{
dVt = Isyn(t)dt

τsdIsyn(t) =−Isyn(t)dt + σdWt
(6.42)

This method involve quite intricate calculations, which can be interesting from a

mathematical point of view. We nevertheless omit them in this dissertation, since

this technique is very specific, involves some art in the calculations and cannot be

easily generalized to other neuron models or other boundaries. The interested reader

can find the details of the proof in [168].

5This model cannot be considered as a biological case by itself but can be seen as a limit case of the

model of section 6.2.2 in the small τs or large τm limits
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Model V for constant equilibrium inputs

This technique can be used to compute the spike statistics of Model V in the case of

constant equilibrium inputs Ie ≡Vrest −Vrev (we call the input equilibrium inputs since

this level of constant input because it amounts to equalizingVrev andVrest + Ie). Indeed,

as already proved in section 6.3.1, the law of the spike times in that case is equal to

the law of the first hitting time of the Brownian motion to an affine boundary.

To generalize the result just obtained for constant boundaries to affine boundaries,

we use Girsanov’s theorem C.1.7, or more precisely the simpler Cameron Martin’s

theorem. It states that the process Xt := Wt − γt is a Brownian motion under the prob-
ability measure Qγ having the density with respect to the initial probability densityP: Qγ |Ft = eγUt− γ2

2 tP|Ft

where Ut is the canonical process. Furthermore, we have:

τat+b = inf{t > 0,Wt = at + b}
= inf{t > 0,Wt −at = b}

Hence τat+b under P has the same law as τb under Q−a, and hence we have:P(τat+b ∈ dt) = e−ab− a2
2 t |b|√

2πt3
e−b2/2t =

|b|√
2πt3

e−
1
2t (at+b)2

With the boundary found for the problem of leaky integrate-and-fire neuron with

noisy synaptic conductances obtained in equation (6.29), we have:





a = 1
σ

(
λ + σ2

2

)

b = 1
σ log

(
θ−Vrev
Vr−Vrev

)

It is interesting to note that these two coefficients are positive, and therefore the

probability that this neuron at this level of excitation does not spike is strictly positive

and reads:

1− e−2
(λ+ σ2

2 ) log( θ−Vrev
Vr−Vrev )

σ2

6.3.5 Brunel’s Method

Nicolas Brunel and his collaborators developed a method to compute the stationary

mean firing rate of integrate-and-fire neurons, based on the Fokker-Planck equation

[37, 94]. This method is the only one to provide partial informations for nonlin-

ear integrate-and-fire neuron with instantaneous or exponentially decaying synap-

tic currents. It is based on a careful description of the boundary conditions for the

Fokker-Planck equation, that can be solved in the case of instantaneous synapses,

giving access to the stationary probability distribution of the membrane potential,

from which in turns we can derive the mean firing rate. He treated the cases of the

leaky integrate-and-fire models with instantaneous or exponentially decaying synap-

tic currents, and the case of the quadratic integrate-and-fire model with an infinite

threshold and a reset at −∞.
In the case of exponentially decaying synaptic currents, regular and singular per-

turbation methods give access to approximations of the mean firing rate in the limits
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of short and large correlation time. Analytical expressions can be found. Neverthe-

less, it can be quite difficult to use, and is only valid for the free dynamics of the

neuron (i.e. without any deterministic time-dependent inputs, Ie = constant) and in
the limit of the stationnary state (i.e. when t→ ∞).
The method consists in

1. Computing the stationary distribution of the membrane potential using the

Fokker-Planck equation (C.18).

2. Using the fact that the stationary firing rate of the neuron is the full probability

flux of the stationary probability at the threshold θ .

It has been applied successfully to the LIF neuron with instantaneous synaptic

current. In this case the stationary distribution can be computed in closed form (see

[36]) and hence also the stationary firing rate ν0:

1
ν0

= τm
√

π
∫ θ−µ

σ

Vr−µ
σ

es2
(1+erf(s))ds (6.43)

Nonlinear IF with instantaneous synaptic currents

In this section we apply Brunel’s method to the one-dimensional nonlinear models

with instantaneous synaptic currents (Model III) and compute in closed form the

stationary firing rate of the neuron for general nonlinear function, and apply this

formula to the quadratic and quartic nonlinearities. The membrane potential of the

nonlinear IF neuron with instantaneous noisy current satisfies the equation:

τmdVt = (µ + F(Vt))dt + σdWt

where F(v) is a convex function. In the case of the quadratic IF, F(v) = v2, in the case of

the quartic model F(v) = v4+av) and in the case of the exponential model F(v) = ev−v.
The related transition probability density satisfies the associated Fokker-Planck

equation C.18:

τm
∂P(t,x)

∂ t
=

σ2

2
∂ 2P(t,x)

∂x2 − ∂
∂x

(
(µ + F(x))P(t,x)

)

Hence the stationary transition P0 is a solution of the ordinary differential equa-

tion:
σ2

2
d2P0(x)
dx2 − d

dx

(
(µ + F(x))P0(x)

)
= 0

This equation is a linear differential equation and can be solved in closed form.

Let us denote by g(·) a primitive of 2
σ2 (F(x)+ µ). The general solution of this equation

reads:

P0(x) =

(
α
∫ x

0
e−g(y) dy+ β

)
eg(x). (6.44)

where α and β are constants defined by the initial (or boundary conditions) , which
are governed by the continuity of the probability density and the continuity of the

probability flow at the reset potential Vr:

1. P0(θ) = 0
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2. P0(V +
r )−P0(V−r ) = 0 (continuity at the reset potential)

3. dP0
dV (V +

r )− dP0
dV (V−r ) = dP0

dV (θ): conservation of the “probability flux”: the current
flowing out at the threshold is reinjected at the reset.

The firing rate of the neuron is equal to the probability voltage flux JV through the

boundary θ . This flux is defined by the relation ∂tP+ ∂V JV = 0 and hence reads in the
stationary limit:

JV =
µ + F(V )

τm
P0−

σ2

2τm

dP0

dV
.

Therefore the the stationary firing rate ν0 is linked with the derivative of the station-

ary probability density function via the relation:

∂P0

∂V
(θ) =−2ν0

τm

σ2

Equation (6.44) together with these boundary conditions defines a unique solu-

tion. Indeed, the function p0 can be written in the form:

P0(x) =

{
α1eg(x) + β1eg(x) ∫ x

Vr
e−g(y) dy x ∈ (−∞,Vr)

α2eg(x) + β2eg(x) ∫ x
θ e−g(y) dy x ∈ (Vr,θ)

The boundary conditions together with the normalization condition
∫ θ
−∞ p0(x)dx = 1

give a unique solution.

In detail the solution is defined up to the multiplicative constant (β2):





α2 = 0

α1 = β2
∫ Vr

θ e−g(y) dy

β1 = 0

(6.45)

And the normalization condition
∫ θ
−∞ p0(x)dx = 1 yields:

β2 =
1

∫ Vr
θ e−g(y) dy

∫ Vr
−∞ eg(x) dx+

∫ Vr
θ
∫ x

θ eg(x)−g(y) dydx

The stationary probability density P0 is plotted in figure 6.4 for the quadratic and

quartic cases.

We can obtain the stationary firing rate of the noisy quadratic integrate-and-fire

with threshold:

ν0 =− σ2

2τm

dP0(x)
dx

∣∣∣∣
x=θ

=
σ2

2τm
β2

(6.46)

which can be rewritten in terms of the parameters of the system:

ν0 =
σ2

2τm

1
∫ Vr

θ e−g(y) dy
∫ Vr
−∞ eg(x) dx+

∫ Vr
θ
∫ x

θ eg(x)−g(y) dydx
(6.47)
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Figure 6.4: Stationary distributions of the membrane potential for the quadratic (red

line ) and quartic (green line) neuron models. We observe that even if they do not

have the same probability distribution, they almost have the same slope at V = θ and
hence their stationary mean firing rate are similar

The same technique can be used when the spike condition is when the solution

blows up and the reset is at −∞. In this case, the threshold is θ = ∞ and the reset
Vr = −∞. We lose the equation p0(θ) = 0 but the fact that the solution has to be
integrable provides a new constraint. This way we obtain the stationary distribution

p0,∞ of the quadratic IF model with infinite spike threshold:

P0,∞(x) =
2ν0,∞τm

σ2

∫ ∞

x
eg(x)−g(y) dy

and the stationary firing rate is given by the normalization condition:

ν0,∞ =
σ2

2τm

[∫ ∞

−∞
eg(x)

∫ ∞

x
e−g(y) dydx

]−1

.

Taking into account exponentially decaying current

Using a perturbation technique together with the Fokker-Planck framework, Nicolas

Brunel and colleagues in [37, 94] obtained expansion of this firing rate in the case of

colored noise , i.e. in the case of exponentially decaying synaptic currents with time

constant τs, in the linear and nonlinear cases (models II and IV). More precisely, the

membrane potential in this case is solution of the equation:

{
τmdVt = F(Vt)dt + Isynt dt

τsdIsynt =−Isynt dt +
√

τmσdWt

where F(·) can be linear (model II) or nonlinear (model IV). The associated Fokker-
Planck equation reads:
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τm∂tP(t,V, Isyn)+ ∂V [(F(V )+ Isyn)P]+
τm

τs
∂Isyn [−IsynP] =

σ2τ2
m

2τ2
s

∂ 2
IsynP,

where P(t,V, Isyn) is the transition probability density of the process (V, Isyn) at time t.
This equation can be written in terms of the probability fluxes of V and w, which we
denote JV and JIsyn , defined by:

JV (t,V, Isyn) =
1

τm
(F(V )+ Isyn)P(V, Isyn, t)

JIsyn(t,V, Isyn) =
1
τs

(−τm

τs

σ2

2
∂IsynP− IsynP)

and yields the continuity equation:

τm∂tP(t,V, Isyn)+ ∂V JV (t,V, Isyn)+ ∂IsynJIsyn(t,V, Isyn) = 0

Even in the stationary case (t→∞), the equation cannot be solved in a closed form.
But one can get rid of this obstruction by considering that the time scales of the mem-

brane potential and of the synaptic integration are separable. When the ratio τs/τm

tends to zero (short correlation limit), the solution is the same as the one given for the

white noise case. When this ratio tends to infinity (large correlation limit), an exact

solution can be also provided. the first order correction to the short correlation limit

in the case of the leaky integrate and fire neuron is O(
√

τs/τm), and for the quadratic
integrate and fire is of order O(τs/τm), which makes a qualitative difference between
the two models. This difference is linked with the boundary conditions chosen by

Brunel and Latham [37] who do not consider a finite spiking threshold (the neuron

fires if its membrane potential tends to +∞ and is reset at−∞). In the long correlation
limit, the correction is in O(τm/τs). By combining these two limit cases, Brunel and
Latham [37] derive an approximation of the firing rate over the whole range of values

of τs/τm in the suprathreshold regime, i.e. in the case where the current is sufficient

to make the neuron spike in the absence of noise. This expression is not valid in the

subthreshold case.

In order to solve the Fokker-Planck equation or its flux version in these cases, we

have to fix boundary conditions. These conditions are different in the case when the

intrinsic neuronal dynamics is linear or nonlinear. Let us first treat the case of the

Model II (or the Model IV case where there exists a finite voltage threshold value for

the spike emission). In this case, the boundary conditions are quite complex. Brunel

and Latham’s derivation in [37] proceeds from biophysical considerations. First of all,

the equations for the reset are quite similar as in the white noise case:

JV (θ , Isyn) = ν(Isyn)

JV (V +
r , Isyn)− JV (V−r , Isyn) = ν(Isyn)

where ν(Isyn) is the instantaneous firing rate of the neuron at current Isyn. The total
firing rate of the neuron is

∫
R

ν(Isyn)dIsyn. By definition of the flux and in particular
since is cannot be negative atV = θ for every Isyn, we have P(θ , Isyn) = 0 if Isyn+F(θ) <
0, implying in this case that the flux is null for these values of current. On the other
hand, P(θ , Isyn) is positive for Isyn+ F(θ) > 0 when the neuron fires. Eventually, the
boundary condition for P read:
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(Isyn+ F(θ))P(θ , Isyn) = ν(Isyn)τm

(Isyn+ F(θ))
{

P(V +
r , Isyn)−P(V−r , Isyn)

}
= ν(Isyn)τm

For the boundary conditions on the current variable Isyn, the authors note that
the only location where the neuron can escape the phase plane is through V = θ , and
hence the flux through Isyn must go to zero for large |Isyn|. Therefore the boundary
conditions on Isyn read:

lim
Isyn→±∞

JIsyn(V, Isyn) = 0

which is implied for instance by:

lim
Isyn→±∞

∂P
∂ Isyn

= 0

lim
Isyn→±∞

IsynP = 0

In the small τs/τm limit, the two dimensional Fokker-Planck equation can be

solved using singular perturbations techniques. In that limit, the variance of Isyn

becomes proportional to σ
√

τs/τm. The parameter
√

τs/τm is the small parameter in

which the Fokker-Planck equation is expanded. To integrate the equations, Fourcaud

and Brunel [94] develop very skillful calculations and finally obtain analytical for-

mulations for the correcting terms of the stationary mean firing rate. Up to the first

order in
√

τs/τm, the firing rate reads:

ν = ν0−
√

τs

τm

α
2τm
√

π
ψ(θ−µ

σ )−ψ(Vr−µ
σ )

(
∫ θ−µ

σ
Vr−µ

σ
ψ(s)ds

)2

where ψ(s) = es2
(1+ erf(s)) and α =

√
2|ζ (1/2)| and ζ (·) is the Riemann zeta function

(see e.g. [3]). They observe that up to the first order, the firing rate can be written as:

ν =

(
τm
√

π
∫ θ−µ

σ + α
2
√

τsτm

Vr−µ
σ + α

2
√

τsτm

ψ(s)ds

)−1

Hence the effect of the synaptic integration can be seen as introducing an effective

threshold θ + σ α
2

√
τsτm and an effective reset potential Vr + σ α

2

√
τsτm.

In the nonlinear case, the approach is more elegant. Considering that a spike is

emitted when the membrane potential goes to infinity and is reset at −∞. Brunel and
Latham [37] develop the same type of calculations as in the previous case, but get

rid of the complexity of solving the differential equation with the boundary condition,

turning it into limit conditions. We do not present here their calculations since it is

only technical calculations typical of singular or nonsingular perturbation theory, and

only provide their results for their great interest since they are the only analytical

information available for Model IV.

In the long correlation time limit τs/τm→ 0, the zeroth order approximation is the
one given by ν0 computed in equation 6.47. The first order correction is null, and the

second order corrective coefficient is:

ν2s = ν0
τmν0

σ2

∫

R

dv
∫ ∞

v
exp(ψ(v)−ψ(u))(h(u)−h(v)−4F ′(u))
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where ψ(v) =
∫ v

0 2F(u)/σ2 du and h is a solution of h′(v) =−3F ′′(v)−4F ′(v)ψ ′(v).
In the long correlation time limit (τs/τm→ ∞), the strategy for solving the Fokker-

Planck equations is the same, and the calculations are simpler in this case. The

stationary firing rate for the quadratic model reads up to the first order in τm/τs:

ν =

√µ
πτm
− τm

τs

σ2

16πτmµ3/2

These two limits can then be put together to find an approximation of the mean

firing rate whatever the ratio τs/τm. The authors obtained a good agreements with

numerical simulations of the solutions of the Fokker-Planck equation.

Noisy synaptic conductances

ForModel V, this approach also applies, but the derivation of the stationary transition

density is a little bit more complex. In the case of equation (6.23) with constant

external current Ie, the Fokker-Planck equation reads:

∂t p =
σ2

g

2
∂ 2

x {(x−Vg)
2p(x)}+ λ∂x{(x−VI)p(x)}

with Vg = Vrev− σI
σg
and VI = Vrest+

Ie
λ .

When considering the stationary problem, we end up with the following differen-

tial equation to solve, with α a real parameter to be set considering the boundary
conditions:

σ2
g

2
∂x{(x−Vg)

2p(x)}+ λ (x−VI)p(x) = α

which we write in the form:

∂xF(x)+
2λ
σ2

g

(x−VI)

(x−Vg)2 F(x) = α

where F(x) = (x−Vg)
2p(x). This equation is well posed for x < Vg and x > Vg but not

considering intervals containing Vg. For x > Vg or x < Vg the solution can be written in

the form:

p =
e−h(x)

(x−Vg)2

(
α
∫ x

Vr

eh(y)dy+ β
)

where h is a primitive of 2λ
σ2

g

(x−VI)
(x−Vg)2 , for instance for x > Vg:

2λ
σ2

g

{
log(x−Vg)−

Vg−VI

x−Vg

}
,

and for x < Vg:
2λ
σ2

g

{
− log(Vg− x)− Vg−VI

x−Vg

}
.

We consider Vg < VI and Vg < Vr, which is the most plausible case if we consider

a null synaptic current, because of the numerical values of the reversal potentials

of the main ionic species involved in the spike generation (see chapter 1). We inte-

grate this equation with the boundary conditions in three steps: first for x < Vg (with

the constants α1 and β1), then for Vg < x < Vr (constants α2 and β2) and for Vr < x < θ
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(constants α3 and β3). We know that the solution is 0 for x > θ . We consider first the
case x < Vr, and we observed that necessarily α3 = 0 to keep the finite and integrable
density at x = Vr, and that β3 = 0 for the probability to have a finite integral. There-
fore, the stationary probability density is identically null for x < Vg. For Vr < x < θ ,
the condition p(θ) = 0 gives the condition on the coefficients β3 = −α3

∫ θ
Vr

exp(h(y))dy.
Hence on this interval the solution reads:

p(x) = α3
e−h(x)

(x−Vg)2

∫ x

θ
eh(y)dy.

The continuity condition for V = Vr gives us β2 in function of α3:

β2 = α3

∫ Vr

θ
eh(y) dy

and the jump condition for x = Vr corresponds to
α3

(θ−Vg)2 fixes the coefficient β2 in func-

tion of α3:

α2 = α3

(
1−
(

Vr−Vg

θ −Vg

)2
)

Therefore we obtain a closed form of the whole solution, scaled linearly by a pa-

rameter α3 which has to be set to comply with the normalization condition, hence

that reads:

α3 =

(∫ Vr

Vg

e−h(x)

(x−Vg)2

((
1−
(

Vr−Vg

θ −Vg

)2
)∫ x

Vr

eh(y) dy+
∫ Vr

θ
eh(y) dy

)
dx+

∫ θ

Vr

e−h(x)

(x−Vg)2

∫ x

θ
eh(y) dy

)−1

.

This coefficient gives us the stationary mean firing rate for this model:

ν =
α3

(θ −Vg)2

6.3.6 Girsanov’s method

Closed-form formulas can be obtained for simple processes and some classes of bound-

aries, as we have seen in section 6.3.4. For instance, the first hitting time of the

Brownian motion to affine boundaries has a closed-form expression. It is known that

piecewise affine functions are dense in the set of continuous functions. The principle

of what we call Girsanov’s method is to build upon this property an approximation of

the law of the first hitting time of more complex processes to general boundaries.

This technique was developed for the Brownian motion by Wang and Potzelberger

in the late 90’s, and then extended by Borovkov and colleagues[27, 210, 217, 278]. It

was recently extendend to general one-dimensional diffusion processes [277] such as

the Ornstein-Uhlenbeck processes (LIF neuron) or the nonlinear integrate-and-fire

neurons.

The principle of the method is illustrated in figure 6.5. It consists first in gen-

eralizing the formula obtained for the affine boundary for the Brownian motion to

piecewise affine boundaries. This step is rather simple and is performed using the

Markov property of the Brownian motion. More precisely, let a(t) be a continu-
ous piecewise linear boundary, with possible breaks on the points of the partition
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Figure 6.5: The principle of Girsanov’s approximation method for the Ornstein-

Uhlenbeck process: a change of time is performed to change the Gauss Markov pro-

cess into a Brownian motion and the resulting boundary is approximated by a piece-

wise affine function.

0 = t0 < t1 < .. . < tn
def
= t (i.e. a is affine on the intervals [t j, t j+1] for j = 0. . .n−1), and τa

be the first hitting time of the Brownian motion to the boundary a, thenP(τa ≤ t) = 1−E(g(W (t1), . . . ,W (tn),a))

where

g(x1, . . . ,xn,a) =
n

∏
j=1

1x j<a j

(
exp

[
−2(a j−1− x j−1)(a j− x j)

t j− t j−1

])
,

where a j = a(t j). This equation can be easily interpreted: the probability that the
Brownian motion has not crossed the affine boundary prior to time t is equal to the
probability that it did not cross the boundary between time t and tn−1 conditionally

to the fact that it did not cross the boundary prior to tn−1 times the probability that

the process did not cross the boundary prior to time tn−1. Markov’s property for the

Brownian motion yields the formula.

Using this formula, the approximation principle of the first hitting time of the

Brownian motion to curved boundaries consists in defining a partition of a time in-

terval [0,T ]. On this partition, the crossing probability of the Brownian motion with
the general boundary is approximated by the one of the Brownian motion with an

affine approximation of the boundary on this partition, formula which is given by the

first step. When the boundary is regular enough (continuously differentiable with a

Lipschitz derivative), then this approximation is proved to converge.

The speed of convergence was widely studied and the first explicit bound of the

approximation was provided by Borovkov and Novikov [27] eight years after the de-

scription of this algorithm. Under some regularity conditions on the boundary, the

approximation is proved to converge in O(ε) where ε is the step of the partition.
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This technique was finally complemented in 2007 for general diffusion processes

with piecewise continuous boundaries [277]. This applies for instance for the Ornstein-

Ulhenbeck process, providing an alternative solution to the ones proposed previously.

Hence one of the main advantage of this technique is to provide a closed-form so-

lution for the approximation of the hitting time we search together with a rate of

convergence. Furthermore, whereas all other methods fail to extend to Model III,

this method can be extended to these models, as we show in chapter 7.

One of the main drawbacks of this technique is that it involves the computation on

an expectation over R
n where n is the number of points in the partition. Increasing the

precision of the approximation means increasing this n. The expectation involved in
the formula can be computed as an integral on R

n weighted by the multidimensional

probability of the Brownian motion at the times of the partition. To compute this

integral, we could use Gaussian integration algorithms (see e.g. [245]). Nevertheless,

the most efficient method when n increases is to use a Monte-Carlo algorithm to
compute the expectation. This method consists in approximating the expectation

by an empirical expectation. More precisely, let (t1, . . . , tn) be a partition of [0, t]. The
method consists in drawing N samples (xk

1, . . . ,x
k
n)k=1...N by drawing in the law of the

process (Wt1, . . . ,Wtn) and computing 1− 1
N ∑k = 1Ng(xk

1, . . . ,x
k
n,a). The standard error

given by this estimator can be deduced by the work of Niederreiter [206] and is given

by √
∑N

k=1 g(xk
1, . . . ,x

k
n,a)− 1

N ∑N
k=1 g(xk

1, . . . ,x
k
n,a)

N(N−1)

Thismethod can apply to Models I, III and V with instantaneous synaptic currents

or conductances since they are all solutions of diffusion equations.

We extend this method in chapter 7 to the cases of exponentially decaying synaptic

currents, developping a new semi-analytical technique to characterize the pdf of the

first hitting time of this type of processes with integrated noise, which we will call

Double Integral Processes.

6.3.7 Monte-Carlo Simulation method

Description of the algorithm

The Monte-Carlo simulation method is a widely used method in many fields of ap-

plications. It is a numerical algorithm based on repeated computation of random or

pseudo-random numbers. Since it is model-free, it can be used even when no analyti-

cal or exact mathematical result are available.

To approximate of the pdf of the first hitting time of a given stochastic process to

a general boundary, Monte-Carlo method consists in simulating a large number N of
independent time-discretized paths of the process. In details, let us denote by Vt the

process under consideration and V̄t its time discretization, by a(·) the boundary and
by τa the first hitting time of the process Vt to this boundary. The simulation of the

path stops at a time τ̄a supposedly approximating τa. For each path V̄ , up to time τ̄a,

the discrete time stochastic process V̄ is numerically simulated for instance using an
Euler scheme.

At each time step, either the simulation stops if the process is considered to have

crossed the threshold, or proceeds:

• if V̄(k+1)δ ≥ a((k+1)δ ) then τ̄a = (k+1)δ and the simulation of the path is stopped.
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• if V̄(k+1)δ < a((k +1)δ ), the simplest algorithm would continue the simulation of
the path. Nevertheless, the approximation of τa we get using this technique is of

very poor accuracy. It has been proved [108] that this approximation is of order√
δ .

To improve the accuracy of the algorithm, an interesting idea (see [108]) is to com-

pute the probability that the continuous time process conditioned on taking the value

V̄kδ at time kδ and V̄(k+1)δ at time (k + 1)δ hits the constant boundary a(·) for t ∈
(k δ ,(k +1)δ ). When δ is small enough and the function a smooth enough, the bound-
ary can be considered as constant equal to a(k δ ), and the process Vt as a Brown-

ian motion. Therefore the probability to compute is approximated by the probability

p(δ ,V̄k δ ,V̄(k+1)δ ) of a Brownian bridge with intensity δ (i.e. a Brownian motion condi-
tioned to take the value V̄k δ at time 0 and V̄(k+1)δ at time δ ) to hit the constant a(k δ ).
This probability is easy to compute and its value is:

p(δ ,x,y) = exp

(
−2

(a− x)(a− y)
σ2δ

)
.

In this case we thus consider that the probability to cross the frontier between times

k δ and (k+1)δ is equal to this value. To simulate our hitting time, we can for instance
simulate a Bernoulli random variable of parameter p(δ ,V̄k δ ,V̄(k+1)δ ):

• If this random variable is equal to 1 then we set τ̄a = (k + 1)δ and we stop the
simulation.

• If this random variable is equal to 0 then the simulation proceeds.

This new simulation algorithm has a first order accuracy (see for instance the

works of Gobet [108]). Nevertheless, the rate of convergence of τ̄a towards τa is still

an open problem. This problem amounts to characterizing the convergence of such

quantities as P(τ̄a ≤ t) towards P(τa ≤ t), even for simple models such as Model I.
Lastly, these simulations necessitate a huge number of simulated sample path

in order to get a good accuracy. Therefore, these algorithms are very time consum-

ing, but they offer the advantage to be applicable for any model and any boundary

provided some loose conditions are satisfied. Another advantage is that these algo-

rithms are highly parallelizable. This means that provided that one can generate

in parallel independent sets of random (or pseudo-random) numbers, each trajectory

can be computed independently. This is why we implemented for our applications for

general models a parallel Monte-Carlo algorithm on GPU (see chapter 8).

Numerical results

For model I, Volterra, Durbin, Girsanov and Monte-Carlo simulation apply. When

the input current is deterministic, the membrane potential is the realization of an

Ornstein-Uhlenbeck process, and the moments can be expressed using the analytical

expressions of theorem 6.3.3. A comparison of the theoretical value with the numeri-

cal simulation is provided in table 6.2.

All the methods presented are known to converge to the real pdf, hence if the

simulation is accurate enough, all the methods can have an arbitrary precision. Nev-

ertheless, the simulation parameters were chosen according the computation time re-

quired by the numerical method. As expected, in this simulation, Volterra’s method

is the most accurate, and computationally the most efficient for the simulations we
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method E[T] E[T 2
] E[T 3

]

theoretical values 1.9319289 7.1356162 40.0830265

Durbin, 30 terms, 1.9292822 7.1269290 39.8541918

Tmax = 1036,

step = 10−2

Monte-Carlo, 1.876826 6.413294 31.013929

106 realizations,

step = 10−2

Volterra, step = 0.02 1.9319291 7.1356167 40.0830298

Table 6.2: Values of the first 3 moments of the OU process and the empirical values,

for the parameters: θ = σ = 2, Vrest= τm = 1, Ie = 0, see equation (6.2). The theoretical
values are obtained using the formulas of theorem 6.3.3 by truncating the series Φi

up to a high order.

performed. The parameters in Volterra’s method have been chosen to get a good accu-

racy, but still the computation time is under half a second. Monte-Carlo simulations

have been done using the enhanced algorithm presented. Though having a quite

good convergence rate, it appears to be very sharp even for a huge number of trials

(it is known to converge as 1/
√

N where N is the number of trials), as we can see in
the values of the expectation, and very computationally inefficient (the simulation

took 1h47m for a very low precision, while Volterra’s method takes 0.02s for a high

precision, on a Intel Core2 CPU 6700 @ 2.66GHz)

In Figure 6.6 we compare three of the methods available to compute the spike

statistics of Model I driven by periodic inputs: Durbin’s method, Volterra’s method

and a Monte-Carlo simulation. Durbin’s and Volterra’s results are indistinguish-

able. The simulation times are very high for both Monte-Carlo and Durbin’s methods

(around a minute for both, the Monte-Carlo simulation runs 106 sample paths and

Durbin’s method 800 sample points and 9 terms of the series). Volterra’s method is

very efficient and for 104 sample points, lasts less than 0.02s. We also see from the en-
largement in the figure that the Monte-Carlo simulation does not have the expected

regularity even at this level of precision.

CONCLUSION

In this chapter we studied different types of integrate-and-fire neuron models from

the point of view of the stochastic calculus. We showed that characterizing the spikes

times of a neuron was equivalent to solving a first hitting time problem for a stochas-

tic process to a given continuous curve. We then presented different methods which

can be applied in order to solve such problems. One of them, the Feynman-Kac

method, is very restrictive, since it can only be applied to stationary boundaries

(this is also the case of the Fokker-Planck equation formalism). A classical method,

Durbin’s method, was extended, and proved to be equivalent to Volterra’s method. We

also presented the recent Girsanov’s method upon which the next chapter builds up

in order to compute the distribution of the spikes times for the LIF neuron with expo-

nentially decaying synaptic conductances. In this case, the only available and partial

result is Brunel’s who computed the stationary firing rate of this neuron model [38].

Nevertheless for the nonlinear models of types III and IV the stochastic calcu-
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Figure 6.6: Graphical comparison with Monte-Carlo simulation and Durbin’s simula-

tions

lus methods still fail to provide the complete statistical information about the spikes

and one has to resort to the Fokker-Planck approximate formalism. Studying more

complex and biologically plausible mechanisms such as STDP in this framework is

another interesting perspective of the present study. This work was presented at

the NeuroComp conference in Pont-à-Mousson [86], at the first computational neuro-

science day in Gif-sur-Yvette, and at the Probability and Biology Seminar of Paris VI

University. It is published as a review paper in the Journal of Physiology, Paris [260].
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Az men ken nit iberhar’n dos shlechteh,

ken men dos guteh nit derleben.

– Yiddish proverb

ABSTRACT

In the previous chapter we presented the relationship between the problem of char-

acterizing the statistics of spikes for integrate-and-fire neuron models and the prob-

lem of first hitting times of stochastic processes. We showed that stochastic calculus

methods can be successfully applied to derive the probability distribution of the in-

terspike interval. We nevertheless observed that no method applied to the case of

exponentially decaying synaptic currents. This problem is linked with the fact that

the membrane potential process involves a non-Markovian process which we called a

Double Integral Process. In this section we generalize this problem to a wider class

of stochastic processes and provide a way to approximate the law of this hitting time.

More generally, the problem of finding the probability distribution of the first hit-

ting time of Double Integral Processes (DIPs) such as the Integrated Wiener Process

(IWP) has been an important and difficult endeavor in stochastic calculus. It has

applications in many fields of physics (first exit time of a particle in a noisy force

field) or in biology and neuroscience (spike time distribution of an integrate-and-fire

neuron with exponentially decaying synaptic current). The only results available are

Brunel’s et al approximation of the stationary mean crossing time and the distribu-

tion of the first hitting time of the IWP to a constant boundary. We generalize these

results and find an analytical formula for the first hitting time of the IWP to a con-

tinuous piecewise cubic boundary. We use this formula to approximate the law of the

first hitting time of a general DIP to a smooth curved boundary, and we provide an

estimation of the convergence of this method. The accuracy of the approximation is

computed in the general case for the IWP and the effective calculation of the crossing

probability can be carried out through a Monte-Carlo method. These results are the

fruit of a collaboration with Olivier Faugeras, and they are published in Advances in

Applied Probablity [262].
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7.1 INTRODUCTION

First passage time problems for one-dimensional diffusion processes through

a time-dependent boundary have received a lot of attention over the last three decades.

Unfortunately, the evaluation of the first passage time probability distribution func-

tion (pdf) through a constant or time dependent boundary is in general an ardu-

ous task which has still not received a satisfactory solution. Analytical results are

scarce and fragmentary, even if closed form solutions exist for some very particular

cases. Since no analytical method seem to solve the problem, one is led either to

the study of the asymptotic behavior of this function and of its moments (see e.g.

[207, 208]), or to the use of somewhat ad-hoc numerical procedures yielding approx-

imate evaluations of the first passage time distributions. Such procedures can be

classified as follows: (i) those that are based on probabilistic approaches (see e.g.

[42, 73, 76, 77, 90, 152, 153, 179, 211, 212, 223, 224, 238]), and (ii) purely numerical

methods, such as the widely used Monte-Carlo method which applies without any re-

striction, but whose results are generally too coarse (for numerical methods, see e.g.

[11, 88, 107, 162]).

In two and higher dimensions, the problem is even more complex and results

can hardly be found. For the simplest Double Integral Process (DIP), the Integrated

Wiener Process (IWP) defined in (7.10), McKean [197] Goldman [110], Lachal [168,

169, 170] found the probability distribution of the first hitting time to a constant

boundary using stochastic calculus methods. Lefebvre used the Kolmogorov (Fokker-

Planck) equation to find in some special cases closed-form solutions [178]. General-

izations of these formulas to other boundaries and other kinds of processes are simply

not available. In the present chapter, we propose a closed-form solution for the first

hitting time of the IWP to a piecewise cubic function, and apply this formula to find

an approximation of the first hitting time of a DIP to any smooth curved boundary.

We also provide an estimation of the rate of convergence of this approximation.

In the first section, we introduce a motivation of this study, define the Double

Integral Process and prove the main properties which will be useful for us in the rest

of the chapter. In the second section, we study the first hitting times of the IWP and

provide a closed-form formula for the first hitting time of this process to a piecewise

cubic function. In the third section, we introduce the approximation method of the

first hitting time of the IWP to any smooth curved boundary, and find the rate of

convergence of this method. Finally in the last section we provide an approximation

formula for the first hitting time of a general DIP to a curved boundary. The fifth

section describes briefly a numerical Monte-Carlo algorithm which can be used to

compute the probability repartition function efficiently.

7.2 THE DOUBLE INTEGRAL PROCESS

In this section we introduce the Double Integral Process (DIP) and prove

some useful properties. But before the mathematical study of the problem, we moti-

vate this theoretical work by a specific problem arising in neuroscience: the distribu-

tion of the spike times for an integrate-and-fire neuron with exponentially decaying

synaptic currents.
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7.2.1 Motivation

The definition of the DIP and the study of its first hitting times of curved boundaries

has been motivated by numerous physical and biological problems. For instance a

problem arising in neuroscience is to characterize the probability distribution of the

spike (action potentials) times in presence of synaptic noise (see [105] for an intro-

duction of the neuronal modelization of spiking neurons and [261] for review of the

problem of spike time distribution).

A classical neuron model (Models I and II of chapter 6) is the leaky integrate-and-

fire model, where the membrane potential V (t) of a neural cell integrates external
inputs and the noise at the synapses, and emits a spike when the membrane poten-

tial reaches a deterministic threshold function θ(t) (which is constant in general).
We recall here for the sake of completeness some of the main features of this model

in order to make clear the motivations of the further developments. There is a clear

overlap with section 6.2.2, but we believe that fixing notations and recalling the prob-

lem makes this chapter more clear.

In this model, the membrane potential is solution of the equation:

τmdV (t) =
(
− (V (t)−Vrest)+ Ie(t)

)
dt + dIs(t) (7.1)

In this equation τm is the characteristic time of integration of the membrane po-

tential, Vrest is the rest potential of the neuron, Ie represents deterministic external

inputs and Is the noisy synaptic inputs (see for instance [86, 105, 261]). The simplest

model of synaptic noise is a standard Brownian motion, if we neglect the integration

time of the synapse. Nevertheless, real post-synaptic currents have a very short rise

time and a larger decay time.

If we take into account the decay time of the synapse τs, then the synaptic current

is solution of the stochastic differential equation:

τsdIs(t) =−Is(t)dt + σdWt

We can integrate this system of stochastic differential equations as follows. The

equation governing the membrane potential yields

V (t) = Vrest(1− e
− t

τm )+ 1
τm

∫ t
0 e

s−t
τm Ie(s)ds+ 1

τm

∫ t
0 e

s−t
τm Is(s)ds,

and the synaptic current equation can be integrated as

Is(t) = Is(0)e
− t

τs +
σ
τs

∫ t

0
e

s−t
τs dWs,

where Is(0) is a given random variable. We define 1
α = 1

τm
− 1

τs
. Replacing in the first

equation Is(t) by its value in the second equation we obtain

V (t) = Vrest(1− e
− t

τm )+ 1
τm

∫ t
0 e

s−t
τm Ie(s)ds+

Is(0)

1− τm
τs

(e
− t

τs − e
− t

τm )+
σ

τmτs
e
− t

τm

∫ t

0
e

s
α

(∫ s

0
e

s′
τs dWs′

)
ds

The time of the spike emission is the first hitting time of V (t) to the threshold θ(t),
so the first hitting time of the stochastic process, which is a particular case of what

we will call in the sequel Double Integral Process (DIP)
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Xt =

∫ t

0
e

s
α

(∫ s

0
e

s′
τs dWs′

)
ds (7.2)

to the deterministic curved boundary

a(t) = θ(t)−
(

Vrest
(

1− e
− t

τm

)
+ 1

τm

∫ t
0 e

s−t
τm Ie(s)ds+ Is(0)

1− τm
τs

(
e
− t

τs − e
− t

τm

))
.

7.2.2 Definition and main properties of DIPs

In this section, we define a class of stochastic processes including the process (7.2),

and prove some useful properties of these processes.

Definition 7.2.1 (DIP). Let f ∈L
2(R) and g∈L

1(R). LetMt be the martingale defined

by Mt :=
∫ t

0 f (s)dWs.

The double integral process (DIP) associated to the functions f and g is defined for
all t by:

Xt =

∫ t

0
g(s)Msds =

∫ t

0
g(s)

(∫ s

0
f (u)dWu

)
ds (7.3)

Proposition 7.2.1. The two-dimensional process (Xt ,Mt) is a Gaussian Markov pro-
cess.

Proof. First of all, note that if FX
t (resp. FM

t ) defines the canonical filtration asso-

ciated to the process X (resp. M) then it is clear that ∀t ≥ 0, FX
t ⊂FM

t . Hence the

filtration associated to the pair (Xt ,Mt)t≥0 is simply (FM
t )t≥0, which we denote in the

sequel (Ft)t≥0

It is also clear thatM is a martingale, and satisfies the Markov property. Let s≤ t.
We have:

Xt =

∫ t

0
g(u)Mudu

=
∫ s

0
g(u)Mudu+

∫ t

s
g(u)Mudu

Xt = Xs +

∫ t

s
g(u)(Mu−Ms)du+ Ms

∫ t

s
g(u)du (7.4)

Conditionally to Ms, the process
∫ t

s g(u)(Mu −Ms)du is independent of FM
s so the

law of Xt knowing (Xs,Ms) is independent of the sigma-algebra (Ft), and so is M, so
eventually the pair (X ,M) is Markov.

The pair is clearly a Gaussian process since its two components are. Indeed, M
is Gaussian as the limit of the Riemann sums of Brownian increments, which are

Gaussian, and X is also the limit of Riemann sums of a Gaussian process, namely M,
with the weights given by g.

Remark 11. In the proof of proposition 7.2.1, we proved also that conditionally toMs,

the increments (Xt −Xs,Mt −Ms) are independent of the σ -field Fs.
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Proposition 7.2.2. For each value of t ≥ 0, the random variable Yt := (Xt ,Mt) is a
two-dimensional Gaussian variable of parameters:





E [Yt ] = (0,0)E[Y T
t ·Yt

]
=

(
ρX(0, t) C(X ,M)(0, t)

C(X ,M)(0, t) ρM(0, t)

)
(7.5)

where the functions ρX(s, t), C(X ,M)(s, t) and ρM(s, t) are defined by:





ρM(s, t) =
∫ t

s f (u)2du
ρX(s, t) = 2

∫ t
s g(u)(

∫ u
s g(v)ρM(s,v)dv)du

C(X ,M)(s, t) =
∫ t

s g(u)ρM(s,u)du
(7.6)

The transition measure of the Markov process (Yt)t has a Gaussian density w.r.t.

Lebesgue’s measure:

N

((
xs + ms

∫ t
s g(u)du

ms

)
,C̃(s, t)

)
(7.7)

where the correlation matrix C̃(s, t) reads:

C̃(s, t) =

(
ρX(s, t) C(X ,M)(s, t)

C(X ,M)(s, t) ρM(s, t)du

)
(7.8)

Proof. The calculations are essentially straightforward. To compute the transition

density function, we use the equation (7.4) and write:

(
Xt

Mt

)
=

(
Xs + Ms

∫ t
s g(u)du

Ms

)
+

( ∫ t
s g(u)(Mu−Ms)du

Mt −Ms

)
(7.9)

The first term in the sum in the righthand side of (7.9) is Fs measurable. Given

Xs = xs and Ms = ms, it is equal to

(
xs + ms

∫ t
s g(u)du

ms

)

The second term is independent of Fs and is Gaussian.

Eventually, the process Yt knowing Ys = (xs,ms) has the same law as the Gaussian
process:

N

((
xs + ms

∫ t
s g(u)du

ms

)
,C̃(s, t)

)

Definition 7.2.2 (IWP). The Integrated Wiener Process is a special case of the DIP

where the functions f and g are identically equal to 1 :

Xt =

∫ t

0
Ws ds Ms = Ws (7.10)

From proposition 7.2.2, we know that its transition measure reads:
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P[Xt+s ∈ du,Wt+s ∈ dv
∣∣Xs = x,Ws = y

]
def
= pt(uv; x,y)dudv =

√
3

πt2 exp
[
− 6

t3(u− x− ty)2 +
6
t2 (u− x− ty)(v− y)− 2

t
(v− y)2

]
dudv (7.11)

Lemma 7.2.3. Let (Xt)t≥0 be a DIP defined by (7.3). Assume that f (s) 6= 0 for all s≥ 0.
The study of the hitting times of the DIP X is equivalent to the study of the simpler
process:

X̃t =

∫ t

0
g̃(s)Wsds,

where g̃ is defined in the proof.

Proof. Let (Mt)t be the martingale defined by:

Mt =
∫ t

0
f (s)dWs

Dubins-Schwarz’ theorem1 ensures us that there exists a Brownian motion (Wt)t such

that almost surely

Mt = W〈M〉t

We note

Φ(t) = 〈M〉t =
∫ t

0
f 2(s)ds

Φ is continuous and since we assumed that f (s) 6= 0 for all s ≥ 0, strictly increasing,
so it is a bijection. Its derivative Φ′(t) exists and is nonzero for all t ≥ 0. We use the
change of variable u = Φ(s). We have:

Xt =

∫ t

0
g(s)Ms ds

L
=
∫ t

0
g(s)WΦ(s)ds

=
∫ Φ−1(t)

0

g(Φ−1(u))

Φ′
(
Φ−1(u)

)Wu du

Hence the hitting time of a general DIP can be deduced from the hitting time of the

process X̃t = XΦ(t) which is of type
∫ t

0 g̃(s)Wsds, where g̃(t) = g(Φ−1(t))
Φ′(Φ−1(t))

7.3 FIRST HITTING TIME OF THE INTEGRATED WIENER
PROCESS

We consider the special case (Wt)t≥0, a standard Brownian motion. We are interested

in the first hitting time to a curved boundary a(t) of the stochastic process:

Xt =

∫ t

0
Wsds (7.12)

1Even though 〈M〉∞ 6= ∞ because of our hypothesis on f , see [160].
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Figure 7.1: A sample path of the process Ut = (Xt , Wt) where X is a standard IWP and
W a standard Brownian motion, and a boundary curve a(t). The IWP Xt is reset to 0
when it crosses the boundary.

This problem has been widely studied and has received no satisfactory solution so

far. One of the main difficulties comes from the fact that the process is non Markov,

so we have to refer to the underlying Wiener process. Classical approaches based

on Volterra equations or Durbin’s method, work for the Brownian motion, but fail in

providing a solution to this problem (see for instance [261] for a review). To achieve

the program of characterizing those hitting times, we first recall existing results on

the first hitting times to constant boundaries, generalize them to cubic and piecewise

cubic boundaries, to end with the approximation formula for general boundaries.

7.3.1 First hitting time to a constant boundary

Lachal in [169] studies this problem in the case where the boundary is a constant.

More precisely, in this section we study the process Ut = (Xt + x+ ty,Wt + y) where Xt is

the standard IWP. We denote by

τa = inf
{

t > 0 ; Xt + x+ ty = a
}

the first passage time at a of the first component of the bidimensional Markov process
Ut . The work of Lachal [169] follows the work of McKean [197], where the joint law

of the process (τa,Wτa) is computed in the case x = a. The result is:P[τa ∈ dt ; |Wτa | ∈ dz
∣∣U0 = (a,y)

]
def
= P(a,y)(τa ∈ dt; |Wτa | ∈ dz)

=
3z

π
√

2t2
e−(2/t)(y2−|y|z+z2)

(∫ 4|y|z/t

0
e−3θ/2 dθ√

πθ

)1[0,+∞)(z)dzdt (7.13)

We denote this density by ma(t,y,z).

Later, Goldman in [110] computed the distribution of the random variable τa in

the case where x < a and y≤ 0 and obtained the formula:
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P[τa ∈ dt
∣∣U0 = (x,y)

]
= dt

[√ 3
8πt3

(3(a− x)
t

− y
)
e−3(a−x−ty)2/(2t3)

+
∫ +∞

0
zdz

∫ t

0

∫ ∞

0
P[τ0 ∈ ds ; |Wτ0| ∈ dµ

∣∣U0 = (0,z)
]
qt−s(x,y;a,z)

]
(7.14)

where qt(x,y;u,v) = pt(x,y;u,v)− pt (x,y;u,−v).
Lastly, Lachal in [169] extended all these results and gave the joint distribution

of the pair (τa,Wτa) in all cases. The quite complex formula reads:P(x,y) [τa ∈ dt ; Wτa ∈ dz] = |z|
[

pt(x,y;a,z)−
∫ t

0

∫ +∞

0
m0(s,−|z|,µ)pt−s(x,y;a,−εµ)dµ ds

]1A(z)dzdt (7.15)

where A = [0,∞) if x < a, A = (−∞,0] if x > a, ε = sign(a−x) and m0(s,−|z|,µ) is given by
McKean’s formula (7.13). We denote this density by la

x,y(t,z).

7.3.2 First Hitting time to a cubic boundary

The problem we address now is the question of finding similar formulae for more

general boundaries. For the Brownian motion itself, few results are available. A for-

mula has been found for a linear boundary using Girsanov’s theorem, for a quadratic

boundary using the Laplace transform characterization (see [116]). Lastly, themethod

of images has been shown to provide closed form results in very particular cases (see

[213] for a review). The difficulty for finding closed-form characterizations of the

first hitting time of the Brownian motion incited people to look for approximations.

Monte-Carlo simulation is often used. Even if it can be used with no restriction, it is

often considered too coarse and computationally inefficient. Furthermore, it is purely

numerical and global, and does not provide any analytical information on the hitting

time. For these reason, other semi-analytical methods of approximation have been

developed to provide analytical approximations [63, 76, 77, 217, 277], sometimes to-

gether with error estimations [27, 210].

The problem is even more complex for the first hitting time of the integrated

Wiener process.

In this section we apply Girsanov’s theorem to transform the problem of finding a

closed-form expression of the first hitting time of the IWP to a cubic function to the

problem discussed in the previous section that has been solved by McKean, Goldman

and Lachal [110, 169, 197]. More precisely, we prove that under a certain probability,

the process Wt + β
2 t2 + αt + x is a Wiener process. Under this probability, the process

Xt +
β
6 t3 + α

2 t2 + tx + y has the law of an IWP. Hence the knowledge of the probability
density function (pdf) of the first hitting time of the IWP to a constant will give us,

using Girsanov’s theorem, the pdf of the hitting time of the IWP to the cubic

t 7→ β
6

t3 +
α
2

t2 + bt + a.

For the sake of generality we compute the new probability starting at a general

time s at the point (x,y). The index {s,(x,y)} denotes in the following the conditioning
on the event (Xs = x,Ws = y).
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Theorem 7.3.1. The process Wt + α(t− s)+ β
2 (t− s)2 + y, 0≤ s ≤ t is a Wiener process

starting at y at time s, under the probability:Pα ,β
s,(x,y)

∣∣∣
Fs,t

= Dα ,β
s,(x,y)(t)Ps,(x,y)

∣∣∣
Fs,t

(7.16)

where:

Dα ,β
s,(x,y)(t) = exp

(
− 1

6
β 2(t3− s3)− 1

2
αβ (t2− s2)− 1

2
α2(t− s)

− (α + tβ )Wt +(α + sβ )y+ β (Xt− x)
)
(7.17)

Proof. We consider the full process Uα ,β
t = (Xα ,β

t ,W α ,β
t ) = (Xt + x+ yt + α

2 (t− s)2 + β
6 (t−

s)3,Wt + y+α(t− s)+ β
2 (t− s)2) = (Xα ,β

t ,W α ,β
t ). This is a diffusion process satisfying the

two-dimensional stochastic differential equation:

{
dXα ,β

t = W α ,β
t dt

dW α ,β
t = (α +(t− s)β )dt + dWt

(7.18)

to be solved for t ≥ s≥ 0, with initial conditions Uα ,β
s = (x,y).

We wantW α ,β
t to be a Brownianmotion under a new probability. This is a straight-

forward application of Girsanov’s theorem (or the particular case of Cameron-Martin’s

formula). We define

Lα ,β
t :=−

∫ t

s
(α + βh)dWh, 0≤ s≤ t

This is a martingale forFs,t satisfying
〈
Lα ,β , Lα ,β〉

t =
∫ t

s (α +βh)2 dh, therefore E[exp{1
2

〈
Lα ,β , Lα ,β〉

t}]<
∞, 0≤ s ≤ t < ∞. We conclude from Novikov’s criterion thatWt −

〈
W, Lα ,β〉

t = W α ,β
t is a

Brownian motion under a new probability, noted Pα ,β
s,(x,y).

The Radon-Nicodym derivative Dα ,β
s,(x,y)(t) of this new probability with respect to the

initial probability Ps,(x,y) is given by Girsanov’s theorem and is equal to

exp

(
Lα ,β

t − 1
2

〈
Lα ,β , Lα ,β

〉
t

)
.

This can be written

Dα ,β
s,(x,y)(t) =

dPα ,β

dP ∣∣∣∣∣
Fs,t

= exp
(
− 1

2

∫ t

s
(α + hβ )2dh+

∫ t

s
(α + hβ )dWh

)

= exp
(
− 1

2

(
α2(t− s)+ αβ (t2− s2)+

1
3

β 2(t3− s3)
)

−α(Wt − y)−β (tWt − sy)+ β (Xt− x)
)

using Ito’s formula for the process tWt . Hence we obtain a formula equivalent to

(7.17).
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Remark 12. In this proof we have seen that the IWP comes from the stochastic

integration of the function α + β t with respect to the Brownian density. If we had
chosen a polynomial of degree greater than 1, the integration by parts would have
produced higher-order integrals of the Brownian motion that we do not want to deal

with since we have no knowledge of their first hitting time. This is the reason why

we study in the sequel the first hitting time of the IWP to cubic boundaries and why

we cannot go further. This method does not generalize to polynomial boundaries of

degree larger than three. Anyway we show that this is sufficient to approximate the

probability distribution of the first hitting time of the IWP and of other DIP to general

curved boundaries, precisely by approximating these boundaries with piecewise-cubic

polynomials.

We note

dα ,β (s,x,y; t,u,v) = exp
(
− 1

6
β 2(t3− s3)− 1

2
αβ (t2− s2)− 1

2
α2(t− s)

− (α + tβ )v+(α + sβ )y+ β (u− x)
)
(7.19)

the probability density function of the new probability w.r.t. the initial one.

Theorem 7.3.2. Let τC be the first hitting time of the standard IWP to the cubic curve

C of equation

C(t− s) = a+ b(t− s)+
α
2

(t− s)2 +
β
6

(t− s)3. t ≥ s

Under the reference probability P, the law of the random variable (τC,WτC) satisfies the
equation:Ps,(x,y)(τC ∈ dt,WτC ∈ dz) = d−α ,−β (s,x,y−b; t,a,z−b−α(t− s)− β

2
(t− s)2)

×Ps,(x,y−b)(τa ∈ dt,Wτa + b+ α(τa− s)+
β
2

(τa− s)2 ∈ dz) (7.20)

The second term of the righthand side is given by Lachal’s formula (7.15) if a 6= x or by
McKean’s formula (7.13) if a = x.

Proof. Let Γ⊂ R be a measurable set and t ≥ s≥ 0. We have by the change of proba-
bility formula:Pα ,β

s,(x,y)(τa ≤ t,Wτa ∈ Γ) =Es,(x,y)

[1s≤τa≤t,Wτa∈ΓDα ,β
s,(x,y)(t)

]

=Es,(x,y)

[1s≤τa≤t,Wτa∈ΓEs,(x,y)

(
Dα ,β

s,(x,y)(t)
∣∣∣Fs∨τa,t∧τa

)]

=Es,(x,y)

[1s≤τa≤t,Wτa∈ΓDα ,β
s,(x,y)(t ∧ τa)

]

=Es,(x,y)

[1s≤τa≤t,Wτa∈ΓDα ,β
s,(x,y)(τa)

]

=

∫

Γ

∫ t

s
Dα ,β

s,(x,y)(t
′)Ps,(x,y)

(
τa ∈ dt ′ ; Wτa ∈ dz

)

In going from the second to the third equation we used the fact that, according to

Girsanov’s theorem, Dα ,β
s,(x,y)(t) is a martingale.
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If x 6= a, the last probability is given by Lachal’s formula (7.15) and gives the den-
sity of the hitting time of (τa,Wτa) under the new probability Pα ,β

s,(x,y):

Dα ,β
s,(x,y)(t)|z|

[
pt(x,y;a,z)−

∫ t

0

∫ +∞

0
P(0,−|z|){τ0 ∈ ds′; Wτ0 ∈ dµ}pt−s′(x,y;a,−εµ)

]1A(z)

where A = [0,∞) if x < a and A = (−∞,0] if x > a, ε = sign(a− x) and P(0,−|z|) is given by
McKean’s formula (7.13).

We are interested in the probability density under P of the first hitting time of the
curve C(t− s). This hitting time reads:

τC = inf
{

t > s, Xt = C(t− s)
∣∣ Xs = x, Ws = y

}

= inf
{

t > s, Xt −
β
6

(t− s)3− α
2

(t− s)2 = a
∣∣

Xs = x, Ws = y−b
}

= inf
{

t > s, X−α ,−β
t = a

∣∣ X−α ,−β
s = x, W−α ,−β

s = y−b
}

Hence τC under Ps,x,y has the same law as τa under P−α ,−β
s,x,y−b . The corresponding loca-

tion ofW−α ,−β
τa isWτa + b+ α(t− s)+ β

2 (t− s)2.

So eventually the law of τC,WτC under P reads:Ps,(x,y)(τC ∈ dt, WτC ∈ dz) = d−α ,−β (s, x, y−b ; t, a, z−b−α(τa− s)− β
2

(τa− s)2)

×Ps,(x,y−b)(τa ∈ dt, Wτa + b+ α(τa− s)+
β
2

(τa− s)2 ∈ dz)

which is exactly (7.20).

If x 6= a, this formula reads:Ps,(x,y)(τC ∈ dt, WτC ∈ dz) = d−α ,−β (s, x, y−b ; t, a, z−b−α(t− s)− β
2

(t− s)2)

× la
x,y−b(t− s, z−b−α(t− s)− β

2
(t− s)2) dt dz (7.21)

where lα
x,y is Lachal’s density (7.15).

If x = a the same calculus using McKean’s formula (7.13) gives us the formula of
the hitting time probability density using the same method:Ps,(x,y)(τC ∈ dt, WτC ∈ dz) = d−α ,−β (s, x, y−b ; t, a, z−b−α(t− s)− β

2
(t− s)2)

×m(t− s, y−b, z−b−α(t− s)− β
2

(t− s)2) dt dz (7.22)
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7.4 APPROXIMATION OF THE FIRST HITTING TIME OF THE
IWP TO A GENERAL BOUNDARY

In this section we provide the formula of the first hitting time of the IWP to a piece-

wise cubic function and use it to compute an approximation formula of the law of

the first hitting time of the IWP to a general smooth curved boundary. We also pro-

vide the convergence rate of this approximation. This approach in inspired the works

[27, 210, 217, 277] on the first hitting time of the Brownian motion to a general

boundary. In [217, 277], the authors use the formula of the first hitting time of the

Brownian motion to an affine boundary to derive an approximation of the first hit-

ting time of the Brownian motion to a curved boundary, approximated by a piecewise

affine boundary. The rate of approximation is computed in [27]. This approach is here

applied to our problem for the IWP. Here the boundary is approximated by a cubic

spline, for which we compute an explicit formula for the pdf of the first hitting time of

the IWP. We then compute the convergence speed to the first hitting time of the IWP

to a general boundary of the first hitting time of a cubic spline approximation.

7.4.1 First hitting time to a continuous piecewise cubic function

In this section we consider the first hitting time of an IWP to a continuous piecewise

cubic function C(t) defined on the interval [0,T ]:

C(t) =
n−1

∑
i=0

(
ai + bi(t− ti)+

αi

2
(t− ti)

2 +
βi

6
(t− ti)

3
)1[ti,ti+1)(t) (7.23)

The coefficients {(ai,bi,αi,βi), i = 1. . .n} are constant on each interval [ti, ti+1), i =
1, · · · ,n−1. The continuity assumption 1 requires that

∀i ∈ {1, . . . ,n−1} ai+1 = ai + bi(ti+1− ti)+
αi

2
(ti+1− ti)

2 +
βi

6
(ti+1− ti)

3

We denote by (Ut)t≥0 the two-dimensional process (Xt ,Wt)t≥0 and assume that the

starting pointU0 is fixed:

X0 = x,W0 = y

We recall that the process (Ut)t is strongly Markovian with transition density (7.11).

We denote by τ s
C the first hitting time of the process (Xt)t≥s to the curve C before the

time T :

τ s
C := inf{t > s; Xt = C(t)}

Let us fix t ∈ [0,T [, and note p the index of the bin containing t (i.e. t ∈ [tp, tp+1)).
The principle of the proof is to use the strong Markov property of (Ut)t to expressP(τ0

C ≥ t|U0) recursively as an integral of a product of p+1 terms. p of these terms are
related to the results of section 7.3.2 and their analytical expression is obtained from

Theorem 7.3.2, see Fig. 7.2.

1This continuity assumption is not essential. Nevertheless we limit ourselves to a continuous bound-

ary because it is sufficient to find good approximations of the first hitting time pdf with continuous

functions, since we prove in theorem 7.4.2 that for Lipschitz continuous boundaries there exists a den-

sity for the first hitting time. If the boundary was not continuous, then the density function of the first

hitting times would have atoms at the points of discontinuity of the boundary. This could be handled at

the cost of an unnecessary increase in technical difficulty.
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Figure 7.2: Principle of the proof of theorem 7.4.1: probability that the first hitting

time is greater than t ∈ [tp, tp+1).

We know that τ s
C is a stopping time under the filtration associated to U , which is

stronglyMarkovian. The event {Ut1 = u1,τ0
C≥ t1, U0} is inFUt1 therefore P(τ0

C ≥ t
∣∣∣Ut1 = u1,τ0

C ≥ t1, U0

)
=P(τ t1

C ≥ t
∣∣∣Ut1 = u1

)
. It follows thatP(τ0

C ≥ t
∣∣∣U0

)
=
∫ (2)P(τ0

C ≥ t
∣∣∣Ut1 = u1,τ0

C ≥ t1, U0

)P(Ut1 ∈ du1, τ0
C ≥ t1

∣∣∣U0

)

=
∫ (2)P(τ t1

C ≥ t
∣∣∣Ut1 = u1

)P(Ut1 ∈ du1, τ0
C ≥ t1

∣∣∣U0

)

The first term in this integral is similar to the lefthand side of the equation. By an

immediate recursion we get:P(τ0
C ≥ t

∣∣∣U0

)
=
∫ (4)P(τ t2

C ≥ t
∣∣∣Ut2 = u2

)

×P(Ut2 ∈ du2, τ t1
C ≥ t2|Ut1 = u1

)

×P(Ut1 ∈ du1, τ0
C ≥ t1

∣∣∣U0

)

. . .

=

∫ (2p)P(τ tp

C ≥ t
∣∣∣Utp = up

)

×P(Utp ∈ dup, τ tp−1

C ≥ tp|Utp−1 = up−1

)

×P(Utp−1 ∈ dup−1, τ tp−2

C ≥ tp−1|Utp−2 = up−2

)

× . . .

×P(Ut1 ∈ du1, τ0
C ≥ t1

∣∣∣U0

)
(7.24)

where
∫ (N) denotes an integral on R

N . Note that the integration variables (ui){i=1,...p}
are two-dimensional.

The terms in the product (7.24) are of the same kind. Their expression is given by

theorem 7.4.1.
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Indeed, since

{Utk ∈ duk, τ tk−1
C ≥ tk}= {Utk ∈ duk}\

{
Utk ∈ duk, τ tk−1

C < tk
}

,

where \ is the set difference, we haveP(Utk ∈ duk, τ tk−1
C ≥ tk|Utk−1 = uk−1

)

=P(Utk ∈ duk|Utk−1 = uk−1

)
−P(Utk ∈ duk, τ tk−1

C ≤ tk|Utk−1 = uk−1

)

=P(Utk ∈ duk|Utk−1 = uk−1

)
−
∫ tk

tk−1

P(Utk ∈ duk,τ
tk−1
C ∈ ds|Utk−1 = uk−1

)

=P(Utk ∈ duk|Utk−1 = uk−1

)

−
∫ tk

tk−1

∫

R

P(Utk ∈ duk|τ tk−1
C = s, Ws = y, Utk−1 = uk−1

)

×P(τ tk−1
C ∈ ds, Ws ∈ dy

∣∣∣Utk−1 = uk−1

)

=
(

ptk−tk−1(uk;uk−1)

−
∫ tk

tk−1

∫

R

ptk−s(uk;C(s),y)P(τ tk−1
C ∈ ds, Ws ∈ dy

∣∣∣Utk−1 = uk−1

))
duk

where pt(x,y;u,v) is the transition density function (7.11) of the processU . The curveC
on the interval [tk−1, tk) is a fixed cubic function; The hitting time of the IWP starting
at uk−1 to C has a known density computed in section 7.3.2 and the term we are
interested in can be deduced from the expression we derived previously.

Hence we have proved the following theorem:

Theorem 7.4.1. The law of the first hitting time of the IWP to a continuous piecewise

cubic boundary is given by the formula:P(τ0
C ≥ t

∣∣∣U0

)
=
∫ (2p)P(τ tp

C ≥ t|Utp = up
) p

∏
k=1

(
ptk−tk−1(uk;uk−1)

−
∫ tk

tk−1

∫

R

ptk−s(uk;C(s),y)P(τ tk−1
C ∈ ds, Ws ∈ dy

∣∣∣Utk−1

))
duk (7.25)

7.4.2 Approximation of the first hitting time to a general boundary

In this section we derive an approximation of the first hitting time before a given time

T of the IWP to a general smooth boundary using the results of the previous section.
Let f : R 7→ R be a continuously differentiable function. Let also T > 0 and

0 = t0 < t1 < .. . < tn = T

be a partition, noted π, of the interval [0,T ]. We denote by δ
(
π
)
the mesh step defined

as:

δ
(
π
)

= max{ti+1− ti, i = 0. . .n−1}
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Figure 7.3: Principle of the approximation method: approximating the boundary by

a regular piecewise cubic function

The principle of the method is to approximate the first hitting time of the IWP to

the boundary f by the first hitting time of the IWP to a smooth piecewise cubic func-
tion Cπ (see fig. 7.3). The constraints we impose to Cπ is to pass through the control

points {(ti, f (ti)), i = 1. . .n} and to be at least continuously differentiable. There are
several ways for defining it, see, e.g., [245]. We assume for simplicity, but it is not es-

sential here, that f is either C2 or C4. One of the most popular interpolation schemes

in the second case is provided by the cubic spline that yields a C2 interpolation of f
which is an approximation of order four, i.e.

sup
t∈[0,T ]

| f (t)−Cπ(t)| ≤ K( f )δ (π)4, (7.26)

where K( f ) is a function of f only.
Cπ(t) is therefore given by (7.23), where the coefficients ai, bi, αi, and βi are func-

tions of f and provided by the particular interpolation scheme one uses, see, e.g.,
[245].

We first prove the following

Theorem 7.4.2. The first hitting time of the IWP to a Lipschitz continuous boundary

has a density with respect to Lebesgue’s measure.

Proof. We assume that f is Lipschitz continuous. Let L denote the Lipschitz continu-
ity constant of f , we have:

f (s+ h)− f (s)≥−Lh ∀0 < s < s+ h < t

For a fixed t ∈ [0,T ], we introduce the boundary ft(s) := f (t)+ L(t− s). Let now

τt := inf{s > 0; Xs > ft(s)|X0 = x0,W0 = y0}
= inf{s > 0; Xs + Ls > f (t)+ Lt|X0 = x0,W0 = y0}
= inf{s > 0; Xs > f (t)+ Lt|X0 = x0,W0 = y0 + L}



227

Obviously, we have: P(τ f ∈ (t, t + h))≤P(τt ∈ (t, t + h)) (7.27)

and hence the stopping time τ f has a density p(t) with respect to Lebesgue’s measure.
From Lachal’s formula we have moreover:

p(t)≤
∫

R

l f (t)+Lt
x0,y0+L(t,z)dz

We now relate the first hitting time to the cubic approximation Cπ to that to the

general boundary f .

Theorem 7.4.3. The first hitting time of the IWP to the curve Cπ before T converges in
law to the first hitting time of the IWP to the curve f before T .
Furthermore, if f is C2, then this convergence is the same order as the approxi-

mation of f by the cubic function Cπ . More precisely, for a real function g, if P(T,g)

denotes the probability P(Xt ≥ g(t) for some t ∈ [0,T ]
)
, there exists a constant K̃( f ,T )

depending on the function f and the time T such that:

|P(T,Cπ)−P(T, f )| ≤ K̃( f ,T ) ‖ f −Cπ‖∞,T (7.28)

where ‖g‖∞,T = sups∈[0,T ] |g(s)| is the uniform norm on [0,T ].

To prove this theorem, we use the following lemma giving the density of the random

variable sups∈[0,t] Xs.

Lemma 7.4.4. Let t > 0 be a fixed real and St be the random variable defined by:

St = sup
s∈[0,t]

Xs

Then the law of this random variable is characterized by:P0,x,y

(
St ∈ da

)
=−da

∫ ∞

−∞

∫ t

0
|z|
{∂ ps(x,y;a,z)

∂a

−
∫ s

0

∫ +∞

0
P(0,−|z|){τ0 ∈ du; Wτ0 ∈ dµ}∂ ps−u(x,y;a,−εµ)

∂a

}1A(z)dzdt (7.29)

Proof of lemma 7.4.4. We have:P0,x,y

(
St ≥ a

)
=P0,x,y

(
τa ≤ t

)

=

∫ t

0

∫ ∞

−∞
la
x,y(t,z)dtdz

where la
x,y(t,z) is Lachal’s density. From the expression of this density and its de-

pendency in a, we can see that the random variable St has a density with respect

to Lebesgue’s measure, and this measure has the expression (7.29) (this formula is

obtained using Lebesgue’s theorem of derivation under the sum sign).
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Proof of theorem 7.4.3. This result comes directly from the existence of a smooth den-

sity of the random variable St , the uniform convergence of the curve Cπ to f and the
smoothness of the function f . Let U0 be the initial conditions: (X0 = x,W0 = y), such
that x < f (0).

We have:

P(T, f + ε)≤ P(T, f )≤ P(T, f − ε)

Assume that fε is a uniform approximation of f such that

‖ fε − f‖∞,T ≤ ε .

We have:

|P(T, fε)−P(T, f )| ≤ P(T, f − ε)−P(T, f + ε)

= P(T, f − ε)−P(T, f )+ P(T, f )−P(T, f + ε)

=P(− ε ≤ sup
s∈[0,t]

(
Xs− f (s)

)
≤ 0
)

+P(0≤ sup
s∈[0,t]

(
Xs− f (s)

)
≤ ε
)

def
= ∆−ε( f )+ ∆ε( f ) (7.30)

We have:

∆ε( f ) =P(0≤ sup
s∈[0,t]

(
Xs− f (s)

)
≤ ε
∣∣∣U0

)

=
∫ t

0

∫

R

P(τ f ∈ ds, Wτ f ∈ dz
∣∣∣U0

)P( sup
v∈[s,t]

(Xv− f (v))≤ ε
∣∣∣Xs = f (s), Ws = z

)

=

∫ t

0

∫ ∞

f ′(s)
P(τ f ∈ ds, Wτ f ∈ dz

∣∣∣U0

)P( sup
v∈[s,t]

(Xv− f (v))≤ ε
∣∣∣Xs = f (s), Ws = z

)

The last equality is a consequence of the fact that P(Wτ f > f ′(τ f )
)

= 1, i.e., z ≥ f ′(s)
almost surely. We can conclude to the convergence of the approximation as an ap-

plication of Lebesgue’s theorem. Indeed, let s ∈ [0, t] and z > f ′(s). Then the process
(Xt− f (t))t≥s conditioned by {Xs = f (s),Ws = z} is a differentiable process starting from
0with a strictly positive derivative at 0 implying thatP( sup

v∈[s,t]
(Xv− f (v))≤ ε

∣∣∣Xs = f (s), Ws = z

)
−→
ε→0

0

Furthermore, P(supv∈[s,t] (Xv− f (v))≤ ε
∣∣∣Xs = f (s), Ws = z

)
≤ 1 which is integrable

under the measure P(τ f ∈ ds, Wτ f ∈ dz
∣∣∣U0

)
so Lebesgue’s theorem applies and we

have the expected result:

∆ε( f )−→
ε→0

0

The same argument applies for the term ∆−ε( f ) of equation (7.30). Indeed, we can

bound this probability for ε ≤ f (0)−x
2 by:
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∆−ε( f ) =P(− ε ≤ sup
s∈[0,t]

Xs− f (s)≤ 0
∣∣∣X0 = x,W0 = y

)

=P(0≤ sup
s∈[0,t]

Xs− f (s)≤ ε
∣∣∣X0 = x+ ε ,W0 = y

)

≤P(0≤ sup
s∈[0,t]

Xs− f (s)≤ ε
∣∣∣X0 =

x+ f (0)

2
,W0 = y

)
(7.31)

−→
ε→0

0

We obtain a stronger result if the boundary f is C2. Lemma 7.4.4 ensures us

that the random variable sups∈[0,t] Xs has a smooth density with respect to Lebesgue’s

measure. From Girsanov’s theorem, under the probability Q defined by:
dQ
dP ∣∣∣∣Ft

= exp
[∫ t

0
f ′′(s)dWs−

1
2

∫ t

0
f ′′(s)2 ds

]
def≡ Ls

the process supv∈[s,t] (Xv− f (v)) has the law of the sup over [s, t] of an IWP, which is
given by (7.29), let us note it pL(s). For z > f ′(s) the probability that appears at the
righthand side of (7.31) is equal to

∫ ε

0
pL(s)EQ(L−1

s )ds =

∫ ε

0
pL(s)EQ(L̃s)exp

[∫ s

0
f ′′(u)2 du

]
ds

=

∫ ε

0
pL(s)exp

[∫ s

0
f ′′(u)2 du

]
ds,

since L̃s = exp
[
− ∫ t

0 f ′′(s)dWs− 1
2

∫ t
0 f ′′(s)2 ds

]
is a martingale. The last integral is O(ε).

So eventually, using again the same bound as (7.31), we have the expected result:

there exists a constant ˜̃K( f ,T ) such that

|P(T, fε)−P(T, f )| ≤ ˜̃K( f ,T )ε

Finally, if f isC4 andCπ is a cubic spline interpolation of f we have the convergence
estimation (7.26) which yields

|P(T,Cπ)−P(T, f )| ≤ 2 ˜̃K( f ,T )‖Cπ − f‖∞

≤ 2K̃( f ,T )δ (π)4

7.5 APPROXIMATION OF THE FIRST HITTING TIME OF A
GENERAL DIP TO A GENERAL BOUNDARY

In this section we derive an approximation formula for the probability density func-

tion of the first hitting time of a general double integral process to a general smooth

boundary. Here again the idea is to use the formulas we obtained in the section 7.3

to build approximations on a partition of a given time interval [0,T ] (see Fig.7.4).
Thanks to lemma 7.2.3, we can restrict ourselves to the first hitting time of a

process Y defined by:

Yt =

∫ t

0
g(s)Ws ds (7.32)
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Figure 7.4: Approximation principle for the DIP: The boundary is approximated by a

smooth piecewise cubic boundary while the process is approximated by a continuous

piecewise IWP process

where g(·) is a continuously differentiable function and W a standard Brownian mo-
tion.

Let π be as before a partition of the interval [0,T ] with n intervals:

0 = t0 < t1 < t2 < .. . < tn = T

We denote by gπ the piecewise constant approximation of g defined by:

gπ(t) =
n−1

∑
i=0

g(ti)1[ti,ti+1)(t), (7.33)

and by Y π the associated DIP:

Y π
t =

∫ t

0
gπ(s)Ws ds. (7.34)

Proposition 7.5.1. The process Y π
t converges almost surely to the process Yt . Fur-

thermore, there exists a real positive process Zt such that:

sup
0≤s≤t

|Y π
s −Ys| ≤ δ (π) Zt (7.35)
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Proof.

sup
0≤s≤t

|Y π
s −Ys|= sup

0≤s≤t

∣∣∣∣
∫ s

0
(gπ(u)−g(u))Wu du

∣∣∣∣

≤ sup
0≤s≤t

∫ s

0
|gπ(u)−g(u)||Wu|du

≤
(

sup
0≤s≤t

|gπ(u)−g(u)|
)

sup
0≤s≤t

∫ s

0
|Wu|du

We assumed that g was continuously differentiable on R
+, so it is uniformly Lips-

chitz on [0,T ]. We note

‖g′‖∞,T = sup
0≤s≤T

|g′(s)|

the uniform Lipschitz constant. We eventually have:

sup
0≤s≤t

|Y π
s −Ys| ≤ δ (π) ‖g′‖∞,T sup

0≤s≤t

∫ s

0
|Wu|du

The process Zt := sup
0≤s≤t

∫ s
0 |Wu|du is almost surely finite, thus the process Y π con-

verges almost surely to Y when δ (π)→ 0 and we have the upper bound (7.35).

Let now f be a smooth function (at least two times continuously differentiable)
and Cπ the approximating function (7.23).

Theorem 7.5.2. The first hitting time τπ of the process Y π to the curve Cπ converges

in law to the first hitting time τ f of the process Y to the curve f .

Proof. A sufficient condition for this convergence is the convergence in law of the

process sups∈[0,t](Y
π

s −Cπ
s ) to the process sups∈[0,t]

(
Ys− f (s)

)
, and this convergence is a

direct consequence of the calculations above. Here we only assume that f is contin-
uously differentiable (the corresponding piecewise cubic approximation would be for

example the Hermite cubic approximation, see [245]).

In this case, Cπ
t converges to f linearly, i.e., there exists a constant K( f ) > 0 de-

pending on f such that:

sup
t∈[0,T ]

| f (t)−Cπ(t)| ≤ K( f )δ (π) (7.36)

We have:

sup
s∈[0,t]

(
Y π

s −Cπ
s

)
≤ sup

s∈[0,t]

(
Y π

t −Yt

)
+ sup

s∈[0,t]

(
f (t)−Cπ

t

)
+ sup

s∈[0,t]

(
Yt − f (t)

)

≤ δ (π)Zt + K( f )δ (π)+ sup
s∈[0,t]

(
Yt − f (t)

)

Writing the same estimation on sups∈[0,t]

(
Ys− f (s)

)
yields:

∣∣∣ sup
s∈[0,t]

(
Y π

s −Cπ
s

)
− sup

s∈[0,t]

(
Yt − f (t)

)∣∣∣ ≤ δ (π)
(

Zt + K( f )
)
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Hence we have the expected result:P(τπ ≤ t
)

=P( sup
s∈[0,t]

(
Y π

s −Cπ
s

)
> 0
)

−→
δ (π)→0

P( sup
s∈[0,t]

(
Ys− f (s)

)
> 0
)

=P(τ f ≤ t
)

We now compute the formula of the probability density function of the first cross-

ing time of Y π to the curve Cπ , as we did in the section 7.4.

We consider π a fixed partition of the interval [0,T ]. We note τ s
π the first hitting

time after time s of the process Y π to the curveCπ andUπ the two-dimensional process

(Y π
t ,Wt). The same proof as in section 7.4 gives us a formula analog to (7.24):P(τ0

π ≥ t
∣∣∣Uπ

0

)
=

∫ (2p)P(τ tp
π ≥ t

∣∣∣Uπ
tp

= up

)

×P(Uπ
tp
∈ dup, τ tp−1

π ≥ tp|Uπ
tp−1

= up−1

)

×P(Uπ
tp−1
∈ dup−1, τ tp−2

π ≥ tp−1|Uπ
tp−2

= up−2

)

× . . .

×P(Uπ
t1 ∈ du1

∣∣∣Uπ
0

)
(7.37)

Here again the terms in the recursion formula are of the same kind, and the only

quantity we need to calculate are the conditional probabilities P(Uπ
tk ∈ duk, τ tk−1

π ≥

tk|Uπ
tk−1

= uk−1

)
for k = 1, · · · , p.

Note that in the interval [tk, tk+1), the process Y π
t reads:

Y π
t = Y π

ti + g(tk)(Xt −Xtk), (7.38)

and that (Xt −Xtk)t≥tk is simply an IWP starting from 0. We then haveP(Uπ
tk ∈ duk, τ tk−1

π ≥ tk|Uπ
tk−1

= uk−1

)
(7.39)

=P(Uπ
tk ∈ duk|Uπ

tk−1
= uk−1

)
−P(Uπ

tk ∈ duk, τ tk−1
π ≤ tp−1|Uπ

tk−1
= uk−1

)

=P(Uπ
tk ∈ duk|Uπ

tk−1
= uk−1

)
−
∫ tk

tk−1

P(Uπ
tk ∈ duk,τ

tk−1
π ∈ ds|Uπ

tk−1
= uk−1

)

×P(Uπ
tk = duk|Uπ

tk−1
= uk−1

)

−
∫ tk

tk−1

∫

R

P(Uπ
tk ∈ duk|τ tk−1

π = s, Ws = y, Uπ
tk−1

= uk−1

)

×P(τ tk−1
π ∈ ds, Ws ∈ dy|Uπ

tk−1
= uk−1

)

= duk

(
p̃(tk, uk; tk−1, uk−1)−

∫ tk

tk−1

∫

R

p̃(tk, uk;s,(Cπ (s),y))

×P(τ tk−1
π ∈ ds, Ws ∈ dy|Uπ

tk−1
= uk−1

))
(7.40)
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where p̃(t,x,y;s,u,v) is the transition function of the process Uπ (for t ≥ s). This func-
tion can be deduced from (7.11) and (7.38) for s and t in the same bin [tk, tk+1) and
reads:

p̃(t,x,y;s,u,v) =P(Y π
t = x,Wt = y

∣∣∣Y π
s = u,Ws = v

)

=P(Y π
s + g(tk)(Xt −Xs) = x,Wt = y

∣∣∣Y π
s = u,Ws = v

)

=P(Xt−Xs =
x−u
g(tk)

,Wt = y
∣∣∣Y π

s = u,Ws = v
)

=P(Xt−Xs =
x−u
g(tk)

,Wt −Ws = y− v
∣∣∣Y π

s = u,Ws = v
)

(7.41)

We have seen in a remark in section 7.2.2 that conditionally toWs the increments

of the two-dimensional process are independent of Fs, so we have:

p̃(t,x,y;s,u,v) =P(Xt−s =
x−u
g(tk)

,Wt−s = y− v
∣∣∣X0 = 0,W0 = 0

)

= pt−s

(
x−u
g(tk)

,y− v;0,0

)
(7.42)

Hence the general term (7.40) of the expansion reads:

dxk dyk

{
ptk−tk−1

(
xk− xk−1

g(tk−1)
,yk− yk−1;0,0

)
−

∫ tk

tk−1

∫

R

ptk−s

(
xk−Cπ(s)

g(tk−1)
,yk− y;0,0

)P(τπ ∈ ds, Ws ∈ dy|Uπ
tk−1

= uk−1

)}
(7.43)

The last thing to compute is P(τπ ∈ ds, Ws ∈ dy|Uπ
tk−1

= uk−1

)
the law of the hitting

time τπ in a given bin [tk, tk−1), which appears in the expression (7.40). This law can
be deduced from that of the first hitting time of the IWP using the formula (7.38).

Indeed, to compute this probability, we use the fact that conditionally on the event

{Uπ
tk−1

= uk−1, t ≥ tk−1} we have:

τπ = inf{s > tk−1, Y π
s = Cπ(s)|Uπ

tk−1
= uk−1}

= inf{s > tk−1, Y π
tk−1

+ g(tk−1)(Xs−Xtk−1) = Cπ(s)|Uπ
tk−1

= uk−1}

= inf{s > tk−1, Xs−Xtk−1 =
Cπ(s)−Y π

tk−1

g(tk−1)
|Uπ

tk−1
= uk−1}

= inf{s > 0, X̃s =
Cπ(s)−Y π

tk−1

g(tk−1)
|X̃0 = 0,W̃0 = utk−1,2}

where (X̃t ,W̃t)t is a standard IWP and utk−1,2 is the second component of Uπ
tk−1
. Hence

we have:P(τπ ∈ ds, Ws ∈ dy|Uπ
tk−1

= uk−1

)
=Ps,(0,utk−1,2)

(
τ(C−Y π

tk−1
)/g(tk−1) ∈ ds, Ws ∈ dy

)
(7.44)
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and the last expression is given by (7.21) and (7.22).

We have proved the following

Theorem 7.5.3. Let g be a Lipschitz continuous real function, T > 0 and π a partition
of the interval [0,T ]

0 = t0 < t1 < .. . < tn = T

Let f be a continuously differentiable function. The first hitting time τπ of the approxi-

mated process Y π defined by (7.34) to a cubic spline approximation of f on the partition
π, denoted by f π , satisfies the equation:P(τπ ≥ T |U0) =

∫ (2n) n

∏
k=1

{
ptk−tk−1

(xk− xk−1

g(tk−1)
,yk− yk−1;0,0

)
−
∫ tk

tk−1

∫

R

ptk−s

(xk− f π(s)
g(tk−1)

,yk− y;0,0
)Ps,(0,y)(τ(C−xk−1)/g(tk−1) ∈ ds, Ws ∈ dy)

}
dxkdyk (7.45)

where P(τC ∈ ds, Ws ∈ dy) is given by equations (7.22) or (7.21).

7.6 NUMERICAL EVALUATION

7.6.1 Algorithm

In this section we propose an algorithm to evaluate the approximation formula we

derived in the previous section. The expressions we found for the first hitting time

involve integrals on R
2n when there are n+1points in the mesh, which have no closed-

form expression. Numerical computation of these integrals can be quite intricate and

time consuming, so a numerical approximation is needed and another approximation

is done besides (7.28) and theorem 7.5.2. The principle of the numerical approxima-

tion we propose is to express this integral as an expectation over a certain probability

measure and to use a Monte-Carlo algorithm to compute this expectation. The accu-

racy of this approximation can be assessed through standard procedures for Monte

Carlo simulations [206, 227].

Corollary 7.6.1 (of theorem 7.4.1). Let (Xt ,Wt)t≥0 be a standard IWP-Brownian mo-

tion pair and f a smooth boundary function. The law of the first hitting time τ of X to
f satisfies for t ∈ [tp−1, tp) :P(τC ≥ t

∣∣∣U0

)
=E[hp(π, t,Xt1,Wt1, . . . ,Xtp−1,Wtp−1,Xt ,Wt)

∣∣∣U0

]
(7.46)

where the function hp is defined for t ∈ [tp−1, tp) by:
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hp(π, t,x1,y1, . . . ,x,y) :=
p−1

∏
k=1

(
1−

∫ tk

tk−1

∫

R

ptk−s(xk,yk,C(s),z)
ptk−tk−1(xk,yk,xk−1,yk−1)

×P(τC ∈ ds, WτC ∈ dz
∣∣∣Xtk−1 = xk−1,Wtk−1 = yk−1

))

×
(

1−
∫ t

tp−1

∫

R

ptp−1−s(x,y,C(s),z)

pt−tp−1(x,y,xp−1,yp−1)
P(τC ∈ ds, WτC ∈ dz

∣∣∣Xtp−1 = xp−1,Wtp−1 = yp−1

))

(7.47)

The same method can be applied for the DIP for a given function g.

Corollary 7.6.2 (of theorem 7.5.3). Let g be a Lipschitz continuous real function,
(Xt ,Wt)t≥0 be a standard IWP-Brownian motion pair, T > 0 and π a partition of the
interval [0,T ]

0 = t0 < t1 < .. . < tn = T

Let f be a continuously differentiable function. The first hitting time τπ of the ap-

proximated process Y π defined by (7.34) to a cubic spline approximation of f on the
partition π, denoted f π , can be computed as the expectation:P(τπ ≥ t

∣∣∣U0

)
=E[hg,π

p (t,Xt1,Wt1, . . . ,Xt ,Wt)
∣∣∣U0

]
(7.48)

where the function hg,π
p is defined by:

hg,π
p (x1,y1 . . . ,x,y) :=

p−1

∏
k=1

{
ptk−tk−1

(
xk−xk−1
g(tk−1)

,yk− yk−1;0,0
)

ptk−tk−1(xk,yk,xk−1,yk−1)
−
∫ tk

tk−1

∫

R

ptk−s

(
xk− f π (s)
g(tk−1)

,yk− z;0,0
)

ptk−tk−1(xk,yk,xk−1,yk−1)
Ps,(0,ys)(τ(C−xk−1)/g(tk−1) ∈ ds, Ws ∈ dz)

}

×
(

pt−tp−1

( x−xp−1

g(tp−1)
,y− yp−1;0,0

)

pt−tp−1(x,y,xp−1,yp−1)

−
∫ t

tp−1

∫

R

pt−s

(
x− f π (s)
g(tp−1)

,y− z;0,0
)

pt−tp−1(x,y,xp−1,yp−1)
Ps,(0,z)(τ(C−xp−1)/g(tp−1) ∈ ds, Ws ∈ dz)

)
(7.49)

where P(τC ∈ ds, Ws ∈ dys) is given by equations (7.22) or (7.21).

Hence the problem is now reduced to the computation of the expectation of a cer-

tain function of the Gaussian random vector (X0,W0,Xt1,Wt1, . . . ,Xtn ,Wtn). This vector is
Gaussian of mean 0 and covariance matrix defined by blocks as:

K(t1, . . . , tn) =




t2
j

6
(3ti− t j)

t j

2
(2ti− t j)

t2
j

2
t j




(i, j)∈{0...n}, j≤i

, (7.50)

The Monte-Carlo algorithm we use to compute the expected probability is the

following:
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(i). Compute the square root K(t1, . . . , tn)1/2 of the covariance matrix (7.50) (using for

instance a Cholesky decomposition)

(ii). Generate an i.i.d. sample u = [u1,u2, . . . ,u2n]
T from the normal standard distribu-

tion N (0,1).

(iii). Compute the transformation x = K(t1, . . . , tn)1/2 ·u

(iv). Calculate hn(x) or hg,π
n (x)

(v). Repeat steps (ii)-(iv) N times and calculate the frequency

PN =
1
N ∑
over the realizations

hn(x)(resp. hg,π
n (x))

The probability P(τ ≥ T ) is then estimated by PN . The standard error of this

estimator is given by :

E (N) =

√
∑
[
h(x)−PN

]2

N(N−1)
(7.51)

7.6.2 Numerical Results

Lachal’s formula has been implemented using Gauss integration method. Thismethod

is very interesting for computing the double integral of Lachal’s formula. It allows us

to control the precision of the approximation using standard methods (see e.g. [245]).

With this method we obtain the two-dimensional joint probability density function of

(τa,Wτa) conditioned on the starting point. Figure 7.5 represents the dependence of
this law on the starting point. Note that the probability that the hitting time τa is

strictly less than infinity is always one, as proved by [197]. The process almost surely

crosses any given constant. Computation times for a precision set to 10−6 are around

0.1ms.
The formula we obtained for a cubic density is simply a transformation of Lachal’s

density using formulas (7.21) and (7.22). It is clear that now the crossing probability

will not always be equal to one, for instance when β > 0. Figure 7.6 illustrates this
property and we give a numerical estimation of the probability of crossing the bound-

ary. This probability can be computed using the formulas we obtained, but it is not

in the scope of the present work.

Finally, our last formula can be implemented using different Monte-Carlo algo-

rithms. Here we only get the inverse cumulative distribution function of the first hit-

ting time. Computation times are quite large, but the main interest of this technique

is not computational. Figure 7.7 present some results obtained for the sinusoidal

functions f (x) = sin(x) and g(x) = cos(x) functions and a comparison between the re-
sults obtained using formula (7.48) and a direct integration of Lachal’s formula in the

case where f and g are identically equal to 1 and the boundary is constant equal to
1. In these cases, computation times are reasonable since there is no need to have a
large number of points in our partition.

Finally, in table 7.1 we present results obtained with formula (7.48) for the first

hitting time of the IWP to the sinusoidal function t 7→ 1− sin(2t
π ) in the interval [0,1].

We discretized the interval with 5 points (hence the approximation is of order 10−3).

Monte-Carlo calculations are quite long to obtain the same order of approximation
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Figure 7.5: Probabilty density function of the first hitting time of the IWP to the con-

stant a = 1 for different initial conditions. Level sets show how the pdf is distributed.
The uppermost half level sets are not displayed for the sake of visibility.
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2t +t3 with

the initial condition X0 = 0, W0 = 0. The total mass is ≈ 0.2578in this case.

Figure 7.6: Probability density function of the first hitting time of the IWP to different

cubic boundaries for the same initial conditions.
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Figure 7.7: Inverse cumulative distribution function of the first hitting time of DIPs

with different functions to different boundaries.
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time P(τπ ≥ t|U0)

0.1 1.008819

0.2 1.003199

0.3 1.000000

0.4 0.999871

0.5 0.999576

0.6 0.996399

0.7 0.984581

Table 7.1: Table of the probabilities of crossing the sinusoidal function t 7→ 1− sin(2t
π )

after time t by an IWP starting at the origin.

(106 trials for points in R
10 per point of the curve). Indeed, the computation of the

function inside the integral on R
2p involves the computation of a fourth order integral

which we compute using a Gauss method of the same order of approximation, which

takes quite a long computation time. Hence we only show a table of results.

Probably other algorithms would be more efficient, but the corresponding compu-

tational issues are outside the scope of the present study.

CONCLUSION

In this chapter, we have provided a method of approximation of the probability distri-

bution of the first hitting time of a Double Integral Process (DIP) to a curved bound-

ary. To our knowledge this is the first result for this problem.

We first obtain a closed-form expression of the probability distribution of the first

hitting time of the Integrated Wiener Process (IWP) to a continuous piecewise cubic

boundary.

By approximating a general smooth boundary with a piecewise cubic function we

use this expression to compute an approximation of the probability distribution of

the first hitting time of the IWP to any smooth curved boundary, and prove that it

converges (very fast in many cases) towards the probability distribution of the first

hitting time of the IWP to the original curved boundary.

We then extend the method to solve the problem of approximating the probability

distribution of the first hitting of a DIP to a smooth curved boundary.

Lastly we sketch a numerical procedure based on Monte-Carlo simulation to com-

pute the probability distribution efficiently.

These results have potential applications in many fields of physics and biology.
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So far we investigated models of single neurons. We now turn to population mod-

eling. As discussed in chapter 1, the brain features a great number of neurons inter-

acting in a nonlinear fashion. This system cannot be globally apprehended yet but

some structures and functions, emerging at different spatial and temporal scales, can

be observed and sometimes modeled.

Realistic networks of neurons are in general untractable. In the first chapter of this

part, we introduce an event-based description of neuronal networks based on mod-

elling the times of the spikes in a network. In the other two parts we use a looser,

mesoscopic scale description of the network, considering homogeneous localized pop-

ulations of hundreds to thousands of neurons, the neural masses, as elementary

building blocks. Chapter 9 discusses the way to get such a mesoscopic description

in noisy networks, and chapter 10 studies certain classical mesoscopic models of cor-

tical colums. This mesoscopic scale modeling seems relevant for many reasons. First

of all it seems that individual neurons contribute at this scale to the functions of the

brain. Moreover, it models MEG and scalp EEG recordings, multi-electrode record-

ings, in vitro experiments on pharmacologically treated brain slices and new imaging

techniques like extrinsic optical imaging corresponding mostly to a bulk signal of a

cortical area.
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CHAPTER 8

A MARKOVIAN MODEL FOR

STOCHASTIC

INTEGRATE-AND-FIRE NETWORKS

OVERVIEW

In this chapter we introduce and study a mathematical framework aimed to charac-

terize and simulate networks of noisy integrate-and-fire neurons. This framework is

based on a Markovian modelization of the network, similar to the event-based mod-

elization of deterministic networks. In these networks the value of interest at each

neuron is not the membrane potential itself but the related countdown process, which

is defined loosely as the time remaining to the next spike if nothing occurs meanwhile

in the network.

We prove that a wide range of integrate-and-fire neuron models and different

types of interactions fit into this general mathematical framework and that the re-

sulting dynamics of this countdown process, possibly supplemented with other vari-

ables, is an autonomous Markov process (i.e. that does not depend on the membrane’s

potential). This framework involves renewal processes and has already been stud-

ied in the field of random networks in a more restricted setting by Cottrell, Robert,

Turova for instance [55, 56, 101, 272, 273], and from a mathematical viewpoint, er-

godicity matters have been discussed Fayolle, Menshikov, Malyshev and Borovkov

[26, 89].

This modelization provides a very efficient algorithm to simulate large networks

of noisy integrate-and-fire neuron models. We discuss different types of implemen-

tations, and developed together with Renaud Keriven and Alexandre Chariot a very

efficient parallel simulator implemented on GPU. This work was done together with

Romain Brette, Olivier Faugeras and Olivier Rochel, and has been presented at the

NeuroMath 2006 conference [257] and at the CNS 2007 conference [263], is published

as a research report [256].
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INTRODUCTION

Growing experimental evidences tend to establish that spike timings are essential

to explain neural computations. This fact has motivated the use of spiking neuron

models, rather than the traditional rate-based models. At the same time, a growing

number of tools have appeared, allowing the simulation of deterministic spiking neu-

ral networks (i.e. in the absence of noise). As discussed in depth in [31], there are two

families of algorithms for the simulation of neural networks: synchronous or “clock-

driven” algorithms, in which all neurons are updated simultaneously at every tick

of a clock, and asynchronous or “event-driven” algorithms, in which neurons are up-

dated only when they receive or emit a spike. Synchronous algorithms can be easily

coded and apply to any model. Because spike times are typically bound to a discrete

time grid, the precision of the simulation can be an issue. Asynchronous algorithms

have been developed mostly for exact simulation, which is possible for simple mod-

els. In synchronous algorithms, noise can be added without an excessive increase of

complexity, either by adding random external spikes or simulating a stochastic pro-

cess. The former case can be quite easily applied to asynchronous algorithms, but, as

stated in [31], there is no algorithm treating the latter case.

In this chapter we provide an event-based (asynchronous) description of networks

of integrate-and-fire neurons with different intrinsic dynamics and different kinds

of synaptic integration. This description necessitates the introduction of a special

mathematical framework to describe the dynamics of the spikes which is done in sec-

tion 8.1. We then instantiate neuron models and show how the framework allows to

define a Markov variable governing the times of the spikes in the case of inhibitory

networks. The case of excitatory networks is slightly more complex, and needs the

introduction of one of two biologically plausible elements: the refractory period and

/or the synaptic delays. This extension is done in section 8.3. Eventually, we discuss

ergodicity matterns on these networks (section 8.4) and possible numerical imple-

mentations of these models (section 8.5).

8.1 THEORETICAL FRAMEWORK

8.1.1 Neuron models

In this chapter we build a bridge between a wide range of biological networks models

and a general mathematical framework. The type of network we consider is composed

of N stochastic integrate-and-fire neurons such as the ones introduced in section 6.2 of
chapter 6 (see figure 8.1). Classically, neuron’s activity is described by its membrane

potential. The membrane potential dynamics we consider in this chapter is stochas-

tic: each neuron receives at his synapses noisy inputs corresponding to the random

activity of ion channels and to the external activity of the network, as reviewed in

chapter 1. This random spike incoming is here modeled as Brownian motion, using a

diffusion approximation (see section 1.4.3). Different types of intrinsic dynamics and

of synaptic integration will be considered and can coexist in a given network.

During the time intervals where no spike is emitted in the network, the mem-

brane potential of each neuron evolves independently according to its intrinsic dy-

namics (see Fig.8.2). When the membrane potential V (i)(t) of the neuron indexed by i
reaches its deterministic threshold function θ(t) at time t0, the neuron elicits an ac-



248 CHAPTER 8. AN EVENT-BASED NETWORK MODEL

Figure 8.1: A general neural network architecture: the network is composed of neu-

rons (blue circles) connected through a directional connectivity map (black arrow)

with synaptic efficiency wi j. The intrinsic dynamics and the effect of an incoming

spike on the postsynaptic neuron can be modeled in various fashions.
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Figure 8.2: A sample trace of the membrane potential for two connected neurons

index by i and j. The neuron i is the first to spike in the network: it has the lowest
first spike time Xi(0). At this time, the neuron i is reset to V (i)

r = vr and its next spike

time is reset according to Yi. At this time a spike is sent to its neighboring neurons,

among which j, which acts by changing the time of the next spike (in the figure the
membrane potential is instantaneously modified) of a random duration ηi j which can

be positive or negative. This figure was produced in the case of the Perfect Integrate-

and-fire model.

tion potential. Subsequently, its membrane potential is reset to a given valueV (i)
r , and

the states of all the postsynaptic neurons j connected to the neuron i is modified. We
denote by V (i) the postsynaptic neighborhood of the neuron i, i.e. the set of neurons
that receive the spikes fired by neuron i. The effect of a presynaptic spike received by
neuron j ∈ V (i) can be modelled in different fashions: it can be considered as having
an instantaneous effect on the membrane potential (i.e. V ( j)(t0) = V ( j)(t−0 )+ wi j where

wi j is the synaptic efficiency of the connection i→ j), or more complex, involving for
instance synaptic pulses.

This type of model was studied for instance by Brunel and Hakim [36] with the

use of the Fokker-Planck equation. Assuming that the network is sparsely connected,

they found that in the limit N→ ∞ the network exhibited a sharp transition between
two regimes: a stationnary regime and a weakly synchronized oscillatory regime. In

their model, each neuron is an integrate-and-fire neuron, and is randomly connected

to C neurons of the network, and to Cext external neurons. The sparse connectivity
assumption corresponds to the limit caseC/N≪ 1. Interactions between external and
internal neurons are delayed by a constant amount of time δ , and the authors show
that these delays play a crucial role in the generation of global oscillations. One of

the aims of this chapter is to re-express the dynamics of such networks under weaker

assumptions and from an event-driven point of view (see for example Reutimann,

Giugliano and Fusi [222]).

In details, we are interested in expressing the dynamics of stochastic integrate-

and-fire networks in terms of the dynamics of the hourglass model, a network model
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independently developed in the field of stochastic networks and queuing theory [15,

55, 56, 272, 273]. Let the state of the network be described by a N-dimensional vector

(Xt)t≥0 =
(
(X (i)(t))i=1...N

)
t≥0 having the following dynamics: let t > 0,

(i). if ∀i∈ {1. . .N}, X (i)(t) > 0 then each component of X decreases linearly with slope
−1 in time;

(ii). if ∃i ∈ {1. . .N}, X (i)(t−) = 0, then:

• X (i)(t) is reset by drawing from the law of a positive random variable Yi in-

dependent of all the history of the process called the reset random variable.

• ∀ j ∈ V (i), a positive value drawn from the law of the interaction random
variable ηi j is added the state of neuron j is added : X ( j)(t) = X ( j)(t−)+ ηi j.

This network is of the class of interacting renewal processes, and the interaction

variable is always positive. Let us now cast all this in the framework of spiking

neurons.

8.1.2 From Biological networks to the Hourglass model

Let us consider a network composed of N stochastic integrate-and-fire neurons with
inhibitory interactions. We attach to each neuron at a given time t a positive value
called the countdown value defined by:

Definition 8.1.1. [Countdown process] For each neuron i, let us define X (i)(t) ≥ 0 to
be the remaining time until the next emission of a spike by neuron i if it does not
receive any spike meanwhile. We call this stochastic process the countdown process

of the neuron i.

The dynamics of X (i) is linearly decreasing with slope −1 during the intervals of
time where no spike is received or produced:

dX (i)

dt
=−1 (8.1)

At time t, the next spike will occur in neuron i = ArgMin j∈1...N X ( j)(t) at time t +X (i)(t).
In most of the cases, for instance in the case where all the random variables have

a density with respect to Lebesgue’s measure, the probability for two neurons to

spike exactly at the same time is null when the network is inhibitory. We there-

fore assume that only one neuron spikes at a given time. At spike time, X (i)
t is in-

stantaneously reset by drawing from the law of a random variable, noted Yi, which

has the same distribution as the first hitting time of the stochastic process (V (i)
t )t≥0

starting from V (i)
r to the boundary θ(t) (the distribution of the interspike interval in

terms of neural models). The states of all neurons just before the spike are given by:

X ( j)
(
(t + X (i)(t))−

)
= X ( j)(t)−X (i)(t). All the neurons connected to neuron i receive a

spike, and the time to the next spike is therefore modified by a random value, which

can depend on the value of the postsynaptic membrane potential at the time when

it receives the spike (see Fig 8.3). The interaction variable only depends on the

postsynaptic dynamics of the membrane potential and on the synaptic efficiency w.
When the neuron j receives a spike from the neuron i at time t, the time to the next
spike fired by neuron j is modified. For instance in the case of instantaneous in-
teractions, the random variable corresponding to the additional time resulting from
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Figure 8.3: A representation of a sample path for the countdown process and the

related membrane potential in the case of the perfect integrate-and-fire neuron rep-

resented in figure 8.2.
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the reception of a new spike is equal to the difference between the time to reach

the threshold starting from V ( j)(t)+ wi j and the time to reach the threshold starting

from V ( j)(t). Hence in the general case, this random variable depends on the value
of the potential at time t. This additional time is denoted ηi j and corresponds to the

interaction random variable of the hourglass model. But in our case, it is no more

a random variable independent of the process. Interestingly, in most of the models

considered in section 8.2, we will see that it depends in fact only on X ( j), so that the

update reads X ( j)(t + X (i)(t)) = X ( j)(t)−X (i)(t)+ ηi j(X ( j)(t)−X (i)(t)), where x 7→ ηi j(x) is
a random function.

Therefore, the dynamics of the spikes can be modeled through the use of the count-

down process X(t)
def
= (X (i)(t))1≤i≤N . Up to an additional Markov chain, this model will

be a continuous time Markov process, as we will show in section 8.2. The process

(Xt)t defined is piecewise continuous, so the analysis of Davis in [66] can be applied

to it. Our case is even simpler since the discontinuities are very simply related to

the value of the process. This special property implies that studying the continuous

time stochastic process is strictly equivalent to considering a discrete time Markov

chain. Indeed, let (tn) denote the sequence of the spikes times of emission for all the
neurons of the network, (Zn) the sequence of the states just before each spike and (Xn)
the vector of states just after each spike. The study of the continuous process X(t) is
equivalent to the study of one of the following Markov chains:

Zn = X(t−n ) (8.2)

Xn = X(tn) (8.3)

In section 8.2, we study inhibitory networks and show that the spike dynamics

can be described as a Markov chain using the countdown process. We then extend

in section 8.3 these results to balanced networks (including excitatory and inhibitory

connections). We will see that in many cases, these random variables can be related

to first hitting times of stochastic processes. Therefore, the study we did in chapters

6 and 7 will be very useful for studying and simulating the processes, as we will see

in section 8.5.

8.2 INHIBITORY NETWORKS WITH INSTANTANEOUS INTER-
ACTIONS

In this section we consider different types of models of linear integrate-and-fire

neurons and different types of inhibitory synaptic interactions, and show that spike

dynamics can be described by a simpler Markov chain, similar to the hourglassmodel,

and identify the law of the reset and interaction random variables.

8.2.1 The reset random variable

The reset random variable of the countdown process has the law of the first hitting

time of the membrane potential process to the threshold function θ(t). Indeed, when a
neuron elicits a spike, its membrane potential is reset to a certain value1. Therefore,

if no interaction occurs for neuron i, the time before the next spike it fires has the law
of the first hitting time of the membrane potential to the threshold.

1The reset value can also be considered as a random variable, with no additional complexity. The

results we obtain for a constant reset value can be readily extended to this more general model.



253

When parameters of the model are not stationary, for instance when the input

current or the threshold are deterministic non-constant functions of time, the reset

random variable depends on the last spiking time of each neuron. Therefore in that

case, in order to define the reset random variable at each spike time, one has to know

the absolute time. To this purpose, we add to the dynamics a vector made of the last

spike times of the each neuron, in order to be able to define the reset random variable.

8.2.2 Perfect integrate-and-fire models

PIF neuron with instantaneous synapses

We start by considering the Perfect Integrate-and-Fire (PIF) neuron with external

inputs and Brownian noise2. The membrane potential of the neuron i, denoted V (i)(t),
is hence driven by the following equation between two spikes:

τidV (i)(t) = I(i)
e (t)dt + σidW (i)

t (8.4)

where τi is the membrane potential time constant, I(i)
e (t) is the input current, σi the

standard deviation of the noise and (W (i))1≤i≤N are independent Brownian motions,

which represent noisy synaptic stimulations3. The neuron fires when its membrane

potential reaches the threshold θ(t)): the membrane potential is reset to a value V (i)
r

and a spike is emitted.

V (i)(t−) = θ(t))⇒V (i)(t) = V (i)
r (8.5)

In the absence of interactions, V (i)(t) integrates the entry I(i)
e with an additive noise

proportional to a Brownian motion, i.e. :

V (i)(t) = V (i)(0)+

∫ t

0
I(i)
e (s)ds+ σiW

(i)
t (8.6)

In this model, since the synaptic integration is instantaneous, it makes sense

to consider instantaneous synaptic interactions. More precisely, when the neuron j
receives a spike from a presynaptic neuron i at time t∗, then its membrane potential
is instantaneously increased by the synaptic weight:

V ( j)(t∗) = V ( j)(t∗−)+ wi j ∀ j ∈ V (i) (8.7)

v If the neuron i fired at time t∗, the reset random variable of the related countdown
process has the law of the first hitting time of the Brownian motion starting from V (i)

r

to the boundary 1
σi

(θ(t + t∗)− ∫ t∗+t
t∗ I(i)

e (s)ds) as discussed in section 8.2.1. This law can
be computed by Volterra’s, Durbin’s or Girsanov’s method if the input current and/or

the threshold are non stationary, or known in a closed form if the input current is

constant and the threshold an affine function of time, as reviewed in chapter 6.

2This assumption corresponds to the assumption that the time constant of the leak is very large

compared to the time scale of the observation, of the inputs, and of the firing rate.
3It would be possible to replace the Brownian motions by instantaneous increments (V (i)→V (i) +δ )

triggered according to a Poisson process (the equation (8.4) is the diffusion approximation of this type of

excitation). This would change considerably the following study, since the process is no more continuous

between two consecutive spikes
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The interaction random variable is deduced from the effect of a presynaptic spike

incoming at a synapse. If neuron j receives an inhibitory spike from neuron i at time
t∗, the membrane potential at time X ( j)(t∗) reads:

V ( j)(X ( j)(t∗)) = θ(X ( j)(t∗))v+ wi j < θ(X ( j)(t∗))

From this value the membrane potential integrates the input and the noise, and the

additional time before the next spike time of neuron j is

ηi j∼ inf{t > 0;θ(X ( j)(t∗)+t∗)+wi j +

∫ t

0
I(i)
e (s+X ( j)(t∗)+t∗)ds+σiW

(i)
t = θ(t +t∗+X ( j)(t∗))}.

It has therefore the law of the first hitting time of the standard Brownian motion to

the boundary

t 7→ 1
σi

(
θ(X ( j)(t∗)+ t∗+ t)−θ(X ( j)(t∗)+ t∗)−wi j−

∫ t

0
I(i)
e (s+ t∗+ X ( j)(t∗))ds

)
.

In the case of stationary inputs and threshold, this random variable has the law

of the first hitting time of a drifted Brownian motion starting from 0 to the constant
barrier |wi j|, whose density reads (see chapter 6):

p(i, j)(t) =
|wi j|√
2πt3

e−
(wi j−Ie t)2

2t 1R∗+(t) (8.8)

In the case of stationary inputs, we can see that the countdown process is an

autonomous Markov process. Indeed, the sequence (Xn)n≥0 (or equivalently (Xt)t≥0) is

a Markov chain with transitions given by the law of the reset and interaction random

variables, which only depend on the parameters of the model, and therefore fits in

the framework of the hourglass model.

If the input current and/or the threshold depend upon time, then the chain (Xn, tn)n≥0

where tn is the time of the last spike fired in the network (or equivalently (Xt , t)t≥0) is

an autonomous Markov chain (resp. process). Indeed, the we have seen that in that

case both the reset and the interaction random variables depend on the last spike

time, and that the interaction random variable depends on X ( j)(t∗). More precisely,

let (Xn, tn) be the state of the Markov chain after n−1 spikes. Define in = Argmini{X (i)
n }.

The neuron in fires the nth spike, and is reset by drawing from the law of the first

hitting time of the standard Brownian motion starting from V (i)
r to the boundary

t 7→ 1
σi

(
θ(t + tn + X (in))−

∫ t

0
I(i)
e (tn + X (in) + s)ds

)
,

and the state of neurons j connected in is updated by adding an independent random
variable ηin j having the law of the first hitting time of the standard Brownian motion

to the boundary

t 7→ 1
σi

(
θ(X ( j)

n + tn + t)−θ(θ(X ( j)
n + tn)−wi j−

∫ t

0
I(i)
e (s+ θ(X ( j)

n + tn)ds

)
,

and eventually tn+1 = tn + X (in)
n .
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Perfect integrate-and-fire neuron with synaptic integration

We now extend the results of the perfect integrate-and-fire model by considering that

inputs are integrated at the level of the synapse with a characteristic time constant

τs 6= 0. The membrane potential satisfies the equations:

{
dV (i)

t
dt = I(i)

e (t)+ I(i)
s (t)

τ (i)
s dI(i)

s (t) =−I(i)
s (t)dt + σidW (i)

t

(8.9)

whose solution reads:

V (i)
t = V (i)(0)+

∫ t

0
I(i)
e (s)ds+ τ (i)

s (1− e−t/τ (i)
s )I(i)

s (0)+ σi

∫ t

0

∫ s

0
e−(s−u)/τ (i)

s dW (i)
u ds,

expression that involves a DIP (see chapter 7). A spike is emitted when the mem-

brane potential reaches a threshold θ assume constant here.
If we further consider that τ (i)

s is very big compared to the time constants of the

observation, we obtain the perfect integrate-and-fire model with perfect synaptic cur-

rents:

V (i)
t = V (i)(0)+

∫ t

0
I(i)
e (s)ds+ I(i)

s (0)t + σi

∫ t

0
W (i)

s ds,

which involves an IWP.

We now consider the related countdown process (Xt)t and compute the random

variables necessary to the definition of its dynamics. The related reset random vari-

able in the case of the exponentially decaying synaptic currents has the law the first

hitting time of the DIP
∫ t

0

∫ s
0 e−(s−u)/τ (i)

s dW (i)
u ds or

∫ t
0W (i)

s ds to a curved boundary depend-
ing on the inputs of the neuron and the initial condition of the synaptic input. These

hitting time can be approximated using the framework we developed in chapter 7 and

no closed-form solution can be provided.

In the case where the decay time of the synapse is not taken into account, this

reset random variable has the law of the first hitting time of an IWP to the curve

V (i)(0)+
∫ t

0 I(i)
e (s)ds+ I(i)

s (0)t. Therefore, we have closed-form expressions for the pdf of
the law of this random variable for polynomials input currents of order lower or equal

to 2 (see section 7), depending on the initial condition on the input current I(i)
s (0).

Let us now compute the interaction random variable. We first consider instan-

taneous synaptic integration of the spikes. Using the linearity of the equation, the

interaction random variable has the law of the first hitting time of the threshold θ
of the membrane potential process starting from (θ +wi j, I

(i)
s (X j)) to reach the thresh-

old θ , and can therefore be computed using the same approximations or formulas
depending on the model we choose and the type of input current considered.

The case of integrated inputs makes more sense: it corresponds to the assumption

that whatever its origin, the inputs received at the level of the synapse are integrated

in the same fashion. In that case the effect of an incoming spike on a postsynaptic

neuron is added instantaneously to the synaptic current. Therefore, using the same

technique as before, we can obtain the law of the interaction variable. For the perfect

integrate and fire neuron with exponentially decaying synaptic current, if neuron j
receives an incoming spike from neuron i at time t∗, the law of this random variable
is deduced from the law of the first hitting time of the related DIP starting from

(θ + wi jτ
(i)
s (1− e−t∗/τ (i)

s ), Is(X ( j)(t∗)+ wi je−X ( j)(t∗)/τ (i)
s ) to reach the threshold θ . In the case
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of the perfect integrate-and-fire neuron with perfect synapses, the law of the interac-

tion random variable is given by the law of the first hitting time of the related IWP

starting from (θ + t∗wi j, Is(X ( j)(t∗))+wi j) to reach the threshold θ .
In these cases the countdown process is not a Markov process by itself. But consid-

ering in addition the value of the synaptic current at the time of the next spike Is(n)
the time of the last spike fired time tn constitutes a Markov chain whose modeling
the times of the spikes. More precisely, consider (Xn, Is(n), tn) the countdown process
together with the synaptic current at the next spike time and tn the last spike time.
The first spike will be fired from the neuron in having the lowest countdown value.
It will fire at time tn+1 = tn + X (in)

n . Its countdown value and the value of the synaptic

current at the next spike time is computed by drawing from the law of the pair com-

posed of next spike time and the relative location of the synaptic currents at this time

(see chapter 7). The countdown value and the future synaptic current of each neuron

j ∈ V (i) is updated by drawing from the law of the first hitting time of the membrane
potential of neuron j, and the other neurons’ states are unchanged.

8.2.3 Leaky integrate-and-fire models with instantaneous synapses

We now take into account the leak of the membrane potential, but still consider the

synaptic integration instantaneous, Therefore this model corresponds to the one we

introduced in section 6.2.1. The general Leaky Integrate-and-Fire (LIF) equation

with instantaneous synaptic and noisy input currents reads :

{
τidV (i) = −(V (i) + I(i)

e (t))dt + σidW (i)
t

V (i)(t−) = θ ⇒V (i)(t) = V (i)
r

(8.10)

where (W i
t )1≤i≤N are independent Brownian motions. The reset random variable is

the same for all synaptic interactions, and is distributed as the hitting time of the

threshold θ starting from V (i)
r of the process defined by (8.10) with time-shifted input

current I(i)′
e (t) = I(i)

e (t + t∗).
We consider that the membrane potential follows the equation (8.10), together

with the spiking condition:

V (i)(t−) = θ ⇒
{

V (i)(t) = V (i)
r

V ( j)(t) = V ( j)(t−)+ wi j ∀ j ∈ V (i)
(8.11)

Let t∗ be the time when the neuron j receives a spike from neuron i. We note V ( j) its

membrane potential, V ∗( j) := V ( j)(t∗−) and X∗( j) := X ( j)(t∗−). We have :

V ( j)(t∗+ t) = (V ∗( j) + wi j)e
−t/τ j +

1
τ j

∫ t

0
e(s−t)/τ j I( j)

e (s+ t∗)ds+
1
τ j

∫ t

0
e(s−t)/τ j σ j dW ( j)

s

Let Ṽ ( j) the membrane potential of the neuron j without any interaction with other
neurons. It satisfies the equation:

Ṽ ( j)(t∗+ t) = V ∗( j)e
−t/τ j +

1
τ j

∫ t

0
e(s−t)/τ j I( j)

e (s+ t∗)ds+
1
τ j

∫ t

0
e(s−t)/τ j σ j dW ( j)

s

Therefore we have:

V ( j)(t∗+ t) = Ṽ ( j)(t∗+ t)+ wi je
−t/τ j (8.12)
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(note that this property simply comes from the fact that the equation of the LIF

neuron is linear). For t = X∗( j) we have Ṽ ( j)(t∗+ X∗( j)) = θ and, from (8.12), we have :

V ( j)(t∗+ X∗( j) + t) = (θ + wi je
−X∗( j)/τ j)e−t/τ j +

1
τ j

∫ t

0
e(s−t)/τ j I( j)

e (s+ t∗+ X∗( j))ds

+
1
τ j

∫ t

0
e(s−t)/τ j σ j dW ( j)

s (8.13)

It is clear from equation (8.12) that the hitting time of the barrier θ by the process
V ( j), conditionally on the random variable X∗( j) is the sum of X∗( j) and an independent

random variable whose law is equal to the hitting time to the barrier θ of the process
(8.10) with initial condition V ( j)(0) = θ + wi je

−X∗( j)/τ j and with the time shifted input

current Ĩ( j)
e (t) := I( j)

e (t + t∗+ X∗( j)).

ηi j(u) := inf
{

t > 0; U ( j)(t) = θ |U ( j)(0) = θ + wi je
−X∗( j)/τ j

}
(8.14)

whereU ( j)(t) is the solution of equation (8.10) with the time-shifted current specified.
The problem of the first hitting time of the LIF neuron with constant or curved

boundaries was addressed in chapter 6, no closed-form solution is available for the pdf

of this law, which can be computed numerically using for instance Volterra’s, Durbin’s

and Girsanov’s methods.

An important remark is that this random variable only depends on X∗( j). Condition-

ally to X∗( j), the added random variable is independent of the past of the process, so the

sequence X ( j) is Markovian. Furthermore, the network countdown process dynamics

is autonomous: we do not need to refer to the underlying membrane’s potential to

describe its evolution. This is very interesting since we can study and simulate this

random variable by itself. Therefore, the variable (Xt), possibly completed with the
time t if the input current or the threshold are not stationary, is a Markov process,
and this process sampled at the times of the spikes is a Markov chain. Furthermore,

the law of the zeros of this process is equal to the one of the spikes of the underlying

network.

LIF model with general post-synaptic current pulse

In this section we consider a LIF neuron described by (8.10). Following the models

presented in [105, section 4.1.3], each presynaptic spike generates a postsynaptic

current pulse. More precisely, if the neuron i spikes at time t∗ and j ∈ V (i) receives
the spike, then this neuron feels an additional input current given by:

IPSP(t∗+ t) = wi j α(t) (8.15)

We include the integration of the spikes to the the input current Ĩe

Ĩ( j)
e (t) = Ie(t)+ ∑

i6= j
∑

t j≤t j
i ≤t

wi j α(t− t j
i )

where t j denotes the time of the last spike emitted by the neuron j and t j
i the se-

quences of spikes transmitted from the neuron i to the neuron j.
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The same calculations lead to:

V ( j)(t∗+ X∗( j)) = θ + wi je
−X∗( j)/τ j

∫ X∗( j)

0
α(s)es/τ j ds (8.16)

Hence the additional time induced by the reception of a presynaptic spike from neu-

ron i has the law of the first hitting time of the stochastic process V ( j) starting from

the value (8.16) to the threshold θ , with a new external current.
For general pulses, the countdown process cannot be considered as a Markov pro-

cess since its dynamics depends on the whole sequence of spikes in the network until

time t. Nevertheless this analysis can be simplified if considering postsynaptic cur-
rent pulses solutions of an ordinary differential equation. This is a very general case,

and covers most of the usual models of synaptic coupling (see for instance the works of

van Rotterdam and colleagues for the modeling of postsynaptic current pulses [275]).

These postsynaptic pulses are in general considered as an exponentially decaying

pulse, when taking into account only the decay of the synaptic integration and con-

sidering the rise time null. In that case the postsynaptic pulse has the form:

α(s) = ke−s/τs1s≥0

which is solution of a first order linear differential equation. An even more realistic

model taking into account the rise time τr of the synapse and its decay τs is modelled

by the following α function for τr 6= τs

α(s) =
k

τs− τr

[
e−s/τs − e−s/τr

]1s≥0

and for τr = τs,

α(s) = k se−s/τs1s≥0

In that case the pulse is solution of a second order linear differential equation.

To take into account this synaptic integration of spikes in our framework, we have

to extend the phase space of our Markov chain. More precisely, the Markovian model

we consider includes a second variable, the spike-induced current (Ii
a(t))i=1...N,t≥0. If

we denote by L the linear differential operator of the α function, the spike induced
current is solution of the equation

L Ia = δ ,

where δ is the Dirac distribution.
The new membrane potential equation for a given neuron i in the network is now

given by: {
τidV (i)

t = (−V (i)
t + Ie(t))dt + I(i)

a (t)dt + σidWt

L I(i)
a (t) = 0

The Markovian variable we consider is now the process (Xt , Ia(t))t≥0. When a neu-

ron i elicits a spike, i.e. when its countdown reaches 0 at time t∗, its countdown value
is reset by drawing from the law of the first hitting time of the membrane poten-

tial with initial condition (V (i)
r , I(i)

a (t∗)) to the threshold and for all neuron j ∈ V (i),

their spike-induced current I( j)
a (t∗) are instantaneously updated by adding the synap-

tic efficiency wi j : I( j)
a (t∗) = I( j)

a (t∗−) + wi j. Simulating this Markov process, that can

be sampled at the times of the spike emission, is equivalent from the spikes point of

view as simulating the whole membrane potential process.
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8.2.4 LIF model with exponentially decaying synaptic integration

We now take into account the decay time of synapse at the level of the noise integra-

tion itself. In this case the membrane potential and the synaptic noise are coupled

via the following differential equation:

{
τidV (i) = (µi−V (i)(t))dt + I(i)

e (t)dt + I(i)
s (t)dt 1≤ i≤ N

τ (i)
s dI(i)

s =−I(i)
s (t)dt + σidW i

t

(8.17)

and the spiking condition reads:

V (i)(t−) = θ ⇒
{

V (i)(t) = V (i)
r

I( j)
s (t) = I( j)

s (t−)+ wi j1 j∈V (i)

(8.18)

Qualitatively, when a spike is received by a neuron, the synaptic current Is integrates

the spike and the effect on the membrane potential is smoother. Therefore in this

model it is interesting to consider post-synaptic pulses having the same dynamics as

the noise integration, i.e. solution of the differential equation:

τ (i)
s
dI(i)

a

dt
=−I(i)

a (t).

The very same analysis could be done if we considered an instantaneous spike inte-

gration, but we do not present the results here since it seems strange to us to consider

two levels of synaptic integration: the noise integration and the spike integration.

The calculations can nevertheless be performed exactly as in the case of the perfect

integrate-and-fire.

The reset random variable is given by the first hitting time of the membrane

potential stochastic process. The same type of calculations as in the previous section

yield, for j ∈ V (i) and τ j 6= τ ( j)
s the relationship :

V ( j)(t∗+ t) = Ṽ ( j)(t∗+ t)+ e−t/τ j wi j
1− e−α jt

α j
(8.19)

where α j = 1
τ ( j)

s
− 1

τ j
and again Ṽ ( j)(t∗+ t) the membrane potential of the neuron j with-

out any interaction. We can see that after the time X∗( j), the membrane potential of j

is θ + wi je−t/τ j 1−e
−α jX∗

( j)

α j
. The evolution of the potential V ( j) after t∗+ X∗( j) and condition-

ally on X∗( j) and Is(t∗) is independent of the past, so we have to wait for the process

(8.18) to reach the threshold θ from the initial condition θ +wi je−t/τ j 1−e
−α jX∗

( j)

α j
and with

the “time and space” shifted currents Ĩ j
e (t) := I j

e (t + t∗+ X∗( j))+ wi je
−

X∗
( j)

τ( j)
s .

In the case τ j = τ ( j)
s we only have to replace the expression

1−e
−α jX∗

( j)

α j
by X∗( j)wi je−t/τ j ,

and the change in the currents is the same.

Therefore, the variable (Xt , Is(t)) is Markovian and we deduce the precise firing
times from its study. This Markovian variable requires to evaluate the law of the first

hitting time of a DIP to a curved boundary, which can be achieved using the technique

provided in chapter 7. As in the case of the perfect integrate-and-fire neuron, we can

show that this process, possibly augmented with the time process t, and possibly
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sampled at the times of the spikes, satisfy the Markov property and the law of the

zeros of the Markov process is the same as the law of the spikes of the underlying

network.

Let us precise its dynamics in the case of non-stationary inputs. The dynamics of

the countdown process together with the synaptic current at the next firing time and

the last spike time can be described as follows: consider that this process after the

nth spike is (Xn, In
s , tn). Then the next spike will be fired from the neuron in having the

lowest countdown value. It will fire at time tn+1 = tn + Xn
in. Its countdown value will

be reset to the first hitting time of the related DIP, and as we have seen in chapter

7, the law of the pair composed of next spike time and the relative location of the

synaptic currents at this time is known. Therefore, by drawing from the law of this

pair, we have the new countdown value and the future synaptic current at the time

of the next spike for in. Similarly, each neuron j ∈ V (i) is updated according to the
law of the first hitting time of the related membrane’s potential starting with input

current given by In
j to reach a given threshold, and therefore the new countdown value

and the future location of the input current are computed at the same time using the

results of chapter 7. The other neurons states are unchanged. It is clear that the law

of the spikes is the same as the law of the zeros of the countdown process.

8.2.5 LIF models with noisy conductances

The interactions considered in the last subsection are reasonable models of current

interaction. Nevertheless reality it is even more complicated. Indeed, as discussed

in chapter 1, the effect of a spike on the postsynaptic cell does not directly results in

the generation of currents. It results in changes in the membrane’s conductance, and

these modifications produce a ionic current. As discussed in section 1.2.6 of chap-

ter 1, this resulting current is approximately proportional to the membrane poten-

tial. The modulation of the conductance of the post-synaptic membrane has a certain

time course g(t − t∗), which is in general considered as constant, to keep the model
tractable. Here again we consider the noise and the spikes integrated in the same

fashion, i.e. via the conductances. Therefore the membrane potential when no spike

is received is solution of the linear stochastic differential equation:

{
dV (i) = (I(i)

e (t)−λi(V
(i)

t −V (i)
rev))dt + I(i)

s (t)dt + σi gi (V (i)−V (i)
rev)dW i

t

V (i)(t−) = θ ⇒V (i)(t) = V (i)
r

(8.20)

In this equation the term I(i)
s corresponds to the current generated by the spikes.

When neuron j receives a spike from one of its neighbors i, a current is generated,
which has the value wi jg(V ( j)−Vrev) (Vrev is the reversal potential of the synapse). Note

that we artificially introduced Vrev in the leak term, which amounts to formally chang-

ing the current I(i)
e , in order to integrate more simply this equation. We clearly see

in this equation the effect of a presynaptic spike on the conductances. More precise

models take into account the vanishing of this effect in the time. General time pro-

files of the postsynaptic conductance pulses are alpha functions as described in the

previous section, and hence can be modeled as solution of a linear ordinary differen-

tial equation of order one, two or greater. Nevertheless, even in the simpler case, we

will see that these models cannot be expressed as a Markovian model in function of

the countdown process and possibly other real processes.
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We first consider the case where the neuron j receives a spike at time t∗ from
neuron i and that this increases the conductance by a coefficient wi j g. The solution of
the membrane potential equation after time t∗ reads:

V ( j)(t + t∗) = V ∗( j)Zt +
∫ t

0
I( j)
e (s+ t∗)Zt−s ds (8.21)

where Zt = exp{−(λ j + 1/2σ2
j −wi jg)(t − t∗) + σ jW

( j)
t }. The membrane potential if no

spike were received at time t∗ would read:

Ṽ ( j)(t + t∗) = V ∗( j)Z̃t +

∫ t

0
I( j)
e (s+ t∗)Z̃t−s ds (8.22)

where Z̃t = exp{−(λ j +1/2σ2
j −wi jg)(t−t∗)+σ jW

( j)
t }= ewi jg(t−t∗)Zt . At time X∗( j) the mem-

brane potential reads:

V ( j)(X∗( j) + t∗) = θewi j gX∗( j) +

∫ X∗( j)

0
I( j)
e (s+ t∗)Zt−s(e

wi j gs−1)ds

This expression therefore depends on the whole past of the Brownian motion, and

cannot be written as a function of X∗( j), even taking into account the conductance as an

additional variable. These models are not amenable to the Markovian modelization

we propose in this chapter.

8.3 BALANCED NETWORKS WITH SYNAPTIC DELAYS AND
REFRACTORY PERIOD

In the previous section, we only considered inhibitory interactions in order to be closer

to classical hourglass models. These inhibitory interactions prevented also from what

we will call the spike avalanche phenomenon that can appear in excitatory networks

with instantaneous interactions. In that case the following process can occur: if the

synaptic efficiencies are big enough, the spike emission of a neuron can induce at

the very same time the spike emission of the neurons directly connected to this neu-

ron, which in turn can elicit spikes in their neighborhood. A spike can therefore be

transmitted in the whole network, and even make the first neuron spike again, which

closes the loop: at a given instant, the neuron fires infinitely many spikes.

In biological network, this issue does not appear because the refractory period of

the neuron upperbounds the firing frequency. Furthermore, the synaptic delays in

the transmission of the spike also avoids the avalanche process by avoiding the self-

excitation, through the network, of a given cell. The refractory period is a transient

phase just after the firing during which it is impossible or very difficult to excite the

cell. This phenomenon is linked with the dynamics of ion channels and the hyper-

polarization phase of the spike emission, lasts few milliseconds, and prevents the

neuron from firing spikes at an arbitrary high firing rate. It can be decomposed into

two phases: the absolute refractory period, which is a constant period of time corre-

sponding loosely to the hyperpolarization of the neuron during which is it impossible

to excite the cell no matter how great the stimulating current applied is (see for in-

stance [158, chapter 9] for a further biological discussion of the phenomenon and

[13, 105] for a discussion on modelling this refractory period). Immediately after this

phase begins the relative refractory period during which the initiation of a second ac-

tion potential is inhibited but still possible. It amounts considering that the synaptic
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inputs received at the level of the cell are weighted by a function depending on the

time elapsed since the spike emission. This phase also lasts around one millisecond.

To be coherent in our modelization, when we take into account such fast phenom-

ena, we need to consider another fast phenomenon: the axonal spike transmission

from the presynaptic cell to the postsynaptic one. The delay induced by the spike

transport and its transmission via the synapse depends on the distance between the

two cells, the speed of transmission of the signal along the axon and the transmission

time at the synapse, and has a typical duration of a few milliseconds.

To model the absolute refractory period, we consider that if the neuron indexed

by i fires at time t, it stays at his resting potential V (i)
r until time t +Ri where Ri is the

time duration of the absolute refractory period, that only depends on the presynaptic

neuron.

We model the relative refractory period only for the spike integration, and not for

the noise integration, mainly for technical reasons. This assumption does not affect

significantly the dynamics of the network, since the probability that the noisy current

integrated during a time period as short as 1 or 2ms to be substantial is very small.
For the spike integration this remark is no more valid, since a single spike induces

substantial changes in the membrane’s voltage. During the relative refractory period,

we consider that synaptic efficiency are weighted by a function depending on the time

elapsed since the last spike has been fired. We denote this function κ(t) following the
notation of Gerstner and Kistler in [105]. In our case this function is unspecified, is

zero at t = 0 and increases to 1 with a characteristic time of around 2ms. It can be of
bounded support or defined on R.

To model the synaptic delay we consider that spikes emitted by a neuron do not

affect instantaneously the target neurons, but only after some delay ∆i j which can de-

pend on both the presynaptic and the postsynaptic neurons (see figure 8.4) since this

delay is linked to the duration of the spike transmission and therefore may depend

on some measure of distance between the pre- and post-synaptic neurons.

In the present section, we model these three phenomena, and show that in these

cases we can also define a Markov chain describing the spike times of the neural net-

work, that will be also based on the countdown process. For inhibitory networks, the

modifications with the previous framework is very simple, but it will become slightly

more complex, but still tractable, when taking into account excitatory interactions.

For the sake of compactness of notations, we define the function κ j(t) for all t > 0.
This function is identically equal to 0 for t ∈ [0,R j], and increases to one after time R j

with a characteristic time of the order of a millisecond (see figure 8.5).

If neuron i fires a spike at time ti, its effect on the postsynaptic neuron j depends
on the synaptic delay ∆i j, the countdown value X ( j)(t), and the time of the last spike
emitted by j:

(i). If ∆i j < X ( j)(t), then the reception of a spike at time t acts on the post-synaptic
neuron at time t + ∆i j in the same fashions as discussed in the different models

considered in section 8.2, but in that case the interaction can be either excitatory

or inhibitory, with a synaptic efficiency wi jκ j(ti + ∆i j− t j) .

(ii). If ∆i j > X ( j)(t), the postsynaptic neuron will fire before receiving the spike from
the presynaptic cell i, and it will act on the postsynaptic cell’s membrane with
an efficiency wi jκ j(ti + ∆i j−X j).

Let us consider the effect of these features from the countdown process viewpoint.

The reset variable is only affected by the absolute refractory period, and in a very
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Figure 8.4: Sample path of the membrane potential of a three-neuron excitatory net-

work with synaptic delays and refractory period in the case of the perfect integrate-

and-fire neuron. The black curve represents the membrane potential, the red curve

the membrane potential process with no reset and no interaction. The spikes are

represented by red stars and blue dotted lines. The refractory period is represented

by the blue boxes: plain blue for the absolute refractory period, and the intensity is

proportional to the attenuation of the spike during the relative refractory period.
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Figure 8.5: The refractory period at a spike emission, and the related κ function
weighting the synaptic inputs

simple way. Indeed, we formally consider that the neuron i is stuck at its reset value
V (i)

r during a fixed period of time Ri after having fired. After this period, the neuron’s

membrane potential follows its evolution depending on the model chosen. Therefore,

time of the next spike starting from time t +Ri has the law of the reset variable in the

case where we did not take into account the refractory period and the synaptic delay,

i.e. has the law of the first hitting time of the membrane potential process to the

spike threshold, with the time-shifted input Ie(t + t∗+Ri) in the case of non-stationary
inputs. If we denote τi this random variable, the new reset variable of the related

countdown process has simply the law of Yi = τi + Ri.

The case of the interaction variable is a little bit more intricate, and we will deal

with it in the following subsections.

8.3.1 Modeling the refractory period

We first consider that the transmission delay is null. In this case the effect of a presy-

naptic spike on the cell j will be weighted by the function κ j(t − t j) where t j is the

time of the last spike emitted by the cell j. We show that for the models discussed
in section 8.2, the spikes in the network have the same law as the zeros of a simpler

Markov process based on the countdown process, and that this dynamics can be re-

duced to the one of a Markov chain. To this purpose, we identify the random variables

needed to define the countdown process. In figure 8.6 we represent a sample path of

the countdown process related to the perfect integrate-and-fire neuron when consid-

ering an absolute refractory period. Two random variables are necessary to define the

dynamics of the countdown process: the reset variable and the interaction variable.

We already identified the law of the reset random variable for the countdown process

when considering a refractory period. For the interaction variable, the case is readily

deduced from the analysis of section 8.2 in the case of inhibitory interactions. Indeed,
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Figure 8.6: A sample path of the countdown process taking into account the refractory

period. This figure represent the countdown value for a 2 neurons network. Neuron

j fires first at an instant where the cell membrane is excitable, and has an inhibitory
effect on neuron i, whose spike is postponed. When neuron i fires for the first time,
the neuron j is still in its refractory period and therefore does not integrate the effect
of the incoming spike. The second spike emitted from neuron i excites the cell j and
advances the spike time. Neuron j then spikes during the refractory period of neuron
i.
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if neuron i elicits a spike at time ti, it will affect the postsynaptic neuron j only if it is
not during its absolute refractory period, with a weighted synaptic efficiency. Denote

by t j the time of the last spike elicited by j. The presynaptic spike coming from neuron
i will affect the neuron j only if t j +R j < ti, and if it does, the action of the presynaptic
spike on the next spike time has exactly the same effect as treated in the previous

section, with a synaptic efficiency wi jκ j(ti− t j). Therefore, adding a refractory period
makes the random variable depend upon the last firing times of each neuron.

To take into account this fact, we define the last firing times variable H ∈ R
N ,

that stores the last spike time of each neuron. All its components are set to R
def
=

mini=1...N−Ri at the initial time. The jth component is this variable is constant between
two spikes of the neuron j. If neuron j spikes at time t j, this component is instanta-

neously set to t, and all the other components of this variables are unchanged. This
value will remain constant until neuron j spikes again.
If the synapses are inhibitory, the interaction variable ηi j of the new countdown

process is simply deduced from the law interaction variable η̃i j(wi j) by changing the
synaptic weight. In the unified case of relative refractory period, we have ηi j =
η̃i j(wi jκ j(ti− t j)). In the particular case of pure absolute refractory period, this ran-
dom variable is simply ηi j = η̃i j(wi j)1Xi>H j+R j . This new interaction variable depends

therefore on the same variables as the one in the case of section 8.2 and on the last

firing time variable. The process (Xt ,Ht , t,At), where At are the possible additional

variables (typically the value of the synaptic current or the interaction current) is

hence a Markov process. Indeed, if all the components of X are strictly positive, the
time increases linearly with slope 1, the countdown process decreases linearly with

slope -1, the last firing time variable and the possible additional variables remain

constant. If the component i of the countdown process reaches 0, this neuron spikes.
Almost surely only one neuron realize this infimum at a given time. At this time, say

ti, the following operations occur:

• X (i)(ti) is reset to an independent copy of Yi and Ati is updated according to its

dynamics.

• Hi(ti) = ti and H j(ti) = H j(t
−
i ) for all j 6= i (i.e. theses components are unchanged).

• ∀ j ∈ V (i), X ( j)(ti) = X ( j)
t−i

+ ηi j1ti>H j+R j

• the time is trivially updated.

For excitatory interactions, the case is slightly more complex. Indeed, the calcu-

lations we did in section 8.2 are valid only in the inhibitory case, since we used the

Markov property of the processes we were studying to compute the interaction vari-

able. More precisely, when an inhibitory interaction occurs, the time of the next spike

is increased. The state of the countdown value gave us the time of the next spike,

together with the state of possible additional variables. This information was taken

into account: using the Markov property of the processes we studied, we stated at

the time of the predicted spike if no interaction had taken place meanwhile, and from

this point we computed the law of the additional time to wait until the next spike

because of the interaction. In the case of excitatory interactions, this trick cannot be

applied: indeed, the time to the next spike after the excitatory interaction is smaller

than the one predicted by the countdown process. While we conditioned on the past

of the process in the case of inhibitory interactions, we will be conditioning on the

future in the case of excitatory synapses in order to derive our random variables.
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Perfect IF neuron with instantaneous synapses: Assume that the neuron j
receives a spike from neuron i at time ti. The countdown process value of the neuron
j just before this interaction is denoted X∗j . The interaction random variable ηi j is

the difference of time between the spike time after interaction and the spike time

before interaction, conditionally to the fact that this next spike time was predicted

to be X∗j . After some simple calculations, we observe that it has the law of the first
hitting time of the membrane potential process to θ−wi j conditionally to the fact that

the first hitting time of this process to θ is X∗j . Denote by ζi j this random variable.

The law of the update random variable ηi j will be defined by (ζi j−X j)1Xi>H j+R j (note

that the variable ζi j is always positive; if the interaction makes the neuron spike

instantaneously, its means that ζi j = 0 and therefore the new countdown value for
j is 0). Furthermore in that case, since the Markov’s property cannot be used, the
random variable will not be independent of the value of the membrane’s potential at

the time of the spike, which we denote by V ∗j . Let us characterize the law of ζi j:P [ζi j = u] =P[τθ−wi jκ j(ti−H j) = u
∣∣V ∗j ,τθ = X∗j

]

=P[τθ = X∗j
∣∣V ∗j ,τθ−wi jκ j(ti−H j) = u

]P[τθ−wi jκ j(ti−H j) = u
∣∣V ∗j
]P[τθ = X∗j

∣∣V ∗j
]

=P[τθ = X∗j
∣∣Wu = θ −wi jκ j(ti−H j)

]P[τθ−wi jκ j(ti−H j) = u
∣∣V ∗j
]P[τθ = X∗j

∣∣V ∗j
] (8.23)

This random variable is null whenever V ∗j > θ −wi j. This gives us the law of the

interaction variable in the case of excitatory inputs. Nevertheless, we can see that

it involves the value of the membrane potential’s process at the times of the spike.

Therefore, we need an additional variable in order to define autonomously the count-

down process: it is the membrane potential’s value at the times of the spike recep-

tions. At each time that a spike is emitted in the network, this variable is updated in

the following fashion:

• For the neuron i that elicited a spike, this value is set to V (i)
r

• For the other neurons, it is updated by drawing in the law of the membrane
potential conditionally to the fact that it will reach the threshold at the time

given by the countdown process.

In summary, to simulate the process with a Markovian framework including the

countdown process, we simulate a discrete time Markov chain (X ,H,V ), where H is
the last firing time variable, X the countdown process and V the membrane potential
at the time of the spike. The transition of this chain from (Xn,Hn,V n, tn) is given by:





V n+1
in

= Vr

V n+1
j : drawn from the law of V ( j)

t conditionally to the fact that it is

V n
j at time tn and θ at time tn + Xn

j for j 6= in
tn+1 = tn + Xn

in

Hn+1
in = tn+1

Xn+1
in : drawn from the law of Yin

Xn+1
j = Xn

j + ηin j(Xn
j ,V

n+1
j ,Hn+1

j ) for j 6= in
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Excitatory synapses for PIF neuron with synaptic integration: In the case

of the perfect integrate-and-fire neuron with excitatory synapses, the same issue as

before appears: the Markov property does not apply, and hence we have to apply the

same transformation as we performed in equation (8.23). In that case, the calcula-

tions lead to keep in memory both the membrane potential and the synaptic current

at the times of the spikes. The same type of expressions and the same type of dynam-

ics of the resulting Markov chain is obtained. Indeed, assume that the countdown

process value at the time of the spike is X∗j and the value of the additional variable
(the synaptic current at the time of the next spike) is I∗j . Then the probability to spike
at time u < X∗j and for an input current Is = v after the excitation has been received can
be computed as the first hitting time of the underlying membrane potential. In the

case of instantaneous interactions, it has the law of the first hitting time of the mem-

brane potential process starting at (Vj(t∗), I j(t∗)) the values of the membrane potential
and of the synaptic current at the time of the spike considered, to reach the threshold

θ −wi jκ j(ti−H j) at time u with the synaptic current v conditionally on reaching the
threshold θ at time X∗j with the input current I∗j . The law of this random variable
can be computed in the same fashion as we did in (8.23). We can see that it depends

on the value of the membrane potential and of the input current at the times of the

spikes. The law of this random variable is known and can be computed. Therefore,

we can provide a Markovian framework to study this type of behaviors. For the other

types of perfect integrate-and-fire models, the same reasoning applies.

LIF with instantaneous synapses: In the case of the leaky integrate-and-fire

neuron with instantaneous synaptic integration, no further simplification can be pro-

vided, and we obtain that the new spike time after interaction has the law of the first

hitting time of the membrane potential process to reach the boundary θ −wi jκ j(ti−
H j)e−t/τ (where ti is the time of the presynaptic spike) conditionally on the fact that
the first hitting time of the boundary θ is equal to X∗j . In that case again, we need
an additional variable: the membrane potential at the times of the spikes, in order to

define a Markov chain containing the times of the spikes.

The case of postsynaptic current pulses can be treated in the same way. In that

case again it will be necessary to know the membrane potential’s voltage at the times

of the spike in order to be able to simulate the countdown process.

LIF with synaptic integration: The case of the LIF neuron with synaptic inte-

gration can be treated in the same fashion as the case of the perfect integrate-and-fire

with synaptic integration.

8.3.2 Including synaptic delays

Delays are known to be very important, for instance in shaping spatio-temporal dy-

namics of neuronal activity [231] or for generating global oscillations [36]. When

we take into account this phenomenon in addition to the refractory period, the reset

variable of the related countdown process is the same as in the case where we only

consider the cell’s refractory period: taking into account the axonal delay does not af-

fect the reset variable which, for a given neuron i, has the same law as Ri +τi where τi

has the law of the first hitting time of the membrane potential process to the thresh-

old starting from V (i)
r . The synaptic delay nevertheless affects the interaction variable

in a quite intricate fashion (see figure 8.7). Indeed, it adds a non-trivial memory-like
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Figure 8.7: A sample path of the countdown process in the case of the perfect

integrate-and-fire neuron with instantaneous interactions, when taking into account

the synaptic delays and the refractory period. The first spike is emitted by neuron j
but arrives at neuron i during its refractory period hence does not affect its evolution.
Neuron i sends a spike during the refractory period of neuron j which is received after
this period and hence affects the dynamics of the countdown process. The action of

neuron i on j is inhibitory and the action of j on i excitatory.
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Figure 8.8: Presynaptic spikes emitted before a postsynaptic spike can affect the

postsynaptic cell after the firing.

phenomenon in the network. This remark slightly modifies our framework. Indeed,

in our previous framework the random variables were updated instantaneously at

each spike time, even when the interaction at the level of the membrane potential

was not instantaneous. The network memory induced by the transmission delays

leads us to keep the memory a certain number of spikes. Fortunately, because of the

absolute refractory period, we only have to take into account a finite number of spikes

that can possibly affect the postsynaptic potential after it elicits a spike (see figure

8.8). The maximal number of spikes concerned is given by M
def
= ⌊∆i j

R j
⌋ where ⌊x⌋ is the

floor function, i.e. the largest integer small or equal to x.
In this case, instead of considering the last firing times variable which contained

only the last firing time for each neuron of the network, we consider the last M firing
times variables. This variable is a matrix HM ∈ R

N×M. Each row of the matrix corre-

sponds to the M last firing times of the neuron. Each row i of the matrix is constant
between two spike times of the neuron i. At the initial time, theM components of this
row are set to the value mini j{−Ri−∆i j}. If the neuron spikes at time ti, then each
component of the row are modified: for all k ∈ {2, . . . ,N}, Hi,k−1 = Hi,k and Hi,M = ti. This
matrix stores the times of the M last spike times of the neuron i, in the chronological
order.

In this case again, we can describe a Markov process and a Markov chain in order

to reproduce the times of the spikes. This chain is composed of the same elements

as the model with no delay. Let us denote by Xn the countdown chain , by An the

possible additional variables, Hn the M last firing times variables, tn the event times,

and by Ṽ n the variables containing the membrane potential at the times of the spikes,

which is necessary only in the case of excitatory interactions. An event in this chain

is either a spike, or the arrival of a spike on a postsynaptic spike, now that these two

events are no more simultaneous. The next spike if no delayed interaction occurs will

be fired after a time given by τ = mini Xn
i , and the first arrival of a possible spike at a

cell is given by

ν = min
i, j∈{1, ... ,N}
k∈{1, ...,M}

{x = Hi,k + ∆i j− t;x > 0}

If this set is empty, the min is set to +∞. If τ < ν , a spike will be fired by the neuron
i having the lowest countdown value. The state of the countdown variable for this
neuron is reset according to the law we already described, and all other variables

are updated: the row i of the last M firing times will be updated, the time will be
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updated to t + Xi, and the additional variables are updated. No interaction is taken

into account at this time. If ν < τ , assume that the minimum is achieved for the value
Hi,k +∆i j for some i, j,k. This means that the kth latest spike of neuron i reaches the cell
j. Therefore, the related interaction variable of this connection will be added, and the
countdown value of neuron j will be updated, together with the possible additional
variables. The time is advanced to t + ν . Note also that many 3-uplets (i, j,k) can
achieve this min at the same time. Moreover, it is possible also that an excitatory

interaction makes a postsynaptic neuron fire instantaneously at the reception of the

spike. All these cases might be treated sequentially, by iterating the mechanism we

just described. Nevertheless, we are ensured that no avalanche can occur, because of

the absolute refractory period and of the delays.

We finally note that in the case of purely inhibitory networks, the update of this

chain can be done only at the times of the spike. Indeed, let us consider that the

state of this chain at the iteration n is (Xn,Hn, tn,An) and that neuron i just spiked.
We then compute its next spike time if no interaction occurs meanwhile Yi. But we

know through the variable Hn that possibly, before this time Yi, spikes emitted from

other neurons will arrive at the synapses of i. We can therefore at this same time tn

draw in the laws of the interaction variables the additional time that their arrival

will provoke on the next spike time for i (this time may depend on the time when the
spike will arrive at the synapse of i, which can also be computed with the variables
we have). Therefore in that case, the countdown value will be an hourglass chain as

defined in section 8.1.

8.4 ERGODICITY OF THE NETWORK

The approach we developed in the last sections resulted in providing a sim-

pler framework than the usual one based on the membrane potential for modeling

the spikes in a neural network of stochastic integrate-and-fire neurons. This model

is equivalent in law from the viewpoint of the spike times, to the usual model. If this

modelization gives us a very natural and sometimes very efficient way for simulating

the network (see section 8.5), it also provides a good framework for studying its math-

ematical properties in a more elegant and tractable fashion. Indeed, the models we

obtained fit into a class of models studied in the queuing theory in the past ten years.

The first analysis of this type of modelled is due to Marie Cottrell [55]. In this article

she studied the hourglass model where the interaction random variable is determin-

istic and inhibitory (i.e. ∀i, j, we have ηi j(u)≡η where η is a positive constant). In her
article, she proves in that case that the related Markov chain is irreducible and ape-

riodic. Furthermore, she provides a criterion for the positive recurrence of this chain

and characterizes the ISI for a two neuron network. In the transient case she shows

that some neuron will stop firing in a finite time, and studies the pattern formed by

the “dead” neurons (those that will never spike again).

The proof of the irreducibility and aperiodicity of the chain consists in constructing

a set of probability in which all the N neurons fire consecutively. The probability of
this set is strictly positive, and we can show that every state is accessible after the

Nth spike triggered by the last neuron. The same analysis can be done after the
next spike, so at spike N + 1, which proves that the embedded Markov chain Xn is

irreducible and aperiodic.

She then proves that if E[Y 2
i

]
< ∞ and η < inf

i=1,...,N

E[Yi]
|V (i)| where η is the interaction

constant, Y the reset random variable and |V (i)| the number of neighbors (postsynap-
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tic neurons) of the neuron i, then the countdown process (Xt)t and the related Markov

chain (Xn) are ergodic, irreducible, aperiodic and positive recurrent.

This result was then generalized by Fricker, Robert et al [101]. In this paper, the

authors find necessary and sufficient conditions of ergodicity for the system when the

variables of interaction ηi j do not depend on the state of the variable, and are an iid

sequence of random variables (not considered deterministic anymore). Assume that

the network is fully connected, and that the reset random variables Yi are exponen-

tially distributed, with parameter λi, and that the interactions are the same for all

the neighbors of a neuron (i.e. ηi j = ηi for all j ∈ V (i)).
For the fully connected network, the authors prove that the network is stable if

ρ def
= maxi

E[ηi]E[Yi]
< 1. Under this stability condition, they give an explicit expression for

the Laplace transform of the invariant measure of the Markov process associated to

this model. They then prove that if ρ > 1, the network is not stable, and after a finite
time, only one neuron would spike and all the other neurons die (i.e. stop firing).

Then the authors examine also the case of the linear networks. The interac-

tion variables ηi are now considered independent and identically exponentially dis-

tributed with the same parameter λ . In this framework they prove that:

(i). if N is odd then the network is stable if ρ = λ
µ < 1/2 and not stable if ρ > 1/2.

(ii). if N is even, then the network is stable if ρ < 1
2cos(π/(N+1)) and not stable if ρ >

1
2cos(π/(N+1))

Note that the proof of ergodicity is based on an adapted version of the second vector

field associated to a Markov process. It was introduced by Malyshev and Menshikov

in [192].

These results were later generalized by Turova. She also studied the effect of exci-

tatory connections. She proved for instance that in a simple balanced networks with

iid interactions, there exists a critical value of the ratio excitation/inhibition below

which the network is transient and above which the network is recurrent [56]. She

also proved for a purely excitatory network that there almost surely existed a time

for which all neurons spike (complete synchronization of the network, see [274]) and

in another context that adding one inhibitory connection augmented the probability

of synchronization, i.e. stabilizes the oscillations of the total activity [271]. She then

studied the effect of plasticity in these networks [273], and the type of patterns ob-

served in the case of transient networks, which she relates with neuronal coding [56].

She also opened the way to more realistic models of neurons.

We are interested in the present section in generalizing these results to the case of

stochastic integrate-and-fire networks. We will not go into the details, but the model

we propose here are a generalization of the framework of the hourglass model, and

therefore could be studied with the same mathematical tools as the ones used in these

previous publications. An interesting way for studying these networks would be to

use hydrodynamics limits as presented in [60, 61, 62, 173]. Another very interesting

way to study mathematically these models would be the dynamical system approach

to networks as developed by Malyshev and collaborators in [89, 191, 192].

The usual questions solved in this framework, such as the ergodicity or the tran-

sience, are not of great interest from a biological point of view. Indeed, the questions

that naturally arise in neuroscience when studying this type of networks are mostly
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discriminating between chaos and oscillations and characterizing the temporal fea-

tures of activity. If we can prove the ergodicity of the network, it will be therefore

interesting to study for instance the stationary measures.

We prove in the sequel that the techniques developed do not apply to the case of

realistic neurons. In the case of purely excitatory networks, the chain will always be

ergodic provided that the reset random variable is almost surely finite. This prop-

erty depends on the neuron model we consider and the input current. If this random

variable is not almost surely finite, the probability to stop firing for a given neuron in

the network is simply equally to the probability that its reset variable is infinite, and

no network effect has to be taken into account. The problem of balanced networks

having both excitatory and inhibitory connections is more complex. To obtain a suf-

ficient condition for their ergodicity, we will transform these balanced networks into

a purely inhibitory network by “cutting” the excitatory connections, which amounts

to replacing all the original connectivity weights wi j by min(wi j,0). The countdown
process of the original network is therefore upperbounded in law by the countdown

process of the new process where excitation is blocked. If the new process is ergodic,

it implies that the original process also is. Therefore, we will be interested in proving

ergodicity for purely inhibitory networks.

8.4.1 Ergodicity of the PIF models

For the perfect integrate-and fire neuron, we have seen that the interaction variables

ηi j that we have to add only depend on wi j possibly weighted by a function depending

on the last spike time of the postsynaptic cell j in the case where we take into account
the refractory period, and that may be added to the presynaptic neuron in the case

where we take into account transmission delays. Note eventually that the ergodicity

of the network is not influenced by the delays if taken into account.

Nevertheless in this case, both the expected value of the reset variable and of the

interaction variable are infinite whatever the parameters. Indeed, they are expressed

as first hitting times of Brownian motion and it is known that the expected values

of these random variables are infinite (see e.g. [253]). Therefore, it does not fit in

the framework previously used. Nevertheless, in the simulations we did in this type

of network, we obtain the same result as in the theoretical cases treated: for small

synaptic connectivities, the network is recurrent, and each neuron will spike after

any given time, but when the synaptic strength are too big, some neurons stop firing.

In the case of a fully connected network, asymptotically only one neuron spikes after

a given time, and in a linear or a ring network, one upon two neurons stops firing

(see figure 8.10). The same type of behavior can therefore be observed as in the other

cases, but has still to be mathematically characterized.

8.4.2 Ergodicity of the LIF models

The cases of leaky integrate-and-fire models neither fit in the previous framework de-

veloped. Indeed, the interaction random variable depends on the value of the count-

down process at the time when it receives a spike. Nevertheless, both the reset and

the interaction random variables have an expected value and are L2. The interaction

variable is bounded by the variable associated with a countdown value equal to 0.
Denote by Ei j(x) the expected value of the interaction variable, where x is the value
of the countdown process when the interaction occurs. In the case where we have

E(0)|V (i)|<E [Yi] for all i, the network will be ergodic.
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If this is not the case, then we can prove that when x→ ∞, we have E(x)→ 0 (we
even prove that the interaction variable tends to 0 in law, see [253]). Therefore, the
countdown value of the neuron will not tend to infinity in this case and always return

in the zone where E(x)|V (i)| ≥ EYi. We conjecture that in this case, there is another

condition on the synaptic weights for the network to be ergodic or not. Simulation

results confort us in this conjecture.

8.5 NUMERICAL SIMULATIONS

As reviewed by Romain Brette and collaborators in [31], there are two main

families of algorithms for the simulation of neural networks: synchronous or “clock-

driven” algorithms, in which all neurons are updated simultaneously at every tick of a

clock, and asynchronous or “event-driven” algorithms, in which neurons are updated

only when they receive or emit a spike. We describe the simple clock-driven strategy

to simulate this kind of neural network in section 8.5.1 and then study more pre-

cisely the implications of the above analysis to elaborate an event-driven simulator

for stochastic networks in section 8.5.2.

8.5.1 Clock-Driven simulation

In the synchronous or “clock-driven” algorithms, the state variables of all neurons

are updated simultaneously at every tick of a clock (X(t)→ X(t + dt), see figure 8.9),
using a numerical integration algorithm. Then, after updating all the variables, the

spiking condition is checked for every neuron (in the case of stochastic differential

equations, the refinement presented in section 6.3.7 might be used). Each neuron

that satisfies this condition produces a spike which is transmitted with or without

delay, and updates their corresponding variables. The membrane potential of every

spiking cell is reset.

As reviewed in [31], the cost of the update phase is of order N for each time
step. For simulating the network during a time T , the complexity will therefore be
O(N T/dt). If F is the average firing rate, an average of F ×N spikes are produced
by the neurons and each of these needs to be propagated to p target neurons. Thus,
the propagation phase consists in F×N× p spike propagations per second. These are
essentially additions of weights wi j to state variables, and thus are simple operations

whose cost does not grow with the complexity of the models. Summing up, the total

mean computational cost per second of biological time is of order O(N/dt +F N p). The
cost of taking into account delays is not very high, and does not change the complex-

ity of the algorithm. The obvious drawback of this type of algorithm is that spikes are

aligned to a grid (ticks of the clock) thus the simulation is approximate even when

the membrane potential is solved exactly. Furthermore, the spiking condition itself

is checked at given times and therefore spikes can be missed. Many solutions to fix

these issues have been proposed but none is really fully satisfactory.

For simulating a stochastic network with a synchronous algorithm, we used the

Brian software [112], for its efficiency to deal with linear models. The code we used

for perfect integrate-and-fire neuron is now freely accessible by downloading in the

examples provided with the software.

The simulation results in this case are compatible with our conjectures: for small

inhibitory connectivities, the network is ergodic and when the absolute value of the

connectivities is big, one upon two neurons stop firing in the linear or ring network,

or all but one neuron in the case of the fully connected network (see figures 8.10).



275

Figure 8.9: Monte-Carlo algorithm for the simulation of the stochastic neural net-

work. The voltage potential is simulated at each time step and a decision is taken

wether a spike is emitted or not.

8.5.2 Event-driven simulation

The approach developed in the previous sections provides a very natural way to define

an event-based simulation algorithm for stochastic networks. This method consist in

building a Markov chain describing the time of the spikes for each neuron. We have

seen that simulating the times of the spikes is equivalent in law to simulating the

membrane potential, from the spikes viewpoint. The event-based simulation consists

in building this Markov chain. Simulating this Markov chain necessitates to draw at

each spike time in the law of the reset random and the interaction random variables.

We have seen that these random variables can be expressed in most of the cases as

first hitting times of random processes, which we have been studying in chapters

6 or 7. In the cases where these laws are known in a closed form, a very efficient

simulation procedure can be used. If it is not the case, then we will have to evaluate

these random variables. We describe those two simulation ways in the following

paragraphs.

Known interaction variables

We consider a network of stochastic integrate-and-fire neurons such that the reset

and the interaction variables are known, either analytically, or that computed offline

using the techniques of chapter 6 or 7 and tabulated. In that case, simulating the re-

lated countdown process will be very efficient and will precisely give the spike times.

To define our event-based algorithm, we explain how to initialize the network and

how to compute the spike times recursively. Assume that at the initial time t0 the
values of membrane potential of each neuron and of the additional variables of the

model are known. The initial countdown value for a given neuron will be simply
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(a) Ring network of PIF

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0T i m e ( m s )02 04 06 08 01 0 0N euronnumb er
5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0T i m e ( m s )2 03 04 05 06 07 08 09 01 0 0N euronnumb er
(b) Fully connected network of PIF

3 1 5 0 0 3 1 6 0 0 3 1 7 0 0 3 1 8 0 0 3 1 9 0 0 3 2 0 0 0 3 2 1 0 0T i m e ( m s )02 04 06 08 01 0 0N euronnumb er
3 2 0 0 0 3 2 5 0 0 3 3 0 0 0 3 3 5 0 0 3 4 0 0 0 3 4 5 0 0T i m e ( m s )6 06 16 26 36 46 56 66 76 8N euronnumb er
(c) Fully connected network of LIF

Figure 8.10: Clock-driven simulation of a 100 stochastic integrate-and-fire neurons

network during 500ms using Brian software. (a): ring network of PIF neurons for
small (up) and big (down) inhibitory connectivities. (b) same simulations for fully

connected networks. (c) Case of the LIF fully connected network.
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Figure 8.11: Principle of the event-based simulation using the countdown process

studied in the previous sections

computed as the first hitting time of its membrane potential process starting from

this initial condition to reach the threshold and therefore can be computed in the

same way as the reset variable. From this initial time, the principle of the algorithm

is to build the discrete-time Markov chain containing as a variable the countdown

process that gives the times of the spikes (we have seen that sometimes additional

variables were necessary). Then to deduce the state of the chain at time n+1 knowing
the chain at time n, we use the recursion relation described in sections 8.2 and 8.3
(see figure 8.11):

• We first identify the neuron having the lowest countdown value, which amounts
finding the minimal value in a list of N elements, an elementary operation effi-
ciently coded. This neuron is the one that elicits the first spike.

• When this neuron is identified, we directly jump to this time, and draw the new
state of the network: the neuron that just fired a spike is reset by drawing in

the law of the related reset variable and the other neurons’ state is updated by

drawing in the law of their respective interaction variables. Once the state of

all neurons have been updated, the simulation proceeds.

This method was implemented using the software MVASpike [228, 229, 276]. Sim-

ulation results are provided in figure 8.12.
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(a) Fully connected network
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(b) Linear network
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(c) Recurrent network

Figure 8.12: Linear and fully connected networks of perfect integrate-and-fire neuron

with constant inputs, simulated with MVASpike. Simulations of 25 to 50 neurons for

10s to 1000s. We obtain the same results as expected from the mathematical analysis.
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Parallel implementation

In the cases where the pdf of the first hitting time of the membrane potential is nei-

ther known analytical nor tabulated, the computation of the reset and interaction

random variables can be performed by simulating a sample paths of the membrane

potential using a Monte-Carlo algorithm. This type of simulation requires that the

user defines a clock, i.e. a time step for the simulation of trajectories in order to com-

pute first hitting times of stochastic processes using a Monte-Carlo simulation. As

a conclusion of the theoretical analysis driven above, an important remark is that

at each spike time, the reset variables and the interaction variables are pairwise

independent. Therefore they can be computed independently, and for instance simul-

taneously using a parallel algorithm.

Therefore we developed, together with Renaud Keriven and Alexandre Chariot,

a simulation algorithm of the network on graphics processing unit (GPU), dedicated

graphics rendering devices with a highly parallel structure. One of the main issue

for this implementation was to develop a random number generator. Indeed, usual

graphical cards were not using integers. Very recent cards, starting from the cards

NVidia 8xxx, are able to handle integers, and therefore it opened the way random

number generators and random simulation. Another issue is the decorrelation be-

tween the random number generators on each processor. To this purpose, Keriven

and collaborators developed the following algorithm: they generate random seeds on

CPU to be used by the random number generation algorithm on each processor. After

this common phase, each processor will behave independently. The processor that

computes the reset variable by using the Monte-Carlo algorithm described in section

6.3.7. This simulation is based on a pathwise simulation of the membrane potential

and the evaluation of the spiking probability between two time steps. When at a

given processor the random variable has been evaluated, the neuron is flagged, the

simulation on this computer stops, the value of the random variable is recorded, and

we wait for all the processors to reach this phase.

This process can be done for a number of neuron lower than or equal to 40962 (∼
1.6107 units) because of the limited memory available on these cards. Nevertheless,

we can overcome this difficulty by repeating many times this procedure.

With this algorithm we obtain speed up ratios from 20 to up to 100, by comparing

with the same algorithm coded in C++.

CONCLUSION

In this chapter we developed an event-based mathematical framework for the study

of stochastic integrate-and-fire neural networks. This model can be studied efficiently

using the powerful tools of communication networks theory. With this approach we

can address in a more tractable way mathematical questions as ergodicity properties,

invariant measures. This framework seems also promising in order to deal with bi-

ological issues whatever the connectivity map, the number of connections or on the

number of neuron. This study opens the door to the mathematical study of the macro-

scopic behavior of large networks using the hydrodynamics limits developed to study

large queuing processes, to infer and model collective behaviors of such networks.

One of the main advantages of this model is to provide an efficient way to simu-

late networks. This simulation is exact in law if the probability density function of

the first hitting times of the membrane potential is known. But when unknown, the

simulation becomes more tricky and probably as efficient as the clock-driven simula-
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CHAPTER 9

A CONSTRUCTIVE MEAN FIELD

ANALYSIS OF MULTI POPULATION

NEURAL NETWORKS WITH

RANDOM SYNAPTIC WEIGHTS AND

STOCHASTIC INPUTS

Hâtez-vous lentement, et, sans perdre courage,

Vingt fois sur le métier remettez votre ouvrage :

Polissez-le sans cesse et le repolissez ;

Ajoutez quelquefois, et souvent effacez.

– Nicolas Boileau

ABSTRACT

In this chapter we deal with the problem of bridging the gap between two scales in
neuronal modeling. At the first (microscopic) scale, neurons are considered
individually and their behavior described by stochastic differential equations that
govern the time variations of their membrane potentials. They are coupled by
synaptic connections acting on their resulting activity, a nonlinear function of their
membrane potential. At the second (mesoscopic) scale, interacting populations of
neurons are described individually by similar equations. The equations describing
the dynamical and the stationary mean field behaviors are considered as functional
equations on a set of stochastic processes. Using this new point of view allows us to
prove that these equations are well-posed on any finite time interval and to provide,
by a fixed point method, a constructive method for effectively computing their
unique solution. This method is proved to converge to the unique solution and we
characterize its complexity and convergence rate. We also provide partial results for
the stationary problem on infinite time intervals. These results shed some new light
on such neural mass models as the one of Jansen and Rit [149]: their dynamics
appears as a coarse approximation of the much richer dynamics that emerges from
our analysis. Our numerical experiments confirm that the framework we propose
and the numerical methods we derive from it provide a new and powerful tool for
the exploration of neural behaviors at different scales.
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INTRODUCTION

Modeling neural activity at scales integrating the effect of thousands of neurons is

of central importance for several reasons. First, most imaging techniques are not

able to measure individual neuron activity (“microscopic” scale), but are instead mea-

suring mesoscopic effects resulting from the activity of several hundreds to several

hundreds of thousands of neurons. Second, anatomical data recorded in the cortex

reveal the existence of structures, such as the cortical columns, with a diameter of

about 50µm to 1mm, containing of the order of one hundred to one hundred thousand
neurons belonging to a few different species. These columns have specific functions.

For example, in the visual cortex V1, they respond to preferential orientations of

bar-shaped visual stimuli. In this case, information processing does not occur at the

scale of individual neurons but rather corresponds to an activity integrating the col-

lective dynamics of many interacting neurons and resulting in a mesoscopic signal.

The description of this collective dynamics requires models which are different from

individual neurons models. In particular, if the accurate description of one neuron re-

quires “m” parameters (such as sodium, potassium, calcium conductances, membrane
capacitance, etc...), it is not necessarily true that an accurate mesoscopic description

of an assembly of N neurons requires Nm parameters. Indeed, when N is large enough
averaging effects appear, and the collective dynamics is well described by an effective

mean-field, summarizing the effect of the interactions of a neuron with the other

neurons, and depending on a few effective control parameters. This vision, inher-

ited from statistical physics requires that the space scale be large enough to include

a large number of microscopic components (here neurons) and small enough so that

the region considered is homogeneous. This is in effect for instance the case of cortical

columns.

However, obtaining the evolution equations of the effective mean-field from mi-

croscopic dynamics is far from being evident. In simple physical models this can be

achieved via the law of large numbers and the central limit theorem, provided that

time correlations decrease sufficiently fast. This type of approach has been general-

ized to such fields as quantum field theory or non equilibrium statistical mechanics.

To the best of our knowledge, the idea of applying mean-field methods to neural net-

works dates back to Amari [7, 8]. In his approach, the author uses an assumption that

he called the “local chaos hypothesis”, reminiscent of Boltzmann’s “molecular chaos

hypothesis”, that postulates the vanishing of individual correlations between neu-

rons, when the number N of neurons tends to infinity. Later on, Crisanti, Sompolin-
sky and coworkers [240] used a dynamic mean-field approach to conjecture the exis-

tence of chaos in an homogeneous neural network with random independent synaptic

weights. This approach was formerly developed by Sompolinsky and coworkers for

spin-glasses [58, 59, 241], where complex effects such as aging or coexistence of a di-

verging number of metastable states, renders the mean-field analysis delicate in the

long time limit [134].

On the opposite, these effects do not appear in the neural network considered in

[240] because the synaptic weights are independent [46] (and especially non symmet-

ric, in opposition to spin glasses). In this case, the Amari approach and the dynamic

mean-field approach lead to the same mean-field equations. Later on, the mean-field

equations derived by Sompolinsky and Zippelius [241] for spin-glasses were rigor-

ously obtained by Ben Arous and Guionnet [20, 21, 122]. The application of their

method to a discrete time version of the neural network considered in [240] and in

[198] was done by Moynot and Samuelides [201].
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Mean-field methods are often used in the neural network community but there

are only a few rigorous results using the dynamic mean-field method. The main

advantage of dynamic mean-field techniques is that they allow one to consider neural

networks where synaptic weights are random (and independent). The mean-field

approach allows one to state general and generic results about the dynamics as a

function of the statistical parameters controlling the probability distribution of the

synaptic weights [233]. It does not only provide the evolution of the mean activity

of the network but, because it is an equation on the law of the mean-field, it also

provides informations on the fluctuations around the mean and their correlations.

These correlations are of crucial importance as revealed in the paper by Sompolinsky

and coworkers [240]. Indeed, in their work, the analysis of correlations allows them

to discriminate between two distinct regimes: a dynamics with a stable fixed point

and a chaotic dynamics, while the mean is identically zero in the two regimes.

However, this approach has also several drawbacks explaining why it is so seldom

used. First, this method uses a generating function approach that requires heavy

computations and some “art” for obtaining the mean-field equations. Second, it is

hard to generalize to models including several populations. Finally, dynamic mean-

field equations are usually supposed to characterize in fine a stationary process. It

is then natural to search for stationary solutions. This considerably simplifies the

dynamic mean-field equations by reducing them to a set of differential equations (see

section 9.4) but the price to pay is the unavoidable occurrence in the equations of a

non free parameter, the initial condition, that can only be characterized through the

investigation of the non stationary case.

Hence it is not clear whether such a stationary solution exists, and, if it is the

case, how to characterize it. To the best of our knowledge, this difficult question has

only been investigated for neural networks in one paper by Crisanti and coworkers

[57].

Different alternative approaches have been used to get a mean-field description

of a given neural network and to find its solutions. In the neuroscience community, a

static mean-field study of multi population network activity was developed by Treves

in [268]. This author did not consider external inputs but incorporated dynamical

synaptic currents and adaptation effects. His analysis was completed in [2], where

the authors considered a unique population of nonlinear oscillators subject to a noisy

input current. They proved, using a stationary Fokker-Planck formalism, the sta-

bility of an asynchronous state in the network. Later on, Gerstner in [104] built a

new approach to characterize the mean-field dynamics for the Spike Response Model,

via the introduction of suitable kernels propagating the collective activity of a neural

population in time.

Brunel and Hakim considered a network composed of integrate-and-fire neurons

connected with constant synaptic weights [36]. In the case of sparse connectivity,

stationarity, and considering a regime where individual neurons emit spikes at low

rate, they were able to study analytically the dynamics of the network and to show

that the network exhibited a sharp transition between a stationary regime and a

regime of fast collective oscillations weakly synchronized. Their approach was based

on a perturbative analysis of the Fokker-Planck equation. A similar formalism was

used in [196] which, when complemented with self-consistency equations, resulted

in the dynamical description of the mean-field equations of the network, and was

extended to a multi population network.

Finally, Chizhov and Graham [48] have recently proposed a new method based on
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a population density approach allowing to characterize the mesoscopic behaviour of

neuron populations in conductance-based models. We shortly discuss their approach

and compare it to ours in the discussion section 3.5.

In the present chapter, we investigate the problem of deriving the equations of

evolution of neural masses at mesoscopic scales from neurons dynamics, using a new

and rigorous approach based on stochastic analysis.

The article is organized as follows. In section 9.1 we derive from first principles

the equations relating the membrane potential of each of a set of neurons as func-

tion of the external injected current and noise and of the shapes and intensities of

the postsynaptic potentials in the case where these shapes depend only on the post-

synaptic neuron (the so-called voltage-based model). Assuming that the shapes of

the postsynaptic potentials can be described by linear (possibly time-dependent) dif-

ferential equations we express the dynamics of the neurons as a set of stochastic

differential equations. Assuming that the synaptic connectivities between neurons

satisfy statistical relationship only depending on the population they belong to, we

obtain the mean-field equations summarizing the interactions of the P populations
in the limit where the number of neurons tend to infinity. These equations can be

derived in several ways, either heuristically following the lines of Amari [7, 8], Som-

polinsky [57, 240], and Cessac [46, 233], or rigorously as in the work of Benarous

and Guionnet [20, 21, 122]. The purpose of this article is not the derivation of these

mean-field equations but to prove that they are well-posed and to provide an algo-

rithm for computing their solution. Before we do this we provide the reader with

two important examples of such mean-field equations. The first example is what we

call the simple model, a straightforward generalization of the case studied by Amari

and Sompolinsky. The second example is a neuronal assembly model, or neural mass

model, as introduced by Freeman [99] and examplified in Jansen and Rit’s cortical

column model [149].

In section 9.2 we consider the problem of solutions over a finite time interval [t0,T ].
We prove, under some mild assumptions, the existence and uniqueness of a solution

of the dynamic mean-field equations given an initial condition at time t0. The proof
consists in showing that a nonlinear equation defined on the set of multidimensional

Gaussian random processes defined on [t0,T ] has a fixed point. We extend this proof
in section 9.3 to the case of stationary solutions over the time interval [−∞,T ] for the
simple model. Both proofs are constructive and provide an algorithm for computing

numerically the solutions of the mean-field equations.

We then study in section 9.4 the complexity and the convergence rate of this algo-

rithm and put it to good use: We first compare our numerical results to the theoretical

results of Sompolinsky and coworkers [57, 240]. We then provide an example of nu-

merical experiments in the case of two populations of neurons where the role of the

mean-field fluctuations is emphasized.

Along the chapter we introduce several constants. To help the reader we have

collected in table 9.1 the most important ones and the place where they are defined

in the text.

9.1 MEAN FIELD EQUATIONS FOR MULTI-POPULATIONS NEU-
RAL NETWORK MODELS

In this section we introduce the classical neural mass models and compute the re-
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lated mean field equations they satisfy in the limit of an infinite number of neurons

9.1.1 The general model

General framework

We consider a network composed of N neurons indexed by i ∈ {1, . . . , N} belonging to
P populations indexed by α ∈ {1, . . . , P} such as those shown in figure 9.1. Let Nα be

the number of neurons in population α . We have N = ∑P
α=1Nα . In the following we

are interested in the limit N→∞. We assume that the proportions of neurons in each
population are non-trivial, i.e. :

lim
N→∞

Nα

N
= nα ∈ (0,1) ∀α ∈ {1, . . . , P}.

If it were not the case the corresponding population would not affect the global be-

havior of the system, would not contribute to the mean field equation, and could be

neglected.

We introduce the function p : {1, . . . , N} → {1, . . . , P} such that p(i) is the index of
the population which the neuron i belongs to.
The following derivation is built after Ermentrout’s review [81]. We consider that

each neuron i is described by its membrane potential Vi(t) or by its instantaneous
firing rate νi(t), the relation between the two quantities being of the form νi(t) =
Si(Vi(t)) [67, 106], where Si is sigmoidal.

A single action potential from neuron j is seen as a post-synaptic potential PSPi j(t− s)
by neuron i, where s is the time of the spike hitting the synapse and t the time after
the spike. We neglect the delays due to the distance travelled down the axon by the

spikes.

Assuming that the post-synaptic potentials sum linearly, the average membrane

potential of neuron i is
Vi(t) = ∑

j,k

PSPi j(t− tk),

where the sum is taken over the arrival times of the spikes produced by the neurons

j. The number of spikes arriving between t and t + dt is ν j(t)dt. Therefore we have

Vi(t) = ∑
j

∫ t

−∞
PSPi j(t− s)ν j(s)ds = ∑

j

∫ t

−∞
PSPi j(t− s)S j(Vj(s))ds,

or, equivalently

νi(t) = Si

(

∑
j

∫ t

t0
PSPi j(t− s)ν j(s)ds

)
. (9.1)

The PSPi js can depend on several variables in order to account for instance for adap-

tation or learning.

The voltage-based model

The assumption, made in [132], is that the post-synaptic potential has the same shape

no matter which presynaptic population caused it, the sign and amplitude may vary

though. This leads to the relation

PSPi j(t) = Ji jgi(t).
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gi represents the unweighted shape (called a g-shape) of the postsynaptic potentials

and Ji j is the strength of the postsynaptic potentials elicited by neuron j on neuron i.
Thus we have

Vi(t) =

∫ t

t0
gi(t− s)

(

∑
j

Ji jν j(s)

)
ds.

So far we have only considered the synaptic inputs to the neurons. We also assume

that neuron i receives an external current density Ii(t) and some noise ni(t) so that

Vi(t) =

∫ t

t0
gi(t− s)

(

∑
j

Ji jν j(s)+ Ii(s)+ ni(s)

)
ds. (9.2)

We assume that the external current and the g-shapes satisfy Ii = Ip(i), gi = gp(i), Si =
Sp(i), i.e. they only depend upon the neuron population. The noise model is described

later. Finally we assume that gi = gα (where α = p(i)) is the Green function of a linear
differential equation of order k, i.e. satisfies

k

∑
l=0

al
α(t)

dlgα

dt l (t) = δ (t). (9.3)

We assume that the functions al
α(t) are continuous for l = 0, · · · ,k and α = 1, · · · ,P. We

also assume ak
α(t)≥ c > 0 for all t ∈ R, α = 1, · · · ,P.

Known examples of g-shapes, see section 9.1.4 below, are gα(t) = Ke−t/τY (t) (k =
1,a1(t) = 1

K ,a0(t) = 1
K τ )or gα(t) = Kte−t/τY (t) (k = 2,a2(t) = 1

K ,a1(t) = 2
K τ ,a0(t) = 1

K τ ),

where Y is the Heaviside function.
We note Dk

α the corresponding differential operator, Dk
αgα = δ , and Dk

N the N-
dimensional differential operator containing Nα copies of Dk

α , α = 1, · · · ,P. We write
(9.2) in vector form

V(N) = J(N)diag(gα)∗S(N)(V(N))+diag(gα)∗ I(N) +diag(gα)∗n(N),

where diag(gα ) is the N-dimensional diagonal matrix containing Nα copies of gα , α =
1, · · · ,P and ∗ indicates the convolution operator. S(N) is the mapping R

N → R
N such

that S(N)(V(N))i = Sp(i)(V
(N)
i ). We apply the operator Dk

N to both sides to obtain

Dk
NV(N) = J(N) ·S(N)(V(N))+ I(N)

V + n(N)
V , (9.4)

which is a stochastic differential equation

d

(
dk−1V(N)

dtk−1

)
=
(
−Dk−1

N V(N) + J(N) ·S(N)(V(N))+ I(N)
)

dt + dn(N)
t ,

whereDk−1
N is obtained from the P differential operators of order k−1 Dk−1

α = ∑k−2
l=0

al
α (t)

ak
α (t)

dl

dt l .

The activity-based model If we make the assumption that the shape of a PSP

depends only on the nature of the presynaptic cell, that is

PSPi j = Ji jg j,

and define the activity as

A j(t) =
∫ t

−∞
g j(t− s)ν j(s)ds,



288 CHAPTER 9. MEANFIELD ANALYSIS

multiplying both sides of equation (9.1) by gi(t− s) and integrating with respect to s,
we obtain

Ai(t) =

∫ t

−∞
gi(t− s)Si

(

∑
j

Ji jA j(s)+ Ii(s)+ ni(s)

)
ds,

where we have added an external current and a noise. If p(i) = α , this yields

Dk
αAi = Si

(

∑
j

Ji jA j(t)+ Ii(t)+ ni(t)

)
,

and in terms of the N-dimensional vector A(N)

Dk
NA(N) = S(N)(J(N)A(N) + I(N)

A + n(N)
A ). (9.5)

Equivalence of the twomodels As a matter of fact these two equations are equiv-

alent provided that J(N) is invertible1. Indeed, let us use the change of variable

V(N) = J(N)A(N) + I(N)
A + n(N)

A . We have, because J(N) is not a function of time,

Dk
NV(N) = J(N)Dk

NA(N) + Dk
NI(N)

A + Dk
Nn(N)

A .

Replacing Dk
NV(N) by this value in (9.4) we obtain

J(N)Dk
NA(N) + Dk

NI(N)
A + Dk

Nn(N)
A =

J(N) ·S(N)(J(N)A(N) + I(N)
A + n(N)

A )+ I(N)
V + n(N)

V .

Assuming that the matrix J(N) is invertible yields

Dk
NA(N) =

S(N)(J(N)A(N) + I(N)
A + n(N)

A )+ (J(N))−1
(

I(N)
V −Dk

NI(N)
A + n(N)

V −Dk
Nn(N)

A

)
.

Given the current I(N)
V (respectively the noise n(N)

V ), we can choose the current

I(N)
A (respectively the noise n(N)

A ) solution of the linear differential equation Dk
NI(N)

A =

I(N)
V (respectively Dk

Nn(N)
A = n(N)

V ). Using the Green functions gα , α = 1, · · · ,P this is
equivalent to I(N)

A = diag(gα )∗ I(N)
V (respectively n(N)

A = diag(gα)∗n(N)
V ).

The dynamics We introduce the k−1 N-dimensional vectors V(l)(t) = [V (l)
1 , · · · ,V (l)

N ]T ,
l = 1, · · · ,k−1 of the lth-order derivative of V(N)(t), and the Nk-dimensional vector

Ṽ(N)(t) =




V(N)(t)
V(N)(1)(t)
...

V(N)(k−1)(t)


 .

The N-neurons network is described by the Nk-dimensional vector Ṽ(N)(t). We
consider the direct sum R

Nk = E(0)⊕ ·· ·⊕E(k−1), where each E(l) = R
N , l = 0, · · · ,k− 1

1Note that in the cases we treat in this chapter, the matrix J(N) is always almost surely invertible

since it has non-degenerate Gaussian coefficients, and hence the equivalence in law will always be valid
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and introduce the following notation: if x is a vector of RNk, xl is its component in E(l),

l = 0, · · · ,k−1, an N-dimensional vector. In particular we have Ṽ(N)
l (t) = V(N)(l)(t) for

l = 0, · · · ,k−1with the convention that V(N)(0) = V(N).

We now write the equations governing the time variation of the first k−1 vectors
of Ṽ(N)(t), i.e. the derivatives of order 0, . . . k− 2 of V(N)(t). These equation in effect
determine the noise model. We write

dṼ(N)
l (t) = Ṽ(N)

l+1(t)dt + Λ(N)
l ·dW(N)

t l = 0, · · · ,k−2, (9.6)

where Λ(N)
l is the N×N diagonal matrix diag(sl

α), where sl
α , α = 1, · · · ,P is repeated Nα

times, andW(N)
t an N-dimensional standard Brownian process.

The equation governing the (k− 1)th differential of the membrane potential has
a linear part determined by the differential operator Dk−1 and must account for the

external inputs (deterministic and stochastic) and the activity of the neighbors, see

(9.4). Keeping the same notations as before for the inputs and denoting by L (N) the

N ×Nk matrix describing the action of the neurons membrane potentials and their
derivatives on the (k−1)th derivative of V, we have:

dṼ(N)
k−1(t) =

(
L (N)(t) · Ṽ(N)(t)+

(
J(N) ·S(N)(Ṽ(N)

0 (t))
)
+ I(N)(t)

)
dt + Λ(N)

k−1(t) ·dW(N)
t , (9.7)

where

L (N) =
[

diag(a0
α(t)) · · · diag(ak−1

α (t))
]
.

We define

L(N)(t) =




0 IdN · · · 0

0 0
. . . 0

...
... IdN

diag(a0
α (t)) diag(a1

α(t)) · · · diag(ak−1
α (t))




,

where IdN is the N×N identity matrix. We also denote by:

Ũ(N)
t =




0
...

0
J(N) ·S(N)(Ṽ0(t))


 and Ĩ(N)

t =




0
...

0
I(N)(t)


 .

The full equation satisfied by Ṽ(N) can be written:

dṼ(N)(t) =
(

L(N)(t)Ṽ(N)(t)+ Ũ(N)
t + Ĩ(N)

t

)
dt + Λ(N)(t) ·dW(N)

t , (9.8)

where the kN× kN matrix Λ(N)(t) is equal to diag(Λ(N)
0 , · · · ,Λ(N)

k−1).

Note that the kth-order differential equation describing the time variation of the
membrane potential of each neuron contains a noise term which is a linear combina-

tion of various integrated Brownian processes (up to the order k−1) as shown in the
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following formula which is derived from (9.6) and (9.7).

dṼ(N)
k−1(t) =

(
k−1

∑
l=0

L(N)
l (t)Ṽ(N)

l

)
dt

+

(
k−2

∑
l=0

L(N)
l (t)

(
k−l−2

∑
h=0

∫ t

0

∫ s1

0
· · ·
∫ sh−1

0
Λ(N)

l+h(sh)dWshdsh−1 · · ·ds0

))
dt

+ Λ(N)
k−1(t)dWt .

Comparing with equation (9.4) we see that the noise n(N) dt is a weighted sum of
Brownian and integrated Brownian processes.

9.1.2 Introduction of the Mean Field equations

General derivation of the mean field equation

The connectivity weight Ji j are modeled as independent Gaussian random variables.

Their distribution depends only on the population pair α = p(i),β = p( j), and on the
total number of neurons Nβ of population β :

Ji j ∼N
( J̄αβ

Nβ
,

σαβ√
Nβ

)
.

We are interested in the limit law when N → ∞ of the vector V(N) under the joint

law of the connectivities and the Brownian motions, which we call the mean field

limit. This law can be described by a set of P equations, the mean field equations.
As mentioned in the introduction these equations can be derived in several ways,

either heuristically as in the work of Amari [7, 8], Sompolinsky [57, 240], and Cessac

[46, 233], or rigorously as in the work of Ben-Arous and Guionnet [20, 21, 122]. We

derive them here in a pedestrian way, prove that they are well-posed, and provide an

algorithm for computing their solution.

The effective description of the network population by population is possible be-

cause the neurons in each population are interchangeable, i.e. have the same proba-

bility distribution under the joint law of the multidimensional Brownian motion and

the connectivity weights. This is the case because of the form of equation (9.8).

The Mean Field equations We note C([t0,T ],RP) (respectively C((−∞,T ],RP)) the
set of continuous functions from the real interval [t0,T ] (respectively (−∞,T ]) to R

P. By

assigning a probability to subsets of such functions, a continuous stochastic process

X defines a positive measure of unit mass onC([t0,T ],RP) (respectively C((−∞,T ],RP)).
This set of positive measures of unit mass is noted M +

1 (C([t0,T ],RP)) (respectively
M +

1 (C((−∞,T ],RP)).

We now define a process of particular importance for describing the limit process:

the effective interaction process.

Definition 9.1.1 (Effective Interaction Process). Let X ∈M +
1 (C([t0,T ],RP)) (resp. M +

1 (C((−∞,T ],RP))
be a given stochastic process. The effective interaction term is the Gaussian process

UX ∈ M +
1 (C([t0,T ],RP×P)), (resp.

M +
1 (C((−∞,T ],RP×P)) statistically independent of the external noise (Wt)t≥t0 and of

the initial condition Xt0 (when t0 >−∞), defined by:
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E[UX
αβ (t)

]
= J̄αβ mX

αβ(t) where mX
αβ (t)

def
= E[Sαβ (Xβ (t))];

Cov(UX
αβ (t),UX

αβ (s)) = σ2
αβ ∆X

αβ (t,s) where

∆X
αβ (t,s)

def
= E

[
Sαβ (Xβ (t))Sαβ (Xβ (s))

]
;

Cov(UX
αβ (t),UX

γδ (s)) = 0 if α 6= γ or β 6= δ .

(9.9)

Choose P neurons i1, . . . , iP, one in each population (neuron iα belongs to the popu-
lation α). Then it can be shown, using either a heuristic argument or large deviations
techniques (see section 9.1.3), that the sequence of processes

(
Ṽ(N)(t) = [Ṽ (N)

i1 (t), . . . ,Ṽ (N)
iP (t)]Tt≥t0

)
N≥1

converges in law to the process Ṽ(t) = [Ṽ1(t), . . . , ṼP(t)]Tt≥t0 solution of the following

mean field equation:

dṼ(t) =
(

L(t)Ṽ(t)+ ŨV
t + Ĩ(t)

)
dt + Λ(t) ·dWt , (9.10)

where Ṽ is a kP-dimensional vector containing the P-dimensional vector V and its
k−1 derivatives, and L is the Pk×Pk matrix

L(t) =




0P×P IdP · · · 0P×P

0P×P 0P×P
. . . 0P×P

...
... IdP

L0(t) L1(t) · · · Lk−1(t)




,

where IdP is the P×P identity matrix and 0P×P the null P×P matrix. (Wt) is a kP-
dimensional standard Brownian process and:

ŨV
t =




0P
...

0P

UV
t ·1


 Ĩ(t) =




0P
...

0P

I(t)


 Λ(t) = diag(Λ0(t), · · · ,Λk−1(t)).

Thematrices L0, · · · ,Lk−1 (respectively Λ0, · · · ,Λk−1) are obtained by selecting the same

P rows and P columns of the matrices L(N)
0 , · · · ,L(N)

k−1 (respectively Λ(N)
0 , · · · ,Λ(N)

k−1) corre-

sponding to P neurons in different populations, (UV
t ) is the effective interaction pro-

cess associated with V, and I(·) is the P-dimensional external current.
To proceed further we formally integrate the equation using the flow, or resolvent,

of the equation, noted ΦL(t, t0) (see appendix E.1), and we obtain, since we assumed L
continuous, an implicit representation of V:

Ṽ(t) = ΦL(t, t0)Ṽ(t0)+
∫ t

t0
ΦL(t,s) ·

(
ŨV

s + Ĩ(s)
)

ds+
∫ t

t0
ΦL(t,s) ·Λ(s)dWs (9.11)

9.1.3 Derivation of the Mean Field equations

There have been many attemps in order to rigorously or heuristically prove the Mean-

field equations from first principles. The most classical heuristic proof is provided by
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the use of the local chaos hypothesis. To our knowledge, the only rigorous proof was

provided by Ben-Arous and Guionnet. We provide these two proofs, and prove that

the local chaos hypothesis leads to contradictions, whereas the rigorous approach

based on large deviation techniques leads to a more complex equation which can be

interpreted as our MFE.

The local chaos hypothesis method

The mean field equations can be obtained heuristically under the local chaos hy-

pothesis, assuming that in the limit N → ∞, the neural network behaves as if the
(Vi)i∈{1,...,N} were asymptotically independent and also independent of the synaptic
weights Ji j. This hypothesis has been widely discussed. For instance the aging phe-

nomenon widely studied (see e.g. [18, 19, 134]. We show also that hypothesis leads

very fast a to contradiction. This is why we will turn to more rigorous approaches in

the next subsection.

Let us derive under this hypothesis the limit of the microscopic equations (9.15)

when the number of neurons tends to infinity. More precisely, we assume that the

process converges to a continuous process which has the asymptotic independence

property and we characterize the limiting distribution. This proof is based on the

theory of the convergence in law of processes [23].

Proposition 9.1.1. Let i(N)
1 , . . . , i(N)

P be P neurons among the N neurons of the total

population, where the neuron i(N)
α belongs to the population α . Assume that the se-

quence of P-dimensional processes V(N) := (V (N)

i(N)
1

(t), . . . ,V (N)

i(N)
P

(t))T
t≥0 converges in law to

a continuous process (V(t))t having pairwise independent components and which is

independent of the synaptic weights Ji j. and that for all ε > 0 and η > 0 there exists
δ > 0 such that

limsupP{ sup
|t−s|<δ

‖V(t)−V(s)‖> η

}
< ε (9.12)

Then the microscopic interaction process

UN
αβ :=

Nβ

∑
j=1

Ji jSαβ
(
Vj(t)

)

converges in law when N→∞ to the effective interaction process defined in definition
9.1.1

Heuristic proof. We give here a a heuristic argument usually provided to derive the

MFE. As we will see, the main approximation done is to consider that the asymptotic

independence coming from the local chaos hypothesis is true for N big but finite.
The convergence to a Gaussian process is a direct consequence of the functional

central limit theorem, which applies when condition (9.12) is satisfied (see e.g. [216]),

under the condition that the finite dimensional distribution converge.

The heuristic proof of this property requires two steps. The first step consists in

proving the tightness of the sequence of processes (UN
α ,β )N≥0 for given integers α ,β ,

and the second to identify the possible limits of this process.

The tightness can be proved by using Aldous’ criterion of tightness in the Sko-

rokhod space (see [23]). Let α and β be fixed integers in {1, . . . , P}. We denote by V N
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the process of membrane potential for a network of N neurons. This criterion ensures
us that it is enough to prove that the sequence of processes satisfies the property:

lim
|t−s|→0

sup
N
E[∣∣∣UN

α ,β (t)−UN
α ,β (s)

∣∣∣
2 ∣∣∣Fs

]
= 0

This is true for our process, since we have under local chaos hypothesis:

lim
N→∞

E[∣∣∣UN
α ,β (t)−UN

α ,β (s)
∣∣∣
2 ∣∣∣Fs

]
= lim

N→∞
E∣∣∣∣∣ Nβ

∑
j=1

Ji, j
(
Sαβ (Vj(t))−Sαβ (Vj(s))

)
∣∣∣∣∣

2 ∣∣∣Fs




= lim
N→∞

Nβ

∑
j=1

Nβ

∑
k=1

E[Ji, j Ji,k
(
Sαβ (Vj(t))−Sαβ (Vj(s))

)(
Sαβ (Vk(t))−Sαβ (Vk(s))

)∣∣∣Fs

]

At this point, we assume that the independence property between the membrane

potential and the interaction is valid for N big but fixed. Hence we get:

= lim
N→∞

{
Nβ

∑
j=1

Nβ

∑
k=1
k 6= j

J̄2
αβ

N2
β
E[(Sαβ (Vj(t))−Sαβ (Vj(s))

)(
Sαβ (Vk(t))−Sαβ (Vk(s))

)]

+

Nβ

∑
j=1

σ2
αβ

Nβ
E[(Sαβ (Vj(t))−Sαβ (Vj(s))

)2
]}

= lim
N→∞

{
Nβ

∑
j=1

Nβ

∑
k=1
k 6= j

J̄2
αβ

N2
β
E[(Sαβ (Vj(t))−Sαβ (Vj(s))

)]E[(Sαβ (Vk(t))−Sαβ (Vk(s))
)]

+

Nβ

∑
j=1

σ2
αβ

Nβ
E[(Sαβ (Vj(t))−Sαβ (Vj(s))

)2
]}

≤max
α ,β

J̄2
αβE[(Sαβ (Vj(t))−Sαβ (Vj(s))

)]2
+max

α ,β
σ2

αβE[(Sαβ (Vj(t))−Sαβ (Vj(s))
)2
]

−→
|t−s|→0

0

since we assumed that the process V N converged in law to a continuous process.

Moreover, for a fixed finite N, we have

sup
n≤N

E[∣∣∣Un
α ,β (t)−Un

α ,β (s)
∣∣∣
2 ∣∣∣Fs

]
−→
|t−s|→0

0

By the continuity of each process of the sum.

Hence we complete the simple Aldous-like criterion:

sup
N∈N

E[∣∣∣UN
α ,β (t)−UN

α ,β (s)
∣∣∣
2 ∣∣∣Fs

]
−→
|t−s|→0

0

Hence by a simplified version of Aldous’ theorem [23], we conclude that the se-

quence is tight. By Prohorov’s theorem, we know that the sequence (UN
α ,β )N≥0 is locally

compact, and thus from each subsequence we can extract a converging subsequence.

Identifying the finite dimensional asymptotic process is an application of the law

of large numbers and of the central limit theorem. Indeed, let n ∈ N and (t1, . . . , tn) ∈
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R
n. We consider the sequence of finite dimensional random variables

(
(UN

α ,β (t1))α ,β∈{1, ...,P}, . . . , (U
N
α ,β (tn))α ,β∈{1, ...,P}

)
N .

It can be considered as a sum of independent identically distributedmulti-dimensional

random variables when N→∞ under the approximation that the independence is true
for N big (but finite), and hence the central limit theorem applies. We have:

lim
N→∞

E(UN
α ,β (t)

)
= lim

N→∞
E( Nβ

∑
j=1

Ji, jSαβ (Vj(t))
)

= lim
N→∞

Nβ

∑
j=1

E(Ji, jSαβ (Vj(t))
)

= lim
N→∞

1
Nβ

Nβ

∑
j=1

J̄αβ mβ (t)

= J̄αβ mβ (t)

The covariance reads, for α(i) = α and α(l) = γ :

lim
N→∞

Cov
(

UN
α ,β (t), UN

γ ,δ (s)
)

=

lim
N→∞

E({ Nβ

∑
j=1

Ji, jSαβ (Vj(t))−
J̄αβ

Nβ
mβ (t)

}
×
{

Nδ

∑
k=1

Jl,kSδ (Vk(t))−
J̄γδ

Nδ
mδ (t)

})

= lim
N→∞

E({ Nβ

∑
j=1

(Ji, j−
J̄αβ

Nβ
)Sαβ (Vj(t))+

J̄αβ

Nβ
(Sαβ (Vj(t))−mβ (t))

}

×
{

Nδ

∑
k=1

(Jl,k−
J̄γδ

Nδ
)Sδ (Vk(t))+

J̄γδ

Nδ
(Sδ (Vk(t))−mδ (t))

})

= lim
N→∞

Nβ

∑
j=1

Nδ

∑
k=1

[1α=γ ,β=δ , j=k

σ2
αβ

Nβ
E(Sαβ (Vj(t))Sδ (Vk(s))

)
+

J̄αβ

Nβ

J̄γ ,δ

Nδ
Cov

(
Sαβ (Vj(t)),Sδ (Vk(s))

)
]

Under the local chaos hypothesis and since the law of Vj,Vk only depend on their

population Cov
(
Sαβ (Vj(t)),Sδ (Vk(s))

)
= Cov

(
Sαβ (Vj(t)),Sδ (Vk(s))

)1β=δ , j=k, we obtain:

lim
N→∞

Cov
(

UN
α ,β (t), UN

γ ,δ (s)
)

=

= lim
N→∞

1α=γ ,β=δ

[
σ2

αβE(Sαβ (Vj(t))Sαβ (Vj(s))
)

+

Nβ

∑
j=1

J̄2
αβ

N2
β

Cov(Sαβ (Vj(t)),Sαβ (Vj(s)))

]

= 1α=γ ,β=δ σ2
αβE(Sαβ (Vβ (t))Sαβ (Vβ (s))

)

Eventually, the limit of the interaction term is identified. Using this result, we

know, for instance integrating formally the equation (9.15) that the process converges

in law to the solution of the equation (9.16), and hence the theorem is proved.
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This proof is based under the assumption of two limit can be commuted. This

property is not always ensured, and even in the present case, this assumption leads

to contradictions. Indeed, using the same type of calculations, one can prove that the

effective interaction process is statistically independent of the membrane potential V ,
which is not the case. In details, since both the membrane potential and the effective

interaction terms are Gaussian processes, we only have to show that their correlation

is null. This is true since, if we take i neuron of class γ and α ,β ∈ {1, . . . ,P}. Let k a
neuron of population α . We have:

Cov(Vi(t),Uα ,β (s)) = Cov(Vi(t), lim
N→∞

Nβ

∑
j=1

Jk, jSαβ (Vj(s)))

= lim
N→∞

Nβ

∑
j=1

Cov(Vi(t),Jk, jSαβ (Vj(s)))

= 0.

In going from the first to the second line we made the approximation that the limit

and the expectation commuted. Under the same approximation as before, i.e. inde-

pendence of the processes and the connectivity weights for N big, the only term that
is possibly non-vanishing is the correlation between Vi(t) and Jk,iVi(s) if β = γ . But this
term is scaled by 1

Nβ
and hence the correlation vanishes.

This assumption and this type of calculations are therefore very slippery, and this

is why we now turn to a more rigorous approach.

Large deviations techniques

Gérard Ben-Arous and Alice Guionnet studied from a mathematical point of view the

problem of finding a mean-field description of large networks of spin glasses. They

obtained using different methods of stochastic analysis a weak limit of the law of a

given spin and proved their independence.

Our equations do not directly fit in their study: indeed, the spin intrinsic dynamics

is nonlinear while the interaction is linear, and everything in done in dimension one.

Nevertheless, their proof extends to our case which is somehow more simple. For

instance in the case of the Simple Model with one population, we can readily adapt

their proof in our case. More precisely, let P = 1, the equation of the network reads:

τdV j
t = (−V j

t +
N

∑
i=1

Ji jS(V i
t ))dt + σdW j

t

In this case, we define for X ∈M +
1 (C([t0,T ],R) the effective interaction term (UX

t )
which is the effective interaction process defined in 9.1.1, i.e. the Gaussian process of

mean J̄αβE [S(Xt)] and of covariance: Cov
(

UX
t , UX

s

)
=: σ2

αβE [S(Xt)S(Xs)].

Let us note P the law of the membrane potential when there is no interaction

(it is an Ornstein-Ulhenbeck process), and the empirical measure V̂ N = 1
N ∑N

i=1 δV i . We

can prove that under the probability distribution averaged over the connectivities,

see below, the empirical measure satisfies a large deviation principle with good rate

function H defined as in [122]. Using this large deviation result, we can prove an-
nealed and quenched tightness of the empirical measure, and finally its convergence
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towards the unique process where the good rate function H achieves its unique min-
imum, which is defined by the property of having a density with respect to P and

whose density satisfies the implicit equation:

Q≪P
dQ
dP

= E

[
exp

{∫ T

0
UQ

t dWt −
1
2

∫ T

0
(UQ

t )2 dt

}]
(9.13)

where E denotes the expectation over the effective interaction process UQ.

We can also prove following the steps of Ben-Arous and Guionnet in [21] that

there exists a unique solution to this equation, and that this solution satisfies the

nonlinear nonmarkovian stochastic differential equation:





τdVt =−Vt dt + dBt

dBt = dWt +
∫ t

0 dBsE

[
UQ

s UQ
t

exp{− 1
2

∫ t
0(UQ

u )2du}
E [exp{− 1

2

∫ t
0(UQ

u )2du}]

]

Law of (V ) = Q, law of (V0) = Z0

(9.14)

which can also be written as our mean field equation, averaged on the connectivities

(see [20]). More precisely, let LV be the law of the solution of the equation:

{
τdVt =−Vtdt + dWt +UV

t dt

Law of V0 = Z0
,

which is exactly equation (9.16). They prove that V satisfies the nonlinear equation:

V
L
=E (LV )

This result also readily extends to the multi-population case. The only difference

is that one is lead to make use of the multi-dimensional Girsanov’s theorem. The

principle of the proof is exactly the same, and the proof that the resulting H function
is good rate function is provided by the original proof for spin glasses.

9.1.4 Neural Network Models

We now introduce quite frequently used neural mass models which are one of the

motivations of the present chapter.

Example: The Simple Model

In the Simple Model, each neuron membrane potential decreases exponentially to

its rest value if it receives no input, with a time constant τα depending only on the

population. The noise is modeled by an independent Brownian process per neuron

whose standard deviation is the same for all neurons belonging to a given population.

Hence the dynamics of a given neuron i from population α of the network reads:

dV (N)
i (t) =

[
− V (N)

i (t)
τα

+
P

∑
β=1

Nβ

∑
j=1

Ji jSαβ
(
V (N)

j (t)
)
+ Iα(t)

]
dt

+ sαdW(i)(t). (9.15)
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This is a special case of equation (9.10) where k = 1 and L =−diag( 1
τ1

, · · · , 1
τP

), ΦL(t, t0) =

diag(e−(t−t0)/τ1, · · · ,e−(t−t0)/τP), and Λ = diag(s1, · · · ,sP). The corresponding mean field
equation reads:

dVα(t) =
(
− Vα

τα
(t)+

P

∑
β=1

UV
αβ (t)+ Iα(t)

)
dt + sαdWα(t), ∀α ∈ {1, . . . , P}, (9.16)

where the processes (Wα(t))t≥0 are independent standard Brownian motions, UV (t) =
(UV

αβ (t); α ,β ∈ {1, . . . , P})t is the effective interaction term.

This equation can be integrated implicitly and we obtain the following integral

representation of the process Vα(t):

Vα(t) = e−(t−t0)/ταVα(t0)+

∫ t

t0
e−(t−s)/τα

( P

∑
β=1

UV
αβ (s)+ Iα(s)

)
ds

+ sα

∫ t

t0
e−(t−s)/τα dWα (s)

)
(9.17)

where t0 is the initial time. It is an implicit equation on the probability distribution
of V(t), a special case of (9.11).

The Jansen and Rit’s model

One of the motivations of this study is to characterize the global behavior of an as-

sembly of neurons in particular to get a better understanding of non-invasive cortical

signals like EEG or MEG. One of the classical models of neural masses is Jansen and

Rit’s mass model [149], in short the JR model (see figure 9.1).

Themodel features a population of pyramidal neurons (central part of figure 9.1.a.)

that receives excitatory and inhibitory feedback from local inter-neurons and an ex-

citatory input from neighboring cortical units and sub-cortical structures such as the

thalamus. The excitatory input is represented by an arbitrary average firing rate

p(t) that can be stochastic (accounting for a non specific background activity) or de-
terministic, accounting for some specific activity in other cortical units. The transfer

functions he and hi of figure 9.1 convert the average firing rate describing the input to

a population into an average excitatory or inhibitory post-synaptic potential (EPSP

or IPSP). They correspond to the synaptic integration.

In the model introduced originally by Jansen and Rit, the connectivity weights

were assumed to be constant, equal to their mean value (it is the constantsCi, i = 1. . .4
in figure 9.1). Nevertheless, there exists a variability on these coefficients, and as we

will see in the sequel, the effect of the connectivity variability impacts the solution

at the level of the neural mass. Statistical properties of the connectivities have been

studied in details for instance in [28]. In our model we consider these connectivities

as independent Gaussian random variables of mean and standard deviation equal to

the ones found in [28].

We now use diagram 9.1 to derive the membrane potential expressions. We con-

sider a network of N neurons belonging to the three populations described. We denote
by P (resp E, I) the pyramidal (respectively excitatory, inhibitory) populations. We
choose in population P (respectively populations E, I) a particular pyramidal neuron



298 CHAPTER 9. MEANFIELD ANALYSIS

(a) Populations involved in Jansen’s model (b) Block diagram

Figure 9.1: a. Neural mass model: a population of pyramidal cells interacts with

two populations of inter-neurons: an excitatory one and an inhibitory one. b. Block

representation of the model. The h boxes account for the synaptic integration between

neuronal populations. S boxes simulate cell bodies of neurons by transforming the
membrane potential of a population into an output firing rate. The coefficients Jαβ
are the random synaptic efficiency of population β on population α (P is the pyramidal
population, E the excitatory and I the inhibitory ones).

(respectively excitatory, inhibitory interneuron) indexed by ipyr (respectively iexc, iinh ).

The equations of their activity variable read:





AN
ipyr

= he ∗S( ∑
j Exc

Ji jA
N
j + he ∗ p(·)+ ∑

j Inh

Ji jA
N
j )

AN
iexc

= he ∗S( ∑
j Pyr

Ji jA
N
j )

AN
iinh

= hi ∗S( ∑
j Pyr

Ji jA
N
j )

This is therefore an activity-based model. As stated before, it is equivalent via a

change of variable to a voltage-based model, with the same connectivity matrix, the

same intrinsic dynamics, and modified inputs (see section 9.1.1).

In the mean field limit, denoting by AP (respectively AE , AI) the activity of the

pyramidal neurons (resp excitatory, inhibitory interneurons), we obtain the following

activity equations:
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AP = he ∗S(UPE + he ∗ p+UPI)

AE = he ∗S(UEP)

AI = he ∗S(UIP)

(9.18)

where U = (Ui j)i, j∈{P,E,I} is the effective interaction process associated with this prob-
lem, i.e. a Gaussian process of means:





E [UEP] = J̄EPE [AE ]E [UIP] = J̄IPE [AI]E [UPI] = J̄PIE [AP]E [UPE ] = J̄PEE [AP]

and whose covariance matrix can be deduced from (9.9). The voltage-based model

can be deduced from this activity-based description using a simple change of variable

as stated previously. Note that the change of variable is possible since the activity

current IA is equal to he ∗ p and, as shown in section 9.1.1, IA is smooth enough so that

we can apply to it the suitable differential operator. p is the corresponding voltage
current IV .
Let us now instantiate the synaptic dynamics and compare the mean field equa-

tion with Jansen’s population equations (sometimes improperly called also mean field

equations).

The simplest model of synaptic integration is a first-order integration, which

yields exponential post-synaptic potentials:

h(t) =

{
αe−βt t ≥ 0
0 t < 0

that satisfies the following differential equations

ḣ(t) =−βh(t)+ αδ (t),

In these equations β is the time constant of the synaptic integration and α the
synaptic efficiency. The coefficients named α and β are the same for the pyramidal
and the excitatory population, and different from the ones of the inhibitory synapse.

In the pyramidal or excitatory (respectively the inhibitory) case we have α = A, β = a
(respectively α = B, β = b). Eventually, the sigmoid functions are the same whatever
the populations, and is given by

S(v) =
νmax

1+ er(v0−v)
,

νmax is the maximum firing rate, and v0 is a voltage reference.

With this synaptic dynamics we obtain the first-order Jansen and Rit’s equation:





dAP
dt (t) =−aAP(t)+ AS(UPE +UPI + he ∗ p(t))

dAE
dt (t) =−aAE(t)+ AS(UEP)

dAI
dt (t) =−bAI(t)+ BS(UIP)

. (9.19)

while the “original” Jansen and Rit’s equation [114, 149] reads:




dAP
dt (t) =−aAP(t)+ AS(C2AE(t)−C4AI(t)+ he ∗ p(t))

dAE
dt (t) =−aAE(t)+ AS(C1AP(t))

dAI
dt (t) =−bAI(t)+ BS(C3AP(t))

. (9.20)
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Hence the original JR equation amounts to computing the expectation of the ac-

tivity in each population and to assume thatE [S(UP E +UPI + he ∗ p(t))] = S(E [UPE +UPI + he ∗ p]),

which is a quite sharp assumption given that the sigmoidal function is nonlinear.

A higher order model was introduced to better account for the synaptic integration

and to better reproduce the characteristics of real EPSPs and IPSPs by van Rotter-

dam and colleagues [275]. In this model the PSP satisfies a second order differential

equation:

h(t) =

{
αβ te−βt t ≥ 0
0 t < 0

,

solution of the differential equation ÿ(t) = αβδ (t)−2β ẏ(t)−β 2y(t). With this type of
synaptic integration, we obtain the following mean field equations:





d2AP
dt2 (t) = AaS(UPE +UPI + he ∗ p(t))−2adAP

dt (t)−a2AP(t)
d2AE
dt2 (t) = AaS(UEP)−2adAE

dt (t)−a2AE(t)
d2AI
dt2 (t) = BbS(UIP)−2bdAI

dt (t)−b2AI(t)

(9.21)

while the original system satisfies the equations:





d2AP
dt2 (t) = AaS(C2AE(t)−C4AI(t)+ he ∗ p(t))−2adAP

dt (t)−a2AP(t)
d2AE
dt2 (t) = AaS(C1AP(t))−2adAE

dt (t)−a2AE(t)
d2AI
dt2 (t) = BbC4S(C3AP(t))−2bd2AI

dt2 (t)−b2AI(t)

(9.22)

Here again, going from the mean field equations (9.21) to the neural mass model

(9.22) consists in studying the equation of the mean of the process given by (9.21) and

commuting the sigmoidal function with the expectation.

Note that the introduction of higher order synaptic integrations results in richer

behaviors. For instance, Grimbert and Faugeras [114] showed that some bifurcations

can appear in the second-order JR model giving rise to epileptic like oscillations and

alpha activity, that do not appear in the first order model.

9.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS IN FI-
NITE TIME

The mean field equation (9.11) is an implicit equation of the stochastic process

(V (t))t≥t0. We prove in this section that under some mild assumptions this implicit

equation has a unique solution. This solution is a fixed point in the setM +
1 (C([t0,T ],RkP))

of kP-dimensional processes. We construct a sequence of processes and prove that it
converges in distribution toward this fixed point.

We denote by X the set of random variables (r.v.) with values in R
kP. We first

recall some results on the convergence of random variables and stochastic processes.

9.2.1 Convergence of Gaussian processes

We recall the following result from [25].
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Theorem 9.2.1. Let {Xn}∞
n=1 be a sequence of kP-dimensional Gaussian processes de-

fined on [t0,T ] or on an unbounded interval of R
2. The sequence converges to a Gaus-

sian process X if and only if the following three conditions are satisfied:

• The sequence {Xn}∞
n=1 is uniformly tight.

• The sequence µn(t) of the mean functions converges for the uniform norm.

• The sequence Cn of the covariance operators converges for the uniform norm.

We now define such a sequence of Gaussian processes.

Let us fix Z0, a kP-dimensional Gaussian random variable, independent of the
Brownian.

Definition 9.2.1. Let X an element ofM +
1 (C([t0,T ],RkP)). Let Fk be the function such

that

Fk(X)t = ΦL(t, t0) ·Z0 +
∫ t

t0
ΦL(t,s) ·

(
ŨX

s + Ĩ(s)
)

ds+
∫ t

t0
ΦL(t,s) ·Λ(s)dWs

where ŨX
s and Ĩ(s) are defined in section 9.1.

Note that, by definition, the random process (Fk(X))t∈[t0,T ], k ≥ 1 is the sum of a de-
terministic function (defined by the external current) and three independent random

processes defined by the initial condition, the interaction between neurons, and the

external noise.

Let X be a given stochastic process ofM +
1 (C([t0,T ],RkP)) such that Xt0 = Z0. We define

the sequence of processes {Xn}∞
n=0 ∈M +

1 (C([t0,T ],RkP) by:

{
X0 = X

Xn+1 = Fk(Xn) = F(n)
k (X0).

(9.23)

In the remaining of this section we show that the sequence of processes {F(n)
k (X)}∞

n=0
converges in distribution toward the unique fixed-point Y of Fk.

9.2.2 Existence and uniqueness of solution for the mean field equa-
tions

The following upper and lower bounds are used in the sequel.

Lemma 9.2.2. We consider the Gaussian process ((UX
t · 1)t)t∈[t0,T ]. UX is defined in

9.1.1 and 1 is the P-dimensional vector with all coordinates equal to 1. We have

∥∥E[UX
t ·1

]∥∥
∞ ≤ µ def

= max
α ∑

β
|J̄αβ |‖Sαβ‖∞ (9.24)

for all t0≤ t ≤ T . The maximum eigenvalue of its covariance matrix is upperbounded

by σ2
max

def
= maxα ∑β σ2

αβ ‖Sαβ‖2∞ where ‖Sαβ‖∞ is the supremum of the absolute value of

Sαβ .

Proof. The proof is straightforward from definition 9.2.1.

2In [25, Chapter 3.8], the property is stated whenever the mean and covariance are defined on a

separable Hilbert space.
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We also note σ2
min

def
= minα ,β σ2

αβ .

The proof of existence and uniqueness of solution, and of the convergence of the

sequence (9.23) is in two main steps. We first prove that the sequence of Gaussian

processes {F (n)
k (X)}∞

n=0, k ≥ 1 is uniformly tight by proving that Kolmogorov’s crite-
rion for tightness holds. This takes care of condition 1) in theorem 9.2.1. We next

prove that the sequences of the mean functions and covariance operators are Cauchy

sequences for the uniform norms, taking care of conditions 2) and 3).

Theorem 9.2.3. The sequence of processes
{

F(n)
k (X)

}∞

n=0
, k ≥ 1 is uniformly tight.

Proof. We use Kolmogorov’s criterion for tightness and do the proof for k = 1, the case
k > 1 is similar. If we assume that n≥ 1 and s < t we have

F(n)
1 (X)t −F(n)

1 (X)s = (ΦL(t, t0)−ΦL(s, t0))Xt0

+

∫ s

t0
(ΦL(t,s)− Id)ΦL(s,u)U

F (n−1)
1 (X)

u ·1du+

∫ t

s
ΦL(t,u)U

F (n−1)
1 (X)

u ·1du

+
∫ s

t0
(ΦL(t,s)− Id)ΦL(s,u)Λ(u)dWu +

∫ t

s
ΦL(t,u)Λ(u)dWu

+
∫ s

t0
(ΦL(t,s)− Id)ΦL(s,u)I(u)du+

∫ t

s
ΦL(t,u)I(u)du

and therefore (Cauchy-Schwarz and Jensen’s inequalities):

1
7
‖F (n)

1 (X)t −F(n)
1 (X)s‖2≤ ‖ΦL(t, t0)−ΦL(s, t0)‖2‖Xt0‖2

+(s− t0)‖ΦL(t,s)− Id‖2
∫ s

t0
‖ΦL(s,u)‖2‖UF (n−1)

1 (X)
u ·1‖2 du

+(t− s)
∫ t

s
‖ΦL(t,u)‖2‖UF (n−1)

1 (X)
u ·1‖2 du

+

∥∥∥∥
∫ s

t0
ΦL(s,u)(ΦL(t,s)− Id)Λ(u)dWu

∥∥∥∥
2

+

∥∥∥∥
∫ t

s
ΦL(t,u)Λ(u)dWu

∥∥∥∥
2

+(s− t0)
2‖ΦL(t,s)− Id‖2I2

max sup
u∈[t0,s]

‖ΦL(s,u)‖2

+(t− s)2I2
max sup

u∈[s,t]
‖ΦL(t,u)‖2.

Because ‖ΦL(t, t0)−ΦL(s, t0)‖ ≤ |t − s|‖L‖ we see that all terms in the righthand
side of the inequality but the two involving the Brownian motion are of the order

of (t− s)2. We raise again both sides to the second power, use the Cauchy-Schwarz

inequality again, and take the expected value:
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1
73E[‖F (n)

1 (X)t −F(n)
1 (X)s‖4

]
≤ ‖ΦL(t, t0)−ΦL(s, t0)‖4E[‖Xt0‖4

]

+(s− t0)
3‖ΦL(t,s)− Id‖4

∫ s

t0
‖ΦL(s,u)‖4E[‖UF (n−1)

1 (X)
u ·1‖4

]
du

+(t− s)3
∫ t

s
‖ΦL(t,u)‖4E[‖UF(n−1)

1 (X)
u ·1‖4

]
du

+E[∥∥∥∥∫ s

t0
ΦL(s,u)(ΦL(t,s)− Id)Λ(u)dWu

∥∥∥∥
4
]

+E[∥∥∥∥∫ t

s
ΦL(t,u)Λ(u)dWu

∥∥∥∥
4
]

(9.25)

+(s− t0)
4‖ΦL(t,s)− Id‖4 sup

u∈[t0,s]
‖ΦL(s,u)‖4I4

max

+(t− s)4I4
max sup

u∈[s,t]
‖ΦL(t,u)‖4.

Remember that UF(n−1)
1 (X)

u · 1 is a P-dimensional diagonal Gaussian process, noted
Yu, therefore: E[‖Yu‖4

]
= ∑

α
E[Yα(u)4]+ ∑

α1 6=α2

E[Y 2
α1

(u)
]E[Y 2

α2
(u)
]
.

The second order moments are upperbounded by some regular function of µ and σmax

(defined in lemma 9.2.2) and, because of the properties of Gaussian integrals, so are

the fourth order moments.

Let us now evaluate E[∥∥∥∫ b
a A(u)dWu

∥∥∥
4
]
for some P×P matrix A. We haveE[∥∥∥∥∫ b

a
A(u)dWu

∥∥∥∥
4
]

=E(∥∥∥∥∫ b

a
A(u)dWu

∥∥∥∥
2
)2



=E( P

∑
i=1

(
P

∑
j=1

∫ b

a
Ai j(u)dW j

u

)(
P

∑
k=1

∫ b

a
Aik(u)dW k

u

))2



= ∑
i1,i2, j1, j2,k1,k2

E[∫ b

a
Ai1 j1(u)dW j1

u

∫ b

a
Ai1k1(u)dW k1

u

∫ b

a
Ai2 j2(u)dW j2

u

∫ b

a
Ai2k2(u)dW k2

u

]
.

Because of the properties of the Brownian process, the last term is the sum of

three types of terms:

∑
i1,i2

E[(∫ b

a
Ai1 j(u)dW j

u

)2(∫ b

a
Ai2 j(u)dW j

u

)2
]
≤

∑
i1,i2

E[(∫ b

a
Ai1 j(u)dW j

u

)4
]1/2E[(∫ b

a
Ai2 j(u)dW j

u

)4
]1/2

,
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and

∑
i1,i2, j1 6= j2

E[(∫ b

a
Ai1 j1(u)dW j1

u

)2(∫ b

a
Ai2 j2(u)dW j2

u

)2
]

=

∑
i1,i2, j1 6= j2

E[(∫ b

a
Ai1 j1(u)dW j1

u

)2
]E[(∫ b

a
Ai2 j2(u)dW j2

u

)2
]

,

and

∑
i1,i2, j1 6= j2

E[∫ b

a
Ai1 j1(u)dW j1

u

∫ b

a
Ai2 j1(u)dW j1

u

∫ b

a
Ai1 j2(u)dW j2

u

∫ b

a
Ai2 j2(u)dW j2

u

]
=E[∫ b

a
Ai1 j1(u)dW j1

u

∫ b

a
Ai2 j1(u)dW j1

u

]E[∫ b

a
Ai1 j2(u)dW j2

u

∫ b

a
Ai2 j2(u)dW j2

u

]
,

Because of the properties of the stochastic integral,
∫ b

a Ai1 j(u)dW j
u = N (0,

(∫ b
a A2

i1 j(u)du
)1/2

)

hence, because of the properties of the Gaussian integralsE[(∫ b

a
Ai1 j(u)dW j

u

)4
]

= k

(∫ b

a
A2

i1 j(u)du

)2

,

for some positive constant k. MoreoverE[(∫ b

a
Ai1 j1(u)dW j1

u

)2
]

=
∫ b

a
A2

i1 j1(u)du,

and E[∫ b

a
Ai1 j1(u)dW j1

u

∫ b

a
Ai2 j1(u)dW j1

u

]
=
∫ b

a
Ai1 j1(u)Ai2 j1(u)du.

This shows that the two termsE[∥∥∫ s
t0(ΦL(t,s)− Id)ΦL(s,u)Λ(u)dWu

∥∥4
]
andE[∥∥∫ t

s ΦL(t,u)Λ(u)dWu
∥∥4
]

in (9.25) are of the order of (t− s)1+a where a≥ 1. Therefore we haveE[‖F (n)
1 (X)t −F(n)

1 (X)s‖4
]
≤C|t− s|1+a, a≥ 1

for all s, t in [t0,T ], where C is a constant independent of t, s. According to Kolmogorov

criterion for tightness, the sequence of processes
{

F(n)
1 (X)

}∞

n=0
is uniformly tight.

The proof for Fk, k > 1 is similar.

Let us note µn(t) (respectively Cn(t,s)) the mean (respectively the covariance matrix)
function of Xn = Fk(Xn−1), n≥ 1. We have:

Cn+1(t,s) = ΦL(t, t0)ΣZ0ΦL(s, t0)
T +

∫ t∧s

t0
ΦL(t,u)Λ(u)Λ(u)T ΦL(s,u)T du+

∫ t

t0

∫ s

t0
ΦL(t,u)cov

(
ŨXn

u ,ŨXn
v

)
ΦL(s,v)

T dudv (9.26)

Note that the kP× kP covariance matrix cov
(

ŨXn
u ,ŨXn

v

)
has only one nonzero P× P

block:

cov
(

ŨXn
u ,ŨXn

v

)
kk

= cov
(
UXn

u ·1,UXn
v ·1

)
,
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We have

cov
(
UXn

u ·1,UXn
v ·1

)
= diag

(

∑
β

σ2
αβE[Sαβ (Xnβ (u))Sαβ (Xnβ (v))

]
)

,

andE[Sαβ (Xn(u))Sαβ (Xn(v))
]
=

∫

R2
Sαβ

(√
Cn

ββ (u,u)Cn
ββ (v,v)−Cn

ββ (u,v)2

√
Cn

ββ (u,u)
x+

Cn
ββ (u,v)

√
Cn

ββ (u,u)
y+ µn

β (v)

)

Sαβ

(
y
√

Cn
ββ (u,u)+ µn

β (u)
)

DxDy, (9.27)

where

Dx =
1√
2π

e−
x2
2 dx.

Similarly we have

µn(t) = ΦL(t, t0)µZ0 +
∫ t

t0
ΦL(t,u)

(E[ŨXn
u

]
+ Ĩ(u)

)
du =

ΦL(t, t0)µZ0+

∫ t

t0
ΦL(t,u)




0T

P , · · · ,0T
P ,

[

∑
β

J̄αβ

∫

R

Sαβ

(
x
√

Cn
ββ (u,u)+ µn

β (u)
)]

α=1,··· ,P




T

+ Ĩ(u)


 Dxdu

We require the following four lemmas.

Lemma 9.2.4. For all α = 1, · · · ,P and n ≥ 1 the quantity Cn
αα(s,s)Cn

αα (t, t)−Cn
αα(t,s)2

is lowerbounded by the positive symmetric function:

θ(s, t) = |t− s|λ 2
minλ ΣZ0

minλ Γ
min,

where λmin is the smallest singular value of the positive symmetric definite matrix

ΦL(t, t0)ΦL(t, t0)T for t ∈ [t0,T ], λ ΣZ0
min is the smallest eigenvalue of the positive symmetric

definite covariance matrix ΣZ0, and λ Γ
min is the smallest singular value of the matrix

Λ(u) for u ∈ [t0,T ].

Proof. We use equation (9.26) which we rewrite as follows, using the group property

of the resolvent ΦL :

Cn+1(t,s) = ΦL(t, t0)

(
ΣZ0 +

∫ t∧s

t0
ΦL(t0,u)Λ(u)Λ(u)T ΦL(t0,u)T du+

∫ t

t0

∫ s

t0
ΦL(t0,u)cov

(
ŨXn

u ,ŨXn
v

)
ΦL(t0,v)

T dudv

)
ΦL(t0,s)

T .

We now assume s < t and introduce the following notations, dropping the index n for
simplicity:

A(s) = ΣZ0 +
∫ s

t0 ΦL(t0,u)Λ(u)Λ(u)T ΦL(t0,u)T du
B(s, t) =

∫ t
s ΦL(t0,u)Λ(u)Λ(u)T ΦL(t0,u)T du

a(t,s) =
∫ t

t0

∫ s
t0 ΦL(t0,u)cov

(
ŨXn

u ,ŨXn
v

)
ΦL(t0,v)T dudv
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Let eα , α = 1, · · · ,kP, be the unit vector of the canonical basis whose coordinates are all
equal to 0 except the αth one which is equal to 1. We note Eα(t) the vector ΦL(t, t0)T eα .

We have
Cαα(t,s) = Eα(t)T (A(s)+ a(t,s))Eα(s)
Cαα(s,s) = Eα(s)T (A(s)+ a(s,s))Eα (s)
Cαα(t, t) = Eα(t)T (A(s)+ B(s, t)+ a(t, t))Eα (t).

Note that the last expression does not depend on s, since A(s)+ B(s, t) = A(t), which is
consistent with the first equality. The reason why we introduce s in this expression is
to simplify the following calculations.

The expression Cαα(s,s)Cαα(t, t)−Cαα(t,s)2 is the sum of four sub-expressions:

e1(s, t) =
(
Eα(s)T A(s)Eα(s)

)(
Eα(t)T A(s)Eα(t)

)
−
(
Eα(t)T A(s)Eα(s)

)2
,

which is greater than or equal to 0 because A(s) is a covariance matrix,

e2(s, t) =
(
Eα(s)T a(s,s)Eα (s)

)(
Eα(t)T a(t, t)Eα (t)

)
−
(
Eα(t)T a(t,s)Eα (s)

)2
,

which is also greater than or equal to 0 because a(t,s) is a covariance matrix function,

e3(s, t) =
(
Eα(s)T A(s)Eα(s)

)(
Eα(t)T a(t, t)Eα (t)

)
+

(
Eα(t)T A(s)Eα(t)

)(
Eα(s)T a(s,s)Eα (s)

)
−

2
(
Eα(t)T A(s)Eα(s)

)(
Eα(t)T a(t,s)Eα (s)

)

Because a(t,s) is a covariance matrix function we have

Eα(t)T a(t, t)Eα (t)+ Eα(s)T a(s,s)Eα (s)−2Eα(t)T a(t,s)Eα (s)≥ 0,

and , as seen above, e2(s, t)≥ 0. Because e1(s, t) ≥ 0we also have

−
√

Eα(s)T A(s)Eα(s)
√

Eα(t)T A(s)Eα(t)≤ Eα(t)T A(s)Eα(s)≤
√

Eα(s)T A(s)Eα(s)
√

Eα(t)T A(s)Eα(t),

and, as it can be readily verified, this implies e3(s, t)≥ 0.
Therefore we can lowerbound Cαα(s,s)Cαα(t, t)−Cαα(t,s)2 by the fourth subexpres-

sion:

Cαα(s,s)Cαα (t, t)−Cαα(t,s)2 ≥
(
Eα(s)T A(s)Eα(s)

)(
Eα(t)T B(s, t)Eα(t)

)

+
(
Eα(s)T a(s,s)Eα (s)

)(
Eα(t)T B(s, t)Eα(t)

)

≥
(
Eα(s)T A(s)Eα(s)

)(
Eα(t)T B(s, t)Eα(t)

)
,

since B(s, t) and a(s,s) are covariance matrixes. We next have

Eα(s)T A(s)Eα(s) =
Eα(s)T A(s)Eα(s)

Eα(s)T Eα(s)
eT

α ΦL(s, t0)ΦL(s, t0)T eα

eT
α eα

,

by definition of Eα(s). Therefore

Eα(s)T A(s)Eα(s)≥ λ A(s)
min λ ΦL(s,t0)ΦL(s,t0)T

min ≥ λ ΣZ0
minλmin,
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where λC
min is the smallest eigenvalue of the symmetric positive matrix C. Similarly

we have

Eα(t)T B(s, t)Eα(t)≥ λ B(s,t)
min λmin.

Let us write Γ(u) = Λ(u)Λ(u)T . We have

λ B(s,t)
min = min

‖x‖≤1

∫ t

s

xT ΦL(t0,u)Γ(u)ΦL(t0,u)T x
xT x

du

= min
‖x‖≤1

∫ t

s

xT ΦL(t0,u)Γ(u)ΦL(t0,u)T x
xT ΦL(t0,u)ΦL(t0,u)x

xT ΦL(t0,u)ΦL(t0,u)x
xT x

du

≥
∫ t

s
min
‖x‖≤1

(
xT ΦL(t0,u)Γ(u)ΦL(t0,u)T x

xT ΦL(t0,u)ΦL(t0,u)x
xT ΦL(t0,u)ΦL(t0,u)x

xT x

)
du

≥ (t− s)λminλ Γ
min.

Combining these results we have

Cαα(s,s)Cαα (t, t)−Cαα(t,s)2 ≥ |t− s|λ 2
minλ ΣZ0

minλ Γ
min

Lemma 9.2.5. For all t ∈ [t0,T ] all α = 1, · · · ,P, and n≥ 1, we have

Cn
αα(t, t) ≥ k0 > 0.

Proof. Cn
αα(t, t) is larger than (ΦL(t, t0)ΣZ0ΦL(t, t0)T )αα which is larger than the smallest

eigenvalue of the matrix ΦL(t, t0)ΣZ0ΦL(t, t0)T . This smallest eigenvalue is equal to

min
x

xT ΦL(t, t0)ΣZ0ΦL(t, t0)T x
xT x

= min
x

xT ΦL(t, t0)ΣZ0ΦL(t, t0)T x
xT ΦL(t, t0)ΦL(t, t0)T x

xT ΦL(t, t0)ΦL(t, t0)T x
xT x

≥min
x

xT ΦL(t, t0)ΣZ0ΦL(t, t0)T x
xT ΦL(t, t0)ΦL(t, t0)T x

min
x

xT ΦL(t, t0)ΦL(t, t0)T x
xT x

.

In the last expression the first term is larger than the smallest eigenvalue λ ΣZ0
min of

the matrix ΣZ0 which is positive definite since we have assumed the Gaussian random

variable Z0 nondegenerate. The second term is equal to the smallest singular value

λmin of the matrix ΦL(t, t0) which is also strictly positive for all t ∈ [t0,T ] by hypothesis,
see appendix E.1, equation (E.6).

We also use the following lemma.

Lemma 9.2.6. The 2n-dimensional integral

In =
∫

[t0,t∨s]2
ρ1(u1,v1)

(∫

[t0,u1∨v1]2
· · ·
(∫

[t0,un−2∨vn−2]2
ρn−1(un−1,vn−1)

(∫

[t0,un−1∨vn−1]2
ρn(un,vn)dundvn

)
dun−1dvn−1

)
· · ·
)

du1dv1,

where the functions ρi(ui,vi), i = 1, · · · ,n are either equal to 1 or to 1/
√

θ(ui,vi), is
upperbounded by kn/(n−1)! for some positive constant k.
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Proof. First note that the integral is well-defined because of lemma 9.2.4. Second,

note that there exists a constant K such that K/
√

θ(u,v)≥ 1 for all (u,v) ∈ [t0, t∨s]2, i.e.

K = λmin

√
λ ΣZ0

minλ Γ
min(T − t0). Therefore the integral is upperbounded by Kn

0, where K0 =

max(1,K) times the integral obtained when ρi(ui,vi) = 1/
√
|ui− vi| for all i = 1, · · · ,n.

Let us then consider this situation. Without loss of generality we assume t0 = 0. The
cases n = 1,2,3 allow one to understand the process.

I1≤ K0

∫

[0,t∨s]2

dudv√
|u− v|

. (9.28)

Let us rotate the axes by −π
4 by performing the change of variables

u =
U +V√

2
,

v =
V −U√

2
.

Using the symmetry of the integrand in s and t and the change of variable, the
integral in the righthand side of (9.28) is equal to (see figure 9.2):

Figure 9.2: The change of coordinates: the integal over the whole square is only

computed in the light color triangle, along the axis U and V .

2
1

21/4

∫ t∨s√
2

0

∫ √2(t∨s)−U

U

dV dU√
U

= 23/4
∫ a/2

0

a−2U√
U

dU = 23/4α1a3/2,

where a =
√

2(t ∨ s) and α1 = 2
√

2
3 .
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Let us now look at I2. It is upperbounded by the factor K2
0(23/4)2α1 times the

integral ∫ a/2

0

∫ a−U

U

(
√

2(u∨ v))3/2
√

U
dUdV.

Since in the area of integration u∨ v = v = V−U√
2
we are led to the product of 2/5 by the

one-dimensional integral

∫ a/2

0

(a−2U)5/2
√

U
dUdV = α2a3,

where α2 = 5
√

2π
32 .

Similarly I3 is upperbounded by the product of K3
0(23/4)3α1α2

2
5

2
8 times the integral

∫ a/2

0

(a−2U)4
√

U
dUdV = α3a9/2,

where α3 = 128
√

2
315 . One easily shows then that:

In ≤ Kn
0F(23/4)n2n

(
n

∏
i=1

αi

)(
1

∏n
j=1(2+3( j−1))

)
.

It can be verified by using a system for symbolic computation that 0 < αi < 1 for all
i≥ 1. One also notices that

n

∏
j=1

(2+3( j−1))≥ 3n−1

2
(n−1)!,

therefore

In ≤ Kn
0(23/4)n2n−13−(n−1) 1

(n−1)!
,

and this finishes the proof.

We now prove the following proposition.

Proposition 9.2.7. The sequences of covariance matrix functionsCn(t,s) and of mean
functions µn(t), s, t in [t0,T ] are Cauchy sequences for the uniform norms.

Proof. We have

Cn+1(t,s)−Cn(t,s) =
∫ t

t0

∫ s

t0
ΦL(t,u)

(
cov
(

ŨXn
u ,ŨXn

v

)
−

cov
(

ŨXn−1
u ,ŨXn−1

v

))
ΦL(s,v)

T dudv.

We take the infinite matrix norm of both sides of this equality and use the upper-

bounds ‖ΦL(t,u)‖∞ ≤ e‖L‖∞(T−t0) = kL and
∥∥ΦL(t,u)T

∥∥
∞ ≤ e‖LT‖∞(T−t0) = kLT (see appendix

E.1) to obtain

∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ ≤ kLkLT

∫ t

t0

∫ s

t0

∥∥∥cov
(

ŨXn
u ,ŨXn

v

)
−cov

(
ŨXn−1

u ,ŨXn−1
v

)∥∥∥
v

∞
dudv

= kLkLT

∫ t

t0

∫ s

t0

∥∥∥cov
(
UXn

u ·1,UXn
v ·1

)
−cov

(
UXn−1

u ·1,UXn−1
v ·1

)∥∥∥
v

∞
dudv. (9.29)
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According to equations (9.27) we are led to consider the difference An−An−1, where:

An
def
=

Sαβ

(
√

Cn
ββ (u,u)Cn

ββ (v,v)−Cn
ββ (u,v)2

√
Cn

ββ (u,u)
x+

Cn
ββ (u,v)

√
Cn

ββ (u,u)
y+ µn

β (v)
)

Sαβ

(
y
√

Cn
ββ (u,u)+ µn

β (u)
)

def
= Sαβ

[
f n
β (u,v)x+ gn

β (u,v)y+ µn
β (v)

]
Sαβ

[
hn

β (u)y+ µn
β (u)

]
.

We write next:

An−An−1 = Sαβ

[
f n
β (u,v)x+ gn

β (u,v)y+ µn
β (v)

]

(
Sαβ

[
hn

β (u)y+ µn
β (u)

]
−Sαβ

[
hn−1

β (u)y+ µn−1
β (u)

])
+

Sαβ

[
hn−1

β (u)y+ µn−1
β (u)

]

(
Sαβ

[
f n
β (u,v)x+ gn

β (u,v)y+ µn
β (v)

]
−Sαβ

[
f n−1
β (u,v)x+ gn−1

β (u,v)y+ µn−1
β (v)

])
.

The mean value theorem yields:

| An−An−1 |≤
∥∥Sαβ

∥∥
∞

∥∥∥S′αβ

∥∥∥
∞

(
| x | | f n

β (u,v)− f n−1
β (u,v) |+

| y | | gn
β (u,v)−gn−1

β (u,v) |+ | µn
β (v)−µn−1

β (v) |+ | y | | hn
β (u)−hn−1

β (u) |+

| µn
β (u)−µn−1

β (u) |
)
.

Using the fact that
∫ ∞
−∞ | x | Dx =

√
2
π , we obtain:

∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ ≤ kLkLT kC

(√
2
π

∫ t

t0

∫ s

t0

∥∥ f n(u,v)− f n−1(u,v)
∥∥

∞ dudv

+

√
2
π

∫ t

t0

∫ s

t0

∥∥gn(u,v)−gn−1(u,v)
∥∥

∞ dudv

+(t− t0)
∫ s

t0

∥∥µn(v)−µn−1(v)
∥∥

∞ dv+(s− t0)
∫ t

t0

∥∥µn(u)−µn−1(u)
∥∥

∞ du

+

√
2
π

(s− t0)
∫ t

t0

∥∥hn(u)−hn−1(u)
∥∥

∞ du

)
,

where

kC = max
α ∑

β
σ2

αβ
∥∥Sαβ

∥∥
∞

∥∥∥S′αβ

∥∥∥
∞

. (9.30)

A similar process applied to the mean values yields:

∥∥µn+1(t)−µn(t)
∥∥

∞ ≤ kLµ
(∫ t

t0

∥∥hn(u)−hn−1(u)
∥∥

∞ du+

∫ t

t0

∥∥µn(u)−µn−1(u)
∥∥

∞ du
)
.

We now use the mean value theorem and lemmas 9.2.5 and 9.2.4 to find upperbounds

for
∥∥ f n(u,v)− f n−1(u,v)

∥∥
∞,
∥∥gn(u,v)−gn−1(u,v)

∥∥
∞ and

∥∥hn(u)−hn−1(u)
∥∥

∞. We have

|hn
β (u)−hn−1

β (u)| =
∣∣∣
√

Cn
ββ (u,u)−

√
Cn−1

ββ (u,u)
∣∣∣≤ 1

2
√

k0

∣∣∣Cn
ββ (u,u)−Cn−1

ββ (u,u)
∣∣∣ ,
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where k0 is defined in lemma 9.2.5. Hence:

∥∥hn(u)−hn−1(u)
∥∥

∞ ≤
1

2
√

k0

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ .

Along the same lines we can show easily that:

∥∥gn(u,v)−gn−1(u,v)
∥∥

∞ ≤ k
(∥∥Cn(u,v)−Cn−1(u,v)

∥∥
∞ +

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞

)
,

and that:

∥∥ f n(u,v)− f n−1(u,v)
∥∥

∞ ≤
k√

θ(u,v)

(∥∥Cn(u,v)−Cn−1(u,v)
∥∥

∞ +

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ +
∥∥Cn(v,v)−Cn−1(v,v)

∥∥
∞

)
,

where θ(u,v) is defined in lemma 9.2.4. Grouping terms together and using the fact
that all integrated functions are positive, we write:

∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ ≤ k

(∫

[t0,t∨s]2

1√
θ(u,v)

∥∥Cn(u,v)−Cn−1(u,v)
∥∥

∞ dudv

+

∫

[t0,t∨s]2

1√
θ(u,v)

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ dudv

+

∫

[t0,t∨s]2

∥∥Cn(u,v)−Cn−1(u,v)
∥∥

∞ dudv

+

∫

[t0,t∨s]2

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ dudv

+
∫

[t0,t∨s]2

∥∥µn(u)−µn−1(u)
∥∥

∞ dudv

)
. (9.31)

Note that, because of lemma 9.2.5, all integrals are well-defined. Regarding the mean

functions, we write:

∥∥µn+1(t)−µn(t)
∥∥

∞ ≤ k

(∫

[t0,t∨s]2

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ dudv+

∫

[t0,t∨s]2

∥∥µn(u)−µn−1(u)
∥∥

∞ dudv

)
. (9.32)

Proceeding recursively until we reach C0 and µ0 we obtain an upperbound for∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ (respectively for
∥∥µn+1(t)−µn(t)

∥∥
∞) which is the sum of less than

5n terms each one being the product of k raised to a power less than or equal to n, times
2µ or 2Σ (upperbounds for the norms of the mean vector and the covariance matrix),
times a 2n-dimensional integral In given by

∫

[t0,t∨s]2
ρ1(u1,v1)

(∫

[t0,u1∨v1]2
· · ·
(∫

[t0,un−2∨vn−2]2
ρn−1(un−1,vn−1)

(∫

[t0,un−1∨vn−1]2
ρn(un,vn)dundvn

)
dun−1dvn−1

)
· · ·
)

du1dv1,
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where the functions ρi(ui,vi), i = 1, · · · ,n are either equal to 1 or to 1/
√

θ(ui,vi). Accord-
ing to lemma 9.2.6, this integral is of the order of some positive constant raised to the

power n divided by (n−1)!. Hence the sum is less than some positive constant k raised
to the power n divided by (n− 1)!. By taking the supremum with respect to t and s
in [t0,T ] we obtain the same result for

∥∥Cn+1−Cn
∥∥

∞ (respectively for
∥∥µn+1−µn

∥∥
∞).

Since the series ∑n≥1
kn

n! is convergent, this implies that ‖Cn+p−Cn‖∞ (respectively

‖µn+p−µn‖∞) can be made arbitrarily small for large n and p and the sequence Cn

(respectively µn) is a Cauchy sequence.

We can now prove the following theorem

Theorem 9.2.8. For any nondegenerate kP-dimensional Gaussian random variable
Z0 and any initial process X such that X(t0) = Z0, the map Fk has a unique fixed point

in M +
1 (C([t0,T ],RkP)) towards which the sequence {F (n)

k (X)}∞
n=0 of Gaussian processes

converges in law.

Proof. Since C([t0,T ],RkP) (respectively C([t0,T ]2,RkP×kP)) is a Banach space for the
uniform norm, the Cauchy sequence µn (respectively Cn) of proposition 9.2.7 con-

verges to an element µ ofC([t0,T ],RkP) (respectively an elementC ofC([t0,T ]2,RkP×kP)).

Therefore, according to theorem 9.2.1, the sequence {F(n)
k (X)}∞

n=0 of Gaussian pro-

cesses converges in law toward the Gaussian process Y with mean function µ and
covariance function C. This process is clearly a fixed point of Fk.

Hence we know that there there exists at least one fixed point for the map Fk.

Assume there exist two distinct fixed points Y1 and Y2 of Fk with mean functions µi

and covariance functionsCi, i = 1,2, with the same initial condition. Since for all n≥ 1
we have F(n)

k (Yi) = Yi, i = 1,2, the proof of proposition 9.2.7 shows that ‖µn
1−µn

2‖∞ (re-

spectively
∥∥Cn

1−C2
n

∥∥
∞) is upperbounded by the product of a positive number an (respec-

tively bn) with ‖µ1−µ2‖∞ (respectively with ‖C1−C2‖∞). Since limn→∞ an = limn→∞ bn = 0
and µn

i = µi, i = 1,2 (respectively Cn
i = Ci, i = 1,2), this shows that µ1 = µ2 and C1 = C2,

hence the two Gaussian processes Y1 and Y2 are indistinguishable.

Conclusion

We have proved that for any non degenerate initial condition Z0 there exists a unique

solution of the mean field equations. The proof of theorem 9.2.8 is constructive, and

hence provides a way for computing the solution of the mean field equations by iterat-

ing the map Fk, starting from any initial process X satisfying X(t0) = Z0, for instance a

Gaussian process such as an Ornstein-Uhlenbeck process. We build upon these facts

in section 9.4.

Note that the existence and uniqueness is true whatever the initial time t0 and
the final time T .

9.3 EXISTENCE AND UNIQUENESS OF STATIONARY SOLU-
TIONS

So far, we have investigated the existence and uniqueness of solutions of the mean

field equation for a given initial condition. We are now interested in investigating

stationary solutions, which allow for some simplifications of the formalism.
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A stationary solution is a solution whose probability distribution does not change

under the flow of the equation. These solutions have been already investigated by

several authors (see [36, 240]). We propose a new framework to study and simulate

these processes. Indeed we show in this section that under a certain contraction

condition there exists a unique solution to the stationary problem. As in the previous

section our proof is constructive and provides a way to simulate the solutions.

Remark 13. The long-time mean field description of a network is still a great en-

deavor in mathematics and statistical physics. In this section we formally take the

mean field equation we obtained and let t0→−∞. This way we obtain an equation
which is the limit of the mean field equation when t0→−∞. It means that we con-
sider first the limit N → ∞ and then t0→ −∞. These two limits do not necessarily
commute and there are known examples, for instance in spin glasses, where they do

not.

It is clear that in order to get stationary solutions, we have to assume that the

leak matrix L(t) does not depend upon t. Therefore, the resolvent ΦL(t,s) is equal to
eL(t−s). To ensure stability of the solutions and the existence of a stationary process

we also assume that the real parts of its eigenvalues are negative:

Re(λ ) <−λL λL > 0 (9.33)

for all eigenvalues λ of L. This implies that we only consider first-order system since
otherwise the matrix L has eigenvalues equal to 0.
For the same reason, we assume that the noise matrix Λ(t) and the input currents

I(t) are constant in time. We further assume that the matrix Λ has full rank.

Proposition 9.3.1. Under the previous assumptions we have




lim
t0→−∞

eL(t−t0) = 0,
∫ t
−∞
∥∥eL(t−s)

∥∥ ds =
∫ ∞

0

∥∥eLu
∥∥

∞ du
def
= ML < ∞,

∫ t
−∞

∥∥∥eLT (t−s)
∥∥∥

∞
ds =

∫ ∞
0

∥∥∥eLT u
∥∥∥

∞
du

def
= MLT < ∞,

and the process Y t0
t =

∫ t
t0 eL(t−s)Λ · dWs is well-defined, Gaussian and stationary when

t0→−∞.

Proof. The first property follows from the fact that Re(λ ) <−λL for all eigenvalues λ
of L. This assumption also implies that there exists a norm on R

P such that

∥∥eLt
∥∥≤ e−λLt ∀t ≥ 0,

and hence ∥∥eLt
∥∥

∞ ≤ ke−λLt ∀t ≥ 0, (9.34)

for some positive constant k. This implies the remaining two properties.
The stochastic integral

∫ t
t0 eL(t−s)Λ ·dWs is well-defined ∀t ≤ T and is Gaussian with

zero-mean. We note Y t0
t the corresponding process. Its covariance matrix reads:

ΣY
t0
t Y

t0
t′ =

∫ t∧t ′

t0
eL(t−s)ΛΛT eLT (t ′−s) ds.

Let us assume for instance that t ′ < t and perform the change of variable u = t− s to
obtain
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ΣY
t0
t Y

t0
t′ =

(∫ t−t0

t−t ′
eLuΛΛT eLT u du

)
eLT (t ′−t).

Under the previous assumptions this matrix integral is defined when t0 → −∞
(dominated convergence theorem) and we have

ΣY−∞
t Y−∞

t′ =

(∫ +∞

t−t ′
eLuΛΛT eLT u du

)
eLT (t ′−t),

which is a function of t ′− t.

This guarantees that there exists a stationary distribution of the equation:

dX0(t) = L ·X0(t)dt + Λ ·dWt , (9.35)

such that E [X0(t)] = 0. We have

X0(t) =

∫ t

−∞
eL(t−s)Λ ·dWs.

Its covariance matrix Σ0 is equal to ΣY−∞
t Y−∞

t and is independent of t.

We call long term mean field equation (LTMFE) the implicit equation:

V(t) =
∫ t

−∞
eL(t−s)

(
UV

s ·1+ I
)

ds+ X0(t) (9.36)

where X0 is the stationary process defined by equation (9.35) and where UV(t) is the
effective interaction process introduced previously.

We next define the long term function Fstat : M
+
1 (C((−∞,T ],RP)→M +

1 (C((−∞,T ],RP):

Fstat(X)t =
∫ t

−∞
eL(t−s)

(
UX

s ·1+ I
)

ds+ X0(t).

Proposition 9.3.2. The function Fstat is well defined onM +
1 (C((−∞,T ],RP).

Proof. We have already seen that the process X0 is well defined. The term
∫ t
−∞ eL(t−s)Ids =(∫ t

−∞ eL(t−s) ds
)

I is also well defined because of the assumptions on L.
Let X be a given process in M +

1 (C((−∞,T ],RP). To prove the proposition we just
have to ensure that the Gaussian process

∫ t
−∞ eL(t−s)UX

s · 1ds is well defined. This re-
sults from the contraction assumption on L and the fact that the functions Sαβ are

bounded. We decompose this process into a “long memory” term
∫ 0
−∞ eL(t−s)UX

s · 1ds
and the interaction term from time t = 0, namely

∫ t
0 eL(t−s)UX

s ·1ds. This latter term is
clearly well defined. We show that the memory term is also well defined as a Gaus-

sian random variable.

We write this term eLt ∫ 0
−∞ e−LsUX

s ·1ds and consider the second factor. This random

variable is Gaussian, its mean reads
∫ ∞

0 eLsµUX
−s ·1ds where

µUX
−s =

(
P

∑
β=1

J̄αβE[Sαβ (Xβ (−s))
]
+ Iα

)

α=1...P
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The integral defining the mean is well-defined because of (9.34) and the fact that

the functions Sαβ are bounded. A similar reasoning shows that the corresponding

covariance matrix is well-defined. Hence the Gaussian process
∫ 0
−∞ e−LsUX

s ·1ds is well
defined, and hence for any process X ∈M +

1 (C((−∞,T ],RP), the process Fstat(X) is well
defined.

We can now prove the following proposition.

Proposition 9.3.3. The mean vectors and the covariance matrices of the processes

in the image of Fstat are bounded.

Proof. Indeed, since E [X0(t)] = 0, we have:

‖E [Fstat(X)t ]‖∞ =

∥∥∥∥
∫ t

−∞
eL(t−s)µUX

s ds

∥∥∥∥
∞
≤ML(µ +‖I‖∞)

def
= µLT .

In a similar fashion the covariance matrices of the processes in the image of Fstat are
bounded. Indeed we have:E[Fstat(X)tFstat(X)T

t

]
= Σ0+

∫ t

−∞

∫ t

−∞
eL(t−s1)diag

(

∑
β

σ2
αβE[Sαβ (Xβ (s1))Sαβ (Xβ (s2))

]
)

eLT (t−s2) ds1 ds2,

resulting in
∥∥E[Fstat(X)tFstat(X)T

t

]∥∥
∞ ≤

∥∥Σ0
∥∥

∞ + k2
(

σmax

λL

)2
def
= ΣLT .

Lemma 9.3.4. The set of stationary processes is invariant by Fstat.

Proof. Since the processes in the image of Fstat are Gaussian processes, one just needs
to check that the mean of the process is constant in time and that its covariance

matrix C(s, t) only depends on t− s.
Let Z be a stationary process and Y = Fstat(Z). We denote by µZ

α the mean of the

process Zα(t) and by CZ
α(t− s) its covariance function. The mean of the process UZ

αβ
reads:

mZ
α ,β (t) =E[Sαβ (Zβ (t))

]
=

1√
2πCZ

β (0)

∫

R

Sαβ (x)e

(x−µZ
β )2

2CZ
β (0) dx

and hence does not depends on time. We note µZ the mean vector of the stationary

process UZ ·1.
Similarly, its covariance function reads:

∆Z
αβ (t,s) =E[Sαβ (Zβ (t))Sαβ (Zβ (s))

]
=

∫

R2
Sαβ (x)Sαβ (y)exp


−1

2

(
x−µZ

β

y−µZ
β

)T (
CZ

β (0) CZ
β (t− s)

CZ
β (t− s) CZ

β (0)

)−1(
x−µZ

β

y−µZ
β

)
 dxdy
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which is clearly a function, noted ∆Z
αβ (t− s), of t− s. Hence UZ ·1 is stationary and we

denote by CUZ
(t− s) its covariance function.

It follows that the mean of Yt reads:

µY (t) =E [Fstat(Z)t ]

=E [X0(t)]+E[∫ t

−∞
eL(t−s) (I+ UZ

s ·1
)

ds

]

=

∫ t

−∞
eL(t−s) (I+E[UZ

s ·1
])

ds

=

(∫ 0

−∞
eLu du

)(
I+ µZ)

Since we proved that E[UZ
s ·1
]
= µZ was not a function of s.

Similarly, we compute the covariance function and check that it can be written as

a function of (t− s). Indeed, it reads:

CY (t,s) =
∫ t

−∞

∫ s

−∞
eL(t−u)Cov(UZ

u ·1,UZ
v ·1)eLT (s−v) dudv+Cov(X0(t),X0(s))

=

∫ 0

−∞

∫ 0

−∞
eLuCUZ

(t− s+(u− v))eLT v dudv+CX0(t− s)

since the process X0 is stationary. CY (t,s) is clearly a function of t− s. Hence Y is a
stationary process, and the proposition is proved.

Theorem 9.3.5. The sequence of processes {F (n)
stat(X)}∞

n=0 is uniformly tight.

Proof. The proof is essentially the same as the proof of theorem 9.2.3, since we can

write

Fstat(X)t = eLtFstat(X)0+

∫ t

0
eL(t−s)(UX

s ·1+ I)ds+

∫ t

0
eL(t−u)ΛdWs

Fstat(X)t appears as the sum of the random variable Fstat(X)0 and the Gaussian pro-

cess defined by
∫ t

0 eL(t−s)(UX
s · 1 + I)ds +

∫ t
0 eL(t−u)ΛdWs which is equal to Fk(X)t defined

in section 9.2 for t0 = 0. Therefore F(n)
stat(X)t = F(n)

k (X)t for t > 0. We have proved the

uniform tightness of the sequence of processes {F(n)
k (X)}∞

n=0 in theorem 9.2.3. Hence,

according to Kolmogorov’s criterion for tightness, we just have to prove that the se-

quence of Gaussian random variables:

F(n)
stat(X)0 =

{∫ 0

−∞
ΦL(−u)(U

F(n)
stat(X)

u ·1+ I)du+ X0(0)

}

n≥0

is uniformly tight. Since it is a sequence of Gaussian random variables, it is sufficient

to prove that their means and covariance matrices are upperbounded to obtain that

for any ε > 0 there exists a compact Kε such that for any n ∈ N, we have P(F(n)
stat(X)0 ∈

Kε) ≥ 1− ε . This is a consequence of proposition 9.3.3 for the first random variable
and of the definition of X0 for the second. By Kolmogorov’s criterion the sequence of

processes {F (n)
stat(X)}∞

n=0 is uniformly tight
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In order to apply theorem 9.2.1 we need to prove that the sequences of covariance

and mean functions are convergent. Unlike the case of t0 finite, this is not always
true. Indeed, to ensure existence and uniqueness of solutions in the stationary case,

the parameters of the system have to satisfy a contraction condition, and proposition

9.2.7 extends as follows.

Proposition 9.3.6. If λL defined in (9.33) satisfies the conditions (9.37) defined in the

proof, depending upon kC (defined in (9.30)), k0, µLT and ΣLT (defined in proposition

9.3.3)then the sequences of covariance matrix functionsCn(t,s) and of mean functions
µn(t), s, t in [t0,T ] are Cauchy sequences for the uniform norms.

Proof. The proof follows that of proposition 9.2.7 with a few modifications that we

indicate. In establishing the equation corresponding to (9.29) we use the fact that

‖ΦL(t,u)‖∞ ≤ ke−λL(t−u) for some positive constant k and all u, t, u ≤ t. We therefore
have:

∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ ≤

k2e−λL(t+s)
∫ t

−∞

∫ s

−∞
eλL(u+v)

∥∥∥Cov
(
UXn

u ,UXn
v

)
−Cov

(
UXn−1

u ,UXn−1
v

)∥∥∥
v

∞
dudv

The rest of the proof proceeds the same way as in proposition 9.2.7. Equations (9.31)

and (9.32) become:

∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ ≤ Ke−λL(t+s)

(∫

[−∞,t∨s]2

eλL(u+v)

√
f (u,v)

∥∥Cn(u,v)−Cn−1(u,v)
∥∥

∞ dudv

+

∫

[−∞,t∨s]2

eλL(u+v)

√
f (u,v)

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ dudv

+
∫

[−∞,t∨s]2
eλL(u+v)

∥∥Cn(u,v)−Cn−1(u,v)
∥∥

∞ dudv

+
∫

[−∞,t∨s]2
eλL(u+v)

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ dudv

+

∫

[−∞,t∨s]2
eλL(u+v)

∥∥µn(u)−µn−1(u)
∥∥

∞ dudv

)
,

and

∥∥µn+1(t)−µn(t)
∥∥

∞ ≤ Ke−λL(t+s)

(∫

[−∞,t∨s]2
eλL(u+v)

∥∥Cn(u,u)−Cn−1(u,u)
∥∥

∞ dudv+

∫

[−∞,t∨s]2
eλL(u+v)

∥∥µn(u)−µn−1(u)
∥∥

∞ dudv

)
,

for some positive constant K, function of k, kC (defined in (9.30)), and k0.

Proceeding recursively until we reach C0 and µ0 we obtain an upperbound for∥∥Cn+1(t,s)−Cn(t,s)
∥∥

∞ (respectively for
∥∥µn+1(t)−µn(t)

∥∥
∞) which is the sum of less than

5n terms each one being the product of Kn, times 2µLT or 2ΣLT , times a 2n-dimensional



318 CHAPTER 9. MEANFIELD ANALYSIS

integral In given by:

∫

[−∞,t∨s]2
ρ1(u1,v1)

(∫

[−∞,u1∨v1]2
· · ·
(∫

[−∞,un−2∨vn−2]2
ρn−1(un−1,vn−1)

(∫

[−∞,un−1∨vn−1]2
eλL(un+vn)ρn(un,vn)dundvn

)
dun−1dvn−1

)
· · ·
)

du1dv1,

where the functions ρi(ui,vi), i = 1, · · · ,n are either equal to 1 or to 1/
√

θ(ui,vi).
It can be shown by straightforward calculation that each sub-integral contributes

at most either
K0

λ 2
L

if ρi = 1 or

√
π
2

K0

λ 3/2
L

,

in the other case. Hence we obtain factors of the type

Kn
0

(
1

λ 2
L

)p
(√

π
2

1

λ 3/2
L

)n−p

=

(√
π
2

)n−p (
1

λL

)(3n+p)/2

Kn
0,

where 0≤ p≤ n. If λL < 1, (λL)
(3n+p)/2≥ λ 2n

L and else (λL)(3n+p)/2≥ λ 3n/2
L . Since

(√π
2

)n−p≤(√π
2

)n
we obtain the two conditions

1 > λ 2
L ≥ 5

√
π
2

KK0 or

{
λ 3/2

L > 5

√
π
2

KK0 and λL ≥ 1

}
(9.37)

Putting all these results together we obtain the following theorem of existence

and uniqueness of solutions for the long term mean field equations:

Theorem 9.3.7. Under the contraction conditions (9.37), the function Fstat has a
unique solution inM +

1 (C((−∞,T ],RP) which is stationary, and for any process X , the

sequence {F(n)
stat(X)}∞

n=0 of Gaussian processes converges in law toward the unique fixed

point of the function Fstat.

Proof. The proof is essentially similar to the one of theorem 9.2.8. Indeed, the mean

and the covariance matrixes converge since they are Cauchy sequences in the com-

plete space of continuous functions equipped with the uniform norm. Using theorem

9.2.1, we obtain that the sequence converges to a process Y which is necessarily a
fixed point of Fstat. Hence we have existence of a fixed point for Fstat. The uniqueness
comes from the results obtained in the proof of proposition 9.3.6. The limiting process

is necessarily stationary. Indeed, let X be a stationary process. Then for any n ∈ N,

the process F(n)
stat(X) will be stationary by the virtue of lemma 9.3.4, and hence so will

be the limiting process which is the only fixed point of Fstat.

Hence in the stationary case, the existence and uniqueness of a solution is not

always ensured. For instance if the leaks are too small (i.e. when the time constants

of the decay of the membrane potentials are too long) then the sequence can diverge

or have multiple fixed points.
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9.4 NUMERICAL EXPERIMENTS

9.4.1 Simulation algorithm

Beyond the mathematical results, the framework that we introduced in the previ-

ous sections gives us a strategy to compute numerically the solutions of the dynamic

mean-field equations. Indeed, we proved in section 9.2 that under very moderate as-

sumptions on the covariance matrix of the noise, the iterations of the map Fk starting

from any initial condition converge to the solution of the mean field equations.

This convergence result gives us a direct way to compute numerically the solution

of the mean field equations. Since we are dealing with Gaussian processes, deter-

mining the law of the iterates of the map Fk amounts to computing its mean and

covariance functions. In this section we describe our numerical algorithm in the case

of the Simple Model of section 9.1.4.

Computing Fk.

Let X be a P-dimensional Gaussian process of mean µX = (µX
α (t))α=1...P and covariance

CX = (CX
αβ (s, t))α ,β∈{1...P}. We fix a time interval [t0 = 0,T ] and denote by Y the image

of the process X under F1. In the case of the simple model, the covariance of Y is
diagonal. Hence in this case the expressions we obtain in section 9.2 simply read:

µY
α (t) = µX

α (0)e−t/τα +
∫ t

0 e−(t−s)/τα (∑P
β=1 J̄αβE[Sα ,β (Xβ (s))

]
+ Iα(s))ds

= µX
α (0)e−t/τα +

∫ t
0 e−(t−s)/τα Iα(s)ds

+∑P
β=1 J̄αβ

∫ t
0 e−(t−s)/τα

∫+∞
−∞ Sαβ

(
x
√

vX
β (s)+ µX

β (s)
)

Dxds.

where we denoted vX
α(s) the standard deviation of Xα at time s, instead of CX

αα(s,s).
Thus, knowing vX

α(s),s ∈ [0, t] we can compute µY
α (t) using a standard discretization

scheme of the integral, with a small time step compared with τα and the characteristic

time of variation of the input current Iα . Alternatively, we can use the fact that µY
α

satisfies the differential equation:

dµY
α

dt
=−µY

α
τα

+
P

∑
β=1

J̄αβ

∫ +∞

−∞
Sαβ

(
x
√

vX
β (t)+ µX

β (t)
)

Dx+ Iα(t),

and compute the solution using a Runge-Kutta algorithm (which is faster and more

accurate). Note that, when all the standard deviations of the process X are null
for all time t ∈ [0,T ], we obtain a standard dynamical system. Nevertheless, in the
general case, vX

β (t) > 0 for some βs, and the dynamical evolution of µY
α depends on the

Gaussian fluctuations of the field X . These fluctuations must be computed via the
complete equation of the covariance diagonal coefficient CY

αα(t,s), which reads:

CY
αα(t,s) = e−(t+s)/τα

[
vX

α(0)+
ταs2

α
2

(
e

2s
τα −1

)
+

P

∑
β=1

σ2
αβ

∫ t

0

∫ s

0
e(u+v)/τα ∆X

αβ (u,v)dudv
]
,
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where:

∆X
αβ(u,v) =

∫

IR
2
Sαβ


x

√
vX

β (u)vX
β (v)−CX

ββ (u,v)2

√
vX

β (v)
+ y

CX
ββ (u,v)
√

vX
β (v)

+ µX
β (u)




×Sαβ

(
y
√

vX
β (v)+ µX

β (v)
)

DxDy.

Unless if we assume the stationarity of the process (see e.g. section 9.4.2), this

equation cannot be written as an ordinary differential equation. We clearly observe

here the non-Markovian nature of the problem: CX
αα(t,s) depends on the whole past of

the process until time t ∨ s.

This covariance can be split into the sum of two terms: the external noise con-

tribution COU
αα (t,s) = e−(t+s)/τα

[
vX

α(0)+
τα s2

α
2

(
e

2s
τα −1

)]
and the interaction between the

neurons. The external noise contribution is a simple function and can be computed

directly. To compute the interactions contribution to the standard deviation we have

to compute the symmetric two-variables function:

HX
αβ (t,s) = e−(t+s)/τα

∫ t

0

∫ s

0
e(u+v)/τα ∆X

αβ (u,v)dudv,

from which one obtains the standard deviation using the formula

CY
αα(t,s) = COU

αα (t,s)+
P

∑
β=1

σ2
αβ HX

αβ (t,s).

To compute the function HX
αβ(t,s), we start from t = 0 and s = 0, where HX

αβ (0,0) = 0.

We only compute HX
αβ(t,s) for t > s because of the symmetry. It is straightforward to

see that:

HX
αβ(t + dt,s) = HX

αβ(t,s)

[
1− dt

τα

]
+ DX

αβ(t,s)dt + o(dt),

with

DX
αβ (t,s) = e−s/τα

∫ s

0
ev/τα ∆X

αβ (t,v)dv.

Hence computing HX
αβ (t + dt,s) knowing HX

αβ(t,s) amounts to computing Dαβ (t,s). Fix
t ≥ 0. We have Dαβ (t,0) = 0 and

DX
αβ(t,s+ ds) = DX

αβ (t,s)(1− ds
τα

)+ ∆X
αβ(t,s)ds+ o(ds).

This algorithm enables us to compute HX
αβ(t,s) for t > s. We deduce HX

αβ (t,s) for t < s

using the symmetry of this function. Finally, to get the values of HX
αβ (t,s) for t = s, we

use the symmetry property of this function and get:

HX
αβ(t + dt, t + dt) = HX

αβ (t, t)

[
1− 2dt

τα

]
+2DX

αβ (t, t)dt + o(dt).

These numerical schemes provide an efficient way for computing the mean and

the covariance functions of the Gaussian process F1(X) (hence its probability distri-
bution) knowing the law of the Gaussian process X . The algorithm used to compute
the solution of the mean field equations for the general models GM1 and GMk is a
straightforward generalization.



321

Analysis of the algorithm

Convergence rate As proved in theorem 9.2.8, given Z0 a nondegenerate kP-dimensional
Gaussian random variable and X a Gaussian process such that X(0) = Z0, the se-

quences of means and covariance functions computed theoretically converge uni-

formly towards those of the unique fixed point of the map Fk. It is clear that our

algorithm converges uniformly towards the real function it emulates. Hence for a

finite N, the algorithm will converge uniformly towards the mean and covariance ma-
trix of the process FN

k (X).

Denote by X f the fixed point of Fk inM +
1 (C([t0,T ],RkP)), of mean µX f (t) and covari-

ance matrix CX f (t,s), and by F̂N
k (X) the numerical approximation of FN

k (X) computed

using the algorithm previously described, whose mean is noted µ F̂N
k (X)(t) and whose

covariancematrix is notedCF̂N
k (X)(t,s). The uniform error between the simulatedmean

after N iterations with a time step dt and the fixed point’s mean and covariance is the
sum of the numerical error of the algorithm and the distance between the simulated

process and the fixed point, is controlled by:

‖µ F̂N
k (X)−µX f ‖∞ +‖CF̂N

k (X)−CX f ‖∞ = O( (N + T)dt + RN(kmax) ) (9.38)

where kmax= max(k, k̃) and k and k̃) are the constants that appear in the proof of propo-
sition 9.2.7 for the mean and covariance functions, and RN(x) is the exponential re-
mainder, i.e. RN(x) = ∑∞

n=N xn/n!.
Indeed, we have:

‖µ F̂N
k (X)−µX f ‖∞ ≤ ‖µ F̂N

k (X)−µFN
k (X)‖∞ +‖µFN

k (X)−µX f ‖∞ (9.39)

The discretization algorithm used converges in O(dt). Let us denote byC1 the con-

vergence constant, which depends on the sharpness of the function we approximate,

which can be uniformly controlled over the iterations. Iterating the numerical algo-

rithm has the effect of propagating the errors. Using these simple remarks we can

bound the first term of the righthand side of (9.39), i.e. the approximation error at

the Nth iteration:

‖µ F̂N
k (X)−µFN

k (X)‖∞ ≤C1N dt

Because the sequence of means is a Cauchy sequence, we can also bound the sec-

ond term of the righthand side of (9.39):

‖µFN
k (X)−µX f ‖∞ ≤

∞

∑
n=N
‖µFn+1

k (X)−µFn
k (X)‖∞

≤
∞

∑
n=N

kn

n!
=: RN(k)

for some positive constant k introduced in the proof of proposition 9.2.7. The remain-
ders sequence (Rn(k))n≥0 converges fast towards 0 (an estimation of its convergence
can be obtained using the fact that limsupk→∞(1/k!)1/k = 0 by Stirling’s formula).
Hence we have:

‖µ F̂N
k (X)−µX f ‖∞ ≤C1N dt + RN(k) (9.40)

For the covariance, the principle of the approximation is exactly the same:
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‖CF̂N
k (X)−CX f ‖∞ ≤ ‖CF̂N

k (X)−CFN
k (X)‖∞ +‖CFN

k (X)−CX f ‖∞

The second term of the righthand side can be controlled using the same evaluation

by RN(k̃) where k̃ is the constant introduced in the proof of proposition 9.2.7, and the
first term is controlled by the rate of convergence of the approximation of the double

integral, which is bounded byC2(N +T)dt where C2 depends on the parameters of the

system and the discretization algorithm used.

Hence we have:

‖CF̂N
k (X)−CX f ‖∞ ≤C2(N + T − t0)dt + RN(k̃) (9.41)

The expressions (9.40) and (9.41) are the sum of two terms, one of which is in-

creasing with N and T and decreasing with dt and the other one decreasing in N. If
we want to obtain an estimation with an error bounded by some ε > 0, we can for
instance fix N such that max(RN(k),RN(k̃)) < ε/2 and then fix the time step dt smaller
than min( ε/(2C1N),ε/(2C2(N + T − t0)) ).

Complexity The complexity of the algorithm depends on the complexity of the

computations of the integrals. The algorithm described hence has the complexity

O(N( T
dt )

2).

9.4.2 The importance of the covariance: Simple Model, one popula-
tion.

As a first example and a benchmark for our numerical scheme we revisit the work of

Sompolinsky and coworkers [240]. These authors studied the case of the simple model

with one population (P = 1), with the centered sigmoidal function S(x) = tanh(gx), cen-
tered connectivity weights J̄ = 0 of standard deviation σ = 1 and no input (I = 0,Λ = 0).
Note therefore that there is no “noise” in the system, which therefore does not match

the non degeneracy conditions of proposition 9.2.4 and of theorem 9.2.8 . This issue is

discussed below. In this case, the mean equals 0 for all t. Nevertheless, the Gaussian
process is non trivial as revealed by the study of the covariance C(t,s).

Stationary solutions

Assuming that the solution of the mean field equation is a stationary solution with

C(t,s) ≡C(t− s) = C(τ), Sompolinsky and his collaborators found that the covariance
obeyed a second order differential equation :

d2C
dτ2 =−∂Vq

∂C
. (9.42)

This form corresponds to the motion of a particle in a potential well and it is easy

to draw the phase portrait of the corresponding dynamical system. However, there

is a difficulty. The potential Vq depends on a parameter q which is in fact precisely
the covariance at τ = 0 (q = C(0)). In the stationary case, this covariance depends
on the whole solution, and hence cannot be really considered as a parameter of the

system. This is one of the main difficulties in this approach: mean field equations in

the stationary regime are self-consistent.



323

Nevertheless, the study of the shape of Vq, considering q as a free parameter gives
us some informations. Indeed, Vq has the following Taylor expansion (Vq is even be-

cause S is odd):

Vq(C) =
λ
2

C2 +
γ
4

C4 + O(C6)

where λ = (1−g2J2〈S′〉2q) and γ = 1
6J2g6〈S(3)〉2q), 〈φ〉q being the average value of φ under

the Gaussian distribution with mean zero and variance q = C(0).
If λ > 0, i.e. when g2J2〈S′〉2q < 1, then the dynamical system (9.42) has a unique

solution C(t) = 0,∀t ≥ 0. This corresponds to a stable fixed point (i.e. a deterministic
trajectory, µ = 0with no fluctuations) for the neural network dynamics. On the other
hand, if g2J2〈S′〉2q ≥ 1 there is a homoclinic trajectory in (9.42) connecting the point
q = C∗ > 0 where Vq vanishes to the point C = 0. This solution is interpreted by the
authors as a chaotic solution in the neural network. A stability analysis shows that

this is the only stable3 stationary solution [240].

The equation for the homoclinic solution is easily found using energy conservation

and the fact that Vq(q) = 0 and dVq

dC (q) = 0. One finds:

u =
dC
dx

=−
√
−Vq(C).

At the fourth order in the Taylor expansion of Vq this gives

C(τ) =

√
−2λ

γ

cosh(
√
−λ

2 τ)
.

Though λ depends on q it can be used as a free parameter for interpolating the
curve of C(τ) obtained from numerical data.

Numerical experiments

This case is a good benchmark for our numerical procedure since we know analyti-

cally the solutions we are searching for. We expect to find two regimes. In one case

the correlation function is identically zero in the stationary regime, for sufficiently

small g values or for a sufficiently small q (trivial case). The other case corresponds
to a regime where C(τ) > 0 and C(τ)→ 0 has τ → +∞ (“chaotic” case). This regime
requires that g be sufficiently large and that q be large too. We took τα = 0.25,σαα = 1.
For these values, the change in dynamics predicted by Sompolinsky and collaborators

is gc = 4.
In sections 9.2 and 9.3 we have introduced the assumption of non-degeneracy of

the noise, in order to ensure that the mean field process was non degenerate. How-

ever, in the present example, there is no external noise in the evolution, so we can

observe the effects of relaxing this hypothesis in a situation where the results of

proposition 9.2.4 and of theorem 9.2.8 cannot be applied. First, we observed nu-

merically that, without external noise, the process could become degenerate (namely

some eigenvalues of the covariance matrix Cα(t,s) become very small and even van-
ish.). This has also an incidence on the convergence of the method which presents

numerical instabilities, though the iterations leads to a curve which is well fitted by

3More precisely, this is the only minimum for the large deviation functional.
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Figure 9.3: Numerical solution of the mean field equation after 14 iterations in the

chaotic case (g = 5). We clearly see the numerical instabilities in the no-noise case,
which do not exist in the low-noise case.

the theoretical results of Sompolinsky et al. (see Fig. 9.3) . The instability essentially

disappears if one adds a small noise. But, note that in this case, the solution does not

match with Sompolinsky et al. theoretical calculation (see Fig. 9.3).

Modulo this remark, we have first considered the trivial case corresponding to

small g values. We took g = 0.5 and T = 5. We choose as initial process the stationary
Ornstein-Uhlenbeck process corresponding to the uncoupled system with Λ = 0.1. We
drew µα(0) randomly from the uniform distribution in [−1,1] and vα(0) randomly from
the uniform distribution in [0,1].

Starting from this initial stationary process, we iterated the function F1. Then,

during the iterations, we set sα = 0 in order to match the conditions imposed by Som-
polinsky and coworkers. We observe that the method converges towards the expected

solution: the mean function converges to zero, while the variance v(t) decreases ex-
ponentially fast in time towards a constant value corresponding to the stationary

regime. This asymptotic value decreases between two consecutive iterations, which

is consistent with the theoretical expectation that v(t) = 0 in the stationary regime of
the trivial case. Finally, we observe that the covariance C(t− s,s) stabilizes to a curve
that does not depend on s and the stationary value (large t− s) converges to zero.

We applied the same procedure for g = 5 corresponding to the “chaotic” regime.
The behavior was the same for µ(t) but was quite different for the covariance function
C(t,s). Indeed, while in the first case the stationary value of v(t) tends to zero with
the number of iterations, in the chaotic case it stabilizes to a finite value. In the

same way, the covariance C(t − s,s) stabilizes to a curve that does not depend on s.
The shape of this curve can be extrapolated thanks to Sompolinsky et al. results.

We observe a very good agreement with the theoretical predictions with a fit f4(x) =
a

cosh(b(x−δ )) , corresponding to the fourth expansion of Vq. Using a 6-th order expansion

of Vq(x) = a
2x2 + b

4x4 + c
6x2 gives a fit f6(x) = ρ

cosh(λ(x−δ ))
1√

1+K2− 1
cosh2(λ(x−δ ))

, where ρ ,K,λ are
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explicit functions of a,b,c, we obtain a slightly better approximation.

9.4.3 s

Mean field equations for two populations with a negative feedback loop.

Let us now present a case where the fluctuations of the Gaussian field act on

the dynamics of µα(t) in a non trivial way, with a behavior strongly departing from
the naive mean field picture. We consider two interacting populations where the

connectivity weights are Gaussian random variables Jαβ ≡N (J̄αβ ,σαβ = 1) for (α ,β )∈
{1,2}2. We set Sαβ (x) = tanh(gx) and Iα = 0,sα = 0,α = 1,2.

Theoretical framework.

The dynamic mean field equation for µα (t) is given, in differential form, by:

dµα

dt
=−µα

τα
+

2

∑
β=1

J̄αβ

∫ ∞

−∞
S
(√

vβ (t)x+ µβ (t)
)

Dx, α = 1,2.

Let us denote by Gα(µ ,v(t)) the function in the righthand side of the equality.

Since S is odd,
∫ ∞
−∞ S(

√
vβ (t)x)Dx = 0. Therefore, we have Gα(0,v(t)) = 0 whatever v(t),

and hence the point µ1 = 0,µ2 = 0 is always a fixed point of this equation.
Let us study the stability of this fixed point. To this purpose, we compute the

partial derivatives of Gα(µ ,v(t)) with respect to µβ for (α ,β ) ∈ {1,2}2. We have:

∂Gα

∂ µβ
(µ ,v(t)) =−δαβ

τα
+ gJ̄αβ

∫ ∞

−∞

(
1− tanh2

(√
vβ (t)x+ µβ (t)

))
Dx,

and hence at the point µ1 = 0,µ2 = 0, these derivatives read:

∂Gα

∂ µβ
(0,v(t)) =−δαβ

τα
+ gJ̄αβ h(vβ (t)),

where h(vβ (t)) = 1− ∫ ∞
−∞ tanh2(

√
vβ (t)x)Dx.

In the case vα(0) = 0,J = 0,sα = 0, implying vα(t) = 0, t ≥ 0, the equation for µα
reduces to:

dµα

dt
=−µα

τα
+

2

∑
β=1

J̄αβ S(µβ (t))

which is the standard Amari-Cohen-Grossberg-Hopfield system. This corresponds to

the naive mean field approach where Gaussian fluctuations are neglected. In this

case the stability of the fixed point µ = 0 is given by the sign of the largest eigenvalue
of the Jacobian matrix of the system that reads:

(
− 1

τ1
0

0 − 1
τ2

)
+ g

(
J̄11 J̄12

J̄21 J̄22

)
.

For the sake of simplicity we assume that the two time constants τα are equal and

we denote this value τ . The eigenvalues are in this case − 1
τ + gλ , where λ are the

eigenvalues of J̄ and have the form:

λ1,2 =
J̄11+ J̄22±

√
(J̄11− J̄22)2 +4J̄12J̄21

2
.
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Hence, they are complex whenever J̄12J̄21 <−(J̄11− J̄22)
2/4, corresponding to a neg-

ative feedback loop between population 1 and 2. Moreover, they have a real part only

if J̄11+ J̄22 is non zero (self interaction).

This opens up the possibility to have an instability of the fixed point (µ = 0) leading
to a regime where the average value of the membrane potential oscillates. This occurs

if J̄11+ J̄22 > 0 and if g is larger than:

gc =
2

τ(J̄11+ J̄22)
.

The corresponding bifurcation is a Hopf bifurcation.

The situation is different if one takes into account the fluctuations of the Gaussian

field. Indeed, in this case the stability of the fixed point µ = 0 depends on v(t). More
precisely, the real and imaginary part of the eigenvalues of DG(0,v(t)) depend on v(t).
Therefore, the variations of v(t) act on the stability and oscillations period of v(t).
Though the evolution of µ(t),v(t) are coupled we cannot consider this evolution as a
coupled dynamical system, since v(t) =C(t, t) is determined by the mean field equation
for C(t,s) which cannot be written as an ordinary differential equation. Note that we
cannot assume stationarity here, as in the previous case, since µ(t) depends on time
for sufficiently large g. This opens up the possibility of having complex dynamical
regimes when g is large.

Numerical experiments

We have considered the case J̄11 = J̄22 = 5,τ = 0.1 giving a Hopf bifurcation for gc = 2
when J = 0 (fig. 9.4). The trajectory of µ1(t) and v1(t) is represented in Figure 9.4 in
the case g = 3. When J = 0, µ1(t) presents regular oscillations (with non linear effects
since g = 3 is larger than the critical value for the Hopf bifurcation, gc = 2). In this
case, the solution v1(t) = 0 is stable as seen on the figure. When J 6= 0 the Gaussian
field has (small) fluctuations which nevertheless strongly interact with the dynamics

of µ1(t), leading to a regime where µ1(t) and v1(t) oscillate periodically

CONCLUSION

The problem of bridging scales is overwhelming in general when studying complex

systems and in particular in neuroscience. After many others we look at this difficult

problem from the theoretical and numerical viewpoints, hoping to get closer to its so-

lution from relatively simple and physically/biologically plausible first principles and

assumptions. One of our motivations is to better understand such phenomenological

neural mass models as that of Jansen and Rit [149].

We consider several populations of neurons and start from a microscopic, i.e. in-

dividual, description of the dynamics of the membrane potential of each neuron that

contains four terms. The first one controls the intrinsic dynamics of the neuron. It

is linear in this article but this assumption is not essential and could probably be

safely removed if necessary. The second term is a stochastic input current, correlated

or uncorrelated. The third one is a deterministic input current, and the fourth one

describes the interaction between the neurons through random connectivity coeffi-

cients that weigh the contributions of other neurons through a set of functions that

are applied to their membranes potentials. The only hypothesis on these functions is

that they are smooth and bounded. The obvious choice of sigmoids is motivated by
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Figure 9.4: Evolution of the mean µ1(t) and variance v1(t) for the mean field of popu-
lation 1, for J = 0 and J = 2, over a time window [0,20]. n is the number of iterations
of F1 defined in section 9.2. This corresponds to a number of iterations for which the

method has essentially converged (up to some precision). Note that v1(t) has been
magnified by a factor of 100. Though Gaussian fluctuations are small, they have a
strong influence on µ1(t).

standard rate models ideas. Another appealing choice is a smooth approximation to

a Dirac delta function thereby opening a window on the world of spiking neurons.

We then derive the mean field equations and provide a constructive and new proof,

under some mild assumptions, of the existence and uniqueness of a solution of these

equations over finite and infinite time intervals. The key idea is to look at this mean

field description as a global problem on the probability distribution of the membranes

potentials, unlike previous studies. Our proof provides an efficient way of computing

this solution and our numerical experiments show a good agreement with previous

studies.

In the case where the nonlinearities are chosen to be sigmoidal our results shed

a new and fascinating light on existing neural mass models. Indeed these appear

as approximations of the mean field equations where the intricate but fundamental

coupling between the time variations of the mean membrane potentials and their

fluctuations, as represented by the covariance functions, is neglected. This article is

just a small step toward answering from the theoretical and numerical standpoints

the questions raised by this coupling but we are convinced that a host of interesting

results can be found there.

IMPORTANT QUANTITIES

Table 9.1 summarizes some notations which are introduced in the article and used in

several places.
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Constant Defined in

µ lemma 9.2.2

equation (9.24)

σmax lemma 9.2.2

σmin lemma 9.2.2

k0 lemma 9.2.5

K proof of lemma 9.2.6

kC proposition 9.2.7

equation (9.30)

λL equation (9.33)

Table 9.1: Some important quantities defined in the article.



CHAPTER 10

DYNAMICS OF DETERMINISTIC

NONLINEAR NEURAL MASS

MODELS

OVERVIEW

Temporal lobe epilepsy is one of the most common chronic neurological disorder
characterized by the occurrence of spontaneous recurrent seizures which can be
observed at the level of populations through electroencephalogram (EEG)
recordings. This chapter summarizes some preliminary works aimed to understand
from a theoretical viewpoint the occurrence of this type of seizures and the origin of
the oscillatory activity in some classical cortical column models. We relate these
rhythmic activities to the structure of the set of periodic orbits in the models, and
therefore to their bifurcations. We will be mainly interested Jansen and Rit model,
and study the codimension one, two and a codimension three bifurcations of
equilibria and cycles of this model. We can therefore understand the effect of the
different biological parameters of the system of the apparition of epileptiform
activity and observe the emergence of alpha, delta and theta sleep waves in a certain
range of parameter. We then present a very quick study of Wendling and Chauvel’s
model which takes into account GABAA inhibitory postsynaptic currents.
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10.1 INTRODUCTION

Epilepsy is a common chronic neurological disorder affecting 1% of the
world population. It is characterized by the occurence of spontaneous recurrent

seizures. These seizures are transient signs or symptoms due to abnormal, exces-

sive or synchronous neuronal activity in the brain. It can manifest as an alteration

in mental state, tonic or clonic1 movements, convulsions, and various other psychic

symptoms. Different types of seizures are distinguished according to whether the

source of the seizure within the brain is localized (partial or focal onset seizures)

or distributed (generalized seizures) further divided according to the possible loss of

conciousness and to the possible effect on the body.

Since neuron are excitable cells as we have already widely discussed in this manus-

cript, it makes sense to assume that seizure result from a change in the excitability

of single neurons or groups of neurons (see [158]). This is corroborated by electrical

recordings at the level of the cell (intracellular or extracellular recordings) and at a

mesoscopic level via electroencephalogram (EEG) recordings. Seizures are character-

ized by single electrical transients called spikes at a slow time resolution (hundreds

of milliseconds to seconds), macroscopic events which have to be distinguished from

spikes of single nerve cells, that last only 1 or 2ms.
The EEG represents a set of potential recorded by multiple electrodes on the sur-

face of the scalp. The electrical signal recorded is a measure of the extracellular

current flow from the summated activity of many neurons, distorted by the filtering,

attenuated by layers of tissues and bone, representing the activity of neural popula-

tion of the brain. EEG patterns are characterized by the frequency and the amplitude

of electrical activity in the range of 1− 30Hz (sometimes larger) with amplitudes of
20− 100µV, and the frequencies observed are divided into four groups: delta (0.5-4
Hz), theta (4-7Hz), alpha (8-13 Hz) and beta (13-30 Hz). As neuronal aggregates

become synchronized, the amplitude of the summated current becomes larger.

Computational models developed in the field of epilepsy integrate new and de-

tailed knowledge coming from neurobiological research, and is not only aimed to re-

produce experimental findings but also to generate experimentally testable hypothe-

ses. Two main complementary approaches have been developed over the past few

decades: the detailed approach in which single neurons are accurately modeled (den-

drites, soma, axon, passive or active ion channels), and the macroscopic or lumped

modelization taking into featuring a higher level of organization (the neuronal popu-

lation).

Detailed models are based on the definition of neuronal networks from the inter-

connection of several thousands of principal neurons and different types of interneu-

rons with appropriate synaptic interactions. The summated postsynaptic potentials

of pyramidal cell is interpreted as the field activity can be studied as a function of

various parameters (types of neurons, network size, connectivity patterns, conduction

delays, . . . ). This approach has been extensively developed by Traub and collabora-

tors since the early 1980s [264, 265, 266, 267] who studied some spatial and temporal

properties of the activity in simulated patch of neuronal tissue. The use of such mod-

els has explained some basic mechanisms by which synchronized activity emerges. In

particular, these models are able to generate activity patterns, in realistic networks,

that closely mimic epileptic activity recorded in vitro as well as different types of EEG

activity seen in patients.

1rapid muscular contraction and decontraction.
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Detailed approach are in general too complex to be mathematically tractable, and

mean-field limits as treated in chapter 9 can be useful. The mean-field equation

obtained by the techniques given in that chapter provides a phenomenological de-

scription of the whole aggregate of neurons, and bridges the gap between the detailed

and the macroscopic approach.

The macroscopic approach is built upon the fact that neurons are organized in

different populations and that the EEG is a reflection of global activity rising from

macroscopic statistical interactions between interconnected neuronal subpopulations

(pyramidal cells and interneurons). It conceptually differs from the detailed approach

in the sense that it emphasizes the properties of neural populations instead of those

of individual cells. Based on these assumptions, population models represent the

temporal dynamics of the aggregates while the spatial interactions between cells are

neglected. The relevant variable of these models is no more individual spikes but

rather the firing-rate.

Seminal works on models of localized neural populations date back to the 1970s

with Wilson and Cowan [285] who laid the theoretical theoretical foundations of

these modelizations, using the results obtained by Mountcastle [199], and Hubel and

Wiesel [136, 137] who brought physiological evidence for the existence of such pop-

ulations (high redundancy within relatively small volumes of cortical tissue, many

cells have nearly identical responses to an identical stimulus, see chapter 1). They

considered a population as being composed of two subpopulations, one excitatory and

the other one inhibitory and proposed an approach based on two variables, repre-

senting the proportion of excitatory and inhibitory cells firing per unit time. They

modelled the dynamics of these variables as the solution of a non-linear differen-

tial equations governing the population temporal dynamics using a sigmoid function

for each subpopulation response. Simple and multiple hysteresis phenomena and

limit cycle activities represented in the model were then studied from phase plane

analysis and the results provided a physiological basis for oscillatory characteristics

observed in particular EEG rhythms. Following the same approach, Freeman and

colleagues developed a comprehensive model of the olfactory system from the early

1960s [96, 97, 98]. Based on histological and physiological analytic methods con-

ducted in animal models (cat), their model reproduces the global organization of the

olfactory system. Freeman’s model key feature is that these subsets represent aggre-

gates of strongly interconnected neurons having similar averaged properties. Each

subset is referred to as neural mass or neural population. The second key feature is

that the dynamics of each subset are simply described by a second order non-linear

ordinary differential equation (ODE) representing conversion operations between the

population average postsynaptic potential and the density of action potentials fired by

local neurons. Freeman and colleagues empirically showed that the model produces

realistic EEG signals that approximate those experimentally recorded in the same

structures [100]. Similar ideas developed at the same time by Lopes da Silva and col-

laborators [189, 190] led to the development of a lumped-parameter population model

able to explain the alpha rhythm of the EEG observed in dogs. The model was based

on two interacting populations of neurons representing a subset of excitatory thala-

mocortical relay cells and a subset of inhibitory interneurons connected to the former

subset through a negative feedback loop. In each population, the conversion between

the mean membrane potential and the average density of action potentials fired by

the population is represented by a non-linear sigmoidal function, whereas conversion

from presynaptic density of spikes into mean postsynaptic potential is described by a
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linear transfer function. Interaction between the two populations is adjusted by cou-

pling constants representing the average number of synaptic contacts between the

two cell types. This model was shown to generate oscillations ranging from 8 to 11

Hz and closely resembling cortical alpha rhythm for physiologically-relevant model

parameters.

These studies constitute the first formalizations of neurophysiological observa-

tions into computational models, and revealed the close relationships between post-

synaptic potentials generated from neuronal populations and oscillatory dynamics

reflected in EEG signals. The general concept they introduced make these approach

very flexible, and it constitutes the base of many successive studies dealing with

regular or pathological neural mass and EEG activity models. Recently, a spatially

extended version of these models was studied to model bumps and waves in spatially

extended non-pathological neural fields, which provides a model for voltage-sensitive

dyes optical imaging [85, 87, 115].

In the field of epilepsy, we refer to Zetterberg and colleagues [288] who con-

cluded that epileptic spikes are generated by populations of neurons close to insta-

bility. Lopes da Silva and colleagues used a thalamocortical model to understand the

mechanisms of transition from regular EEG activity and epileptiform paroxysmal

activity[248, 249].

Among these models, a sort of minimal model for EEG signal was introduced by

Jansen and Rit in the mid 1990s [149, 150], which was extended by Wendling and

collaborators [280, 281, 283] in the context of model-based interpretation of intracere-

bral EEG signals in epilepsy. These models will be studied in detailed in this chapter,

in order to understand the different rhythms observed and the origin of epileptiform

activity.

10.2 NEURAL MASS MODELS

Jansen’s neural mass model was first introduced by Lopes Da Silva and

colleagues in 1974, and studied further by Van Rotterdam et al. in 1982 [189, 190,

275]. These authors developed a biologically inspired mathematical framework to

simulate spontaneous electrical activities of neuronal assemblies measured for in-

stance by EEG, with a particular interest for alpha activity. In their model, three neu-

ronal populations interact with both excitatory and inhibitory connections. Jansen et

al. [149, 150] discovered that besides alpha activity, this model was also able to sim-

ulate evoked potentials, i.e. EEG-like activity observed after a sensory stimulation.

More recently, Wendling and colleagues used this model to synthesize activities very

similar to those observed in epileptic patients [281], and David and Friston studied

connectivity between cortical areas with a similar framework [64, 65]. Neverthe-

less, one of the main issue of Jansen’s model is that it is not able to produce all the

rhythms in play in epileptic activity or observed in EEG recordings. This limitation

of the model lead Wendling, Chauvel and their colleagues [282, 283] to develop an

extended Jansen model to better reproduce EEG signals. This model is based on

neurological studies [151] revealing that gamma-frequency oscillations were linked

with the inhibitory interneurons in the hippocampal networks, and that two types of

GABAA inhibitory postsynaptic currents may play a crucial role in the formation of

the nested theta/gamma rhythms in the hippocampal pyramidal cells. For these rea-

sons, we will also study the 5-populations extended Wendling and Chauvel’s model.
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10.2.1 Jansen and Rit’s model

(a) Populations involved in Jansen’s model (b) Block diagram

Figure 10.1: (10.1(a))Neural mass model of a cortical unit: a pyramidal cells pop-

ulation interacts with an excitatory and an inhibitory population of interneurons.

(10.1(b)) Block representation of a unit. h boxes are synaptic transformations, S boxes
simulate cell bodies of neurons and is the sigmoidal transform of the membrane po-

tential into an output firing rate. The constants Ji account for the strength of the

synaptic connections between populations.

Description of the model The initial Jansen and Rit’s model features a popula-

tion of pyramidal neurons (central part of figure 10.1(a)) that receive excitatory and

inhibitory feedback from local inter-neurons and an excitatory input from neighbor-

ing cortical units and sub-cortical structures like the thalamus. Actually the excita-

tory feedback must be considered as coming from both local pyramidal neurons and

genuine excitatory interneurons like spiny stellate cells.

Figure 10.1(b) is a block diagram representation of figure 10.1(a) representing

the mathematical operations performed inside such a cortical unit. The excitatory

input is represented by an arbitrary average firing rate p(t) which can be random
(accounting for a non specific background activity) or deterministic, accounting for

some specific activity in other cortical units.

The postsynaptic system The functions he(t) and hi(t) of figure 10.1(b) are the
average EPSP and IPSP. They convert the average input firing rate into an average

excitatory or inhibitory post-synaptic potential. Following the works of van Rotter-
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dam et al [275] these transfer function are of type:

h(t) =

{
αβ te−βt t ≥ 0
0 t < 0

.

In other words, if x(t) is the input to the system, its output y(t) is the convolution
product h ⋆ x(t). The parameters α determines the maximal amplitude of the post-
synaptic potentials and β corresponds to the characteristic time of integration, which
is mainly linked with the kinetics of synaptic transmission and with the averaged

distributed delays in the dendritic tree.

These transfer functions are solutions of the second-order differential equation:

ÿ(t) = αβx(t)−2β ẏ(t)−β 2y(t),

which can be conveniently rewritten as a system of two first-order equations

{
ẏ(t) = z(t)

ż(t) = αβx(t)−2αz(t)−α2y(t)

These two constants are different for the excitatory and inhibitory populations to

fit the experimentally recorded EPSP and IPSP functions. The parameters α and β
have been adjusted by van Rotterdam [275] to reproduce some basic properties of real

post-synaptic potentials. Following their works, parameters can be set as follows:

{
Excitatory population α =: A = 3.25mV β =: a = 100s−1

Inhibitory population α =: B = 22mV β =: b = 50s−1

Firing rates The activity of the population is considered to be the related mean

firing rate. This mean firing rate is modelled as a sigmoidal transformation of the

average membrane potential (see, e.g. [105]). The function Sigm we chose in this

model approximates the functions proposed by Freeman [99], and has the form:

Sigm(v) =
νmax

2
(1+ tanh

r
2
(v− v0)) =

νmax

1+ er(v0−v)
,

where νmax is the maximum firing rate of the families of neurons, v0 is the value of

the potential for which a 50%firing rate is achieved and r is the slope of the sigmoid
at v0.

The excitability of cortical neurons can vary as a function of the action of several

substances and v0 could potentially take different values. In our model, we neverthe-

less consider a fixed value v0 = 6mV as suggested by Jansen on the basis of experimen-
tal studies due to Freeman [100]. The works of the latter also suggest that νmax = 5s−1

and r = 0.56mV−1, the values used by Jansen and Rit.

Interconnections The three neural populations defined interact through excita-

tory and inhibitory synapses. The number of synapses established between two neu-

ronal populations i and j is denoted by Ji for i = 1. . .4 as in diagram 10.1(b). They
are considered to be constant and proportional to the average number of synapses

between populations, and we denote by αi the related coefficient (i.e. Ji = αiJ). On the
basis of several neuroanatomical studies (see for instance [28]) these quantities have

been estimated by counting synapses, and their numerical values is given in table

10.1.
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Parameter Interpretation Value

A Average excitatory synaptic gain 3.25mV
B Average inhibitory synaptic gain 22mV
1/a Time constant of excitatory PSP 10ms
1/b Time constant of inhibitory PSP 20ms
α1, α2 Average number of synaptic contacts in the α1 = 1, α2 = 0.8

feedback excitatory loop

α3, α4 Average number of synaptic contacts in the α3 = α4 = 0.25
slow feedback inhibitory loop

v0, νmax, r Parameters of the Sigmoid S v0 = 6mV, νmax = 5s−1

r = 0.56mV−1

Table 10.1: Numerical values used in Jansen’s original model

Note that we consider here constant synaptic weights. The variability in the con-

nectivity weights can be taken into account as we do in chapter 9, and the resulting

equation is way more complex than the equation we deal with in the present chapter.

Equations of the model As proved in section 9.1.4, this model is an activity based

model. Following Jansen and Rit’s initial work, we consider the three variables y0, y1

and y2 of figure 10.1(b). To write the system into a set of first-order ordinary differen-

tial equation we introduce the derivatives of these variables, ẏ0, ẏ1, ẏ2, noted y3, y4 and

y5, respectively. We therefore obtain a system of 6 first-order differential equations

that describes Jansen’s neural mass model:





ẏ0(t) = y3(t) ẏ3(t) = AaSigm[y1(t)− y2(t)]−2ay3(t)−a2y0(t)
ẏ1(t) = y4(t) ẏ4(t) = Aa{p(t)+ J2Sigm[J1y0(t)]}−2ay4(t)−a2y1(t)
ẏ2(t) = y5(t) ẏ5(t) = BbJ4Sigm[J3y0(t)]−2by5(t)−b2y2(t).

(10.1)

Our study will focus on the variable y = y1− y2 which models the membrane po-

tential of the pyramidal cells since their electrical activity corresponds to the EEG

signal: pyramidal neurons throw their apical dendrites to the superficial layers of

the cortex where the post-synaptic potentials are summed, and therefore account for

the essential part of the EEG activity [158]. Table 10.1 summarizes the different

numerical values of the original Jansen and Rit’s model.

Dimensionless reduction of Jansen’s model We now change variables in order

to reduce the number of parameters in the system. First of all, we chose the time

scale of the excitatory population as our new unit time and define τ = at. Therefore
the new characteristic scale of the inhibitory variable will be given by the ratio d = b

a ,

G the ratio of postsynaptic amplitudes B/A. The dimensionless sigmoidal transform
we define is

S(x) =
1

1+ k0e−x

where k0 = erv0. We eventually introduce the dimensionless scaled input parameter

P = (rA) p
a and and the dimensionless scaled connectivity strength j = (rA)νmax

a J. The
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new state variables (Y0,X ,Y1,Y2,Y3,Y4,Y5) defined by

Y0(τ) = Jry0(τ/a)

Yi(τ) = ryi(τ/a) i = 1, 2

X = Y1−Y2.

satisfy the equations





Ẏ0 = Y3

Ẋ = Y4−Y5

Ẏ2 = Y5

Ẏ3 = j S(X)−2Y3−Y0

Ẏ4 = P+ α2 j S(α1Y0)−2Y4− (Y2 + X)

Ẏ5 = d α4 G j S(α3Y0)−2dY5−d2Y2

(10.2)

They depend upon the nine dimensionless parameters αi, i = 1, · · · ,4, k0, d, G, j, and P
as opposed to the 11 parameters of the original model (see table 10.1). The numerical

values these parameters corresponding to table 10.1 are given by:





G = B
A = 6.7692

d = b
a = 0.5

α1 = 1 α2 = 0.8
α3 = 0.25 α4 = 0.25
log(k0) = rv0 = 3.36
j = (rA) νmax

a J = 12.285

10.2.2 Wendling and Chauvel’s extended model

One of the main drawbacks of Jansen’s model is that it is unable to generate certain

types of cortical activity, for instance seen in epileptic activity. As an example, it

cannot reproduce the type of fast activity observed at the onset of seizures in limbic

structures. In order to propose a better cortical mass model, Wendling, Chauvel and

colleagues [282, 283] revisited the organization of subsets of neurons and interneu-

rons, focusing on the hippocampus activity. Based on these considerations, they pro-

posed a new neural mass model whose parameters were estimated using real EEG

signals. Their model is shown as a block diagram in figure Fig. 10.2. The main

difference with Jansen’s initial model is the addition of somatic-projecting inhibitory

neurons (GABAA,fast receptors).

In this block diagram representation, the PSP functions are given by:





he(t) = Aate−at

hi(t) = Bbte−bt

h f (t) = Ccte−ct

The equations of the extended model hence read:
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(a) Populations and connectivities

(b) Block diagram

Figure 10.2: Neuronal population model based on the cellular organization of the

hippocampus. 10.2(a): Schematic representation of the model. The pyramidal cells

population projects to and receives feedback excitatory and inhibitory interneurons,

and has a recurrent excitation. 10.2(b) : Related block diagram.
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Parameter Interpretation Value

A Average excitatory synaptic gain 3.25mV
B Average inhibitory synaptic gain, slow dendritic inhibition loop 22mV
C Average inhibitory synaptic gain, fast somatic inhibition loop 20mV
1
a Time constant of average excitatory postsynaptic potentials 10ms
1
b Time constant of average inhibitory postsynaptic potentials 35ms
1
c Time constant of the filter time delay 5ms
α5, α6 probability of synaptic contacts in the fast feedback inhibitory loop 0.1
α7 connection probability between slow and fast inhibitory neuron 0.8

Table 10.2: Parameters interpretations and values of the extended model proposed

by Wendling and Chauvel (see [282]). The parameters α1, . . . ,α4, J, v0, r and νmax have

the same interpretations and values as in Jansen’s original model, see table 10.1





ẏ0 = y5

ẏ5 = AaS(y1− y2− y3)−2ay5−a2y0

ẏ1 = y6

ẏ6 = Aa{p(t)+ J2S(J1y0)}−2ay6−a2y1

ẏ2 = y7

ẏ7 = BbJ4S(J3y0)−2by7−b2y2

ẏ3 = y8

ẏ8 = C cJ7S(J5y0− J6y4)−2cy8− c2y3

ẏ4 = y9

ẏ9 = BbS(J3y0)−2by9−b2y4

(10.3)

Numerical values of the parameters This model has been fitted using SEEG

data, and the authors obtained the values given in the table 10.2.

ReducedWendling-Chauvel’s model First of all, one of the most straightforward

reduction of the model consists in removing the variables y4 and y9 since they are de-

duced of y2 and y7 by the simple formulas: y2 = J4y4 and y7 = J4y9. To reduce further

the model we proceed in the same way as in Jansen and Rit’s case. We make the sys-

tem dimensionless by introducing the new time τ = at and proceeding to the change
of variables:





Yi(τ) = Jryi(τ/a) i ∈ {0, 4}
Yi(τ) = ryi(τ/a) i ∈ {1, 2, 3}
Yi(τ) = Jr

a yi(τ/a) i ∈ {5, 9}
Yi(τ) = r

a yi(τ/a) i ∈ {6, 7, 8}

We denote by X the interesting signal related to the EEG signal: X = Y1−Y2−Y3

feeding the pyramidal population and by Z = α5Y0−α6Y4 = α5Y0−α6/α4Y2 the action of

the dendritic inhibitory interneuron population on the somatic inhibitory interneuron

population. We consider now the variables (Y0,X ,Z,Y3,Y5,Y6,Y7,Y8).
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These new variables satisfies the following set of differential equations, where we

denote for the sake of compactness of notations by a dot the derivative with respect

to τ :




Ẏ0 = Y5

Ẋ = Y6−Y7−Y8

Ż = α5Y5− α6
α4

Y7

Ẏ3 = Y8

Ẏ5 = jS(X)−2Y5−Y0

Ẏ6 = jα2S(α1Y0)−2Y6− (X +Y2+Y3)+ P(t)

Ẏ7 = jd1G1α4S(α3Y0)−2d1Y7−d2
1

α4
α6

(α5Y0−Z)

Ẏ8 = jd2G2α7S(Z)−2d2Y8−d2
2Y3

(10.4)

where j, P and S(x) are the same as the one introduced for Jansen and Rit’s model.
We used the notations:

{
G1 = B

A G2 = C
A

d1 = b
a d2 = c

a
(10.5)

Using the numerical values in table 10.2 we obtain

{
G1 = 6.76923 G2 = 6.15385
d1 = 0.2857 d2 = 2

In this chapter we are interested in the influence of the other parameters of the

model together with the input on the fixed points. More precisely, we are interested in

the codimension two bifurcations of this model with respect to 3 pairs of parameters:

(i). The input P and the coupling strength j.

(ii). The input P and the delays ratio d.

(iii). The input P and the PSP amplitude ratio G.

For this preliminary study we present an in depth study of the influence of the

coupling strength in Jansen’s model. For the effects of the other parameters and the

study of Wendling’s model, we will only provide the bifurcation diagrams. The study

of the computational behavior is the subject of future studies.

10.3 INFLUENCE OF THE TOTAL CONNECTIVITY PARAME-
TER IN JANSEN AND RIT’S MODEL

We first study the dynamical properties of Jansen and Rit’s model. We recall in the

first subsection the main features described by Grimbert and Faugeras in [114], and

extend their study to codimension two and three bifurcations.

10.3.1 Fixed points and stability

An interesting property of the system (10.2) is that the equilibria can be parametrized

as a function of the state variable X = Y1−Y2:
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Y0 = jS(X)

Y2 = α4
G
d

jS(α3 jS(X))

P = X + jS(X)−α2 jS(α1 jS(X))

The Jacobian matrix at the fixed point is also parametrized by X and reads:

J(X) =




0 0 0 1 0 0
0 0 0 0 1 −1
0 0 0 0 0 1
−1 j S′(X) 0 −2 0 0

α1α2 jS′( jα1S(X)) −1 −1 0 −2 0
α3α4 jdS′( jα3S(X)) 0 −d2 0 0 −2d




Although all the dynamics can be parametrized with the variable X , because of the
complexity of the sigmoidal function, the analytical bifurcation study is untractable,

and one has to make use of a numerical software in order to solve the problem2.

In the present case, almost all the calculations can be performed analytically in

function of the variable X . For this reason, for computing accurately the bifurcations
of equilibria, we developed our own software implemented using Maple R© in order
to identify our codimension two bifurcations. For simple models, the programs we

developed give closed-form expressions for the bifurcations points. For the continu-

ation of periodic orbits, the analytical study is no more possible, and we used both

the Matlab R© toolbox MatCont [72] and XPPAut continuation softwares to study the
global bifurcations. The algorithms we use and the results we obtain are presented

in appendix B.

10.3.2 Codimension 1 bifurcations

The dependency of the dynamics to the input firing rate has already been studied

Grimbert and Faugeras in [114] when parameters are set as in table 10.1. They

describe a very rich bifurcation diagram, with the coexistence of two limit cycle, one

coming from a Hopf bifurcation, and the other collapsing on the fixed points manifold,

as we show in figure 10.3.

The system features two saddle-node and three Hopf bifurcations. One of the

Hopf bifurcations is subcritical, the other two supercritical. The branch of unstable

limit cycles originating from this point undergoes a fold bifurcation and connects to a

family of stable limit cycles of large amplitude that eventually collide with a saddle-

node bifurcation point and disappear via saddle-node homoclinic bifurcation. The

periods of these cycles correspond to frequencies in the dimensioned model ranging

from 0 to 5Hz which is consistent with the frequencies of recorded epileptic spikes. It
corresponds to what was interpreted as epileptic oscillatory activity.

The other two Hopf bifurcation share the same family of periodic orbits. The

period of these cycles is almost constant, ranging from 9 to 9.6 in the dimensionless
model, which corresponds in the original model to frequencies in the alpha band.

The system undergoes a saddle-node homoclinic bifurcation (SNIC) at the saddle-

node bifurcation point, corresponding to a transition between a periodic orbit and an

heteroclinic orbit (see figure 10.4), and after this bifurcation, the system presents a

2Grimbert and Faugeras used the XPPAut software [79]
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(a) Codimension 1 bifurcations

(b) Cycles

Figure 10.3: (a): Bifurcations in the reduced Jansen’s model with respect to the input

firing rate parameter P. Circles represent the two saddle-node bifurcations and the
stars the three Hopfs bifurcations. The bold lines and the grayed zones represent the

extension of the limit cycles, the red dashed line a saddle homoclinic bifurcation and

the green dashed line a fold of limit cycle bifurcation (figure generated using XPPAut).

(b): (Left) Limit cycles and related period. The eggcup-like family of limit cycles in

blue are originated from the subcritical Hopf bifurcation. Cycles are unstable from

the Hopf bifurcation until the fold of limit cycle (purple cycle) (cup of the eggcup) and

stable on the handle of the eggcup. Red cycles (the egg) are stable and correspond to

the supercritical Hopf bifurcations.
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Figure 10.4: Projection of a SNIC bifurcation in a subplane of the phase space. Three

invariant circles are represented: Left. An heteroclinic orbit. Center. The two fixed

points belonging to the invariant circle merge into a saddle-node fixed point. The

resulting homoclinic orbit has an infinite period. Right. The invariant circle turns

into a periodic orbit as the fixed points disappear.

family of heteroclinic orbits, which are not linked with oscillations, since the cycle

contains a stable fixed point.

It had been suggested by Grimbert and Faugeras [114] that this picture was quite

sensitive to changes in the parameters. They observed that varying any parameter

by more than 5% resulted in drastic changes in the bifurcation diagram and the be-
haviors. This is why we were interested in understanding better the appearance of

these features and its sensitivity in function of different parameters.

In this section, we will be particularly interested in the influence of the coupling

strength j.

10.3.3 Effect of the coupling strength and of the input current

Let us first study the bifurcations of the system with respect to the pair of parameters

( j,P). We first study the bifurcations of equilibria of the system, before studying
global bifurcations of cycles and the resulting rhythms generated.

We numerically observe that the system undergoes the following bifurcations of

equilibria (See appendix B and figure 10.5):

(i). A saddle-node bifurcation manifold,

(ii). An Andronov-Hopf bifurcation manifold,

(iii). A Cusp bifurcation C,

(iv). A Bogdanov-Takens bifurcation BT,

(v). A Bautin bifurcation GH.

The periodic orbits are also explored using a continuation algorithm. We are es-

pecially interested in stable cycles which correspond to observable activity in the

presence of noise. We chose MatCont continuation package developed by Kuznetsov,

Govaerts and colleagues [71, 72] and which is very efficient for identifying bifurca-

tions of periodic orbits.

First of all, at the Bogdanov-Takens bifurcation point, a curve of saddle-homoclinic

bifurcations is generated. This curve can be locally computed using the normal form

of the system at this point, and continued using a continuation algorithm. Along this
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(a) Bifurcations of equilibria (b) Bifurcations of equilibria in 3D

Figure 10.5: Full bifurcation diagram represented on the fixed points manifold (see

text for the description)

curve, a branch of limit cycles collapse with the saddle fixed points manifold, and

the period of the related cycles tends to infinity when approaching this curve. When

numerically continuing this curve we observe that that at the value of parameter j
related to the Bautin bifurcation, this saddle-homoclinic bifurcation curve collapses

with the saddle-node bifurcation manifold and the saddle homoclinic loop becomes a

saddle-node homoclinic loop, and connects to a saddle-node limit cycle at a point we

denote S.

From the Bautin bifurcation point, a family of stable limit cycles and a family of

unstable limit cycles collapse and disappear along a nondegenerate fold bifurcation

of cycles (FIC) (see figure 10.6). From the Bautin bifurcation, the manifold of FIC

is continued and we numerically observe that cycles undergo a cusp bifurcation (See

figure 10.7). The upper branch of limit cycles corresponds to the branch of folds of

limit cycles generated at the Bautin bifurcation the cycles shrink to a single point

GH. The lower branch connects to the homoclinic saddle-node manifold. At this point,

the cycle corresponding to the FIC bifurcation is a saddle-node homoclinic cycle (point

S). Note that the curve of folds of limit cycles originating from the Bautin point can be

seen as a function of j(P) which is first decreasing then increasing. The point where
it changes monotony is named E.

The full bifurcation diagram is provided in figure 10.8. The analysis of the bifur-

cation diagram leads to classify the system into 8 classes depending on the coupling
strength. In each class the system has the same dynamical features and the same

qualitative behaviors.

Neuro-Computational features

The different classes of parameters respresented in color in figure 10.8 correspond

to different responses to varying inputs. Eight classes can be distinguishes. We ob-

serve that the original Jansen’s model is in zone labelled (D) which is of very small
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Figure 10.6: Bautin bifurcation: in region 1 the system has a single stable equilib-

rium an no cycle. Crossing the Hopf bifurcation boundary H− to region 2 implies the
appearance of a stable limit cycle which survives when we enter region 3. Crossing

the Hopf boundary H+ creates an extra unstable limit cycle inside the first one, while

the equilibrium regains its stability. Two cycles of opposite stability exist in region 3

and collapse at the curve T through a fold bifurcation that leaves a single equilibrium.

The curves are computed in the case of Jansen’s model.

(a) Fold of limit cycles in ( j,P)

13.5

14

14.5

(b) Fold of limit cycles in ( j,P,Y )

Figure 10.7: Fold of limit cycles in the plane j and P. We can see that a cusp of limit
cycle exist, hence two folds of limit cycles exist for a given j, and these two branches
collapse.
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(a) Full Diagram

(b) Parameter zone of interest.

Figure 10.8: Full bifurcation diagram of Jansen’s model in function of the parame-

ters P and j. The behaviors can be classified in height zones (A) . . . (H) described in the
text. The black curve corresponds to the saddle-node bifurcations manifold, the point

C the cusp bifurcation point, the blue curve corresponds to the subcritical Hopf bifur-

cations. It is connected to the saddle-node manifold via subcritical Boganov-Takens

bifurcation t the point BT. At this point, the saddle-homoclinic bifurcations curve is

plotted in green. It exists while j is inferior to the value related to the Bautin bifur-
cation. At this point, the saddle-homoclinic bifurcation connects to the saddle-node

manifold and generates a curve of saddle-node homoclinic bifurcations (dashed green

line). The subcritical Hopf bifurcation manifold is connected to the supercritical Hopf

bifurcation manifold (red curve) through a Bautin bifurcation (point GH). From this

bifurcation point there is a manifold of folds of limit cycles represented in orange.

Cycles undergoes a cusp bifurcation at the CLC point and a saddle-node homoclinic

bifurcation at the point S.

Point j P

C 5.38 -0.29

BT 10.05 -3.07

H2 12.10 0.10

E 12.38 1.21

GH 12.48 -2.58

H1 12.55 -3.10

CLC 12.93 3.75

Table 10.3: Numerical parameters of the different special points of the system
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(a) Equilibria (b) Behaviors

Figure 10.9: Case (A): j = 4. (a) equilibria (coordinate Y1 as a function of the input

current P). For each value of P there exists a unique stable equilibrium. (b) behavior
of the system. Coordinate X , for different values of P: the system always converge to
the unique equilibrium.

extension.

Non-oscillating behaviors For j < jH2, the system does not present any stable

oscillation (zones (A), (B) and (C)), and therefore the cortical column will not present

oscillations.

A. For j < jC, the system has a unique fixed point and no cycle for any input firing
rate P. Therefore, when the current is fixes, for any initial condition, the activity
of the column will converge towards this unique equilibrium. In that case the

cortical column has a quite trivial behavior: it has no oscillatory activity and

converges to rest whatever the input.

B. For jC < j < jBT , the system undergoes two saddle-node bifurcations when vary-

ing the parameter P. Depending P, the system has one, two or three fixed points
and no cycle (see figure 10.10). For P 6∈ [P1,P2] (i.e. not between the values of the
the two saddle-node bifurcations), there is a unique fixed point which is stable

and the system converges to this fixed point. When P ∈ (P1,P2), there are three
fixed point, one is unstable and the other two stable. The system is therefore

bistable: depending on the initial condition, the activity will converge towards

one or the other stable fixed point, corresponding to an up-state and down-state

activity. The system also presents hysteresis when continuously varying the in-

put in this zone of inputs. Eventually, it can switch between the two stable fixed

point if perturbed.

C. For jBT < j < jH1: The system has two saddle-node bifurcations and a subcritical

Hopf bifurcation (see figure 10.11). Therefore, the system has a unique stable

fixed point when the input P is not between the two saddle-node bifurcation
points (i.e. P 6∈ [P1,P2]), and the system converges towards this fixed point. For
P between the first saddle-node bifurcation value and the Hopf bifurcation (i.e.
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(a) Equilibria (b) Behaviors

Figure 10.10: Case (B): j = 8. (a) equilibria (coordinate Y1 as a function of the input

current P), and stability. Plain line: stable equilibrium, dashed line: unstable. For
P 6∈ [P1,P2] there exists a unique stable equilibrium, and for P ∈ (P1,P2) there exist
three equilibria, two stable and one unstable. (b): Behavior of the system for different

input and initial conditions. Purple: P = −10 and green: P = 10 : the system always
converge to the unique equilibrium. Orange: P = 2: bistability. We observe that the
activity resemble real evoked potential.

P ∈ (P1,PH)), the system has 2 unstable fixed points and a stable fixed point, and
generically converges towards the stable fixed point. In the zone between the

Hopf bifurcation and saddle homoclinic point (P∈ (PH ,PSh)) , the system presents
two stable fixed points, an unstable fixed point and an unstable limit cycle. De-

pending on the initial condition, the system will either converge to one or the

other fixed point. When P is greater the saddle-homoclinic bifurcation value
and below the greatest saddle-node value (P ∈ (PSh,P2)), the system has two sta-
ble fixed points and an unstable fixed point, and its behavior is similar to the

behavior in the previous case. We can see that the system returns to equilib-

rium via oscillations. Hence in the presence of noise, the system will present

oscillations at a certain frequency superimposed to its noisy behavior.

Rhythmic activity For values of the connectivity greater than jH2, the system will

always present a supercritical Hopf bifurcation and therefore a stable periodic orbit,

corresponding to a rhythmic activity of the column.

D. For j ∈ [ jH2, jE ], the system undergoes two saddle-node bifurcations, two super-
critical and a subcritical Hopf bifurcations, and one fold of limit cycles. It is

the case of Jansen’s model with original parameters 10.1. We label the bifur-

cation points as in figure 10.12. For P < P1, the system has a unique stable

fixed point and for any initial condition, it converges towards this point. For

P1 < P < PH1, the system has three fixed points, one of which is stable and the

other two unstable, and the system still converges towards the unique fixed

point. For PH1 < P < PH2, the greatest fixed point becomes stable and an un-

stable limit cycle exists. In this region, the system converges towards one of

the two stable fixed point depending on the initial condition of the system. For

PH2 < P < P2, the greatest fixed point loses stability via subcritical Hopf bifur-
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(a) Equilibria (b) Behaviors

Figure 10.11: Case (C): j = 11. (a): Equilibria and bifurcations (coordinate Y1 as a

function of the input current P), and stability. Blue lines: Plain : stable equilibrium,
dashed : unstable. Dashed purple line: unstable cycles. Green cycle: saddle homo-

clinic orbit. For P 6∈ [P1,P2] there exists a unique stable equilibrium, and for P ∈ (P1,P2)
there exist three equilibria: for P ∈ (P1,PH) two unstable and one stable, and no limit
cycle. For P ∈ (PH ,P2), two stable and one unstable. For P ∈ [PH ,PSh], there exists an
unstable limit cycle. (b): Behavior of the system for different input and initial condi-

tions. Purple: P = −10 and green: P = 10 : the system always converge to the unique
equilibrium. Orange: P = 0: bistability and damped oscillations. We observe that the
activity resemble real evoked potential.
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cation and a stable periodic exists with frequency of about 10Hz corresponding

to purely alpha activity. In this region, the system either oscillates around the

periodic orbit and presents alpha-activity, or converges to the stable fixed point.

For P2 < P < PFLC, the system has no fixed point and two stable limit cycles:

the cycle corresponding to the continuation of the subcritical Hopf bifurcation

and which corresponds to alpha activity, and a large amplitude cycle with a fre-

quency ranging from 0 to 5 Hz and which corresponds to an epileptiform activity.

The system selects one of these cycles depending on the initial condition, and

can switch from one to another activity when the system is perturbed. Assume

that we slowly increase the input P. If the system was in the down equilib-
rium state, it will converge to the epileptic cycle when crossing the bifurcation,

and if it was in the up state to the alpha cycle. For PFLC < P < PH3, the system

has a unique stable trajectory which is a periodic orbit with frequency close to

10Hz, and for any initial condition the system will converge towards this cycle.

Eventually, for P > PH3 the system has a unique fixed point and for any initial

condition, the solutions of the differential equation converges towards this fixed

point.

E. For J ∈ [ jE , jGH ], the number and stability of the fixed points are the same as
in the previous case. But in this case, the structure of the cycles is more com-

plex. The family of unstable periodic orbits originating from the subcritical

Hopf bifurcation is connected to the family of limit cycles of the supercritical

Hopf bifurcation H2 associated with the smaller j value, and the branch of limit
cycles of the supercritical Hopf bifurcation H3 associated with the greatest j
value undergoes two fold bifurcations of cycles and disappears via saddle-node

homoclinic bifurcation (see figure 10.13 and labels herein). For P < PFLC1 the

behavior of the system is exactly the same as in case (D): the system generi-

cally converges to the unique stable fixed point for P < PH2, and either converges

to the stable fixed point or to the stable cycle depending on the initial condi-

tion. For PFLC1 < P < PFLC2, the system return to the down-state equilibrium. For

PFLC2 < P < P2, the system has a stable fixed point (down-state equilibrium), a

stable limit cycle corresponding to alpha-like activity and an unstable limit cy-

cle. In this zone of input with have bistability between alpha-activity and rest.

For P2 < P < PFLC3, the system has no stable fixed points and three cycles, one

of which is unstable, another one corresponding to alpha activity and the third

one to epileptiform activity. For P > PFLC3 the behavior is the same as in the case

(D) for P > PFLC: while P < PH3 the system presents purely alpha oscillations, and

for P > PH3 the system converges to the unique up-state equilibrium.

F. For jGH < j < jH1, the system has two subcritical Hopf bifurcations whose family

of limit cycle are connected, and a supercritical Hopf bifurcation whose limit cy-

cle undergo two saddle-node bifurcations and collapse on the saddle-node man-

ifold via saddle-node homoclinic bifurcation (see figure 10.14). For P < PH1 the

system converges to the down-state equilibrium. For PH1 < P < PH2, the system

is bistable and either converges to the upstate equilibrium or to the downstate

equilibrium depending on the initial condition. For PH2 < P < P2 the system con-

verges to the downstate equilibrium. Therefore for P < PH2, the system only

presents damped subthreshold oscillation and no real rhythmic activity. For

P2 < P < PFLC1 the system is in a pure epileptic activity, for PFLC1 < P < PFLC2 the

system presents both epileptic activity and alpha activity, and for PFLC2 < P < PH3
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(a) Equilibria (b) Behaviors

(c) Periods

Figure 10.12: Case (D): j = 12.285. (a): Equilibria and bifurcations (coordinate Y1 as a

function of the input current P), and stability. Blue lines: Plain : stable equilibrium,
dashed : unstable. Purple line: dashed:unstable cycles, plain: stable. Green cycle:

saddle homoclinic orbit, orange cycle: fold of limit cycles (see text) (b): Behavior of

the system for different input and initial conditions. Purple: P = −10 and green:
P = 10 : the system always converge to the unique equilibrium. Red and orange:
P = 2.3: bistability of cycles: orange: epileptic spikes, red: alpha activity. (c):period of
the limit cycles.
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(a) Equilibria

(b) Behaviors (c) Periods

Figure 10.13: Case (E): j = 12.42. (a): Equilibria and bifurcations (coordinate Y1 as a

function of the input current P), and stability. Blue lines: Plain : stable equilibrium,
dashed : unstable. Purple line: dashed:unstable cycles, plain: stable. Green cycle:

saddle homoclinic orbit, orange cycles: folds of limit cycles (see text). (b): Behavior

of the system for different inputs and initial conditions. Purple: P = −4 and green:
P = 10 : the system always converge to the unique equilibrium. Red and orange:
P = 2.4: alpha and epileptic activity, light blue: P = 1.1: rest and alpha oscillations,
pink: P = 4: purely alpha activity.
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the system only presents alpha activity. In this case, when slowly varying the

input P, the system will always present epileptic activity: indeed, it is the only
stable activity in a certain range of parameters.

G. For jH1 < j < jCLC, the system has two saddle-node bifurcations and a supercrit-

ical Hopf bifurcation, whose limit cycles undergo two saddle-node bifurcations

and disappear via saddle-node homoclinic bifurcation. For all P < P2, the sys-

tem always converges to the downstate equilibrium. For P2 < P < PFLC1 the sys-

tem presents epileptic spikes, and for PFLC1 < P < PFLC2 bistability with epileptic

spikes and alpha activity. For PFLC2 < P < PH1 the system presents only a stable

alpha activity and for P > PH1 the system always returns to an upstate equilib-

rium whatever the initial condition (see figure 10.15)

H. For j > jCLC the system has two saddle-node bifurcations and a supercritical

Hopf bifurcation whose family of limit cycle is regular and disappears via saddle-

node homoclinic bifurcation (see figure 10.16). For P < P2 or P > PH1 the system

converges to the unique fixed point, and for P2 < P < PH1 the system presents

oscillations. This case is very interesting from a neuro-computational point of

view. Indeed, the family of limit cycles created presents a stable region of oscil-

lations around 10Hz corresponding to alpha activity as in the previous case, for

a quite large set of inputs Pα < P < PH1. At P = Pα it abruptly switches from alpha

activity to theta activity where it stay for Pθ < P < Pα and eventually switches

regularly to delta activity for P2 < P < Pθ . In this region of parameter therefore

the system presents the rhythm of the normal sleep activity.
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(a) Equilibria

(b) Behaviors (c) Periods

Figure 10.14: Case (F): j = 12.5. (a): Equilibria and bifurcations (coordinate Y1 as a

function of the input current P), and stability. Blue lines: Plain : stable equilibrium,
dashed : unstable. Purple line: dashed:unstable cycles, plain: stable. Green cycle:

saddle homoclinic orbit, orange cycles: folds of limit cycles (see text). (b): Behavior of

the system for different inputs and initial conditions. Purple: P =−2 and green: P = 9
: the system always converge to the unique equilibrium. Dark blue: P = 2.05: purely
epileptic activity: slow waves of high amplitude. Red and orange: P = 2.3: alpha and
epileptic activity coexist, light blue: P = 5: only alpha oscillations.
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(a) Equilibria

(b) Behaviors (c) Periods

Figure 10.15: Case (G): j = 12.7. (a): Equilibria and bifurcations (coordinate Y1 as a

function of the input current P), and stability. Blue lines: Plain : stable equilibrium,
dashed : unstable. Purple line: dashed:unstable cycles, plain: stable. Green cycle:

saddle homoclinic orbit, orange cycles: folds of limit cycles (see text). (b): Behavior of

the system for different inputs and initial conditions. Purple: P = 0 and green: P = 11
: the system always converge to the unique equilibrium. Orange: P = 2.3: purely
epileptic activity: slow waves of high amplitude. Pink: P = 3.1: alpha and epileptic
activity coexist, light blue: P = 5: only alpha oscillations.
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(a) Equilibria

(b) Behaviors (c) Periods

Figure 10.16: Case (H): j = 14. (a): Equilibria and bifurcations (coordinate Y1 as a

function of the input current P), and stability. Blue lines: Plain : stable equilibrium,
dashed : unstable. Purple line: dashed:unstable cycles, plain: stable (see text). (b):

Behavior of the system for different inputs and initial conditions. Up: P = 10: alpha
activity, Middle: P = 5 theta activity. Down P = 2.3: delta activity.
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10.4 INFLUENCE OF OTHER PARAMETER IN JANSEN’S MODEL

10.4.1 Effect of the PSP amplitude ratio

The bifurcation structure in function of the PSP amplitude ratio G is very similar
to the one corresponding to the coupling strength G. The system also presents a
cusp, a Bogdanov-Takens and a Bautin bifurcation, two branches of saddle-node of

limit cycles collapsing at a cusp of limit cycles. The same types of behaviors will be

observed. We decompose here again the bifurcation diagram into zones depending of

G, and use the same notations as in the previous case. The bifurcation diagram and
the decomposition in zones is given in figure 10.17.

Figure 10.17: Codimention 2 bifurcations in Jansen and Rit’s models with respect to

the PSP amplitude ratio G and P.

10.4.2 Effect of the delay ratio

The delay ratio also presents the same bifurcation structure with a cusp , a Bogdanov-

Takens, a Bautin and a cusp of limit cycles bifurcations, together with saddle-homoclinic

and saddle-node homoclinic bifurcations. The bifurcation diagram is provided in

10.18.
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Figure 10.18: Codimention 2 bifurcations in Jansen and Rit’s models with respect to

the delay ratio ratio d and P.
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10.4.3 Sensitivity to the connection probability parameters

The structure of cycles we studied is unaffected by changes in α1, α3 and α4. For the

parameter α2, the picture is not exactly the same. Indeed, the bifurcation diagram

presents a codimension three bifurcation corresponding to the cusp case of the de-

generate Bogdanov-Takens bifurcation. With respect to these parameters, the cusp

bifurcation point is also a point of the Andronov-Hopf bifurcation. Note that at this

precise point, the bifurcation diagram is very close to the one of Wendling and Chau-

vel’s models (see below) and therefore will locally generate the same behaviors as this

more complex model.

This codimension three bifurcation corresponds to the valuesDBT : {P = 3.236, α2 =
0.365}.
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(a) Codim. 2 bifurcations in α1
and P

(b) Codim. 2 bifurcations in α3
and P

(c) Codim. 2 bifurcations in α4
and P

(d) Codim. 2 bifurcations in α2 and P

Figure 10.19: Codimension 2 bifurcations of Jansen’s model with respect to the con-

nection probability parameters. In the three first cases no new bifurcations appear,

and there are only a saddle-node and a Hopf bifurcation manifold, with possibly

Bogdanov-Takens and Bautin bifurcation points. In case (d) we observe the appari-

tion of a codimension three degenerate Bogdanov Takens bifurcation point.
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10.5 BIFURCATIONS WENDLING AND CHAUVEL’S MODEL

10.5.1 Fixed points of the model

Wendling and Chauvel’s dynamical system is even more intricate than Jansen’smodel,

since it has ten dimensions, sigmoidal nonlinearities and component mixing. Never-

theless in this case again, the fixed points of the system can be parametrized as a

function of the state variable X = Y1−Y2. This manifold has the equation:





Y0 = jS(X)

Y2 = jG1α4
d1

S(α3 jS(X))

Z =− jG1α6
d1

S(α3 jS(X))+α5 jS(X)

Y3 = jG2α7
d2

S(− jG1α6
d1

S(α3 jS(X))+α5 jS(X))

P = X +Y2(X)+Y3(X)−α2 jS(α1 jS(X))

Yi = 0 ∀i ∈ {5. . .9}

The input current P will always be an important parameter in our study. We
first provide a description of codimension 1 bifurcations in Wendling’s model with

respect to this parameter fixing the values of the other parameters to the values

found by Wendling and colleagues in their papers, and then consider the evolution of

this diagram when changing the relevant parameters of the model.

As a preliminary result, we state that the system globally presents the same codi-

mension 1 and 2 bifurcations: a saddle-node and a Hopf bifurcation manifolds, a cusp,

Bautin and Bogdanov-Takens bifurcation manifolds, and a codimension three degen-

erate Bogdanov-Takens bifurcation. The precise study of the cycles generated and

their bifurcations is the subject of forthcoming works.

10.6 CONCLUSION

We presented in this chapter some preliminary results of the study of

the bifurcations in neural mass models in order to understand the origin of rhythms

and epileptic seizures. The study of the different cycles of the system is of great

interest. The effect of the different parameters can be understood with the lights of

these bifurcations. The effect of noise in such a system, and the relations between

the dynamics of these deterministic models and the related mean field equation is

a great endeavor which will probably provide great insights on the effect of noise in

the apparition of seizures and in the rhythms of the brain. This work has been done

together with Olivier Faugeras.
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Figure 10.20: Bifurcations of Wendling and Chauvel’s model with the original param-

eters of table 10.2 with respect to the parameters P and j. We observe a saddle-node
bifurcation manifold (plain blue curve), a Hopf bifurcation manifold (dashed blue

curve), a Bautin bifurcation, and a codimension three degenerate Bogdanov-Takens

bifurcation (DBT)
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Conclusion

Most people think I count fish, but I don’t.

I look at them. I look at their souls and read their dreams

and then I let them into my dreams.

– Emir Kusturica, Arizona Dream.

In this thesis, we intended to bring together advanced mathematical tools and bio-

logical problems of interest. Neuroscience gathered so far a huge amount of data and

computational models, which raises new and interesting mathematical questions.

First of all, the nonlinear excitabilty of nerve cells and the fact that they exchange

stereotyped signals lead us in part II to study hybrid dynamical systems featuring

both a nonlinear ordinary differential accounting for the dynamics of the excitable

membrane voltage and a discrete dynamical system accounting for the spike emis-

sion. These hybrid dynamical systems are very interesting from a mathematical

point of view, since they put together the capabilities of both type of dynamics. From

a neuro-computational point of view, the precise mathematical study provides a bet-

ter understanding of the influence of the different parameters, the sensitivity with

respect to these parameters, and the ranges of parameters for obtaining a given be-

havior and therefore simulating a given type of cell. Furthermore, this study provided

a new model having the largest class of behaviors possible and keeping as simple as

the others, the quartic model.

The effect of noise in the neurons influences also the way signals are processed. It

is generally agreed that the variability of spike trains has important effects in terms

of neural coding. Studying this problem in part III lead us to review in depth first

hitting times of stochastic processes. The simplest problems were tractable using

existing mathematical material, but as soon as de description of the neural activity

becomes more precise, usual mathematical analysis fails. Therefore unsolved mathe-

matical problems are raised by these biologically inspired questions with more acuity

than the pure theoretical interest. We adressed the question of generalizing available

mathematical results to take into account synaptic integration for a simple neuron

model, and this study quite theoretical would probably have applications in the fields

of mathematics, physics, and in other domains of mathematical and computational

biology. Other problems involving first hitting times of nonlinear processes to curved

boundary are still open problems whose resolution are of great interest in mathemat-

ics and biology.

Eventually, the brain is a highly complex system, since it is composed of a huge

number of neurons which are complex entities, interacting in a nonlinear and com-

plex fashion through a very specific and intricate connectivity map. This complex-

ity raises the question of the reduction of this complexity in order to determine and

study the essential aspects accounting for the population’s function. The question

of modeling and studying neural population models, reduce their complexity, pro-
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vide and study tractable models is discussed in part IV. A first idea to get efficient

computational models is to consider that the neurons communicate by exchanging

action potentials which are stereotyped binary signals. This idea lead us to discuss

an event-based modelization for stochastic spiking neuron networks. But taking into

account each neuron’s dynamics and their precise interaction in a huge bunch of cells

having a global function is probably not the suitable level of description. We then

turn to mesoscopic and macroscopic models. First, we studied the way one can get a

global mean-field description of the network. We studied these equation from a the-

oretical point of view and show that they are well-posed in the mathematical sense,

i.e. that there exists a unique solution to these equations. Simplifying these equa-

tions lead to more classical deterministic neural mass models. These are nonlinear

ordinary differential equations in high dimensional spaces and with a large number

of parameters. We reduce and study these models, and the particular study of the

periodic solutions provides a better understanding of the rhythmic activity observed

in electroencephalogram recordings and of the occurance of epileptiform activity.

Perspectives

These studies shed some light on new modeling problems, unsolved mathematical

issues, and open the way to more neuroscientific issues.

Our work on nonlinear planar neuron models and the relation between the bi-

furcation structure of these models and electrophysiological properties we provide in

chapter 4 can be useful to quantitative and compuational further studies of such sys-

tems. The description of the spike activity we provide in chapter 3 could be used in

order to study small networks of such neurons when interconnected. This precise

study lead us also to prove that a usual model used in some very large scale simu-

lation was of slippery use, and the study of the results obtained by simulating this

model have to been carefully look at considering this fact.

The study of spike statistics opens the way to new and interesting studies, both

in the field of mathematics by adressing the problems that keep unsolved such as

the first hitting time problems for nonlinear neuron models, as in the neuroscience

community in order to validate models, compute spike statistics and simulate event-

based networks. A collaboration with Christophe Pouzat, neuroscientist at Paris V

university in on tracks in order to compare the spikes statistic of in-vivo spike record-

ings in insects and the models we developped in this thesis. This study could lead to

fit our model if possible, and to disqualify some models if the spike trains they produce

present qualitative differences with the intracellular recordings. Applications of the

result of the first hitting times of DIPs to general boundaries may also be developped

in many scientific fields.

Eventually, the study of population models of the last part of this dissertation is

to our point of view very promising. First of all, the event-based model opens the way

to efficient simulations of stochastic integrate-and-fire models. The mean-field study

provides an efficient way to compute the stationary and dynamic mean-field solution

for stochastic neurons, and is likely to be applied to compute the solutions of large

networks in a more tractable way. The study of these solutions will be particularly

interesting in comparition with the results obtained in the last section which is a

study of a deterministic approximation of these systems. These comparitions will be

of particular interest to understand the effect of noise in a bifurcating system. The

codimension three bifurcation observed in the two neural mass models is also a very
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interesting aspect of this work, since it seems to be the origin of biologically plausible

behaviors. The links between these mean field and deterministic models and EEG

recordings will be one of our focus in the next few months, and will probably lead to

new understandings of the collective activity of nerve cells, and possibly to some new

predictions.

Other effects of the noise on cortical systems might also be taken into account,

such as the high conductance states, in which the noise acts as a facilitating effect

for the signal transmission. Models of these effects include partial differential equa-

tions with random coefficients, which have been studied intensively studied since the

beginning of this century and which are still an active field of research.
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Conclusion (version française)

Dans cette thèse, nous avons tenté d’allier des outils avancés d’analysemathématique

et des problèmes biologiques intéressants. La neuroscience a accumulé jusqu’à au-

jourd’hui une importante quantité de données et de modèles, qui soulèvent des ques-

tions mathématiques nouvelles et très intéressantes.

Tout d’abord, l’excitabilité des cellules nerveuses et le fait qu’elles communiquent

entre elles en s’échangeant des impulsions stéréotypées nous a conduit à étudier

des systèmes dynamiques hybrides décrits à la fois une équation différentielle non-

linéaire ordinaire reproduisant la dynamique du potentiel de membrane de la cellule

et un système dynamique discret modélisant l’émission d’un potentiel d’action. Ces

systèmes dynamiques hybrides sont très intéressants d’un point de vuemathématique

puisqu’ils allient les capacités des deux types de dynamiques. D’un point de vue

neuro-computationnel, l’étude mathématique précise nous fournit unemeilleure compréhension

de l’influence de différents paramètres, la sensibilité du système à ceux-ci, et les zones

de paramètres associées à un comportement donné et donc à un certain type de cel-

lule. Par ailleurs, cette étude a aboutit à l’introduction d’un nouveau modèle de neu-

rone possédant la plus grande variété de comportements possibles et restant aussi

simple à étudier et à simuler que les autres modèles de la classe: le modèle quar-

tique.

L’effet du bruit sur les neurones influence la façon dont les signaux sont traités.

Il est généralement admis que la variabilité des trains de spikes a des implications

importantes en termes de codage neuronal. L’étude de ce problème nous a mené à

étudier en profondeur le problème des premiers temps d’atteinte de processus stochas-

tiques. Les problèmes les plus simples peuvent être traités en utilisant les outils

mathématiques existants, mais dès que la description du neurone et de son activité

devient un peu plus précise, l’analyse mathématique usuelle échoue. Des problèmes

mathématiques non résolus sont soulevés par ces questions inspirées de problèmes

biologiques, avec plus d’acuité que le simple intérêt théorique. Nous avons généralisé

les resultats mathématiques existants afin de prendre en compte l’intégration synap-

tique pour un modèle simple de neurone et de synapse, et cette étude théorique

pourrait avoir de nouvelles applications dans le domaine des mathématiques, de

la physique et de la biologie mathématique. D’autres problèmes incluant les pre-

miers temps d’atteinte de processus non-linéaires à des frontières générales sont

toujours des problèmes ouverts dont la résolution serait d’un grand intérêt tant en

mathématiques qu’en biologie.

Enfin, le cerveau est un système très complexe, puisqu’il est composé d’un trés

grand nombre de neurones qui sont eux-même des entités complexes, interagissant de

façon non-linéaire et compliquée à travers un réseau à la connectivité très spécifique

et labyrinthique. Cette complexité pose la question de sa réduction, afin de déterminer

et d’étudier les aspects essentiels en jeu dans la fonction d’une aire corticale. La ques-
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tion de la modélisation d’une population de neurones, de la réduction de leur com-

plexité, de fournir et d’étudier des modèles accessibles à l’analyse mathématique est

discutée dans ma thèse. Une première idée afin d’obtenir un modèle efficace à simuler

consiste à prendre en compte la nature binaire des potentiels d’action. Cette observa-

tion nous a mené a proposer une modélisation événementielle de réseaux de neurones

à spikes stochastiques. La prise de compte de la dynamique de chaque neurone et de

leurs interactions précises au sein d’un immense groupe de cellules présentant une

fonction spécifique n’est probablement pas un niveau de description adapté. Nous

nous intéressons donc à des modèles mésoscopiques et macroscopiques. Tout d’abord,

nous avons étudié une méthode afin de passer d’une description microscopique à

une description mésoscopique de type champ-moyen du réseau. Nous avons étudié

ces équations théoriquement et avons prouvé qu’elles étaient mathématiquement

bien posées, c’est-à-dire qu’elles admettent une unique solution. Une simplifica-

tion de ces équations nous a mené à étudier des modèles déterministes plus clas-

siques de masses neuronales. Il s’agit d’équations différentielles ordinaires dans des

espaces de grande dimension avec un grand nombre de paramètres. Nous avons

réduit et étudié ces modèles et l’étude des solutions périodiques nous fournit une

meilleure compréhension de l’activité rythmique observée dans des enregistrements

d’electroencephalogrammes et de l’apparition d’une activité épileptique.

Perspectives

Ces études ont mis en lumière de nouveaux problèmes de modélisation et des ques-

tions mathématiques non résolues, et ouvre la voie à des applications plus proches

des questions biologiques.

Nos travaux sur les modèles de neurones planaires et les relations entre les bifur-

cations et les propriétés électrophysiologiques que nous obtenons dans le chapitre 4

peuvent être utiles pour de futures études quantitatives et computationelles de tels

systèmes. La description de la dynamique des spikes que nous obtenons au chapitre

3 peut être utilisée afin d’étudier de petits réseaux de neurones de ce type inter-

connectés. Cette étude précise nous a aussi mené à réaliser qu’un des modèles les

plus utilisés dans ce cadre, notamment dans des simulations à très grande échelle,

présentait une forte dépendence à un paramètre non biologique, et les résultats

qui ont été obtenus dans d’autres études utilisant ce modèle doivent être étudiés

précisément afin de prendre en compte ces aspects.

L’étude des statistiques de trains de spikes ouvre la voie à de nouvelles études

intéressantes, tant dans le domaine des mathématiques en traitant les problèmes non

encore résolus comme les premiers temps d’atteintes pour des modèles de neurones

non-linéaires, que dans le domaine des neurosciences afin de valider des modèles et de

simuler des grands réseaux de neurones bruités avec unemodélisation événementielle.

Une collaboration avec Christophe Pouzat, neuroscientifique à l’université de Paris V

est actuellement en cours, et le but est de comparer les statistiques d’enregistrements

de trains de spikes in-vivo chez l’insecte aux modèles que nous avons traités dans

cette thèse. Cette étude pourrait nous mener à valider ou invalider des modèles et les

calibrer. Le résultat que nous avons obtenu sur la distribution de probabilité des pre-

miers temps d’atteintes de processus doublement intégrés a lui aussi des applications

possibles dans de multiples domaines scientifiques.

Enfin, l’étude des modèles de populations de neurones développée dans la dernière

partie de cette thèse nous semble prometteuse. Tout d’abord, la modélisation événe-
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mentielle de réseaux de neurones à spikes ouvre la voie à la simulation efficace

et rapide de modèles de neurones à impulsion bruités. L’étude champ moyen des

réseaux fournit une méthode efficace afin de calculer la solution stationaire et dy-

namique des équations de champ moyen pour des neurones stochastiques et permet

de resoudre ces equations d’une façon plus efficace. L’étude de ces solutions sera par-

ticulièrement intéressante. Les liens entre ces résultats et les conclusions du dernier

chapitre de la thèse qui consiste à étudier des approximations déterministes de ces

équations constitue un sujet d’étude très intéressant que nous développons actuelle-

ment. Cette comparaison nous permettra de mieux comprendre les effets du bruit sur

un système présentant des bifurcations. La bifurcation de codimension trois observée

dans les modèles de masse neuronales est elle-même très intéressante et semble être

à l’origine de comportements biologiquement plausibles. Les liens entre les équations

de champ moyen, les équations de masses neuronales et des enregistrements EEG

sera mon principal sujet de recherche dans les mois à venir, et nous permettra proba-

blement de mieux comprendre l’activité collective des cellules nerveuses, l’apparition

de crises d’épilepsie.

D’autres effets du bruit sur les systèmes corticaux pourraient également être pris

en compte, tels que les états de haute conductance, dans lesquels le bruit apparaı̂t

comme un élément facilitant la transmission des signaux. Les modèles prenant en

compte ces effets sont des équations aux dérivées partielles à coefficients aléatoires,

qui ont été étudiés intensivement depuis le début du siècle et qui restent un domaine

de recherches très actif.
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Part V

Mathematical Tools
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APPENDIXA

A CRASH COURSE ON DYNAMICAL

SYSTEMS

This appendix is aimed to define and provide the reader with the basic definitions

and theorems we used in the manuscript in the field of dynamical system. The theory

of dynamical systems has been widely studied in the field of mathematics and theoret-

ical physics. For a comprehensive basic introduction of notions and tools, the reader

is referred to [246]. The elementary tools of bifurcations of equilibria and cycles are

studied in depth in [118, 167], extensions in Banach spaces mainly for applications

to partial differential equations and to systems with symetries in [49, 111, 125, 139].

For in depth studies of discrete-time dynamical systems the reader is referred to the

excellent book of [70].

This domain has been applied successfuly in such fields as physics, biology, chem-

istry and economics. For biological applications and especially to neuroscience the

reader is referred to [145, 202, 225].

In this chapter we quickly review the different concepts and the main theorems

of dynamical systems used in the manuscript. But let us first ask a fundamental

question: what is a dynamical system?

A.1 WHAT IS A DYNAMICAL SYSTEM?

A dynamical system is a mathematical formalization for processes evolving in

time. A system evolving in time having the property that its present state governs the

whole subsequent evolution is called a dynamical system. The state of the systems

we consider here are defined by a point in an open set Ω of a Banach space E. We
review the different types of spaces, times and the basic concepts we will deal in this

chapter.

A.1.1 Phase space

From a mathematical point of view, a dynamical system is the action of a group on

a given space. The space we consider is called the phase (or state) space H. This
set is composed of all possible states of a systems, and is in general assumed to be

a Banach space. It can be of different types : open set of R
d , Cd , infinite or semi-

infinite sequences of symbols (symbolic dynamics), . . . The dynamical system property

implies that the specification of a point x ∈ H must be sufficient not only to describe
the current “position” of the system but also to determine its evolution
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A.1.2 Time

The evolution of a dynamical system implies a notion of time. Time is considered to be

indexed by a number set T . We will consider two types of dynamical systems: those
with continuous (real) time T = R or an open subset of R, and those with discrete

(integer) time T = Z. Systems of the first type are called continuous-time dynami-

cal systems, while those of the second are termed discrete-time dynamical systems.

Discrete-time systems appear naturally in ecology and economics when the state of

a system at a certain moment of time t completely determines its state after a given
time (a year for instance), say at t +1.

A.1.3 Evolution operator

The main component of a dynamical system is an evolution law that determines the

state xt of the system at time t, provided the initial state x0 is known. The most

general way to specify the evolution is to assume that for any given t ∈ T a map ϕ t is

defined in the state space H,
ϕ t : H 7→ H,

which transforms an initial state x0 ∈ H into some state xt ∈ H at time t:

xt = ϕ tx0.

The map ϕ t is often called the evolution operator of the dynamical system. It

might be known explicitly; however, in most cases, it is defined indirectly and can

be computed only approximately. In the continuous-time case, the family {ϕ t ; t ∈ T}
of evolution operators is called a flow. Note that ϕ tx may not be defined for all pairs
(x, t)∈H×T . Dynamical systems with evolution operator ϕ t defined for both t ≥ 0 and
t < 0 are called invertible. In such systems the initial state x0 completely defines not

only the future states of the system, but its past behavior as well. However, it is use-

ful to consider also dynamical systems whose future behavior for t > 0 is completely
determined by their initial state x0 at t = 0, but the history for t < 0 can not be un-
ambigously reconstructed. Such (noninvertible) dynamical systems are described by

evolution operators defined only for t ≥ 0 (i.e., for t ∈R+ or Z
+). In the continuous-time

case, they are called semiflows.

It is also possible that ϕ tx0 is defined only locally in time, for example, for 0≤ t < t0,
where t0 depends on x0 ∈ H. An important example of such a behavior is a “blow-up”,
when a continuous-time system in H = R

n approaches infinity within a finite time,

i.e., ϕ tx0→ ∞ for t→ t0.
The evolution operators have two natural properties that reflect the deterministic

character of the behavior of dynamical systems. First of all,

(DS.1). ϕ0 = id where id is the identity map on H.

(DS.2). ϕ t+s = ϕ t ◦ϕ s i.e ϕ t+sx = ϕ t(ϕ sx) for all x ∈ H and t,s ∈ T . This property means
that the law governing the behavior of the system does not change in time: the

system is “autonomous”.

For invertible systems, the evolution operator ϕ t satisfies the property (DS.2) for t
and s both negative and nonnegative. In such systems, the operator ϕ−t is the inverse

of ϕ t ((ϕ t)−1 = ϕ−t) because of properties (DS.2) and (DS.1).

A discrete-time dynamical system with integer t is fully specified by defining only
one map f = ϕ1, called “time-one map”, using recursively (DS.2)
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A.1.4 Definition of a dynamical system

Now we are able to give a formal definition of a dynamical system.

Definition A.1.1. A dynamical system is a triple {T,H,ϕ t}, where T is a time set, H
is a state space, and ϕ t : H 7→ H is a family of evolution operators parametrized by
t ∈ T and satisfying the properties (DS.1) and (DS.2).

A.1.5 Orbits and phase portraits

Throughout the manuscript we discussed a geometrical point of view on dynamical

systems. The basic geometrical objects associated with a dynamical system {T,H,ϕ t}
are its orbits in the state space and the phase portrait composed of these orbits.

Definition A.1.2. An orbit starting at x0 is an ordered subset of the state space H,

Or(x0) = {x ∈ H : x = ϕ tx0, for all t ∈ T such that ϕ tx0is defined}.

Orbits of a continuous-time system with a continuous evolution operator are curves

in the state space H parametrized by the time t and oriented by its direction of in-
crease (see Figure 1.3). Orbits of a discrete-time system are sequences of points in

the state space H enumerated by increasing integers. Orbits are often also called
trajectories. If y0 = ϕ t0x0 for some t0, the sets Or(x0) and Or(y0) coincide.

Definition A.1.3. A point x0 ∈ H is called an equilibrium (fixed point) if ϕ tx0 = x0 for

all t ∈ T .

The evolution operator maps an equilibrium onto itself. Equivalently, a system

placed at an equilibrium remains there forever. Thus, equilibria represent the sim-

plest mode of behavior of the system.

Another relatively simple type of orbit is a cycle.

Definition A.1.4. A cycle is a periodic orbit, namely a nonequilibrium orbit L0, such

that each point x0 ∈ L0 satisfies ϕ t+T0x0 = ϕ tx0 with some T0 > 0, for all t ∈ T . The
minimal T0 with this property is called the period of the cycle L0.

If a system starts its evolution at a point x0 on the cycle, it will return exactly to

this point after every T0 units of time. The system exhibits periodic oscillations. In

the continuous-time case a cycle L0 is a closed curve

Definition A.1.5. A cycle of a continuous-time dynamical system, in a neighborhood

of which there are no other cycles, is called a limit cycle.

In the discrete-time case a cycle is a (finite) set of points x0, f (x0), f 2(x0), ..., f N0(x0) =
x0, where f = ϕ1 and the period T0 = N0 is obviously an integer. Notice that each point

of this set is a fixed point of the Nth
0 iterate f N0 of the map f . We can roughly classify

all possible orbits in dynamical systems into fixed points, cycles, and “the rest”.

Definition A.1.6. The phase portrait of a dynamical system is a partitioning of the

state space into orbits.

The phase portrait contains a lot of information on the behavior of a dynamical

system. By looking at the phase portrait, we can determine the number and types of

asymptotic states to which the system tends as t→ ∞ (and as t→−∞ if the system is
invertible).
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A.1.6 Invariant sets

Definition and types

To further classify elements of a phase portrait - in particular, possible asymptotic

states of the system - the following definition is useful.

Definition A.1.7. An invariant set of a dynamical system {T,H,ϕ t} is a subset S⊂H
such that x0 ∈ S implies ϕ tx0 ∈ S for all t ∈ T .

The definitionmeans that ϕ tS⊆ S for all t ∈ T . Clearly, an invariant set S consists of
orbits of the dynamical system. Any individual orbit Or(x0) is obviously an invariant
set. We always can restrict the evolution operator ϕ t of the system to its invariant set

S. If the state space H is endowed with a metric ρ , we could consider closed invariant
sets in H. Equilibria (fixed points) and cycles are clearly the simplest examples of
closed invariant sets. There are other types of closed invariant sets. The next more

complex are invariant manifolds, that is, finite-dimensional hypersurfaces in some

space R
K .

Stability of invariant sets

Let {T,H,ϕ t} be a dynamical system on a complete metric space H, and S0 a closed

invariant set.

Definition A.1.8. An invariant set S0 is called stable if

i. for any sufficiently small neighborhoodU ⊃ S0 there exists a neighborhoodV ⊃ S0

such that ϕ tx ∈U for all x ∈V and all t > 0;

ii. there exists a neighborhood U0⊃ S0 such that ϕ tx→ S0 for all x ∈U0, as t→ ∞.

If S0 is an equilibrium or a cycle, this definition turns into the standard definition

of stable equilibria or cycles. Property (i) of the definition is called Lyapunov stability.

If a set S0 is Lyapunov stable, nearby orbits do not leave its neighborhood. Property

(ii) is sometimes called asymptotic stability.

There are invariant sets that are Lyapunov stable but not asymptotically stable.

In contrast, there are invariant sets that are attracting but not Lyapunov stable,

since some orbits starting near S0 eventually approach S0, but only after an excursion

outside a small but fixed neighborhood of this set.

If x0 is a fixed point of a finite-dimensional, smooth, discrete-time dynamical sys-

tem, then sufficient conditions for its stability can be formulated in terms of the Ja-

cobian matrix evaluated at x0.

Theorem A.1.1. Consider a discrete-time dynamical system

x 7→ f (x), x ∈ R
n,

where f is a smooth map. Suppose it has a fixed point x0, namely f (x0) = x0, and denote

by A the Jacobian matrix of f (x) evaluated at x0. Then the fixed point is stable if all

eigenvalues µ1,µ2, . . . ,µn of A satisfy |µ |< 1.

The eigenvalues of a fixed point are usually called multipliers. Theorem A.1.1

applied to the Nth
0 iterate f N0 of the map f at any point of the periodic orbit, also gives

a sufficient condition for the stability of an N0-cycle.

Another important case where we can establish the stability of a fixed point of a

discrete-time dynamical system is provided by the following theorem.
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Theorem A.1.2 (Contraction Mapping Principle). Let H be a complete metric space
with distance defined by ρ . Assume that there is a map f : H 7→ H that is continuous
and that satisfies, for all x,y ∈H,

ρ( f (x), f (y)) ≤ λρ(x,y),

with some 0 < λ < 1. Then the discrete-time dynamical system {Z+,H, f} has a stable
fixed point x0 ∈H. Moreover, f k(x)→ x0 as k→ ∞, starting from any point x ∈ H.

Notice that there is no restriction on the dimension of the state space. It can be, for

example, an infinite dimensional function space. Another important difference from

Theorem A.1.1 is that Theorem A.1.2 guarantees the existence and uniqueness of the

fixed point x0, whereas this has to be assumed in Theorem A.1.1. Actually, the map

f from Theorem A.1.1 is locally contracting near x0, provided an appropriate metric

in Rn is introduced. The Contraction Mapping Principle is a powerful tool. Using

this principle, we can prove the Implicit Function Theorem, the Inverse Function

Theorem, as well as Theorem A.2.1 ahead.

A.2 ORDINARY DIFFERENTIAL EQUATIONS

In this section we recall the main definitions and theorems in ordinary differential

equations (ODE) we used in the manuscript. We consider H a Banach space, Ω ⊂ H
an open set, I ⊂ R an open set and Λ a set (the parameter set). We denote the vector
field of the equation Xλ (t,x). It is an application defined on Λ× I×Ω taking its values
in H.

A.2.1 General results

One of the first question to adress is the existence and uniqueness of solutions of a

dynamical system.

Theorem A.2.1 (Cauchy-Lipchitz theorem). Assume that Xλ (t,x) a vector field k times
continuously differentiable with k≥ 0, locally lipchitz continuous in x, and let xλ (t; t0,x0)
the solution of: {

dx
dt = Xλ (t,x)

x(t0) = x0
(A.1)

For all (λ0,τ ,u0), there exists δ > 0 and α > 0 such that xλ is defined on (t0−α , t0 + α)
for any (λ , t0,x0) ∈ B(λ0,δ )× (τ−δ ,τ + δ )×B(u0,δ ).
Furthermore, the application (t,λ , t0,u0) 7→ xλ (t; t0,u0) is k times continuously differ-

entiable on its definition domain.

The proof of this theorem is essentially based on Picard’s theorem and the implicit

functions theorem. The function x = xλ (t; t0x0), considered as a function of time t, is
called a solution starting at x0. It defines, for each x0∈U , two objects: a solution curve

Cr(t0,x0) = (t,x) : x = xλ (t; t0,x0), t ∈ J ⊂R×H

and an orbit, which is the projection of Cr(t0,x0) onto the state space,

Or(t0,x0) = x : x = x(t; t0,x0), t ∈ J ⊂ H.

Both curves are parametrized by time t and oriented by the direction of time ad-
vance.
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Lemma A.2.2 (Gronwall’s lemma). Let g(t,z) an application lipchitz continuous in z
and ρ the solution of: {

dρ
dt = g(t,ρ)

ρ(t0) = |x(t0)|

then if x : I 7→ R
n satisfies |dx

dt | ≤ g(t, |x(t)|), we have for t ≥ t0 in I

|x(t)| ≤ ρ(t)

Even when X(t,x) is defined for all t and all x, the solutions are not defined for all
time. A classical example is X(t,x) = x2.

A.2.2 Maximality and Explosion

Proposition A.2.3. Let J be the union of all intervals containing t0 on which a solu-
tion of (A.1) is defined. There exists a solution x defined on J and any other solution
of (A.1) is a restriction of x to its definition interval. x is called maximal solution of
(A.1).

According to Cauchy-Lipschitz theorem, J is an open set.

Proposition A.2.4. Let X : (t−, t+)×Ω 7→ E satisfying the Cauchy-Lipschitz hypoth-
esis and x be a maximal solution, defined on J = (τ−,τ+). If τ+ < t+, then x exits any
compact for t→ τ+ (i.e. blows up at time τ+).

Proposition A.2.5. Let f a continuously differentiable function and F = {x| f (x)≤ 0},
and X a vector field defined in the neighborhood of F, and such that d f (x) ·X(t,x) < 0
on {x | f (x) = 0}. Then any solution of the differential equation defined by X inside F
at t = t0 stay in F for any t ≥ t0. In particular if F is compact, the solutions are defined
on a right semi-infinite interval.

Applications of Gronwall’s lemma A.2.2 help controlling the explosion time of the

solutions.

A.2.3 ODE as Dynamical Systems

We now consider H = R
n.

Definition A.2.1 (Flow of the equation). The flow of the equation ẋ(t) = X(t,x(t)) is
the map:

ϕ : R×R×R
n 7→ R

n

such that Φ(t, t0,x0) = x(t) where x is solution of (A.1). We will denote this application
f t
t0(x0).

When the vector field does not depend on time (autonomous vector field), the so-

lution xλ (t; t0,x0) is a function of t− t0, which we denote xλ (t− t0,x0). We can define the
evolution operator ϕ t : E 7→ E by the formula

ϕ tx0 = ϕt0,t+t0(x0)

which assigns to x0 a point on the orbit through x0 that is passed t time units later
and which is independent of the choice of t0. It is easy to check that {R,H,ϕ t} is a
continuous-time dynamical system.
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Definition A.2.2. Let h be a diffeomorphism, and X(t,x) a vector field. We denote by
h⋆X the vector field defined by:

h⋆X(t,x) = dh(h−1(x))X(t,h−1(x))

Proposition A.2.6. Let ϕ t
t0 be the flow of X and ψ t the flow of Y = h⋆X . We have:

ψ t = h◦ϕ t ◦h−1.

In particular, if X is autonomous (i.e. does not depend on time), h maps the orbits of
X on the ones of Y .

We now consider autonomous flows.

A.2.4 Topology and Poincaré applications

PropositionA.2.7 (theoreme du redressement). Let X a vector field such that X(x0) 6=
0. Then there exists a diffeomorphism h defined in the neighborhood of x0 such that

h⋆X is constant.

This proposition allows us to define a Poincaré section of the flow as a hypersur-

face Σ transversal to the flow. Let x(t) be a periodic solution of period T and Σ a
Poincaré section at the point x(0). Consider now orbits in the neighborhood of the
cycle. The cycle itself is an orbit that starts at a point on Σ and returns to Σ at the
same point x(0). Since the solutions of (A.1) depend smoothly on their initial condi-
tion (theorem A.2.1), an orbit starting at a point x ∈ Σ sufficiently close to x(0) also
returns to Σ at some point x̃ ∈ Σ near x(0). Moreover, nearby orbits will also intersect
Σ transversally because of proposition A.2.7. which defines a map

{
P : Σ 7→ Σ,x 7→ x̃ = P(x),

called the Poincaré map.

Definition A.2.3 (Poincaré map). The map P is called a Poincaré map associated
with the cycle x.

The Poincaré map P is locally defined, is as smooth as the vector field, and is
invertible near x(0). The intersection point x(0) is a fixed point of the Poincaré map.
Theorem A.2.7 gives us a system of local coordinates ξ = (ξ1,ξ2, ...,ξn−1) on Σ such that
ξ = 0 corresponds to x0. Then the Poincaré map will be characterized by a locally de-

fined map P : R
n−1 7→R

n−1, which transforms ξ corresponding to x into ξ̃ corresponding
to x̃, P(ξ ) = ξ̃ . The origin ξ = 0 of R

n−1 is a fixed point of the map P : P(0) = 0. The
stability of the cycle L0 is equivalent to the stability of the fixed point ξ0 = 0 of the
Poincaré map. Thus, the cycle is stable if all eigenvalues (multipliers) µ1,µ2, . . . ,µn−1

of the (n− 1)× (n− 1) Jacobian matrix of P, are located inside the unit circle |µ | = 1
(see Theorem A.1.1).

One may ask whether the multipliers depend on the choice of the point x0 on L0,

the cross-section Σ, or the coordinates ξ on it. If this were the case, determining
stability using multipliers would be confusing or even impossible.

LemmaA.2.8. Themultipliers µ1,µ2, . . . ,µn−1 of the Jacobianmatrix A of the Poincaré
map P associated with a cycle L0 are independent of the point x0 on L0, the cross-

section Σ, and local coordinates on it.
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Furthermore, proposition A.2.7 implies that the Poincaré map is a diffeomorphism

on a neighborhood of x(0).
We call ω-limit set of x the adherence values of ϕ t(x) when t → ∞, and denote it

by Lω(x). Similarly, we denote Lα(x) the set of adhence values of ϕ t(x) when t →−∞.
Eventually, for Z ⊂ R

n, we denote Lω(Z) = ∪z∈ZLω(z) and Lα(Z) = ∪z∈ZLα(z).

Proposition A.2.9. i. If Z ⊂ Y and Y closed and invariant by the positive flow
(ϕ t(Y )⊂ Y for all t > 0), then Lω(Z)⊂Y .

ii. Lω(Z) is closed

iii. Lω(Z) is flow-invariant

iv. If Z is connect, so is Lω(Z).

Theorem A.2.10 (Jordan). Let γ : S1 7→ R
2 a one-to-one continuous map of the circle a

subset of the real plane. Then R
2\γ(S1) has two connected components, one is bounded,

and the other unbouded, and γ(S1) is their common boundary.

This theorem is quite intuitive, but its proof is rather intricate. A proof can be

found in [74, Appendix of chapter 9 p.246]. ForC1 curves the proof is simpler. Modern

proofs exist, involving homology theory, have the interest to generalize to dimensions

greater than 2.

Lemma A.2.11. Let x(t1),x(t2),x(t3) three points on Σ. The orders of the points on the
trajectory and on Σ coincide.

This lemma implies that the orders are inverted after application of the Poincaré

map. Futhermore, it is useful to prove the following theorem:

Theorem A.2.12 (Poincaré-Bendixon). Let x(t) be the solution of a planar dynamical
system defined by the vector field X(x). If x(t) stays bounded when t → ∞, then the
adherence of x(t) either contains a fixed point or a periodic orbit. In the latter case, if
x(t) is not periodic itself, the periodic orbit is named limit cycle.

A.3 MAPS DYNAMICS

In this section we study the dynamics of iterated maps. Fixed points of

iterated map are solutions of the equation f (x) = x. A point x is periodic of period n if
f n(x) = x. The least positive n satisfying this property is called the prime period of x.
The set of all iterates of a periodic point form a periodic orbit. A point is eventually

periodic of period n if x is not periodic but there exists m > 0 such that f n+i(x) = f i(x)
for i≥ m (i.e. f m(x) is periodic).
Let p a periodic point of period n. A point x is forward asymptotic to p if limi→∞ f in(x)=

p. The stable set of p we already defined, is composed of all points forward asymptotic
to p.

Definition A.3.1 (Sarkovskii’s order). We define the following ordering in natural

numbers:

3 ⊲ 5 ⊲ 7 ⊲ 9 ⊲ 11⊲ . . .

2·3 ⊲ 2·5 ⊲ 2·7 ⊲ 2·9 ⊲ 2·11⊲ . . .

22 ·3 ⊲ 22 ·5 ⊲ 22 ·7 ⊲ 22 ·9 ⊲ 22 ·11⊲ . . .

23 ·3 ⊲ 23 ·5 ⊲ 23 ·7 ⊲ 23 ·9 ⊲ 23 ·11⊲ . . .

24
⊲ 23

⊲ 22
⊲ 2 ⊲ 1.
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This ordering first lists all odd numbers except one, followed by 2 times the odds,

22 times the odd, etc. This exhausts all natural numbers except the powers of two

which are listed last in decreasing order.

Theorem A.3.1 (Sarkovskii). Let f : R 7→ R be continuous. Suppose that f has a
periodic point of prime period k. Then f has periodic points of periods l for any l ⊳ k
in Sarkovskii’s order.

As a consequence, if the map has a periodic point of period three, it has periodic

points of any period.

We note that whenever f has a periodic point whose period is not a power of two,
then it has infinitely many periodic points. Sharkovskii’s theorem does not state

that there are stable cycles of those periods, just that such cycles exist. For instance

a system such as the logistic map or the adaptation map we studied in chapter 3

present a stable period three cycle which apparently attracts all the orbits. In fact,

there must be cycles of all periods there, but they are not stable and therefore not

visible on the computer generated picture.

We eventually note that the converse of Sarkovskii’s theorem is also true.

Lee and Yorke [180] proved that there is an uncountable subset of points which

are not even asymptotically periodic.

I provide here the proof of this theorem for period three which I find very elegant

and simple, for such a strong result under so loose assumptions. An elementary

proof due to Block, Guckenheimer, Misiurwicz and Young [24] based on the same

elementary observations can be provided, but is slightly more complex.

Proof. The proof is based on two simple observations: if I and J are closed intervals
with I ⊂ J and f (I)⊃ J, then f has a fixed point in I (consequence of the intermediate
values theorem) and if A0, A1, . . . , An are closed intervals such that f (Ai) ⊃ Ai+1 for

i ∈ {0, . . . ,n− 1}, then there exists at least one subinterval J0 of A0 which is mapped

onto A1, a subinterval J1 ⊂ J0 mapped onto A2, and continuing this construction, a

nested sequence of intervals which are mapped into the various Ai. Therefore for

each i there exists x ∈ A0 such that f i(x) ∈ Ai. We say that f (Ai) covers Ai+1. If we find

a sequence of intervals I1→ I2→ . . .→ In→ I1 then the previous observation implies
that there exists a fixed point of f n in I1.
To prove the theorem, let a,b,c ∈ R and suppose f (a) = b, f (b) = c and f (c) = a,

and that a < b < c. The only non-equivalent possibility would be f (a) = c and is han-
dled similarly. Therefore f has a fixed point in [b,c], and f 2 has fixed points in [a,b],
and one of them must have period two. Let now n ≥ 2, and let us produce a peri-
odic point of period n > 3. We note I0 = [a,b] and I1 = [b,c]. The assumption implies
that f (I0) ⊃ I1 and f (I1) ⊃ I0∪ I1. Inductively, we define a sequence of nested inter-
vals A0,A1, . . . ,An−2 ⊂ I1 as follows. Set A0 = I1. Since f (I1) ⊃ I1, there is a subinter-
val A1 ⊂ A0 such that f (A1) = A0 = I1. Then there is a subinterval A2 ⊂ A1 such that

f (A2) = A1 and f 2(A2) = A0 = I1. Continuing in the same fashion, we build a subin-
terval An−2⊂ An−3 such that f (An−2) = An−3. Therefore there exists x ∈ An−2 such that

f (x), f 2(x), . . . , f n−2(x) ∈ A0 and f n−2(An−2) = A0 = I1.
Since F(i1) ⊃ I0, there exists a subinterval An−1 ⊂ An−2 such that f n−1(An−1) = I0.

Finally since f (I0) ⊃ I1 we have f n(An−1) ⊃ I1 so that f n(An−1) covers An−1. It follows

from the first observation that f n has a fixed point p in An−1. This point has prime

period n since the first n− 2 iterations lie in I1, the (n− 1)th in I0 and the nth is p. If
f n−1(p) lies in the interior of I0 then it follows easily that it has prime period n. If it
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lies on the boundary, then n = 2 or n = 3which is false by assumption, which concludes
the proof.

A.4 TOPOLOGICAL EQUIVALENCE, BIFURCATIONS AND STRUC-
TURAL STABILITY OF DYNAMICAL SYSTEMS

In this section we introduce and discuss the following fundamental notions that

will be used throughout the book: topological equivalence of dynamical systems and

their classification, bifurcations and bifurcation diagrams, and topological normal

forms for bifurcations. The last section is devoted to the more abstract notion of

structural stability. In this chapter we will be dealing only with dynamical systems

in the state space X = Rn.

A.4.1 Equivalence of dynamical systems

We would like to study general (qualitative) features of the behavior of dynamical

systems, in particular, to classify possible types of their behavior and compare the

behavior of different dynamical systems. The comparison of any objects is based

on an equivalence relation allowing us to define classes of equivalent objects and to

study transitions between these classes. Thus, we have to specify when we define two

dynamical systems as being “qualitatively similar” or equivalent. Such a definition

must meet some general intuitive criteria. For instance, it is natural to expect that

two equivalent systems have the same number of equilibria and cycles of the same

stability types. The “relative position” of these invariant sets and the shape of their

regions of attraction should also be similar for equivalent systems. In other words, we

consider two dynamical systems as equivalent if their phase portraits are “qualita-

tively similar”, namely, if one portrait can be obtained from another by a continuous

transformation.

Definition A.4.1 (Topological equivalence). A dynamical system {T,Rn,ϕ t} is called
topologically equivalent to a dynamical system {T,Rn,ψ t} if there is a homeomor-
phism h : R

n 7→R
n mapping orbits of the first system onto orbits of the second system,

preserving the direction of time.

We recall that a homeomorphism (diffeomorphism) is an invertible map such that

both the map and its inverse are continuous (continuously differentiable).

For discrete time dynamical systems, the topological equivalence between the dy-

namical system defined f and the one defined by g is given by the conjugacy relation:

f = h−1◦g◦h,

for h a homeomorphims. If h is a Ck-diffeomorphism, the corresponding systems are

called smoothly conjugate or diffeomorphic. Two diffeomorphic maps can be consid-

ered as the same map written in two different coordinate systems x and y = h(x).
Consequently, two diffeormorphic discrete time dynamical systems are practically in-

distinguishable.

To continuous-time dynamical systems defined by the vector fields X and Y are
topologically equivalent if there exists a homeomorphism h such that Y = h ⋆ X . Two
diffeomorphic systems are practically identical and can be viewed as the same system

written using different coordinates. For example, the eigenvalues corresponding to

equilibria are the same.
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Suppose that µ(x) > 0 is a smooth scalar positive function and that the two vector
fields X and Y are related by

X(x) = µ(x)Y (x) (A.2)

for all x∈R
n. Then, obviously, the two dynamical systems are topologically equivalent

since their orbits are identical and it is the velocity of the motion that makes them

different (the ratio of the velocities at a point x is exactly µ(x).) Thus, the homeomor-
phism h is the identity map h(x) = x. In other words, the systems are distinguished
only by the time parametrization along the orbits.

Definition A.4.2. Two dynamical systems X and Y satisfying (A.2) for a smooth pos-
itive function µ are called orbitally equivalent.

Clearly, two orbitally equivalent systems can be nondiffeomorphic, having cycles

that look like the same closed curve in the phase space but have different periods.

Very often we study system dynamics locally, e.g., not in the whole state space R
n

but in some region U ⊂ R
n. Such a region may be, for example, a neighborhood of

an equilibrium (fixed point) or a cycle. The above definitions of topological, smooth,

and orbital equivalences can be easily “localized” by introducing appropriate regions.

For example, in the topological classification of the phase portraits near equilibrium

points, the following modification of Definition A.4.1 is useful.

Definition A.4.3. A dynamical system {T,Rn,ϕ t} is called locally topologically equiv-
alent near an equilibrium x0 to a dynamical system {T,Rn,ψ t} near an equilibrium y0

if there exists a homeomorphism h : R
n 7→ R

n that is

i. defined in a small neighborhood U ⊂ R
n of x0;

ii. satisfies y0 = h(x0);

iii. maps orbits of the first system in U onto orbits of the second system in V =
f (U)⊂R

n, preserving the direction of time.

Definition A.4.4. Two dynamical systems X and Y are called smoothly orbitally
equivalent if Y is smoothly equivalent to a system orbitally equivalent to X .

According to this definition, two systems are equivalent (in R
n or in some region

U ⊂ R
n) if we can transform one of them into the other by a smooth invertible change

of coordinates and multiplication by a positive smooth function of the coordinates.

Clearly, two smoothly orbitally equivalent systems are topologically equivalent, while

the converse is not true.

A.4.2 Topological classification of generic equilibria

In this section we study the geometry of the phase portrait near generic, namely

hyperbolic, equilibrium points in continuous- and discrete-time dynamical systems

and present their topological classification.

Hyperbolic equilibria in continuous-time systems

Consider a continuous-time dynamical system defined by

ẋ = f (x),x ∈ R
n (A.3)
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where f is smooth. Let x0 = 0 be an equilibrium of the system (i.e., f (x0) = 0) and let
A denote the Jacobian matrix evaluated at x0. Let n−,n0, and n+ be the numbers of

eigenvalues of A (counting multiplicities) with negative, zero, and positive real part,
respectively.

Definition A.4.5. An equilibrium is called hyperbolic if n0 = 0, that is, if there are
no eigenvalues on the imaginary axis. A hyperbolic equilibrium is called a hyperbolic

saddle if n−n+ 6= 0.

Using measure theory and transversality argument, we can ground the intuitive

observation that generically, a matrix has no eigenvalues on the imaginary axis, and

hyperbolicity is a typical property and an equilibrium in a generic system is hyper-

bolic.

Theorem A.4.1 (Hartman-Grobman). If n0 = 0, there exists a homeomorphism the
dynamical system (A.3) is topologically equivalent to its linearization.

For an equilibrium (not necessarily a hyperbolic one), we introduce two invariant

sets:

W s(x0) = {x : ϕ tx→ x0, t→ ∞}, W u(x0) = {x : ϕ tx→ x0, t→−∞},

where ϕ t is the flow associated with (A.3).

Definition A.4.6. W s(x0) is called the stable set of x0, whileW u(x0) is called the un-
stable set of x0.

Theorem A.4.2 (Local Stable Manifold). Let x0 be a hyperbolic equilibrium (i.e., n0 =
0, n−+ n+ = n ). Then the intersections of W s(x0) and W u(x0) with a sufficiently small
neighborhood of x0 contain smooth submanifolds W s

loc(x0) and W u
loc(x0) of dimension

n− and n+, respectively. Moreover, W s
loc(x0) (resp W u

loc(x0)) is tangeant at x0 to T s (resp.

T u), where T s (resp. T u) is the generalized eigenspace corresponding to the union of all

eigenvalues of A with of strictly negative (resp. positive) real part.

The invariant sets W s and W u are immersed manifold of dimensions n+ and n−
having the same smoothness properties as f .

Theorem A.4.3. The phase portraits of system A.3 near two hyperbolic equilibria x0

and y0 are locally topologically equivalent if and only if these equilibria have the same

numbers n− and n+.

Hyperbilic fixed points in discrete time systems

We consider a discrete-time dynamical system x 7→ f (x). for x ∈ R
n where f is a dif-

feomorphism. We consider x0 a fixed point of the system and A the Jacobian matrix
evaluated at x0. Because of the invertibility of the map, there is no zero multiplier.

Let n−, n0 and n+ be the numbers of multipliers of x0 lying inside, on, and outside the

unit circle respectively. A fixed point is called hyperbolic if n0 = 0 (i.e. if there is no
multiplier on the unit disc). It is called hyperbolic saddle if n−n+ 6= 0.

Theorem A.4.4 (Hartman–Grobman). The system is locally topologically equivalent

around x0 to the linearized dynamical system.
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Figure A.1: Topological classification of generic hyperbolic equilibria in the plane

As in the continuous-time case, we can introduce stable and unstable invariant

sets for a fixed point x0 (not necessarily a hyperbolic one):

W s(x0) = {x : f k(x)→ x0,k→ ∞},

W u(x0) = {x : f k(x)→ x0,k→−∞},
where k is integer “time” and f k(x) denotes the kth iterate of x under f .

Theorem A.4.5 (Local Stable Manifold). Let x0 be a hyperbolic fixed point. The in-

tersections of W s(x0) and W u(x0) with a sufficiently small neighborhood of x0 contain

smooth submanifolds W s
l oc(x0) and W u

l oc(x0) of dimension n− and n+, respectively.

Moreover, W s
l oc(x0)(W u

l oc(x0)) is tangent at x0 to T s(T u), where T s(T u) is the general-

ized eigenspace corresponding to the union of all eigenvalues of A with of modulus
strictly inferior (superior) to 1.

Theorem A.4.6. The phase portraits of (2.12) near two hyperbolic fixed points, x0 and

y0, are locally topologically equivalent if and only if these fixed points have the same

number n− and n+ of multipliers with |µ |< 1 and |µ |> 1, respectively, and the signs of
the products of all the multipliers with |µ | < 1 and with |µ | > 1 are the same for both
fixed points.

The additional conditions on the products are due to the fact that the dynamical

system can define either an orientation preserving or orientation-reversing map on

the stable or unstable manifold near the fixed point. Recall that a diffeomorphism

on R preserves orientation detJ > 0, where J is its Jacobian matrix, and reverses it
otherwise.

Hyperbolic limit cycles

The same construction can be performed using the Poincaré map construction. The

definitions and the vocabulary of the previous section extend to the case of limit cycles

on the Poincaré section.
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A.4.3 Bifurcations

We now consider a dynamical system depending on parameters:

ẋ = f (x,α) (A.4)

in the continuous time case, and

x 7→ f (x,α) (A.5)

in the discrete-time case, where x ∈ R
n and α ∈ R

m represent the phase variable and

the parameters. As the parameters vary, the system either remains topologically

equivalent to the original one, or its topology changes. The appearance of a topologi-

cally nonequivalent phase portrait under variation of parameters is called a bifurca-

tion.

Thus, a bifurcation is a change of the topological type of the system as its param-

eters pass through a bifurcation (critical) value.

A bifurcation diagram of the dynamical system is a partition of the parameter

space induced by the topological equivalence relation. The codimension of a bifurca-

tion is the difference between the dimension of the parameter space and the dimen-

sion of the corresponding bifurcation boundary.

We now discuss the topological normal form for bifurcations. To this end, we

consider two continuous time dynamical systems

ẋ = f (x,α) (A.6)

and

ẋ = g(x,α) (A.7)

smooth with the same number of parameters and variables.

Definition A.4.7. The two dynamical systems are called topologically equivalent if

i. there exists a homeomorphism of the parameter space p : R
m 7→ R

m such that

β = p(α).

ii. there exists a parameter-dependent homeomorphism of the phase space hα :
R

n 7→ R
n, mapping the orbits of the system (A.6) at parameter value α onto the

orbits of (A.7) at parameter value p(α) preserving the direction of time.

The homeomorphism p transforms the parametric portrait of system f into the
parametric portrait of system g, while the homeomorphism hα maps corresponding

phase portraits. By definition, topologically equivalent parameter-dependent systems

have (topologically) equivalent bifurcation diagrams.

A similar notion of local topological equivalence can be introduced. For local bifur-

cations of equilibria and fixed points, universal bifurcation diagrams are provided by

topological normal forms, which is a central notion in bifurcation theory. Sometimes,

it is possible to construct a simple (polynomial) system

ξ̇ = g(ξ ,β ;σ), ξ ∈ R
n, β ∈ R

m, σ ∈ R
l (A.8)

which has at β = 0 and equilibrium ξ = 0 satsifying k bifurcation conditions deter-
mining a codimension k bifurcation of this equilibrium. σ is a vector of coefficients σi

of the polynomial of (A.8).
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Definition A.4.8 (Topological normal form). System (A.8) is called a topological nor-

mal form for the bifurcation if any generic system (A.4) with equilibrium x0 satisfying

the same bifurcations at α0 is locally topologically equivalent to (A.8) for some values

of the coefficients σi.

Generic means that the system satisfies a finite number of genericity conditions

having the form of inequalities Ni[ f ] 6= 0 where Ni are some algebraic functions of

certain partial derivatives of f with respect to x and α evaluated at (x0,α0) (these
conditions determine the coefficients σi). It is usefull to distinguish the nondegener-

acy conditions (depending only on derivatives of f with respect to x) and the other
called transversality conditions.

The system ẏ = g(y,β ) is said to be induced by system (A.4) if g(y,β ) = f (y, p(β ))
where β : R

m 7→ R
m is a continuous map (p is not assumed to be invertible).

Definition A.4.9 (Universal unfolding). System (A.8) is a universal unfolding for the

corresponding local bifurcation if any system (A.4) satisfying the same bifurcations

and genericity conditions at an equilibrium (x0,α0) is locally topologically equivalent
near the origin to a system induced by (A.8) for certain values of the coefficients σi.

A.4.4 Structural stability

There are dynamical systems whose phase portrait (in some domain) does not change

qualitatively under sufficiently small perturbations. This property is call structural

stability.

System ẋ = f (x) is strictly structurally stable in the regionU if any system ẋ = g(x)
that is sufficiently C1-close in U is topologicaly equivalent in U . A more locallized
defintion was proposed by Andronov.

Definition A.4.10 (Andronov’s structural stability). A dynamical system f defined
in a region D⊂R

n is called structurally stable in a region D0⊂D if for any sufficiently
C1-close in D system g there are regions U,V ⊂ D, D0 ⊂U such that f is topologically
equivalent inU to g in V .

A.4.5 Center Manifold

We consider a continuous time dynamical system ẋ = f (x) for x ∈R where f is smooth
and f (0) = 0. Let λ1, . . . ,λn the eigenvalues of the Jacobianmatrix A at the equilibrium
point 0. We assume that the equilibrium is not hyperbolic (therefore there are n0 6= 0
eigenvalues with zero real part). Let T c denote the (generalized) eigenspace of A
corresponding to the critical eigenvalues (with zero real part).

Theorem A.4.7 (Center Manifold Theorem). There exists a locally defined smooth

n0-dimensional invariant manifold W c
loc(0) tangent to T c at 0. Moreover there is a

neighborhood U of x0 = 0 such that if ϕ tx ∈U for all t ≥ 0 (t ≤ 0) then ϕ tx→W c
loc(0) for

t→ ∞ (t→−∞).

The manifoldW c
loc is called the center manifold. It is not necesarily unique. In the

eigenbasis of A, the system can be written as:

{
u̇ = Bu+ g(u,v)

v̇ = Cv+ h(u,v)
(A.9)
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where u ∈R
n0 and v ∈Rn+ + n−, B is a n0×n0 matrix with all eigenvalues on the imag-

inary axis and C an (n+ +n−)× (n+ +n−) matrix with no eigenvalue on the imaginary
axis, and h and g functions with Taylor expansions starting with at least quadratic
terms. Because of the implicit function theorem, the center manifold of system (A.9)

can be locally represented as the graph of a smooth function

W c = {(u,v) : v = V (u)}

with V : R
n0 7→ Rn+ + n− and due to the tangency property, V (u) = O(‖u‖2).

Theorem A.4.8 (Reduction principle). System A.9 is locally topologically equivalent

near the origin to the system:

{
u̇ = Bu+ g(u,V (u))

v̇ = Cv.
(A.10)

These two equations are uncoupled and the dynamics of the structurally instable

system (A.9) is essentially determined by the reduction. If there are more than one

center manifold, all resulting systems (A.10) are topologically equivalent.

Similar theorems can be provided for discrete-time systems and parameter-dependent

systems. In the latter case, the center manifold depends on the parameter value.

A.5 BIFURCATIONS OF EQUILIBRIA IN CONTINUOUS TIME
DYNAMICAL SYSTEMS

Bifurcations appear at non-hyperbolic points, and because of the center manifold

theorem, the study of these bifurcations in the lowest possible dimension can be ex-

tended to higher dimensional systems.

A.5.1 Codimension one bifurcation

We consider the system (A.4) with α ∈ R and f smooth with respect to both x and
y. Generically, there are two ways in which the hyperbolicity of an equilibrium can
be lost. Either a simple real eigenvalue approaches zero (λ1 = 0 for some value of
the parameter) or a pair of simple complex eigenvalues reaches the imaginary axis

(λ1,2 = ±iw0 for some value of the parameter) . It can be rigorously proved that one

needs more parameters to allocate extra eigenvalues on the imaginary axis, but this

might not be true for non-generic systems such as the ones having symmetries (see

e.g. [167, Chapter 7]).

Saddle-node bifurcation

The saddle-node (or fold or tangent) bifurcation is the case linked with the appearance

of a null eigenvalue.

Theorem A.5.1 (Genericity conditions of the saddle-node bifurcation). Suppose that

we have a one-dimensional system (A.4)with smooth f having at α = 0 the equilibrium
x = 0 and let λ = fx(0,0) = 0. Assume that the following conditions are satisfied:

SN.1. fxx(0,0) 6= 0;
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SN.2. fα(0,0) 6= 0.

Then there are invertible changes of coordinate and parameter transforming the sys-

tem into:

η̇ = β ±η2+ O(η3)

Therefore unde these two genericity conditions the scalar system is locally topolog-

ically equivalent near the origin to the topological normal form:

η̇ = β ±η2

Andronov-Hopf bifurcation

The case where two purely imaginary eigenvalues appear when varying the parame-

ters is called the Andronov-Hopf bifurcation.

Theorem A.5.2. We consider a planar system (A.4)with α ∈R and x∈R
2with smooth

f , having at α = 0 a non-hyperbolic equilibrium with eigenvalues iw0 with w0 > 0. For
sufficiently small |α | the equilibrium x = 0 has eigenvalues

λ1,2 = µ(α)± iw(α)

with µ(0) = 0 and w(0) = w0 > 0. Let the following conditions be satisfied:

AH.1. l1(0) 6= 0where l1 is the first Lyapunov coefficient (see [167, definition 3.3]

AH.2. µ ′(0) 6= 0.

Then there exists an invertible change of parameter, coordinates and time transform-

ing the system into

d

dτ

(
y1

y2

)
=

(
β −1
1 β

)(
y1

y2

)
+ σ(y2

1 + y2
2)

(
y1

y2

)
+ O(‖y‖4)

where σ = sign(l1(0)).

Furthermore, any such system satisfying these genericity conditions is locally topo-

logically equivalent near the origin to one of the following normal forms:

d

dτ

(
y1

y2

)
=

(
β −1
1 β

)(
y1

y2

)
+ σ(y2

1 + y2
2)

(
y1

y2

)
.

The normal form can be studied using a polar representation z = ρeiθ . In this

system of coordinates it is simple to prove that two types of behaviors occur depending

on the sign of the first Lyapunov exponent (see figure A.2):

• if l1(0) < 0 the normal form has an equilibrium at the origin, which is asymptot-
ically stable for β ≤ 0 (weakly at β = 0) and unstable for β > 0. Moreover, there
is a unique and stable circular limit cycle that exists for β > 0 and has radius√

β . This is named a supercritical Andronov-Hopf bifurcation.

• if l1(0) > 0, the origin in the normal form is asymptotically stable for β < 0 and
unstable for β ≥ 0 (weakly at β = 0), while a unique and unstable limit cycle
exists for β < 0. This is called a subcritical Andronov-Hopf bifurcation
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(a) Supercritical AH

(b) Subcritical AH

Figure A.2: Sub and Supercritical Andronov-Hopf bifurcations

A.5.2 Codimension two bifurcations of equilibria

In this section we quickly review generic bifurcations of equilibria in continuous-time

dynamical systems. Here again generically there is a quite restricted number of such

bifurcations: either extra eigenvalues reach the the imaginary axis, changing the

dimension of the center manifold, or genericity conditions for codim. 1 bifurcation

fail.

Cusp bifurcation

Consider a dynamical system (A.4) with x ∈R and α ∈R
2 having at α = 0 the equilib-

rium x = 0 such that fx(0,0) = fxx(0,0) = 0. Assume that:

C.1. fxxx(0,0) 6= 0

C.2. ( fα1 fxα2− fα2 fxα1)(0,0) 6= 0

Then there are smooth invertible changes of coordinates and parameter changing the

system into:

˙eta = β1+ β2η±η3+ O(η4)

Under the genericity conditions the system is locally topologically equivalent to

this last formula with O(η4) = 0.
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(a) Bifurcation diagram (b) Equilibria vs parameters

Figure A.3: Cusp bifurcation in one-dimensional system: local bifurcation diagram of

the normal form with σ =−1. (Left) The point β = 0 is the origin of two branches of the
saddle-node bifurcation curve: LP1,2 = {(β1,β2) : β1 = ∓ 2

3
√

3
β 3/2

2 , β2 > 0}, which divide
the parameter plane into two regions. Inside the wedge between LP1 and LP2, there

are three equilibria, two stable and one unstable. Outside the wedge, there is a single

equilibrium, which is stable. If we approach the cusp point from inside the wedge, all

three equilibria merge together. (Right) The equilibriummanifold of the normal form

is reprensented byM . The projection of this manifold onto the parameter plane has
fold singularities along LP1,2, while the cusp singularity shows up at the origin. Here

we have hysteresis: A jump to a different stable equilibrium happens at either LP1

or LP2, depending on whether the traced under variation of β1 equilibrium belongs

initially to the upper or lower sheet ofM .
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Figure A.4: Crossing the Hopf bifurcation boundary H− to region 2 implies the ap-
pearance of a stable limit cycle which survives when we enter region 3. Crossing the

Hopf boundary H+ creates an extra unstable limit cycle inside the first one, while the

equilibrium regains its stability. Two cycles of opposite stability exist in region 3 and

collapse at the curve T through a fold bifurcation that leaves a single equilibrium.

Bautin (Generalized Hopf) bifurcation

Consider system (A.4) with x ∈ R
2 and α ∈ R

2 with f smooth having at α = 0 the
equilibrium x = 0. Assume that at this point the Jacobian matrix has two purely
imaginary eigenvalues and a null Lyapunov coefficient. If the second Lyapunov expo-

nent does not vanish (l2(0) 6= 0) at this point and the map α 7→ (µ(α), l1(α)) is regular
at 0, then the system is locally topologically equivalent to the normal form in complex
coordinates:

ż = (β1 + i)z+ β2z|z|2± z|z|4.

Bogdanov-Takens bifurcation

Consider a planar system (A.4) with two parameters and suppose that it has at α = 0
the equilibrium x = 0 with two zero eigenvalues, a non-null Jacobian matrix, and
three other genericity conditions (quite complex to summarize, the interested reader

is referred to [167, Chapter 8.4]), then the system is locally topologically equivalent

to the normal form: {
η̇1 = η2

η̇2 = β1 + β2η1 + η2
1 + sη1η2.

Any equilibria of the system are located on the horizontal axis η2 = 0, and satisfy the
equation

β1 + β2η1 + η2 = 0.

The discriminant parabola:

T = {(β1,β2) : 4β1−β2 = 0}
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Figure A.5: Bogdanov-Takens bifurcation. Make a roundtrip near the Bogdanov-

Takens point β = 0, starting from region 1 where there are no equilibria (and thus no
limit cycles are possible). Entering from region 1 into region 2 through the component

T− of the fold curve yields two equilibria: a saddle and a stable node. Then the
node turns into a focus and loses stability as we cross the Hopf bifurcation boundary

H. A stable limit cycle is present for close parameter values to the left of H. If we
continue the journey clockwise and finally return to region 1, cycles disappear via

saddle homoclinic bifurcation along E2.

corresponds to a fold bifurcation: Along this curve the normal system has an equilib-

rium with a zero eigenvalue. If β2 6= 0, then the fold bifurcation is nondegenerate and
crossing T from right to left implies the appearance of two equilibria. Let us denote
the left one by E1 and the right one by E2:

E1,2 = (η0
1,2,0) =


−β2±

√
β 2

2 −4β1

2
,0


 .

The point β = 0 separates two branches T− and T+ of the fold curve corresponding to

β2 < 0 and β2 > 0, respectively. We can check that passage through T− implies the
coalescence of a stable node E1 and a saddle point E2, while crossing T+ generates an

unstable node E1 and a saddle E2. There is a nonbifurcation curve (not shown in the

figure) located at β1 > 0 and passing through the origin at which the equilibrium E1

undergoes a node to focus transition. The vertical axis β1 = 0 is a line on which the
equilibrium E1 has a pair of eigenvalues with zero sum: λ1 + λ2 = 0. The lower part,

H = {(β1,β2) : β1 = 0,β2 < 0},

corresponds to a nondegenerate Andronov-Hopf bifurcation (λ1,2 = ±iw), while the
upper half-axis is a nonbifurcation line corresponding to a neutral saddle. The Hopf

bifurcation gives rise to a stable limit cycle, since l1 < 0. The cycle exists near H for
β1 < 0. The equilibrium E2 remains a saddle for all parameter values to the left of the

curve T and does not bifurcate. There are no other local bifurcations.
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There is a unique smooth curve P corresponding to a saddle homoclinic bifurcation
in normal form of the Bogdanov-Takens bifurcation originating at β = 0 and having
the following local representation:

P = {(β1,β2) : β1 =− 6
25

β 2
2 + o(β 2

2 ),β2 < 0}.

Moreover, for |β | small, the normal system has a unique and hyperbolic stable cycle
for parameter values inside the region bounded by the Hopf bifurcation curve H and
the homoclinic bifurcation curve P, and no cycles outside this region.

A.5.3 Other bifurcations

Two other codimension two bifurcations appear in higher dimensional systems: fold-

Hopf in at least three-dimensional systems and Hopf-Hopf in spaces of dimension

greater than 4. They will not appear in our manuscript hence we do not discuss then

and refer the interested reader to the books of Kuznetsov [167, chapters 8.5 and 8.6]

and [118].

Bifurcations of codimension superior can also appear.

A.6 BIFURCATIONS OF FIXED POINT IN DISCRETE-TIME
DYNAMICAL SYSTEMS

Here again we introduce and study the generic bifurcations of fixed points in the

lowest dimensional system, this study beeing as general as possible because of the

center manifold theorem. In all the study we consider a parameter-dependent system:

x 7→ f (x,α) x ∈ R
n,α ∈ R

m. (A.11)

A.6.1 Codimension 1 bifurcations

There are three ways in which an hyperbolic equilibrium can loose hyperbolicity:

either a simple positive multiplier reaches the unit circle (µ1 = 1), or a simple negative
multiplier (µ1 = −1), or a pair of simple complex multipliers reaches the unit circle
(µ1,2 = e±iw, w ∈ (0,π)).

Fold bifurcation

The case where a simple positive multiplier reaches 1 is called the fold (or saddle-
node) bifurcation. Assume that n = m = 1 and f has at α = 0 the equilibrium x = 0
and fx(0,0) = 1. If furthermore we have fxx(0,0) 6= 0 and fα(0,0) 6= 0, then the system
is locally topologically equivalent to the normal form:

η 7→ β + η±η2.

Period doubling bifurcation

The case where a simple negative multiplier reaches −1 is named the period doubling
(or flip) bifurcation. Assume that n = m = 1and f has at α = 0 the equilibrium x = 0and
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(a) Fold bifurcation (b) Fixed point man-

ifold

Figure A.6: Representation of the fold bifurcation and the fixed points manifold

Figure A.7: Flip bifurcation

fx(0,0) = −1. If furthermore we have 1/2( fxx(0,0))2 +1/2 fxxx(0,0) 6= 0 and fxα(0,0) 6= 0,
then the system is locally topologically equivalent at the origin to the normal form:

η 7→ −(1+ β )η + ση3,

where σ =±1.
When the bifurcation occurs, a stable fixed point loses stability, and a two new

fixed point appear for the second iterate of f (via pitchfork bifurcation). In the case
where σ = 1 (supercritical case), the equilibrium for β < 0 is stable, non-hyperbolic
for β = 0 nonlinearly stable and unstable for β > 0. There are no other fixed point for
small |β | near the origin. The second iterate f 2(x,α) = f ( f (x,α),α) has two nontriv-
ial stable fixed points for small β > 0 which constitute a cycle of period two for the
original map f . In the case σ = −1 (subcritical case), the equilibrium x = 0 has the
same stability as in the previous case. At the parameter value β = 0 the fixed point is
nonlinearly unstable and the analysis of the second iterate of f reveals an unstable
cycle of period two for β < 0which disappears at β = 0.

Neimark-Sacker bifurcation

The case where a pair of simple complex multipliers reaches the unit circle corre-

sponds generically to the case of a Neimark-Sacker (or Hopf) bifurcation. The bifur-
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cation can be supercritical or subcritical, resulting in a stable or unstable (within

an invariant two-dimensional manifold) closed invariant curve, respectively. When

it happens in the Poincare map of a limit cycle, the bifurcation generates an invari-

ant two-dimensional torus in the corresponding ODE. The normal form derivation is

quite intricate, and behaviors are very rich in the neighborhood of this bifurcation.

Nevertheless, we will not use it in the manuscript and for this reason the reader is

referred to [167, chapters 4.6 and 4.7].

A.6.2 Codimension two bifurcations

Here again, codimension two bifurcations appear when varying simultaneously two

parameters. At some parameter values, extra multipliers can approach the unit cir-

cle, changing the dimension of the center manifold, and some of the nondegeneracy

conditions for codim 1 bifurcations can fail. New phenomena can appear in two pa-

rameters systems called strong resonnances. Eleven types of generic codimension

two bifurcations are distinguished. We refer to the great chapter 9 of the book of

Kuznetsov [167] that describe all these bifurcations, but since they are not useful

in the text, we do not present them is this appendix. Note nevertheless that simi-

lar bifurcations as in continuous-time systems can appear, as the cusp bifurcation,

the generalized flip and Chenciner (generalized Neimark-Sacker) bifurcations (which

resemble more or less to the Bautin bifurcation).

A.7 BIFURCATIONS OF PERIODIC ORBITS

A combination of the Poincaré map and the center manifold allows us to apply

results of discrete-time dynamical systems bifurcations to limit cycle bifurcations in

n-dimensional continuous-time dynamical systems.
Let L0 be a limit cycle of system (A.4) at α = 0 and Pα the associated Poincaré map

for nearby α , Pα : Σ 7→ Σ where Σ is a local cross-section to L0. The map Pα is smooth

and locally invertible. Suppose that L0 is non-hyperbolic, having n0 multipliers on

the unit circle. The center manifold theorems then gives a parameter-dependent

invariant manifoldW c
α ⊂ Σ of Pα on which the essential events takes place.

A.7.1 Fold bifurcation of cycles

Fix n = 3 and assume that at α = 0 the cycle has a simple multiplier µ1 = 1 and its
other multiplier satisfies 0 < µ2 < 1. The restriction of Pα to the invariant manifold

W c
α is a one-dimensional map, having a fixed point with µ1 = 1 at α = 0. It implies
the collision and disappearance of two fixed points of Pα as α passes through zero.
Under our assumption on µ2, this happens on a one-dimensional attracting invariant

manifold of Pα ; thus, a stable and a saddle fixed point are involved in the bifurcation

(see figure A.8. Each fixed point of the Poincaré map corresponds to a limit cycle of

the continuous-time system. Therefore, two limit cycles (stable and saddle) collide

and disappear at this bifurcation.

A.7.2 Period doubling of limit cycles

Suppose that at α = 0 the cycle has a simple multiplier µ1 = −1, while −1 < µ2 < 0.
Then, the restriction of Pα to the invariant manifold will demonstrate generically the
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Figure A.8: Fold bifurcation of limit cycles

Figure A.9: Period doubling bifurcation of limit cycles

period-doubling (flip) bifurcation: A cycle of period two appears for the map, while

the fixed point changes its stability (see Figure A.9). Since the manifold is attracting,

the stable fixed point, for example, loses stability and becomes a saddle point, while

a stable cycle of period two appears. The fixed points correspond to limit cycles of the

relevant stability. The cycle of period-two points for the map corresponds to a unique

stable limit cycle with approximately twice the period of the original cycle L0. The

double-period cycle makes two big excursions near L0 before the closure. The exact

bifurcation scenario is determined by the normal form coefficient of the restricted

Poincaré map evaluated at α = 0.

A.7.3 Neimark-Sacker bifurcation of cycles

The last codim 1 bifurcation corresponds to the case when the multipliers are com-

plex and simple and lie on the unit circle: µ1,2 = e±iθ0 . The Poincaré map then has a

parameter-dependent, two-dimensional, invariant manifold on which a closed invari-

ant curve generically bifurcates from the fixed point (see Figure A.10). This closed

curve corresponds to a twodimensional invariant torus T2. The bifurcation is deter-

mined by the normal form coefficient of the restricted Poincaré map at the critical

parameter value. The orbit structure on the torus T2 is determined by the restric-

tion of the Poincaré map to this closed invariant curve. Thus, generically, there are

long-period cycles of different stability types located on the torus.
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Figure A.10: Neimark-Sacker bifurcation of limit cycles

A.8 BIFURCATIONS OF HOMOCLINIC AND HETEROCLINIC
ORBITS

A very interesting topic in bifurcation theory and dynamical systems is the study

of homoclinic and heteroclinic orbits. These orbits connect fixed points or limit cycles.

They present a very rich dynamics, and can lead to chaotic dynamics as in the blue

sky catastrophe. Results are not summarized here since they would need large de-

velopments in order to be rigorously studied. The interested reader is referred to the

excellent books of Shil’nikov [236].
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APPENDIXB

A NUMERICAL BIFURCATION

ALGORITHM

In this appendix we present a numerical algorithm to compute formally or numer-

ically local bifurcations for vector fields implemented in Maple R©. This algorithm is
based on the closed form formulations for genericity and transversality conditions

given in textbooks such as [118, 167]. We present the main features of the algorithm

in the first section, and then apply this algorithm to compute codimension two bifur-

cations for Jansen and Rit’s neural mass model we introduce and study in chapter

10.

B.1 NUMERICAL ALGORITHM

B.1.1 Solver of equations

For our numerical analysis, we implemented a precise and efficient solver of equa-

tions based on dichotomy. This algorithm controls the precision of the solution we are

searching for, and is way faster than the native fsolve Maple application.

B.1.2 Saddle-node bifurcation manifold

We recall that given a dynamical system of the type ẋ = f (µ ,x) for x ∈ R
n and µ ∈ R,

the systems undergoes a saddle-node bifurcation at the equilibrium x = x0,µ = µ0 if

and only if (see e.g. [118, Theorem 3.4.1.]):

(SN1). Dx f (µ0,x0) has a simple 0 eigenvalue. Denote by v (resp w) the right (resp. left)
eigenvector.

(SN2). 〈w,∂ f/∂ µ)(x0,µ0)〉 6= 0

(SN3). 〈w,(D2
x f (µ0,x0))(v,v)〉 6= 0

The algorithmwe use to identify the saddle-node bifurcation manifold is a straight-

forward application of this theorem, and consists in:

• solving the implicit equation det(Dx f (µ0,x0)) = 0 on the fixed-points manifold.
We obtain the equilibria where Jacobian determinant vanishes, i.e. where there

is a null eigenvalue.
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• We then (2) compute the left and right eigenvectors of the Jacobian matrix at
these points:

– check that the dimension of the eigenspace related to the eigenvalue 0 is 1

– check conditions (SN2) and (SN3).

On the line where the determinant of the Jacobian matrix vanishes and the condi-

tions are not satisfied, we will consider two cases: the cusp and the Bogdanov-Takens

bifurcations

B.1.3 Cusp bifurcation

At a cusp bifurcation point, the Jacobian matrix of the system has a null eigenvalue

and the first coefficient of the normal form (given by condition (SN3)) vanishes. In

that case, under the differential transversality and genericity conditions of [167,

lemma 8.1], a smooth change of coordinates puts locally the system in the normal

form of the cusp bifurcation. Our algorithm numerically checks the two conditions on

these singular points.

B.1.4 Bogdanov-Takens bifurcation

If along the saddle node manifold a second eigenvalue vanishes, under the genericity

and transversality conditions of [118, chapter 7.3], a smooth change of coordinates

puts locally the system in the normal form of the Bogdanov-Takens bifurcation. These

conditions are also numerically checked by our algorithm.

B.1.5 Andronov-Hopf bifurcation manifold

Changes in the stability of fixed points can also occur via Andronov-Hopf bifurcations.

In this case, the real part of an eigenvalue crosses 0 but not its imaginary part. The-
oretically, the dynamical system ẋ = f (x,µ) undergoes a Hopf bifurcation at the point
x = x0,µ = µ0 if and only if (see [118, Theorem 3.4.2]):

• Dx f (x0,µ0) has a simple pair of pure imaginary eigenvalues and no other eigen-
values with zero real part. Denote by λ (µ) the eigenvalue which is purely imag-
inary at µ0.

• l1(x0,µ0) 6= 0where l1 is the first Lyapunov exponent.

• d
dµ (Re(λ (µ)))|µ=µ0 = d 6= 0

In this case, checking condition B.1.5 is not as easy as condition (SN1). Different

methods are available in order to compute Hopf bifurcation points (see [119, 120]).

Our algorithm is based on computing the bialternate product of the Jacobian matrix

of the system 2J( j,P)⊙ Id where Id is the identity matrix. It is known that the de-
terminant of this matrix vanishes if and only if the Jacobian matrix has two opposed

eigenvalues (its eigenvalues are λi + λ j where λi and λ j are eigenvalues of the initial

matrix J( j,P)). Therefore this points where the bialternate product vanishes we have
to check that there exists a purely imaginary eigenvalue to avoid cases where the

system has two real opposed eigenvalues. Even with this step, bialternate product

method is way more efficient than other methods based on the characteristic polyno-

mial such as Kubicek’s method [166].
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B.1.6 Bautin bifurcation

If along the line of the Hopf bifurcations the first Lyapunov coefficient vanishes and

a subcritical Hopf bifurcation becomes supercritical when changing the parameters,

under the differential conditions of [167, theorem 8.2], the system undergoes a Bautin

bifurcation. At the points where the first Lyapunov coefficient vanish, the algorithm

numerically checks these conditions.

B.1.7 Application to Jansen and Rit’s model

Saddle-node bifurcation manifold

In the case of Jansen and Rit’s model (see chapter 10, the possible saddle-node bi-

furcations points are located on a curve in the parameter space depending on the

variable X , and whose expression is:

d = j S′(X)(α1 α2 d S′(α1 j S(X))−α3α4GS′(α3 j S(X))) (B.1)

In the case of Wendling and Chauvel’s model,

1 = j2 S′(X)

{
α1 α2 S′(α1 j S(X))− α3 α4

d1
G1S′(α3 j S(X))

+ S′(− jG1α6

d1
S(α3 jS(X))+α5 jS(X))

(α3α6α7

d1 d2
G2S′(α3 jS(X))− α5α6

d2
G2S′(X)

)}
(B.2)

On these curve we have to check the genericity and the transversality conditions.

For this step we have to resign to purely numerical simulation, since the computa-

tions are too heavy to be performed analytically.

We obtain that condition (SN2) is always satisfied. For each point of the curve,

the dimension of the eigenspace associated with the eigenvalue 0 is equal to 1, ex-
cept for the point BT of coordinates jBT = 10.05, PBT = −3.0742, XBT = 3.2956. We will
specifically study this point below and prove that at this point the system undergoes

a Bogdanov-Takens bifurcation.

Eventually, condition (SN3) is satisfied everywhere except at a point C of coordi-
nates jC = 5.38, PC = −0.29, YC = 3.63 (Figure B.1(c) represents the cubic coefficient of
the Taylor’s expansion on the center manifold involved in condition (SN3)). We will

also specifically study this point and show that at this point the system undergoes a

cusp bifurcation.

The curves we obtain are represented in figure B.1. The curve displayed in the

space ( j,P,Y ) is smooth but its projection in the ( j, P) plane presents a singularity at
the point C.

Andronov-Hopf bifurcation manifold

We obtain using our symbolic computation algorithm the parameter manifold where

the system possibly undergo Hopf bifurcations. We fixing all the parameters but 2,

this manifold is a curve in a two dimensional space parametrized by the variable X ,
and at each point of this line we check the transversality B.1.5 and the genericity

B.1.5 conditions. This line can be computed in a closed form but the expression is

very involved.
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Figure B.1: Saddle-node bifurcation manifold and bifurcation diagram in ( j,P).
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(a) Andronov-Hopf bifurcation manifold in

(Y, j,P)
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(b) Andronov-Hopf bifurcation diagram in

( j,P)

Figure B.2: Andronov-Hopf bifurcation manifold and bifurcation diagram in ( j,P,Y )
and ( j,P). The red part corresponds to subcritical Hopf bifurcation (i.e. generating
unstable limit cycles) and the blue one to supercritical Hopf bifurcations ( stable limit

cycles). The green curve represents the saddle node bifurcation of periodic orbits

(LPC).

We compute the eigenvalues and eigenvectors using Maple’s algorithm, and com-

pute numerically the derivative of the real part of the eigenvalue at this point and the

first Lyapunov exponent which is given in a closed form in function of the eigenvec-

tors (see [167]). The points we obtain where the system undergoes an Andronov-Hopf

bifurcation are plotted in figure Fig.B.2 in the space (Y, j,P) and the bifurcation dia-
gram ( j,P) together with the sub- or supercritical type.

We observe that there is no Hopf bifurcation for j < jBT . When increasing j, a
branch of subcritical Hopf bifurcations appears. When we reach the point H2 de-

fined by jH2 = 12.099480,PH2 = 0.095382,YH2 = 4.150820, two additional Hopf bifurcation
points appear. This point H2 is a regular Hopf bifurcation point (the Jacobian ma-

trix has two purely imaginary eigenvalue and the dependence in the parameters is

regular). After this point, when increasing further the parameter j, the system has
three Hopf bifurcations, one of them beeing subcritical and the other two subcritical.

We then reach a singular point GH of coordinates jGH = 12.48,PGH =−2.58,YGH = 3.58
where the first Lyapunov exponent vanishes. At this point, one of the supercritical

Hopf bifurcation becomes subcritical. Finally, the two subcritical Hopf bifurcations

collapse at the regular Hopf bifurcation pointH1 of coordinates jH1 = 12.55375000,PH1 =
−3.104094843,YH1 = 3.450451048. For values of j greater than jH1, the system has a

unique Hopf supercritical Hopf bifurcation.

Cusp bifurcation We now study the point C. At this point, the Jacobian matrix
has a unique 0 eigenvalue and the cubic coefficient of Taylor’s expansion in the center
manifold vanishes, hence lead us to check wether if it corresponds to a cusp bifurca-

tion.

Indeed, we have at this point first and second derivatives of the normal form

vanishing and :

(C1). The cubic coefficient of the normal form in the center manifold does not vanishes

(its numerical value is c =−3.03210−2).
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(C2). The transversality condition is satified: the dependence in the parameters and

the variables is regular at this point. Indeed, in the center manifold we have

check that a certain determinant does not vanishes. We change variables to be

on the center manifold and compute numerically this value. We obtain the value

−0.061hence the system satisfies the transversality condition.

Bogdanov-Takens bifurcation As noticed, at the point BT , the Jacobian of the
system has two 0 eigenvalues.

(BT1). condition (BT1): we compute the quadratic coefficients of Taylor’s expansion in

the center manifold and obtain using Kuznetsov’s notations a = 0.005342and
b = 0.009434, hence at the point BT we have ab > 0 and σ = sign(ab) = 1.

(BT2). the transversality condition is checked by computing the determinant of the

Jacobian matrix of a certain application.

Hence the point BT corresponds to a supercritical Bogdanov-Takens bifurcation
(i.e. generating unstable limit cycles). Hence from this point there is a saddle-

homoclinic bifurcation curve we will study further on in the global bifurcations sec-

tion.

Bautin (Generalized Hopf) bifurcation As noticed, at the point GH the system

undergoes an Hopf bifurcation and the first Lyapunov exponent vanishes. At this

point, the second Lyapunov exponent and to check a transversality condition. Heavy

but yet straightforward differential computations yield to get the second Lyapunov

coefficient. We obtain l2 = 2.23510−3, and the transversality condition is checked by

computing the determinant of a Jacobian matrix, and this determinant does not van-

ish. Hence the system undergoes a Bautin bifurcation.

Conclusion Figure Fig.B.3 summarizes the different local bifurcations we have

found in our study. The black curve represents the saddle-node bifurcation curve, the

red curve the subcritical Hopf bifurcations and the blue one the supercritical Hopf

bifurcations. The cusp point is denoted by a C, the Bogdanov-Takens point, denoted

by a BT, is at the intersection of saddle-nodes and Hopf curves and the Generalized

Hopf bifurcation point is the point where subcritical Hopf bifurcations becomes su-

percritical.
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(a) Local Bifurcations (b) Local Bifurcations 3D

Figure B.3: Full bifurcation diagram represented on the fixed points manifold (see

text for the description)
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APPENDIXC

A CRASH COURSE ON STOCHASTIC

CALCULUS

C.1 A CRASH COURSE ON PROBABILITIES AND STOCHAS-
TIC CALCULUS

We recall some of the basic definitions and results on stochastic processes. The aim

of this section is not to be complete but to serve as a quick reference for readers with

little background in stochastic calculus. Most of the proofs are omitted. The inter-

ested reader can find details in the extensive literature on the subject and follow the

reading suggestions given within each section.

C.1.1 Probability Basics

This section heavily relies on Karatzas and Shreve’s book [160] and on lecture notes

by Jean-François Le Gall [176], where the interested reader can find all the theoreti-

cal material. We assume that the reader is familiar with elementary measure theory

[232].

Probability theory is a branch of mathematics concerned with the analysis of ran-

dom phenomena. The randomness is captured by the introduction of a measurable

space (Ω,F ), called the sample space, on which probability measures can be placed.
Elements of Ω are denoted in general by ω . Subsets of Ω are called events. F is a

σ -algebra of subsets of Ω.

Definition C.1.1. A probability measure P on (Ω,F ) is a positive measure such thatP(Ω) = 1

. (Ω,F ,P) is called a probability space.

Definition C.1.2. A random variable is a measurable function from Ω to a measur-
able set (X ,X ) called the state space.

Definition C.1.3. A stochastic process is a collection of random variables X = {Xt , t ∈T} on (Ω,F ) taking values in a state space (X ,X ). The set T is called the time set.
In the present paper, T is simply R

+ and is referred to as the time of the process. The

state space considered is the d-dimensional Euclidian space equiped with the σ -fields
of Borel sets (Rd ,B(Rd)).
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The temporal feature of a stochastic process suggests a flow of time, in which at

every moment t ≥ 0we can talk about the past, present and future of the process. To
quantify the information flow of the process, we can equip the sample space (Ω,F )
with a filtration, i.e. a nondecreasing family {Ft ; t ≥ 0} of sub-σ -fields of F :

∀s ≤ t; Fs ⊂Ft ⊂F .

Given a stochastic process, the simplest choice of filtration is that generated by the

process itself, i.e.,

FX
t := σ(Xs; 0≤ s≤ t),

the smallest σ -field with respect to which Xs is measurable for every s ∈ [0, t].
We interpret A ∈FX

t to mean that by time t, an observer of X knows wether or not
A has occured. Hence Ft can be seen as the accumulated information up to time t.
A stochastic process X is said adapted to a filtration (Ft)t≥0 iff for all t ≥ 0 the

random variable Xt is Ft-measurable.

A stochastic process X is said to be right-continuous (resp. left-continuous) iff
almost every sample path is right- (resp. left- ) continous.

Definition C.1.4 (Brownian Motion/Wiener process). A standard one dimensional

Brownian motion (also called a Wiener process) is a continuous adapted process W =
{Wt , Ft t ≥ 0} defined on some probability space (Ω,F ,P), with the properties that:

(BT1). W0 = 0 a.s.

(BT2). for all 0≤ s ≤ t the increment Wt −Ws is independent of Fs and is normally dis-

tributed with mean 0 and variance t− s.

Let us now imagine that we are interested in the occurence of a certain phe-

nomenon (e.g. a spike modeled as a threshold crossing of a given process in the

present paper). We are thus forced to pay a particular attention to the random in-

stant τ(ω) at which the phenomenon manifests at the first time. Interesting models
should be such that the event {ω ; τ(ω)≤ t} is part of the information accumulated by
that time. Random variables τ satifying this property are called stopping times:

∀t ≥ 0; {τ ≤ t} ∈Ft

Example. For instance, the first hitting time of a continuous stochastic process X to a
given deterministic boundary g defined by:

τ := inf{t ≥ 0; Xt = g(t)}

is is a stopping time with respect to the natural filtration of X . Indeed, the event
{τ ≤ t} is the same as {∃s ∈ [0, t]Xs ≥ f (s)}. From the continuity property, this last set
is equal to {∃s ∈ [0, t]∩Q, Xs ≥ f (s)} which is a coutable union of sets of FX

t and hence

is contained in FX
t .

DefinitionC.1.5 (Conditional Expectation). LetY be aL1 random variable of (Ω,F ,P)
and let G be a sub-σ -field of F . There exists a unique element E(Y |G ) of L1(Ω,G ,P)
called conditionnal expectation of Y knowing G , such that for all X bounded and G -
measurable: E(XY ) =E(E(Y |G )X)
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A process {Xt ,Ft , t ≥ 0} is called a submartingale (resp supermartingale, martin-
gale ) if for every 0≤ s < t < ∞ we have P-almost surely E(Xt |Fs)≥ Xs (resp E(Xt |Fs)≤
Xs, E(Xt |Fs) = Xs).

TheoremC.1.1 (Optional Sampling Theorem). Let {Xt , Ft , t≥ 0} be a right-continuous
submartingale, S and T be two stopping times almost surely bounded (i.e. P(T < ∞) = 1
and P(S < ∞) = 1). Let XT be the random variable defined by XT (ω) = XT(ω)(ω). Let
FS := {A ∈F ; A∩{T ≤ t} ∈Ft}. Assume that S≤ T amost surely. Then we have:E(XT |FS)≥ XS a.s.P.

Definition C.1.6. Let X be a stochastic process on a probability space (Ω,F ,P). Let
(Ft)t≥0 be the natural filtration of the process X . The process X is a Markov process
iff ∀t ≤ t1≤ . . .≤ tn < ∞, for all Γ1, . . . ,Γn ∈X ,P(Xt1 ∈ Γ1, . . . ,Xtn ∈ Γn

∣∣∣Ft

)
=P(Xt1 ∈ Γ1, . . . ,Xtn ∈ Γn

∣∣∣σ(Xt)
)
.

It is strongly Markovian if for all T stopping time for the (Ft)t , for all η1, . . .ηn

positive random variableFτ -measurable, we have:P(Xτ+η1 ∈ Γ1, . . . ,Xτ+ηn ∈ Γn

∣∣∣Fτ

)
=P(Xτ+η1 ∈ Γ1, . . . ,Xτ+ηn ∈ Γn

∣∣∣σ(Xτ)
)
.

Proposition C.1.2. The Brownian motion is strongly Markovian

Definition C.1.7. A process (Mt , t ≥ 0) is a continuous local martingale iff it is a
continuous adapted process such that there exists an increasing sequence of stopping

times (Tn)n∈N such that Tn→n→∞ ∞ and that for each n ∈N (Mt∧Tn−M0)t is a uniformly

integrable martingale.

Theorem C.1.3. Let M be a local martingale. There exists a unique non-decreasing
process 〈M〉t such that (M2

t −〈M〉t)t≥0 is a continuous local martingale. For M and N
two continuous local martingales, there exists a unique finite variation process such

that (Mt Nt −〈M,N〉t)t is a local martingale. Moreover, the application (M,N) 7→ 〈M,N〉
is bilinear symetrical.

Theorem C.1.4 (Stochastic Integral). Let M be a continuous local martingale and H
a measurable process such that for all t > 0,

∫ t
0 H2

s d〈M〉s < ∞ (the set of such processes
is denoted by L2

loc(M)).

There exists a unique continuous local martingale H ·M starting from 0 such that
for all local martingale N we have:

〈H ·M,N〉= H · 〈M,N〉

This martingale is denoted (H ·M)t =:
∫ t

0 HsdMs and is called the stochastic integral

of H with respect to the local martingale M.
Moreover, we have for all t > 0 and 0=: tn

0 < tn
1 < .. . < tn

pn
:= t sequence of nested mesh

whose step tends to 0, we have in the sense of probability:

∫ t

0
HsdMs = lim

n→∞

pn

∑
i=1

Htn
i−1

(Xtn
i
−Xtn

i−1
)
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Theorem C.1.5 (Itô formula). Let X = (X1, . . . ,Xn) be n continuous semi-martingales
and F : R

n 7→ R a C2 map. Then we have:

F(Xt) = F(X0)+
n

∑
j=1

∫ t

0

∂F
∂x j (Xs)dX j

s +
1
2

n

∑
j=1

n

∑
k=1

∫ t

0

∂ 2F
∂x j∂xk (Xs)d〈X j,X k〉s

Theorem C.1.6 (Dubins-Schwarz). Let M be a continuous local martingale such that
〈M〉∞ = ∞ a.s. Then there exists a Brownian motion B such that

Mt = B〈M〉t

Theorem C.1.7 (Girsanov). Assume that Q ∼ P on F . Let Dt = dQ
dP ∣∣∣t and L be the

unique local martingale such that D = exp(L− 1
2〈L〉). Then for allM P-local martingale

continuous, the process M−〈M,L〉 is a Q-local martingale continuous.
In particular if M is a P-Brownian motion, then M−〈M,L〉 is a Q-Brownian mo-

tion.

Definition C.1.8 (Stochastic Differential Equation). Let B be a d-dimensional Brow-
nian motion, σ : R+×R

d 7→R
d×m and b : R+×R

d 7→R
d two measurable locally bounded

functions. The Stochastic Differential Equation (SDE) associated to σ and b is defined
by:

dXt = σ(t,Xt)dBt + b(t,Xt)dt

This expression is a notation and means:

Xt = X0+

∫ t

0
σ(s,Xs)dBs +

∫ t

0
b(s,Xs)ds

Under suitable conditions on the coefficients σ and b (for instance if both are
continuous and (locally) Lipschitz), we have existence and (pathwise) uniqueness of

a solution. In the Lipschitz case, then the solution is strongly Markovian.

C.1.2 Stochastic processes and Partial Differential Equations

The aim of this section is to show the link between some functionals of a diffusion

process X and PDEs. For more details on diffusion processes we refer to the excellent
book of Bass [17]. Interested readers are also refered to [140, 247]. The diffusion

process studied here satisfies the equation:

dXt = b(Xt)dt + σ(Xt)dBt (C.1)

where B := ((B(i)
t )t≥0)i=1,...,d is a d-dimensionnal Brownian motion. This process (X) is

called a multi-dimensional diffusion process.

We assume that b and σ are bounded and at least C 1. We define L to be the

diffusion operator associated to the diffusion process (C.1)

L f (x) :=
1
2

d

∑
i, j=1

ai j(x)
∂ 2

∂xi∂x j
f (x)+ (b(x) ·∇) f (x) (C.2)

where a(x) = (ai j(x))i, j ∈Md is the symmetrical matrix defined by a(x) = σ(x)σ T (x).
Let us now define a real function q, called potential, in reference with Schrödinger’s

theory.
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We consider the operator, called Schrödinger’s operator, defined by:

G u(x) := L u(x)+ q(x)u(x) (C.3)

We have the

Theorem C.1.8. Let D be a smooth bounded domain, q a C 2 function on D̄, f a con-
tinuous function on ∂D. Let τD be the first hitting time of the border ∂D of D by the
process X :

τD := inf{t > 0;Xt ∈ ∂D}= inf{t > 0;Xt ∈ ∂D}
Let u be the solution of the PDE equation with Dirichlet condition :

{
L u(x)+ q(x)u(x) = 0 ∀x ∈D
u(x) = f (x) ∀x ∈ ∂D

(C.4)

If q is such that : Ex

[
e
∫ τD

0 q+(Xs)ds
]

< ∞ (C.5)

where q+(x) := max(q(x),0), then u, solution of (C.4), can be written:

u(x) =Ex

[
f (XτD)e

∫ τD
0 q(Xs)ds

]
(C.6)

We provide the proof of this theorem because it is simple and because it is a good

example of the use of the notions we introduced in section C.1.1.

Proof. Let Yt :=
∫ t

0 q(Xs)ds and consider the stochastic process eYt u(Xt). Itô’s formula
gives the following expression for this process:

eYt u(Xt) = u(X0)+

∫ t

0
eYsu(Xs)dYs + Mt +

∫ t

0
eYsL u(Xs)ds

= u(X0)+ Mt +

∫ t

0
eYs(L u(Xs)+ q(Xs)u(Xs))ds

= u(X0)+ Mt +
∫ t

0
eYsG u(Xs)ds (C.7)

(C.8)

where Mt denotes an associated local martingale:

Mt =
d

∑
i=1

∫ t

0
eYsbi(Xs)

∂u
∂xi

(Xs)ds

Let us stop the process under consideration at the stopping time τD. Let Sn := inf{t;dist(Xt ,∂D)<
1/n}. We clearly have Sn ր

n→∞
τD. Then since u ∈ C 2(D̄) we have the property that Mt∧Sn

is a martingale for all n ∈N. Let us take the expectation and apply the optimal stop-
ping theorem to (C.7). Stopping the process at time Sn ensures us that G u(Xs) is 0
because Xs is always inside the domain D. We then have

eYt∧Sn u(Xt∧Sn) = u(X0)+ Mt∧Sn , and taking the expectationEx
[
eYt∧Sn u(Xt∧Sn)

]
= u(x)
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Finally, letting n→∞ and using Lebesgue’s theorem (the function u is bounded inside
the domain D and the hypothesis (C.5) ensures us to have a L1 bound) we get :Ex

[
eYt∧τD u(Xt∧τD)

]
= u(x) ∀t > 0

We can conclude letting t→ ∞, since the expectation converges by Lebesgue’s the-
orem.

There is also an interesting connection between the Laplace transform and the

diffusion operator associated to a one-dimensional diffusion process. Let X = (Xt ; t > 0)
be a one-dimensional diffusion process given by the equation :

dXt = b(Xt)dt + σ(Xt)dBt (C.9)

where B = (Bt)t≥0 is a standard one-dimensional Brownian motion.

Let τa(X) be the first passage-time of X to the fixed barrier a and let uλ (x) be the
Laplace transform of τa(X) conditionally on the fact that X0 = x.

τa(X) := inf{t > 0;Xt = a}

uλ (x) :=Ex

[
e−λτa(X)

]
, λ ≥ 0 (C.10)

Theorem C.1.9. Assume that x < a. The Laplace transform uλ (x) is solution of the
following PDE together with limit conditions :





L uλ (x)−λuλ (x) = 0
uλ (a) = 1
lim

x→−∞
uλ (x) = 0

(C.11)

Remark 14. The case x > a can be treated in the same way with only a few changes
as stated in the beginning of the section.

Theorem C.1.10. The Laplace transform of the hitting time of a diffusion with gen-

erator L can be written: Ex

[
e−λτa(X)

]
=

Ψλ (x)
Ψλ (a)

(C.12)

where Ψλ (·) is proportional to the unique increasing positive solution of

L Ψλ = λΨλ

(i.e. the eigenfunction of the diffusion operator L associated to the eigenvalue λ ).

Let us now consider section a one-dimensional diffusion process X = (Xt ; t > 0)
given by the equation :

Xt = b(Xt)dt + σ(Xt)dBt (C.13)

where B = (Bt)t≥0 is a standard one-dimensional Brownian motion.

Let a(t) be the boundary, and τa(X) the first passage time of X to the boundary.
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We denote uλ (x) be the Laplace transform of τa(X) conditionally on the fact that
X0 = x.

τa(X) := inf{t > 0;Xt = a(t)}

uλ (x) :=Ex

[
e−λτa(X)

]
, λ ≥ 0 (C.14)

Theorem C.1.11. Assume that x < a(0). Then the Laplace transform uλ (x) = vλ (0,x)
where vλ (t,x) is solution of the following PDE together with limit conditions :





∂tvλ (t,x)+L vλ (t,x)−λvλ (t,x) = 0
vλ (t,a(t)) = 1
lim

x→−∞
vλ (t,x) = 0

(C.15)

Proof. The proof of the necessary condition, i.e. assuming that a regular solution

(C1,2), the proof is very similar to the one of theorem C.1.9.

To prove this theorem we only have to use Itô’s formula to the (assumed) C1,2

function e−λtv(t,Xt). The local martingale will be a real martingale (it is necessary
to bound the process X also to get a martingale, as we did in the last proof), and the
optimal stopping theorem will apply and we will eventually get:Ex

[
e−λτa(X)

]
= vλ (0,x)

In the present paper we also use several times the Fokker-Planck partial differ-

ential equation. This equation which governs the transition probability density of a

given process can be deduced straightforwardly form the previous theory.

Theorem C.1.12 (Fokker-Planck equation). Let X be a diffusion process solution of
the stochastic differential equation:

dXt = b(Xt)dt + σ(Xt)dWt . (C.16)

Under suitable conditions on b and σ , the process X is uniquely defined by (C.16),
strongly Markovian with stationnaty increments. Its transition function is:

P(t,x,Γ) :=P(Xt+s ∈ Γ
∣∣∣Xs = x

)

We assume that this probability has a density with respect to Lebesgue’s measure

P(t,x,Γ) =
∫

Γ p(t,x,y)dy and that this density satisfies regularity conditions on ∂ p
∂ t ,

∂ p
∂xi

and ∂ 2p
∂xi∂x j . In this case, the transition density probability is the fundamental solution

(Green’s function) of the equation:

∂ p(t,x,y)
∂ t

=
1
2∑

i, j

ad
i, j=1(x)

∂ 2p(t,x,y)
∂xi∂x j +

d

∑
j=1

b j(x)
∂ p(t,x,y)

∂x j . (C.17)

i.e.
∂ p(t,x,y)

∂ t = Lx p(t,x,y). This equation is called forward Kolmogorov equation.
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Under regularity conditions on ∂ p
∂ t ,

∂ p
∂yi and

∂ 2p
∂yi∂y j , the transition probability density

is the fundamental solution (Green’s function) of the backward Kolmogorov equation,

or Fokker-Planck equation:

∂ p
∂ t

=
1
2

d

∑
i, j=1

∂ 2ai, j(y)p(t,x,y)
∂yi∂y j −

d

∑
j=1

∂bi(y)p(t,x,y)
∂yi (C.18)

or:
∂ p(t,x,y)

∂ t
= L ∗

y p(t,x,y)

.
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APPENDIXD

CAUCHY PROBLEM

The Cauchy problem consists in proving that there exists a unique solution to the

problem (3.1) and (3.2) defined for all t ∈R for a given initial condition (v0,w0) at time
t0. It was adressed by Romain Brette in [33] in the case of spiking models defined
by a one dimensional ODE with a finite spiking threshold and a reset condition. He

found that the reset introduced a countable and ordered set of backward solutions

for a given initial condition, and this that this structure of solutions had important

implications in terms of neural coding.

The case of the system given by (3.1) and (3.2) is slightly more complex, but can be

treated in the same fashion as done in [33]. We have seen in section 3.2.6 that there

exists a unique solution to the forward problem. Therefore in this appendix we are

interested only in the backward solutions. The backward problem of equations (3.1)

and (3.2) with initial conditions (v0,w0) at time t0 corresponds to the forward solutions
vb(t) = v(t0− t) and wb(t) = w(t0− t). of the system:





dvb
dt =−F(v)+ w− I
dwb
dt =−a(bv−w)

vb(0) = v0

wb(0) = w0

(D.1)

The nullclines for this system are the same as the nullclines of the forward prob-

lem, but the direction of the vector field changes. A new issue appears here: the

membrane potential can may to −∞ in finite time. In this case, the solution is not
admissible. In the case of the adaptive exponential model, the backward membrane

potential and the backward adaptation value will never blow up in finite time. There-

fore, this solution is always an admissible solution. But in the case of the quartic

model for instance, the membrane potential will always blow up in finite time when

the backward solution do not cross the v-nullcline, and such solutions will exist, for
instance in the case where there is no fixed point: in the proof of theorem 3.3.1, we

show that there exist a spiking solution for which the backward solution tends to

infinity. For initial conditions of the backward problem below this orbit, because of

Gronwall’s theorem, the membrane potential will tend to −∞ in finite time.

• If the backward solution does not blow up in finite time and does not cross the
line {vb = vr}, then the solution of the backward equation is unique, and there
exists a unique solution of the problem which is defined on R.

• If the backward membrane potential blows up at time t1 and its orbit does not
intersect the line {vb = vr} there is no solution to the Cauchy problem for t ≤ t1.
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• If the backward orbit intersects the line {vb = vr} then the problem splits in two
solutions, one of which corresponding to a reset, and the other corresponding

to the solution of the system (D.1). The branch of solution corresponding to

a regular subthreshold backward problem is treated as described above. For

the solution corresponding to a reset, we check if the value of the membrane

potential at this point is inside the image of the Poincaré application. If it is

the case, the admissible solutions correspond to the different reciprocal images

of this value under Φ. There can exist two possible values: one that is inferior
or equal to w∗ and another one greater than w∗, and these two possible points
are on the same orbit (the orbit starting above w∗ crosses the line v = vr at the

point below w∗). To avoid the difficulty or resetting at an infinite value of the
membrane potential, we directly jump to the reciprocal image of this point by

Φ, and compute the same way the possible branches of backward solutions.

Interestingly, in the case of the exponential model, since the backward solutions

do not blow up in finite time, the backward solution is always an admissible solution.

Therefore, we have a countable number of backward solution in this case.

In the case of the quartic model, the number admissible solutions is smaller. In-

deed, the reciprocal images ofΦ decrease, and when they are below the spiking trajec-
tory diverging when v→−∞, the backward equation blows up in finite time. Therefore
the only admissible solution is a spiking solution. Figure D.1 illustrates the construc-

tion of a backward solution and of the Cauchy problem. From a given initial condition

(v0,w0), if the backward solution never crosses the reset line {v = vr} there is only one
admissible solution provided it does not blow up in finite time. If the backward so-

lution crosses the reset line (star (1) and (2) of figure D.1), the solution splits into

two solutions, one of which corresponds to a spike when it exists (star (1)) and the

other one corresponding to the regular solution of the backward equation (for star (2)

no spiking solution correspond to the related adaptation value). Below the bold line

corresponding to a diverging solution of the backward equation, in the case of models

such as the quartic one, the only admissible solution is a spiking solution (star (3)).
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Figure D.1: Construction of the backward set of solutions. Description in the text.



422 APPENDIX D. CAUCHY PROBLEM



APPENDIXE

MEAN FIELD ANALYSIS

E.1 THE RESOLVENT

In this appendix we introduce and give some useful properties of the resol-

vent ΦL of a homogeneous differential equation

dx
dt

= L(t)x(t) x(t0) = x0 ∈ R
P, (E.1)

where L : [t0,T ]→MP×P (or (−∞,T ]→MP×P) is C0.

Definition E.1.1. The resolvent of (E.1) is defined as the unique solution of the linear

equation: {
dΦL(t,t0)
dt = L(t)ΦL(t, t0)

ΦL(t0, t0) = IdP
(E.2)

where IdP is the P×P identity matrix.

Proposition E.1.1. The resolvent satisfies the following properties:

(i). ΦL(t + s, t0) = ΦL(t + s, t) ·ΦL(t, t0)

(ii). ΦL(t, t0) is invertible of inverse ΦL(t0, t) which satisfies:

{
dΦL(t0,t)
dt =−ΦL(t0, t)L(t)

ΦL(t0, t0) = IdP×P
(E.3)

(iii). Let ‖ ‖ be a norm onMP×P and assume that ‖L(t)‖ ≤ kL on [t0,T ]. Then we have:

‖ΦL(t, t0)‖ ≤ ekL|t−t0| ∀t ∈ [t0,T ] (E.4)

Similarly, if
∥∥LT (t)

∥∥ ≤ kLT on [t0,T ] we have:

∥∥ΦT
L (t, t0)

∥∥≤ ekLT |t−t0| ∀t ∈ [t0,T ] (E.5)

(iv). We have

detΦL(t, t0) = exp
∫ t

t0
TrL(s)ds
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Proof. The properties (i) and (ii) are directly linked with the property of group of the

flow of a reversible ODE. (iii) is an application of Gronwald’s lemma. (iv) is obtained

by a first order Taylor series expansion.

We also need in the article a lower bound on ‖ΦL(t, t0)‖ for all t ∈ [t0,T ] in the gen-
eral case where L is not constant. This can be achieved for example using Floquet’s
theory. Consider the interval [t0,2T − t0] and define the continuous periodic function
L̃(t) of period 2(T − t0) defined by

L̃(t) =

{
L(t) t0≤ t ≤ T
L(2T − t) T ≤ t ≤ 2T − t0

The corresponding resolvent ΦL̃(t, t0) is equal to ΦL(t, t0) for t0≤ t ≤ T . ΦL̃(2T − t0, t0) is
invertible and hence there exists a ∈ R such that

e2a(T−t0) < |λ |

for all eigenvalues λ of ΦL̃(2T − t0, t0). One of Floquet’s theorems states that there
exists a norm on R

P and γ > 0 such that

γea(t−t0) < ‖ΦL̃(t, t0)‖ t ≥ t0,

and in particular

γea(t−t0) < ‖ΦL(t, t0)‖ t0≤ t ≤ T (E.6)

Theorem E.1.2 (Solution of an inhomogeneous linear SDE). The solution of the in-

homogeneous linear Stochastic Differential Equation:

{
dXt = (L(t)X(t)+ I(t))dt + Λ(s)dWs

Xt0 = X0
(E.7)

can be written using the resolvent:

Xt = ΦL(t, t0)X0+

∫ t

t0
ΦL(t,s)I(s)ds+

∫ t

t0
ΦL(s, t)Λ(s)dWs (E.8)

Proof. Pathwise (strong) uniqueness of solution directly comes from the results on

the SDE with Lipschitz coefficients (see e.g. [161, Theorem 2.5 of Chapter 5]). It is

clear that Xt0 = X0. We use Itô’s formula for the product of two stochastic processes to

prove that the process (E.8) is solution of equation (E.7):

dXt =
(

L(t)ΦL(t, t0)X0 + ΦL(t, t)I(t)+
∫ t

t0
L(t)ΦL(t,s)I(s)ds

)
dt

+ ΦL(t, t)Λ(t)dWt +
∫ t

t0
L(t)ΦL(s, t)Λ(s)dWs dt

=
(

L(t)
[
ΦL(t, t0)X0 +

∫ t

t0
ΦL(s, t)I(s)ds+

∫ t

t0
ΦL(s, t)Λ(s)dWs

]
+ I(t)

)
dt

+ Λ(t)dWt

= (L(t)X(t)+ I(t))dt + Λ(t)dWt

Hence the theorem is proved.
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E.2 MATRIX NORMS

In this section we recall some definitions on matrix and vector norms. Let

Mn×n be the set of n×n real matrices. It is a vector space of dimension n2 and the usual

Lp norms 1≤ p ≤ ∞ can be defined. Given L ∈Mn×n, we note ‖L‖v
p the corresponding

norm. Given a vector norm, noted ‖ ‖, on R
n the induced norm, noted ‖ ‖, onMn×n is

defined as

‖L‖= sup
x∈Rn,‖x‖≤1

‖Lx‖
‖x‖

SinceMn×n is finite dimensional all norms are equivalent. In this article we use the

following norms

(i). ‖L‖∞ = maxi ∑n
j=1 |Li j|.

(ii). ‖L‖v
∞ = maxi, j |Li j|

(iii). ‖L‖2 = supx∈Rn,‖x‖2≤1
‖Lx‖2
‖x‖2
. This so-called spectral norm is equal to the square root

of the largest singular value of L which is the largest eigenvalue of the positive
matrix LT L. If L is positive definite this is its largest eigenvalue which is also
called its spectral radius, noted ρ(L).
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brownien. Ann. I. H. P. Sect. B, 33:1–36, 1997.

[171] L Lapicque. Recherches quantitatifs sur l’excitation des nerfs traitee comme

une polarisation. J. Physiol. Paris, 9:620–635, 1907.

[172] L. Lapicque. L’excitabilite en fonction du temps. Presses Universitaires de

France, Paris, 1926.

[173] G. Last and H. Stamer. Recurrence and transience properties of some neural

networks: an approach via fluid limit models. Queueing Systems, 32:99–130,

1999.

[174] P.E. Latham, B.J. Richmond, P.G. Nelson, and S. Nirenberg. Intrinsic dynamics

in neuronal networks. I. Theory. J. Neurophysiol., 83:828–835, 2000.

[175] P.E. Latham, B.J. Richmond, P.G. Nelson, and S. Nirenberg. Intrinsic dynamics

in neuronal networks. II. Experiment. J. Neurophysiol., 83:808–827, 2000.

[176] Jean-François Le Gall. Mouvement Brownien et Calcul Stochastique. Lecture

notes, January 1997.



442 BIBLIOGRAPHY

[177] N.N. Lebedev. Special functions and their applications. Dover publications,

1972.

[178] Mario Lefebvre. First-passage densities of a two-dimensional process. SIAM

Journal on Applied Mathematics, 49:1514–1523, 1989.

[179] H.R. Lerche. Boundary crossing of Brownian motion. Springer-Verlag, 1986.

[180] T.Y. Li and J. Yorke. Period three implies chaos. American Mathematical

Monthly, 82:985–992, 1975.

[181] R.S. Lillie. Factors affecting transmission and recovery in the passive iron

nerve model. The Journal of General Physiology, 7(4):473–507, 1925.

[182] Peter Linz. Analytical and Numerical Methods for Volterra Equations. SIAM

studies in applied mathematics, 1985.

[183] C. Liu, M. Michaelis, R. Amir, and M. Devor. Spinal nerve injury enhances

subthreshold membrane potential oscillations in drg neurons: Relation to neu-

ropathic pain. Journal of Neurophysiology, 84:205–215, 2000.

[184] R. Llinás. The intrinsic electrophysiological properties of mammalian neurons:

insights into central nervous system function. Science, 242:1654–1664, 1988.

[185] R. Llinas and M. Sugimori. Electrophysiological properties of in vitro Purk-

inje cell somata in mammalian cerebellar slices. The Journal of Physiology,

305(1):171–195, 1980.

[186] R Llinás and Y Yarom. Electrophysiology of mammalian inferior olivary neu-

rones in vitro. different types of voltage-dependent ionic conductances. J Phys-

iol., 315:549–567., 1981.

[187] R Llinás and Y. Yarom. Oscillatory properties of guinea-pig inferior olivary

neurones and their pharmacological modulation: an in vitro study. Journal of

physiology, 376:163–182, 1986.

[188] RR Llinas, AA Grace, and Y. Yarom. In vitro neurons in mammalian cortical

layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-hz frequency range.

Proceedings of the National Academy of Sciences, 88(3):897–901, 1991.

[189] F.H. Lopes da Silva, A. Hoeks, and L.H. Zetterberg. Model of brain rhythmic

activity. Kybernetik, 15:27–37, 1974.

[190] F.H. Lopes da Silva, A. van Rotterdam, P. Barts, E. van Heusden, and W. Burr.

Model of neuronal populations. the basic mechanism of rhythmicity. M.A. Cor-

ner, D.F. Swaab (eds) Progress in brain research, Elsevier, Amsterdam, 45:281–

308, 1976.

[191] VA Malyshev. Networks and dynamical systems. Advances in applied proba-

bility, 25(1):140–175, 1993.

[192] V.A. Malyshev and M.V. Menshikov. Ergodicity, continuity, and analyticity of

countable markov chains. Trans. Moscow Math. Soc., 1:1–47, 1981.



BIBLIOGRAPHY 443

[193] Y. Mandelblat, Y. Etzion, Y. Grossman, and D. Golomb. Period Doubling of

Calcium Spike Firing in a Model of a Purkinje Cell Dendrite. Journal of Com-

putational Neuroscience, 11(1):43–62, 2001.

[194] H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and

C. Wu. Interneurons of the neocortical inhibitory system. Nature Reviews Neu-

roscience, 5:793–804, 2004.

[195] P. Marsalek, C. Koch, and J. Maunsell. On the relationship between synaptic

input and spike output jitter in individual neurons. PNAS, 94:735–740, 1997.

[196] M. Mattia and P. Del Giudice. Population dynamics of interacting spiking neu-

rons. Physical Review E, 66(5):51917, 2002.

[197] H. P. McKean. A winding problem for a resonator driven by a white noise. J.

Math. Kyoto Univ., 2:227–235, 1963.

[198] L. Molgedey, J. Schuchardt, and H.G. Schuster. Supressing chaos in neural

networks by noise. Physical Review Letters, 69(26):3717–3719, 1992.

[199] V.B. Mountcastle. Modality and topographic properties of single neurons of

cat’s somatosensory cortex. Journal of Neurophysiology, 20:408–434, 1957.

[200] V.B. Mountcastle. The columnar organization of the neocortex. Brain, 120:701–

722, 1997.

[201] O. Moynot and M. Samuelides. Large deviations and mean-field theory for

asymmetric random recurrent neural networks. Probability Theory and Re-

lated Fields, 123(1):41–75, 2002.

[202] J.D. Murray. Mathematical Biology. Springer, 2003.

[203] R Naud, N Macille, C Clopath, and W Gerstner. Firing patterns in the adaptive

exponential integrate-and-fire model. Biological Cybernetics, 99(4–5):335–347,

nov 2008.

[204] R Naud, N Macille, C Clopath, and W Gerstner. Firing patterns in the adaptive

exponential integrate-and-fire model. Biological Cybernetics (submitted), 2008.

[205] E.A. Newman. Glial cell inhibition of neurons by release of ATP. J Neurosci,

23(5):1659–1666, 2003.

[206] Harald Niederreiter. Random number generation and quasi-Monte Carlo meth-

ods. Society for Industrial and Applied Mathematics, 1992.

[207] A. G. Nobile, L. M. Ricciardi, and L. Sacerdote. Exponential trends of first-

passage-time densities for a class of diffusion processes with steady-state dis-

tribution. Journal of Applied Probability, 22:611–618, 1985.

[208] A. G. Nobile, L. M. Ricciardi, and L. Sacerdote. Exponential trends of ornstein-

uhlenbeck first-passage-time densities. Journal of Applied Probability, 22:360–

369, 1985.

[209] John Nolte. The Human Brain. Mosby, 5th edition, 2001.



444 BIBLIOGRAPHY

[210] Alex Novikov, Volf Frishling, and Nino Kordzakhia. Approximations of bound-

ary crossing probabilities for a brownian motion. Journal of Applied Probabil-

ity, 36:1019–1030, 1999.

[211] C. Park and FJ Schuurmann. Evaluations of barrier-crossing probabilities of

wiener paths. J. Appl. Probab, 13(267-275), 1976.

[212] WJ Park. The law of the iterated logarithm for brownian sheets. J. Appl.

Probability, 12(4):840–844, 1975.

[213] Pierre Patie. On some first passage time problem motivated by financial appli-

cations. PhD thesis, ETH Zurich, 2004.

[214] A. Peters and E.G. Jones, editors. Cerebral cortex, cellular components of the

cerebral cortex, volume 1. Plenum, New York, 1984.

[215] H. E. Plesser. Aspects of signal processing in noisy neurons. PhD thesis, Georg-

August-Universität, 1999.

[216] D. Pollard. Empirical Processes: Theory and Applications. Ims, 1990.
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[276] T. Viéville and O. Rochel. One step towards an abstract view of computation

in spiking neural-networks. In International Conf. on Cognitive and Neural

Systems, 2006.
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