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pratiques. Je veux aussi adresser mes remerciments à tout les doctorants, post-docs et ingénieurs, nou-
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plusieurs fois et fait découvrir les beautés de sa région en Italie. J’aimerais remercier Rose Bensimon, avec
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Abstract

Medical imaging is one of the most active research topics in image analysis. Analyzing and segmenting
medical images in a clinical context remains a challenging task due to the multiplicity of imaging modal-
ities and the variability of the patients characteristics and pathologies. Medical image processing also
requires a human supervision for interpretation and validation purposes. The numerous applications and
the huge amount of medical image data need complex software that combine high level graphical user
interfaces as well as robust and fast interactive image analysis tools.

Recent research in image segmentation has highlighted the potential of graph based methods for
medical applications. These new tools have generated a great interest in the imaging community. Graph
theory is the framework used in this thesis to propose innovative image segmentation tools. The focus
of this thesis is both theoretical and practical. On the theoretical level, we study properties of minimal
spanning trees, shortest paths trees and minimal cuts and we revisit these notions for image segmentation
purposes. It allows us to derive new theoretical links between minimal spanning trees, shortest paths
trees and minimal multi-terminal cuts. These results highlight the possibilities and the limitations of
each technique for image segmentation problems.

In a second step, we propose some theoretical and practical improvements of image segmentation
based on graph cuts. This structure is particularly interesting for solving a fairly large variety of energy
minimization problems. Our strategy is based on the use of the region adjacency graph produced by the
watershed transform from mathematical morphology. The combination of morphological and graph cuts
segmentation permits us to speed up and define new classes of energy functions that can be minimized
using graph cuts. The use of region graphs gives promising results and can potentially become a leading
method for interactive medical image segmentation.

The third point of this thesis details some qualitative and quantitative studies of medical image
segmentation problems, which is the initial motivation of this work. We show that the developed methods
are well suited for various medical image segmentation problems. We study applications to surgery
simulation, radiotherapy planning and tumors delineation. We show by a quantitative analysis that the
combination of morphological and graph cuts segmentation methods outperforms several recent and state
of the art tools. This study shows that our methods can be used in a clinical context.

The last point of the thesis revisits and extends some classical graph based image segmentation tools.
We revisit the well known watershed transform from the point of view of path optimization and path
algebra. We recall existing properties of the watershed transform and propose some clear definitions of
the watershed transform on graphs. Finally we also propose new extensions of the minimal graph cut
problem for image segmentation purposes. New types of constraints are included in the classical minimal
graph cut problem, which bring this standard problem into the linear programming framework. This class
of combinatorial optimization problems is particulary interesting for image segmentation purposes since
it provides a general framework for various constrained image segmentation problems such as boundary
constrained minimal cuts and various geometric constrained minimal cuts. These new methods show
great potential for various image segmentation scenarios.

Keywords : Image Segmentation, Graphs, Watershed Transform, Tumors Delineation,
Linear Programming.





Résumé

La recherche en imagerie médicale est une des disciplines les plus actives du traitement d’images. La
segmentation et l’analyse d’images dans un contexte clinique reste un problème majeur de l’imagerie
médicale. La multiplicité des modalités d’imagerie, ainsi que les fortes variabilités des structures et
pathologies à analyser rendent cette tâche fastidieuse. Dans la plupart des cas, la supervision de
spécialistes, tels que des radiologistes, est nécessaire pour valider ou interpréter les résultats obtenus
par analyse d’images. L’importante quantité de données, ainsi que les nombreuses applications liées à
l’imagerie médicale, nécessitent des outils logiciels de très haut niveau combinant des interfaces graphiques
complexes avec des algorithmes interactifs rapides.

Les récentes recherches en segmentation d’images ont montré les avantages et les qualité des méthodes
à base de graphes. L’intérêt suscité dans la communauté scientifique a permis de développer et d’utiliser
rapidement ces techniques dans de nombreuses applications. La théorie des graphes constitue aussi la
base de nos travaux. Nous avons étudié les arbres de recouvrement minimaux, les coupes minimales ainsi
que les arbres de chemins les plus courts. Notre étude a permis de mettre en lumière des liens entre ces
structures a priori très différentes. Nous avons prouvé que les forêts des chemins les plus courts, ainsi que
les coupes minimales convergent toutes les deux, en appliquant une transformation spécifique du graphe,
vers une structure commune qui n’est autre qu’une forêt de recouvrement minimale. Cette étude nous a
permis de souligner les limitations et les possibilités de chacune de ces techniques pour la segmentation
d’images.

Dans un second temps, nous avons proposé des avancées théoriques et pratiques pour l’utilisation des
coupe minimales. Cette structure est particulièrement intéressante pour segmenter des images à partir de
critères de minimisation d’énergie. D’une part, nous avons montré que l’utilisation de graphes de régions
d’une segmentation morphologique permet d’accélérer les méthodes à base de coupes minimales. D’autre
part nous avons montré que l’utilisation de graphes de régions permet d’étendre la classe d’énergie pou-
vant être minimisée par coupe de graphes. Ces techniques ont toutes les caractéristiques pour devenir
des méthodes de référence pour la segmentation d’images médicales.

Nous avons alors étudié qualitativement et quantitativement nos méthodes de segmentation à travers
des applications médicales. Nous avons montré que nos méthodes sont pertinentes pour la détection de
tumeurs pour la planification de radiothérapie, ainsi que la création de modèles pour la simulation et la
planification de chirurgie cardiaque. Nous avons aussi mené une étude quantitative sur la segmentation
de tumeurs du foie. Cette étude montre que nos algorithmes offrent des résultats plus stables et plus
précis que de nombreuses techniques de l’état de l’art. Nos résultats ont finalement été comparés à des
segmentations manuelles de radiologistes, prouvant que nos techniques sont adaptées à être utilisées en
routine clinique.

Nous avons aussi revisité une méthode classique de segmentation d’images : la ligne de partages des
eaux. La contribution de notre travail se situe dans la re-définition de cette transformation dans le cas
des graphes et des images multi spectrales. Nous avons utilisé les algèbres de chemins pour montrer que
la ligne de partages des eaux correspond à des cas particuliers de forêt des chemins les plus courts dans
un graphe.



Finalement, nous proposons quelques extensions intéressantes du problème des coupes minimales. Ces
extensions sont basées sur l’ajout de nouveaux types de contraintes. Nous considérons particulièrement
les coupes minimales contraintes à inclure un ensemble prédéfini d’arrêtes, ainsi que les coupes minimales
contraintes par leur cardinalité et leurs aires. Nous montrons comment ces problèmes peuvent être avan-
tageusement utilisés pour la segmentation d’images.

Mot Clés : Segmentation d’images, Graphes, Lignes de partage des eaux, Segmentation
de tumeurs, Programmation Linéaire.
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Introduction

Motivations

Medical image segmentation remains a challenging problem of image analysis. The continuous improve-
ments of the imaging technologies as well as the huge amount of medical image data and applications
require new algorithmic solutions. Medical image analysis has shown numerous new applications in the
last years: computer assisted diagnosis and intervention, surgery planning and simulation, radiotherapy
planning, etc. Most of these applications require the images to be segmented, i.e. the zones of interest,
the pathologies, have to be extracted from the whole image. In these scenarios, the image segmentation
task is only the first step that allows later quantitative measurements, diagnosis, treatment planning,
and modeling of anatomical structures. Our work is motivated by the need to offer fast and robust
image segmentation tools for a clinical routine context. Keeping in mind this constraint, we developed
a whole software for image visualization, analysis and segmentation. This software has been tested for
various medical applications and quantitative studies proved the efficiency of the developed tools. We
have especially proposed new interactive image segmentation tools thanks to the funding of the ”Région
Île-de-France” and the ”Cancéropôle Île-de-France”. All the algorithmic solutions were developed in co-
operation with the ”Institut Gustave-Roussy 1”.

General Framework : Graphs

Our image segmentation tools are based on graphs, which is a rather recent and rapidly expanding area
of image processing. The focus of this thesis work is both theoretical and practical. On the theoretical
point of view, we study properties of minimal spanning trees, shortest paths trees and minimal cuts and
we revisit these notions for image segmentation problems. We detail the properties, the characteristics
and the limitations of these optimal graph structures for image segmentation purposes. We establish in
the first chapter some theoretical links between these structures and give a general framework unifying
several graph based image segmentation methods. We describe then briefly the direct use of these optimal
graph structures for image segmentation purposes and precise which method should be used in which
situations. We address the usual problems met when using graph based segmentation tools and propose
solutions in concordance with our theoretical results.

Combining Morphological and Graphs Based Segmentation

The second part of the thesis is dedicated to innovative methods combining graph cuts and morphological
low level segmentations. We propose in this chapter some practical improvements of image segmentation
based on graph cuts. We detail some mathematical methods commonly used in the image segmentation
community, namely minimal surfaces and Markov random fields. We show how these technique can be

1The Institut Gustave-Roussy pioneered the multidisciplinary approach to the treatment of cancer. It is an undisputed
expert in all the conceptual and technical fields related to cancer.IGR’s activity is centred on rapidly transforming progress
in basic research into clinical applications for the benefit of patients.



efficiently combined with a morphological segmentation in order to speed up the use of these models. We
detail the assumptions and the hypotheses used to approximate solutions of these minimization prob-
lems by considering the region graph of a watershed transform. We also show that the use of a region
adjacency graph of a low level morphological segmentation has a richer potential than a pixel adjacency
graph approach. We describe some new extensions that permit to add shape and statistical constraints
to graph cuts methods. These extensions can only be used on region adjacency graphs, which highlight
the important properties of this representation.

Applications to Medical Image Segmentation

We detail in chapter 4 the medical applications of our segmentation methods. We consider in this chap-
ter three different applications that are nowadays considered as important challenges of medical image
analysis. The first application aims at creating patient specific models of the heart for surgery planning
and simulation. This first application summarizes four months of collaboration with the University of
Aarhus (Denmark) funded by a European Marie Curie fellowship. The second application was realized
in collaboration with the ”Institut Gustave-Roussy”, and aims at segmenting and tracking lung tumors
for radiotherapy planning. This application summarizes a long cooperation with the imaging department
of the ”Institut Gustave-Roussy”, which helped us to develop a software for medical images visualiza-
tion and segmentation. Finally, the last application details a quantitative study of the quality of our
segmentation tools. This application consists in delineating liver tumors. The segmentation results are
compared to segmentation results provided by experienced radiologists. We show, by this application,
that the proposed tools are well suited for the segmentation of liver tumors and moreover we show that
our methods outperform many state of the art methods.

Perspectives

We present in the two last chapters some interesting perspectives of graph based techniques. We first
revisit the well known watershed transform from the point of view of path optimization and path algebra.
We recall existing properties of the watershed transform and propose some definitions of the watershed
transform on graphs. We give a general algorithm that can be used to compute the watershed transform
on graphs based on any optimal path property. These last definitions are then extended to deal with
vector valued images, such as color images.

Finally we also propose new extensions of the minimal graph cut problem for image segmentation
purposes. New types of constraints are included in the classical minimal graph cut problem, which bring
this standard problem into the linear programming framework. We show that this framework is adapted
to solve complex image segmentation problems, such as contours constrained image segmentation (seg-
mentations that have to contain a set of user specified contours), area and perimeter constrained image
segmentation (segmentations that are constrained by geometric properties such as a maximal area and
perimeter limits). These extensions, based on the linear programming formulation of the minimal cut
problem, offer interesting perspectives and opportunities for future work on graph based image segmen-
tation techniques.
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1

Graph Theory

Graph theory appears in modern Mathematics as a branch of Combinatorics and Computer Science. A
graph is a fundamental mathematical structure used to model pairwise relations between objects from
a set. Leonhard Euler is considered as the father of graph theory since his seminal paper on the Seven
Bridges of Königsberg, published in 1736, and illustrated in figure 5.1. Later on, the fusion of ideas
coming from Mathematics with those coming from Chemistry is at the origin of a part of the standard
terminology of graph theory. First, graph theory is extensively used in Chemistry for molecular modeling;
an example is the study of isomers developed by Caley (1875). In particular, the term ”graph” was first
introduced by Sylvester in a paper published in 1878 in Nature [108].

Figure 1.1: The Königsberg bridges problem. There is an island in Königsberg, called ”Kneiphoff”, with
the two branches of the river flowing around it. There are seven bridges crossing the two branches. The
question, solved by Euler, was whether a person could plan a walk in such a way that he would cross
each of these bridges once but not more than once.

Graph theory is then mainly developed as mathematical games during the second half of the 19th
century. Sir William Rowan Hamilton (1805 - 1865), mostly known for the creation of the ”quater-
nions” proposed some ingenious mathematical games related to modern graph theory such as the famous
”Icosian Game”. The idea for the game was first exhibited by Hamilton during a meeting of the British
Mathematical Association in Dublin [51]. Later on, he sold the game for 25 pounds to ”John Jacques
and Son”, a wholesale dealer in games. The ”Icosian Game”, illustrated in figure 1.2, is a strategy game
involving two players. The main problem of the game is to find a ”Hamiltonian circuit”, i.e. a loop, along
the edges of a icosahedron.

Interest in graph theory has also been guided by real life applications such as the study of electrical
networks and circuits. Historically, it was initiated in 1847 with Kirchhoff with an abstract picture pro-
viding the whole information about an electrical network geometry (an electric scheme). Kirchhoffs rules



Figure 1.2: An original copy of Sir William Rowan Hamilton’s famous ”Icosian Game”. Hamilton gave
his name to a large variety of graph structures.

provide a basis for establishing the numbers of linearly independent currents and voltage equations. In
addition, such a graph representation enabled Kirchhoff to formulate, for a network with a finite number
of linear resistors, some methods for computing the current in any of the resistors, knowing the voltage in
the network. Kirchhoff’s work is now considered as the basis of network flow theory and related algebraic
methods.

Graph Theory was then constantly improved since the seminal works of mathematicians of the 19th
century. Graph Theory was also linked to other branches of Mathematics such as Algebra. For instance
algebraic graph theory is a branch of Mathematics in which algebraic methods are applied to graph
problems. Especially, it studies the spectrum of some particular matrices representing graphs. This part
of algebraic graph theory is called spectral graph theory in the literature and has shown to be of great
interest for unsupervised image segmentation.

Graph theory has boomed since 1930 with the work of König, Hall, Erdös, Tutte, Edmonds, Berge,
and many other researchers. Hundreds of papers about graphs have been published since 1930, covering
a large spectrum of real life applications as well as theoretical considerations. Graph is now clearly linked
to Algebra, Topology, and other topics from Combinatorics. Moreover graph theory provides leading ap-
proaches to solve Computer Science, Operations Research, Game Theory and Decision Theory problems.
Two centuries after Euler’s seminal work, the Hungarian mathematician Denés König published in 1936
the first unified graph theory approach in his book ”Theorie der endlichen und unendlichen Graphen”
(Theory of finite and infinite graphs). Later on, a new interest in graph theory took place in the 1950’s
and culminated with the books of Ford and Fulkerson (1962 [36]) as well as the work of the French
mathematician Claude Berge [7]. A major contribution was proposed through the generalization of the
concept of graph by Claude Berge, where a graph may model high order relations between objects (not
only pairwise relations as indicated earlier).

A new interest in graph theory has again appeared in the last years with the development of the
Internet and other communication networks. New problems and applications have emerged from these
technologies and graph theory has again proved to be well suited to solve these new problems. The
structure of many real life applications can thus be described in the terminology of graph theory, such
as:

• the representation of networks: computer networks (Internet), telecommunication network, social
networks, electrical networks, etc.,

• the representation of evolutionary systems and the description of transitions in genetics, demogra-
phy, etc..

• the representation of binary (or high orders) relations in algebra and combinatorics.
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Graph structure is fundamental throughout this thesis to describe images and to treat segmentation
problems. The first chapter of this thesis is an introduction to graph theory and presents the state of
the art methods for graph based image segmentation. This chapter reviews the standard definitions
and notations for graphs and details some basic theorems as well as fundamental algorithms. We first
give our notations in section 1.1. Sections 1.2, 1.3 and 1.4 define the fundamental objects that are
used throughout the thesis, namely graphs, paths, trees, forests and cut sets. Finally some important
properties of these structures as well as classical algorithms of graph theory are detailed. We give some
new results concerning the multi-terminal cut problem, also named multiway cut in the literature. We
detail a post-optimality lemma concerning this problem which is known to be NP-hard. Finally, in section
1.5, we highlight new theoretical links between some optimal graph structures. We give in this last section
some explicit methods that establish an equivalence between classical optimal structures used for image
segmentation.
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1.1 Notations and Definitions

This first section defines the notion of graph and some important related structures.

Definition 1.1.1 (Graph). A graph G is a pair G = (V,E), where V and E are both finite sets. The
elements v ∈ V are called vertices and the elements e ∈ E ⊂ {{i, j}, i, j ∈ V, i 6= j} are called edges. An
edge {i, j} of E is denoted ei,j.

Definition 1.1.2 (Adjacency). We say that an edge ei,j connects i and j. In this case vertices i and j
are adjacent and i is a neighbor of j (and vice versa).

Definition 1.1.3 (Subgraph). Given a graph G = (V,E), the graph G′ = (V ′, E′) is called a subgraph
of G if and only if V ′ ⊂ V and E′ ⊂ E.

Definition 1.1.4 (Edge Weighted Graph). An edge weighted graph G is a triplet G = (V,E,W ), where
(V,E) is a graph and W is a mapping of the set of the edges E into R+. For each edge ei,j of G we write
wi,j = W (ei,j); wi,j is called the weight of the edge ei,j.

Definition 1.1.5 (Weight Map). The mapping W is called the weight map of G = (V,E,W ). The
mapping Wn will denote the mapping of the set of edges E such that the weight of the edge ei,j is equal
to wni,j.

We will sometimes distinguish undirected graphs from directed graphs. In the last terminology, edges
ei,j and ej,i are considered as distinct edges. However in the following we are mainly going to consider
undirected graphs. Our only use of directed graphs is dedicated to the study of graph flows in section
1.3.

Note also that vertices are sometimes called nodes or points. Edges can also be called arcs (espe-
cially for directed graphs) and in this context graphs are called networks. We often use ”graphical”
representations of a graph, as illustrated in figure 1.3.

Figure 1.3: Graphical representation of a graph. Vertices are represented by disks and arcs by lines.

The notion of adjacency in a graph enables us to derive some geometrical properties of graphs. Imagine
that a graph represents a road network. Adjacency relations model road connections between cities. It
is thus possible to derive the notions of travels, walks and paths on a graph.

Definition 1.1.6 (Path). A path π of the graph G = (V,E) is a sequence of edges written π =
(ei,j , ej,l, ...ek−2,k−1, ek−1,k). π is also called a path from i to k. The set of all paths from i to k is
denoted Π(i,k).

Definition 1.1.7 (Generalized Path Length). The n-generalized length of a path π is defined by:

n ∈ N∗, Ln(π) = n

√ ∑
ei,j∈π

wni,j (1.1.1)
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Moreover: 
L∞(π) = max

ei,j∈π
(wi,j) = lim

n→∞


n

√ ∑
ei,j∈π

wni,j


L0(π) =

∑
ei,j∈π 1

(1.1.2)

Note that for a path π, L1(π) is simply the sum of edges weights along the path (also called the
”length” of the path). L∞(π) is the maximum edge weight (also called ”height” of the path), and L0(π)
is by convention the number of edges of the path.

Definition 1.1.8 (Cycle). A cycle or a circuit is a path π = (ei,j , ..., el,k) such that i = k.

Definition 1.1.9 (Connected Component). A connected component G′ = (V ′, E′) of the graph G =
(V,E) is a subgraph of G such that there is a path connecting each pair of distinct nodes of G′. A graph
G is called connected if G is itself a connected component.

Definition 1.1.10 (Tree, Forest). A tree T is a connected graph without cycles. A graph F that has no
cycles and that is not connected is called a forest.

(a) (b)

Figure 1.4: Path and Cycle. (a) A path highlighted in blue from node 1 to 7. (b) A cycle.

Paths and cycles are illustrated in figure 1.4. These notions are very close to the intuitive ideas that
one can have about these structures. The path is a fundamental notion that we will meet in many graph
problems, such as the Königsberg’s bridges problem. In the following chapters, we only consider weighted
and connected graphs. This restriction is not important in our case since graphs encountered in imaging
applications represent images and are always connected.

1.2 Shortest Paths

A classical combinatorial problem of graph theory is the search of a shortest path between two specified
nodes of a graph. Obviously this problem has many practical applications. An example is finding the
shortest way from one town to another on a road map. In this case, the nodes represent towns, and the
edges represent portions of roads weighted by their lengths, or their traveling times, their costs, etc. This
problem can also appear as a subproblem when dealing with more difficult combinatorial problems that
we will detail later. Applications of the shortest path problem are numerous: general traveling problems,
path planning, roads networks optimization, maze problems, etc.

Definition 1.2.1 (Shortest Path). Given an edge weighted connected graph G = (V,E,W ), the shortest
path problem between two nodes vf and vb consists in finding a path π∗ such that the length of π∗ is
minimal:

π∗ ∈ argmin
π∈Π(vf ,vb)

(L1(π)) . (1.2.1)

We recall that Π(vf ,vb) is the set of all paths between vf and vb in G.
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The problem is called the shortest path problem because one can consider edges weights as geometrical
lengths between nodes. In fact, this problem is not easy to solve if we allow arbitrary edges weights. The
problem becomes easier if we restrict ourselves to nonnegative weights. Dijkstra’s algorithm [28] allows
to compute all shortest paths between a source node and all other nodes of a graph weighted by positive
real numbers, This problem is known as the single source shortest paths problem.

Definition 1.2.2 (Shortest Path Tree). Given a source node vf , a shortest path tree SP = (V,E∗) of
G = (V,E,W ) is a tree such that E∗ ⊂ E and for each node i the unique path π∗ in SP from vf to i is
a shortest path in G:

π∗ ∈ argmin
π∈Π(vf ,i)

(L1(π)) . (1.2.2)

Dijkstra’s algorithm wears the name of its discoverer, computer scientist Edsger Dijkstra (1930 - 2002).
For a given source node in the graph, the algorithm finds the paths with smallest lengths between the
source node and every other node. Moreover, the output of the algorithm has the special property to be
a tree graph, where each node is connected to the source through a shortest path, i.e. a shortest path tree.

The algorithm visits first the neighbors of the source node and sorts them depending of their distances
to the source node. The algorithm inserts the visited nodes in an ordered queue depending on their dis-
tances. Neighbors of the queued nodes are then analyzed, sorted and inserted in the queue. The result of
the algorithm is stored as a predecessor map. This map indicates for each node which of its neighbors is
the closest to the source. Another output of the algorithm is the distance map which indicates for each
node the length of the shortest path to the source node. Note also that a node can be inserted many
times in the queue. Predecessors and distances to the source can thus be updated during the process if
a shorter path is found. A proof of correctness of the algorithm can be found in [43]. The complexity of
the described pseudo-code is O(|E|log(|V |)). It is obtained by assuming that the graph is stored as an
adjacency list, i.e. for each vertex a list of its neighbors is stored. We also assume that a binary heap
is used to sort the edges in the queue. The algorithm can be slightly modified to find a shortest path
from a single node to a single destination node by stopping the algorithm once the shortest path to the
destination node has been determined.

Algorithm 1 Dijkstra’s algorithm
Input: Graph G, Root Vertex vf
Output: Predecessor Map PredMap, Distance Map Distmap

for all vertex v in G do
Distmap[v] :=∞
PredMap[v] := v

end for
Distmap[vf ] = 0
INSERT(Queue,vf ,Distmap[vf ])
while Queue is not empty do

u := EXTRACT-MIN(Queue)
for all vertex v adjacent to u do

if (wu,v +Distmap[u]) ≤ Distmap[v] then
Distmap[v] := (wu,v +Distmap[u])
PredMap[v] := u
INSERT(Queue, v, Distmap[v])

end if
end for

end while

Dijkstra Algorithm has also been generalized to deal with a larger class of optimal path problems.
This algorithm is also used as a subroutine for many other graph problems such as network flow problems.
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1.3 Network Flows and Graph Cuts

Network flow is another common problem arising in the field of connected and weighted graph theory.
Like the shortest path problem, edge weights can be interpreted as a physical property. The weights or
the capacity of each arc is here interpreted as the maximum amount of some commodity that can ”flow”
through this arc. A graph is called in this context a network. A network can be used to model currents
in an electrical circuit, traffic in a road system, fluids in pipes, or anything similar in which a certain
fluid travels through a network of nodes. Such a flow is always directed and we make thus a difference
between the flow from node i to j and the flow from node j to i. This assumption forces us to consider
in this section weighted directed graphs, i.e. make a difference between edges ei,j and ej,i.

1.3.1 Definitions

We now introduce the problem of finding a flow from a source node vf to a sink node vb. We call any
real function x : E → R+ of the arcs, a feasible flow between vf and vb in the directed graph G if and
only if x verifies the following conditions:{

0 ≤ x(ei,j) ≤ wi,j , ∀ei,j ∈ E (capacity constraints)∑
j x(ej,i)−

∑
j x(ei,j) = 0, ∀i ∈ V \ {vf , vb}, (flow conservation law) (1.3.1)

The above conditions imply that:∑
j

x(evf ,j)−
∑
j

x(ej,vf
) =

∑
j

x(ej,vb
)−

∑
j

x(evb,j) = f , (1.3.2)

where f is the value of the flow.

We will now focus on the problem of finding a maximal feasible flow from a node vf , called the source,
to a node vb, called the sink. This is a combinatorial optimization problem in which the objective is
to maximize f under the constraints given by equation (1.3.1). Note that both the constraints and the
objective function are linear with the variables x(i, j). We first define the maximal flow problem before
defining its dual problem called the minimal cut problem. This type of linear problem can be often viewed
from two points of views, using the theory of duality.

Definition 1.3.1 (Maximal Flow). Given an edge weighted connected graph G = (V,E,W ), the maximal
flow problem between the nodes vf and vb consists in finding a maximal feasible flow x∗:

x∗ ∈ argmax
x∈Flow

∑
j

x(evf ,j)−
∑
j

x(ej,vf
) =

∑
j

x(ej,vb
)−

∑
j

x(evb,j)

 , (1.3.3)

where Flow is the set of all feasible flows in G. Note that the maximal value of a feasible flow is not
necessarily attached to a unique flow.

We can now define the dual problem called the minimal graph cut.

Definition 1.3.2 (Graph Cut). Given an edge weighted graph G = (V,E,W ) and a set of distinct nodes
T = {t1, .., tk} ∈ V (called terminals), a cut C is a set of edges such that the removal of C from E
separates the terminals in G (i.e. there is no path between each distinct pair of nodes (ti, tj) after the
removal of edges of C).

Note that a cut defined in this way is called a ”multi− terminal” cut in the literature [25], in order
to stress the fact that it separates more than two terminals.
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Definition 1.3.3 (Generalized Cut Weight). The generalized weight of a cut C is defined by:

∀n ∈ N∗, Ln(C) = n

√ ∑
ei,j∈C

wni,j (1.3.4)

Moreover: 
L∞(C) = max

ei,j∈C
(wi,j) = lim

n→∞


n

√ ∑
ei,j∈C

wni,j


L0(C) =

∑
ei,j∈C 1

(1.3.5)

Note that L1(C) is simply the sum of edges weights along the cut (also called the ”weight” of the
cut). L∞(C) is the maximum edge weight (also called ”height” of the cut), and by convention L0(C) is
the number of edges of the cut.

Definition 1.3.4 (Minimal Cut). Let G = (V,E,W ) be an edge weighted graph and T = {t1, .., tk} be a
set of distinct nodes. The minimal cut problem consists in finding a set of edges C∗ of E separating each
terminal ti ∈ T , such that the weight of C∗ is minimal.

C∗ ∈ argmin
C∈C{t1,..,tk}

(L1(C)) . (1.3.6)

where C{t1,..,tk} is the set of all possible cuts separating each terminal ti.

Note that the problem of finding a minimal cut is NP-hard (unsolvable in polynomial time) for cuts
separating more than two terminals. NP-hardness of the problem of multi-terminal cuts is addressed by
Dahlaus in [25]. The multi-terminal cut problem is also our point of interest in section 1.3.3. On the
contrary, the problem of finding a minimal cut between two nodes s and t, often called minimal s-t cut
problem, is solvable in polynomial time.

A famous theorem due to Ford and Fulkerson [36, 27] establishes an equivalence between the maximal
flow between two nodes and the minimal cut value separating these two nodes.

Theorem 1.3.5 (Max-Flow Min-Cut Theorem). For any network the maximal flow value from vf to vb
is equal to the minimal capacity of all cuts separating vf and vb.

The initial maximization problem of computing a maximal flow is equivalent to the minimization
problem of computing a minimal cut. This theorem is a classical illustration of duality in combinatorial
optimization.

1.3.2 (s-t) Cuts and The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm computes the maximum flow in a network. It was published in 1956 in
[27]. The name ”Ford-Fulkerson” is also used for the Edmonds-Karp algorithm, which is a specializa-
tion of the Ford-Fulkerson algorithm. The idea behind the algorithm is very simple: as long as there
is a path from the source node to the sink node, with available capacity on all edges in the path, we
send flow along one of these paths. A path with available capacity is called an augmenting path. The
Edmonds-Karp algorithm is identical to the Ford-Fulkerson algorithm, except that the search order for
finding an augmenting path is defined as a heuristic [30]. For instance, the augmenting path can be found
by first analyzing the set of shortest paths which have some available capacity. An important restriction
on these algorithms, is that they are limited to graph with rational edge capacities, wi,j ∈ Q+. Different
algorithms can also be found in the literature based on other heuristics [42, 29, 15].

By adding some flow along an augmenting path to the flow already established in the graph, the
maximum flow will be reached when no more augmenting paths can be found in the graph. However,
this situation is not guaranteed to be reached. In this case the algorithm runs forever and the flow might
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Algorithm 2 Ford Fulkerson Algorithm
Input: Graph G, Source Vertex s, Sink Vertex t
Output: Flow Map fMap

for all edge ei,j in G do
fMap(ei,j) := 0

end for
while There is a path π such that (∀ei,j ∈ π,wi,j − fMap(ei,j) > 0) do

Find em,n ∈ argmin
(ei,j∈π)

(wi,j − fMap(ei,j))

for all edge ei,j ∈ π do
fMap(ei,j) := fMap(ei,j) + wm,n − fMap(em,n)
PredMap[v] := u

end for
end while

not even converge to the maximum flow. This situation can only occur with irrational flow values. When
the capacities are integers, the runtime of the Ford-Fulkerson algorithm is bounded by O(|E| ∗ f), where
|E| is the number of edges in the graph and f is the value of the maximum flow in the graph. This is
because each augmenting path can be found in O(|E|) time and increases the flow by an integer amount
which is at least 1. One can also notice that the algorithm is based on a path finding problem and
thus the Dijkstra algorithm can be used as a subroutine to find augmenting paths. This heuristic was
initially proposed by Dinic [29] and later on rediscovered by Edmonds and Karp [30]. More recently,
Kolmogorov and Boykov have also presented a similar algorithm where shortest paths are stored in a
suitable tree structure [15]. This last algorithm has been experimentally shown to be very efficient for
imaging applications.

1.3.3 Multi-terminal Cuts

We now focus on the generalization of the minimal cut problem between two nodes. In the minimal
multi-terminal cut problem we are given a weighted graph and a subset of the vertices called terminals.
The problem consists in finding a minimum weight set of edges that separates each terminal from all the
others. The multi-terminal cut problem can also be seen as a partitioning problem since the problem is
to find a partition P = {P1, ..., Pk} of the graph nodes where Pi is a connected component containing
exactly one terminal ti. Our approach of the problem is the one proposed by Dahlaus in [25].

Definition 1.3.6 (Isolating Cut). Let G = (V,E,W ) be an edge weighted graph and {t1, ..., tk} a set of
k specified nodes (called terminals). The isolating cut Ci is defined by the minimal cut between the two
terminals ti and T =

⋃
j 6=i{tj}.

Definition 1.3.7 (Minimum Multi-Terminal Cuts [25]). Given an edge weighted connected graph G =
(V,E,W ) and a set {t1, ..., tk} of k specified nodes (called terminals), the minimum multi-terminal cut
problem consists in finding a cut C separating the nodes of {t1, ..., tk} such that the weight of the cut
L1(C) is minimal.

We recall that the minimum multi-terminal cut problem is NP-hard as soon as the number k of
terminals is larger than two [25]. In the other case (k = 2) the problem can be solved in polynomial time
using some well known graph cuts algorithms proposed in [15]. In the multi terminal case, approximate
bounded algorithms can be used to produce near optimal results [25, 16].

Multi-Terminal Cut Algorithm

The algorithm proposed by Dahlhaus in [25] uses the so-called isolation heuristic, to compute a near
optimal multi-terminal cut. It works with a few iterative binary optimizations of the cut weight. The
algorithm computes a set of k isolating cuts and selects a posteriori the (k−1) smallest cuts, as illustrated
in figure 1.5. One should note that this algorithm is not the most efficient considering the approximation
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bounds of the process. However its simplicity and clarity of the algorithm has permitted us to derive
some properties concerning the isolating cuts.

Algorithm 3 Dahlaus Multi-Terminal Cut Algorithm
Input: Graph G, Terminals {ti}
Output: Multi-Terminal Cut C

for all i ∈ {1, .., k} do
Compute a minimum isolating cut Ci between the terminal ti and the super-terminal T =

⋃
j 6=i tj

end for
C =

⋃
i6=m Ci, where L1(Cm) ≥ L1(Ci), ∀i ∈ {1, .., k}

Theorem 1.3.8 (Approximation Bounds [25]). The Isolation Heuristic constructs a multi-terminal cut
whose weight is guaranteed no to exceed more than 2(k − 1)/k times the optimal weight cut.

Some algorithms can give a better upper bound. The best bounded algorithm, based on a linear
programming relaxation, is presented in [58] with bound ≈ 1.3438. We did not consider this last method
since the isolation heuristic gives satisfying results for the aimed applications, i.e. image segmentation.
On the other hand, Boykov et al. [16] have proposed two minimization algorithms, α-expansion and α−β
swap move, inspired by the simulated annealing process. Their algorithms are particularly adapted to
the computation of multi-terminal cuts depending on a large number of terminals. Our opinion is that
their approach does not improve the results of the isolation heuristic for image segmentation purposes.
Moreover, on the theoretical side, their algorithm does not provide better approximation bounds.

(a) (b) (c)

(d) (e) (f)

Figure 1.5: Multi-terminal graph cut via an isolation heuristic. (a) A graph with three terminals repre-
sented by colored nodes. (b) The minimum cut between t1 and (t2 ∪ t3). (c) The minimum cut between
t2 and (t1 ∪ t3). (d) The minimum cut between t3 and (t1 ∪ t2). (e) Final labeling; the largest cut has
been removed. (f) The true optimal multi-terminal cut.
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Post Optimality

We present a new post optimality result that we have derived from the isolation heuristic. From our
experiments, we noticed that the following property can appear when we apply the isolation heuristic
algorithm:

∀j ∈ {1, .., k}, Cj ⊂
⋃

i∈{1,...,k}\j

Ci . (1.3.7)

The property in equation 1.3.7 means that any isolating cut Cj can be ignored without affecting the
resulting partition of the graph. It is thus not always necessary to remove the largest isolating cut. We
use this property to propose the following post-optimality lemma:

Lemma 1.3.9 (Optimality condition). Let A be an optimal multi-terminal cut, let Ci be k isolating cuts
associated with k distinct terminals, and let C be the union of the k − 1 smallest isolating cuts, then:∀j ∈ {1, .., k}, Cj ⊂

⋃
i∈{1,...,k}\j

Ci

⇒ (L1(C) = L1(A)) . (1.3.8)

Proof: Let A be an optimal multi-terminal cut for G. By removing the set of edges A from G, we
produce k connected components {V1, V2, ..., Vk} where Vi contains ti as its only terminal. Let Ai be the
set of edges in G that link Vi and V −Vi, so that Ai is an isolating cut for ti. Note that every edge e ∈ A
must link two components Vi and Vj , so that e ∈ Ai and e ∈ Aj . It follows that:

k∑
i=1

L1(Ai) = 2L1(A) . (1.3.9)

Now since Ai is an isolating cut the terminals ti and since we found the minimum-weight isolating cut
for each terminal, we necessarily have:

k∑
i=1

L1(Ci) ≤
k∑
i=1

L1(Ai) . (1.3.10)

Moreover the property 1.3.7 implies that:

k∑
i=1

L1(Ci) = 2L1(∪ki=1Ci) = 2L1(C) . (1.3.11)

Therefore, we have:

2L1(C) =
k∑
i=1

L1(Ci) ≤
k∑
i=1

L1(Ai) = 2L1(A) . (1.3.12)

Since A is an optimal multi-terminal cut, we necessarily have: L1(C) = L1(A), therefore C is also a
minimal multi-terminal cut, which concludes our proof.

Lemma 1.3.9 is a sufficient but not necessary condition to check the optimality of a multi-terminal
cut computed with the isolation heuristic. This lemma gives us a possibility to characterize optimal
multi-terminal cuts a posteriori. By assigning a label to each connected component of an isolating cut,
it is possible to check the optimality of the multi-terminal cut by simply checking that all nodes of the
graph are labeled. This process is illustrated in figure 1.6.

We will use the labeling procedure in our examples to highlight that the computed multi-terminal
cuts are optimal. We will also use this procedure for image segmentation.
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(a) (b) (c)

Figure 1.6: Multi-terminal graph cut via an isolation heuristic. (a) A graph with three terminals repre-
sented by colored nodes. (b) The optimality of the multi-terminal cut is checked by labeling the nodes
of each isolating cuts. In this case, some nodes remain unlabeled after the computation of the isolating
cuts and thus the multi-terminal cut obtained by the Isolation heuristic is not guaranteed to be optimal
and in fact the cut is not optimal, see figure 1.5. (c) The true optimal multi terminal cut.

1.4 Trees and Forests

Forests and trees are some fundamental structures used in many various scientific fields. We have already
mentioned this structure earlier in connection with the shortest paths problem. Nature commonly exhibits
this structure and many situations can be represented by tree graphs: family hierarchies, river structures,
etc.. Their usefulness in Combinatorics comes from important properties that are enumerated in this
section. Section 1.4.1 presents the basic notions related to trees and forests. Section 1.4.2 refers to
classical optimization problems related with trees, namely, minimal spanning trees and minimal spanning
forests. Finally section 1.4.3 details the algorithm used to compute a minimal spanning tree of a graph.

1.4.1 Definition

Definition 1.4.1 (Tree, Forest). A tree T is a connected graph without cycles. A graph F that has no
cycles and that is not connected is called a forest.

(a) (b)

Figure 1.7: Tree and forest. (a) A tree: the graph has no cycles and is connected. (b) A forest: the graph
has no cycles and it is not connected (there is no path from the node 2 to 4).

The extensive use of trees in Combinatorics comes from their particular structure. For instance this
structure is also the output of the Dijkstra algorithm described in section 1.2.

Theorem 1.4.2 (Tree properties [62]). Let T = (V,E) be a graph of n vertices (|V | = n), then the
following statements are equivalent:
(a) T is a spanning tree.
(b) T has (n− 1) edges and no cycles.
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(c) T has (n− 1) edges and is connected.
(d) T contains a unique path between any pair of nodes.

Definition 1.4.3 (Spanning trees and forests). Given a connected graph G = (V,E), a spanning tree
T = (V,ET ) of G is a connected graph without cycles such that ET ⊂ E. A spanning forest T = (V,EF )
of G is a non-connected graph without cycles such that EF ⊂ E.

1.4.2 Minimal Spanning Tree

The minimal spanning tree is an optimal structure that we will often meet throughout this thesis. We
especially highlight the usefulness of this structure for image segmentation. We define in this section the
minimal spanning problem and give some important properties of this structure.

Definition 1.4.4 (Minimal Spanning Tree). Given an edge weighted connected graph G = (V,E,W ), the
minimal spanning tree problem consists in finding a spanning tree T ∗ = (V,ET∗) of G such that the sum
of the edges weights of T ∗ is minimal.

T ∗ ∈ argmin
T∈ST

 ∑
ei,j∈ET

wi,j

 . (1.4.1)

Where ST is the set of all spanning trees of G.

Note that a minimal spanning tree of a graph is in general not unique. A rather restricting condition
of uniqueness is that each edge of the graph has a distinct weight. The number of minimal spanning
tree of a given graph may thus be large. Note also that the set of minimal spanning trees of the graph
G = (V,E,W ) is also the set of minimal spanning trees of G′ = (V,E, f(W )), where f : R → R is a
strictly increasing function, because the ordering of edges weights is preserved. An algorithm for com-
puting a minimal spanning tree is given in section 1.4.3.

A slightly different problem from the minimal spanning tree is the minimal spanning forest problem,
where each distinct tree of the forest is constrained to contain a given set of nodes called the roots.

Definition 1.4.5 (Rooted Minimal Spanning Forest). Given an edge weighted connected graph G =
(V,E,W ), the minimal spanning forest rooted on a set of k distinct nodes {t1, ..., tk} consists in finding
a spanning forest F ∗ = (V,EF∗) of G such that each distinct tree of F ∗ contains exactly one root ti, and
such that the sum of the edges weights of F ∗ is minimal.

F ∗ ∈ argmin
F∈SF

 ∑
ei,j∈EF

wi,j

 . (1.4.2)

Where SF denotes the set of all spanning forests of G rooted on the set {t1, ..., tk}.

Construction of Optimal Spanning Forests

A minimal spanning forest rooted on a set of specified distinct nodes {t1, ..., tk}, called roots or terminals,
can be obtained from a minimal spanning tree by several methods.

First, a minimal spanning tree T ∗ = (V,ET∗) of the graph G = (V,E,W ) is computed, then for each
pair of distinct terminals (ti, tj), an edge of maximum weight lying of the unique path from (ti, tj) in T ∗

is deleted, if such a path exists. After the deletion of this edge, a minimal spanning forest is obtained;
moreover each tree of the forest contains exactly one terminal ti. Similarly a maximal spanning forest can
be computed from a maximal spanning tree by deleting the edge of minimum weight along the unique
path between each pair of terminals. This procedure is illustrated in figure 1.8 for the determination of
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a maximal spanning forest.

Another method to obtain a minimal spanning forest consists in adding an extra node A to the graph
G = (V,E,W ). This new node A is then exclusively connected to the terminals {t1, ..., tk}. These new
edges are assigned a null weight, in order that they belong to be in all minimal spanning trees of the
new constructed graph. Finally the minimal spanning tree of the constructed graph induces a minimal
spanning forest in G such that each tree of the forest contains exactly one terminal ti. This procedure is
illustrated in figure 1.9 for the computation of a maximal spanning forest.

Note also that the last procedure can be used to compute shortest path forests. The shortest path
tree of the constructed graph (by adding an extra node and some null weighted arcs connected to the
terminals) induces a shortest path forest in the original graph.

(a) (b) (c)

Figure 1.8: Construction of maximal spanning forests. (a) The original graph G with two terminals
represented by colored nodes (red and dark blue). (b) A maximal spanning tree of the graph G. (c) The
maximal spanning forest (rooted on the red node and the dark blue node) induced by deleting the edge
of minimum weight along the path between the terminals.

(a) (b) (c)

Figure 1.9: Construction of maximal spanning forests. (a) The original graph G with two terminals
represented by colored nodes (red and dark blue). (b) An extra node A is added to the graph G and
exclusively connected to the terminals with infinite weight. (c) The maximal spanning tree of the modified
graph induces a maximal spanning forest of G rooted on the terminals.

Characterization of Optimal Spanning Trees and Forests

We present now some useful characterizations of optimal spanning trees and forests. The following
theorems are important and allow us to derive new results highlighting some links between optimal
structures appearing in graph optimization problems. Optimal spanning trees and forests present some
interesting properties concerning the paths and the cuts induced by these structures. These theorems
highlight some optimal properties of the paths included in a spanning tree and the cut sets induced by
optimal spanning forests. The problems linked to spanning trees are among the oldest problem studied
in graph theory due to the numerous tree structures appearing in real life problems. We refer the readers
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to the following textbook of Gondran and Minoux [43] for proofs and detailed explanations of the results
presented here.

Theorem 1.4.6 (Path Optimality [53]). A spanning tree T ∗ = (V,ET∗) of G = (V,E,W ) is a minimal
spanning tree if and only if it satisfies the following path optimality condition:

∀ek,l /∈ ET∗ ,∀ei,j ∈ π, wk,l ≥ wi,j , (1.4.3)

where π is the unique path from node k to node l in the tree T ∗.

Since there is a unique path between two nodes of a spanning tree, deleting one edge ei,j of a spanning
tree creates two distinct connected components. The set of edges of G that connects these two connected
components in G is thus a graph cut separating nodes i and j. We say that C(i,j) is a cut induced in the
graph G by deleting the edge ei,j in a spanning tree T ∗ of G. This notion of induced cut is illustrated in
figure 1.10.

Theorem 1.4.7 (Cut Optimality [43]). A spanning tree T ∗ = (V,ET∗) of G = (V,E,W ) is a minimal
spanning tree if and only if it satisfies the following cut optimality condition:

∀ei,j ∈ ET∗ ,∀ek,l ∈ C(i,j), wi,j ≤ wk,l , (1.4.4)

where C(i,j) is the cut induced in the graph G by deleting the edge ei,j in T ∗.

(a) (b)

Figure 1.10: Path Optimality and cut optimality of minimum spanning trees, theorem 1.4.6 and 1.4.7.
(a) The unique path in the spanning tree from node k to node l is the set of blue edges. (b) A cut Ci,j
induced by deleting the arc ei,j in the spanning tree. The cut is the set of blue edges.

The path optimality of minimal spanning trees allows us to compute the so-called minimax path
between two nodes of the graph, i.e. the path that minimizes the ”height” of the path between the two
nodes, i.e. that minimizes the maximum edge weight along the path.

Theorem 1.4.8 (Minimax Path [53, 43],). A spanning tree T ∗ = (V,ET∗) of G = (V,E,W ) is a minimal
spanning tree if and only if for all distinct pairs of nodes (vf , vb) of G, the unique path π∗ between vf
and vb in T ∗ is a minimax path:

π∗ ∈ argmin
π∈Π(vf ,vb)

(L∞(π)) , (1.4.5)

where Π(vf ,vb) is the set of paths from node vf to node vb in G.

Alternatively, the cut optimality of minimal spanning trees allows us to compute the so-calledminimax
cut between two nodes of the graph, i.e. the set of edges that minimizes the maximum weight along the
cut. Let us first introduce the notion of spanning forest cut.

Definition 1.4.9 (Spanning Forest Cut). Let G = (V,E,W ) be an edge weighted graph. Let F = (V,EF )
be a spanning forest of G. The set of edges of G that links the trees of F is called a spanning forest cut.

Note that in general a spanning forest cut is a multi-terminal cut [25].
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Theorem 1.4.10 (Minimax Cut [43]). Let F ∗ = (V,EF∗) be a maximal spanning forest of G = (V,E,W )
rooted on a set of nodes {t1, ..., tk}, then the spanning forest cut CF separating the terminals {t1, ..., tk}
is a minimax cut:

CF ∈ argmin
C∈C{t1,..,tk}

(
L∞(CF )

)
, (1.4.6)

where C{t1,..,tk} is the set of all multi-terminal cuts separating the nodes {ti}

Note also that the previous results can be derived in the case of maximal or minimal spanning trees.
We will now describe an algorithm due to computer scientist Prim that computes an optimal spanning
tree of a given graph.

1.4.3 Prim’s Algorithm

A first version of this minimal spanning tree algorithm was first discovered in 1930 by the mathemati-
cian Vojtech Jarnik. Later on, this algorithm was independently rediscovered by the computer scientists
Robert C. Prim in 1957 and Edsger Dijkstra in 1959. It is sometimes called the DJP algorithm, the
Jarnik algorithm, or the Prim-Jarnik algorithm.

The algorithm is an iterative scheme that increases an initial arbitrary set composed of one node.
At each step of the algorithm, an edge connected to the visited nodes is chosen such that its weight is
minimal compared to all other edges connected to the visited nodes. This edge is then added to the tree,
as well as the destination node. This process is repeated until each node of the graph has been visited.
The edges choice ensures that the built tree is a minimal spanning tree. Similarly, a maximal spanning
tree can be built by choosing edges of maximal weight at any step of the process.

Algorithm 4 Prim’s Algorithm
Input: Connected Graph G = [V,E,W ]
Output: Tree T ∗ = [V ∗, E∗,W ∗]
V ∗ = {k}, where {k} is an arbitrary node from V.
while V ∗ 6= V do

Choose edge ei,j ∈ E with minimal weight such that i ∈ V ∗ and j /∈ V ∗
V ∗ = V ∗ ∪ {j}
E∗ = E∗ ∪ {ei,j}

end while

A proof of correctness of the algorithm can be found in [43]. The complexity of the previous pseudo-
code is O(|E|log(|V |)). This complexity is meaningful if the graph is stored as an adjacency list. We also
assume that a binary heap is used to sort the edges that can potentially be included in the spanning tree.

1.5 Links Between Optimal Structures

This section presents new results establishing links between the optimal graph structures that we have
introduced so far. We give in section 1.5.1 a new proof of a result presented by Allène et al. [1],
establishing a link between maximal spanning forest cuts and minimal cuts. Moreover we generalize their
results to the case of multi-terminal cuts. Then, in section 1.5.3 we give a new result concerning minimal
spanning trees and shortest path trees. The theoretical results presented in this section give an explicit
edges weight transformation such that minimal cuts can give the same graph partitions as shortest path
forests and maximal spanning forests.

1.5.1 Maximal Spanning Forests and Minimal Cuts

Let us first recall the result presented in [1] and give some different elements of proof of their results.
Allène et al. have shown that minimal cuts and minimal spanning forest cuts coincide for a particular
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weight map transformation. We extend their result to the case of multi-terminal cuts. This link can be
highlighted using the general framework presented in [47].

Let {t1, ..., tk} be a set of k distinct nodes, called terminals, of a graph G = (V,E,W ). A k-labeling
X of the nodes V , where k ∈ N∗, is a function from V into {1, ..., k}:

X : V → {1, ..., k}
i→ X(i) = xi

We want to find a k-labeling Xn such that:

X∗n ∈ argmin
X∈X


n

√ ∑
ei,j∈E

(wi,j .δ(xi 6= xj))n

 . (1.5.1)

subject to


xt1 = 1
xt2 = 2
...
xtk = k

(1.5.2)

Where X is the set of all possible k-labeling of the nodes, and δ is the indicator function : δ(xi 6=
xj) = 1 if and only if xi 6= xj and δ(xi 6= xj) = 0 otherwise.

This problem is equivalent to the search for a multi-terminal cut since the objective function does
only take into account edges weights connecting nodes assigned with different labels. The last problem
is thus equivalent to the search of an optimal multi-terminal cut C∗ such that:

C∗ = argmin
C∈C{t1,..,tk}

(Ln(C)) . (1.5.3)

Where C{t1,..,tk} is the set of all possible cuts separating each terminal ti from all other terminals. We
are thus interested in the minimal cut of a graph G = (V,E,W ) under the weight map Wn. The case
n = 1 clearly corresponds to the classical minimal cut problem:

X∗1 ∈ argmin
X∈X

 ∑
ei,j∈E

(wi,jδ(xi 6= xj))

 . (1.5.4)

subject to


xt1 = 1
xt2 = 2
...
xtk = k

(1.5.5)

The case n = ∞ has already been studied in [47] with X∗n : V → [0, 1]. Grady et al. have studied
the problem of assigning a real value between 0 and 1 to each node of the graph. We consider here the
problem with a labeling X∗n : V → {0, k}. This last constraint gives slightly different results than those
presented in [47]; moreover our problem turns out to be NP-hard by equivalence to the multi-terminal
cut. Given that:

lim
n→∞


n

√ ∑
ei,j∈E

(wi,jδ(xi 6= xj))n

 = max
ei,j∈E

(wi,jδ(xi 6= xj)) (1.5.6)

the case n =∞ corresponds thus to the minimax cut problem :

X∗∞ ∈ argmin
X∈X

(
max
ei,j∈E

(wi,jδ(xi 6= xj))
)
. (1.5.7)
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subject to


xt1 = 1
xt2 = 2
...
xtk = k

(1.5.8)

which is equivalent to the following formulation:

C∗ ∈ argmin
C∈C{t1,..,tk}

(L∞(C)) . (1.5.9)

The minimax cut problem has already been studied. This problem is related to the maximal spanning
forest problem, as expressed by theorem 1.4.10. The previous relation establishes that increasing the
edges weights under a certain power n implies that the resulting minimal cut produces the same partition
as a maximal spanning forest. Note that the inverse is in general not true. In other words, a maximal
spanning forest cut is not guaranteed to be a minimal cut under the weight map Wn, unless the maximal
spanning forest is unique. This is a generalization of the results presented in [1].

We detail now a convergence property of multi-terminal cuts that we use to build the proof of the
results presented above. Let us first prove the following intermediate lemma:

Lemma 1.5.1 (Sequence Ordering). Let {a1, a2, ..., an} and {b1, b2, ..., bn}, be two finite non increasing
sequences of n real positive numbers. Assume, without loss of generality that: a1 ≥ a2 ≥ ... ≥ an

b1 ≥ b2 ≥ ... ≥ bn
a1 > b1

(1.5.10)

Then, the following property holds:

∃m0 ∈ R,∀m > m0,
∑

1≤i≤n

(ai)m >
∑

1≤i≤n

(bi)m (1.5.11)

Proof:
If b1 = 0, the property is obvious. We suppose now that b1 > 0:∑

1≤i≤n

(bi)m ≤
∑

1≤i≤n

(b1)m = n.(b1)m = ( m
√
n.b1)m (1.5.12)

∑
1≤i≤n

(ai)m ≥ am1 (1.5.13)

It suffices thus to prove that:
am1 > ( m

√
n.b1)m ⇔ a1

b1
> m
√
n (1.5.14)

Since a1 > b1 ⇒
(
a1
b1
> 1
)

and

lim
m→∞

m
√
n = 1 (1.5.15)

We can conclude our proof:

∃m0 ∈ R,∀m > m0,

(
a1

b1
> m
√
n

)
⇔

∑
1≤i≤n

(ai)m >
∑

1≤i≤n

(bi)m (1.5.16)

Moreover if
(
a1
b1

= c
)

: (
c > m0

√
n
)
⇔ m0 >

log(c)
log(n)

(1.5.17)
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Theorem 1.5.2 (Convergence of Multi-terminal cuts). Given an edge weighted connected graph G =
(V,E,W ), a set T = {t1, ..., tk} of k specified nodes (called terminals), and a positive real weight wi,j for
each ei,j ∈ E, then there exists a real number m0 such that for any m ≥ m0 a minimal multi-terminal
cut C∗ of Gm0 = (V,E,Wm0) is also a a minimal multi-terminal cut of Gm = (V,E,Wm).

Proof: Without loss of generality, consider that there exist exactly p distinct multi-terminal cuts Ci
relative to {t1, ..., tk} in the graph G. It is also possible to order the edges weights of each multi-terminal
cut such that the set of multi-terminal cuts of G can be written as:

C1 = {a1, a2, ..., an}, with wa1 ≥ wa2 ≥ ... ≥ wan

C2 = {b1, b2, ..., bn}, with wb1 ≥ wb2 ≥ ... ≥ wbn

...
Cp = {e1, e2, ..., en}, with we1 ≥ we2 ≥ ... ≥ wen

(1.5.18)

Note that each cut is written as a set of n edges. In the case where one of the cut Ci contains less than
n edges, we simply add to the cut Ci some edges of null weights. Assume also that the cuts are ordered
according to the lexicographical ordering of the edges weights: ∃i ∈ [1, ..., n],∀j ∈ [1, ..., i], (waj

= wbj
) and wai

> wbi

∃i ∈ [1, ..., n],∀j ∈ [1, ..., i], (wbj = wcj ) and wbi > wci

...
(1.5.19)

From Lemma 1.5.1, we know that:
∃m1 ∈ R,∀m > m1, Lm(C1) > Lm(C2)
∃m2 ∈ R,∀m > m2, Lm(C2) > Lm(C3)
...
∃mp−1 ∈ R,∀m > mp−1, Lm(Cp−1) > Lm(Cp)

(1.5.20)

We can thus write that:

∃m0 ∈ R,∀m > m0,∀i ∈ [1, p− 1], Lm(Cp) < Lm(Ci) (1.5.21)

Moreover
(
m0 = max

i∈{1,...,p−1}
(mi)

)
, which concludes the proof of theorem 1.5.2 since Cp is the minimal

multi-terminal cut relative to the generalized length Lm(.).

From equation 1.5.9 and theorem 1.5.2, we can finally give the main result establishing the link
between multi-terminal cuts and maximal spanning forest cuts:

Theorem 1.5.3 (Multi-terminal Cuts). Given an edge weighted connected graph G = (V,E,W ), a set
T = {t1, ..., tk} of k specified nodes (called terminals), and a positive real weight wi,j for each ei,j ∈ E,
then there exists a real number m0 such that for any m ≥ m0 a minimal multi-terminal cut C of Gm =
(V,E,Wm) is also a maximal spanning forest cut of G = (V,E,W ).

There are two important points the theorem 1.5.3. First it extends a known result [1] to the case of
multiple terminals and second, it shows that the minimum multi-terminal cut problem is solvable for a
particular edges weights transformation since it is equivalent to the search of a maximal spanning forest
cut. Theorem 1.5.3 is illustrated on an example in figure 1.11.
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(a) (b)

(c) (d)

Figure 1.11: (a) A graph G = (V,E,W ) and three terminals represented by colored nodes. (b) A maximal
spanning forest rooted on the terminals. (c) A minimal cut for the graph G. (d) A minimal cut for the
graph G2. The minimal cut for the graph G2 is also a maximal spanning forest cut for the graph G.

1.5.2 A Note on Optimal Multi-Terminal Cuts

We have shown in the previous sections that an optimal multi-terminal cut for the graphGm = (V,E,Wm)
is also a maximal spanning forest cut for the graph G = (V,E,W ). It is also well known that the multi-
terminal cut problem is NP-hard in general. We want to precise here this link and give some possible
techniques to obtain optimal multi-terminal cuts.

Let us study the example illustrated on figure 1.12. Despite the fact that an optimal multi-terminal
cut converges to a maximal spanning forest cut, the isolation heuristic does not always permit to obtain
this optimal multi-terminal cut as illustrated in figure 1.12. Since the isolating cuts are only composed of
edges with a unique weight equal to 1, rising the weights to a certain power does not affect the result of
the isolating heuristic. Therefore, the isolation heuristic does not always guarantee to produce an optimal
multi-terminal cut. However the optimal multi-terminal cut corresponds to a possible maximal spanning
forest cut as illustrated on figure 1.13.

(a) (b) (c)

Figure 1.12: Optimal multi-terminal cuts. (a) A graph G = (V,E,W ) and three terminals represented
by colored nodes. (b) A multi-terminal cut for the graph G = (V,E,W ) obtained with the isolation
heuristic. (c) A multi-terminal cut for the graph G2 = (V,E,W 2) obtained with the isolation heuristic.
The multi-terminal cut does not change when the power of the weight map increases because all the
isolating cuts are composed of edges having a unique weight equal to 1.
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(a) (b) (c)

Figure 1.13: Optimal multi-terminal cuts. (a) A graph G = (V,E,W ) and three terminals represented
by colored nodes. (b) A maximal spanning forest rooted on the terminals. (c) Another possible maximal
spanning forest rooted on the terminal. The forest on figure (b) also corresponds to an optimal multi-
terminal cut, whereas the forest on figure (c) corresponds to the multi-terminal cut obtained with the
isolation heuristic.

1.5.3 Minimal Spanning Trees and Shortest Path Trees

We present now a new result that connects minimal spanning trees with shortest path trees. Some
related problems have already been studied, especially the link between shortest path trees and minimal
spanning trees when the length of a path is taken as the maximum edge weight value along the path
[1, 2] (the L∞() length). However, these results were already established earlier and given by theorem
1.4.8. We now consider the link between these two structures for the generalized length of a path (Ln()
length). Let us consider the following path minimization problem. Given two nodes vf and vb of a graph
G = (V,E,W ), we want to find a path π∗n such that:

π∗n ∈ argmin
π∈Π(vf ,vb)

Ln(π) . (1.5.22)

We are thus interested in the shortest path from the source node vf to vb under the weight map Wn.

The case n = 1 corresponds to the classical shortest path problem introduced in section 1.2:

π∗1 ∈ argmin
π∈Π(vf ,vb)

L1(π) . (1.5.23)

The case n =∞ corresponds to the following situation:

π∗∞ ∈ argmin
π∈Π(vf ,vb)

(
max
ei,j∈π

(wi,j)
)

= argmin
π∈Π(vf ,vb)

(L∞(π)) . (1.5.24)

This last path property is in particular verified by the unique path between two nodes in a minimal
spanning tree as expressed by theorem 1.4.8. On the other side, the set of shortest paths from one source
node vf can also be structured in a tree. Relation 1.5.24 highlights thus a link between shortest path trees
and minimal spanning trees. In other words it establishes that elevating the edge weights to a certain
power n provides a shortest path tree which is also a minimal spanning tree. Note also that the reverse
is in general not true. A minimal spanning tree is not guaranteed to be a shortest path tree under the
weight map Wn unless the minimal spanning tree is unique.

Theorem 1.5.4 (Minimal Spanning Tree and Shortest Path Tree). Let G = (V,E,W ) be an edge weighted
graph with positive real weights; there exists a real number m such that for any n ≥ m a shortest path
tree relative to Gn = (V,E,Wn) is also a minimal spanning tree relative to G = (V,E,W ).

We can also reformulate this theorem in terms of cut sets:
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Theorem 1.5.5 (Minimal Spanning Forest Cut and Shortest Path Forest Cut). Let G = (V,E,W ) be an
edge weighted graph with positive real weights. Let {t1, .., tk} be a set of distinct nodes; then there exists a
real number m such that for any n ≥ m a shortest path forest cut relative to Gn = (V,E,Wn) separating
the terminals {t1, .., tk} is also a minimal spanning forest cut separating the terminals {t1, .., tk} relative
to G = (V,E,W ).

Note that proofs of these theorems can easily be built following the proofs of theorems 1.5.3. The
proof has to be built on the ordering of edges weights along a path of the graph instead of the ordering
of edges weights along a cut.

The previous theorems are illustrated by an example in figure 1.14. The relation that we have
established in theorems 1.5.4 and 1.5.5 illustrates the links between shortest path trees and minimal
spanning trees from two different points of view.

(a) (b)

(c) (d)

Figure 1.14: Minimal spanning trees and shortest path trees. (a) A graph G = (V,E,W ) and three
terminals represented by colored nodes. (b) A minimal spanning forest rooted on the terminals. (c) A
shortest path forest rooted on the terminals for the graphG = (V,E,W ). (d) A shortest path forest rooted
on the terminals for the graph G2 = (V,E,W 2). The shortest path forest of the graph G2 = (V,E,W 2)
is also a minimal spanning forest of the graph G = (V,E,W ).

1.5.4 From Minimal Cuts to Shortest Path Forest Cuts

The results established in the last two sections give concrete links between structures that seem very
different at the first sight. The conclusion of these results can be illustrated by figure 1.15 that exhibits
the sequence of graph partitions that can be obtained by varying the power of the edge weights of the
graph. These properties are all derived from the characterization of maximal and minimal spanning
forests. Moreover it will allow us to derive new schemes to provide balanced graph partitions that can
vary from minimal cuts to shortest path forest cuts. Note also that these structures may not be unique
for a given graph and that several optimal forests can exist, as well as multiple optimal cuts.

On the other hand, Grady et al. have shown a common framework unifying minimal cuts (from two
terminals), random walkers and shortest paths forests [47]. Their approach of these problems was used in
section 1.5.1 to link multi-terminal cuts and maximal spanning forests cuts. Grady et al. have formulated
these problems as linear or quadratic problems (systems of linear or quadratic equations under linear or
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quadratic constraints). They derived all these problems from a single and general system of equations,
as shown below.

Figure 1.15: The sequence of optimal structures obtained by varying the power of the weight map.

Let {t1, t2} be two distinct nodes of a graph G = (V,E,W ). We want to find a function X∗n : V → [0, 1]
such that:

X∗n ∈ argmin
X∈X


n

√ ∑
ei,j∈E

(wi,j .|xi − xj |)n

 . (1.5.25)

subject to

 xt1 = 0
xt2 = 1
∀i ∈ V, xi ∈ [0, 1]

(1.5.26)

From this general formulation, Grady et al. proved that the case n = 1 corresponds to the classical
minimal cut problem. In this last case the total unimodular property of minimal graph cut guarantees
that the solutions are binary vectors x [43].

The case n = 2 corresponds to the random walker problem studied by Grady in [45]. The random
walker method simulates a random walk on a graph and partitions the graph according to the probabili-
ties that nodes of the graph are attained by a random walker starting his walk at seed node t1 or t2. A
node of the graph will be assigned the label 0 if the probability that a random walker attains the node
from seed node t1 is greater than the probability that a random walker attains the node starting from
seed node t2.

Finally the case n = ∞ is closely related to the shortest path problem. This last problem can be
seen as the discrete counterpart of the minimal Lipschitz extension problem. In this problem, the aim
is to find a function X∗n : V → [0, 1] such that the maximum variation of the function is minimal. This
problem can especially be solved using the shortest path from node t1 to node t2.

We can complete this framework since we also linked maximal spanning forests and minimal cuts.
Our approach has simply consisted in constraining the linear problem to have integer solutions. This
restriction allowed us to derive new links between several optimal graph cuts structures. It is thus also
possible to derive minimal cuts, random walkers, shortest paths and optimal spanning trees from a single
problem formulation, as illustrated in table 1.1 in the case of two terminals.
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Graph Cut Random Walker Grady [47] Spanning Forest Cut
Obj. Function

∑
ei,j∈E

wi,j |xi − xj |
∑

ei,j∈E
w2
i,j |xi − xj |2 max

ei,j∈E
(wi,j |xi − xj |) max

ei,j∈E
(wi,j |xi − xj |)

Domain xi ∈ {0, 1} xi ∈ [0, 1] xi ∈ [0, 1] xi ∈ {0, 1}
Optimization Max Flow Linear System Shortest Paths Spanning Trees

Table 1.1: A unifying framework for minimal cuts, random walkers, shortest paths and optimal spanning
forests from two terminals.

1.6 Conclusion

In this chapter, we have introduced basic structures and algorithms that we use for graph based image seg-
mentation. We have also highlighted some links between these structures. We have shown that minimal
cuts coincide with maximal spanning forest cuts for a particular weight map transformation. Moreover
we have proved these results in the case of multi-terminal cuts, which is known to be NP-hard in general.
However we have shown that the problem can be solvable for a particular edge weights transformation.
We have also shown that shortest path trees and minimal spanning trees of a graph are equivalent for a
particular weight map modification. These links between optimal graph structures is a key point to have
a better understanding of graph based image segmentation.

The new links that we have highlighted establish that minimal spanning trees are a central structure
for graphs partitioning. The theoretical results presented give an explicit weight map transformation
that provides optimal graph structures that vary from minimal cuts to shortest path forest cuts and
maximal spanning forest cuts. We will study in the next chapter the direct use of these structures for
image segmentation. We will also take advantage of the theoretical results that are presented in the last
sections to design robust image segmentation tools.
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2

Graph Based Segmentation

We address in this chapter the use of shortest path forests, minimal spanning forests and minimal cuts
for interactive image segmentation and its associated tools. Indeed these structures take into account
some user specified constraints (terminals for minimal cuts and roots for optimal spanning forests). These
marker-based methods can also potentially be used for a large variety of image segmentation problems.
These graph structures have already been used for image segmentation applications [71, 56, 49, 33, 47, 14].
Minimal spanning forests have mainly been used for hierarchical segmentation [10, 71, 69] and optimal
cycles computation [56]. Shortest path forests have been extensively studied by Falcao et al. [33] through
the so-called image foresting transform, generalizing a large class of morphological operators by the use
of optimal paths forests. Finally, minimal cuts have been studied in connection with energy minimization
problems such as Markov random fields and minimal surfaces [14, 17]. We give in this chapter some alter-
native solutions related to common problems of these optimal graph structures, namely the ”shrinking”
problem of minimal cuts and the ”overflow” problem of shortest path forests. These problems are pre-
sented and possible solutions are proposed according to the theoretical results established in the previous
chapter. We highlight the strengthes and the weaknesses of each of these methods and detail in which
situation which method should be used. We also show that these methods can provide similar results
under particular weight maps.

Section 2.1 introduces the graphs encountered in imaging applications. We define in this section the
notions of pixel adjacency graphs and region adjacency graphs. These structures are the basic graphs that
are used throughout the thesis to describe images. In this chapter we restrict ourselves to the use of the
pixel adjacency graphs and the next chapter will be especially dedicated to the use of region adjacency
graphs for the optimization and the extensions of graph cuts methods. As one of our major interest
is interactive 3D image segmentation, we detail in section 2.2 how user specified constraints for graph
based image segmentation can be incorporated, as markers indicating the objects of interest in the image.
These markers roughly locate the objects to be segmented in the image and are included as constraints
on the optimal graph structures to be computed.



2.1 Graphs Encountered in Image Segmentation

This section presents the graphs commonly encountered in imaging applications. We will consider 2D
and 3D grey level images where each pixel takes a value between 0 (black) and 255 (white). A first level
is the so-called ”pixel adjacency graph” (see figure 2.1 for example). In a second level, an unsupervised
low level segmentation of the image (i.e. a segmentation that provides much more regions than objects
in the image) is used to build a ”region adjacency graph”.

2.1.1 Pixel Adjacency Graphs

In the easiest case, the graph that we consider to represent an image is the ”pixel adjacency graph”, or
informally the pixel graph, as illustrated in figure 2.1. In this case, the set of nodes of the graph is the
set of pixels of the image, and the edges link neighboring pixels. We thus simply need an image and an
adjacency system to build the corresponding pixel adjacency graph. Different common adjacency systems
are illustrated in figure 2.2 and figure 2.3.

(a) (b) (c)

Figure 2.1: Pixel adjacency graph. (a) Original image. (b) Zoom on the outlined area of figure (a). (b)
Zoom on the outlined area of figure (b), each pixel of the image is seen as a node of the graph, edges are
built according to the 4-neighborhood adjacency system.

(a) (b) (c)

Figure 2.2: Adjacency systems and related pixel adjacency graphs in 2D. The figure illustrates some
common adjacency systems used for 2D image processing. Figure (a) illustrates the 4 neighborhood
adjacency system (noted V4) as well as the corresponding adjacency graph. Figure (b) illustrates the 8
neighborhood adjacency system (noted V8). Figure (c) illustrates the 6 neighborhood adjacency system
on a hexagonal grid.

In our applications on 3D images segmentations, we will mainly consider the V6 or the V12 adjacency
systems. For real applications it is always necessary to find a compromise between the algorithmic
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(a) (b) (c) (d)

Figure 2.3: Adjacency systems and related pixel adjacency graphs in 3D. The figure illustrates some
common adjacency systems used for 3D image processing. Figure (a) illustrates the 6 neighborhood
adjacency system (noted V6) as well as the corresponding adjacency graph. Figure (b) illustrates the
18 neighborhood adjacency system (noted V18). Figure (c) illustrates the 12 neighborhood adjacency
system on a cuboctaedric grid (noted V12). Figure (d) illustrates a cuboctaedra which is the polyhedra
associated with the 12 neighborhood adjacency system.

complexity of the method and the precision of the method. Most graph algorithms exhibit an algorithmic
complexity dependent on the number of edges. The adjacency system that we use has thus an important
impact on the speed of the algorithms used on the graph that represents the image. A possible way to
bypass this problem is to consider a region adjacency graph instead of a pixel graph in order to reduce
both the number of nodes and the number of edges of the considered graphs.

2.1.2 Region Adjacency Graphs

Another graph that we consider in our work is called the ”region adjacency graph”, or informally the
region graph. In this case, the set of nodes represents some regions of the image, i.e. some clusters of
pixels, and edges link neighboring regions. A region adjacency graph can be obtained by considering a
low-level segmentation of the image. This low-level segmentation can be obtained from a first unsuper-
vised clustering of the image, for instance one can apply the watershed transform [11, 75], λ-flat zones
labeling [88, 24], or k-means clustering [70] to obtain such low-level segmentations. The idea behind this
technique is to provide a simplification of the image and replace pixels by homogenous regions, which are
in practice small and numerous.

An example of an unsupervised watershed segmentation of an image is illustrated in figure 2.4. Note
that the important contours of the image are preserved during the segmentation and regions of the par-
tition are mostly composed of homogenous pixels (pixels of similar grey values). In the context of the
watershed transform, the images are seen as topographical surfaces. The watershed simulates a flooding
of the image’s gradient from its local minima to detect crest lines of the gradient, i.e. contours of high
contrast in the image. Due to the numerous local minima of the gradient, an over-segmentation of the
image is often obtained by this method when it is directly applied on an natural image. However the
watershed transform performs a good detection of contours of the original images. We will detail in the
next chapter the use of the watershed region adjacency graph in combination with graph cuts.

The quality of this first unsupervised low level segmentation is important to guarantee a minimal loss
of information. An ideal situation would be that important information (major contours) of the original
image appears on this first segmentation.

After the first unsupervised segmentation, each region is seen as a node of a graph, and neighbor
regions are linked according to a given adjacency system. The constructed graph contains both less
nodes and edges than a pixel graph. This property of the region graphs should permit to reduce the
computation time of the applied graph algorithms. A region graph is illustrated in figure 2.5. We will
detail the use of region graphs in the next chapter and highlight the possibilities and the optimizations
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(a) (b)

Figure 2.4: Low-level segmentation. (a) Original image. (b) A low-level segmentation of the image
obtained from a watershed transform. Each region of the watershed is assigned the mean grey level of
the pixels of the first image.

that such a representation allows.

(a) (b)

Figure 2.5: Region adjacency graph. (a) A low-level segmentation of an image. (b) Region adjacency
graph of the previous segmentation. The region adjacency graph provides a compact representation of
the image.

2.2 Marker Based Image Segmentation

This section details the use of markers as constraints for graph based image segmentation. The user (or
an automatic approach) specifies some zones that have to be included in the regions of interest of the
image. These markers are given to indicate the objects and roughly locate the regions to be segmented
in the image. This very simple approach is in fact a powerful tool to incorporate prior knowledge in the
segmentation. The use of seeds or markers is a classical approach of many image segmentation techniques
such as seeded region growing algorithms [3, 4, 34], watershed transform [75, 76] or constrained optimal
forests and graph cuts [47, 13].

The classical use of graph based image segmentation consists in working on the pixel graph of an image.
We consider the image segmentation from a set of markers and compute an optimal forest rooted on the
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markers or a minimal cut separating these markers. The markers specify thus some hard constraints on
the segmentation, each marker is forced to lie in a specific region of the final segmentation.

2.2.1 Constrained Optimal Forests

A way to build rooted forests has already been presented in the previous chapter. However we illustrate
in figure 2.6(b) the procedure that is used in this chapter to compute the results presented later on. First
an extra node is added to the graph and is only connected to the marked nodes. The extra edges have an
infinite weight in the case of a maximal spanning forest or null weight in the case of a minimal spanning
forest and shortest path forest. This choice of edges weights ensures that the marked nodes are roots
of the forests and that each marker lies in a different region of the segmentation. Finally an optimal
spanning tree is computed on this graph, and a spanning forest is obtained with the trees rooted on the
markers. This procedure is always used for the computation of optimal forests. Note also that several
nodes of the graph can be used as markers.

2.2.2 Constrained Minimal Cuts

For the computation of minimal cuts, the markers specify the terminals to be separated. AS described
earlier, several extra nodes are added to the graph and connected to the marked nodes by edges of
infinite weights. These edges ensure that the marked nodes are included in distinct region of the final
partition. As many extra nodes as markers specified by the user are added to the graph to compute the
multi-terminal cut. Finally the minimal cut induces a partition of the original graph that contains as
many regions as markers. This procedure is illustrated in figure 2.6(c); it will always be used for the
computation of minimal cuts between some sets of markers.

(a) (b) (c)

Figure 2.6: Segmentation with markers. (a) The colored nodes specify some object markers. (b) The
spanning tree rooted at the extra node induces a spanning forest rooted at the markers. (c) Three
nodes are added to the graph and are only connected to the marked nodes with infinite weights. A
multi-terminal cut separating these extra nodes induces a separation of the markers in the original graph.
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2.3 Weight map for image segmentation

It is now necessary to define some edge weights that can produce relevant segmentations of the images.
We are going to define an edge weight mapping such that the optimal graph structures provide a good
detection of boundaries of the objects present in the image, i.e. that separate the objects according to
their grey level contrasts [33, 13, 14]. Given a pixel adjacency graph G = (V,E,W ), we consider the
following edges weights mapping:

n ∈ N,∀ei,j ∈ E, wni,j =
(
|pi − pj |
d(i, j)

+ 1
)n

. (2.3.1)

where i and j are two nodes of the graph, pi and pj are the grey level values of neighbor pixels of the
image and d(i, j) is the Euclidean distance between the two neighbor pixels.

wi,j plays the role of a dissimilarity measure between neighbors pixels and can be seen as a local
estimate of the image’s gradient modulus. wi,j is a strictly positive increasing function of |pi − pj |. A
small edge weight means that pixels i and j have similar values, whereas wi,j takes large values when
pixels i and j have significant different values. Note that any kind of strictly positive increasing function
of |pi−pj | could be used to produce similar results. This mapping can also be easily extended to the case
of vector valued images by considering a suitable dissimilarity measure. Note also that from the previous
chapter results, we know that by varying the weight map power n, shortest path forests and minimal cuts
both converge to the minimal spanning forest structure.

This mapping is used for image segmentation using minimal spanning forests and shortest path forests
and

(
1
wi,j

)
is used for segmentation using graph cuts. According to this mapping, a minimal spanning

forest and a shortest path forest should contain edges of low weights, which means that pixels of similar
grey values are included in the same trees. As a consequence, edges between distinct trees of the forest
should have a high weight, i.e. corresponding pixels have different grey levels. On the other side a
minimal cut of the graph is composed of low weighted edges, which correspond to pixels whose values are
different. As a consequence, the optimal graph structures that we are considering should provide a good
detection of object boundaries.

2.4 Application to 2D Images Segmentation

We present in this section some segmentation results obtained on 2D grey level images using optimal
forests and minimal cuts. The aim of this section is to illustrate the strength and the weakness of the
presented methods through simple examples. In the following, a V4 adjacency system have been used to
build the pixel graph of the image.

The first example is the segmentation of an object (a spider) composed of long and thin homogenous
structures. Figure 2.7 illustrates the segmentation result obtained by using a minimal spanning forest of
the pixel adjacency graph. The minimal spanning forest method produces a roughly good detection of
the spider body. The images present an object that is well contrasted. However the tree corresponding
to the object markers does not totally cover the spider and some of the spider’s legs are not correctly
detected, as illustrated on figure 2.7(b).

Figure 2.8 illustrates the segmentation results obtained with a shortest path forest of the pixel adja-
cency graph by varying the power of the weight map. For small power of the weight map, the shortest
path forest does not provide good results and the segmentation method does not detect high contrast
regions as illustrated in figure 2.8(a). In this case the shortest path forest is too sensitive to the markers
location. We denote this problem of shortest path forests as the ”overflow problem”. However when
the weight map power increases, the shortest path forest provides better segmentation results than the
minimum spanning forest, as shown in figure 2.8(c). Finally, as theoretically described in the previous
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(a) (b)

Figure 2.7: Minimal spanning forest segmentation. (a) Original image (789x656) surimposed with Object
(blue pixels) and background (red pixels) markers. (c) Boundaries of the minimal spanning forest, bad
segmentation areas are outlined with blue circles.

chapter, for values high enough of the weight map power, the shortest path forest provides the same
result as the minimal spanning forest.

Figure 2.9 illustrates the segmentation results obtained with a minimal cut of the pixel adjacency
graph by varying the power of the weight map. For small powers of the weight map, the minimal cut
does not provide good results, and the object region is too small, as illustrated in figure 2.9(a). In this
case the minimal cut does not take into account sufficiently the edges weights and the minimal cut simply
minimizes the perimeter of the object region. We denote this problem of small cuts as the ”shrinking
problem”. However when the weight map power increases, the minimal cut provides a relevant segmenta-
tion as shown in figure 2.9(c). Finally, as theoretically described in the previous chapter, for high values
of the weight map power, the minimal cut provides similar results as a minimal spanning forest.

The next example illustrates a classical problem of image segmentation, which is the detection of
objects with missing boundaries, as illustrated in figure 2.10(a). In this scenario the aim of the segmen-
tation task is to recover the missing boundaries of some rectangles.

In this example, minimal spanning forests and shortest path forests do not provide good segmentation
results. These forests structures cannot detect the missing object boundaries. Flat zones of the image
(i.e. areas of equal grey level) cause some problems concerning optimal forests. First, concerning minimal
spanning forests, flat zones of the image can be covered by numerous different minimal spanning forests.
The optimal spanning forest is far from being unique on flat zones of the image. In practice, the for-
est computed by the Prim’s algorithm does not provide a satisfying result, as illustrated on figure 2.10(c).

Concerning shortest path forests, the flat zones problem is less important since flat zones are seg-
mented according to the influence zones of the markers. The pixels of the flat zones are partitioned
according to their distances to the markers, as illustrated in figure 2.10(d). Shortest path forests provide
thus a better segmentation than minimal spanning forests. Note also that the shortest path forest on a
flat zone is also a possible minimal spanning forest of the image. Moreover increasing the weight map
power does not affect the segmentation result since the edges of a flat zone have all the same weight.

The weakness of minimal cuts illustrated in the previous example (the problem of small cuts, the

47



shrinking problem) is in this example an advantage. Minimal cuts provide relevant results for the seg-
mentation of objects with missing boundaries, as illustrated in figure 2.10(e). Firstly, the boundaries
of the objects are correctly segmented, secondly flat zones are segmented so that the perimeter of the
object is minimized. The minimal cut in a flat zone is composed of a set of edges of minimal cardinality.
In other words, in the flat zones the missing object boundaries are composed of boundaries of minimal
length. This property of minimal cuts permits to recover the missing boundaries of the rectangles.

2.5 Multi-Labels Segmentation

Finally, the previous techniques can also be used to provide multi-label segmentations. In this case the
user must provide specific markers for each object as illustrated in figure 2.11. Then, we consider the
segmentation as a minimal spanning tree rooted on the markers, see figure 2.11, as well as a shortest
path forest rooted on the markers, see figure 2.12 and finally a minimal multi-terminal cut separating
the markers, illustrated in 2.13. The remarks formulated in the previous section are still true in the case
of a multi-label segmentation. The optimal graph structures suffer from the same limitations and an
appropriate weight map power allows to obtain relevant results.

In the case of multi-terminal cuts, we also show the unlabeled nodes produced by the Dalhaus algo-
rithm to illustrate the non-optimality of the computed multi-terminal cuts, see figure 2.13. This set of
unlabeled nodes decreases when the weight map power increases, and finally the set of unlabeled nodes
is empty for high values of the weight map power. This property guarantees that the computed multi-
terminal cut is optimal.

2.6 Summary

These first illustrations permit now to detail the weakness and the strength of the presented optimal
graph structures:

• Minimal spanning forests permit to detect homogenous and highly contrasted regions. Unfortu-
nately, low contrasted structures are not correctly segmented by this structure. This fact is mainly
due to the non-uniqueness of the minimal spanning forest in this kind of areas. Note also that
minimal spanning forests do not take into account any kind of regularization in low contrasted
areas. Minimal spanning forests can be computed in O(|E|log(|V |)) and is in practice the fastest
method studied in this chapter.

• Shortest path forests also permit to detect homogenous and highly contrasted regions. Unfortu-
nately, for low weight map power the shortest path forests suffer from the ”overflow problem”.
Shortest path forests are especially sensitive to the markers location. Low contrasted structures are
also not well segmented by this structure. However shortest path forests take into account a kind
of regularization in low contrasted areas; the segmentation is, in these areas, composed of the zones
of influence of the shortest path trees. Shortest path forests can be computed in O(|E|log(|V |))
and is in practice slower than minimal spanning forest.

• Obviously minimal cuts also permit to detect homogenous and high contrasted regions of an image.
Unfortunately, for low weight map power the minimal cut suffers from the ”shrinking problem”.
Minimal cuts sometimes provide segmentations of minimal perimeter. However this problem of
graph cuts can sometimes be used advantageously since low contrasted areas and missing boundaries
can be retrieved by segmentations of minimal perimeter. Minimal cut is the slowest method studied
in this chapter in terms of computation time.
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(a) (b)

(c) (d)

Figure 2.8: Shortest path forest segmentation for increasing weight map power. (a,b,c,d) Weight map
power n = 2, 4, 6, 16. Bad detection area is outlined with a blue circle. Segmentation result for n = 6 is
better than the one obtained with the minimum spanning forest, the legs of the spider are better detected.
The shortest path forest is equivalent to a minimal spanning forest for n = 16.
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(a) (b)

(c) (d)

Figure 2.9: Minimal cut segmentation for increasing weight map power. (a,b,c,d) Weight map power
n = 2, 4, 6, 16. Object regions using minima cut do only cover the spider body. The minimal cut is
equivalent to a minimal spanning forest cut for n = 16.
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(a) (b)

(c) (d) (e)

Figure 2.10: Objects with missing boundaries segmentation. (a) Original image (533x477). (b) Markers.
(c) Minimal spanning forest segmentation. (d) Shortest path forest segmentation. (e) Minimal cut
segmentation.
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(a) (b)

(c)

Figure 2.11: Minimal spanning forest segmentation. (a) Original image (400x300). (b) User provided
markers. (c) Minimal spanning forest rooted on the markers.
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(a) (b)

(c) (d)

Figure 2.12: Shortest path forest segmentation. (a-d) Segmentation results using the shortest path forest
rooted on the markers with increasing weight map power, n=1,2,4,10.
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(a) (b)

(c) (d)

Figure 2.13: Multi-terminal cut segmentation. (a-d) Segmentation results using the multi-terminal cut
separating the markers with increasing weight map power, n=1,2,4,10. Unlabeled nodes are shown as red
pixels. The set of unlabeled nodes, which gives an information on the optimality of the multi-terminal
cut, usually decreases when the weight map power increases. For n=10, the computed multi-terminal cut
is guaranteed to be optimal since all nodes are labeled.
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2.7 Conclusion

Minimal cuts suffer from a shrinking problem, this technique often produces small cuts which are not
relevant for image segmentation. The presented results offer an alternative way to compute minimal cuts
which does not suffer from this problem. This procedure is faster than other methods proposed in the
literature such as normalized cut [92], nested cut [112], spectral graph partitioning [97] and isoperimetric
graph partitioning [46]. Indeed these methods are mainly based on the minimization of a ratio between
the length of a cut and the area enclosed in it, which permit to obtain balanced partitions. However
these methods require more complex and computational costly optimization tools, such as linear algebra
tools for the computation of eigenvalues and vectors of large matrices.

On the other side, shortest path forests suffer from an overflow problem. This technique is very sen-
sitive to the position and the distance of the pixels from the markers. Finally, minimal spanning forests
seem to offer a good trade-off between these two last techniques and offer stable results. However we have
seen that a particular weight map modification permits to use these methods and reduces their respective
problems. However it seems that there is no particular method to compute automatically an ideal weight
map power and very high weight map power can lead to numerical problems.

The presented methods are also adapted to different situations. The shortest path forests are par-
ticulary adapted to the segmentation of thin structures of homogenous grey level. On the other side
minimal cuts are particulary adapted to the segmentation of compact objects with missing boundaries.
Finally optimal spanning forests offers a good trade off between shortest paths forests and minimal cuts.
It is also important to be aware of which method is potentially more adapted to a given problem since
their computational complexities are different. Optimal spanning forests are the fastest methods but
only permit to segment well contrasted structures. Shortest path forests exhibit a higher complexity but
permit to detect thin and poor contrasted structures. Finally minimal cut is the slowest method but
permit to detect low contrasted and compact structures.
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3

Combining Morphological and Graph Cuts Seg-
mentation

This chapter introduces two mathematical models widely used for image segmentation: geometric geodesics
(2D images) and minimal surfaces (3D images), as well as probabilistic Markov random fields. We present
optimization methods that we have developed to speed up the use of these mathematical models. Our
approach consists in working on the ”region adjacency graph” of a low-level morphological segmentation.
These segmentation methods are based on the minimization of energy functions. We first detail how
to design the objective functions and how to build the corresponding graph such that a minimal cut
produces an optimal configuration for the studied models. We show that this approach offers a good
trade-off between speed and precision compared to the classical use of graph cuts on the pixel graph. In
both geometric and probabilistic models, we consider minimal graph cut on a region adjacency graph to
minimize the objective functions.

We consider in this chapter the use of the region adjacency graph of an unsupervised watershed
transform of the image. This low level segmentation consists in computing the watershed transform from
all minima of the image’s gradient modulus. The term ”unsupervised watershed transform” denotes in
this chapter the partition obtained by applying the watershed algorithm on the image’s gradient modulus.
This low level segmentation produces an output with numerous small regions. We make two assumptions
to motivate our use of the region graph:

• first, this transform preserves all important boundaries of the image. The use of a region graph,
instead of a pixel graph, should not penalize the detection of images boundaries. This property will
be used to compute approximate geometric geodesics and minimal surfaces.

• this transform contains meaningful regions of homogenous intensities. The use of a region graph,
instead of a pixel graph, should not penalize the detection of homogenous regions of an image. This
property will be used to compute approximate maximum a posteriori estimates of probabilistic
Markov random fields.

This chapter is subdivided as follows: section 3.1 introduces the general framework for minimizing
an energy function with graph cuts. This framework is used to prove that the mathematical models we
define later in the chapter can be optimized via graph cuts.

Section 3.2 presents the unsupervised watershed transform and its region adjacency graphs. In sec-
tion 3.3, we detail how to compute approximate geodesics and minimal surfaces from a region adjacency
graph. We especially consider curves of minimal perimeter and surfaces of minimal area in Riemmanian
spaces. This approach is illustrated through interactive segmentation of 3D medical images [100, 107].
We also compare our approach, in terms of computational complexity and precision to the classical use of



this model at the pixel level. We show that the use of a region graph offers a good trade-off between speed
and accuracy compared to the pixel graph, moreover it permits to introduce new geometric constraints
in the segmentation which are impossible to consider at the pixel level.

Finally, section 3.5 introduces the probabilistic Markov random field model for image segmentation
and restoration. Markov random fields are powerful models for the restoration and the segmentation of
images. Unfortunately using this method on the pixel graph is computationally costly and cannot always
be used interactively on large datasets, such as 3D medical images. We present in this section a novel
method to compute fast image segmentations using the Markov random field model and a morphological
low-level segmentation. This technique allows us to use interactively this model on large datasets. This
approach is used for the restoration of noisy data and the segmentation of 3D micro-tomography images
of micro-structures [104].
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3.1 Energy Minimization via Graph Cuts

Let us first introduce some generalities about energy minimization via graph cuts. In the last years,
graph cuts have been widely used as an optimization process to minimize energy functions associated
to common computer vision problems such as stereo vision, image segmentation or image restoration
[17, 13, 14, 16, 65]. The key idea is that a graph cut implicitly defines an optimal labeling of the pixels
of an image.

Let us consider a graph G = (V,E,W ). Assume that two extra terminal nodes s and t are added
to the graph, these terminal nodes being connected to all nodes of the graph with the set of edges
Es = {es,i, i ∈ V } and Et = {ei,t, i ∈ V }. We denote this new graph as Gs,t = (V ∪{s, t}, E∪Es∪Et,W ).
Let ai ∈ R+ be the weight of an edge es,i ∈ Es, bi ∈ R+ the weight of an edge ei,t ∈ Et and wi,j ∈ R+

the weight of an edge ei,j ∈ E. Note that we restrict our attention to graphs in which it is possible to
compute a minimal cut, i.e. a graph with positive edges weights.

We associate to a graph cut Cs,t, separating the nodes s and t, a labeling function xi such that for
i ∈ V, xi = 1 if a path exists from node i to node s after the removal of edges of Cs,t and xi = 0 otherwise.
We assign a distinct label of the set {0, 1} to each connected components of the graph after the removal
of the graph cut Cs,t depending if this connected component contains the node s or t. This labeling
procedure is illustrated in figure 3.1.

(a) (b)

Figure 3.1: (a) A graph with two additional nodes s and t. (b) A cut Cs,t separating the terminal nodes
s and t. The colors of the nodes indicate whether the nodes are assigned the label 0 or 1.

The weight of any cut Cs,t in the graph Gs,t can then be written as:

L1(Cs,t) =
∑
i∈V

ai.xi +
∑
i∈V

bi.(1− xi) +
∑
ei,j∈E

wi,j .(1− xj).xi . (3.1.1)

We can then separate constant terms from the terms depending on up to two binary variables:

L1(Cs,t) =
∑
i∈V

bi +
∑
i∈V

(ai − bi).xi +
∑
ei,j∈E

wi,j .xi −
∑
ei,j∈E

wi,j .xi.xj . (3.1.2)

L1(Cs,t) =
∑
i∈V

bi +
∑
i∈V

(ai − bi +
∑
j∈V

wi,j).xi −
∑
ei,j∈E

wi,j .xi.xj . (3.1.3)
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Finally the weight of a cut in the graph Gs,t can be written as a function E(x1, ..., xn) (n = |V |) of
the binary variable field xi:

E(x1, ..., xn) = L1(Cs,t) = A+
∑
i∈V

αixi +
∑
ei,j∈E

βi,j .xi.xj . (3.1.4)

Where: 
A =

∑
i∈V

bi ,

αi = (ai − bi +
∑
j∈V

wi,j) ,

βi,j = −wi,j .

(3.1.5)

From this formula we can state the following characterization of energy functions of binary variables
that can be minimized via graph cuts:

Theorem 3.1.1 (Energy Minimization via Graph Cuts). Any function which can be written as a sum
depending on up to two binary variables xi ∈ {0, 1}:

E(x1, ..., xn) = A+
∑
i∈V

αixi +
∑
ei,j∈E

βi,j .xi.xj

can be exactly minimized by graph cuts if and only if A ∈ R+, αi ∈ R and βi,j ∈ R−.

A constructive proof of this theorem can easily be given by following the procedure that we described
to obtain the graph Gs,t. Since a cut of minimal weight can be found in the graph Gs,t, it is straightfor-
ward to verify that the weight of the cut will also minimize the energy function E(x1, ..., xn). Moreover
the labeling process associated with the graph cut provides explicitly which configuration of binary vari-
ables is optimal for a given energy E. A proof of the theorem can be found in [61] or [37].

This theorem is the key result for the researchers working on energy minimization using graph cuts
[61, 37]. Kolmogorov and Zabih [61] have characterized energy functions which can be written as a sum
depending on up to three binary variables that can be minimized via graph cuts and Freedman et al. [37]
have extended these results to the class of energy functions depending on n binary variables.

These results are very useful since graph cuts can potentially be an excellent optimization method as
soon as the energy function to minimize fulfills the conditions of Theorem 3.1.1. We will see in the next
sections that at least two usual mathematical models used for image segmentation can in fact be solved
using graph cuts as an optimization tool. We will especially consider the computation of curves and sur-
faces minimizing a given Riemannian metric, as well as the maximization of the a posteriori estimation
of a Markov Random Field.

3.2 Morphological Segmentation

A low-level morphological segmentation is used in this chapter to produce a simplification of the image,
and afterwards only the region adjacency graph of the low-level segmentation is considered to build
the final image segmentation. We consider here the low-level segmentation of the image produced by a
watershed transform. An example of an unsupervised watershed segmentation of an image is illustrated
in figure 3.2. The watershed transform [75], from mathematical morphology, allows to obtain a partition
of an image composed of small and numerous homogenous regions. Moreover important contours of
the image are preserved during the segmentation and regions of the partition are mostly composed of
homogenous pixels (pixels of similar grey values). The quality of this first unsupervised segmentation
is important to guarantee a minimal loss of information, an ideal situation would be that important
information (contours and/or homogenous regions) about the original image is accessible from this first
segmentation. These observations are not theoretically guaranteed but these assumptions are verified
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when working on real life problems and natural images. Another important point is that the common
watershed transform algorithm proposed by Meyer exhibits a linear complexity [72]. The time needed by
the watershed transform is in practice negligible compared to the graph cuts algorithm.

(a) (b)

Figure 3.2: Low-level segmentation. (a) Original image. (b) A low-level segmentation of the image
obtained from a watershed transform. Each region of the watershed is assigned the mean grey level of
the pixels of the first image.

Section 3.3 is devoted to the extraction of an optimal curve or a surface composed of boundaries
of the low-level segmentation (curve of minimal length in a specific Riemannian space, or a surface of
minimal area). In this context we study the characteristics of the image on the boundaries of the low-level
segmentation. We assume in the following section that a near optimal curve or surface can be extracted
from a watershed low-level segmentation. Contrary to the classical use of the pixel graph, which takes
into account all possible curves and surfaces of the lattice, we only consider the set of curves or surfaces
composed by the union of contours of the watershed segmentation. The quality of the low-level segmen-
tation is thus important since it must provide all important boundaries of the image (i.e. curves and
surfaces that are representative of some objects of the image).

In section 3.5, image segmentation is considered from a probabilistic point of view. In this context
we study the characteristics of the image inside regions of the low-level segmentation. We assume in this
section that homogenous regions can be extracted from a watershed low-level segmentation. Contrary to
the classical use of the pixel graph, which takes into account the grey level of each single pixel, we only
consider the average grey level inside a region of the low-level segmentation.

3.3 Minimal Surfaces and Geodesics

Geodesics and minimal surfaces are widely used for medical image segmentation and are considered as a
leading method for a wide range of applications. Up to now at least two distinct approaches of the problem
are used to compute such segmentations. First, geodesic active contours [20] use a differential geometry
framework to compute optimal contours minimizing a given Riemannian metric. Second, Boykov and
Kolmogorov [14] have proposed a method based on integral geometry to compute similar contours using
a graph representation of the image and graph cuts. In this section we present a technique to compute
approximate geodesics and minimal surfaces using a low-level segmentation and graph cuts optimization.
Our approach is designed to speed up the computation of minimal curves and surfaces by considering a
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subset of interesting curves and surfaces composed of the contours of the watershed transform.

3.3.1 Differential Geometry Approach

One of the first applications of differential geometry in image segmentation has been introduced by Kass
et al. in [59]. The method, called ”snakes”, as well as many variants of active contours models, has
been widely used for image segmentation. An important development has been introduced via a new
representation of active curves and surfaces [81], [91]. Parametric active contours have been replaced by
an implicit representation of curves and surfaces via level-sets. This representation allows topological
changes of curves and a better handling of numerical schemes to achieve the energy minimization. A
further development of active contours has been introduced by Caselles et al. in [20, 21] with ”Geodesic
active contours”. This method simplifies the energy function to be minimized. The problem is formalized
as the minimization of the energy:

E(C) =
∫ |C|ε

0

g(‖∇I(C(s))‖)ds , (3.3.1)

where |C|ε is the Euclidean length of a curve C, s is the arc length on the curve. g is a positive and
strictly decreasing function and ‖∇I(C(s))‖ is the modulus of the gradient of the image I along the curve
C.

The aim of the method is to find a curve such that the contrast (modulus of the gradient) of the
image along the curve is maximal. This method is in fact equivalent to the minimization of the length of
the curve C according to a Riemannian metric. The Riemannian metric depends here on the modulus of
the gradient of the image I. The length of a geometric curve under a Riemannian metric can be written
as:

|C|R =
∫ |C|ε

0

√
τTs D(C(s))τsds , (3.3.2)

where τs is a unit tangent vector to the curve C and D is a positive definite matrix, called the metric
tensor, specifying the local metric. In the ”Geodesic active contours” method [20, 21] the local Riemannian
metric at a point p is given by the following positive and symmetric matrix:

D(p) =
(
g(‖∇I(p)‖)2 0

0 g(‖∇I(p)‖)2

)
= g(‖∇I(p)‖)2. Id2 , (3.3.3)

where Id2 is the identity matrix. The length of a geometric curve under the Riemannian metric given
by equation 3.3.3 is then equal to the energy function defined by equation 3.3.1. ”Geodesic active con-
tours” method aims to minimize the energy given by equation 3.3.1 via a gradient descent scheme and
a level-sets representation of curves. Unfortunately, the method is sensitive to initialization and there is
no guarantee that the global minimum of the energy is reached with this optimization process. However
the method can also be extended to three dimensions [20, 21]. We will detail in the following sections
how to compute a curve or a surface minimizing exactly this energy.

3.3.2 Integral Geometry Approach

Contrarily to Caselles et al. [20, 21], Boykov and Kolmogorov [14] have considered the computation
of minimal surfaces and geodesics based on the Cauchy-Crofton formulas of integral geometry. French
mathematician Augustin Louis Cauchy (1789-1857) established a formula which relates the length of a
curve C to a specific measure of a set of lines intersecting it.

Let L(ρ, θ) be a straight line of R2 characterized in polar coordinates by the two parameters (ρ, θ).
The Cauchy-Crofton formula expresses that the Euclidean length of a regular curve C in R2 under the
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form:

|C|ε =
1
2

∫ π

0

∫ ∞
−∞

N(ρ, θ)dρdθ , (3.3.4)

where N(ρ, θ) is the number of intersections of L(ρ, θ) with C.

This formula can also be extended to Riemannian spaces [14], the length of a curve C according to
the metric tensor D is then given by:

|C|R =
1
2

∫ π

0

∫ ∞
−∞

detD

2(uTLDuL)3/2
N(ρ, θ)dρdθ , (3.3.5)

where uL are the unit vectors in the direction of the line L. This formula is valid for any continuously
differentiable and regular curve in R2.

These last formulas can be used in the case of a discrete space. Let Nn be an adjacency sys-
tem defined on a discrete isotropic grid of size δ. Nn can be described as a finite set of vectors ek,
Nn = {ek : 1 ≤ k ≤ n}, where n is the number of distinct vectors describing the adjacency system. Each
vector ek generates a family of lines as illustrated in figure 3.3 where each line is separated by a distance
∆ρk from the closest line of the family. Now let θk be an angular parameter. For a fixed θk, we obtain a
family of parallel lines separated by a distance ∆ρk as illustrated in figure 3.3.

(a) (b)

Figure 3.3: (a) The 8-Neighborhood adjacency system. (b) The Cauchy-Crofton formula establishes a
link between the Euclidean length of a curve C and the intersection of C with a finite set of lines.

Equation 3.3.4, considered in a discrete space, gives the following approximation of the Euclidean
length of a curve C [14]:

|C|ε ≈
1
2

n∑
k=1

(
∑
i

nc(i, k)∆ρk)∆θk =
n∑
k=1

nc(k)
δ2∆θk
2|ek|

. (3.3.6)

Where i indexes the kth family of lines. nc(i, k) counts the number of intersections of line i of the kth

family of lines with curve C. nc(k) =
∑
i nc(i, k) is the total number of intersections of the kth family of

lines with C. This approximation is used in the next section to compute the length of a curve defined on
a discrete grid. Moreover this formula is linked to the cost of a graph cut.
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3.3.3 Minimal Surfaces and Geodesics via Graph Cuts

Boykov and Kolmogorov [14] have considered the computation of minimal surfaces and geodesics separat-
ing two sets of pixels representing the ”object” markers and the ”background” markers. Two additional
nodes s and t are respectively connected to ”object” markers and ”background” markers. ”s-links” and
”t-links”, arcs connected to s or t, are given an infinite capacity to ensure that the the segmented regions
respectively contain the ”background” markers and the ”foreground” markers as illustrated in figure 3.4.
This method is the same as the method presented in the previous chapter for the computation of a min-
imal graph cut separating a set of marked nodes.

(a) (b)

Figure 3.4: (a) Graph construction with two markers. (b) A Graph cut in the constructed graph.

Boykov and Kolmogorov [14] have connected the cost of a graph cut to the length of a curve crossing
the edges of the cut as shown in 3.3. Let us consider an image embedded on a discrete grid and let Nn be
an adjacency system defined on the image. As described in the previous section, the adjacency system
defines a family of lines. The cost of a graph cut C in the constructed graph is equal to:

L1(C) =
n∑
k=1

nc(k)wk . (3.3.7)

Where nc(k) is the number of arcs of family k included in the graph cut, and wk is the weight of the arcs
of family k.

The Cauchy-Crofton formula given by 3.3.6 can be directly used to set arcs weights such that the cost
of a graph cut approximates the Euclidean or Riemannian length of a curve that would cross the edges
of the cut C:

L1(C) =
n∑
k=1

nc(k)wk =
n∑
k=1

nc(k)
δ2∆θk
2|ek|

, (3.3.8)

The previous relation can also be extended to Riemannian metrics by using the following edges weights
[14]:

wk(p) =
δ2.|ek|2.∆θk.det(D(p))

2(eTkD(p)ek)3/2
. (3.3.9)

Where wk(p) is the weight of the arcs leaving the node p, and D(p) is the local Riemannian metric at
node p. Note that the previous expressions can also be extended to 3D spaces [14]. These relations take

64



a very simple form, assuming the 4-neighborhood system, or the 6-neighborhood system (in 3D), and a
discrete grid of size δ = 1, we have:

w(p) ∝ det(D(p))
2(eTkD(p)ek)3/2

. (3.3.10)

Considering the metric tensor defined by equation 3.3.3, we have:

w(p) ∝ g(‖∇I(p)‖)4

2(g(‖∇I(p)‖))3
= g(‖∇I(p)‖) . (3.3.11)

These formulas show explicitly that the cost of a graph cut is related to the geometric length of a
curve crossing a graph. Unfortunately, using this method on the pixel graph is computationally costly
and cannot always be used interactively on large datasets such as 3D medical images. We present in the
next section a novel method to compute fast approximate geodesics and minimal surfaces from an initial
low level segmentation of the image.

3.3.4 Approximate Geodesics and Minimal Surfaces

The combination of graph cuts with a watershed low-level segmentation provides us an explicit way to
compute geodesics and minimal surfaces. Our basic assumption is that the geodesic to be computed
is embedded in the watershed low-level segmentation contours. This proposition is motivated by two
observations. Firstly, the unsupervised watershed transform, without pre-processing or marker selection,
produces an over-segmentation of real images. Secondly, the watershed lines contain all major boundaries
of the image. We propose thus to solve the following combinatorial problem: finding a curve composed of
a finite union of watershed contours such that the curve minimizes a given geometric functional as illus-
trated in figure 3.5. We will solve this problem by using graph cuts optimization on a region adjacency
graph, as originally proposed by Li et al. [65] for interactive photo edition.

Following the method of Caselles et al. [20], we consider a curve C defined by a finite union of
watershed contours and minimizing the following energy:

|C|R =
∫ |C|ε

0

√
τTs D(C(s))τsds . (3.3.12)

Let us first consider the pixel graph G = (V,E,W ) of an image. We also define the region adjacency
graph GR = (VR, ER,WR) of the watershed transform where VR = {rk, k ∈ [1, ...n]} is the set of nodes
(i.e the regions of the watershed transform). Note that rk is also a set of nodes of the pixel graph. ER is
the set of edges (i.e the neighborhood relation between regions) and WR is the set of weights of the edges
as illustrated in 3.6.

Let us define F(ri,rj) as the set of edges of the pixel graph between two regions ri and rj of the
low-level watershed segmentation:

F(ri,rj) = {em,n ∈ E | m ∈ ri, n ∈ rj} . (3.3.13)

One should note that the set F(ri,rj) depends on the adjacency system of the pixel graph G. The
set of edges of the pixel graph describes also implicitly a set of curves between the regions ri and rj as
illustrated in figure 3.6. Let us now define C(ri,rj) as the set of curves that can cross the edges of F(ri,rj).
Using Cauchy-Crofton formulas, it is possible to compute the length |C(ri,rj)|R of the boundaries between
two regions of the low-level segmentation. Note also that if regions ri and rj are not adjacent, F(ri,rj)

and C(ri,rj) are simply empty sets.

We consider the following strictly positive and decreasing function g:

g(‖∇I(p)‖) =
(

1
1 + ‖∇I(p)‖

)k
. (3.3.14)
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(a) (b)

(c) (d)

Figure 3.5: Comparison between approximate and exact geodesics. (a) Pixel graph and markers. (b)
Geodesic computed on the pixel graph. (c) Region adjacency graph. (d) Geodesic computed on the
region adjacency graph.

The parameter k ∈ R+ is a smoothing parameter as shown in chapter 1. In our application this parameter
was set to k = 2.

Following Cauchy-Crofton formulas with the V4 adjacency system, the Riemannian length of the
contour |C(ri,rj)|R is approximated by:

|C(ri,rj)|R ≈
∑

(em,n∈F(ri,rj))

g(max (‖∇I(m)‖, ‖∇I(n)‖)) , (3.3.15)

where (‖∇I(m)‖, ‖∇I(n)‖) are the gradient magnitude of the end nodes of em,n.

The edges weights of the region adjacency graph are then set such that the weight of a graph cut
equals the Riemannian length of the curve it implicitly defines:

wri,rj
= |C(ri,rj)|R =

∑
(em,n∈F(ri,rj))

(
1

1 + max (‖∇I(m)‖, ‖∇I(n)‖))

)k
. (3.3.16)

The Riemannian metric works as an edge indicator of the image I and takes a small value if neighbors
pixels m and n take different grey values pm and pn. Note that the Riemannian length |C(ri,rj)|R of the
boundary between two regions is simply obtained by summing the local contrasts along the boundaries
between these two regions. The weight wri,rj

approximates the Riemannian length |C(ri,rj)|R of a curve
C(ri,rj) crossing the edges of (F(ri,rj)) in the case of a 4-neighborhood adjacency system. According to
the Cauchy-Crofton formula, the number of edges (em,n ∈ F(ri,rj)) indicates the number of intersections

66



(a) (b) (c)

Figure 3.6: (a) Region adjacency graph of a low-level watershed segmentation. (b) The set of nodes of
the pixel graph considered to compute boundary properties between regions, with a V4 adjacency system.
(c) A curve crossing the edges of the borders between regions r1 and r2.

of a curve with the horizontal and vertical lines describing the 4-neighborhood adjacency system. Alter-
natively, the Cauchy-Crofton formulas can also be used to compute the approximate Riemannian length
of the curves C(ri,rj) between two adjacent regions in the case of different adjacency systems. However
in our applications we only consider the 4-neighborhood (in 2D) and 6-neighborhood (in 3D) systems for
simplicity.

Our minimization problem is reduced to the search of a curve among all curves implicitly described
by the frontiers of the watershed regions instead of searching among all curves in the domain of the
image. This approximation reduces drastically the search space and thus speeds up the computation of
minimal curves. The quality of the low-level segmentation has also a direct impact on the quality of
the approximation. Note also that the method can easily be extended to three dimensional spaces by
considering sums along surfaces instead of curves. The aim of the segmentation task is now to find a
surface S that minimizes the following energy:

|S|R =
∫ ∫

S

g(||∇I(x, y)||)dxdy , (3.3.17)

where S is a surface and g is a positive and strictly decreasing function.

We can use the same edges weights defined in equation 5.3.9, and apply them on the region adjacency
graph in 3D (wri,rj

= |S(ri,rj)|R). Note that in 3D F(ri,rj) describes implicitly a set of surfaces S(ri,rj)

separating regions ri and rj . Our formulation is thus independent of the dimension of the underlying
space.

3.3.5 Application of Minimal Surfaces to Medical Image Segmentation

This section illustrates the presented method by two studies concerning medical image segmentation.

The first example illustrates the method on the segmentation of the liver in a 3D CT image. The
difficulty is that the liver presents low-contrasted boundaries. For such structures, the use of minimal
surfaces remains a leading method. The graph cuts used on the watershed adjacency graph (see figure
3.7(a)) outperforms the results given by the classical marker-controlled watershed segmentation [75] (see
figure 3.7(d)) and speeds up the graph cuts method proposed by Boykov et al. [14] (see figure 3.7(c))
without affecting the quality of the segmentation.

The last example illustrates the extension of the presented method in the case of multiple organs
segmentation by multiple minimal surfaces. This extension uses multi-terminal cuts to compute each
minimal surface. The example illustrates the segmentation of the liver, the lungs and the kidneys in
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a 3D CT image. The liver and the kidney present low-contrasted boundaries and the segmentation of
such organs remains a difficult task. For this application, minimal surface is a leading method that
outperforms the classical marker-controlled watershed segmentation as shown in figure 3.8. Indeed, the
marker-controlled watershed does not detect the contours of the liver due to the low contrast between
this organ and the surrounding tissue.

Table 3.1 compares the graph sizes using our method and the graph cuts approach proposed in [14].
The nodes reduction factor and the edges reduction factor are respectively equal to |V |

|VR| and |E|
|ER| . The

results show that our method greatly reduces the graph sizes. This property has also a direct impact on
the computation time needed for the segmentation, since graph cut algorithms exhibit a computational
complexity proportional to both the graph nodes and edges number.

Table 3.2 illustrates the computation time needed by the three methods presented above: the marker-
controlled watershed [75], our method, and the minimal surfaces by graph cuts proposed in [14]. The
results show that our method reduces drastically the computation time. Moreover it does not seem to
affect the results quality, as illustrated in figures 3.7 and 3.8.

Considering that the watershed transform contains all major boundaries in real images, our approxi-
mate segmentation is in practice quite efficient. However the graph cuts approach works slower than the
classical marker-controlled watershed but offers more stable results. On the other hand our method is
not as precise as the graph cuts method proposed by Boykov et al. [14], but it offers a good trade-off
between speed and precision.

A Graph cuts approach cannot always be used on large images when the graph considered is the
pixel adjacency graph because of the memory requirements and the computational complexity of the
method. The developed method can efficiently be used on large images considering the region adjacency
graph instead of the pixels graph. Our method does not seem to introduce large biases in the resulting
segmentation of natural images. Limitations of our methods are quite clear since it can only be used
when an over-segmentation can be obtained. The next section presents an interesting extension of our
methodology by considering geometric properties that cannot be taken into account at the pixel level.

Image Size Nodes Reduction Factor Edges Reduction Factor
Cardiac MRI 86x128x90 11.1 5.25

Liver CT 256x193x179. 24,3 14,2

Table 3.1: Comparisons of Graphs Sizes.

Image Watershed Transform [75] Our method Exact Min. Surfaces [14]
Cardiac MRI 1,5 sec. 4,2 sec. 15,2 sec.

Liver CT 9,7 sec. 41,6 sec. 1400,2 sec.

Table 3.2: Comparisons of computation time.
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(a)

(b)

(c)

(d)

Figure 3.7: Liver Segmentation . (a) CT of the thorax and markers (256x256x128). (b) Approximate
minimal surface computed by our method. (c) Exact minimal surface. (d) Marker-controlled watershed
transform.
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(a)

(b)

Figure 3.8: CT image of the thorax (256x256x128). (a) Surface Rendering and orthogonal cuts of the
original data surimposed with the presented segmentation method. (b) Surface Rendering and orthogonal
cuts of the original data surimposed with the marker controlled watershed segmentation.
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3.4 Shape Constrained Curves and Surfaces

We highlighted, in the previous section, that the region graph offers a good trade-off between speed and
precision for the computation of geodesics and minimal surfaces. We want to point out now that a region
based approach is also richer than a pixel approach since a wide class of geometric functionals can be
computed on each region of the watershed transform. We give now some precision about the constraints
that may be added to the energy function given by equation 3.3.12.

A classical geometric constraint, widely used in the active contour community, is a smoothness con-
straint depending on the curvature of the curve or the surface to be computed. The graph cut method
used on the pixel graph can unfortunately not handle such a constraint because the curvature or any
smoothness term cannot be measured locally at the pixel level. Obviously, such a constraint can be added
in our methodology since smoothness of each region contours can be easily computed. For instance cur-
vature, or any measure of smoothness of the border between two adjacent regions, can be computed and
used to add a shape constraint to the energy to be minimized. Let us consider the following edges weights
:

wri,rj
= |C(ri,rj)|R + α.κ(ri,rj) , (3.4.1)

where κ(ri,rj) is a function of (ri, rj) measuring the smoothness of the contour C(ri,rj). α is a free
parameter used to balance the effect of the smoothness term. For α = 0, the edges weights correspond to
the classical weights used to compute geodesics. A simple and robust measure of this smoothness can be
for instance the morphological tortuosity of the contours. This factor is given by the following formula,
for 2D contours:

κ(ri,rj) = 1.0−
(
‖p1 − pn‖
|C(ri,rj)|ε

)
, (3.4.2)

where p1 and pn are the endpoints of the contour C(ri,rj), ‖p1 − pn‖ is the Euclidean length between
these end points, and |C(ri,rj)|ε is the Euclidean length of the contour. κ(ri,rj) measures if the contour
C(ri,rj) is close to a segment. In the case where C(ri,rj) is a segment, κ(ri,rj) = 0, in any other case
0 < κ(ri,rj) ≤ 1.

Figure 3.9: Morphological tortuosity for 2D curves. The smoothness of a curve is expressed as the ratio
between the Euclidean length of the segment of its end points and the Euclidean length of the curve.

The defined edges weights penalize regions that do not have smooth boundaries. A minimal graph cut
of the region graph should thus be composed of edges corresponding to regions of the low level segmen-
tation having high contrast and smooth boundaries. Figures 3.11 and 3.10 compare some results using
the classical geodesics and the regularized geodesics computed on a region graph, i.e. computed with the
weights given by equation 3.4.1. The examples illustrate that the use of a smoothing parameter provides
better perceptual results. Moreover only a region graph can bring this information into the classical
graph cut framework. Note also that the extension of the method is also possible in 3D, by considering
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curvature of region boundaries or a distance between the regions boundaries and the best fitting planes.

The use of a region adjacency graph is thus potentially richer than a pixel approach since it can
take into account a larger class of geometric functionals. We have presented a method that considers
the smoothness of the low level segmentation. First, the use of a region graph offers a good trade-off
between speed and accuracy compared to the pixel graph, moreover it permits to introduce new geometric
constraints in the segmentation which are impossible to consider on the pixel graph.

(a) (b)

(c) (d)

Figure 3.10: Natural image segmentation. (a) Original Image (480x360). (b) Markers. (c) Unsupervised
watershed segmentation. (d) Geodesic computed on the region graph. (e) Geodesic regularized with the
morphological tortuosity of the contours, α = 0.5.
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(a) (b)

(c) (d)

Figure 3.11: Chest X-ray, right lung segmentation. (a) Original Image (1058x769). (b) Markers. (c) Un-
supervised watershed segmentation. (d) Geodesic computed on the region graph. (e) Geodesic regularized
with the morphological tortuosity of the contours with, α = 2.0.
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3.5 Markov Random Fields

This section presents the image segmentation problem as a maximum a posteriori (MAP) estimation of
a Markov random field (MRF). This model has been introduced by Besag [8] and later on by Geman
and Geman in [40] for the optimal restoration of binary images. In this context, an image segmentation
is seen as an optimal configuration of a Markov random field which has to be estimated from a given
noisy image. This chapter recalls some definitions and useful properties of Markov random fields as
well as the simplest model used for segmentation. This model is based on the well known Ising model is-
sued from ferromagnetism [55]. Later on, this model has been extended to the multiple label case [54, 17].

We will also present some extensions that allow to use Markov random fields in combination with a
morphological low level segmentation. This combination permits to speed up the use of Markov random
fields without affecting practically the quality of the segmentation. As in the previous section, the opti-
mal random field configuration is computed by a minimal graph cut [17, 48]. We will also present some
extensions of the Ising model with contrast preserving models.

3.5.1 Definitions

Let us consider a graph G = (V,E) composed of n nodes V = {v1, ..., vn}. The set of neighbor nodes of
a given node vi is denoted as Ni. The considered adjacency system leads to some specific configuration
of connected nodes. These configurations are called the cliques of the graph, see figure 3.12.

Definition 3.5.1 (Clique). A clique in an undirected graph G is a set of nodes C such that for every
couple of nodes in C, there exists an edge connecting the two nodes. The size of a clique is the number
of nodes it contains.

In this section, we study the optimal labeling of the graph nodes, such that each node vi of the graph
is assigned a label xi in L = {0, 1}. Let us consider a field of random variables (Xi)i∈V where each
random variable Xi takes a value xi in the set L.

In this probabilistic context, a possible labeling is denoted as the event {X1 = x1, .., Xm = xm}.
{X1 = x1, .., Xm = xm} is abbreviated as X = x where x = (xi)i∈V is a specific configuration of the
random field X. Pr(X = x) = Pr(x) denotes the probability that the random field X takes the specific
configuration x. Pr(Xi = xi) = Pr(xi) denotes the probability that a given node i is assigned the label
xi. We denote by Ω the set of all possible configurations x.

Definition 3.5.2 (Markov Random Fields). X is a Markov Random Field if and only if it satisfies the
following conditions: {

∀x ∈ Ω, P r(x) > 0, (positivity)
∀p ∈ V, Pr(xi|xV \{i}) = Pr(xi|xNi

), (markovianity) . (3.5.1)

Each random variable Xi depends on other variables in the field X only through its neighborhood, xNi
=

(xi)i∈Ni .

Markov random fields are related to Gibbs random fields, which is a well known probabilistic model
used in statistical physics to describe particles systems.

Definition 3.5.3 (Gibbs Distribution). The probability distribution Pr(x) is a Gibbs distribution if and
only if it can be written as:

Pr(x) =
1
Z
exp(−U(x)) , (3.5.2)

where U(x) =
∑

Cl∈N
VCl(x) is an energy function. Cl is the set of cliques associated to an adjacency

system N . VCl is called the clique potential. Z =
∑
x∈Ω

exp(−U(x)) is called the partition function.
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A Markov random field is characterized by its local property (the markovianity) whereas a Gibbs
random field is characterized by its global property (the Gibbs distribution). However Hammersley and
Clifford [52] have established the equivalence of these two types of random fields. A proof of this theorem
can be found in [9] and [60].

Theorem 3.5.4 (Gibbs Markov Equivalence Theorem [52, 9, 60]). X is a Markov random field on V
with respect to N if and only if P (X = x) is a Gibbs distribution.

(a)

(b)

Figure 3.12: Cliques. (a) 4 neighbors adjacency system and associated cliques. (b) 8 neighbors adjacency
system and associated cliques.

3.5.2 Maximum A Posteriori Estimation

Let x = (xi)i∈V , xi ∈ {0, 1}, be a binary field. Assume we are given a noisy version p = (pi)i∈V , pi ∈ [0, 1],
of this binary field. We can use the Bayesian inference framework to estimate the original vector x by
maximizing the posterior probability:

Pr(x|p) =
Pr(p|x).P r(x)

Pr(p)
. (3.5.3)

The Bayesian model has become increasingly popular in the computer vision community. There are
at least two reasons for that: first, the conditional probability Pr(p|x) is easy to model; it represents the
likelihood of the observation p given a state of the model x. This term is called the data term. Secondly,
the Bayesian inference allows to integrate prior knowledge about the configuration x through the term
P (x). In our study we model the field x to be estimated as a Markov random field.

Problem Statement

Given an image I, we wish to obtain the configuration of labels x that maximizes the posterior probability
Pr(x|p). From equation 3.5.3:

Pr(x|p) ∝ Pr(p|x).P r(x) , (3.5.4)
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since Pr(p) is constant for a given realization p.

It follows that the maximum a posteriori estimate x must maximize the following energy function:

x̂ = argmax
x∈Ω

(Pr(p|x).P r(x)) . (3.5.5)

Prior Model Pr(x)

We first consider that the field of labels x is a Markov random field (MRF). According to the Hammerseley
Clifford theorem, Markov random field x follows a Gibbs distribution:

Pr(x) ∝ exp(−
∑
Cl∈N

VCl(x)) . (3.5.6)

For simplicity we restrict our attention to MRF’s whose clique potentials involve only pairwise inter-
action:

Pr(x) ∝ exp(−
∑
i∈V

∑
j∈Ni

Vi,j , ({xi, xj})) (3.5.7)

i.e. to adjacency systems whose cliques are composed of two nodes. In the following, the considered
adjacency systems will thus be the 4-neighborhood in 2D and the 6-neighborhood in 3D. Let us also
assume that the clique potential is not equal to zero only if neighbor nodes are assigned different labels:

V{i,j}({xi, xj}) = ui,j .δ(xi 6= xj) , (3.5.8)

where ui,j is a function and δ is the indicator function: δ(xi 6= xj) = 1 if and only if xi 6= xj and
δ(xi 6= xj) = 0 otherwise.

Likelihood function Pr(p|x):

We consider now the specific case where the conditional probabilities Pr(pi|xi) are mutually independent
and that moreover they only depend on the value xi at the node i. Under these assumptions, the data
term can be written as: Pr(p|x) =

∏
i P (pi|xi). This assumption is verified if one assumes that the

observed data p are corrupted by with independent and identically distributed noise components:

Pr(p|x) =
∏
i

Pr(pi|xi) = exp(−
∑
i∈V
−ln(Pr(pi|xi))) . (3.5.9)

Energy Function:

The maximum a posteriori estimation of a Markov random field is finally stated as the following maxi-
mization problem:

x̂ = argmax
x∈Ω

exp
−∑

i∈V
−ln(Pr(pi|xi))−

∑
i∈V

∑
j∈Ni

ui,j .δ(xi 6= xj)

 . (3.5.10)

This problem is also equivalent to the following minimization problem:

x̂ = argmin
x∈Ω

∑
i∈V
−ln(Pr(pi|xi)) +

∑
i∈V

∑
j∈Ni

ui,j .δ(xi 6= xj)

 . (3.5.11)

From theorem 3.1.1, we know that this energy function can be minimized by using graph cuts if and
only if ui,j ∈ R+ and −ln(Pr(pi|xi)) ∈ R, conditions that are clearly fulfilled. We use thus a minimal
graph cut to compute the exact maximum a posteriori estimation x̂. The next section describes how a
graph can be built such that a minimal graph cut corresponds to the maximum a posteriori estimate x̂.
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Graph Cuts

Let us consider the following undirected graph Gs,t = (V ∪ {s, t}, E ∪ Es ∪ Et,W ), composed of:

• V = {1, ..., n}, the set of nodes.

• E = {ei,j |i ∈ V, j ∈ Ni}, the set of edges.

• two additional nodes, s and t.

• Es = {es,i|i ∈ V }, the set of edges connecting the node s to all other nodes of the graph.

• Et = {ei,t|i ∈ V }, the set of edges connecting the node t to all other nodes of the graph.

A graph cut C separating s and t in the constructed graph implicitly describes two non connected
sets of nodes by removing the sets of edges of the cut. One set S is connected to the source s and one set
T is connected to the sink t. A graph cut C separating s and t in the constructed graph has the following
weight:

L1(C) =
∑
i∈S

wi,t +
∑
i∈T

ws,i +
∑

i∈S,j∈T
wi,j . (3.5.12)

The edges weights of the graph G are finally given by table 3.3.

Edge Weight for
ws,i −ln(Pr(pi|xi = 0)) i ∈ V
wi,t −ln(Pr(pi|xi = 1)) i ∈ V
wi,j ui,j i ∈ V, j ∈ Ni

Table 3.3: Edges Weights for maximum a posteriori estimation.

Thus we have:

L1(C) =
∑
i∈T
−ln(Pr(pi|xi = 0)) +

∑
i∈S
−ln(Pr(pi|xi = 1)) +

∑
i∈S,q∈T

ui,j . (3.5.13)

L1(C) =
∑
i∈T
−ln(Pr(pi|xi = 0)) +

∑
i∈S
−ln(Pr(pi|xi = 1)) +

∑
ei,j∈E

ui,j .δ(xi 6= xj) . (3.5.14)

L1(C) =
∑
i∈V
−ln(Pr(pi|xi)) +

∑
ei,j∈E

ui,j .δ(xi 6= xj) . (3.5.15)

Finally the weight L1(C) of a graph cut separating s and t is identical to the value of the a posteriori
estimate of a Markov random field. Moreover there is a one to one correspondence between a graph cut
in the graph G and a configuration f of labels. Thus the energy defined in equation 3.5.11 is exactly
minimized by computing a minimal graph cut separating s and t.

3.5.3 Prior Models for Markov Random Fields

We now consider an image I = (pi)i∈V , pi ∈ [0, 1] as an image corrupted with a white gaussian noise.
The aim of this section is to restore the original binary data x.
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The Ising model

The Ising model, named after the physicist Ernst Ising [55], is a model used in statistical mechanics to
describe ferromagnetism. It can be represented on a graph where its configuration space is the set of all
possible assignments of labels L ∈ {0, 1} to each node of the graph. The Ising model uses the following
clique potential:

Vi,j({xi, xj}) = β.δ(xi 6= xj) , (3.5.16)

where δ is the indicator function and β is a positive real value. The Ising clique potential is an isotropic
function since:

Vi,j({xi, xj}) = Vj,i.({xj , xi}) , (3.5.17)

and is in general non-homogeneous since it can depend on the relative position of i and j on the lattice.
The value β describes the energetic preference that neighbor nodes take the same value. It can also be
seen as a regularization parameter since it penalizes the length of the sets of nodes labeled with different
values simultaneously.

We also assume that the data are corrupted with a white gaussian noise such that the likelihood
function can be written as:

Pr(pi|xi) = exp(− (pi − µxi
)2

2σ2
) (3.5.18)

where µxi
is the mean value of the pixels expected to take the value xi, and σ2 is the variance of the

gaussian distribution. Note that we consider that the classes xi have the same variance but different
means.

For the binary image restoration problem, we have to minimize the following energy function:

E(x) =
∑
i∈V

(pi − µxi
)2

2σ2
+
∑
i∈V

∑
j∈Ni

β.δ(xi 6= xj) , (3.5.19)

where the label xi can take the values 0 or 1. We can solve this problem by computing a minimal graph
cut as described in the previous section. The arcs capacities wi,j between two nodes of the graph G are
set such that:

∀i ∈ V, ws,i = −ln(Pr(pi|xi = 0)) =
(pi − µ(xi=0))2

2σ2
, (3.5.20)

∀i ∈ V, wi,t = −ln(Pr(pi|xi = 1)) =
(pi − µ(xi=1))2

2σ2
, i ∈ V , (3.5.21)

∀i ∈ V ,∀j ∈ Ni, wi,j = β . (3.5.22)

The graph cuts in the graph G are thus in one to one correspondence with the possible configurations
of labels, and the value of the cut equals the energy function given by equation 3.5.19.

Example

This section illustrates the use of Markov random fields for the restoration of corrupted binary images.
Figure 3.13 illustrates the restoration of a binary image corrupted with a gaussian noise with mean value
0 and of variance 1.0. The image values are scaled such that each pixel pi takes a value in [0, 1]. The
figures illustrate the role of the regularizing parameter β. The restored image gets smoother when the
parameter β increases. For this example, the mean value in the region expected to take the label 0 is
µ(xi=0) = 0.3 and the mean value in the region expected to take the label 1 is µ(xi=1) = 0.7.

The next section presents another prior function used to solve the problem of transition detection. The
standard Ising model fails to detect high contrast transition in the field x when the smoothing parameter
β is too high. This problem can be solved by specifying a data dependant prior function. The next
section presents a contrast sensitive prior model for the pairwise interaction between neighbor pixels.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Binary image restoration. (a) Original Image (559x288). (b) Restored image with β = 0.25
(c) Restored image with β = 0.5 (d) Restored image with β = 0.75 (e) Restored image with β = 1.0 (f)
Restored image with β = 1.25.

Contrast Sensitive Prior Model

The Ising model does not take into account values in the corrupted field p but it does only penalize the
assignment of different labels to neighbor nodes in the labeling x. We now consider a model that preserves
discontinuities in the field p when the contrast is sufficiently important and is a normal regularizer for
low contrasted zones.

We define the following contrast sensitive prior:

Vi,j({xi, xj}) = (β − β.(pi − pj)n) .δ(xi 6= xj) (3.5.23)

The smoothness term is composed of a contrast sensitive term which will penalize the high gradients
zones in the field p, and a regularization parameter β coming from the standard Ising model. The
parameter n allows to vary the threshold for which the contrast sensitive term will dominate on the
smoothing parameter. When n increases, the contrast sensitive term dominates the smoothing parameter
only for very high gradient zones. This model allows us to detect high gradient zones in the field p and
does not over-smooth the image in highly contrasted zones.
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Example

This section illustrates the use of Markov random fields for the segmentation of images with a contrast
sensitive prior function. Figure 3.14 illustrates the presented model for the segmentation of an image
of blood cells. The image values are scaled such that each pixel pi takes a value in [0, 1]. The figures
illustrate the role of the regularizing parameter β. For this example, the parameter n was set to 0.5.
The figure illustrates the comparison between the classical Ising model and the contrast sensitive model.
The example shows the advantage of using contrast sensitive models for image segmentation. This model
permits to take advantage of the gradient of the image and the model does not over-smooth the resulting
segmentation. For the presented application, the mean value in the region expected to take the label 0
is µ(xi=0) = 0.3 and the mean value in the region expected to take the label 1 is µ(xi=1) = 0.7.

Markov random fields are powerful models for the restoration and the segmentation of images. Un-
fortunately using this method on the pixel graph is computationally costly and cannot always be used
interactively on large datasets, such as 3D medical images. We present in the next section a novel method
to compute fast image segmentations using the Markov random field model and a morphological low-level
segmentation. This technique allows us to use interactively this model on large datasets.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 3.14: Image Segmentation with contrast sensitive (CS) model. (a) Original Image (272x265). (b)
Ising prior, restored image with β = 0.0. (c) CS prior, restored image with β = 0.0. (d) Ising prior,
β = 0.5 (e) CS prior, β = 0.5. (f) Ising prior, β = 1.0. (g) CS prior, β = 1.0. (h) Ising prior, β = 1.5. (i)
CS prior, β = 1.5.
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3.5.4 Approximate Maximum a Posteriori Estimation

We are now going to take into account our second assumption about the watershed transform: the
unsupervised watershed transform of a natural image is composed of regions of homogenous grey level
intensities. The use of a region graph instead of a pixel graph can thus be used without affecting the
classification of images grey levels. This assumption permits us to model the image to be segmented as a
Markov Random Field where each random variable corresponds to the mean value inside a region of the
watershed transform.

Let us consider the region adjacency graph GR = (VR, ER,WR) of a low level watershed transform.
Instead of taking into account the grey level of each single pixel of the image, we consider the mean grey
level inside each region of the watershed transform. For the binary image restoration problem, we have
considered in the previous section the minimization of :

E(x) =
∑
i∈V
−ln(Pr(pi|xi)) +

∑
i∈V

∑
j∈Ni

ui,j .δ(xi 6= xj) . (3.5.24)

We detail in the following sections how each term of this energy function can be efficiently approxi-
mated by using the region adjacency graph of the watershed transform.

Likelihood Function

Since we assume that each region of the watershed transform is composed of regions having homogenous
intensities, we can approximate the likelihood term by:∑

i∈V
−ln(Pr(pi|xi)) ≈

∑
i∈VR

−|ri|.ln(Pr(µri
|xi)) , (3.5.25)

µri
=

1
|ri|

∑
pi∈ri

pi , (3.5.26)

where |ri| is the number of pixels inside the region ri.

The previous approximation becomes an equality if each pixel inside a region has exactly the same
grey level. Alternatively we could have considered the region adjacency of a flat zones labeling of the
image [88]. In this last case, regions are composed of connected pixels having the same grey levels. The
previous approximation becomes thus a strict equality. However we detail in this chapter the use of the
watershed transform, keeping in mind that its extension to other unsupervised low level segmentation is
straightforward.

The previous approximation is motivated by the fact that the watershed transform of a real image
contains regions of homogenous intensities. In other words, since the pixels inside a region of a watershed
transform have all more or less the same grey levels, there is no need to take into account the variability of
the grey levels inside a region. However, the grey levels inside a region could also be filtered to eliminate
outliers and to smooth the grey level values.

Assuming that the data are corrupted with a white gaussian noise, the likelihood function can finally
be written as:

Pr(µri
|xi) = exp(− (µri − µxi)

2

2σ2
) (3.5.27)

where µri
is the mean grey level of the region ri, and µxi

is the mean value of the pixels expected to take
the value xi.
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Prior Function

The prior function is dependent on the boundaries properties of the labeling. We thus need to con-
sider the boundaries between two regions to compute the regularizing term of the energy function(∑

i∈V
∑
j∈Ni

β.δ(xi 6= xj)
)

. Let us recall that the boundary between two regions ri and rj of the
watershed transform is defined by the following set of edges:

F(ri,rj) = {em,n ∈ E | m ∈ ri, n ∈ rj} . (3.5.28)

We assume now that all pixels inside a region of the watershed transform are assigned the same label
xi, thus the prior function only depends of the pixels lying in the boundaries between two regions:∑

i∈V

∑
j∈Ni

ui,j .δ(xi 6= xj) ≈
∑
i∈VR

∑
j∈Nri

|F(ri,rj)|.ui,j .δ(xi 6= xj) . (3.5.29)

where Nri
is the set of neighbor regions of the region ri and |F(ri,rj)| is the number of edges of F(ri,rj).

Moreover, assuming that the prior function is a contrast sensitive model, the regularizing function
can be written as:

ui,j =
(
β − β ∗ (µri

− µrj
)n
)
. (3.5.30)

Graph Cuts

Finally, we have to minimize the following energy function:

E(x) =
∑
i∈VR

|ri|
(µri
− µxi

)2

2σ2
+
∑
i∈VR

∑
j∈Nri

|F(ri,rj)|.ui,j .δ(xi 6= xj) . (3.5.31)

As shown previously, we can minimize the energy function by computing a minimal graph cut. The
arcs capacities wri,rj

between two nodes of the region adjacency graph G are set according to the weights
given in table 3.4.

Edge Weight for

ws,i −ln(Pr(µri |xi = 0)) = (µri
−µ(xi=0))

2

2σ2 ri ∈ VR
wi,t −ln(Pr(µri |xi = 1)) = (µri

−µ(xi=1))
2

2σ2 ri ∈ VR
wi,j |F(ri,rj)|.ui,j ri ∈ VR, j ∈ Nri

Table 3.4: Edges Weights for approximate maximum a posteriori estimation.

3.5.5 Application of Markov Random Fields to Microstructure Segmenta-
tion.

The aimed application of the Markov random field models is the segmentation of 3D micro-tomography
images of granular material. The images are provided by CEG Gramat (Délégation Générale pour l
Armement) using a Skyscan X-ray microtomograph. These microtomography images have an 10 µm
isotropic resolution. The aim of the application is to extract the two phases of the material. Figure 3.15s
compares the segmentation results of the Markov random field model solved on the pixel graph and the
region graph. A contrast sensitive prior model was used to compute the presented results with β = 0.01,
µ(xi=0) = 0.25, µ(xi=1) = 0.75, and σ = 0.2.

Table 3.5 compares the graphs sizes using our method and the graph cuts approach at the pixel level.
The Nodes reduction factor and the edges reduction factor are respectively equal to |V |

|VR| and |E|
|ER| . The
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results show that our method largely reduces the graphs sizes.

Table 3.6 also illustrates the computation time needed by the methods presented above: Markov
random field solved on the pixel graph and the region graph. The results shows that our method reduces
drastically the computation time and allows to segment images that are too large to fit in the memory,
using a pixel approach. Moreover our method does not seem to affect the results quality, as illustrated
in figure 3.15.

Image Size Nodes Reduction Factor Edges Reduction Factor
Image 1 69x69x100 16.6 7.9
Image 2 166x171x104 40.3 18.5
Image 3 250x250x77 8.9 4.6

Table 3.5: Comparisons of Graph Sizes.

Image Size Our Method Exact Markov Random Fields
Image 1 69x69x100 1.36 sec. 8.01 sec.
Image 2 166x171x104 34,9 sec. not enough memory
Image 3 250x250x77 25.8 sec. not enough memory

Table 3.6: Comparisons of computation time.
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(a)

(b)

(c)

Figure 3.15: Microstructure Segmentation. (a) Original image (69x69x100). (b) Segmentation of the
pixel graph. (c) Segmentation of the region graph.
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3.5.6 Adding Statistical Properties

Using the region adjacency graph instead of the pixel adjacency graph can be advantageous in some
situations. A wide class of statistical properties can be computed on each region of the watershed
transform such that additional constraints can be added to the energy function to be minimized. For
instance, it is possible to take into account the distribution of the grey levels inside a region of the
watershed. It is thus possible to define the foreground and background properties through grey levels
histograms and use distances between histograms instead of simple grey level differences. The use of the
region adjacency graph permits also to filter possible outliers that could lie inside a region. The use of
a region adjacency graph is thus potentially richer, since it can take into account more properties than
simply the grey level of a single pixel.
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3.6 Conclusion

This chapter described the use of two common mathematical models for image segmentation: the Markov
random field model and the minimal curves and surfaces model. These two models are fundamental tools
for various image segmentation problems, and especially for medical images. We have detailed a technique
to speed up these methods without affecting the quality of the results, by using a region adjacency graph
of a watershed transform instead of the pixel graph. We have experimentally shown that this technique
considerably reduces the computational cost of graph cuts methods and that the provided results do not
suffer from our approximations. These methods are illustrated on real applications in the next chapter.

We have also shown that this methodology can handle a larger class of energy functions, compared
to energy functions defined by properties at the pixel level. The energy functions defined on regions are
richer than properties defined on a single pixel. This interesting property of region graphs should be fur-
ther investigated in the future to design energy functions that can take into account high level and prior
information such as explicit shape constraints models. It would also be possible to combine geometric
and statistical properties of regions to design energy functions. The extension of classical mathematical
models on region graphs is still under-exploited and should lead to powerful image segmentation methods
in the future.
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4

Application to Medical Image Segmentation

In the last years, the use of graph based techniques have shown a great success for a large field of
computer vision problems such as image restoration [40, 54, 17], stereo vision [14], image segmentation
[13] and energy minimization [16]. Researchers have also been focused on the development of automatic
and semi automatic graph based image segmentation techniques [5, 116, 10, 92, 117, 118, 68, 57, 97, 112].
These different graph based frameworks have permitted to establish new techniques for hierarchical
segmentation, the extraction of perceptual properties of images, geometric based features detection,
etc. Unfortunately medical imaging applications can be seldom solved automatically and require the
supervision of a specialist such as a radiologist. The difficulties linked to medical imaging applications
are numerous and mainly due to:

• the noise due to the imaging technologies,

• the low contrasted structures resulting from the imaging technologies,

• the variability of shapes, sizes, and characteristics of anatomical structures,

• the large inter-patient shape variability,

• the large intra-patient shape variability,

• the large deformations due to pathologies.

Image segmentation is thus one of the most challenging problems of medical image analysis. More-
over, image segmentation is only a first step in the work flow of a clinician. Relevant segmentations
are needed for quantitative measurements, diagnosis, treatment planning, and modeling of anatomical
structures. In these conditions, a fully automatic approach is not always suitable for the radiologists
since the provided results must be checked and may be corrected. That’s why we are mainly interested
in interactive image segmentation since it can potentially provide robust results in various cases by us-
ing some prior information provided by a specialist. We present now some medical applications of the
methods developed in the previous chapter, which combines morphological and graph cuts segmentation.
Note also that other studies have been undertaken to estimate the quality of the watershed transform for
contours detection [111], and interactive segmentation [99, 98]. Our methods have all been implemented
within a 3D visualization software, which is presented in section 4.1.

Section 4.2 illustrates qualitatively a first application of graph based image segmentation to medical
images. We consider in this section the segmentation of 3D MRI of the heart for surgery planning and
for the generation of models for virtual surgery. Computer aided surgery is one of the great topics of
interest for the medical imaging community. This new research field proposes challenging and promising



(a) (b)

(c) (d)

Figure 4.1: Imaging technologies used in clinical routine. (a) Magnetic Resonance Imaging (MRI). (b)
Computed Tomography (CT). (c) Echography. (d) Positron Emission Tomography (PET).

problems. We detail in this section our collaboration with University of Aarhus, that aims at creating
patient specific models for surgery planning and simulation. We detail in this section the use of minimal
surfaces for the creation of these models.

Section 4.3 illustrates another application of minimal surfaces to medical images segmentation. We
consider in this section the segmentation of 3D computed tomography (CT) of lung tumors for radiother-
apy planning. This project is developed in collaboration with ”Institut Gustave Roussy”. The imaging
department of this institute provided the data and helped us creating the software presented in the first
section. We detail, for this application, the use of minimal surfaces. We also present some recent results
for the tracking of lung tumors in time series of 3D CT images.

Finally Section 4.4 presents a quantitative study of our segmentation tools for the segmentation of
liver tumors. We illustrate in this section an application of minimal surfaces and Markov random fields
for the interactive segmentation of liver tumors in CT images. We detail how Markov random fields can
be used to delineate tumors boundaries in 3D CT images and compare the segmentation results with
hand made segmentation done by experienced radiologists. This comparisons prove that the proposed
approach is particularly adapted to tumor segmentation problems. We present in this section the results
of a quantitative study undertaken to prove the reliability of both our software and methods for medi-
cal imaging applications. We also present a comparative study of our method with some recent algorithms.
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4.1 Graphical User Interface

We have developed a graphical user interface dedicated to 3D medical image segmentation and visual-
ization. The software is entirely developed in Python and C++ based on the VTK library 1 and the
image analysis library developed at the Center for Mathematical Morphology 2. Our software allows the
user to explore a highly detailed view of the data-set for easy interpretation. Visualization is particularly
important for segmentation validation purposes. Data sets can be explored through 2D orthogonal cuts of
the 3D volume and 3D rendering of the whole image, or of some user specified sub-volume, as illustrated
in figure 4.2.

(a)

Figure 4.2: Snapshot of the graphical user interface of our software. Visualization of a 3D CT of the
liver.

The user can interactively provide the markers needed for the segmentation algorithms by drawing
on slices of the 3D image, as illustrated in figure 4.3. He can visualize the segmented image as a set
of surfaces, one surface for each object. Detailed surfaces are extracted by using the marching cubes
algorithm [114]. Users can also overlay the surfaces on the original image. It is possible to superpose 2D
slices of both segmented and original image as well as a 3D surface rendering of the segmented data set.
Combination of all this visualization methods allows an easy and fast interpretation of the segmentation
result. Complex morphologies can therefore be explored easily and interactively.

1www.vtk.org, The Visualization ToolKit (VTK) is an open source, freely available software system for 3D computer
graphics, image processing, and visualization.

2http://cmm.ensmp.fr/Morph-M/, Morph-M is the result of the work of several researchers at the Centre for Mathe-
matical Morphology. Morph-M provides a rich environment for the development of image processing algorithms. Most of
current research projects at the CMM are based on Morph-M.
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(a)

(b)

Figure 4.3: Snapshot of the graphical user interface of our software. (a) Interactive marker drawing. (b)
Visualization of a segmented data set.
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4.2 Cardiac MRI Segmentation

4.2.1 General Description

One application of our segmentation model is the required preprocessing for open heart surgery simulation.
This specific simulator is currently being evaluated for preoperative planning and teaching in congenital
heart disease [95]. The aim of surgery simulation is to offer patient specific models so that the surgeons
can define the best approach for a given patient. In this context, a patient specific model has to be built
from a MRI image. The model should reflect patient morphology as well as defects of his heart. The
chosen strategy is here to use the image segmentation result to build a volumetric model of the heart.
In a first step, our aim is to obtain a volumetric segmentation of the heart muscle (the myocardium). A
diagram of the heart, as well as a slice of a 3D MRI are shown in figure 4.4.

(a) (b)

Figure 4.4: (a) Heart Diagram. The heart muscle is represented by the areas outlined in red and green.
(1) Right atrium. (2) Left atrium. (3) Superior Vena Cave. (4) Aorta. (5) Pulmonary Artery. (6)
Pulmonary Vein. (7) Mitral valve. (8) Aortic valve. (9) Left ventricle. (10) Right ventricle. (11) Inferior
Vena Cave. (12) Tricuspid Valve. (13) Pulmonary Valve. (b) A slice of a 3D Heart MRI superposed with
a hand made segmentation. The segmentation highlights the aorta (in red), the superior vena cave (in
dark blue), the pulmonary artery, the right and left chamber (light blue) and the heart muscle (green
and light red).

The heart wall consists of three layers: the epicardium, the myocardium, and the endocardium. The
epicardium is a thin outer layer which gives the surface of the heart a smooth texture. The endocardium
is the smooth inner lining of the heart and is continuous with the large blood vessels to which the heart
connects. The myocardium makes up the bulk of the heart and is responsible for its pumping action. The
myocardium is made up of strong cardiac muscle fibres which are connected by electrical synapses. The
myocardium is clearly visible in 3D MRI whereas epicardium and endocardium are generally too thin to
be clearly detected.

4.2.2 Data

The imaging modality in this application is an isotropic 3D MRI as illustrated in figure 4.5. This imaging
technology provides 50 to 120 slices covering the whole heart with a voxel resolution ranging from 1.5mm3
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to 2.0mm3 depending on the heart rate and size of the patient.

The images resolution does not permit to detect all the structures of the heart as illustrated in figure
4.4. The whole myocardium is not always visible on 3D MRI datasets, especially along the right chamber,
because the myocardium is too thin in this area. In our application, we will thus segment the left part of
the myocardium which is outlined in green in figure 4.4. The other parts of the myocardium have been
obtained with manual segmentations.

Figure 4.5: Heart MRI. Original 3D MRI image of the whole heart.

4.2.3 Segmentation Strategy

Figure 4.6: Myocardium Segmentation by Minimal Surfaces. The information provided by the user is
outlined in red. Automatic steps are outlined in blue.

The myocardium segmentation is realized through the computation of a minimal graph cut of the
region adjacency graph, because this technique should permit to delineate the low contrasted boundaries
of the lower part of the myocardium. In this scenario, the user has to interactively specify the location
of the myocardium as well as a marker to specify the background, i.e. the objects that have not to
be segmented. The segmentation protocol is illustrated in figure 4.6. Additionally the user can add or
delete markers to refine the segmentation results. A post-processing step is also proposed to smooth the
segmentation result. This post-processing step consists in a morphological opening of the segmentation.
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4.2.4 Implementation Details

The region adjacency graph is obtained from the watershed transform computed from all minima of the
morphological gradient of the original MRI image using Meyer’s algorithm based on hierarchical queues
[74]. Both minima of the gradient and the watershed transform are computed using the 6-neighborhood
adjacency system. From this first low-level segmentation, a region adjacency graph is extracted and used
for the next optimization steps.

The user specified markers are used to compute a minimal graph cut separating the markers specifying
the myocardium and the external tissues. We denote the markers that specify the myocardium as the set
of regions Mm. The markers specifying the tissues surrounding the myocardium are denoted by Mext.

We refer the reader to chapter 3 for details about the segmentation method using minimal surfaces.
Let us recall that F(ri,rj) is defined as the set of edges of the pixel graph connecting two regions ri and
rj of the low-level watershed segmentation:

F(ri,rj) = {em,n ∈ E | m ∈ ri, n ∈ rj} . (4.2.1)

In the following, we consider the strictly positive and decreasing function g used as an edge indicator
for the a minimal surface:

g(‖∇I(p)‖) =
(

1
1 + ‖∇I(p)‖

)k
. (4.2.2)

In our application to the myocardium segmentation the parameter was set to k = 2.

The edges weights of the region adjacency graph GR = (VR, ER,WR) are then set such that the weight
of a graph cut equals the energy function of a surface (the integral of the image gradient along the surface
that it implicitly defines:

wri,rj
=

∑
(em,n∈F(ri,rj))

(g(‖∇I(p)‖)) . (4.2.3)

The myocardium boundaries are finally extracted by computing a minimal graph cut of the region
adjacency graph with weights given by equation 4.2.3. The minimal cut is obtained on the region adja-
cency graph with two additional nodes s and t, respectively connected to the markers of the myocardium
and the markers of the external tissues. The edges weights of the graph are summarized in table 4.1.

Edge Weight for
ws,ri

+∞ ri ∈Mm

wri,t +∞ ri ∈Mext

wri,rj

∑
(em,n∈F(ri,rj))

(g(‖∇I(p)‖)) ri ∈ VR, rj ∈ Nri

Table 4.1: Edges Weights for Approximate Minimal Surfaces.

4.2.5 Results and Comparisons

Figure 4.8 illustrates the presented segmentation method (Figure 4.8(b)) and compares it to the classical
marker-controlled watershed segmentation (see figure 4.8(d)) and the minimal surface computed with the
technique proposed by Boykov et al. in [14] (see figure 4.8(c)). Our method outperforms the marker-
controlled watershed segmentation [75] and produces approximately the same segmentation results as the
graph cut method used on the pixel graph and proposed by Boykov et al. in [14]. Our strategy permits
to extract the boundaries of the myocardium precisely. Moreover, the use of minimal surfaces is not
sensitive to the low contrasted areas present in the lower part of the myocardium. This low contrasted
area is especially problematic for the marker controlled watershed transform whose results show a large
leak at this location.
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4.2.6 Multi-Labels Segmentation

Finally, the proposed technique is used to provide multi-label segmentations. In this scenario, it is pos-
sible to separate the myocardium from the blood pools, i.e. the right and left chambers. In this case the
user must provide specific markers for each of these structures, as illustrated in figure 4.9.

The user specified markers are used to compute a minimal multi terminal cut separating the markers
specifying the myocardium, the left chamber, the right chamber and the external tissues. We denote the
markers that specify the myocardium as the set of regions Mm, the markers that specify the left and right
chamber respectively as the set of regions Ml and Mr. The markers specifying the tissues surrounding
the heart are denoted by Mext. The edge weights of the graph are finally summarized in table 4.2.

Edge Weight for
wt1,ri +∞ ri ∈Mm

wt2,ri
+∞ ri ∈Ml

wt3,ri
+∞ ri ∈Mr

wt4,ri +∞ ri ∈Mext

wri,rj

∑
(em,n∈F(ri,rj))

(g(‖∇I(p)‖)) ri ∈ VR, rj ∈ Nri

Table 4.2: Edges Weights for Approximate Multi Minimal Surfaces.

Then, we consider the segmentation as a minimal multi-terminal cut separating the markers, as il-
lustrated in 4.9. The proposed strategy outperforms the marker controlled segmentation and provides
slightly similar results than the minimal surfaces described by Boykov et al. in [14].

4.2.7 Conclusion

The presented methods provide stable and relevant segmentation results in the case of 3D MRI segmenta-
tion of the heart. These segmentation techniques have been studied in the context of surgery planning and
simulation in collaboration with the Center for Advanced Visualization and Interaction of the University
of Aarhus, Denmark. Joint work with J. Mosegaard and T.S. Sørensen have permitted to study the possi-
bility of using graph based techniques for the creation of suitable models for virtual surgery [96, 106, 107].

Figure 4.7: Obtaining suitable patient specific models for surgery simulation and planning [96].
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(a)

(b)

(c)

(d)

Figure 4.8: Myocardium Segmentation. (a) Heart MRI superposed with markers (86x128x90). (b)
Approximate minimal surface computed by our method. (c) Exact minimal surface. (d) Marker-controlled
watershed transform.
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(a)

(b)

(c)

(d)

Figure 4.9: Multi-terminal cut segmentation. (a) Markers. (b) Marker controlled watershed. (c) Multi
terminal cut on the pixel graph. (d) Multi terminal cuts on the region adjacency graph. The graph cut
computed on the region adjacency graph detects the whole aorta whereas it only detects a part of it
by using the pixel graph. This difference is due to a large region that covers the aorta in the low-level
segmentation.
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4.3 Lung Tumors Segmentation

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung. This growth may lead to metas-
tasis, invasion of adjacent tissue and infiltration beyond the lungs. Lung cancer is the most common cause
of cancer-related death in men and the second most common in women. This cancer is especially respon-
sible for 1.3 million deaths worldwide annually3. Early lung tumors detection remains thus a challenging
task of medical imaging.

Lung cancer is probably one of the most dangerous cancer and its radiotherapy or surgery treatment is
a difficult task. The detection of the exact location of the tumor is difficult, due to the breathing motion
of the patient. Tumors can also be closed or even attached to the heart, which makes the treatments very
risky. Finally the presence of numerous blood vessels and arteria present a large risk of dissemination of
tumoral cells in the whole body of the patient. This dissemination of tumoral cells leads to the apparition
of multiple tumors in various location of the body. An early and accurate treatment of the lung cancer
is thus absolutely necessary to give a possible chance of remission to the patient. In this scenario, the
segmentation and the tracking of the lung tumors can potentially help to optimize the radiotherapy
treatment. We give in this section some experimental results on the segmentation of 3D and 4D (3D +
time) CT images to detect and track the tumors location during the breathing motion of the patient.

4.3.1 General Description

We present here another application of minimal surfaces to the segmentation of lung tumors in 3D CT
images of the thorax. The main application related to lung tumor segmentation is especially radiotherapy
and surgery planning. This work summarizes a long cooperation with the ”Institut Gustave Roussy”,
which provided the 3D CT images and helped us interpreting the datasets.

(a) (b)

Figure 4.10: Lung 3D CT images. (a-b) The tumors are indicated by red circles. The tumors present
low contrasted boundaries with the surrounding tissues of the thorax.

4.3.2 Data

The lung tumors CT images are quasi-isotropic. The images present a slice thickness of 2mm and an
in-plane resolution of 1.7mm. A typical dataset covers the whole thorax of the patient, leading to images
with size 512x512x256.

3World Health Organization 2006.
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4.3.3 Segmentation Strategy

The lung tumors segmentation is obtained through the computation of a minimal graph cut of the region
adjacency graph. In this scenario, the user has to interactively specify the location of the tumors as well
as a marker to specify the background, i.e. the objects that have not to be segmented. The segmentation
protocol is illustrated in figure 4.11. Additionally, the user can add or delete markers to refine the
segmentation results. A post-processing step is also proposed to smooth the segmentation result. This
post-processing step consists in a morphological opening of the segmentation.

Figure 4.11: Lung Tumors Segmentation by Minimal Surfaces. The user provided information are outlined
in red. Automatic steps are outlined in blue.

4.3.4 Implementation Details

The lung tumors are detected by the same method used to segment the myocardium. We refer thus the
reader to the previous section for the implementation details. The tumors boundaries are extracted by
computing a minimal graph cut of the region adjacency graph with weights given by equation 4.2.3. The
minimal cut is computed on the region adjacency graph with two additional nodes s and t, respectively
connected to the markers of the tumors and the markers of the external tissues. The edges weights of
the graph are summarized in table 4.3.

Edge Weight for
ws,ri

+∞ ri ∈Mt

wri,t +∞ ri ∈Mext

wri,rj

∑
(em,n∈F(ri,rj))

(g(‖∇I(p)‖)) ri ∈ VR, rj ∈ Nri

Table 4.3: Edges Weights for Approximate Minimal Surfaces.

4.3.5 Results

Figures 4.12 and 4.13 illustrate some segmentation results obtained by a minimal surface computed on
the region adjacency graph of the watershed transform. The method permits to detect the tumor bound-
aries precisely even in low contrasted areas, where the tumors are in contact with tissues surrounding the
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lungs, such as the heart.

Minimal surface is a leading method for the segmentation of lung tumors. The tumors are often
surrounded by numerous blood vessels and tissues which present a low contrast with the tumors. The
numerous blood vessels surrounding a lung tumor is also a major cause of the high mortality provoked by
the lung cancer. Tumoral cells can easily be transported by these vessels in the whole body and secondary
tumors can then grow in different locations.

Unfortunately we did not have the opportunity to quantify the quality of our segmentation method
by comparing the results with hand made segmentations. This procedure has to be done in the future in
order to prove the efficiency of the proposed method. A quantitative study will be presented in the next
section for liver tumors segmentation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.12: Lung tumors Segmentation. (a-c) Original image (512x512x256). (d-f) Markers. (g-i)
Tumors boundaries. (j-l) Tumors boundaries, surface rendering.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13: Lung tumors Segmentation. (a-c) Original image (512x512x256). (d-f) Markers. (g-i)
Tumors boundaries. (j-l) Tumors boundaries, surface rendering.
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4.3.6 Tumor Tracking in 4D CT images

We have extended the minimal surface method for the segmentation of 4D CT images in order to track
the tumor boundaries during the breathing motion of the patient. In this case the images are acquired in
combination with a measurement of the breathing of the patient. Several images are acquired at different
steps of the breathing cycle as illustrated in figure 4.14. These images can then be used to track the
boundaries of the different organs of the patient and follow their location during the breathing motion.
This procedure aims at optimizing the radiotherapy treatment. In a ideal situation the irradiation of the
tumors could be guided by the segmentation results of the 4D CT images. This procedure would allow
the patient to breathe normally during the radiotherapy treatment. Up to now, the patients have to stop
breathing during the irradiation, which is not very comfortable for patient having breathing problems
caused by a cancer.

Figure 4.14: 4D CT images of the lungs acquisition protocol. The breathing motion of the patient is
measured and a 4D image is reconstructed from the breathing gating.

4D CT Images Segmentation Protocols

We propose two protocols for the segmentation of tumors in 4D volumes (3D+t). The first one is a direct
extension of the protocol used to segment 3D volume. In this first protocol we propose to build a 4D
volume by concatenating the 3D images. Since watershed segmentation can be computed on any gradient
image, the extension of the previous method requires thus only the computation of a spatio-temporal
gradient image. The user has the to specify some markers on a 3D volume of the time-series. A watershed
low-level segmentation is then computed according to a spatio-temporal gradient and finally a minimal
surface is extracted from the region graph of the 4D watershed transform. This procedure is illustrated
in figure 4.15.

The main advantage of this first protocol is that the whole 4D volume is segmented in a single step
and large motions are allowed by this procedure. However this method requires a huge amount of memory
since the whole 4D volume has to be stored to compute the watershed transform and a large graph has
to be stored to compute the minimal cut. This first method is thus in practice very slow when used on
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a classical personal computer.

Figure 4.15: 4D CT images of the lungs segmentation protocol 1.

The second protocol is slightly different and aims at providing a fast and accurate 4D segmentation
tool. We consider in this scenario a sequential segmentation of 3D images. The user has to provide
markers of the tumors and the surrounding tissues on the first image of the time-series. The result of
the segmentation at time t is then used to produce markers for the segmentation of the tumors at time
t = t + 1. Since the motion of the thorax is relatively small, the new markers can be easily obtained
from the previous segmentation. In our approach, we eroded each region of the segmentation to en-
sure that the resulting eroded image can be used as markers for the next image. This procedure works
on these images because the motion is small and the tumors are large and compact objects. For thin
objects segmentation, this procedure would fail because the erosion step will delete the thin structures
and no markers could be extracted from the first segmentation. This procedure is illustrated in figure 4.16.

The main advantage of this second protocol is that the method does not need more memory than a
classical 3D segmentation technique since it is based on sequential segmentation of 3D images. However
this method does not allow large motion and does not allow to segment thin structures. This second
method have finally been chosen for our experiments since the thorax motion is small and tumors are
compact structures.

Results

Figure 4.17 illustrates a segmentation result on a 4D CT image. The second segmentation protocol was
used to obtain the presented results. The segmentation was obtained by using a multi-terminal cut algo-
rithm. The user has provided markers for the lungs, the tumor, as well as the surrounding tissues. The
tumor and the lungs have been correctly delineated by using this strategy since the motion of the lungs
is especially small on the upper part of the lungs, where the tumor is located.
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Figure 4.16: 4D CT images of the lungs segmentation protocol 2.

4.3.7 Conclusion

Minimal surfaces computed on the region adjacency graph provide again stable and robust segmentation
results for the aimed application, the detection of lung tumors. Moreover, the method can be easily
extended to track the tumors during the breathing motion of the patient. The method is sufficiently fast
and precise to be used on large datasets such as 4D images. In such conditions the analysis of all datasets
by a radiologist cannot be realized by hand made segmentation. The size of the datasets is too large to be
manually segmented in a reasonable time. The proposed method is thus a first solution for the tracking of
lung tumor. With the exponential growth of medical image data, it is clear that such interactive methods
are good alternatives to fully manual segmentations. On the other side, fully automatic methods fail
to achieve relevant segmentation results in all the cases and are not well suited for clinical applications
which need always the supervision of a radiologist.
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Figure 4.17: 4D CT images segmentation results at two different steps of a breathing cycle. The segmen-
tation was obtained with multi-terminal cuts.
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4.4 Liver Tumors Segmentation

We present in this section an application of minimal surfaces and Markov random fields for the segmen-
tation of liver tumors. This strategy leads to an interactive method that we use to delineate tumors in
3D CT images. We detail our strategy to achieve relevant segmentations of these structures and compare
quantitatively our results to hand made segmentations done by experienced radiologists. This section
summarizes our participation to the MICCAI 2008 4 workshop called: ”3D segmentation in the clinic : A
Grand Challenge II”. This work aims at proving that the developed methods are well suited to be used
in clinical routine. The quantitative and comparative analysis of the results show that our interactive
segmentation strategy outperforms semi-automatic and automatic methods, and provides stable and ro-
bust segmentations.

Possible applications related to liver tumor segmentation are mainly radiotherapy and surgery plan-
ning. In these cases, the knowledge of the exact location and volume of the tumors is important to ensure
that the chosen therapy is adapted to the patient. The robust extraction of liver tumor boundaries from
CT images remains an open problem of medical imaging. Liver tumors present low contrasted boundaries
and exhibit a large variability of shapes, sizes and locations in the liver. Due to these multiple difficul-
ties, automatic or model-based approaches seem to be inadequate for this application. However, a few
semi-automatic approaches have already been proposed in the literature. Recent approaches are mainly
based on active contours [67], level-sets [83], as well as machine learning [64]. These methods have the
interesting property to allow an interaction with its user through landmarks positioning or interactive
refinement of the segmentation. We propose in this paper an interactive segmentation method based on
user defined markers to extract liver tumors boundaries in 3D CT images.

4.4.1 Data

(a) (b)

Figure 4.18: Liver 3D CT images. (a) The tumor, indicated by a red arrow, presents a negative contrast
with the liver. The contrast enhancing liquid is actually going through the aorta, indicated by a blue
arrow, and the liver blood vessels. (b) The tumor, indicated by a red arrow, presents a positive contrast
with the liver. The contrast enhancing liquid has already been transported in the liver vessels. The
aorta, indicated by a blue arrow, is not very bright, which means that the contrast enhancing liquid is
not present in it.

4MICCAI 2008 is the 11th International Conference on Medical Image Computing and Computer Assisted Intervention,
September 6 - 10, New York, USA.
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The liver tumors CT images, provided by the workshop’s organizers 5, were acquired on one 64-slice
and two 40-slice CT scanners using a standard four-phase contrast enhanced imaging protocol. The
resulting images have a slice thickness of 1mm or 1.5mm and an in-plane resolution of 0.6-0.9mm. The
resulting images are typically of size 521× 512× 256. The imaging protocol consists in injecting a phase
contrast liquid to the patient such that the contrast between tumors and the surrounding tissues is im-
proved. The images are then acquired approximatively 30 seconds to one minute after the injection, when
the contrast enhancing liquid is attaining the liver. Depending on several parameters such as the pa-
tient size or the patient cardiac rhythm, the images will present different enhanced contrasts in the liver.
Several cases are illustrated in figure 4.18. The liver segmentation presents some difficulties that have
to be taken into account to design a relevant segmentation protocol. First, tumors can be in positive or
negative contrast with the liver, depending on the acquisition time of the images, as illustrated in figure
4.18. Secondly, the tumors boundaries are not well defined and perceptual properties have to be used to
define the exact contours of the tumors.

4.4.2 Segmentation Strategy

(a)

Figure 4.19: Liver tumors 3D CT images strategy. The user provided information is outlined in red.
Automatic steps are outlined in blue. An additional post processing step is also proposed to the user,
this step consists in smoothing the segmentation by using morphological operators such as openings.

Our segmentation strategy is entirely based on the use of the region adjacency graph of an unsu-
pervised watershed segmentation [75]. This low-level segmentation is used in combination with graph
cuts to compute approximate minimal surfaces and approximate maximum a posteriori estimates of a
Markov random field. Note also that we do not process the whole 3D CT image. The first step of our
methodology is the manual definition of a sub-volume containing one or more tumors that need to be
segmented in order to reduce the computation time of the segmentation algorithm.

The region adjacency graph is obtained from the watershed transform computed from all minima of
the morphological gradient of the original CT image using Meyer’s algorithm based on hierarchical queues

5The organizers of the workshop are Wiro Niessen, Martin Styner, Simon K. Warfield and Xiang Deng
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[74]. Both minima of the gradient and the watershed transform are computed using the 6-neighborhood
adjacency system. From this first low-level segmentation, a region adjacency graph is extracted and used
for the following optimization steps.

Our segmentation protocol is motivated by this simple observation: the liver presents two kinds of
tissues: tumoral tissues and healthy tissues. The classification of liver pixels in one of these two classes
permits to extract the tumors. In other words, the tumors can be extracted from the liver by the mean
of their grey levels. To achieve this classification we model the liver pixels as a Markov random field
and the classification is performed through the maximum a posteriori estimation. One class corresponds
to the normal liver tissues and the other class corresponds to the tumoral tissues. The classification is
supervised by user defined markers that specify the tumors and the normal tissues. The markers are used
to locate the tumors and to estimate the grey levels characteristics of these structures.

However, the liver pixels classification needs also that the liver boundaries are extracted. This task is
realized by computing a minimal surface based on user defined markers. Note that the liver boundaries
extraction is only necessary if the sub-volume considered for the segmentation contains non-liver tissues.
In any other cases, the liver boundaries are not computed, and only the classification step is performed.
The user has finally to specify normal liver tissues, tumoral tissues, and external tissues surrounding the
liver. Based on these markers the liver is first extracted and secondly the pixels of the liver are classified
and the tumors are finally extracted. The different energy minimization strategies (minimal surfaces and
Markov random field) are based on the computation of a minimal graph cut as described in the previous
chapter.

4.4.3 Implementation Details

Liver Segmentation

We denote the markers that specify the liver tissues as the sets of regions Mt and Mh, respectively for
tumoral and healthy tissues. The markers specifying the tissues surrounding the liver are denoted byMext.

We refer the reader to the chapter 3 section 3, for details about the segmentation method using
minimal surfaces. Let us recall that F(ri,rj) is defined as the set of edges of the pixel graph connecting
two regions ri and rj of the low-level watershed segmentation:

F(ri,rj) = {em,n ∈ E | m ∈ ri, n ∈ rj} . (4.4.1)

In the following, we consider the strictly positive and decreasing function g used as an edge indicator
for minimal surfaces:

g(‖∇I(p)‖) =
(

1
1 + ‖∇I(p)‖

)k
. (4.4.2)

In our application to tumor segmentation the parameter was set to k = 2.

The edges weights of the region adjacency graph GR = (VR, ER,WR) are then set such that the
weight of a graph cut equals the energy function of a surface (the integral of the image gradient along
the surface) that it implicitly defines:

wri,rj =
∑

(em,n∈F(ri,rj))

g(max (‖∇I(m)‖, ‖∇I(n)‖)) , (4.4.3)

where ‖∇I(m)‖ and ‖∇I(n)‖ are the gradient magnitudes of the end points of em,n.

The liver boundaries are extracted by computing a minimal graph cut of the region adjacency graph
with weights given by equation 4.4.3. The minimal cut is computed on the region adjacency graph with
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two additional nodes s and t, respectively connected to the markers of the liver and the markers of the
external tissues. The edges weights of the graph are given in table 4.4.

Edge Weight for
ws,ri +∞ ri ∈Mt

ws,ri
+∞ ri ∈Mh

wri,t +∞ ri ∈Mext

wri,rj wri,rj ri ∈ VR, rj ∈ Nri

Table 4.4: Edges Weights for Approximate Minimal Surface.

Tumor Segmentation

We recall here that the Markov random field model leads to the minimization of (see chapter 3, section
5):

E(x) =
∑
i∈VR

|ri|
(µri
− µxi

)2

2σ2
+
∑
i∈VR

∑
j∈Nri

|F(ri,rj)|.ui,j .δ(xi 6= xj) . (4.4.4)

Assuming that the data are corrupted with a white gaussian noise, the likelihood function can finally
be written as:

Pr(µri |(xi = 0)) = exp(−
(µri
− µ(xi=0))2

2σ2
0

) (4.4.5)

Pr(µri
|(xi = 1)) = exp(−

(µri − µ(xi=1))2

2σ2
1

) (4.4.6)

where µri
is the mean gray level of the region ri, and µxi

is the mean value of the pixels expected to take
the value xi. In our experiments the values of σ0 and σ1 were set to σ0 = 0.3 and σ1 = 0.2. In our model,
σ0 represents the grey level variance of the tumoral tissues and σ1 represents the grey level variance of
the healthy tissue. We have experimentally found that the variance of tumoral tissues is slightly higher
than the grey level variance of the healthy tissues. On the other side, the values of µxi

are estimated
from user’s markers as:

µ(xi=0) =
1
|Mt|

∑
ri∈Mt

µri (4.4.7)

µ(xi=1) =
1
|Mh|

∑
ri∈Mh

µri (4.4.8)

where |Mh| and |Mt| are respectively the number of regions marked as healthy or tumoral.
The prior function ui,j that we use in our application is a contrast sensitive function:

ui,j =
(
β − β ∗ (µri

− µrj
)n
)
. (4.4.9)

where n is a free parameter describing the strength of the term β ∗ (µri
− µrj

). Since the mean grey
levels µrj are real values between 0 and 1, the parameter n balances the effect of the local contrast. In
the following we fixed the parameter to n = 4.

The previous function takes into account the contrast between two regions and is equal to a constant
in the areas where the contrast is low. This function allows to detect correctly the boundaries of high
contrasted tumors, whereas low contrasted boundaries are smoothed such that the perimeter of the object
is minimized.

The minimal cut is finally computed on the region adjacency graph with two additional nodes s and
t, respectively connected to the markers of the liver and the markers of the external tissues. The edges
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weights of the graph are given in the table 4.5. The results obtained using our methodology reduces
drastically the computation time compared to a pixel graph approach. Moreover it does not seem to
affect the resulting segmentations. This method was previously presented for the segmentation of micro-
tomography images of granular materials [104].

Edge Weight for
ws,ri +∞ ri ∈Mt

wri,t +∞ ri ∈Mh

ws,ri

(µri
−µ(xi=0))

2

2σ2 ri ∈ VR \ {Mt ∪Mh}
wri,t

(µri
−µ(xi=1))

2

2σ2 ri ∈ VR \ {Mt ∪Mh}
wri,rj

|F(ri,rj)|.ui,j ri ∈ VR, rj ∈ Nri

Table 4.5: Edges Weights for Approximate maximum a posteriori estimation.
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Example

Figure 4.20 illustrates our segmentation strategy on a single slice of a 3D CT image. The obtained results
are in good concordance with the expected results obtained by a hand made segmentation. Alternatively,
the user can add or delete markers if he is not satisfied with the computed segmentation.

(a) (b)

(c)

Figure 4.20: Liver tumors segmentation. (a) User specified markers. In blue, the tumor markers, in
red, the liver markers and in green, the external markers. (b) Results of our segmentation strategy. (c)
Radiologist hand made segmentation of the tumor.

4.4.4 Evaluations

We recall here the evaluation scores description given by the organizers of the workshop. For each CT
image, a reference segmentation done by an experienced radiologist is available. In order to evaluate the
accuracy of the developed method, five scores are computed from five different evaluation measures:

• Volumetric overlap. This score is computed as the number of voxels in the intersection of segmen-
tation and reference, divided by the number of voxels in the union of segmentation and reference.
This value is equal to 1 for a perfect segmentation and is equal to 0 as the lowest possible value,
when there is no overlap at all between the segmentation and the reference. The volumetric overlap
error is then given as 1 minus the volumetric overlap score. Note also that two different hand made
segmentations typically present a volumetric overlap error of 10-15 % depending on the structures
sizes.
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• Relative absolute volume difference, in percent. The total volume of the segmentation is divided
by the total volume of the reference. From this number 1 is subtracted, the absolute value is taken
and the result is multiplied by 100. This value is 0 for a perfect segmentation and larger than zero
otherwise. Note that the perfect value of 0 can also be obtained for a non-perfect segmentation, as
long as the volume of that segmentation is equal to the volume of the reference.

• Average symmetric absolute surface distance, in millimeters. The boundaries voxels of segmentation
and reference are determined. These are defined as those voxels in the object that have at least
one neighbor (from the 26 nearest neighbors) that does not belong to the object. For each voxel in
these sets, the closest voxel in the other set is determined (using Euclidean distance and real world
distances, so taking into account the generally different resolutions in the different scan directions).
All these distances are stored, for boundary voxels from both reference and segmentation. The
average of all these distances gives the averages symmetric absolute surface distance. This value is
0 for a perfect segmentation.

• Symmetric RMS surface distance, in millimeters. This measures is similar to the previous measure,
but stores the squared distances between the two sets of border voxels. After averaging the squared
values, the root is extracted and gives the symmetric RMS surface distance. This value is 0 for a
perfect segmentation.

• Maximum symmetric absolute surface distance, in millimeters. This measure is similar to the
previous two, but only the maximum of all voxel distances is taken instead of the average. This
value is 0 for a perfect segmentation.

Finally, for each metric a score between 0 and 100 is assigned to the segmentation results based on
the typical variability of manual segmentations. A score of 100 is assigned to the perfect segmentation
which matches exactly the reference segmentation. For each metric, a reference value from segmentation
performed by independent users is assigned with a score of 90, which is shown below:

• Volumetric overlap error: 12.94%

• Relative absolute volume difference: 9.64%

• Average symmetric surface distance: 0.40mm

• RMS symmetric surface distance: 0.72mm

• Maximum symmetric surface distance: 4.0

A Score of each metric for a given segmentation can be obtained, using a linear interpolation or extrap-
olation between the two points specified above. Note that 0 is the minimum score that one segmentation
will get. A score of 90 means that the segmentation results is as good as a manual segmentation.
More details about the evaluations can be found on the web site of the organizers of the challenge :
http : //lts08.bigr.nl/.

4.4.5 Training Results

Table 4.6 summarizes the evaluation scores of our method on a set of 4 CT images presenting 10 tumors
with known hand made segmentations. The evaluation scores compare our results with the radiologists
segmentations. The important point is that these results have been obtained with the knowledge of the
hand made segmentations. The results have been obtained such that the similarity between the two
segmentations is visually satisfactory.

The mean surface distance between our segmentations and the references is less than a millimeter,
which is the typical resolution of a voxel of the studied 3D CT images. The volumetric overlap error
shows that approximatively 83 % of our segmentation volume is in perfect match with a hand made
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segmentation. The mean total score obtained on the training data set is 88, which is not far from the
score obtained from independent hand made segmentations performed by experienced radiologists. Figure
4.23 illustrates some comparisons between the hand-made segmentation and the results obtained with
our methodology.

Overlap
Error

Volume
Difference

Average
Surface
Distance

RMS
Surface
Distance

Maximum
Surface
Distance

Total
Score

Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score

Tumor 1 19,11 85 4,94 95 1,17 71 1,53 79 5,7 86 83

Tumor 2 17,84 86 11,04 89 0,53 87 0,79 89 3,69 91 89

Tumor 3 21,29 84 5,08 95 0,79 80 0,97 87 3,05 92 88

Tumor 4 17,71 86 13,74 86 0,62 85 0,93 87 4,04 90 87

Tumor 5 19,2 85 6,07 94 0,57 86 0,85 88 3,19 92 89

Tumor 6 29,47 77 15,95 84 0,56 86 0,85 88 2,5 94 86

Tumor 7 13,47 90 3,68 96 0,92 77 1,28 82 6,41 84 86

Tumor 8 11,24 91 8,57 91 0,45 82 0,73 90 3,37 92 89

Tumor 9 10,63 92 7,53 92 0,74 82 1,08 85 5,93 85 87

Tumor 10 10,02 92 1,17 99 0,46 89 0,77 89 4,37 89 92

Average 17,0 87 7,78 92 0,68 83 0,98 86 4,23 90 88

Table 4.6: Results of comparison metrics and scores for all ten training tumors.

4.4.6 Testing Results

Table 4.7 summarizes the evaluation scores of our method on a set of 5 CT images presenting 10 tumors
with unknown hand made segmentations. The evaluation scores compare our results with the radiolo-
gists segmentations. The important point is that these results have been obtained without the knowledge
of the hand made segmentations. A comparison between the training scores and the testing scores is
illustrated in figure 4.21. The mean surface distance between our segmentations and the references is ap-
proximatively one and a half millimeter, which represents 2 or 3 voxels of the studied 3D CT images. The
volumetric overlap error shows that approximatively 71 % of our segmentation volume is in perfect match
with a hand made segmentation. Figure 4.24 illustrates some results obtained with our methodology.
Some evaluation results show that we have misunderstood some structures that have to be extracted.
This problem leads to very low scores that could have been avoided with the help of a radiologist (see
for instance tumor number 5). However our results are promising, considering the low quality of some
images of the dataset.

The computation time of our method depends on of the image size and the number of refinements
of the segmentation. The first step, which consists in extracting a sub-volume, is typically done in one
minute. The markers placement requires basically one to two minutes. In our experiments we have drawn
markers in three orthogonal slices centered on the tumor in about one minute. The computation time
of the segmentation algorithms is then relatively fast: about 1 seconds for the watershed transform, 2
seconds for the liver extraction and 2 other seconds for the tumor extraction (for a typical sub-volume of
size 100 × 100 × 100, computed on a classical personal computer). The time needed for the refinement
steps is then mainly due to the markers placement. In our experiments, two to five refinement steps were
needed to provide the presented results. The typical time spent for these refinements varied from one
to five minutes. The total time needed for the segmentation of a tumor is then approximatively five to
seven minutes.
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Overlap
Error

Volume
Difference

Average
Surface
Distance

RMS
Surface
Distance

Maximum
Surface
Distance

Total
Score

Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score

Tumor 1 27,16 79 21,68 77 2,01 49 2,90 60 10,50 74 68

Tumor 2 36,41 72 24,98 74 1,36 66 1,83 74 6,15 85 74

Tumor 3 31,99 75 16,93 82 1,18 70 1,59 78 5,64 86 78

Tumor 4 33,19 74 1,86 98 0,84 79 1,09 85 4,00 90 85

Tumor 5 61,24 53 119,82 0 2,29 42 2,95 59 9,30 77 46

Tumor 6 21,83 83 10,68 89 2,65 33 3,58 50 18,31 54 62

Tumor 7 21,44 83 4,85 95 0,93 77 1,38 81 6,89 83 84

Tumor 8 16,02 88 14,47 85 1,84 54 2,70 62 9,73 76 73

Tumor 9 22,87 82 2,14 98 0,65 83 0,97 87 5,10 87 87

Tumor 10 22,78 82 21,27 78 1,21 69 1,73 76 7,33 82 77

Average 29,49 77 23,87 78 1,50 62 2,07 71 8,29 79 73

Table 4.7: Results of comparison metrics and scores for all ten test tumors.

Figure 4.21: Comparison Between Training and Testing Results. The scores obtained on the training data
set are shown in blue, whereas the scores obtained on the testing data set are shown in light yellow. The
red line indicates the reference value obtained from the segmentation results performed by independent
and experienced radiologists.
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4.4.7 Total Scores

Our segmentation method has provided the best results over 15 other interactive, semi-automatic and
fully automatic techniques after the first competition of the challenge organized for MICCAI 2008. The
final competition will be help during the conference. A large variety of methods were proposed for the
segmentation of liver tumors including surface evolution [94, 50], region growing [86, 115], machine learn-
ing [94, 119, 93], cognition network [89], thresholding and morphological operators [22, 78], and finally
probabilistic methods [109, 6]. Our interactive segmentation method has provided stable and accurate
segmentation results in all the different cases presented by the data. Noisy data, low contrasted tumors
with positive or negative contrast, large tumors, and very small tumors were segmented efficiently. A
summary of the evaluation scores are illustrated in figure 4.22. The scores (between 0 and 100) represent
the quality of the provided segmentations compared to hand made segmentations as detailed earlier.
Perfect segmentations should reach the score 100. Our method has obtained the higher mean score of 73.

4.4.8 Conclusion

Our method exhibits promising results for the aimed application. However some open problems still re-
main. First, the segmentation of multiple tumors in the same liver often requires additional user markers
to correctly separate the tumors. The developed method merges the tumors in a single object when
different tumors are too close. This problem requires that the user adds markers between the merged
tumors. This additional interaction speeds down the segmentation protocol. However the used methods
(minimal surfaces and Markov random fields on a region adjacency graph) are fast and can be used
interactively. Secondly we did not develop any preprocessing step such as filtering of the images. There
is thus still some possible improvements of our methodology. Future work will be concentrated on the
development of adapted filters to simplify the segmentation and the classification step of our methodology.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.22: MICCAI 2008 Liver Tumor Segmentation Challenge. The scores expresses the quality of the
segmentation compared to a hand made segmentation. Our results, highlighted in blue, have the best
mean score and our segmentation strategy provides the best results according to four different quantitative
measures.
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(a)

(b)

Figure 4.23: Training data results. Comparison between hand made and the proposed segmentation
method. Blue pixels indicate a perfect match, green pixels indicate zones that are not detected by our
method and pink pixels indicate zones not detected by the radiologist. (a) Tumor 5 results. (b) Tumor
7 results.
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(a)

(b)

(c)

(d)

Figure 4.24: Testing data results. (a) Original image. (b) Tumor 6 results. (c) Original image. (d)
Tumor 8 results.
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4.5 Conclusion

Our segmentation tools have been integrated in a complete software that permits to visualize and segment
images interactively. This software has been successfully used in many different medical applications, in-
cluding model creation for surgery planning and simulation, lung tumor segmentation and tracking for
radiotherapy planning. Finally our tools have been studied quantitatively and comparatively to other
manual, interactive, semi-automatic and automatic segmentation methods. This study has proved that
our methods are leading techniques for the segmentation of liver tumors. Our software and our segmenta-
tion methods are thus well suited to be used in a clinical routine. The developed methods provide almost
the same quality than hand-made segmentations which require much more time than our interactive
methods. Future work will be concentrated on the improvement of our software in order to match all the
clinical requirements.
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5

The Watershed Transform on Graphs

This chapter presents an algebraic point of view of some path optimization problems introduced in the
first chapter: minimum spanning forests and shortest path forests. A large variety of graph problems are
amenable to certain optimal paths computation, as described in chapter 1. Instances of paths problems
are numerous: checking path existence, finding shortest or most reliable paths, listing all paths, etc. Ded-
icated algorithms have been developed to solve efficiently each of these problems; for instance, Dijkstra
algorithm for the single source shortest paths problem. However, the development of a general framework
for the whole family of path optimization problems is desirable to provide a better understanding of the
underlying structure of these problems.

We propose such a unifying framework by introducing some suitable algebraic structures. A few
variants of the algebraic approach for solving path problems have already been proposed [43, 19, 77, 12].
Our favorite approach issued from [43] uses a structure called ”path algebras”. This approach is based
on some analogies of graphs with ordinary linear algebra.

The benefit of this algebraic point of view is that it allows us to define all these techniques from
a general, abstract, path optimization problem. It is then possible to define a common algorithm to
solve all instances of path optimization problems: the generalized Dijkstra algorithm [28, 23]. We have
implemented this generic algorithm; it constitutes the basis of a C/C+ + library that we have developed
and used to present the results of this thesis.

An important contribution of this work is a redefinition of the watershed transform [75, 72, 73]as an
instance of a particular optimal paths problem [72, 73, 113, 80]. This property leads to clear definitions
of the watershed transform. Finally we propose some extensions of the watershed transform. First, we
extend the watershed transform in the case of dissimilarity measures, in connection with minimal span-
ning forests and shortest paths forests methods presented in the second chapter. We also propose two
watershed transform definitions in the case of vector-valued images, which necessitate the use of graphs
whose edges weights are also vectors. This last extension is particulary interesting to segment images
with the knowledge of multiple imaging modalities. Multi-modal medical images or color images are par-
ticular cases of vector-valued images to which our extension of the watershed transform can be applied to.



5.1 Introduction

The path algebra point of view has already been used in the context of mathematical morphology through
the watershed transform, especially explored by Meyer [73]. In his paper, Meyer has shown that the wa-
tershed transform of mathematical morphology can be seen as an instance of a path optimization problem.
He has introduced a specific path algebra based on a lexicographical distance to provide a suitable frame-
work for the watershed transform from markers.

On the other side, a generalized Dijkstra algorithm has also been used by Falcao et al. in [33]. They
derived the so called image foresting transform generalizing the problem of minimal weighted forests.
However Falcao did not link the structure of minimal weight forest problems with an algebraic structure
like path algebras. We think that the path algebra point of view is suitable to obtain an efficient algo-
rithms for solving the problem of minimal weighted forest, and besides provide solutions to a large class
of connected problems. We will present in this chapter the path algebra point of view that has been
developed in the context of graph theory by Gondran and Minoux in [43]. We will not add any new
theoretical result about path algebra; our aim is to show that this structure is well suited to generalize
already known graph based image segmentation methods.

We also study the watershed transform on images and its counterpart on graphs. We recall the dif-
ferent definitions of this segmentation technique and show that each of these definitions correspond to a
particular shortest path problem. We detail each path optimization problem and give its corresponding
path algebra. Finally we extend the technique for dissimilarity based paths optimization and vector
valued images.

This chapter is subdivided as follows: section 5.2 introduces notations and definitions of path algebras;
in section 5.3 the problem of shortest path forest and the generalized Dijkstra algorithm are formalized.
This algorithm allows us to solve a large variety of path optimization problems. Finally sections 5.4
and 5.5 give precise definitions of the watershed transform, as well as some extensions of the watershed
transform for vector-valued images.

5.2 Path Algebras

Path algebras provide a very powerful theoretical framework for image segmentation based on paths op-
timization and particulary for watershed segmentation. The main idea of this approach is to associate an
algebraic structure to graph problems. A specific graph problem is then represented by a matrix equation
in a particular algebraic structure. The matrix representation can then be manipulated such that paths
computation, enumeration and optimization are seen as linear algebra problems. Most paths optimiza-
tion problems can be written as linear equations in particular spaces. However, each type of problem will
generally require a different algebraic structure. We consider especially the paths optimization problems
and we will not detail path enumeration and listing problems.

5.2.1 Definitions

We first start this chapter by some definitions and notations about algebraic spaces.

Definition 5.2.1 (Monoid). Let M be a set and ⊕ a binary operation on M . (M,⊕, ε) is a monoid, if
⊕ is associative and ε is its identity element: ∀a ∈M, ε⊕ a = a⊕ ε = a.

Alternatively, one can define a monoid as a semigroup with an identity element. Note that a monoid
satisfies the axioms of a group with the exception of having inverses.

Definition 5.2.2 (Commutative Monoid). A monoid M, is a commutative monoid if ⊕ is commutative.
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Definition 5.2.3 (Dioid). A dioid D, written (D,⊕,⊗, ε, γ), is an algebraic structure following the
properties:

1. (D,⊕, ε) is a commutative monoid. The identity element ε of ⊕ is called the zero of the dioid.

2. (D,⊗, γ) is a monoid. The element γ is called the unit element of the dioid.

3. The operation ⊗ is distributive with respect to the operation ⊕, and ε is an absorbing element for
⊗:

∀(a, b, c) ∈ D3, a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) . (5.2.1)

∀(a, b, c) ∈ D3, (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a) . (5.2.2)

∀a ∈ D, a⊗ ε = ε⊗ a = ε . (5.2.3)

Some authors consider all dioids as path algebras [43]; in our presentation we define a path alge-
bra as a dioid that admits an order relation ≺, see proposition 5.2.5. Alternatively, some authors call
the dioids semirings. Indeed, if every element of D would have an opposite, D would have a ring structure.

Definition 5.2.4 (Path Algebra). A path algebra P , written (P,⊕,⊗, ε, γ), is an algebraic structure with
the properties:

1. (P,⊕,⊗, ε, γ) is a dioid.

2. The operation ⊕ is idempotent:
∀a ∈ P, a⊕ a = a . (5.2.4)

5.2.2 The Natural Order

Proposition 5.2.5 (Order Relation). The relation a ≺ b ≡ (a⊕b = a) is an order in the monoid (P,⊕, ε)
if the law ⊕ is idempotent.

Proof.

1. the relation ≺ is reflexive, (a ≺ a) since ⊕ is idempotent.

2. the relation ≺ is transitive: Let us show that (a ≺ b) ∧ (b ≺ c)⇒ (a ≺ c):

(a ≺ b) ∧ (b ≺ c) ≡ (a⊕ b = a) ∧ (b⊕ c = b) . (5.2.5)

⇒ (a⊕ (b⊕ c)) = a . (5.2.6)

⇒ ((a⊕ b)⊕ c)) = a . (5.2.7)

⇒ (a⊕ c) = a ≡ (a ≺ c) . (5.2.8)

3. the relation ≺ is antisymmetric [(a ≺ b) ∧ (b ≺ a)⇒ a = b] :

(a ≺ b)⇒ ∃d ∈ P, a = b⊕ d (5.2.9)

(b ≺ a)⇒ ∃c ∈ P, b = a⊕ c (5.2.10)

[(a ≺ b) ∧ (b ≺ a)] ≡ [b = a⊕ c ∧ a = b⊕ d] . (5.2.11)

a⊕ b = a⊕ (a⊕ c) = a⊕ c = b . (5.2.12)

a⊕ b = (b⊕ d)⊕ b = b⊕ d = a . (5.2.13)
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Since we consider only path optimization problems, we restrict ourselves to the study of the path
algebra with an idempotent law ⊕. However path enumeration problems and path existence problems
can be solved in a similar algebraic structure having a law ⊕ which is not necessarily idempotent. For
instance path existence problems can be solved using the classical Boolean algebra and path enumeration
problems can be solved with a law ⊕ that corresponds to the union of sets.

The path algebra contains a partial order relation induced by the idempotent law ⊕ that will allow
us to define a notion of distance over the set P . This order relation is often referred to as the natural
order. Similar algebraic structures have already been treated in [43].

Notation Algebra Name Applications
Rmax (R+ ∪ {−∞},max,+,−∞, 0) max algebra Longest Paths

Rmin (R+ ∪ {+∞},min,+,+∞, 0) min algebra Shortest Paths

Rmaxmin (R+ ∪ {+∞},max,min, 0,+∞) bottleneck algebra Maximum Capacity Path

Rminmax (R+ ∪ {+∞},min,max,+∞, 0) bottleneck algebra Minimum Capacity Path

P ([0, 1],max,×, 0, 1) Probability algebra Markov Chains

B ({0, 1},max,min, 0, 1) Boolean algebra Path Existence

Table 5.1: Different path algebras with idempotent law ⊕.

Table 5.1 lists different instances of path algebras with their specific range of applications. However
we are mainly focused on the class of optimization problems, i.e. the minimization or the maximization
of some objective function related to a measure on paths. Optimization problems require an order
relation of the elements of the path algebra. Otherwise the notions of minimization and maximization
are meaningless. We will now detail how graphs are represented in path algebras and then give the
general formulation of finding an optimal path in a graph.

5.2.3 Graphs Representation

We consider in this section the manipulation of graphs in a path algebra. It is thus necessary to define a
suitable graph representation. As in ordinary linear algebra, the basic structures that we are considering
are matrices. We introduce here the so called generalized incidence matrix of a graph. The generalized
incidence matrix permits to encode a weighted graph by a matrix.

Definition 5.2.6 (Generalized Incidence Matrix). Given a graph G = (V,E,W ) and a path algebra
(P,⊕,⊗, ε, γ) such that: ∀wi,j ∈ W,wi,j ∈ P ; one can define a generalized incidence matrix A = [aij ] of
G where each line of the matrix corresponds to a node of G, and each column corresponds to a node of
G and such that:  aij = wi,j if (i, j) ∈ E ,

aij = ε if (i, j) /∈ E ,
aii = γ.

(5.2.14)

Furthermore it is possible to define additions and multiplication as in an ordinary linear algebra. For
n× n matrices A = [aij ] and B = [bij ] over (P,⊕,⊗, ε, γ), we define the following operations:{

A⊕B = [aij ⊕ bij ] (addition).
A⊗B = [

⊕n
k=1 aik ⊗ bkj ] (multiplication). (5.2.15)
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Matrices operations in path algebras highlight some particular convergence properties, especially for
the sequence of matrices products An = A⊗A...⊗A. The path optimization problems will also often be
reduced to the computation of a particular power of the generalized incidence matrix A of a given graph.
However we are not going to detail here these convergence properties; we refer instead the readers to the
textbook [43] for more details on matrix manipulations in dioids. Some of these properties are illustrated
in the next sections through simple examples.

5.2.4 Example

Figure 5.1: Example Graph.

Let us consider the graph displayed on figure 5.1. We are going to show on this graph what are the gen-
eralized incidence matrices operations in paths algebras. The graph is composed of 6 nodes {1, 2, 3, 4, 5, 6}.
Given that we consider non oriented graphs, we are not making any differences between the arc (i, j)
and (j, i) even if the generalized incidence matrix of a graph can take into account the difference. As
we have mentioned earlier, in any other case, we will speak of directed or oriented edges. The gener-
alized incidence matrix of the graph G can be written in the path algebra (R+∪{−∞},max,+,−∞, 0) as:

L = [lij ] =


0 8 2 −∞ −∞ −∞
8 0 1 4 −∞ −∞
2 1 0 −∞ 1 −∞
−∞ 4 −∞ 0 7 1
−∞ −∞ 1 7 0 8
−∞ −∞ −∞ 1 8 0


This symmetric incidence matrix can be manipulated as any common matrix in an algebraic space.

For instance, the multiplication of the matrix L by itself in Rmax, i.e. its square, is equal to:

L⊗ L = L2 = [ max
k∈{1,..,n}

(aik + akj)] =


16 8 9 12 3 −∞
8 16 10 4 11 5
9 10 4 8 1 9
12 4 8 14 9 15
3 11 1 9 16 8
−∞ 5 9 15 8 16


The algebra Rmax can be used to compute the longest paths between two nodes containing a given

number of edges. In our example, elements of the matrix L2 indicate the length of the longest path
between two nodes of the graph containing at most two edges. We detail in the next section a general
formalization of the shortest path problem. We also show that minimal capacity paths or classical short-
est paths are only some particular cases of this general linear problem.

Matrices manipulation in a path algebra is thus similar as in ordinary linear algebra. This particular
path algebra has been extensively studied in the last years in connection with system theory and opti-

127



mal control. Some important properties of this algebraic structure have been highlighted by the group
”Max Plus”, which is a collective name for a working group on the so called max-plus algebra at INRIA
Rocquencourt [39, 38]. The path algebra structure provides a suitable framework for a large variety of
problems. However we are not going to detail here all the applications of path algebras and other related
algebraic structures. The field of application of this theory is too large to be enclosed in a single thesis.

5.3 Generalized Shortest Path

This section presents the generalized shortest path problem. The aim of this section is to derive several
common path optimization problems from a single system of linear equations. We will see how the
shortest path problem, the maximal capacity path problem and many others path optimization problems
can be obtained as a particular instance of the same abstract problem.

5.3.1 Definition

Let us consider a path algebra (P,⊕,⊗, ε, γ), and a weighted graph G = (V,E,W ). The generalized
shortest path problem consists in finding a path π(vf ,vb), between two nodes (vf , vb) such that the gen-
eralized length of the path Ln(π(vf ,vb

)) is minimal. The problem of the generalized shortest path can be
written as the following minimization problem:{

Ln(π(vf ,vf )) = γ ,
Ln(π(vf ,j)) =

⊕
j∈Γ−1(i)

(Ln(π(vf ,i))⊗ wi,j), if i 6= vf . (5.3.1)

where Γ−1(i) is the set of adjacent nodes of the node i. We can consider that non-existent arcs (i, j) have
an ”infinite” weight wi,j = ε.

We can finally write the shortest path problem as the following linear equations:
Ln(π(vf ,vf )) = (

⊕
j∈V

Ln(π(vf ,j))⊗ wj,vf
)⊕ γ ,

Ln(π(vf ,i)) = (
⊕
j∈V

Ln(π(vf ,i))⊗ wi,j)⊕ ε, if i 6= vf .
(5.3.2)

The previous formulation can be seen dynamically as a recursive formulation of the shortest path
problem. The formulation expresses that a shortest paths from a source node to a destination node
can be found iteratively by traveling backwards from the destination node through the closest nodes of
the source. We can reformulate the shortest path problem in the defined path algebra to highlight the
linearity of the shortest path equations:

Π = Π⊗ L⊕B , (5.3.3)

where L is the generalized incidence matrix of G in the path algebra (P,⊕,⊗, ε, γ), Π is the vector of
shortest paths lengths from vf , and B is the vector:

B =

∣∣∣∣∣∣∣∣∣∣∣∣

γ
ε
.
.
.
ε

∣∣∣∣∣∣∣∣∣∣∣∣
.

Node indices have been reordered in such a way that the node vf corresponds to the first line and first
column of the generalized incidence matrix. Under this formulation, solving the shortest path problem is
thus equivalent to solving a system of linear equations. This formulation of the problem is very interesting
since we can use classical tools of linear algebra to solve the shortest path problem.
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5.3.2 Algebraic Tools

Methods for solving linear systems of equations are numerous. However there are two famous meth-
ods: the Jacobi method and the Gauss-Seidel method. The Jacobi method is an iterative algorithm
for determining the solutions of a system of linear equations with diagonally dominant matrices, i.e.
∀i, ‖ai,i‖ >

∑
j 6=i
‖ai,j‖. The Gauss-Seidel method can be seen as an improved version of the Jacobi method.

It is defined on matrices with non-zero diagonals; convergence is guaranteed if the matrix is either di-
agonally dominant or symmetric and positive definite. For instance, one can apply the Jacobi method
to solve the shortest paths linear system of equations. The Jacobi method in a path algebra can be
described by the following iterative scheme:

• First Π0 = B ,

• Then at the kth iteration, Πk = Πk−1 ⊗ L⊕B,

• repeat the previous step until Πk = Πk−1,

Πk represents the vector whose elements are the shortest paths lengths containing up to k edges. The
iterative scheme converges to Πn which is the vector of shortest path lengths. The previous method can
thus be used to solve the single source shortest paths problem. The same scheme can also be used to solve
the all pairs shortest paths problem, i.e the shortest paths between each pair of nodes. It is sufficient
to notice that the single source shortest paths takes into account only a single row of the generalized
incidence matrix (the row of the source node) to compute the shortest paths. Replacing the vector Π by
the whole incidence matrix, we obtain the following iterative scheme:

• First  L0 = L ,

• Then at the kth iteration, Lk = Lk−1 ⊗ L,

• repeat the previous step until Lk = Lk−1,

At the end, the elements [lij ]of the matrix Lk indicates the shortest path length from node i to node j.
As mentioned previously the all pairs shortest paths problem is here reduced to the computation of a
sequence of products Ln = L⊗ L...⊗ L.

Algebraic tools can thus be exploited to solve common graph problems. However the use of the matrix
representation of a graph is not optimal to handle graphs that contain numerous nodes and edges. 3D
images often contain millions of nodes and a matrix representation of a graph becomes inefficient or
simply impossible to use in practice. It is thus necessary to define another solver that does not need
a matrix representation of the graph. We detail in the next section the so-called generalized Dijkstra
algorithm.

5.3.3 Generalized Dijkstra Algorithm

We present here the so-called generalized Dijkstra algorithm that takes advantage of the path algebra
point of view of many graph path optimization problems. This algorithm is a direct extension of the
classical Dijkstra algorithm, described in the path algebra framework [28, 23]. The recursive formalization
of paths optimization problems highlights the fact that an optimal path can be found by recursively ana-
lyzing the graph, and updating the set of shortest paths. The pseudo code of the algorithm is given bellow.

This algorithm can be applied on any graphs represented in the path algebra (P,⊕,⊗, ε, γ) as soon as
there is an order relation at our disposal. For instance, if the law ⊕ is idempotent, one can use the natural
order relation ≺. The Dijkstra algorithm can thus solve the shortest path problem as already mentioned
in chapter 1. However this algorithm can be used for a fairly general class of optimization problem.
Finally another interesting property is that the generalized Dijsktra algorithm outputs a shortest path
tree.
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Algorithm 5 Generalized Dijkstra’s algorithm
Input: Graph G, Root Vertex vf , compare ≺, combine ⊗, infinite distance ε, zero distance γ
Output: Predecessor Map PredMap, Distance Map Distmap

for all vertex v in G do
Distmap[v] := ε
PredMap[v] := v
color[v] := WHITE

end for
Distmap[vf ] := γ
INSERT(Queue,vf ,Distmap[vf ])
color[s] = GRAY
while Queue is not empty do
u := EXTRACT-MIN(Queue)
for all vertex v adjacent to u do

if (wu,v ⊗Distmap[u]) ≺ Distmap[v] then
Distmap[v] := (wu,v ⊗Distmap[u])
PredMap[v] := u
if color[v] = WHITE then
color[v] := GRAY
INSERT(Queue, v, Distmap[v])

else
if color[v] = GRAY then
DECREASEPRIORITY (Queue, v)

end if
end if

end if
end for

end while
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5.3.4 Examples

The Dijkstra algorithm can thus solve the shortest path problem in a path algebra having an order
relation. Obviously many common path optimization problems can be formalized in such ordered path
algebras.

Shortest L1 path

The classical shortest path problem (with the L1() norm) can be formalized in the path algebra as the
following minimization problem:{

L1(π(vf ,vf )) = 0 ,
L1(π(vf ,j)) = min

j∈Γ−1(i)
(L1(π(vf ,i)) + wi,j), if i 6= vf . (5.3.4)

Non-existent arcs (i, j) are given an infinite weight wi,j =∞. Let us now consider the algebraic structure
Rmin with the following operations: {

a⊕ b = min(a, b) .
a⊗ b = a+ b .

(5.3.5)

The shortest path problem is thus equivalent to :
L1(π(vf ,vf )) = min[min

j∈V
(L1(π(vf ,j)) + wj,vf

), 0] = (
⊕
j∈V

L1(π(vf ,j))⊗ wj,vf
)⊕ {0} ,

L1(π(vf ,j)) = min[min
j∈V

(L1(π(vf ,i)) + wi,j),+∞] = (
⊕
j∈V

L1(π(vf ,i))⊗ wi,j)⊕ {+∞}, if i 6= vf .

(5.3.6)
The shortest (L1) path problem is a particular case of the generalized shortest path problem in

(R+ ∪ {+∞},min,+,+∞, 0). Moreover the natural order derived from the law min is the usual order
relation ≤.

Minimal Capacity Path (L∞)

The problem of the minimal capacity path can be written as a shortest path with the L∞ norm:{
L∞(π(vf ,vf )) = 0 ,
L∞(π(vf ,j)) = min

j∈Γ−1(i)
(max(L∞(π(vf ,i)), wi,j)), if i 6= vf . (5.3.7)

By convention, non-existent arcs (i, j) have an infinite weight wi,j =∞. Considering now the following
operations: {

a⊕ b = min(a, b) .
a⊗ b = max(a, b) , (5.3.8)

we can reformulate the minimal capacity path problem as the following minimization problem:
L∞(π(vf ,vf )) = min[min

j∈V
(max(L∞(π(vf ,j)), wj,s)), 0] = (

⊕
j∈V

L∞(π(vf ,j))⊗ wj,s)⊕ {0} ,

L∞(π(vf ,j)) = min[min
j∈V

(max(L∞(π(vf ,i)), wi,j)),+∞] = (
⊕
j∈V

L∞(π(vf ,i))⊗ wi,j)⊕ {+∞}, if i 6= vf .

(5.3.9)
The minimal capacity path is also a particular case of the generalized shortest path problem and can

thus be solved with the Dijkstra algorithm. Moreover a minimal capacity paths tree is also a minimal
spanning tree as described in chapter 1.

Examples

The generalized Dijkstra algorithm can be used to solve a fairly general class of path optimization
problems. This single algorithm can be especially used to solve the following problems:

131



• Shortest Path : DIJKSTRA(G, s, ≤ , +, +∞, 0). Edges weights represent the length between two
nodes.

• Minimal capacity path : DIJKSTRA(G, s, ≤ , max, +∞, 0). Edges weights represent the capacity
of some commodity that can flow through the edges.

• Maximal capacity path : DIJKSTRA(G, s, ≥ , min, 0, +∞). Edges weights represent the capacity
of some commodity that can flow through the edges.

• Most reliable path : DIJKSTRA(G, s, ≤ , ×, 1, 0). Edges weights represent the probability to
travel from one node to the other.

• Generalized shortest path : DIJKSTRA(G, s, � , ⊗, ε, γ). Edges weights represent any values or
set of values that can be ordered using the law �.

The results based on optimal path presented in this thesis have been obtained with this algorithm.
The next section is devoted to the Watershed transform of mathematical morphology. We first recall
the different definitions of the watershed transform based on optimal paths and present the related path
algebras. We detail how the watershed transform can be formalized in the path algebra framework.
We also show how the watershed on graphs can be extended to the case of vector valued images using
lexicographical distances.

5.4 The Watershed Transform on Graphs

The watershed transform is one of the most powerful tools for image segmentation. The method was
originally proposed by Beucher and Lantuéjoul in 1979 [11]. Since its creation, the algorithm and its
related theory have always been in active development. We detail in the following sections the different
methods related to the watershed transform based on graph paths optimization. We also detail these
methods in the path algebra framework and extend it to vector valued images.

5.4.1 Basics

The intuitive idea underlying the watershed transform comes from geography: the image is seen as a
topographic relief, where the pixel grey levels are related to the height of the points. The relief is then
flooded by rain and watersheds delimit the different regions where a drop of water will fall [90]. An
alternative view is to imagine the topographic surface being immersed by lakes coming from the local
minima. The lakes or catchment basins fill up the relief with water starting at these local minima, and,
at points where water coming from different basins meet, a watershed line is built. When the water level
has reached the highest level of the topographic surface, the process is stopped. As a result, the image
is partitioned into regions. The name ”watershed transform” denotes especially a labeling of the image,
such that all points of a given lake have a same and unique label. Note also that in practice one applies
the watershed transform to the gradient of an image [74]. This method produces watersheds at the points
of high contrast as it is commonly desired for image segmentation purposes. A simple flooding process is
illustrated in figure 5.2.

One of the difficulties with the watershed concept is that it leads to different formalizations and
definitions. However in this section we consider the watershed transform of a graph as the influence zones
of the local minima relative to some specific distances, as proposed by Meyer in [72, 73]. We refer the
reader to [87] for a detailed survey about algorithms and definitions of the watershed transform.

5.4.2 Topographic Distances

The first watershed definition is based on the topographic distances of a continuous function. We restrict
ourselves here to the definition given in [72] and [80], but other choices may be considered [85]. Assume
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(a) (b) (c) (d)

(e) (f)

Figure 5.2: Watershed segmentation by flooding. A topographic surface is flooded from its local minima,
the result is a partition of the surface.

that the image I is a real twice continuously differentiable function. The topographical distance between
points p and q lying in the domain of definition of I is given by:

Tf (p, q) = min
π∈Π(p,q)

∫
π

‖∇I(s)‖ds (5.4.1)

where the minimum is taken over all paths Π(p,q) from point p to point q. This equation leads to the
following precise definition of the watershed transform.

Definition 5.4.1 (Continuous Watershed Transform). Let I be a real twice continuously differentiable
function with distinct local minima {mi}. The catchment basin CB(mi) of a minimum mi is defined as
the set of points which are topographically closer to mi than to any other regional minimum mj. The
watershed transform is then defined by the labeling of the catchment basins.

This definition can also be extended to discrete spaces and digital images described by a graph.
Assume that a digital image I is given by its pixel graph G = (V,E,W ), where each node of the graph is
a pixel of the image. We detail now an alternate definition of the watershed transform for digital images
through the notion of lower slope. The lower slope LS(p) of I at a pixel p, is defined as the maximal
slope linking p to any of its neighbors of lower altitude:

LS(p) = max
q∈Np∪p

(I(p)− I(q)) (5.4.2)

where Np is the set of neighbors of pixel p in the graph G = (V,E,W ). Note that pixels whose neighbors
are all of higher grey values have a null slope. We define then the cost cp,q of traveling from pixel p to a
neighbor pixel q as:

cp,q =


d(p, q).LS(p), if I(p) > I(q) ,
d(p, q).LS(q), if I(q) > I(p) ,
d(p, q). (LS(p)+LS(q))

2 , if I(p) = I(p) .
(5.4.3)

where d(p, q) is the geometric distance between pixel p and q. In the following, we assume for simplicity
that d(p, q) = 1. From these notions, we define the topographic distance between two pixels p and q as:

T (p, q) = min
π∈Π(p,q)

 ∑
ei,j∈π

ci,j

 = min
π∈Π(p,q)

(L1(π)) (5.4.4)

Proposition 5.4.2 (Geodesics of the topographical distance). Let I(p) > I(q), a path πp,q is a path of
steepest descent if and only if T (p, q) = (I(p)− I(q)). The paths of steepest descent are thus the geodesics
(shortest paths) of the topographic distance.
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According to the topographic distance, we can state that a pixel p will be assigned the label of a
minima mi ∈M , where M is the set of minima of I, if and only if:

∀mk ∈M − {mi}, min
π∈Π(mi,p)

(I(mi) + L1(π)) < min
π∈Π(mk,p)

(I(mk) + L1(π)) (5.4.5)

This proposition leads to the following definition of the edges weights: the cost wp,q of traveling from
pixel p to a neighbor pixel q is defined as :

wp,q =

 LS(p) + I(q), if I(p) > I(q) ,
LS(q) + I(p), if I(q) > I(p) ,
max(LS(p), LS(q)) + I(p), if I(p) = I(p) .

(5.4.6)

The watershed transform of a digital image is finally restated in the following way:

Definition 5.4.3 (Topographic Watershed Transform). Assume that a digital image I is given by a graph
G = (V,E,W ) where the edges E are weighted according to equation 5.4.6. Let {mi} be distinct nodes
of G representing the minima of I. The watershed transform is defined by the labeling of the trees of a
shortest path forest of the topographical distance rooted on the minima mi.

The last definition holds for any ”lower complete” digital image, which means that each pixel which
is not in a minimum has a neighbor of lower grey value [74]. This definition can thus not be used for
the watershed transform from arbitrary sources of flooding. Note also that we can link the previous def-
inition in terms of a shortest path in the path algebra (R+ ∪ {+∞},min,+,+∞, 0), since the watershed
transform is simply a shortest path forest rooted on the minima.

We will now extend the definition of the watershed transform to deal with arbitrary images (not only
lower complete) as well as arbitrary sources of flooding.

5.4.3 Ultrametric Flooding Distances

An interesting use of the watershed transform consist in specifying the sources of the flooding. Instead of
simulating a flooding from all the minima, the flooding is constrained to start from some specified points.
This technique allows to obtain a segmentation of the image containing as much regions as markers spec-
ified for the flooding process. This method is illustrated in figure 5.3.

(a) (b) (c) (d)

(e)

Figure 5.3: Watershed segmentation from markers. A topographic surface is being flooded from selected
markers, the result is a partition of the image.
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An interesting property of the flooding is the lowest level of flooding for which two points p and q of
the image belong to the same lake. This lowest level is given by:

d∞(p, q) = min
π∈Π(p,q)

(
max
π

(I(p), I(k), I(k + 1), ..., I(q))
)
. (5.4.7)

One can especially note that the lowest level d∞(p, q) is also an ultrametric distance between two
points of the image:  d∞(p, p) = 0 ,

d∞(p, q) = d∞(q, p) ,
∀p, q, r, d∞(p, r) ≤ max(d∞(p, q), d∞(q, r)) .

(5.4.8)

We define then the cost wp,q of traveling from pixel p to a neighbor pixel q as :

wp,q = max(I(p), I(q)) . (5.4.9)

From the flooding ultrametric distance, we define the cost or the length of a path πp,q as the L∞
distance of a path:

L∞(π(p,q)) =
(

max
ei,j∈π(p,q)

(wi,j)
)

(5.4.10)

The L∞ distance of a path gives explicitly the lowest level of flooding for which two points belong to
the same lake. The L∞ distance of pathes yield an ultrametric distance too. According to the flooding
simulation from a set of specified markers M , we can state that a pixel p will be assigned the label of a
marker mi ∈M if and only if:

∀mk ∈M − {mi}, min
π∈Π(mi,p)

(L∞(π)) < min
π∈Π(mk,p)

(L∞(π)) (5.4.11)

Proposition 5.4.4 (Geodesics of the flooding distance). The geodesics of the flooding distance are
minimax paths of the graph weighted according to equation 5.4.9. In other words, any node p of a graph
G = (V,E,W ) is assigned the label of a marker mi after a flooding if and only if :

π(p,mi) ∈ argmin
π∈Π(p,mi)

(L∞(π)) , (5.4.12)

The last property is exactly the paths characterization of minimal spanning trees, as detailed in
chapter 1. We can thus propose the following definition of the digital watershed transform from markers:

Definition 5.4.5 (Ultrametric Watershed Transform). Assume that a digital image I is given by a graph
G = (V,E,W ) where the edges E are weighted according to equation 5.4.9. Let {mi} be k distinct nodes
of G representing some sources for the flooding process. The watershed transform is defined by the labeling
of the trees of a minimal spanning forest rooted on the markers mi.

The last definition can also be formulated in terms of a shortest path in the bottleneck path algebra
Rminmax, since the watershed transform is in this case a minimal spanning forest rooted on the markers.
Moreover the paths of a minimal spanning forest are minimax paths introduced in chapter 1.

5.4.4 Bi-criteria Distances

We address now the problem of flat zones segmentation for the watershed transform. The previous def-
initions of the watershed transform only hold for lower complete images. We relax now this restriction
and propose a definition allowing the segmentation of flat zones in an image according to influence zones
of the lakes, as illustrated in figure 5.4. We introduce a solution to the flat zones problem through lexi-
cographical orders as proposed by Lotufo et al. [66].

The simple knowledge of the height of a node or the distance of this node to a marker is not sufficient
to express completely the flooding process. We propose here a combination of these two notions. We
define the cost wp,q of traveling from a pixel p to a neighbor pixel q as the vector:

wp,q = (max(I(p), I(q)), d(p, q)) . (5.4.13)
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(a) (b) (c) (d)

(e)

Figure 5.4: Watershed Segmentation from markers : Plateau Problems. A topographic surface is being
flooded from selected markers. When two different lakes are about to flood a single flat zone, the resulting
partition is obtained according to the distance between a point of the flat zone and the closest lake. The
partition of the flat zones is thus obtained according to the zones of influences of the lakes.

where d(p, q) is the geometric distance between pixels p and q. In the following, we assume for simplicity
that d(p, q) = 1. We also define the following lexicographical order on the set of edges weights:

(a1, a2) ≺ (b1, b2) . (5.4.14)

⇔ a1 < b1 , (5.4.15)

ora2 < b2 . (5.4.16)

The corresponding natural order relation is the usual lexicographical order. We create now the path
algebra ((R+ ∪ {+∞})2,⊕,⊗, (∞,∞), (0, 0)) where the two operators ⊕ and ⊗ are defined as follows:

• the operation ⊕, called the addition, is defined by:

∀(a, b) ∈ ((R+ ∪ {+∞})2, a⊕ b =
{
a if a � b .
b if b � a . (5.4.17)

Its neutral element, or zero element, is (∞,∞) since a⊕(∞,∞) = a. Note also that ⊕ is idempotent.
Remark: this operation ⊕ is the equivalent of a ”min” operation.

• the operation ⊗, called the multiplication, is defined by:

∀(a, b) ∈ ((R+ ∪ {+∞})2, a⊗ b = [max(a1, b1), a2 + b2] , (5.4.18)

The operation ⊗ has a neutral element, or identity element (0, 0) since a⊗ (0, 0) = (0, 0)⊗ a = a.
Note also that (∞,∞) is an absorbing element for ⊗ since a⊗ (∞,∞) = (∞,∞)⊗ a = (∞,∞).

As a consequence, the algebraic structure ((R+∪{+∞})2,⊕,⊗, (∞,∞), (0, 0)) is a path algebra. Note
that the operation ⊗ is designed so that the length (according to equation 5.3.2) of a path takes into
account the distance to the markers on the flat zones. Besides, the length of a path takes only into account
the maximum height (the ultrametric flooding distance) of a point in non-flat zones. Note also that the
length of a path is not a scalar but a vector, and distances are sorted lexicographically. According to this
lexicographical distance, we can state that a pixel p will be assigned the label of a marker mi ∈M if and
only if:

∀mk ∈M − {mi}, minlex2
π∈Π(mi,p)

(Llex2(π)) ≺ minlex2
π∈Π(mk,p)

(Llex2(π)) (5.4.19)
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where minlex2 is the minimum according to the lexicographical order ≺ and Llex2(π) is the lexicographical
length of the path π defined as:

Llex2(π) =
⊕

e(i,i+1)∈π

(
w(i,i+1) ⊗ w(i+1,i+2)

)
(5.4.20)

where π is a path written π = {e(i,i+1), e(i+1,i+2), ..., e(i+n−1,i+n)}. This path algebra gives rise to the
following definition of the watershed transform.

Definition 5.4.6 (Bi-Criteria Watershed Transform). Let a digital image I be given by a graph G =
(V,E,W ) where the edges E are weighted according to equation 5.4.13. Let {mi} be distinct nodes of G
representing the sources for the flooding process. The watershed transform is defined by the labeling of the
trees of a shortest path forest rooted on the markers mi in the path algebra ((R+∪{+∞})2,⊕,⊗, (∞,∞), (0, 0)).

5.4.5 Lexicographical Distances

We discuss now the definition proposed by Meyer in [73], using another lexicographical order to manage
competing flooding from different sources. This situation appears when the watershed is computed from
a set of arbitrary markers. This order appears naturally with Meyer’s flooding algorithm based on hier-
archical queues [71]. The idea behind this lexicographical order is to rank the different lakes according to
the paths that the flooding has taken. In order to understand this ranking, let us consider the following
example, illustrated in figure 5.5.

Figure 5.5: The figure illustrates the graph used for our example. The flooding markers are represented
by colored nodes.

The markers for the flooding are the nodes a, b, c, d. The questions that we address are the following:
first, what label will the node 1 be assigned to? and second, is there any distance such that the nodes
are assigned a label according to a flooding from these markers ?

By simulating a flooding of this graph it is obvious that the nodes will be labeled as illustrated in
figure 5.6. First the lake coming from marker b reaches the node 6 before the lake coming from marker c,
because the altitude between b and 6 is lower than the altitude between c and 6. Later on, since the lake
coming from source b also reaches the first node 4, node 1 will be finally assigned the label of the marker b
leading to the illustrated labeling in figure 5.6. Let us check that the previously defined distances cannot
manage the presented situation:

• The ultrametric flooding distances from node 1 to nodes a, b, c are all equal to 6. The flooding
distance is thus myopic and cannot discriminate the different lakes arising from node a, b and c.
Only the lake coming from source d is discriminated by the ultrametric flooding distance.
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• The bi-criteria distance ranks the lakes coming from sources a, b and c by counting the number
of edges (all edges having a unit length) along the paths from markers to node 1. The bi-criteria
distance considers thus that node 1 will be reached first by the lake coming from a and does not
make any difference between the lakes coming from b and c. This ordering is not the one obtained
by simulating the flooding.

Figure 5.6: The figure illustrates the graph used for our example. The markers for the flooding are
represented by colored nodes.

Meyer noticed that the distance which is minimal along the winning paths is in fact a lexicographic
distance. The lexicographic length of a path is defined as a sequence (λ1, λ2, ..., λn) of decreasing weights
(λ1 ≥ λ2 ≥ ... ≥ λn). The largest weight λ1 is the maximum edge weight along the path, λ2 is the second
maximum edge weight along the path and so on. The lexicographical order between paths permits finally
to discriminate the flooding coming from different markers.

Definition 5.4.7 (Lexicographical Order Relation). The order relation ≺ defined by:

a = (a1, a2, ..., an) ≺ b = (b1, b2, ..., bn) . (5.4.21)

⇔ a1 < b1 , (5.4.22)

or ∃s ∈ {1, ..., n− 1}, ∀i ∈ {1, ..., s}, ai = bi, as+1 < bs+1 . (5.4.23)

is called the lexicographical order.

From this lexicographical order we create the path algebra ((R+ ∪ {+∞})n,�,�,+∞, 0), where the
two operators � and � are defined by:

• the operation �, called the addition, is defined by:

∀(a, b) ∈ ((R+ ∪ {+∞})n, a� b =
{
a if a � b .
b if b � a . (5.4.24)

its neutral element, or the zero element is ∞ since a�∞ = a. Note also that � is idempotent and
that the lexicographical ≺ corresponds to the natural order for the law �.

• the operation � is called the multiplication and is defined by:

– if b1 > a1, a� b = b .

– if an > b1, a� b = (a1, a2, ..., an, b1, b2, ..., bn) .

– else let j be the highest index verifying bj−1 ≥ b1 ≥ aj : a�b = (a1, a2, ..., aj−1, b1, b2, ..., bn) .
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The operation � has a neutral element, or identity element 0 since a � 0 = 0 � a = a. Note also
that ∞ is an absorbing element for � since a�∞ =∞� a =∞.

As a consequence the algebraic structure ((R+ ∪ {+∞})n,�,�,+∞, 0) is a path algebra and the
shortest path according to the lexicographical length can be solved by the generalized Dijkstra algorithm.
According to this lexicographical distance, we can state that a pixel p we will be assigned the label of a
marker mi ∈M if and only if:

∀mk ∈M − {mi}, minlex
π∈Π(mi,p)

(Llex(π)) ≺ minlex
π∈Π(mk,p)

(Llex(π)) (5.4.25)

where minlex is the minimum according to the lexicographical order ≺ and Llex(π) is the lexicographical
length of the path π defined as:

Llex2(π) = �
(e(i,i+1)∈π)

(
w(i,i+1) � w(i+1,i+2)

)
(5.4.26)

where π is a path written π = {e(i,i+1), e(i+1,i+2), ..., e(i+n−1,i+n)}. This path algebra leads to the
following definition of the watershed transform.

Definition 5.4.8 (Lexicographic Watershed Transform). Assume that a digital image I is given by a
graph G = (V,E,W ) where the edges E are weighted according to equation 5.4.13. Let {mi} be distinct
nodes of G representing the sources for the flooding process. The watershed transform is defined by
the labeling of the trees of a shortest path forest rooted on the markers mi in the path algebra ((R+ ∪
{+∞})n,�,�,+∞, 0).

5.4.6 Comparison of Different Watershed Transforms

This section illustrates the results obtained with the different definitions of the watershed transform.
The first example, in figure 5.7, illustrates the different watershed definitions on a simple image. Two
different markers for the watershed transform lie in the same flat zone. The example make it evident that
only the bi-criteria and lexicographical distances produce the same segmentation as a flooding simulation
using hierarchical queues [71]. The segmentation in the flat zones is composed of the influence zones
of the markers. The minimal spanning forest computed with the ultrametric flooding distance does not
permit to obtain this desired segmentation in the flat zones. Obviously all the given definitions allow the
detection of the main objects in the image.

The next example, displayed in figure 5.8, illustrates the watershed transform on a natural image.
The example highlights that the bi-criteria, the lexicographical and the ultrametric flooding distances
produce the same segmentations as a flooding simulation using hierarchical queues [71]. However, the
difference between the different watershed definitions are not noticeable for natural images. All the dif-
ferent strategies lead to the same partition of the image.

The different watershed strategies presented in this section are based on different path based criteria.
However, when working on natural images, the different strategies produce slightly or exactly similar
results. We will see in the next sections how these definitions can be extended to produce segmentations
based on dissimilarity measures. We will also see that the definitions based on path algebra can be
extended to vector valued images.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.7: Watershed Segmentation. (a) Original image (443x361). (b) Morphological gradient. (c)
Markers. (d) Minimal spanning forest of the flooding distance. (e) Bi-criteria shortest path forest. (f)
Lexicographical shortest path forest. (g) Watershed using Meyer’s algorithm based on hierarchical queues.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Watershed Segmentation. (a) Original image (256x256) surimposed with the markers. (b)
Morphological gradient. (c) Minimal spanning forest of the flooding distance. (d) Bi-criteria shortest
path forest. (e) Lexicographical shortest path forest. (f) Watershed using Meyer’s algorithm based on
hierarchical queues.
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5.5 On Variations and Extensions of the Watershed Transform

In the following sections we detail some variations of the watershed transform. We now consider exclu-
sively the watershed transform of the image’s gradient modulus since it is the one used for segmentation
purposes. The following sections detail some alternate watershed definitions that hold for the watershed
transform of the images’s gradient modulus. We detail also some possible extensions of the watershed for
vector-valued images and give some examples of segmentations of vector valued images.

5.5.1 Watershed Based on Dissimilarity Measures

The watershed transform definitions can be slightly modified in such a way that it produces a segmentation
according to different path based criteria. For image segmentation purposes the watershed transform is
computed on the image’s gradient modulus, usually the morphological gradient. The estimation of the
gradient has thus also an importance for the quality of the segmentation. A first extension of the classical
watershed transform of the gradient image is based on the local dissimilarity between neighbor pixels.
This approach, called watershed by dissimilarity was originally proposed by Pard{‘as [82] and Lotufo et
al. in [66]. The edges weights are identical to those proposed in chapter 2; given a pixel adjacency graph
G = (V,E,W ), we consider the following edges weights mapping:

∀ei,j ∈ E, wi,j =
(

1
d(i, j)

.|pi − pj |+ 1
)
, (5.5.1)

where i and j are two nodes of the graph, pi and pj are the grey level values of neighbor pixels of the
image and d(i, j) is the distance between the two pixels.

These edges weights represent the local estimation of the image’s gradient modulus. Instead of com-
puting the morphological gradient of the image at each pixel, the gradient is here estimated ”between” the
pixels. This weight map especially provides a better detection of thin contrasted objects. The watershed
transform using the ultrametric flooding distance is then defined as the minimal spanning forest rooted
on the minima. Alternatively, the watershed transform can also be defined as the bi-criteria shortest
path forest rooted on the minima (or the markers) to deal with plateaus of the image as proposed in [66].
Finally, the watershed transform can also be defined as the lexicographical shortest path forest rooted on
the minima (or the markers) as defined in the previous section to deal with competition between floodings.

This weight map has the main advantage to achieve a better detection of small details compared to
the classical morphological gradient. However we want also to point out that this weight map can only
be used for the computation of the watershed transform of the image’s gradient. This weight map cannot
be obtained if one wants to compute the watershed of a given image. In this last case, the previous
definitions that we have detailed should be used.

Examples and Comparisons

Figure 5.9 illustrates the watershed based on dissimilarity measure using the ultra-metric and the lexico-
graphical distances which lead to the computation of a minimal spanning forest and a shortest path forest
respectively. Figure 5.9 also compares these approaches with the classical watershed transform of the
morphological gradient using Meyer’s algorithm based on hierarchical queues. This example illustrates
that the watershed based on dissimilarity performs a better detection of small details but it is also more
sensitive to possible leaks, which correspond to small zones where the contrast is low. These differences
are highlighted in figure 5.10.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Watershed Segmentation based on local dissimilarity. (a) Original image (256x256). (b)
Markers. (c) Minimal spanning forest. (d) Bi-criteria shortest path forest. (e) Lexicographical short-
est path forest. (f) Watershed using Meyer’s algorithm based on hierarchical queues computed on the
morphological gradient.
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(a) (b) (c)

Figure 5.10: Watershed Segmentation based on local dissimilarity. (a) Original image. (b) Lexicographical
shortest path forest. (c) Watershed using Meyer’s algorithm based on hierarchical queues computed on
the morphological gradient.
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5.5.2 Minimal Spanning Forests for Vector Valued Images

The path algebra point of view of shortest path forest has an interesting feature: the length of a path and
the corresponding order are not limited to scalar values. Note also that the generalized Dijkstra algorithm
is not limited to scalar valued edges weights. Using lexicographical orders, it is quite straightforward to
extend the watershed definitions to vector valued images such as color images. Let us consider now that
an image is given by a vector field. Each pixel of the image is given by a vector pi = (pi,1, pi,2, ..., pi,n).
Let us now consider the pixel adjacency graph G = (V,E,W ) of this image, and the following set of
vectors:

∀ei,j ∈ E, ri,j = ((d(i, j).|pi,1 − pj,1|+ 1) , (d(i, j).|pi,2 − pj,2|+ 1) , ..., (d(i, j).|pi,n − pj,n|+ 1)) .
(5.5.2)

The vector ri,j measures the local contrast between neighbor pixels in each dimension. This measure
is the direct extension of the dissimilarity measure proposed in the previous section. Finally, we also
propose to order lexicographically this vector such that the largest contrast is the first element of the
vector. We use this ordered vector as the edges weights of the pixel adjacency graph:

∀ei,j ∈ E, wi,j = ((d(i, j).|pi,k − pj,k|+ 1) , (d(i, j).|pi,l − pj,l|+ 1) , ..., (d(i, j).|pi,m − pj,m|+ 1)) .
(5.5.3)

such that:

(d(i, j).|pi,k − pj,k|+ 1) ≥ (d(i, j).|pi,l − pj,l|+ 1) ≥ ... ≥ (d(i, j).|pi,m − pj,m|+ 1) . (5.5.4)

From this edges weights, we can use the classical lexicographical order ≺ to create a new path algebra
((R+∪{+∞})n,�, ?, (+∞)n, (0)n). The element (+∞)n is the vector (+∞,+∞, ...,+∞) and the element
(0)n is the vector (0, 0, ..., 0). The two operators � and ? are defined as follows:

• the operation �, called the addition, is defined by:

∀(a, b) ∈ ((R+ ∪ {+∞})n, a� b =
{
a if a � b .
b if b � a . (5.5.5)

its neutral element, or zero element is (+∞)n since a� (+∞)n = a. Note also that � is idempotent
and the corresponding natural order is the usual lexicographical order ≺.

• the operation ? is called the max-multiplication and is defined by:

∀(a, b) ∈ ((R+ ∪ {+∞})n, a ? b = (max(a1, b1),max(a2, b2), ...,max(an, bn)) . (5.5.6)

The operation ? has a neutral element, or identity element (0)n since a ? (0)n = (0)n ? a = a. Note
also that (+∞)n is an absorbing element for ? since a ? (+∞)n = (+∞)n ? a = (+∞)n.

It follows that we can define shortest path forests on this new path algebra since � is idempotent.
The shortest path forest in the path algebra ((R+ ∪ {+∞})n,�, ?, (+∞)n, (0)n) can be seen as the
counterpart for vector valued edges weights of a minimal spanning forest for scalar valued edges weights.
This structure can thus be used for vector valued image segmentation and the corresponding shortest
path forests correspond to the direct extension of the watershed transform by dissimilarity measures using
the ultrametric flooding distance.

5.5.3 Shortest Path Forests for Vector Valued Images

From the previously defined edges weights, we can also use the usual lexicographical order ≺ to create
a new path algebra ((R+ ∪ {+∞})n×n,�, ∗, (+∞)n, (0)n). The operators � and ? are then defined as
follows:

• the operation �, called the addition, is defined as in the previous section.

• ∀(a, b) ∈ ((R+ ∪ {+∞})n×n, the operation ∗ is called the lex-multiplication and is defined by:
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– if b1 � a1, a ? b = b .

– if an � b0, a ? b = (a1, a2, ..., an, b1, b2, ..., bn) .

– else let j be the highest index verifying bj−1 � b1 � aj : a∗b = (a1, a2, ..., aj−1, b1, b2, ..., bn) .

The operation ∗ has a neutral element, or identity element (0)n since a ∗ (0)n = (0)n ? a = a. Note
also that (+∞)n is an absorbing element for ∗ since a ∗ (+∞)n = (+∞)n ∗ a = (+∞)n. Note that
the elements a and b are vectors whose elements are also vectors.

It follows that we can define shortest path forests on this new path algebra. The shortest path forest in
the path algebra ((R+∪{+∞})n×n,�, ∗, (+∞)n, (0)n) is the counterpart for vector valued edges weights
of a shortest lexicographical path forest for scalar valued edges weights. This structure can thus also
be used for vector valued image segmentation and the corresponding shortest path forests corresponds
to the direct extension of the watershed transform by dissimilarity measures using the lexicographical
distance. We recall also that the lexicographical distance can handle competitive flooding as well as color
flat zones, unlike the ultra-metric distance.

5.5.4 Color Images Segmentation

We detail here the use of the previously defined path algebras for color images segmentation. Let us
consider that a color image is given by a vector field. To each pixel of the image is associated a vector
pi = (pi,1, pi,2, pi,3) representing the red, green and blue channels . Let us now consider the pixel adjacency
graph G = (V,E,W ) of this image, and the following set of vectors:

∀ei,j ∈ E, ri,j = ((d(i, j).|pi,1 − pj,1|+ 1) , (d(i, j).|pi,2 − pj,2|+ 1) , (d(i, j).|pi,3 − pj,3|+ 1)) . (5.5.7)

The vector ri,j measure the local contrast between neighbor pixels in each channel of the color image.
This measure is the direct extension of the dissimilarity measure for grey level images. Finally, we order
lexicographically this vector so that the largest contrast is the first element of the vector. We use this
ordered vector as the edges weights of the pixel adjacency graph:

∀ei,j ∈ E, wi,j = ((d(i, j).|pi,k − pj,k|+ 1) , (d(i, j).|pi,l − pj,l|+ 1) , (d(i, j).|pi,m − pj,m|+ 1)) . (5.5.8)

such that:

(d(i, j).|pi,k − pj,k|+ 1) ≥ (d(i, j).|pi,l − pj,l|+ 1) ≥ (d(i, j).|pi,m − pj,m|+ 1) . (5.5.9)

The watershed segmentation is then realized by computing a shortest path forest in the path alge-
bras ((R+ ∪ {+∞})n,�, ?, (+∞)n, (0)n) and ((R+ ∪ {+∞})n×n,�, ∗, (+∞)n, (0)n), which respectively
correspond to a minimal spanning forest and a shortest lexicographical forest for grey level images.

Examples

Figure 5.11 illustrates the proposed method for the segmentation of a color image. This example illus-
trates that the use of the color information gives slightly better results than the watershed transform
applied on the color gradient [31]. The proposed methods perform a good detection of the objects bound-
aries. The example illustrates also that lexicographical and ultra-metric distances provide similar results
on natural color images.

Discussion

The path algebra framework offers numerous possibilities for path based image segmentation. The pre-
sented method for color images is only the direct extension of the classical method used on grey level
images. But it is possible to design more complex measures to design alternate methods. In our example
we have used an ordered vector reflecting the contrast in each dimension as the edges weights for the
pixel adjacency graph. One should notice that other orders could be used. It is for instance possible to

146



choose a pre-defined order on the dimension of a vector-valued image. The image segmentation is then
based on some priority given to each dimension. In our example, the priority is given, for each edge,
to the dimension in which the contrast is the largest. Different priorities could be computed based on
statistical, spectral or geometrical properties. These criteria should be designed depending on the aimed
application.

(a) (b) (c)

Figure 5.11: Watershed Segmentation based on local dissimilarity for color images. (a) Original color
image (389x550). (b) Color gradient. (c) Markers.
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(a) (b)

(c) (d)

Figure 5.12: (a) Minimal spanning forest of the color image gradient. (b) Minimal spanning forest of the
color image. (c) Lexicographical shortest path forest of the color image gradient. (d) Lexicographical
shortest path forest of the color image.

148



5.6 Conclusion

We have revisited the watershed transform in the path algebra framework. We detailed the optimal prop-
erties of the watershed transform on graphs and gave some clear definitions of the watershed of vector
valued images. We have seen that the watershed transform can be formalized as an instance of shortest
path forests under some particular distances. The paths optimization criteria for image segmentation
has to be refined in order to design objective functions that are not only based on the contrast in the
image. This special point should be investigated in a deeper way for the design of efficient algorithms
for color and multi-spectral image segmentation. These extensions could be a stable basis to create new
paradigms for the segmentation of multi-spectral images.

The path algebra theory offers an unifying framework for path based image segmentation. This point
of view permits to solve various path optimization problems with a single algorithm, the generalized
Dijkstra algorithm. The watershed transform can especially be computed for both grey level and color
images by using the same algorithm.

Finally, this work also motivates further research about mathematical morphology on graphs, in order
to define new morphological operators based on the rich properties of graphs or trees structures. This
field have been investigated during the thesis but is not exactly in the scope of this work. However it is
clear that the graphs offers a slightly richer structure than a classical lattice.
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6

Perspectives

This chapter presents essentially some perspectives and experiments concerning the development of the
minimal cut problem for solving constrained segmentation issues. These constraints bring the classical
minimal cut problem in the linear and quadratic programming framework. We focus on the use of some
additional geometric constraints that can be used with graph cuts. We consider in this chapter the
minimal cut problem on a pixel adjacency graph, keeping in mind that its extension to region adjacency
graphs is possible and could be advantageously used to speed up and extend the presented techniques.

Linear and quadratic programs represent an instance of linear systems of equations that have to be
solved under linear constraints. These types of problems have already been considered for imaging ap-
plications. The most famous one is probably the random walker segmentation method [45] which is an
instance of a quadratic program. Linear and quadratic programs have now a great appeal in the imaging
community and new applications of these methods are developed constantly. Linear and quadratic pro-
grams have been so far efficiently applied to image registration, reconstruction and segmentation problems
[41, 44, 45, 110]. We present in this chapter how these frameworks can be used to introduce new types
of constraints for optimal cuts. We especially detail the computation of optimal cuts under geometric
constraints. Using the linear programming framework, it becomes possible to compute optimal cuts with
volume, area and perimeter constraints. We also consider the computation of optimal segmentations with
other types of markers, constraining the segmentation to have some specific boundary properties. This
method was first proposed by Grady et al. [44] to extend shortest path curves to 3D; our contribution is
the use these types of constraints for optimal cuts.

Graph based image segmentation algorithms have been extensively studied the last years. Minimum
spanning trees, shortest paths trees and minimum cuts have been used to segment images according
to some optimal properties [1, 2, 33, 47, 73]. Unfortunately none of these problems produce a unique
solution. As a consequence, results presented by these methods for image segmentation are highly de-
pendent upon the implementations of the solver. Our work is mainly motivated by the need to propose
reproducible image segmentation algorithms. Bringing additional constraints or regularizers to optimal
graph structures reduces the number of solutions of the underlying optimization problems and attenuate
the impact of the solver implementation.



6.1 Definitions

Let us first introduce the theoretical foundations of the methods that we use in this chapter, namely linear
programming (LP), integer programming (IP) and quadratic programming (QP). Many combinatorial
problems, such as graph partitioning problems used for image segmentation, can be written as linear,
integer or quadratic programs. Linear programming refers to the following general problem:

Definition 6.1.1 (Linear Program). A Linear Program is defined as the following minimization problem:

min
x∈X

(fTx), subject to

 Aineq.x ≤ bineq
Aeq.x = beq
lb ≤ x ≤ ub

(6.1.1)

where x represents a vector of real or integer variables to be determined. x takes its values in the set X .
f , beq , bineq are vectors with real coefficients. Aineq, Aeq are matrices with real coefficients. lb and ub
are respectively upper and lower bounds for the solution x.

A LP can be seen as the following optimization problem: given a polytope (defined by the equalities
and inequalities constraints), and a real-valued affine function f defined on this polytope, the goal is to
find a point in the polytope where the function f takes its smallest value. Note that such points may
not exist, but if they do, searching through the polytope vertices is guaranteed to be successful at finding
at least one of them. When the linear program is constrained to have an integer solution, x ∈ N, the
corresponding problem is called as an integer program. The geometry of integer and linear programming
is illustrated in figure 6.1.

Figure 6.1: The geometry of linear and integer programming. The inequalities constraints, represented
by dark lines, specify a region of feasible solution colored in light blue. The optimal solution of the
linear program lies on an vertex, drawn in large black disks, of the polytope. The feasible solution of the
corresponding integer programming are represented by green disks.

The readers unfamiliar with linear programming are referred to the following textbooks [43, 62]. A
linear program solver aims at finding a feasible solution x, i.e. that satisfies the constraints defined in
equation 6.1.1, and that minimizes the objective function fTx. The best known algorithms for solving
this problem are Dantzig’s simplex method [26] and interior point methods [84]. On the other side, in-
teger programs require more complex solvers such as the one based on the branch and bound method [63].

The other type of classical problems met in imaging applications is the minimization of a quadratic
objective function subject to linear constraints. This kind of optimization problem is called a quadratic
program (QP).

Definition 6.1.2 (Quadratic Program). A quadratic program is defined as the following minimization
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problem:

min
x∈X

(xT .A.x+ fTx), subject to

 Aineq.x ≤ bineq
Aeq.x = beq
lb ≤ x ≤ ub

(6.1.2)

There are also many algorithms that solve exactly or approximatively quadratic programs. For in-
stance if there are only equality constraints, then the QP can be reduced to a linear system of equations
[45]. For instance the well known random walker on a graph is a QP that can be reduced to a linear
system of equations. Otherwise, a variety of methods for solving QPs are commonly used, including
interior point methods, active sets and conjugate gradient methods [43, 62]. We refer the reader to the
cited textbooks for more details and theoretical background on these optimization problems.

6.2 Minimal Cut as a Linear Program

Linear programming starts to show interesting applications in imaging applications and especially image
segmentation, registration and reconstruction [41, 44, 110]. Recently Grady presented an extension in
3D of the shortest path problem to compute exact discrete minimal surfaces [44]. This method is based
on linear programming and highlights the possibilities of such techniques for image segmentation. The
classical way to solve the minimal cut problem is based on network flow algorithms such as variants of
the Ford-Fulkerson algorithm as described in the first chapter. We present in this section the minimal
cut problem as a linear program and give some interesting extensions allowed by this formulation.

6.2.1 Minimal Cut

Given an edge weighted graph G = (V,E,W ) and two nodes s ⊂ V and t ⊂ V , s 6= t = ∅, the
minimum cut problem is to find a set of edges Cs,t between s and t such that the weight of the cut
L1(Cs,t) =

∑
ei,j∈Cs,t

wi,j is minimum and such that the removal of the edges Cs,t disconnects the node s

and t (i.e. there is no paths between the sets s and t after the removal of edges of Cs,t). A graph cut
also produces two connected components S and T such that s ∈ S and t ∈ T .

6.2.2 Linear Programming

We detail now how the minimal cut problem can be formulated as a linear program. We first compute the
objective function to be minimized and then write the set of constraints such that the solution produces
a minimal graph cut. Let us first define the indicator vectors z and y as:

• ∀ei ∈ Cs,t ⊆ E, zi = 1,

• ∀ei ∈ E \ Cs,t, zi = 0,

• ∀i ∈ S, yi = 1,

• ∀i ∈ T, yi = 0.

The elements zi indicate if the edges ei are in the minimal cut, whereas the elements yi indicate if the
nodes i are in the set S or T . Let us now define the vector x as the concatenation of the vectors z and
y. Let us also define the vector f as the concatenation of a vector of size m = |E| representing the edges
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weights and a null vector of size n = |V |:

x =



z1

.

.
zm
y1

.

.
yn


, f =



w1

.

.
wm
0
.
.
0


(6.2.1)

Vector z indicates the edges of the graph cut Cs,t. zi = 1 means that the edge ei is in the cut.
Similarly the vector y indicates the corresponding labeling of the nodes. yi takes the value 1 if it remains
connected to the set of nodes S and takes the value 0 otherwise. If we consider that the set Cs,t is a
graph cut, then clearly the objective function to minimize (i.e. the weight of the cut) can be written as
the following product:

L1(Cs,t) = fTx =



w1

.

.
wm
0
.
.
0



T

.



z1

.

.
zm
y1

.

.
yn


=

∑
1≤i≤m

zi.wi (6.2.2)

In order to ensure that the minimization of fTx produces a graph cut, one has to specify some
constraints on the solution x. In any other case, the minimization of fTx has a trivial solution which is
a vector with only zeros as elements. The first constraints concern the nodes labeling in order to ensure
this labeling is coherent with a graph cut. First, nodes s and t have to take respectively the values 1 and
0. These first constraints express the equalities constraints of our linear program:{

ys = 1
yt = 0 (6.2.3)

The second type of constraints, the inequalities constraints, ensure that the cut separates the terminals
s and t and that the corresponding labeling of the nodes is coherent. These constraints are expressed by
the following inequalities:

∀(ei = ek,l) ∈ E, zi − yk + yl ≥ 0 (6.2.4)

This inequality ensures that at least one edge ei lies in the graph cut on each path from node s to
node t. These set of inequalities are thus constraining the labeling of the nodes to be coherent with a
graph cut labeling. Finally the minimum cut can be found by solving the following linear program:

min
x∈X

(fTx) (6.2.5)

subject to


∀(ei = ek,l) ∈ E, zi − yk + yl ≥ 0
ys = 1
yt = 0
0 ≤ x ≤ 1

(6.2.6)

Like many other graph methods, linear programming takes into account the orientation of the graph
edges. The algebraic formulation of the minimal cut takes into account the difference between the edge
ei,j and ej,i. As a consequence, in case of undirected graphs, it is necessary to consider both direct and
reverse edges. It is also necessary to add the corresponding inequalities and equalities constraints that
ensure that both direct and reverse edges, ei,j and ej,i, take the same values in the solution x.
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For comparison, we recall here the formulation of the random walker problem:

min
x∈X

 ∑
ei,j∈E

w2
i,j .|xi − xj |2

 (6.2.7)

subjectto

 ys = 1
yt = 0
0 ≤ x ≤ 1

(6.2.8)

The random walker leads to the minimization of a quadratic objective function. Although this last
problem looks quite similar to the minimal cut problem (which has the following objective function:∑
ei,j∈E

wi,j .|xi − xj |); its resolution requires different optimization strategy and is defined as a quadratic

problem (QP). This problem, as well as few variants, has been extensively studied by Grady for image
segmentation purposes [47, 45, 46].

6.2.3 Example

Let us illustrate the coherence of the proposed formulation and the way it produces the expected results
on an example. Consider the directed weighted graph illustrated in figure 6.2. We would like to find the
minimal cut that separates the nodes s and t as shown in figure 6.2. Our first example illustrates the
method on a directed graph.

Figure 6.2: Example of a graph composed of 4 nodes {s,1,2,t}. Edges weights appear in gray.

According to our formulation, the minimum cut can be found by solving the following linear program:

min
x∈R8

(fTx) = min
x∈R8



3
1
1
2
0
0
0
0



T

.



z1

z2

z3

z4

y1

y2

y3

y4


(6.2.9)

subject to


1 0 0 0 1 −1 0 0
0 1 0 0 1 0 −1 0
0 0 1 0 0 1 0 −1
0 0 0 1 0 0 1 −1

 . x ≥


0
0
0
0

 (6.2.10)

and

(
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

)
. x =

(
1
0

)
(6.2.11)

and 0 ≤ x ≤ 1 (6.2.12)
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This system of equations can be solved using a common linear program solver such as the simplex
algorithm [26, 35]:

x =



z1 = 0
z2 = 1
z3 = 1
z4 = 0
y1 = 1
y2 = 1
y3 = 0
y4 = 0


(6.2.13)

This solution gives the weight of the minimum cut: (L1(Cs,t) = fT .x = 2). Moreover the solution x
gives also the corresponding labeling of the nodes, which is indicated by the vector y, as shown in figure
6.3.

Figure 6.3: Representation of the edges of the minimum cut, in red dotted segments, as well as the
corresponding labeling of the nodes.

6.2.4 Comments and precisions

We give now some details about our formulation. First, our formulation of minimal graph cut is not ex-
actly right since we relaxed the solution x to be in the real interval [0, 1] and the solution should instead
exactly be contained in the set {0, 1}. In fact, due to the total unimodular property of the minimal cut
problem [62], the solution is always guaranteed to be contained in the set {0, 1} even if we allow the
solver to search for solutions in the real interval [0, 1].

Readers should also wonder what kind of improvements the use of linear program can give since purely
graph based algorithms are more efficient and faster than a linear program solver for the minimal cut
problem. In fact, linear programming offers a common framework to a large class of connected problems.
For instance we could decide to solve a slightly different problem than the minimal graph cut between
two sets of nodes. We could need to find the minimal cut between two sets of nodes that contains some
specified set of edges. This slightly different problem can not be solved by a common graph algorithm
such as Ford-Fulkerson algorithm, but it can be solved by a linear program solver by adding some other
constraints on the solution. This slightly different problem can be useful for image segmentation since
edge constraints can define a set of curves, or surfaces that should be contained in the segmentation
boundaries. This specific example is illustrated in the next section.

A second issue deals with the uniqueness of the solution provided by the optimal cut problem. Un-
fortunately common graph problems, such as minimal cuts, do not always have a unique solution. To
our knowledge, the regularization of the minimal cut problem has not been solved yet. This point will
be partially solved by using additional geometric constraints for the minimal cut. We discuss in the
next sections the computation of minimal cuts with a maximum area and perimeter constraints. One
should also be aware that polynomially solvable problems, like the classical minimal cut problem, can
become NP-hard when adding additional constraints. For instance the minimal cut problem containing
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a given number of edges is NP-hard. We consider thus in our study the linear programming relaxation
of these problems. In practice, solutions of these problems provided by common solvers are not integer.
A classical way to obtain an integer solution consists in rounding the real solutions. In other words, we
will only consider only approximate solutions.

Finally, in all our examples and illustrations for image segmentation, a V4 adjacency system has been
considered to compute the graphs and we used the following ad-hoc edges weights mapping [45]:

∀ei,j ∈ E, wi,j = e
−
(√

2500.(pi−pj)2+1
)
. (6.2.14)

where i and j are two nodes of the graph, pi and pj are the grey level values of neighbor pixels of the
image, pi ∈ [0, 1].

6.3 Boundary Constrained Minimal Cuts

An interesting application of constrained minimal cuts consists in adding boundary constraints. These
constraints are given as a set of edges that have to be included in the graph cut. These kind of markers
can be advantageously used for image segmentation purposes [32, 79, 44]. These boundary constraints
can model pieces of curves (2D) or surfaces (3D) that have to be included in the resulting segmentation
boundaries, as illustrated in figure 6.4.

(a) (b)

Figure 6.4: Boundaries constrained minimal cuts. The set of constraints is given by a set of edges, that
implicitly represent a set of curves drawn in red. The aim is to find a minimal cut separating the markers,
drawn in blue and red, that includes the dotted edges. (b) The obtained minimal cut is then constrained
to include these edges.

6.3.1 Definition

The boundary constrained minimal cut can be first defined in terms of a classical optimal graph cut
problem.

Definition 6.3.1 (Boundary Constrained Minimal Cut). Let G = (V,E,W ) be an edge weighted graph
and T = {t1, t2} be two distinct nodes. Let Eb ⊂ E be a set of distinct edges of G. The boundary
constrained minimal cut problem consists in finding a set of edges C∗ of E separating the terminals t1
and t2 such that:

C∗ ∈ argmin
C∈C{t1,t2}

(L1(C)) . (6.3.1)

subject to : ∀ei,j ∈ Eb, ei,j ∈ C (6.3.2)

where C{t1,t2} is the set of all possible cuts separating terminals t1 and t2.

157



This specific problem cannot be solved by a usual graph algorithm such as Ford-Fulkerson algorithm.
The additional constraints cannot be handled by this algorithm. It is thus necessary to use a linear pro-
gram solver to find the corresponding optimal cut. We define thus the boundaries constrained minimal
cut as the following linear program, using notations introduced earlier.

Definition 6.3.2 (Boundary Constrained Minimal Cut). The boundary constrained minimal cut is an
instance of the following linear program:

min
x∈X

(fTx) (6.3.3)

subject to



∀(ei = ek,l) ∈ E, zi − yk + yl ≥ 0
∀(ei = ek,l) ∈ Eb, zi = 1
∀(ek,l) ∈ Eb, yk + yl = 1
ys = 1
yt = 0
x ∈ {0, 1}

(6.3.4)

The boundary constraints can be easily added to the linear programming framework. These con-
straints are linear equalities depending on the variable zi and the corresponding end nodes yk and yl.
Constraints on the nodes around the cut (yk + yl = 1) are added to ensure that the labeling remains
coherent along the boundary constraints. Note also that these equalities do not permit to know the
topology (i.e. the number of connected components) produced by the graph cut. A possible optimal
configuration of this linear programm is illustrated in figure 6.5.

(a) (b)

Figure 6.5: Boundary constrained minimal cuts. The set of constraints is given by a set of edges, that
implicitly represent a set of curves drawn in red. The aim is to find a minimal cut separating the markers,
drawn in blue and red, that includes the dotted edges. (b) The obtained minimal cut is then constrained
to include these edges, but no constraint guarantees that the number of connected components created
by the graph cut is equal to the numbers of markers.

This problem about the number of connected components can unfortunately not be easily solved.
Adding constraints on the number of connected components would lead to a linear program with an
exponential number of constraints. In many situations the minimal cut solution acts like an optimal
interpolation of the contours constraints. Note also that this method can be directly used in 3D with
curves and/or surface boundary constraints.
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6.3.2 Example

This section illustrates the use of boundary constraints in addition to classical marker constraints for
image segmentation purposes based on minimal cuts. The example, illustrated in figure 6.6, compares
the segmentation results obtained by a classical minimal cut separating two sets of markers and the
minimal cut with boundary constraints. The boundaries constraints, which correspond to a set of edges
that are constrained to be in the minimal cut, can improve the quality of the segmentation results. In
our example the constrained minimal cut delineates the object correctly, whereas the classical minimal
cut detects boundaries of higher contrast but that do not correspond to the searched object.
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(a) (b)

(c) (d)

(e)

Figure 6.6: Boundary constrained minimal cut. (a) Original image (100x100) surimposed with the
markers. (b) Edge constraints, i.e. edges that have to be in the computed cut. (c) Classical minimal cut
separating the markers. (d) Random walker segmentation. (e) Minimal cut separating the markers and
including the edges constraints.
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6.4 Perimeter Constrained Minimal Cut

Another interesting application of constrained minimal cuts consists in adding geometric constraints. As
described earlier, a graph cut implicitly describes a curve in 2D or a surface in 3D. It is then possible
to specify some properties on these curves or surfaces and set the corresponding constraints in the linear
programming formulation. These constraints can for instance be given as a maximal length (2D) or
surface (3D) that the minimal cut cannot exceed. This kind of properties can also be advantageously
used for image segmentation purposes to avoid non-smooth segmentation results.

In graph theory, the perimeter constrained minimal cut can be seen as a variant of the cardinality
constrained cut problem [18]. In this last problem, the aim is to find a minimal cut of given cardinality,
i.e. a cut with a predefined number of edges. This problem is proved to be NP-hard in the general case
[18]. However, the linear programming relaxation of this problem offers a simple and efficient way to
obtain near optimal solutions. The results computed by a generic linear program solver is thus in most
cases a real solution x ∈ [0, 1] and not an integer solution x ∈ {0, 1}. The integer solution x ∈ {0, 1} is
then simply obtained by rounding the solution vector x. This scheme is far from being optimal for all
integer programming problems but it has given satisfactory results in our experiments.

6.4.1 Definition

The perimeter constrained minimal cut is defined as the following multi-criteria problem:

Definition 6.4.1 (Perimeter Constrained Minimal Cut). Let G = (V,E,W ) be an edge weighted graph
and T = {s, t} be two distinct nodes. The perimeter constrained minimal cut problem consists in finding
a set of edges C∗ of E separating the terminals s and t such that:

C∗ ∈ argmin
C∈C{s,t}

(L1(C)) . (6.4.1)

subject to : L0(C) ≤ β (6.4.2)

where C{t1,t2} is the set of all possible cuts separating the terminal s and t. β is a real positive parameter
that constrains the number of edges (the cardinality) of the cut C.

We model here the perimeter of the cut as the number of edges of the cut. Alternatively, geometric
properties of the graph edges could be used to compute a real Euclidean length of the cut. Once more,
this specific problem can not be solved by a usual graph algorithm such as Ford-Fulkerson algorithm. The
previous definition is an instance of a minimal multi-criteria cut [18]. To our knowledge there are no graph
algorithms other than the linear program solvers that can solve this optimization problem efficiently. The
formulation in terms of linear programming is given below.

Definition 6.4.2 (Perimeter Constrained Minimal Cut).

min
x∈X

(fTx) (6.4.3)

subject to



∀(ei = ek,l) ∈ E, zi − yk + yl ≥ 0( ∑
1≤i≤m

zi

)
≤ β

ys = 1
yt = 0
0 ≤ x ≤ 1

(6.4.4)

Perimeter constraints are included in the linear programming framework by adding inequalities con-

straints on the number of edges included in the cut

( ∑
1≤i≤n

zi

)
≤ β. Since this is a set of simple linear

inequalities, the problem can be solved by any generic linear program solver. We recall here that zi = 1
if the edge belongs to the cut and zi = 0 otherwise.
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6.4.2 Example

This section illustrates the use of perimeter constraints in addition with classical markers constraints for
image segmentation purposes based on minimal cuts. The example, illustrated in figure 6.7, compares
the segmentation results obtained by a classical minimal cut separating two sets of markers and the min-
imal cut with a maximal perimeter constraint. The classical minimal cut has a cardinality of 314 edges.
The minimal cut is progressively constrained in the following examples to have a maximal cardinality of
250, 200 and 150 edges. The segmentation results correspond to our expectations. However one should
note that the solutions of the corresponding linear programs are not integer. The final segmentation is
obtained by rounding the solution at the value 0.5. The results do not completely fulfill the cardinal-
ity constraints, but are near optimal results and are in good concordance with the expected segmentations.

6.5 Area Constrained Minimal Cut

Let us finally present an interesting application of constrained minimal cuts with added area constraints.
As described earlier, a minimal graph cut separating two terminals s and t produces two connected com-
ponents S and T , one connected to the node s and the other connected to the node t. It is then possible to
specify some properties on these two sets and define corresponding constraints. These constraints can for
instance be given as an interval of areas (2D) or volume (3D) in which one of the connected component S
or T should be situated. This kind of properties can also be advantageously used for image segmentation
purposes to avoid too large segmentation results.

6.5.1 Definition

The area constrained minimal cut is defined as the following multi-criteria problem:

Definition 6.5.1 (Area Constrained Minimal Cut). Let G = (V,E,W ) be an edge weighted graph and
T = {s, t} be two distinct nodes. The perimeter constrained minimal cut problem consists in finding a set
of edges C∗ of E separating the terminals s and t such that:

C∗ ∈ argmin
C∈C{s,t}

(L1(C)) . (6.5.1)

subject to : |S| ≤ β (6.5.2)
where C{s,t} is the set of all possible cuts separating the terminal s and t. |S| is the number of nodes such
that xi = 1, i.e. the number of nodes of the set S. β is a real positive parameter that constraints the area
of the set of nodes S.

We model here the area of a set as the number of nodes included in the set. Alternatively geometric
properties of the graph could be used to compute a real geometric area of the set S. This specific problem
can neither be solved by a common graph algorithm such as the Ford-Fulkerson algorithm. The previous
definition is an instance of minimal multi-criteria cut. To our knowledge there are no graph algorithms
other than the linear program solvers that can solve this optimization problem. The formulation in terms
of linear programming is given below.

Definition 6.5.2 (Area Constrained Minimal Cut).

min
x∈X

(fTx) (6.5.3)

subject to



∀(ei = ek,l) ∈ E, zi − yk + yl ≥ 0( ∑
1≤i≤n

yi

)
≤ β

ys = 1
yt = 0
0 ≤ x ≤ 1

(6.5.4)
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Area constraints are included in the linear programming framework by adding inequalities constraints

on the number of nodes included in the set S :

( ∑
1≤i≤n

yi

)
≤ β. Since this is a simple linear inequality,

the problem can be solved by any generic linear program solver. The area constraints now depends on
the variables yi which indicate the labeling corresponding to a graph cut. We recall here that yi = 1 if
i ∈ S and yi = 0 otherwise.

6.5.2 Example

This section illustrates the use of area constraints in addition with classical marker constraints for im-
age segmentation purposes based on minimal cuts. The example, illustrated in figure 6.8, compares the
segmentation results obtained by a classical minimal cut separating two sets of markers and the minimal
cut with a maximal area constraint. The classical minimal cut produces a set S connected to the termi-
nal s having an area of 2719 nodes. The set S is then constrained in the following examples to have a
maximal area of 2200, 2000 and 1500 nodes. The segmentation results correspond to our expectations.
However one should note that the solutions of the corresponding linear programs are not integer. The
final segmentation is obtained by thresholding the solution at the value 0.5. The results do not totally
respect the area constraints but are near optimal results and are in good concordance with the expected
segmentations.
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(a) (b)

(c) (d)

(e)

Figure 6.7: Perimeter constrained minimal cut. (a) Original image surimposed with the markers. (b)
Classical minimal cut separating the markers. (c) Minimal cut separating the markers and having a
perimeter (cardinality) limited to 250 edges. (d) Perimeter (cardinality) limited to 200 edges. (e) Perime-
ter (cardinality) limited to 150 edges.
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(a) (b)

(c) (d)

(e)

Figure 6.8: Area constrained minimal cut. (a) Original Image surimposed with the markers. (b) Classical
minimal cut separating the markers. (c) Minimal cut separating the markers and having an area limited
to 2200 nodes. (d) Area limited to 2000 nodes. (e) Area limited to 1500 nodes
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6.6 Conclusion

We have shown that minimal cuts can be extended to provide constrained segmentation models. These
new constrained problems are solved in a linear programming framework. The linear programming frame-
work offers interesting perspectives for medical image segmentation. Boundary constraints are particulary
adapted to provide new interactive segmentation schemes based on user provided contours. The intro-
duction of contours constraints in the graph cut framework naturally brings the classical minimal cut
problem into the linear programming framework. This constrained segmentation schemes seem to be well
adapted to provide new modes of interactivity for medical image segmentation.

Geometric constraints can also bring valuable contributions to graph based segmentation methods.
These constraints can be used for model based segmentation by combining both perimeter and area con-
straints. Combining the linear programming framework with morphological segmentation can also offer
a large variety of possibilities that have to be studied in future work. Linear programming methods are
not yet used for image segmentation applications. The different models presented in this chapter are also
new extensions of the minimal cut for image segmentation applications. This work is a first attempt to
show the great potential of constrained minimal cuts and linear programming in general. This framework
has to be further investigated in the future to identify the range of possibilities offered by these methods.

The major limitation of linear programming is the current inefficiency of generic solvers. Unfortu-
nately we did not develop an efficient linear program solver that can handle graphs representing large
images. However, it seems possible to develop efficient linear program solvers for imaging applications
since the topology and the structure of the corresponding graphs are always the same. The main problem
of the existing methods is mainly the memory requirements needed by the solver. The graphs and the
constraints have to be given as matrices and most of the freely available solvers do not take into account
the sparsity of these matrices, wasting a huge amount of memory only to store the zeros of the matrices.
However we think that these methods will soon be leading techniques for image segmentation purposes
as soon as some efficient solvers are available.
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Conclusion

The main motivation of this thesis was to propose new interactive medical image segmentation tech-
niques. In order to attain our goal, we have developed a graphical user interface dedicated to 3D medical
image segmentation and visualization. Our software allows the user to explore a highly detailed view of
the data-set for easy interpretation and validation of the segmentation tools. The developed tools, based
on low-level segmentation and graph based methods, have been successfully used for various medical ap-
plications, including tumors delineation and model creation for surgery planning and simulation. Thanks
to the help of experienced radiologists of the ”Institut Gustave-Roussy”, we have designed relevant image
segmentation protocols which fulfill the necessary conditions to be used in a near future in a clinical
context. The challenging problems presented by medical applications forced us to imagine innovative
methods that can tackle the problems linked with clinical applications. The developed methods present
all the characteristics to be used in real life applications: robustness, speed and precision. Moreover our
work on linear programming and mathematical morphology opens new perspectives which could lead to
valuable improvements of existing image segmentation techniques.

Contributions

Graph Theory:

We have detailed the use of minimal spanning trees, shortest paths trees and minimal cuts for image
segmentation problems. We have established in the first chapter new theoretical links between these
structures and have given a general framework unifying these graph based image segmentation methods.
We have shown how shortest path forests and minimal cuts converge to minimal spanning forests under
a particular weight map transform. We have also addressed the usual problems met when using graph
based segmentation tools and have proposed solutions in concordance with our theoretical results. These
results give a general view of the possibilities and the limitations of each technique for image segmentation
problems. Finally we have highlighted a common formulation unifying random walkers, minimal cuts,
minimal spanning forests and shortest path forests.

Combining Morphological and Graph Cuts Segmentation:

We have presented new theoretical and practical improvements of minimal graph cuts methods [101]. We
have shown that the combination of morphological segmentation and graph cuts can be used to compute
shape constrained minimal surfaces [100] as well as statistical and geometrical constrained estimates of
Markov random fields [104, 105]. These extensions prove the rich potential of region adjacency graphs
based methods over pixel graphs based methods. The combination of morphological and graph cuts
segmentation has permitted us to speed up the process and define new classes of energy functions that
can be minimized using graph cuts.

Application to Medical Image Segmentation:

Our main interest was to develop robust and fast segmentation tools for interactive medical image segmen-
tation. We have shown by qualitative and quantitative analysis that the developed methods are leading



techniques for various medical applications including tumors segmentation [103, 102] and model creation
for radiotherapy, surgery planning and simulation [96, 106]. We have also shown that our methods out-
perform many state of the art techniques such as machine learning, level sets and other semi-automatic or
interactive methods for the segmentation of liver tumors [102]. The developed techniques present all the
necessary characteristics to be used in a clinical routine. Moreover we have included all these methods in
a graphical user interface dedicated to 3D medical image segmentation and visualization. This software
should be soon available for research purposes.

Mathematical Morphology and Graphs:

We have then revisited the well known watershed transform in the path algebra framework. We have
given some clear definitions of the watershed on graphs and vector valued images based on shortest
path forests. We have especially shown how minimal spanning forests and shortest path forests can be
extended to multi-spectral and color images by using graphs weighted by vectors. These new extensions
offer alternatives for vector valued image segmentation.

Linear Programming:

Finally, some interesting and new perspectives have been presented for shape and boundary constrained
minimal cuts on a pixel graph. We have shown that the linear programming framework has all the prop-
erties to be the next great topic of interest of the imaging community. This framework allows to model
a large variety of complex image segmentation problems that can be advantageously used in various
image segmentation applications. This framework provides various innovative segmentation tools such
as contour, perimeter and area constrained minimal cuts. These different models are new extensions of
the minimal cut problem and aim to highlight the great potential of linear programming for imaging
applications. These constrained segmentation schemes seem to be well adapted to provide new modes of
interactivity for medical image segmentation.

Perspectives

The combination of morphological low-level segmentations and graphs opens interesting perspectives.
The energy functions defined on regions are richer than the properties defined on a single pixel. This
property should be further investigated to design energy functions that can take into account high level
and prior information such as explicit shape constraints models. It would also be possible to combine
geometric and statistical properties of regions to design new energy functions for image segmentation,
which should lead to powerful image segmentation methods. These methods have also to be extended to
multi-dimensional images, such as 4D images.

Our work on the watershed transform motivates further research about mathematical morphology
on graphs, in order to define new operators based on the rich properties of graph and tree structures.
This field has been investigated during the thesis and we can already announce that this framework will
soon offer new interesting alternatives to the classical mathematical morphology operators. Our main
interest is now to develop efficient morphological anisotropic filters which take into account the structure
of minimal spanning trees of an image. The use of graphs and trees can also be advantageously used for
image filtering purposes in order to simplify the segmentation process.

On the other hand, the linear programming techniques have shown promising segmentation results.
Geometric constraints have brought valuable contributions to graph based segmentation methods. These
constraints can be used for model based segmentation by combining both perimeter and area constraints.
Moreover this technique could be also advantageously combined with low-level morphological segmen-
tation in order to speed up and extend its possibilities. Linear programming methods are not yet used
for real image segmentation applications. This framework has to be further investigated in the future to
identify the range of possibilities offered by these methods.
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