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Roland SIEGWART Examinateur





To my parents.





Remerciements
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1.3 Étalonnage de capteurs à centre de projection unique . . . . . . . . . . . . . . 7
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Objectif

Estimer le mouvement d’un robot et construire en même temps une représentation de l’environnement
(problème connu sous le nom de SLAM : Simultaneous Localisation And Mapping) est souvent
considéré comme un problème essentiel pour développer des robots pleinement autonomes qui ne
nécessitent pas de connaissances a priori de l’environnement pour réaliser leurs tâches.

L’évolution du SLAM est très liée aux capteurs utilisés. Les sonars avec l’odométrie sont souvent
présentés comme les premiers capteurs ayant fourni des résultats convaincants. Depuis, les lasers 2D
ont souvent remplacé ces capteurs pour des raisons de précision et de rapport signal/bruit. Néanmoins
les lasers 2D permettent uniquement d’estimer des mouvements planaires et ne donnent pas des infor-
mations perceptuelles suffisantes pour identifier de manière fiable des régions précédemment explorées.

Pour répondre à ces enjeux, les chercheurs se sont penchés sur d’autres capteurs permettant
d’estimer le mouvement 3D d’un robot et de reconnâıtre des lieux. Les caméras perspectives clas-
siques répondent à ces deux critères mais souffrent du risque d’occlusion à cause d’un angle de vue
faible et nécessitent d’estimer la profondeur des amers pour la construction de cartes métriques. Les
télémètres laser 3D sont une autre alternative mais sont peu discriminants et ont actuellement une
vitesse d’acquisition faible.

Ces observations nous ont amenés à explorer à travers cette thèse comment combiner un capteur
omnidirectionnel à grand angle de vue avec un télémètre laser pour effectuer de la localisation et de
la cartographie simultanée dans des environnements complexes et de grandes tailles.

Les contributions de cette thèse concernent l’étalonnage des capteurs centraux catadioptriques
[Mei and Rives, 2006a, 2007] (avec le développement d’un logiciel open-source disponible sur le site
internet de l’auteur) et la recherche de la position relative entre un capteur omnidirectionnel et un
télémètre laser [Mei and Rives, 2006b]. Des approches efficaces pour estimer le mouvement 3D du
capteur en utilisant des droites [Mei and Malis, 2006] et des plans [Mei et al., 2006a,b] sont détaillées
avec notamment l’utilisation des algèbres de Lie pour obtenir une représentation minimale. Enfin deux
méthodes sont proposées combinant laser et vision pour effectuer du SLAM planaire mais aussi pour
estimer la position 3D du robot ainsi que la structure de l’environnement.

1 La vision omnidirectionnelle : introduction, modèle de projection

et étalonnage

1.1 La vision omnidirectionnelle

1.1.1 Obtenir un grand angle de vue

Un grand angle de vue peut être obtenu par différents moyens, un état de l’art est présenté dans [Yagi,
1999] :� reconstitution à partir de plusieurs images,� utilisation de lentilles grands-angles,� utilisation de miroirs convexes.

Contraintes temps-réel La reconstitution d’images omnidirectionnelles à partir de plusieurs im-
ages peut être réalisée avec plusieurs caméras ou une caméra rotative. Néanmoins l’acquisition est
coûteuse en calcul et en temps et ne répond donc pas aux contraintes temps-réel présentes en robotique.
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Objectif grand-angle Les objectifs grands-angulaires (fish-eye lenses) permettent d’obtenir des im-
ages omnidirectionnelles en temps-réel. Ils présentent cependant l’inconvénient d’avoir une résolution
qui n’est bonne qu’au centre de l’image, la résolution en périphérie restant faible. De plus, les lentilles
ne vérifient pas strictement la contrainte de centre optique. Le champ de vue est souvent inférieur à
180° .

Caméras multiples regardant vers l’extérieur ou caméras multiples regardant vers des

miroirs plans Ces deux configurations présentent l’avantage d’avoir une très bonne résolution
à l’horizontal avec une acquisition d’images en temps réel. Cependant la reconstruction d’images
panoramiques génèrent des calculs importants. Il est aussi difficile de positionner les caméras avec
suffisamment de précision pour être sûr d’obtenir un centre de projection unique pour le système
optique ainsi formé. L’encombrement est aussi un défaut supplémentaire de ce type de système.

Miroirs convexes Le principe des miroirs convexes est de placer une caméra en position verticale
pointant vers un miroir convexe qui renvoie une image de 360° de l’espace environnant. Cette approche
permet à la fois de conserver les propriétés d’acquisition en temps-réel et aussi d’obtenir des images de
bonne résolution en périphérie (figures 1 et 2). Ces capteurs nécessitent d’adapter les algorithmes de
traitement classiques au modèle de projection non-linéaire et à la résolution non-uniforme du capteur.

Miroir convexe

Camera

Figure 1: Capteur catadioptrique Figure 2: Capteur à miroir parabolique

Pour ces raisons, les capteurs omnidirectionnels formés de miroirs convexes appelés couramment
capteurs catadioptriques 1 sont des capteurs grands-angles de plus en plus utilisés en robotique. Nous
nous intéresserons par la suite principalement à ce type de capteurs.

1.1.2 Miroirs à centre de projection unique

Les miroirs à centre de projection unique sont les capteurs qui relient un point de l’image à un unique
rayon projectif. Ils présentent l’avantage par exemple de permettre d’effectuer des transformations
pour obtenir des images panoramiques sans distorsions.

1dioptrique étant la partie de la physique portant sur la réfraction de la lumière (lentille) et catoptrique celle portant
sur les surfaces réfléchissantes (miroirs)
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Dans [Baker and Nayar, 1998], il est démontré, en utilisant le modèle de sténopé de la caméra qu’il
n’existe que certaines formes de miroirs qui permettent d’obtenir des capteurs catadioptriques cen-
traux. Ces formes correspondent à trois quadriques de révolution “classiques” : ellipsöıdes, parabolöıdes
et hyperbolöıdes ainsi que le cas planaire2 (voir figure 3 et table 1 adaptés de [Barreto, 2003, p. 10]).
Dans le cas d’une parabolöıde, les rayons qui arrivent au centre focal du capteur ressortent par-
allèlement à l’axe optique. Il est alors nécessaire d’utiliser une caméra orthographique. Pour le cas
des ellipses et hyperboles, un rayon qui arrive vers le premier point focal est réfléchi vers le deuxième
point focal où l’on peut placer une caméra perspective.
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α

α

dαα

Planaire

Parabolique

d

α
α

4p 4p

x
z

x
z

x
z

x
z
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Figure 3: Ensemble des capteurs omnidirectionnels avec un centre de projection unique

2par abus de langage nous utiliserons par la suite les termes d’ellipse, de parabole et d’hyperbole
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Table 1: Équation correspondant aux coniques

Parabolöıde
√

x2 + y2 + z2 = z + 2p

Hyperbolöıde
(z+ d

2
)2

a2 − x2

b2
− y2

b2
= 1

Ellipsöıde
(z+ d

2
)2

a2 + x2

b2
+ y2

b2
= 1

Plan z = −d
2

a = 1/2(
√

d2 + 4p2 ± 2p), ’−’ pour l’hyperbole, ’+’ pour l’ellipse

b =

√
p(
√

d2 + 4p2 ± 2p), ’−’ pour l’hyperbole, ’+’ pour l’ellipse

Geyer et Daniilidis [Geyer and Daniilidis, 2000] ainsi que Barreto [Barreto, 2003, Chap. 2] ont
développé une théorie qui unifie l’étude de tels miroirs. Une extension de ce modèle ainsi qu’une
méthode d’étalonnage est présentée dans la Section 1.2.2.

Un exemple de miroir parfois utilisé et qui apporte des distorsions est le miroir sphérique (qui est
un cas particulier de l’ellipsöıde de révolution). En effet, une sphère ne contient qu’un seul point focal
qui est situé au centre de la sphère. En décalant la caméra, une caustique apparâıt [Swaminathan
et al., 2001]. En d’autres termes, ce système ne vérifie plus la contrainte d’un centre de projection
unique. Néanmoins, ce type de capteur est simple à réaliser et le montage est aisé car tout rayon de
la sphère est un axe de révolution et donc un axe optique. Le modèle projection proposé a permis de
calibrer un capteur de ce type.

1.1.3 Choisir un capteur catadioptrique

Nous verrons par la suite que le modèle de projection d’un capteur parabolique est théoriquement plus
simple que celui d’un miroir hyperbolique. Néanmoins, dans la pratique, pour simuler une caméra
orthographique, une lentille télécentrique est rajoutée entre le miroir et la caméra. Cette lentille doit
avoir le même diamètre que le miroir. Cette taille importante rend difficile la production de lentilles
de bonnes qualités optiques et introduit de la distorsion. Cette distorsion doit être prise en compte
dans le modèle de projection qui n’est alors pas plus simple que dans le cas hyperbolique.

1.2 Modèle de projection

Nous allons détailler dans cette partie le modèle de projection choisi. Nous ne donnerons pas les étapes
pour obtenir le modèle unifié sur la sphère à partir de la projection sur les miroirs. Le lecteur intéressé
peut se référer aux thèses de Geyer [Geyer, 2003] ou Barreto [Barreto, 2003].

1.2.1 Projections perspectives planaires et sphériques

L’approche la plus classique pour modéliser la projection d’un point 3D dans le plan image pour une
caméra perspective est l’utilisation du plan normalisé. Les étapes de la projection (figure 4) sont :

1. soit (X )Rc = (X,Y,Z) un point 3D dans le repère de la caméra, le point est projeté dans le plan
normalisé, πm :

(X )Rc −→m = (x, y, 1) = (
X

Z
,
Y

Z
, 1)
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2. avec f1 la distance focale horizontale, f2 la distance focale verticale, s le facteur d’obliquité et
(u0, v0) le point principal, nous obtenons linéairement la projection de m dans le plan image,
πp :

p = (u, v, 1) = Km =




f1 f1s u0

0 f2 v0

0 0 1


m = k(m)

1

C

~x

~y

X

K

m

~z

πp

πm

p

Figure 4: Projection perspective planaire

Dans le cas d’un grand angle de vue (>180° ), ce modèle n’est plus adapté. En effet, avec un
plan unique nous avons une ambigüıté entre “l’arrière” et “l’avant” de la caméra. L’utilisation de la
projection sur une sphère (que nous prendrons unité pour simplifier les calculs) résout ces problèmes.
Figure 6 illustre la projection perspective sphérique où la projection à partir de la sphère est suivie
d’une projection non-linéaire par une fonction Π. Dans la section suivante nous détaillerons une
fonction Π adaptée aux capteurs centraux catadioptriques.

1.2.2 Modèle unifié

Geyer [Geyer, 2003] et Barreto [Barreto, 2003] ont proposé un modèle de projection valable pour tous
les capteurs centraux catadioptriques. Il peut être montré que ce modèle est aussi valable pour certaines
lentilles fisheye (Section 2.2.2.3). Par contre le modèle ne permet pas de prendre en compte des
distorsions radiales souvent présentes dans le cas de capteurs paraboliques où une lentille télécentrique
est rajoutée pour pouvoir utiliser une caméra perspective (et non orthographique). Un modèle de
distorsion radial a été rajouté pour prendre en compte ce cas. Des paramètres de distorsion tangentielle
ont aussi été rajoutés pour modéliser des erreurs d’alignement faibles (le modèle de distorsion est
détaillé dans la Section 2.3.1). Les étapes de projection proposées sont illustrées dans la figure 7 avec
les paramètres en relation avec la forme du miroir dans la table 2.



1. La vision omnidirectionnelle : introduction, modèle de projection et étalonnage 7

1
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m

~z

πp

πm

p

Figure 5: Projection perspective planaire

Xs

Π

X

1

~z

C
~x

~y

πp

p

Figure 6: Projection perspective sphérique

Table 2: Paramètres du modèle unifié

ξ γ

Parabole 1 −2pf

Hyperbole df√
d2+4p2

−2pf√
d2+4p2

Ellipse df√
d2+4p2

2pf√
d2+4p2

Planaire 0 -f

Perspectif 0 f

d : distance entre points focaux
4p : latus rectum

1.3 Étalonnage de capteurs à centre de projection unique

1.3.1 Paramètres du modèle

Les paramètres de la fonction Π que nous souhaitons estimer sont au nombre de 10 :

1. ξ qui dépend de la géométrie du miroir,

2. k1, k2, p1 et p2 qui sont les paramètres modélisant la distorsion du miroir et les problèmes
d’alignement,

3. γ1, γ2, s, u0 et v0 les paramètres de la caméra généralisée (en effet γ1 et γ2 contiennent aussi des
informations sur la forme du miroir)

Pour pouvoir estimer les paramètres nous allons utiliser des mires planaires de dimension connue
et minimiser l’erreur entre la reprojection des points de la grille et l’extraction de ces points dans
l’image. La fonction de projection est non-linéaire et nous devons donc initialiser les paramètres avant
d’effectuer la minimisation.
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Distortion

p

K

~zm

~ym

Cm
~xm

πmd

Xs

X

πmu

mu

ξ

1

md

~xs

~zs

~ys

Cp

Fp

Fm

πp

Xs = X
‖X‖

= (Xs, Ys, Zs)

Fm

Xs = (Xs, Ys, Zs + ξ)

Fp

p = Km

πp

πmd

πmu

md = mu + D(mu, V )

mu = ℏ(Xs) = ( Xs

Zs+ξ
, Ys

Zs+ξ
,1)

Figure 7: Modèle de projection complet
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Expérimentalement, nous constatons que ξ n’a pas une influence très importante sur l’erreur de
reprojection, nous utiliserons comme valeur initiale ξ = 1. Les valeurs de k1, k2, p1 et p2 correspondent
à des erreurs de modèle que nous supposons faibles et initialiserons par la valeur nulle. De même,
s ≈ 0 et γ1 ≈ γ2.

Par contre les valeurs de γ, u0 et v0 doivent être estimées ainsi que les paramètres extrinsèques
correspondant à la position relative (rotation et translation) entre les grilles planaires et le miroir. La
rotation sera représentée par un quaternion Q = [q0 q1 q2 q3]

⊤ et une translation t = [tx ty tz]
⊤.

Notons V la matrice des paramètres :

V17×1 = [q0 q1 q2 q3 tx ty tz ξ k1 k2 p1 p2 s γ1 γ2 u0 v0]
⊤

V 1
7×1 = [q0 q1 q2 q3 tx ty tz]

⊤, V 2
1×1 = ξ, V 3

4×1 = [k1 k2 p1 p2]
⊤, V 4

5×1 = [s γ1 γ2 u0 v0]
⊤

1.3.2 Méthodologie pour l’étalonnage

Les étapes suivantes permettent d’extraire les points des mires et d’initialiser les paramètres :

1. initialisation du point principal (u0, v0) grâce à la bordure du miroir (figure 8),

2. estimation de la distance focale généralisée γ (en supposant que γ = γ1 = γ2) grâce à trois points
(ou plus) alignés sur l’image d’une droite non-radiale de la scène (figure 9),

3. pour chaque image de la mire, nous sélectionnons les quatre coins de la grille (figure 10), estimons
les paramètres extrinsèques puis extrayons les points restants par reprojection (figure 11),

4. nous terminons l’étalonnage par la minimisation globale de l’erreur de reprojection (par exemple
en utilisant l’algorithme de Levenberg-Marquardt).

Figure 8: Extraction de la bordure du miroir pour estimer le point principal

Les différentes étapes sont détaillées dans le Chapitre 3. Un des points importants est l’initialisation
de la distance focale grâce à un modèle simplifié. C’est cette étape qui va permettre par la suite de
mettre en correspondance les points 3D de la grille avec leur images.
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Figure 9: Estimation de la distance focale généralisée grâce à des points alignés dans la scène

Figure 10: Extraction de quatre coins de la grille
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Figure 11: Extraction sub-pixellique des points

Sensor
Catadioptric

R, t

Laser Range
Finder

Figure 12: Étalonnage entre un télémètre laser et un miroir omnidirectionnel

1.4 Étalonnage entre un télémètre laser et un miroir omnidirectionnel

Nous nous intéressons ici à l’étalonnage entre un télémètre laser et un capteur omnidirectionnel, c’est-
à-dire trouver la position relative (rotation R et translation t) entre les deux capteurs (figure 12).
Nous supposons que chaque capteur a été étalonné de manière séparée.

Nous envisagerons deux cas distincts : le cas où le laser est visible dans l’image et le cas où il est
invisible (proche infrarouge).

Dans le premier cas, nous étudierons l’estimation de la position relative lorsque les points laser
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3D peuvent être associés directement à des points dans l’image et le cas où nous pouvons associer des
droites extraites dans la coupe laser avec leurs images dans le capteur omnidirectionnel.

Dans le deuxième cas, nous nous poserons la question de savoir si l’association entre des points
de rupture dans les données laser avec des droites omnidirectionnelles sont suffisantes pour étalonner
le capteur. Nous verrons que ce cas n’est pas favorable et proposerons une alternative en utilisant la
position de plans 3D visibles dans la coupe laser.

Dans cette synthèse, nous montrerons quelques résultats, plus de détails peuvent être trouvés au
Chapitre 4.

1.4.1 Laser visible

Points laser Lorsque le faisceau laser est visible dans l’image, nous nous trouvons en présence du
problème classique d’estimation de pose en vision par ordinateur.

Figure 13 illustre le cas de l’association entre des points laser 3D et des points dans l’image. Ce cas
est analogue aux problèmes PnP [Fischler and Bolles, 1981] (Perspective from n Points) ou “position
relative avec modèle 3D”. Il faut néanmoins prendre soin de travailler sur la sphère et non dans un
plan (comme expliqué dans la Section 2.1.2).

Plan
Laser

projectifs
Rayons

Laser

l3

l2l1

l4

Cm

panoramique
Caméra

Figure 13: Association entre points laser 3D et points dans l’image

Figure 14 montre des mesures laser effectuées dans l’environnement et figure 15 le résultat final
après extraction des points dans l’image et étalonnage.

Segments laser Certains télémètres laser ne permettent pas d’effectuer des mesures à des angles
donnés mais renvoient directement des coupes lasers complètes. Dans ce cas, nous pouvons associer
des segments extraits de la coupe laser à leur images dans le capteur omnidirectionnel (figure 16).

Cette approche est plus difficile à mettre en œuvre et à automatiser que dans le cas des points. En
effet, il est nécessaire de mettre en correspondance les droites du plan laser avec les droites de l’image
qui est un problème de complexité exponentielle. Figure 17 montre des segments extraits de la coupe
laser et figure 18 leur reprojection dans l’image.
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0
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Figure 14: Mesures laser effectuées de
l’environnement

Figure 15: Points laser extraits (×) et points
laser 3D reprojetés après étalonnage (+)

(images de droites)
Plans

Plan
Laser

Laser

N2

N4

N1

L2
L4

N3

D2

D3

D4

D1

L3

L1

Cm

panoramique
Caméra

Figure 16: Association entre segments extraits de la coupe laser et leur projections dans l’image
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Figure 17: Extraction de segments de la
coupe laser

Figure 18: Extraction des images des seg-
ments

1.4.2 Laser invisible

De nombreux lasers émettent des faisceaux dans le proche infrarouge qui ne peuvent être vus par la
caméra. Les approches précédentes ne sont donc pas applicables.

Plan
Laser

Droite de l’environnement

Laser

l3

l2l1

l4

Cm

Points d’intérêts
Plan formé par l’image de la droite

panoramique
Caméra

Figure 19: Association entre points de rupture laser et droites dans l’image

Points de rupture Si nous associons des points de rupture dans les données laser avec des droites
omnidirectionnelles (figure 19) nous avons 6 + 3n (R, t,X 1, ...,X n) inconnues et 3n + n équations.
6 points sont donc nécessaires pour minimiser le système. En réalité 6 points ne sont pas suff-
isants et quelque soit le nombre de points, le système est sous-contraint car les équations ne sont
pas indépendantes (Section 4.3). Une autre méthode d’étalonnage utilisant des informations 3D est
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nécessaire.

Laser

panoramique

calibration
Grille de

(invisible)
Trace laser

Cm

Caméra

Figure 20: Association entre points laser et plans 3D

Plans 3D Pour étalonner les capteurs, nous pouvons utiliser des informations 3D comme la position
de plan illustrées par la figure 20).

Le système d’équations obtenu permet alors de trouver la position relative (figure 21).

Figure 21: Vue 3D des plans utilisés pour l’étalonnage avec la reprojection des points laser

1.5 Conclusion

Les capteurs centraux catadioptriques sont des systèmes de vision qui présentent l’avantage d’un grand
angle de vue obtenu en temps réel et sans parallaxe.

Pour raisonner avec ces types de capteurs, la représentation perspective planaire utilisée classique-
ment pour les capteurs à angle de vue faible n’est pas adaptée. Nous avons montré par contre qu’une
représentation perspective sphérique permet d’exprimer correctement les points devant et derrière le
capteur.
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Le modèle de projection des capteurs centraux catadioptriques a ensuite été étendu pour prendre
en compte les problèmes d’alignement et de distorsion souvent présent en pratique. Une méthodologie
a été présentée qui permet d’estimer les paramètres du capteur et rend aisée la mise en correspondance
de points. Un logiciel d’étalonnage a été développé et permet d’étalonner efficacement un grand nombre
de capteurs grands-angles présents en robotique.

Nous avons ensuite présenté plusieurs approches pour trouver la position relative entre un capteur
laser et une caméra omnidirectionnelle. Dans le cas où le capteur laser est visible et nous pouvons
effectuer des mesures télémétriques ponctuelles, l’étalonnage est facilement automatisable. Pour des
lasers avec des faisceaux invisibles, il est nécessaire d’utiliser de l’information 3D comme la position
de plans.

2 Estimation du mouvement à partir d’une caméra centrale cata-
dioptrique

2.1 Représentation minimale

De nombreuses transformations (rotations, homographies) et objets géométriques (plans, droites 3D)
utilisés en vision par ordinateur et en robotique peuvent être paramétrés en utilisant des groupes de
Lie dont une représentation minimale - au moins locale - existe. Ces paramétrisations permettent de
s’assurer que dans des problèmes de minimisation les objets manipulés restent dans les groupes étudiés.
Le Chapitre 5 résument certaines propriétés des algèbres de Lie et des matrices exponentielles.

Un point important est la représentation de ces entités dans les problèmes d’optimisations.

Soit G un groupe de Lie matriciel de dimension n, soit :

f : G −→ R

g 7−→ f(g)

Considérons le problème de minimisation suivant, avec d une distance différentiable (typiquement
une norme L2) et f ∈ R :

g = min
g

d(f(g), f )

Si f est une fonction non-linéaire, le problème n’a souvent pas de solution explicite et une méthode
de descente de gradient est couramment employée. Nous partons d’une solution initiale de valeur ĝ et à
chaque étapes nous rajoutons une valeur gk calculée à partir du jacobien, par exemple : ĝ← ĝ+gk. Le
problème d’une telle approche est que nous ne pouvons garantir que la nouvelle valeur ĝ va appartenir
au groupe G. Pour résoudre ce problème, la nouvelle valeur ĝ est souvent projetée sur la variété mais
ceci peu dégrader à la fois la vitesse mais aussi la région de convergence.

Une alternative est de définir une nouvelle fonction h. Avec g l’algèbre de Lie de G et + l’opération
de groupe.

h : Rn −→ g −→ R

x 7−→ G(x) 7−→ f(ĝ + eG(x))

h est seulement défini localement par la paramétrisation de l’algèbre de Lie de G. Si nous appliquons
une méthode de descente de gradient à h en partant de x = 0 (qui correspond à la valeur initiale f), la
mise à jour s’écrit : ĝ ← ĝ + eG(xk). Nous sommes maintenant assurés qu’à chaque étape la nouvelle
valeur de ĝ appartient au groupe de Lie G.

Notons qu’il faut aussi s’assurer qu’il existe un chemin reliant ĝ à g (voir Chapitre 5).
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Cette technique de minimisation est très importante pour la localisation et la cartographie simul-
tanée et apparâıt dans les problèmes étudiés par la suite dans cette thèse lors de la cartographie à
partir de plans et de droites.

2.2 Suivi basé vision avec une caméra omnidirectionnelle

Dans cette thèse, nous nous sommes intéressés aux techniques de suivi dense incrémental illustrées par
la figure 22. A partir d’une région extraite d’une image de référence notée I∗ nous calculons de manière
séquentielle la transformation entre la position de référence et la position courante Ik. L’avantage d’une
telle approche est la possibilité d’estimer le mouvement sans dérive et uniquement à partir de données
images. Dans cette thèse, nous avons exploré le suivi de région de l’image correspondant à des plans
de la scène. La transformation de points appartenant à un même plan suit une homographie planaire.

T01 T(x)

Ik

T02

T0k

I∗ I1 I2

Figure 22: Calcul incrémental de la transformation

2.2.1 Homographies planaires

Soit R ∈ SO(3) la matrice correspondant à la rotation de la caméra et soit t ∈ R3 la translation. Une
homographie planaire H est définie à un facteur d’échelle près :

H ∼ R + tn∗⊤
d (1)

où n∗
d = n∗/d∗ est le rapport entre la normale au plan n∗ (vecteur unitaire) et la distance d∗

du plan à l’origine du repère de référence. Par la suite, par abus de langage, nous appellerons n∗
d

la normale au plan. Les homographies sont des propriétés projectives et restent donc valables pour
tous les capteurs centraux catadioptriques. Figure 23 illustre la transformation engendrée par une
homographie planaire en utilisant le modèle perspectif sphérique. Les points X ∗

s et X s sont reliés par:

∃(ρ, ρ∗) ∈ R2, P = ρX s = ρ∗HX ∗
s
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P

π

~n∗R, t

F ∗

Xs

H

F

X ∗s

Figure 23: Homographie planaire avec un modèle perspectif sphérique

2.2.2 Suivi basé vision

Soit W le warping (transformation entre différentes vues) engendré par une homographie (avec S la
normalisation sur la sphère) :

W(H,X ∗) = S(HX ∗)

Le suivi basé vision consiste à trouver les transformations H et et H(T,nj
d) optimales telles que :� pour un plan : ∀i, I

(
Π(W(H,Π−1(pi)))

)
= I∗(pi) avec H ∈ SL(3)� pour n (n > 1) plans : ∀(i, j), I

(
Π(W(H(T,nj

d),Π
−1(pij)))

)
= I∗(pij) avec T ∈ SE(3),

nd ∈ R3

Dans cette thèse, nous avons exploré comment minimiser efficacement ces équations dans un cadre
valable pour tous les capteurs centraux (Chapitre 6).

Les contributions dans ce domaine concernent la technique de minimisation employée ESM (Effi-
cient Second-order Minimisation) avec des variantes avec de meilleures propriétés en terme de com-
plexité (αESM; iESM). L’estimation en ligne des normales dans le cas de plusieurs plans n’avait pas été
étudiée au préalable. Les résultats expérimentaux présentés dans la section 6.5.2 montrent la validité
de l’approche pour l’estimation du mouvement et de la structure de l’environnement.

2.3 Droites omnidirectionnelles

Dans des environnements structurés, les droites sont des amers visuels qui peuvent aider dans l’estimation
du mouvement. Les algorithmes classiques utilisés avec des caméras perspectives doivent néanmoins
être adaptés.

Le Chapitre 7 explore les différentes étapes pour extraire des droites de la scène projetées dans
des images omnidirectionnelles, estimer leurs paramètres et permettre d’effectuer un suivi d’image à
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image. Nous proposons aussi une représentation non-singulière des droites à partir de leur normales et
les segments à partir d’un point, un angle et une normale (à travers la formule de Rodrigues). Figure
24 illustre la représentation “projective” de la projection d’une droite de la scène choisie pour cette
étude.

Dans ce chapitre, nous étudions aussi le problème de minimisation qui apparâıt dans le problème
de cartographie à partir de droites dans la scène. Nous détaillons en particulier plusieurs distances
possibles adaptées aux capteurs centraux catadioptriques.

3D Line

Line image

πm

Cp

Cm

n

n

Figure 24: Représentation d’une droite de la scène par une normale

3 Couplage vision omnidirectionnelle et télémétrie laser

La dernière partie de cette thèse a été consacrée au couplage entre une caméra omnidirectionnelle et un
télémètre laser. La vision permet de faciliter la reconnaissance des lieux et l’estimation du mouvement
et le laser permet d’obtenir des mesures directes de la distance métrique de points de la scène.

Dans une première partie, nous avons exploré le SLAM avec trois degrés de liberté (3-DOF SLAM
soit pour un mouvement planaire du robot). Nous avons ensuite proposé une direction possible pour
effectuer la cartographie lors d’un mouvement avec six degrés de liberté (6-DOF SLAM).

3.1 Couplage vision omnidirectionnelle et laser pour le 3-DOF SLAM

La méthode proposée pour la cartographie planaire a les caractéristiques suivantes :� carte métrique : l’environnement est représenté par un ensemble de points facilement identifi-
ables,
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Critère sur l’orientation Critère sur l’amplitude Points caractéristiques

Figure 25: Critères pour obtenir des points discriminants� carte topologique : une carte topologique est utilisée pour gérer de manière explicite l’association
entre données,� fermeture de boucle : pour corriger la dérive, une approche de reconnaissance de lieux est
proposée,� l’état (pose+carte) est mise-à-jour grâce à un filtre de Kalman étendu.

Une approche combinant contours dans l’image et trace laser a été proposée (Section 9.3) pour
obtenir des points saillants qui constituent la carte de l’environnement. Figure 25 illustre les différents
critères.

En plus d’une carte métrique, nous réalisons une carte topologique dont les sommets constituent
un ensemble de lieux identifiables grâce aux images omnidirectionnelles. La carte topologique permet
de gérer l’association entre les données. Une distance prise sur la carte topologique permet de décider
si nous acceptons l’association de données obtenue par l’incertitude du filtre. En effet, le filtre peut
devenir inconsistant (erreurs de linéarisation, mauvaises associations de données, ...) et la distance sur
la carte topologique permet de limiter le risque d’association incorrecte.

3.1.1 Fermeture de boucle

La méthode de fermeture de boucle décrite au Chapitre 9 consiste en quatre étapes distinctes :

1. déclenchement d’une vérification de fermeture de boucle grâce à des signatures de lieux (corrélogrammes),

2. estimation de la rotation entre les vues grâce aux images omnidirectionnelles,

3. estimation de la transformation en recalant les coupes laser,

4. association des données et mise à jour du filtre.

Les images omnidirectionnelles sont bien adaptées à la reconnaissance de lieux (invariance en
rotation pour des mouvements planaires). Les signatures images utilisées reposent sur les auto-
corrélogrammes qui ont des propriétés intéressantes en terme de temps de calcul et de discriminance.
La construction est illustrée par la figure 26.
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Figure 26: Construction d’auto-corrélogrammes

3.1.2 Résultats expérimentaux

L’approche de cartographie combinant télémétrie laser et vision omnidirectionnelle a été expérimentée
sur le robot mobile Anis du projet ICARE. Figure 3.1.2 montre la carte métrique avant la détection
d’une fermeture de boucle. Grâce aux signatures images, une fermeture de boucle est déclenchée.
L’estimation de la rotation et le recalage des coupes permet d’associer les données et de mettre à jour
le filtre. La figure 3.1.2 montre les résultats obtenus après la fermeture de boucle.

3.1.3 Conclusion

L’approche de cartographie 3-DOF proposée a les caractéristiques suivantes :� aucun a priori n’est considéré sur le type d’environnement (en particulier nous ne supposons pas
que l’environnement est linéaire par morceaux),� le capteur de vision permet d’associer les données de manière robuste et de reconnâıtre des cas
de fermeture de boucle,� une carte topologique permet de gérer l’association de données pour plus de robustesse.

Les limitations de l’approche sont la création d’une carte uniquement planaire et non-dense (ce qui
ne permet pas par exemple d’effectuer de l’évitement d’obstacle ou de la planification). Ces limitations
nous ont amenés à explorer la cartographie 6-DOF basée vision au Chapitre 10.

3.2 Couplage vision omnidirectionnelle et laser pour le 6-DOF SLAM

Au Chapitre 10, nous explorons comment combiner données vision et information laser pour obtenir
une approche pour la cartographie 6-DOF avec les caractéristiques suivantes :� 6-DOF SLAM,� extraction et initialisation automatique de plans grâce au laser 2D,� rapide, en limitant le nombre de variables à estimer.

La technique repose sur le suivi basé vision développé au Chapitre 6. Le laser permet d’imposer
des contraintes sur l’homographie du plan à suivre.
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3.2.1 Modélisation du problème

En extrayant des segments de la coupe laser (figure 27), il est possible de contraindre les homographies
entre vues comme illustré par les figures 28 et 29. L’homographie peut alors s’écrire :

H ∼ R + t (nb + λnKer)
⊤

Ainsi le nombre d’inconnus passe de 6 + 3×m− 1 dans le cas de la vision seule à 6 + m grâce au
segment laser.

Initialisation des plans Plusieurs valeurs peuvent être données à λ lors de l’initialisation comme
illustré par les figures 30 et 31.

3.2.2 Résultats expérimentaux

L’estimation du mouvement à partir de plans en combinant télémétrie laser et vision omnidirectionnelle
a été validée sur une séquence dans un couloir avec le robot ANIS. La séquence comporte des occlusions
et des spécularités. L’utilisation d’estimateurs robustes a permis néanmoins d’obtenir des résultats
précis sur cette séquence. Figure 32 montre une des occlusions dans la séquence et figure 33 montre
l’estimation du mouvement (lignes avec symboles) comparée à la vérité terrain (en ligne continue).

3.2.3 Conclusion

L’approche proposée permet d’effectuer une cartographie de l’environnement avec 6 degrés de liberté
en combinant un laser 2D avec une caméra omnidirectionnelle. Le mouvement et la structure sont
estimés de manière efficace grâce au suivi visuel. L’information laser apporte des avantages pour
l’initialisation de la structure à suivre. Les limitations de la méthode concernent principalement le
type de structure suivi (planaire).
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Figure 30: Initialisation pour maximiser
l’angle de vue

Figure 31: Initialisation sous hypothèse
de verticalité

Figure 32: Occlusion (image 90)
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Figure 33: Estimation du mouvement

Conclusion et perspectives

Ce travail de thèse a contribuer à faciliter l’utilisation des caméras catadioptriques grâce au développement
d’une technique d’étalonnage simple à mettre en œuvre avec un logiciel open-source. Les techniques
de suivi et d’estimation du mouvement développées pour les droites et les plans dans les images
omnidirectionnelles sont des outils efficaces à sa disposition pour les problèmes de localisation et de
cartographie. Les exemples de cartographie ont aussi permis de mettre en avant l’avantage des cap-
teurs omnidirectionnels notamment pour la reconnaissance de lieux et la fermeture de boucle, deux
problèmes importants du SLAM.

Ces travaux ouvrent des perspectives dans le domaine de la reconstruction 3D temps-réel soit avec
la vision seule soit en combinant vision et laser. La précision et la robustesse des méthodes proposées
permettent d’envisager la cartographie dans des environnements complexes et de grandes tailles.





Introduction

Objective

Roboticians and researchers in computer vision have a common goal: to estimate the motion of a
robot or camera and simultaneously build a representation of the environment. The first call it
simultaneous localisation and mapping (SLAM) and the latter structure from motion (SFM). This
problem is considered as essential to build fully autonomous systems that do not require any prior
knowledge of the environment to fulfill their tasks. Examples of applications range from the exploration
of Mars, to helping firemen locate victims in a building, to guarding a warehouse or aiding soldiers in
guerrilla warfare. In all these situations, the environment can be complex and the robot must adapt
to fulfill its exploration or surveillance tasks.

Ways of solving the SLAM problem vary between communities. The computer vision literature
focuses more on uncalibrated bundle adjustment whereas the robotics community generally favours
iterative techniques such as the Kalman filter or particle filtering and often combines calibrated cameras
with other sensors (odometry, gyroscopes, laser range finders, ...).

The work in this thesis was done from a robotics perspective. We wish to find a combination of
sensors that will help solve some of the challenges of SLAM in large-scale complex environments. The
evolution of SLAM is closely linked to the sensors used. Sonars with odometry are often considered as
the first sensors having led to convincing results. Since then, 2D laser range finders have often replaced
sonars when possible because of the higher precision and better signal to noise ratio. However 2D
lasers alone limit SLAM to planar motion estimation and do not provide sufficiently rich information
to reliably identify previously explored regions.

Well aware of the limitations of 2D lasers, researchers are increasingly using 3D laser scanners
and estimate full 3D trajectories. These sensors however only mildly improve the problem of place
recognition and the data acquisition process is not currently compatible with real-time. An obvious
alternative is to use vision sensors. Vision sensors enable 6 degree of freedom motion estimation and
are rich in perceptual information. However standard cameras only have a small field of view (∼30°
-40° ). Place recognition or motion estimation can be easily affected by occlusion. Omnidirectional
vision, in other words, how to generate and work on large field of view cameras can solve some of
these issues. Vision alone does not provide range-bearing measurements and, as such, lasers are better
adapted for SLAM.

Combining omnidirectional vision and 2D laser range finders provides many advantages for SLAM
that we will explore throughout this thesis.



Contributions

Before this work was undertaken, there were no simple ways to calibrate omnidirectional sensors.
We devised a calibration approach and identified the essential parameters that should be taken into
account. This lead to two publications [Mei and Rives, 2006a, 2007] and an opensource toolbox made
available on the author’s website.

Another essential step before fusing the laser data and the vision data, was to establish the relative
pose between the sensors. In [Mei and Rives, 2006b], we studied different approaches and worked on
the two cases of visible and invisible laser beams.

An effort has also been made to clarify the use of Lie algebras as incremental local parameterisations
for minimisation. This technique is essential to the efficient second order approach (ESM) and was
used extensively for central catadioptric homography-based tracking [Mei et al., 2006a,b] and structure
and motion from line images [Mei and Malis, 2006].

The final part of this thesis relies heavily on the previous chapters to build fast and efficient
approaches to motion estimation and map building by fusing the information from the laser range
finder and omnidirectional camera.

Outline

Part I

In the first part of this thesis, we will describe the sensors used and how to calibrate them. This is an
essential step before using the sensors.

Chapter 1

We will explore the world of omnidirectional vision through biology and human history. Closer to
computer vision and robotics, we will describe different methods to acquire large field of views and
explain the advantages of central catadioptric sensors for robotics.

Chapter 2

Calibrating a vision sensor consists in finding a mathematical function that links 3D points to their 2D
image projections. This function should be sufficiently general to encompass a wide variety of sensors
but also sufficiently constrained to avoid sensitivity to noise. Our approach consists in assuming small
errors with respect to a theoretical projection model.

Chapter 3

To calibrate, we also need a method to estimate the parameters of the function. We will describe the
different steps in the calibration process. Results on a wide variety of sensors will be given.

Chapter 4

The problem of finding the relative pose between an omnidirectional sensor and a laser range is studied.
We analyse the two distinct cases where the laser beam is visible in the image and when it is invisible.

ii



Part II

The second part of this thesis presents computer vision algorithms adapted to omnidirectional cameras
in view of their integration into a SLAM framework.

Chapter 5

Minimal parameterisations are important to ensure robustness and optimality. This chapter describes
how Lie algebras associated to Lie groups can impose the required constraints on the parameters. We
also detail explicit formulas for the exponential map for an efficient implementation.

Chapter 6

Visual tracking often forms the basis of structure and motion algorithms. We detail how to extend
SSD tracking to omnidirectional cameras (and more generally to all single viewpoint sensors) and
improve the computational efficiency over standard methods.

Chapter 7

Lines are often used in structure and motion algorithms. We describe how they can be extracted
and tracked in omnidirectional images. We also analyse the structure and motion problem using Lie
algebras.

Part III

The final part of this thesis describes how to combine the laser and vision information.

Chapter 8

We give here a short overview of SLAM algorithms and the some of the current challenges.

Chapter 9

We describe ways of combining the visual information of an omnidirectional sensor with the metric
information from the laser for 3-DOF SLAM.

Chapter 10

6-DOF SLAM has mainly been studied using only computer vision or with 3D lasers. However we will
see in this chapter that there are many advantages in combining the precise 2D metric information
from the laser with the natural 6-DOF estimation obtained from the vision sensor.
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Notations and acronyms

General

M : matrix M

v : vector v

R : rotation matrix
t : translation vector
T : Euclidean transformation
M⊤ : the transpose of the matrix M

‖x‖ : L2 norm of x

F : a reference frame
g : Lie algebra of the Lie group G
x× y : cross product between x and y

[x]× : skew-symmetric matrix associated to x, [x]× y = x× y

M+ : pseudo-inverse of M, M+ = (M⊤M)−1M⊤

x̂ : estimate of the true value x

0m×n : a matrix with m lines and n columns with zero values
In : the identity matrix of size n× n

Projective geometry

X = (X,Y,Z) : a 3D point
X s = (Xs, Ys, Zs) : a point belonging to the unit sphere (‖X s‖=1)
p = (u, v) : coordinate of a point in the image
m = (x, y) : coordinate of a point on the normalised plane
Π : function that projects a 3D point to the image plane
K : camera projection matrix
ℏ : function projecting a 3D point to the normalised plane

for an omnidirectional sensor
L : 2D or 3D line
I : an image

Simultaneous Localisation and Mapping

See Section 8.2.1 for specific notations.

S : a laser scan



Acronyms

SLAM : Simultaneous Localisation and Mapping
CML : Concurrent Map-building and Localisation
ELS : Enriched Laser Scan
NNG : Nearest Neighbour Gating
ICP : Iterative Closest Point
MRP : Matching-Range-Point rule
DOF : Degree Of Freedom
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1.1 An insight on different aspects of large field of views

1.1.1 Importance of wide field of views in nature

Biomimetics is the study of nature as a way to develop or improve design and engineering of machines.
Panoramic vision often appears in the biorobotics literature and we give here a short insight into this
work.

When we wish to build a fast and robust robot for localisation and mapping, we start by asking
the question: are there any existing systems with such capabilities? Nature offers a wide range of
examples in particular in the insect kingdom. Despite having relatively simple nervous systems and
restricted processing capabilities, insects show effective solutions for autonomous navigation. Many
animals are known to find their way back home reliably after foraging for food [Graham and Collett,
2002].

The Saharan desert ant, for example, can forage up to 200 m away from its nest and return in a
straight line. It does not use pheromones, as most ants do, as they would evaporate quickly because
of the high ground temperature. Instead it uses a combination of compass information (absolute
orientation) from polarised patterns of the sun and visual landmarks (relative orientation). By using
panoramic vision, roboticians were able to mimic simple navigation strategies [Weber et al., 1998; Lam-
brinos et al., 1999]. The wide-angle field of view gave more discriminate results and more robustness
to changes in the environment.

Similarly research on the human brain, shows that regions (called “place cells”) in the hippocampus
are dedicated to visual navigation [Giovannangeli et al., 2006]. An implementation of the algorithms
on a mobile robot underlying the image processing gave satisfying results for navigation.

If we look at larger scale animals, we see that the field of view is also adapted to the type of animals
and the environment. Herbivores (rabbits, horses, cows, ...) have a large field of view (more than 300°
) but a small binocular field (around 50° ). Carnivores or primates on the contrary have smaller field
of views with bigger binocular regions.

For migratory birds, a large field of view is essential for localisation through landmarks and for
following the horizon [bir, 2005]. Recently, robust attitude estimation for aerial robot navigation has
been proposed [Demonceaux et al., 2006].

1.1.2 Panoramas in history

Panoramas started as an art form. It was a way of immersing the viewer in the world created or
reproduced by the artist. The first patent on the subject was filed by Robert Barker in 1767. The
first detailed book on the subject was written in 1794 and gives an insight on the works produced at
the time. In the 1820s, viewing realistic 360° paintings became very popular in Paris. The techniques
evolved with better acquisition methods and enhancement of the viewer’s experience through added
visual motion effects on the 2D surface. The paintings were usually of historical battles or important
political events. In Britain, for example, viewers would have seen “The Battle of Waterloo” (1815) or
“The Coronation of George IV” (1822). There were also depictions of landscapes and popular places
such as “The Panorama of Toulon” in Germany or “Palace and Gardens of Versailles” in the United
States.

Improvements in photography by the end of 19th made it possible to assemble photographs and
create photographic panoramas. Cineoramas by Raoul Grimoin-Sanson followed at the Universal
Exposition held in Paris in 1900. In fact it is unclear today if there ever was any public projections
because of the fire hazard created by the movie equipment at the time. However it did start a popular
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entertainment industry. Many amusement parks today have panoramic cinemas. The term “O-rama”
(or “A-rama”) itself came to signify any expensive entertainment spectacular and even trendy products.

More references can be found in Stephan Oettermann’s book “The Panorama: History of a Mass
Medium” or in the historical perspective of “Panoramic Vision” [Benosman and Kang, 2001].

1.1.3 Catadioptric sensors in history

Panoramic cameras appeared in the mid-19th century. They were composed of lenses rotating around
a given axis (swing lens cameras). Because the camera was stationary, the acquired field of view was
limited between 120° and 150° . Rotating cameras, created shortly after, do not have this limitation
and make it possible to create 360° views of the environment. An alternative to capture a large field
of view is to combine a camera with a convex mirror. The image then needs to be processed with a
computer. Sensors with convex mirrors are called catadioptric cameras, from dioptric, the science of
light refraction (lenses) and catoptric, the science of reflective surfaces (mirrors).

Rees [Rees, 1970] was the first in 1970 to patent the combination of a perspective camera and
a convex mirror (in this case a hyperbolic mirror). In his US patent, he describes how to capture
omnidirectional images that can be transformed to correct perspective views (no parallax).

It was only much later, in the 90’s, that omnidirectional vision became an active research topic in
computer and robot vision.

Different sensors for capturing wide field of views

There are several possible methods for obtaining a wide angle field of view. The choice should be made
according to the task we wish to solve. A state of the art is presented in [Yagi, 1999]. The techniques
can be classified in three categories:� reconstruction from several images (mosaicing),� use of wide angle lenses (fish-eye),� use of convex mirrors.

A desirable property of these systems is the single viewpoint constraint. This indicates that images
are produced without parallax and that we can recreate perspective images without distortion. Under
this constraint, the results of projective geometry can be used as such.

Mosaicing Reconstruction of panoramas from several images can be obtain from multiple cameras
or a camera rotating around a given axis. With these systems, acquisition and the data association is
computationally expensive and rarely real-time. It is also difficult to obtain images without parallax.
Systems with several cameras are generally not very compact but do have the advantage of high
resolution.

Wide-angle lenses Wide angle lenses are an obvious way of obtaining compact real-time wide field
of view images. However they do not verify exactly the single viewpoint constraint and the field of
view is often less than 180° .
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Catadioptric cameras By placing a perspective camera in front of a convex mirror (or several
mirrors for folded sensors), we can obtain a 360° view of the environment. The acquisition is real-time
with a good resolution around the mirror border (Figure 1.1). Under certain conditions on the mirror
shape, the single viewpoint constraint can be fulfilled. The main disadvantage of these systems is the
non-uniform resolution and a low resolution compared to the use of multiple cameras.
These sensors are becoming popular choices for applications in robotics. Experiments in this thesis
will mainly concern catadioptric cameras even though the results are often more general.

Camera

Convex Mirror

Figure 1.1: A Catadioptric camera

1.2 Omnidirectional vision in robotics and computer vision

The interest for omnidirectional vision in the robotics community is very pragmatic: it is easier to
recognise previously observed places whatever the orientation with a 360° field of view, it is also less
likely that the robot will “get stuck” when facing a wall or obstacle.

The sensors used at first did not satisfy the single viewpoint constraint and were based on a
combination of a perspective camera with a conic [Yagi and Kawato, 1990] or a spherical [Hong et al.,
1991] mirror. Hyperbolic sensors with their single viewpoint property were rediscovered in [Yamazawa
et al., 1993]. The work by Yagi et al with their conic sensor COPIS explored the problems of motion
estimation and obstacle avoidance. Several other projects like the SYCLOP project from the University
of Picardie Jules Verne in France also explored the optical properties of the sensor and its application
to mobile robotics.

In [Baker and Nayar, 1998], an answer was given to the question “What are all the combinations
of cameras with a single mirror that satisfy the single viewpoint constraint?”. This helped clarify
how to avoid parallax in catadioptric design. (We may note however that folded catadioptric cameras
combining several mirror that are more compact and cheaper to manufacture can also follow the
single viewpoint constraint [Nayar and Peri, 2001].) This is often considered as a turning point in
omnidirectional vision. Since then a lot of research in computer vision has been dedicated to the
projective properties of omnidirectional sensors [Svoboda et al., 1998] and the problem of calibration.
In robotics, the initial hypothesis of planar motion is being slowly abandoned for full 6-DOF motion
estimation algorithms. The CAVIAR project (Catadioptric Vision for Aerial Robots) for example is
dedicated to estimating the motion of aerial robots.

There has recently been a renewed interest for non single viewpoint sensors that are often cheaper
to manufacture and present interesting theoretical challenges [Pajdla, 2002].
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1.3 Conclusion

We have seen that in the animal kingdom, panoramic vision plays a key role for localisation but also
for survival by helping herbivores anticipate possible attacks from predators. For humans, panoramas
appeared at first as an art form and in the entertainment industry by immersing the viewer in past
battles and exotic places. Nowadays panoramic vision is becoming used increasingly to improve robots
achieve their tasks. Within the choice of wide field of view imaging devices, convex mirrors are well
adapted for robotic tasks with a large field of view acquired in real-time and - under certain conditions
- a single viewpoint.
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In this chapter, we will describe how to link the image we see in our sensor to the light rays emitted
by a region of space. This is the basic step to using vision sensors but it is not a straight forward task:
sensors are not perfect and we need to model small errors of design. We will also see that wide-angle
sensors impose a different view of the world through spherical perspective projection.

2.1 Definitions and notations

Let I be an image of the world obtained through an optical device. We will consider I to be a
two-dimensional finite array containing intensity values (irradiance). I can be seen as a function:

I : Ω ⊂ R2 −→ R+

(u, v) 7−→ I(u, v)

The irradiance at an image point p = (u, v) is due to the energy emitted from a region of space
determined by the optical properties of the device. In the case of a central device with a unique
viewpoint, the direction of the energy source is represented by a projective ray (a half-line) with initial
point the optical center (or focus) of the device noted C. If we cannot consider a single viewpoint C,
the device will be said to be non-central. Two characteristics are then of interest:

1. the viewpoint is a continuous region called a caustic [Swaminathan et al., 2006],

2. there are several viewpoints and the system is a general imaging device (GID). A stereo head
for example is a GID if considered as a single camera.

A sensor can of course have a combination of the these properties.

Caustics are sometimes seen as defaults in a perspective imaging device. However, they can also be
considered as part of the sensor’s properties and have predefined shapes. For example, the viewpoint
for a linear pushbroom camera will be a line and for an omnivergent camera it will be a sphere or
circle. Examples of such devices can be found in [Bakstein and Padjla, 2001; Sturm, 2005].

In this thesis, we will consider only central catadioptric devices or cameras than can be approxi-
mated by the projection model proposed in the following section (fisheye lenses, spheres).

We will now present two perspective projection models: the planar perspective projection that
is the standard approach to define perspective cameras and the spherical perspective projection that
is better adapted to wide angle views. The aim of the perspective projection is to separate what is
common to most visual imaging systems (projective geometry) from what is specific to a given device
(intrinsic parameters). A perspective projection removes the depth information of a 3D point. The
goal of structure from motion (SFM) is to recover this information.

2.1.1 Planar perspective projection

The standard projection model of a 3D point onto the image plane uses the normalised image plane.
The steps are (figure 2.1):

1. let (X )Fc = (X,Y,Z) be a 3D point in the camera reference frame, it is projected to the
normalised plane πm by the following equation:

(X )Fc −→m = (x, y, 1) = (
X

Z
,
Y

Z
, 1)
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2. with f1 the horizontal focal length, f2 the vertical focal length, s the skew factor and (u0, v0)
the principal point, the projection of m in homogeneous coordinates to the image plane πp is
obtained linearly by:

p = (u, v, 1) = Km =




f1 f1s u0

0 f2 v0

0 0 1


m = k(m)

1

C

~x

~y

X

K

m

~z

πp

πm

p

Figure 2.1: Planar perspective projection

Xs

Π

X

1

~z

C
~x

~y

πp

p

Figure 2.2: Spherical perspective projection

For a field of view greater than 180° , this model is not adapted. With a unique plane, there
is an ambiguity between the front and the back of the camera which makes metric reconstruction
impossible.

2.1.2 Spherical perspective projection

Instead of projecting the points to the unit plane πm, we can project the points to the unit sphere
S2 = {X ∈ R3|‖X ‖ = 1}. We will note X s the points on S2. The cheirality constraint1 can be imposed
even for a field of view greater than 180° . The scale factor λ relating points on the sphere to the 3D
points must be positive:

∃X s ∈ S2 =⇒ ∃λ > 0|X = λX s

From the unit sphere, we can then apply the projection function noted Π that depends on the
intrinsic parameters of the sensor:

Π : Υ ( S2 → Ω ⊂ R2

Π is not defined on all of S2 because we wish Π to be bijective which cannot be the case between
S2 and R2 as they do not share the same topology. If Π is bijective, Π−1 will relate points from the
image plane to their projective rays (lifting).

1constraint that the scene points are in front of the camera
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2.2 Central catadioptric projection model

As explained in the previous chapter, a single viewpoint is a desirable property as it enables the creation
of perspective images without parallax. Baker and Nayar [Baker and Nayar, 1998] derived the class
of central catadioptric cameras with this property under the assumption of the pinhole camera model.
The four configurations that have this property are an orthographic camera associated to a parabolic
mirror or a perspective camera associated to a hyperbolic, elliptical or planar mirror. Figure 2.4
adapted from the work of Barreto [Barreto, 2003] depicts these cases. We choose the unconventional
axis representation shown in figure 2.3.

x

z
y

x

z
y

Camera

Convex mirror/Lens

Figure 2.3: Axis

2.2.1 Degenerate configurations

The spherical mirror and the cone are two degenerate configurations. The sphere can be seen as the
limit of an ellipse when the two focal points coincide. To obtain a single viewpoint, we would need to
place the camera in the center of the sphere. We would then only see the camera itself. By putting
the camera in another position, we obtain a caustic. A spherical mirror has the advantage of being
less expensive to manufacture than central catadioptric systems and easier to calibrate: any diameter
can be chosen as an optical axis for the sensor.

The cone is an interesting example of the limit of the pinhole camera model. The single viewpoint
constraint imposes that the cone be situated in front of the camera with the vertex at the focal point.
For a pinhole camera, this would mean no light could be seen by the imager. However under the
Gaussian optics model, light is visible and we keep the single viewpoint property [Lin and Bajcsy,
2006]. Cones are cheaper to manufacture than hyperbolic or parabolic surfaces. This sensor could
be use to enrich 2D laser range scans with visual data. The narrow horizontal field of view makes it
however less attractive for structure from motion with 6 degrees of freedom (DOF).

Geyer [Geyer, 2003] and Barreto [Barreto, 2003] developed a unified model to study all central
catadioptric cameras. We will present this model in the next section and see that it encompasses a
larger range of devices including fisheye lenses.

2.2.2 Unified projection model

In figure 2.4 is presented the entire class of central catadioptric sensors. Table 2.1 details the equations
of the surfaces and the relation between the standard (a, b) parameterisation and the (p, d) parameters
used in Barreto’s model.
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Figure 2.4: The class of catadioptric sensors with a single viewpoint
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Table 2.1: Conic equations

Parabola
√

x2 + y2 + z2 = 2p− z

Hyperbola
(z− d

2
)2

a2 − x2

b2
− y2

b2
= 1

Ellipse
(z− d

2
)2

a2 + x2

b2
+ y2

b2
= 1

Plane z = d
2

a = 1/2(
√

d2 + 4p2 ± 2p), ’−’ for a hyperbola, ’+’ for an ellipse

b =

√
p(
√

d2 + 4p2 ± 2p), ’−’ for a hyperbola, ’+’ for an ellipse

The projection model induced by these mirrors can be unified using the spherical perspective
projection. A geometrical proof was proposed by Geyer [Geyer, 2003] and gives an intuitive explanation
of the equivalence of the projection on a quadric surface and the projection on the sphere.

2.2.2.1 Geometric explanation

Consider figure 2.5 that represents the projection of a 3D point in the parabolic case.

On the left, we see the standard projection model. The ray FP between the 3D point P and the
focal point F intersects the mirror in K1. It is then reflected parallel to the optical axis and intersects
the image plane in Q.

On the right, the same projection can be obtain by using a sphere centered in F and of radius d.
The point P is first projected to K2. K2 is then projected from the North pole N to the image plane
in the same point Q.

In the hyperbolic case, a similar result can be obtained but the center of projection is no longer
the North pole N but a point between N and F , the position depending on the shape of the mirror.

By algebraic manipulation, the unit sphere can be used as the projective surface (Barreto [Barreto,
2003]) and the spherical perspective projection becomes a natural representation separating extrinsic
and intrinsic parameters.

F Q

P

l

d

F Q

P

l

d

K2

N
K1

Figure 2.5: Equivalence between the projection on a quadric and the projection on a sphere
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2.2.2.2 Projection model

We present here a slightly modified version of the projection model of Geyer and Barreto (Fig. 2.6).
We choose the convention that the z axis is the optical axis and points outwards (this simplifies the
formulas for unifying fisheye and catadioptric sensors). The projection of 3D points can be done in
the following steps (the values for ξ and γ, in the ideal case where γ1 = γ2 = γ, are related to the
mirror parameters. The equations can be found in Table 2.2):

1. world points in the mirror frame are projected onto the unit sphere,

(X )Fm → (X s)Fm =
X

‖X ‖ = (Xs, Ys, Zs)

2. the points are then changed to a new reference frame centered in Cp = (0, 0, ξ),

(X s)Fm→(X s)Fp = (Xs, Ys, Zs + ξ)

3. they are then projected onto the normalized image plane,

m = (
Xs

Zs + ξ
,

Ys

Zs + ξ
, 1) = ℏ(X s)

4. the final projection involves a generalized camera projection matrix K (with (γ1, γ2) the gener-
alized focal lengths, (u0, v0) the principal point and s the skew)

p = Km =




γ1 γ1s u0

0 γ2 v0

0 0 1


m = k(m)

The function ℏ is bijective from {X s|Zs > −ξ} to R2 and:

ℏ−1(m) =




ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
− ξ


 (2.1)

This last value constrains the points to be on the sphere, but we also have the simpler projective
equivalence:

ℏ−1(m) ∼




x
y

1− ξ x2+y2+1

ξ+
√

1+(1−ξ2)(x2+y2)


 (2.2)

We will call lifting the calculation of the point X s corresponding to a given point m (or p according
to the context). We may note that in the perspective case, there is no mirror and only points with
Z > 0 are considered (we thus fall back to the standard projection model with an extra normalization
to the sphere).

The difference with the model from Barreto, is the use of a generalised focal length that depends
on the focal length of the camera and on the mirror shape. This is a conceptual change: we consider
the sensor to be a single imaging device and not the combination between a camera and a mirror.
In the rest of this thesis, we will refer to this model as the unified projection model (UPM). This
model is interesting for the study of the theoretical properties of central catadioptric sensors but has
limitations as we will see in the following section.
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p

K

~zm

~ym

Cm
~xm

Xs

X

πmu

mu

ξ

1

~xs

~zs
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Fp

Fm

πp
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m = ℏ(Xs) = ( Xs

Zs+ξ
, Ys

Zs+ξ
, 1)

p = Km

πp

Xs = X
‖X‖

= (Xs, Ys, Zs)

Fm

Xs = (Xs, Ys, Zs + ξ)

Fp

Figure 2.6: Unified projection model
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Table 2.2: Unified model parameters

ξ γ

Parabola 1 −2pf

Hyperbola df√
d2+4p2

−2pf√
d2+4p2

Ellipse df√
d2+4p2

2pf√
d2+4p2

Planar 0 -f

Perspective 0 f

d: distance between focal points
4p: latus rectum

2.2.2.3 Fisheye lenses

The unified projection model has been shown to be valid for some fisheye lenses [Ying and Hu, 2004]
under the approximation of the division model [Brauer-Burchardt and Voss, 2001; Fitzgibbon, 2001].
This model will be presented here as it has implications in the linear estimation of motion and intrinsic
parameters in omnidirectional computer vision.

Division model Let mu =

[
xu

yu

]
be a point before distortion and md =

[
xd

yd

]
after. With

ρu =
√

x2
u + y2

u and ρd =
√

x2
d + y2

d, the following rational function has been shown to model correctly

some fisheye sensors [Brauer-Burchardt and Voss, 2001; Fitzgibbon, 2001] (figure 2.7):

ρu = k1
ρd

1− k2ρ2
d

(2.3)

θ

X

C

πmu
πmd

mu

md

Figure 2.7: Projection model for fisheye sensors

Relationship with the unified projection model In [Ying and Hu, 2004], the authors show that
the unified projection model can approximate fisheye projections. The planar perspective projection
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to the normalised plane can be written:

mu = (x, y, 1) = (
X

Z
,
Y

Z
, 1)

with ξ = 1, the unified projection model becomes:

md = (
X

Z + ‖X ‖ ,
Y

Z + ‖X ‖ , 1) (2.4)

By algebraic manipulation, we obtain the relation:

ρu =
2ρd

1− ρ2
d

which has the same form as equation (2.3).

2.3 Compensating for telecentric distortion and misalignment

Equations (2.4) and (2.2) have a particularly simple form for parabolic sensors (ξ = 1). This hides a
practical problem. To satisfy the property of a unique viewpoint, parabolic sensors need to be combined
with orthographic cameras. An alternative is to combine a telecentric lens with a perspective camera.
However the lens has to have a diameter of the same size as the mirror (figure 2.9). Large lenses
are generally difficult to manufacture and introduce radial distortion in the model. In this section we
describe a standard radial and tangential distortion model and ways of approximating the inverse of
the function. This function will be applied after the projection of the points on the normalised plane.
Figure 2.8 shows the full projection model used throughout this thesis. We will refer to this model as
the complete projection model (CPM).

2.3.1 Distortion

We will consider two main sources of distortion [Weng et al., 1992]: imperfection of the lens shape
that are modeled by radial distortion and improper lens and camera assembly (which can also include
misalignment between the camera optical axis and the mirror rotational axis) that generate both radial
and tangential errors. In the case of a paracatadioptric sensor, the radial model will compensate for
the radial distortion induced by the telecentric lens.

Let mu =

[
xu

yu

]
be an undistorted point, the point md =

[
xd

yd

]
after radial distortion can be

obtained from the infinite series, with ρu =
√

x2
u + y2

u:

{
md = mu + muR(ρu)
R(ρu) = k1ρ

2
u + k2ρ

4
u + k3ρ

6
u + · · · (2.5)

Generally two parameters are sufficient to calibrate the sensor. We will only consider (k1, k2).
We can add tangential distortion to model the misalignment between the mirror axis and the

camera optical axis (this is a combination between decentering distortion and thin prism distortion
that arises from imperfection in lens design [Weng et al., 1992]):

T (mu) =

[
2p1xuyu + p2(ρ

2
u + 2x2

u)
p1(ρ

2
u + 2y2

u) + 2p2xuyu

]
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Figure 2.8: Full projection model
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Figure 2.9: Telecentric lens added to a parabolic sensor to guarantee an orthographic projection model

Finally, the following function can be used to model the radial and tangential distortion of points
on the normalised plane:

md = mu + muR(ρu) + T (mu)
= mu + D(mu, V )

= mu +

[
xu(k1ρ

2
u + k2ρ

4
u) + 2p1xuyu + p2(ρ

2
u + 2x2

u)
yu(k1ρ

2
u + k2ρ

4
u) + 2p2xuyu + p1(ρ

2
u + 2y2

u)

] (2.6)

2.3.2 Inverse distortion model

Equation (2.6) is not analytically invertible. Had we only considered one radial parameter (which is
often sufficient), we could solve the resulting 3rd order polynomial using Cardan’s method. Here we
wish to invert the function with the four parameters (k1, k2, p1, p2). To find the undistorted points mu

from md, we could for example solve the non-linear least-square problem associated to the inversion
but this would be costly in terms of computation and we are not sure to converge to the optimal
solution. Several methods exist to obtain an approximation [Heikkilä, 2000].

We will start by taking the first order Taylor series expansion for D about mu = md:

D(mu, V ) ≈ D(md, V ) +
[

∂D
∂x

∣∣
xd

∂D
∂y

∣∣∣
yd

]

︸ ︷︷ ︸
J(md)

(mu −md) (2.7)

Thus (from (2.6)):

md ≈mu + D(md, V ) + J(md)(mu −md) (2.8)
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Solving for mu, we obtain:

mu ≈md − (I2×2 + J(md))
−1D(md, V ) (2.9)

J(md) =

[
k1(ρ

2
d + 2x2) + k2ρ

2
d(ρ

2
d + 4x2) + p12y + p26x

k12xy + k24ρ
2
dxy + p12x + p22y

k12xy + k24ρ
2
dxy + p12x + p22y

k1(ρ
2
d + 2y2) + k2ρ

2
d(ρ

2
d + 4y2) + p16y + p22x

]
(2.10)

(I2×2 + J(md))
−1D(md, V ) =

[
D1+D1J22−J12D2

1+J11+J12+J11J22−J12J21
D2+D2J11−J21D1

1+J11+J12+J11J22−J12J21

]
(2.11)

Under the assumption that the distortion values and the jacobian values are small, we obtain the
model proposed by Heikkilä [Heikkilä, 2000]:

mu ≈md −
D(md, V )

1 + D11(md, V ) + D22(md, V )
(2.12)

D11(md, V ) + D22(md, V ) = 4k1ρ
2
d + 6k2ρ

4
d + 8p1yd + 8p2xd (2.13)
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Figure 2.10: Reprojection error (n corresponds to the number of iterations of the recursive estimation
model)

For the sensor used in our study, this approximation proved insufficient to correct the relatively
strong distortion k1 = −0.07 (Figure 2.10).

In [Mallon and Whelan, 2004], the authors propose a more precise model obtained by estimating
independently the variables of the numerator and denominator. However this approach is made less
attractive by imposing a minimisation step (using images from lines or planes) to estimate these
variables.
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Alternatively, the following sequence can be used:





mu = md −Dn

Dn = D(md −Dn−1, V )
D1 = D(md, V )

(2.14)

It converges towards the correct inverse if the distortion parameters (k1, k2, p1, p2) are strictly
inferior to 1. For our case, k1 = −0.07, four iterations were sufficient (Figure 2.10). Applying this
method is computationally expensive, however once obtained, the lifting of each image point can be
pre-computed and saved in a lookup table (LUT).

2.4 An overview of projection models

Several projection models have been proposed in the literature with the increasing popularity of
omnidirectional vision. The motivation behind is to find a compromise between expressivity of the
model and simplicity.

The model proposed by Sturm and Ramalingam [Sturm et al., 2006] for example is very general,
it associates a projective ray to each pixel in the image. Thus it can model a very wide range of vision
sensors (eg. non-single viewpoint sensors, general imaging devices). However it is difficult to obtain a
stable calibration.

In [Tardif et al., 2006] the authors propose a radially symmetric distortion model that encompasses
radial non-SVP sensors but stays sufficiently constrained to enable a stable calibration.

The work by Micusik [Micusik, 2004], on the other hand, uses different simplifying hypothesis to
generate polyeigenvalue problems (PEPs) for central catadioptric, spherical and fisheye epipolar ge-
ometry. As shown by Fitzgibbon in [Fitzgibbon, 2001], the fundamental matrix eight-point problem
(and homography estimation) can be extended to take into account distortion. This approach is par-
ticularly adapted to outlier rejection methods (RANSAC) and initialising iterative bundle adjustment
methods. It does not provide however precise calibration and a final global iterative minimisation is
generally required.

The model proposed in this chapter finds a compromise by assuming small errors from the ideal
theoretical model. It has a clearly identifiable physical meaning. However it cannot model general
non-single viewpoint sensors. Furthermore the non-linear projection function means it is not well
suited to non-calibrated structure from motion (in particular for RANSAC type of approaches). This
is not a strong limitation in robotics where sensors are generally calibrated before use.

2.5 Conclusion

In this chapter we presented a projection model based on the unified projection model from Geyer
and Barreto. This model was shown to be valid for some fisheye lenses. To take into account the
distortion introduced by telecentric lenses or by a misalignment, we added radial and tangential dis-
tortion. Compared to other models present in the literature, the proposed model has easily identifiable
parameters and presents a compromise between genericity and over-parameterisation. In the following
chapter, we will detail how to calibrate the sensor. It will appear that the model leads to a flexible
calibration approach and is well adapted to central catadioptric calibration in view of precise robotic
applications.
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The previous chapter described a projection model for a class of omnidirectional cameras. We
now need a method to find the different parameters of the sensor and preferably in an efficient way
(without having to select manually too many features). Precise calibration is a crucial step as it will
later have an impact over the quality of the reconstruction and motion estimation.

3.1 Model parameters

The projection function described in the previous chapter and noted Π depends on 10 parameters:

1. ξ that is function of the mirror shape,

2. k1, k2, p1 and p2 that model the radial and tangential distortion,

3. γ1, γ2, s, u0 and v0 that describe the generalised camera model (γ1 and γ2 depend on the camera
and the mirror shape)

The calibration approach proposed in this chapter relies on minimising the reprojection error of
points of a planar grid of known dimension. We made the choice of using standard planar grids because
they are commonly available and simple to make. Alternatively, we could have chosen grids adapted
to the wide field of view of the sensor as in [Vasseur and Mouaddib, 2004].

The function we wish to minimise is non-linear so we need initial values to hope to converge towards
the global minimum.

By assuming that the errors from the theoretical model are small, we have k1 ≈ k2 ≈ p1 ≈ p2 ≈
s ≈ 0 and γ1 ≈ γ2 ≈ γ.

We still need to find the extrinsic parameters of the grids and values for [ξ, γ, u0, v0]. The image
center can be used to initialise the principal point (u0, v0) or it can be approximated by the center of
the mirror border (assumed to be a circle).

Experimentally, we will show that errors in the values of (ξ, γ) do not have a strong influence over
the precision of the extraction process for parabolic and hyperbolic sensors (Section 3.4.6). We will
start by assuming ξ = 1. This value is of course incorrect for non-parabolic sensors but simplifies the
projection equations sufficiently to enable the estimation of the focal length from at least three image
points that belong to a non-radial line image1. Once this step applied, the extrinsic parameters can
be estimated from four points of a grid of known size.

The rotation will be represented by a unit quaternion Q = [q0 q1 q2 q3]
⊤ and the translation by

t = [tx ty tz]
⊤. Let V be the matrix of parameters:

V17×1 = [q0 q1 q2 q3 tx ty tz ξ k1 k2 p1 p2 s γ1 γ2 u0 v0]
⊤

V 1
7×1 = [q0 q1 q2 q3 tx ty tz]

⊤, V 2
1×1 = ξ, V 3

4×1 = [k1 k2 p1 p2]
⊤, V 4

5×1 = [s γ1 γ2 u0 v0]
⊤

3.2 Calibration method

We suggest the following calibration steps to initialise the unknown parameters, make the associations
between the grid points and their reprojection in the image and finally launch the minimisation:

1a “line image” is the projection of a 3D line on the image plane
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1. initialisation of the principal point (u0, v0) thanks to the mirror border (or the center of the
image if there is no border) (figure 3.1),

2. estimation of the generalised focal length γ (assuming γ = γ1 = γ2) thanks to at least three
points belonging to a non-radial line image (figure 3.2),

3. for each image, we then select the four edge points of each grid (figure 3.3), estimate the extrinsic
parameters and then extract the remaining points by reprojection (figure 3.4),

4. the final calibration step consists in the minimisation of the global reprojection error (using for
example the Levenberg-Marquardt algorithm).

Figure 3.1: Extraction of the mirror border for the estimation of the principal point

Figure 3.2: Estimation of the generalised focal length from line image points
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Figure 3.3: Extraction of the four corners belonging to the calibration grid

Figure 3.4: Sub-pixel point extraction
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3.2.1 Initialisation of the principal point

Under the assumption of small assembly errors, we assume that the mirror border belongs to a plane
that is parallel to the image plane, and that the pixels are square. The mirror border is then projected
as a circle centered in the principal point (figure 3.1).

The border extraction is quite delicate because of the important quantity of information (and thus
of edges) around the mirror border.

We propose a heuristic approach applied to the minimum of intensity of a set of images (the
minimum avoids for example the lights on the ceiling creating zones of strong contrast that degrades
the precision of the edge extraction). Figure 3.1 illustrates the different steps:

1. we ask the user to select the center of the image and the mirror border (the two ’+’ signs in
image 3.1, the corresponding circle is illustrated by the blue dashed circle),

2. we then eliminate points that are too far or too close to the mirror border,

3. from the remaining points, we select random samples of minimum size to find potential circles.
We then choose the median of the obtained values (the final circle is represented in a solid red
line).

3.2.2 Estimation of the focal length

We will call “line image” the projection of a 3D line in the image plane. A more in depth study of
lines will be undertaken in Chapter 7.

From equation (2.1), with ξ = 1, we obtain the following projective equation:




ℏ−1(m) ∼




x
y

f(x, y)




f(x, y) = 1
2 − 1

2(x2 + y2)

(3.1)

Let p = (u, v) be a point in the image plane. Thanks to the estimation of the principal point, we
can center the points and calculate a corresponding point pc = (u− u0, v − v0) = (uc, vc). This point
follows the equation on the normalised plane that depends on γ: pc = γm:





ℏ−1(m) ∼




uc

vc

g(uc, vc)




g(uc, vc) = γ
2 − 1

2γ (u2
c + v2

c )

(3.2)

Let us assume the point belongs to a line image. The line image can be parameterised by the

normal n =
[

nx ny nz

]⊤
of the plane spanned by the 3D line and the center Cm of the mirror

(see Chapter 7 for more details), we then obtain the projective property:

ℏ−1(m)⊤n = 0⇐⇒





nxuc + nyvc + a
2 − bu2

c+v2
c

2 = 0
a = γnz

b = nz
γ

Let us assume, we have n points p1,p2, ...,pn belonging to a same line image, they verify the
system:

Pn×4c4×1 = 0
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with:

P =




uc1 vc1
1
2 −u2

c1+v2
c1

2

uc2 vc2
1
2 −u2

c2+v2
c2

2
...

...
...

...

ucn vcn
1
2 −u2

cn+v2
cn

2




(3.3)

By singular value decomposition (SVD), P = USV⊤. The least square solution is obtained from
the last column of V associated to the smallest singular value.

To obtain n and in particular γ from c = [c1 c2 c3 c4]
⊤, the following steps can be applied:

1. Calculate t = c2
1 + c2

2 + c3c4 and check that t > 0.

2. Let d =
√

1/t, nx = c1d and ny = c2d.

3. We check that n2
x + n2

y > threshold (for example threshold = 0.95) to be sure the line image is
not radial,

4. If the line is not radial, nz =
√

1− n2
x − n2

y.

5. Finally, γ = c3d
nz

We may note that this process can in fact be applied to three randomly chosen points in the image
to obtain an estimate of the focal length in a RANSAC fashion. This way we obtain an auto-calibration
approach.

3.3 Cost function

In this section we will detail the calibration cost function and the Jacobians needed for the minimisa-
tion.

Let us assume we have m 3D points X i corresponding to the grid edges and their images pi:

∀i ∈ [1..m], X i ↔ pi

Let P be the projection function and V the parameters we are looking for. With W the function
that transforms the grid points to the mirror frame and S the function that projects 3D points to
the sphere P = Π ◦ S ◦W . In practice, Π depends on the generalised projection matrix and on the
distortion, so we will decompose P as P = k ◦D ◦ ℏ ◦ S ◦W .

The cost function is then:

F (V ) =
1

2

m∑

i=1

[P (V,X i)− pi]
2

3.3.1 Changing frame

Let W be the first transformation:

W (X , V 1) = RX + t
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A rotation by a quaternion Q = [q0 q1 q2 q3]
⊤ can be written:

R(Q) =




q2
0 + q2

1 − q2
2 − q2

3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q2

0 − q2
1 + q2

2 − q2
3 2(−q0q1 + q2q3)

2(−q0q2 + q1q3) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3




For the quaternion to represent a rotation, it must be of unit length, we normalise it at each step:
W can then be written with RX (Q′) = R(Q′)X with Q′ = Q

‖Q‖ :

W (X , V 1) = RX (Q′) + t

The final jacobian is then (the detailed values are given in Appendix A.1):

∂W

∂V 1 3×7
=
[ (

∂W
∂Q′

∂Q′

∂Q

)
3×4

(
∂W
∂t

)
3×3

]

3.3.2 Mirror transformation

Let H = ℏ ◦ S, we will need to calculate ∂H
∂X 2×3

and ∂H
∂V 2 2×1

(the detailed values can be found in

Appendix A.2).

3.3.3 Distortion

The distortion applies the function D, with Jacobians ∂D
∂V 3 2×4

and ∂D
∂X 2×2

(the detailed values can be

found in Appendix A.3).

3.3.4 Generalised projection matrix

With k the projection function we have ∂k
∂V 4 2×5

and ∂k
∂X 2×2

(the detailed values can be found in

Appendix A.4).

3.3.5 Final equation

By chain composition, we obtain the jacobian of P = k ◦D ◦H ◦W :

∂P

∂V
=

[
∂k

∂D 2×2

[
∂D

∂H 2×2

[
∂H

∂W 2×3

∂W

∂V 1 3×7

∂H

∂V 2 2×1

]
∂D

∂V 3 2×4

]

2×12

∂P

∂V 4 2×5

]

2×17

We may note that we have calculated the Jacobian of ΠS = Π◦S, noted JΠS
= ∂k

∂D 2×2
∂D
∂H 2×2

∂H
∂X 2×3

that will appear when estimating the camera motion in Part II and III.

3.4 Experimental validation

The calibration approach was tested with five different configurations: parabolic, hyperbolic, folded
mirror, wide-angle and spherical sensors. A different camera was used each time. For the experiments,
we used the “Omnidirectional Calibration Toolbox”, an opensource software freely available for down-
load2 and that we implemented following the described calibration method. The spherical sensor is
not theoretically a single viewpoint sensor but we will see that it can be approximated well by the

2http://www-sop.inria.fr/icare/personnel/Christopher.Mei/Toolbox.html

http://www-sop.inria.fr/icare/personnel/Christopher.Mei/Toolbox.html
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proposed model. Previous studies have also shown the validity of single viewpoint approximations
[Micusik, 2004].

To validate our model, we need to obtain a low residual error after minimisation and a uniform
distribution of the error. It is not necessary do check the error distribution over the complete image
as we assume the sensor is rotationally symmetric and that the tangential distortion was only needed
for the folded and spherical catadioptric sensors (according to the covariance estimates). For each
calibration experiment, we will show the radial distribution of the error with a curve representing the
median value of the error for different intervals of ρ, the distance of a pixel from the principal point.

We may note that polynomial approximations are often valid only locally and badly approximate
the projection around the edges. This bias will have a negative impact for example when estimating
the motion of the camera using a maximum likelihood estimation under the assumption of a Gaussian
distribution of the error.

The results will be summarised in a table containing the initial values after steps (0) and (1) of the
calibration process and the results after the minimisation. ex and ey indicate the reprojection error in
pixels. (b) means the mirror border was used to initialise the principal point.

Figure 3.5: S80 paracatadioptric sensor

3.4.1 Calibration of the parabolic sensor

The parabolic sensor (we fixed ξ = 1) used in this study consists of a S80 parabolic mirror from
RemoteReality (Figure 3.5) with a telecentric lens and a perspective camera with an image resolution
of 2048×1016. The calibration points were obtained from 8 images of a grid of size 6×8 with squares
of 42 mm. Table 3.1 summarises the results. After minimisation, we can see that the error is correctly
distributed over the image (Fig. 3.6).

Distortion If we do not take into account the distortion during the calibration, the error increases
to [0.74, 0.82] which confirms that the radial distortion function is needed to account for the error
induced by the telecentric lens.
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Initialisation ξ = 1 was fixed

[u0,v0] (b) = [983.7, 545.2], γ = 569, [ex,ey] = [1.92, 2.02]

Final Values 3σ

[u0,v0] [980.87, 545.02] [3.73, 4.11]

[γ1,γ2] [598.66, 597.69] [6.52, 7.75]

[ex,ey] [0.18, 0.31] [0.48, 0.84]

[k1, k2] [-0.088, 0.017] [0.007, 0.004]

Table 3.1: Calibration results for the parabolic sensor
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Figure 3.6: Pixel error versus dis-
tance to center for the parabolic
sensor

3.4.2 Calibration of the hyperbolic sensor

In the hyperbolic case, the mirror is a HM-N15 from Accowle (Seiwapro) with a perspective camera
with an image resolution of 800 × 600. 6 images of a grid of size 8 × 10 with squares of 30 mm were
taken. Table 3.2 summarises the results. After minimisation, we can see a slight bias in the error that
is more important in the center of the image (Fig. 3.7).

Initialisation

[u0,v0] (b) = [390.7,317.7], γ = 270, [ex,ey] = [1.02, 1.24]

Final Values 3σ

[u0,v0] [386.54, 321.69] [ 1.70, 1.61 ]

[γ1,γ2] [242.11, 241.05] [9.54, 9.32]

[ex,ey] [0.29, 0.30] [0.81, 0.78]

[ξ] 0.780

[k1, k2] [-0.101, 0.013] [0.0120, 0.0013]

Table 3.2: Calibration results for the hyperbolic sensor
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Figure 3.7: Pixel error versus dis-
tance to center for the hyperbolic
sensor

3.4.3 Calibration of a folded catadioptric camera

Folded catadioptric sensors combine typically two mirrors and follow the single viewpoint constraint
[Nayar and Peri, 2001]. They have the advantage of being compact and relatively cheap to manufacture.
The 10 images used had a resolution of 640× 480, the grids had a size of 6× 8 with squares of 30 mm.
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Table 3.3 summarises the results. We can see a very slight bias in the error that is stronger around
the mirror border (Fig. 3.8).

Initialisation

[u0,v0] (b) = [298.5, 269.5], γ = 156.14, [ex,ey] = [0.37, 0.58]

Final Values 3σ

[u0,v0] [299.28, 267.42] [ 1.31, 1.18]

[γ1,γ2] [138.20, 134.78] [3.35, 3.26]

[ex,ey] [0.123, 0.193 ] [0.293, 0.456]

[ξ] 0.72

[k1, k2, p1, p2]
×1e−3

[-104, 11.5, -2.51, 2.5] [5.12, 0.78, 0.58, 0.5]

Table 3.3: Calibration results for the folded catadioptric cam-
era
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Figure 3.8: Pixel error versus dis-
tance to center for the folded cata-
dioptric camera

3.4.4 Calibration of a wide-angle sensor

The calibration was also tested on a wide-angle sensor (∼ 70o) on 21 images of resolution 320× 240 .
The grid used was the same as in the hyperbolic case. For the wide-angle sensor, there is no border so
the center of the image was taken to initialise the principal point. Table 3.4 summarises the results.
As before, we can see a very slight bias towards the edges in Figure 3.9.

Initialisation

[u0,v0] = [160, 120], γ = 448, [ex,ey] = [0.73, 0.69]

Final Values 3σ

[u0,v0] [166.40, 110.23] [1.65, 1.19]

[γ1,γ2] [635.91, 641.02] [0.38, 0.38]

[ex,ey] [0.13, 0.14] [0.36, 0.42]

[ξ] 1.40

[k1, k2] [-0.88, 2.76] [0.087, 1.28]

Table 3.4: Calibration results for the wide-angle sensor
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Figure 3.9: Pixel error versus dis-
tance - wide-angle sensor

The strong change in γ after minimisation is probably due to the radial distortion and the change
in ξ. The value of ξ does not have a simple interpretation for wide-angle sensors.
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3.4.5 Calibration of a camera with a spherical mirror

Finally we tested a low-quality camera consisting of a webcam in front of a spherical ball. The image
resolution was of 352× 264. 7 images were used with a similar grid as in the parabolic case.

The border extraction process did not prove very efficient for this sensor so the image center was
used as an initial value for the principal point. Table 3.5 summarises the results.

Figure 3.10 shows the radial distribution of the error. The error seems to be distributed uniformly
in the image (Fig. 3.10).

Initialisation

[u0,v0] = [184, 127], γ = 137.7, [ex,ey] = [0.65, 0.62]

Final Values 3σ

[u0,v0] [183.10, 126.31] [1.33, 0.30]

[γ1,γ2] [164.79, 162.84] [9.36, 9.31]

[ex,ey] [0.16, 0.15] [0.36, 0.33]

[ξ] 0.945

[k1, k2, p2] [-0.322, 0.067, 0.0043 ] [7.6, 6.3, 2.0]×1e−3

Table 3.5: Calibration results for the spherical mirror
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Figure 3.10: Pixel error versus dis-
tance - spherical sensor

3.4.6 Point extraction

Table 3.6: Influence of errors in (ξ, η) over the point extraction process

% error in (ξ, η) 0 10 20 30 40

% of correct points 99.7 88 81 83 76

To analyse the effect of errors on the mirror parameters over the point extraction process, we
counted the amount of correctly extracted points obtained after the extrinsic parameters were esti-
mated from four points, and the grid was reprojected followed by a subpixel precision extraction. The
test was done for a parabolic sensor. However the fact that we could calibrate the sensors previously
indicates that the observation is likely to be valid for the sensors that follow the chosen projection
model. Table 3.6 summarises the results for errors in (ξ, η) ranging from 0 to 40 %. These values
indicate that the extraction process presents a certain robustness to imprecise initial values. We still
managed to calibrate the sensor with an error of 40 %.



34 Calibration from planar grids Chap. 3

3.5 Conclusion

An omnidirectional sensor has a non-linear projection function. To initialise the parameters, we
devised simple calibration steps that do not require to know the mirror parameters. Thanks to the
model based on small errors, we only need to select four grid corners per calibration grid and not all
the points. In the previous chapter, we had justified theoretically that the projection model can be
used for central catadioptric and fisheye sensors. These results were confirmed experimentally with
the calibration of a wide range of sensors used in robotics.
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Catadioptric
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Laser Range
Finder

Figure 4.1: Calibration between an omnidirectional sensor and a laser range finder (Anis robot)

4.1 Calibration

In this chapter we will describe the calibration between an omnidirectional sensor and a laser range
finder, in other words how to find the relative position (rotation R and translation t) between the
sensors (figure 4.1). We assume that each sensor has been calibrated separately. The calibration is
an essential step to combine the data. Few studies have been done on the subject. Zhang and Pless
[Zhang and Pless, 2004] propose a method for standard perspective cameras and a laser range finder
with an invisible laser beam. The idea is to combine a plane with known position (calibration grid)
with the calculated distances obtained from the laser range finder. The work in Section 4.3.2 was based
on this method. In [Dupont et al., 2005], the authors improve the precision obtained by replacing the
algebraic error by a distance with a geometric meaning.

We will analyse two distinct cases: the case where the laser beam is visible in the omnidirectional
image and the case where it is invisible (close infrared).

In the first case, we consider the association between 3D laser points and points in the image but
also the association between 3D lines extracted in the laser range scan and line images.

In the second case, we analyse if associating edges in the image to edges in the laser scan is sufficient
to calibrate the sensor. We will see that this is not the case and will propose an alternative algorithm
that uses the position of 3D planes visible in the image and which intersect the laser plane.
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Figure 4.2: Association between 3D laser points and points in the image

4.2 Visible laser beam

4.2.1 Association between points

With some laser range finders, it is possible to make range measurements for different angles. If we
simultaneously take an omnidirectional image, we obtain associations between 3D points and image
points. More specifically, as we assume the omnidirectional sensor to be calibrated, we have the
associations between projective rays and 3D points (figure 4.2).

Under these conditions, finding the relative position is the standard problem of photogrammetry
called the “PnP problem” (Perspective from n Points) or “model-based pose estimation” [Fischler and
Bolles, 1981]. To take into account the large field of view, the spherical perspective projection should
be used as explained in Section 2.1.2.

4.2.1.1 Associated equations

Let li be the 3D points belonging to the laser scan and pi the associated points in the omnidirectional
image. The solution to the problem is obtained by solving the following non-linear equation:

{
minR,t

1
2

∑n
i=1 ‖fi(R, t, li,pi)‖2

fi(R, t, li,pi) = Π(Rli + t)− pi

We can initialise the minimisation with distances measured on the robot.

4.2.1.2 Experimental validation

Figure 4.3 shows different laser measurements made of the environment. By subtracting a reference
image to an image taken while the laser was pointing in a specific direction, we associate the laser scan
points to the image points (figure 4.4). (The laser range finder can also give the angle at which the
measurement was taken but this extra information was not necessary.) After minimisation, we obtain
the relative position between the sensors. Figure 4.4 shows the reprojection of the points by a + sign.
The reprojection error in this case was of 1.37± 1.35 pixels.
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To insure that the approach leads to repeatable and coherent results, the method was tested several
times. The estimated translation (figure 4.5) and rotation (figure 4.6) obtained at each trial shows the
coherence of the approach.
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Figure 4.3: Laser measurements made of the
environment

Figure 4.4: Extracted laser points (×) and
reprojected points (+)
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Figure 4.5: Estimation of the translation
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Figure 4.6: Estimation of the rotation

Table 4.1 summarises the results.

4.2.2 Association between lines

We will now study the case where we cannot make measurements at specific angles but we need to
process the visible laser range scan directly. We will associate 3D lines extracted from the scan with
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Table 4.1: Estimation of the parameters

t σ R (deg) σ Error in pixels σ

0.026
0.044
−0.46

0.0011
0.00062
0.0016

2.49
0.49
−0.089

0.051
0.083
0.050

1.37 1.35
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Figure 4.7: Association between 3D lines in the laser scan and line images

lines obtained in the omnidirectional image (figure 4.7).

4.2.2.1 Associated equations

Let (L1,L2, . . . ,Ln)Fl
be n lines extracted from the laser data. They will be imaged as curves by

the catadioptric sensor (see Chapter 7 for more information on line images). These curves can be
parameterised by the normals (n1,n2, . . . ,nn)Fm ∈ (R3)n to the planes formed by the mirror center
Cm and the laser lines.

A line Li can be described by its direction vector di ∈ R3 and a point P i ∈ R3. If we change
reference frame: {(Li)Fl

: (di,P i)} −→ {(Li)Fm : (Rdi,RP i + t)}.
This leads to the constraints: {

n⊤
i Rdi = 0

n⊤
i (RP i + t) = 0

(4.1)

Thus we have the following decoupled minimization problem (algebraic error):





minR
1
2

∑n
i=1 ‖ti(R,ni,di)‖2

ti(R,ni,di) = n⊤
i Rdi

Nt = −P

(4.2)

with N = [n⊤
1 , n⊤

2 , . . . n⊤
n ]⊤ and P = [n⊤

1 RP1, n⊤
2 RP2, . . . n⊤

n RPn]⊤
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The second linear problem can be solved by using the pseudo-inverse:

t = −(N⊤N)−1N⊤P

4.2.2.2 Validation
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Figure 4.8: Line extraction in the laser
plane

Figure 4.9: Line image extraction in the
omnidirectional image

The case of lines is harder to solve than points. The difficulty comes from the data association
problem that has an exponential complexity. Table 4.2 summarises the results.

Table 4.2: Parameter estimation

t R (deg)

−0.032
0.051
−0.44

4.26
−0.30
0.86

4.3 Invisible laser

Some lasers emit infrared light that cannot be seen by the camera. (In reality, camera sensors are very
sensitive to infrared light so filters are added to restrict the received wave length frequency to visible
light...) This situation is more complex than before as we have two sets of data, the first from the
camera and the second from the laser. The relationship is indirect and comes from the environment
that is observed. In other words, we have to solve a data association problem and ensure that it is
sufficient to find the relative position between the sensors.
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4.3.1 Edge points
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Figure 4.10: Association between laser edge points and lines in the image

Let us assume we can associate edge points in the laser scan to identifiable line images (figure
4.10). The minimization problem can be rewritten as the association between unknown 3D points
(X 1,X 2, . . . ,X n) and the laser points (l1, l2, . . . , ln) (without loss of generality, we can assume that
the laser plane is Z = 0). The points X i belong to the planes parametrized by ni: n⊤

i X i = 0. This
leads to the system of equations:





[
R t

0 1

] [
X 1 . . . X n

1 . . . 1

]
=




l1 . . . ln
0 . . . 0
1 . . . 1




n⊤
i X i = 0

(4.3)

In this case, there are 6 + 3 × n unknowns and 3 × n + n equations so at least 6 points and
corresponding planes are needed to solve the calibration problem. The condition rank(N) = 3 must
also be satisfied or a translation direction is unsatisfied. For example, in Fig. 4.10, the four vertical
lines are parallel, rank(N) = 2 and the translation along these lines is not constrained.

Are these two conditions sufficient ? The answer is no and worse than that, however many points
and plane associations, three parameters are always missing. The reason comes from the coplanarity
of the li points.

Auto-calibration between a central catadioptric sensor and a laser range finder is impossible from
a single image in the general case (without 3D point associations).

Proof: Equation (4.3) aims at finding the isometry (R, t) that transforms a n-tuple (X 1, . . . ,X n)
into the polygon defined by (l1, . . . , ln). Are the constraints defined on the X values through the
planes with normals (n1, . . . ,nn) sufficient to define uniquely the (X 1, . . . ,X n) polygon ? The proof
established here uses an iterative geometric construction. In brackets are indicated the difference
between the number of equations and the number of unknowns.

With 1 point, we have 1 equation but 3 unknowns (-2).
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With 2 points, if rank(n1,n2) = 2, we have 2 equations from the normals and 1 equation from the
distance but 6 unknowns (-3).

With 3 points, if rank(n1,n2,n3) = 3, we have 3 equations from the normals and 3 distances -
these equations are all independent - and 9 unknowns (-3) (see Fig. 4.11 drawn in the plane defined
by the three points).

With an extra point X 4, if we add three distance constraints (see Fig. 4.12) two possibilities occur:
either they are sufficient to define X 4 uniquely which is the case if the solution is planar, or there are
two possible points which are at the intersection of the three spheres centered at X 1, X 2 and X 3. A
plane defined by X 4 which does not contain the two points will define uniquely X 4 (-2).

If the solution is not planar, this reasoning can be applied recursively and for n = 6 with specific
normals n, the system will have a unique solution.

n1

n2

n3

X1

X2

X3

Figure 4.11: Constraints on
three points in a plane

n1

X4

X3

n2

n3

X2

X1

Figure 4.12: Distance con-
straints on a fourth point

In the case of the laser data, the solution (l1, . . . , ln) is planar so 3 extra constraints are missing
to solve the system.

�

To summarise, we need a calibration method that uses 3D information.

4.3.2 3D planes

We will now study the case where we know the position of 3D planes with respect to the image sensor
and that they intersect with the laser plane, forming lines parameterised by (di,P i) (figure 4.13). A
simple way of having 3D planes with known equations is to use calibration grids.

We obtain similar constraints as with lines (equation (4.1)) but here the distance di to the planes
is no longer zero: {

n⊤
i Rdi = 0

n⊤
i (Rpi + t) = di

This leads to the following decoupled system of equations (algebraic error):





minR
1
2

∑n
i=1 ‖ti(R,ni,di)‖2

ti(R,ni,di) = n⊤
i Rdi

Nt = −P̃

(4.4)
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The same approach as before can be used for the minimisation with:

P̃ = [(n⊤
1 RP1 − d1) (n⊤

2 RP2 − d2) . . . (n⊤
n RPn − dn)]⊤

Laser (invisible)
Laser Trace

grid
Calibration

camera

Cm

Panoramic

Figure 4.13: Association between laser points and 3D planes
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Figure 4.14: Estimation of the transla-
tion
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Figure 4.15: Estimation of the rotation

4.3.2.1 Validation

To validate the approach, 19 associations were made between planes and the laser trace. As we can see
from figures 4.14 and 4.15, the estimates stabilise after 8 associations and the subsequent information
does not have a strong influence.

The final result was t = [−0.0074, 0.032,−0.47] and R = [3.15, 0.048,−0.099] which is coherent
with previous results.

Figure 4.16 shows some of the associations between planes and laser points.
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Figure 4.16: 3D view of the calibration planes and reprojected laser points

4.3.2.2 Autocalibration from planes

We will see in Chapter 6 that we can estimate the position of 3D planes by tracking them in the image.
An obvious question is then: is it possible to autocalibrate the sensor through visual tracking?

If we are tracking a plane in general configuration, the answer is yes. However in the case of a
laser range finder with a laser plane perpendicular to the optical axis of the omnidirectional sensor as
for the Anis robot (figure 4.1), the vertical displacement is unobservable.

4.4 Conclusion

Several methods were proposed to find the relative position between a laser range finder and an
omnidirectional camera.

When the laser is visible and that we can obtain measurements at different angles, the calibration
can be automatised easily.

With invisible laser range finders, the situation is more difficult as we need 3D information. By
obtaining the equation of planes (for example calibration grids), the calibration is possible and gives
coherent results.
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Iterative minimisation is an important step in many computer vision and robotic problems (eg.
bundle adjustment, pose estimation with a geometric distance, calibration [Hartley and Zisserman,
2000], etc.). In this thesis, it appears naturally in visual tracking or structure and motion from lines.

Over-parameterisation, in other words using more elements than necessary, can have a detrimental
effect on the convergence speed, region of convergence and quality of the results. A typical example
are rotations. Parameterising a rotation by the 9 elements of the rotation matrix would be a poor
choice. In presence of noise, after minimisation, we would no longer have a matrix representing a
rotation. Projecting the matrix on the space of rotation matrices (using for example the Frobenius
norm) could lead to a very bad approximation of the optimal solution. Other examples would be
Plücker coordinates (represented by 6 parameters but with only 4 degrees of freedom) or planar
homography matrices (represented by 9 parameters with only 8 degrees of freedom). Often there is
no global minimal parameterisation but this is not a problem as we only want to parameterise the
increment when minimising, which is a local parameterisation. We may note that in certain cases
minimal parameterisation can lead to a more complex cost function with more local minima. The
choice should be made according to the problem. In computer vision, it is common practice to remove
constraints to obtain a linear (fast) set of equations that can be easily solved and help initialise a more
precise non-linear minimisation approach [Hartley and Zisserman, 2000].

In this chapter, we will present how to parameterise motion but also the special linear group
(later shown to be related to planar homographies) with the minimal amount of parameters through
Lie algebras. We will also concentrate on explicit formulas that are of importance for real-time
applications. This is of course a very restrictive use of Lie algebras. However it is close to the
historical use where these algebras were considered as tools to represent Lie groups. For a more
general study of Lie algebras, you can refer to [Varadarajan, 1974]. This chapter is partly based on
[Hall, 2000; Gallier, 2001; Ma et al., 2003; Smith, 2001]. The proofs of general Lie group and algebra
properties will not be given and can be found in [Hall, 2000]. A convincing approach of constraining
a minimisation to a manifold can be found in [Lee and Moore, 2004]. Minimal approaches are also
related to the orthonormal representation used by Bartoli and Sturm [Bartoli and Sturm, 2004].

5.1 A short introduction to Lie groups and Lie algebras

The use of Lie algebras in visual tracking and servoing has been popularised by the work of Drummond
and Cipolla [Drummond and Cipolla, 1999, 2000]. The motivations behind using this representation is
minimal local parameterisation. We will also discuss a property that will have important consequences
for developing fast visual tracking as we will see in Chapter 6.

5.1.1 Matrix exponential and logarithm

Definition 1 Given an n × n (real or complex) matrix A, the exponential of A noted eA is defined
as:

eA = In +
∑

p≥1

Ap

p!
=
∑

p≥0

Ap

p!

This series is absolutely convergent and thus well-defined.

For the logarithm, extra constraints must be imposed on A.
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Definition 2 Under the condition ‖A− I‖ < 1, the logarithm of A is defined as:

log A =
∑

p≥0

(−1)p+1 (A− I)p

p

We may also link the exponential to the logarithm with the following proposition.

Property 1

‖A− I‖ < 1 =⇒ elog A = A

‖A‖ < log 2 =⇒
(
‖eA − 1‖ < 1

)
∧
(
log eA = A

)

The following properties can also be useful.

Property 2 For all X and Y n× n matrices:� e0 = I� (eX)−1 = e−X� det(eX) = etrace(X)� ∀(α, β) ∈ R2, e(α+β)X = eαXeβX� XY = YX =⇒ eX+Y = eXeY = eYeX� P ∈ GL(n, R) =⇒ ePXP−1
= PeXP−1� ‖eX‖ ≤ e‖X‖

An essential property for defining Lie algebras of matrix Lie groups is the smoothness of t→ etX.

Property 3 Let X be a n × n real (or complex) matrix, t → etX is a smooth curve in the space of
real (or complex) n× n matrices. Furthermore:

d

dt
etX = XetX = etXX

In particular,
d

dt
etX

∣∣∣∣
t=0

= X

5.1.2 Lie algebras of matrix Lie groups

A Lie group is a group that locally has the topology of Rn everywhere (i.e. it is a smooth manifold). All
closed subgroups of the general linear group (group of all invertible n×n matrices under multiplication)
GL(n, C) are Lie groups1. Projective transformation groups and their subgroups that are of interest
to us for this study are thus matrix Lie groups.

Definition 3 A finite-dimensional real or complex Lie algebra is a finite-dimensional real or complex
vector space g, together with a binary operation [ ], called Lie bracket, which satisfies the following
properties:� [ ] is bilinear,� ∀(X,Y ) ∈ g2, [X,Y ] = −[Y,X]

1this result is due to Cartan and Von Neumann
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A Lie algebra is an algebra in the usual sense with the product replaced by the Lie bracket that is
neither commutative nor associative. The Jacobi identity can be seen as a substitute for associativity.

Definition 4 Let G be a matrix Lie group. We will call Lie algebra of G, denoted g, the set of all
matrices X such that etX is in G for all real numbers t. The Lie bracket is defined as: [X,Y ] =
XY − Y X.

We can check that the Lie algebra associated in this way to a Lie group verifies the properties.

5.1.3 Exponential mapping

If G is a matrix Lie group with Lie algebra g, then the exponential mapping for G is the map:

exp : g→ G

In general the mapping is neither one-to-one nor onto but provides the link between the group and
the Lie algebra.

We also have the following result that says that mapping is locally bijective. We will see later on
that this is important for minimisation.

Theorem 1 Let G be a matrix Lie group with Lie algebra g. There exists a neighborhood v about
zero in g and a neighborhood V of I in G such that exp : v → V is smooth and one-to-one onto with
smooth inverse.

5.1.4 Lie algebra generators

Definition 5 A matrix Lie group G is said to be path-connected if given any two matrices A and
B in G, there exists a continuous path A(t), a ≤ t ≤ b, lying in G with A(a) = A and A(b) = B.

There is an equivalence between path-connectedness and connectedness for matrix Lie groups.

We will now state two important properties for minimisation.

Property 4 The Lie groups SO(n, R), SL(n, R) and SE(n, R) are connected.

Property 5 If G is a matrix Lie group, then the component of G containing the identity is a subgroup
of G.

These properties indicate that if we start from the identity, we can find a continuous path to any
value of the group. This is is exactly what we want to do in the case of minimisation. However we
will now see that an important property is missing to these groups.

Definition 6 A connected matrix Lie group G is said to be simply connected if every loop in G can
be shrunk continuously to a point in G.
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We can show that a simply connected Lie group G has a natural one-to-one correspondence between
the representations of G and the representations of its Lie algebra. SO(n, R), SL(n, R) and SE(n, R)
are not simply connected. We will see in more details why. In particular, in the case of SL(3, R), we
will see that certain elements of the group cannot be represented by elements of the Lie algebra.

In the previous section we defined the Lie algebra of a matrix Lie group as the set of all matrices
X such that etX. An element of g ∈ G can be expressed in terms of n independent elements of G with
n the dimension of the group (n = dim(G)).

If g only depends on a parameter ti:

g(ti) = exp(tiAi)

and by differentiation:

Ai =
∂g(ti)

∂ti

∣∣∣∣
ti=0

Ai is referred to as a generator of the Lie algebra which is independent of t. It is named generator
because with the property of connectedness it can generate a path to any the matrix of the form of
g starting from the identity. If we repeat the operation for each independent element of the group,
we obtain the set of all generators of the Lie algebra. We may note that two generators do not
necessarily commute (i.e. AiAj 6= AjAi if i 6= j) and the Lie bracket can be seen as the amount of
non-commutativity of the Lie group. By closure of the Lie group by the Lie bracket:

∀(i, j) ∈ [1..n]2, [Ai,Aj ] =
∑

k

ck
ijAk

cij are the structure constants of the Lie algebra. Intuitively, we get the feeling that the bracket
can be used to obtain missing generators. (This is indeed the case and is part of an important result
of control theory.)

With {Ai|i ∈ [1..n]} the set of generators of G, any element A(x) of g can be written as a linear
combination of the basis:

A(x) =
n∑

i=1

xiAi

with x = (x1, ..., xn).
There is a practical advantage of using a Lie algebra parameterisation: by cancelling values cor-

responding to generators, we can obtain subgroups of the initial Lie group. For example, in the
following sections, the parameterisation of SE(3) can be used to represent planar motion by selecting
the appropriate generators.

We will now prove an important property to establish the second order minimisation (ESM) algo-
rithm.

Proposition 1 Let n be the dimension of the matrix Lie group G, let (A1,... An) be the set of
generators of the associated Lie algebra and m×m the size of the matrices representing the elements
of G. Let A(x) be an n× n real matrix belonging to the algebra and seen as a function of x ∈ Rn:

∀x0 ∈ Rn,
d(e−A(x0)eA(x))

dx

∣∣∣∣∣
x=x0

x0 =
deA(x)

dx

∣∣∣∣∣
x=0

x0 = [flat(A1)
⊤ flat(A2)

⊤ · · · flat(An)⊤]m2×nx0

with: flat(A) = [a11 a12 · · · a1m a21 a22 · · · amm]
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Proof: (An elegant proof due to Pascal Morin, another possibility is proposed in the thesis of
Selim Benhimane)

The proof is valid for any Lie group.

Let g be a function of Rn with the property g((1 + t)x0) = g(x0)g(tx0) (property of the subgroup
defined by x0),

In the statement, g(tx) = etA(x).

We can now differentiate the two expressions:

dg((1 + t)x0)

dt

∣∣∣∣
t=0

=
dg(x)

dx

∣∣∣∣
x=x0

x0

dg(x0)g(tx0)

dt

∣∣∣∣
t=0

= g(x0)
dg(x)

dx

∣∣∣∣
x=0

x0

(5.1)

With the group property g(x0)
−1 = g(−x0), the first equality is obtained. The value on the right

is then a simple matter of differentiation.

�

5.1.5 Application to iterative optimisation

With G a matrix Lie group of dimension n, let:

f : G −→ R

g 7−→ f(g)

Consider the following minimisation problem, with d a differentiable distance (typically L2 norm)
and f ∈ R:

g = min
g

d(f(g), f )

If f is non-linear, the problem is often difficult to solve and we might use an iterative gradient
descent method. We start from an initial value ĝ and at each step add a value gk calculated typically
from the Jacobian: ĝ ← ĝ + gk. The problem of such a method is that we do not guarantee that the
new value of ĝ will belong to the group G. To solve this problem, the new ĝ is often projected onto
the group manifold but this can alter the convergence speed and the region of convergence.

Alternatively, we can define a new function h. With g the Lie algebra of G and + the group
operation:

h : Rn −→ g −→ R

x 7−→ G(x) 7−→ f(ĝ + eG(x))

h is only defined locally by the Lie algebra parameterisation of G. If we apply a gradient descent
approach to h, we will start at x = 0 (that corresponds to the initial value of f) and the update will
be written: ĝ ← ĝ + eG(xk). We are know sure that at each step, the new value of ĝ belongs to the
Lie group G.

To be able to link ĝ to g by infinitesimal transformation, we must make sure that the values are
path-connected (i.e. belong to the same component). If this is not the case, we should apply a descent
method in each component of the group. O(3, R) = {R ∈ GL(3) | RR⊤ = I}, the group of orthogonal
matrices is an example of Lie group that is not connected. It has two components SO(3, R) = {R ∈
O(3, R) | det(R) = +1}, the group of rotations and O−(3, R) = {R ∈ O(3, R) | det(R) = −1}. If
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we initialise a minimisation with ĝ = I for example, we will only be able to connect to the values of
SO(3, R).

In the following sections, we will only consider real valued matrices.

5.2 Representing rotations

The special orthogonal subgroup of dimension 3, also called rotation group, is defined as:

SO(3) = {R ∈ GL(3) | RR⊤ = I,det(R) = +1}

The elements of the group can be obtained from the three transformation matrices (represented
by the Euler angles) and parameterised by α:

Mx(α) =




1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)


 , My(α) =




cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)


 , Mz(α) =




cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1




Let the (3× 1) vectors bx = (1, 0, 0), by = (0, 1, 0) and bz = (0, 0, 1) be the canonical orthonormal
basis of R3. By differentiation, we obtain the three generators of the Lie algebra so(3):

A1 = [bx]× , A2 = [by]× , A3 = [bz]×

The exponential map exp : so(3) → SO(3) has an explicit form known as Rodrigues’ formula
(1840).

Theorem 2 (Rodrigues’ formula) Let A(x) ∈ so(3) and θ = ‖x‖:
{

eA = I3 + sin θ
θ A + 1−cos θ

θ2 A2 if θ 6= 0
eA = I3 otherwise

The formula has also a geometrical interpretation as the rotation of an angle θ around the axis x.
Can any rotation be written in exponential form ? The answer is yes and we can obtain an explicit
formulation of the logarithm.

Theorem 3 The exponential map is surjective onto SO(3) and the logarithm of a rotation matrix R

given by:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33




can be expressed as eA(x): 



x = θ
2 sin θ




r32 − r23

r13 − r31

r21 − r12


 if θ 6= 0, π

x = θ




√
r11+1

2√
r22+1

2√
r33+1

2


 otherwise

with θ = cos−1
(

trace(R)−1
2

)
.
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The proof can be obtain by identifying the exponential map given by Rodrigues’ formula with
the rotation matrix. Care has to be taken when θ = π (the formula given in [Ma et al., 2003] is
incomplete). A complete proof for the surjectivity of exponential maps onto SO(n) can be found in
[Gallier, 2001]. The exponential map onto SO(3) is not bijective as any value ±2πx will represent the
same rotation.

5.3 Representing 3D motion

The previous section described pure rotations, we will now study the general motion of a rigid body.
Assume a reference frame F∗, fixed in space and a frame F fixed to a rigid body. We can represent the
motion from F∗ to F with elements of the special euclidean group SE(3) if we represent the position
of the body by homogeneous coordinates.

SE(3) = {
[

R t

0 1

]
∈ GL(4) | R ∈ SO(3), t ∈ R3}

By differentiation, we obtain the generators of the translation (A1, ...,A3) and rotation (A4, ...,A6)
of the Lie algebra se(3):

A1 =

[
0 bx

0 0

]
,A2 =

[
0 by

0 0

]
,A3 =

[
0 bz

0 0

]
,A4 =

[
[bx]× 0

0 0

]
,A5 =

[
[by]× 0

0 0

]
,A6 =

[
[bz]× 0

0 0

]

Using Rodrigues’ formula, we can also obtain an explicit formulation of the exponential map.

Theorem 4 Let A(x) ∈ se(3), with v = (x1, x2, x3) (translational component) and ω = (x4, x5, x6)
(rotational component) :





eA =


 e[ω]×

“
(I−e[ω]×)[ω]×+ωω⊤

”
v

‖ω‖2

0 1


 if ‖ω‖ 6= 0

eA =

[
I v

0 1

]
otherwise

The exponential map is surjective onto SE(n) [Gallier, 2001]. We can now express the logarithm
for SE(3) explicitly using Theorem 5.

Theorem 5 The exponential map is surjective onto SE(3) and the logarithm of a motion matrix

T =

[
R t

0 1

]
is given by:

ω = log R (logarithm of SO(3))

and 



v =

(
(I−e[ω]×)[ω]×+ωω⊤

‖ω‖2

)−1

t if ‖ω‖ 6= 0

v = t otherwise
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5.4 Special linear group

The special linear subgroup of dimension 3, is defined as:

SL(3) = {H ∈ GL(3) | det(H) = +1}

This group is of dimension 8. Furthermore, det(eA) = etrace(A) = 1 implies that the generators
have zero trace. We can thus choose the 8 following independent generators of sl(3):

A1 =




001
000
000


,A3 =




010
000
000


,A5 =




1 0 0
0−10
0 0 0


,A7 =




000
000
100




A2 =




000
001
000


,A4 =




000
100
000


,A6 =




0 0 0
0−10
0 0 1


,A8 =




000
000
010




(5.2)

Theorem 6 The exponential map is not surjective onto SL(3).

An example of a matrix of SL(3) than cannot be expressed by elements in the Lie algebra can
be found in [Gallier, 2001]. However SL(3) is path-connected and will be used to represent planar
homographies in Chapter 6 on visual tracking.

5.5 Conclusion

In this chapter, we have presented a mathematical method of constraining an iterative optimisation
process such that the set of parameters are coherent with the object represented. Details were given
for the important cases of motion and special linear group representation. SL(3) will appear in the
problem of homography-based tracking.
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The aim of this chapter is to illustrate efficient ways of using visual information for motion esti-
mation. The results have implications in visual servoing and SLAM.

We will start by giving an overview of tracking approaches to situate our work on omnidirectional
plane-based visual tracking. We will then concentrate more specifically on sum-of-squared differences
(SSD) tracking. We will explain why SSD tracking is particularly well suited for robotic tasks.

6.1 An overview of tracking approaches in the literature

In this overview, we will only consider tracking without artificial markers or beacons in the environment
(i.e. only image information). Visual tracking approaches can be classified according to several
properties:� 3D model-based/3D model-free tracking. Either we assume that the object tracked can be

parameterised by a certain surface or structure (planes, quadrics, cubes, set of planes, ...), or we
characterise it only by its properties (color, texture, ...).� matching-based/direct tracking. Either we extract features in the image and then look for similar
features in the image without using prior knowledge on the camera motion or the approach
assumes small displacements between frames and processes the image information directly.� 2D/3D tracking. We can either track an object in the image or estimate the 3D motion of the
object in the scene from its image.� type of object tracked: deformable or rigid.

It is not always obvious how to characterise an approach but these classes still give a general
description of the method used. We could also add that some systems need a learning step (for
example to improve robustness to illumination or occlusion) whereas others use robust techniques
to achieve this goal. An overview of monocular model-based tracking can be found in [Lepetit and
Fua, 2005]. Three branches of 3D model-free tracking will now be discussed: matching, recursive
image-based and recursive 3D approaches.

6.1.1 Tracking by matching

The steps for tracking between two images by matching are:

1. extract features in the first image,

2. extract features in the second image,

3. associate the features in the two images through a distance measure. The efficiency and robust-
ness of the data association can be enforced using a prior knowledge of the motion of the camera
or of the object tracked.

The most obvious example of tracking with data association is the one commonly used in projective
geometry with Harris points associated through correlation [Hartley and Zisserman, 2000].

Why don’t we search for the points extracted in the first image directly in the second image?
The answer is the gain we expect to obtain in terms of computation and robustness. In the example
using Harris points, we only need to correlate between features instead of search in the whole image.
Furthermore there is a smaller chance of having bad associations since we only correlate between
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features that we expect to be able to associate. Of course, if there are a lot of features and that the
distance measure is not very discriminate, we can expect to have many outliers. Matching in the whole
image also has the disadvantage of being computationally expensive but the advantage of making it
possible to match over big distances.

Outlier rejection is an essential process in these type of methods. For example, if we are estimating
the motion of the camera from Harris points, we might use the epipolar constraint (through the
essential matrix or fundamental matrix) to remove outliers. The constraint is imposed by the properties
of projective geometry. It is also possible to add constraints such as planarity (planar homography
matrix) or even search for specific objects.

The outlier rejection process and the salient feature extraction can make it difficult to obtain frame-
rate tracking. RANSAC [Fischler and Bolles, 1981] is often used but is time-consuming. Improvements
have been made to the standard RANSAC approach [Matas and Chum, 2002] and modern computers
make it possible to obtain high frame rate computation even with these processing steps. Furthermore,
SIFT points [Lowe, 2004] (or learning-based techniques [Lepetit et al., 2005]) produce fewer outliers, the
downside being a higher computational burden compared to Harris points. However fewer outliers can
remove altogether the need for RANSAC. Faster robust estimators (Tukey, Huber) are then sufficient.
An advantage of these approaches comes from the robustness to occlusion and change in intensity but
also the possibility to track objects with large displacements in the image.

These methods have been applied successfully for tracking planes [Simon et al., 2000], head pose
[Tordoff et al., 2002] or deformable objects [Pilet et al., 2005]. Matching is also popular for augmented
reality [Chia et al., 2002]. Lines can be an alternative to using points even though they are harder to
match reliably between images.

6.1.2 Recursive tracking

The steps for tracking recursively between two images are:

1. extract features in the first image,

2. project the features onto the second image,

3. apply a distance measure between the information in the second image and the features from
the first image and find a direction that will minimise the error.

For this approach to work, the assumption is made that the motion of the features between the
subsequent frames is small. The objects are also often considered as lambertian. This assumption is
reasonable if the camera frame rate is high compared to the object motion and that the computation
of step (3) holds within the frame rate.

Compared to tracking by matching, we no longer need to associate the features as this step is
included in the minimisation process. The approach is however generally more sensitive to occlusion
and less well adapted to strong motion.

One of the first such techniques was edge-based tracking. An edge is extracted in an image and
reprojected in the following image. The distance to minimise is then typically obtained by searching
edge points along the normals to the initial edge. The advantage of edge-tracking is its robustness to
changes in intensity but it is sensitive to occlusion. The minimisation can either be image-based or
3D (we minimise the 3D pose of the object according to the projection of its edges in the image).

Sum-of-squared differences (SSD) tracking can be traced back to the work by Lucas, Kanade and
later Shi and Tomasi [Lucas and Kanade, 1981; Shi and Tomasi, 1994] (KLT tracker). SSD measures
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the difference in intensity between a portion of the first image reprojected onto the second image.
The minimisation (based on the image gradient) can be imaged-based (2D) for example searching
for the translation (tx, ty) that gives the smallest reprojection error. It can also be 3D or model-
based by reprojecting a 3D object and minimising the difference in the image over the position (6
degrees of freedom: rotation and translation). The advantage of this approach is precision (all the
information is being used) and speed. This is why these techniques are particularly well adapted to
robotic tasks such as motion estimation and visual servoing. Compared to matching approaches, SSD
tracking is generally faster and more precise. The downside is the need for a strong overlap between
the reprojected and the real object for the system to converge.

A closely related active field of research is model-free image-based tracking. Current algorithms
enable to track complex deformable objects with strong changes in intensity and with clutter and
occlusion. The idea is to loosen the constraint of same intensity imposed by the SSD and use a
descriptor of the template to track. Histograms are often chosen as they are fast to compute and
partly invariant to change in shape and clutter. In [Comaniciu et al., 2003], the authors use gradient
descent on a histogram-based distance for the tracking. Deterministic tracking however is not very
robust when the background is similar to the object tracked or if the object disappears. To improve
the tracking, particle filtering approaches can be used [Isard and Blake, 1998; Pérez et al., 2002] and
to deal with background clutter on-line or off-line learning is becoming popular [Collins et al., 2005].
These techniques are well adapted to image-based tracking of complex objects but cannot - as such -
be used for motion estimation.

In this chapter, we will describe plane-based 3D SSD visual tracking using an omnidirectional
sensor. Three contributions will be presented:

a) an extension to omnidirectional vision of the work from Benhimane and Malis [Benhimane and
Malis, 2004] on Efficient Second-order Minimisation (ESM) for perspective homography-based
tracking,

b) a new approach for tracking multiple planes valid for all single viewpoint sensors,

c) an analysis of how to implement the ESM algorithm efficiently but also some new variants
(αESM, iESM) to the standard algorithm with better computational complexities.

The apparent difficulty of tracking with panoramic devices comes from the non-linear projection
model resulting in changes of shape in the image that makes the direct use of methods such as KLT
nearly impossible. Parametric models [Hager and Belhumeur, 1998; Shum and Szeliski, 2000; Baker and
Matthews, 2001] such as the homography-based approach presented in this thesis are well adapted to
this problem. Previous related work using homography-based tracking for perspective cameras include
[Benhimane and Malis, 2004] and [Buenaposada and Baumela, 2002] which extend the work proposed
by Hager [Hager and Belhumeur, 1998]. Homographies have also been used for visual servoing with
central catadioptric cameras [Hadj-Abdelkader et al., 2005] and share with our approach the notion of
homographies for points belonging to the sphere of the unified projection model. The single viewpoint
property means it would be possible to track in an unwarped perspective view. This is however
undesirable for the following reasons:

1. it introduces a discontinuity in the Jacobian (at least two planes are needed to represent the
360° field of view),

2. the non-uniform resolution is not taken into account and

3. the approach is inefficient (in terms of speed and memory usage).
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To our knowledge, this is the only work on SSD tracking for omnidirectional sensors. The closest work is
that of Barreto et al [Barreto et al., 2002]. The authors propose a method for tracking omnidirectional
lines using a contour-to-point tracker to avoid the problem of quadric-based catadioptric line fitting.

6.2 Efficient second order minimisation

SSD tracking generally relies on iterative methods to find the optimal position and parameters. First-
order methods (often called forward compositional in the visual tracking literature) or methods with
final super-linear convergence (eg. Levenberg-Marquardt or Dog Leg) are generally employed as cal-
culating the Hessian to obtain full quadratic convergence is computationally expensive.

In fact, through the Lie algebra parameterisation, we can obtain second-order convergence with
a computational cost of the same order as a first order method, this technique was dubbed efficient
second order minimisation (ESM) [Malis, 2004; Benhimane and Malis, 2004]. We will now derive the
equations. It will become clear in the following sections how they appear and the role of the Lie
algebra parameterisation.

Consider the general least-squares minimisation problem:

F (x) =
1

2

n∑

i=1

(fi(x))2 =
1

2
‖f(x)‖2 (6.1)

The necessary condition for finding a local or the global minimum of the cost function is that there
exists a stationary point x̃ such that:

[∇xF ]x=ex = 0 (6.2)

where ∇x is the gradient operator with respect to the parameter x. When equation (6.2) is non-linear,
a closed-form solution is generally difficult to obtain.

A second-order Taylor series of f about x = 0 gives:

f(x) = f(0) + J(0) x +
1

2
M(0,x)x +R(‖x‖3) (6.3)

where J(0) = [∇xf ]x=0, M(z,x) = [∇xJ]x=zx and R(‖x‖3) is the third-order reminder. Similarly, we
can write the Taylor series of the Jacobian J about x = 0:

J(x) = J(0) + M(0,x) +R(‖x‖2) (6.4)

Plugging (6.4) in (6.3) leads to:

f(x) = f(0) +
1

2
(J(0) + J(x)) x +R(‖x‖3) (6.5)

As x̃ ≈ 0, a second order approximation of f in x̃ is:

f(x̃) ≈ f(0) +
1

2
(J(0) + J(x̃)) x̃ (6.6)

Under certain conditions, that we will detail in the following sections, J(x̃)x̃ can be calculated
without knowing the value of x̃. This is the basis of the ESM algorithm.

Let J(x̃)x̃ = J′x̃, at the solution, f(x̃) = 0, so our second-order least-square minimiser is the
solution to:

x̃ = −
(

J(0) + J′

2

)+

f(0)
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6.3 Homography-based tracking for single viewpoint sensors

6.3.1 Incremental tracking

Figure 6.1 illustrates the underlying principal for tracking incrementally. For each new incoming
image Ii, we look for the optimal increment from the previous position corresponding to Ii−1. After
minimisation, we obtain an estimate of the optimal transformation between the reference image I∗
and the last image Ii. If we are able to converge at each step, we obtain the optimal parameter
estimation between the first and the last view without drift.

Obviously in a SLAM framework, we would eventually need to update the reference frame(s).
However by keeping a reference image over a long period, we can hope to increase the quality of
the motion estimates. In particular, under a stochastic framework, we can hope to improve the map
consistency.

T01 T(x)

Ik

T02

T0k

I∗ I1 I2

Figure 6.1: Incremental calculation of the transformation

6.3.2 Homographies for the spherical perspective projection model

Let R ∈ SO(3) be the rotation of the camera and t ∈ R3 its translation. The standard planar
homography matrix H is defined up to a scale factor:

H ∼ R + tn∗⊤
d (6.7)

where n∗
d = n∗/d∗ is the ratio between the normal vector to the plane n∗ (a unit vector) and the

distance d∗ of the plane to the origin of the reference frame. In the following sections, we will call n∗
d

the plane normal by “abuse of language”. Homographies are projective properties and stay valid for
all single viewpoint sensors. Figure 6.2 illustrates the transformation induced by a planar homography
using the spherical perspective projection model. The points X ∗

s and X s are related by:

∃(ρ, ρ∗) ∈ R2, P = ρX s = ρ∗HX ∗
s

this property is sometimes written as a collinearity constraint (with × the vector product):

X s × (HX ∗
s) = 0
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A homography is defined up to a scale factor. In order to fix the scale, we choose det(H) = 1, i.e.
H ∈ SL(3) (the Special Linear group of dimension 3, discussed in Section 5.4). This choice is well
justified since det(H) = 0 happens only if the observed plane passes through the optical center of the
camera (in this singular case the plane is not visible any more).

From a planar homography, it is possible to extract the transformation and plane normal [Faugeras
and Lustman, 1988]. However two solutions are obtained which explains why we have to distinguish
the tracking of a single plane (through a unique homography) and tracking multiple planes. Recently,
Benhimane and Malis showed that for visual servoing it is not necessary to decompose the homography
[Benhimane and Malis, 2006].

P

π

~n∗R, t

F ∗

Xs

H

F

X ∗s

Figure 6.2: Planar homography for the spherical perspective projection

6.3.3 Warping

We will call warping, noted w, a coordinate transformation induced by a homography H ∈ SL(3):

w : SL(3) × S2 −→ S2

(H,X ∗) 7−→ X = w<H><X ∗>

The identity matrix I is the neutral of the transformation group. We have the following properties:� w<I><X> is the identity map:

∀X ∈ S2, w<I><X> = X (6.8)� the composition of two actions corresponds to the action of the composition:

∀X ∈ S2, ∀(H1,H2) ∈ SL(3)2,w<H1><w<H2><X>> = w<H1H2><X> (6.9)
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Practically, warping will consist in finding the intensity of the transformation of an image point in a
new view. Due to discretisation, we will have to calculate an approximate intensity in the new position.
Several standard techniques exist. Nearest neighbour consists in taking the closest discretised point
to the new point. It has the advantage of being fast. Bilinear interpolation consists in calculating the
average of four neighbouring pixels weighted by their relative distances. It is slower but gave much
better results than the nearest neighbour in our tracking tests. “Higher order” approximations are
also possible (eg. cubic) but we observed only a very small gain in quality for a higher computational
load. For this reason, in all the following experiments, we will use bilinear interpolation.

For omnidirectional vision, we might ask if bilinear interpolation is still valid. The intensity in
a given point depends on the solid angle formed by a pixel. Formally, to find the best bilinear
interpolation, we should calculate the geodesic distance on the unit sphere. However what is important
is the relative distance that will only change slightly due to distortion as the calculation is local. In
our work, the image warpings were done with a bilinear transformation taken in the image.

6.3.4 Tracking a single plane

Let I∗ be the reference image. We will call reference template, a region of size q of I∗ corresponding
to the projection of a planar region of the scene.

Consider the following diagram, illustrated by figure 6.2:

p∗ Π−1

−→ X ∗
s

↓ w<H><.>

p
Π←− X s

(6.10)

Π is the transformation between the sphere and the image plane.

To track the template in the current image I is to find the transformation H ∈ SL(3) that warps
the lifting of that region to the lifting of the reference template of I∗, i.e. find H such that:

∀i, I
(
Π
(
w<H><X i∗

s >
))

= I∗(p∗
i )

We will now use the minimisation approach presented in Section 5.1.5 to ensure we stay in the Lie
group at each step. Knowing an approximation Ĥ of the transformation H, the problem is to find
the incremental transformation H(x) that minimizes the sum of squared differences (SSD) over all the
pixels: {

F (x) = 1
2

∑q
i=1 ‖fi‖2

fi = I
(
Π
(
w<ĤH(x)><X i∗

s >
))
− I∗(p∗

i )
(6.11)

The increment appears in a product ĤH(x) as the matrix product is the group law of SL(3) and
thus H(x) ∈ SL(3) implies that ĤH(x) ∈ SL(3). H(x) is parameterised locally by the Lie algebra of
SL(3):

H(x) = exp

(
8∑

i=1

xiAi

)

Surprisingly this parameterisation is not standard [Baker et al., 2006]. In equation (6.11), the
incremental transformation should appear to the left (HL(x)) as H is the transformation from the
reference frame to the current frame (we could write cHr). However we can also write the increment
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to the right, the two are related by1:

H(x) = Ĥ−1HL(x)Ĥ

The advantage of writing the increment to the right appears when deriving the Jacobian that is
simpler and faster to calculate.

We show in Appendix B, that the current Jacobian, noted J(0), and the reference Jacobian, noted
J(x̃), can be written as the product of four Jacobians:

J(0) = JIJΠJwJHx
(0)

J(x̃) = JI∗JΠJwJ
(H

−1 bHHx)
(x̃)

Using Proposition 1, Chapter 5, we have the following property:

J
(H

−1 bHHx)
(x̃)x̃ = JHx

(0)x̃

Thus, in equation (6.6), we can use JHx
(0)x̃ instead of J

(H
−1 bHHx)

(x̃)x̃ where JHx
(0) is a constant

Jacobian matrix. The update x̃ of the second-order minimization algorithm can be computed as
follows:

x̃ = −




(
JI + JI∗

2

)
JΠJwJHx

(0)

︸ ︷︷ ︸
Jesm




+

f(0) (6.12)

The computational complexity is almost the same as for first-order algorithms as the reference
Jacobian JI∗ only needs to be calculated once.

Obtaining JI∗ and JI , that are the Jacobians taken in the images (for example using a Sobel
filter), is a remarkable property. It indicates that we can take into account the non-linear properties of
the sensor simply through the Jacobian of the projection function JΠ (this appears in the derivation
of the Jacobians in Appendix B).

6.3.5 Tracking multiple planes

When tracking multiple planes, we have the choice either to track the planes independently, or to
constrain the same motion for each plane which is the object of this section.

From equation (6.7), we can parameterise a homography by a transformation T ∈ SE(3) and a
plane normal nd ∈ R3. With the Lie algebra parameterisation of T:

H(T(x),nd) = H

(
exp

(
6∑

i=1

xiAi

)
,nd

)

We can now reformulate the problem by parameterising each plane with the same transformation
T. To track the template j in the current image I is to find the transformation H(T,nj

d) that warps
the lifting of that region to the lifting of the reference template of I∗:

∀i, j, I
(
Π
(
w<H(T,nj

d)><X ij∗
s >

))
= I∗(p∗

ij) (6.13)

1this is the adjoint map Ad bH−1 in SL(3)
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In other words, knowing an approximation T̂ of T and n̂
j
d of n

j
d, the problem is to find the incremental

transformation T(x) and n
j
d(x) that minimises the sum of squared differences (SSD) over all the pixels

and over the m planes (x contains the 6 transformation parameters and the 3×m parameters for the
normals and depths):

{
F (x) = 1

2

∑m
j=1

∑qj

i=1 ‖fij‖2

fij = I
(
Π
(
w<H(T(x)T̂, n̂j

d + n
j
d(x))><X ij∗

s >
))
− I∗(p∗

ij)
(6.14)

The minimal number of parameters in equation (6.14) is in fact 6 + 3 ×m − 1 because the first
homography has only 8 degrees of freedom. However the extra degree of freedom empirically gave
better results probably due to the better conditioning of the Jacobian (all the values for the normals
have the same amplitude).

Similarly to the previous case, the Jacobians J(0) and J(x̃), that correspond respectively to the
current and the reference Jacobians, can be written as (see Appendix C):

J(0) = JI JΠ [JHT
JT (0) JHnJn(0)] (6.15)

J(x̃) = JI∗ JΠ [JH∗
T
JT ∗(x̃) JH∗

n
Jn∗(x̃)] (6.16)

with HT the homography seen as a function of the transformation T and Hn the homography seen
as a function of the plane normal nd.

Using proposition 1, we have the following property:

JT ∗(x̃)x̃ = JT (0)x̃ (6.17)

we also have: Jn∗(x̃)x̃ = Jn(0)x̃.

If we assume that T̂ ≈ T and n̂ ≈ n, JH∗
T
≈ JHT

and JH∗
n
≈ JHn , the update x̃ of the second-order

minimisation algorithm can then be computed as follows:

x̃ = −




(
JI + JI∗

2

)
JΠ [JHT T (0) JHnn(0)]

︸ ︷︷ ︸
Jesm




+

f(0) (6.18)

We may also note that the matrix is sparse so the algorithm can make the most of sparse linear
algebra and avoid the full inversion of the Jacobian matrix [Hartley and Zisserman, 2000].

6.4 Efficient ESM implementation and variants

In this section, we will detail how to obtain an efficient implementation of the ESM algorithm. We
will discuss how to improve the computational cost and stay close to the second order convergence
rate. Validation on simulated and real data will be given in the next section. [Madsen et al., 2004]
gives an overview of generic descent methods.

Algorithm 1 describes a basic iterative descent method for ESM single plane SSD tracking. The
computation is split between evaluation of the cost function and calculation of the descent direction.
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Algorithm 1: ESM tracking method: basic algorithm for a single plane

Data: Current image I and reference image I∗. Constant transformation Jacobians JΠ and
Jw. (ε, kmax) : thresholds, Ĥ : initial estimate of the homography

Result: Local minimum H

Calculate JI∗ (eg. Prewitt, Sobel filters)
k := 0; found := false
while (not found) and (k < kmax) do

Calculate JI .
Calculate Jesm from equation (6.12).
x̃ = −(J⊤

esmJesm)−1J⊤
esmf(0)

Ĥ← ĤeA(ex)

if ‖x̃‖ < ε then
found := true

end

k := k+1
end

Let q be the number of pixels of the template (several hundred or several thousand) and m the
number of parameters. In [Baker et al., 2004], the authors calculate the cost in terms of operations of
the different steps appearing in SSD tracking algorithms. The pseudo-inversion and more specifically
the product J⊤

esmJesm is particularly expensive as it requires o(m2q) operations. Calculating the cost
function in comparison has a complexity of o(mq).

This has motivated the development of the inverse compositional algorithm where the increment
is only based on the reference Jacobian, noted Jinv [Baker et al., 2004]. The advantage of such an
approach is that (J⊤

invJinv)
−1J⊤

inv can be precalculated and the complexity drops to o(mq+m3) instead
of the initial o(m2q +m3). However the approach is not well adapted to changes in illumination as the
Jacobian stays constant (there have been some improvements in this direction [Bartoli, 2006]). For
the same reason, occlusion (including the template partly going out of the image) cannot be handled
without needing to recalculate J+

inv. It also should not be used when estimating the motion directly
even when the structure is known as the reference Jacobian then depends on a combination of the
displacement and structure. We will show experimentally the effect of using the incorrect Jacobian on
the section dedicated to experimental validation.

In the same frame of mind as for the inverse compositional, we can consider three possible variants
of the ESM to obtain a complexity of o(mq + m3):� cESM:

x̃ = −(J⊤
invJinv)

−1J⊤
esmf(0)

This is only valid for image-based visual tracking. We can justify the approximation by saying
that as we get closer to the optimum, Jinv ≈ Jesm.� αESM:

x̃ = − (g⊤J
p
invg)

‖JesmJ
p
invg‖2

J
p
invg

with g = J⊤
esmf(0) and J

p
inv = (J⊤

invJinv)
−1. The corrective term was found in the following way:

– (−g) can be considered as a second-order steepest descent direction,
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– we then look for the corrective term α that minimises the second-order approximation to
the cost function:

F (−αJ
p
invg) =

1

2
‖f(0)− αJesmJ

p
invg‖

2

= F (0)− αf(0)⊤JesmJ
p
invg −

1

2
α2 ‖JesmJ

p
invg‖

2

by differentiation we obtain the optimal α and the desired expression.

This solution can be expected to converge better than the previous approach as the corrective
term means we are closer to the second-order estimate at the beginning of the minimisation.
The calculation is still in o(mq + m3) but takes longer than the previous method meaning that
for a fixed time, it could have a worse convergence rate.� iESM:

x̃ = − (g⊤J
p
esmg)

‖JesmJ
p
esmg‖2 Jp

esmg

with g = J⊤
esmf(0) and J

p
esm = (J⊤

esmJesm)−1 calculated at the beginning of the iterations. This
approach has the advantage of being valid for explicit structure and motion. It can be justified
by saying that at the beginning, we have the best second-order estimate and that we then cor-
rect the Jacobian so that it stays valid at the optimum. It is not as satisfying as the previous
methods as the Jacobian will not be correct at the optimum. What we “hope” is that it will be
sufficiently good, thanks to the corrective term, to lead to the optimum anyway.

Reducing the computational cost of the iterations is only one side of the problem. Ideally we
would also want to diminish the number of iterations. The ESM algorithm, as a second order method,
converges faster and more often than a first order method. It is also well adapted to changes in
illumination. In [Silveira et al., 2007], the authors take into account explicitly an affine illumination
model.

The following section will be dedicated to comparing the different algorithms and the effect of the
approximations on the convergence.

6.5 Experimental validation

6.5.1 Simulation

6.5.1.1 Affect of the inverse compositional for explicit motion estimation

As explained previously, the reference Jacobian for multiple planes depends not only on the structure
but also on the position. Using the inverse compositional (IC) algorithm in this case can lead to poor
results as the Jacobian can have arbitrarily big errors. Alas the inverse compositional has often been
used to track in this situation. We will now simulate the effect of using the IC in this situation.

Our simulation setup consists of a sequence of 50 images without any added noise and with small
inter-frame displacements. Figures 6.3 (a),(b) and (c) show images 1, 25 and 50 respectively of the
simulated sequence.

Figure 6.4 shows the number of iterations taken to converge. As we can see the inverse compo-
sitional (IC) takes more and more iterations. At the end of the sequence, the IC took more than
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Figure 6.3: Image number 1 (a), 25 (b) and 50 (c) of the artificial sequence

2000 iterations to converge. The forward compositional (FC) took systematically 6 iterations and
the efficient second-order minimisation (ESM) took 5 iterations at the same computational cost (the
inter-frame displacements were small so few iterations were needed to converge).

This experiment confirms that the Jacobian of the IC is indeed incorrect and cannot be used for
3D tracking even when the structure is known and the inter-frame displacement is small. The Jacobian
is increasingly incorrect and it becomes harder and harder to converge and the values oscillate around
the true value. This result is particularly important for omnidirectional visual tracking as we expect
to track templates over larger image regions than in the standard perspective case.

6.5.1.2 Comparison between methods

To compare the different algorithms, we will use the Matlab program written at the CMU for the
project “Lucas-Kanade 20 Years On”.

The following methods will be compared:� forward compositional (FC),� inverse compositional (IC),� efficient second-order minimisation (ESM),� cESM, αESM, iESM as described previously.

Evaluating the computational time per iteration To evaluate the time taken for an iteration,
we programmed the iteration steps in C language and tested the times for image sizes ranging from
20× 20 to 500× 500. The inverse compositional has the lowest computational cost and was compared
to the other methods in figure 6.5. In figure 6.6, we plot the iteration time versus the number of
pixels, we can see that the computational time is approximately a linear function of the number of
pixels. ESMseq is an implementation of the ESM algorithm where the different parts are computed
separately: first Jesm, then J+

esm, J⊤
esmf(0) and finally x̃. However building Jesm does not need to be

done explicitly. It is possible to build J⊤
esmJesm and J⊤

esmf(0) in the same iteration which corresponds
to the ESM values in the figures. We can see that the computational time is halved. This can be
explained by the fact that we only access a small amount of memory that has been cached by the
processor. This aspect is rarely taken into account when calculating the computational cost of an
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Figure 6.4: Comparaison of the number of iterations taken to converge for the simulation sequence

algorithm: it can take longer to access memory than to recompute part of the data if we use the
same variables. This is what happens for cESM that has a similar cost to the IC. Accessing the
precalculated J+

inv value is similar to calculating the Jacobian of the current image and the value Jesm

implicitly. A possible explanation of the change in computational time for ESMseq, αESM and
iESM when the size of patches are greater than 160× 160 can be found in the need to calculate Jesm.
For ESMseq, the value is calculated and then used for J+

esm and J⊤
esmf . Similarly αESM and iESM

need the value of the Jacobian to process the corrective term. In both cases, this value can be cached
for the second step. However when the Jacobian data no longer holds in the first cache, it saves it in
a slower cache (until eventually going in main memory and then in the swap space).

We believe this aspect of computation should be taken into account in future research on computer
vision algorithms. Only considering the number of operations leads to a too simplistic analysis and
incorrect conclusions.

The relative times are summarised in Table 6.1. We chose to use the “starting” values of figure
6.5 for αESM and iESM as they correspond to the range of template sizes we would expect to track.

To give an order of magnitude of the computational time of the tracking algorithm, an iteration
of the ESM for a template of size 100 × 100 on a 3.6 GHz Intel Pentium 4 took 1 ms.

Tests The following tests were undertaken:� “at infinity”. In other words we give an amount of iterations that are far more than would be
used in a real tracking situation (typically 150, see Table 6.1). This is to test the convergence
properties of the algorithms.
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Table 6.1: Estimated time for an iteration and number of iterations

Time taken per iter-
ation (ratio with re-
spect to the IC)

Number of iterations
given “at infinity”

Number of iterations
given at “fixed time”

IC 1 150 20

cESM 1.04 144 19

αESM-iESM 1.33 112 15

ESM-FC 1.8 83 11� “fixed time”. We give a typical amount of iterations (eg 20 for the IC, see Table 6.1). The
number of iterations are calculated in order to give the same amount of time to each algorithm.� “added noise”: noise is added to the incoming and reference images. This is a more realistic test
as it simulates unmodeled errors that could appear through lighting changes or occlusion. We
used the same number of iterations than for the “fixed time” case.

Figures 6.8, 6.9 and 6.7 show the frequency of convergence of the different algorithms as the
homography transformation increases (a Gaussian error is added to the plane points). The number of
tests for each parameter variation was of 500 “at infinity” and 1000 for the two other cases.

The test “at infinity” in figure 6.7 confirms that there are two groups: the algorithms with a second-
order convergence (ESM and variants) and the algorithms with first-order convergence properties.
This experiment indicates that the ESM variants keep the second-order convergence rate despite the
approximations.

The tests at “fixed time” and “with noise” show that the two variants αESM and iESM are
possible alternatives to the direct ESM approach. The difference in convergence rate changes, as is
to be expected, when noise is added to the images. The reason iESM has the same convergence rate
as αESM in the test “with noise” is that the calculation of the pseudo-inverse at the beginning of the
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iterations compensates in part for the image errors. Even though cESM has a computational cost of
the same order as IC, it does not lead to a significant improvement in convergence rate.
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Figure 6.7: Frequency of convergence vs homography motion for an “infinite time”

6.5.1.3 Conclusion

In the simulation experiments we compared the convergence properties of the ESM algorithm and
different variants to more standard approaches such as the inverse compositional (IC) and the forward
compositional (FC). We showed that even though the iteration step of the ESM (and variants) is more
computationally expensive than an iteration of the IC, the higher convergence rate makes it globally
faster. If we add the possibility of working on occlusion and changes of illumination, the algorithm is
altogether a good alternative to the IC for image-based tracking. Variants of the ESM, αESM and
iESM were shown to improve the results further. Another important experiment confirmed that the
IC should not be used for 3D tracking even if the structure is known.

6.5.2 Real data

The algorithm was tested on real data obtained from the mobile robot ANIS. The central catadioptric
camera was comprised of the S80 parabolic mirror from RemoteReality with a telecentric lens and
perspective camera of resolution 1024×7682.

The two tests for a single plane and multiple planes were done over 120 images and a distance of
about 2 m. The robot odometry was considered as ground truth. These experiments were undertaken
to analyse the precision of the algorithm in view of its integration into a SLAM framework. We also
would like to know if it is worthwhile imposing the constraint of same camera motion when tracking
different planes.

2the camera was calibrated using the method described in Chapter 3
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Figure 6.8: Frequency of convergence vs homography motion for a “fixed time” without noise
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Figure 6.9: Frequency of convergence vs homography motion for a “fixed time” with noise
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6.5.2.1 Single plane

In the case of a single plane, four reference templates were tracked (figure 6.10). They are numbered
in counterclockwise order from 1 to 4 starting top left. Templates number 2 and number 3 were
considered to be on the same plane (i.e. only one homography was estimated). For each homography,
a translation t up to a scale factor and a rotation R can be extracted (the ambiguity was solved by
using several frames). The scale was then fixed by measuring the distance of the camera to one of the
planes. Table 6.2 summarises the results. The figures show the median of the estimated motions in
dotted lines and the odometry in full lines. The angles estimated between the planes were of 87° and
91° .

The camera field of view was obstructed in the case of the template number 1 after the image
100 as we can see in figure 6.14, figure 6.15 and figure 6.16. The algorithm which uses a straight
forward minimization was not able to find the correct homography, this does not appear in the motion
estimation as a median is used.

Template number 4 was correctly tracked as we can see in figure 6.16, the complex motion depicted
in the images (figure 6.11-6.15) is only due to the mirror geometry.

Table 6.2: Estimation of the parameters

Translation (cm) Rotation (deg)
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Max. error [2.7, 3.6, 7.3] [1.6, 2.2, 1.0]

Mean abs. er-
ror

[1, 1.3, 1.4] [0.8, 0.6, 0.3]

6.5.2.2 Multiple planes

In this experiment, we would like to know if constraining the same camera motion while tracking can
improve the quality and robustness of the structure from motion. Figure 6.17 shows the templates
tracked in the experiment. The planes are numbered in counterclockwise order from 1 to 3 starting
top left. To fix the scale factor, we measured the distance from the camera to the third plane (0.5 m)
(the plane that proved the stablest while tracking).

The sequence is composed of 120 images. The mobile robot covered a distance of about 2 m. The
initial values given for the normals with depths was [1; 0; 0] (the same results were obtained for values
[0; 1; 0], [0; 0; 1], [0; 0; 1000] ...). These initial values are far from the “real” values that can be deduced
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Figure 6.10: Reference image Figure 6.11: Image 25

Figure 6.12: Image 50 Figure 6.13: Image 75

Figure 6.14: Image 100 Figure 6.15: Image 120
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Figure 6.16: Reprojection of the templates for iterations 0,25,50,75,100,120 in the reference image
using the estimated homography

Figure 6.17: Tracked templates
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from figure 6.25 and figure 6.26 (with d3 = 0.5 m): [−0.38;−0.31; 0], [−0.4; 0.6; 0] and [1.2;−1.6; 0].
The algorithm proved to be relatively insensitive to the initial values when an extra degree of freedom
was given. This can be explained from the normals appearing in the homography as a product with
the translation.

The motion for the planes tracked independently was obtained in the same way as in the previous
section, by applying the median over the rotation and translation recovered from the homographies,
we will call this algorithm SPT.

The algorithm for the constrained tracking was tested with a forward compositional minimisation
(MPT FC) and with the proposed algorithm (MPT ESM).

Figures 6.18 to 6.23 compare the odometry (in full lines) to the motion estimation using the SPT,
MPT FC and MPT ESM algorithms (lines with symbols). The number of iterations needed to
converge appears on the figure for the MPT FC and MPT ESM algorithms in a black dotted line
with the number of iterations indicated on the right Y-axis. Figure 6.24 shows the templates at
different stages in the tracking (only for MPT ESM). The normals estimated on-line are represented
in figure 6.25. The distances estimated for planes 1 and 2 are detailed in figure 6.26.

MPT ESM which is a close to second-order approach gave slightly more precise results than
MPT FC (first-order approach) and in less iterations: 7 iterations were needed for MPT ESM com-
pared to 13 for MPT FC (median value over the first 60 images). We will now compare MPT ESM

to SPT.

The motion estimation was precise except between iterations 75 and 100 where a reflection (that
can be seen on the tracked templates in figure 6.24) on the poster of template 3 generated errors in
the normal estimates but also in the distance estimates. We used a non-robust minimisation approach
which is not able to cope adequately with illumination errors (we will detail a simple robust algorithm
in the following section). However the tracking was able to recover after iteration 110. When the
templates were tracked independently (i.e. the motion and normal estimates were extracted directly
from the homography), the patches did not give a sufficient amount of information to enable a good
estimate of the motion. With the illumination problem arising on the stablest estimated plane, the
motion estimation becomes erratic (figure 6.18 and figure 6.19).

The MPT ESM gave a translation estimation with a maximum error of [16,23,3] cm for [x,y,z]
and an absolute mean error of [2.6, 2.0, 1.6] cm, for the rotation the maximum error was of [1.85,
0.43, 0.64] deg over the [x,y,z] rotation axis with a mean error of [1.14, 0.22, 0.22] deg. Estimating the
distance proved sensitive to small errors, the variance over the sequence was respectively of σ = 23.6 cm
and σ = 7.33 cm for planes 1 and 2.

Figure 6.27 shows the motion of the robot in the XY-plane for MPT ESM with the odometry
depicted in full lines and the estimated motion with connected crosses. The planes are also represented
in the image from the estimates. The angles between the corridor walls were quite precisely estimated
with 92.9 deg between planes 1 and 2 and 87.3 deg between planes 1 and 3. The results obtained using
SPT depicted using connected circles in figure 6.27 gave poor results.

6.5.2.3 Conclusion

The experiments show that the ESM visual tracking can be used as an efficient method to estimate 6
DOF motion. They also confirmed that constraining the same camera motion when tracking improves
the robustness of the algorithm and enables the tracking of smaller planes.
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Figure 6.18: Estimation of the robot’s
translation (SPT)
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Figure 6.19: Estimation of the robot’s ro-
tation (SPT)
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Figure 6.20: Estimation of the robot’s
translation (MPT FC)
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Figure 6.21: Estimation of the robot’s ro-
tation (MPT FC)
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Figure 6.22: Estimation of the robot’s
translation (MPT ESM)
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Figure 6.23: Estimation of the robot’s ro-
tation (MPT ESM)
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Figure 6.24: Reprojection of the templates for iterations 0,25,50,75,100,120 in the reference image
using the estimated homography (MPT ESM)
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Figure 6.25: Normals estimated for planes 1 to 3 (MPT ESM)
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Figure 6.26: Estimation of the plane distances
for planes 1 and 2 (MPT ESM)
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6.6 Outlier rejection

In the experiments of the previous section, occlusion and specularities diminished the performance of
the algorithm in terms of speed and quality of the estimates. We will now investigate the problem of
robustness.

A standard technique to improve least-square estimates is to use a robust cost function such as
Tukey or Huber (see Appendix in [Hartley and Zisserman, 2000]). The underlying idea is that the
errors should follow a given profile (eg. Gaussian distribution) and that all the points that do not
verify the distribution are considered as outliers. Outliers are either rejected altogether (Tukey) or
given small weights (Huber). Rejecting outliers is preferable for computational reasons. Estimating
the Gaussian profile of the error is typically done with a robust mean (median) and a robust standard
deviation (mean absolute deviation or MAD). Applying this technique as such to our tracking problem
means we are considering each pixel as an independent value. However the error is generally spatially
correlated. This observation was used in [Ishikawa et al., 2002] to devise a robust approach to tracking.
The idea is to split the image in blocks and calculate an error that takes into account the standard
deviation of the initial block (we expect they will be higher errors in blocks with a lot of texture).

Ishikawa et al [Ishikawa et al., 2002] use the following error for a block Bi:

ei =
F (x)p∈Bi

σ[I∗(p)]p∈Bi

They then order the errors and keep a pre-defined percentage of blocks. Choosing a pre-defined
value is not satisfactory as when there are few outliers useful information will be discarded and if there
is a lot of noise outliers will be kept. We propose to simply use robust statistics on the blocks and
thus avoid this pre-defined value. The choice of the block size is still arbitrary.

We experimented the algorithm on the same sequence than for the validation of the tracking of
multiple planes. We chose a block size of 10×10 pixels. Figures 6.30, 6.32 and 6.34 show the estimates
of the translation for the ESM algorithm using respectively no robust techniques, the pixel-based Tukey
robust function and the block-based Tukey robust function. Figures 6.31, 6.33 and 6.35 correspond
to the estimates of the rotation and also depict the number of iterations needed to converge. Figure
6.28 shows the final 3D reconstruction and motion estimation of the mobile robot.

On this example, the pixel-based robust approach does not improve the quality of the estimates
and increases the number of iterations drastically. This can be explained by the error function that
only takes into account the error per pixel. The error is typically high where we have strong gradient.
However by removing these regions we also remove the information that enables the minimisation to
converge. By using blocks, the error is weighted by the gradient. We obtain improvements in terms
of precision and also computational time (the number of iterations stays within 4 to 11 iterations).
Figure 6.29 shows the specularity “being removed” by the blocks. Each column corresponds to one of
the templates being tracked. The first line shows the reprojection error of the template. The second
line shows the block weights being automatically assigned. The lighter the block, the stronger the
penalisation weight. The last line shows the templates weighted by the block values.

These results could be improved further by using a distribution that is better adapted to ei.
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Figure 6.28: 3D reconstruction and 6-DOF motion estimation
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Figure 6.29: Specularities being removed by block-based robust technique
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Figure 6.30: Translation estimate with-
out a robust function
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Figure 6.31: Rotation estimate without
a robust function

0 50 100 150
−0.5

0

0.5

1

1.5

Iteration

D
is

ta
nc

e 
(m

)

 

 

t
x

t
y

t
z

Figure 6.32: Translation estimate using
pixel-based robust function
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Figure 6.33: Rotation estimate using
pixel-based robust function
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Figure 6.34: Translation estimate using
block-based robust function
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Figure 6.35: Rotation estimate using
block-based robust function
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6.7 Conclusion

In this chapter, we have presented an efficient parametric visual tracking algorithm that enables 6
DOF motion estimation for any single viewpoint sensor. The method relies on the Efficient Second-
order Minimisation approach (ESM) that has better convergence properties to the now standard
inverse compositional. We presented several variants to the ESM (αESM and iESM) with better
computational properties. In view of its integration in applications for mobile robot motion estimation
in potentially cluttered environment, a simple outlier rejection algorithm was also developed.
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7.1 Introduction

In the previous chapter, we discussed efficient ways of tracking planes for motion and structure esti-
mation. However planes are not always available in the environment. Figure 7.1 shows an example of
an indoor environment where there are not enough points or textured planes for structure and motion.
This motivates the use of lines which is the topic of this chapter.

In the article by Devernay and Faugeras [Devernay and Faugeras, 2001] “Straight lines have to be
straight” the authors devise a calibration approach based on this tautology. In the planar perspective
projection model, distortion is seen as “fault” that should be removed. However we can alternatively
consider distortion as simply part of the imaging process like the focal length or the principal point.
In the case of omnidirectional sensors, distortion is in fact the property that enables a wide angle of
view.

As explained in Chapter 6 it is desirable to work directly in omnidirectional images without un-
warping the image to a perspective view. This means however that we cannot parameterise lines
with for example the standard (ρ, θ) parameters. In this chapter, we will re-explore line images and
introduce ways of working in omnidirectional images.

In the past, lines have been used extensively with panoramic cameras for the motion estimation
and localisation of mobile robots [Yagi and Yachida, 1991; Delahoche et al., 1997] but generally ([Bosse
et al., 2002] being an exception) under the assumption that the lines were radially projected in the
device. This of course limits the use of the sensor to environments with sufficient vertical lines and
imposes the sensor to be in a vertical position. In this chapter we aim at generalising the use of lines.
Work has been done previously for line extraction [Yamazawa and Yachida, 2000; Barreto and Araujo,
2003; Vasseur and Mouaddib, 2004]. Our contribution is to generalise the approach to all central
catadioptric sensors from a projective geometry perspective which leads, as we will see, to simple and
efficient algorithms. To our knowledge, current line tracking for omnidirectional vision has only been
done using quadric approaches such as in [Barreto et al., 2002] or vanishing points [Bosse et al., 2002].
We will see how we can use a parametric approach instead using the minimal amount of parameters.

Structure from motion from lines has been thoroughly studied in the past for normal perspective
sensors [Hartley and Zisserman, 2000]. More recently, [Taylor and Kriegman, 1995] and [Bartoli and
Sturm, 2005] analyse the non-linear structure from motion equations. In the context of non-linear
minimisation, it is desirable to parameterise the problem using the minimum amount of parameters:
the minimisation is faster, less subject to noise and consistency constraints can be directly imposed
(eg. a rotation matrix must stay a rotation matrix after minimisation). In [Bartoli and Sturm,
2005], the authors introduce an orthonormal representation for Plücker coordinates to minimise only
the 4 parameters representing a line. They give references to possible methods to obtain a minimal
representation of the transformation but do not give specific details. In this chapter, we put forth the
group structure of the line motion matrix [Bartoli and Sturm, 2004] that enables the use of Lie algebras
for a minimal parameterisation as described in Section 5.1.5. We detail the specific case of calibrated
cameras that applies to central catadioptric sensors. Different point-line distances are proposed.

We will call line images the projection of 3D lines in the image plane (or the normalised plane
according to context).

After a short insight into the relationship between calibration and line images, the chapter is
devided in three distinct parts. Each part is an essential component of a fully automatic motion
estimation algorithm:� Section 7.3 shows how the projection model can be re-written to use the properties from projective

geometry which leads to a linear estimation of the line images and an efficient algorithm for their
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extraction using Hough transforms.� Section 7.4 is dedicated to the problem of tracking lines between images. In particular we will
detail how to parameterise the line images to avoid singularities.� Section 7.5 concerns the minimisation step to find the camera motion and the 3D line positions.
As explained in Chapter 5, it is desirable to use a minimal parameterisation. We will thus focalise
on group structures and their associated Lie algebras.

Figure 7.1: Example of an image of a difficult sequence for point or plane SFM

7.2 Relationship between line images and calibration

In [Geyer and Daniilidis, 2001], Geyer and Daniilidis study the relationship between line images and
calibration. If we consider the UPM (see Section 2.2.2.2), line images are circles in paracatadioptric
images and more general conics in the hyperbolic case. However line images only depend on two
parameters (figure 7.2). Under the assumption that the unknown calibration parameters consist only
of three unknowns, the focal length and the coordinates of the principal point, this implies we can
calibrate the sensor with 2 line images in the parabolic case and 3 line images in the hyperbolic case.

This situation is very different to normal perspective cameras where line images are lines and do
not add any constraints on the calibration parameters.

Working in with an “uncalibrated” omnidirectional sensor by extracting the conics does not have
the same sense as with a perspective cameras as we could recover the calibration parameters and then
work on the curves with only two degrees of freedom adding robustness to the approach. This is the
underlying idea of this chapter: line images in omnidirectional sensors can be (or should be?) seen as
two-dimensional curves.
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7.3 Line images as projection of planes

A 3D line projected in a monocular imaging device can be parameterised by the normal noted n

(n ∈ S2) formed by the line and the center of projection (figure 7.2).

3D Line

Line image

πm

Cp

Cm

n

n

Figure 7.2: Closest point to a great circle on the sphere

The projection function Π relates a point X s on the sphere to a point p in the image plane. Thus,
we have the following projective property: a point p on an line image of parameter n verifies:

n⊤Π−1(p) = 0 (7.1)

In the case where we do not need to consider the distortion induced by the lens (UPM), the
situation is simpler. Equation (2.2), rewritten here, relates a point on the normalised plane to a
projective ray through the mirror center and X s:





ℏ−1(m) ∼




x
y

f(x, y)




f(x, y) = 1 + ξ x2+y2+1

−ξ−
√

1+(1−ξ2)(x2+y2)

This equation is valid for any central catadioptric device without lens distortion. When the sensor
is calibrated the values for f(x, y) can be pre-calculated and stored in a single look-up table of the
size of the image to improve the efficiency of the lifting of the points. The relation between m and p

is linear and not very costly to compute (in particular if r = 1 and s = 0 which is often the case with
modern cameras). In the more general case (CPM), we would need to save each lifting of an image
point which requires at least two buffers of the size of the image.
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7.3.1 Line estimation

Let Π−1(p) = X s = [xs ys zs]
⊤, if we write (7.1) for n points, we obtain:




xs1 ys1 zs1

xs2 ys2 zs2

...
...

...
xsn ysn zsn


n = An = 0 (7.2)

If we consider the singular value decomposition of A, A = USV⊤ and order the eigenvalues of S

in decreasing order, the normalisation of the third column of V will correspond to the least squares
solution to (7.2). In the case where the focal length is unknown, that there is no distortion and the
mirror is a parabola, the work by Barreto [Barreto and Araujo, 2003] can be used or equation (3.3).

7.3.2 Line extraction with the classic Hough transform

Let Φ be the colatitude and Θ the azimuthal angle, the normal can be written in spherical coordinates
as: 




nx = sin Φ cos Θ
ny = sin Φ sin Θ
nz = cos Φ

if we assume that nz 6= 1 (ie. Φ 6= 0[π]) and note z = f(x, y), from (7.1) we obtain:

Φ = atan

(
x cos(Θ) + y sin(Θ)

z

)
(7.3)

This result was proposed previously in [Vasseur and Mouaddib, 2004]. We discuss a way to adapt
the line extraction to the non-uniform pixel resolution in Section 7.3.4. It may also be noted that
values for atan cannot be pre-calculate (because the input space R is not bounded). To improve
the efficiency, a Hough space can be built using directly tan(Φ) with for example a “linked-list” to
represent the Hough space (see [Xu and Oja, 1993] for details of different structures related to Hough
parameter spaces).

7.3.3 Line extraction with the randomized Hough transform

The Randomized Hough transform (RHT) [Xu and Oja, 1993] has proved to be an efficient and robust
alternative to classic Hough. It shares convergence mapping with RANSAC, meaning that we estimate
the n parameters of the curve function (n = 2 for a line) by randomly extracting n values.

For estimating the parameters of a line, the authors in [Xu and Oja, 1993] extend the (ρ, θ)
parameterisation from Duda and Hart. A natural and more efficient parameterisation can be obtained
by directly estimating the normal: the line image joining two points m1 and m2 has for normal n

(ℏ−1(m) ∈ S2):

n = ℏ−1(m1)× ℏ−1(m2) (7.4)

By imposing for example nz ≥ 0, we obtain a 2-dimensional buffer in (nx, ny).
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7.3.4 Voting in the Hough space

The solid angle subtended by the surface represented by a pixel can be used to take into account the
non-uniform resolution. A pixel p is bounded by (u− 0.5, v − 0.5), (u + 0.5, v − 0.5), (u− 0.5, v + 0.5)
and (u + 0.5, v + 0.5). The corresponding surface on the unit sphere is then bounded by (Φmin,Φmax)
and (Θmin,Θmax) (obtained through the lifting of the points) and corresponds to the following solid
angle s (measured in steradians sr):

s =

∫ Θmax

Θmin

∫ Φmax

Φmin

sin(Φ)dΘdΦ (7.5)

= −(Θmax −Θmin)(cos(Φmax)− cos(Φmin)) (7.6)

The precision of the normal estimate will be inversely proportional to the subtended solid angle
so 1/s can be used in the classic Hough voting scheme. (In the randomized case, we assumed that on
average the surface subtended by two pixels was the same.)

7.4 Line tracking

Tracking is a important step for structure and motion or visual servoing [Mezouar et al., 2004]. It is
essential to use a minimal representation to ensure robustness. Tracking a line L between two views
can be done using classic edge-tracking approaches [Bouthemy, 1989; Smith et al., 2004; Marchand
and Chaumette, 2005] in the following steps:

1. obtain n points on L uniformly distributed in the image,

2. for each point calculate the normal to the edge,

3. search (within pre-defined bounds) along the direction given by the normal to the curve for edge
points with same normals (using pre-calculated convolution kernels),

4. robustly extract the equation of the new line from the edge points.

For 3) the preferred method is the Bresenham algorithm [Bresenham, 1965]. For 4), M-estimators
are often chosen to extract the parameters but in presence of a lot of noise, a RANSAC is a good
alternative (this is relatively fast as the model is simple to fit using (7.4) and the size of the data is
small).

We will now derive a parametric equation for line images and calculate the normal in a given point.
We will see that using a conic parametric function leads to singularities (but gives information on the
nature of the conic). We will then propose a non-singular parametric function.

7.4.1 Conic parametric function

Equation (7.4) can be re-written to obtain a quadric form in the normalised plane [Geyer and Daniilidis,
2001; Barreto, 2003]: m⊤Ωnm with:

Ωn =




n2
x(1− ξ2)− n2

zξ
2 nxny(1− ξ2) nxnz

nxny(1− ξ2) n2
y(1− ξ2)− n2

zξ
2 nynz

nxnz nynz n2
z


 (7.7)
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det(Ω̂n) = ξ4n4
z(n

2
x + n2

y + n2
z) = (ξnz)

4. For Ω̂n to be a proper conic, we will from now on assume
that ξ 6= 0 (non-planar/perspective mirror) and nz 6= 0.

The nature of the conic depends on the number of intersections with the line at infinity i.e. the
sign of ∆ = 1 − ξ2 − n2

z (we removed n2
zξ

2 > 0). ∆ > 0 corresponds to a hyperbola, ∆ = 0 to a
parabola and ∆ < 0 to an ellipse.

From the Joachimsthal equations, we obtain the four focal points (2 real and 2 complex) [Semple
and Kneebone, 1979]. The two real values are:

f1 =




nx

ny

nz +
√

1− ξ2


 f2 =




nx

ny

nz −
√

1− ξ2


 (7.8)

(We can note that f2 is at infinity if the conic is a parabola.) If we now center the conic in f1 and
rotate it (if nz 6= 1) by an angle Θ, we obtain (∆ ≥ −1):

Ω′
m =




∆ 0
√

(1− n2
z)(1− ξ2)

0 −ξ2n2
z 0√

(1− n2
z)(1− ξ2) 0 1


 (7.9)

Let x = ρ cos(θ) and y = ρ sin(θ), the polar equation of the line image centered in f1, valid for
nz 6= 0 and ξ 6= 0, is:

ρ =
1

ξnz −
√

(1− n2
z)(1 − ξ2) cos(θ −Θ)

(7.10)

For nz = 0, the conic is a straight line that goes through the origin and is parameterised by (ρ,Θ).

When nz → 0, we get closer to a degenerate conic as f1 → 0. This means we will not be able to
represent and sample curves when nz → 0 using the angle θ.

The impossibility to represent line images with a single model makes the representation inadequate
for line tracking. Using several representations would require an arbitrary switching mechanism. In
the following section, we will detail how to obtain a non-singular representation.

7.4.2 Unified non-singular parametric function

Let B = {X s = (Xs, Ys, ξ)|X s ∈ S2}. B is the natural boundary between the two sheets of S2 covering
P2 through the unified projection.

Let C be the arc of the great circle corresponding to L and parameterised by n. n can be seen
as an axis of rotation for the points of C on the sphere (figure 7.5). Let w be one of these points
(n⊤w = 0). C can be parameterised with an angle θ without a singularity using Rodrigues’ formula:

w(θ) = e[n]×θw (7.11)

We do not obtain a singularity because a finite 3D line spans an angle strictly inferior to π.

w(θ) is a point on the sphere so its projection m(θ) (defined for m(θ) /∈ B) on the normalised
plane is simply:

m(θ) =
1

wz(θ)− ξ

[
wx(θ)
wy(θ)

]
(7.12)
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7.4.3 Curve sampling

Let s be the arc length of the parametric curve (7.12) between two points m(θ1) and m(θ2) with
θ2 > θ1. We will make the assumption that we have a similarity between the normalised plane and
the image plane (i.e. r ≈ 1 and s ≈ 0). (In other words a uniform sampling in the normalised plane
corresponds to a uniform sampling in the image plane.)

If we wish to sample the curve in n values (to guarantee constant time), the increment arc length

is δs = s
n with s =

∫ θ2

θ1
ds. If we wish to obtain values separated by p pixels, the increment is δs = p

γ .

In the general case, the calculation of arc lengths for conics involves elliptic integrals of the second
kind, so we cannot obtain a simple formulation for s. We may note that in the case of a paraboloid
mirror, the conic is simply a circle which can be uniformly sampled by an angular increment. However
we loose this property with the non-singular representation.

For an approximate calculation of s, we may use the differential form of the curve length and a
small increment for θ:

ds =
√

dx′2 + dy′2dθ (7.13)

with :





dx′ = w′
x(θ)(wz(θ)−ξ)−wxw′

z(θ)
(wz(θ)−ξ)2

dy′ =
w′

y(θ)(wz(θ)−ξ)−wyw
′
z(θ)

(wz(θ)−ξ)2

w′(θ) = e[n]×θ[n]×w

(7.14)

Figures 7.3 and 7.4 illustrate the importance of adapting the line sampling to the curve being
tracked. In figure 7.3 we can see that the projection of a uniform sampling on the sphere can lead to
a poorly sampled line image. Tracking with such a sampling could introduce a bias and will probably
fail if the over-sampled region is for example occluded. The approach proposed in this section can
ensure that the curve is correctly sampled in the image as shown in figure 7.4.
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Figure 7.3: Uniform sampling of a great circle on the sphere with corresponding projection in the
image
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Figure 7.4: Uniform sampling of a line image with corresponding points on the sphere

7.4.4 Normal to a line image

The angle φ of the normal in m(θ) is simply:

φ =

{
atan (−dx′

dy′ ) if dy′ 6= 0
π
2 if dy′ = 0

(7.15)

7.5 Structure from motion

Points and templates are generally chosen for motion estimation in robotic application because they
offer robust and accurate results. However in cases of low-textured environments, lines can play a key
role to improve estimates and provide a partial 3D reconstruction.

In real-time robotic applications, iterative approaches are generally preferred to batch algorithms
as they are often faster. However in the case of lines that have been automatically extracted, the
motion and 3D line estimates are generally not well constrained and sensitive to the 3D position of
the lines. On the other hand, the minimisation is not computationally expensive which encourages a
two step approach: 1) bundle adjustment 2) global filtering (eg. Extended Kalman Filter) when the
covariance enables confidence to be put into the line and motion estimates. In this chapter, we focus
on bundle adjustment.

We will start by describing the representation chosen for 3D lines and in particular the minimal
orthonormal representation proposed by Bartoli and Sturm [Bartoli and Sturm, 2005]. We will then
describe how 3D lines can be transferred between views through a tranformation matrix called the
line motion matrix [Bartoli and Sturm, 2004]. These matrices form a Lie group which enables us to
use the techniques described in Chapter 5 to ensure a minimal representation of the transformation.
Finally we will define different possible distances between lines based on their end points and define
the associated least-squares problem.
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7.5.1 Line representation

We will represent 3D lines by the following Plücker coordinates: L⊤ ∼
[

n⊤ v⊤
]
. A detailed analysis

of Plücker coordinates and other line representations can be found in [Hartley and Zisserman, 2000]
or [Andreff et al., 2002], dedicated more specifically to visual servoing.

Plücker coordinates are defined up to a scale factor. We choose to normalise the first component
to simplify the equations on the sphere. n is defined as previously in the chapter and v is the direction
of the 3D line. In order to obtain a valid line representation, the constraint n⊤v = 0 must be imposed.

Minimal representation of lines

We will use the method proposed by Bartoli and Sturm [Bartoli and Sturm, 2005] to obtain a min-
imal representation (4 parameters) of lines from their Plücker coordinates through an orthonormal
representation.

To summarise, we can write the Plücker line representation as:

[
n v

]
3×2

=
[

n
‖n‖

v
‖v‖

n×v
‖n×v‖

]

︸ ︷︷ ︸
SO(3)



‖n‖ 0
0 ‖v‖
0 0




3×2︸ ︷︷ ︸
one parameter space eg. SO(2)

A way of obtaining this decomposition given a Plücker line representation is to use the QR “or-
thogonal/upper triangular” decomposition:

[
n v

]
3×2

QR
= U3×3




σ1

σ2




3×2

,W =
1

‖σ‖

[
σ1 −σ2

σ2 σ1

]

with (U,W) ∈ SO(3)× SO(2).

The other way round, let xL contain the 3+1 parameters representing the matrices, we can recover
the Plücker coordinates through (with ui the i−th column of U):

L(U(xL),W(xL))⊤ →
[

u⊤
1

w21
w11

u⊤
2

]

7.5.2 Line motion matrix

In [Bartoli and Sturm, 2004], the authors define the 6× 6 matrices that act on Plücker coordinates in
projective, affine and Euclidean spaces. These matrices were named “line motion matrices” as they
transfer Plücker coordinate representations of 3D lines between views.

We can prove that we have in fact a group homomorphism between the transformation groups
and the line motion matrix spaces for the matrix product. This result is important as it indicates
that we can obtain a minimal representation through the associated Lie algebras and recover the
transformations directly. We will detail the Euclidean case which is of interest for this study.

For calibrated central catadioptric cameras, the transformation between 3D lines in two views can
be represented by a rotation matrix R ∈ SO(3) and a translation t ∈ R3 by:

T =

[
R [t]×R

0 R

]
(7.16)
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We will call LE(3) the group formed of matrices of the previous type and le(3) its associated Lie
algebra. Let Ai, with i ∈ {1, 2, ..., 6}, be a basis of le(3). Any matrix A ∈ le(3) can be written as a
linear combination of the matrices Ai.

Let the (3 × 1) vectors bx = (1, 0, 0), by = (0, 1, 0) and bz = (0, 0, 1) be the natural orthonormal
basis of R3. The Ai matrices are of dimension (6× 6). The generators for the translation are:

A1 =

[
0 [bx]×
0 0

]
,A2 =

[
0 [by]×
0 0

]
,A3 =

[
0 [bz]×
0 0

]
(7.17)

The generators for the rotation are:

A4 =

[
[bx]× 0

0 [bx]×

]
,A5 =

[
[by]× 0

0 [by]×

]
,A6 =

[
[bz]× 0

0 [bz]×

]
(7.18)

The exponential map links the Lie algebra to the Lie Group. T can be locally parameterized as,
with xT = (x1, x2, ..., x6):

T(xT ) = exp

(
6∑

i=1

xiAi

)
(7.19)

Thanks to the group homomorphism we can recover the Euclidean transformation Te directly from
xT through the 6 generators Bi of SE(3) (detailed in Section 5.3):

Te(xT ) =

[
R t

0 1

]
= exp

(
6∑

i=1

xiBi

)

The Euclidean transformation can then be used for example in the control loop for a visual servoing
application or for combining the minimisation with other features like 3D points.

We have now described how to represent minimally 3D lines and the associated tranformation
matrices. The final step consists in defining an error function that will link the reprojection error of
lines to the motion and 3D position of the features.

7.5.3 Distance functions

In our framework, 3D lines will be represented by their normals n in a given view (figure 7.5). The
tracked line images are represented by their end points. We will thus need to define a distance between
an end point and a 3D line represented by its normal.

Several distance functions between a point X s and a line parameterised by n can be considered in
the case of the sphere: 




dA(X s,n) = X⊤
s n

dR(X s,n) = arccos(
√

1− (X⊤
s n)2)

dr(X s,n) = de(Π(X⊥
s ),Π(X s))

with X⊥
s = Xs−(X⊤

s n)n√
1−(X⊤

s n)2

(7.20)

X⊥
s is the closest point to the line defined by n from X s (figure 7.5). dA is an algebraic distance. dR

is the distance on the sphere (Riemann distance) between X⊥
s and X s. dr is the distance between

X s and X⊥
s reprojected onto the normalised image plane. It corresponds to the standard distance

between a point and a line in the perspective case if nz = 0.
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3D Line

Line image

πm

n

X⊥s

Xs

Figure 7.5: Closest point to a great circle on the sphere

7.5.4 Global cost function

Let P be the projection matrix for the 3D lines P =
[

I3×3 03×3

]
. We will note xi

T the minimal
representation of the line motion matrix of the i-th view and xT the vector containing all the mo-
tion parameters. x

j
L will indicate the orthonormal representation of the j-th line and xL the vector

containing all the line parameters. Similarly xTL contains all the structure and motion values.

Given a line motion matrix representation xi
T and a 3D line defined by x

j
L, the normal representing

the line image in the i-th view is:

nij = PT(xi
T )L(U(xj

L),W(xj
L))

For this reason we will now write the distances as functions of the minimal parameterisations.

Let X ij
s and be Y ij

s be the two endpoints of the j-th line in the i-th view. The cost function can
be written as, with d. the chosen distance:

cij(x
i
T ,xj

L) =
(
d.(X

ij
s ,xi

T ,xj
L)
)2

+
(
d.(Y

ij
s ,xi

T ,xj
L)
)2

(7.21)

We will now write our minimisation problem using increments as explained in Chapter 5. Let
T̂i be an approximation of the real transformation between the first and i-th view and (Ûj , Ŵj)
an approximation of the j-th line parameters. In the case of the algebraic distance, for example,
the problem is to find the incremental transformations Ti(xT ), Uj(xL) and Wj(xL) such that the
following value is minimised:

dA(X ij
s ,xi

T ,xj
L) = X ij⊤

s PT̂iT(xi
T )L(ÛjU(xj

L),ŴjW(xj
L)) (7.22)
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The global cost function is then for m views and l lines (with xTL the list of the parameters and
x1

T = 0) :

F (xTL) =
1

2

m∑

i=1

l∑

j=1

‖cij(x
i
T ,xj

L)‖2 (7.23)

The equation has 6(m− 1)+4l unknowns. Each line in a given view adds 2 constraints. Therefore
the minimal number of lines needed to constrain the system can be deduced from the formula (if we
consider that each line is visible in each view):

l ≥ 6(m− 1)

2m− 4
(7.24)

Differentiation of the cost function

We will analyse more specifically the differentiation of the reprojection distance (the approach is very
similar for the other distances).

{
dr(X s,n) = de(Π(X⊥

s ),Π(X s))

X⊥
s = Xs−(X⊤

s n)n√
1−(X⊤

s n)2
= s(X s,n)

(7.25)

where X⊥
s is the closest point to the line defined by n from X s.

We will note m⊥ = Π(X⊥
s ) and m = Π(X s).

The function we would like to differentiate with respect to (xT ,xL) is:

{
dr(X s,xT ,xL)2 = de(Π(s(X s, S(n))),Π(X s))

2

n = PT̂T(xT )L(ÛU(xL),ŴW(xL))
(7.26)

with S(n) = n
‖n‖ .

We will derive the Jacobian of the cost function in the current image xTL = x0
TL = 0 (the size

of matrices appear in upperscript). Let l be the number of parameters and m the number of lines,
l = 6 + 3m.

∂dr(xTL)2

∂xTL

∣∣∣∣
1×l

xTL=0

= 2dr(xTL)
∂de(a,m)

∂a

∣∣∣∣
1×2

a= bm⊥︸ ︷︷ ︸
Jde

∂Π(a)

∂a

∣∣∣∣
2×3

a= cXs
⊥

︸ ︷︷ ︸
JΠ

∂s(X s,a)

∂a

∣∣∣∣
3×3

a=S(bn)︸ ︷︷ ︸
Js

∂S(a)

∂a

∣∣∣∣
3×3

a=bn︸ ︷︷ ︸
JS

∂n

∂xTL

∣∣∣∣
3×l

xTL=0

We can note that the differentiation of n appears for all proposed distances when applying the
chain rule.

The jacobians specific to dr have the following values:

Jde =
1

de(m̂⊥,m)
(m̂⊥ −m)⊤

JΠ is detailed in Appendix A.

JS =
I3

‖n̂‖ −
n̂n̂⊤

‖n̂‖3
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Js = − n̂X⊤
s + (X⊤

s n̂)I3√
1− (X⊤

s n̂)2
+

(X⊤
s n̂) s(X s, n̂) X⊤

s

1− (X⊤
s n̂)2

Differentiation with respect to xT

We will use the following notation to simplify the expressions: L̂ = [L̂1:3 L̂4:6] = L(Û,Ŵ).

∂n

∂xT

∣∣∣∣
3×6

0

= (PT̂)3×6 ∂T(xT )L̂
∂xT

∣∣∣∣∣

6×6

0

∂T(xT )L̂
∂xT

∣∣∣∣∣

6×6

0

=
∂TL̂
∂T

∣∣∣∣∣

6×36

T=I

∂T(xT )

∂xT

∣∣∣∣
36×6

0

∂TL̂
∂T

∣∣∣∣∣

6×36

T=I

=




L̂⊤
L̂⊤
L̂⊤
L̂⊤
L̂⊤
L̂⊤




With Ai the generators of the Lie algebra:

∂T(xT )

∂xT

∣∣∣∣
36×6

0

= [flat(A1)
⊤ flat(A2)

⊤ · · · flat(A6)
⊤]36×6

with: flat(Mn×m) = [m11 m12 · · · m1m m21 m22 · · ·mnm]
After simplification:

∂T(xT )L̂
∂xT

∣∣∣∣∣

6×6

0

= −




[
L̂4:6

]
×

[
L̂1:3

]
×

03×3

[
L̂4:6

]

×




We finally obtain:

∂n

∂xT

∣∣∣∣
3×6

0

= −
[(

R̂
[
L̂4:6

]

×

) (
R̂
[
L̂1:3

]

×
+
[
t̂
]

×
R̂
[
L̂4:6

]

×

)]

Differentiation with respect to xL

∂n

∂xL

∣∣∣∣
3×4

0

= (PT̂)3×6 ∂L(ÛU(xL),ŴW(xL))

∂xL

∣∣∣∣∣

6×4

0

U(xL) only depends on the first three values of xL noted x1:3
L and W(xL) only depends on the

last value of xL noted x4
L, thus:
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∂L(ÛU(xL),ŴW(xL))

∂xL

∣∣∣∣∣

6×4

0

=


 ∂L(ÛU(xL),ŴW(xL))

∂x1:3
L

∣∣∣∣∣

6×3

0

∂L(ÛU(xL),ŴW(xL))

∂x4
L

∣∣∣∣∣

6×1

0




∂L(ÛU(xL),ŴW(xL))

∂x1:3
L

∣∣∣∣∣

6×3

0

=
∂L(A,Ŵ)

∂A

∣∣∣∣∣

6×9

A= bU

∂ÛB

∂B

∣∣∣∣∣

9×9

B=I

∂U(xL)

∂x1:3
L

∣∣∣∣
9×3

0

∂L(ÛU(xL),ŴW(xL))

∂x4
L

∣∣∣∣∣

6×1

0

=
∂L(Û,C)

∂C

∣∣∣∣∣

6×4

C=cW

∂ŴD

∂D

∣∣∣∣∣

4×4

D=I

∂W(xL)

∂x4
L

∣∣∣∣
4×1

0

The generators for so(3) are:

C1 =[bx]×,C2 =[by]×,C3 =[bz]×

and the generator for so(2) is:

D=

[
0 −1
1 0

]

Let ûi be the i−th column of Û. With a similar derivation to that of xT , we obtain:

∂n

∂xL

∣∣∣∣
3×4

0

=

[
R̂

[
t̂
]
×

R̂

][ 03×1 −û3 û2 03×1
cW21
cW11

û3 03×1 −cW21
cW11

û1
1

cW2
11

û2

]

7.6 Experimental results

7.6.1 Simulated data

Our experimental setup consists of a parabolic mirror (ξ = 1) with a generalised focal length of γ = 270
(this value was chosen from a real camera). Lines were randomly generated at a distance of the camera
between 0 and 8 m. The images were spaced by a random transformation with a translation between
[0; 10] cm and a rotation between [0;π/2] rad to simulate an incremental motion. We added Gaussian
noise to the end-points of each line projected in the image. The given values are the mean over 40
trials. The aim of these experiments was to assess the quality of the distances on the sphere. We also
wanted to answer the question: is it better to have a lot of lines with few images or a lot of images with
few lines ? (i.e. the trade-off between frame rate and the processing time taken for the line extraction
and tracking)

Figure 7.6 shows the effect of errors in the image on the estimation of the translation for 10 lines
seen in 15 images (the rotation gave similar results). The reprojection distance dr gave a far better
accuracy than the Riemann dR and algebraic dA distances with similar results.

Figure 7.7 shows the effect of the number of lines over the quality of the estimation for a fixed noise
of 2 pixels and 10 images (only dr is shown, the other distances gave similar results). The number of
lines has a strong influence over the accuracy of the estimates. Figure 7.8 assesses the improvement
in accuracy as the amount of images increases for 3 lines and a fixed noise of 2 pixels. The number
of images only improves the estimates slightly. For robotic applications, these results indicate that it
might be preferable to estimate and track as many lines as possible rather than obtain many images
(with for example a high frame rate). This is coherent with (7.24).
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Figure 7.6: Translation error for different distances when varying the added noise on the line end-points
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7.6.2 Real data

7.6.2.1 Technical details

The RHT was used for the line extraction. In the case of non-perspective omnidirectional sensors,
the large field of view and the relative low resolution means that we obtain strong gradient responses
typically around the mirror border. To improve the line image extraction, the voting scheme used
a measure of confidence based on the expected gradient direction (from (7.1) and (7.14)) and the
observed gradient direction in the image.

For the tracking, after a search along the normals, the line image parameters were extracted with
RANSAC followed by a least-square minimisation (7.2).

To avoid line images “jumping” between two potential lines, we only considered lines with relatively
few outliers (∼ 40%) and with “enough” supporting points.

7.6.2.2 Experiment

The validation was done on a sequence of 35 images where point or template-based approaches gave
unsatisfying results. The sensor used is a parabolic mirror with a telecentric lens and a perspective
camera of resolution 1280 × 10241. The motion was constrained in a plane by only estimating 1
rotation and 2 translation parameters in the Lie algebra. The initial values given were the identity
for the transformations and the cross product between n and a point X s for the second component of
the Plücker coordinates. The initial pixel reprojection error was of 36.3 pixels. After minimisation of
the cost function with the Levenberg-Marquardt algorithm, it was reduced to 0.86 pixels.

Figure 7.9 shows the first and last image of the corridor sequence (the images were flipped to ease
the comparison with the 3D model). No new lines were added during the tracking. Not all lines could
be tracked through the entire sequence. Figure 7.10 shows two views of the reconstructed scene with
the robot motion. Without being entirely satisfying, the results are sufficiently accurate (∼ 5 cm over
1 m) to be beneficially in combination with other visual features or extra sensors.

Figure 7.9: First and last image of the corridor sequence

1the toolbox used for the calibration is available as open-source software on the author’s website
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Figure 7.10: Two views of the 3D reconstruction of the scene with the robot motion depicted by the
green line with circles

7.7 Conclusion

In this chapter we have presented algorithms for automatic structure from motion from lines for central
catadioptric sensors. We focused on important aspects for robotic applications such as robustness and
minimal parameterisation. From our experimental and simulation results, we do not believe lines
constrain the motion sufficiently to be used alone. They can however provide additional robustness to
mapping and navigational tasks in low-textured man-made environments.



Part III

Simultaneous localisation and mapping
from a laser range finder and an

omnidirectional camera





Chapter 8

A short overview of SLAM

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1.1 Simultaneous localisation and mapping . . . . . . . . . . . . . . . . . . . . . . 106

8.1.2 Applications of SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1.3 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 Solutions to the SLAM problem . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.1 Notations and formulation of probabilistic SLAM . . . . . . . . . . . . . . . . . 108

8.2.2 Kalman filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2.3 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2.4 Bundle adjustment and expected maximisation . . . . . . . . . . . . . . . . . . 112

8.3 Map representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4 Sensors and SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4.1 Range bearing: sonars and laser range finders . . . . . . . . . . . . . . . . . . . 114

8.4.2 Vision-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4.3 Combination of sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5 Open problems in SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



106 A short overview of SLAM Chap. 8

8.1 Introduction

8.1.1 Simultaneous localisation and mapping

Localisation is the problem of estimating the motion of a robot given a known map. Mapping is
the creation of a map of the environment from measurements knowing the true path of the robot.
When neither the robot path nor the map are known, localisation and mapping must be considered
concurrently. This problem is known as Simultaneous Localisation And Mapping (SLAM). The aim is
to recover the path of the robot and a map based on measurements of its ego-motion and of features
in the environment, both corrupted by noise. This problem is central to building autonomous robots
and has been at the focus of a lot of research since the 1980’s. A survey of robotic mapping can be
found in [Thrun, 2002] or in the more recent book dedicated to the subject [Thrun et al., 2005]. Two
recent tutorials by Hugh Durrant-Whyte and Tim Bailey [Durrant-Whyte and Bailey, 2006; Bailey
and Durrant-Whyte, 2006] describe some of the standard methods for solving the SLAM problem but
also some more recent algorithms. They contain up-to-date references to online software and datasets.

8.1.2 Applications of SLAM

SLAM has found many applications in areas where accurate global positioning (obtained through
GPS or using beacons) is not available. It has proved essential for mapping dangerous areas such as
abandoned mines (Figure 8.1 (a)) or regions where it is difficult or even impossible to send humans
such as underwater environments, ([Williams and Mahon, 2004] and Figure 8.1 (b)) or distant planets.
Autonomous systems can also ensure accurate and safe navigation for applications such as cargo
handling (Figure 8.1 (c)).

The motivations for using autonomous systems can be the security of people involved, the repeata-
bility of the task in particular for surveying large areas and the precision of the maps obtained.

The flexibility of the approach makes it possible to deploy robots without requiring human inter-
vention in environments that change with time.

8.1.3 Historical overview

Localisation and mapping has been an active field of research since the 1980’s.
With mapping naturally arises the question: what should be represented, how and for what appli-

cations ?

Topological maps, often represented as graphs, describe the connectivity of places whereas metric
maps capture the geometric structure of the environment. The difference is not always evident as
most topological maps include a metric notion and most navigation algorithms based on geometric
representations use some sort of topological abstraction.

Occupancy grids [Elfes, 1989] or polyhedral representations [Chatila and Laumond, 1985] belong to
some of the early map representations. They are metric in the sense that we can measure the distance
covered by the robot based on the map but topological as the possible ways to access places are directly
included in the representation. This is of course essential for motion planing and explains the success
of occupancy grids in real applications [Thrun et al., 2000]. The topological-metric relationship is not
always present in particular when geometric features are used.

The problem of how to build the maps probabilistically appeared in the same time as the repre-
sentations were being studied. Advances appeared simultaneously in visual navigation [Ayache and
Faugeras, 1988] and in sonar-based navigation of mobile robots [Chatila and Laumond, 1985; Moutar-
lier and Chatila, 1989]. Since the articles by Smith, Self and Cheeseman [Smith and Cheeseman, 1986;
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(a) (b)

(c)

Figure 8.1: Different applications of autonomous systems: (a) Mine mapping at CMU (b) Exploration
of the coral reef at the ACFR (c) Transporting cargo containers at the ACFR

Smith et al., 1990] in the 1990’s, stochastic mapping has become the dominant approach to SLAM.
The term SLAM itself appeared a few years later [Leonard and Durrant-Whyte, 1991]. Important
theoretical results concerning the convergence of the SLAM problem if considered as a whole where
studied by Csorba [Csorba, 1997] and Dissanayake et al. [Dissanayake et al., 2001]. Many probabilistic
approaches to SLAM exist in the literature. The most widely used is the Kalman filter with maps
generally consisting of a set of landmarks representing the environment. Bundle adjustment [Triggs
et al., 1999] from the computer vision literature concerns all the maximum likelihood (ML) or maxi-
mum a posteriori (MAP) techniques including Kalman filtering even though the tendency in computer
vision is to use batch algorithms that require all the data. Expectation maximisation [Dempster et al.,
1977] can also be applied to the SLAM problem, it requires all the data but can solve the correspon-
dence/association problem (i.e. if measurements correspond to same physical entity). Recent research
has focused on solving the correspondence problem in real-time through mixtures of Gaussians or
particle filters [Montemerlo, 2003]. It is however unclear how to determine the number of Gaussians
or particles. These methods are shown to be inconsistent in the general case [Bailey et al., 2006b].

Robotic exploration is often considered independently from the map building task. This is some-
what surprising as the aim of an autonomous system is rarely the map itself but often the navigation
in the environment. Combining navigation and mapping can lead to elegant solutions [Victorino,
2002]. Sensor-based approaches such as visual servoing show interesting and promising solutions to
navigation, localisation and mapping [Silveira et al., 2006; Remazeilles et al., 2006].
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8.2 Solutions to the SLAM problem

In this section, we will describe some of solutions and issues regarding the estimation of the motion
and uncertainty in probabilistic mapping.

8.2.1 Notations and formulation of probabilistic SLAM

xt

xt+1

xt+2

mj

mi

zt−1,i

ut

ut+1

ut+2zt,j

xt−1

Figure 8.2: Notations for the SLAM problem

The following notations will be used [Durrant-Whyte, 2002; Durrant-Whyte and Bailey, 2006] and
figure 8.2:� a discrete time index t = 1, 2, ...,� xt the true location of the robot at a discrete time t,� ut a control vector applied at time t− 1 to drive the robot from xt−1 to xt at time t,� mi the position of the ith feature or landmark,� zt,i an observation or measure of the ith feature made in xt at time t,� zt a generic observation of all the landmarks at time t.

We can also define the following sets:� a history of past states: X0:t = {x0,x1, . . . ,xt} = {X0:t−1,xt}� a history of control inputs: U0:t = {u1,u2, . . . ,ut} = {U0:t−1,ut}



8.2. Solutions to the SLAM problem 109� the set of all landmarks: m = {m1,m2, . . . ,mM}� the history of the landmark observations: Z0:t = {z1, z2, . . . , zt} = {Z0:t−1, zt}

In the simultaneous localisation problem, we assume that:� no prior information is available on the features m that form the map,� the initial position or origin x0 is known,� the control sequence U0:t is also known.

From the observations or measures acquired by the robot, the problem is then to build incrementally
and simultaneously the map m and the set of positions X0:t of the robot. These two problems are
coupled, as from a single measure z, we wish to find two quantities, the position of the robot xt

and the position of the landmark m. A solution can only be found by considering these problems
concurrently. Written in probabilistic form, the solution to the SLAM problem requires the estimation
of the following joint posterior density of the vehicle state and landmarks knowing all the observations
and controls given to the robot:

P (xt,m|Z0:t,U0:t,x0) (8.1)

Recursive formulation of the problem The motion model or vehicle model expresses the current
pose knowing the previous poses and controls. We make the assumption that the positions form a
Markov chain: given the present state, the future and past states are independent. Assuming that the
pose does not depend on the map, this can be expressed formally as:

P (xt|xt−1,ut) = P (xt|xt−1,ut,X0:t−2,U0:t−1,m)

Under this assumption, the law of total probability1 and Bayes’ rule2 leads to the time update
equation:

P (xt,m|Z0:t−1,U0:t,x0) =
∫

P (xt,xt−1,m|Z0:t−1,U0:t,x0)dxt−1

=
∫

P (xt|xt−1,m,Z0:t−1,U0:t,x0)P (xt−1,m|Z0:t−1,U0:t−1,x0)dxt−1

=
∫

P (xt|xt−1,ut)P (xt−1,m|Z0:t−1,U0:t−1,x0)dxt−1

(8.2)

We also assume that the measurements are conditionally independent and only depend on the
current position, which is a reasonable assumption in practice:

P (Z0:t|X0:t,m) = Πt
i=1P (zi|X0:t,m)

Applying Bayes’ rule to expand the joint distribution in terms of the state and then in terms of
the landmark observations gives the following two equalities:

P (xt,m, zt|Z0:t−1,U0:t,x0) = P (xt,m|Z0:t,U0:t,x0)P (zt|Z0:t−1,U0:t,x0)

P (xt,m, zt|Z0:t−1,U0:t,x0) = P (zt|xt,m)P (xt,m|Z0:t−1,U0:t,x0)

1Reminder: P (x) =
R

P (x, y)dy
2Reminder: P (x, y) = P (x|y)P (y)
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P (zt|xt,m) is often called the observation model or measurement probability and requires accurate
modeling of the measurement errors of the sensor.

By combining these equations, we obtain what is referred to as the measurement update equation:

P (xt,m|Z0:t,U0:t,x0) =
P (zt|xt,m)P (xt,m|Z0:t−1,U0:t,x0)

P (zt|Z0:t−1,U0:t)
(8.3)

From equations (8.2) and (8.3), we obtain the recursive formulation to the SLAM problem:

P (xt,m|Z0:t,U0:t,x0) = ηP (zt|xt,m)

∫
P (xt|xt−1,ut)P (xt−1,m|Z0:t−1,U0:t−1,x0)dxt−1

with η a normalising constant.

We will now describe different solutions to the SLAM problem:� recursive solutions: Kalman filter, particle filter and SLAM occupancy grids,� global minimisation methods that require the entire dataset: bundle adjustment and expected
maximisation.

8.2.2 Kalman filters

The Kalman filter and more generally the Extended Kalman Filter approximates the joint posterior
density (equation (8.1)) as a high dimensional Gaussian over the robot pose and the map features. In
Appendix D, we describe the equations of the Kalman filter. A basic implementation of this filter was
used for the experiments in Chapter 9.

By keeping explicitly the correlation between the landmarks and the robot pose, the Kalman filter
can ensure convergence towards a lower bound determined by the initial uncertainty in the robot pose
and measurements.

The Kalman filter has become a standard approach to solving the simultaneous localisation prob-
lem. The popularity of the approach, besides the ease of implementation, can be explained by its
optimality properties. The Kalman filter provides a linear minimum variance estimation of discrete-
time systems. The following assumptions are needed to ensure optimality:� the process noise wt and measurement noise vt have zero mean, uncorrelated white-noise pro-

cesses with known covariance matrices.� the initial position considered as a random vector x0 is uncorrelated to wt and vt and has a
known mean and covariance.

For complex robotic systems, the Gaussian nature of the measurement noise is often justified by
invoking the Central Limit theorem that states that if a sum of the variables has a finite variance,
then it will be approximately normally distributed.

There are however some important issues using the Kalman filter for SLAM:� linear approximation. The linearisation used in the EKF leads to inconsistencies in the solution.
Results on the convergence and consistency3 of the filter have only been shown in the linear case.

3in other words the system will become over-confident regarding its pose and those of the landmarks



8.2. Solutions to the SLAM problem 111� complexity. For each new landmark, the correlation with all the values of the state vector must
be saved. The observation update equation also requires an update of the landmark poses and
joint covariance. In other words, a naive implementation of the filter is quadratic in time and
memory usage.� data association. the standard approach to Kalman filtering is to assign an observation to the
landmark the most likely to have generated it. This can be done by nearest neighbour gating or
better by joint compatibility test [Neira and Tardos, 2001]. However the Kalman filter makes a
single data association hypothesis at every time step and is sensitive to incorrect associations.
Some authors refer to this as the lack of robustness of the EKF solution [Newman et al., 2006].
This difficulty is also enhanced by the inconsistencies introduced by the linearisation.

These issues have all been studied extensively over the past decade.

The Unscented Kalman Filter (UKF) [Julier and Uhlmann, 1997] addresses the problem of the
errors introduced in the true posterior mean and covariance by the linearisation of the non-linear
equations. By using a deterministic sampling, a set of sample points are chosen around the mean.
These points are then propagated through the non-linear functions and the covariance of the estimate
is recovered. This captures the posterior mean and covariance accurately to the 3rd order for any
nonlinearity compared to a first-order accuracy for the EKF. This method gives better results than
the standard EKF but in no way removes the underlying problem due to the linearisation.

The problem of complexity has been thoroughly studied to enable real-time mapping of large
environments. The methods generally exploit the sparsity in the dependencies between the local
robot position and distant landmarks to build local maps. [Guivant and Nebot, 2000] achieve a linear
complexity without any approximations. In [Leonard and Feder, 1999], the authors achieve constant
time updates but the solution does not guarantee consistency. The ATLAS framework [Bosse et al.,
2003] achieves a constant time performance but does not compute state estimates with respect to a
single global reference frame. More recently Leonard and Newman also proposed a consistent and
constant-time SLAM approach which also ensures convergence [Leonard and Newman, 2003]

Other approaches to not require the sub-map framework and in this sense are more systematic.
The sparse information filter [Thrun et al., 2004] exploits the sparsity of the inverse of the covariance
matrix to derive constant time updates for the time and measurement equations. Modifications have
to be made however to the initial framework to ensure consistency [Walter et al., 2005]. Alternatives
exists such as the covariance intersection [Julier and Uhlmann, 2001] which also provably avoids
over-confidence or thin junction trees [Paskin, 2002].

What should be noted however about the notion of convergence and consistency is that they are
only proved in these studies for the linear case. To summarise, several methods now exists with
constant-time updates which are provably consistent and convergent in the linear case. In the non-
linear case, difficulties remain. Authors have even come to question if the framework proposed 20 years
earlier by Smith, Self and Cheeseman was well-founded [Julier and Uhlmann, 2001]. These concerns
have been confirmed more recently [Bailey et al., 2006a].

The ambiguity in data association is another difficult problem to solve in EKF-SLAM frameworks.
Several solutions have been proposed such as using the Hough transform [Tardos et al., 2002] which
gives impressive results on difficult sonar data. In [Dissanayake et al., 2001] a maximum likelihood
approach is proposed, later used in [Thrun et al., 2004] with notations that make the data association
explicit in the formulation of the SLAM problem. These approaches however all choose a single data
association to update the Kalman filter. In [Nebot et al., 2003], the authors combine the EKF with
a particle filter to remove the ambiguity of local associations. A situation where data association
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is critical is when the uncertainty related to the robot pose and landmarks becomes too important
for simple maximum likelihood matching, or when the filter becomes altogether inconsistent. This
problem is generally referred to as “loop closing” in the literature. It is one of the motivations for
using omnidirectional vision as we will see in Chapter 9.

Particle filters and in particular FastSLAM [Montemerlo, 2003] have paved the way for a different
framework: the distributions are no longer considered Gaussian and the data association can be
modeled explicitly in the estimation process. The next section gives a insight into this work.

8.2.3 Particle filters

Equation (8.1) will be rewritten to take into account explicitly the landmark correspondences as in
[Montemerlo, 2003; Thrun et al., 2004].

To simplify the notations, we will assume that a single measurement is obtained at a given time
step. This does not affect the generality of the approach that can be applied sequentially. The
landmark corresponding to the observation zt will be identified by a value ct. C0:t will correspond to
the set of associations:

C0:t = {c1, c2, . . . , ct}
Rewriting equation (8.1) to put an emphasis on the known correspondences becomes:

P (xt,m|Z0:t,U0:t,C0:t,x0) (8.4)

The idea of particle filtering with SLAM comes from the observation that the correlation between
observations only occurs through the robot pose. If the full trajectory (all the poses X0:t are known),
we have a simple mapping problem with conditionally independent landmarks.

Equation (8.4) can be written:

P (X0:t,m|Z0:t,U0:t,C0:t,x0) = P (m|Z0:t,U0:t,C0:t,x0)P (X0:t|Z0:t,U0:t,C0:t,x0)

The idea is to represent this posterior by a set of particles representing the sample path of the
robot. For the problem to be tractable in the high dimensional search space, a Rao-Blackwellisation
filter [Doucet et al., 2000] is used. The sampling can be done not only over the poses but also over
the possible data associations.

FastSLAM achieves an O(M log(N)) complexity, with N the number of features and M the number
of particles, and has shown its ability to map large areas [Montemerlo, 2003]. However the dependency
between the pose and measurement history means that the resampling prevents a consistent long-term
estimate of the joint posterior [Bailey et al., 2006b].

8.2.4 Bundle adjustment and expected maximisation

Batch update methods - generally maximum likelihood approaches - are very popular in computer
vision where the problem of recursive real-time estimation is less central [Triggs et al., 1999]. The
vast majority of these approaches assume that the data association has been made. They rely on
minimising all the poses and the structure from the data association. In vision, for example, the data
could be points projected in several views and matched by correlation. Bundle adjustment would
then consist in minimising the reprojection error to recover the camera and point positions. For the
calculation to stay tractable, the sparsity of the SLAM problem is exploited.

These type of methods can be used in robotics by “local” optimisation or “incremental maximum
likelihood” but as such the values cannot be revised and the algorithm cannot map cyclic environments.
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A way of overcoming these limitations is to keep a notion of uncertainty to enable global optimisation
over the poses when loop closing situations are found [Gutmann and Konolige, 1999]. The updates
are then constant time during motion estimation and mapping but during loop closure the complexity
depends on the size of the loop. The limitations of these methods are: 1) data association. There has
to be a reliable mechanism for the loop closing to take place. 2) computational time. The loop closing
can be expensive if there are a lot of poses and means the method is not real-time. 3) local optima.
The optimisation or “loop closing” can fail to converge towards the global optima, this can lead to
an inconsistent map. This approach was also used for mapping with teams of robots [Konolige et al.,
1999; Thrun, 2001].

An alternative optimisation approach to solve the correspondence problem is expected maximisa-
tion (EM) [Dempster et al., 1977; Thrun et al., 1998; Burgard et al., 1999]. The underlying idea is
similar to particle filtering. As building the map with a known robot path is relatively simple, the
algorithm separates the estimation of the global posterior over the poses and map by two optimisation
steps. The first, the expectation step, calculates the posterior over the robot poses for a given map.
The second, the maximisation step calculates the most likely pose given the robot poses. At each
cycle the maps become increasingly accurate. The algorithm has proved to give good results with
particularly difficult correspondence problems. However, as with any non-linear optimisation method,
this approach also suffers from the risk of local maxima and is computationally expensive. Recent
work has shown the possibility of applying this approach at “exploration compatible frame rate” under
the assumption of good initial values [Thrun et al., 2003]. Strictly speaking it is not real-time as for
loop closing the complexity will depend on the size of the loop as with bundle adjustment.

8.3 Map representations

In the previous sections, we presented the theoretical issues and some solutions to probabilistic SLAM.
We have not discussed however what to represent and how. This is of course an essential part of map
building and is strongly related to the application and the sensors. We will now discuss some of the
choices made in the research community.

Maps can be described by one or several of the following categories:� topological. Topological maps are generally represented by a graph. An arc indicates the acces-
sibility of different sites in the environment. The vertices often contain identifiers of the visited
places: image descriptors, sets of points (eg. SIFT points), etc.� geometrical. Features such as points, lines, curves are used to represent the map. A measure
of probability is generally associated to the position of the features. A geometrical approach
enables a direct measure of distance. However these methods require to choose an appropriate
feature representation.� grid space. A grid representation generally indicates the free space in the environment. It is
well-adapted to obstacle avoidance. However a higher level of abstraction is needed to define the
notion of distance between places or possible objects in the environment.

Robot exploration in probabilistic maps are often based on maximising the information gain.
However probabilistic maps are not the only solution to exploration, topological representations that
are not subject to problems such as inconsistency are interesting alternatives. Ensuring that the entire
environment is mapped is difficult to guarantee with probabilitic methods. Voronöı diagrams [Choset
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and Nagatani, 2001; Kuipers and Byun, 1991] or Morse decompositions [Acar et al., 2002] can provide
topological completeness.

We will now describe some of the geometric representations used for SLAM:� points. Points are particularly popular with visual sensors [Davison, 2003].� lines. They are very common for indoor map building from lasers [Newman et al., 2002] as they
provide relatively dense representations of these environments. They have also recently be used
successfully with visual sensors [Smith et al., 2006; Eade and Drummond, 2006]. They have the
advantage of being common in indoor environments even when points are difficult to extract,� planes. Planes are interesting 3D representations as they can be used to represent complex struc-
tures with few parameters. They have been successfully applied to laser-based reconstruction in
[Thrun et al., 2003], where the planes are found by Expected Maximisation. In [Molton et al.,
2004], the authors compute the normals around points considered as planes but do not include
the normals explicitly in the EKF state vector. As we have shown in Chapter 6, planes can be
tracked efficiently and if tracked jointly provide precise structure and motion estimates.

Recently scan-slam [Nieto et al., 2006] has provided a framework for representing the uncertainty
of features defined by “parts” of a laser range scan. The approach avoids the difficult (and slightly
arbitrary) choice of a geometric representation and enables the use of features of any shape in an EKF
filter.

2D [Elfes, 1989; Moravec, 1988] or 3D [Moravec and Martin, 1996] occupancy grids are a particularly
popular probabilistic representation. Each element of the grid represents the probability of being
occupied. The posterior is calculated using Bayes’ rule and a sensor model. These grids have the
advantage of representing the environment in a way compatible with navigation. They are also robust
and able to use raw sensor information. The drawback of the grid space is the need to define a fixed
granularity and it cannot - as such - incorporate motion uncertainty.

However this last point can be addressed by particle filtering as each particle represents a given
pose and thus provides a way of applying directly Bayes’ rule [Hähnel et al., 2003a].

In summary, maps can be chosen to represent paths between identifiable sites (topological repre-
sentations), geometric features (points, lines, planes) or the free space. Geometric features are often
chosen according to the sensor and the environment that should be explored. Methods that can work
on raw measurements such as scan-slam or occupancy grids are popular by their ability to use nearly
all the available sensor data. This might not always be a good choice especially when the quantity of
information as with visual sensors. Points, lines or planes might then be better adapted to real-time
constraints.

8.4 Sensors and SLAM

The evolution of SLAM is strongly linked to the sensors used. Choosing a solution (EFK, particle
filters,...) should also take into account the type of incoming information. This section will illustrate
some of the sensors used for SLAM and discuss the methods chosen to solve the problem.

8.4.1 Range bearing: sonars and laser range finders

Sonars were within the first sensors used in robotics for mapping. However they give relatively noisy
measurements of the environment (such as phantom targets caused by crosstalk, noise from external
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sources, etc.). Even after 20 years of research, these sensors are still considered difficult to use and ad-
vanced mapping techniques are needed to solve the correspondence problem such as Hough transforms
[Tardos et al., 2002] or expected maximisation [Burgard et al., 1999] in the off-line mapping case.

Lasers have a better signal to noise ratio and have often replaced sonars. Diffusion or specularities
can also introduce noise in the laser data but a pre-processing step is generally sufficient. The quality
of the sensor data simplifies the correspondence problem to the point where indoor environments
without too “drastic” loop closure measures [Gutmann and Konolige, 1999] are possible.

When building bigger maps, data association becomes more challenging. Furthermore, 2D sonars
and lasers limit to a great extent the application of SLAM to 3-DOF estimation and indoor environ-
ments.

3D lasers are now appearing regularly in the robotics literature [Newman et al., 2006] but inherit
the difficult data association problem from the nature of the sensor. The acquisition time required by
these sensors is also currently incompatible with real-time exploration.

Vision is also becoming an increasingly important topic in robotic SLAM but current methods are
not able to map large environments [Valls Miro et al., 2006] in real-time. The motivation for using
visual sensors is the high perceptual information that greatly reduces the data association problem.
With vision however, we no longer have the direct range information as with sonars or lasers.

We will now discuss more specifically vision-based SLAM.

8.4.2 Vision-based SLAM

Solutions to iterative structure and motion have (re-)appeared recently in the computer vision.

In [Chiuso et al., 2002] the authors use a Kalman filter to estimate the full 6-DOF motion of the
camera using points identified in the images. This approach is not strictly speaking SLAM as they
remove points regularly from the filter to guarantee constant time.

The first attempt at SLAM with monocular vision seems to have been [Broida et al., 1990]. However
real-time SLAM has only become possible recently with faster computers and ways of selecting sparse
but distinct features. Davison [Davison, 2003] proposed an approach that registers features during
the whole SLAM process, avoiding the risk of drifting as when transient tracking points are used. He
also showed that a large field of view [Davison et al., 2004] (in this article a fish-eye lens) makes it
easier to find and to follow salient landmarks. The approach has only been shown to work in small
office-size environments with relatively few landmarks and has not proved it could solve large loop
closing problems. A specific difficulty with monocular EKF-SLAM is point initialisation as the scene
is partially observable and the point depths have to be found. To overcome this problem delayed point
insertion was first proposed such as local bundle adjustment [Deans and Hebert, 2000] or particle
filtering [Davison, 2003]. More recently undelayed approaches have made it possible to reduce the
computational cost and lead to a more systematic approach [Kwok and Dissanayake, 2004; Solà et al.,
2005]. Bearing-only SLAM has been recently applied successfully in a full framework combining a loop
closing approach using a panoramic camera [Lemaire and Lacroix, 2006].

Recently, visual odometry [Nistér et al., 2006; Mouragnon et al., 2006] applied to monocular
and stereo vision has shown the possibility of using Maximum Likelihood approaches for 6-DOF
motion estimation. This work is based on a classic framework from projective geometry (Harris
points+RANSAC+optimisation [Hartley and Zisserman, 2000]) but has shown real-time capabilities
and good precision. These approaches however do not have the possibility of re-capturing features or
applying loop closing and are subject to drift. However this work is in fact very close to the initial work
by Gutmann and Konolige [Gutmann and Konolige, 1999] and by including uncertainty estimation
and loop closing it could provide precise results [Konolige, 2005]: the state estimate is not systemati-
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cally linearised, the problem of 3D point initialisation is automatically solved and local robust bundle
adjustment can prevent incorrect point associations.

Generally speaking, the issues that have to be solved for vision based SLAM are:

1. initialisation of the features. In the monocular case, to apply the EKF the 3D point estimates
must follow a Gaussian profile. In the stereo or multiple view case, efficient ways of associating
the data between views has to be found.

2. problem of observability. For directional monocular cameras, pure rotations (or motion close to
pure rotation) renders the motion unobservable. This problem has been rarely addressed in the
literature but is essential to produce a working system.

3. 6-DOF. Estimating the full motion of the camera is more challenging as the approximations
introduced by the linearisation will have a stronger impact and techniques such as particle
filtering will require even more particles to capture the non linearities.

To conclude we could say that vision in SLAM has the advantage of providing rich perceptual
information compared to lasers and consequently low data association ambiguity. However visual
sensors introduce other challenges such as point initialisation, observability and the non-linearities of
6-DOF estimation.

We will now describe sensor fusion and see how combining sensors can solve some these issues.

8.4.3 Combination of sensors

Within popular combination of sensors, GPS combined with odometry or with laser ranging or mil-
limeter wave radar are within the most popular. The advantages of GPS are obvious: there is no
drift and high precision can be obtained. This should not however hide the fact that GPS is not
considered as a reliable sensor. Perturbations, the dependence on the satellite positioning make this
sensor less attractive. Furthermore in many situations where autonomous robots are used such as in
mines, underwater, on distance planets or even within towns, GPS is either unavailable or simply too
imprecise. This motivates research with sensors that do not provide global positioning and are subject
to drift.

Fusing sensor information can either be done at low level by combining the data before applying
filtering. The information can also be considered independently at a higher conceptual level as with a
Federated filter [Carlson, 1990]. This type of information management makes the system more flexible
with “plug-and-play” possibilities. However the direct combination can give more reliable information
and the possibility of working on the problem of observability. Combining the data also reduces the
size of the state space in a probabilistic framework.

In the last part of this thesis we will show how combining laser and vision can simplify some
the issues in SLAM. In Chapter 9 we analyse the problem of 3-DOF SLAM and the possibility of
detecting and closing loops. In Chapter 10 we show how 2D range bearing information from the laser
with omnidirectional images can provide full robust 6-DOF motion estimation.

8.5 Open problems in SLAM

Research in SLAM has generally assumed that the world was static. Initial work on dynamic environ-
ments mainly focused on the simpler problem of localisation with moving objects [Fox et al., 1999].
In SLAM, moving objects were initially considered as noise or outliers that should be rejected by the
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mapping process. However identifying moving objects and anticipating their movement can improve
the mapping process itself: predicting the motion of objects simplifies their identification in the data.
It is also an essential component of human-machine interaction. From a navigation point of view, it
can add the possibility of active obstacle avoidance.

Recent research has improved the understanding of mapping in dynamic environments [Biswas
et al., 2002; Hähnel et al., 2003b; Wang et al., 2003; Wolf and Sukhatme, 2004]. It is interesting to
note that dynamic mapping raises several specific problems: how to take into account objects that were
previously considered as static objects and have moved (updating maps), how to represent dynamic
objects in the maps, how to ensure that the problem stays tractable, how to define the notion of
consistency for dynamic environments and objects.

The underlying theoretical framework is currently not fully understood, problems such as con-
sistency, the relationship between real-time and multiple object tracking are still important topics of
research. Even in static environments, an algorithm which is provably consistent for non-linear models
does not currently exist. This is however of essential importance as it is the founding of stochastic
mapping.

Computer vision is likely to become an essential component for mapping dynamic environments.
Problems such as motion segmentation, tracking and behaviour understanding have a long history in
the vision literature [Hu et al., 2004; Lepetit and Fua, 2005].

Other new topics of research include multiple robot mapping, that was studied for example in
[Thrun, 2001]. The problems encountered are similar to the data association problem. Localisa-
tion, through omnidirectional vision for example, can help reduce the uncertainty when joining maps.
Finding map representations compatible with human-robot or robot-robot interaction (eg. for solving
complex tasks) is also a potentially rich topic of research.

Navigation and path planning are also essential components of fully autonomous systems. Maps
should not only represent an environment precisely but also be built according to the action that
has to be undertaken. In [Victorino, 2002] for example, the author chooses to combine topological
completeness through Voronöı diagrams directly with the command of the robot. The metric maps
are then only built locally. There are however difficult obstacles to overcome to ensure the topological
representation is robust to sensor noise and complex environments.

SLAM with vision is currently a very active field of research. Interesting issues have appeared
that have been less central to SLAM with lasers such as initialisation, observability and efficient
data extraction. Compared to laser scans, visual information is very rich and using all the data
is computationally expensive. Techniques such as active vision [Davison, 2005] that base feature
extraction and tracking on the gain in information are interesting directions of research.

This thesis contributes to solving the SLAM problem by combining the complementary information
obtained from 2D lasers and omnidirectional vision. These sensors improve the quality of the maps
by reducing the ambiguity of landmark associations and reducing the drift by detecting and applying
loop closing.
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9.1 Introduction

Simultaneous localisation and mapping is the process of finding the robot path and concurrently
building a map of the environment. In this chapter, a laser range finder will be combined with an
omnidirectional camera to improve the computational cost and robustness of laser-only probabilistic
map building solutions.

The algorithm relies on the standard Extended Kalman Filter (EFK). Section 9.2 describes the
state vector and feature representation.

The environment will be represented by a set of salient points: features the robot can reliably
identify during exploration. How to build and re-acquire these points will be the object of Section
9.3. The choice of points was made partly to avoid the common assumption of a piecewise linear
environment that is not always valid in cluttered office spaces.

As the robot explores the environment, its position will become increasingly uncertain with respect
to the points it first observed. This uncertainty combined with possible bad data association or
inconsistency makes it particularly difficult to re-identify previously observed landmarks after a loop
in the environment. This problem is know as loop closing. It is desirable to re-identify points with
strong uncertainty as this will reduce the overall uncertainty. In the literature, most loop closing
approaches study how to find previously visited places. However it is also important to explicitly
control the loop closing mechanism that could take place incorrectly. In Section 9.4, we combine a
topological representation with a metric representation to control the association between features
when the uncertainty becomes important. We then describe image descriptors than can be used to
identify areas and how to match the landmarks and close the loop.

In Section 9.5, we extend Iterative Closest Point (ICP) scan matching to take into account the
intensity information from the image. In corridor-like sequences this reduces the problem of observ-
ability.

Finally, we validate the salient features, loop closing and scan matching approaches in an EKF-
SLAM experiment on real data.

The described approach will assume the relative position between the omnidirectional camera and
the laser range finder has been obtained using for example the results of Chapter 4. The position
of the vision sensor itself is not constrained. In particular we do not assume the sensor to be in
vertical position even though this configuration is ideal for combining the visual and laser information
in particular for loop-closing.

9.2 Map building and localisation

In Chapter 8, we gave an overview of different approaches for building a probabilistic map. The
Extended Kalman Filter (EFK) is an extension to the Kalman filter to cope with non-linear state
transition and measurement functions. In this chapter, we will use a simple implementation of the
filter. More computationally efficient formulations are also possible but do not change the underlying
difficulties of obtaining correct data associations and closing loops which is the focus of this chapter.
The notations used in this section were defined in Section 8.2.1. The generic equations are available
in Appendix D.2.
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9.2.1 State vector and covariance

The current estimate of the robot position and map features will be stored in the state system vector
x and the associated uncertainty in the covariance matrix P:

x =




xv

m1

m2
...

mm




, P =




Pxvxv Pxvm1 Pxvm2 . . . Pxvmm

Pm1xv Pm1m1 Pm1m2 . . . Pm1mm

Pm2xv Pm2m1 Pm2m2 . . . Pm2mm

...
...

...
. . .

...
Pmmxv Pmmm1 Pmmm2 . . . Pmmmm




xv is the robot position estimate in Cartesian coordinates, mi = [xi yi]
⊤ is the estimate of the

location of feature i in the environment. These coordinates are expressed with respect to the world
frame. As will be detailed in Section 9.3, we represent our map by points in the environment. We
assume that the mobile robot has a smooth motion and choose a constant velocity, constant angular
velocity model. This means that on average we expect undetermined accelerations to occur with a
Gaussian profile. Let [vx, vy] be the linear velocity of the robot and ω its angular velocity. These terms
are added to the position state vector:

xv =




x
y
θ
vx

vy

ω




The initial position of the robot is chosen at the origin of the world frame and is known exactly.
We also assume that the robot starts with no initial speed. At the beginning, no features have been
detected in the environment, so the initial values of the filter are:

xv = 06×1, P = 06×6

9.2.2 Prediction: time update equation

We make the assumption that at each time step, an unknown acceleration a and angular acceleration
α of zero mean and Gaussian distribution add noise to the state prediction in the form of an impulse
in velocity [ax∆t, ay∆t] and angular velocity α∆t. The vector representing the noise will be noted n:

n =




ax∆t
ay∆t
α∆t




The state update equation fv and associated Jacobians can then be written:

fv(xv) =




x + vx∆t
y + vy∆t
θ + ω∆t
vx

vy

ω




+

[
n∆t
n

]
, ∇xvfv =

[
I3 I3∆t
03×3 I3

]
, ∇nfv =

[
I3∆t
I3

]
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The prediction obtained by the update equation is accompanied by an increase in state uncertainty
noted Qv. Let Pn be the uncertainty of the noise vector n:

Qv = (∇nfv)Pn(∇nfv)
⊤

The values for Pn are chosen according to the type of motion expected. High values will be given to
Pn if we expect big accelerations to occur. Good measurements will then be needed to reduce the
uncertainty. Small values for Pn on the contrary indicate we expect smooth motion, the uncertainty
will then be reduced but the model will be unable to cope with sudden accelerations.

The full time update equations are:

xt+1/t = fv(xt/t)

Pt+1/t = (∇xfv)t/tPt/t(∇xfv)
⊤
t/t + Qv,t

9.2.3 Measurement prediction and correction: measurement update equation

In this chapter, we decided to consider only the laser measurements and not the odometry as accurate
odometry is not always available on mobile robots. The laser makes range-bearing observations of the
landmarks. The observation of feature i can be predicted from xt+1/t:

zi,t+1/t = h(xt+1/t)

=

[
d

arctan(
yi,t+1/t−yt+1/t

xi,t+1/t−xt+1/t
)− θt+1/t

]

∇xvh =

[
−xi,t+1/t−xt+1/t

d −yi,t+1/t−yt+1/t

d 0
yi,t+1/t−yt+1/t

d2 −xi,t+1/t−xt+1/t

d2 −1

]

∇mih =

[
xi,t+1/t−xt+1/t

d

yi,t+1/t−yt+1/t

d

−yi,t+1/t−yt+1/t

d2

xi,t+1/t−xt+1/t

d2

]

∇mj ,j 6=ih = 02×2

with d =
√

(xi,t+1/t − xt+1/t)2 + (yi,t+1/t − yt+1/t)2 the distance predicted from the robot position and

estimated landmark location.
Let zi,t+1 be the measurement obtained at time t + 1. The innovation noted v corresponds to the

amount of unpredicted information obtained from the new measurement:

vt+1 = zi,t+1 − zi,t+1/t

The covariance between the true and measured value, called innovation covariance, is then:

Si,t+1 = (∇xh)t/tPt+1/t(∇xh)⊤t/t + R

= (∇xvh)Pxvxv (∇xvh)⊤ + 2(∇xvh)Pxvmi(∇mih)⊤ + (∇mih)Pmimi(∇mih)⊤ + R

R is the measurement noise and depends on the sensor.
The innovation covariance can be used for data association under small uncertainty (eg. between

t and t + 1). This is commonly done through a Mahalanobis distance test:

v⊤
t+1S

−1
t+1vt+1 < χ2

d,α

with d = dim(v) (d = 2 in our case) and α the desired confidence level. This test can be used for
choosing between measurements but also for accepting new values that are sufficiently far from other
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features to avoid future confusion. We will refer to this method as “nearest neighbour gating” (NNG).
We may note that under strong uncertainty and with features with low saliency, it is preferable to
use a joint compatibility test [Neira and Tardos, 2001]. This test is however more computationally
expensive and by using vision we can obtain reliable correspondences directly.

The final measurement update equations are:

xt+1/t+1 = xt+1/t + Wt+1vt+1

Pt+1/t+1 = Pt+1/t −Wt+1St+1W
⊤
t+1

Wt+1 = Pt+1/t(∇xh)⊤t+1/tS
−1
t+1

W is the Kalman gain and indicates how much trust we can have in the measurements.

9.3 Laser-vision features

In the previous section, we described how a probabilistic representation of the environment can be
obtained by integrating motion and measurement uncertainty with the Extended Kalman Filter. We
will now explain how we obtain the points that form the map.

When using laser range scans for metric-based SLAM (as opposed to occupancy grid), corners or
lines are generally extracted and form the map. Lines are well adapted to indoor environments but
with corners no piecewise linear assumptions need to be made on the topology of the environment.
Figure 9.1 illustrates possible features that could be used for SLAM. The problem with this approach
is that the number of points can be very low (eg. in corridors) as previously remarked by Lu and
Milios [Lu and Milios, 1997a]. These points might also be unreliable if they belong to regions with a
strong incidence angle. Ideally we would want to work with laser points measured in a region with a
low incidence angle and that are salient. This is contradictory when working with laser information
alone. However with visual information we can obtain such points as we will see in this section. These
points will be used as landmarks in the map.
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Figure 9.1: Possible SLAM features extracted from a laser scan



124 Combining omnidirectional vision and laser for 3-DOF SLAM Chap. 9

9.3.1 Algorithm for extracting salient points

Algorithm 2 describes the extraction process to obtain salient points from a laser scan. We start by
removing points with strong incidence angles that could be unreliable and could belong to regions
with clutter. We then look for edges in the image that intersect the laser trace1 forming an angle as
close as possible to 90° and with a strong gradient magnitude. These points form a “cross” between
an edge in the image and the laser trace. Under the assumption of planar motion, these points can be
easily re-observed by looking (eg. using correlation) along the laser trace.

Extracting the normal to the laser scan The normal to the laser scan is calculated using several
points for robustness. Let m be the number of points (typically m ∼ 5). To find the normal (nx, ny),
we solve the following least-squares equation for m laser points (sx, sy):

{
minnx,ny,d

∑m
i=1(s

i
xnx + si

yny − d)2

n2
x + n2

y = 1

This problem can be solved in closed form. Let:

x =
1

m

m∑

i=1

si
x y =

1

m

m∑

i=1

si
y

Sxy =
m∑

i=1

(si
x − x)(si

y − y) Sx2 =
m∑

i=1

(si
x − x)2 Sy2 =

m∑

i=1

(si
y − y)2

The least-squares solutions are then:

nx = −sign(Sxy)

√√√√1
2

(
1 +

Sy2−Sx2q
(Sy2−Sx2)2+4S2

xy

)

ny =

√√√√1
2

(
1− Sy2−Sx2q

(Sy2−Sx2 )2+4S2
xy

)

d = xnx + yny

1we call “laser trace” the reprojection of the laser scan in the image
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Algorithm 2: Laser-vision salient point extraction

Data: Current image I and current laser scan S, Thresholds:� einc: maximal incidence angle,� eang: maximal angle between the image gradient and the normal to the laser curve,� emagn: minimal gradient magnitude.

Result: List of salient points

1. remove laser points with strong incidence angles (einc),

2. keep the points with a strong gradient magnitude (emagn) and with a gradient direction close
to the normal to the laser trace in the image (eang). (To add robustness to the approach,
Gaussian smoothing is applied to the image before the extraction.)

Figure 9.2 shows an example of the reprojection of a laser scan in the omnidirectional image (i.e.
“laser trace”). In figure 9.3 are shown the normals to the laser trace: the points with a circle are
rejected because of a strong incidence angle and the other points (with small crosses) are kept. We
may note that this process rejects outliers, some of these being produced by the metal strips on the
walls or the posters with plastic coating that diffuse the laser beam. The rejected points are also shown
in the laser scan in figure 9.42. We then calculate the gradient direction and magnitude and keep the
points with a strong magnitude (figure 9.5 shows the points kept and the gradient direction). We then
choose the points where the gradient direction and normal to the laser trace are similar (figure 9.6).

9.3.2 Improving the discriminancy of salient points

In the previous section we described an approach to define salient points. The EKF requires reliable
data correspondences to insure a correct update of the robot position and state uncertainty. We will
now define a measure of similarity that combines the metric and visual information and will enable to
distinguish between points reliably.

A straight-forward method would be to associate a small image template around the salient points
and use cross-correlation as a measure of similarity. However this would not be a good choice since
the visual appearance changes with the viewpoint, this change being particularly important with
omnidirectional vision.

The metric information from the laser scan can help build a descriptor invariant to changes in
viewpoint. Figure 9.7 illustrates the approach. We start by defining a region around a salient point S
containing all the points at a distance inferior to dmax. The laser scan is given an orientation from the
angles, for example using the clockwise order. The interval [−dmax; dmax] is partitioned into n equal
bins. The signal s associated to S is then calculated from the average intensity of the ELS points
belonging to each bin.

The similarity score between points is then defined as the normalised correlation between signals.
Let si and sj be the signals associated respectively to the points Si and Sj, the score can be calculated

2there is a reflexion between the two views introduced by the mirror
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Figure 9.2: Laser trace

Figure 9.3: Laser trace with re-
jected points based on their inci-
dence angle
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Figure 9.4: Laser scan with rejected
points based on their incidence an-
gle

Figure 9.5: Image points with
strong gradient magnitudes and be-
longing to the laser trace

Figure 9.6: Salient points: high gra-
dient magnitude and gradient direc-
tion orthogonal to the laser trace
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Figure 9.7: Signal associated to a salient point S

by:

score(Si, Sj) =

∑dmax
d=−dmax

[si(d) − si][sj(d)− sj]√(∑dmax
d=−dmax

[si(d)− si]2
)(∑dmax

d=−dmax
[sj(d)− sj]2

)

with s the mean of the signal.

Figures 9.8 and 9.10 show the matching of points between two views using this descriptor. We only
keep the points that give best matches in both directions to improve the robustness. In this example,
there are some outliers but most values were correctly matched. Figures 9.9 and 9.11 correspond to
the 1D signals of point z8 for each view. The distance axis in these figures corresponds to the division
of an interval of size 0.8 m in regions of 0.04 m centered in the salient point.

This descriptor is particularly useful for distinguishing points that are close to each other and
when the measure of uncertainty from the filter is not sufficient to differentiate between the values
accurately.

The NNG will be used to associate features between “local” points. However when the uncertainty
becomes important or the filter becomes inconsistent, the measure of uncertainty is no longer a valid
way to associate data as will be explained in the next section on “loop closing”.

9.4 Loop closing

The uncertainty of the robot position with respect to the initial position will accumulate as the robot
explores the environment if previously mapped landmarks are not matched. Detecting previously
observed features that are not in the direct vicinity of the robot has become known as loop closing.
The name indicates that this situation generally occurs after a loop in the environment brings the
robot back to a previously explored area. It is desirable to re-identify areas and in particular to
match features as this will reduce the overall uncertainty but is also an essential step to ensure the
completeness of the exploration.

The filter uncertainty does not provide a reliable way to match points after a long period. The
linearisation introduced in the Kalman filter and unpredicted measurement errors can render the filter
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Figure 9.8: Salient points matched between
two views using 1D signal descriptor
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Figure 9.9: Example of 1D signal
corresponding to z8 in first image

Figure 9.10: Salient points matched between
two views using 1D signal descriptor
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Figure 9.11: Example of 1D signal
corresponding to z8 in second image



9.4. Loop closing 129

inconsistent. In the literature, the problem of missing a loop closure is often emphasised. Another pos-
sibility, particularly present in punctual feature-based mapping (as opposed to lines), is the detection
of a loop based on bad data association. Figure 9.12 illustrates a loop closure that was “activated” by
a single feature. After this incorrect association, the robot can then no longer register the subsequent
values correctly. Combining several features can improve the situation but if the filter becomes incon-
sistent, an incorrect loop closure could take place anyway. For this reason, we propose to explicitly
control the data association through a topological representation of the explored region as will be
detailed in Section 9.4.1.

Section 9.4.2 will describe ways of recognising areas from images and the image descriptor chosen
for this study. Finding a previously visited site is not sufficient for loop closing, we also need to match
the features reliably. This will be done in two step. First we estimate the rotation between views
based on the visual information, then we find the relative pose and associate the features using scan
matching. The scan matching algorithm itself will be described in the subsequent section (Section
9.5).
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Figure 9.12: Incorrect loop closure

9.4.1 Controlling loop closing

As explained previously, data association cannot be made reliably after “long” periods using only the
predictions from the Kalman filter. For this reason, we have chosen a conservative approach to data
association and loop closing. We only accept to match points with the innovation covariance (NNG)
“locally” and control the data association between “old” points. We will now clarify what we mean
by “locally” and “old”. The described approach is generic and does not make any assumptions on
the descriptors used to identify the areas. The choice of descriptor for this study will be detailed in
Section 9.4.2.

The proposed approach is based on a topological representation. The graph is build iteratively by
adding nodes with a unique identifier and a descriptor. These nodes will also be called key frames. A
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new key frame is added when it is significantly different from the key frames at a graph distance of
two or less, according to a measure defined over the key frame descriptor. Figure 9.13 illustrates this
concept, key frame n is tested with regards to frames 1, 2, 3, 4. If the value is different to the adjacent
key frame but similar to values at a graph distance of two, we assume we have returned to a previously
explored area. For example, in the image, if the value of n is different to 2 but similar to 1, we assume
we are in 1. An incorrect topological association does not affect the metric map directly.

5 4 2

1

36

n

?

?

?

?

Figure 9.13: Adding a new key frame n to the topological map

Metric information is added to the arcs between vertices to define a “topological distance” (this
metric information does not need to be precise and is not updated).

When a new feature is observed, it is tagged by the current key frame identifier. When a feature
is re-observed, two situations occur:

1. The feature is tagged with the current key frame identifier or it is “topologically close” to the
previous identifier in that case it is accepted. The topological distance is defined as the metric
distance in the graph. This distance is different from the distance taken in the metric map:
before loop closing, the points can be close in the metric map but the topological distance is
then the distance of the entire loop.

2. It is “topologically far” from the key frame and is considered as “old” and not matched. The
only situation were an “old” feature can be matched to a new feature is through loop closing.
Loop closing is tested each time a new key frame is created. This means we assume that changes
in the environment measured by the descriptor occur in similar places which is a reasonable
assumption.

Figure 9.14 illustrates the approach. In the first image, the topological distance between key
frame 7 and key frame 2 is important compared to the metric distance. Points viewed in 7 would
be prevented from being automatically matched using the innovation covariance, the matching would
require explicit loop closing. In the second image, the loop has been closed and the points in 7 are
now topologically close to the points in 2 or 1 and could be automatically matched.
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Figure 9.14: Example of a topological graph before and after loop closing

9.4.2 Recognising scenes

9.4.2.1 Image descriptors

Recognising places has been a strong incentive for using panoramic vision in robotics. For planar
motion (and also to a certain extend for 3D motion), it is simple to design descriptors that are
rotationally invariant.

For loop closing, we are interested by image retrieval systems that are adapted to the iterative
mapping process. This rejects methods such as the principal component analysis that requires the
whole data to find classes that separate the data according to a certain criteria (the variance over
a linear basis for the PCA). We would also want the algorithm to be robust to occlusion, robust to
changes in illumination and fast to compute. False positives are particularly detrimental for a loop
closing algorithm. However our approach will not be based solely on visual clues, we will also be using
the metric values obtained by the laser. In other words, we can trade off some of the discriminancy
of the image identifiers for computational speed for example. We may also argue that ambiguity is
inevitable and should be taken into account in the filter by using multiple hypothesis. This was not
considered in this chapter where our main focus is showing the advantages of combining vision and
laser data under a simple EKF framework.

Image indexing and registration are active fields of research. Features with invariance properties
(invariance to affine transformations, illumination...) have lead to impressive results [Yang et al., 2006].
Popular methods include SIFT [Lowe, 2004] or affine-invariant multiscale Harris corners [Mikolajczyk
and Schmid, 2004]. The advantage with feature-based methods for place recognition is the possibility
to apply geometric constraints that greatly diminish the false positives. These approaches are however
still difficult to use on real-time systems even though some progress has been made using for example
GPUs [Sinha et al., 2006]. An alternative that is particularly valid for panoramic cameras is the
use of image descriptors. Fourier transforms or zero phase representation [Pajdla and Hlavac, 1999]
have been used previously but are not robust to occlusion. What may seem surprising at first is
that image histograms have shown to give surprisingly good results at a very low computational cost
in particular on colour images [Ulrich and Nourbakhsh, 2000]. They have the advantage of being
invariant to rotation for planar motion and robust to outliers. The histograms can either be taken
on the image pixels directly or on local attributes for better results [Gonzalez-Barbosa and Lacroix,
2002]. Haar invariant features [Siggelkow and Burkhardt, 2002; Charron et al., 2005, 2006] that add
local invariance to translation can help improve histogram-based approaches.
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In our implementation, we tried a different measure from the field of image indexing: correlograms
[Huang et al., 1997].

9.4.2.2 Correlograms

As explained by the authors [Huang et al., 1997]: informally, a correlogram is a table indexed by
grayscale (or color) pairs where the k-th entry for < i, j > specifies the probability of finding a pixel
of value j at a distance k from a pixel of value i. A pixel-based histogram only represents the values
present in the image. Correlograms describe globally how the pixel values are locally distributed. This
enables robustness to large changes in appearance and partial occlusion but is more discriminative than
a simple histogram. We may note that correlograms are not restricted to pairing pixel values but can
also be defined on local attributes such as the ones proposed by Barbosa [Gonzalez-Barbosa and
Lacroix, 2002]. For our work, the grayscale values proved sufficient.

Let I be an image of size n× n with m different values vi. If pi is an image coordinate vi = I(pi)
is its value. Iv = {p | I(p) = v} corresponds to the set of image coordinates with value v. Let k be a
given distance, the correlogram is defined as:

γ(k)
vi,vj

= P
p1∈Ivi ,p2∈I

(p2 ∈ Ivi | |p1 − p2| = k)

We may note the similarity with the cooccurrence matrix [Haralick et al., 1973] defined for texture
analysis.

We will note d the number of distances (k values) considered. The correlogram has a size of O(m2d)
which makes it difficult to use as such. Generally the auto-correlogram of size O(md) is used:

α(k)
c = γ(k)

c,c (I)

In [Huang et al., 1997] efficient ways of calculating the correlogram are discussed that lead to an
algorithm with a complexity of O(n2d). To obtain a descriptor size compatible with real-time queries
and large environments, the grayscale images were reduced to 64 values (instead of 256) and we chose
d = [1, 3, 5, 10] for the k values generating a descriptor of only 256 values.

When working on histograms or descriptors, several distances are possible [Rubner et al., 1998;
Ulrich and Nourbakhsh, 2000; Gonzalez-Barbosa and Lacroix, 2002]. The results presented in the
articles on panoramic vision show similar classification results for the Jeffrey divergence, χ2 statistic
and earth mover’s distance. The χ2 is particularly cheap to compute which motivates its use for real-
time robotic applications. We chose to use the symmetric χ2 histogram distance [Schiele and Crowley,
2000] between two histograms h and g:

d(h,g) =
∑

i

(hi − gi)
2

hi + gi

We tested the discriminancy of the auto-correlogram on our loop closure sequence. In the figures,
the reference auto-correlogram is indicated by a red cross, the blue bars indicate the probability that
the values come from the same distribution according to the χ2 distribution. Figure 9.15 shows the
response in the vicinity of the loop closure. The region is correctly identified on the way back. An
ambiguous case is depicted in figure 9.16 with the corresponding images in figures 9.17 and 9.18. These
images are difficult to distinguish and we conjecture that colour images would help in this situation.
However there will always be ambiguities and a full SLAM implementation would probably use delayed
Kalman filtering [Newman et al., 2006] or particle filters [Montemerlo, 2003].
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Figure 9.15: Detection of a loop closure situ-
ation
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Figure 9.16: Ambiguous localisation

Figure 9.17: Image corresponding to the am-
biguous match

Figure 9.18: Image corresponding to the am-
biguous match
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To summarise our approach, our loop closure detection framework will rely on a database of auto-
correlograms built iteratively. A new key frame will be added each time the difference with the previous
pose is significant according to the χ2 test. To check for a possible loop closure, we will calculate the
symmetric χ2 distance over the database. As only 256 values are used, the calculation is particularly
fast. To give an order of magnitude, on a Pentium IV CPU 3.60 GHz, a lookup over 104 key frames
will take about 200 ms.

Finding a possible loop closure is not sufficient, we must also match the features to update the
filter. In the next section, we describe an approach to estimate the rotation between the views. This
will help initialise dense scan matching that will be used to associate the landmarks.

9.4.2.3 Estimating the rotation for point matching

Finding the rotation between two panoramic images has been done previously through correlation with
the Fourier transform [Pajdla and Hlavac, 1999]. This approach proved too sensitive to occlusion in
our loop closing tests. We designed a more ad hoc method that gave experimentally satisfying results.

The image is first reprojected onto a cylinder and divided into several bands (figures 9.21 and
9.22). A histogram is calculated for each region. To recover the rotation between two different views,
we calculated the “best” association between histograms. Several measures are possible, for example
combining the χ2 distance over all the histograms. Figures 9.19 and 9.20 correspond to a loop closing
situation, we may note that the change in viewpoint and the occlusion requires the use of a robust
approach. Figures 9.21 and 9.22 show the projection of the images in a cylindrical view. The images
are divided in regions of same size and a histogram is calculated for each band. In our experiments
the histograms were taken over 64 graylevels (instead of the full 256) and 30 bands were used. This
gives a precision of an order of ∼360/30=12° . We assumed that the precision was of about 30° after
the rotation estimation. There is of course a risk in trying to extract quantitative measures from
an approach that is mainly qualitative, however in a difficult loop closing situation, this method can
provide important boundaries on the relative orientation. We may note that SIFT points did not give
any matches between these two views (except on the robot).

To confirm that this approach does improve matching even with the large interval of uncertainty,
we reproduce the matching example of Section 9.3.2 (the images are reproduced alongside the new
results for ease of comparison). Figures 9.24 and 9.25 show the matches between two views without
angular boundaries and figures 9.26 and 9.27 when we add the angular constraints obtained by our
rotation estimation algorithm with an interval of ±30° . In the first case, 9 values were matched with 2
outliers. In the second case, 11 values were matched with only 1 outlier which confirms the usefulness
of this pre-processing step.

9.4.2.4 Loop closing strategy

The proposed loop closing strategy represents the environment by a topological map with a set of
image descriptors representing regions or sites. The first descriptor helps identify a possible loop
closure situation. The second estimates the rotation between views. We will now discuss how to
associate landmarks to update the filter.

We studied two strategies to find the correspondence between landmarks. The first consists in using
points matched as described in Section 9.3.2. This approach gave satisfying results between adjacent
frames. However in a loop closing situation, part of the environment is likely not to be mapped and
the points can then be very sparse. A dense approach is thus desirable. Associating whole scans to
our image descriptors is not satisfying in terms of memory usage. Instead we associated “parts” of
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Figure 9.19: Image 430 of a loop closing sequence
Figure 9.20: Image 1490 of a loop closing se-
quence

Figure 9.21: Image 430 reprojected on a cylindri-
cal view and divided for calculating histograms

Figure 9.22: Image 1490 reprojected on a cylin-
drical view and divided for calculating histograms

Figure 9.23: Image 430 rectified according to
the estimated rotation between views
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Figure 9.24: Matched points between image
640 and 645 without angular boundaries

Figure 9.25: Matched points between image
645 and 640 without angular boundaries

Figure 9.26: Matched points between image
640 and 645 with angular boundaries

Figure 9.27: Matched points between image
645 and 640 with angular boundaries
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a scan to the landmarks. When testing for loop closing, we reconstruct two scans from the points
topologically close to the two regions and apply the scan matching algorithm. This provides stronger
metric constraints than sparse features and gave experimentally satisfying results. After minimisation,
we associate the feature points based on a distance threshold and the feature descriptors defined in
Section 9.3.2.

9.4.3 Summary of the loop closing approach

Algorithm 3 summarises the key frame creation mechanism, the control of the loop closing and the
data association process.

Algorithm 3: Loop closing and feature association

Data: Current image I and current laser scan S, topological map T , list of SLAM features lz,
state vector x and covariance P after the prediction step.

Result: Update of lk, lz, x and P

z = extractCurrentFeatures(I,S) // Extract and tag salient points, build 1D signal

[la, ln] = associateFeatures(z,lz ,x,P,T ) // Associate features through NNG and

topological distance. la contains the feature associations, ln the new

features.

[x,P] = updateFilter(x,P,la) // Use measurement equation to update filter

[x,P, lz ] = addNewFeatures(ln,x,P) // Add new features with their covariances

[bnew keyframe,T ] = isNewKeyframe(I,T ) // Test if the current image is a new key

frame, if this is the case build orientation histograms and add the values

to T

if bnew keyframe then

[bloop, la] = testLoopClosure(lz ,T ) // Test for loop closure and build feature

associations, the topological map and the list of features are used to

build the scans in the vicinity of the detected loop closure

if bloop then

[x,P, lz ] = updateFilterLoop(x,P,lz ,la) // Use measurement equation to the

update filter and remove multiple values by backtracking over tags

end

end

9.5 Laser scan matching with vision

In the previous section on loop closing, we proposed a method to identify a previously visited area
and estimate the rotation between the views. The final data association step consists in matching the
features. The sparsity of the available data when closing a loop encourages the use of dense methods
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which is the object of this section.

Scan matching is the process of finding the relative position between two laser scans. It is an
important step in many map building frameworks. The contribution of this section is to extend the
standard Iterative Closest Point (ICP) to include the vision information.

9.5.1 Different scan matching approaches

We will now discuss methods for tracking laser scans without explicit data association3.

The most common approach is the Iterative Closest Point (ICP) [Besl and McKay, 1992; Chen and
Medioni, 1991] which consists in minimising iteratively a distance between two scans, we will discuss
this approach more in detail in this section.

Scan correlation is used frequently when building occupancy grid maps [Elfes, 1989]. The opti-
mal pose of an incoming scan is obtained by a correlation search over the rotation and translation.
This can be particularly costly and predefined bounds are generally needed for the calculation to be
computationally feasible.

An alternative minimisation approach to correlation that relies on a similar concept to occupancy
grids was proposed by Biber [Biber et al., 2004]. The values in the grid however no longer indicate
the probability of occupancy but a probability of correctness. The incoming scan is then registered by
an iterative minimisation. This work has also been extended to match several scans simultaneously
[Biber and Strasser, 2006] using an energy function defined on a grid. The interesting aspect of this
method is the efficient and robust iterative minimisation approach. It has however some shortcomings,
an overlap is needed for the the scans to register. This would make it difficult to match part of a scan
to a bigger scan. Furthermore the probability of correctness is not associated to the sensor model so
the measure of uncertainty obtained from the minimisation would not be adequate for an EKF-SLAM
framework.

9.5.2 Iterative closest point with vision information

We propose to extend the work by Lu and Milios [Lu and Milios, 1997b] to take into account the
visual information. The ICP for scan registration between a reference scan SR and a current scan SC

is generally composed of the following two steps:

(1) each point of SR is associated to the closest point of SC (closest in the general sense, different
metrics are possible)

(2) the distance error is minimised. In the case of points, a closed form solution exists. Step (1) is
repeated until convergence.

If the metric chosen is the Euclidean distance between n points sr
i from the reference scan and n

points sc
i from the current scan, at each iteration step, we solve the least-squares problem (a closed

form solution exists):

min
t,θ

n∑

i=1

(R(θ)sc
i + t− sr

i )
2 (9.1)

with t the translation between laser scans and θ the rotation angle.

The authors combine the ICP with an extra “matching-range-point” (MRP) rule. The ICP con-
verges slowly over the rotational component. The MRP illustrated by figure 9.28 adds a constraint

3these methods are generally called scan matching but they are similar to tracking approaches in computer vision
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from the position that generated the scan and has a good convergence speed over the rotation. The
combination of ICP and MRP leads to an efficient algorithm which can handle sensor noise and partial
occlusion.

P

P’

O θ − Bω

θ

θ + Bω

Figure 9.28: Matching-range-point rule: For a point P, the corresponding point P’ on the scan lies
within the interval [θ −Bω; θ + Bω] with ‖OP ′‖ closest to ‖OP‖ (from [Lu and Milios, 1997b])

We will call Enriched Laser Scan (ELS) the triplet (ρ, θ, i) containing the polar coordinates of
the laser points (ρ, θ) and the intensity i obtained from the omnidirectional image by reprojection4

with a bilinear approximation. The main difficulty encountered with introducing intensity in the
minimisation was the non-uniform change in intensity that can introduce strong errors in particular in
the rotational component of the estimation. However the intensity information improves observability.
When mapping a corridor, the translation is generally poorly constrained by the laser information.
Vision can help render the estimation observable. However the metric information is more reliable and
should be used in priority. Based this observation, we derive the following algorithm. At each step a
point P from the reference scan is mapped to three values calculated from the incoming scan:

(1) the closest point for euclidean distance (ICP)

(2) the closest point in terms of intensity (ICI)

(3) the closest point obtained by the MRP rule.

As proposed by Lu and Milios, the rotational and translational components are calculated from
the MRP values and ICP values respectively. When the values given by the two components are close
to the minimum (defined generally by a threshold), the translational component is calculated from
the ICI values. We may note that we do not improve the convergence speed or region of convergence
but the observability.

9.5.3 Experimental validation of laser-vision scan matching

We tested the algorithm for the direct estimation of the motion of the ANIS mobile robot on a corridor
sequence with a loop. The only information used was the laser scan or the ELS. We decided to change

4we assume that the relative position between the laser and the camera is known
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reference scan when the amount of points in correspondence between the reference scan and the current
scan was under a predefined percentage threshold. The lower the threshold, the less information there
is between the two poses. Figures 9.29 and 9.30 show the results with 80% overlap. The green
triangles represent the different positions were the algorithm changed reference scan. Figures 9.31
and 9.32 correspond to the results on the same sequence with 60% overlap. These experiments show
clearly the role of the visual information in constraining the translation. In figure 9.31 the estimation
of the orientation is correct, only the translation is badly estimated.

Another test was done that details more precisely the effect of the visual information on the
minimisation. Scan matching was undertaken on a loop closing problem obtained from real data.
Figures 9.33 and 9.34 show the result after minimisation for the standard scan matching and for the
ELS version respectively. The red plus sign correspond to the reference scan. The green points with
circles show the current scan before minimisation and in magenta plus signs after minimisation. The
current ELS has the same orientation as the standard current scan however it is shifted along the axis
made by the corridor walls. The side views in figures 9.35 and 9.36 show the intensity on the z-axis.
The standard scan in figure 9.35 is poorly aligned regarding the intensity compared to the case of ELS
in figure 9.36. We may note however that a non-uniform change in intensity prevents the ELS from
providing a perfect overlap.

Further improvements could be obtained by weighting the least-squares values according to a
measure of uncertainty depending in particular on the incidence angle as in [Pfister et al., 2002].

The precision of scan matching makes it tempting to use directly as SLAM approach. However
the cost of saving a scan at each iteration makes it less attractive for large scale mapping.

9.6 SLAM algorithm

We will now summarise the proposed SLAM strategy.

Salient laser-vision points were chosen to represent the environment. These can be extracted at a
low computational cost from the laser and vision data. The landmark descriptor also provides reliable
correspondences to be made using the standard nearest neighbour statistical gate.

During the metric map building process, we also build a topological representation that consists of
key frames with image descriptors. These have a low memory consumption, each key frame contains
an auto-correlogram of 256 values and 30 histograms with 64 intensity values. These values can be
saved with 2 bytes (or 16 bites). Less than 50 Mb would be needed to represent 104 key frames. A
query over a database of this size would require less than 200 ms which stays tractable in a “real-time”
framework. The topological representation makes it possible to control landmark associations when
the distance between frames becomes important and correspondences based on uncertainty could by
unreliable.

The approach was tested in an indoor environment containing a loop. The odometry and the
commands given to the robot were not used in this experiment. The sequence consists of 1500 images
and laser scans acquired at 7 frames per second over a distance of 50 meters. This sequence is quite
difficult because of vibrations that induced blurring and offsets in the omnidirectional image.

Figures 9.37 and 9.38 show the metric and topological map built during the exploration of the
indoor sequence before loop closing. The green crosses indicate locations where a new key frame was
added. We can see that the uncertainty has accumulated during the journey around the loop. The
filter has become inconsistent as the 3σ uncertainty bound around the robot position does not include
the previously explored region. The database query combined with the rotation estimation and scan
matching was able to associate 9 features and enable loop closing. Figures 9.39 and 9.40 show the
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Figure 9.29: Motion estimation using only
scan matching with 80% overlap between ref-
erence scans
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Figure 9.30: Motion estimation using ELS
scan matching with 80% overlap between ref-
erence scans
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Figure 9.31: Motion estimation using only
scan matching with 60% overlap between ref-
erence scans
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Figure 9.32: Motion estimation using ELS
scan matching with 60% overlap between ref-
erence scans
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Figure 9.33: Standard scan matching in a loop
closing situation
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Figure 9.34: ELS scan matching in a loop clos-
ing situation
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Figure 9.35: Side view of the standard scan
matching in a loop closing situation
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Figure 9.36: Side view of the ELS scan match-
ing in a loop closing situation
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results after the loop closure. The landmark uncertainty has been reduced and the map becomes more
visually satisfying. If we had only used laser information, it would have been difficult not only to
close the loop but also to estimate correctly the displacement along the corridor. In all, about 100 key
frames were generated. At this rate, 5 km of corridors could be represented by 104 key frames.

The experiment shows that by combining vision and laser, a reliable and computationally efficient
approach can be developed. Further experiments would however be needed to confirm the validity of
the approach in different types of environments.

9.7 Conclusion

In this chapter, we described a mapping strategy combining vision and laser. We chose to represent
the map by laser-vision features. Compared to laser edge points, these landmarks have the advantage
of being located in regions with low clutter and a low incidence angle and can be matched reliably
with a descriptor combining metrical and image intensity information. No assumptions were made
on the type of environment being mapped and this mapping strategy could be used in an outdoor
environment.

Inconsistencies are likely to occur in any real-world mapping situation. We reduced the impact by
avoiding data associations to occur between “distant” points without explicitly launching a loop closure
strategy. This approach combines a topological map with metric estimates to define a topological
distance between points. Extensions to this work could consist in delaying the data association or
using multiple hypothesis to improve the robustness.

The proposed strategy gave satisfying results on an indoor sequence but more thorough testing
with different types of complex environments would be required to evaluate the robustness of the
method.
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Figure 9.37: Metric map before loop closing
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Figure 9.38: Topological map before
loop closing
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Figure 9.39: Metric map after loop closing
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Figure 9.40: Topological map after
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10.1 Introduction

In the previous chapter, we proposed a method to combine visual information and laser range data
for planar simultaneous localisation and mapping (SLAM). The visual information improved the data
association, localisation and observability that are difficult problems in SLAM. However planar motion
estimation imposes strong constraints on the possible environments that can be explored. Estimating
the full six degrees of freedom (6-DOF) is an active field of research. Recent approaches use either
3D laser range finders [Newman et al., 2006] and/or vision sometimes combined with interoceptive
sensors (wheel encoders, inertial sensors, ...). 3D laser range finders are not currently compatible
with real-time applications. Vision sensors alone introduce issues such as propagating correctly the
scale factor, initialising the range in the monocular case or associating the data when using multiple
cameras. We are not aware of any work combining 2D lasers with vision for 6-DOF motion estimation.
This is somewhat surprising as the 2D lasers are common in robotic research, compatible with real-
time and have been studied extensively over the past decade. The main motivations for combining
the information is avoiding data association problems, removing the difficulty of propagating the scale
factor and improving the robustness to outliers. In the first section, we describe the pre-processing
step applied to the laser data to remove outliers and extract line segments. We will then present a
vision-based tracking approach that includes explicitly the laser information to improve robustness
and speed. In the last section, we will analyse briefly how lines can be parameterised to include
range-bearing information.

10.2 Pre-processing the laser range measurements

The algorithms proposed in [Victorino, 2002, Chapter 2] were applied to pre-process the laser range
measurements. We will summarise briefly the approach, further details can be found in the referenced
work.

A filtering step is applied to the data in two passes:

1. rejection of local artifacts. A sliding window of three points is applied to the laser distance
measurements. If the relative distance between points is greater than a pre-defined threshold,
either we are in presence of an outlier or a new set of continuous points. This algorithm produces
n point sets with at least three “close” points. Figure 10.1 shows the results obtained on laser
readings made in a corridor. The yellow circles are the rejected points and the dots of different
colours correspond to the different point sets generated by the algorithm.

2. local filtering. From the n sets obtained from the previous algorithm, we look for homogeneous
sequences of points. The homogeneity criterion is the distance between the distances between
adjacent points. Only sequences with a sufficient amount of points (eg. 10 points) are kept.
In figure 10.2, the 11 homogeneous regions found by this algorithm are depicted with different
colours and numbered in anti-clockwise order. The rejected points are drawn with yellow circles.

We found that these steps could lead to over-segmentation as a single artifact will separate a
homogeneous region in two separate sets. In the same way as certain points are considered not to
represent physical objects when they are isolated, we can also consider that small distances between
segments are mainly due to noisy measurements. For this reason, we apply a merging step where
segments that are separated by a distance under a pre-defined threshold are considered as belonging
to a continuous surface. Figure 10.3 shows the result after merging the segments (with a threshold of
8 cm). The number of sets is reduced from 11 to 7.
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Figure 10.1: Reject local artifacts
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Figure 10.2: Filtered scan laser seg-
mented in homogeneous regions
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Figure 10.3: Filtered scan after merging close homogeneous point sets
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For estimating the motion of planes, we will be interested in finding line segments in the laser scan.
We apply the polygonal approximation from [Victorino, 2002] to the homogeneous regions obtained
after filtering. Figures 10.4 and 10.5 show the polygonal approximation obtained respectively without
and with the prior merging process. In the first case, 12 lines were found and in the second case, 10
lines were extracted.
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Figure 10.4: Polygonal approximation
without prior merging
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Figure 10.5: Polygonal approximation
with prior merging

The merging step generally leads to fewer lines but with more supporting points. It is desirable to
reduce the number of features in a SLAM framework to diminish the size of the state vector.

10.3 Combining vision and laser for motion estimation from planes

10.3.1 Plane parameterisation with laser information

In Chapter 6, we studied the registration of the images of planar surfaces. The motion of these image
regions can be explained by planar homographies:

H ∼ R + tn∗⊤
d (10.1)

where R ∈ SO(3) is the rotation of the camera and t ∈ R3 its translation, n∗
d = n∗/d∗ is the ratio

between the normal vector to the plane n∗ (a unit vector) and the distance d∗ of the plane to the
origin of the reference frame.
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Tracking multiple planes from the image information can be done by minimising the following
image-based function:

{
F (x) = 1

2

∑m
j=1

∑qj

i=1 ‖fij‖2

fij = I
(
ΠS

(
w<H(T(x)T̂, n̂j

d + n
j
d(x))><X ij∗

s >
))
− I∗(p∗

ij)

with T the transformation matrix, ̂ corresponds to the estimates and the functions of x are the
increments.

Most work combining vision and laser are laser-based, in other words the visual information is
only used to improve the laser estimation or provide a 3D reconstruction. We propose a vision-based
approach where the range information from the laser helps constrain the tracking and simultaneous
3D reconstruction and 6-DOF motion estimation.

There are several ways to combine the vision and depth information. Let s
j
1, s

j
2, . . . , s

j
r correspond

to the laser points in the camera reference frame that intersect plane j parameterised by n
j
d. We could

for example add the following error to the minimisation (algebraic error) that expresses that the laser
points belong to the jth plane:

1

2

r∑

k=1

‖(nj
d)

⊤s
j
k − 1‖2 (10.2)

An alternative is to include directly the equation of the line segment extracted from the laser scan
into the plane parameterisation. We may note that this does not give the Maximum Likelihood based
on the laser and camera uncertainty. However laser measurements are generally more precise than the
range observations deduced from vision. This approach has several advantages:� robustness to noise. By reducing the number of estimated parameters, the cost function is less

likely to fall in local minima and robust approaches (such as M-estimators) will lead to better
results,� computational speed. We estimate a single parameter instead of three, so the pseudo-inversion
of the Jacobian requires less computation.

Let P1 and P2 be two distinct end-points of a line segment associated to a plane of parameter nd.
From the properties of the laser, P1 and P2 are not aligned with the origin. Thus the set of possible
values for nd defines a pencil of planes D of dimension 1. We have the following properties:

P2×3nd = 12×1 , with P = [P1 P2]
⊤ and 1 = [1 1]⊤

Let nb be in the kernel of P− 1 and such that Pnb = 1. Let nKer be an element of the kernel of
P. These values can be obtained by singular value decomposition or more simply by cross product in
the 3D case. Algorithm 4 describes the approach (we add the extra constraint that nb and nKer are
orthogonal).

D = {nb + λnKer|λ ∈ R}
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Algorithm 4: Parameterising the pencil of planes passing through two points

Data: Two end-points P1 and P2 of a line extracted from a laser scan.
Result: nb and nKer such that D = {nb + λnKer|λ ∈ R} is the pencil of planes containing P1

and P2

nKer = P1 ×P2

nb = (P1 − 1)× (P2 − 1)
nb = nb/(1

⊤nb)

nb = nb − n⊤
b nKer

‖nKer‖2nKer // Impose n⊤
b nKer = 0 (optional)

Figure 10.6 illustrates the parameterisation. The line extracted from the laser scan is depicted in
a red dotted line between P1 and P2. Two planes are drawn for λ = 0.1 and λ = 0.5. The points P⊥

correspond to the closest points to the origin belonging to the planes (P⊥ = nd
‖nd‖2 ). The homography,

parameterised by the transformation and the parameter λ can then be written:

H ∼ R + t (nb + λnKer)
⊤ (10.3)

The degenerate case where the plane passes through the origin, n = nKer is rejected to infinity.
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Figure 10.6: Two planes generated by the parameterisation

The least-square system corresponding to the registration of the images becomes:
{

F (x,Λ) = 1
2

∑m
j=1

∑qj

i=1 ‖fij‖2

fij = I
(
ΠS

(
w<H(T(x)T̂, λ̂j + λj)><X ij∗

s >
))
− I∗(p∗

ij)
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with x the parameterisation of the transformation and Λ = (λ1, . . . , λm) the values defining the m
planes. The number of unknowns is 6 + m instead of 6 + 3×m− 1 for the full estimation of the plane
equations.

The Jacobian needed for the minimisation is similar to the case analysed in Appendix C (we use
the same notations).

Let n̂ = nb + λ̂nKer:

JHλ
=
[
∇λ H(T̂, λ̂)−1H(T̂, λ)

]
λ=

bλ
(10.4)

Jλ(0) =
[
∇λ λ + λ̂

]
λ=0

= 1 (10.5)

we can then show that:

JHλλ = JHλ
Jλ(0) =




(τ̂xn̂ + bx)⊤R̂⊤t̂nKer

(τ̂yn̂ + by)
⊤R̂⊤t̂nKer

(τ̂zn̂ + bz)
⊤R̂⊤t̂nKer


 (10.6)

We should note that this approach only uses the laser information when initialising the plane
parameterisation. The information from the laser acquired at each time step was not used in the
minimisation, it could however be included using equation (10.2). Another use of the laser data could
be occlusion detection.

10.3.2 Initialisation

Finding planes in an unknown environment can be a difficult task using only visual information. Laser
data can simplify this step. If we extract line segments in the laser scan as explained in Section 10.2,
we know that there exists a region around the line that is planar. The size of this region is unknown.
We choose to rely on robust methods (M-estimators) to reject image regions that do not correspond
to planar surfaces. We thus make the assumption that the regions chosen are “mainly” planar.

Figure 10.7 shows line segments extracted from a laser scan. Figure 10.8 illustrates image templates
assumed to be mainly planar and of an arbitrary size. The reprojection of the laser segments are
represented with the reprojection of the bounding boxes.

The minimisation of the reprojection error requires to initialise the plane normal nd and more
specifically λ with nd = nb + λnKer. The fact that we can observe the planes indicates that the
plane is more likely to be oriented towards the camera center. This choice corresponds to λ = 0 (as
we chose nb orthogonal to nKer), the corresponding 3D reconstruction is shown in Figure 10.9. In
the case of a mobile robot with a camera approximately vertical, we could also initialise the values
assuming verticality of the planes in the camera frame as in figure 10.10. This corresponds to λ =
−nb(3)/nKer(3). In the experiments, we did not make this assumption to show the validity of the
approach even when the initial orientation of the planes are unknown and imprecise.

In the initialisation step, we also use a criteria of entropy to reject planes that do not have sufficient
information to enable robust tracking. We also reject planes that correspond to small regions in the
environment (we chose to reject lines segments of less than 40 cm) and planes that reproject to small
regions in the image (less than 40 pixels across). Figure 10.11 shows the final planes selected for the
tracking.
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Figure 10.13: Rotation estimation

10.3.3 Experimental validation

The 6-DOF motion estimation and reconstruction was applied to a sequence of 90 omnidirectional
images and laser scans. This sequence was used previously for the validation of the omnidirectional
tracking in Chapter 6.

The planes were extracted automatically as explained in the previous section. Figures 10.14 and
10.15 represent the planes chosen for the tracking and illustrate the initial values given to the normals.

Figures 10.16, 10.18 and 10.20 show the planes tracked during the sequence and figures 10.17,
10.19 and 10.21 the associated 3D reconstructions. Figures 10.12 and 10.13 show the translation and
rotation estimates respectively. The plane contours are the reprojection of the reference contours in
the current image using the motion estimation. This explains why the depicted motion for the plane
on the right in the images appears highly distorted.

This sequence is interesting because strong occlusion and specularities affect the observed planes.
The M-estimators are sufficient to reject the outliers and the 6-DOF motion estimation stays precise.
Further improvements could be obtained through filtering and by the use of the laser readings that
can guide the rejection of occluded sections of the image. An analysis should also be done to know
the domain of validity of the tracking when part of the homography is fixed by the laser data.
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Figure 10.14: Initial tracked planes

Figure 10.15: Initial 3D reconstruction

Figure 10.16: Tracked planes after image 30 Figure 10.17: 3D reconstruction and motion after
image 30

Figure 10.18: Tracked planes after image 60 Figure 10.19: 3D reconstruction and motion after
image 60

Figure 10.20: Tracked planes after image 90 Figure 10.21: 3D reconstruction and motion after
image 90
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10.4 Conclusion and perspectives

In this chapter, we proposed an approach to combine 3D planes and 2D lines extracted from 2D laser
data. We also discussed how laser data could also be included in structure from motion from lines.
We showed that by considering the problem from a vision perspective, we could estimate the full
6-DOF motion of the robot. Experimental results on this preliminary work are encouraging and give
an insight into the possibilities offered by this combination of sensors. Further developments would be
needed to estimate the covariance associated to the 3D reconstruction and build a stochastic map.
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Chapter 11

Conclusion and future research

Research in the field of simultaneous localisation and mapping has recently provided important im-
provements from the point of view of filtering to build maps of large-scale environments. However
the complexity of the mapped environments has been limited by the sensors used. Most large scale
mapping implementations were made using 2D lasers or millimetre wave radars that do not enable
reliable data association or 6-DOF motion estimation.

This thesis attempted to address some of the issues in map building and motion estimation by
a novel combination of sensors: an omnidirectional camera and a 2D laser range finder. The vi-
sual information helps recognise previously explored regions. The laser gives precise range-bearing
measurements. Combined, they can provide efficient and robust 3-DOF or 6-DOF motion estimation.

This chapter summarises the contributions of this work and future directions of research.

11.1 Summary

This dissertation covered some of the essential components of a working system combining omnidirec-
tional vision and 2D lasers:� the omnidirectional calibration process: how to find a precise relationship between the image

points and the projective rays,� how to find the position between the laser sensor and the camera,� omnidirectional motion estimation from planes: how to track planes efficiently and take into
account the image distortion,� omnidirectional motion estimation from lines,� laser-vision coupling: how to combine omnidirectional vision and laser range-bearing for 3-DOF
SLAM and 6-DOF motion estimation.

We started by analysing the projection model associated to omnidirectional sensors. We showed
that the standard planar projection model was not adapted to take into account the wide field of view
of the sensor and that the spherical perspective projection model solved the issues regarding cheirality
and discontinuities in the image processing.

The unified projection model by Geyer and Barreto was then adapted to enable the calibration of
sensors with distortion errors in the projection model such as parabolic mirrors with telecentric lenses.
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We also devised a methodology to enable the calibration of a wide variety of sensors used in robotics
and computer vision. This lead to a calibration toolbox made available over the Internet.

Combining vision and laser also requires finding the relative position between the sensors. The
case of a laser range finder with a visible laser beam and the case when the beam is invisible were
studied. This step makes it possible to relate the intensity or color information in the image to the
laser measurements. The laser scan combined with vision, that we named Enriched Laser Scan (ELS),
reduces the problem of observability common to laser scan matching in corridor-like environments.
The advantages of using this combination of sensors were shown on real data. The wide field of
view of the omnidirectional sensor made it possible to localise the robot independently of the motion
estimates and enabled loop closing.

A chapter was dedicated to iterative minimisation over groups using Lie algebras. Without being
original as such, the approach is not well known and many problems in computer vision and robotics
could benefit from this method. In particular, the estimation of the uncertainty needed in SLAM
frameworks requires minimal parameterisations. The case of 3D lines is a typically example where a
minimal representation should be used for SLAM but apparently this has never been the case.

This thesis also analysed motion estimation using only omnidirectional vision. We showed how
visual tracking could be adapted to single viewpoint sensors by using parametric models (in this case
homographies) combined with the spherical perspective model. We also contributed by improving the
computational cost of the efficient second order minimisation algorithm. Comparison with the inverse
compositional shows a systematic gain in time thanks to the better convergence rate. We then derived
a constrained tracking method to estimate the camera and plane positions simultaneously. How to
remove outliers and specularities was also discussed.

Planes or points do not always provide a sufficient amount of information for structure and motion,
so we studied line features. We analysed how they could be parameterised in a way compatible with
extraction, tracking and bundle adjustment for omnidirectional sensors.

Finally this thesis proposed two approaches for laser-vision structure and motion. The first relies
on the extraction of novel salient laser-vision features that can be included in a standard 3-DOF EKF
framework. Combined with a localisation approach using omnidirectional vision, loop closing was
made possible and the overall approach provided a complete SLAM method that does not require the
standard assumption of a piecewise linear environment. This technique could ultimately be applied
to outdoor environments. The second approach provides 6-DOF motion estimation through the com-
bination of laser lines and 3D planes. Results were shown on a 6-DOF motion estimation sequence.
Further research would be needed to include this work in a full SLAM framework.

11.2 Future research

11.2.1 Extensions to the current work

In this thesis, we were not able to explore in detail the problem of identifying previously observed
scenes. However we used an approach from image indexing that has seemingly rarely been used
for robot localisation. We believe that combining auto-correlograms with Haar invariants over local
attributes could be a way of improving localisation. Combining local metric information could also
help distinguish between visually similar regions.

The loop closing procedure based on a qualitative estimation followed by scan matching proved
sufficient in our indoor environment but in a more general and complex situation, deciding in a single
step could lead to incorrect loop closing. Delaying the decision as is done regularly in a SLAM
framework would be required for a real-world working system.



11.2. Future research 159

In Chapter 6, we discussed efficient ways of tracking planar features. SSD is however limited to
small inter-frame motion. Ways of initialising the tracking, extending the convergence domain and
recovering from total occlusion are important steps for applying the approach in general real-world
situations. Some possible solutions would consist in finding invariant descriptors that could enable an
efficient search in the image such as histograms or image invariants. Correlation is a standard way of
initialising image tracking but is sensitive to changes in shape and is computationally expensive. How
to adapt the initialisation to the variable image resolution in omnidirectional vision is also an open
question. Kalman filtering or particle filtering with a motion model can also improve the initialisation.

Auto-calibration was only briefly discussed in this thesis. However it is well known that the
projective properties of panoramic sensors are strongly related to the intrinsic parameters. Visual
tracking for example could provide a very convenient way of calibrating the sensor.

11.2.2 Longer term developments

Plane tracking has many advantages in a SLAM framework in particular the strong constraints it
imposes on the motion with few parameters. However extracting planes in a general situation can be
a complex task and was not discussed in this work. The notion of plane itself depends on the distance
to the landmark and few articles have studied the problem of on-line probabilistic planar structure
estimation.

For vision sensors, observability poses difficult challenges. Identifying that the features do not
constrain the motion can be done theoretically by looking at the covariance matrix but in practice the
noise makes the identification harder and can render the map inconsistent. If we manage to identify
this situation, a new map could for example be initialised and we could later try and fuse the maps.

Cameras provide a rich description of the environment and often only part of this information is
needed to estimate the motion. Active vision, that chooses where to look for worthwhile data based
on maximising the information gain is an interesting topic for longer term developments.

Another topic that was not covered in this thesis was the combination of vision and laser for
dynamic environments. Previous work has studied the use of 2D lasers to track moving objects or
people but vision could undoubtedly improve the robustness of these methods and help re-identify
previously observed dynamic features. Building semantic representations by identifying objects such
as chairs or doors can also help improve the quality of the maps. Classification and object recognition
represents an important part of the vision literature and could benefit robot mapping.
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Appendix A

Jacobian of the projection function

A.1 Changing frame

W (X , V 1) = RX (Q′) + t

∂W

∂Q 3×4

=
∂W

∂Q′
3×4

∂Q′

∂Q 4×4
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3×4

[ (
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∂q′0

) (
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) ]
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∂q′0
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q′0x− q′3y + q′2z
q′3x + q′0y − q′1z
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∂q′2
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= 2
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Finally:
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∂V 1 3×7
=
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)
3×3

]



162 Jacobian of the projection function Chap. A

A.2 Mirror transformation

H = ℏ ◦ S with r =
√

x2 + y2 + z2:

∂H

∂X 2×3
=

1

r(z + ξr)2

[
rz + ξ(y2 + z2) −ξxy x(−ξz − r)

−ξxy rz + ξ(x2 + z2) y(−ξz − r)

]

∂H

∂V 2 2×1
= − r

(z + ξr)2

[
x
y

]

A.3 Distortion

With ρ2 = x2 + y2:

D(X , V 3) =

[
x(1 + k1ρ2 + k2ρ

2
2) + 2p1xy + p2(ρ2 + 2x2)

y(1 + k1ρ2 + k2ρ
2
2) + p1(ρ2 + 2y2) + 2p2xy

]

∂D

∂V 3 2×4
=

[
xρ2 xρ2

2 2xy ρ2 + 2x2

yρ2 yρ2
2 ρ2 + 2y2 2xy

]

∂D

∂X 2×2
=

[
1 + k1(ρ2 + 2x2) + k2ρ2(ρ2 + 4x2) + p12y + p26x

1 + k12xy + k24ρ2xy + p12x + p22y

1 + k12xy + k24ρ2xy + p12x + p22y
1 + k1(ρ2 + 2y2) + k2ρ2(ρ2 + 4y4) + p16y + p22x

]

A.4 Generalised projection matrix

k(X , V 4) =

[
γ1(x + αy) + c1

γ2y + c2

]

∂k

∂V 4 2×5
=

[
γ1y x + αy 0 1 0
0 0 y 0 1

]
,

∂k

∂X 2×2
=

[
γ1 γ1α
0 γ2

]



Appendix B

Jacobian for tracking a single plane

Current Jacobian

We will write the current Jacobian as the product of five different Jacobians:

J(0)=
[
∇x I

(
Π(w<ĤH(x)><X ∗

s>)
)
− I∗(p∗)

]
x=0

=JI JΠ Jw JHx
(0)

Noting that:

w<ĤH(x)><X ∗
s> = w<Ĥ><w<H(x)><X ∗

s>>

= w<Ĥ><Π−1(q)>

with q = Π(w<H(x)><X ∗
s>). The first Jacobian JI is:

JI =
[
∇q I

(
Π(w<Ĥ><Π−1(q)>)

)]

q=t

with : t = Π(w<H(0)><X ∗
s>)

Π(w<H(0)><X ∗
s>) = Π(w<I><X ∗

s>) = p so JI is the jacobian of the current image.
The Jacobian of Π is detailed in Appendix A.

Jw = [∇H w<.><X ∗
s>]H=H(0)=I =




X ∗⊤
s 0 0

0 X ∗⊤
s 0

0 0 X ∗⊤
s




3×9

JH(0) = [∇x H]x=0 = [flat(A1)
⊤ flat(A2)

⊤ · · · flat(A8)
⊤]⊤9×8

with : flat(Mn×m) = [m11 m12 · · · m1m m21 m22 · · ·mnm]⊤

Reference Jacobian

The reference Jacobian J(x0) can be written as:

J(x0) =
[
∇x I

(
Π(w<ĤH(x)><X ∗

s>)
)
− I∗(p∗)

]
x=x0

= JI∗ JΠ Jw J
(H

−1 bHHx)
(x0)
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Noting that:

w<ĤH(x)><X ∗
s> = w<H><w<H

−1
ĤH(x)><X ∗

s>>

= w<H><Π−1(q)>

with q = Π(w<H
−1

ĤH(x)><X ∗
s>), the Jacobian JI∗ is:

JI∗ =
[
∇q I

(
Π(w<H><Π−1(q)>)

)]
q=t

with : t = Π(w<H
−1

ĤH(x0)><X ∗
s>)

Π(w<H
−1

ĤH(x0)><X ∗
s>) = Π(w<I><X ∗

s>) = p so JI∗ is the jacobian of the reference image.
JΠ and Jw are the same as for the current Jacobian.
Thanks to the Lie group parameterization, J

(H
−1 bHHx)

(x0)x0 = JHx
(0)x0.



Appendix C

Jacobian for tracking multiple planes

For clarity, we will no longer indicate i, j and d.
The translation can only be obtain up to a scale factor so to avoid over-parameterising the system,

the “first plane” can be estimated differently:

H1 = R +
t

d1
n⊤

1 (C.1)

H2 = R +
t

d1

(
d1

d2
n⊤

2

)
(C.2)

...
...

Hm = R +
t

d1

(
d1

dm
n⊤

m

)
(C.3)

In other words, we can only estimate two parameters for n1 (for example by normalising) and three
for d1

di
ni, i > 1.

Current Jacobian

We will decompose the current Jacobian as such:

J(0) =
[
∇x I

(
Π(w<H(T(x)T̂, n̂ + n(x))><X ∗

s>)
)
− I∗(p∗)

]
x=0

= JIJΠ Jw[JHT T (0) JHnn(0)] (C.4)

(C.5)

Noting that:

w<H(T(x)T̂, n̂ + n(x))><X ∗
s> = w<H(T̂, n̂)><Π−1(q)>

with:
q = Π(w<H(T̂, n̂)−1H(T(x)T̂, n̂ + n(x))><X ∗

s>) (C.6)

In 0 this leads to q = Π(w<I><X ∗
s>) so the first Jacobian JI is:

JI =
[
∇q I

(
Π(w<H(T̂, n̂)><Π−1(q)>)

)]

q=p
(C.7)
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which is the jacobian of the current image.
JΠ and Jw are the same as for the single plane tracking.

JHT
=
[
∇T H(T̂, n̂)−1H(TT̂, n̂)

]
T=I

(C.8)

JT (0) = [∇x T(x)]x=0 (C.9)

If we write T̂ as:

T̂ =

[
R̂ t̂

0 1

]
(C.10)

and let τ̂ = (τ̂x, τ̂y, τ̂z) be the (3× 1) vector:

τ̂ =
−R̂⊤t̂

1 + n̂⊤R̂⊤t̂
(C.11)

if we write JHT T = JHT
JT it can be shown that:

JHT T =




n̂ (τ̂xn̂ + bx)⊤R̂⊤ Ĥ⊤ [τ̂xn̂ + bx]× I

n̂ (τ̂yn̂ + by)
⊤R̂⊤ Ĥ⊤ [τ̂yn̂ + by]× I

n̂ (τ̂zn̂ + bz)
⊤R̂⊤ Ĥ⊤ [τ̂zn̂ + bz]× I


 (C.12)

JHn =
[
∇n H(T̂, n̂)−1H(T̂,n)

]
n=bn

(C.13)

Jn(0) = [∇x n̂ + n(x)]x=0 = I (C.14)

we can then also show that:

JHnn = JHnJn(0) =




(τ̂xn̂ + bx)⊤R̂⊤t̂Ji

(τ̂yn̂ + by)
⊤R̂⊤t̂Ji

(τ̂zn̂ + bz)
⊤R̂⊤t̂Ji


 (C.15)

with Ji =
[
∇n

bn+n
‖bn+n‖

]
n=0

if i = 1 and Ji = I3 for i > 1 (to take into account the normalisation of

n1).

Reference Jacobian

We will decompose the reference Jacobian as such:

J(x0) =
[
∇x I

(
Π(w<H(T(x)T̂, n̂ + n(x))><X ∗

s>)
)]

x=x0

= JI∗ JΠ Jw [JH∗
T T ∗(x0) JH∗

nn∗(x0)] (C.16)

Noting that:

w<H(T(x)T̂, n̂ + n(x))><X ∗
s> = w<H(T,n)><Π−1(q)>

with:
q = Π(w<H(T,n)−1H(T(x)T̂, n̂ + n(x))><X ∗

s>) (C.17)
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In x0 this leads to q = Π(w<I><X ∗
s>) so the first Jacobian JI∗ is:

JI∗ =
[
∇q I

(
Π(w<H(T,n)><Π−1(q)>)

)]
q=p

(C.18)

which is the jacobian of the reference image.
JΠ and Jw are the same as for the single plane tracking.

JH∗
T

=
[
∇T H(T,n)−1H(TT, n̂)

]
T=I

(C.19)

JT ∗(x0) =
[
∇x T(x)T̂T

−1
]
x=x0

(C.20)

JH∗
n

=
[
∇T H(T,n)−1H(T̂,n)

]
n=bn

(C.21)

Jn∗(x0) = [∇x n̂ + n(x)]x=x0
= I = Jn(0) (C.22)

Trivially we have Jn(0)x0 = Jn∗(x0)x0 but also, thanks to the Lie group parameterization, it can
be shown that JT ∗(x0)x0 = JT (0)x0. If we now make the approximation that T̂ ≈ T and n̂ ≈ n,
JH∗

T
≈ JHT

and JH∗
n
≈ JHn and we obtain equation 6.18.
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Appendix D

The Kalman filter

The Kalman filter was used for the experiments of Chapter 9, we will now describe the related equa-
tions.

D.1 Discrete Kalman Filter (KF)

The discrete Kalman filter addresses the problem of trying to estimate the discrete time-controlled
process governed by the equations:

xt = Axt−1 + But + wt−1

with a measurement z that can be written:

zt = Hxt + vt� wt represents the process noise, w ∼ N(0,Q).� vt represents the measurement noise, v ∼ N(0,R).

Prediction and time update equations

xt+1/t = Axt/t + But

Pt+1/t = APt/tA
⊤ + Qt

Measurement update equations

xt+1/t+1 = xt+1/t + Wt+1vt+1

Pt+1/t+1 = Pt+1/t −Wt+1St+1W
⊤
t+1

The measurement update equations add the information from the new measurements to correct the
estimate from the model. v is called the ”innovation” and corresponds to the amount of ”unpredicted”
information obtained from the new measurement. W is the Kalman gain and expresses how much
trust we can have in the measurement.

vt+1 = zt+1 −Hxt+1/t



Wt+1 = Pt+1/tH
⊤
t+1/tS

−1
t+1

St+1 = Ht+1/tPt+1/tH
⊤
t+1/t + Rt+1

R is the measurement noise covariance.

D.2 Extended Kalman Filter (EKF)

The state transition and measurement equations are often non-linear. The Extended Kalman Filter
(EKF) is an extension of the Kalman filter to cope with these non-linearities. The mathematical
simplifications involves come however at a price: the distributions are not correctly modelled and
the linearisations will lead to inconsistencies. In practice however, the results obtained are often
satisfactory.

Prediction and time update equations

xt+1/t = f(xt/t,ut)

Pt+1/t = (∇xf)t/tPt/t(∇xf)⊤t/t + Qt

f is the state update equation.
xt/t is the state estimate at time k based on the information at time k.
xt+1/t is the state estimate at time k+1 based on the time update model (ie without integrating the
measurement information).
P correspond to the covariance matrices.
Q is the process noise covariance.

Measurement update equations

xt+1/t+1 = xt+1/t + Wt+1vt+1

Pt+1/t+1 = Pt+1/t −Wt+1St+1W
⊤
t+1

The measurement update equations add the information from the new measurements to correct the
estimate from the model. v is called the “innovation” and corresponds to the amount of “unpredicted”
information obtained from the new measurement. W is the Kalman gain and expresses how much
trust we can have in the measurement.

vt+1 = zt+1 − h(xt+1/t)

Wt+1 = Pt+1/t(∇xh)⊤t+1/tS
−1
t+1

St+1 = (∇xh)t+1/tPt+1/t(∇xh)⊤t+1/t + Rt+1

R is the measurement noise covariance.
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A.J. Davison, Y. González Cid, and N. Kita. Real-time 3D SLAM with wide-angle vision. In IFAC
Symposium on Intelligent Autonomous Vehicles, 2004.

Andrew J. Davison. Active search for real-time vision. In International Conference on Computer
Vision, 2005.

173



M. Deans and M. Hebert. Experimental comparison of techniques for localization and mapping using
a bearings only sensor. In Seventh International Symposium on Experimental Robotics, 2000.

L Delahoche, C Pégard, B Marhic, and P Vasseur. A navigation system based on an omnidirectional
vision sensor. In IEEE International Conference on Intelligent Robots and Systems, 1997.

Cédric Demonceaux, Pascal Vasseur, and Claude Pégard. Robust attitude estimation with catadioptric
vision. In IEEE International Conference on Intelligent Robots and Systems, 2006.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society, 39:185–197, 1977.

Frederic Devernay and Olivier D. Faugeras. Straight lines have to be straight. Machine Vision and
Applications, 13(1):14–24, 2001.

G. Dissanayake, P. Newman, H. F. Durrant-Whyte, S. Clark, , and M. Csorba. A solution to the
simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and
Automation, 17(3):229–241, 2001.

Arnaud Doucet, Nando de Freitas, Kevin Murphy, and Stuart Russell. Rao-blackwellised particle
filtering for dynamic bayesian networks. In Uncertainty in Artificial Intelligence, 2000.

T.W. Drummond and R. Cipolla. Application of lie algebras to affine invariant visual servoing. Int.
Journal of Computer Vision, 37(1):21–41, 2000.

T.W. Drummond and R. Cipolla. Visual tracking and control using lie algebras. In IEEE Conf. on
Computer Vision and Pattern Recognition, 1999.

Romain Dupont, Renaud Keriven, and Philippe Fuchs. An improved calibration technique for coupled
single-row telemeter and ccd camera. 3DIM, 00:89–94, 2005. ISSN 1550-6185.

Hugh Durrant-Whyte. Localisation, mapping and the simultaneaous localisation and mapping (slam)
problem. SLAM Summer School, 2002.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping (slam): Part i the
essential algorithms. Robotics and Automation Magazine, 2006.

E. D. Eade and T. W. Drummond. Edge landmarks in monocular slam. In British Machine Vision
Conference, 2006.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer, 22(6):46–57,
1989.

O. Faugeras and F. Lustman. Motion and structure from motion in a piecewise planar environment.
International Journal of Pattern Recognition and Artificial Intelligence, 2(3):485–508, 1988.

Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395,
1981.

Andrew W. Fitzgibbon. Simultaneous linear estimation of multiple view geometry and lens distortion.
In CVPR, 2001.

174



D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments.
Journal of Artificial Intelligence Research, 11:391–427, 1999.

Jean Gallier. Geometric Methods and Applications For Computer Science and Engineering. Springer-
Verlag, 2001.

C. Geyer and K. Daniilidis. Catadioptric projective geometry. IJCV, 45(3):223–243, 2001.

Christopher Geyer. Catadioptric Projective Geometry : theory and applications. PhD thesis, University
of Pennsylvania, 2003.

Christopher Geyer and Konstantinos Daniilidis. A unifying theory for central panoramic systems and
practical applications. In European Conference on Computer Vision, pages 445–461, 2000.

C. Giovannangeli, Ph. Gaussier, and J.-P. Banquet. Robustness of visual place cells in dynamic indoor
and outdoor environment. International Journal of Advanced Robotic Systems, 3(2):115–124, 2006.
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Résumé

Estimer le mouvement d’un robot et construire en même temps une représentation de l’environnement
(problème SLAM: Simultaneous Localisation And Mapping) est souvent considéré comme un problème es-
sentiel pour développer des robots pleinement autonomes qui ne nécessitent pas de connaissances a priori de
l’environnement pour réaliser leurs tâches.

L’évolution du SLAM est très liée aux capteurs utilisés. Les sonars couplée avec l’odométrie sont souvent
présentés comme les premiers capteurs ayant fourni des résultats convaincants. Depuis, les lasers 2D ont
souvent remplacés ces capteurs pour des raisons de précision et de rapport signal/bruit. Néanmoins les lasers
2D permettent uniquement d’estimer des mouvements planaires et ne donnent pas des informations perceptuelles
suffisantes pour identifier de manière fiable des régions précédemment explorées.

Ces observations nous ont amenés à explorer à travers cette thèse comment combiner un capteur omnidirec-
tionnel avec un télémètre laser pour effectuer la localisation et cartographie simultanée dans des environnements
complexes et de grandes tailles.

Les contributions de cette thèse concernent l’étalonnage des capteurs centraux catadioptriques (avec le
développement d’un logiciel opensource disponible sur le site internet de l’auteur) et la recherche de la position
relative entre un capteur omnidirectionnel et un télémètre laser. Des approches efficaces pour estimer le mou-
vement 3D du capteur en utilisant des droites et des plans sont détaillées. Enfin deux méthodes sont proposées
combinant laser et vision pour effectuer du SLAM planaire mais aussi pour estimer la position 3D du robot
ainsi que la structure de l’environnement.

Mots clefs : vision omnidirectionnelle, télémétrie laser, cartographie, estimation du mouve-

ment, suivi basé vision

Abstract

The problem of estimating the motion of a robot and simultaneously building a representation of the
environment (known as SLAM: Simultaneous Localisation And Mapping) is often considered as an essential
topic of research to build fully autonomous systems that do not require any prior knowledge of the environment
to fulfill their tasks.

The evolution of SLAM is closely linked to the sensors used. Sonars with odometry are often presented
as the first sensors having led to convincing results. Since then, 2D laser range finders have often replaced
sonars when possible because of the higher precision and better signal to noise ratio. However 2D lasers alone
limit SLAM to planar motion estimation and do not provide sufficiently rich information to reliably identify
previously explored regions.

These observations have led us to explore throughout this thesis how to combine an omnidirectional camera
with a laser range finder to help solve some of the challenges of SLAM in large-scale complex environments.

The contributions of this thesis concern a method to calibrate central catadioptric cameras (with the devel-
opment of an opensource toolbox available on the author’s website) and find the relative position between an
omnidirectional sensor and a laser range finder. How to represent lines and planes for motion estimation is also
studied with the use of Lie algebras to provide a minimal parameterisation. Finally we will detail how laser and
vision can be combined for planar SLAM and 3D structure from motion.

Key words: omnidirectional vision, laser range finder, mapping, SLAM, motion estimation,

visual tracking
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