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Résumé étendu en Français

Chapitre 1 - Introduction

L’usage accru de transmission de données dans nos jours, à faire augmenter la demande

pour plus de débit. Les réseaux sans-fil essaient de répondre à la demande de haut

débit dans la présence des plusieurs contraintes importantes concernant la transmission

sans-fil. Un contrainte importante est sur la bande passante, imposées par les autorités

réglementaires telles que la FCC (Fédéral Communications Commission) aux États-Unis.

La deuxième contrainte vient du canal de transmission qui est l’air ou l’espace dans le

cas de communications sans-fil. À haut débit, le montant de distorsion introduite à la

transmission par la canal devient de plus en plus prononcée, ce qui rend la difficulté à

compensation au niveau du récepteur. Puisque les exigences réglementaires du spectre

ne peuvent être modifié ou changé, la but est d’améliorer la performance des systèmes de

transmission numérique opérant dans divers canaux avec diverses techniques de traite-

ment de signal. L’allocation adaptative des ressources [1–3] est une de ces méthodes

pour améliorer la performance du système où les différents paramètres du système (taille

de constellation, taux de codage, le puissance etc.) sont modifiées selon l’état de canal

(CSI = Channel State Information). Cette allocation des ressources peut être effectués

à plusieurs couches, mais nous sommes intéressées par les possibilités d’adaptation à la

couche physique. Il a été démontré que l’adaptation de puissance et le taille de constel-

lation pour un système M-QAM, peut donner un gain de près de 20 dB par rapport à la

transmission non adaptative [4].

La modulation multi-porteuses (MCM = Multi-Carrier Modulation) [5] a révolu-

tionné la technologie de couche physique pour des systèmes de communication, filaires

ainsi que les sans-fil, au cours des deux dernières décennies. C’est la technologie de choix

pour la couche physique des systèmes DSL [6],WLAN (IEEE 802.11x), WPAN (IEEE

802.15) et WiMAX (IEEE 802.16) parmi des nombreux systèmes utilisant MCM. MCM

fonctionne selon un approche diviser et conquérir, c’est a dire la transmission est fait dans
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plusieurs sous-porteuses avec un débit de données plus faible, qui rendre simplification au

l’égalisation à récepteur en traitant séparément la distorsion sur chaque sous-porteuse. En

domaine fréquentiel, MCM transforme le canal sélectif en fréquence dans plusieurs petits

canaux orthogonaux et sur lesquelles les données sont transmises en parallèle. Avec de

nombreux avantages de MCM sur les systèmes de communications mono-porteuse (SCM

= Single Carrier Modulation), telles que l’architecture simplifiées de récepteur, la capac-

ité de la diversité en fréquence, la robustesse inhérente contre l’interférence inter-symbole

(ISI), la répartition de bande passante en grand nombre de canaux bande étroite orthog-

onale donne la possibilité d’adaptation avec une granularité fine dans un canal sélective

en fréquences.

Malgré tous les avantages de MCM cités ci-dessus, les systèmes MCM actuelle

n’atteint pas leurs potentiel en raison de non-adaptation des paramètres de fonction-

nement (e.g. taille de constellation, taux de codage, puissance émis etc.) par rapport

l’état de canal (CSI) sur chaque sous-porteuse. Par conséquent, la probabilité d’erreur

globale du système est dominée par les sous-porteuses les plus dégradées. Ainsi, pour

améliorer les performances du système, l’impact de ces sous-porteuses devrait être at-

ténués. C’est la raison d’être de l’adaptation des ressources ou de ’bit-loading’ (lorsque le

paramètre d’adaptation est la taille de constellation discret) pour MCM. Depuis l’usage

des techniques d’adaptation dans systèmes MCM, un grand nombre des algorithmes, en

utilisant toutes sortes de techniques d’optimisation, ont été élaborés et mis en place pour

plusieurs systèmes MCM, y compris les modems DSL [7]. Malgré ces efforts, un grand

nombre des contraintes importantes e.g. la délai de voie de retour, la qualité d’estimation

du canal, le complexité des algorithmes etc. doivent être adressé pour l’utilisation de

communications sans-fil en haut débit . Cette thèse aborde le problème de la complexité

des algorithmes d’adaptation en proposant des nouveaux algorithmes d’optimisation pour

MCM.

La complexité des algorithmes est ciblé sur le plan théorique / algorithmique ainsi

que sur la coté architecture. Les contributions principales apportées dans cette thèse

peuvent être énumérés comme suivants:

• La conception d’un nouvel algorithme de Bit-Loading (adaptation par rapport taille

de constellation) basé sur un rythme d’allocation présent dans l’allocation opti-

male/greedy. Le nouveau algorithme a une complexité beaucoup plus faible que

d’autres algorithmes
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• Développements théoriques et conception d’un nouvel algorithme de répartition

optimale de puissance totale en tenant compte la contrainte de puissance-maximale.

• La proposition d’une nouvelle méthode d’optimisation du profil d’irrégularité des

codes LDPC irrégulière basé sur la quantification du phénomène de l’effet de vague

(= ‘Wave-Effect’) et les développements théoriques conduisant à une méthode de

calcul efficace.

• Une nouvelle méthodologie pour l’optimisation des ressources architecture pour un

algorithme d’adaptation tenant en compte les contraintes temporel de la canal de

la transmission en temps réel.
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Chapitre 2 - Bit-Loading

Introduction

Modulation Adaptative se réfère généralement au adaptation de type de modulation/

taille de constellation (BPSK, QPSK, QAM-16 etc.) par rapport les conditions de la

canal. C’est-à-dire, le mieux la canal, large le taille de constellation du symbole envoyé.

Modulation adaptative dans les systèmes multi-porteuses est appelé Bit-Loading lorsque

l’adaptation est fait dans les sous-porteuses indépendamment de l’un et l’autre et la taille

de constellation est un nombre discret. La tâche d’optimiser le profil de bits discrets sur

toutes les sous-porteuses, pour un état de canal donné, est un sujet important dans la

recherche sous le nom de Discrète Bit-Loading. Il a été constaté que le profil optimale

d’allocation des bits, pour un canal et nombre de sous-porteuses donnés, est différente

pour différents objectifs (maximisation du débit, minimisation de puissance totale etc.)

et contraintes (la puissance totale, nombre de bits totale, la puissance maximale etc.)

associés à la problème d’optimisation.

L’objectif d’un algorithme d’allocation peut être variable: maximiser le débit, min-

imiser le taux d’erreur, minimiser la puissance totale etc. selon les besoins du système

correspondant. Sur la base de l’objectif, il existe deux types de problèmes d’optimisation

qui sont populaires dans la littérature: maximisation de débit et minimisation de puis-

sance totale pour un débit donnée [8]. Nous définissons N comme la nombre totale des

sous-porteuses et σ2
n, |Hn|2, en, bn et perrn comme le puissance de bruit, le gain du canal,

l’énergie attribué, le nombre de bits alloué et la probabilité d’erreur sur le sous-porteuse

n. La problème de maximisation de débit traite de la maximisation du débit de don-

nées (R = B/Tsym) pour un ensemble des sous-canaux parallèles lorsque le débit symbole

1/Tsym est fixe. Cela exige la maximisation du nombre total de bits (B =
∑N

n=1 bn) alloué

sur tous les sous-porteuses, pour une énergie totale donné. Pour nombreux systèmes de

communication pratique, un débit variable n’est pas souhaitable. Dans ce cas, au lieu

de maximiser le débit, maximisation de la performance (margin) pour un débit donné,

est ciblé. Pour maximiser le margin, l’énergie totale est minimiser pour un débit et taux

d’erreur donnée.
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État de l’Art

Concernant les méthodes existant d’allocation de bits, nous constatons que le solution

Water-filling [9] et la solution greedy [10] sont bien connue comme les solutions opti-

male pour le cas continue et discret respectivement. Par contre, la recherche pour des

algorithme moins complexe a entrâıné le développement de diverses approches au cours

des dernières années [11–15]. Hughes-Hartogs [10] a été le premier à établir l’algorithme

greedy d’allocation des bits pour maximiser le débit pour une puissance totale donnée.

Les propositions d’après [16–18] ont concentré sur arrondissement de la solution con-

tinue d’un problème d’optimisation pour réduire la complexité d’algorithme par rapport

à l’algorithme classique greedy avec un minimum de différence de performance.

Les principaux travaux mathématique liés à allocation de bits discret ont été effec-

tuées par Campello [11], qui a développés les conditions suffisantes pour un allocation

discret optimale et a proposé des algorithmes d’allocation en utilisant les conditions suff-

isant et le facteur de Gap ( Un approximation pour la prise en compte du comportement

de type de modulation et de codage dans l’équation classique de capacité par Shan-

non [19] ). Critiquant la validité de l’expression de ‘Gap’, Piazzo [12] a développé des

algorithmes pour une allocation optimale des bits, basé sur un condition nécessaire pour

l’optimalité. D’autres oeuvres importantes concernant l’allocation de bits discret ont été

effectuée par Krongold [13] et Sonalkar [14], qui ont utilisé les techniques de Lagrange

discrète et Greedy-Bit Removal pour arriver à la solution optimale. Bien que tous ces dif-

férents algorithmes fournissent une solution avec différent niveau de performance et celle

de complexité, la contrainte de puissance maximale n’était pas exclusivement adressée.

Les grands travaux liés à l’allocation de bits discret tenant en compte la contrainte de

puissance maximale ont été effectuée par Baccarelli [20] et Papandreou [15]. Baccarelli

utilise l’approche classique greedy pour respecter la contrainte de puissance maximale et

Papandreou a proposé un méthode d’allocation en plusieurs phases pour converger vers

la solution optimale respectant la contrainte de puissance maximale.

Algorithme 3-dB d’Allocation Optimale des Bits Discrètes

En utilisant de le paramètre de ‘Gap’, le nombre maximum de bits (bn) par symbole qui

peuvent être envoyés sur sous-porteuse n, dans un système multi-porteuses sont donnés

par
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bn = log2(1 +
en · CNRn

Γ
) (1)

Où CNRn est la rapport de gain du canal et bruit et bn et en sont des nombre

de bits et l’énergie attribué au sous-porteuse n, respectivement. Γ est le paramètre de

‘Gap’ pour l’estimation de comportement de la type de modulation et de codage pour un

critère de performance souhaités. En utilisant l’équation ci-dessus, l’énergie nécessaire

pour transmettre un bit supplémentaire sur le sous-porteuse n est donnée par :

∆e+
bn

= ebn+1
n − ebnn =

2bn · Γ
CNRn

(2)

La base conceptuelle de notre algorithme d’allocation se trouve sur le principe facile-

ment observable de l’équation ci-dessus, qui donne une relation récursive entre les énergies

dont nous avons besoin pour allocations des bits successives sur la même sous-porteuse.

C’est a dire que l’énergie nécessaire pour incrémenter bits de bn à bn+1 est deux fois

(nécessite plus de 3 dB) de l’énergie nécessaire pour incrémenter bits de bn−1 à bn. Math-

ématiquement, cette relation récursive est représentés comme

∆e+
bn

= 2 · ∆e+
bn−1

⇒ ∆e+
bndB

= ∆e+
bn−1dB

+ 3dB (3)

En utilisant le relation ci-dessus, nous pouvons diviser toutes les sous-porteuses en

groupes de 3-dB par rapport leur gains de canal. Ainsi, si nous imaginons tous les sous-

porteuses triés dans ordre décroissant par rapport leur gain du canal, le sous-porteuse

avec le plus petit gain de canal sera au premier groupe et la sous-porteuse avec la plus

grande gain de canal est assignés au dernier groupe. Le nombre de sous-porteuses dans

chaque groupe ne sera pas identiques et sera déterminés par la qualité de canal concerné.

Utilisant ce tri des sous-porteuses dans les différents groupes de 3-dB, nous avons détecté

un ’rythme’ sous l’allocation optimal ’greedy’ qui est faite bit par bit et finalement em-

ployé cette ’rythme’ ou ’mode de comportement’ pour la conception de notre algorithme

d’allocation optimale de bits discrète.

Sur la base de ces principes, si tous les sous-porteuse sont divisés en différentes

groupes de 3-dB, nous avons divisé notre algorithme d’allocation en deux phases : allo-

cation initiale et allocation finale.

En allocation initiale, notre objectif principal est de déterminer le nombre maximal

de groupes de 3-dB qui seront nécessaires pour allouer le cible nombre de bits B. Pour
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cela, nous définissons nsl comme le nombre de sous-porteuses dans le groupe l de sorte

que
∑L

l=1 nsl = N . Maintenant, tout le processus d’allocation peuvent être divisés en

petites étapes j. Une étape peut être définie comme tous les allocation qui se-font entre

les allocations successives sur le première sous-porteuse Hmax.

Si nous supposons que notre cible nombres de bits B sera atteint au cours de l’étape

j∗ , chaque étape jusqu’à j∗ − 1 sera allouer un bit à tous les sous-porteuses de tous les

groupes de 3-dB impliqués au cours de cette étape. Par contre, au cours de l’étape j∗,ce

ne pas nécessaire que tous les sous-porteuses concernés sont attribué aussi un bit parce-

que la procédure d’allocation s’arrêtera dès que btotal = B. Le phase initiale de notre

algorithme d’allocation, se-concerne des allocation de l’étape 1 jusqu’à l’étape j∗ − 1,

alors que la phase finale d’allocation se-concerne aux allocation qui se-font à l’étape

j∗. Une fois la valeur de j∗ est déterminé, on sait que j∗ − 1 sous-groupes seronts être

employées pendant la phase d’allocation initiale, parce-que avec chaque nouvelle étape,

un sous-groupe supplementaire est impliqué dans le procedure d’allocation. Seulement

un bit est attribuée à chaque sous-porteuse impliqués dans une étape. Par conséquent,

à la fin de l’étape j∗ − 1, j∗ − 1 bits seront etre allouer à tous les sous-porteuses dans le

groupe 1, j∗ − 2 bits pour chaque sous-porteuse de groupe 2 jusqu’à un seul bit au tous

les sous-porteuses de groupe j∗ − 1 . Donc, si j∗ représente le nombre de groupes 3-dB

impliqué dans l’allocation initiale, après la phase d’allocation initiale (c’est-à-dire après

j∗−1 étapes de l’allocation), le nombre de bits alloués au chaque sous-porteuse de groupe

j peut être donnée par

binitialj = j∗ − j ∀ 1 ≤ j ≥ j∗ − 1 (4)

La phase finale d’allocation détermine les sous-porteuses qui devraient être alloués

un bit au cours de l’étape j∗ pour atteindre le nombre de bits ciblé (B) telle que la profil

d’allocation est le même que celle qui est réalisé par l’algorithme optimale de Hughes-

Hartogs [10]. Dans [21], nous avons proposé une méthode d’allocation finale basés sur

le tri des sous-porteuse par rapport leur gain de canal. D’une part, cette méthode étant

simple autrement rend complexité à la procédure d’allocation, en particulier, s’il reste

peu nombre de bits à allouer dans la dernière phase. Sur la base de la ‘rythme’ sous la

procedure d’allocation, nous avons constaté que la complexité algorithme peuvent être

largement réduits en remplaçant la méthode ci-dessus avec une autre approche où chaque

groupe de 3-dB est encore sous divisée en différents ‘intervalles’ [22].
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Résultats Simulation

Le profil d’allocations de bit et la complexité de notre algorithme ont été comparée avec

deux autres algorithmes optimales d’allocation de bit, Hughes-Hartogs [10] et celle de

Papandreou [15] . L’algorithme proposé est valide pour n’importe quel système multi-

porteuse mais pour un scénario d’application, on a pris les paramètres correspondants à

système UWB basé sur MB-OFDM (MultiBand-OFDM), et par conséquent, le modèle

de canal UWB [23] a été employé pour la simulation. Les profil d’allocations de trois

algorithmes pour des scénarios différents de la canal ont été trouvée à être exactement

identiques, vérifiant l’optimalité de notre algorithme. La complexité de notre algorithme a

également été comparée avec celle des deux autres algorithmes, non seulement sur la base

de la complexité théorique, mais aussi fondée sur le nombre exact des cycles d’exécution

de chaque algorithme sur le processeur Simplescalar. Nombre total de cycles d’exécution

a été évalué pour différents paramètres de systèmes, vérifiant le meilleur complexité de

notre algorithme.

Conclusion

Nous avons proposé un nouvel algorithme d’allocations des bits discrets basé sur la ré-

partition de toutes les sous-porteuses en groupe de 3-dB. L’analyse de complexité et de

résultats de simulation a montré la convergence rapide de notre méthode vers la solution

optimale par rapport à certains algorithmes récemment proposés pour optimiser la répar-

tition de bits discrets. Pour une véritable analyse de complexité, nous avons mis en place

l’ensemble des algorithmes comparées sur un processeur SimpleScalar pour effectuer une

comparaison de complexité basé sur nombres de cycles d’exécution. Enfin, le travail peut

être poursuivi en direction de développer la stratégie de répartition optimale de puissance

et d’adaptation de codage canal basée sur la répartition des sous-porteuses en groupe de

3dB.
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Chapitre 3 - Allocation d’énergie sous la contrainte

d’énergie-maximale

Introduction

En générale, l’objectif d’un algorithme d’adaptation est de trouver la meilleure distribu-

tion d’un ou plusieurs paramètres (taille de constellation, taux de codage, l’énergie etc.)

de systèmes sur tous les sous-porteuses afin d’optimiser un attribut de l’ensemble du sys-

tème, e.g. l’énergie totale E =
∑N

n=1 en, le nombre de bits à allouer B =
∑N

n=1 bn ou taux

d’erreur globale = BERavg avec contraintes sur autres attributs. Dans chapitre 2, nous

avons traité avec la meilleure distribution / répartition du paramètre bn afin d’optimiser

(minimiser) l’énergie totale, avec la stricte limitation de valeur discret pour bn. Bien que

cette contrainte discrète est vrai pour l’optimisation du paramètre bn, l’optimisation de

la puissance / énergie (en) peut se faire libre de cette contrainte et, par conséquent, les

techniques d’optimisation qui existent pour les variables continues peuvent être adoptées

dans ce contexte. Le but de ce chapitre est donc d’employer un tel technique classique

d’optimisation des variables continues pour trouver la distribution optimale du paramètre

en, en tenant compte nos propres objectifs et contraintes.

Nous avons vu dans ce chapitre q’un changement d’objectif ou des contraintes du

problème d’optimisation, conduit à un changement du profile de répartition optimale

de la paramètre concerné. Contrairement water-filling, où l’objectif est de maximiser la

capacité (débit) du système, notre objectif dans ce chapitre est d’arriver a la répartition de

l’énergie totale E sur tous les sous-porteuses afin d’optimiser/minimiser le taux d’erreur

globale (BER) du système, quand le taille de constellation est la même dans tous les

sous-porteuses.

La distribution de l’énergie totale est ensuite optimisée par rapport le BER en

présence de la contrainte de l’énergie maximale. Ce type de contrainte est présent pour

éviter l’interférence entre plusieurs systèmes, qui partagent la même bande passante.

Cette contrainte est définie en termes d’un masque de la Densité Spectrale de Puissance

(DSP), qui détermine la puissance/énergie maximale à transmettre à chaque fréquence

de la bande-passante. Puisque cette contrainte de DSP peut se varie dépendamment
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des règlements locale, modification de théorie et les algorithmes d’adaptation, afin de

tenir compte cette contrainte supplémentaire de l’energie-maximale, est d’un intérêt par-

ticulier. Enfin, un algorithme efficace de l’allocation optimale d’énergie qui respecte la

contrainte d’énergie maximale est présenté et la complexité réduite de notre algorithme

par rapport la solution classique de Waterfilling-Itératif, est démontré au travers le temps

de simulation sur plusieurs cas.

État de l’Art

Un des premiers travaux concernant le répartition optimale d’énergie afin d’optimiser

le BER globale, est celui de Fischer [18] qui aborde le problème plus pratique de max-

imiser le SNR pour un débit donnée et le contrainte sur puissance totale. En utilisant

l’optimisation Lagrange, la fonction objective de SNR moyenne de système est maximisée

afin de partager le débit total sur toutes les sous-porteuses. Goldfeld [24] a utilisé le fac-

teur de partitionnement pour quantifier la répartition de l’énergie totale sur les différentes

sous-porteuses. La fonction de taux d’erreur moyenne de système est optimisée sous la

contrainte de l’énergie totale. La solution optimale a été trouvée, composée de N équa-

tions transcendantales et puis, une solution plus simple et quasi-optimale a été proposé.

Une bonne analyse sur les caractéristiques du BER-optimale répartition d’énergie a été

présenté par Chang [25], qui a utilisé la borne exponentielle [26] de la fonction de taux

d’erreur binaire et optimisés sous la contrainte d’énergie totale. Il a observer que les

caractéristiques du profil d’allocation d’énergie optimisé pour BER est diffèrent de celle

de la waterfilling [27] qui maximise la capacité. A haute SNR, le système optimisé par

rapport BER alloue plus d’énergie à la sous-porteuse le plus atténué, ce qui est contraire

au comportement de la waterfilling.

Allocation d’énergie avec contrainte de l’énergie-maximale

Lagrange optimisation est la meilleur méthode pour trouver la répartition optimale de

en sur les sous-porteuses afin de minimiser notre fonction objectif de BER avec les con-

traintes de l’énergie totale et l’energie-maximale. Cette problème d’optimisation peut

etre transformer dans la forme classique d’une problème d’optimisation Lagrange comme

suivant
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minimise perravg =
1

N

N∑

n=1

f (hn · en)

subject to

N∑

n=1

en − Etotal = 0

en − e ≤ 0 (5)

Introduisant λ comme multiplicateur de Lagrange pour la contrainte de l’égalité et

νn comme les multiplicateurs de l’inégalité, la fonction Lagrangian peut être exprimé sous

la forme:

L (en, λ, νn) = (6)

1

N

N∑

n=1

fBER (hn · en) + λ

(
N∑

n=1

en − Etotal

)

+ νn (en − e)

Le problème d’optimisation ci-dessus impliquant à la fois les contraintes de l’égalité

et l’inégalité, peut être résolus en utilisant les conditions KKT [28], dont la solution et

celle du problème d’optimisation souhaité. Solution des conditions KKT demande la

différenciation de la fonction objective impliqué, qui est la fonction BER fBER (hn · en)
dans notre cas. Pour un modulation M-PSK ou M-QAM, le fonction de probabilité

d’erreur exacte est généralement exprimée au travers d’un fonction-Q [29]. Il ne serait pas

donc possible de trouver une solution finale, si la fonction-Q est utilisée comme la fonction

objective dans l’equation Lagrangian. Par conséquent, il est plus approprié d’utiliser une

approximation de l’expression exacte de BER. Pour la modulation M-QAM, la fonction

exacte de BER peut être estimé en utilisant une borne supérieure exponentielle [26]. Après

la résolution du Lagrangian définis ci-dessus au travers des conditions KKT, l’allocation

optimale d’énergie par rapport le BER globale et respectant la contrainte de l’energie-

maximale est représentée par:

en =







0 hn < exp
(
−bλ0

2

)

e hn ≥ exp
(
−bλ0

2

)
, hne +

(
2
b

)
ln
(

1
hn

)

≤ λ0

λ0

hn
−
(

2
b

) (
1
hn

)

ln
(

1
hn

)

hn ≥ exp
(
−bλ0

2

)
, hne +

(
2
b

)
ln
(

1
hn

)

> λ0

La répartition optimale d’énergie, optimisé par rapport à un objectif particulier

(débit, BER etc.) ne respecte pas le contrainte d’énergie-maximale (e) nécessairement sur
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tous les sous-porteuses. Water-Filling itératif (IWF) est proposé [20] dans la littérature

comme une méthode d’allocation d’énergie respectant la contrainte d’énergie maximale

sur toutes les sous-porteuses. En IWF, la routine de Water-Filling (WF) est re-exécuter

un certain nombre de fois afin de parvenir à une allocation respectant la contrainte de

l’energie-maximale. Cette application itératif de la routine de Water-Filling rend une

complexité large au l’algorithme et nécessite donc une simplification pour que ça soit

implémenter dans les systèmes a très haut débit. Nous avons proposé une méthode sim-

plifiée sous la forme de l’algorithme ( Iterative Surplus Redistribution) (ISR) qui réduire

considérablement la complexité de la routine de IWF.

L’algorithme ISR est basé sur l’idée q’une fois une allocation optimale a été effectué

et tous les sous-porteuses dépassant la limite de e sont de la procédure d’allocation pour

la prochaine itération, au lieu de réallocation de nouveau l’énergie totale Enew (comme

ce fait dans l’approche IWF), seul le sum d’énergie en surplus de e (Esurp) sur les sous-

porteuses dépassant le e limite, est re-allouer. Cette action est répété jusqu’aucun d’entre

les sous-porteuses dépasse le limite de e. Donc, Esurp est distribué répétitivement telles

qu’à chaque itération, sa montant diminue jusqu’à ce qu’il est complètement ré-attribuer

avec la non violation de la limite de e. Cette méthode évite l’exécution de la routine

complète de Water-Filling dans chaque itération, ce qui réduit la complexité éventuelle

de l’algorithme. À chaque itération, l’objectif est de trouver l’incrément dans la valeur

de la constante initiale de WF (λini0 ), qui est égal à (ǫ = λnouveau0 − λini0 ) et qui pourra

répartir proprement le Esurplus entre la sous-porteuses appropriés.

Conclusion

Dans ce chapitre, nous avons abordé le problème de la distribution optimale de l’énergie

sur un système multi-porteuses pour une canal sélective en fréquence, de sorte que BER

moyenne est minimisé avec les contraintes sur l’énergie totale, l’énergie maximale et la

taille de constellation. Notre contribution principale est l’extension de développements

théoriques en tenant compte la contrainte de l’énergie maximale et la proposition d’un

algorithme pour l’allocation d’énergie respectant une contrainte d’énergie maximale. La

complexité de notre algorithme a été comparée avec la solution classique de Water-Filling

Itératif (IWF = Iterative Water-Filling). Notre algorithme a été trouvée nettement moins

complexe que la solution IWF, par la comparaison de complexité théorique. Pour vérifier

l’analyse de complexité théorique, nous avons comparé le temps de simulation des deux
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algorithmes pour les différents paramètres afin de vérifier la complexité réduite de notre

algorithme.
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Chapitre 4 - Optimisation des Codes LDPC Irréguliers

Introduction

En ce qui concerne l’adaptation dans la couche physique, les paramètres comme l’énergie

de symbole [27], taille de constellation [5, 30], taux de codage [31] ou une combinai-

son de ces paramètres [32], [33], est modifiées en réponse d’un canal sélectif en temps

et/ou fréquence. Dans les deux précédents chapitres nous avons traité les algorithmes

d’adaptation concernant la paramètres du taille de constellation /type de modulation et

l’énergie du symbole. Dans ce chapitre, nous allons jouer avec l’adaptation du paramètre

de taux de codage canal en modifiant le montant de la redondance par rapport l’état de

canal.

Les codes LDPC (Low-Density Parity-Check) ont été inventés par R.G. Gallager [34]

en 1962 et ils sont un type de codes en bloc linéaires. Gallager a découvert un algorithme

de décodage itératif qu’il a appliqué à cette nouvelle classe de codes. Mais, les codes LDPC

ont été ignorés pendant longtemps essentiellement en raison d’une grande complexité de

calcul, surtout si la taille des codes est trés long. En 1993, C. Berrou a inventé les

codes turbo [35] et leur algorithme de décodage itératif. Les performances remarquables

observées avec les codes-turbo à rajeuni l’intérêt pour les techniques de décodage itératif

et en 1995, MacKay et Neal [36] ont redécouvert les codes LDPC par la mise en place

d’un lien entre leur algorithme itératif et l’algorithme de propagation de croyance [37].

Comme tous les codes linéaires, LDPC codes sont définis en termes des matrices de

générateur (G) et de parité (H) avec les colonnes et de lignes représentant bits/noeuds

de message et de parité, respectivement. Si le poids/degrés (nombres des ‘1’) de tous les

lignes de matrice de parité H est même ainsi que celle de tous les colonnes de H, le code

LDPC est appelé un code LDPC régulière et autrement un code LDPC irréguliers. Si la

distribution d’irrégularité d’un code LDPC irrégulière est bien choisie, les codes LDPC

irréguliers montre les performances supérieures à code régulier. Pour une grande taille de

bloc, ils atteindre les performances le plus proches de la capacité et parfois mieux même

que le meilleur codes-turbo connue.

Dans son travail sur LDPC irrégulière, Luby [38] a donné la raison intuitif derrière

les meilleures performances des codes LDPC irréguliers, ce qu’il a appelé comme le Wave
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Effet . Il en a déduit qu’il existe la raison de croire qu’une large distribution de degrés,

au moins pour le noeuds de message, pourrait être utile. Les noeuds de message avec un

degré élevé ont tendance à corriger rapidement leur valeur. Par conséquent, ces noeuds

fournisses des informations bonnes aux noeuds de parité, qui par la suite fournisse une in-

formation meilleur aux noeuds-méssages avec un degré faible. Les constructions irrégulier

ont donc le potentiel de conduire à un effet de vague, où les noeuds avec un degré élevé,

ont tendance à se corriger en premier lieu, suivi par le correction des noeuds avec moins

de degré.

État de l’Art

Le processus de conception de codes LDPC irréguliers est divisé en deux étapes de 1.

Construction d’une famille des codes (Optimisation de distribution des degrés). 2. La

construction d’un code particulier d’une famille des codes (Les ‘connections’ entre les

différents noeuds). En littérature, tous les deux, les méthodes d’optimisation de profil

d’irrégularité ainsi que les techniques pour la construction d’un code pour une distribu-

tion de degré donnée, sont présenté séparément et les deux se combinent pour définir la

construction complète de codes irréguliers.

Deux algorithmes ont généralement employées pour concevoir une famille de codes

LDPC irréguliers 1. L’algorithme d’évolution de densité (Density Evolution = DE) [39]

et la technique de cartes d’EXIT (EXtrinsic Information Transfer) [40]. Richardson et

al. [39] a montré la performance des codes irrégulière, crée avec l’algorithme d’évolution

de densité, s’approche au capacité de canal. L’algorithme DE suit la fonction de densité

de probabilité (pdf) des messages échangé entre les noeuds-message et noeuds-parité,

avec l’hypothèse asymptotique (longueur infinie de code). Les techniques de l’évolution

différentielle [41] et l’approximation gaussienne [42] sont deux techniques proposés dans

le littérature, permettant la mise en oeuvre faisable de l’algorithme de DE.

Les méthodes pour la construction des codes LDPC pratiques (longueur court) sont

également présentes dans la littérature. Parmi les techniques le plus simples sont des

méthodes complètement aléatoire [43] ou semi-aléatoire [34]. Des approches déterministes,

qui tendent à améliorer la performance du graphe, inclus le méthode de ‘Bit-Filling’ [44]

et d’allocation progressif des ‘edges’ (PEG) [45]. Ainsi, il a été montré dans [46] , que tous

les ‘cycles’ de longueur court n’ont pas le même impact deteriotive sur la performance et,

par conséquent, une méthode d’éviter les cycles sélectif a été proposé.
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Optimisation des Codes LDPC Irréguliers avec ‘Wave-Quantization’

Le décodage de codes LDPC, réguliers ou irréguliers, est généralement fait avec la méthode

classique de ‘Message Passing’ ou la propagation de croyance (Belief propagation = BP)

algorithme ou la probabilité/vraisemblance des bits sont échangées comme message dans

le décodage itératif. Puisque, une analyse mathématique de décodage probabiliste pour

un nombre d’itérations est difficile, Gallager [47] a proposé une borne sur la performance

d’un décodage probabiliste au travers de décodage-hard (Bit-Flipping = BF) [48] qui sont

connu sous le nom de Gallager A et Gallager B algorithmes de décodage, ainsi. Luby [38] a

ensuite prologé l’analyse de décodage-hard pour le cas des codes irrégulière. Ensuite, [49]

a proposé l’usage de décodage-hard basé sur la décision de majorité (Majority-Based

=MB) et qui a été employé pour notre analyse de quantification de vague.

L’idée principale derrière notre proposition est l’utilisation de la phénomène de l’effet

de vague (Wave-Effect) qui existe dans les codes LDPC irréguliers et qui est définir au-

dessus. Luby et al. a introduit cette phénomène en cherchant la raison intuitif derrière

les meilleures performances de codes irréguliers que les codes réguliers. Notre but est

d’aller plus loin et de quantifier cet effet de vague, de sorte qu’il peut éventuellement

être utilisé comme un moyen pour l’optimisation et la construction des codes LDPC

irrégulière de longueur finie. Il s’agit de quantifier le changement (l’incrément/décrément)

dans la probabilité d’erreur (pi) d’une noeud-message à cause de l’addition / soustraction

d’un noeud de parité attaché. Il a été remarqués que la méthode classiques de calcul

de changement de la probabilité d’érreur en utilisant un décodeur-hard pour des codes

LDPC irrégulier, en raison de calcul prohibitif, ne parviennent pas à nous fournir la

quantification exacte de l’effet de ‘vague’. Nous avons présenté une méthode fondée sur

la somme des produits de combinaisons (Sum of Product of Combinations = SPC), par

l’aide duquel, la quantification de l’effet du vague devient faisable. Une comparaison a

été faite entre le temps d’exécution des deux méthodes de calcul et notre méthode a été

trouvé nettement moins complexe, et faisable pour implémentation même pour le cas

lorsque la méthode classique de calcul devient irréalisable.

Enfin, nous proposons un algorithme où irrégularité est ajouté progressivement au

un code régulier. La performance du code est mesurée et quantifiés pour des différentes

possibilités de l’irrégularité, et finalement l’irrégularité est rajoutée ou la performance du

code éventuelle est meilleure. La performance pour différentes options d’irrégularité est

mesurée/quantifiée est comparé par le quantification de la changement dans le probabilité
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d’erreur, comme expliqué précédemment. Si la probabilité d’érreur d’un noeud-message

‘n’ après itérations ‘i’ est représenté par pni , est qui est composé de facteur xi et yi, on

peut représenter/quantifier le changement (∆) dans le probabilité d’érreur originale (p0)

comme suivant

xi =

[

1 +
∏k

k′=1(1 − 2.pk′)

2

]

yi =

[

1 −
∏k

k′=1(1 − 2.pk′)

2

]

(7)

xi =

[

1 +
∏k

k′=1(1 − 2.(p0 + ∆k′))

2

]

yi =

[

1 −
∏k

k′=1(1 − 2.(p0 + ∆k′))

2

]

(8)

Qui est égal à

xi =

[
1 + (1 − 2.p0)

k

2

]

︸ ︷︷ ︸

x

+
k∑

k′=1

(1 − 2.p0)
k−k′ .

k′∏

l′=1

(−2∆l′)

︸ ︷︷ ︸

∆neigh

(9)

And

yi =

[
1 − (1 − 2.p0)

k

2

]

︸ ︷︷ ︸

y

+
k∑

k′=1

(1 − 2.p0)
k−k′ .

k′∏

l′=1

(2∆l′)

︸ ︷︷ ︸

∆neigh

(10)

Conclusion

Ce chapitre a proposé un nouveau méthode (Greedy Irregularity Construction =GIC) de

construction des codes LDPC irrégulier, en rajoutant l’irrégularité dans un code régulier,

avec une manière progressive. Cette approche est basée sur la quantification du l’effet

de vague qui est un phénomène bien-connue pour des codes irrégulier. La méthodologie

de quantification repose sur l’utilisation d’analyse probabiliste d’un décodeur-hard basé

sur la majorité (Majority-Based = MB). Le méthode classique de calcul, pour analyse

probabiliste de décodeur-hard pour des codes irrégulière, a une large complexité et donc

n’est pas faisable pour utilisation dans notre cas. Nous avons proposé une méthode de

calcul, basé sur la somme de produit des combinaisons (Sum of Product of Combinations

= SPC), qui est beaucoup plus simple et qui rendre son utilisation faisable pour notre cas.

À notre connaissance, il s’agit de la première tentative pour réaliser la ‘quantification’ de

l’effet de vague pour l’optimisation des codes irréguliers. Nous pensons que la poursuite

de ce travail pour le différent type de décodage et des canaux, peut aboutir à la production

des résultats encore plus significatifs.
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Chapter 5 - Algorithme-Architecture Co-Optimisation

Introduction et l’État de l’Art

Le temps d’exécution d’un algorithme dépend de sa complexité algorithmique, ainsi que

sur la plateforme d’implémentation sur laquelle l’algorithme est implémenté. L’utilisation

de la meilleure (plus rapide) plateforme d’implémentation n’est pas toujours la solu-

tion surtout pour les cas où la contrainte sur le temps d’exécution de l’algorithme est

variable en temps, comme la notre c’est-à-dire un système de communication sans-fil.

La souplesse/flexibilité offrir par les systèmes re-configurable semble bien à répondre

aux besoins variables de calcul. Ces dernières années ont vu un intérêt accru dans

l’utilisation des plateformes re-configurable pour les applications de traitement du sig-

nal [50–52]. Sa motivation provient de plusieurs directions dont la popularité des radios

logiciel/cognitives [53, 54] est une des motivations principales de l’intérêt dans les plate-

formes re-configurable pour le traitement du signal. Parmi les caractéristiques souhaitées

de radio logiciel, la mode multifonctionnalité rend la possibilité aux fonctionnement

avec plusieurs normes et protocoles de communication aux moments/l’endroits différents.

Puisque des exigences de calcul des différentes normes de communications varient de

manière significative, l’utilisation des plateformes re-configurables dans ce contexte con-

duit à une économie d’énergie et de ressources importante.

Notre but était d’exploitées l’architecture re-configurable dans le contexte des algo-

rithmes d’adaptation. Ca peut servir pour réduire encore le temps d’exécution des algo-

rithmes d’adaptation, qui peut conduire à des gains de performance ou même permettre

l’utilisation des algorithmes d’adaptation dans certains cas où leur utilisation n’aurait

pas été possible autrement. Dans se chapitre, on explore le contexte où les ressources

de l’architecture / processeur sont gérées à temps réel et un lien entre les paramètres

théoriques (temps de cohérence etc.) et les ressources matérielles (cache, ALU etc.) est

créé pour accrôıtre la performance globale du système.

Dans la travail de Zhang [55], un architecture MP SoC (Multiprocesseur System on

Chip) a été utilisée comme plateforme de mise en oeuvre pour un radio cognitive OFDM.

Dans [56], l’implémentation des divers algorithmes de bande de base dans le protocole

d’Hiperlan, a été étudiée sur une architecture flexible, et les ressources (cache, ALUs
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etc.) ont été répartis par rapport les besoins des algorithmes. De même, [57] enquête sur

l’utilisation des FPGAs pour la mise en place d’un système OFDM.

Concernant la mise en oeuvre des algorithmes de ‘bit-loading’, Cudnoch [58] a donné

un analyse d’implémentation d’un algorithme de ’bit-loading’, destinés à un système sans

fil multi-porteuses. La performance de la mise en oeuvre a été étudiée en termes de

débit sur diverses conditions de canal de la norme IEEE 802.11a. Dans [59], la faisabil-

ité de mise en oeuvre des algorithmes d’adaptation sur une architecture configurable,

a été analysé dans le contexte d’un système WiMax. Dans [60], l’implémentation des

algorithmes adaptif est optimisée pour des systèmes mobiles OFDMA à large bande et

leur faisabilité est évaluée dans le cadre de spécifications WiMax. De même, en [59] la

possibilité de la re-configuration dynamique partielle d’un FPGA est analysé pour un

système OFDM avec les spécifications WiMax. Toutefois, aucun effort n’a pas été fait

pour allouer dynamiquement les ressources d’architecture par rapport les contraintes de

la canal (temps de cohérence etc.), qui est le but de ce chapitre.

Algorithme-Architecture Co-Optimisation pour Systèmes Mo-

bile Adaptatives

Les canaux sans fil, en raison de la présence d’interférence inter-symbole, sont sélectifs

dans le temps et fréquence. Si en plus, un utilisateur est en mobilité avec une vitesse

large, un doppler importante est présent et le temps de cohérence est largement réduit.

Pour le bonne fonctionnement des systèmes adaptatifs dans ce cas, l’adaptation doit se

faire très rapidement correspondant avec les variations de la canal. A pars des réseaux

où les utilisateurs ont une faible mobilité (WiFi), nouveaux systèmes e.g. WiMAX, cible

des scénarios où la vitesse des utilisateurs peut varier de la vitesse des piétons à la vitesse

des trains à grande vitesse (200 Km/h). Cela renforce la nécessité d’accrôıtre la temps de

convergence des algorithmes d’adaptation/’bit-loading’ ou le développement des méthodes

qui répondent aux diverses contraintes du temps sur différents canaux.

Notre première réponse à cette problématique était d’améliorer le temps de conver-

gence des algorithmes de ‘bit-loading’ d’un point de vue algorithmiques, comme expliqués

dans les chapitres précédents. Par contre, pour le cas où même le meilleur type d’un algo-

rithme ne répond pas au besoin des contraintes (temps de cohérence etc.) d’un canal qui

se-varient en temps, d’autres méthodes doivent être examinées pour améliorer la temps
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de convergence de l’algorithme. Une telle possibilité est d’explorer les paramètres op-

timaux d’une architecture par rapport à un algorithme et, par conséquent, obtenir une

réduction dans le temps d’exécution d’un algorithme par l’optimisation des paramètres de

l’architecture, sur laquelle l’algorithme est implémenté. Avec l’utilisation croissante des

plateforme re-configurable (FPGA, processeurs programmables etc.), l’idée d’optimiser

les ressources d’une architecture en temp-réel, est devenu réalisable.

Dans notre méthodologie, nous proposons que dans un premier temps, sur la base

des paramètres du système (nombre de sous-porteuses, nombre de bits à attribuer, la

temps du cohérence etc.), une base de données pour les performances des différentes

configurations (paramètres) de l’architecture du processeur est créé pour tous les types

d’algorithmes disponibles. Nous avons utilisé l’outil de SimpleScalar [61] et un archi-

tecture superscalar, pour calculer le nombre exacte des cycles d’exécution pour différent

algorithmes. L’algorithme génétique est utilisé comme un outil d’optimisation, où la

fonction objective est le temps d’exécution d’un algorithme sur une architecture partic-

ulière. Puisque l’exécution et l’évaluation d’un grand nombre de configurations n’est pas

possible en temp-réel, une base de données est créé initialement, reliant les différentes

configurations aux leurs temps d’exécution correspondante. Cela donne la possibilité de

choisir au temps réel la meilleure configuration de processeur pour un algorithme donnée

et correspondant à la contrainte de temps de la cohérence du canal à cet instant. À cet

égard, il est important de mentionner qu’avec l’amélioration de la technologie des DSP

programmables, il sera possible même de trouver le temps d’exécution correspondants aux

différentes configurations de processeur au temps réel, au lieu de le tous faire initialement.

Ensuite, un algorithme avec des paramètres d’architecture par défaut, est attribué

pour le processus d’allocation, et vérifier s’il répond à la contrainte de temps de co-

hérence, sinon, un autre algorithme est choisi. Une fois que toutes les options, de types

des algorithmes, ont été épuisées, la meilleure configuration répondant à la contrainte de

temps de la cohérence est sélectionnée et appliquée au processus d’allocations des bits. Le

critère de temps d’exécution de l’algorithme est seulement examiné dans ce travail, qui est

la plus pertinente par rapport des contraintes retard temporel (temps du cohérence) de

canal. Toutefois, la même méthode peut être étendue à d’autres critères d’optimisation

telles que la consommation d’énergie et de surface de silicium. À cet égard, l’utilisation

de l’algorithme génétique mono objectif dans notre proposition, devra être remplacé par

l’algorithme génétique multi objectifs, qui prend en compte plusieurs objectifs et con-
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traintes en même temps.

Conclusion

Dans ce travail, nous avons exploré les options où le temps de convergence d’un algorithme

adaptif peut être améliorée par l’optimisation des ressources architectural en temps réel,

correspondant aux contraintes temporel (temps de cohérence etc.) d’un canal donnée.

On a observé que l’optimisation des ressources architecturales permettre le fonction-

nement d’algorithme d’adaptation aux plus hautes vitesses de la mobilité. L’utilisation

de l’algorithme génétique permet d’éviter le grand temps de simulation qui serait par

ailleurs nécessaire pour faire une optimisation pour un espace de conception correspon-

dant aux paramètres d’un processeur. Enfin, la méthodologie proposée, d’exploration

conjointe des paramètres des architectures et algorithmes en temps réels, nous permettre

le bon fonctionnement des algorithmes d’adaptation dans les cas avec plus dur contraintes

sur le temps de cohérence, où leur fonctionnement n’aurait pas été possible autrement.
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Chapter 1

Introduction

1.1 Adaptive Communication Systems - Resource Al-

location

Data transmission has become an integral and ubiquitous component of today’s world.

Everyday actions, such as using a bank machine, making a phone call, watching televi-

sion, and doing grocery shopping, all involve some sort of data transmission that makes

these actions more convenient, cost effective, or feasible. This data transmission can be

performed over a wireline infrastructure, a wireless network, or a combination of the two

infrastructures. A consequence of this increased integration of data transmission in our

day-to-day life is the demand for more throughput. As the level of integration increases

and more people are connected, the amount of data generated grows. Therefore, the

data rates of the transmission systems must increase to keep up with the increase in

information.

Although the throughput supported by wireline networks are enormous, due to fiber

optics and other technologies, the base station/mobile user interfaces of wireless networks

are still trying to keep up with the demand for more throughput. Moreover, there are

several significant restrictions when wireless modems transmit at high data rates. The

first is bandwidth usage. Since the spectrum that wireless systems use to transmit data

is regulated by government agencies, such as the Federal Communications Commission

(FCC) in the United States, each operator of a wireless data transmission infrastructure

must abide by the established guidelines. This is done in order to avoid interference

between different wireless operators. Therefore, the rate is constrained by the maximum
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bandwidth allocated to the operator. The second constraint is the channel environment

which the data transmission system is operating through. At higher data rates, the

amount of distortion introduced to the transmission becomes more pronounced, making

it more difficult to compensate at the receiver.

Since the regulatory requirements of the spectrum cannot be modified or changed,

researchers are investigating techniques for enhancing the performance of digital transmis-

sion systems operating in various channel conditions (e.g., additive white Gaussian noise,

multipath fading, impulse noise). Adaptive resource allocation [1–3] is one such method

to enhance the system performance where different system parameters ( modulation size,

coding rate, power etc.) are modified according to the Channel State Information. This

resource allocation can be performed at multiple layers but our concern will be consid-

ering the adaptation possibilities at physical layer. It was shown that adaptive power

and rate M-QAM system can give a power gain of almost 20dB relative to non-adaptive

transmission [4]

1.2 Resource Allocation in Single and Multicarrier

Physical Layer

Multicarrier modulation (MCM) [5] has almost revolutionized the physical layer technol-

ogy for communication systems, both wireline and wireless, for the past two decades. It is

the technology of choice for digital subscriber lines (DSL) systems [6] along with Wireless

Local Area Networks (WLAN) , Multiband-Orthogonal Frequency Division Multiplexing

(MB-OFDM) based Wireless Personal Area Networks (WPAN) and as well the emerging

WiMax (IEEE 802.16) systems for broadband wireless communications. MCM operates

according to a divide-and-conquer approach: by transmitting the data across the channel

at a lower data rate in several frequency subcarriers which eventually makes the process

of distortion compensation simpler by treating each subcarrier separately. From a time-

domain perspective, this translates the wideband transmission system into a collection of

parallel narrowband transmission systems each operating at a lower data rate [19]. From

the frequency-domain perspective, MCM transforms the frequency-selective channel, i.e.,

non-flat spectrum across the frequency band of interest, into a collection of approximately

flat subchannels which the data gets transmitted over in parallel. Thus, MCM has be-
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Figure 1.1 Multi-Carrier Modulation

come the technology of choice to combat the frequency-selective fading channel. A basic

transceiver structure of MCM is show in figure 1.1 along with the resultant division of

the entire operating bandwidth spectrum into a large number of orthogonal subcarriers.

Although the modulation and demodulation stages of an MCM system are usually

more complex relative to a single carrier system, MCM systems possess a number of

advantages due to the division of the used spectrum into a large number of subcarriers.

Since the channel usually does not have a flat frequency response, it is easier to com-

pensate for the channel distortion on a per-subcarrier basis rather than on the entire

received signal. Moreover, since the channel distortion may not be equivalent for all sub-

carriers, adapting the transmission parameters per subcarrier (i.e., signal constellation

and transmit power levels) would allow for increased throughput while guaranteeing a

prescribed error performance. This phenomenon of transmission parameters adaptation

per subcarrier can be represented by figure 1.2, where the parameter of constellation-size

(modulation type) is varied on each subcarrier based upon the channel conditions ( Signal

to Noise Ratio (SNR) ) on each subcarrier. This adaptive transmission, depending upon

the parameter that is being adapted/optimized, is known in literature by a number of

terminologies namely Link-Adaptation, Adaptive-Modulation (adapting the modulation
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Figure 1.2 Adapting Modulation-Type on Different Subcarriers of a MultiCarrier System

type or constellation-size), Bit-Loading (Adaptive Modulation when constellation size

is strictly discrete), Power Allocation (Adaptation of the power-level attributed to each

subcarrier), Adaptive Coding (Adaptation of the amount of redundancy added) etc.

A thorough comparison between single carrier and multicarrier systems was per-

formed by Saltzberg using a number of criteria, as summarized in table 1.1 [62]. There

is little difference in performance between single carrier and multicarrier systems since

the latter can be interpreted as a linear reversible transformation of the former. How-

ever, there are a number of practical differences. For instance, multicarrier systems can

perform adaptive bit loading per subcarrier/frequency based upon the channel response

over that particular frequency in a straight-forward fashion, which eventually enhances

system performance, either in terms of maximizing overall system throughput or by in-

creasing error robustness of the system. On the other hand, multicarrier systems are

more sensitive to the effects of narrowband noise, amplitude clipping, timing jitter, and

delay. With respect to the computational complexity, FFT-based multicarrier systems

employing frequency-domain single-tap subcarrier equalizers usually use fewer multiplica-

tions and additions per unit time relative to single carrier systems, which require lengthy

equalizers to eliminate the distortion introduced by the channel. As a result, multicar-

rier systems have fewer computations per unit time. Similarly other advantages as the

ability to efficiently capture multipath energy, simplified transceiver/equalizer architec-

ture, enhanced capability to exploit frequency diversity, increased interference mitigation
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Table 1.1: Comparison between Single-Carrier and Multi-Carrier Systems

Issue Single-Carrier Multi-Carrier Same

Performance in Gaussian Noise Yes

Sensitivity to Impulse Noise Yes

Sensitivity to Narrowband Noise Yes

Sensitivity to Clipping Yes

Sensitivity to Timing Jitter Yes

Latency (Delay) Yes

Need for Echo Cancellation Yes

Complexity of Algorithm Yes

High Cost and Power Consumption Yes

Sensitivity to Impulse Noise (Analog) Yes

Adaptability of Bit-Rate Yes

capability, inherent robustness to Inter-Symbol-Interference (ISI) and spectral flexibility

to avoid low quality sub-bands and to cope with local regulations, all have made the

Multicarrier communications phenomenon as the technology of choice for the majority of

the state-of-the-art wireline (DSL, Powerline) and Wireless (WiFi, DAB/DVB, WiMax,

UWB etc.) communication systems.

1.3 Problem Definition

Despite all the above cited advantages of multicarrier modulation, many conventional

WLAN systems do not fully exploit its potential, unlike DSL modems. Rather, conven-

tional WLAN systems employing MCM use the same operating parameters across all

subcarriers, including modulation scheme, coding rate, and transmit power level. How-

ever, the effects of the channel may vary on a subcarrier basis, and thus the overall error

probability of the system is dominated by the error probabilities of the subcarriers with
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the worst performance [19]. For instance, systems that try to keep the error rate low

usually transmit with the smallest subcarrier signal constellation possible. Equivalently,

systems that require a high throughput have error probabilities dominated by the largest

subcarrier error probability. Thus, to enhance system performance, the impact of these

poorly-performing subcarriers should be mitigated. This is the rationale behind adaptive

resource allocation/loading(when resource is discrete e.g. constellation-size) for MCM

systems.

Resources/Parameters that are commonly varied/adapted on different subcarriers

are modulation size and power and rarely coding rate. Since the channel which the data

transmission system is operating in is usually frequency-selective, each subcarrier will

have a different signal-to-noise ratio (SNR). Thus, tailoring the operating parameters on

per-subcarrier basis has shown to largely improve performance [63]. A complete model

for an adaptive system is shown in figure 1.3, where the feedback path from the receiver

to the transmitter is used to transmit the information on the conditions of the channel

(Channel State Information- CSI), based on which it has received the current symbols and

based on which the transmitter must adapt the transmission of the next frame, assuming

that the channel-conditions remain constant on a number of frames. The techniques

for loading originated from other areas, including financial analysis and quantizer design

[64]. However, since the advent of the use of adaptive resource allocation in multicarrier

systems, a large number of loading algorithms, using all sorts of optimization techniques,

have been developed and implemented for several data transmission systems, including

DSL modems [7].

Despite these efforts, a number of issues remain unresolved or require better solu-

tions. For example, although for more than a decade a huge amount of research has been

dedicated to reduce the computational complexity of the per-subcarrier (fine-granular)

based adaptive algorithms. However, in practical wireless systems e.g. WiFi, WiMax,

until now the adaptive resource allocation is performed such that the transmission param-

eters are varied at different time-instants but for a particular time-instant the transmis-

sion parameter is same over all the subcarriers or in other words whenever a parameter

(modulation-size, power, redundancy etc.) is adapted, the same parameter is allocated

to all of the subcarriers (Coarse-granular). Such coarse-granular adaptation leads to

performance improvement but not to the extent where the fine-granular adaptation is

performed. Similarly other questions like what form of adaptation is best or what com-
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Figure 1.3 Adaptive Multicarrier System

bination of different forms (adaptive modulation, adaptive power-allocation, adaptive

coding etc.). Another important question which this thesis seeks to answer is what ben-

efits can be extracted from the hardware implementation aspects of the link-adaptation

algorithms especially with the availability of adaptivity in the implementation platforms

as well (FPGAs, configurable processors etc.)

1.4 Our Contributions and Thesis Presentation

However, the main objective of this research was/is to reduce the complexity of the ex-

isting adaptive algorithms for multicarrier systems, both, from a theoretical/algorithmic

perspective as well as taking advantage from the adaptive nature of the state-of-the-art

underlying implementation platforms

Therefore, to reach this main objective, several sub-objectives have been achieved in

this dissertation, namely:

• The first insight into the inherent pattern, which exists in the optimal bit-allocation,

and based upon this pattern the design of a Novel Optimal Discrete Bit Loading

algorithm which has a complexity significantly lower than existing algorithms for

discrete bit-loading
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• Theoretical developments for an optimal power-allocation including the Peak-Power

Constraint (explained in Chapter3) and the design of a novel algorithm for Peak-

Power Constrained Optimal Power Allocation which involves a complexity signifi-

cantly lower than the classical method of Iterative- Waterfilling, which is conven-

tionally employed for such constrained power allocations.

• The proposal of the novel idea of Wave-Quantization in Irregular-LDPC Codes, the

theoretical developments in this regard leading to a simplistic calculation method of

the elite-effect in Irregular LDPC-codes which is not possible with classical methods.

Finally a proposal of the design and optimization of Finite-Length Irregular LDPC

Codes based on this Wave-Quantization methodology.

• The optimization of a flexible implementation architecture for the algorithms of

link-adaptation, where a methodology to tune the hardware resources at run-time

based upon the needs of the channel and system is proposed. This results in the

use of the link-adaptation algorithms at those ranges of doppler-frequencies/user-

mobility, which are not possible to operate upon, otherwise.

Chapter 2 introduces the reader to the proposed bit loading algorithm. An extensive

state-of-the-art on the loading algorithms is presented along with the basic concepts of

the theoretical foundations of the algorithm. The algorithm’s performance in terms of

complexity is done with respect to other proposed algorithms, both theoretically and in

terms of exact number of execution cycles over a Superscalar architecture.

Chapter 3 introduces the reader to the proposed power loading algorithm. A state-

of-the-art on different power optimization methods with different goals and constraints

is given. Our concerned problem is formulated for Bit Error Rate (BER) minimization,

for a given throughput and with a peak-power constraint using the lagrange optimization

method. Then, Iterative Surplus Re-distribution (ISR) based power-allocation algorithm

is presented as a simplification to the classical Iterative-Waterfilling algorithm, and its

complexity analysis is presented.

Chapter 4 presents our developments regarding the development of a simplified

methodology to update the irregularity profile of an irregular LDPC code based upon

the channel-gains. State-of-the-art on irregularity profile optimization is presented along

with the our proposed idea of Wave-Effect Quantization. Corresponding developments
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to make it computationally feasible and finally the Progressive-Irregularity-Construction

(PIC) based methodology for the design and optimization of finite-length irregular codes.

Chapter 5 will present our work related to the implementation aspects of different

algorithms. The set-up used for performing an exhaustive search over a configurable

processor architecture for the bit-loading algorithm is presented. Then, genetic algorithms

were employed to converge faster toward the optimal hardware configuration, for a given

algorithm. A methodology to link the run-time tuning of the processor architecture

parameters based upon the time-varying channel needs is finally proposed, to enhance

the operating doppler-range of a wireless system.

Finally, in chapter 6, the research achievements of this work are outlined, conclusions

are drawn from this research and perspectives of interest regarding this work are presented

which may be taken as research-directions in the future.
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Chapter 2

Bit-Loading Algorithm for

Multicarrier Systems

2.1 Introduction

We explained in chapter 1 that an adaptive selection of system parameters (modulation,

power, coding etc.) with respect to the channel response results in an overall improve-

ment in system performance. This adaptation can be done in the dimension of time

(corresponding to different channel conditions at different time-slots), in the dimension

of frequency (corresponding to channel gains at different frequencies), in the dimension

of space (corresponding to channel conditions at different branches of a multi-antenna

system) or any given combination of the above three possibilities. Adaptation in the

dimension of frequency is greatly facilitated by means of a Multi-carrier system as we

explained in the previous chapter because of the presence of a large number of subcar-

riers at unique frequencies, which eventually allows fine-tuning of system parameters at

different frequencies. Adaptive Modulation generally refers to the adaptation policy

where modulation type/constellation size ( BPSK, QPSK, QAM-16 etc.) is allowed to

be varied with respect to the channel conditions, i.e. the better the channel, the higher

the modulation size. In multicarrier systems, since a different modulation size may be

allowed for each sub-carrier, the phenomenon of adaptive modulation with respect to

each sub-carrier is termed as bit-loading when constellation-size is only allowed discrete

number of bits as shown in figure 2.1

Since the multicarrier transmission technique was first employed in the wireline DSL



12 Chapter 2 : Bit-Loading Algorithm for Multicarrier Systems

Figure 2.1 Adaptive Modulation : Continuous and Discrete (Bit-Loading) Constellation

Size

technology, much of the literature regarding the ’bit-loading’ algorithm comes under the

paradigm of Discrete Multitone (DMT), which is the variant of multicarrier transmission

with bit-loading applied to the DSL technology. The task of optimizing the bit-profile

i.e. how many discrete bits should be allocated to each subcarrier for a given channel

condition and a given number number of sub-carriers has been of great research interest in

the past under the title of Discrete Bit-Loading Problem.It has been found that the

optimized bit-profile for the same channel and sub-carriers is different for different goals

(maximizing the system throughput, margin, etc) and constraints (maximum available

power, maximum no. of bits to be allocated, peak-power constraint etc.) associated

with the optimization problem. Whereas a large number of optimization techniques from

convex optimization to combinatorial methods (as will be indicated in the next state-of-

the-art section), the aim has been to achieve the optimal-profile with minimal involved

complexity. Complexity of the bit-loading optimization problem is of utmost importance

because of the fact that in the fast-varying wireless channel, the optimization process

would be required to be re-performed each time channel conditions are varied and hence

be required to finish under a hard time-constraint. Hence, the basic aim of this chapter

is to introduce to the reader the bit-loading problem in detail, the existing solutions in

this regard and our proposed 3-dB subgrouping based bit-loading method which claims

to achieve the optimal profile with complexity lesser than any other available algorithm.
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2.2 Types of the Bit-Loading Problem

As discussed above, the objective of an allocation algorithm can be variable: maximizing

the throughput, minimizing the BER or minimizing the total power etc., depending upon

the need of the corresponding system. Based upon the objective, there are two typical

loading problems which are popular in the literature: rate maximization and margin

maximization ( = power minimization) [8]. Each problem has the following optimization

parameters. We define N as the total no. of subcarriers and σ2
n, |Hn|2, en, bn and perrn as

the noise power, channel gain, allocated energy, allocated no. of bits and probability of

error, all with respect to subcarrier n, respectively. Based upon these notations the two

major classes of Bit-Loading problem are listed below.

2.2.1 Rate Maximization

Maximization of the data rate (R = B/Tsym) for a set of parallel subchannels when the

symbol rate 1/Tsym is fixed, requires maximization of the achievable total no. of bits

(B =
∑N

n=1 bn) over all the subcarriers. Hence, the largest number of bits that can

be transmitted over a parallel set of subchannels must maximize the sum of the bits

transmitted over each of the subcarriers given a constraint on the total available energy

E. Thus the Rate Maximization problem can be formally expressed as

max B =
N∑

n=1

bn ∀ bn ∈ Z+; (2.1)

such that

E =
∑N

n=1 en ∀en ∈ ℜ+

perrn ≤ perrtarget

The problem can be re-stated as how much energy (ei) (corresponding to a dis-

crete no. of bits) must be allocated to each of the subcarriers such that the resultant

throughput is maximized and the sum of the energies in all the subcarriers is equal to the

total available energy. ‘Water-filling’ [9] is the classical solution of the above mentioned

energy-constrained throughput-maximization problem, when energy (and the correspond-

ing modulation-size) is allowed to have continuous values. The term water-filling arises

from the representation of the curve of inverse channel gains being considered as a bowl

into which water (energy) is poured, filling the bowl until there is no more energy to use
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Figure 2.2 Waterfilling phenomenon in continuous domain

Figure 2.3 Discretized Waterfilling

as shown in figure 2.2. The water will rise to a constant flat level in the bowl. The amount

of water/energy in any subchannel is the depth of the water at the corresponding point

in the bowl (which hence indicates that the higher the channel gain, the more the energy

allocated to it).The water-filling solution is unique because the function being minimized

is convex, so there is a unique optimum energy distribution (and corresponding set of

subchannel data rates) for each ISI channel with multi-channel modulation.

With the constraint of discrete no. of bits over each subcarrier, as in our case, the

solution becomes a discretized version of the classical ‘water-filling’ solution. Figure 2.3

illustrates the discrete equivalent of water-filling phenomenon.
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2.2.2 Margin Maximization

For many transmission systems, variable data-rate is not desirable. In this case, instead

of maximizing the throughput, the best design will maximize the performance margin

at a given fixed data-rate Btarget. The margin, γm, for transmission on a (sub)channel

with a given Signal to Noise Ratio (SNR), a given number of bits per dimension b
′

, and a

given coding-scheme target probability of error perrtarget, can be defined as the amount by

which the SNR can be reduced (increased for negative margin in dB) and still maintain

a probability of error at or below the target perrtarget. The margin maximization problem

can be formally stated as

max γm (2.2)

such that

∑N
n=1 bn = Btarget bn ∈ Z+

perri ≤ perrtarget E =
∑N

n=1 en en ∈ ℜ+

This problem can be simplified by realizing that performance margin is simply a

scaling of the allocated energy in each subchannel by a constant amount (exploiting the

fact that initially the probability of error in that subchannel is far below the required

perrtarget). The minimum total energy allocation needed to meet the rate target with zero

margin (perrn = perrtarget) can be found, and the resulting energies can be scaled, such

that the total energy budget is used. Thus, to maximize fixed-rate margin, the designer

equivalently minimizes the total energy (which is also called energy-minimizing loading)

and which can be formally stated as

min Etotal =
N∑

n=1

en ∀ en ∈ ℜ+; (2.3)

such that

∑N
n=1 bn = B bn ∈ Z+

perrn ≤ perrtarget

The solution to the energy minimization problem after correct differentiation is again

a sort of water-filling. However, in this case water/energy is poured as long as the total

number of allocated bits does not exceed the target number of bits to be allocated (=
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Btarget), corresponding to a given BER and modulation and coding scheme. This energy

minimizing form of the loading problem is known in mathematics as the dual form of the

rate-maximization formulation [19].

The energy minimization is equivalent to margin maximization because any other bit

distribution would have required more energy to reach the same given data rate. That

greater energy would then clearly leave less energy to be distributed (uniformly) among

the remaining subchannels. Since increasing the energy for a fixed data rate, in general,

decreases an error probability metric, it is a waste of resources to allocate energy to a

subchannel such that the error probability perrn is already less than perrtarget. Therefore,

it is appropriate to meet the subchannel error probability constraint with equality if

this is feasible, thereby leaving more energy avalailable to be distributed amongst the

sub-channels.

2.3 State of the Art on Discrete Bit-Loading Algo-

rithms

Using the classical Shannon equation for capacity, Gallager [9] was one of the first ones

to establish the fact which the power distribution that maximizes the total capacity over

multi-channel with variable gains is the ‘Waterfilling’ distribution. From the multicar-

rier transmission perspective over a frequency selective channel, Kalet’s contribution [27]

was the first to theoretical investigate the power optimization problem for multi-carrier

system. It employs Lagrange optimization method to analytically prove that the solu-

tion for optimal allocation of power over a multi-carrier system has the same form as

that of ‘Waterfilling’ solution of information theory. Water-filling algorithms result in bit

distributions where the number of bits over a subcarrier(= bn) can be any real number.

Realization of bit distributions with non-integer values can be difficult and not possible

at times, because most modulation schemes (M-ary QAM, M- PSK etc.) have integer

number of bits per symbol. Alternative loading algorithms allow the computation of

bit distributions that are more amenable to implementation with a finite granularity.

Mostly integer-based granularity is selected for the problem of bit-distribution, which is

also commonly known as the ‘discrete bit-loading’ problem. In discrete bit-loading, only

integer number of bits can be allocated to a sub-carrier which simplies the eventual im-
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plementation of the corresponding modulation technique. Over the past twenty years a

huge amount of techniques/methods have been proposed for optimal discrete bit distri-

bution problem, ranging from heuristic greedy approaches to approximation of optimal

continuous solutions and from rigorous mathematical analysis to utilization of discrete

lagrange optimization techniques . In this section, we will try to summarize the major

contributions in this regard by classifying methods similar to each other in groups.

2.3.1 Greedy Approach based techniques

These techniques make use of the greedy optimization technique in mathematics. The

very first algorithm regarding discrete bit-allocation over a multicarrier transmission was

developed using this method and is known as the Hughes-Hartogs [10] algorithm. This

algorithm assigns bits one-by-one to sub-carriers, taking into consideration the best option

for a bit allocation at that particular step, and hence is called ‘greedy’. The algorithm is

not water-filling in the classical sense, but since it puts every increment of transmit power

where it will be most effective, it appears to be optimum for multi-carrier transmission.

This algorithm on one hand provides the overall optimal solution but on the other hand is

computationally complex because of the marginal powers calculation for each sub-carrier,

and the corresponding sorting of sub-carriers involved. The algorithm essentially consists

of two phases:

• Calculate Bit-Incremental Energy for each sub-carrier. ∆ebn = ∆ebn − ∆eb−1
n

Where Em,n is the transmit energy needed in sub-channel n to transmit m bits per

symbol at some pre-defined error rate.

• Assign one bit to the sub-carrier that requires the least incremental energy for a bit

addition and update its Bit-Incremental energy.

The above loop is repeated till available energy is exhausted (for data-rate maximiza-

tion) or the desired data-rate is achieved (for fixed data-rate). Similar to this technique

of adding a bit one-by-one ( = bit-filling), another approach known as greedy discrete bit-

removal for Bit Error Rate (BER) constrained throughput maximization has also been

proposed in [14]. The algorithm is based on greedy de-allocation( bit-removal) proce-

dure where initially all the sub-carriers are loaded with the maximum constellation size

respecting the closed-form BER equation at respective sub-carriers. Then constellation
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size is iteratively adjusted to make mean BER just less than the threshold BER. The

comparisons made with competitive bit-allocation algorithms showed that the algorithm

gave near-optimal performance while involving low computational complexity. Also based

on this iterative bit-removal philosophy, a total power constrained throughput maximiz-

ing algorithm has been proposed [65] with additional constraints with min/max number

of bits per bin which showed the computational advantages of a bit-removal algorithm

over a bit-filling algorithm.

2.3.2 Approximation techniques

In order to tackle the high-complexity involved in the ‘greedy’ implementations of the

discrete-bit loading problem, Peter S. Chow proposed [6, 19] a simpler channel-capacity

based sub-optimal solution. The basic idea is to assign bits to the sub-carriers using the

standard capacity equation [66] using ‘performance margin’ (γm) parameter, as shown in

eq. 2.4, where performance margin is the same as defined previously.

bn = log2

(

1 +
en · CNRn

Γ + γm(dB)

)

(2.4)

where Γ is the gap factor as explained in the next section. In Chow’s algorithm, for

a fixed-rate application, γm is iteratively adjusted till the desired data-rate is achieved. If

the algorithm does not converge after a pre-defined no. of iterations, it is made to converge

in a forced manner. The algorithm claims to offer significant implementation advantages

compared to the discrete-bit allocation optimal solution, [10] while suffering negligible

performance degradation in comparison. Availability of ‘Forced convergence’ results in

convergence within finite number of iterations. Energy distribution has the typical ‘saw-

tooth’ shape with 3dB peak-to-peak difference because of integer-bit granularity. The

basic structure of the algorithm can be expressed in the following three steps:

• Calculate the difference (∆bn = b∗n − bn) between the ‘actual’ (float value) value of

bit capacity (bn) for each subcarrier (based upon shannon capacity equation) and

its ‘rounded’ (integer value) version (b∗n=round (bn) and then remove sub-carriers

with rounded capacity value equal to 0.

• Performance margin (γm) is increased/decreased by a specific amount if total num-

ber of allocated bits (
∑N

n=1 bn = Btotal ) is greater/lesser than the desired number

of bits (Btarget).
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• If Btotal 6= Btarget and IterateCount is less than a pre-determined number of it-

erations (MaxCount), repeat the above loop, else perform forced convergence to

Btarget. This forced convergence is done by greedy addition/removal of bits till

Btarget is achieved, which renders complexity to the algorithm [5].

Another approximation based algorithm was proposed by Czylwik [17] which relates

to the application of QAM-constellations based adaptive modulation with and without

optimal power distribution for fixed data-rate applications in frequency and time selective

channels. The basic idea behind Czylwik’s algorithm is very much the same as that of

Chow’s algorithm since it is also based on bit allocations, making use of standard capacity

equations for individual sub-carriers. However, after initial bit allocation, the convergence

towards the desired data-rate is based upon the criterion of ‘minimization of error prob-

ability’ unlike Chow’s ‘rapid convergence’ approach. Minimum overall error-probability

is achieved by making the error probability for all used sub-carriers approximately equal.

Unlike the prevailing capacity-based bit allocation ideas of Chow and Czylwik, Fis-

cher [18] allocated the bits over sub-carriers in order to maximize the SNR (minimize the

probability of error). Since the solution can be derived from the closed-form expressions,

it is claimed to be of low complexity as well.

2.3.3 Mathematical Analysis/Optimization methods based tech-

niques

A complete and mathematically verifiable framework, as well as an approach that cir-

cumvents many drawbacks in the original Hughes-Hartogs methods was developed inde-

pendently by Jorge Campello de Souza [67] and Howard Levin and are now known as

Levin-Campello (LC) Algorithms. These algorithms solve the finite-granularity loading

problem directly, which is not a water-filling solution.

Campello developed different mathematically verifiable conditions for a discrete al-

location to be optimal with respect to a particular objective (throughput, energy etc.).

Using these conditions and the mathematical theory of discrete optimization, efficient

optimal algorithms for discrete bit allocation for multi-carrier systems were devised. If

∆ebnn is defined as the energy required to increase the number of bits on sub-channel n

from (bn − 1) to bn, then by denoting b={bn} as a certain bit-allocation profile vector,

Campello’s conditions can be formally stated as :
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• Definition 1: b is said to be efficient if

∆ebnn ≤ ∆ebm+1
m ∀n,m = 1, 2..., N , m 6= n

which simply says that there should not exist another allocation with the same

number of total bits but with less required energy.

• Definition 2: b is said to be E-tight if

0 ≤ E −
∑N

n=1 ebnn < min ∆ebm+1
m ∀n,m = 1, 2..., N

where E is the total available energy, which simply says that it is not possible to

allocate one more bit while respecting the energy constraint.

• Definition 3: An allocation b is said to be B-tight if

∑N
n=1 bn = Btarget ∀n,m = 1, 2..., N

where Btarget is the target number of bits to be allocated.

Similarly, by making use of the necessary conditions of optimality, Piazzo [12] devel-

oped theorems of equivalence between the systems optimal with power, rate and BER.

Using Campello’s sufficient condition for optimal bit allocation, Piazzo also developed al-

gorithms for optimal discrete bit allocation which claimed better performances than those

of Campello, as they were not solely confined to the Gap approximation based analysis.

Another technique based on discrete lagrange optimization was proposed by Krongold [13]

for solving both, the rate-maximization and the margin-maximization problems. Kron-

gold observed that both, the optimal bit profile as well as the optimal energies to be

allocated, can be found by making use of the discrete langrange optimization approach.

2.3.4 Subcarrier Bit-Incremental Energy Relationship

Finally, some latest published works make use of the subcarriers bit-incremental energy

relationship which can be established by making use of Gap Approximation for capacity
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formulation. In this regard Papandreou [15] first proposed a multi-phase allocation pro-

cedure for converging towards the optimal bit-allocation for DMT applications. Later,

we proposed a 3-dB subgroup classification of subcarriers, [Asad06] based on this bit-

incremental energy relationship of subcarriers, which is described in the following sec-

tion.Another recent contribution making use of this bit-incremental relationship is that

of Esfahani [68], which proposes the two-step based allocation of bits based on the clas-

sification of the subcarriers with respect to their gains. Its final step consists of iterative

(greedy) refinement of the allocation profile, so as to reach the target rate, which renders

complexity to the algorithm.

Apart from the above mentioned proposals for the simplest case, some recent works

on bit-loading have tried to tackle other extended problems like that of multi-user sce-

nario [69], Peak-Power Constrained Bit-Loading, [20], MIMO-OFDM, [70] real-time re-

lated issues [71,72] and LDPC-coded OFDM systems [73].Our work, in essence, attempts

to contribute in two directions at the same time: firstly by proposing a novel optimal

discrete bit-allocation methodology, which converges faster than the existing methods,

and secondly through development of a sufficient condition for maximum bit allocation

conforming to the peak-power-constraint. Significant works related to peak-power con-

strained discrete bit allocation can be found in [20,74,75].

2.4 3dB-Subgroup Classification of Subcarriers

2.4.1 Gap Approximation

Cioffi [19] was the first to establish the performance approximation of the QAM modula-

tion in form of the classical shannon capacity equation by means of a Gap Approximation

factor. The Gap parameter helps model and simplify the system analysis with bearable

performance trade-off [19,76], especially for large constellation size and at high SNR. The

Gap parameter comes directly from the expression for symbol error rate for M-QAM in

an AWGN channel which is tightly upper-bounded by

perrsym ≤ 4 · Q
(√

3 · SNRsym

M − 1

)

(2.5)

where Q function is given by

Q(x) =

∫ ∞

x

e−u
2/2

√
2π

du (2.6)
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If we replace M = 2b in the above equation, where b represents the number of bits

per symbol, then the above equation can be written as

b ≤ log2




1 +

3.SNRsym
[

Q−1
(
perr

sym

4

)]2




 (2.7)

If we represent Γ =

[

Q−1

(
perr
sym

4

)]2

3
in the above, it can be written as

b ≤ log2

(

1 +
SNRsym

Γ

)

(2.8)

which is exactly the same as Shannon’s equation for the capacity in AWGN channel

except for the SNR gap parameter (Γ). The quantity Γ is called the ‘SNR Gap’ because

we see in the above equation that the number of bits that can be reliably transmitted is

less than the theoretical capacity. It is thus, the capacity of the channel with a factor

of Γ(dB) less SNRsym(dB). As Γ approaches 1 (0 dB), then the achievable data-rate of

the QAM system approaches capacity. An important thing to note is that it depends

on the error probability requirements. The above expression is most accurate for higher

order M-ary QAM constellations. Although it is not always exact, it constitutes a good

approximation that simplifies bit loading algorithms and extended analysis of this gap

parameter for M-ary PSK constellations have been carried out in [76]. Furthermore if we

define γm as the performance margin ( as defined previously) and γc as the coding gain

for a given channel coding scheme, then the new SNR gap factor can be calculated as

Γnew(dB) = Γold(dB) + γm(dB) − γc(dB) (2.9)

2.4.2 Bit-Incremental Energy Relationship and 3-dB subgroup

Classification

Using the Gap parameter, the maximum number of bits(bn) per symbol that can be sent

over subcarrier n in a multicarrier system are given by

bn = log2(1 +
en · CNRn

Γ
) (2.10)

where CNRn = |Hn|2 /Nn is the channel gain to noise ratio with Hn and Nn repre-

senting the channel gain factor and noise power at subcarrier n respectively. Γ is the Gap
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parameter as described earlier for approximating behavior of the employed modulation

and coding for a desired performance criterion and en represents the energy allocated

to sub-carrier n. Using eq. 2.10, the energy required to transmit an additional bit on

subcarrier n is given by

∆e+
bn

= ebn+1
n − ebnn =

2bn · Γ
CNRn

(2.11)

The conceptual basis of our allocation algorithm lies on the simple principle easily observ-

able from equation 2.11, which describes the recursive relationship between the required

incremental energies for successive bit-allocations over the same sub-carrier. In other

words the energy required to increment bits from bn → bn+1 is twice (requires 3dB more)

the energy required to increment bits from bn−1 → bn. Mathematically, this recursive

relation is represented as

∆e+
bn

= 2 · ∆e+
bn−1

⇒ ∆e+
bndB

= ∆e+
bn−1dB

+ 3dB (2.12)

Let ∆e0+
n denote the energy increment required to allocate the first bit over subcarrier Hn.

Then the first subcarrier that will be allocated a bit will be the one requiring minimum

∆e0+
n (∆e0+

min) or in other words with maximum Hi (Hmax). 2.12 implies that before

incrementing bits from 1 to 2 over Hmax, a bit is allocated over all the subcarriers with

∆e0+
j within the 3dB range of ∆e0+

min. In other words k bits are allocated to Hmax before

the first bit is added to subcarrier j such that

2k−1 · ∆e0+
min ≤ ∆e0+

j < 2k · ∆e0+
min (2.13)

∀ 0 < j ≤ N ; 0 < k

If L =
⌈
∆e0+

max/∆e0+
min

⌉
1, we can divide all the subcarrier in L groups of 3dB width

each with respect to ∆e0+
n dB. This means that a subcarrier n belongs to the subgroup l

if

2l−1 · ∆e0+
min ≤ ∆e0+

n < 2l · ∆e0+
min (2.14)

∀ 1 ≤ l ≤ L ; 0 < i ≤ N

Thus if we imagine all the subcarriers sorted in descending order with respect to their

channel gain factors, then the subcarriers with the smallest channel gain are assigned to

1⌈ ⌉ denotes the ‘ceil’ function
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Figure 2.4 Classification of Sub-carriers in Subgroups

the first group, and the subcarriers with the largest channel gain are assigned to the

last (Lth) group. An example of such subcarrier partitioning will be shown in figure

2.4. The number of subcarriers in each group will not be same and will be determined

by channel frequency response of the concerned channel. Using the above mentioned

bit-incremental energy relationship coming from the Gap approximation equation and

this sorting of subcarriers in different subgroups in the ascending order with respect to

the respective channel gains, we can detect the orderly manner with which the optimal

discrete bit-allocation takes place and which can help us devise a simplistic allocation

algorithm. It is important, however, to mention here that this ‘sorting’ of the subcarriers

is only for imagining the underlying rythm, and for the actual allocation, the sorting of

the subcarriers with respect to their incremental-energies is not required by the algorithm

itself as will be evident by the algorithm details in the next section.

2.5 3dB-Subgroup allocation methodology

Based upon the 3-dB subgroup classification of subcarriers as explained above, an alloca-

tion rythm that is underneath the classical greedy allocation method can be traced. This

allocation rythm can be best explained by means of the figure 2.5, where the subcarriers

are represented by means of small vertical arrows and are assumed to be placed along the

horizontal axis after sorting in descending order with respect to their magnitude gains,

which means the first sub-carrier will be the one with the highest magnitude gain fac-
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Figure 2.5 Bit-Allocation Rythm with respect to 3-dB subgroups

tor. The dashed vertical lines represent the classification of subcarriers in different 3-dB

sub-groups as explained in the last section, and the number of subcarriers in different

subgroups can vary as depicted in the figure. Now we divide the complete optimal bit-

allocation process into smaller steps where these steps are represented by means of the

horizontal dashed lines.

We found out that using this arrangement, the optimal bit-allocation procedure can

be seen to follow a beautiful rythm not only for the allocations occurring during a single

step but also a pattern exists for allocations across different steps of bit-allocation process.

2.5.1 Allocation Rythm across Different Steps of Bit-Allocation

It was observed that in the first step of the allocation process, only the subcarriers

belonging to the first 3-dB subgroup are allocated a single bit. In the second step, both

the first and the second sub-group are allocated a single bit and so in each new step a

new sub-group’s subcarriers are included in the allocation process. In other words from 1

till 2 bit allocation over nmax ( i.e. the subcarrier with maximum channel gain and which

is located in the first 3-dB subgroup), a bit will be allocated to subcarriers belonging

to subgroup 1 only , while moving from 2 to 3 bits over nmax, a bit will be allocated

to subcarriers of subgroup 1 and 2. If the target total number of bits Btarget is not

achieved even after L number of allocation steps where L represents the total number of

3-dB subgroups, then each new step will involve all the subcarriers till the desired total
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number of bits Btarget is achieved.

2.5.2 Allocation Rythm Within a Single Step of Bit-Allocation

As stated earlier and as can be easily observed from the figure that the number of 3-dB

subgroups involved in a particular step’s allocation is directly related to the number of

that step i.e. in the first step only the first subgroup’s subcarriers are used in allocation,

in second step both the first two subgroups are used whereas in the step three, all the

first three 3-dB subgroup’s are employed for the bit-allocation during that step and so

on. The reason for this is that after allocation of a bit to the subcarriers in the first

subgroup, their bit-incremental powers get increased by a factor of 2(= 21) and thus

they come within the 3-dB range of the next subgroup i.e. subgroup 2. Similarly after

allocation of b bits to the subcarriers of the first subgroup, they come within the 3-dB

range of the subgroup number b. For any step in which a total of l 3-dB subgroups are

involved in the allocation in that step where 1 ≤ l < l, the number of bits allocated to

subgroup l will be one more than the number of bits allocated to subgroup l + 1. Also

at l step, subcarriers belonging to all the subgroups from 1 till l− 1 will come within the

3-dB range of the subgroup l alongwith the the subcarriers belonging to l subgroup.

The interesting thing to observe is that the original distance ratio of a subcarrier

belonging to a subgroup is maintained even when it is projected to another subgroup’s

3-dB range, where distance is defined by considering that all the subcarriers are arranged

in a horizontal line with respect to their SNR in descending order, as shown in figure 2.6.

Hence, the distance between the actual position of a subcarrier within a subgroup and

the minimum possible value in that subgroup represented by the left vertical dashed line

to a subgroup as shown in figure 2.6. This means that a subcarrier in the exact middle

of a subgroup n will be found at the exact middle of the subgroup j, when projected to

that subgroup.

Based upon the above arguments, it was observed that during a single step , since

all the subcarriers of all the concerned subgroups have been projected in the same 3-dB

range ( the 3-dB range of the last 3-dB subgroup involved in bit-allocation during that

step ), the bit allocation starts with the subcarrier with the least distance ratio, where

distance is as defined above and so the bits are incremently allocated to subcarriers with

increasing distance without regard to what subgroup they originally belonged to. Thus

the subcarriers with least distance ratio of no-matter what subgroup they initially be-
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Figure 2.6 Classification of Sub-carriers in 3 Intervals for Each Subgroup

longed to gets allocated first and the subcarriers with higher distance ratio gets allocated

near the end of that step’s allocation procedure.

Based upon these principles, we have divided our allocation algorithm in two phases

of initial and final allocation.

2.5.2.1 Initial allocation

Our main goal in this phase is to determine the maximum number of 3-dB subgroups that

will be required to allocate Btarget number of bits. For this, we define nsl as the number

of subcarriers in subgroup l, such that
∑L

l=1 nsl = N . Now the whole allocation process

can be divided in smaller allocation steps j as explained above. A step may be defined

as the allocations between successive bit allocations over Hmax ( first 3-dB subgroup) i.e.

step j = 1 refers to the allocations from the first bit allocation and before the second

bit allocation on Hmax with the total number of bits allocated in step 1 denoted by B1.

Therefore, step j in general refers to the bit allocation done in-between j → j + 1 bits

over Hmax, with Bj representing the total bits allocated till step j. It was found that the

total number of bits allocated till step j
′

can be recursively calculated as

Bj
′ = Bj

′
−1 +

j
′

∑

j=1

nsj ∀ j ≥ 1 (2.15)

(B0 = 0) ; (nsj = nsL ∀ j > L)



28 Chapter 2 : Bit-Loading Algorithm for Multicarrier Systems

We can state that j∗ is the number of maximum step number till which the allocation

procedure goes in order to allocate Btarget bits, if and only if

Bj∗−1 < Btarget ≤ Bj∗ (2.16)

The above equation implies that the target number of bits Btarget gets allocated after

the completion of step j∗ − 1 and before the completion of step j∗. Since Btarget will be

achieved during the j∗ step, each step till j∗−1 will allocate a bit to all the subcarriers of

all the subgroups involved during that step but during the step j∗ all the subcarriers of

the concerned subgroups may or may not be allocated a bit as the bit allocation procedure

will stop as soon as Btotal = Btarget. The initial allocation phase of our algorithm deals

with the allocation from step 1 till step j∗ − 1, while the final allocation phase deals

with the allocation during step j∗. Once the value of j∗ is determined, it is known that

j∗ − 1 subgroups will be employed during the initial allocation phase, since with each

step increment an additional subgroup is involved, starting from only subgroup 1 usage

at step 1. Since only one bit is allocated to all the subcarriers involved in a step, at the

completion of j∗ − 1 steps, j∗ − 1 bits would have been allocated to all the subcarriers in

subgroup 1, j∗ − 2 bits to subcarriers in subgroup 2 and similarly one additional bit less

for each next subgroup till subgroup j∗ − 1, whose subcarriers would have been allocated

a single bit. So if j represents the 3-dB subgroup number, then after initial allocation

phase ( i.e. after j∗ − 1 steps of allocation), the number of bits allocated to subgroup j

can be given by

binitialj = j∗ − j ∀ 1 ≤ j ≥ j∗ − 1 (2.17)

Now if the 3-dB subgroup number j(n) of any given subcarrier n can be determined

as follows

j(n) =
⌊
log2

(
∆e0+

n /∆e0+
min

)
+ 1
⌋

(2.18)

then the bits allocated to subcarrier n in the initial allocation phase are given by

binitialn = j∗ −
⌊
(log2(∆e0+

n /∆e0+
min) + 1)

⌋

0
(2.19)

where ⌊⌋0 indicates the floor function with the minimum value of 0.

2.5.2.2 Final Allocation

The initial allocation phase results in a bit-profile with a maximum one bit difference per

subcarrier with respect to optimal allocation profile .The final allocation phase determines
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which subcarriers should be allocated an additional bit during the j∗ step in order to

achieve the desired (Btarget) number of total bits with optimal bit-allocation profile i.e. the

same profile which will be achieved through the Greedy or the Hughes-Hartogs method.

This allocation of remaining bits in the j∗ step can be achieved by a number of ways.

1. Complete Sorting : In [21] we had proposed the allocation of the remaining bits to

be allocated in the final phase based upon the sorting of all of the subcarriers. If

∆pinitial+n = (2b
initial
n +1 − 2b

initial
n ) ∗∆p0+

n represents the energy increment required to

add a bit over subcarrier n after the initial allocation phase, and Brem = Btarget −
∑n=1

Nsub
binitialn represents the total number of bits that remains to be allocated after

the initial phase so as to achieve the target number of bits btarget, then the remaining

bits can be allocated as

bsort(n) = bsort(n) + 1 ∀ 1 ≤ i ≤ Bleft (2.20)

where bsort refers to the subcarriers bit profile vector after the initial allocation

phase, sorted with respect to the ascending order of ∆einitial+n . Thus, the final

allocation step or the step j∗ requires allocation of a single bit to the Brem sub-

carriers which require the least amount of energy for a bit-increment or in other

words Brem subcarriers with minimum ∆einitial+n . Hence, in order to achieve that,

in this method we have sorted all of the subcarriers in ascending order with respect

to ∆einitial+n and then allocated a bit to the first Brem subcarriers thereby resulting

in the optimal profile. On one hand this method being simple otherwise renders

unnecessary complexity to the allocation process e.g. if only a few bits are left to be

allocated in the final step, a complete sorting of all the subcarriers is not the best

of the approaches and hence we observed that the overall algorithm complexity can

be largely reduced by replacing the above method with the following method.

2. Interval Classification based Final Allocation

We introduced the term distance in the start of this section. Based upon this

definition of distance, we classified the subcarriers belonging to a subgroup in I = 8

intervals. The number of intervals can be selected as a function of the total number

of subcarriers in a system, such that assuming that subcarriers in a subgroups have

equal probability of lying in different intervals, the possible number of subcarriers in

an interval comes out to be a modest number. Subcarrier n belongs to the interval
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i ( where i ≥ 1 ) of a subgroup l if
(

1 +
(i − 1)

8

)

≤ (∆e0+
n /∆emin0+

l <

(

1 +
i

8

)

(2.21)

In order words it means that the subcarriers will belong to the interval 1 if they

are within 1/8th of the distance from the minimum possible value in a subgroup till

the next subgroup and will belong to the interval 2 if they are in-between the 1/8th

and the 2/8th of the distance from the minimum possible value in a subgroup till

the next subgroup and so on. Once this classification is performed, it can be easily

deduced that during the allocation process of a step, first the subcarriers belong to

the first interval of all the concerned subgroups are allocated a bit, then a bit is

allocated to the next interval of all the subgroups and so on till all the intervals of

all the subgroups have been served. Based upon this rythm, we formulated the final

allocation process of the j∗ step of the allocation process. As we have established

earlier that all the subcarriers of all the concerned subgroups will be within the 3-dB

range of the j∗ subgroup at j∗ step, which implies that all the concerned subcarriers

for this group can be classified into a total of 8 intervals.

Now the method becomes very much same as the approach used in the initial

allocation. In initial allocation, our basic goal was to find the number of vertical

bit-allocation steps that are needed so as to allocate any given target number of

bits Btarget. Considering again the figure showing the interval classification where

the subcarriers are classified in different intervals, our basic goal in this step will be

to find the total number of intervals that will be required for Brem number of bits

to be allocated. If i∗ represents the total number of intervals that will be used to

allocate Brem number of bits in the final allocation step where 1 ≤ i∗ ≤ 8, then it

implies that all the subcarriers of all the intervals till i∗ − 1 will be allocated a bit

in this step and some or all of the subcarriers of the i∗ interval will be allocated a

bit depending on the remaining Brem. Finally the bits remaining to be allocated

to the last interval i∗ can be allocated by iteratively searching for the subcarrier

with minimum ∆einitial+i∗ amongst the subcarriers of the interval i∗ and removing

this subcarrier from the search space for the newt iteration after allocating a bit to

it. It is important however to mention here that this iterative or greedy search over

the subcarriers of the i∗ interval is far less complex than if the search is made over

all of the intervals.
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Figure 2.7 Spectral Mask Defining Peak-Power Emission Allowed for UWB Communi-

cations in US

As simulation results will reveal, after the final phase allocation the bit profile will

resemble that of the optimal bit allocation and the complexity involved will be compared

to the recently proposed Papandreou’s [15] algorithm for optimal discrete bit allocation

alongwith the classical greedy solution for different scenarios showing that our proposed

algorithm can achieve the exact same optimal bit profile with much less complexity.

2.6 Optimal Allocation with Peak Power/Energy Per

Subcarrier Constraint

The scarcity of the available bandwidth along with the increasing throughput demands

often results in different systems operating over overlapping frequency. To avoid inter-

ference in the overlapping frequency band, the regulatory authorities impose a ‘Spectral

Mask’ which dictates the maximum power/energy i.e. P (e) that should be transmitted

per Hz over a particular frequency-range, and is also termed as the peak-energy constraint

in literature [20]. The spectral mask for the MB-OFDM based Ultra Wide Band (UWB)

system is shown in the figure 2.7.

This e dictates the maximum number of bits (bn) that could be allocated to a sub-

carrier for a given QoS such that the Spectral Mask is respected. Hence upon introducing

the peak-energy constraint, our bit allocation procedure must take into account this new
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peak-energy constraint.

The maximum number of bits that could be transmitted over a sub-carrier in presence

of a peak-energy constraint can be represented as

2bn+1 − 1 >
en

∆e0+
n

≥ 2bn − 1 (2.22)

Its proof comes directly from the expression for the valid range of bits that could be

allocated over a subcarrier. If en and bn denote the maximum energy and bits that could

be transmitted over subcarrier n and ∆e0+
n is the energy required to add a single bit over

n, then bn is equal to the maximum value of n∗ which satisfies the following expression

en
(1 + 2 + 4 + . . . + 2n∗−1) · ∆e0+

n

=
en

(
∑n∗

n=1 2n−1)∆e0+
n

≥ 1 (2.23)

The multiplying factor in the denominator has the form of a geometric series. Since
∑i∗+1

i=1 ai−1 = ai∗+1−1
a−1

For geometric series in equation 2.23, a = 2 and n∗ = i∗ − 1 and

bn = n∗, thus giving

en
(2n∗−1) · ∆e0+

n

≥ 1 ⇒ en
∆e0+

n

≥ 2bn−1 (2.24)

thus proving the right hand side of equation 2.22, while the left hand side is easily

verified by observing that the value of (en/∆e0+
n ) in equation 2.22 has to be lower than

the (2bn+1 − 1) value in order not to increment the value of bn to bn + 1. Equation 2.24

also leads to the expression for maximum bit allocation conforming to the peak-energy-

constraint en and is given by

bn =

⌊

log2

(
en

∆e0+
n

+ 1

)⌋

(2.25)

We can expect three different cases, if a peak-energy constraint is present: 1) Same

energy constraint for all the subcarriers, 2) Different peak-energy constraint possible for

different 3-dB subgroups but same for all the subcarriers within a single subgroup and

3) Different peak-energy constraint possible for different 3-dB subgroups as well as for

all the subcarriers within a single subgroup. In any case, for our concerned margin

maximization problem, first it is required to verify that that our required B number of

bits can be allocated in presence of such a peak-energy constraint without its violation.

Once this is verified, the allocation is performed as prescribed in the previous section.

This condition can be easily verified by
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B ≤
N∑

n=1

bn (2.26)

We can also determine the least possible value for e that is required for B number of

bits to be allocated without violation of the spectral-mask for case 1 above.Based upon

the earlier concepts and notations of subgroups and interval classification, if we require

a total of j∗ number of steps of allocation and i∗ number of intervals for the allocation of

B bits, then the peak-energy constraint will not be violated if and only if

2j∗−1 ·
(

1 +
i∗

8

)

· ∆e0+
min ≤ e (2.27)

Once the feasibility of allocation is established the allocation is performed in a normal

manner for the above mentioned case 1. However for the above cases of 2 and 3, where

the peak-constraint may vary from subgroup to subgroup or even from subcarrier to

subcarrier, an iterative initial allocation will be required to be performed where in each

iteration the subcarriers achieving their spectral-mask limit are allocated the maximum

permissible number of bits and are then excluded from the allocation process and then

this process is repeated till enough bits are left that can be allocated in the final allocation

phase.

2.7 Simulation and Results

2.7.1 Simulation Scenario

Our bit-loading algorithm is valid for any multicarrier system, be it wireline or wireless.

As an application scenario we used the parameters and the channel models corresponding

to the MultiBand-OFDM (MB-OFDM) based UWB system [77], which has recently been

adopted by the WiMedia Alliance, a consortium of leading telecom companies, as a

standard for wireless communications consumer application products, targeting very short

range (< 10m) and high data-rate (> 500Mbps).

MB-OFDM system, as like other proposals for IEEE 802.15 standard, employed

Saleh-Valenzuela model [78] as the reference indoor UWB channel model for performance

evaluation purposes.The real valued model is based on the empirical measurements orig-

inally carried out in indoor environments in 1987 [78]. Due to the clustering phenomena

observed at the measured UWB indoor channel data, a clustered-based channel model was
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proposed which makes use of a log-normal distribution rather than an original Rayleigh

distribution for the multipath gain magnitudes. An independent fading mechanism is

assumed for each cluster as for each ray within the cluster and both the cluster and ray

arrival times are modeled independently by Poisson processes.

Based upon SV channel model and different indoor UWB communication scenarios,

four different channel scenarios were standardized namely CM1(LOS2 0-4m), CM2(NLOS3

0-4m), CM3(NLOS 4-10m) and CM4 (Extreme NLOS) as proposed in [23]. The quasi-

static nature of these channel scenarios especially CM1 and CM2 makes the MB-OFDM

system feasible for adaptive resource allocation and hence the research in this regard

[79].Although the bit-loading algorithm complexity is not significantly affected by the

underlying channel model, but for the sake of realistic values, we employed channel gains

corresponding to the CM1 channel model for our bit-profile analysis purposes.

2.7.2 Bit-Allocation Profile

The performance and complexity of our allocation algorithm was compared with two other

discrete bit-loading algorithms leading to the optimal solution with ‘Gap’ approximation,

one the classical greedy approach first proposed by Hughes Hartogs [10] and the other

a recently proposed algorithm for bit-loading based on multi-phase allocation [15]. The

bit allocation profile during the intermediate stages of our 3dB subgroup algorithm and

that of Papandreou are given in figure 2.8 alongwith the optimal profile for the concerned

channel. The total number of subcarriers were taken as 128 and the total number of bits

to be allocated as 256 (assuming QPSK on each subcarrier with no loading) based on

the MB-OFDM system parameters and the channel gains were that corresponding to the

CM1 channel.

The Hughes Hartogs algorithm performs the costly bit-by-bit allocation and directly

converges to the optimal. The Papandreou algorithm performs the bit-allocation in three

phases with finally converging to the optimal. The initial step allocates bits to each

subcarrier with respect to the channel gain at the most attenuated subcarrier in the

initial phase of the algorithm. In wireless channel environments, which are susceptible

to deep fades, the latter approach can lead to an allocation far different from the desired

bit-profile. For this reason, that method needs an intermediate step to approach the

2Line Of Sight
3Non Line Of Sight
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Figure 2.8 Bit-allocation profiles for different Algorithms

target profile, before finally converging towards the optimal profile in the third and final

allocation phase. The final step of the allocation performs a Hughes-Hartogs like greedy

allocation for the bits remaining to be allocated over the entire set of subcarriers, which

when large number of subcarriers are present can prove to be very costly even if the

number of bits remained to be allocated is few.

In contrast, our initial allocation being at a maximum difference of one bit per

subcarrier from the optimal bit-profile, converges directly to the optimal solution in the

second step, which is indicative of its faster convergence. The hierarchical classifical of all

of the subcarriers first into 3-dB subgroups and then into the intervals makes the subspace

of the greedy allocation involved in our final allocation very small, hence reducing the

overall algorithm complexity.

2.7.3 Total Energy Improvement Factor

As mentioned earlier, the proposed bit-loading algorthm is applicable to any multicarrier

communication system, wireline or wireless. Many state-of-the-art communication sys-

tems (DSL, DVB, WiFi, UWB, WiMax etc.) that employ multicarrier technology at their

physical layer, inherently operate on largely diverse channel conditions. The exact gain

in performance by the application of the bit-loading ( adaptive modulation ) technique
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Figure 2.9 A particular instance of relatively Bad, Moderate and Good channel condi-

tions

is thus dependant upon the particular system’s operating parameters and channel condi-

tions. Our main contribution, which relates to the complexity reduction of the bit-loading

algorithm, is valid for any given channel conditions and system parameters.

Hence we give the energy reduction estimate due to the application of bit-loading,

for three different types of channel conditions, that cover the range of channel conditions

of most of the communication systems. The channel states of these arbitrary channels

were made to lie between [-23 dB to 4 dB], [-9 dB to 10 dB] and [4 dB to 23 dB] as

shown in figure 2.9. These ranges stand for relatively bad, moderate, and good channel

conditions, respectively [25].

The reduction in total energy for a given throughput, as was our concerned Energy

Minimization problematic in this chapter, is given in figure 2.10 and 2.11. Each energy

reduction value was averaged from a total of 100 channel realizations of the considered

scenario.

It was generally observed that as the number of subcarriers is increased in a system

for a given channel scenario and target throughput (M), the percentage of reduction in

total Energy becomes less. This is because of the fact, that when the subcarriers are

randomly dispersed in the concerned CNR range, as in our case, an increase in the total
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Figure 2.10 Reduction in Total Energy by means of Bit-Loading for different values of

N ( Total No. of subcarriers ) and M ( M-ary modulation scheme per subcarrier when no

bit-loading )

number of subcarriers results in the availability of more relatively good subcarriers. As

we have shown by means of 3-dB subgrouping in this chapter, the bit-allocation starts

from the best subcarriers and gradually includes the decreasing CNR subcarriers, the

participation of more good number of subcarriers in the bit-loading procedure leads to an

overall reduction in the total energy reduction.

2.7.4 Complexity Comparison

2.7.4.1 Expected Algorithm Complexity

Figure 2.12 presents the expected algorithmic complexity of the different phases of the

concerned algorithms. Since the number of bits to be allocated in a particular phase

varies from case to case for a particular algorithm, a precise comparison of complexity

can only be made by actual execution of algorithms on hardware for a given channel

scenario and target bit-rate, as performed below. Figure 2.12 also depicts the well-known

high complexity of the greedy bit-filling approach as it requires N operations to allocate

a single bit, where N indicates the total number of subcarriers. For the algorithm of
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Figure 2.11 Reduction in Total Energy by means of Bit-Loading for different values of

N ( Total No. of subcarriers ) and M ( M-ary modulation scheme per subcarrier when no

bit-loading )

Figure 2.12 Expected Algorithmic Complexity for Different Algorithms

Papandreou [15], although the initial and intermediate phases do not require extensive

computations, the final phase depends on the factor Bleft(the remaining bits that will

be allocated using the greedy procedure), which when large can lead to high complexity

because each bit allocation in this phase will require O(N) order of operations. Even for

the cases where Bleft is not large but the total number of subcarriers is large, the final

phase of Papandreou algorithm renders large complexity because all the subcarriers have

to be compared before allocation of a single bit.

In our proposed 3dB-subgroup allocation algorithm, we find that the initial phase
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requires classification of sub-carriers with respect to 3-dB difference from the least atten-

uated subcarrier where this classification can be efficiently implemented in a number of

operations which is linear with respect to N . Final allocation requires further classifica-

tion in different intervals whose complexity is also linear with respect to the number of

subcarriers N . Finally the Bleft number of bits are greedily allocated to the last interval,

which requires only comparing the subcarriers belonging to the last interval and hence

an eventual reduction in complexity.

2.7.4.2 Exact Number of Execution Cycles on a Processor

In order to have a precise complexity comparison, along with performing the theoretical

complexity analysis, we also compared the concerned algorithms in terms of actual num-

ber of execution cycles, when executed over a processor. Theoretical complexity analysis

and a comparison of simulation times on any simulation tool, can only provide an approx-

imate complexity comparison. Most simulation environments, like Matlab, are based on

interperative languages and hence are very much dependent on the intermediate compiler.

Therefore, it is preferable to use some other method/tool to evaluate the exact number

of cycles taken by an algorirthm.

In this regard, Simplescalar [61] is a popular tool, that enables extracting the param-

eters (No. of execution cycles, energy consumed etc.) concerned with the execution of a

given program, for a wide variety of processors. Therefore, we employed the Simplescalar

tool, to extract the exact number of execution cycles taken by different bit-loading al-

gorithms over a MIPS [80] processor architecture processor.MIPS (originally an acronym

for Microprocessor without Interlocked Pipeline Stages) is a RISC (Reduced Instruction

Set Computer) microprocessor architecture and is primarily used in embedded processors.

The default parameters of the Simplescalar tool, with which the algorithms were run, are

shown in figure 2.13.

2.7.4.3 SimpleScalar Tool For Execution-Based Algorithm Complexity Anal-

ysis

Simplescalar is an execution driven cycle accurate instruction set simulator (ISS) of a

superscalar microprocessor [61]. A complete development chain (compiler, debugger,

profiler) comes with the tool which allows the quick porting of any ANSI C application

to Simplescalar. The Simplescalar toolset is composed of a gcc compiler ported for the
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Figure 2.13 The Default values of the Superscalar Processor Architecture used by Sim-

pleScalar

Simplescalar microprocessor which generates simplescalar binary files. The simplescalar

microprocessor models an out-of-order superscalar architecture based on a RUU (Regis-

ter Update Unit) . The RUU exploits a reorder buffer to automatically rename registers

and hold the results of pending instructions. However, completed instructions are retired

in program order to the register file. The microarchitecture supports speculative exe-

cution. The memory system uses a load/store queue and a rich set of cache memories

with tunable sizes is also available. The detailed description of the Simple-Scalar tool

alongwith its Superscalar MIPS architecture will be given in chapter 6, where we will

adapt different processor parameters as a mean to further reduce the running-time of

the bit-loading algorithm. In this context we keep the processor parameters constant

for all the three compared algorithms so as to perform an exact execution-cycles based

complexity comparison of the concerned algorithms.

2.7.4.4 Comparison of Number of Execution-Cycles

The simplescalar architecture parameters were kept same for all of the simulations. Asad1

indicates our earlier proposed method [21] where sorting was used in the final allocation,

whereas Asad2 represents our improvement in the algorithm where sorting is replaced

with the interval-classification based final allocation, as presented in [22] as well. Figure

2.15 shows the number of execution cycles taken by different algorithms for the case

where the number of subcarriers (N) is increased but the number of bits/subcarrier for

the non-adaptive case is kept constant. The horizontal axis shows various simulation
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Figure 2.14 No. of Execution cycles for different algorithms for different simulation

scenarios

scenarios where the first number is for the number of subcarriers (N) and the next one

indicates the total number of bits to be allocated assuming a QPSK modulation over all

the subcarriers when there is no adaptation. It is evident from the figure that for all

of the simulation scenarios, our improved algorithm takes a lot less number of execution

cycles.

Figure 2.14 shows the case where the number of subcarriers is kept constant but the

total number of bits to be allocated (B) is varied. As evident our proposed algorithm not

only takes a lot less number of execution cycles than other algorithms but also that the

number of execution cycles is almost independent of the number of bits to be allocated.

2.8 Conclusion

Adaptive resource allocation has established itself as a strong mean of enhancing a sys-

tem’s performance while making the best-possible use of system’s resources at the same

time for a given system and channel. Discrete Bit-Loading has played a major role in the

revolutionary performance measures by the DSL and hence now making its way in the

wireless applications of multicarrier systems (WiFi, WiMax, UWB etc.). However, for

discrete bit-loading to be employed in the fast time-varying wireless scenario, its algorithm
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Figure 2.15 No. of Execution cycles for different algorithms for increasing Number of

Subcarriers but same Bits per Subcarrier ratio

not only has to be of reduced complexity, but also flexible enough to make the run-time

performance-to-complexity trade-off decisions with respect to the evolving demands and

constraints of the system.

In this direction, where a large number of optimal/sub-optimal algorithms have been

proposed in the recent past, we have made the contribution of proposing an algorithm,

which to our knowledge converges towards the optimal with the least complexity in-

volved than any other existing optimal-converging algorithm. Like most of the existing

algorithms, we have also made use of the ‘Gap approximation’ phenomenon, which has

established itself as a close approximation to the capacity while providing adequate sim-

plification to the capacity analysis for practical systems. By making use of the Gap

Approximation, the algorithm we designed, is based on the classification of all the sub-

carriers into subgroups of 3-dB, with respect to their channel to noise ratios (SNR) or

the corresponding bit-incremental powers. It was discovered that an inherent pattern of

allocation is present underneath the classical optimal Hughes-Hartogs allocation proce-

dure. This underlying pattern was brought into use for devising the 3-dB subgroup based

allocation algorithm.

It was found that a pattern of allocation not only exists for the bit-allocations that
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take place across different 3-dB subgroups but also for the allocations within a single

3-dB sub-group based on which each 3-dB sub-group was further divided into a number

of intervals. The algorithm consists of two parts of initial and final allocation, where the

initial allocation makes use of the rythm/pattern of allocation that exists across different

sub-groups while the final allocation makes use of the rythm/pattern of allocations that

exist across different intervals of a subgroup.The resultant bit-profile is the very same as

obtained through the optimal Hughes-Hartogs [10] algorithm.

The algorithm complexity was not only compared with the classical optimal Hughes-

Hartogs solution, but also to that of a recently proposed discrete bit-loading algorithm

by Papendreou et al. [15]. Our proposed algorithm was found distinctively less complex

than the rest of the algorithms. To verify the theoretical complexity analysis of the three

algorithms, we have compared the running-time of the three algorithms in terms of the

actual number of execution-cycles over a Superscalar processor by means of SimpleScalar

tool. The comparison of the execution cycles of the three algorithms, as presented in this

chapter, verify the significant reduction in the complexity of our algorithm.

An interesting feature of the 3-dB subgroup based algorithm is the flexibility it of-

fers for a possible performance to complexity tradeoff. Using the same methodology, the

subgrouping can be done for larger chunks, i.e. 6-dB so as to use the same modulation-

size across a wide-block of subcarriers that can further reduce complexity but at the

cost of performance. Also, inherently the Rate-Maximization based allocation also fol-

lows the same rythm of bit-allocation, though the constraint in that case is the total

available energy instead of total number of bits to be allocated. Hence the same sub-

grouping methodology can be easily adopted for its use in the Rate-Maximization based

allocation.We also extended our analysis to the peak-power constrained systems, where a

condition of feasibility for a given peak-power constraint corresponding to a given number

of bits to be allocated was developed.

Finally this work can be extended in a number of interesting directions. Although

we developed the algorithm for a single-user case, the same approach can be extended

for a multi-user scenario. The above-mentioned direction of complexity-to-performance

tradeoff can be taken as well and the subgrouping methodology can be modified so as to

take into account the run-time variation in the needs and constraints of the underlying

system and channel. Although the performance of the Gap Approximation factor has been

established in the literature for a given set of modulation and coding schemes, it can be
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extended to other sets as well, so as to quantify the difference when no approximation is

performed. Finally a complete framework involving along-with adaptive modulation (bit-

loading), other modes of adaptation like that of adaptive power-allocation and adaptive-

coding and making use of this 3-dB subgrouping methodology can be developed as well.

This can be based on the run-time sub-grouping of the channel SNRs with respect to the

changing system characteristics, and hence this methodology can be used for multi-mode

transceivers or cognitive-radios that are the future of transceiver-technology.



Chapter 3

Optimal Power Allocation Algorithm

for Peak-Power Constrained

Multicarrier Systems

3.1 Introduction

We established earlier that one of the biggest advantages linked with multicarrier commu-

nications is the ability to fine tune the system parameters at different frequencies, with

respect to the corresponding channel gain, because of the division of system’s bandwidth

spectrum into a large number of subcarriers. This tuning of a subcarrier can be done

by a number of means due to the presence of a number of parameters/characteristics

associated with a subcarrier. The set of the basic parameters associated with a partic-

ular subcarrier consists of the no. of allocated bits bn (=modulation size), the amount

of allocated power (energy) en , the redundancy (=coding rate) and the resulting BER

of a subcarrier. These parameters are interlinked depending on case-to-case via famous

relations e.g. like that of the Shannon’s capacity equation or the probability of error

equation linked with a particular modulation and coding scheme. We showed in chapter

2 that the analytical expression for the probability of error for a modulation and coding

scheme can be represented in the form of the classical Shannon’s capacity expression by

means of a Gap Approximation factor, which the application of of theoretical analysis for

practical purposes.

Generally, the goal of adaptive algorithms is to find the best distribution of one
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or more of these parameters over all the subcarriers in order to optimize a particular

attribute of the overall system e.g. total energy E =
∑N

n=1 en, total no. of allocated bits

B =
∑N

n=1 bn or aggregate BER = BERavg with constraints on any number of the rest of

attributes. In chapter 2, we dealt with the best distribution/allocation of the parameter

bn so as to optimize(minimize) the overall system attribute of total energy, with the strict

restriction of bn taking up only discrete positive integer values. Although this discrete

constraint is true for the optimization of the parameter bn, optimizing the power/energy

(en) distribution can be done free of this constraint and hence powerful optimization

techniques that exist for continuous variables can be adopted in this context. The goal

of this chapter is hence to employ one such classical continuous-variable optimization

techniques to find the best distribution of the parameter en, taking into account our

particular set of goals and constraints.

An important remark to make at this point is regarding the effect of the presence of

a constraint on a parameter on the overall optimization problem. When individual con-

straints are not present on any one parameter ( e.g. en or bn), then the optimal allocation

of any of these parameters dictates the resulting distribution of the other parameters as

they are interlinked by means of famous relations as that of Shannon’s capacity equa-

tion or the analytical expression defining the probability of error for a given system and

channel specifications. An example of this behaviour is shown by the waterfilling solution

where the discrete parameter bn distribution follows the optimal distribution of the con-

tinuous variable en. However, as we will see in this chapter that a change in the goals and

constraints of the optimization problem leads to a change in the resulting optimal distri-

bution profile of a given parameter. Unlike waterfilling, where the goal is to maximize

the system capacity/throughput, our objective in this chapter will be to optimize the

power/energy distribution of a total energy amount of E amongst different subcarriers so

as to minimize the overall system BER, if modulation-type is not varied across different

sub-carriers . This possible difference in the resulting energy profile can be represented

by means of the figure 3.1:

Figure 3.1 depicts varied behaviour of energy allocation, each for a unique set of

constraints and goals where RM, MM and BERM denote Rate-Maximization, Margin-

Maximization and BER-Minimization Problem respectively. In general, for each combina-

tion of the constraints on the parameters ( i.e. fixed/variable en,bn or BERn ) associated

with a subcarrier, the corresponding set of RM, MM and BERM solutions will be of the
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Figure 3.1 The Optimal Power Allocation Response with respect to different objectives

and constraints

same nature. For example, generally the RM and MM solutions corresponding to the

class of constraints where both the en and bn are allowed to be varied take the form of the

Classical Water-filling solution, though the Water-Level could be different as depicted in

figure 3.1.

This same nature of the solutions for different optimization problems is commonly

known in literature as the Duality that exists between different solutions and which refers

to the fact that a solution which is optimal with regards to a particular optimization

problem will also be optimal with respect to the other (dual) optimization problem. RM

and MM are widely known in literature as the dual-problems [81]. Hence if RM solution

given by the waterfilling approach results in a total allocation of B bits, then the MM

solution for a target no. of bits equal to B will result in the same solution as that of RM,

as we explained in the previous chapter that in fixed throughput optimal allocation, the

water is poured only till B is achieved. The duality between RM and MM problems can

be furthered to BERM problems as well and the concerned proofs were given by Piazzo

et al. [12].

Different possible classes/combinations of constraints can be given by means of the

table 3.1.

Some recent research, as will be cited in the next section, has been dedicated to find

the best combination of a sub-carrier’s parameters that should be varied so as to arrive at



48
Chapter 3 : Optimal Power Allocation Algorithm for Peak-Power Constrained

Multicarrier Systems

Table 3.1: Different combinations of constraints on Sub-carriers

Channel Gain Energy Allocated Bits allocated BER

(hn) (en) (bn) (BERn)

1 Variable Variable Variable Constant

2 Variable Variable Constant Constant

3 Variable Constant Variable Constant

4 Variable Constant Constant Constant

5 Variable Variable Variable Variable

6 Variable Variable Constant Variable

7 Variable Constant Variable Variable

8 Variable Constant Constant Variable

the optimal compromise between performance and complexity. Our aim in this chapter

is to explore the optimal distribution/allocation of the parameter en if bn is assumed to

be constant over all the sub-carriers, so as to minimize the overall system BER. This will

be different from the classical optimization problem approach where both the modulation

scheme (bn) as well as the allocated-energy (en) are allowed to be varied.

The BER-Optimal energy distribution solution will then be viewed in presence of

the Peak-Power/Energy constraint, which due to the reasons of bandwidth scarcity and

interference limitation is present in state-of-the-art wireless (UWB) and wireline (DSL)

systems. This Peak-Energy per subcarrier constraint is defined in terms of the Power-

Spectral-Density Mask, which dictates the maximum power to be transmitted at each

frequency within the system bandwidth, and since these regulations are subject to changes

from region to region, modifying existing resource allocation theory and algorithms so as

to take into account this additional constraint of Peak-Power is of particular interest.

Finally, an efficient algorithm for energy-allocation that respects the peak-energy limit

will be presented and its simulation times compared with those of the classical solution of

Iterative-Waterfilling, so as to establish the computational complexity advantage of our
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Figure 3.2 A communication system with adaptive power allocation

algorithm.

Next section will give the state-of-the-art on different power/energy optimization

problems and the corresponding proposed solutions. Works related to different com-

binations of hybrid rate-power allocations along with recent works and algorithms for

power/energy allocation with the peak-power/energy constraint will also be mentioned.

In the next section we will introduce the classical Lagrange Optimization technique which

will be used in section 4 of this chapter for our particular BER-minimization problem.

Extension of analysis for BER-Optimization to the Peak-Energy constraint will also be

given in the same section. In section 5, we propose a computationally efficient energy

allocation algorithm for peak-energy constrained multicarrier systems and its reduced

complexity will be verified by means of comparison with the classical Iterative Waterfill-

ing approach in the same section and finally conclusion and perspectives on the work will

be given in the last section.

3.2 State of the Art on Power Allocation Schemes

The paradigm of adaptive transmission exists for a good number of years and hence a

handsome amount of literature is present related to theoretical as well as implementation

oriented aspects of power-allocation methodologies which have been proposed for differ-

ent systems, taking into account their respective goals and constraints. In this section

we will emphasize on the fundamental theoretical works related to power allocation on
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multicarrier systems as well as the works related to our particular set of goal ( BER

minimization ) and constraints (e.g. Peak-Power constraint ).

3.2.1 Works on Theoretical Foundations

Although, the waterfilling solution has been long known in the information theory domain,

often attributed to R. Gallager [9] for his optimized power distribution proposal over a

colored gaussian channel, it was Kalet [27] who first theoretically demonstrated that

the optimal power distribution for capacity maximization over the multi-carrier channel

takes the waterfilling form as well. A detailed work outlining the optimal distribution of

different subcarrier parameters such as en and bn, in both discrete and continuous form,

with respect to different criteria and channels was given by Willink et al. [82] and it

was shown that with optimal distribution of different parameters, a multicarrier system

clearly outclass the equalized single-carrier system in different SNR ranges. Also, Ligdas

et al. [83] provided the theoretical foundations for the power-allocation problem when

practical constraints as that of the feedback delay and channel estimation error are taken

into account. Notable theoretical foundations related to the adaptive optimization of

variable system parameters for a generalized communication system and channel were

outlined in the doctoral dissertation of Goldsmith [84] and [85].

3.2.2 Works on BER-Optimal Power Allocation

The optimal power distribution on a multicarrier system for the Rate/Capacity Maximiza-

tion problem results in the Waterfilling distribution as discussed earlier and as depicted

in the figure 3.3

The intuition behind water-filling is to take advantage of good channel conditions:

when channel conditions are good, more power and a higher data rate is sent over the

channel. As channel quality degrades, less power and rate are sent over the channel. If

the instantaneous channel gain falls below the cutoff value (defined by total power to be

allocated and the channel conditions), the channel is not used.

These schemes of increasing capacity may be suitable for variable-rate services, such

as e-mail and web browsing. On the contrary, delay-sensitive services, such as voice or

video, are usually provided at a fixed rate [18]. In these applications, it is desirable to de-

sign a transmit power allocation scheme that improves error-rate performance for a given
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Figure 3.3 Optimal power allocation (Waterfilling Distribution) for Rate-Maximization

problem

fixed rate. A number of studies have been performed to investigate the characteristics of

the power distribution, when optimized with respect to the criterion of BER.

First concise work on the BER-optimal power allocation over a fading channel was

performed by Ligdas et al. [83], who investigated the impact of continuous as well as finite-

state power control over a slow fading channel using the dynamic programming approach.

In the multicarrier context, Goldfeld et al. [24] employed the Lagrange Optimization

to quantify the optimal power allocation over different subcarriers by minimizing the

aggregate BER of a multicarrier system under the total power constraint and under the

assumption that same constellation is used in each subcarrier. The optimal solution

was finally simplified into a quasi-optimal solution, where the performance of the quasi

optimal solution was found to be practically same as that of the optimal solution but with

much less complexity involved. The Quasi-Optimal allocation was found to be similar in

performance to the Equal-SNR based power allocation at high SNR regions.

A good analysis on the characteristics of the BER optimized power allocation for

the multicarrier systems was presented by Chang et al. [25], again by making use of the

Lagrangian multipliers. Chang observed that for an M-ary phase-shift keying (PSK) or

M-ary quadrature amplitude modulation (QAM), the exact or approximate BER function
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may be expressed as a Q-function [29]. However, since solving Lagrange requires differ-

entiation of the objective function, it may not be possible to find a closed-form solution,

using the Q function to describe the error probability function. In this case, he proposed

utilization of an adaptive method, such as the steepest-descent algorithm [?] to find a

solution in an iterative manner. However, since such algorithms are high in complexity,

Chang employed the exponential upper bound [26] to the error probability function and

optimized it under the total power constraint. It was observed that the characteristics

of the BER optimized power allocation scheme differ from those of the waterfilling [27]

scheme that maximizes the capacity, as at high SNR range, the BER optimized scheme

was found to allocate more power to the more attenuated subchannel, which is contrary

to the behavior of the waterfilling. Finally, recently BER-Optimal power allocation in

multicarrier systems was investigated in the context of MIMO multiplexing [86], where

the power-optimized transmissions were shown to have performance gains with respect

to the classical MIMO receivers. Another important work relating the dual relationship

that exists between optimization solutions with respect to different criteria (BER, power,

throughput etc.) was done by Piazzo et al. [12], focusing on the commonly existing sys-

tems with constraints such as that of equal power constraint on all the subcarriers or

that of the equal BER constraint on all the subcarriers. Allocations optimal with one

criterion were proven to be optimal with another criterion establishing the duality rela-

tionship between them and hence a class of Global Optimal solutions was finally derived

for a particular set of goals and constraints.

3.2.3 Works Related to Power Allocation with Peak-Peak Con-

straint

A practical constraint on any transmitter is that the peak power cannot exceed a certain

level, which may vary from system to system. This type of constraint, referred to as peak-

power constraint, may be due to hardware limitations, human safety concerns or dictated

by regulatory authorities to avoid interference amongst systems sharing the same chunk

of bandwidth. This constraint may impose severe limitations to the maximum gain (in

terms of reduced BER) achievable by power control. Since many new wired and wireless

systems are being subjected to peak-emission power related regulatory measures in-order

to incorporate such large number of systems in scarce bandwidth, it is very important to
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consider this peak-power constraint in the overall optimization problem.

One of the first works exploring the impact of peak-power constraint on the use of

adaptive power allocation in fading channels was done by Choi [75] by making use of

Lagrange multipliers. Both, the discrete as well as the continuous constellation size case

were evaluated and an iterative algorithm for peak-power constrained adaptive modu-

lation was proposed. Regarding the works with respect to the peak-power constrained

optimization problem over a multicarrier system, Baccarelli et al. [20] analytically solved

the Rate-Maximization problem employing the lagrange method and also proposed the

Iterative Waterfilling method to optimally allocate the power over a set of subcarri-

ers such as the peak-power constraint over a group of subcarriers is respected as well.

Recently, Papendreou et al. [74] analyzed both the Rate-Maximization and the Margin

Maximization problem with respect to the additional peak-power constraint and a number

of propositions were made so as to simplify the peak-power constrained power-allocation

procedures. Palomar et al. [87] gave the unified view of different class of waterfilling algo-

rithms including the proposal of efficient algorithms for a range of waterfilling problems.

3.2.4 Iterative Waterfilling Algorithm

As mentioned in the previous sub-section that for the capacity-optimal peak-power con-

strained power allocation, Baccarelli et al. proposed an Iterative Waterfilling approach.

Since we tend to reduce the computational complexity of this algorithm in this chapter,

which might eventually be used for peak-power constraint conforming power distribution

optimal with respect to any given criterion (capacity, BER etc.), it is important that we

outline the basic principle of the Iterative Waterfilling algorithm as given by Baccarelli

et al.

We denote the energy allocated to subcarrier j as ej and emaxj ,ebudget and etot as

the maximum permissible energy to be allocated to subcarrier j, the total amount of

energy to be allocated and the total energy allocated at a particular step, respectively.

It was observed that though the eventual energy allocation is not water filling in its true

meaning, as some subcarriers’ energies will be clipped to emaxj , nevertheless, the algorithm

was named as Iterative waterfilling because of the iterated applications of the standard

water-filling algorithm to decreasing-size subsets of the overall channels, as indicated by

the flowgraph in the figure below.

Using the case where the peak-energy constraint is same over all the subcarriers i.e.
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Figure 3.4 Flowgraph of Iterative Waterfilling Algorithm
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emaxj = emax, Baccarelli made use of the observations that when the power allocation

is optimized with respect to capacity maximization, the channels candidates to receive

the maximum energy level are those with the largest Channel to Signal Noise Ratios

(CSNRs), whereas the links that should be turned off possess the lowest CSNRs. At

the same time, channels whose energies do not cross the emaxj limit are allocated energy

according to a standard water-filling type algorithm.

Thus, the basic form of Iterative Waterfilling algorithm as given by Baccarelli [20]

starts with sorting of the CSNR from largest to smallest followed by the application of

the water-filling procedure to the set of N subchannels, so to allocate overall available

energy ebudget. After execution of the water-filling algorithm, the energy so obtained for

the first subchannel i.e. e1 is compared to emax. If e1 does not exceed emax, then the

overall procedure ends, and the resulting distribution for the input energies coincides

with that achievable via the standard water-filling procedure. On the contrary, when e1

is greater than emax, the energy of subcarrier 1 is clipped to emax , the available total

energy is reduced by emax and the water-filling procedure is performed again, this time

operating only on the remaining subchannels of index i ranging from 2 to N and attempts

to allocate to them a total energy equal to ebudget. The above procedure is repeated till no

subcarrier’s energy as obtained by the waterfilling procedure exceeds the permissible limit

of emax. The finally allocated energies over the subcarriers for the DSL channel alongwith

the peak-energy constraint is shown in the figure 3.5 [20]. The upper figure represent the

CNR for different subcarriers, while the lower figure shows the energy allocation profile

at respective subcarriers with (dark-line) and without (broken-line) taking ino account

the peak-power constraint.

3.3 Using Lagrange Multipliers for Convex Optimiza-

tion

A large number of optimization techniques/methodologies and tools is available in the

literature, where a particular technique is employed for finding the optimal solution to

a problem depending upon the characteristics of the objective function, constraints in-

volved and the nature (e.g. discrete/continuous) of the variables involved in the given

problem. Lagrange Multipliers based optimization is commonly employed for the class
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Figure 3.5 Channel Response Alongwith the Peak Power Constraint and the Allocated

Energies over a DSL Channel
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of constrained optimization problems and the optimality of the solution can be verified

Convex by making use of the Karush-Kuhn-Tucker (KKT) conditions, which will be

introduced below.

Most the objective functions to be optimized (Throughput, Error Probability etc.)

in the physical layer resource allocation problems of a communication system can be

expressed in the form of a convex function. Since the objective of this chapter is the

optimization/minimization of the error probability function, where we will demonstrate

later that the error probability function can be conveniently approximated in terms of a

convex function, the power optimization problem gets converted into a constrained convex

optimization problem, which can be conveniently solved by means of the Lagrangian

method. Hence, we will outline the basic characteristics and formulation of the Lagrange

optimization technique in this section and for the details we refer the reader to [28]

3.3.1 Lagrangian Problem Formulation

The method of Lagrange multipliers is used for finding the extrema of a function of several

variables subject to one or more constraints; it is the basic tool in nonlinear constrained

optimization. Simply put, the technique is able to determine where on a particular set of

points (such as a circle, sphere, or plane) a particular function is the smallest (or largest).

More formally, Lagrange multipliers compute the stationary points of the constrained

function. It reduces finding stationary points of a constrained function in n variables with

k constraints to finding stationary points of an unconstrained function in n+k variables.

The method introduces a new unknown scalar variable (called the Lagrange multiplier)

for each constraint, and defines a new function (called the Lagrangian) in terms of the

original function, the constraints, and the Lagrange multipliers.

Consider a two-dimensional example case as depicted by figure 3.6 [28]. Suppose

we have a function f(x, y) we wish to maximize or minimize subject to the constraint

g (x, y) = c, where c is a constant. We can visualize contours of f given by f (x, y) = dn

for various values of dn, and the contour of g given by g(x, y) = c.

Suppose we walk along the contour line with g = c. In general the contour lines of

f and g may be distinct, so traversing the contour line for g = c could intersect with or

cross the contour lines of f . This is equivalent to saying that while moving along the

contour line for g = c the value of f can vary. Only when the contour line for g = c

touches contour lines of f tangentially, we do not increase or decrease the value of f :
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Figure 3.6 Graphical representation of the optimization problem of objective function

f(x, y) under the constraint function of g(x, y) = c

that is, when the contour lines touch but do not cross.

This occurs exactly when the tangential component of the total derivative vanishes:

df‖ = 0, which is at the constrained stationary points of f (which include the constrained

local extrema, assuming f is differentiable). Computationally, this is when the gradient

of f is normal to the constraint(s): when ∇f = λ∇g for some scalar λ. Note that the

constant λ is required because, even though the directions of both gradient vectors are

equal, the magnitudes of the gradient vectors are most likely not equal.

Geometrically we translate the tangency condition to saying that the gradients of f

and g are parallel vectors at the maximum, since the gradients are always normal to the

contour lines. Thus we want points (x, y) where ∇x,yf = λ∇x,yg and further g(x, y) = c.

To incorporate both these conditions into one equation, we introduce an unknown scalar

λ, and solve

∇x,y,λF (x, y, λ) = 0 (3.1)

with

F (x, y, λ) = f (x, y) + λ (g (x, y) − c) (3.2)

and

∇x,y,λ =

(
∂

∂x
,

∂

∂y
,

∂

∂λ

)

(3.3)
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where the function F (x, y, λ) is termed as the Lagrangian function and is solved

according to equation 3.1 so as to find the optimal solution.

3.3.2 Duality and Karush-Kuhn-Tucker Conditions

Lagrangian function is mostly solved by means of its alternate representation in the form

of a dual function. Given a convex optimization problem in standard form

min f0(x) (3.4)

fi(x) ≤ 0, i ∈ {1, . . . ,m}

hi(x) = 0, i ∈ {1, . . . , p}

(3.5)

the Lagrangian function L for this problematic is defined as

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x) (3.6)

The vectors λ and ν are called the dual variables or Lagrange multiplier vectors

associated with the problem. The Lagrange dual function g(λ, ν) is then defined as the

minimum value of the Lagrangian over x:

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(

f0(x) +
m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

(3.7)

It is easy to show [28] that the dual function yields lower bounds on the optimal

value p∗ of the problem in equation 3.5: For any λ ≥ 0 and any ν we have

g(λ, ν) ≤ p∗ (3.8)

Thus we have a lower bound that depends on some parameters λ, ν. In order to find

the best lower bound that can be obtained from the Lagrange dual function, the original

optimization problem in 3.5 is transformed as follows into its dual representation

The novel optimization problem states:

maximize g(λ, ν) (3.9)

subjectto λ > 0
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This problem is called the Lagrange dual problem associated with the problem

in 3.5 . In this context the original problem is sometimes called the primal problem.

The optimal value of the Lagrange dual problem, which if denoted by d∗, is, by

definition, the best lower bound on p∗ that can be obtained from the Lagrange dual

function. In particular, this can be expressed by means of the inequality d∗ ≤ p∗, which

holds even if the original problem is not convex. This property is called weak duality.

The difference p∗−d∗ is termed as the optimal duality gap of the original problem, since it

gives the gap between the optimal value of the primal problem and the best (i.e., greatest)

lower bound on it that can be obtained from the Lagrange dual function. The optimal

duality gap is always nonnegative. If the optimal duality gap is zero, then we say that

strong duality holds i.e. d∗ = p∗. This means that the best bound that can be obtained

from the Lagrange dual function is tight.

Strong duality does not, in general, hold. But if the primal problem is convex,

strong duality is usually present and as we will show below that the presence of the strong

duality leads to the development of Karush-Kuhn-Tucker (KKT) conditions of optimality,

which helps solve the dual problem and eventually the concerned primal optimization

problem.Let x∗ and (λ∗,ν) be any primal and dual optimal points with zero duality gap.

Since x∗ minimizes L(x, λ∗, ν∗) over x, it follows that its gradient must vanish at x∗, i.e.,

∇f0(x
∗) +

m∑

i=1

λi∇fi(x
∗) +

p
∑

i=1

νi∇hi(x
∗) = 0 (3.10)

λi ≥ 0 (i = 1, . . . ,m)

fi(x
∗) ≤ 0, for all i = 1, . . . ,m

hi(x
∗) = 0, for all i = 1, . . . , p

λifi(x
∗) = 0 for all i = 1, . . . ,m. (3.11)

which are called the Karush-Kuhn-Tucker (KKT) conditions. To summarize, for

any optimization problem with differentiable objective and constraint functions for which

strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT

conditions [28]. Also when the primal problem is convex, the KKT conditions are also

sufficient for the points to be primal and dual optimal, which eventually allows us to

compute a primal optimal solution from a dual optimal solution, which becomes especially

interesting for the cases where the dual problem is easier to solve than the primal problem,



3.4 BER-Optimized Power Allocation 61

as will be demonstrated in the next section to solve our concerned optimization problem

of BER minimization.

3.4 BER-Optimized Power Allocation

3.4.1 BER minimization problem

Based upon the notations describing the various parameters of a multicarrier system in a

frequency-selective environment, as given in chapter 2, the BER minimizing optimization

problem under constraints of fixed constellation size and fixed total power, can be formally

expressed as below.

min perravg =
1

N
.
N∑

n=1

perrn =
1

N
.
N∑

n=1

fBER(en.hn) ∀ 0 ≥ perrn < 1; (3.12)

such that

Etotal =
∑N

n=1 en en ∈ ℜ+

bn = bcnst ∀ n

en ≤ emax ∀ n

where perrn ,en,hn and bn represent the probability of error, allocated energy, channel

gain and allocated number of bits on subcarrier n respectively and emax denotes the Peak-

energy constraint and is also represented by e. f(en.hn) is the function that defines the

error probability on subcarrier n and is dependent on en and hn. The problem is to find

how much energy/power (en/pn) must be allocated to each of the subcarriers such that

the resulting BER is minimized, the sum of the energies in the subcarriers is equal to the

total available energy with the constraint that modulation remains the same over all the

subcarriers.

The solution to the above problem gives the optimal distribution of the total power

amongst all of the subcarriers such that the resultant aggregate BER is minimized and

hence the objective function is the average BER of the system. The probability of er-

ror for M-ary QAM or M-ary PSK system may be represented exactly or approximately

by the Q-function [29] which is convex in nature. Also, a subchannel’s BER is a func-

tion only of the power allocated to it and independent of the characteristics of other
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channels. The total BER of the system can then be represented as a sum of separable

functions as used in the equation above. This, combined with convexity, classifies the

problem as a continuous separable convex resource allocation problem which allows the

use of Lagrange multipliers and the KKT conditions to characterize the optimal solution.

The constrained optimization problem given above can thus be converted into the un-

constrained optimization problem by means of Lagrange Multipliers, and readily solved

using the KKT optimality conditions, as exhibited below.

3.4.2 BER-Optimized Power Allocation with Peak-Power Con-

straint

As stated earlier, lagrange optimization is the most natural method to find the optimal

distribution of en which minimizes the convex objective BER function with the con-

straints as given in equation 3.12. Transforming the optimization problem in 3.12 into

the standard Lagrange optimization problem form

minimize perravg =
1

N

N∑

n=1

f (hn · en)

subject to

N∑

n=1

en − Etotal = 0

en − e ≤ 0 (3.13)

Introducing λ as the lagrange multiplier for the equality constraint and νn as the

multipliers for the inequality constraints, the lagrangian function may be expressed as:

L (en, λ, νn) = (3.14)

1

N

N∑

n=1

fBER (hn · en) + λ

(
N∑

n=1

en − Etotal

)

+ νn (en − e)

The above optimization problem involving both equality and inequality constraints

can be solved using the KKT conditions [28], whose solution are those of the above opti-

mization problem. Solving KKT conditions involves differentiating the objective function,

which is the BER function fBER (hn · en) in our case. As we mentioned that for M-ary

PSK or M-ary QAM, the exact BER function is generally expressed as a Q-function [29].
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It would be extremely difficult to find a closed form solution, if the Q-function for exact

BER is used in the Lagrangian function. Therefore it is more appropriate to use a simple

approximation of the BER rather than the exact BER expression. For M-ary QAM, the

exact BER function may be approximated using an exponential upper bound [26]:

fBER (hnen) ∼= aQ
(√

bhnen

)

≤ a

2
exp

(−b

2
hnen

)

(3.15)

where Q (x) = 1/
√

2π
∫∞

x
exp (−t2/2) dt represents the Q-function, while variables

a = 2(
√

M − 1)/
√

M log2

√
M , and b = 3/(M − 1) depend on the modulation size(M).

Chang [25] used these BER bounds to develop a BER optimized energy allocation strat-

egy. A good analysis of the characteristics of such energy allocation can thus be found

in [25]. But we want to use these BER bounds to develop a simplistic BER optimized

energy allocation algorithm which would respect the additional peak-power constraint as

well.

The KKT conditions [28] for the Lagrangian given in eq. 3.15 can be presented as

e∗n − e ≤ 0 ; (3.16)
N∑

n=1

e∗n − Etotal = 0 ;

ν∗
n ≥ 0 ;

ν∗
n (e∗n − e) = 0 ; (3.17)

d

de∗n

[

1

N

N∑

n=1

fBER (hne
∗
n) + λ∗

(
N∑

n=1

e∗n − Etotal

)

+
N∑

n=1

ν∗
n (e∗n − e)

]

= 0 (3.18)

Solving equation 3.18 gives

e∗n = − 2b

hn
ln

[
4N(λ∗ + ν∗

n)

abαn

]

(3.19)

If strong duality holds and e∗n is a primal optimal solution and (λn, νn) any dual

optimal point. Then it can be shown that the following condition must hold [28]:

λifi(x
∗) = 0, i = 1, ...,m (3.20)
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This condition is known as complementary slackness; it holds for any primal and

dual optimal points, when strong duality holds. The complementary slackness condition

for the dual function in equation 3.18 provides us with two cases;

either ν∗
n = 0 (3.21)

or e∗n = e if ν∗
n > 0

Using eq. 3.22 in eq. 3.20 provides us with the equation for optimal power allocation

as given in equation 3.22

e∗n =
λ∗

0

hn
−
(

2

b

)(
1

hn

)

ln

(
1

hn

)

(3.22)

with the value of λ∗
0 as given in equation 3.24. To obtain the conditions for subcarriers

that are not respecting the P constraint, we equate eq. 3.22 with eq. 3.22 thus giving

hne +

(
2

b

)

ln

(
1

hn

)

≤ λ∗
0 (3.23)

After solving the Lagrangian in eq. 3.15 by means of the relevant KKT conditions

and the complementary slackness conditions, the closed-form solution for optimal power

allocation for BER minimization and respecting the peak-energy constraint is represented

by:

en =







0 hn < exp
(
−bλ0

2

)

e hn ≥ exp
(
−bλ0

2

)
, hne +

(
2
b

)
ln
(

1
hn

)

≤ λ0

λ0

hn
−
(

2
b

) (
1
hn

)

ln
(

1
hn

)

hn ≥ exp
(
−bλ0

2

)
, hne +

(
2
b

)
ln
(

1
hn

)

> λ0

where λ0 = − (2/b) ln (4Nλ/ab), and which can be calculated as

λ0 =
Etotal +

(
2
b

)∑n∈N
(

1
hn

)

ln
(

1
hn

)

∑n∈N
(

1
hn

) (3.24)

3.4.3 Computationally Efficient Algorithm for Peak-Energy Con-

strained Energy Allocation

As mentioned earlier, many practical systems require a peak-power constraint, where the

maximum power/energy transmitted over a frequency/subcarrier is not allowed to exceed
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Figure 3.7 Peak Power Constraint for a given Channel Response

a pre-defined limit. This constraint, if uniform over all the subcarriers, can be represented

by means of the figure 3.7

The optimal energy allocation, optimized with respect to a particular goal (through-

put, BER etc.), is thus often required to be clipped at certain subcarriers in order to re-

spect this constraint. Iterative Waterfilling is proposed [20] in the literature as a method

to optimally allocate energy to all the subcarriers in the presence of a peak-energy con-

straint, as explained earlier in this chapter. The basic structure of the iterative waterfilling

algorithm is given in form of the following pseudocode

Algorithm 1 PseudoCode of Iterative-Waterfilling (IW) Algorithm

1: procedure IW(hn,e)

2: sort hn in descending order

3: set n=1

4: while en > e do

5: apply WATER-FILLING over subchannels n,...,N

6: set en = e

7: reduce the total available power by e ⇒ Etotal = Etotal − e

8: update n=n+1

9: end while

10: end procedure
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It is important, however, to mention here that the above given IW algorithm struc-

ture, as proposed by Baccarelli et al. [20], is for the capacity maximization problem and

hence it is assumed that if subcarriers sorted from highest to lowest channel gain, the

first subcarrier will be allocated the maximum energy. But, in order for this algorithm to

be implemented for our above mentioned BER minimization problem, it has to be a little

modified, where in each iteration the subcarrier with the maximum allocated energy has

to be searched for, before clipping its power to e level.

As can be observed from the pseudo-code, the iterative routine of Water-filling is

re-run for a number of times in order to arrive at an allocation where no subcarrier is

violating the peak-power constraint. This iterative application of the Waterfilling routine,

which is termed as the Iterated Waterfilling routine, renders high complexity and thus

necessitates its simplification, as proposed in the following.

A simplification for the above mentioned Iterative Waterfilling procedure in what is

termed as the Simplified Iterative Waterfilling (SIW) algorithm is presented below. It is

known that the optimal solution uses all the available power budget, that is, the total

power constraint (Etotal) in 3.13 is met with equality.

Remark It is observed that as more power budget is available, the constant λ0 in

3.24 becomes higher and as a consequence not only allocated energies to the previously al-

located subchannels are greater than before but also more subchannels may be turned on.

At the same time a proposition was made in [74] as follows:

Proposition

Given the sorted water-filling energy allocation vector eN , if one removes subchannels

1, ..., L and reduces Etotal by
∑L

n=1 en, then the new optimal water-filling solution is the

(N-L)- point energy vector eN−L = eN − e1, ..., eL = [eL+1, ..., eN ]

The above proposition implies that if we remove any number of subcarriers from the

total set of N subcarriers, form a new E
′

total by removing from the original Etotal the sum

of the allocated energies of the removed subcarriers, and re-apply waterfilling based upon

the new set of subcarriers and the new total available energy E
′

total, then the amount of

energy allocated to these subcarriers will be same as before.

At the same time we observe that at each iteration of Iterative Waterfilling algorithm,
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the energy of the subcarrier with maximum energy,if exceeding the maximum permissible

limit e, is clipped to e and the amount of energy clipped is added to the sum of the energies

of the rest of the subcarriers, which is to be re-allocated again in the next iteration to all

but the clipped (maximum energy) subcarrier of the current iteration. The implies that

the total amount of energy that is to be allocated to N−1 subcarriers in the next iteration

is more than the total energy allocated to them in the current iteration, which according

to the above given remark and proposition infers that the amount of energy allocated to

any subcarrier in the next iteration will be more than its allocated energy in the previous

iteration. From these arguments, it can be inferred, that a subcarrier exceeding the e

limit will exceed this limit in any future iteration of the Iterative Waterfilling algorithm.

Based on this, the iterative waterfilling algorithm can be simplified by clipping all the

subcarriers exceeding the e limit to e and then removing all of these clipped subcarriers

from the allocation process of the next iteration, as shown by means of a pseudo-algorithm

below:

Algorithm 2 PseudoCode of Simplified Iterative-Waterfilling (SIW) Algorithm

1: procedure SIW({hN},e)
2: sort {hN} in descending order

3: apply WATER-FILLING over subchannels vector {h}
4: find nmax such that ∀n ∈{h}, enmax

≥ en

5: while enmax
> e do

6: set Nmax = 0 and {hmax} = {}
7: while enmax

> e do

8: update Nmax = Nmax + 1 and {hmax} = {hmax} ∪ {hnmax
}

9: update {h} = {h} − {hnmax
}

10: find nmax such that ∀ n ∈ {h} ⇒ enmax
≥ en

11: end while

12: set en = e for n ∈ {hmax}
13: reduce the total available power Etotal = Etotal − (|{hmax}| .e)
14: apply WATER-FILLING over subchannels vector {h}
15: find nmax such that ∀n ∈{h}, enmax

≥ en

16: end while

17: end procedure
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This collective clipping of all the subcarriers crossing the e in an iteration of Iterative

Waterfilling procedure largely reduces the complexity of the original algorithm. The

improvement in complexity depends on the number of iterations of the original IW routine,

the greater they are, the larger the complexity improvement. We will demonstrate that

further substantial complexity reduction of the IW routine is possible by means of our

proposed Iterative Surplus Re-distribution (ISR) method.

The ISR algorithm is based upon the idea, that once optimal allocation has been

performed over all the sub-carriers and all the subcarriers crossing the e limit have been

crossed, instead of re-allocating all of the new ETotal(as done in SIW approach), only the

surplus energy (Esurp = Sum of the amount of energy greater than e of all the clipped

subcarriers) needs to be re-allocated or re-distributed over the rest of the sub-carriers in

such a way that none of them exceeds the e limit.Thus Esurp is repeatedly distributed

such that with each iteration, its amount decreases till it is completely re-allocated with

no violation of e. This avoid the re-run of the WATERFILL routine in each iteration,

thereby further reducing the involved complexity. At each iteration, the goal is to find

how much change in the initial λ0 (λini0 ), which is equal to (ǫ = λnew0 − λini0 ) will be

needed to distribute the Esurp amongst the suitable subcarriers. This is based upon the

assumption that the value of λini0 is going to increase with each iteration of Iterative

Waterfilling, as established earlier based upon the above given remark and proposal.

An increase ǫ in the λini0 value results in a total amount of distributed power given

by

Enew
total =

n∈{h}
∑

en(λ
new
0 ) (3.25)

=

n∈{hold}∑

en(λ
new
0 ) +

n∈{hnew}
∑

en(λ
new
0 )

=

n∈{hold}∑

en(λ
old
0 + ǫ) +

n∈{hnew}
∑

en(λ
old
0 + ǫ)

=

n∈{hold}∑

en(λ
old
0 ) +

n∈{hold}∑ ǫ

hn
+

n∈{hnew}
∑

en(λ
old
0 ) +

n∈{hnew}
∑ ǫ

hn

=

n∈{hold}∑

en(λ
old
0 )

︸ ︷︷ ︸

Eold
total

+

n∈{hold}∑ ǫ

hn
+

n∈{hnew}
∑

en(λ
old
0 ) +

n∈{hnew}
∑ ǫ

hn
︸ ︷︷ ︸

Ere−distributed

where {hnew} and {hold} represent the set of new subcarriers that were not allocated

previously and the set of subcarriers that were allocated energy in the previous iteration
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and whose energy levels did not exceed e in the previous iteration. The new subcarriers

gets included in the allocation process because of an increase in the λ0 value, as more

the value of λ0, more will be the channels with positive power ek and hence used in the

allocation process.

The appropriate value of increase in λ0 is calculated by searching for the increase in

its value which is good enough to re-distribute the additional surplus energy. This can be

done by tracing the number of subcarriers that are additionally added in the allocation

process, as a result of the increase in λ0. Thus, a new subcarrier from amongst the un-

allocated subcarriers is selected and added to the allocation procedure one by one, and

the amount of additional energy re-distributed is calculated to see whether it suffices to

allocate the additional surplus energy. If yes, the procedure is moved on, if not, then

an additional previously un-allocated subcarrier is included in the allocation procedure,

so as to increase the value of λ0, which eventually increases the amount of additional

energy allocated, which is represented in equation 3.26. Once the total set of subcarriers

required to allocate the additional amount of surplus energy is found, the value of ǫ which

exactly re-distributes the surplus energy is calculated and based upon that the energy

is re-distributed to the concerned subcarriers. Finally, it is checked whether subcarrier

still violates the e limit; if yes, then the new Surplus Energy is calculated and the above

procedure is repeated. This is done, till we arrive at an allocation where no subcarrier is

violating the e constraint. The ISR algorithm is presented in the form of its pseudocode

and flowchart below:
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Algorithm 3 PseudoCode of Iterative Surplus Re-distribution (ISR) Algorithm

1: procedure ISR({h},e)
2: sort {h} in descending order

3: apply WATER-FILLING over subchannels vector {h}
4: find {hmax} such that ∀n ∈{hmax}, en ≥ e

5: set en = e for n ∈ {hmax}
6: Calc. Esurp =

∑n∈{hmax} (en − e)

7: while Esurp > 0 do

8: while Ere−distributed > Esurp do

9: Include a new prev. un-alloc. subcarrier {h} = {h} ∪ {hnew}
10: Calc. Ere−distributed based upon eq. 3.26

11: end while

12: Calc. λnew for exact Esurp re-distribution

13: Allocate Energy ∀n ∈{h} ⇒ en = e(λnew) as per eq. 3.24

14: find {hmax} such that ∀n ∈{hmax}, en ≥ e

15: set en = e for n ∈ {hmax}
16: Calc. Esurp =

∑n∈{hmax} en − e

17: update {h} = {h} − {hmax}
18: end while

19: end procedure
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Figure 3.8 Energy distribution profile for different allocation strategies for relatively bad

channel conditions

As mentioned earlier, the BER-Optimal energy allocation scheme need not resemble

the classical Waterfilling distribution, optimized for the throughput. In order to exhibit

this difference, energy allocation profiles for different energy distribution methods over

different channel scenarios is presented. Channel scenarios consisting of relatively bad,

relatively moderate and relatively good channel conditions [25] are taken from in-between

the range of [-23 dB to 4 dB], [-9 dB to 10 dB] and [4 dB to 23 dB], respectively as shown

in chapter 2.

In 3.8, where relatively bad channel conditions are cosidered, the response of BER-

Optimal energy distribution is approximately the same as that of the Waterfilling dis-

tribution, as more energy is allocated to the subcarriers with higher SNR, though this

response is exactly opposite to that of the Equal-SNR based energy allocation. However,

this behaviour is completely changed for good channel conditions, as shown in figure 3.10,

where the allocated-energy profile of BER-Optimal scheme becomes approximately same

as that of Equal-SNR scheme and opposite to that of Waterfilling, as proven by Chang et

al. [25] that the BER-Optimal power allocation scheme becomes the Equal-SNR scheme

asymptotically, when the channel conditions are made good.
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Figure 3.9 Energy distribution profile for different allocation strategies for relatively

moderate channel conditions

Figure 3.10 Energy distribution profile for different allocation strategies for relatively

good channel conditions
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Figure 3.11 Constrained BER-Optimal Energy distribution for different Peak-Energy

Constraints.

Any optimized energy-allocation, is not bound to respect a given peak-energy con-

straint. Based upon our earlier developments of an Iterative Surplus Re-distribution (ISR)

algorithm, the peak-energy compliant energy distribution, for different peak-energy con-

straints is shown in figure 3.11. It can be easily observed from the figure that as the

peak-energy constraint is lowered and hence more energy is available for re-distribution,

those subcarriers that were previously turned off, are turned on and involved in the allo-

cation procedure, so as to make the total distributed energy equal to the total amount of

Energy budget present.

Although, the same peak-compliant optimal energy distribution can also be obtained

by means of the classical Iterative Waterfilling (IWF) algorithm, the ISR algorithm helps

achieve that with less computational complexity. A comparison in the complexity of the

two algorithms, in terms of the simulation time taken, for different parameters and over

the same host processor is given in figure 3.12.

As is obvious from the figure 3.12, our algorithm takes less time to converge towards

the optimal than the IWF routine. This is mainly because of the fact that it avoids

calculation of the complete Waterfilling procedure in each iteration. The simulation



74
Chapter 3 : Optimal Power Allocation Algorithm for Peak-Power Constrained

Multicarrier Systems

Figure 3.12 Constrained BER-Optimal Energy distribution for different Peak-Energy

Constraints.

times of different algorithms, for each peak-energy value, were obtained by averaging

over a sufficiently large number of random channel values.

3.5 Conclusion

As established earlier, adaptive resource allocation techniques have emerged as a mean to

enhance the system performance in a time and frequency varying channel. In the previous

chapter, we tackled the problem of optimizing the allocation of discrete modulation-type

( constellation-size) (=bit-loading) over different subcarriers for a given channel response,

so as to minimize the total energy consumed for a given throughput and QoS. Just like

bit-loading, power/energy allocation techniques, with or without rate-adaptation (=bit-

loading), have also been proposed in the literature as means of performance enhancement.

Unlike bit-loading, the optimization problem of energy variable does not involve the

‘discrete’ quantity constraint and hence powerful optimization techniques, like that of

Lagrange optimization can be applied for a given set of goals and constraints.

In this respect, we have tackled the problem of optimal energy distribution, over a
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multicarrier system for a selective channel, such that the aggregate BER is minimized with

constraints on total available energy, the peak-energy per subcarrier and the constellation

size. The novelty in our contribution lies in extending the theoretical developments by

including the peak-energy constraint as well and in the form of proposing an algorithm

for peak-energy constrained energy-allocation, that claims to involve significantly less

complexity than that of earlier contributions.

While Iterative Waterfilling has been proposed in the literature as a method for

peak-energy constrained energy allocation, it was observed that it requires the execution

of the waterfilling routine in each of its iteration. We propose to avoid the execution

of the waterfilling routine in each iteration, in what we name as an Iterative Surplus

Re-distribution (ISR) routine, which proposes to allocate only the Surplus Energy that

is left in an iteration instead of the total energy left, where the Surplus Energy is defined

as the sum of the amount of energies that exceed the peak-energy limit. This results in

reducing the overall algorithm complexity, because of the avoidance of the Waterfilling

routine in each iteration.

The algorithm complexity was compared with the Iterative Waterfilling solution.

Our proposed algorithm was found distinctively less complex than the other algorithms,

by means of the theoretical complexity analysis of the two algorithms. To verify the

theoretical complexity analysis of the three algorithms, we compared the simulation-time

of the two algorithms for different parameters and the theoretical complexity analysis was

verfied.

Since, the bandwidth scarcity is pushing towards more and more constraints on

power-spectral masks, dictating the amount of maximum energy/power allocated at a

particular frequency, the application of the ISR algorithm becomes more and more inter-

esting. Although, we assumed the same peak-energy constraint over all the sub-carriers,

but it can be easily extended to the case where the peak-energy varies on subcarrier-per-

subcarrier basis. In the continuation of the work, the constellation type may be allowed

to be varied at the same time, and the best combination of energy and bit allocation

can be explored. Also, to quantify the complexity advantage, the two algorithms can be

evaluated on a real processor in terms of exact number of execution cycles, which might

enable us to quantify the complexity gain of the algorithm with respect to different hard

time constraints put forward by different channel scenarios.
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Chapter 4

Simplistic Algorithm for Irregular

LDPC Codes Optimization Based on

Wave Quantification

4.1 Background and Problem Definition

As discussed in the introductory chapter, in the adaptation mode, parameters such as

transmission power [6], symbol rate [3], constellation size [5,30], coding rate/scheme [31]

or any combination of them [32, 33] are changed in response to time and/or frequency-

varying channel conditions. Since the previous two chapters dealt with simplifying the

algorithms for adaptive modulation and adaptive power allocation respectively, in this

chapter we will explore the adaptation possibilities from a channel coding perspective,

where the amount of redundancy can be varied with respect to the channel condition.

Claude E. Shannon [66] was the first to characterize the optimal performance the-

oretically reachable for coded transmission over a noisy channel. A basic scheme for

communicating over noisy channels is by adding redundancy (in other words channel

coding) to the original message to be transmitted. The message to be sent is encoded

with a channel code before it is transmitted on the channel. At the receiving end, the

output from the channel is decoded back to a message, hopefully the same as the original

one. A fundamental property of such systems is Shannons channel coding theorem, which

states that reliable communication can be achieved as long as the information rate does

not exceed the capacity of the channel, provided that the encoder and decoder are allowed
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to operate on long enough sequences of data (extensive treatments can be found in many

textbooks, e.g. [29]).

In traditional channel coding schemes [29], fixed codes are used which are not opti-

mized with respect to the nature of the channel. To keep the performance at a desirable

level, they are designed for the average or worst case situation which results in an ineffi-

cient usage of system resources. To more efficiently employ the channel coding, techniques

have been proposed in the past to optimize the code structure with respect to the underly-

ing channel. This may involve varying the code-rate in a time-selective channel [31,88] or

optimizing the structure of the code-word with respect to the frequency selective nature

of the underlying channel [89].

Since the introduction of Shannon’s Coding theorem, the construction of capacity

approaching codes has been the main challenge of coding research. A huge library of

error correcting codes have been designed, however, until the arrival of turbo codes in

1993 [35], practical coding schemes for most channels fell short of the Shannon limit.

Turbo codes marked the beginning of near Shannon limit performance for the AWGN

channel, largely improving on the previous schemes. Immediately afterward, MacKay

and Neal [36] rediscovered Gallager’s [47] long-neglected Low-Density Parity-Check codes

(LDPC) codes as they are explained in the next section.

4.1.1 LDPC History, Representation and Types

Low-density parity-check (LDPC) codes were invented by R. G. Gallager [34] in 1962. He

discovered an iterative decoding algorithm which he applied to a new class of codes. He

named these codes low-density parity-check (LDPC) codes since the parity-check matrices

had to be sparse to perform well. Yet, LDPC codes have been ignored for a long time

due mainly to the requirement of high complexity computation, if very long codes are

considered. In 1993, C. Berrou et. al. invented the turbo codes [35] and their associated

iterative decoding algorithm. The remarkable performance observed with the turbo codes

raised many questions and much interest toward iterative techniques. In 1995, D. J. C.

MacKay and R. M. Neal [36] rediscovered the LDPC codes, and set up a link between

their iterative algorithm to the Pearl’s belief algorithm [37], from the artificial intelligence

community. At the same time, M. Sipser and D. A. Spielman [48] used the first decoding

algorithm of R. G. Gallager (algorithm A) to decode expander codes.

LDPC codes are a type of linear block codes. Linear codes are defined in terms
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Figure 4.1 Parity Check Matrix of a (3,6) Regular LDPC Code and the corresponding

Bi-Partite Graph

of generator and parity-check matrices. Generator matrix G maps information s to

transmitted blocks t called codewords by t = s.G. For a generator matrix G, there is a

parity-check matrix H which is related as G.HT = 0. All codewords must satisfy s.HT

= 0 in terms of the parity-check matrix H. LDPC codes can be represented in a simple

bipartite graph representation [90], which consists of two types of nodes: variable nodes

and check nodes. Each variable(check) node corresponds to the column (row) of the

parity-check matrix H. The edges in the graph indicate the variable nodes participating

in the corresponding check node. Thus, a one located at position (i, j) of H corresponds

to an edge between variable node i and the check node j. As an example of a Tanner

graph [91], a regular LDPC code of length n = 10 and k = 5 is shown in the following

figure. The equivalent bipartite graph representing this code is also shown in the same

figure. In this code, every variable node has degree three and each check node has degree

six. Thus, this code is called a (3,6) regular LDPC code.

If the parity-check matrix H has the same weight per row and the same weight per

column, the resulting LDPC codes is called regular. We use a two tuple (dv, dc) to

represent a regular LDPC code whose column weight is dv and row weight is dc. When

the weight in every column is not the same in the parity-check matrix, the code is known

as an irregular LDPC code. Irregular LDPC codes have a better asymptotic performance

and can practically reach channel capacity as shown in [38]. We will discuss the issues

related to the construction of finite-length irregular codes later which is the main topic of

this chapter but first we give a brief introduction to LDPC codes construction/encoding

and decoding phenomena.
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4.1.2 LDPC Codes Construction and Encoding

Usage of LDPC codes to transmit information bits in a system requires two distinct steps:

1. LDPC Code Design or Code Construction

2. Encoding methodology

The design or construction process refers to the process for the construction of a par-

ticular LDPC parity check matrix H. The structure refers to the description of the Tanner

graph: the degrees of the various nodes, restrictions on their interconnections, whether

variable nodes are punctured etc. and as how these restrictions (degree distribution, rate

etc.) can meet the practical constraints (finite dimension of the code-block, girths 1).

Conventionally this design process is again divided into two steps of 1. Optimization of

Degree Distribution and 2. Placement of Edges between different variable-nodes for a

given Degree Distribution. Generally these steps are performed seperately independent

of each other where the first step of Degree Distribution Optimization is classically per-

formed for asymptotic lengths of block-codes while Combinatorial techniques have been

employed for the latter step of Edge Placement to define the parity check matrix of finite

length codes. Various algorithms/methodologies have been proposed for both of the steps

which will be referred to in the next section of state-of-the-art.

The encoding of LDPC codes like that of other Linear Block Codes takes place

by means of a Generator Matrix G, which is related to the Parity-Check Matrix H as

G.HT = 0 and which is used for the generation of the code-blocks to be transmitted

t from the message bits s by t = s.G. It is common to consider G in systematic form

with G ≡ [Ik|P ] so that the first k transmitted symbols are the source symbols. The

notation [A|B] indicates the concatenation of matrix A with matrix B; Ik represents

the k × k identity matrix while the remaining m=n-k symbols are parity-checks. The

corresponding parity-check matrix will have the form [−P |Im]. Each row of the parity-

check matrix describes a linear constraint satisfied by all codewords i.e. G.HT = 0 and

hence the parity-check matrix can be used to detect errors in the received vector r=t+n

where n represents the noise added by the channel. Therefore

Hr = H(t + n) = HGT s + Hn = Hn := z (4.1)

1In a bi-partite graph, a closed path with edges starting from and ending at the very same bit-node

is called a ‘cycle’ of ‘e’ edges. ‘Girth’ refers to the length of the shortest cycle in a graph.
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Figure 4.2 Systematic Linear Block Codes Encoding and Decoding Process

where z is the syndrome vector. If the syndrome vector is null, we assume there have

been no errors. Otherwise, the decoding problem is to find the most likely noise vector

ni that explains the observed syndrome given the assumed properties of the channel. For

conventional linear-block codes this decoding is done by means of a given well-known esti-

mator like that of Maximum-Likelihood (ML), however the decoding of LDPC block-codes

is conventionally one by means of an iterative-decoding algorithms whose performance is

a close approximation of the ML decoding [92] and which will be explained in the next

section. Pictorically the above mentioned operation is given by figure 4.2

Thus, given a Tanner graph, the problem of designing an encoder generally boils

down to selecting a Generator Matrix G that can efficiently encode the message bits.

The encoding algorithm is generally less complex than the decoding algorithm, however,

LDPC codes have a weak point at their encoding process because the sparse parity-check

matrix does not have necessarily a sparse generator matrix. Encoding process using a

dense generator matrix G yields to an N2 computational complexity that is quadratic with

respect to the block length. Thus, this method is not suited for encoding LDPC codes

with long block lengths. Another encoding scheme which makes use of a lower triangular

shape Parity-Check matrix [36] instead of a Generator matrix is very commonly employed

because of reduced complexity as instead of computing the product t=s·G, the equation

H∆sT = 0 is solved. Similarly other methods such as those of iterative encoding [93],

cyclic parity-check matrices [94] and Sparse Generator matrices [95] have been proposed

in the literature for reducing LDPC encoding complexity.

4.1.3 LDPC Codes Decoding

Linear block codes conventionally employ syndrome-based decoding methods as explained

above, that make use of techniques like MAP ( Maximum a Posteriori) for finding the
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Figure 4.3 Message Passing Phenomenon between Variable and Check Nodes

best code-word for a given received vector of bits r. LDPC on the other hand employ

a class of iterative decoding techniques known as the ’Message-Passing’ algorithms. The

reason for their name is that at each round of the algorithms messages are passed from

variable nodes to check nodes, and from check nodes back to variable nodes.

The messages from variable nodes to check nodes are computed based on the observed

value of the variable node and all but one of the messages passed from the neighboring

check nodes to that variable node. The one neighboring message not used for computing

the message to be sent from the variable node v to a check node c, must not take into

account the message sent in the previous round from the very same c to v. The same is

true for messages passed from check nodes to message nodes. This phenomenon can be

pictorically respresened as shown in figure

4.1.3.1 Belief Propagation

One important subclass of message passing algorithms is the belief propagation algorithm.

This algorithm is present in Gallager’s work [47], and it is also used in the Artificial

Intelligence community [90]. The messages passed along the edges in this algorithm are

probabilities, or beliefs. More precisely, the message passed from a message node v to

a check node c is the probability that v has a certain value given the observed value of

that message node v and all the values communicated to v in the prior round from check

nodes incident to v other than c. On the other hand, the message passed from c to v

is the probability that v has a certain value given all the messages passed to c in the

previous round from message nodes other than v.

It is sometimes advantageous (computationally) to work with likelihoods, or some-

times even log-likelihoods instead of probabilities. For a binary random variable x let

L(x) = Pr[x=0]/Pr[x=1] be the likelihood of x. Given another random variable y, the
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conditional likelihood of x denoted L(x|y) is defined as Pr[x = 0|y]/Pr[x = 1|y]. Simi-

larly, the log-likelihood of x is ln(L(x)), and the conditional log-likelihood of x given y

is ln((L(x|y)). A commonly implemented form of message-passing algorithm is known as

the Sum-Product Algorithm because the computation of messages at nodes which are to

be exchanged between check and variable nodes, is in the form of a Summation of many

Product terms. Generally a decoding algorithm consists of the following four steps:

1. Initialization : For all variable nodes i, initializing qij ( messages to be sent to the

check-nodes) based upon the channel response at each variable node.

2. Check to Variable Node Message Passing : Updating rji messages at all the

check nodes to be transmitted to the corresponding variable nodes in the form of

ln(L(rji)). ln(L(rji)=log(rji(0)/rji(1)) where rji(0) (rji(1)) is the probability of the

check-node j being satisfied such that the variable node i is 0 (1).

3. Variable to Check Node Message Passing : Updating qij messages at all the

check nodes to be transmitted to the corresponding variable nodes in the form of

ln(L(qij)=log(qij(0)/qij(1)) where qij(0) (qij(1)) is the probability of the variable-

node i having the value of 0 (1) based upon the information of all the associated

check-nodes except check-node j.

4. Decision : Update L(Qi) where Qi is the likelihood of the variable-node i based

upon the incoming information from channel and that from all the associated check-

nodes.

At the end of each iteration it is checked whether the resultant codeword is satisfying

H·vT=0 where v indicates the values of variable-nodes after each iteration. The decision

is given by v = vi such that vi = 1 if L(Qi)<0; otherwise, vi = 0. If v is a valid codeword

satisfying H·vT=0, the algorithm halts; otherwise, the routines from step 2 to step 4 are

repeated until some maximal number of iterations is reached without a valid decoding.

Another important note about belief propagation is that the algorithm itself is en-

tirely independent of the channel used, though the messages passed during the algorithm

are completely dependent on the channel. With regards to the relationship of belief prop-

agation and maximum likelihood decoding, the answer is that belief propagation is in

general less powerful than maximum likelihood decoding and hence converges iteratively

to a sub-optimal solution that may not be the maximum likelihood solution.
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There is a second distinct class of decoding algorithms that is often of interest for

very-high speed applications, such as optical networking. This class of algorithms is

known as hard-decoding algorithms; as the messages exchanged between the nodes in each

iteration consist of the hard values of 0 and 1. They generally have even lower complexity

than belief-propagation algorithms, albeit at the cost of somewhat worse performance.

A popular class of such decoders known as the Majority-Based Hard Decoders will be

discussed in detail later in this chapter.

4.1.4 Irregular LDPC Codes

4.1.4.1 Irregularity

In the Gallagers original LDPC code design, there is a fixed number of ones in both the

rows (k) and the columns (j) of the parity check matrix: it means that each bit is implied

in j parity check constraints and that each parity check constraint is the exclusive-OR

(XOR) of k bits. This class of codes is referred to as regular LDPC codes. On the contrary,

irregular LDPC codes do not have a constant number of non-zero entries (representing

edges in the bi-partite graph) in the rows or in the columns of H. They are specified by

the distribution degree of the bit λ(x) and of the parity check constraints ρ(x), using the

notations of (Luby et al. 1997) as specified below

λ(x) =
dv∑

i=2

λix
i−1 ρ(x) =

dc∑

i=2

ρix
i−1 (4.2)

where λi (resp. ρi) denotes the proportion of non-zero entries of H which belongs to

the columns (resp. rows) of H of weight i. If degree is the number of edges connected to a

node then λi is the fraction of the edges which are connected to the degree i data nodes

and ρi is the fraction of the edges which are connected to the degree k check nodes with

dv and dc representing the maximum degree for data and check nodes respectively.

If the irregularity distribution of an Irregular LDPC Code is properly chosen, it was

observed that Irregular codes can show superior performance to their regular couterparts.

For large block lengths, they have shown to achieve the aysmptotic performance closest to

capacity than other known codes (at times even better than the best know turbo-codes)

as depicted in the figure 4.4 [90]
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Figure 4.4 Improved performance of Irregular Codes

4.1.4.2 Wave-Effect

In his seminal paper on Irregular LDPC [38], Luby gave the intuitive analysis of the

better performance of Irregular LDPC codes, of what he termed as the Wave Effect .

He argued that from the point of view of a message node, it is best to have high degree,

since the more information it gets from its check nodes the more accurately it can judge

what its correct value should be. In contrast, from the point of view of a check node, it is

best to have low degree, since the lower the degree of a check node, the more valuable the

information it can transmit back to its neighbors. He inferred that there is a reason to

believe that a wide spread of degrees, at least for message nodes, could be useful. Message

nodes with high degree tend to correct their value quickly. These nodes then provide good

information to the check nodes, which subsequently provide better information to lower

degree message nodes. Irregular graph constructions thus have the potential to lead to

a wave effect, where high degree message nodes tend to get corrected first, and then

message nodes with slightly smaller degree, and so on down the line. This wave effect

is represented in figure 4.5 [96], where the A Posterior Probability variable nodes with

higher degree reaches the maximum value 1 in much less number of iterations than the

nodes with lesser degree.

It has been shown that irregular LDPC codes are especially interesting because one

can optimize the parameters that characterize their irregularity in order to find the codes

that are the closest to the capacity for various types of channels. The flexible structure of

the Irregular LDPC codes, which can be represented by means of a Degree distribution

can be used to curtail Unequal Error Protection (UEP) as per channel’s requirements
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Figure 4.5 Wave Effect of Irregular Codes. (a) : Degree distribution for different Variable

Nodes. A Posteriori Probability after (b) 1 iteration. (c) 5 iterations (d) 10 iterations (e)

15 iterations

e.g. Frequency Selective channel where the protection requirements of different variable

nodes is different based on the different corresponding channel gains.

4.1.4.3 Design of Irregular LDPC Codes

As stated earlier design process of Irregular LDPC codes is divided into two steps of

1. Optimization of Degree Distribution and 2. Placement of Edges between different

variable-nodes for a given Degree Distribution. Usually, either the channel threshold or

the code rate are optimized so as to find the best degree distributions. The threshold

of the channel is the value of the channel parameter above which the probability tends

towards zero if the iterations are infinite (and the code length also). Optimization seeks

the irregularity profile which minimizes the threshold or maximizes the rate. Generally

the irregularity is introduced only in the degrees of variable nodes with constant check-

node degrees. Some common methods for the irregularity profile optimization like that

of Density Evolution will be discussed in the next section along with the pros and the

cons attached with such methods and some open problems that we have tried to address

in this chapter.
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4.2 State of the Art on Irregular LDPC Codes Op-

timization and Construction

In this section important works related to both the optimization methodologies for

irregularity profile optimization as well as the techniques for construction of good finite-

length codes for a given degree distribution will be given, as they both combine to define

the method of developing irregular LDPC codes. Also, some recent developments related

to hard-decoding will be cited because one of our major contributions in this chapter

relates to the complexity reduction of the hard-decoding error-probability analysis which

was later used for the ’Wave Quantization’ methodology, as they will be discussed later

in this chapter.

4.2.1 Works Related to Irregularity Profile Optimization

The Irregularity profile of Irregular LDPC codes has conventionally been optimized based

upon the asymptotic assumption i.e. considering an infinite length of the code-word and

infinite decoding iterations. This results in giving a degree-profile to which corresponds

a family of codes. Generally performance bounds are often derived with respect to the

parameter set pertaining to a family of codes based upon the assumption that no cycles

exist in a particular code-word, which might not be true for finite length code-words as

will be discussed in the next section.

Two algorithms have generally been employed to design a class of irregular LDPC

codes under some channel constraints: 1. The Density Evolution algorithm [39] and

the Extrinsic Information Transfer (EXIT) charts [40].

Richardson et al. [39] designed capacity approaching irregular codes with the Den-

sity Evolution (DE) algorithm. This algorithm tracks the probability density function

(pdf) of the messages through the graph nodes, under the assumption that the cycle free

hypothesis is verified. It is a kind of belief propagation algorithm with pdf messages in-

stead of log likelihood ratios messages. Usually the Irregularity Profile is optimized such

that either the channel noise threshold 2 or the code-rate is maximized. Optimization

based on DE algorithm are often processed by means of differential evolution algorithm

2It is defined as the noise limit below which all the codes from the code ensemble reach a very small

probability of error if the code-block length is taken to infinity.
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when optimizations are non-linear, as for example in [97] where the authors optimize an

irregular LDPC code for uncorrelated flat Rayleigh fading channels.

The technique of Differential Evolution [41] is essentially an efficient modified version

of Genetic Algorithm. The main properties of Differential Evolution are 1) ‘Initializa-

tion’ in which a random first generation of vectors is created with changes over time,

2) ‘Mutation and Recombination’ which defines how to modify the population in each

generation, 3) ‘Selection’ of the survivors and finally 5) the ‘Stopping Criterion’. Its name

comes from the differential nature of the mutation step, in which at each round random

pair-wise differences of two pairs of population vectors are added to population members

– the details of it can be consulted from [41]. Richardson [39] was the first to use this

optimization approach for the problem of irregularity profile optimization employing the

channel threshold criterion. DE has also been used for optimizing irregular LDPC pro-

file in BEC channels [98] with respect to channel threshold and in frequency selective

multicarrier channels [96] with respect to BER.

Another technique named Gaussian approximation [42] can also be used instead

which renders simplified implementation to the DE algorithm. The probability density

function of the messages in this case are assumed to be Gaussian and the only parameters

that has to be tracked in the nodes is the mean of the message pdf.

Optimization for LDPC codes have been made for various types of channels e.g.

Partial Response channels [99] , ISI Channel (Code Length 106, Linear Programming,

DE) [100], Frequency Selective Channel [96], Multiple Access Channel (2 users, Gaussian

Approximation) [101]; a joint AWGN and Rayleigh fading channel approach [97], Fading

Broadcast Channels [102] minimum shift keying modulations [103]; a Multiple Input Mul-

tiple Output (MIMO) channel with an OFDM modulation (DE with Gaussian Approx.

for both Short and Large Block-Length) [104].

4.2.2 Works Related to Finite Length Codes Construction

A number of methods exist for the construction(as defined above) of individual code-

words for a given degree distribution profile corresponding to a family/ensemble of

codes. Initial LDPC Codes construction methods consisted of Pseudorandom [34] or Ran-

dom [43] construction techniques. Random techniques create the H matrix by randomly

selecting the positions of ‘1s’ to be allocated to the parity-check matrix H, constrained

by the degree (maximum number of 1s to be allocated per column/row of H matrix) dis-
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tribution profile. A number of slightly varying random-construction techniques are given

in [43] along with their performance comparison. Normally such ‘Completely Random’

constructions render bad sparsity and girth characteristics to the resultant TG, however

in [34], the parity check matrix is constructed by the concatenation and/or superposition

of sub-matrices; these sub-matrices are created by processing some permutations on a

particularly (random or not) sub-matrix which usually has a column weight of 1. This

helps in rendering good sparse properties to the resultant H matrix.

In spite of their algorithm simplicity, there are certain disadvantages involved when

randomly constructed LDPC codes are to be used in actual communication scenarios.

Random constructions need to be stored explicitly in memory in order to be used for

encoding or decoding. Long block length means very large memory usage just to store

the m*N Parity Check matrix. This also affects the computational efficiency of the code

which, in real life, might be even more crucial than the BER performance. To counter

this, usage of some form of structure to achieve a deterministic construction algorithm.

The main advantages in using structure can be summarized as an increase in flexibil-

ity/adaptability, and a reduction in cost; in terms of complexity, memory usage, and

transmission latency. The latter is due to the possibility of specifically adapting decoders

to the structural pattern of the code.One approach to the deterministic construction of

LDPC codes is based on Array Codes which belong to the Algebraic Codes Family. Array

codes are two dimensional codes that have been proposed for detecting and correcting

burst errors [105]. When array codes are viewed as binary codes, their parity-check ma-

trices exhibit sparseness which can be exploited for decoding them as LDPC codes using

the SPA or low-complexity derivatives thereof. Improving on the algebraic construction,

two branches in combinatorial mathematics have also been exploited for structured LDPC

Code designs: Finite Geometry [106] and Balanced Incomplete Block Designs [107].

It is imperative to search for good LDPC codes with improved girth characteristics

due to the bad influence of short-length cycles on the performance . Many algorithms have

been proposed in this regard which improve the girth characteristics of the underlying

TG for a given degree distribution profile. A ‘Bit Filling’ algorithm was proposed in [44]

which proposes to maximize the code-rate (k/n) given an irregularity profile and using

the criterion of code-matrix homogeneity for the allocation of edges. Basic idea is to

incremently add the bit-nodes (corresponding to the columns of parity-check matrix) ,

each time picking the check-nodes that result in least perturbation of the code-matrix
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homogeneity and also respecting the pre-defined girth constraint. This method was later

employed to design codes with ‘largest possible’ girth [108]. Similarly a ‘Progressive

Edge Growth’ (PEG) algorithm [45] has also been recently proposed to find the optimal

irregular LDPC code for a given CSI and ‘irregularity’ profile. It performs an edge-by-

edge allocation each time selecting the case which has least effect on the girth thereby

optimizing irregularity profile for girth maximization. Both for regular and Irregular

finite length codes, PEG algorithm significantly improves the performance with respect to

random constructions with no girth conditioning. Furthermore, in [109], the authors study

the histogram of cycles length of randomly generated LDPC codes, based on MacKays

construction 2A and they select the best cycle-length histogram shape and show that

increasing the mean girth of the TG results in giving better performance than maximizing

the local girth. Similarly it was shown in [46], that not all short-length cycles have equally

deteriorative impact on the performance and hence the selective avoidance of cycles was

proposed.

4.2.3 Works Related to Hard Decoding for Irregular LDPC

The decoding of LDPC codes, regular or irregular, is generally done with the classical

Message-Passing or Belief-Propagation (BP) algorithm where information related to a

bit’s probability/likelihood is exchanged. However, a mathematical analysis of proba-

bilistic decoding for a number of iterations is difficult. Gallager [47] developed a weak-

bound based on Hard-Decoding/ Bit-Flipping [48] Decoding Algorithms ( Later known

as the Gallager A and Gallager B decoding algorithms), which was later extended for the

irregular [38] case and which will be employed later in this chapter for our analysis. Bit

flipping usually operates on hard decisions: the information exchanged between neigh-

boring nodes in each iteration is a single bit. The basic idea of flipping is that each bit,

corresponding to a variable node assumes a value, either 0 or 1, and, at certain times,

decides whether to flip itself (i.e., change its value from a 1 to a 0 or vice versa).

Exact Thresholds and Optimal Codes for the Binary-Symmetric Channel (BSC) were

calculated analytically using Gallagers Decoding Algorithm A in [110]. A special form of

the bit-flipping algorithms known as the Majority-Based (MB) decoding [Zarrinkhat04]

algorithms, which decide the message bit to be sent in each iteration based upon the values

of majority of the incoming messages, has also been explored in [49]. The convergence

properties of MB-based algorithm showed that they converge to zero super-exponentially
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to the number of iterations, as compared to the exponentional convergence of Gallager-A

algorithm to zero. Also Hybrid Decoding based on the MB-based algorithms has been

recently explored in [111], which was shown to perform better than classical non-hybrid

decoding schemes.

Renewed research interest in Hard-Decoding has resulted in some improved proposals

such as that of Weighted Bit-Flipping algorithms [112] which increase in performance

without significant increase in the algorithm complexity.

4.2.4 Open Problem in Finite Length Irregular LDPC Code

Design

Although LDPC codes exhibit impressive capacity approaching performance for very long

code lengths, such long code lengths are not appropriate for many practical bandwidth effi-

cient communication applications. Analysis and construction of short-to moderate-length

Irregular LDPC codes is of particular interest in delay-sensitive wireless communications.

The asymptotic performance of LDPC codes (as the code length goes to infinity) can be

obtained from density evolution [39]. Less is known about the performance of finite-length

LDPC codes.

Another important finding with regards to the optimization of finite-length irregular

LDPC codes, is that the optimal degree distribution which is found by rigorous analytical

analysis for asymptotic case, gives poor performance than its regular counterpart when

applied to finite-length LDPC codes. This is primarily because of the fact that aymptotic

analysis does not take into account the presence of cycles in the graph, whose presence

strongly affects in finite length codes. It was confirmed by the simulation results in [113]

that irregular LDPC codes with degree distribution optimized for infinite-length codes,

is not optimal for finite-length LDPC codes.

What amount of irregularity ( i.e. degree distribution ) should be introduced in the

Finite-Length Irregular Codes? How the interconnections between nodes with different

degrees should be made, i.e. should the high-degree elite nodes be connected to other

elite nodes to generate the best possible wave based on Luby’s intuitional analysis or

nodes with higher degree be connected to those with a low degree ( less no. of attached

parity-checks) ? How the different connections be made in perspective of the local and

mean girth of the underlying graph? These are some open questions in the field of Finite
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Length Irregular LDPC Codes Design and the answer to some of which we will try to find

in this chapter. Our approach would be to somehow quantify the well-known ’wave-effect’

and use this as a parameter for determining the irregularity structure of the LDPC code

of a given length and code-rate.

4.3 Majority-Based (MB) Hard-Decoding Algorithm

for Irregular LDPC Codes

For practical applications on channels other than the BEC the belief propagation algo-

rithm is rather complicated, and often leads to a decrease in the speed of the decoder.

Therefore, often a discretized version of the belief propagation algorithm is used. The

lowest level of discretization is achieved when the messages passed are binary. In this

case one often speaks of a hard decision decoder or the bit-flipping decoded, as opposed

to a soft decision decoder as introduced in the last section. Gallager himself described

two hard decision decoding algorithms on the BSC alongwith the soft-decoder, when he

initially proposed LDPC codes. Rather than the decoder complexity, he was interested

in the analytical analysis of the decoder and conjectured that though the mathematical

analysis of probabilisic decoding is difficult, a very weak bound on the probability of

error (pe) of probabilistic decoding can be found by the much easier analytical analysis

of these hard-decoders. Below is the basic structure of the commonly cited Gallager A

and Gallager B hard-decoders alongwith their pe analysis.

4.3.1 Gallager A and Gallager B Hard-Decoding Algorithms

Gallager A Algorithm :

• Messages are from the set 0, 1 and represent the current estimate of the decoder of

a particular bit.

• At Check Nodes : The outgoing message from a check-node results from the

computation of the XOR sum of the incoming (extrinsic) messages

• At Variable Nodes : The outgoing message equals the originally received message,

except if all other incoming messages agree, in which case this common value is
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sent

To derive the pe analysis for the above algorithm, we assume a Binary Symmetric

Channel (BSC) with crossover probability p0
e and a regular (n,j,k) code with n as the

code-length, j as the variable-degree and k as the check-degree. If a variable node is

received in error ( an event of probability p0 ) and pi is the probability of error of a

variable node after iteration i, then it was showed [34] that pi+1 is given by

pi+1 = p0 − perr−corr(pi) + perr−add(pi) (4.3)

where perr−corr(pi) is the probability of correcting an error and perr−add(pi) is the

probability of adding an error during iteration i + 1. In the case of Gallager A algorithm

perr−corr(pi) is given by

p0 ·
[
1 + (1 − 2.pi)

k−1

2

]j−1

(4.4)

and perr−add(pi) is given by

(1 − p0) ·
[
1 − (1 − 2.pi)

k−1

2

]j−1

(4.5)

Gallager proposed that stronger results for decoding will be achieved if for some

integer b, a variable-node is changed whenever b or more of the parity-check constraints

rising from the variable-node are violated, unlike the case of the Gallager A algorithm

where all the parity-check constraints of the incoming messages need to be violated, for

a variable node to change its value . This modified decoding is commonly termed as

Gallager B decoding algorithm. The value of perr−corr(pi) in equation 4.4 this case is

given by

p0 ·
j−1
∑

l=b

Cj−1
l ·

[
1 + (1 − 2.pi)

k−1

2

]l

·
[
1 − (1 − 2.pi)

k−1

2

]j−1−l

(4.6)

and perr−add(pi) as:

(1 − p0) ·
j−1
∑

l=b

Cj−1
l ·

[
1 − (1 − 2.pi)

k−1

2

]l

·
[
1 + (1 − 2.pi)

k−1

2

]j−1−l

(4.7)

where Cj−1
l indicates the binomial coefficient.
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4.3.2 Concept and Algorithm for MB Hard Decoding

The basic underlying concept of MB-decoding is evident from its name i.e. the decision on

whether the flipping of a variable-node’s value at each iteration is taken based upon the

consensus over the majority of incoming messages. First detailed works on the MB-based

algorithms were performed by Zarrinkhat et al. [49] where he defined MB hard-decoding

algorithms of varying order (w). The order w defines the strength of the majority i.e.

how many more than the at least half the incoming messages are in agreement with each

other where 0 ≤ w ≤ ⌊(j − 1)/2⌋. The basic per iteration computations for an order w

MB hard-decoder can be summarised as:

• Messages are from the set 0, 1 and represent the current estimate of the decoder of

a particular bit.

• At Check Nodes : The outgoing message from a check-node results from the

computation of the XOR sum of the incoming (extrinsic) messages

• At Variable Nodes : The outgoing message equals the originally received message,

except if a ⌈(j − 1)/2⌉ + w or more of the incoming messages disagree, in which

case this common value is sent

The value of w determines the order and hence the strength of the disagreement

required for the change. Extreme cases are standard majority-decoding algorithm (order

0) i.e. w = 0 , and the case where all the incoming messages unanimously agree on a

value (maximum order and same as Gallager A algorithm) i.e.w = ⌊(j − 1)/2⌋. The pi

evolution as represented by 4.4 in this case is given by the modification in the value of

perr−corr(pi) as

p0 ·
⌈(j−1)/2⌉+w
∑

l=b

Cj−1
l ·

[
1 + (1 − 2.pi)

k−1

2

]l

·
[
1 − (1 − 2.pi)

k−1

2

]j−1−l

(4.8)

and that of perr−add(pi) as:

(1 − p0) ·
⌈(j−1)/2⌉+w
∑

l=b

Cj−1
l ·

[
1 − (1 − 2.pi)

k−1

2

]l

·
[
1 + (1 − 2.pi)

k−1

2

]j−1−l

(4.9)
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Figure 4.6 Convergence of Probability of Error for Ensemble (3,6) for p0 = 0.0350 and

p0 = 0.0450 Regular LDPC Code decoded by MB algorithm of order 0

4.3.2.1 Important Characteristics of MB Hard-Decoding Algorithms

Majority-based algorithms are especially attractive for their remarkably simple imple-

mentation (per iteration) because of the exchange of only hard (0,1) messages alongwith

their superieur performance to the classical Gallager A algorithm. Many important char-

acteristics of the Majority-Based algorithms were studied in [49] that has led to renewed

research interest in them in the recent years.

Classical graphical approach is generally employed to visualize the behavior of these

iterative algorithms. Important characteristics like that of threshold values and speed of

convergence can be easily depicted by means of such figures. The graphical approach,

introduced originally by Gallager, has been used in similar contexts by others, including

ten Brink [40]. It involves plotting down the values of pi as a function of pi−1. A use of

this graphical interpretation of the convergence of pi (denoted by h(x) function) to 0 for

the ensemble of (3,6) regular LDPC codes, decoded by MB algorithm of order 0 (w = 0)

and for two varying initial probabilities of error (p0 = 0.0350) and (p0.0450 = 0) is depicted

in the figure 4.6 [49]. It can be observed from the figure that depending on the channel

parameter, there is either a decreasing (p0 = 0.0350) or an increasing (p0.0450 = 0) trend

of average error probability with iterations. For a starting point on the line x = y , the

algorithm is stuck right from the beginning, and there will be no decreasing or increasing

trend.

Threshold Value of MB Algorithms :
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As clearly observed from the above figure that pi can follow both an increasing or

a decreasing trend for a p0 and w. An important theorem with respect to the threshold

value states [49] that for a given order w and a given p0 ∈ [0, 0.5], pi is a decreasing

sequence which converges to zero, if and only if the curve y = pi is below the line y = x,

∀x ∈ (0, p0). Threshold is conventionally defined as (p∗0), such that for all values p0 < p∗0,

liml→∞pi = 0. Since it can be shown that pi is an increasing function of p0 such that

p0 ∈ [0, 0.5] and p0 ∈ [0, 0.5], then using the above mentioned theorem as well, it can be

seen that if for a given p0 and an MB algorithm of order w (= MBw) pi is decreasing

and converges to zero, then for every pi ∈ [0, p0], pi is decreasing and converges to zero.

Hence, an alternate definition for the threshold p∗0 of an MBw algorithm can be defined

as the supremum of all p0 ∈ [0, 0.5], such that the curve pi is below the line y = x for

every pi−1 ∈ (0, p0].

Convergence Speed of MB Algorithms :

Using the same graphical interpretation of the evolution of pi with respect to itera-

tions as mentioned above, it was observed [49] that for a given p0, the convergence speed

of an MBw at any iteration depends on how far the curve pi is from the line y = x at

that iteration. The farther the curve, the faster the trend. This explains the slow con-

vergence of Gallager A algorithm in decoding the ensemble (dv, dc) regular LDPC codes

over a channel with p0 < p∗0 and close to p∗0 as inn this case, there is only a narrow tunnel

between the curve and the line in the vicinity of x = 0 taking it longer to converge. Sim-

ilarly it was concluded that between two majority-based algorithms used to decode the

same ensemble of regular LDPC codes over the same channel, the one with smaller order

eventually converges faster at the later stages of decoding. Another important result re-

garding the convergence of the MB algorithms was that in comparison with the Gallager

A algorithm, whose convergence to zero is exponential with respect to the number of

iterations, the convergence of MB algorithms is super-exponential.
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4.4 Simplifying the MB Hard-Decoding Analysis for

Irregular LDPC Codes

The main idea behind our work on LDPC codes was to make use of the Wave Effect

phenomenon that exists in the irregular LDPC codes and which has been explained

earlier in this chapter. Although the wave-effect concept was first introduced by Luby et

al. only to serve as the intuitive reasoning behind the better performances of irregular

codes, our purpose is to go further ahead and quantify this wave-effect so that it may

be used eventually as a mean for the design and construction of finite-length Irregular

LDPC codes. This involves quantifying the change in the probability of error (pi) of a

variable-node because of the addition of a new parity-check node in its neighborhood. The

idea behind quantifying the wave-effect is that it would enable us to calculate the effect

generated by the allocation of an extra parity-check to a variable node. By this we can

construct the irregularity from a regular-graph, by allocating additional edges one-by-one,

each time allocating to the variable node which results in the maximum overall decrease

in the probability of error. The purpose of this section is to show how this effect can be

quantified and hence measured. It was observed that the conventional analysis methods

are computationally prohibitive for calculation of exact ‘elite’ effect quantization. Thus,

we have introduced a method based on the Sum of Products of Combinations (SPC),

by the help of which, the calculation of wave-effect quantization for the Irregular LDPC

codes becomes feasible.

4.4.1 Hard-Decoding Analysis for Irregular LDPC Codes

Luby et al. modified the regular LDPC hard-decoding analysis for the irregular case.

Based upon the earlier definitions of the functions of λ(x) and ρ(x) defining the probability

distribution on the degrees of variable and check nodes respectively, the probability that a

check node c receives an even number of errors, when the probability of error on variable

nodes is pi is given by

1 + ρ(1 − 2pi)

2
(4.10)

which is the generalization of the equation used in the regular case, taking into

account the probability distribution on the degree of c. Using the similar philosophy for



98
Chapter 4 : Simplistic Algorithm for Irregular LDPC Codes Optimization Based

on Wave Quantification

modifying the computations done at the variable node considering that a variable node

is of degree j with probability λj, the recursive relationship for pi can be given modified

for an irregular code as [38] :

pi+1 = p0 −
dv∑

j=1

λj (4.11)

·



p0

⌈(j−1)/2⌉+w
∑

l=bj

Cj−1
l ·

[
1 + ρ(1 − 2.pi)

2

]l

·
[
1 − ρ(1 − 2.pi)

2

]j−1−l

−(1 − p0)

⌈(j−1)/2⌉+w
∑

l=bj

Cj−1
l ·

[
1 − ρ(1 − 2.pi)

2

]l

·
[
1 + ρ(1 − 2.pi)

2

]j−1−l




However the equation 4.12 represents the generalized overall behavior of the irregular

code with different variable-nodes of varying degrees. For the case where one has to

quantify the difference in the pi of different variable-nodes with varying degrees, one has

to modify the original pi recursive equation for a particular variable-node with a specific

value of ’j’ and ’k’, instead of taking into account all possible values. Development of such

a relation will describe the exact evolution of pi of a variable-node based upon its exact

number and type of neighbors instead of a generalized evolution of pi of the whole code

as given by equation 4.12. Consider a case where all the check-nodes have the same and

fixed degree (dc), while the variable node degree may be allowed to vary i.e. dnv ∈ [3, dmaxv ],

where dnv is the degree of node n. Considering the fact that pi on nodes with different

degrees will be different as the decoding starts, we denote pni as the probability of error

of node n at iteration i. Thus the perr−corri in the original Gallager equation 4.4 can be

modified for this irregular case as:
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pni+1 = p0 − p0 · (4.12)

jn−1
∑

l=⌈(jn−1/2)⌉

Cjn−1

l′∑

l′=1

·
v=φjn−1

l
{l′}

∏
[

1 +
∏k∈ψv(1 − 2.pvki )

2

]

·

v′∈{jn−1}
∏

v′ /∈v

[

1 −
∏k∈ψv′ (1 − 2.pvki )

2

]

+

(1 − p0) ·
jn−1
∑

l=⌈(jn−1/2)⌉

Cjn−1

l′∑

l′=1

·
v=φjn−1

l
{l′}

∏
[

1 −
∏k∈ψv(1 − 2.pvki )

2

]

·

v′∈{jn−1}
∏

v′ /∈v

[

1 +
∏k∈ψv′ (1 − 2.pvki )

2

]

There is a difference of the equation 4.13 with respect to its regular counterpart,

as mentioned previously (Gallager’s recursive equation for MB Hard-Decoding). In the

regular version, for a given set dv representing the check-nodes associated with a variable

node, the possibilities of selecting l check-nodes out of the total jn− 1 are represented by

means of multiplication with the factor Cjn−1
l . This is because the probability of error

pi associated with each of the neighbors of any given check-node in an iteration is the

same because the graph is regular. However, in an irregular graph the pi associated with

each variable-node at the end of an iteration is different, depending upon the number

and quality of its neighbors and is represented by pni . Hence the multiplication with

the factor Cjn−1
l cannnot be anymore valid, and each combination of node in the total

combinations of Cjn−1
l has to be treated individually, finally summing all the individual

results thereby giving the true representation of probability of distribution of pni in the

Gallager’s equation, as represented by equation 4.13

4.4.2 Modified Representation of Gallager’s Equation in the

form of Deltas (∆s)

As discussed in the start of this section, achieving our primary goal of wave-effect quan-

tization involves quantizing the increasing/decreasing effect in the probability of error

(pi) of a variable-node. This stems from the addition/subtraction of its associated check-

nodes, or from a change in quality (pni of one or more variable-nodes in its neighborhood,

where we define neighborhood of a variable-node v as the set of all variable-nodes that are
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associated to the node v via one or more of v’s check-nodes. To facilitate this quantization

analysis, our first step is the representation of the basic building blocks of the equation

4.13 in terms of different ∆, which define the change in the pni of a variable-node with

respect to the initial p0 of the variable-node ( which is uniform for all the nodes in case

of a Gaussian channel ). Hence if we define two building blocks xi and yi as follows

xi =

[

1 +
∏k

k′=1(1 − 2.pk′)

2

]

yi =

[

1 −
∏k

k′=1(1 − 2.pk′)

2

]

(4.13)

we can define xi and yi alternatively as

xi =

[

1 +
∏k

k′=1(1 − 2.(p0 + ∆k′))

2

]

yi =

[

1 −
∏k

k′=1(1 − 2.(p0 + ∆k′))

2

]

(4.14)

which is equivalent to

xi =

[
1 + (1 − 2.p0)

k

2

]

︸ ︷︷ ︸

x

+
k∑

k′=1

(1 − 2.p0)
k−k′ .

k′∏

l′=1

(−2∆l′)

︸ ︷︷ ︸

∆neigh

(4.15)

and

yi =

[
1 − (1 − 2.p0)

k

2

]

︸ ︷︷ ︸

y

+
k∑

k′=1

(1 − 2.p0)
k−k′ .

k′∏

l′=1

(2∆l′)

︸ ︷︷ ︸

∆neigh

(4.16)

where ∆neigh represents that combined increasing/decreasing effect in the value of

xi(yi) because of the change in the probabilities of error of the k neighboring nodes of a

check-node.

4.4.3 Classical Calculation Method of Updating pn

i
in Irregular

Graphs

The simplest way to calculate the pni update equation, where different neighbors may

have different pni , can be observed from the equation 4.13. For each value of l, the

total number of possible combinations such that l check-nodes are selected from the

vector dv of length jn − 1, have to be found, where the elements of the vector dv

represent the neighboring check-nodes of the variable-node v. From the combinatorial

theory, it can be easily found that the total number of such combinations/subsets is
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Table 4.1: Number of Combinations for Different Variable-Node Degrees

Variable Node Degree (=j) Cj
b=j/2

∑j
l=j/2 Cj

l

10 252 638

20 1.84×105 6.16×105

30 1.55×108 6.14×108

40 1.37×1011 6.18×1011

50 1.26×1014 6.26×1014

Figure 4.7 Number of Combinations required for calculation of pi with increasing

variable-node degree

given Cjn−1
l = (jn − 1)!/(jn − 1 − l)!l! whose value can become notoriously large in the

range of commonly used values for the variable-node degree as shown in table 4.1 and

figure 4.7.

As evident from the data presented, attempting to calculate pi via this simplistic

method soon becomes computationally prohibitive because of the high number of com-

binations involved as the variable-node degrees gets increased, where each combination

represents a subset vector of the complete set of a variable-node’s associated check-nodes.

This calculation process, being the very basic computation step involved in our calcula-

tion of ∆total, can be largely simplified by means of our Sum of Products of Combinations
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(SPC) approach as explained below:

4.4.4 Sum of Products of Combinations (SPC) based Calcula-

tion Method of Updating pn

i
in Irregular Graphs

The basic idea behind our proposed methodology for the calculation of pni in irregular

graphs, is to represent the probabililty of error of each variable node in terms of a stan-

dard probability of error p0 and a difference ∆. This results in seperating the deltas

from the original equation original and finally the problem is reduced to that of finding

the sum of products of different terms, as will be demonstrated below. This can be best

presented in the form of an example. We will look into the calculations involved in either

of perr−corri or perr−addi , in Gallager’s recursive equation, and the same sort of operations

can be applied to the other as well. Extracting the portion of calculations pertaining to

a given value of l for perr−corri in the MB Hard-Decoding equation for Irregular Graphs

given by equation 4.13 can be represented as:

perr−corri =

Cjn−1

l′∑

l′=1

·
v=φjn−1

l
{l′}

∏
[

1 +
∏k∈ψv(1 − 2.pvki )

2

]

·
v′∈{jn−1}
∏

v′ /∈v

[

1 −∏k∈ψv′ (1 − 2.pvki )

2

]

(4.17)

Considering a particular case with a variable-node having a degree j = 5 and when

l = 3, by making use of the previously introduced concept of ∆s, the above equation can

be written as:

=

Cjn−1

l′∑

l′=1

· [(x + ∆i)(x + ∆j)(x + ∆k)] · [(y + ∆l)(y + ∆m)] (4.18)

where i, j, k, l,m are the index value of the check-nodes and can have any value from

1 to 5, with total number of check-nodes being 5. Equation 4.18 is a sum of C5
3 terms,

each term representing an instance of the combinations resulting from the selection of 3

terms from a total of 3 terms. A one particular instance can be represented as:

[(x + ∆1)(x + ∆2)(x + ∆3)] · [(y + ∆4)(y + ∆5)] = (4.19)
[
x3 + x2.(∆1 + ∆2 + ∆3) + x.(∆1∆2 + ∆2∆3 + ∆3∆1)

]
·

[
(y2 + y.(∆4 + ∆5) + ∆4∆5

]
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This can be re-written in the form

= x3y2 + x3y(∆4 + ∆5) + x3(∆4∆5) + x2y2(∆1 + ∆2 + ∆3
︸ ︷︷ ︸

spc5
1

) + (4.20)

x2y(∆1∆4 + ∆2∆4 + ∆3∆4 + ∆1∆5 + ∆2∆5 + ∆3∆5
︸ ︷︷ ︸

spc5
2

) +

x2(∆1∆4∆5 + ∆2∆4∆5 + ∆3∆4∆5) + xy2(∆1∆2 + ∆2∆3 + ∆3∆1) +

xy(∆1∆2∆4 + ∆2∆3∆4 + ∆3∆1∆4 + ∆1∆2∆5 + ∆2∆3∆5 + ∆3∆1∆5
︸ ︷︷ ︸

spc5
3

) +

x(∆1∆2∆4∆5 + ∆2∆3∆4∆5 + ∆3∆1∆4∆5) + y2(∆1∆2∆3) +

y(∆1∆2∆3∆4 + ∆1∆2∆3∆5
︸ ︷︷ ︸

spc5
4

) + ∆1∆2∆3∆4∆5
︸ ︷︷ ︸

spc5
5

Expression 4.21 indicates the presence of multiple subsets (spcjl ) of a complete SPCj
l

set with its constituent terms of xiyj.A Sum of Product of Combinations given by SPCj
l

represents the sum of Cj
l product terms, where each product term results from the product

of the members of a particular combination instance from the Cj
l combinations that result

from the selection of l terms from a total of j terms. For example a partial subset i.e. spc5
1

(=∆1 + ∆2 + ∆3) of the complete set SPC5
1 (=∆1 + ∆2 + ∆3 + ∆4 + ∆5) exists with the

term x2y2; another subset of the same order (spc5
1) exists with the term x3y1 as well.All

of these partial sets of Sums of Products of Combinations exist in a single instance of the

sum term in equation 4.18. A total of Cj
l such instances exist in the complete summation

and the partial sum of products of combinations with the same xiyj terms in different

instances gets added to result in all the partial spcjl adding up to become the complete

SPCj
l set of a given order. Finally the equation 4.21 can be summarized as:

3∑

xpow=0

2∑

ypow=0

xxpowyypowSPCj−xpow−ypow (4.21)

where the term SPCj
j−xpow−ypow

indicates the Sum of Products of Combinations of

order j − xpow − ypow, the order representing the l in Cj
l .

Equation 4.21 demonstrates how the original problem of
∑Cj

l

l′=1 Xi.Yi has been trans-

formed into an addition of (xpow + 1) ∗ (ypow + 1) terms, where each of the term alone

contains an SPCj
j−xpow−ypow

, which implies that the potential complexity of the original

problem involving a large number of combinations can be potentially reduced if a compu-

tationally efficient method of calculating a SPC is derived, which we explain below how
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Figure 4.8 The triangular structure of the S Matrix used for calculating SPC

to achieve.

Problem Definition

Given a vector of deltas of length j denoted by δj = {∆1, ∆2, ....., ∆j}, for 1 ≤ l ≤ j,

what is the most efficient way to calculate SPCj
l ?

Our simplistic recursive calculation procedure can be best explained by means of

visualizing the calculation steps in terms of a matrix S, whose dimensions for the calcu-

lation of SPCj
l are (SPCj

1 × SPCj
l ). Each column contains different terms which add

up to define SPC of a particular order l. Hence the first column is for SPCj
1 , the second

for SPCj
2 and so on till SPCj

l . The first column representing SPCj
1 will have a unique

∆j′ such that 1 ≤ j′ ≤ j with no repetitions, hence a total of SPCj
1 terms in the first

column.

Proposition

If (m,n) represents the row and column number of the above mentioned S matrix,

then based upon the above mentioned configuration S(m,n) =
∑m′

max(n)
m′=1 S(m′+1, n−1),

where m′
max(n) represents the maximum index of the row of column n containing a

non-zero value. Hence the matrix S will be triangular in shape as shown in figure 4.8.

A simulation-time comparison was made between the two methods for calculating

the sum of products of the combinations, for varying lengths of the delta vector. Time

taken for simulations by the classical method as well as by the SPC method is given in

table 4.2, and the corresponding graph in figure 4.9
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Table 4.2: Time taken for simulations of Sum of Products of Combinations by Two

Different Methods

Length of Delta Vector Time taken for Simulations Time taken for Simulations

(Classical Method) (SPC Method)

6 0.0012 2.25×10−4

10 0.0080 4.50×10−4

14 0.1311 8.16×10−4

18 7.38 13×10−4

Figure 4.9 Simulation Time taken for calculations of the Sum of Products of Combina-

tions
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4.5 Wave-Effect Quantization Methodology for De-

sign/Construction of Irregular LDPC Codes

4.5.1 The Pyramid Effect

Our basic purpose is to quantify the very-popular wave-effect in Irregular LDPC codes,

which was defined earlier in this chapter. This effect provides us with the intuitive

reasoning (supported by the experimental evidence [38]) of why certain irregular codes

would perform better than their regular counterparts. This intuition expresses that the

high degree nodes get corrected very quickly followed by the variable nodes with slightly

smaller degree, and so on down the line. Hence the name ‘wave’ associated with it, which

suggests that the ‘improvements’ (= reduction in probability) caused by variable degrees

with higher degree are greater than those by the nodes with comparatively lesser degree.

This leads to a non-unform (like a wave with different peaks) reduction in the probability

of error (pi) of different nodes, unlike the uniform change in pi of all the nodes in regular

codes.

Once we are able to quantify these ‘improvements’ associated with the increase in

a variable-node’s degree e.g the total improvements that result from increasing dnv from

3 to 4 or from 4 to 5. However, to be able to calculate these ‘improvements’, we must

understand how the pni of different nodes is being updated at different iterations. In LDPC

Codes, the probability of error of node n after iteration i (denoted by pni ) is calculated

based upon the probability of error of its neighbors at the end of i − 1 iterations. We

denote by ∆itr
n the improvement (reduction) in node n’s pni at the end of itr iterations

because of the increase in its degree from dregv to some other value dnv where dregv represents

the initial degree of a regular graph, which is same for all the nodes.

A depiction of this wave of improvements, which can be more appropriately called

as the pyramid effect ( because of its shape ) is depicted in the figure 4.10. The solid

horizontal lines indicate the update of pni when the underlying graph is a regular one. If

one of the variable-nodes (node v1) is made elite by increasing its degree from the rest

of the nodes, it results in the update of pni of nodes in a different manner as indicated

by the short red lines. It can be seen from the figure that due to the presence of an elite

node, after iteration 1 only the pni of the elite node gets improved by a factor ∆itr1
1 while

the pni of the rest of the nodes remain the same as in the regular case. At the end of two
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Figure 4.10 The Pyramid Effect showing the effect of an ‘elite’ node in different iterations

iterations, pni of the elite node(v1) as well as that of its immediate neighbors (e.g. v7) gets

improved. It is important however to mention here that the improvement in v2 at the end

of iteration 2 with respect to other nodes is because of the presence of increased degree

but the improvement on its neighbors like that of v7 is because of the presence of an elite

node as one of its neighbors. Similarly at the end of iteration 3, along with the elite node

v1 and its neighbors (e.g. v7), the neighbors of the neighbors of v1 (e.g. v10) will get

an improvement as well and the improvement in the node v1 in this case will not only

be because of increased degree but also because of the improvement in its neighbors at

the end of previous iteration. This infers that as the iterations are passed, a high-degree

variable node will have its pni not only because of its high degree but also because of the

improvements that it has caused in its neighbors in the preceding iterations.

4.5.2 Neighborhood

Also, it is important to define the neighborhood of a node vn at the end of i iterations.

It is simply defined as the set of all the nodes that will be affected i.e. get an improvement

∆itr
n , if the node vn is made elite i.e. if its degree is increased. A tree representation of

the variable-nodes corresponding to the ones cited in the pyramid effect figure is given in
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Figure 4.11

figure 4.11. Figure 4.11 helps us understand the neighborhood corresponding to different

iterations. The basic aim is to identify those variable nodes that will get affected by the

wave generated by the elite-node corresponding to a given number of iterations, which

will eventually help us quantify ∆itr
total ( The total effect (improvements) caused by the

elite node in all the affected variable-nodes for itr iterations.

Improvements in the pni of a node takes place depending upon the improvements in

the error probability, that have taken place in its immediate neighbors ( variable-nodes

connected to the check-nodes of the concerned node ), at the end of previous iteration.

Based upon this philosophy and referring to the figure 4.11, it can be observed that if the

node v1 is made elite by an increase in its degree (=check-nodes), at the end of the first

iteration only the elite-node will get improved and hence the neighborhood corresponding

to iteration 1 will only consist of the elite-node i.e. v1 and the total improvements caused

till the end of iteration 1 will be given by:

Neighborhooditr1 = {v1} ∆itr1
total = ∆itr1

1 (4.22)

Once a neighbor variable-node gets affected by the wave of improvements generated

by the elite-node in iteration i, based on the pyramid-effect principle, it will continue to

get affected by the elite-node in any number of iterations greater than i. Hence if Nitr

denotes the set of all the variable-nodes belonging to the neighborhood of the elite-node

at iteration itr, then
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Nitr2 = {v1, v4, v5, v6, v7} ∆itr2
total =

i∈Nitr2∑

∆itr2
i (4.23)

Nitr3 = {v1, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, ....} (4.24)

∆itr2
total =

i∈Nitr3∑

∆itr3
i

4.5.3 Greedy Irregularity Construction (GIC) Algorithm

Our research focus was the optimization of the irregularity profile for the finite-length

LDPC codes. As mentioned earlier in this chapter, existing works on the finite-length

irregular codes make use of the irregularity-profile that has been optimized based on

assumptions, such as the asymptotic length of the code. Since this assumption is no

longer true in the finite-length case, some works (refer to state-of-the-art section) have

demonstrated that such asymptotically optimizated irregularities do not work well with

the finite length codes and many-a-times because of this, at short-block lengths, the

regular codes surpass the irregular ones in performance.

Hence in order to explore the behavior of irregularity at finite-lengths, we propose

an algorithm, where irregularity is progressively added to the graph. At each step, the

response of the code is measured/quantified for different available options of the irregu-

larity profile and that option is selected, which results in the maximum reduction in the

overall probability of error. The reduction in probability of error is calculated employing

the Majority-Based hard-decoding analysis, as explained in detail earlier. We have in-

deed shown that the SPC (Sum of Products of Combinations) based simplified calculation

methodology largely reduces the complexity involved, since this process is required to be

repeated a large number of times because of progressive construction.

The basic idea is to start with a regular graph, void of small cycles, for a given

code-length and code-rate. Then new connections are made between the check-nodes and

the variable-nodes which are not previously connected to each-other. This is done by

increasing check-degree of the graph by a fixed pre-determined amount. As a result of

this degree increase, each check-node can now be allocated to new variable nodes. Thus,

at each step, allocation of a certain check-node to different variable-nodes is compared

and finally it is allocated to that variable-node which results in the maximum overall
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reduction in probability of error= ∆total. In this manner, irregularity is automatically

added in the graph. For a new parity-check allocation at each step, it is determined

whether an allocation to a higher-degree node or to a lower-degree node would result in

the maximum decrease in the overall probability of error.

By performing the irregularity profile optimization with the construction of the code

in a single progressive allocation procedure, answers to many open questions as mentioned

in section 2 can be explored. Unknowns which have generally been decided-upon based

on a hit-and-trial method, e.g. how much irregularity to be added for a given code-length,

how connections are to be made between nodes with varying degree, how the local and

global cycle length is to be selected with respect to varying node degrees etc. can be

easily explored by means of this approach. Also issues as those of how many edges to be

added, maximum degree of a variable-node, are dependent on the stopping criterion of

the algorithm which may vary as well. The stopping criterion may be based upon the fact

that no cycles shorter than a particular length will be acceptable and as long as no more

allocations are possible without violating this law, the procedure may be stopped. Since

we have based our analysis on the Majority-Based hard-decoding method, allocation of 2

check-nodes are done at a time so that the degree of the variable-node may be kept even

at all times, to keep the equality in comparison. A basic structure of the GIC algorithm

can be seen from pseudo-algorithm 4.

The basic structure of the algorithm is very simple because of its greedy nature as

can be observed from pseudo-algo 4. Check nodes are allocated greedily in each step to

the node where their allocation results in maximum reduction in probability of error. It is

obvious from the pseudo-algo that each step (allocation of 2 check-nodes) is repeated over

the complete set of variable nodes so as to calculate the resulting ∆total, and finally they

are allocated to the variable node with maximum ∆total. An interesting characteristic of

this progressive allocation is the fact that it renders the possibility of using any of the

Girth-optimizing algorithms, as mentioned earlier e.g. PEG [45], to be integrated in the

above algorithm as a stopping condition for maximizing the performance, though we have

used only the avoidance of length-4 cycles as a stopping condition.

Based upon the above mentioned algorithm irregularity was added to a regular

(336,504) code for cycle4-free case and for different number of extra edges. As obvious

from the figures below, the irregularity addition resulted in improving the convergence

speed of the same length code.
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Figure 4.12 Graphical interpretation of density evolution for ensembles regular LDPC

codes, decoded by MB hard decoding, with different check-node degree (k)

Figure 4.13 Graphical interpretation of density evolution for different regular and Irreg-

ular LDPC codes of size (M,N)=(336,504) decoded by MB hard decoding
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Algorithm 4 The Greedy Irregularity Construction (GIC) Algorithm

1: procedure GIC(k,N,StopCond,p0,itr)

2: H=makeLDPC(k,N,dc,dv)

3: preg0 = p0

4: for i = 1 : itr do

5: pregi =FuncRegProba(pregi−1)

6: end for

7: CheckNo=1

8: H test = H

9: loopNo=1

10: for all v(n) ∈ V do

11: pIrrloopNo0 (n) = p0

12: end for

13: while StopCond 6= True do // StopCond e.g. no4cycles

14: CheckIndices=[CheckNo,CheckNo+1] // 2 check allocs per itr

15: for all v(n) ∈ V do

16: if H test(CheckIndices, n) == 1 then

17: goto next Variable node

18: else

19: H test(CheckIndices, n) = 1

20: pIrrloopNoitr (n)=FuncIrrProba(pIrrloopNo−1
itr , P eregitr , dc,H test, n, itr)

21: ∆n
total = pIrrloopNoitr (n) − pregitr

22: end if

23: end for

24: nmax = max(∆n
total)

25: H(CheckIndices, nmax) = 1

26: end while

27: end procedure
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Algorithm 5 FuncIrrProba Routine for Calc. of Error Improvement

1: function FuncIrrProba(pirritr ,Peregitr ,dc,H,EliteNode,iterations)

2: for itr=1:iterations do

3: Neighbors(itr)=NeighborhoodFunc(H,EliteNode,itr)

4: for all v(n) ∈ Neighbors(itr) do

5: for c = 1 : dv(n) do

6: ∆n
total(c) = ∆neigh(c) + ∆check(c))

7: end for

8: pirritr (n) =FuncPeIrrCalc(∆n
total)

9: end for

10: end for

11: end function

4.6 Conclusion

LDPC codes because of their superior performances and simple structure are becom-

ing academia’s as well as industry’s choice for the future generation of communication

systems. Though irregular LDPC structures have been shown to outperform their regu-

lar counterparts, the optimization of irregular structures has been limited to asymptotic

constraints, making it inappropriate for the design of finite-length irregular Codes. At

the same time complex optimization techniques conventionally employed for the opti-

mization of the irregularity profile for a given channel renders difficulty to optimize the

irregularity-profile for the cases where it needs to be re-optimized a number fo times

e.g. where the channel is time-varying. This chapter tries to tackle these problems,

where a Greedy Irregularity Construction (GIC) has been proposed as a progressive man-

ner to construct the irregularity profile for finite-length codes. This approach is based

on the Quantization of the well-known ‘Wave-Effect’ phenomenon. The quantization

methodology relies on the Majority-Based (MB) hard-decoding probability of error anal-

ysis for irregular codes. Where the classical calculation methods for the irregular MB

hard-decoding analysis are computationally prohibitive to be used, we have proposed a

Sum-of-Product-of-Combinations (SPC) based analysis methodology which has shown to

reduce the simulation times by a large factor, thereby making the GIC algorithm feasible

for implementation. Once a feasible calculation methodology has been devised for the
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quantifization of the wave-effect, a method for irregular codes optimization is devised

based on it. Since, to our knowledge this is the first attempt to perform the ’quantifica-

tion’ of the wave-effect, we believe that a continuation of this work for multiple decoding

methods and multiple channels can result in producing yet more significant results.



Chapter 5

Algorithm-Architecture

Co-Optimization for

Delay-Constrained Link-Adaptation

Algorithms

5.1 Introduction

In an adaptive communication system, the parameters of the system have to be re-

evaluated each time the channel changes significantly, where the time it takes to move

from one channel condition to another can be defined as the adaptation interval. The time

required for the evaluation of the parameters for a particular channel state is therefore

required to be much smaller than the adaptation interval, for the system to benefit from

the adaptive process. In other words, the time for the re-evaluation of adaptive algorithms

in each adaptation interval is strictly required to be under a particular time constraint,

where this constraint is defined by the system specifications and the channel conditions at

that particular instant. For a given maximum computation-time constraint, the smaller

the computation-time of the adaptive algorithm in an adaptation interval, the greater the

gain or the time available to make use of these adaptive parameters.

Due to this particular interest in the computation time of adaptive algorithms, the

basic aim of our thesis till now has been to expose to the reader the most popular forms of

adaptation (bit-loading, power-allocation etc.) in an adaptive multi-carrier system and to
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Figure 5.1 Computation Requirements of Different Protocols/Standards

the complexity reduction methods of the corresponding algorithms that we have proposed.

These improvements or the reductions in complexity have been achieved via fundamental

algorithmic changes in the algorithms which eventually leads to shorter computation time

with no loss in performance as shown in chapter 2-4.

As much the running-time of an algorithm is dependent on its algorithmic complexity,

it equally depends on the underlying implementation platform on which the algorithm is

being run. The use of the best(fastest) implementation platform is not the answer for the

cases where the constraint on the running-time of the algorithm is varying with respect

to time, as in our concerned case of adaptive communication systems.However, the ad-

vent of the flexible or re-configurable computing paradigm seems to answer well the need

for varying computational needs. Recent years have seen a grown interest in the use of

re-configurable implementation platforms for the signal processing purposes [50–52]. Its

motivation comes from multiple directions, where the popularity of Software/Cognitive

radios [53, 54] is one of the biggest reasons for the interest in re-configurable platforms

for signal processing purposes. Amongst other desired characteristics of software radios,

its multi-mode functionality renders the possibility to different modes of communica-

tions from a set of multiple standards/protocols from the same transceiver at different

times. Since computational requirements of different standards/modes vary significantly,

as shown in the figure 5.1, the use of reconfigurable computing in this context leads to a

significant economy of energy and resources.
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Figure 5.2 Computation Requirements of Different Protocols/Standards

The trade-off between computational power and flexibility that exists in re-configurable

hardwares in comparison with other commonly employed implementation platforms is

represented by figure 5.2

The future of reconfigurable computing for DSP systems will be determined by the

same trends that affects the development of these systems today: system integration,

dynamic reconfiguration, and high-level compilation. DSP applications are increasingly

demanding in terms of computational load, memory requirements, and flexibility. Tradi-

tionally, DSP has not involved significant run-time adaptivity, although this characteristic

is rapidly changing. The recent emergence of new applications that require sophisticated,

adaptive, statistical algorithms to extract optimum performance has drawn renewed at-

tention to run-time reconfigurability. Major applications driving the move toward adap-

tive computation include wireless communications with DSP in hand-sets, base-stations

and satellites, multimedia signal processing [114].

The primary trend impacting the implementation of many contemporary DSP sys-

tems is Moore’s Law, resulting in consistent exponential improvement in integrated circuit

device capacity and circuit speeds. According to the National Technology Roadmap for

Semiconductors, growth rates based on Moore’s Law are expected to continue until at

least the year 2015 [115]. At the same time, the bandwidth/throughput of the commu-

nication systems in market, commonly defined by Shannon’s Law, is increasing at an

equally high rate. The qualitative graphs in figure 5.3, depict the increase of algorithmic
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Figure 5.3 The Evolution of Computational Requirements (Shannon’s Law) with Ad-

vances in Implementation Technology (Moore’s Law)

demand compared with the increase of computational capability offered by technology

improvement.

It can be observed that algorithm complexity, driven by Shannon’s law, can not

be tackled by technology alone, bound to Moore’s law. For this reason, standard pro-

grammable architectures appear increasingly insufficient to handle computational de-

mands. As a result, some of the corollaries of Moores Law will require new architectural

approaches to deal with the speed of global interconnect, increased power consumption

and power density, and system and chip-level defect tolerance. Several architectural ap-

proaches have been suggested to allow reconfigurable DSP systems to make the best use

of large amounts of VLSI resources. All of these architectures are characterized by het-

erogeneous resources and novel approaches to interconnection. The term system-on-chip

is now being used to describe the level of complexity and heterogeneity available with

future VLSI technologies. Figure 5.4 illustrate various characteristics of future reconfig-

urable DSP systems. These are not mutually exclusive and some combination of these

features is predicted to emerge as the suitable implementation platform in future, based

on driving application domains such as wireless handsets, wireless base-stations, and mul-

timedia platforms. Figure 5.4, taken from [116], shows research efforts to condense DSPs,

FPGA logic, and memory on a single substrate.This work focuses on selecting the correct

collection of functional units to perform an operation and then interconnecting them for
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Figure 5.4 A model of the architectural platform structure for future Signal Processing

Applications

low power. This same paradigm of the selection of a correct combination of the func-

tional units so as to respond to the run-time computational needs of adaptive algorithms

is investigated in this chapter.

Whereas a large number of works exist in the use of re-configurable/tunable plat-

forms for various communication systems and signal processing algorithms [56,117,118],

very few works exist for the use of these re-configurable(adaptive) hardware platforms for

the case of adaptive resource-allocation algorithms [58,59,119,120]. As our thesis mainly

deals with the computational complexity of the adaptive resource allocation algorithms

in multicarrier systems, we strongly feel that the paradigm of re-configurable computing

can be exploited in this context for further reduction in the running-time of the adaptive

algorithms, thereby leading to performance gains or even enabling the use of adaptive

algorithms to some cases (stringent maximum computation-time constraints on adaptive

algorithms) where their use would not have been possible otherwise. This chapter, there-

fore explores the context where the architecture/processor resources are run-time tunable

and a link between the theoretical performance parameters (coherence time etc.) and the

hardware resources (ALUs etc.) is established to increase the overall system performance.

More precisely, we have explored a classical Superscalar processor architecture by means

of SimpleScalar [61] tool, the details of which will be provided in section 3 of this chap-

ter, to extract the performances of a given algorithm with different processor architecture

parameters. The choice to select amongst a range of different architecture/processor re-
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sources ( functional units, caches, pipeline characteristics etc.) leads to the research-area

of Design Space Exploration [121]. In order to avoid prohibitive simulation times with ex-

haustive design space exploration, we have employed Genetic Algorithms, which greatly

reduce the time to arrive at the optimal architecture configuration for a given algorithm,

and whose functionality and characteristics will be given in detail later in this chapter.

Th next section relates state-of-the-art on the use of re-configurable computing for

wireless and especially for the link adaptation algorithms. Section IIIdr will give a detailed

introduction of the tools (SimpleScalar) and techniques (Genetic Algorithms) employed in

our methodology. Section IV will describe the framework of our Algorithm-Architecture

run-time co-optimization methodology along-with simulation and results. Finally this

framework will be applied to three different case-studies in section V along with the

conclusion and perspectives in section VI.

5.2 State of the Art

Works related to the use of changing architecture behavior for the continuously changing

needs of link-adaptation algorithms, have to be looked from both the theoretical as well

implementation side. As such we believe that this aspect is largely unexplored and very

few attempts have been made to tackle this joint algorithm-architecture aspect in context

of link-adaptation algorithms in time-varying channels.

5.2.1 From Theoretical Perspective

From a pure theoretical aspect, precisely we will use the bit-loading algorithms as the

link-adaptation method. Recent works relating to bit-loading algorithms and the details

on different bit-loading algorithms, that have been used by us, are given in chapter

2. In a Frequency-Division-Duplex (FDD) system the channel cannot be assumed to

be reciprocal (the channel conditions on which it has received information are not the

same as the ones on which it is going to transmit), and hence each time the channel

varies significantly, the new channel state has to be sent back from the receiver to the

transmitter via a feedback loop, which incurs a feedback delay. Therefore, in a closed-loop

adaptive system, the overall delay till the availability of the optimal bit-configuration

in an adaptation interval includes both the feedback delay and the delay incurred by

execution of the link-adaptation algorithm. The overall delay has a strong impact on the
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Figure 5.5 A model of the Re-configurable architectural platform used for implementa-

tion of Link-Adaptation Algorithms in [Kulkarni07]

performance of an adaptive system. Conventionally, the delay introduced by the link-

adaptive algorithm has not been considered as a source of significant delay, introduced in

the system. This is mainly because of the use of statistics-based bit-allocation algorithms

in practical wireless systems, which incur negligible computational delays. However, with

the increasing processing capability of DSP processors used for MAC and Link-layer

algorithms, the feasibility of implementing computationally expensive subcarrier-based

link adaptation algorithms is increasing day-by-day. With increasing use of subcarrier-

based adaptation algorithms, their computational delay will play an important part in

determining the overall delay of the system. Some notable works dealing with the effect

of delay on the performance of an adaptive system can be found in [122] and [123].

5.2.2 From Implementation Perspective

From the implementation perspective, we have cited in the introduction section some

important works related to the use of re-configurable architectures for the signal pro-

cessing algorithms in a communication protocol. Some other interesting works can be

found in [55] where a MP-SoC (MultiProcessor-System-on-Chip) architecture has been

employed as the implementation platform for an adaptive OFDM cognitive radio. In [56],

the mapping of various baseband algorithms in the HiperLan protocol was investigated

over a flexible architecture, and the resources (ALUs etc.) were allocated on-the-need

basis to different algorithms. Similarly [57] investigates the use of FPGAs for the imple-
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mentation of an OFDM system.

More particularly, since we are concerned with the implementation aspects of the

bit-loading/link-adaptation algorithms, Cudnoch [58] has given a DSP implementation of

an adaptive bit-loading algorithm, intended for a wireless multicarrier system. The per-

formance of the implementation was studied in terms of throughput, given time varying

conditions of IEEE Std. 802.11a. In [59], implementation aspects of the link adaptation

algorithms with respect to the time-varying constraints of a WiMax channel are tar-

geted. In [60] the optimized design of a couple of link-adaptation algorithms for OFDM

based mobile broadband wireless access is implemented and its feasibility evaluated in

the framework of WiMax specifications and similarly in [59] the feasibility of dynamic

partial re-configuration of an FPGA is analyzed for an OFDM system with WiMax spec-

ifications. However, no effort was made to dynamically allocate the resources based upon

the constraints put-forward by the channel (coherence time etc.), which is the goal of this

chapter.

Concerning the use of Genetic Algorithms for the design-space exploration of a con-

figurable processor architecture, some notable works in this regard, though not necessarily

for link-adaptation algorithms, include those of [124–126].

5.3 Tools (SimpleScalar) and Techniques (Genetic

Algorithms) Employed

This section will introduce the optimization techniques and the tool which were employed

for the investigating the relationship between the underlying implementation architecture

of a bit-loading algorithm and the channel delay constraints represented by the channel

coherence time for different scenarios.

5.3.1 SimpleScalar Tool and the Design Space of the Super-

scalar Architecture

SimpleScalar is an execution driven cycle accurate instruction set simulator (ISS) of a

superscalar microprocessor [61]. A complete development chain (compiler, debugger,

profiler) comes with the tool, which allows the quick porting of any ANSI C application

to SimpleScalar. The SimpleScalar toolset is composed of a gcc compiler ported for the
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Figure 5.6 Working Methodology of SimpleScalar Toolset

SimpleScalar architecture which generates SimpleScalar binary files. The SimpleScalar

assembler and loader along with the necessary ported libraries produce SimpleScalar

executables which can be fed directly into one of the provided simulators. The simulator

themselves are compiled with the host platforms native ANSI C compiler. The basic

functioning of the SimpleScalar tool can be represented by figure 5.6 The support libraries

can be modified in that case the glibc source must be installed, modified and built. The

simulators come equipped with their own loader and thus one does not need to build the

GNU binary libraries to run simulations. The toolset comes with a variety of simulators

ranging from untimed functional simulators to cycle-accurate complex simulators.

The SimpleScalar microprocessor micro-architecture is derived from the MIPSIV

ISA with a semantics which is a superset of MIPS [80] with a few exceptions: (1) delay

slots are not used therefore instructions succeeding load, stores and control transfers are

not executed, (2) load and stores support 2 addressing modes: indexed and autoincre-

ment/decrement (3) a square root instruction is included and (4) there is an extended

64 bits instruction encoding. The SimpleScalar microprocessor models an out-of-order

superscalar architecture based on a RUU (Register Update Unit), as shown in figure 5.7.

The RUU exploits a reorder buffer to automatically rename registers and hold the results

of pending instructions. However, completed instructions are retired in program order

to the register file. The microarchitecture supports speculative execution. The memory

system uses a load/store queue and store values are placed in this queue if the store is

speculative. Load instructions are dispatched to the memory system when the addresses
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Figure 5.7 Pipeline Structure of a SuperScalar Architecture

of all previous stores are known and loads may be satisfied either by the memory system

or by an earlier store value reading in the queue if their addresses match. Speculative

loads may generate cache misses but speculative TLB misses stall the pipeline until the

branch condition is known.

The rich set of the various tunable cache, functional units and pipelining parameters

of the processor are described in the table 5.1, where the default values are indicated with

bold. The details on each of these parameters can be found in [61]

5.3.2 Genetic Algorithms for Design Space Exploration

For the class of optimization problems which cannot be directly solved, efficient proba-

bilistic algorithms are required whose solution is approximately optimal. Hill-climbing,

Simulated Annealing, Monte-Carlo methods are all part of such approximate optimization

solutions. For small spaces, classical exhaustive methods usually suffice; for larger spaces

special artificial intelligence techniques must be employed. Genetic Algorithms (GA) are

among such techniques; they are stochastic algorithms whose search methods model the

natural phenomena of genetic inheritance and darwinian strife for survival. GAs have

been quite successfully been applied to optimization problems like wire routing, schedul-

ing, adaptive control, transportation problems etc. The structure of a simple genetic

algorithm is the same as the structure of any evolution program and at each iteration
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Table 5.1: Tunable Parameters of the Superscalar Architecture by SimpleScalar

Module Parameter Name Possible Values

Instruction Cache nsets 64,128,256,512

(Number of Sets)

Instruction Cache bsize 8,16,32,64 (Bytes)

(Block Size)

Instruction Cache assoc 1,2,4,8

(Associativity)

Data Cache nsets 64,128,256,512

(Number of Sets)

Data Cache bsize 8,16,32,64 (Bytes)

(Block Size)

Data assoc 1,2,4,8

(Associativity)

Integer ALU ialu 1,2,3,4,5,6,7,8

Integer Multiplier imult 1,2,3,4,5,6,7,8

Floating-Point ALU fpalu 1,2,3,4,5,6,7,8

Floating-Point Multiplier fpmult 1,2,3,4,5,6,7,8

Register Update Unit ruu 2,4,8,16,32,64,128,256 (Instructions)

(RUU) Size
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Figure 5.8 Structure of a Basic Genetic Algorithm

the relatively good solutions reproduce, while the relatively bad solutions die. The basic

structure of a Genetic Algorithm is given in figure 5.8

Important components of a GA can be identified as:

• A genetic representation for potential solutions to the problem and a way to create

an initial population of potential solutions

• During iteration t, a genetic algorithm maintains a population of potential solutions

and each solution is evaluated by means of a fitness function to give it a measure

of fitness.

• A new population ( iteration t+1 ) is formed by selecting the best fitted indi-

viduals while some members of this population undergo genetic operations, such

as Crossover and Mutation. Crossover combines the characteristics of two parent

solutions to form two offspring solutions containing some characteristics of both

parents, while mutation arbitrarily alters one or more characteristics of a selected

solution by a random change with respect to a given mutation rate.
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5.3.2.1 Population

A population is initiated of legal solutions, selected by choosing random input values.

There are no fixed rules for how large the population should be. The answer is dependent

upon the type of problem. For a simple problem with a regular search space a small

population of 40 to 100 will probably be sufficient. For larger more complex problems

and especially those with an irregular search space larger populations of 400 or more are

recommended. The clue is diversity : a diverse population, i.e. a large one will tend

to search out niches. In engineering terms that means finding elusive, difficult to find

solutions to problems.

5.3.2.2 Fitness

The fitness of individual chromosomes is a relative matter. For example when maximising

a function; if one individual has a higher value than another, then the first individual is

considered fitter. Things get a little more involved with multi-criteria problems. In these

cases comparisons can be carried out to see if an individual dominates other members

of a population by taking all criteria into consideration. If they do, they are considered

fitter. The most dominant, i.e. those who dominate all others, are referred to as Pareto

solutions. These are considered as candidate solutions to whatever problem is being

solved.

5.3.2.3 Selection of the Fittest

GAs operate over a number of generations. Following the evolutionary theme of this

method, this means fitter solutions will tend to survive to the next generation. The

selection method employed by many approaches is the roulette wheel selection process.

In nature all individuals have a chance of surviving from one generation to the next.

Fitter solutions (i.e. those the most dominant ones) have a better chance of survival than

the weaker, more dominated individuals, but weaker individuals still have an opportunity

of surviving. A Roulette Wheel [127] based selection process is commonly employed.

5.3.2.4 Crossover

Nature generates the next generation using a mating process. As a result two parents

create offspring, who consist of the genetic material of both parents. These offspring can



128
Chapter 5 : Algorithm-Architecture Co-Optimization for Delay-Constrained

Link-Adaptation Algorithms

be weaker or fitter than their parents (or similar). If they are weaker they will tend to

die out and if they are stronger their chances of survival are better. GAs try to replicate

this by using a crossover operator. This emulates the mating process by exchanging

chromosome patterns between individuals to create offspring for the next generation.

5.3.2.5 Mutation

Mutation exists in nature and causes an unanticipated change in a chromosome pattern.

This can result in a much weakened individual and occasionally a much stronger one.

Either way the principle behind mutation from an evolutionary point of view is that it

occurs rarely, spontaneously and without reference to any other individual in the pop-

ulation. If the change is beneficial to the general population, then that individual will

tend to survive and will pass this trait on in future replication processes. Because of the

way that GAs represent individuals, this process is a very simple one and a typical mu-

tation operator is relatively easy to implement. These processes occur very infrequently

otherwise they would have a disruptive effect on the overall population.

Further details on Genetic Algorithms can be found in [127]. The values for var-

ious parameters that we employed for our usage of genetic algorithm (population size,

probabilities of applying different genetic operators etc.) will be given in the next section.

5.4 Algorithm - Architecture Co-Optimization for De-

lay Constrained Link-Adaptive Systems

Wireless channels, because of the presence of Inter-Symbol Interference, are selective both

in time and frequency. If in addition to this a user is moving and significant amount of

doppler is present, the coherence-time of the channel gets greatly reduced. For adaptive

systems to work in such channels, the adaptation needs to take place very rapidly cor-

responding with the variations in the channel. Starting from the networks, where user

have low mobility (WiFi), now broadband wireless (WiMax) is targeting those scenarios

where the user speed may vary from pedestrian speeds to the high-velocity inter-city

trains ( 200 km/h ). This strengthens the need to increase the convergence time of

link-adaptation (bit-loading) algorithms or the development of those methodologies that

respond on run-time to the varying delay-constraints of the time-varying channel.
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Figure 5.9 An Adaptive Time-Division Duplex (TDD) System

Our first response to such problematic was to improve the existing bit-loading method-

ologies from an algorithmic point of view and hence the development of the 3-dB subgroup

algorithm [22] which has proven to be far-less complex than some other competitive bit-

loading algorithms. However, for the case where even the best algorithm convergence

time supercedes the coherence delay-constraints of a fast-varying channel, other methods

must be looked for to improve the running-time of the algorithm.

One such possibility is to explore the optimal underlying architecture parameters

with respect to a given algorithm and hence obtain a reduction in algorithm running-time

by optimizing the architecture parameters for a given algorithm. With the increasing use

of re-configurable implementation platforms ( FPGAs, programmable processors etc.),

the idea of optimizing processor configuration becomes realizable.

The basic architecture of a Time Division Duplex (TDD) system is shown in the

figure below. A receiver feedback for the updated Channel State Information (CSI) is

not required in TDD systems because based on the reciprocity assumption, the channel

condition with which information is received can be considered for transmission as well.

Our proposed work methodology is depicted in the figure 5.10. We propose that

initially based upon the system parameters (No. of subcarriers, No. of bits to be allocated,

coherence time etc.), a database for the performances of different processor architecture

configurations is created for all the algorithms available. The fitness function of this

genetic algorithm is the running time of an algorithm over a particular architecture,

which requires actual execution over the processor. Since this execution and evaluation

of a large number of configurations (individuals) is not possible at run-time, considering
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the rapidly varying time-selective wireless channel, a database is created initially, linking

the different configurations with their corresponding total execution time.

This gives the possibility of selecting at run-time the best processor configuration

corresponding to an algorithm and to the varying coherence time constraints and is based

upon the assumption that for a given algorithm and given wireless system parameters, the

optimal processor configuration remains the same for different channel scenarios, which

is what we expect because the form of the algorithm does not change.

Then an algorithm with default processor parameters is assigned for the bit-allocation

process, and checked whether it meets the present coherence time delay constraints or not;

if not, another algorithm is chosen. Once all the algorithm options have been exhausted,

the best configuration meeting the delay constraints is selected and applied for the process

of bit-allocation. In this regard it is important to mention that this proposal of using

different processor configurations at run-time will get more feasible and will result is

higher performance gains as the programmable DSP processor technology is improved.

Also, only the fitness criterion of total execution time is considered in this work, which

is the most relevant in delay constrained time varying channels. However, the same

methodology can be extended to include other system constraints such as the total energy

consumption and total silicon area for different processor configurations. For this purpose,

the single objective Genetic Algorithm for processor configurations optimization will have

to be replaced by the Multi-Objective Genetic Algorithm, which takes into account all

the objectives and constraints at the same time.

We employed the SimpleScalar tool [61] and an underlying Superscalar processor

architecture to calculate the exact number of execution cycles of three algorithms for

optimal bit allocation. The number of execution cycles were evaluated for different cases

corresponding to different number of subcarriers as shown in the horizontal axis of the

figure 5.11 , where the first number indicates the number of subcarriers and the latter

the total number of bits to be allocated. All of these simulations were made employing

the default architecture (No. of ALUs, pipeline width etc.) parameters as described in

the previous section.

It is evident from the figure 5.11 that our algorithm takes a lot fewer execution cycles

than the other algorithms. To see the impact of the underlying architecture parameters,

we implemented the three algorithms for a given set of system parameters (Number of

Subcarriers, Number of Bits to be allocated etc.) for different architecture configurations.
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Figure 5.10 Adaptive Algorithm-Architecture Co-Exploration Framework
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Figure 5.11 No. of Execution cycles for different bit-loading algorithms for Different

System Parameters

Figure 5.12 Exact convergence time of different algorithms for different processor archi-

tecture configurations

The exact algorithm convergence time (in seconds) is given in figure 5.12 for the concerned

algorithms, over various architecture configurations.

To evaluate the gain in the execution times with realistic values, the vehicular

speed range and the operating carrier frequency pertaining to a possible WiMax scenario

were employed, allowing to calculate realistic coherence time constraints. The maximum
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Figure 5.13 Coherence time

doppler shift [128] corresponding to the operation at 3.5 GHz (selected as a middle point

in the 2-6 GHz frequency range ) is given by

fd = v/λ = v/0.086m (5.1)

where v represents the user velocity. The coherence time of the channel which is

dependent on the maximum doppler spread is given by [128]

Tc =

√

9

16πfd
2 (5.2)

If we define the maximum algorithm convergence time constraint as 1/8th of the

coherence time, then the coherence time as well as the respective delay constraint for

upto a maximum of 300 km/h vehicular speed is given in the figure 5.13

Based upon the best convergence time of our algorithm as well as that of Papandreou

et al. as given in the figure 5.12, it can be observed that by varying the underlying

architecture parameters, the range of coherence times for which the algorithm was able

to converge within the given delay constraint gets increased, and can be further increased

as the processing frequency of the underlying processor is increased.

However it is important to mention here that it does not suffice to select that con-

figuration which results in the least execution time, but that configuration is selected

which barely meets the hard delay constraints so as to economize on the use of the area

and energy. In the continuation of this work, we plan to employ Multi-Objective Genetic
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Algorithms so as to pick that configuration which is optimal with respect to multiple

constraints of running time, total power consumption and total area usage etc.

5.5 Conclusion

Efficient resource allocation algorithms are the key to optimize the usage of scarce band-

width and other system resources (total energy, area etc.). The delay associated with

the running-time of the resource-allocation algorithms incurs a strong impact on the per-

formance of the system. Conventionally, only algorithm level modifications are proposed

for the link-adaptation algorithms so as to reduce their complexity or the corresponding

delay. The novel paradigm of Run-Time-Reconfiguration (RTR) opens new possibilities

of reducing the computational delay of the link-adaptation algorithms by exploiting the

architectural flexibility of the underlying platform on the need basis. Hence, it is the

goal of this chapter to run-time tune the parameters of the processor on which the link-

adaptation algorithm is being run, in order to adapt to the time-varying coherence-time

needs of the channel.

Earlier [21] we proposed an improvement from algorithmic point of view to the opti-

mal discrete bit loading algorithm which resulted in reducing the conventional algorithm

complexity by a significant amount. In this work, we have explored the options where

the algorithm convergence time can be further improved by run-time selection of the

underlying processor architecture, which results in meeting the convergence time delay

constraint corresponding to a given coherence time. It was observed that a run-time tun-

ing of the processor parameters results in the operation of link-adaptation algorithm at

higher doppler frequencies/user mobility speeds. The usage of Genetic Algorithm helps

avoid the large simulation times which would be required otherwise for evaluating the

complete design space of a processor architecture. Finally, we believe that the proposed

methodology of run-time exploration of the optimal algorithm as well as the optimal un-

derlying architecture corresponding to multiple system constraints ( convergence delay

constraint, power, area etc.) as well as to the time-varying parameters of a mobile wire-

less channel, can greatly increase the range of doppler frequencies (coherence times) for

which the optimal bit-allocation can be performed.
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Conclusion

This chapter gives a collective view of the contributions made in this thesis in perspective

of the problematic tackled. Important results and deductions that can be inferred from

those results will be mentioned. In addition, directions for the possible continuation of

the work will also be outlined, while taking into consideration the trends and future of

the telecommunications industry.

The world of telecommunications is evolving at a very high pace, with an increasing

number of technologies, services and standards appearing with each passing day. While

any effort to converge towards a universal technology of communication seems futile and

useless, the problematic of anywhere, anytime, any-network, any-service, any-terminal

etc. etc. access is of huge interest for both military and the commercial industry. Con-

vergence, Inter-operability, Adaptation and Co-operation has been found to be the answer

to this problematic. From IP-based 4G networks to multi-mode cognitive radios, from

newly evolved paradigm of Co-operative networks to Spectrum sharing, all are the com-

ponents of the adaptive and co-operative telecommunications future towards which the

world is heading.

The goal of our thesis is to target the complexity issues of the adaptive algorithms

in state-of-the-art communication systems. This complexity issue was not only targeted

from an algorithmic/theoretical point of view, leading to the complexity reduction of

some of the algorithms, but also an effort was made to establish a quantified trade-off link

between the performance and the complexity i.e. between the performance parameters of

an adaptive wireless communication system to the precise complexity issues of an adaptive

algorithm. While a system can be mode adaptive with respect to a large number of its
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parameters, instead of targeting any specific parameter of adaptation, the adaptation

problem was optimized with respect to discrete modulation size (bits), to the continuous

power variable as well as with respect to the channel coding gain of a system and different

contributions were made in each case, as mentioned below.

In chapter 2, our goal was to reduce the complexity of the bit-loading algorithms. A

large number of practical algorithms exist, some of them even applied in wireline (DSL)

systems, but for their usage in wireless systems, the complexity needs to be further

reduced. We have proposed an algorithm, which to our knowledge converges towards the

optimal with the least complexity involved than any other existing practical bit-loading

algorithm. By making use of the Gap Approximation, the algorithm is based on the

classification of all the subcarriers into subgroups of 3-dB with respect to their channel to

noise ratios (SNR) or the corresponding bit-incremental powers. It was discovered that an

inherent pattern of allocation is present underneath the classical optimal Hughes-Hartogs

allocation procedure. This underlying pattern was brought into use for devising the 3-dB

subgroup based allocation algorithm.

The algorithm complexity was not only compared with the classical optimal Hughes-

Hartogs solution but also to that of a recently proposed discrete bit-loading algorithm

by Papandreou et al. [15]. Our proposed algorithm was found distinctively less complex

than the rest of the algorithms. Theoretical complexity analysis results were verified by

comparing the running-time of the three algorithms in terms of the actual number of

execution-cycles over a Superscalar processor by means of SimpleScalar tool, confirming

the reduced complexity of our algorithm.

In chapter 3, our goal was to target the power/energy optimization algorithm. In

this regard, instead of the classical capacity maximizing problem, we tackled the more

practical problem of optimal energy distribution such that the aggregate BER is mini-

mized. Increasing constraints on power-spectral masks are being posed by the regulatory

authorities, dictating the amount of maximum energy/power allowed to be transmitted

at a particular frequency. Hence, alongwith the constraints on total available energy, the

constraint on peak-energy per subcarrier was also included in the optimization problem.

Theoretical developments for BER-optimized energy allocation taking into account

the peak-energy constraint were made and finally a computationally efficient algorithm for

peak-energy constrained energy-allocation was proposed, that converges faster towards

the optimal as compared to other algorithms. The algorithm complexity was compared
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with that of the Iterative Waterfilling solution, which has been proposed in the literature

as an alternate solution. Complexity of the two algorithms was compared by means of

the theoretical complexity analysis as well as by comparing the simulation-time of the

two algorithms for different parameters and the reduced complexity of our algorithm was

demonstrated by means of both of them.

In Chapter 4, our goal was to target the complexity issues of the adaptive channel

coding techniques. This chapter is unique to the previous two in the respect that while

a large number of works and optimization techniques exist for the previous cases, very

few works exist in the literature for the optimization of adaptive coding, particularly for

our choice of Irregular LDPC codes, which have gained a lot of popularity in recent years

because of their superior performance over other competitive coding techniques.

In this regard, it was observed that conventionally the optimization problematic of

irregular LDPC codes has been limited to asymptotic constraints with the assumptions

on infinite code-length and infinite independent decoding iterations, these techniques are

not suitable for the design of finite-length irregular Codes. At the same time, complex

optimization techniques conventionally employed for the optimization of the irregularity

profile for a given channel renders difficulty to optimize the irregularity-profile for the

cases where it needs to be re-optimized a number of times e.g. where the channel is

time-varying. Therefore, we tried to address these problems in chapter 4, where a Greedy

Irregularity Construction (GIC) algorithm was proposed as a technique to progressively

construct the irregularity profile for finite-length codes. This algorithm is based on the

Quantization of the well-known ‘Wave-Effect’ phenomenon, that exists in the Irregular

codes.

The quantization methodology relies on the Majority-Based (MB) hard-decoding

probability of error analysis for irregular codes. Where the classical calculation methods

for the irregular MB hard-decoding analysis are computationally prohibitive to be used,

we proposed a Sum-of-Product-of-Combinations (SPC) based analysis methodology which

has shown to reduce the simulation times by a large factor thereby making the Wave-

Quantization feasible for implementation. Since, to our knowledge this is the first attempt

to perform the ‘quantification’ of the wave-effect, we believe that a continuation of this

work for multiple decoding methods and multiple channels can result in producing yet

more significant results.

Finally, in chapter 5, our goal was to link the complexity issues of an adaptive
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algorithm to the eventual performance of the system thereby making the connection where

the performance constraints dictate the usage of architectural resources or vice vera. It

has been found, that the delay associated with the running-time of the resource-allocation

algorithms incurs a strong impact on the performance of the system. While conventionally

only algorithm level modifications are proposed for the complexity reduction of the link-

adaptation algorithms , the novel paradigm of Run-Time-Reconfiguration (RTR) opens

new possibilities of reducing the computational delay of the link-adaptation algorithms

by exploiting the architectural flexibility of the underlying platform.

Hence, in chapter 5, we proposed a methodology for the optimal selection of the

processor resources/parameters (ALUs, cache etc.) on which the link-adaptation algo-

rithm is being run, to adapt to the time-varying coherence-time needs of the channel.It

was observed that a run-time tuning of the processor parameters results in the usage of

link-adaptation algorithm at higher doppler frequencies/user mobility speeds. The us-

age of Genetic Algorithm helps avoid the large simulation times that would be required

otherwise for evaluating the complete design space of a processor architecture

The contributions made in this thesis can be taken along in a number of interesting

research directions. As mentioned in chapter 2, the 3-dB subgroup based bit-loading al-

gorithm is inherently adapted to the performance to the complexity tradeoff based upon

how large or small the subgroups are made. This, paradigm can be exploited in a number

of channels, to quantify the exact improvements. The Iterative Surplus Re-distribution

(ISR) algorithm that we proposed in chapter 3 can be modified to take into account the

case with multiple peak-energy-constraints, as the case with many emerging wireless sys-

tems. From chapter 4, our proposed methodology of Wave-Quantization can be exploited

for a variety of channels and variety of code-lengths to see the different improvements in

performance. From chapter 5, the Genetic-Algorithm based methodology for the optimal

selection of the processor architecture parameters based on the speed of the algorithm

can be extended to the Multi-Objective case, where consumed energy is also taken into

account alongwith the execution-time of the algorithm. The optimal combination of the

different adaptable parameters (bits, power, coding rate) can also be found, in a scenario

where they all are variables at the same time. Finally, the different levels of improve-

ments caused by the adaptation of each the parameters, can be quantified by linking it

with the amount of architecture resources consumed, thereby proposing a performance-

to-complexity based evaluation unit so as to establish a universal criterion for accurately
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judging the complexity improvements of an algorithm, the absence of which today is

resulting in a significant loss of resources.
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