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Résumé

Le contrôle non destructif de défauts du type fissures pénétrables ou impénétrables consti-
tue un problème inverse très intéressant parmi ceux de la physique, de l’ingénierie des matériaux
et structures, des sciences médicales, etc., et en soi est donc un sujet d’importance sociétale
certaine.

Le but de cette thèse est de développer des méthodes de reconstruction efficaces afin
de les appliquer à une variété de problèmes de fissures. Premièrement, nous proposons un
algorithme non-itératif afin de déterminer les extrémités de fissures conductrices, algorithme
basé sur une formulation asymptotique appropriée et une méthode d’identification de pôles
simples et de résidus d’une fonction méromorphe. Puis un algorithme non-itératif de type
MUSIC(MUltiple SIgnal Classification) est considéré afin d’imager une fissure pénétrable ou
impénétrable à partir du champ qu’elle diffracte, ce champ pouvant être représenté grâce à une
formulation asymptotique rigoureuse. Une technique d’ensembles de niveaux est alors proposé
afin de reconstruire une fissure pénétrable, deux fonctions d’ensemble de niveaux étant utilisées
pour la décrire puisqu’une méthode traditionnelle d’ensembles de niveaux ne le permet pas de
par sa petite épaisseur. Finalement, cette thèse traite de la reconstruction des fissures courtes
et étendues avec des conditions limites de Dirichlet. Nous développons alors un algorithme
de type MUSIC pour reconstruire les petites fissures et un algorithme d’optimisation pour les
fissures longues basé sur la formulation asymptotique. Des simulations numériques nombreuses
illustrent les performances des méthodes de reconstruction proposées.

Mots-clefs : contrôle non destructif, fissures pénétrables ou impénétrables, problème inverse,
formulation asymptotique, MUSIC(MUltiple SIgnal Classification), technique d’ensembles de
niveaux, algorithme d’optimisation, simulations numériques.

Inverse Scattering from Two-Dimensional Thin Inclusions and Cracks

Abstract

Non-Destructive testing to retrieve a penetrable or impenetrable crack appears to be one
of the interesting inverse problems which is arising in physics, medical science, material engi-
neering, and so on, highly related with human life.

The aim of this thesis is to develop suitable reconstruction methods in order to apply
them to various kinds of crack problems. First, we propose a non-iterative algorithm for re-
trieving the end points of conducting cracks based on an appropriate asymptotic formula and
an identification method for simple poles and residues of a meromorphic function. Second,
a non-iterative MUSIC(MUltiple SIgnal Classification)–type algorithm is considered to image
a penetrable or impenetrable crack from scattered field data which can be represented via
a rigorous asymptotic formulation. Third, a level-set technique is proposed to reconstruct a
penetrable crack. Two level-set functions are used to express the crack because it cannot be
easily described by traditional level-set methods due to the small thickness. Finally, this thesis
deals with the reconstruction of small and extended cracks with Dirichlet boundary conditions.
Based on the asymptotic expansion formula, we develop a MUSIC-type algorithm for retrieving
small cracks and an optimization algorithm for reconstructing extended cracks. Comprehensive
numerical simulations illustrate the performances of the proposed reconstruction methods.

Keywords : non-destructive testing, penetrable or impenetrable crack, inverse problem,
asymptotic formula, MUSIC(MUltiple SIgnal Classification), level set technique, optimization
algorithm, numerical simulations.
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Introduction

From a point of view, an inverse problem is the problem of determining unknown
characteristics of an object (shape, internal constitution, etc.) from measured data. A
challenging inverse problem of fundamental importance in non-destructive testing is to
retrieve the shape of a unknown crack (inhomogeneity with small thickness) or a screen
(with Dirichlet/Neumann type boundary condition). Throughout the literature, various
algorithms for reconstructing an unknown object have been suggested, most based on
Newton-type iteration schemes. Yet, for successful application of these schemes, one
needs a good initial guess, close enough to the unknown object. Without, one might suffer
from large computational costs. Moreover, iterative schemes often require regularization
terms that depend on the specific problem at hand. So, many authors have suggested
non-iterative reconstruction algorithms, which at least could provide good initial guesses.
Related works can be found in [4, 5, 12, 11, 45, 46, 48, 51, 54, 68].

This thesis considers the reconstruction of two-dimensional curve-like penetrable thin
inhomogeneities and perfectly conducting cracks from the measured boundary data or
scattered field. We are concerned with the following items :

1. Location search algorithm of thin conductivity inclusions from boundary data

2. Non-iterative MUSIC-type imaging of cracks or screens from scattered field data

3. Reconstruction of crack by a level set method via the electromagnetic boundary
measurement.

In chapter 1, a location search algorithm for finding the end-points of thin conducti-
vity inclusions which occurs in the Electrical Impedance Tomography (EIT) is handled.
Based on the asymptotic formula for steady state voltage potentials in the presence of
thin inclusions [25], a reconstruction algorithm was established in [4, 5] for the single
and multiple case, respectively. In these articles, the authors proved that the thin in-
clusion can be uniquely determined from the boundary measurements of the first-order
correction term in the asymptotic formula. Unfortunately, there was no numerical si-
mulation to support their algorithm, which in addition can be applied only to the thin
rectangular inclusions.

Motivated from such an analysis, in this chapter, we consider the following : first,
the numerical simulation for reconstructing thin conductivity inclusion introduced in [4],
next, for the improvement of algorithm in [5], we develop a new reconstruction algorithm
for retrieving the end points of multiple thin inclusions. Although this new algorithm
is still restricted in theory to the thin rectangular inclusion, we can say that it can be
applied to the non-rectangular one as is shown by the numerical simulations.

The imaging of a thin curve-like penetrable electromagnetic inclusion from the mea-
sured scattered field (an inverse scattering problem) is considered in chapter 2. A non-
iterative MUSIC(MUltiple SIgnal Classification) algorithm which is generally used in
signal processing problems as a method for estimating the individual frequencies of
multiple harmonic signals [77] is employed in order to find the location of small volu-
metric inclusions. This algorithm makes use of a singular value decomposition of the
so-called Multi-Static Response (MSR) matrix. Applied works can be found in several
references, refer to [8, 10, 12, 11, 13, 32].

Borrowing from previous works carried out for volumetric inclusions, a non-iterative
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MUSIC-type algorithm based on an appropriate asymptotic formula of the scattering
amplitude is proposed to find the location and or/shape of the thin inclusion, with
dielectric and or/magnetic contrast with respect to the embedding homogeneous space.
From the several numerical results, this algorithm can be applied to not only single but
also multiple thin inclusions.

Through the various results from the reconstruction algorithm introduced in chapter
1 and 2, we can say that, at least, a good initial guess is obtained at low computational
cost, to be improved upon by an appropriate iterative algorithm, refer to the level set
method. Starting out from the original binary approach of Santosa for solving the shape
reconstruction problem [73], various techniques which use a level set representation of
shapes for solving inverse problems have been successfully developed, refer to [2, 38, 55,
71, 72].

In chapter 3, we develop a technique which uses the level set method for recons-
tructing a thin inclusion, with purely dielectric permittivity or magnetic permeability
contrast with respect to the embedding homogeneous medium. Opposite to the recons-
truction of volumetric objects, a thin inclusion cannot be represented by a single level
set function. Therefore, at least, this representation must be provided by using two or
more level set functions. In this chapter we adopt two level set functions to do the work :
the first one includes the location and shape of crack and the second one enables to cut
the curve at crack tips, based on the investigation of [2, 38]. For a successful evolution,
we rigorously derive the gradient direction via Fréchet derivative by solving the adjoint
problem and illustrate the analysis by several numerical simulations.

In chapter 4, we consider the reconstruction of a perfectly conducting crack (screen)
from the far-field pattern for the scattering of time-harmonic electromagnetic plane
waves. A Newton-type method to reconstruct a screen with Dirichlet boundary condi-
tion is presented for the first time probably in [52] and this method is extended to
the Neumann boundary condition in [59]. Unfortunately, this method requires a large
computational cost (against a non-iterative algorithm) to calculate the complex Fréchet
derivative, an optimized regularization procedure, and a good initial guess. Moreover, it
is limited to a single screen, and cannot applied to the multiple screens.

The linear sampling method based on a characterization of the range of the scat-
tering operator for the far-field pattern for a screen with Dirichlet boundary condition
is proposed in [29, 30, 35]. This is a non-iterative reconstruction algorithm that has
some similarities to the MUSIC algorithm but Tikhonov regularization is required for a
successful reconstruction. The relationship between the MUSIC and the linear sampling
method is studied in [32].

In this chapter, similarly with the chapter 2, a non-iterative MUSIC-type imaging
algorithm is proposed to retrieve the screen with Dirichlet/Neumann boundary condi-
tion. This is based on the factorization of the measured Multi-Static Response matrix.
Through the several numerical simulations, it is shown to be a suitable algorithm for
imaging single or multiple screens.

In chapter 5, we consider the imaging of narrow and extended crack with Dirichlet
boundary conditions. First, similarly with the chapter 4, a MUSIC-type imaging algo-
rithm for locating a set of narrow cracks is developed from the fact that the collected
Multi-Static Response (MSR) matrix data can be modeled via a rigorous asymptotic
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formulation. Next, reconstruction of extended crack from from boundary measurements
is discussed. This is based on the asymptotic expansion for the boundary perturbations
due to a shape deformation of the crack. Numerical experiments demonstrating the
performance of the proposed imaging algorithm are presented

In concluding this introduction, in this thesis, although we worked only on a two-
dimensional crack and screen problem, yet the mathematical treatment of asymptotic
formula, Fréchet derivative, etc. can be developed for the three dimensional problem as
well. Hence, we expect all such results herein to be a starting point of a forthcoming
implementation of the three-dimensional problem.

Results from this thesis can be found in contributions [15, 54, 66, 67, 68, 69].
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1 Reconstructing End-Points of Thin Conductivity In-
clusions

In this chapter we propose an algorithm for retrieving the end points of thin rec-
tangular inhomogeneities of finite conductivity in a homogeneous medium. It is based
on an appropriate asymptotic formula for steady state voltage potentials in the pre-
sence of thin inhomogeneities. Various numerical experiments exhibit that the proposed
algorithm is fast and effective.

1.1 Introduction

We consider an inverse problem for reconstructing end-points of thin conductivity
inclusion which occurs in the Electrical Impedance Tomography (EIT). Based on the
two-dimensional real-time location search algorithm [18] and asymptotic formula for
steady state voltage potentials in the presence of thin inhomogeneities [25], an algorithm
for finding the end-points of thin inclusions of discontinuous electrical conductivity by
two-different current-voltage measurements has been suggested in [4, 5] for single and
multiple case respectively.

In this chapter, from the idea introduced originally in [4], we present some numerical
examples for estimating the end-points for the single thin inclusion. Furthermore, we
develop a fast and effective algorithm for retrieving end points of multiple inclusions
based on an appropriate asymptotic formula for steady state voltage potentials. The
main point of this algorithm is to solve the problem of identifying simple poles and
residues of a meromorphic function from measured data on the boundary, the simple
poles being the end-points of inclusions and the residues indicating the directions of
inclusions for joining end-points.

This chapter is structured as follows. In the second section, following this introduc-
tion, the mathematical formulation for conductivity problem is introduced. In section
1.3, the representation formula for the steady state voltage potential in terms of the
thickness of inhomogeneities is proposed. In section 1.4, the algorithm for estimating
the end-points of the single thin inclusion is sketched. Then, in section 1.5, some nume-
rical examples for estimating the end-points for the single thin inclusion are presented.
In section 1.6, the design of an algorithm for identifying the end-points of the multiple
thin inclusions is investigated. In section 1.7, numerical experiments demonstrating the
performance of the proposed algorithm are presented. A short conclusion follows in the
last section.

1.2 Mathematical formulation for the conductivity problem

Let Ω ⊂ Rn, n ≥ 2, be a homogeneous, electrically conducting domain with smooth
boundary ∂Ω and x be a position vector in Rn. By dropping out the time dependence
e−iωt and taking the real part of all quantities, the time-harmonic electric field E and
magnetic field H satisfy Maxwell’s equations

∇× E(x) = iωµ(x)H(x) and ∇×H(x) = (γ(x)− iωε(x))E(x). (1.1)
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Fig. 1.1 – Sketch of the thin inclusion Γ.

Here ω > 0 denotes the given frequency, γ(x) is the conductivity, ε(x) is the permittivity,
and µ(x) is the magnetic permeability at x.

Since ∇ · ∇ ×H(x) = 0, a direct calculation yields

∇ · (γ(x)− iωε(x))E(x) = 0.

Notice that at a low enough frequency ω, we can set ∇×E(x) = 0 and the term −iωε(x)
can be negligible. Then from the above identities, we can define the steady state voltage
potential u in Ω which satisfies

∇u(x) = E(x).

Hence, we can formulate the following conductivity problem :

∇ · (γ(x)∇u(x)) = 0 for x ∈ Ω.

1.3 Asymptotic formula for the steady state voltage potential

Let us assume that two-dimensional homogeneous domain Ω contains a rectangular
thin inclusion denoted as Γ which is localized in the neighborhood of a straight curve.
To be more precise, we consider an inclusion of the form

Γ = {x+ ηn(x) : x ∈ σ, η ∈ (−h, h)} , (1.2)

where σ is a straight line segment contained in Ω, with strictly positive distance from
the boundary ∂Ω, n(x) is a unit normal to σ at x, and h is a positive small constant
which specifies the thickness of the inclusion (see Fig. 1.1).

Let 0 < γ0 < +∞ and 0 < γ < +∞ denote the conductivity of the domain Ω
and Γ, respectively. Throughout this chapter, we assume that these are strictly positive
constants. By using this notation, we adopt the piecewise constant conductivity

γ(x) =

{
γ0 for x ∈ Ω\Γ
γ for x ∈ Γ

. (1.3)

If there is no inclusion, i.e., in the homogeneous domain, the function γ(x) is equal to
γ0. For the sake of simplicity, we set γ0 equal to 1.

Let u be the steady state voltage potential in the presence of the inclusion Γ, that
is, the unique solution to

∇ · (γ(x)∇u(x)) = 0 for x ∈ Ω



18 Reconstructing End-Points of Thin Conductivity Inclusions

with the Neumann boundary condition

γ0
∂u(x)

∂ν(x)
= g(x) for x ∈ ∂Ω

and the compatibility condition ∫
∂Ω

u(x)dS(x) = 0.

Here ν(x) denote the unit outer normal to ∂Ω at x and the function g ∈ H−
1
2 (∂Ω)

represents the applied boundary current satisfies the normalization condition to restore
uniqueness ∫

∂Ω

g(x)dS(x) = 0.

Let us denote u0 be the potential induced by the current g in the domain Ω without
Γ, that is, the unique solution to

γ0∆u0(x) = 0 for x ∈ Ω

with the Neumann boundary condition

γ0
∂u0(x)

∂ν(x)
= g(x) for x ∈ ∂Ω

and the normalization condition ∫
∂Ω

u0(x)dS(x) = 0.

In order to introduce the asymptotic expansion of u, we define a symmetric matrix
A(x) in appropriate manner as follows.

Definition 1.1 For every x ∈ σ, let τ(x) and n(x) be unit vectors that are respectively
tangent with and normal to σ at x. The symmetric matrix A(x) is as such [25] :

1. A(x) has eigenvectors τ(x) and n(x)

2. The eigenvalue corresponding to τ(x) is 2(γ − γ0)

3. The eigenvalue corresponding to n(x) is 2(γ − γ0)γ0
γ
.

In this chapter, we set γ0 equal to 1 for the sake of simplicity.

Based on the Definition 1.1, the following result has been introduced in [4] (see [25]
for a rigorous error analysis) :

u(y) = u0(y) + huσ(y) + o(h), y ∈ ∂Ω, (1.4)

where the correction term uσ is given by

uσ(y) = −
∫
σ

∇u0(x)A(x)∇xN(x, y)dσ(x), y ∈ Ω\σ.
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Here N(x, y) is the Neumann function related to the domain Ω. Let us denote Φ(x, y)
be the free-space fundamental solution for the Laplace equation

Φ(x, y) = − 1

2π
ln |x− y| .

Since the function N(x, y)− Φ(x, y) is smooth, we can write the correction term uσ as

uσ(y) = −
∫
σ

∇u0(x)A(x)∇xΦ(x, y)dσ(x) + wσ(y), y ∈ Ω\σ

where
wσ(y) = −

∫
σ

∇u0(x)A(x)∇x(N(x, y)− Φ(x, y))dσ(x)

is the harmonic function in Ω and has normal derivative such that
∂uσ(x)

∂ν(x)
= 0, x ∈ ∂Ω

and ∫
∂Ω

uσ(x)dS(x) = 0.

1.4 Reconstruction algorithm for identifying the end-points of
single thin inclusion

In this section, we present an algorithm for reconstructing a thin inclusion from the
boundary measurements. This algorithm is limited to a straight supporting curve σ and
is not valid anymore for arbitrary curves, refer to Fig. 1.4. For the detailed description,
we refer to the main reference [4].

For any unit vector a ∈ R2, let us denote uaσ(x) be the correction term corresponds
to the linear background solution

ua0(x) = a · x− 1

|∂Ω|

∫
∂Ω

a · ydS(y),

i.e., to the Neumann data g(x) = a · ν(x).

We first note that, if we denote by e1 and e2 the unit vectors (1, 0) and (0, 1), for
any unit vector a, we have

uaσ = (a · e1)ue1σ + (a · e2)ue2σ (1.5)

so, the knowledge of ua1
σ and ua2

σ for any two orthogonal vectors a1 and a2 corresponds
to the knowledge of uejσ for j = 1, 2.

Let us to be P and Q as the end-points of σ. In the case of a straight line segment,
the matrix A in definition 1.1 is constant along σ. Let ẽ1 =

−−→
PQ

|
−−→
PQ|

and ẽ2 a unit vector
orthogonal to ẽ1.

Let us denote DΩv(x) the double layer potential of the density function v, defined
by

DΩv(x) =

∫
∂Ω

v(y)
∂Φ(x, y)

∂ν(y)
dS(y)

for any x ∈ R2\∂Ω. Then the following lemma holds [4].
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Lemma 1.2 Let S be an open domain with C2 boundary ∂S containing Ω. For any pair
of unit vectors a and a∗, we have∫

∂S

∂DΩ(uaσ|∂Ω)(y)

∂ν(y)
a∗ · ydS(y)−

∫
∂S

∂DΩ(uaσ|∂Ω)(y)a∗ · ν(y)dS(y) = |σ| a∗ · A · a

where ν denotes the unit normal to ∂S pointing outside S.

From the above lemma, the components of matrix A in the basis (e1, e2) are given
by

Ajl =
1

|σ|

∫
∂S

∂DΩ(u
ej
σ |∂Ω)(y)

∂ν(y)
el · ydS(y)−

∫
∂S

∂DΩ(uejσ |∂Ω)(y)el · ν(y)dS(y).

Notice that in order to distinguish between ẽ1 and ẽ2 (which one is tangent and which
one is orthogonal to σ) it is not necessary to know the exact value of γ and |σ|. The sign
of the eigenvalues of Ajl tells us if γ is larger or smaller than 1 : if the eigenvalues are
positive, then γ > 1 and ẽ1 corresponds to the largest eigenvalue. If the eigenvalues are
negative, then γ < 1, and ẽ1 corresponds to the eigenvalue with smaller absolute value.

Now, let us express everything in the coordinate system (ẽ1, ẽ2). In this way, P =
(p1, ζ) and Q = (q1, ζ). Straightforwardly, one can see that

DΩu
ẽ2
σ (0, y2) = − 1

π

(
1− 1

γ

)
(ζ − y2)

∫
σ

1

|x− (0, y2)|
dS(x). (1.6)

Notice that, once ẽ2 is known, uẽ2σ |∂Ω is obtained from ue1σ |∂Ω and ue2σ |∂Ω according to
(1.5). Hence, the left-hand side of (1.6) is known in R2\Ω and ζ can be identified as the
value where it changes sign.

Finally, assuming p1 < q1 then we can determine p1 and q1 by

DΩu
ẽ1
σ (y1, ζ) = − 1

π
(γ − 1) ln

(
y1 − q1

y1 − p1

)
for any y1 < p1 or y1 > q1.

1.5 Numerical examples

In this section, the results of numerical simulations for reconstructing end-points of
a thin inclusion are given. To that effect, we use the numerical algorithm introduced in
[4]. With reference to Fig. 1.2 for an illustration of the configuration, we consider the
domain Ω as an unit disk centered at (−2, 0) in R2 and S as a disk centered at (−2, 0)
with radius 3. We set the parameters γ and γ0 to 5 (see remark 1.3) and 1, respectively.

As for the numerical calculation of the matrix A defined in 1.1, it is carried out by
using M = 128 equidistant points on S,(

3 cos
(j − 1)π

M
− 2, 3 sin

(j − 1)π

M

)
for j = 1, 2, · · · ,M.
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Fig. 1.2 – Left : Description of the configuration in section 1.5. Right : Triangular mesh
generated by the package ‘pdetool’ in Matlab for computing the forward solutions u and
u0 for Γ3.

At this stage, according to the asymptotic formula (1.4), the forward solutions u and u0

are computed by using the FEM method and the meshes have been generated by the
package ‘pdetool’ in Matlab for each example —in Fig. 1.2, we exhibit the triangular
mesh specialized to the Γ3 considered below. For every example, results with a white
Gaussian noise added to the data (so as the signal-to-noise (SNR) ratio is 20 dB) are
displayed in addition to noiseless cases.

Remark 1.3 In these numerical simulations, several values of γ as 0.1, 0.5, 3, 5, 7 and
10 have been chosen. With all such values of γ we have observed that the results obtained
when searching for the end-points of the thin inclusion remain almost the same. We also
observed that the eigenvalue corresponding to τ is positive when the value γ is greater
than 1 and is negative when the value γ lies between 0 and 1 (see [4]).

Four σj characteristic of the thin inclusion Γj are chosen :

σ1 = {(z, 0) : z ∈ (−2.4, 1.6)}
σ2 = {(z, 0.3) : z ∈ (−2.4, 1.6)}

σ3 =

{(
cos θ sin θ
− sin θ cos θ

)
(z, 0)T : z ∈ (−2.4, 1.6), θ =

π

6

}
σ4 =

{
(z, (z + 2)2) : z ∈ (−2.4, 1.6)

}
and the thickness h of Γj is fixed 0.015. Notice that Γ2 is translated from Γ1 and Γ3 is
rotated from Γ1.

Retrieved eigenvectors τ(x) and n(x) from matrix A(x) and two end-points P , Q are
shown in Table 1.1. Next, we add the aforementioned 20dB noise and computed values
are shown in Tab. 1.2. Imaging results are displayed in Figs. 1.3 and 1.4.



22 Reconstructing End-Points of Thin Conductivity Inclusions

Fig. 1.3 – Illustration of the retrieval of the two end-points of Γ1 (top row) and Γ2

(bottom row) without noise (left column) and with 20dB noise (right column).

τ(x) = ẽ1 n(x) = ẽ2 point P point Q
Γ1 (1.0000,−0.0098)T ( 0.0100, 1.0000)T (−2.3520, 0.0667) (−1.6499, 0.0667)
Γ2 (0.9995, 0.0302)T (−0.0140, 0.9999)T (−2.3583, 0.2157) (−1.6777, 0.2157)
Γ3 (0.8714, 0.4905)T (−0.4958, 0.8684)T (−2.3398,−0.1147) (−1.7280, 0.2296)
Γ4 (0.9986,−0.0530)T ( 0.0537, 0.9986)T (−2.5053, 0.0945) (−1.5487, 0.0945)

Tab. 1.1 – Computed eigenvectors τ(x), n(x) and two end-points P , Q.
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Fig. 1.4 – Illustration of the retrieval of the two end-points of Γ3 (top row) and Γ4

(bottom row) without noise (left column) and with 20dB noise (right column).

From the results for Γ1, Γ2 and Γ3, the imaging algorithm appears useful for the
translated and rotated cases. Moreover, we can easily notice that the measured eigen-
vectors are not sensitive to the observation noise but the measured end-points are. From
the results for Γ4, we can observe that the shape significantly affects the reconstruction.
The main reason is that the numerical algorithm is established under the assumption
that σ is a straight line, i.e., the thin-inclusion Γ is of rectangular shape.

Now, we end up this section with the following remark.

Remark 1.4 With the same choice of σ2, we adopt the rectangular domain Ω instead
of the unit circle domain. We set the edges of Ω as (−3, 1), (−3,−1), (−1,−1) and
(−1, 1). Using the same reconstruction algorithm, we obtain the following results

τ(x) = (0.9997, 0.0236)T , n(x) = (−0.0092, 1.0000)T .
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τ(x) = ẽ1 n(x) = ẽ2 point P point Q
Γ1 (1.0000,−0.0079)T ( 0.0469, 0.9989)T (−2.3228, 0.1451) (−1.6592, 0.1451)
Γ2 (0.9999, 0.0141)T (−0.0245, 0.9997)T (−2.3665, 0.2000) (−1.6944, 0.2000)
Γ3 (0.8061,−0.5779)T ( 0.5894, 0.8078)T (−2.3332,−0.0363) (−1.8150, 0.3122)
Γ4 (0.9967,−0.8090)T ( 0.0888, 0.9960)T (−2.6866, 0.1811) (−1.3959, 0.1811)

Tab. 1.2 – Computed eigenvectors τ(x), n(x) and two end-points P , Q with 20dB noise.

Fig. 1.5 – Illustration of reconstructed two end-points of thin inclusion Γ2 for the rec-
tangular domain case example (compare with Fig. 1.3).

With this result, we can set ẽ1 = (1, 0) and ẽ2 = (0, 1). With this coordinate system
(ẽ1, ẽ2), we obtain the following two end-points ;

P = (−2.3787, 0.3333), Q = (−1.5940, 0.3333).

Let us compare this result with another one for Γ2. The only difference between the second
example and this one is the shape of the domain Ω. In brief, we observe that we can
more accurately estimate the end-points of the thin inclusion when using the rectangular
domain. Then, though the reconstruction algorithm is generated on the assumption that
the domain remains smooth, we believe that it can be extended to a domain with Lipschitz
boundary.

1.6 Reconstruction algorithm for identifying the end-points of
multiple thin inclusions

Let Ω ⊂ R2 be a smooth, bounded domain that represents a homogeneous medium.
We assume that this medium contains a set of N well-separated thin inclusions denoted
as

Γ =
N⋃
j=1

Γj
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Fig. 1.6 – Sketch of set of thin inclusions Γj.

where each Γj are apart from ∂Ω and localized in the neighborhood of a curve, say σj,
that is

Γj = {x+ ηnj(x) : x ∈ σj, η ∈ (−h, h)} ,

where the supporting σj is a straight line in Ω (with strictly positive distance from its
boundary ∂Ω, if there were any at finite distance), nj(x) is the unit normal to σj at x,
and h is a positive constant which specifies the thickness of the inclusion (see Fig. 1.6).

Let 0 < γ0 < +∞ and 0 < γj < +∞ denote the conductivity of the domain Ω and
Γj, respectively. For the sake of simplicity, we set γ0 equal to 1.

Then the asymptotic expansion of steady state voltage potential u(x) can be repre-
sented in terms of the thickness h (compare to formula (1.4)),

u(y) = u0(y) + huσ(y)

= u0(y)− h
N∑
j=1

∫
σj

∇u0(x)Aj(x)∇xN(x, y)dσj(x) + o(h), y ∈ ∂Ω.
(1.7)

Here N(x, y) is the Neumann function for the domain Ω and Aj = (Ajkl)k,l=1,2 is the
symmetric matrix defined in the same manner as in definition 1.1.

Let us denote aj, bj, j = 1, . . . , N , be the complex numbers representing the end
points of thin inclusions of thin inclusions, and let us define

Hσ(x) :=

∫
∂Ω

∂uσ(y)

∂ν(y)
Φ(x, y)dS(y)−

∫
∂Ω

uσ(y)
Φ(x, y)

∂ν(y)
dS(y)

Here, Φ(x, y) is the two-dimensional fundamental solution for the Laplace equation

Φ(x, y) = − 1

2π
ln |x− y|.

Then, the following theorem holds [5] :
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Theorem 1.5 Let x = (x1, x2) = x1 + ix2. For the end-points of thin inclusions aj, bj,
j = 1, . . . , N ,

Vσ(x) :=
∂Hσ

∂x1

− i∂Hσ

∂x2

=
N∑
j=1

rσ,j

(
1

x− bj
− 1

x− aj

)
. (1.8)

Here, the residue of Vσ at one end-point gives information about the direction of the
segment

Res(Vσ(x), bj) = rσ,j = −Res(Vσ(x), aj).

From theorem 1.5, in order to find the end-points of the thin inclusions, authors in [5]
considered the problem for identifying the number N , the residues rσ,j and the locations
aj, bj of the poles from the meromorphic function (1.8)

Vσ(x) =
N∑
j=1

rσ,j

(
1

x− bj
− 1

x− aj

)
=

N∑
j=1

βj
x− αj

on a domain Ω which encloses all poles αj.

The identifying algorithm has been already presented in [48]. The underlying idea
comes from the following Cauchy integral formula

1

2πi

∫
C

xnVσ(x)dx =
N∑
j=1

βjα
n
j

for a simple closed curve C. Identification of simple poles is based on the following :

Lemma 1.6 Suppose that the sequence {cn} takes the form

cn =
k∑
j=1

βjα
n
j

for n = 0, 1, · · · . If l1, · · · , lk satisfies the generating equation

cn+k + l1cn+k−1 + · · ·+ lkcn = 0 for n = 0, 1, · · · , k − 1 (1.9)

then α1, α2, · · · , αk are solutions of

zk + l1z
k−1 + · · ·+ lk = 0. (1.10)

The converse is also true. Furthermore, if (1.9) holds, then it holds for all n.

The proof can be found in [48]. For convenience, we state the proof in appendix. This
idea leads to the following formulation.

Let uk be the solution with Neumann boundary condition gk for g = (g1, g2), normal
vector to the boundary ∂Ω, and introduce v(x) = (x1 + ix2)n where x = (x1, x2) ∈ Ω.
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Then we have∫
∂Ω

(uk(y)− yk)
∂v(y)

∂ν(y)
dS(y) = h

N∑
j=1

∫
∂Ω

∫
γj

(Ajk1, A
j
k2)∇xN(x, y)dγj(x)

∂v(y)

∂ν(y)
dS(y) + o(h)

= h
N∑
j=1

∫
γj

(Ajk1, A
j
k2)∇v(x)dγj(x) + o(h)

= h
N∑
j=1

(Ajk1 + iAjk2)
|bj − aj|
bj − aj

(bnj − anj ) + o(h).

In order to apply Lemma 1.6, it appears that we need two different boundary mea-
surements u1 and u2, applying two different Neumann boundary conditions g1 and g2

respectively. By using two different boundary measurements u1 and u2, we can obtain∫
∂Ω

[u1(y)− y1 − i(u2(y)− y2)]
∂

∂ν(y)
(y1 + iy2)ndS(y)

= h

N∑
j=1

trace(Aj) bj − aj
|bj − aj|

(bnj − anj ) + o(h).

(1.11)

Here, trace(Aj) is the trace of matrix Aj for j = 1, 2, · · · , N . Combining (1.11), lemma
1.6 with the simple pole algorithm [48], we can obtain the following reconstruction
algorithm.

Step 1. Set c0 = 0. For sufficiently large M , let us calculate the complex numbers
cn for n = 1, 2, · · · , 2M − 1, by

cn :=

∫
∂Ω

[u1(y)− y1 − i(u2(y)− y2)]
∂

∂ν(y)
(y1 + iy2)ndσ(y). (1.12)

Step 2. Solve for l1, l2, · · · , lM the system of linear equations
c0 c1 · · · cM−1

c1 c2 · · · cM
...

...
...

cM−1 cM · · · c2M−2




lM
lM−1
...
l1

 =


−cM
−cM+1

...
−c2M−1

 . (1.13)

Step 3. (Determination of end-points) Find the zeros α1, . . . , αM of the polynomial
equation zM + l1z

M−1 + · · ·+ lM = 0.
Step 4. (Determination of residue for joining end-points) Solve the equation

1 1 · · · 1
α1 α2 · · · αN
...

...
...

αM−1
1 αM−1

2 · · · αM−1
M



β1

β2
...
βM

 =


c0

c1
...

cM−1


to find β1, . . . , βM .

Step 5. Finally, discard αj if |βj| is reasonably small. To find the line segments,
join the remaining αj’s with the same corresponding β’s up to sign. If it is not
enough, then consider also the directions of β’s.
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|βj| βj αj End-Points
0.0000 −0.0000− 0.0000i −0.0296− 1.6380i No
0.0000 −0.0000− 0.0000i 1.5328− 0.0336i No
0.0000 −0.0000− 0.0000i 0.7049 + 1.4487i No
0.0000 −0.0000− 0.0000i −0.3909 + 1.2754i No
0.0000 −0.0000− 0.0000i −1.2169 + 0.2539i No
0.1836 0.1809− 0.0314i −0.3701− 0.4040i Yes
0.0935 0.0822− 0.0447i −0.3719− 0.1834i Yes
0.1636 −0.1611− 0.0285i 0.2900− 0.4165i Yes
0.1685 −0.1505 + 0.0759i 0.3423 + 0.1913i Yes
0.0563 0.0484 + 0.0287i 0.1821− 0.0272i No

Tab. 1.3 – Computed values of αj, βj and |βj| for the first example without noise.

1.7 Numerical examples

In this section, the numerical simulations for identifying end-points of multiple thin
inclusions are considered, according to the algorithm introduced in the previous section
1.6. The domain Ω is chosen as a unit disk centered at (0, 0) in R2 and the thickness h
of all thin inclusions Γj is 0.02.

As we mentioned in section 1.6, we first adopt a rectangular shape of the thin in-
clusions due to the stability of algorithm. For the first example, we consider the case of
two thin inclusions parametrized as

Γj = {x+ ηnj(x) : x ∈ σj, η ∈ (−h, h)} ,

where

σ1 =

{(
z,

0.2(z − 0.3464)

0.3464
+ 0.2

)
: z ∈ (−0.3464, 0.3464)

}
σ2 = {(z,−0.4) : z ∈ (−0.4, 0.3)}

and the parameter γj is chosen as 5 for j = 1, 2. Notice that the end-points of Γ1 are

a1 = (0.3464, 0.2000) and b1 = (−0.3464,−0.2000)

and the end-points of Γ2 are

a2 = (0.3000,−0.4000) and b2 = (−0.4000,−0.4000).

In order to find the end-points of those two thin inclusions, we have performed the
reconstruction presented in previous section with the value of M = 10. Obtained values
of αj, βj and |βj| are illustrated in Table 1.3. From this information, we discard αj
when the associated value of |βj| is too small and we find four end-points of two thin
inclusions.

Let us assume that some noise is added to the measured boundary data, i.e., for
x ∈ ∂Ω

unoise(x) = u(x) + ξ × rnd(−1, 1)
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|βj| βj αj End-Points
0.0000 −0.0000− 0.0000i 1.6858 + 0.3455i No
0.0000 −0.0000− 0.0000i −0.5717− 1.4782i No
0.0000 −0.0000 + 0.0000i 0.1228 + 1.0485i No
0.0000 0.0000− 0.0000i −0.5925 + 0.9217i No
0.0000 0.0000− 0.0000i −1.0739 + 0.1080i No
0.1607 −0.1348 + 0.0874i 0.3373 + 0.2012i Yes
0.0586 −0.0584 + 0.0040i 0.3546− 0.3604i No
0.0891 −0.0888− 0.0074i 0.2940− 0.4526i Yes
0.1398 0.1398 + 0.0003i −0.3879− 0.4139i Yes
0.1653 0.1422− 0.0843i −0.3364− 0.2337i Yes

Tab. 1.4 – Computed values of αj, βj and |βj| for the first example with ξ = 10−5.

where rnd(−1, 1) is a arbitrary real value between −1 and 1. Tab. 1.4, for the case
ξ = 10−5, shows that the algorithm detects end-points and residues accurately. Notice
that higher noise level (greater than ξ = 10−5) leads to poor results (we observe that
the value of αj is poor). We recommend [48] for a more detailed discussion.

In Fig. 1.7, we illustrate the results. From them, we can conclude that we retrieve
the expected end-points of thin inclusions.

Next, we consider the case of three thin inclusions parametrized as

Γj = {x+ ηnj(x) : x ∈ σj, η ∈ (−h, h)} ,

where

σ1 =

{(
z,−0.5656(z − 0.6822)

0.5650
− 0.2828

)
: z ∈ (0.1172, 0.6822)

}
σ2 = {(z,−0.5) : z ∈ (−0.6, 0.2)}

σ3 =

{(
z,−0.7608(z + 0.5236)

0.2472
+ 0.0196

)
: z ∈ (−0.5236,−0.2764)

}
and the parameter γj is chosen as 5 for j = 1, 2, 3. Notice that the end-points of Γ1

a1 = (0.1172, 0.2828) and b1 = (0.6822,−0.2828)

the end-points of Γ2

a2 = (−0.6000,−0.5000) and b2 = (0.2000,−0.5000)

and the end-points of Γ3

a3 = (−0.5236, 0.0196) and b3 = (−0.2764, 0.7804).

The reconstruction algorithm with the value of M = 10 yields values of αj, βj and
|βj| illustrated in Tab. 1.5. Again, we discard αj when the associated value of |βj| is
small and we find six end-points of three thin inclusions.
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Fig. 1.7 – Reconstructions of two thin inclusions. σj’s are given blue lines. Red circles
and green rays starting from them represent αj and βj without noise (left) and some
noise ξ = 10−5.

|βj| βj αj End-Points
0.0000 −0.0000− 0.0000i 3.8899− 3.0467i No
0.0000 −0.0000− 0.0000i 1.4003 + 1.1729i No
0.0002 −0.0000− 0.0002i −0.4983− 0.8912i No
0.1638 −0.1168− 0.1148i 0.6850− 0.2789i Yes
0.1830 0.1830− 0.0046i −0.5917− 0.5000i Yes
0.1354 −0.1352 + 0.0086i 0.2146− 0.5150i Yes
0.0212 0.0156− 0.0144i −0.3873 + 0.7603i No
0.1810 −0.0739 + 0.1652i −0.2789 + 0.7669i Yes
0.2170 0.0565− 0.2095i −0.4898 + 0.0250i Yes
0.1839 0.0708 + 0.1698i 0.1654 + 0.2345i Yes

Tab. 1.5 – Computed values of αj, βj and |βj| for the second example without noise.

|βj| βj αj End-Points
0.0000 0.0000− 0.0000i 0.6439 + 1.4667i No
0.0003 0.0003− 0.0000i −0.1765 + 1.0658i No
0.0017 0.0016− 0.0005i 0.6953− 0.5859i No
0.1459 −0.1080− 0.0981i 0.6953− 0.2751i Yes
0.1530 −0.0507 + 0.1444i −0.2767 + 0.7864i Yes
0.0922 −0.0887− 0.0252i 0.1764− 0.5697i Yes
0.2028 0.2028− 0.0049i −0.5851− 0.4936i Yes
0.0124 0.0036− 0.0119i −0.6685 + 0.2048i No
0.2327 0.0067− 0.2326i −0.4883− 0.0521i Yes
0.2311 0.0324 + 0.2288i 0.1888 + 0.1661i Yes

Tab. 1.6 – Computed values of αj, βj and |βj| for the second example with ξ = 10−4.
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Fig. 1.8 – (All γj are the same) Reconstructions of three thin inclusions. σj’s are given
blue lines. Red circles and green rays starting from them represent αj and βj without
noise (left) and some noise ξ = 10−4.

In contrast with the previous example, Tab. 1.6, for the case ξ = 10−4, shows that
the algorithm detects end-points and residues accurately.

In Fig. 1.8, we illustrate the results. We can say that we have obtained the expected
end-points of the thin inclusions.

Let us examine the effect of the value γj’s. To observe it, we have performed the
numerical simulations under the same condition as the one of the second example except
γj’s. The parameter γj is chosen as γ1 = 10, γ2 = 5, and γ3 = 20.

The reconstruction algorithm is applied with the value of M = 10. The obtained
values of αj, βj and |βj| are shown in Tab. 1.7. We still discard αj when the associated
value of |βj| is small and we find the six end-points of the three thin inclusions.

|βj| βj αj End-Points
0.0000 −0.0000− 0.0000i 1.1281 + 0.8499i No
0.0000 −0.0000− 0.0000i −0.0730− 1.2244i No
0.2622 −0.1816− 0.1892i 0.6808− 0.2786i Yes
0.0002 −0.0001− 0.0000i −0.9143− 0.4280i No
0.1081 −0.1065− 0.0186i 0.1960− 0.5422i Yes
0.1940 0.1940− 0.0018i −0.5865− 0.4953i Yes
0.4325 −0.1154 + 0.4168i −0.2888 + 0.7606i Yes
0.0469 −0.0279− 0.0377i −0.4103 + 0.7103i No
0.5314 0.1125− 0.5194i −0.4791 + 0.0255i Yes
0.3717 0.1251 + 0.3500i 0.1608 + 0.1875i Yes

Tab. 1.7 – Computed values of αj, βj and |βj| for the third example without noise.
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|βj| βj αj End-Points
0.0000 0.0000 + 0.0000i 0.5984− 1.1642i No
0.0002 0.0001 + 0.0002i 0.6639 + 0.6711i No
0.2613 −0.1821− 0.1874i 0.6810− 0.2778i Yes
0.1011 −0.1007− 0.0094i 0.2054− 0.5468i Yes
0.1870 0.1870 + 0.0048i −0.5916− 0.4962i Yes
0.0001 −0.0000− 0.0001i −0.9788 + 0.1254i No
0.0150 −0.0037− 0.0145i −0.4584 + 0.7498i No
0.4052 −0.1359 + 0.3817i −0.2826 + 0.7621i Yes
0.5505 0.1683− 0.5241i −0.4697 + 0.0393i Yes
0.3553 0.0671 + 0.3490i 0.1805 + 0.1636i Yes

Tab. 1.8 – Computed values of αj, βj and |βj| for the third example with ξ = 10−4.

From the results illustrated in Fig. 1.9, we can easily observe that the algorithm is
not sensitive to the values of γj, neither to translation and rotation of the thin inclusions.
Moreover, the rays starting from the estimated end-points are getting long whenever γj
is large (and getting short for small γj), i.e., we can easily join the end-points.

Now, we apply the algorithm to the non-rectangular thin inclusions. For the fourth
example, we consider the case of two thin inclusions parametrized as

Γj = {x+ ηnj(x) : x ∈ σj, η ∈ (−h, h)} ,

where

σ1 =
{

(z, (z + 0.2)2 + 0.3), z ∈ (−0.7.0.3)
}

σ2 =
{

(z,−(z − 0.2)2 − 0.3), z ∈ (−0.3.0.7)
}

and the parameter γj is chosen as 5 for j = 1, 2. Notice that the end-points of Γ1 are

a1 = (−0.7000, 0.5500) and b1 = (0.3000, 0.5500)

and the end-points of Γ2 are

a2 = (−0.3000,−0.5500) and b2 = (0.7000,−0.5500).

Typical results are in Tables 1.9, 1.10 and in Fig. 1.10 with the value of M = 10
and ξ = 5 × 10−4. At this stage, to retrieve the end-points, we must join the α’s with
the same corresponding β’s up to sign of real part, i.e., choose βj and βl that satisfy
βj ≈ −βl.

As a last example, we consider the case of two thin inclusions parametrized as

Γj = {x+ ηnj(x) : x ∈ σj, η ∈ (−h, h)} ,

where

σ1 =
{

(z,−0.5(z − 0.2)2 + 0.5) : z ∈ (−0.7, 0.3)
}

σ2 =
{

(z, (z − 0.2)3 + (z − 0.2)2)− 0.4 : z ∈ (−0.3, 0.7)
}



1.7 - Numerical examples 33

Fig. 1.9 – (All γj are different) Reconstructions of three thin inclusions. σj’s are given
blue lines. Red circles and green rays starting from them represent αj and βj without
noise (left) and some noise ξ = 10−4.

|βj| βj αj End-Points
0.0000 0.0000 + 0.0000i −0.8850− 1.3360i No
0.0000 −0.0000− 0.0000i 0.5600 + 0.8748i No
0.1269 −0.0981− 0.0804i 0.7038− 0.5544i Yes
0.1341 −0.1190 + 0.0617i 0.3082 + 0.5307i Yes
0.1253 0.0953 + 0.0814i −0.6682 + 0.5271i Yes
0.0571 0.0462− 0.0336i −0.5671 + 0.3783i No
0.1309 0.1142− 0.0641i −0.2906− 0.5200i Yes
0.0847 −0.0655 + 0.0538i 0.5206− 0.3426i No
0.0841 0.0618 + 0.0571i 0.2073− 0.3395i No
0.0834 −0.0347− 0.0758i −0.2507 + 0.1599i No

Tab. 1.9 – Computed values of αj, βj and |βj| for the fourth example without noise.

|βj| βj αj End-Points
0.0000 −0.0000 + 0.0000i 1.2877 + 0.7279i No
0.0000 −0.0000− 0.0000i −1.1314− 0.4502i No
0.0885 −0.0769− 0.0438i 0.7226− 0.5681i Yes
0.0512 −0.0510− 0.0042i 0.7210− 0.4121i No
0.0072 0.0034− 0.0064i −0.1419− 0.8116i No
0.0694 0.0655− 0.0230i −0.3880− 0.5647i Yes
0.1007 −0.0955 + 0.0318i 0.3505 + 0.5516i Yes
0.0005 −0.0005 + 0.0001i −0.9437 + 0.4924i No
0.1488 0.1362 + 0.0600i −0.6774 + 0.5015i Yes
0.0238 0.0188− 0.0145i −0.2383 + 0.5702i No

Tab. 1.10 – Computed values of αj, βj and |βj| for the fourth example with ξ = 5×10−4.
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Fig. 1.10 – Reconstructions of two thin inclusions. σj’s are given blue lines. Red circles
and green rays starting from them represent αj and βj without noise (left) and some
noise ξ = 5× 10−4 (right).

and the parameter γj is chosen as 10 and 5 for j = 1 and 2 respectively. Notice that the
end-points of Γ1 are

a1 = (−0.7000, 0.3750) and b1 = (0.3000, 0.3750)

and the end-points of Γ2 are

a2 = (−0.3000,−0.2750) and b2 = (0.7000,−0.0250).

We exhibit the results in Tables 1.11, 1.12 and in Fig. 1.11 with the value of M = 10
and ξ = 10−4.

|βj| βj αj End-Points
0.0000 −0.0000− 0.0000i 0.4213 + 1.5638i No
0.0000 0.0000 + 0.0000i 0.6548− 1.1992i No
0.0000 −0.0000 + 0.0000i −0.9071− 0.9568i No
0.0013 −0.0013 + 0.0003i −0.7794 + 0.5024i No
0.3108 0.2997− 0.0823i −0.6715 + 0.3952i Yes
0.1080 −0.0384 + 0.1010i 0.6892− 0.0122i Yes
0.1093 0.0958 + 0.0526i −0.3267− 0.2862i Yes
0.3343 −0.1562− 0.2956i 0.2587− 0.2873i No
0.2597 −0.2167− 0.1432i 0.3112 + 0.3776i Yes
0.3677 0.0170 + 0.3673i −0.1222 + 0.2703i No

Tab. 1.11 – Computed values of αj, βj and |βj| for the last example without noise.
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|βj| βj αj End-Points
0.0000 0.0000 + 0.0000i −1.4783− 0.3837i No
0.0000 0.0000 + 0.0000i −0.3574 + 1.1247i No
0.0001 0.0001− 0.0000i 0.9674 + 0.4505i No
0.0001 −0.0001 + 0.0000i 0.4970− 0.8952i No
0.3132 0.2994− 0.0921i −0.6713 + 0.3913i Yes
0.0941 −0.0360 + 0.0869i 0.7011− 0.0155i Yes
0.2972 −0.2384− 0.1774i 0.3053 + 0.3721i Yes
0.0748 0.0547 + 0.0511i −0.3701− 0.3052i Yes
0.3844 −0.2338− 0.3051i 0.2732− 0.2638i No
0.4631 0.1543 + 0.4366i −0.1578 + 0.1843i No

Tab. 1.12 – Computed values of αj, βj and |βj| for the last example with ξ = 10−4.

Fig. 1.11 – (All γj are different) Reconstructions of two thin inclusions. σj’s are given
blue lines. Red circles and green rays starting from them represent αj and βj without
noise (left) and some noise ξ = 10−4 (right).
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1.8 Conclusion

In this chapter, we have proposed an algorithm to retrieve the end-points of multiple
thin rectangular inclusions. This algorithm is based on the detection of simple poles of a
meromorphic function in terms of measured boundary values. Then we have performed
a large amount of numerical simulations and it turns out that the proposed algorithm
identifies the number and the location of end-points of such thin inclusions accurately.

For the case of a curved single thin inclusion, the results based on the algorithm
introduced in [4] are not so good as is seen in Fig. 1.4. But our new algorithm still
offers useful information and we can say that a good initial guess is obtained at low
computational cost, to be improved upon by an appropriate iterative algorithm for
example, a level-set evolution, refer to chapter 3 and [2, 38].

It is still desirable to have an efficient and fast method for imaging of arbitrary shaped
thin inclusions using finitely many measurements. In the next chapter, we suggest an
imaging method at fixed non-zero high frequency for thin inclusions based on the MUSIC
(MUltiple SIgnal Classification)-type algorithm.
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2 Imaging of Thin Penetrable Inclusions by a MUSIC-
Type Algorithm

The imaging of a thin inclusion, with dielectric and or/magnetic contrast with res-
pect to the embedding homogeneous medium is investigated. A MUSIC-type algorithm
operated at a single time-harmonic frequency is developed in order to map the inclu-
sion (that is, to retrieve its supporting curve) from scattered field data collected within
the Multi-Static Response (MSR) matrix. Numerical experiments carried out for several
types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly
single inclusions but also two of them close-by as a straightforward extension, illustrate
the pros and cons of the proposed imaging method.

2.1 Introduction

In the present chapter, we are investigating the electromagnetic imaging of a single,
thin homogeneous inclusion inside a homogeneous (free) space, the inclusion domain (it
is localized within the neighborhood of a smooth curve σ, see section 2.3 for the full
definition) being characterized either by a contrast of dielectric permittivity with respect
to the exterior space, or by a contrast of magnetic permeability, or by both contrasts.
The inclusion is both of unknown supporting curve σ and unknown electromagnetic
contrast. Its lateral extent (its thickness) h is small with respect to the wavelength in
the exterior space but is not otherwise specified.

The above configuration is two-dimensional, and is associated to a scalar scattering
problem for a E−polarized (Transverse Magnetic) field —the H−polarized (Transverse
Electric) case could be dealt with per duality. The data consist of the Multi-Static
Response (MSR) matrix at a single, non-zero operation frequency. This matrix results
from illuminating the thin (screen-like) inclusion by a finite number N of plane waves,
then collecting on some prescribed encircling contour, for each given illumination, the
corresponding complex-valued scattering amplitude at a finite number of directions (in
practice, those N ones of the incident waves).

The solution method proposed goes as follows. First, a singular value decomposition
of the N ×N MSR matrix is carried out via some standard numerical solver. This en-
ables us to discriminate between a number, M , of non-zero singular values (in practice,
higher than some prescribed threshold in link with the noise level and other inaccuracies
of the dataset) and a number N −M zero ones (better said, below than this threshold).
Consequently, singular vectors in the signal subspace from those in the noise subspace
are discriminated as well. Second, an appropriate MUltiple SIgnal Classification (MU-
SIC) estimator is introduced and computed over a very fine mesh within a prescribed
search box in the embedding space. This estimator peaks at a finite number of discrete
locations along the supporting curve, the number of such peaks being related toM —the
relationship itself depending upon the type of electromagnetic contrast of the inclusion.
Numerical experimentations exemplify that the above imaging method works quite well
and that the conclusions drawn in terms of curve reproduction.

The starting point is the fact that the N × N MSR matrix can be modeled from a
rigorous asymptotic field formulation. Indeed, from previous investigations, and starting
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from the Helmholtz equation which the field satisfies in the present case, it can be shown
that the scattered field due to the inclusion can be expanded into a power series vs. h,
the leading-order term (power 1 in h) of which being a line integral along σ ; in terms of
scattering, it means also that multiple scattering matters only at higher orders than the
one kept in view of the small thickness of the inclusion with respect to the wavelength
at the frequency of operation. Thereupon, if the elements of the MSR matrix are further
approximated as a finite sum of M terms (M being appropriately smaller than N ,
one will come back to this aspect in the next sections), each one corresponding to the
contribution of a small enough straight segment into which σ is divided, it suffices to
proceed with the singular value decomposition of the MSR matrix as just constructed,
peaks of a corresponding MUSIC estimator being located along σ.

Regarding the numerical simulations, inverse crime is alleviated for the most part.
Indeed, if most images shown are indeed made from first-order data, those are computed
via an exact calculation of the line integral, no further hypothesis being made about
its discretization, and noise being introduced to test the solution method thoroughly
further. Also, though the theoretical analysis is developed for far field scattering ampli-
tudes, almost near fields (one to a few wavelengths away from the center of the search
box) are considered here. Furthermore, images from data computed from an alternative
asymptotic formulation [61] involving the solution of a second-kind Fredholm integral
equation along the supporting curve to compute the MSR matrix are almost indistin-
guishable from those obtained from our first-order data. This is true as well with images
from scattered field data computed by a brute-force Method-of-Moments (MoM) solu-
tion algorithm [72] applied to a domain integral formulation in the case of a supporting
straight segment, whatever be the assumed thickness h input into the solution algorithm
—the main challenge of the MoM is to cover the inclusion with pixels small enough with
respect both to the wavelength and to the inclusion thickness, and not too numerous
overall.

Let us emphasize that the extension of the above situation wherein a single thin
inclusion is imaged to the case in which several thin inclusions are imaged (again, the
theoretical model of the MSR matrix is at first-order, i.e., the inclusions do not couple
electromagnetically to one another in the model) is available. But for simplicity, its
mathematical derivation is not elaborated upon herein, only a few numerical results for
two inclusions being shown to illustrate both the interest of the extension and some of
its practical limitations with regards to respective contrasts.

As for the situation of a perfectly impenetrable inclusion (denoted usually as a
perfect screen), corresponding to either Dirichlet or Neumann boundary conditions, it is
not investigated presently ; it will be discussed elsewhere, insisting on the fact that the
end-points of such a screen pose quite a challenge in terms of the asymptotic formulation
(refer to [31]).

The approach discussed thereafter, in addition to the introduction of the asymptotic
field formulation, the derivation of which is sketched from an exact one [25], makes ample
use of material already available about MUSIC-type algorithms in electromagnetics in
both static and propagative regimes, e.g., [8, 13], with as initial reading [32, 77] about
MUSIC in the signal processing community. One could also refer to the textbook [12] for
results both on asymptotic approaches (for volumetric inclusions) and inversions carried
out from MSR matrices, the case of a thin curve-like inclusion being at least in part an
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extension of the case of volumetric inclusions.

About the case of zero-frequency and thin inclusions (with magnetic contrasts only
mattering), it is already considered in [4] (single inclusion) and [5, 54] (multiple in-
clusion) and is leading to a non-iterative retrieval of the end-points of the supporting
curve(s). Though the present work is based on a closely connected mathematical for-
mulation of the direct problem, one will not dwell onto it since the choice made is
to operate well within the wave propagation regime at a non-zero frequency, with a
dedicated, MUSIC-type imaging algorithm.

Let us signal in addition that, once the supporting curve is mapped, one could evolve
it. This evolution is enabling in particular to account for possible discrepancies between
approximate model (the one which one uses) and exact or experimental ones, and to
retrieve a better shape (if there remains a discrepancy between the data and the field
scattered by the retrieved inclusion) once an appropriate cost functional is chosen —
this could be carried out also from an arbitrary initial choice of the supporting curve—
following in that matter reference [2] in the context of controlled evolution of level sets
and the optimization of topologies [38].

Finally, let us mention more traditional approaches of the retrieval of screens by a
well-chosen succession of small optimal displacements [30], among many references along
the same line of thought.

This chapter is organized as follows. In section 2.2, the direct scattering problem is
briefly discussed. In section 2.3, the asymptotic formulation of the scattering amplitude
is sketched. In section 2.4, the analysis of the MSR matrix is carried out and the MUSIC
algorithm is summarized. In section 2.5, a set of numerical results is proposed, spectra
of MSR matrices, images of inclusions, mostly single ones but also sets of two at least
for an inclusion of single contrast. A short conclusion (section 2.6) follows.

2.2 Maxwell’s equations and the direct scattering problem

In this section, we introduce the direct scattering problem. A more detailed descrip-
tion of this material can be found in [38, 60].

2.2.1 Maxwell’s equation and mathematical formulation

Let x be a position vector in R3. By dropping out the time dependence e−iωt and
taking the real part of all quantities, the time-harmonic electric field E = (E1, E2, E3)
and magnetic field H = (H1, H2, H3) satisfy Maxwell’s equations

∇× E(x) = iωµ(x)H(x) and ∇×H(x) = −iωε(x)E(x). (2.1)

Here ω > 0 denotes the given frequency, ε(x) the permittivity, and µ(x) the magnetic
permeability at x. Throughout this chapter, we assume that these parameters are locally
constant.

Let us consider the scatterer to be a perfectly conducting cylinder with the generator
parallel to the z−axis and contained in a homogeneous and isotropic space. When the
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incoming plane wave is parallel to the xy−plane, by a simple computation, Maxwell’s
equation (2.1) becomes

∂E3

∂y
= iωµH1,

∂E3

∂x
= −iωµH2,

∂H2

∂x
− ∂H1

∂y
= −iωεE3 (2.2)

and
∂H3

∂y
= −iωεE1,

∂H3

∂x
= iωεH2,

∂E2

∂x
− ∂E1

∂y
= iωµH3. (2.3)

From (2.2) and (2.3), we can easily observe that Maxwell’s equations can be split into
the two sets of independent equations [38]. One is called E−polarization

E = (0, 0, E3), H = (H1, H2, 0) (2.4)

and the other, H−polarization

E = (E1, E2, 0), H = (0, 0, H3). (2.5)

Notice that the set of equations in (2.4) and (2.5) are associated with the termino-
logy : transverse electric waves (TE-waves) and transverse magnetic waves (TM-waves),
respectively.

2.3 The direct scattering problem and the asymptotic formula-
tion of the scattering amplitude

Let us consider two-dimensional electromagnetic scattering from a thin, curve-like
homogeneous inclusion within a homogeneous space R2. This space contains an inclusion
denoted as Γ which is localized in the neighborhood of a curve σ. That is,

Γ = {x+ ηn(x) : x ∈ σ, η ∈ (−h, h)} , (2.6)

where the supporting σ is a simple, smooth curve in R2, n(x) is the unit normal to σ
at x, and h is a strictly positive constant which specifies the thickness of the inclusion
(small with respect to the wavelength, see next), refer to Fig. 2.1.

Fig. 2.1 – Sketch of the thin inclusion Γ

Constitutive materials are fully characterized by their dielectric permittivity and
magnetic permeability at a given frequency. Let 0 < ε0 < +∞ and 0 < µ0 < +∞
denote the permittivity and permeability of the embedding space R2, and 0 < ε < +∞
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and 0 < µ < +∞ the ones of the inclusion Γ. Then, one has the piecewise constant
dielectric permittivity

ε(x) =

{
ε0 for x ∈ R2\Γ
ε for x ∈ Γ

(2.7)

and magnetic permeability

µ(x) =

{
µ0 for x ∈ R2\Γ
µ for x ∈ Γ

(2.8)

If there is no inclusion, i.e., in the homogeneous space, µ(x) and ε(x) are equal to µ0 and
ε0 respectively. For convenience, one also defines γ(x) = 1

µ(x)
. For the sake of simplicity,

we set µ0 and ε0 are equal to 1.

At strictly positive operation frequency ω (wavenumber k0 = ω
√
µ0ε0), let u(x) be

the time-harmonic total field which satisfies the Helmholtz equation

∇ ·
(

1

µ
∇u
)

+ ω2εu = 0 in R2 (2.9)

where θ = (θx, θy) is a two-dimensional vector on the unit circle S1 in R2, i.e., θ satisfies
θ ·θ = 1. Similarly, the incident field u0(x) satisfies the homogeneous Helmholtz equation

∇ ·
(

1

µ0

∇u0

)
+ ω2ε0u0 = 0 in R2.

As is usual, the total field u divides itself into the incident field u0 and the scattered field
us, u = u0 + us. Notice that this unknown scattered field us(x) satisfies the Sommerfeld
radiation condition

lim
|x|→∞

√
|x|
(
∂us(x)

∂ |x|
− ik0us(x)

)
= 0

uniformly in all directions x̂ = x
|x| .

The following expressions are needed to derive the asymptotic expansion as done
next.

Definition 2.1 For every x ∈ σ, let τ(x) and n(x) be unit vectors that are respectively
tangent with and normal to σ at x. The symmetric matrix A(x) is as such [24] :

1. A(x) has eigenvectors τ(x) and n(x)

2. The eigenvalue corresponding to τ(x) is 2(γ − γ0)

3. The eigenvalue corresponding to n(x) is 2(γ − γ0)γ0
γ
.

So, by combining the results of [12, 25, 78], one is able to obtain the following
asymptotic expansion (see [31, formula (8)] also) :

Proposition 2.2 For y ∈ R2\Γ, u(y) can be written

u(y) = u0(y) + us(y) = u0(y) + huσ(y) + o(h) (2.10)

where the correction term uσ is given by

uσ(y) =

∫
σ

A(x)∇u0(x)∇xΦ(x, y)dσ(x) + ω2(ε− ε0)

∫
σ

u0(x)Φ(x, y)dσ(x)
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and
Φ(x, y) = −µ0

i

4
H1

0 (k0 |x− y|)

is the two-dimensional fundamental solution(or Green function) for the Helmholtz equa-
tion.

Now, let us specialize the above to incident plane waves and far fields in free space.
Let {ŷj}Nj=1 ⊂ S1 be a discrete finite set of observation directions and {θl}Nl=1 ⊂ S1 be
the same number of incident directions. Let us remember that S1 indicates the unit
circle in R2, i.e., every element ξ ∈ {ŷj}Nj=1 or {θl}Nl=1.

The scattering amplitude is defined as a function K(ŷ, θ) which satisfies

u(y)− u0(y) =
eik0|y|√
|y|
K(ŷ, θ) + o

(
1√
|y|

)

as |y| −→ ∞ uniformly on ŷ = y
|y| and θ ∈ S1. From the asymptotic behavior of the

Hankel function [34] and a simple calculation, one easily derives :

Φ(x, y) =
1 + i

4
√
k0π

eik0|y|√
|y|
e−ik0

y
|y| ·x + o

(
1√
|y|

)
(2.11)

∇xΦ(x, y) =
1 + i

4
√
k0π

eik0|y|√
|y|

(
−ik0

y

|y|

)
e−ik0

y
|y| ·x + o

(
1√
|y|

)
(2.12)

as |y| −→ ∞. By combining with (2.10), (2.11) and (2.12), the asymptotic formula for
the scattering amplitude follows as

K(ŷ, θ) = h
k2

0(1 + i)

4
√
k0π

{∫
σ

{(−ŷ) · A(x) · θ + (ε− ε0)} eik0(θ−ŷ)·xdσ(x)

}
+ o(h). (2.13)

Let us exclude the asymptotic term o(h) and constant hk
2
0(1+i)

4
√
k0π

from formula (2.13). The
result, denoted as K̂, is such that

K̂(ŷ, θ) =

∫
σ

{(−ŷ) · A(x) · θ + (ε− ε0)} eik0(θ−ŷ)·xdσ(x)

=

∫
σ

(−ŷ) · A(x) · θeik0(θ−ŷ)·xdσ(x) +

∫
σ

(ε− ε0)eik0(θ−ŷ)·xdσ(x).

(2.14)

2.4 MUSIC type algorithm for imaging a thin inclusion and es-
timating its length

In this section, one applies the asymptotic formula (2.14) in order to build up a
MUSIC-type algorithm [77], for non-iterative imaging of the thin inclusion, with no prior
information save that it is of small thickness (the exact value of h is not needed however),
and that the supporting curve σ is smooth. Here, one makes use of the eigenvalue
structure of the Multi-Static Response (MSR) matrix K = (Kjl), where element Kjl

is the amplitude collected in the direction of observation numbered j for an impinging
incident wave numbered l.
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To properly exploit that MSR matrix, one will start from the assumption that σ
can be partitioned by the set of points {x1, x2, · · · , xM}, the length of interval [xj, xj+1]

being |σ|
M

for j = 1, 2, · · · ,M − 1. The analysis is then led in succession for three cases
from the most simple to the most complicated : dielectric contrast only (γ = γ0, ε 6= ε0),
magnetic contrast only (γ 6= γ0, ε = ε0), and both contrasts (γ 6= γ0, ε 6= ε0).

2.4.1 Contrast of permittivity : γ = γ0, ε 6= ε0

The MSR matrix reads as K = (Kjl)
N
j,l=1 ∈ CN×N :

Kjl = K̂(ŷj, θl)
∣∣∣
ŷj=−θj

=

∫
σ

(ε− ε0)eik0(θl−ŷj)·xdσ(x)

∣∣∣∣
ŷj=−θj

=

∫
σ

(ε− ε0)eik0(θj+θl)·xdσ(x) ≈ (ε− ε0)
|σ|
M

M∑
m=1

eik0(θj+θl)·xm .

(2.15)

Next, the matrices E ∈ RM×M and F = [F1 F2 · · · FM ] ∈ CN×M are introduced as
E = (ε− ε0) |σ|

M
IM and Fj =

(
eik0θ1·xj , eik0θ2·xj , · · · , eik0θN ·xj

)
for j = 1, 2, · · · ,M , letting

IM be the M ×M identity matrix. With this, K can be decomposed as

K = FEF T . (2.16)

Here, F T ∈ CM×N is the transpose matrix of F . With this decomposition, we observe
that K is symmetric but is not Hermitian —an Hermitian matrix could be formed as
K̃ = KK.

Let us emphasize at this stage that K is the frequency-domain version of a time-
reversed MSR matrix ; K̃ corresponds to performing a measurement, time-reversing the
received signals, and using them as input for a second experiment, and so on [12, 32].

In the above and next, N should be strictly higher than M —adverse effects of a N
chosen too close to M will be illustrated by numerical simulations. Let a ∈ R\ {0} ; for
any point z ∈ Ω, one defines the vector gz,a ∈ CN as

gz,a =
(
aeik0θ1·z, aeik0θ2·z, · · · , aeik0θN ·z

)T
. (2.17)

It can be shown that there exists n0 ∈ N such that for any N ≥ n0 the following
statement holds [8, 12, 50] :

gz,a ∈ Range(K̃) if and only if z ∈ {x1, x2, · · · , xM} . (2.18)

The imaging algorithm follows. Let the singular value decomposition of the matrix
K be K = V SW

T , where V,W ∈ CN×N are unitary matrices and where S is a real
nonnegative diagonal matrix with components λ1, λ2, · · · , λN which satisfies

λ1 ≥ λ2 ≥ · · · ≥ λM > 0 and λj = 0 for j = M + 1,M + 2 · · · , N.

Alternatively, λj, for j = M + 1,M + 2 · · · , N , could merely be very small, below the
noise level of the system represented by K. The numbers {λj} are the nonnegative
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square roots of the eigenvalues of KKT
= KK. The columns of V are the eigenvectors

of KK and those of W are the eigenvectors of KK (arranged in the same order as the
corresponding eigenvalues λ2

j). The singular value decomposition of K can be written in
the form K = V SV T (this holds for symmetric matrices in which V = W ). The first M
columns of the matrix V , {v1, v2, · · · , vM}, provide an orthonormal basis for K and the
rest of the matrix V , {vM+1, vM+2, · · · , vN}, provides a basis for the null (or noise) space
of K. So, one can form the projection onto the null (or noise) subspace : this projection
is given explicitly by

Pnoise(f) =
∑
j>M

vjv
T
j f. (2.19)

From (2.18), a point z ∈ {x1, x2, · · · , xM} if and only if gz,a ∈ Range(K̃), i.e., equiva-
lently ‖Pnoise(gz,a)‖ = 0. Thus, an image of xj, j = 1, 2, · · · ,M , follows from computing

Wa(z) =
1

‖Pnoise(gz,a)‖
. (2.20)

The resulting plot of this estimator is expected to exhibit large peaks at the sought xj.

In good numerical practice, and as it has been already insisted upon in the In-
troduction, the effective value of M should be extracted from the distribution of the
singular values of K, which is obtained with a standard Matlab routine of singular value
decomposition, the elements Kjl in that K being computed not from their finite sum
representation involving only M samples (2.15) but from their full asymptotic integral
representation (2.10), the integrand involved in it being finely sampled until convergence.
Here, by fine sampling, it is understood, e.g., one-tenth of the wavelength or much less,
depending upon the convergence rate.

Remark 2.3 Assume that asymptotically (with respect to the number N of θ) we have

(ε− ε0)
|σ|
M

M∑
m=1

eik(θ+θ′)·xm

for any θ and θ′ on the unit sphere. But from the far-field behavior of the Green function
(fundamental solution), and by an analytical continuation argument, we can get

(ε− ε0)
|σ|
M

M∑
m=1

Φ(x, xm)Φ(x, xm)

for |x| large enough. Therefore, we have in hand all the Φ(x, xm) for m = 1, 2, · · · ,M
theoretically.

But, from [6, Section 2], we can only distinguish between two Φ(x, xm) and Φ(x, xm′)
if the distance between xm and xm′ is larger than the first zero of the function J0(0-th
Bessel function of the first kind) in the two-dimensional case and λ/2 in three dimen-
sions. The same arguments can be applied for the other cases.

Otherwise, it is true that the asymptotic formulation is accurate to first-order only ;
one might argue that the inverse crime is only partly alleviated when that formulation
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is used to produce the data. Yet, neglecting higher orders should not matter in view of
the small thickness of the inclusion.

Let us underscore in addition that using data computed by another asymptotic
approach now involving a second-kind boundary integral equation [61] for the field in
the same TM-polarization case, refer to equation (1) in this reference, yields closely
resembling images, and this holds true as well when applying a method-of-moments to
a second-kind domain integral formulation of the field involving covering the domain by
small square pixels [72]. Examples will be given in the numerical section.

The dual case of TE-polarization which would correspond to magnetic contrasts has
not been considered by us at this stage.

2.4.2 Contrast of permeability : γ 6= γ0, ε = ε0

The main lines of the analysis are similar with those of the previous case. Still,
a number of changes result from the different scattering behavior, so the approach is
detailed below as is deemed necessary.

The MSR matrix K = (Kjl)
N
j,l=1 ∈ CN×N is defined as

Kjl = K̂(ŷj, θl)
∣∣∣
ŷj=−θj

=

∫
σ

(−ŷj) · A(x) · θleik0(θl−ŷj)·xdσ(x)

∣∣∣∣
ŷj=−θj

=

∫
σ

θj · A(x) · θleik0(θj+θl)·xdσ(x)

≈|σ|
M

M∑
m=1

[
2(γ − γ0)θj · τ(xm)θl · τ(xm)

+2

(
1− γ0

γ

)
θj · n(xm)θl · n(xm)

]
eik0(θj+θl)·xm

(2.21)

for j, l = 1, 2, · · · , N . Now, upon the definition of matrices C ∈ R2M×2M and D =
[D1 D2 · · · D2M ] ∈ CN×2M such as

C = diagonal matrix with components A
|σ|
M

D2(j−1)+s =
(
ds(xj) · θ1e

ik0θ1·xj , ds(xj) · θ2e
ik0θ2·xj , · · · , ds(xj) · θNeik0θN ·xj

) (2.22)

for j = 1, 2, · · · ,M and

ds(xj) =

{
τ(xj) if s = 1
n(xj) if s = 2

.

Then, one concludes that K can be expressed by the following decomposition :

K = DCDT . (2.23)

Let us observe that K is symmetric but not Hermitian (one is formed as K̃ = KK).

One has to assume again that N is large enough, that is, at least N > 2M , like in
the purely dielectric case, yet with the need of twice more data for the same supporting
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curve. Then, let b = ds(z) ∈ R2\ {0}. For any point z ∈ Ω one defines the vector
gz,b ∈ CN by

gz,b =
(
b · θ1e

ik0θ1·z, b · θ2e
ik0θ2·z, · · · , b · θNeik0θN ·z

)T
. (2.24)

As already said, it can be shown that there exists n0 ∈ N such that for any N ≥ n0 the
following statement holds [8, 12, 50] :

gz,b ∈ Range(K̃) if and only if z ∈ {x1, x2, · · · , xM} . (2.25)

Now, let the singular value decomposition of matrix K be defined by K = V SW
T .

Since the rank of K is 2M , the first 2M columns of V , {v1, v2, · · · , v2M}, provide an
orthonormal basis for K and the rest of the matrix V , {v2M+1, v2M+2, · · · , vN}, provides
a basis for the null (or the noise) space of K. So, one can form the projection onto the
null (or noise) subspace : this projection is given explicitly by

Pnoise(f) =
∑
j>M

vjv
T
j f. (2.26)

From (2.25), a point z ∈ {x1, x2, · · · , xM} if and only if gz,b ∈ Range(K̃), i.e., equi-
valently ‖Pnoise(gz,b)‖ = 0. Hence, an image of xj for j = 1, 2, · · · ,M , follows from
computing

Wb(z) =
1

‖Pnoise(gz,b)‖
. (2.27)

The resulting plot should have large peaks at the sought xj, as in the previously consi-
dered purely dielectric case. Otherwise, the comments on the accuracy of the first-order
representation of the field and on the fact that M is a unknown from which everything
proceeds in the imaging remain the same as well.

2.4.3 Contrast of permittivity and permeability : γ 6= γ0, ε 6= ε0

This case encompasses both previous ones, but it is slightly more complex and should
deserve some exposition.

The MSR matrix K = (Kjl)
N
j,l=1 ∈ CN×N is defined as

Kjl = K̂(ŷj, θl)
∣∣∣
ŷj=−θj

=

∫
σ

{(ε− ε0) + (−ŷj) · A(x) · θl} eik0(θl−ŷj)·xdσ(x)

∣∣∣∣
ŷj=−θj

=

∫
σ

{(ε− ε0) + θj · A(x) · θl} eik0(θj+θl)·xdσ(x)

≈|σ|
M

M∑
m=1

[
(ε− ε0) + 2(γ − γ0)θj · τ(xm)θl · τ(xm)

+2

(
1− γ0

γ

)
θj · n(xm)θl · n(xm)

]
eik0(θj+θl)·xm

(2.28)

for j, l = 1, 2, · · · , N . In accord with (2.16) and (2.23), K can be decomposed as

K = FEF T +DCDT = HBHT
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where H = (F1 F2 · · · FM D1 D2 · · · D2M) ∈ CN×3M and B ∈ R3M×3M is a diagonal

matrix with component
(
E 0
0 C

)
. K is symmetric but is not Hermitian (it would be

K̃ = KK).

Similarly with the two previous cases, one has to assume a large enough N , at least
N > 3M . Let c = (a, b) = (a, ds(z)) ∈ R3\ {0}. For any point z ∈ Ω one defines the
vector gz,c ∈ CN by

gz,c =
(
c · (1, θ1)T eik0θ1·z, c · (1, θ2)T eik0θ2·z, · · · , c · (1, θN)T eik0θN ·z

)T
. (2.29)

Then, it can be shown that there exists n0 ∈ N such that for any N ≥ n0 the following
statement holds [8, 12, 50] :

gz,c ∈ Range(K̃) if and only if z ∈ {x1, x2, · · · , xM} . (2.30)

Now, let the singular value decomposition of the matrixK be defined byK = V SW
T .

As before, since the rank of K is 3M , the first 3M columns of V , {v1, v2, · · · , v3M}, pro-
vide an orthonormal basis for K and the rest of the matrix V , {v3M+1, v3M+2, · · · , vN},
provides a basis for the null (or the noise) space of K. So, one can form the projection
onto the null (or noise) subspace : this projection is given explicitly by

Pnoise(f) =
∑
j>M

vjv
T
j f.

From (2.30), a point z ∈ {x1, x2, · · · , xM} if and only if gz,c ∈ Range(K̃), i.e., equiva-
lently ‖Pnoise(gz,c)‖ = 0. Hence, an image of xj for j = 1, 2, · · · ,M follows by computing

Wc(z) =
1

‖Pnoise(gz,c)‖
. (2.31)

The resulting plot will show large peaks at the sought xj as previously single-contrast
cases. In addition to comments already made, and not repeated here, let us notice
that any brute-force calculation of fields should now become quite complicated whereas
alternative asymptotic formulations in the line of [61] seem not available.

2.5 Numerical examples

2.5.1 Common features

In this section, a number of numerical examples is shown, with no claim to ex-
haustivity however. The main attention is put onto the purely dielectric case, with
complementary examples given in the other cases, and on the one-inclusion case, a few
illustrations of a two-inclusion case being added also.

Throughout, the scattered field is collected on the unit circle (radius 1). The search
domain Ω̃ is defined as Ω̃ = [−1, 1]× [−1, 1]. The thickness h of the thin inclusion Γ (see
next) is set to 0.015 and parameters µ(= 1

γ
), µ0(= 1

γ0
), ε and ε0 are chosen as 5, 1, 5 and

1, respectively. Since γ0 and ε0 are set to unity, the applied frequency reads as ω = 2π
λ
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at wavelength λ, which will be varied in the examples between the low-frequency one of
λ = 1 and the high-frequency one of λ = 0.1.

Several Γ are chosen for illustration :

Γ1 = {x+ ηn(x) : x ∈ σ1, η ∈ (−h, h)} , (2.32)

with 0.8-long straight σ1 = {(z, 0.2) : z ∈ (−0.4, 0.4)} ;

Γ2 = {x+ ηn(x) : x ∈ σ2, η ∈ (−h, h)} , (2.33)

with 1.04-long σ2 =
{(
z, 0.2 + (z−0.2)2

2

)
: z ∈ (−0.3, 0.7)

}
of constant curvature ;

Γ3 = {x+ ηn(x) : x ∈ σ3, η ∈ (−h, h)} , (2.34)

with 1.19-long σ3 = {(z, (z − 0.2)3 + (z − 0.2)2)− 0.3 : z ∈ (−0.3, 0.7)} of linearly in-
creasing curvature. As for the illumination and observation directions θl, they are selec-
ted as

θl =

(
cos

2π(l − 1)

N
, sin

2π(l − 1)

N

)
for l = 1, 2, · · · , N.

It is worth mentioning again that, unless otherwise indicated, the scattered field
dataset (the MSR matrix) is generated from the first-order formulation (2.10), with
no far-field assumption, using a very fine sampling along the supporting curve. After
computing this dataset, the singular value decomposition of K is performed thanks to
a Matlab subroutine. Once the singular values obtained, they are, save exception (see
next), normalized with respect to the one of maximum amplitude.

For each z ∈ Ω̃, values of scalar a and vectors b, and/or c have to be selected. The
choice of a = 1 is obviously as good as another one, the other two are to be appraised
from numerical experimentation. As for the step size of z, it is taken of the order of 0.02.

2.5.2 Permittivity contrast only (µ = µ0, ε 6= ε0)

2.5.3 Preliminary results

As pre-condition to efficacy of the imaging, it is necessary to discriminate the sin-
gular values that are significant of the signal subspace (and vectors spanning it) from
those that are associated to the noise subspace (and vectors spanning it), via a careful
thresholding. Let us work on that matter with Γ1, K being collected for N = 10 and
N = 20, and the wavelengths of operation λ = 0.8 and λ = 0.2, respectively. Distribu-
tions of the normalized singular values of K and maps of Wa(z) are displayed in Fig.
2.2.

Each time, a small finite number of singular values (3 at λ = 0.8, 9 at λ = 0.2)
emerges from the remaining, much smaller ones, whilst images thereupon produced by
projection onto singular vectors beyond the first 3 or 9 ones appear excellent, a small
number of peaks being obtained, each peak being observed to be λ/2 away from the next
one, the supporting curve passing very closely through their line of crests. No problem
of discrimination is faced, and this in effect remains true whenever a straight curve is
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Fig. 2.2 – Distributions of normalized singular values of matrix K (left column) and
maps of Wa(z), z ∈ Ω̃, a = 1 (right column), for N = 10 incidences and λ = 0.8
wavelength (top line), for N = 20 and λ = 0.2 (bottom line), when the inclusion is Γ1,
with dielectric contrast of 5.
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Fig. 2.3 – Distribution of log-scaled (left) and normalized (right) singular values of
matrix K for N = 16 incidences and λ = 0.6 wave length, when the inclusion is Γ3, with
dielectric contrast of 5.

to be imaged, whatever be its type of contrast and the conditions of illumination (if the
ratio N/M is kept properly large).

When σ is not anymore a straight segment, the discrimination becomes less obvious.
As an example, let us image Γ3, here using N = 16 incident directions and a wavelength
of 0.6, refer to Fig. 2.3. The log-scale distribution of the singular values in this case
is certainly not amenable to easy thresholding —this phenomenon is also in contrast
with most results on singular value decomposition presented in [8]. The normalized
distribution seems however easier to deal with, and keeping only the values λj such that
λj
λ1
≥ 0.1, here 5 of them, leads to acceptable imaging. This is further illustrated by Fig.

2.4, where images of Γ3 are displayed for several thresholds, assuming, in consequence,
that at least 3 and up to 8 singular values might characterize the signal subspace.

In conclusion, too small a number of singular values (or too high a threshold) leads to
a blurred image, whereas too high a number of singular values (or too small a threshold)
to a perturbed one, the choice of 5 (and the 0.1 threshold) providing 5 well-defined peaks
that are regularly spanning the supporting curve.

Henceforth, the 0.1 threshold is adopted, being acknowledged that this should be in
practice tuned to the effectively observed distribution, whereas a change of threshold,
and a number of singular values increased or decreased per one unity, might still have
not much impact on the final results. Maps of other inclusions are then successfully
obtained.

This is illustrated by the case of Γ2, K being collected for N = 15 and N = 20, and
the wavelengths of operation being λ = 0.5 and λ = 0.3, respectively. Distributions of
the normalized singular values of K and maps of Wa(z) are displayed in figure 2.5.

One point is worthwhile to observe at this stage. With reference to figures 2.6 and 2.7,
where Γ2 is imaged, with either N = 10 or N = 20 illuminations, at fixed 0.7 wavelength,
it appears that too small a N might be source of inaccuracy, since an isolated high peak
is emerging at N = 10, and is absent at N = 20, though the thresholding seems efficient
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Fig. 2.4 – Maps of Wa(z), z ∈ Ω̃, a = 1, assuming 3 (top-left), 4 (top-right), 5 (middle-
left), 6 (middle-right), 7 (bottom-left) and 8 (bottom-right) singular values in the signal
subspace, for N = 16 incidences and λ = 0.6 wavelength, when the inclusion is Γ3, with
dielectric contrast of 5.
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Fig. 2.5 – Distributions of normalized singular values of matrix K (left column) and
maps of Wa(z), z ∈ Ω̃, a = 1 (right column), for N = 15 incidences and λ = 0.5
wavelength (top line), for N = 20 and λ = 0.3 (bottom line), when the inclusion is Γ2,
with dielectric contrast of 5.
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Fig. 2.6 – Distribution of normalized singular values of matrix K (left) and map of
Wa(z), z ∈ Ω̃, a = 1 (right), for N = 10 incidences and 0.7 wavelength when the
inclusion is Γ2, with dielectric contrast of 5.

Fig. 2.7 – Same as in figure 2.6, save N = 20.

in both cases, 4 well-defined peaks being observed along the sought supporting curve.

Complementary sets of images of Γ3, one at high frequency (λ = 0.2), one at low
frequency (λ = 0.8), are displayed in Fig. 2.8. They exemplify how the spectrum enlarges,
and how the number of peaks grows (from 4 to 13) and their sharpness as well, when the
frequency is increased, a λ/2 interval always separating the peaks (the image resolution
improves in absolute terms, not in electromagnetics terms, the along-the-curve resolution
remains of the half wavelength).

Now, we apply the algorithm to an oscillating inclusion. The configuration is the
same as previously save the search domain Ω̃ = [−1.5, 1.5] × [−1.5, 1.5]. Two σj are
chosen for illustration (see Fig. 2.9) :

σ4 =
{

(z, 0.5z2 + 0.1 sin(4π(z + 1)) : z ∈ (−1, 1)
}

σ5 =
{

(z, 0.5z2 + 0.05 sin(20π(z + 1))− 0.01 cos(15πz) : z ∈ (−1, 1)
}
.
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Fig. 2.8 – Distributions of normalized singular values of matrix K (left column) and
maps of Wa(z), z ∈ Ω̃, a = 1 (right column), for N = 10 incidences and λ = 0.8
wavelength (top line), for N = 32 and λ = 0.2 (bottom line), when the inclusion is Γ3,
with dielectric contrast of 5.

Fig. 2.9 – Shape of Γ4 (left), Γ5 (right).
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Fig. 2.10 – Distributions of normalized singular values of matrix K (left column) and
maps of Wa(z), z ∈ Ω̃, a = 1 (right column), for N = 36 incidences and λ = 0.6
wavelength (top line), for N = 64 and λ = 0.2 (bottom line), when the inclusion is Γ4,
with dielectric contrast of 5.

Let us consider Γ4. Typical results are in figure 2.10 at λ = 0.6 and λ = 0.2. Imaging
is rather coarse at the low wavelength, better at the high one. The thresholding still
looks convenient, whilst a high value of N is to be taken as expected.

For the case of a more oscillating inclusion Γ5, the results are not so good, as is seen
in Fig. 2.11. Nevertheless, we can still say that a good initial guess is obtained at low
computational cost, to be improved upon by an appropriate iterative algorithm.

2.5.4 On inverse crime and the use of other datasets

As it has been insisted upon already, instead of using (2.10) to obtain the scattered
field datasets, one could employ an asymptotic formulation involving the solution of
a second-kind Fredholm integral equation along the supporting curve, linked to the
thinness of the inclusion [61], Images of a thin penetrable inclusion from the first-order
data or from the ones calculated according to this alternative formulation are almost
indistinguishable, refer to center row of Fig. 2.12.
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Fig. 2.11 – The distribution of normalized singular values of the matrixK (Left column)
and maps ofWa(z) when a = 1 (right column), for all points z ∈ Ω̃ for N = 72 incidences
and a 0.3 wave length (top row), for N = 96 incidences and a 0.2 wave length (center
row) and for N = 160 incidences and a 0.1 wave length (bottom row) when the thin
inclusion is Γ5, with dielectric contrast of 5.
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In line with the preceding illustration, images can be produced from scattered field
data computed by a brute-force Method-of-Moments(MoM) solution algorithm [72] (so-
lution algorithm is M. Lambert’s courtesy, L2S) applied to a domain integral formula-
tion in the case of a supporting straight segment, the main challenge being to cover the
inclusion with pixels small enough with respect both to the wavelength and to the in-
clusion thickness, and not too numerous overall. Such images in effect appear to be very
much like those built up from the first-order data, whatever be the assumed thickness
h = 0.015 in the solution algorithm, refer to bottom row of figure 2.12 and h = 0.0025,
0.005 and 0.01, refer to Fig. 2.13.

To generate the data one could also apply the discrete formula (2.15)

Kjl ≈ (ε− ε0)
|σ|
M

M∑
m=1

eik0(θj+θl)·xm .

This is a fictitious situation since M is unknown, and this would be pure inverse crime,
yet the results are comforting as follows. The normalized singular values and images
resulting from this formula are displayed in Fig. 2.14. The top line of figure 2.14 shows
the distribution of normalized singular values and imaging result when M = 8. The
map Wa(z) clearly shows that there are eight points regularly distributed along the
supporting curve σ, and separated by the half-wavelength. The center and bottom line
of Fig. 2.14 show the distribution of normalized singular values and imaging result when
M = 64 and M = 128, respectively. The distribution of normalized singular values and
imaging results do not depend much upon the value of M chosen. In short, the MUSIC
estimator built upon the singular value decomposition of the MSR matrix due to the
thin inclusion peaks regularly on the inclusion curve, independently of the data model
used to calculate the MSR matrix (as long as h is small enough, obviously), since results
are alike whatever this model.

2.5.5 Robustness with respect to noise

Let us assume at this stage of the analysis that noise is added onto the (first-order)
data, i.e., for every x ∈ R2,

unoise(x) = {1 + ξ × (rnd1(−1, 1) + irnd2(−1, 1))}u(x)

where rnd1(−1, 1) and rnd2(−1, 1) are distinct arbitrary real values between −1 and 1.

An image of Γ1 for the case ξ = 5 × 10−2 is in Fig. 2.15 at λ = 0.8. Although the
distribution of log-scaled singular values is significantly different, one can easily find
proper singular values and obtain a rather accurate image via the normalizing method.
For the case of the curved thin inclusion Γ3 with noise ξ = 3×10−1, the same phenomenon
occurs, refer to Fig. 2.16. As expected, in both cases, adding noise tends to decrease the
quality of the image with respect to the noiseless case (more variations in the dark zone,
less sharp peaks along the inclusion curve).
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Fig. 2.12 – Distribution of normalized singular values of the MSRmatrixK (left column)
and maps ofW (z), z ∈ Ω̃ (right column), forN = 10 incidences and a λ = 0.8 wavelength
when the inclusion is Γ1. The datasets are generated by solving formula (2.10) (top
row), second-kind Fredholm integral equation of [61] (center row), and by using a MOM
solution algorithm for h = 0.015 (bottom row).
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Fig. 2.13 – Same as in Fig. 2.12. The datasets are generated by using a MOM solution
algorithm for h = 0.0025 (top row), 0.005 (center row) and 0.01 (bottom row).
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Fig. 2.14 – Applying the discrete formula (2.15). Distributions of normalized singular
values of matrix K (left column) and maps of Wa(z), z ∈ Ω̃, a = 1 (right column),
with M = 8 (top line), M = 64 (center line) and M = 128 (bottom line) for N = 20
incidences and λ = 0.3 wavelength, when the inclusion is Γ2, with dielectric contrast of
5.
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Fig. 2.15 – The distribution of log-scaled (top row) and normalized (center row) singular
values of the matrix K and maps of Wa(z) when a = 1 (bottom row) without noise (left
column) and with noise added (ξ = 5× 10−2) for all points z ∈ Ω̃ for N = 10 incidences
and a 0.8 wave length when the thin inclusion is Γ1 with dielectric contrast of 5.
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Fig. 2.16 – The distribution of log-scaled (top row) and normalized (center row) singular
values of the matrix K and maps of Wa(z) when a = 1 (bottom row) without noise (left
column) and with noise added (ξ = 3× 10−1) for all points z ∈ Ω̃ for N = 32 incidences
and a 0.2 wave length when the thin inclusion is Γ3 with dielectric contrast of 5.
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Fig. 2.17 – 3-D maps of Wb(z), z ∈ Ω̃, b = (1, 1) (top-left), b = (5, 1) (top-right),
b = (1, 5) (bottom-left), b = (0, 1) (bottom-right), for N = 24 incidences and a λ = 0.5
wavelength, when the inclusion is Γ1 and has a magnetic contrast of 5.

2.5.6 Permeability contrast only (µ 6= µ0, ε = ε0)

2.5.7 Estimation of the best b

In this configuration, to properly choose the vector b = (b1, b2) is a strong supple-
mentary prerequisite to good imaging, in addition to the choice of the threshold (kept at
0.1) and of the number of illuminations (at least twice more than in the purely dielectric
case, as a reminder). The following four cases have been studied : b1 = b2 (b1 = b2 = 1) ;
b1 > b2 (b1 = 5, b2 = 1) ; b1 < b2 (b1 = 1, b2 = 5) ; and b1 < b2 (b1 = 0, b2 = 1).
Results are displayed in Fig. 2.17, limiting ourselves to Γ1 of permeability µ = 5, and
using N = 24 incident directions and a 0.5 wavelength. They appear the best whenever
b2 > b1, with excellent ones for b = (0, 1). Let us emphasize that this value b is but the
unit normal vector n to σ1 —before carrying the imaging one cannot know that normal
vector, and one is faced with a nonlinear inversion problem if one would like to get the
best b simultaneously with the distribution of points along the unknown curve.

When the permeability of the thin inclusion is less than the background one (i.e., if
µ < µ0), the choice of b must be otherwise. Similar to the previous one, the following
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Fig. 2.18 – 3-D maps of Wb(z), z ∈ Ω̃, b = (0, 1) (top-left), b = (1, 1) (top-right),
b = (5, 1) (bottom-left), b = (1, 0) (bottom-right), for N = 32 incidences and a λ = 0.3
wavelength, when the inclusion is Γ1 and has a magnetic contrast of 0.2.

four cases have been studied : b1 < b2 (b1 = 0, b2 = 1) ; b1 = b2 (b1 = b2 = 1) ; b1 > b2

(b1 = 5, b2 = 1) ; and b1 > b2 (b1 = 1, b2 = 0). Results are displayed in Fig. 2.18,
limiting ourselves to Γ1 of permeability µ = 0.2, and using N = 32 incident directions
and a 0.3 wavelength. They appear the best whenever b1 > b2, with excellent ones for
b = (1, 0). Notice that this value b is now the unit tangential vector τ to σ1.

From these two examples, one can say that the best way for choosing b appears to
be

b =

{
τ(x) if µ < µ0

n(x) if µ > µ0
.

Although, estimating the tangential (and also normal) vector of the supporting curve
σ should not be an easy task, we can obtain a good image with the value of b = (1, 0)
and b = (0, 1) for µ < µ0 and µ > µ0 respectively. In this permeability contrast case, as
we already said, we focus on the imaging of thin inclusion of permeability µ > µ0.
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Fig. 2.19 – Distributions of normalized singular values of matrix K (left column) and
maps of Wb(z), z ∈ Ω̃, b = (0, 1) (right column), for N = 20 incidences and λ = 0.8
wavelength (top line), for N = 36 and λ = 0.2 (bottom line), when the inclusion is Γ1,
with magnetic contrast of 5.

2.5.8 Further examples

Let us now consider the retrievals of the three Γ as in previous section and investigate
whether length estimates follow also. The straight segment of Γ1 as is displayed in Fig.
2.19 is well amenable to thresholding and very good images are obtained. Results in the
case of Γ2 are not as good, refer to Fig. 2.20, yet the imaging procedure still appears
fairly reliable, the few ghost replicas which are exhibited in the maps (mostly at the
shortest wavelengths) being of much lower amplitude than the ones of the sharp peaks
that are regularly spanning σ. Those calculated in the case of Γ3 look alike, refer to Fig.
2.21, with possible weak replicas still, reliability overall remaining fair.

2.5.9 Permittivity and permeability contrasts (µ 6= µ0, ε 6= ε0)

Even more than previously, the choice of the projection vector, here c = (c1, c2, c3),
is a key matter. One will not detail hereinafter the many potential choices, those being
tested apart in systematic fashion, and one will just indicate that c = (1, 0, 1) was one
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Fig. 2.20 – Distributions of normalized singular values of matrix K (left column) and
maps of Wb(z), z ∈ Ω̃, b = (0, 1) (right column), for N = 24 incidences and λ = 0.7
wavelength (top line), for N = 36 and λ = 0.3 (bottom line), when the inclusion is Γ2,
with magnetic contrast of 5.
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Fig. 2.21 – Distributions of normalized singular values of matrix K (left column) and
maps of Wb(z), z ∈ Ω̃, b = (0, 1) (right column), for N = 20 incidences and λ = 0.8
wavelength (top line), for N = 32 and λ = 0.4 (bottom line), when the inclusion is Γ3,
with magnetic contrast of 5.
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Fig. 2.22 – Distributions of normalized singular values of matrix K (left column) and
maps of Wc(z), z ∈ Ω̃, c = (1, 0, 1) (right column), for N = 20 incidences and λ = 0.6
wavelength (top line), for N = 40 and λ = 0.2 (bottom line), when the inclusion is Γ1,
with dielectric and magnetic contrast.

choice, among others, which has been revealed satisfactory, and which is the one made
from now on.

Let us first consider Γ1. Typical results are exhibited in Fig. 2.22 at two wavelengths,
λ = 0.6 and λ = 0.2. A rather coarse imaging is achieved at the high wavelength, a better
resolved one at the low wavelength, the retrieval being less effective than in the purely
dielectric or purely magnetic case, however. Let us notice that the thresholding seems
convenient, whilst a high value of N is to be taken as expected.

In contrast with the above results, the imaging scheme might yield rather poor results
in a number of configurations as is exemplified in Fig. 2.23, with no obvious improvement
provided by attempting to optimize the threshold further on. The same phenomenon is
observed with Γ2, the results remaining acceptable yet again not as good as in the single
contrast cases, the influence of the threshold being not small, refer to figure 2.24.

As for Γ3, even though some results with it are better than others (always strongly
depending on threshold, number of incident waves, and wavelength of operation), it
is often hard to distinguish the curve shape, as is for example obvious in Fig. 2.25 ;
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Fig. 2.23 – Distributions of normalized singular values of matrix K (left column) and
maps of Wc(z), z ∈ Ω̃, c = (1, 0, 1) (right column), for N = 24 incidences and λ = 0.5
wavelength, using 6 (top row) and 8 (bottom row) singular values for imaging, when the
inclusion is Γ1, with dielectric and magnetic contrasts of 5 each.
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Fig. 2.24 – Distributions of normalized singular values of matrix K (left column) and
maps of Wc(z), z ∈ Ω̃, c = (1, 0, 1) (right column), for N = 32 incidences and a λ = 0.4
wavelength, using 13 (top row) and 11 (bottom row) singular values for imaging, when
the inclusion is Γ2, with dielectric and magnetic contrast of 5 each.
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Fig. 2.25 – Distributions of normalized singular values of matrix K (left column) and
maps of Wc(z), z ∈ Ω̃, c = (1, 0, 1) (right column), for N = 24 incidences and a λ = 0.6
wavelength, using 11 (top row) and 19 (bottom row) singular values for imaging, when
the inclusion is Γ3, with dielectric and magnetic contrast of 5 each.

nevertheless, it illustrates in particular that a high number of singular values, from the
numerical point-of-view, enables us to better appraise the supporting line, with a blurred
result still.

2.5.10 Extension to multiple inclusions

Both the mathematical setting and the numerical analysis could be extended in
rather straightforward fashion to the case of multiple inclusions. The derivation will not
be provided herein, only examples of images via the MUSIC-type algorithm are shown
in several figures, Fig. 2.26 for identical contrasts of permittivity, 2.27 for different
contrasts of permittivity, and 2.29 now for different contrasts of permeability, all at the
same wavelength of 0.5 (except 0.7 for Fig. 2.27). The imaged inclusions are made of Γ3,
as previously introduced, and a (moved, mirrored) copy of Γ2

1, letting ΓMulti = Γ2 ∪ Γ3.

It appears that the results, once chosen proper singular values as exemplified in Fig.
1Its supporting curve is σ2 =

{(
z,−0.5(z − 0.2)2 + 0.4

)
: z ∈ (−0.3, 0.7)

}
.
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Fig. 2.26 – Distributions of normalized singular values of matrix K (left column) and
maps of Wa(z), z ∈ Ω̃, a = 1 (right column), assuming 6 (top row) or 11 (bottom row)
singular values in the signal subspace, for N = 24 incidences and λ = 0.5 wavelength,
when the inclusion is ΓMulti, with same dielectric contrast of 5.
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Fig. 2.27 – Maps ofWa(z), z ∈ Ω̃, a = 1 forN = 20 incidences and 0.7 wave length, when
the inclusion is ΓMulti, with same dielectric contrasts of 5 (top left), distinct contrasts
of 5 and 3 (top right), of 10 and 3 (bottom left) and of 5 and 0.5 (bottom right), the
inclusion of higher contrast being the upper one displayed in the maps.

2.26 (M = 6 is visibly too small a value, yet one still distinguishes the two inclusions
even though the resolution is poor, M = 11 as provided by application of the usual
criterion of magnitude is associated to much better results), are strongly function of the
respective contrasts of the two inclusions.

That is, if an inclusion has a much smaller value of permittivity or permeability than
the other one, this inclusion does not significantly affect the scattering matrix and as a
consequence it cannot be retrieved via the algorithm, refer to Fig. 2.28. Let us stress that
electromagnetic coupling between inclusions, since this coupling would be impacting the
higher-order terms in the asymptotic formulation, is neglected in the calculation of the
MSR matrix, but the fact the MSR matrix results from a sum of independent terms does
not mean that the singular values can be effectively attributed to one specific inclusion,
unless (as said before) one inclusion does not really sign in the dataset.
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Fig. 2.28 – Absolute value of scattered field for single inclusion Γ2 (blue dashed line)
and multiple inclusions ΓMulti (red solid line) with distinct contrasts of 5 and 3 (left), of
5 and 0.5 (right).

Fig. 2.29 – Maps of Wb(z), z ∈ Ω̃, b = (0, 1) for N = 32 incidences and 0.5 wave length,
when the inclusion is ΓMulti, with distinct magnetic contrasts of 5 and 3 (left) and of
10 and 3 (right), the inclusion of higher contrast being the upper one displayed in the
maps.
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2.6 Conclusion

The above investigation shows that it is feasible, from the Multi-Static Response
matrix of a thin penetrable inclusion analyzed in the framework of an appropriate small-
thickness asymptotic formulation, to put together a MUSIC-type imaging algorithm
which yields the supporting curve of the sought inclusion, using several models of the
MSR matrix in the numerical practice.

The present work is illustrated by a number of numerical simulations which show
that the method is robust at least when the inclusion differs from its surrounding by
its dielectric permittivity or by its magnetic permeability, on the condition that one
has a large enough set of illuminations and observations (with respect to the expected
length of the supporting curve measured in terms of the half wavelength, and function of
the type of electromagnetic contrast, e.g., twice higher for a permeability contrast than
for a permittivity contrast), the case of both contrasts being far less straightforward
to deal with. Also, similar imaging performances from MSR matrices calculated by an
alternative boundary-integral asymptotic formulation and by an exact domain integral
formulation, in addition to the handling of nosiy data, alleviate worries on inverse crime.

As is not surprising, the resolution along the supporting curve of the inclusion is of the
order of the half wavelength in the embedding medium (by identifying the retrieved curve
to the line of crest of the peaks emerging in the above map) and in best cases is a very
small fraction of the wavelength orthogonally to it. The investigation, just exemplified
herein, of multiple inclusions has also shown that they could be imaged independently
if not of too different contrasts, again provided that the number of pertinent singular
values is well chosen, and considering that higher-order terms in the resulting MSR
matrix are not accounted for, like with the single-inclusion case.

Recently acquired, preliminary images in the Dirichlet and Neumann case (perfect
thin screen) from exact data tend to suggest that the efficiency of the method holds true
in situations of interest not reduced to the case of penetrable inclusions, refer to chapter
4. Yet it remains to provide an asymptotic field formulation that accounts for the two
extremities of the inclusion from which the MSR matrix could be analyzed in sound
theoretical fashion. Results on this issue, as well as on level-set evolution of inclusions
in chapter 3, will be the subject of subsequent contributions.
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3 Reconstruction of Thin Electromagnetic Inclusions
by a Level Set Method

In this chapter, we consider a technique of electromagnetic imaging (at a single,
non-zero frequency) which uses the level set evolution method for reconstructing a thin
screen with dielectric or magnetic contrast with respect to the embedding homogeneous
medium. Emphasis is on proof of concept, the scattering problem being so far based
on a two-dimensional model. To do so, two level set functions are employed ; the first
one describes location and shape, and the other one connectivity and length. Speeds of
evolution of level set functions are calculated via Fréchet derivatives. Several numerical
experiments on noiseless and noisy data as well illustrate how the proposed method
behaves.

3.1 Introduction

In order to properly start the analysis, let us first introduce the mathematical model
that one is focusing onto from now on, before a brief recapitulation of known results
and the presentation of the structure of the chapter.

Let Ω ⊂ R2 be a two-dimensional homogeneous domain with smooth enough boun-
dary ∂Ω. This domain contains a thin inclusion which has a fixed thickness 2h denoted
as Γ and which is localized in the neighborhood of a curve σ. That is,

Γ = {x + ηn(x) : x ∈ σ, η ∈ (−h, h)} , (3.1)

where the supporting σ is a simple, smooth curve in Ω (with strictly positive distance
from its boundary ∂Ω, if there were any at finite distance), n(x) is the unit normal to σ
at x, and h is a positive constant which specifies the thickness of the inclusion (small with
respect to the wavelength in Ω, see next), refer to Fig. 3.1. The electric permittivity and
magnetic permeability at a given (single) non-zero frequency of operation are assumed
to be known ; they are finite-valued and differ (either one or both of them) from the ones
of the homogeneous embedding medium. The unknown information on the inclusion is
its location, shape, and connectivity (that is, there may be more than one thin inclusion,
the support curve σ being cut in two parts, for example, to model two such inclusions,
with the restriction that these parts be of the same electromagnetic properties).

Fig. 3.1 – Sketch of the two-dimensional thin inclusion Γ

Constitutive materials are characterized by their dielectric permittivity and magnetic
permeability at a given frequency ω. Let 0 < ε0 < +∞ and 0 < µ0 < +∞ denote the
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permittivity and permeability of the embedding domain Ω, and 0 < ε < +∞ and
0 < µ < +∞ the ones of the inclusion Γ. Then, one has the piecewise constant dielectric
permittivity

ε(x) =

{
ε0 for x ∈ Ω\Γ,
ε for x ∈ Γ,

(3.2)

and magnetic permeability

µ(x) =

{
µ0 for x ∈ Ω\Γ,
µ for x ∈ Γ.

(3.3)

If there is no inclusion, i.e., in the homogeneous domain, µ(x) and ε(x) are equal to µ0

and ε0 respectively. For convenience, one also defines γ(x) = 1/µ(x) and ρ(x) = ω2ε(x)
at strictly positive operation frequency ω. Similarly, γ0 = 1/µ0 and ρ0 = ω2ε0. Notice
that in this chapter, for the sake of simplicity, we set µ0 and ε0 are equal to 1.

At strictly positive operation frequency ω (wavenumber k0 = ω
√
ε0µ0), let u(x) be

the time-harmonic total field which satisfies the Helmholtz equation

∇ ·
(

1

µ(x)
∇u(x)

)
+ ω2ε(x)u(x) = 0 in Ω (3.4)

with boundary condition

1

µ0

∂u(x)

∂ν(x)
=

1

µ0

∂eik0θ·x

∂ν(x)
= g(x) on ∂Ω (3.5)

where ν(x) represents the unit outward normal to x ∈ ∂Ω, and θ = (θx, θy) is a two-
dimensional vector on the unit circle S1 in R2, i.e., θ satisfies θ · θ = 1. Similarly, the
incident field u0(x) satisfies the homogeneous Helmholtz equation

∇ ·
(

1

µ0

∇u0(x)

)
+ ω2ε0u0(x) = 0 in Ω

with boundary condition

1

µ0

∂u0(x)

∂ν(x)
=

1

µ0

∂eik0θ·x

∂ν(x)
= g(x) on ∂Ω.

To summarize, the inclusion could be seen as a thin (not infinitely) piece of penetrable
material (as an ideal model of a crack in an otherwise homogenous region of space, for
example) which is possibly made of two or more disjoint parts. This inclusion is scattering
off some prescribed incident electromagnetic waves with which one is intending to probe
it, the model being so far limited to a two-dimensional (scalar) scattering case.

So, the main purpose of this chapter is to show how we could be reconstructing this
thin inclusion by means of a properly constructed level set method of evolution —refer to
[38] for an in-depth review of the topic of level set evolutions for imaging purposes, and
to a set of classical references like [64, 65]. In the present case, however, and in contrast
with pioneering investigations of the level set methodology as applied to thin inclusions
as it was illustrated in [2], the full-wave scattering case is investigated whereas in the
cited reference the authors were investigating the somewhat more restrictive conductivity
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case. Yet, the investigation herein is admittedly strongly inspired from [2], in particular
on handling the fact that an open curve in a two-dimensional space, is appropriately
represented by two level set functions, the first one being associated with the location
and shape of the support curve, and the other one enabling to cut this curve at the
inclusion tips (maybe into several parts as well).

At this point, let us underline that we do not intend here to go into a detailed
discussion on how to retrieve a thin screen by alternative methods in the electromagnetic
realm. A thorough analysis in already available in [2], which has already been mentioned
as a key paper for the present-day challenge. Complementary material is also found in
[4, 5, 54] for what concerns the conductivity problem particularly. So, we refer the reader
to those references for further reading and also to contribution [68] submitted at the time
of writing which focuses onto MUSIC-type imaging of screens and introduces further
references of interest.

The present chapter goes as follows. In section 3.2, the modeling of the thin inclusion
via two level set functions is presented. In section 3.3, we introduce the basic concepts
of shape deformation and its representation by a level set function, and we derive the
needed Fréchet derivatives by means of an adjoint technique. In section 3.4, we explain
how to evolve such two level set functions. The reconstruction algorithm is sketched in
section 3.5. In section 3.6 we present several numerical experiments for demonstrating
the performance of the proposed algorithm. A short conclusion follows.

3.2 Representing thin inclusion with two level set functions

In this section, we represent the thin inclusion by two different level set functions.
For a more detailed description, we suggest [2, 38]. Throughout the section, we assume
that the level set function ϕ is a continuously differentiable function. With this feature
in mind, we define a thin inclusion represented by ϕ in the following way. Let

Ω0 =
{
x ∈ R2 : ϕ(x) ≤ 0

}
∂Ω0 =

{
x ∈ R2 : ϕ(x) = 0

}
.

Notice that ∂Ω0 is called the zero level set. With this representation, we define the thin
region ΩT of thickness 2h as follows (see Fig. 3.2) :

ΩT = Ω0 ∩
{
y ∈ R2 : y = x− ηn(x) for x ∈ ∂Ω0, 0 ≤ η ≤ 2h

}
. (3.6)

The inner boundary is ∂Ω1 = ∂ΩT\∂Ω0.

In order to describe the thin region of finite length (which is connected or disconnec-
ted) in Ω, we assume that another level set function ψ is also a continuously differentiable
function. Let us define a band structure ΩB ⊂ R2 by (see Fig. 3.3)

ΩB =
{
x = (x1, x2) ∈ R2 : ψ(x1) < 0

}
. (3.7)

With the representation (3.6) and (3.7), we finally describe the thin inclusion Γ as

Γ = (ΩT ∩ ΩB) ∩ Ω.
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Fig. 3.2 – Representation of the thin region by a level set function ϕ.

Fig. 3.3 – Representation of the thin region by two level set functions ϕ and ψ.

and boundaries ∂Γ0 = ∂Γ ∩ ∂Ω0, ∂Γ1 = ∂Γ ∩ ∂Ω1 and ∂Ω2 of Γ for evolving at crack
tips

∂Ω2 = {y = (y1, y2) ∈ ∂Γ : ψ(y1) = 0} .

3.3 Shape deformation by calculus of variations

In this section, we introduce a basic concept of shape deformation and of its repre-
sentation via a level set function. The method is about the deformation of an already
existing thin inclusion, say Γ(n) at a n−th time step of evolution, into the normal direc-
tion with an optimal velocity (see Fig. 3.4).

3.3.1 Gradient directions

In order to obtain the optimal velocity of level set functions, we have to introduce
proper residual operators. For convenience, let us introduce the parameter distribution
b(x) as

b(x) =

{
b0 for x ∈ Ω\Γ,
b for x ∈ Γ.

(3.8)
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Fig. 3.4 – Shape deformation of an already existing thin inclusion Γ(n) at a n−th time
step of evolution to the normal direction with optimal velocity.

Notice that, below, the parameter distribution b(x) specifies the parameters γ(x) =
1/µ(x) or ρ(x) = ω2ε(x) of the inclusion at a given frequency.

For a given thin inclusion Γ, we denote the measured data (or ‘true’ data) which
satisfy (3.4) as utrue and similarly, for a given existing thin inclusion (or appropriate ini-
tial guess) Γ(n), we denote the measured data as umeas. Due to the discrepancy of shapes
between Γ and Γ(n), the parameter distributions are also different and this is causing
the discrepancy between utrue and umeas. Hence, for a given parameter distribution b, we
can define the residual operator R :

R(b) = utrue − umeas on ∂Ω.

With this residual operator, we get the least-square cost functional

T (b) =
1

2
‖R(b)‖2

∂Ω =
1

2
〈R(b),R(b)〉∂Ω =

1

2

∫
∂Ω

R(b)R(b)∗dS (3.9)

where ∗ is the mark of complex conjugate. We henceforth assume that R(b) admits the
expansion

R(b+ δb) = R(b) +R′(b)δb+O(‖δb‖2
Ω)

for a sufficiently small perturbation δb. If the linear operator R′(b) exists, it is denoted
as the Fréchet derivative of R(b). Then, the least-square cost functional also satisfies

T (b+ δb) = T (b) + Re〈R′(b)∗R(b), δb〉Ω +O(‖δb‖2
Ω), (3.10)

where Re is the real part of corresponding quantity, the operator R′(b)∗ is the adjoint
of R′(b) with respect to spaces ∂Ω and Ω :

〈R′(b)∗R(b), δb〉Ω = 〈R(b),R′(b)δb〉∂Ω

and
R′(b)∗R(b)

the gradient direction of T in b.

Thus, in order to find the variation of T (b) for obtaining the optimal velocity of level
set functions, we have to compute δb and the gradient direction R′(b)∗R(b).

3.3.2 Calculation of δb due to shape deformation

First, let us consider the parameter change δb due to the evolution of the first level
set function ϕ. When every point x ∈ ∂Γ0 moves by a small distance d(x), ∂Γ0 is
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deformed, refer to Fig. 3.5. Let us specify that the distance can be represented as

d(x) = F1(x)n(x)τ (3.11)

for some scalar function F (x) and time step τ . In order to move ∂Γ1, let us assume that
every point y ∈ Γ can be written in the form

y = x− 2ηn(x)

for x ∈ ∂Γ0 and 0 ≤ η ≤ 2h. Since the boundaries ∂Γ0 and ∂Γ1 are smooth, both x
and η are uniquely determined by y. So, we can straightforwardly assume that when
the point x ∈ Γ0 moves, y moves into the same direction and with the same distance of
x.

Fig. 3.5 – Deformation of a thin inclusion.

By adopting the interpretation of δb in [38], the change of ∂Γ0 induces

δb|∂Γ0 = (b− b0)n(x) · d(x)δ∂Γ0(x)χΩB(x) (3.12)

where δ∂Γ0 is the Dirac delta function concentrated on ∂Γ0 and χΩB is the characteristic
function of ΩB.

Since y ∈ ∂Γ1 moves into the same direction and with the distance of x, we can say
that n(y) = −n(x), d(x) = d(y), δ∂Γ1(y) = δ∂Γ0(x + 2hn(x)) and x,y ∈ ΩB. That is,
a change of ∂Γ1 induces

δb|∂Γ1 = (b− b0)n(y) · d(y)δ∂Γ1(y)χΩB(y)

= −(b− b0)n(x) · d(x)δ∂Γ0(x + 2hn(x))χΩB(x).
(3.13)

By using (3.12) and (3.13), we immediately obtain the total change of δb as

δb = (b− b0)n(x) · d(x)[δ∂Γ0(x)− δ∂Γ0(x + 2hn(x))]χΩB(x). (3.14)

Using the relationship between (3.11), (3.14) and (3.10), we get

T (b+ δb) = T (b)

+ Re〈R′(b)∗R(b), (b− b0)F1(x)τ [δ∂Γ0(x)− δ∂Γ0(x + 2hn(x))]χΩB(x)〉Ω
+O(‖δb‖2

Ω),
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which yields the descent direction as follows :

F1(x) = −Re[R′(b)∗R(b)](b− b0) {δ∂Γ0(x)− δ∂Γ0(x + 2hn(x))} , (3.15)

for x ∈ ∂Γ0.

Next, let us consider the parameter change δb due to the evolution of the second
level set function ψ. Let us assume that every point y = (y1, y2) ∈ ∂Ω2 moves a small
distance d(y1) into the outward direction n∂Ω2(y) = ±(1, 0). Then, similarly with the
previous analysis, when the point y ∈ ∂Ω2 moves to y + d(y1)n∂Ω2(y), it induces a
parameter change as

δb|∂Γ2 = (b− b0)d(y1)δ∂Γ2(y)χΩT (y). (3.16)

Plugging (3.16) into (3.10), we can get

T (b+ δb) = T (b)

+ Re〈R′(b)∗R(b), (b− b0)d(y1)δ∂Γ2(y)χΩT (y)〉Ω +O(‖δb‖2
Ω).

Since the distance function d only depends upon the variation y1 of y = (y1, y2), we
obtain the following descent direction

F2(y1) = −Re

∫
∂Ω2

R′(b)∗R(b)(b− b0)δ∂Ω2(y)χD(y)dy2, (3.17)

for y = (y1, y2) ∈ ∂Ω2.

3.3.3 Calculation of the gradient direction

Proper calculation of the gradient direction R′(b)∗R(b) is an essential task if we wish
to build up a satisfactory evolution of a level set function. In order to do it in practice, we
have to investigate the linear change δu due to a small perturbation δb. Before starting,
let us introduce the Fréchet derivative R′(b) which is satisfying (see [14, Chapter 10] or
[26, Theorem 5])

R′(b)δb = δu on ∂Ω. (3.18)

Calculation of the gradient direction is carried out in succession for the following two
cases of interest :

1. The first case : γ = γ0, ρ 6= ρ0

2. The second case : γ 6= γ0, ρ = ρ0.

1. The first case : γ = γ0, ρ 6= ρ0. In order to obtain the descent direction of the
level sets, we consider the following problem :

γ∆u+ ρu = 0 in Ω (3.19)

with boundary condition

γ
∂u

∂ν
= g on ∂Ω. (3.20)

the residual being as already said

R(ρ) = utrue − umeas. (3.21)
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In order to observe the relationship between δu and δρ, we apply u+δu and ρ+δρ
to formula (3.19) and (3.20) instead of u and ρ, respectively. Then (3.19) becomes

0 = γ∆(u+ δu) + (ρ+ δρ)(u+ δu)

= (γ∆u+ ρu) + (γ∆δu+ δρu+ ρδu+ δρδu)
(3.22)

Let us assume that the term δρδu is negligible. Then, u satisfies (3.19), the identity
(3.22) becomes

(γ∆ + ρ)δu = −δρu in Ω (3.23)

and (3.20) becomes

γ
∂(u+ δu)

∂ν
= γ

∂u

∂ν
+ γ

∂δu

∂ν
= g + γ

∂δu

∂ν
= g

, which implies

γ
∂δu

∂ν
= 0 on ∂Ω. (3.24)

From (3.23), (3.24) and (3.18), we obtain the following relationship.
Theorem 3.1 Let R(ρ) be defined as (3.21). Then, R′(ρ)∗R(ρ) is given by

R′(ρ)∗R(ρ) = u∗z.

Here, u satisfies (3.19) and (3.20), and z solves the following adjoint equation :

(γ∆ + ρ)z = 0 in Ω (3.25)

with boundary condition

γ
∂z

∂ν
= R(ρ) on ∂Ω. (3.26)

Proof. From identity (3.23), we can get∫
Ω

u∗z(δρ)∗dx =

∫
Ω

z(δρu)∗dx = −
∫

Ω

z {(γ∆ + ρ)δu}∗ dx

= −
∫
∂Ω

z

(
γ
∂δu

∂ν

)∗
dS +

∫
∂Ω

γ
∂z

∂ν
δu∗dS −

∫
Ω

(γ∆ + ρ)zδu∗dx

=

∫
∂Ω

γ
∂z

∂ν
δu∗dS = 〈R(ρ), δu〉∂Ω = 〈R(ρ),R′(ρ)δρ〉∂Ω

Therefore, we immediately obtain R′(ρ)∗R(ρ) = u∗z as follows

〈u∗z, δρ〉Ω =

∫
Ω

u∗z(δρ)∗dx = 〈R(ρ),R′(ρ)δρ〉∂Ω = 〈R′(ρ)∗R(ρ), δρ〉Ω.

2. The second case : γ 6= γ0, ρ = ρ0. Similarly with the first case, in order to obtain
the descent directions of the level sets, we consider the following problem :

∇ · (γ∇u) + ρu = 0 in Ω (3.27)

with boundary condition

γ
∂u

∂ν
= g on ∂Ω, (3.28)
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the residual being defined as previously as

R(γ) = utrue − umeas. (3.29)

In order to observe the relationship between δu and δγ, we apply u + δu and
γ + δγ to the formula (3.27) and (3.28) instead of u and γ, respectively. Then,
(3.27) becomes

0 = ∇ · ((γ + δγ)∇(u+ δu)) + ρ(u+ δu)

= ∇ · (γ∇u) +∇ · (δγ∇u) +∇ · (γ∇δu) +∇ · (δγ∇δu) + ρu+ ρδu
(3.30)

Let us assume that the term ∇ · (δγ∇δu) is negligible ; since u satisfies (3.27), the
identity (3.30) becomes

∇ · (γ∇δu) + ρδu = −∇ · (δγ∇u) in Ω (3.31)

and (3.28) becomes

(γ + δγ)
∂(u+ δu)

∂ν
= γ

∂u

∂ν
+ γ

∂δu

∂ν
= g + γ

∂δu

∂ν
= g

impliying that

γ
∂δu

∂ν
= 0 on ∂Ω (3.32)

From (3.31), (3.32) and (3.18) we can obtain the following relationship.
Theorem 3.2 Let R(γ) be defined as (3.29). Then, R′(γ)∗R(γ) is given by

R′(γ)∗R(γ) = ∇u∗ · ∇z.
Here, u satisfies (3.27) and (3.28), and z solves the following adjoint equation

∇ · (γ∇z) + ρz = 0 in Ω (3.33)

with boundary condition

γ
∂z

∂ν
= −R(γ) on ∂Ω. (3.34)

Proof. From the identity (3.31), we get∫
Ω

(∇u∗ · ∇z)(δγ)∗dx =

∫
Ω

∇z · (δγ∇u)∗dx

=

∫
∂Ω

z

(
δγ
∂u

∂ν

)∗
dS −

∫
Ω

z∇ · (δγ∇u)∗dx

=

∫
Ω

z {∇ · (γ∇δu) + ρδu}∗ dx

=

∫
∂Ω

z

(
γ
∂δu

∂ν

)∗
dS −

∫
Ω

∇z · (γ∇δu)∗dx +

∫
Ω

z(ρδu)∗dx

= −
∫

Ω

γ∇z · ∇δu∗dx +

∫
Ω

ρzδu∗dx

= −
∫
∂Ω

γ
∂z

∂ν
(δu)∗dS +

∫
Ω

{∇ · (γ∇z) + ρz} δu∗dx

= −
∫
∂Ω

γ
∂z

∂ν
(δu)∗dS = 〈R(γ), δu〉∂Ω = 〈R(γ),R′(γ)δγ〉∂Ω

Therefore, we immediately obtain R′(γ)∗R(γ) = ∇u∗ · ∇z as follows

〈∇u∗ · ∇z, δγ〉Ω =

∫
Ω

∇u∗ · ∇z(δγ)∗dx = 〈R(γ),R′(γ)δγ〉∂Ω = 〈R′(γ)∗R(γ), δγ〉Ω.
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3.4 Evolution of level set functions ϕ and ψ

Let us use formula (3.11) and set τ −→ 0. Then, the evolution of the level set
function φ (herein, this can be ϕ or ψ) satisfies the Hamilton-Jacobi type equation

∂ϕ(x)

∂t
+ F |∇ϕ(x)| = 0.

From formulas (3.15), (3.17) and theorems 3.1, 3.2, we can choose the descent direc-
tions of the first and second level sets as follows.

1. The descent direction F1(x) for the first level set can go as

F1(x) = −Re[R′(b)∗R(b)](b− b0) {δ∂Γ1(x)− δ∂Γ1(x + 2hn(x))} , x ∈ ∂Ω0 (3.35)

and the iterative procedure for the first level set function ϕ can be

ϕ(n+1) = ϕ(n) + τ
(n)
T F

(n)
1 |∇ϕ(n)|. (3.36)

2. The descent direction F2(x) for the second level set reads as

F2(x1) = −Re

∫
∂Ω2

R′(b)∗R(b)(b− b0)δ∂Ω2(x)χD(x)dx2, x = (x1, x2) ∈ ∂Ω2

(3.37)
and the iterative procedure for the second level set function ψ can be

ψ(n+1) = ψ(n) + τ
(n)
B F

(n)
2 |∇ψ(n)|. (3.38)

Let us emphasize again that the parameter b(x) indicates γ(x) = 1µ(x) or ρ(x) = ω2ε(x)
of the inclusion at a given frequency2.

Remark 3.3 In the above sentence, the descent direction F2(x1) of (3.37) is defined on
∂Ω2. However, in the numerical simulations, F2(x) must be applied not only onto ∂Ω2

but also for all x1 contained in some interval which is depending upon the domain Ω3.
A more detailed discussion can be found in [2, 38].

3.5 Reconstruction algorithm

In the previous section, essential factors for evolving level sets ϕ and ψ have been
derived. In this section, we introduce the reconstruction algorithm itself.

Let us denote the initial guesses (functions) as ϕ(0)(x) and ψ(0)(x). Also, let us assume
that the n−th level set functions ϕ(n) and ψ(n) have been obtained in the previous step.
The iteration procedure can be summarized as follows :

Step 1 For a thin inclusion Γ and Γ(n), calculate the residual

R(b) = utrue − umeas on ∂Ω

by solving the forward problem (3.19), (3.20) or (3.27), (3.28).
2In the numerical simulations, we will use the parameter difference b− b0 as ε− ε0 or (1/µ)− (1/µ0)

instead of ρ− ρ0 or γ − γ0.
3In the numerical simulations, refer to section 3.6, we will choose Ω as a unit disk centered at (0, 0)

in R2. In this case, F2(x) must be applied for all x1 ∈ (−1, 1).
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Step 2 With R(b), solve the adjoint problem (3.25), (3.26) or (3.33), (3.34) and obtain
the gradient direction

R′(b)∗R(b).

Step 3 Calculate the descent direction F1 and F2 by (3.35) and (3.37), respectively.
Step 4 Evolve the level set functions ϕ(n) and ψ(n). In this step, applying suitable regula-

rization (for smoothing the descent directions F1 and F2, see [2, 38]) as needed.
Step 5 Update the parameter distribution b(n+1)(x) following formula (3.8).

When the residual converges or oscillates around some stable value, stop the process. If
not, go back to Step 1.

3.6 Numerical Examples

In order to perform the numerical simulations, we choose the homogeneous domain Ω,
which is containing a thin inclusion, as a unit disk centered at (0, 0) in R2. Throughout
this section, the thickness h of all thin inclusions Γ is set to 0.015 and parameters
µ, µ0, ε and ε0 are chosen as 5, 1, 5 and 1, respectively. Since γ0 and ε0 are set to unity,
the applied frequency reads as ω = 2π/λ, at wavelength λ, i.e., the boundary condition
(3.20) and (3.28) can be read as

g(x) =
1

µ0

∂u(x)

∂ν(x)
=
∂eiωθ·x

∂ν(x)
= iωθ · ν(x)eiωθ·x

for every x ∈ ∂Ω. Within this setting, we solve the (exact) forward problems (3.19),
(3.20), (3.27), (3.28) and the adjoint problems (3.25), (3.26), (3.33), (3.34) via a standard
Finite Element Method (FEM) method.

For a successful evolution of level sets ϕ and ψ, the choice of the time step 4t is
very important. In this chapter, we have chosen the time step as

4t ≡ 4t(s) = 3× 10−s

for some positive integer s. More detailed discussions can be found in references [38, 64]
and we recommend also [72, Section 3.2.3].

As for the least-square functional T at given frequency, which is already introduced
in (3.9), we introduce its discrete normalized version as

TN =

∑Nmeas

j=1 |utrue(xj)− umeas(xj)|2∑N
j=1 |umeas(xj)|2

,

for xj ∈ ∂Ω. In this section, since Ω is an unit circle, the xj are selected as

xj =

(
cos

2π(j − 1)

Nmeas

, sin
2π(j − 1)

Nmeas

)
for j = 1, 2, · · · , Nmeas.

Finally, two Γj are chosen for the sake of illustration :

Γj = {x + ηn(x) : x ∈ σj, η ∈ (−h, h)} , j = 1, 2, (3.39)
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item value
applied wavelength 0.7
incident direction (cos(π/2), sin(π/2))

time step 4t(4)
Nmeas 96

Tab. 3.1 – Test configuration for Γ1 in the permittivity contrast case.

with the support curves

σ1 =
{

(z, 0.5z2 + 0.1) : z ∈ (−0.5, 0.5)
}

σ2 =
{

(z, 2z3 − 0.1z2 + 0.1z) : z ∈ (−0.5, 0.5)
}
.

Remark 3.4 For a successful evolution, we need a good initial guess, close enough (clo-
seness being in practice concluded upon from numerical experimentation) to the unknown
scatterer. Without, and since the cost functional of interest is reduced in gradient-like
fashion, we might suffer from large computational costs, refer to Fig. 3.7. True, we could
obtain an imaging result at far lower low computational cost (and choose it as an initial
guess), refer to [4, 5, 54] whenever we are able to work at zero or close to zero fre-
quency, here only aiming at finding the tips of the inclusion and its orientation at the
tips ; whereas in the propagative regime as of now, a MUSIC-type non-iterative algorithm
could work quite well, refer to [66, 67, 68], and now provide the full support curve (or at
least an approximation thereof). In the present work, we assume that the location of the
end points of Γ has been identified unless otherwise specified. By connecting them via a
straight line, we can choose it as an initial support curve σ.

3.6.1 Permittivity contrast only (µ = µ0, ε 6= ε0)

For the first example, let us consider the reconstruction of Γ1. The test configuration
is found in Tab. 3.1.

Based on this configuration, the initial guess, the true shape, the state of the evolved
curve after up to 200 iterations and the overall evolution of the normalized residual TN
are displayed in Fig. 3.6. This shows that Γ1 is successfully reconstructed and that the
residual decreases quite well accordingly.

Fig. 3.7 shows the evolution of the support curve in the same Γ1 case (see Tab.
3.1), now letting the end points different from the true ones as made so far (the initial
guess is the straight line {(z, 0.425) : z ∈ (−0.5, 0.5)} with end-points (−0.5, 0.425) and
(0.5, 0.425).) Although we have performed 500 iterations, further iterations (at higher
computational costs) would be required for a successful evolution.

Another configuration for the reconstruction of Γ2 is given in Table 3.2.

With this configuration, the initial guess, the true shape, the state of the evol-
ved curve up to 200 iterations, and the evolution of the normalized residual TN are
illustrated, refer to Fig. 3.8. In harmony with the previous example, Γ2 is successfully
reconstructed overall and that the residual decreases quite well.
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Fig. 3.6 – Reconstruction of Γ1 for the permittivity contrast case. From top to bottom,
left to right initial guess, after 20, 40, 60, 80, 100, 120, 140, 160, 200 iterations, true
shape and normalized norm of data residuals for each iteration.

item value
applied wavelength 0.6
incident direction (cos(π/6), sin(π/6))

time step 4t(5)
Nmeas 100

Tab. 3.2 – Test configuration for Γ2 in the permittivity contrast case.
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Fig. 3.7 – Same as Fig. 3.6. Left to right initial guess, after 500 iterations, true shape
and normalized norm of data residuals for each iteration.

item value
applied wavelength 0.6
incident direction (cos(π/2), sin(π/2))

time step 4t(4)
Nmeas 128

Tab. 3.3 – Test configuration for Γ3 in the permittivity contrast case.

At this stage of the analysis, let us assume that noise is added to the data, i.e., for
every x ∈ ∂Ω,

unoise(x) = {1 + ξ × (rnd1(−1, 1) + irnd2(−1, 1))}u(x)

where rnd1(−1, 1) and rnd2(−1, 1) are distinct, arbitrary real values between −1 and 1.

Let us consider the reconstruction of Γ1 in the same test configuration as in Table
3.1 for the case ξ = 3× 10−2 and ξ = 3× 10−1, refer to Figs. 3.9 and 3.10, respectively.
By comparing the results to those displayed in Fig. 3.6, Γ1 appears quite successfully
reconstructed and the residual decreases well in accord.

Now, let us consider the reconstruction of multiple (we limit ourselves to two parts,
in effect) thin inclusions :

Γ3 = {x + ηn(x) : x ∈ σ3, η ∈ (−h, h)} (3.40)

with the two support curves

σ3 =
{

(z, 0.5z2 + 0.1) : z ∈ (−0.5,−0.2) ∪ (0.2, 0.5)
}
.

A test configuration for the reconstruction of Γ3 is given in Table 3.3.

In Fig. 3.11, the initial guess, the true shape, the evolution of the support curve
σ3 up to 250 iterations and the one of normalized residual TN are displayed. Here, the
thin inclusion appears to be dividing itself into the two parts after 60 iterations, both
evolving somewhat independently thereafter. This shows that the method can be applied
not only to a single thin inclusion but also to divided ones, without specific assumption
on the parts (again, with same electromagnetic parameters).
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Fig. 3.8 – Reconstruction of Γ2 for the permittivity contrast case. From top to bottom,
left to right initial guess, after 20, 40, 60, 80, 100, 120, 140, 160, 200 iterations, true
shape and normalized norm of data residuals for each iteration.



3.6 - Numerical Examples 91

Fig. 3.9 – Same as in Fig. 3.6 with some noise ξ = 3× 10−2.

Fig. 3.10 – Same as in Fig. 3.6 with some noise ξ = 3× 10−1.
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Fig. 3.11 – Reconstruction of Γ3 for the permittivity contrast case. From top to bottom,
left to right initial guess, after 20, 60, 80, 100, 120, 160, 180, 200, 240, 250 iterations
with supporting curve σ3 and normalized norm of data residuals for each iteration.
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item value
applied wavelength 0.7
incident direction (cos(π/2), sin(π/2))

time step 4t(5)
Nmeas 112

Tab. 3.4 – Test configuration for Γ1 in the permeability contrast case.

item value
applied wavelength 0.6
incident direction (cos(3π/4), sin(3π/4))

time step 4t(5)
Nmeas 128

Tab. 3.5 – Test configuration for Γ2 in the permeability contrast case.

3.6.2 Permeability contrast only (µ 6= µ0, ε = ε0)

Let us first consider the reconstruction of Γ1 in the case of a permeability contrast.
The test configuration is described in Tab. 3.4.

In Fig. 3.12, the initial guess, the true shape, the evolution of the curve up to 200
iterations, and the one of the normalized residual TN are displayed. We can say that Γ1

is successfully reconstructed and the residual decreases quite well accordingly.

Another configuration for the reconstruction of Γ2 is shown in Table 3.5. Results are
displayed in Fig. 3.13. In this figure the initial guess, the true shape, the evolution of
the curve up to 250 iterations and the one of the normalized residual TN are illustrated.

Let us further consider the reconstruction of Γ2 in the same test configuration as
depicted in Tab. 3.5 for the noisy cases ξ = 3×10−2 and ξ = 3×10−1, refer to Figs. 3.14
and 3.15, respectively. By comparing to the results illustrated in Fig. 3.13, although the
normalized least-square cost for noisy data is more oscillating than for noiseless data,
we conclude that Γ2 is successfully retrieved.

Let us now consider the retrieval of multiple (two parts again) thin inclusions. Let
us start with Γ3 as in the permittivity contrast case. First, we assume that all four end
points of Γ3 have been found beforehand4. Here, due to the very close initial guess, under
the same test configuration as mentioned in Table 3.4, only 18 iterations are necessary
to yield a good result, refer to Fig. 3.16.

Now, let us consider a division of Γ2 in two, which is represented as

Γ4 = {x + ηn(x) : x ∈ σ4, η ∈ (−h, h)} (3.41)

with the two support curves

σ4 =
{

(z, 2z3 − 0.1z2 + 0.1z) : z ∈ (−0.5,−0.15) ∪ (0.15, 0.5)
}
.

4In the permittivity case, we have been assuming that only two end points have been identified in
the two-part case.
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Fig. 3.12 – Reconstruction of Γ1 for the permeability contrast case. From top to bottom,
left to right initial guess, after 20, 40, 60, 80, 100, 120, 140, 160, 200 iterations, true
shape and normalized norm of data residuals for each iteration.
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Fig. 3.13 – Reconstruction of Γ2 for the permeability contrast case. From top to bottom,
left to right initial guess, after 20, 60, 80, 100, 120, 160, 180, 220, 250 iterations, true
shape and normalized norm of data residuals for each iteration.
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Fig. 3.14 – Same as in Fig. 3.13 with some noise ξ = 3× 10−2.

Fig. 3.15 – Same as in Fig. 3.13 with some noise ξ = 3× 10−1.
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Fig. 3.16 – Reconstruction of Γ3 for the permeability contrast case. From left to right
initial guess, 18 iterations, true shape and normalized norm of data residuals for each
iteration.

In the same test configuration as mentioned in Tab. 3.5, the initial guess, the true shape,
a typical evolution of the retrieved support curve, and the one of normalized residual
TN are displayed in Fig. 3.17.

In Figs. 3.18 and 3.19, we further illustrate the reconstruction in presence of noise,
here of the multiple thin inclusion Γ4, for the cases ξ = 3 × 10−2 and ξ = 3 × 10−1,
respectively.

In brief, from the various numerical experiments illustrated in Figs. 3.9, 3.10, 3.14,
3.15, 3.18 and 3.19, it appears that the proposed solution method does not significantly
suffer from the noise input here.

3.7 Conclusion

A level set method of evolution aimed at the electromagnetic retrieval of a thin
inclusion, with purely dielectric or magnetic contrast with respect to the embedding
homogeneous medium, has been proposed herein. Employing two level set functions, the
first one to describe its location and shape and the second one to describe its connectivity
and length, enables us to retrieve single and multiple thin inclusions, using a rigorous
derivation of gradient directions via Fréchet derivatives (by solving an adjoint problem
each time) in order to access to suitable velocities of evolution. Numerical simulations
show that the proposed technique is stable and efficient, even in the presence of noise,
with somewhat better results in the permittivity case than in the peremability one.

However, this work is still preliminary in the sense that even in a 2-D scalar scat-
tering case as ours, there remain open issues, especially regarding the evolution of the
inclusion tips, and the fact that breaking the inclusion into parts as allowed still means
that the electromagnetic parameters of the said parts remain the same (and are al-
ways assumed to be known). As for real-world issues, this work should be extended to
three-dimensional, vector scattering cases, which is an issue requiring both the availa-
bility of a proper computational tool of the electromagnetic fields that will be due to a
non-necessarily planar screen and the ability of handling level sets of higher dimension.
Again, how to best describe edges and corner tips might be demanding as well.



98 Reconstruction of Thin Electromagnetic Inclusions by a Level Set Method

Fig. 3.17 – Reconstruction of Γ4 for the permeability contrast case. From top to bottom,
left to right initial guess, 20, 40, 60, 80, 100, 120, 140, 160, 200 iterations, true shape
and normalized norm of data residuals for each iteration.
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Fig. 3.18 – Same as in Fig. 3.17 with some noise ξ = 3× 10−2.

Fig. 3.19 – Same as in Fig. 3.17 with some noise ξ = 3× 10−1.
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4 Reconstruction of Perfectly Conducting Cracks

We propose an algorithm for the imaging of one or more perfectly conducting cracks
(screens) in a homogeneous space R2. It is based on a factorization of the measured
Multi-Static Response (MSR) matrix. Operating at a fixed nonzero frequency, it yields
the shape of the cracks from scattered far-fields. Due to the fact that there is no iteration
needed, it is fast, stable and efficient. Various numerical experiments exhibit how the
proposed technique behaves.

4.1 Introduction

The inverse scattering problem for time-harmonic acoustic, electromagnetic waves
from a crack in two-dimensions with Dirichlet boundary conditions has been considered
in [52]. In this paper, the integral equation over a crack is used to prove the existence
and uniqueness of the solution and compute it with a Nyström solution method. Based
on this, the author in [59] extends it to a Neumann problem. Opposite to the fact
that the above is for ‘smooth’ cracks only, the author in [60] has considered the direct
scattering problem both for the Dirichlet and Neumann conditions with various cracks,
for example, piecewise smooth, semi-infinite screens, etc.

Throughout the literature, Newton-type iteration schemes have been suggested for
the inverse scattering problem. Yet, for successful application of these schemes, one needs
a good initial guess, close enough to the unknown object. Without, one might suffer from
large computational costs. Moreover, iterative schemes often require calculation of the
Fréchet derivative of the far-field operator and regularization terms that depend on the
specific problem at hand.

In this chapter, we consider the inverse scattering problem for non-iterative imaging
of single and multiple, perfectly conducting cracks from a measured far-field pattern
for the scattering of time-harmonic plane waves. The chapter is organized as follows.
In section 4.2, the direct scattering problem for the perfectly conducting crack is in-
troduced and the far-field pattern of the scattered field is described. In section 4.3, the
factorization method of the Multi-Static Response (MSR) matrix is carried out and the
MUSIC-type algorithm is discussed. In section 4.4 and 4.5, a set of numerical results is
proposed, spectra of MSR matrices, images of single and multiple screens.

We might refer to references [29, 30, 35, 51, 52] that investigate the linear sampling
method, as another reconstruction algorithm for imaging in inverse scattering linked to
the MUSIC algorithm.

4.2 Helmholtz equation and direct scattering problem

Let Γ ⊂ R2 be an oriented piecewise smooth nonintersecting arc without cusp which
describes the crack, i.e.,

Γ = {z(s) : s ∈ [−1, 1]}

where z : [−1, 1] −→ R2 is an injective piecewise C3 function (see Fig. 4.1).
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Fig. 4.1 – Illustration of two-dimensional crack Γ.

Let us take u as E3 from (2.4) of chapter 2, then u satisfies the two-dimensional
Helmholtz equation

∆u(x) + k2u(x) = 0 in R2\Γ (4.1)

with positive wave number k = ω
√
µε. Let us assume from now on that the crack

is perfectly conducting. The electromagnetic field thus cannot penetrate into Γ, i.e, u
satisfies the Dirichlet boundary condition on Γ, say

u(x) = 0 on Γ. (4.2)

If one takes u as H3 from (2.5)of chapter 2, then u satisfies the same Helmholtz equation
(4.1) yet with the following Neumann boundary condition on Γ :

∂u(x)

∂ν(x)
= 0 on Γ\ {z(−1), z(1)} . (4.3)

where ν(x) is a normal vector to Γ at x.

Let us notice that the total field can be decomposed as u(x) = u0(x) + us(x), into
the given incident field u0(x) = eikθ·x for an incident direction θ ∈ S1 and the unknown
scattered field us(x), which is required to satisfy the Sommerfeld radiation condition

lim
|x|→∞

√
|x|
(
∂us(x)

∂ |x|
− ikus(x)

)
= 0

uniformly in all directions x̂ = x
|x| . The determination of us is a special case of the

following problem
∆us(x) + k2us(x) = 0 in R2\Γ (4.4)

which satisfies the Dirichlet boundary condition

us(x) = f(x) on Γ (4.5)

or the Neumann boundary condition

∂us(x)

∂ν(x)
= f(x) on Γ (4.6)

and the Sommerfeld radiation condition. Remind that from the boundary condition (4.2)
and (4.3), we can set f(x) = −u0(x) and f(x) = −∂u0(x)

∂ν(x)
for the boundary conditions

(4.5) and (4.6), respectively.
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4.2.1 Existence and uniqueness of solution

Let us consider the case of the Dirichlet boundary problem. The author in [52] esta-
blishes the existence of a solution by searching it in the form of a single-layer potential

us(x) =

∫
Γ

Φ(x, y)ϕ(y; θ)dy for x ∈ R2\Γ (4.7)

with the two-dimensional fundamental solution to the Helmholtz equation

Φ(x, y) =
i

4
H1

0 (k |x− y|) for x 6= y,

in terms of the Hankel function H1
0 of order zero and of the first kind. The unknown

density ϕ is assumed to be of the form

ϕ(x; θ) =
ϕ̃(x; θ)√

|x− z(−1)| |x− z(1)|
for x ∈ Γ\ {z(−1), z(1)} .

Here ϕ̃ is a continuous function on Γ and z(−1) and z(1) are end-points of Γ. Then
for 1 < p < 2, ϕ ∈ Lp(Γ) and therefore, the single-layer potential (4.7) is continuous
throughout R2. Hence, if the density ϕ is a solution to the integral equation∫

Γ

Φ(x, y)ϕ(y; θ)dy = f(x) for x ∈ Γ (4.8)

then the potential us of (4.7) solves the exterior Dirichlet problem. From [52, Theorem
2.5], the author shows if 0 < α < 1, for each boundary condition f ∈ C1,α(Γ) in (4.5),
the Dirichlet problem for the exterior of an arc has a unique solution and this solution
depends continuously on the boundary data.

For the Neumann boundary problem, the author in [59] establishes the existence of
a solution by searching it in the following form of a double-layer potential

us(x) =

∫
Γ

Φ(x, y)

∂ν(y)
ψ(y; θ)dy for x ∈ R2\Γ. (4.9)

For 0 < α < 1, the unknown density ψ is contained in a space of locally Hölder conti-
nuously differentiable functions on Γ which is

C1,α
loc (Γ\ {z(−1), z(1)}) =

{
ψ ∈ C(Γ) : ψ(z(−1); θ) = ψ(z(1); θ) = 0, ψ′ ∈ L1(Γ)

}
where the prime indicates differentiation with respect to the arc length. By using the
jump relations for the double layer potentials, if the density ψ is a solution to the
hypersingular integral equation of the first kind

∂

∂ν(x)

∫
Γ

∂Φ(x, y)

∂ν(y)
ψ(y; θ)dy = f(x) for x ∈ Γ\ {z(−1), z(1)} , (4.10)

then the potential us of (4.9) solves the exterior Neumann problem. Let us denote τ(x)
be a tangent vector to Γ\ {z(−1), z(1)} at x, then (4.10) becomes the following Maue’s
identity

f(x) =
∂

∂ν(x)

∫
Γ

∂Φ(x, y)

∂ν(y)
ψ(y; θ)dy

=

∫
Γ

∂Φ(x, y)

∂τ(x)

∂ψ(y; θ)

∂τ(x)
dy + k2

∫
Γ

Φ(x, y)ψ(y; θ)ν(x) · ν(y)dy
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for x ∈ Γ\ {z(−1), z(1)}. Note that from the above identity, we can observe that the
degree of singularity in the hypersingular integral equation (4.10) has been reduced. In
[59, Theorem 2.3], the author shows that the Neumann problem for the exterior of an
arc has a unique solution.

4.2.2 The far-field pattern

Now, we derive an integral representation of the far-field pattern of the scattered
field us. In order to derive it, we start from the fact that for densities ϕ, the first
derivatives of the total field u can be extended as a continuous function from R2\Γ to
R2\ {z(−1), z(1)} with different limiting values on both sides of Γ by using the jump
relations for the single-layer potentials. In particular, if we denote ν(x) be a normal
vector to Γ at x, then the limits of the following possible quantities exist

u(x) = lim
h→+0

u(x± hν(x))

∂u±(x)

∂ν(x)
= lim

h→+0
ν(x) · ∇u(x± hν(x))

−ϕ(x; θ) =
∂u+(x)

∂ν(x)
− ∂u−(x)

∂ν(x)

−ψ(x; θ) = u+(x)− u−(x)

for all x ∈ Γ\ {z(−1), z(1)}.

With this, for every incident field u0, the total field u that satisfies a Dirichlet
boundary condition can be derived by the following integral representation

u(x) = u0(x) + us(x) = u0(x) +

∫
Γ

Φ(x, y)ϕ(y; θ)dy

= u0(x)−
∫

Γ

{
∂u+(y)

∂ν(y)
− ∂u−(y)

∂ν(y)

}
Φ(x, y)dy

for x ∈ R2\Γ.

The far-field pattern u∞ of the scattered field us is defined on the two-dimensional
unit circle S1. It can be represented as

us(x) =
eik|x|√
|x|

{
u∞(x̂; θ) +O

(
1

|x|

)}
uniformly in all directions x̂ = x

|x| and |x| −→ ∞. Finally, from the above representation
and the asymptotic formula for the Hankel function H1

0 (see section 4 in chapter 1) we
can easily see that the far field pattern for the scattering of an incident field u0 from a
perfectly conducting crack Γ is given by

u∞(x̂; θ) = − ei
π
4

√
8πk

∫
Γ

{
∂u+(y)

∂ν(y)
− ∂u−(y)

∂ν(y)

}
e−ikx̂·ydy, x̂ ∈ S1. (4.11)

Similarly, the far-field pattern for the Neumann boundary problem can be derived
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as

u∞(x̂; θ) =

√
k

8π
e−i

π
4

∫
Γ

x̂ · ν(y)e−ikx̂·yψ(y; θ)dy

=

√
k

8π
e−i

π
4

∫
Γ

x̂ · ν(y)e−ikx̂·y {u+(y)− u−(y)} dy
(4.12)

for x̂ ∈ S1.

4.3 MUSIC type algorithm for imaging of screens

In this section, we apply the far-field pattern formulas (4.11) and (4.12) in order to
build up a MUSIC-type algorithm for non-iterative imaging of screens.

First, let us consider the Dirichlet boundary condition case. If we exclude the constant
ei
π
4√

8πk
from formula (4.11) then the MSR matrix K can be written as

K =

∫
Γ

UD(y)VD(y)Tdy (4.13)

where UD(y) is the illumination vector

UD(y) =
(
e−ikx̂1·y, e−ikx̂2·y, · · · , e−ikx̂N ·y

)T ∣∣∣
x̂j=−θj

=
(
eikθ1·y, eikθ2·y, · · · , eikθN ·y

)T (4.14)

and where VD(y) is the resulting density vector

VD(y) = (ϕ(y; θ1), ϕ(y; θ2), · · · , ϕ(y; θN))T . (4.15)

Here, {x̂j}Nj=1 ⊂ S1 is a discrete finite set of observation directions and {θl}Nl=1 ⊂ S1 is
the same number of incident directions.

Formula (4.13) is a factorization of the MSR matrix that separates the known in-
coming plane wave information from the unknown information. The range of K is de-
termined by the span of the UD corresponding to the Γ, i.e., we can define a signal
subspace by using a set of left singular vectors of K (see [46, Section 3]).

The imaging algorithm is similar to the one proposed in [46]. Let the singular value
decomposition of the matrix K be K = V SW

T , where V,W ∈ CN×N are unitary ma-
trices and where S is a real nonnegative diagonal matrix with components λ1, λ2, · · · , λN
which satisfies

λ1 ≥ λ2 ≥ · · · ≥ λM > 0 and λj = 0 for j = M + 1,M + 2 · · · , N.

Alternatively, λj, for j = M + 1,M + 2 · · · , N , could merely be very small, below the
noise level of the system represented by K. Then the first M columns of the matrix
V , {v1, v2, · · · , vM}, provide an orthonormal basis for K and the rest of the matrix V ,
{vM+1, vM+2, · · · , vN}, provides a basis for the null (or noise) space of K. So, one can
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form the projection onto the null (or noise) subspace : this projection is given explicitly
by

Pnoise(f) =
∑
j>M

vjv
T
j f. (4.16)

For any point z ∈ R2, define a vector g ∈ CN as

g =
(
eikθ1·z, eikθ2·z, · · · , eikθN ·z

)T (4.17)

then an image of yj, j = 1, 2, · · · ,M , follows from computing

W (z) =
1

‖Pnoise(g)‖
. (4.18)

The resulting plot of this estimator is expected to exhibit large peaks at the sought yj.

Second, let us consider the Neumann boundary condition case. Eliminating the
constant

√
k

8π
e−i

π
4 from formula (4.12) then the MSR matrix K can be written as

K =

∫
Γ

UN(y)VN(y)Tdy (4.19)

where UN(y) is the illumination vector

UN(y) = −
(
x̂1 · ν(y)e−ikx̂1·y, x̂2 · ν(y)e−ikx̂2·y, · · · , x̂N · ν(y)e−ikx̂N ·y

)T ∣∣∣
x̂j=−θj

=
(
θ1 · ν(y)eikθ1·y, θ2 · ν(y)eikθ2·y, · · · , θN · ν(y)eikθN ·y

)T (4.20)

and where VN(y) is the corresponding density vector

VN(y) = (ψ(y; θ1), ψ(y; θ2), · · · , ψ(y; θN))T . (4.21)

Although (4.19) is a different factorization from (4.13), the imaging algorithm is very
similar to the previous one (see [46, Section 4] also). For any point z ∈ R2, we define a
vector g ∈ CN that reads, instead of (4.17), as

g =
(
θ1 · ν(z)eikθ1·z, θ2 · ν(z)eikθ2·z, · · · , θN · ν(z)eikθN ·z

)T
. (4.22)

Since the unit normal ν(z) is still unknown, for each point zj of the search domain, we
use a set of directions νl for l = 1, 2, · · · , L and choose νl(zj) which is to maximize

W (zj) =
1

‖Pnoise(g)‖
. (4.23)

The resulting plot of this estimator is expected to exhibit large peaks at the sought yj.

4.4 Numerical examples : Dirichlet boundary condition case
(Figs. 4.2 to 4.16)

In this section, we present some numerical examples obtained with the MUSIC-type
algorithms for imaging of screens. Throughout this section, similarly with the previous
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chapter, we adopt the applied wave number of the form k = 2π
λ
; here λ is the given

wavelength, which will be varied between the low-frequency one of λ = 1 and the high-
frequency one of λ = 0.1.

Three Γj are chosen for illustration :

Γ1 =
{(s

2
, 0.3

)
: s ∈ [−1, 1]

}
Γ2 =

{(
s,

1

2
cos

sπ

2
+

1

5
sin

sπ

2
− 1

10
cos

3sπ

2

)
: s ∈ [−1, 1]

}
Γ3 =

{(
2 sin

s

2
, sin s

)
: s ∈

[
π

4
,
7π

4

]}
and the search domain Ω̃ is taken as Ω̃ = [−1, 1]× [−1, 1] for the imaging of Γ1 and Γ2

and [−1, 3] × [−2, 2] for Γ3. For each z ∈ Ω̃, the step size of z is taken of the order of
0.02. As for the observation directions θl, they are taken as

θl =

(
cos

2π(l − 1)

N
, sin

2π(l − 1)

N

)
for l = 1, 2, · · · , N.

It is worth mentioning that, due to the fact that the reliable and efficient solution of
the direct problem indicated previously is very important, all the numerical data in this
section, the elements u∞(θj, θl) for j, l = 1, 2, · · · , N of the dataset K are generated by
the Nyström method for both the Dirichlet and Neumann boundary conditions as pre-
sented in [52, formula (4.11)] and [59, p. 354], respectively. After obtaining the dataset,
the singular value decomposition of K = V SW

T is performed. Once the singular values
are computed, they are normalized with respect to the one of maximum amplitude. A
detailed discussion of this normalization has been made in section 2.5 of chapter 2 and
[68, Section 4].

4.4.1 Reconstruction of a single crack

Before starting this section, we make the following remarks.

Remark 4.1 Let us consider an image of Γ1. In figure 4.2, we observe that when the
number N is not large enough, we can choose the nonzero singular values without nor-
malizing them, but the imaging is poor. For example, when we choose N = 12 and as
wavelength of operation, λ = 0.5, we can observe that the first seven singular values are
well distinguished from the five, much weaker remaining ones (top-left) without norma-
lizing the singular values. However, when we use seven singular values to discriminate
the noise subspace from the signal subspace, poor results appear (top-right). When we
increase the number N to N = 20 while keeping the same 0.5 wavelength, this pheno-
menon is but vanishing (bottom-left). Hence, if one wishes to get an acceptable imaging
of a crack, normalizing the singular values is something needed.

Remark 4.2 Instead of the scattered field dataset generated from the Nyström method,
some authors in [60] introduce a similar formulation involving the solution of a second-
kind Fredholm integral equation along the crack, refer to [60, Chapter 3]. Numerical
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Fig. 4.2 – (Dirichlet boundary condition case) Top : Distribution of log-scaled singular
values of the matrix K (left) and map of W (z) (right), for N = 12 incidences and a 0.5
wavelength. Bottom : Distribution of log-scaled (left) and normalized (right) singular
values of the matrix K respectively for N = 20 incidences and a 0.5 wave length when
the crack is Γ1.
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Fig. 4.3 – (Dirichlet boundary condition case) Distribution of normalized singular values
of the MSR matrix K (left column) and maps ofW (z), z ∈ Ω̃ (right column), for N = 32
incidences and a λ = 0.4 wavelength when the crack is Γ2. Dataset generated by the
Nyström method introduced in [52] (top row) and another one in [60].

experimentation shows that images of a crack from the Nyström method or from the
ones calculated via this alternative formulation are almost indistinguishable (see figure
4.3).

Let us first work with Γ1, K being collected for N = 20 and N = 32, and the wave-
lengths of operation λ = 0.4 and λ = 0.2, respectively. Distributions of the normalized
singular values of K and maps of W (z) are displayed in Fig. 4.4.

Each time, a small finite number of singular values (6 at λ = 0.4, 11 at λ = 0.2)
emerge from the remaining, much smaller ones, whilst images thereupon produced by
projection onto singular vectors beyond the first 6 or 11 ones appear excellent, a small
number of peaks being obtained, each peak being observed to be λ/2 away from the next
one. No problem of discrimination is faced, and this in effect remains true whenever
a curve of zero curvature is to be imaged, whatever be its type of contrast and the
conditions of illumination (if the ratio N/M is kept properly large).
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Fig. 4.4 – (Dirichlet boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 20
incidences and a 0.4 wavelength (top line), for N = 32 incidences and a 0.2 wavelength
(bottom line) when the crack is Γ1.
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Fig. 4.5 – (Dirichlet boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 16
incidences and a 0.8 wavelength (top line), for N = 64 incidences and a 0.2 wavelength
(bottom line) when the crack is Γ2.

Opposite to the penetrable inclusion case as dealt with in chapter 2, although the
crack is not anymore a straight line, the discrimination for a curved crack is still obvious.
As an example, let us consider the image of Γ2, here using N = 16 and N = 64 incident
directions and a wavelength of 0.8 and 0.2 respectively, refer to Fig. 4.5.

In addition, the discrimination for a complicated crack, though remaining obvious,
is affected by unexpected isolated peaks of large magnitude. An image of Γ3, here using
N = 32 incident directions and a wavelength λ = 0.7, shows that phenomenon in Fig.
4.6.

We have already examined and discussed a similar case from Fig. 2.7 in chapter 2.
However, when we increase to N = 48 illuminations for the imaging, these peaks do not
disappear from the image. Hence, in order to eliminate them from the imaging results,
we adopt a much smaller threshold of 0.1 or 0.01, refer to Fig. 4.7. Comparing with
the imaging result in Fig. 4.6, we observe that this eliminates all or almost all isolated
points from the images and offers a higher resolution.
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Fig. 4.6 – (Dirichlet boundary condition case) Distribution of normalized singular values
of the matrix K (left) and map of W (z) (right), for N = 32 incidences and a 0.7
wavelength when the crack is Γ3.

Fig. 4.7 – (Dirichlet boundary condition case) Distributions of normalized singular
values of the matrix K (left) and maps of W (z) (right), for N = 32 incidences and a 0.7
wavelength when the crack is Γ3. For imaging, one has adopted a 0.1 threshold (top)
and a 0.01 threshold (bottom).
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Fig. 4.8 – (Dirichlet boundary condition case) Distributions of normalized singular
values of matrix K (left column) and maps of W (z), z ∈ Ω̃, (right column), for N = 36
incidences and λ = 0.6 wavelength (top line), for N = 64 and λ = 0.2 (bottom line),
when the crack is Γ4.

Now, we apply the algorithm to an oscillating crack. The configuration is the same
as previously save the search domain Ω̃ = [−1.5, 1.5]× [−1.5, 1.5]. Two Γj are chosen for
illustration (see Fig. 2.9 in subsection 2.5.2 of chapter 2) :

Γ4 =
{

(z, 0.5z2 + 0.1 sin(4π(z + 1)) : z ∈ (−1, 1)
}

Γ5 =
{

(z, 0.5z2 + 0.05 sin(20π(z + 1))− 0.01 cos(15πz) : z ∈ (−1, 1)
}
.

Let us consider Γ4. Typical results are in Fig. 4.8 at λ = 0.6 and λ = 0.2. Similarly
with the images in Fig. 2.10, the imaging is rather coarse at the low wavelength, better
at the high one. The threshold looks convenient, whilst a high value of N is to be taken
as expected.

For the case of a more oscillating crack Γ5, the results are coarse, as is seen in Fig.
4.9, but they can be considered as an initial guess close to the true one of a Newton-type
iteration method in line with [52].
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Fig. 4.9 – (Dirichlet boundary condition case) The distribution of normalized singular
values of the matrix K (Left column) and maps of W (z) when a = 1 (right column),
for all points z ∈ Ω̃ for N = 72 incidences and a 0.3 wavelength (top row), for N = 96
incidences and a 0.2 wavelength (center row) and for N = 160 incidences and a 0.1
wavelength (bottom row) when the crack is Γ5.
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Now, let us assume that some noise is added to the measured data, i.e., for every
x ∈ R2,

unoise(x) = {1 + ξ × (rnd1(−1, 1) + irnd2(−1, 1))}u(x)

where rnd1(−1, 1) and rnd2(−1, 1) are an arbitrary real values between −1 and 1.

Let us consider an image of Γ2 with noise ξ = 3 × 10−1. Typical results are in Fig.
4.10 at λ = 0.4. Similarly with the Figs. 2.15 and 2.16 in subsection 2.5.2 of chapter 2,
although the distribution of log-scaled singular values is significantly different and some
blurring appears in the image, one can easily find proper singular values and obtain
accurate image via normalizing method. For the case of Γ3 with noise ξ = 10−1, one can
verify a similar phenomenon, refer to Fig. 4.11.

4.4.2 Extension to multiple cracks

Both the mathematical configuration and the numerical analysis could be extended
in rather straightforward fashion to the case of multiple inclusions. One will not present
the derivation herein and simply provide examples of imaging via the MUSIC-type
algorithm in several figures.

Notice that the elements u∞(θj, θl) for j, l = 1, 2, · · · , N of dataset K are generated
from the Nyström method applied to the multiple cracks. For reader’s convenience, we
stated this method in appendix since we have been unable to find such a derivation.

Let us consider the following cracks

Γa = σ1 ∪ σ2

Γb = σ3 ∪ σ4

where

σ1 =
{

(s,−0.5(s− 0.2)2 + 0.5) : s ∈ (−0.7, 0.3)
}

σ2 =
{

(s, (s− 0.2)3 + (s− 0.2)2)− 0.4 : s ∈ (−0.3, 0.7)
}

σ3 =

{(
s− 0.5,

1

2
cos

sπ

2
+

1

5
sin

sπ

2
− 1

10
cos

3sπ

2

)
: s ∈ [−1, 1]

}
σ4 =

{(
2 sin

s

2
+ 0.5, sin s

)
: s ∈

[
π

4
,
7π

4

]}
.

Notice that σ1 and σ2 are introduced in chapter 2 (see formula (2.33) and (2.34)) and
Γ3 and Γ4 are moved copies of Γ2 and Γ3, respectively.

Let us consider the imaging of Γa, K being collected for N = 28 and N = 48,
and the wavelengths of operation λ = 0.5 and λ = 0.3, respectively. Distributions of the
normalized singular values of K and maps ofW (z) are displayed in figure 4.12. Opposite
to the penetrable inclusion case, refer to Fig. 2.26 in chapter 2, the discrimination is
still obvious and desired images appear.

Remark 4.3 When we choose as the number of incident directions, N = 24, and as
the wavelength of operation λ = 0.8, some isolated points with peaks of large magnitude
appears between two cracks. Notice that in the several examples in the single-crack case,
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Fig. 4.10 – The distribution of log-scaled (top row) and normalized (center row) singular
values of the matrix K and maps of W (z) (bottom row) without noise (left column)
and some noise ξ = 3× 10−1 for all points z ∈ Ω̃ for N = 32 incidences and a 0.4 wave
length when the thin inclusion is Γ2.
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Fig. 4.11 – The distribution of log-scaled (top row) and normalized (center row) singular
values of the matrix K and maps ofW (z) (bottom row) without noise (left column) and
some noise ξ = 10−1 for all points z ∈ Ω̃ for N = 32 incidences and a 0.7 wave length
when the thin inclusion is Γ3.
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Fig. 4.12 – (Dirichlet boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 28
incidences and a 0.5 wavelength (top line), for N = 48 incidences and a 0.3 wavelength
(bottom line) when the crack is Γa.
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Fig. 4.13 – (Dirichlet boundary condition case) Distribution of normalized singular
values of the MSR matrix K (left column) and map of W (z), for N = 28 incidences and
a λ = 0.8 wavelength when the crack is Γa.

some isolated points disappear when we adopt a large number of illuminations or a
0.1(or 0.01) threshold but via the previous methods, the isolated point in Fig. 4.13 does
not disappear. In order to eliminate this isolated point, one must applies more larger
wavelength. In this example, this point still appeared when the wavelength of operation
is smaller than 0.6 and disappeared when the wavelength of operation is larger than 0.5,
i.e., we obtained proper imaging results.

When the shape of cracks is getting complex, the discrimination is still obvious but
unexpected isolated points appear. As an example, let us image Γb (refer to Fig. 4.14)
at λ = 0.5 and λ = 0.3.

Similarly with the imaging of Γ3 (see Fig. 4.7), we can eliminate these isolated points,
i.e., proper images can be achieved, by adopting a 0.1 or 0.01 threshold (see Fig. 4.15).

Now, we end up this section with the following remark.

Remark 4.4 Similarly with the single-crack case, one can produce images from far-field
data computed by the solution algorithm presented in [60, Chapter 4], refer to Fig. 4.16.
By comparing bottom line of Fig. 4.12 and top line of Fig. 4.16, and bottom line of Fig.
4.14 and same line of Fig. 4.16, such images look very much alike those built up from
the Nyström method applied to the multiple cracks.

4.5 Numerical examples : Neumann boundary condition case
(Figs. 4.17 to 4.25)

In this section, we present some imaging results for the Neumann boundary condition.
The configuration is the same as previously and we use a set of fixed directions νl as

νl =

(
cos

2π(l − 1)

L
, sin

2π(l − 1)

L

)
for l = 1, 2, · · · , L.
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Fig. 4.14 – (Dirichlet boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 64
incidences and a 0.5 wavelength (top line), for N = 96 incidences and a 0.3 wavelength
(bottom line) when the crack is Γb.
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Fig. 4.15 – (Dirichlet boundary condition case) Same as Fig. 4.14 with 0.01 threshold.
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Fig. 4.16 – (Dirichlet boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 48
incidences and a 0.3 wavelength (top line) when the crack is Γa, for N = 96 incidences
and a 0.3 wavelength (bottom line) when the crack is Γb. Dataset generated by the
method introduced in [60] (Compare to Fig. 4.12 and 4.14).
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Fig. 4.17 – (Neumann boundary condition case) Distribution of normalized singular
values of the matrix K (left column) and map of W (z) (right column), for N = 12
incidences and a 0.5 wavelength when the crack is Γ1.

Throughout this section, we use L = 16 and 32 for the imaging of Γ1 and Γ2 and of Γ3,
respectively. Notice that this blindness of normal direction on Γ causes the slowness of
imaging performance, i.e., large computational costs will be needed (approximately, 3
minutes required to obtain top line result of Fig. 4.18 and 30 minutes to obtain result of
Fig. 4.25. All of images were obtained on a personal computer with a 1.73 GHz dual-core
pentium processor).

Now, we start up this section with the following remarks.

Remark 4.5 Similarly with the Dirichlet boundary condition case, refer to remark 4.1,
we observe that when the number N is not large enough, the image is coarse. For
example, when we choose N = 12 and as wavelength of operation, λ = 0.5, we can
observe that the first five singular values are well distinguished from the seven. Howe-
ver, when we use five singular values to discriminate the noise subspace from the signal
subspace, poor results appear. When we increase the number N to N = 16 while keeping
the same 0.5 wavelength, this phenomenon is but vanishing, refer to Fig. 4.18.

For the imaging of Γ1, K is collected for N = 16 and N = 32, and the wavelengths
of operation λ = 0.5 and λ = 0.2, respectively. Distributions of the normalized singular
values of K and maps of W (z) are displayed in Fig. 4.18.

In contrast with the Dirichlet boundary condition case, see Fig. 4.5, when the crack
is not anymore a straight line, a blurred image appears, refer to figure 4.19. In order to
improve it, one can use a larger wavelength and a 0.01 threshold. This can be verified
in Fig. 4.20.

Let us consider the imaging of Γ3. Typical results are in Fig. 4.21 and 4.22 at λ = 0.7
and λ = 0.3. Similarly with the previous result, imaging is rather coarse for the 0.1
threshold, better for the 0.01 threshold.

Remark 4.6 Similarly with the Dirichlet boundary condition case, one can generate
images from far-field data computed by the solution algorithm presented in [60, Chapter
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Fig. 4.18 – (Neumann boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 16
incidences and a 0.5 wavelength (top line), for N = 32 incidences and a 0.2 wavelength
(bottom line) when the crack is Γ1.

Fig. 4.19 – (Neumann boundary condition case) Distribution of normalized singular
values of the matrix K (left column) and map of W (z) (right column), for N = 20
incidences and a 0.8 wavelength when the crack is Γ2.
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Fig. 4.20 – (Neumann boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 36
incidences and a 0.4 wavelength when the crack is Γ2. 0.1 (top) and 0.01 (bottom)
threshold used for imaging.
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Fig. 4.21 – (Neumann boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 48
incidences and a 0.7 wavelength when the crack is Γ3. 0.1 (top) and 0.01 (bottom)
threshold used for imaging.
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Fig. 4.22 – (Neumann boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 96
incidences and a 0.3 wavelength when the crack is Γ3. 0.1 (top) and 0.01 (bottom)
threshold used for imaging.
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Fig. 4.23 – (Neumann boundary condition case) Distribution of normalized singular
values of the MSR matrix K (left column) and maps of W (z), z ∈ Ω̃ (right column),
for N = 32 incidences and a λ = 0.4 wavelength (top line), for N = 64 incidences and
a λ = 0.2 wavelength (bottom line) when the crack is Γ2. Dataset generated by the
solution algorithm introduced in [60]. (Compare to Fig. 4.20)
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Fig. 4.24 – (Neumann boundary condition case) Distributions of normalized singular
values of the matrix K (left column) and maps of W (z) (right column), for N = 32
incidences and a 0.4 wavelength (top line), for N = 64 incidences and a 0.2 wavelength
(bottom line) when the crack is Γa.

3], refer to Fig. 4.23. By comparing Fig. 4.20, such images look very much alike those
built up from the Nyström method.

Let us apply the algorithm to the imaging of two (or more) inclusions (skipping all
mathematical details). Before stating the results, let us mention that the dataset K is
generated by solving the linear systems introduced in [60, Chapter4] and a 0.01 threshold
is adopted for higher resolution. Moreover, we use L = 32 directions for imaging of Γa
and L = 64, 128 directions for Γb respectively.

Results for Γa are shown in Fig. 4.24, K being collected for N = 32 and N = 64,
and for the wavelengths of operation λ = 0.4 and λ = 0.2, respectively. As in the
the permeability contrast case in previous chapter 2, the few copies of the crack which
appear in the maps are of much lower amplitude than the true one (see figures 2.19,
2.20 and 2.21 in chapter 2). From the images of Γb refer to Fig. 4.25, we can verify this
phenomenon.
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Fig. 4.25 – (Neumann boundary condition case) Distributions of normalized singular
values of the matrix K (left) and maps of W (z) (right), for N = 48 incidences and a
0.7 wavelength (top line) with L = 64 normal directions, for N = 128 incidences and a
0.3 wavelength (bottom line) with L = 128 normal directions when the crack is Γb.
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4.6 Conclusion

In this chapter, we have proposed a non-iterative imaging algorithm for impenetrable
screens modeled via a Dirichlet or Neumann boundary condition based on a factorization
of the MSR matrix. Several numerical results show that this algorithm is fast, stable and
efficient. Such non-iterative imaging results could provide initial guesses of a level-set
evolution [2] or of a Newton-type algorithm [52].

For effective performance of the imaging of a crack with Neumann boundary condi-
tion, the mathematical formulation for the choice of the normal direction on the crack
still requires further investigation however.
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5 Asymptotic Imaging of Perfectly Conducting Cracks

In this chapter, we consider cracks with Dirichlet boundary conditions. We first de-
rive an asymptotic expansion of the boundary perturbations that are due to the presence
of a small crack. Based on this formula, we design a non-iterative approach for locating
a collection of small cracks. In order to do so, we construct a response matrix from the
boundary measurements. The location and the length of the crack are estimated, res-
pectively, from the projection onto the noise space and the first significant singular value
of the response matrix. Indeed, the direction of the crack is estimated from the second
singular vector. We then consider an extended crack with Dirichlet boundary conditions.
We rigorously derive an asymptotic expansion for the boundary perturbations that are
due to a shape deformation of the crack. To reconstruct an extended crack from many
boundary measurements, we develop two methods for obtaining a good guess. Several
numerical experiments show how the proposed techniques for imaging small cracks as
well as those for obtaining good initial guesses toward reconstructing an extended crack
behave.

5.1 Introduction and problem formulations

The purpose of this chapter is to design new efficient methods to detect cracks, linear
or nonlinear, inside a conductor from the boundary measurements. We also perform
some numerical experiments using the proposed algorithms to test their performance
and efficiency.

Let Σ be a crack inside a bounded conductor Ω ⊂ R2, which is a C2 curve. We assume
that the crack is at some distance from ∂Ω, i.e., there is a positive constant c such that

dist(Σ, ∂Ω) ≥ c. (5.1)

With the crack inside, the relevant boundary value problem is
∆u+ ω2u = 0 in Ω \ Σ,

u = 0 on Σ,

∂u

∂ν
= g ∈ L2(∂Ω) on ∂Ω.

(5.2)

We will assume that ω2 is not an eigenvalue of (5.2) so that the problem is well-posed.
The problem we will consider in this chapter is to detect Σ from the boundary measu-
rement u|∂Ω for several Neumann data g.

We first deal with a linear crack of small size. Suppose that Σ is a line segment
(or a collection of them) of length 2ε. We emphasize that in this case, if ω2 is not a
Neumann eigenvalue of −∆ in Ω, it follows from [14, Chapter 5] that problem (5.2) has
a unique solution for ε small enough. We derive an asymptotic expansion formula of
u on ∂Ω as ε goes to zero. Based on this formula, we design a non-iterative approach
for locating a collection of cracks. Our approach is of MUSIC-type (MUSIC stands
for MUltiple Signal Classification). We start with constructing a response matrix from
the boundary measurements. The singular value decomposition of such response matrix
yields an estimate of the location and the size of the cracks. We perform numerical tests
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to show the validity of our algorithm. A size estimate of the crack obtained from the first
significant singular eigenvalue of the response matrix is in a good match with the actual
value. It is shown that the significant singular values can not yield an estimation of the
direction of the crack. However, using the second singular vector we can estimate the
direction of the crack. For related works on MUSIC-type imaging we refer the reader,
for instance, to [70, 32, 56, 9, 13].

In the second part of the chapter, we consider an extended crack with Dirichlet boun-
dary conditions. We first develop and test numerically two different ways of constructing
a good initial guess from many boundary measurements. The first method is based on
the concept of topological derivative. The second algorithm is to use a standard MUSIC-
type projection approach. To do so, we construct a response matrix as in the case of
cracks of small size. We then discuss optimization procedures for the purpose of refining
the reconstruction and obtaining better image of the crack. To compute the shape deri-
vative of the associated cost functionals, we rigorously derive an asymptotic expansion
for the boundary perturbations that are due to a shape deformation of the crack.

For related works on crack identification, we refer the reader to [28, 62, 23, 58, 39,
19, 49, 75, 22, 51, 27] and the references therein.

5.2 Preliminary results

Let Σ = Σε be a narrow crack inside a bounded conductor Ω ⊂ R2. Assume for the
sake of simplicity that

Σε =

{
(x, 0) : −ε ≤ x ≤ ε

}
.

Set ϕε to be the jump of the normal derivative of u, the solution to (5.2) on the crack
Σε :

ϕε :=
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

on Σε. (5.3)

Here the subscripts + and − indicate the limits from above and below, respectively.

Suppose that ω2 is not a Neumann eigenvalue on Ω and let U be the background
solution, that is, the solution to

∆U + ω2U = 0 in Ω,

∂U

∂ν
= g on ∂Ω.

(5.4)

Let Nω
Ω(x, z), for x, z ∈ Ω, be the Neumann function for Ω, namely, the solution to

(∆x + ω2)Nω
Ω(x, z) = −δz(x) in Ω,

∂Nω
Ω

∂νx
(x, z) = 0 for x ∈ ∂Ω.

(5.5)

By Green’s formula, one can easily see that

u(x)− U(x) =

∫
Σε

Nω
Ω(x, y)ϕε(y) dy, x ∈ Ω, (5.6)
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where ϕε defined by (5.3). In particular, the following integral equation holds :

Aωε [ϕε](x) :=

∫
Σε

Nω
Ω(x, y)ϕε(y) dy = −U(x), (x, 0) ∈ Σε. (5.7)

Note that we write Nω
Ω(x, y) for Nω

Ω((x, 0), (y, 0)) and ϕε(y) for ϕε(y, 0) for the sake of
simplicity.

Endowed with the norm

‖ϕ‖X ε =

(∫ ε

−ε

√
ε2 − x2 |ϕ(x)|2 dx

)1/2

,

the set X ε, defined by

X ε =

{
ϕ :

∫ ε

−ε

√
ε2 − x2 |ϕ(x)|2 dx < +∞

}
, (5.8)

is a Hilbert space. Define

Yε =

{
ψ ∈ C0 ( [−ε, ε ] ) : ψ′ ∈ X ε

}
, (5.9)

where ψ′ is the distributional derivative of ψ. The set Yε is a Hilbert space with the
norm

‖ψ‖Yε =

(
‖ψ‖2

X ε + ‖ψ′‖2
X ε

)1/2

.

Writing

Nω
Ω(x, y) = − 1

2π
ln |x− y|+Rω

N(x, y), (5.10)

where (x, y) 7→ Rω
N(x, y) is C1,α in both x and y for some α with 0 < α < 1, the operator

Aωε can be decomposed as

Aωε = − 1

2π
Lε +Rω

ε , (5.11)

where
Lε[ϕ](x) =

∫ ε

−ε
ln |x− y|ϕ(y) dy,

and
Rω
ε [ϕ](x) =

∫ ε

−ε
Rω
N(x, y)ϕ(y) dy.

We recall from, for instance, [14, Chapter 5] the following lemmas.

Lemma 5.1 For all 0 < ε < 2, the integral operator Lε : X ε 7→ Yε is invertible. For a
given function ψ ∈ Yε, L−1

ε [ψ] ∈ X ε is given by

L−1
ε [ψ](x) = − 1

π2
√
ε2 − x2

∫ ε

−ε

√
ε2 − y2ψ′(y)

x− y
dy +

a(ψ)

π(ln
ε

2
)
√
ε2 − x2

(5.12)

for x ∈ ] − ε, ε [, where the constant a(ψ) is defined by

a(ψ) = ψ(x) + Lε
[

1

π2
√
ε2 − y2

∫ ε

−ε

√
ε2 − z2ψ′(z)

y − z
dz

]
(x). (5.13)
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In view of (5.12) and (5.13), we have

L−1
ε [1](x) =

1

π(ln ε
2
)
√
ε2 − x2

, (5.14)

and
L−1
ε [y](x) = − x

π
√
ε2 − x2

. (5.15)

Lemma 5.2 There exists a positive constant C, independent of ε, such that

‖L−1
ε Rω

ε ‖L(X ε,X ε) ≤
C

| ln ε|
, (5.16)

where
‖L−1

ε Rω
ε ‖L(X ε,X ε) = sup

ϕ∈X ε,‖ϕ‖Xε=1

‖L−1
ε Rω

ε [ϕ]‖X ε .

5.3 Asymptotic expansion

Because of (5.7) and (5.11), ϕε is the solution in X ε of the integral equation (5.7) or
equivalently

− 1

2π
Lε[ϕε] +Rω

ε [ϕε] = −U on Σε. (5.17)

Thus we have
ϕε − 2πL−1

ε Rω
ε [ϕε] = 2πL−1

ε [U ],

and hence
‖ϕε‖X ε ≤ C

(
‖L−1

ε Rω
ε [ϕε]‖X ε + ‖L−1

ε [U ]‖X ε
)
.

Note that
‖L−1

ε [U ]‖X ε ≤ C‖U‖Yε ≤ Cε.

It then follows from (5.16) that if ε is sufficiently small, then

‖ϕε‖X ε ≤ Cε (5.18)

for some constant C independent of ε.

Set
ϕ̃ε(x) := εϕε(εx), x ∈]− 1, 1[.

One can easily see that
‖ϕ̃ε‖X 1 = ‖ϕε‖X ε ≤ Cε,

and that (5.17) reads now

− 1

2π

∫ 1

−1

(ln ε+ ln |x− y|)ϕ̃ε(y) dy +

∫ 1

−1

Rω
N(εx, εy)ϕ̃ε(y) dy = −U(εx), x ∈]− 1, 1[.

Observe that ∫ 1

−1

|ϕ̃ε(y)| dy ≤ C‖ϕ̃ε‖X 1 ≤ Cε.
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By Taylor expansions, we obtain

− 1

2π
L1[ϕ̃ε] + C

(
− ln ε

2π
+Rω

N(0, 0)

)
= −U(0)− εx∂U

∂T
(0) +O(ε2),

where

C =

∫ 1

−1

ϕ̃ε(y) dy.

Here O(ε2) is in the X 1-norm and ∂/∂T denotes the tangential derivative on Σε. In view
of (5.14) and (5.15), we now have

ϕ̃ε =
2U(0)

ln(1/2)
√

1− x2
+ C
− ln ε+ 2πRω

N(0, 0)

π ln(1/2)
√

1− x2
− 2ε

∂U

∂T
(0)

x√
1− x2

+O(ε2),

where O(ε2) is in the Y1-norm.

By integrating both sides of the above identity, one can see that

C =
2πU(0)

ln(1/2) + ln ε− 2πRω
N(0, 0))

+O(ε2). (5.19)

Therefore we get

ϕ̃ε(x) =
2U(0)√
1− x2

1

ln(ε/2)− 2πRω
N(0, 0)

− 2ε
∂U

∂T
(0)

x√
1− x2

+O(ε2),

By scaling back, we obtain the following lemma.

Lemma 5.3 The following asymptotic expansion holds :

ϕε(x) =
2U(0)

ln(ε/2)
√
ε2 − x2

1

1− 2πRωN (0,0)

ln(ε/2)

− 2
∂U

∂T
(0)

x√
ε2 − x2

+O(ε2). (5.20)

Observe that the first and second terms in (5.20) are of order 1
| ln ε| and ε in Xε-norms,

respectively.

Substituting (5.20) into (5.6), we obtain

u(x)− U(x) =
2πU(0)

ln(ε/2)

1

1− 2πRωN (0,0)

ln(ε/2)

Nω
Ω(x, 0)− πε2∂U

∂T
(0)

∂Nω
Ω

∂T
(x, 0) +O(ε3), (5.21)

uniformly on x ∈ ∂Ω.

We finally obtain the following theorem :

Theorem 5.4 Let Σε be a linear crack of length 2ε whose center is at z satisfying (5.1).
Then the following expansion holds

u(x)− U(x) =
2πU(z)

ln(ε/2)

1

1− 2πRωN (0,0)

ln(ε/2)

Nω
Ω(x, z)− πε2∂U

∂T
(z)

∂Nω
Ω

∂T
(x, z) +O(ε3), (5.22)

uniformly on x ∈ ∂Ω.
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We also have an asymptotic expansion for the Dirichlet problem :
∆v + ω2v = 0 in Ω \ Σε,

v = 0 on Σε,

v = f ∈ H1/2(∂Ω) on ∂Ω.

(5.23)

Here, H1/2(∂Ω) is the standard trace space.

Define V to be the background solution, that is, the solution to{
∆V + ω2V = 0 in Ω,

V = f on ∂Ω,
(5.24)

and introduce Gω
Ω(x, z), for x, z ∈ Ω, to be the Dirichlet function for Ω, namely, the

solution to {
(∆x + ω2)Gω

Ω(x, z) = −δz(x) in Ω,

Gω
Ω(x, z) = 0 for x ∈ ∂Ω.

(5.25)

Analogously to (5.10), we have

Gω
Ω(x, y) = − 1

2π
ln |x− y|+Rω

D(x, y),

where (x, y) 7→ Rω
D(x, y) is C1,α in both x and y for some α with 0 < α < 1. The

following asymptotic formula can be proved exactly as in Theorem 5.4.

Theorem 5.5 Let Σε be a linear crack of length 2ε whose center is at z satisfying (5.1).
Then the following expansion holds

∂(v − V )

∂ν
(x) =

2πV (z)

ln(ε/2)

1

1− 2πRωD(0,0)

ln(ε/2)

∂Gω
Ω

∂ν(x)
(x, z)

− πε2∂V
∂T

(z)
∂2Gω

Ω

∂T (z)∂ν(x)
(x, z) +O(ε3),

(5.26)

uniformly on x ∈ ∂Ω.

5.4 MUSIC-type imaging

Suppose that Ω contains m small cracks Σs located at zs, s = 1, · · · ,m. The cracks
are well-separated from each other and from the boundary ∂Ω. Let 2εs = |Σs|. Suppose
that εs = αsε, where αs = O(1) and 2ε is the order of magnitude of the lengths of the
cracks.

Since ln(εs/2) = ln(ε/2) +O(| ln ε|−1), one can see from Theorem 5.4 that∫
∂Ω

(u− U)(x)
∂V

∂ν
(x) dσ(x) =

2π

ln(ε/2)

m∑
s=1

U(zs)V (zs) +O(
1

| ln ε|2
) (5.27)

for any smooth V satisfying

(∆ + ω2)V = 0 in Ω.
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Let {θ1, · · · , θN} be a set of N unit directions. Throughout this chapter, we suppose
that they are equi-distributed on the unit circle. Choosing

U(x) = eiωθ·x and V (x) = e−iωθ
′·x, (5.28)

where θ, θ′ ∈ {θ1, · · · , θN}, leads to a standard MUSIC-type reconstruction of the loca-
tions {zs}ms=1 from the response matrix

A = (All′)
N
l,l′=1, All′ =

i

N
ω

∫
∂Ω

θl′ · ν(x) (ul(x)− eiωθl·x)e−iωθl′ ·x dσ(x), (5.29)

where ul is the solution to (5.2) with g = iω(ν · θl)eiωθl·x and the division by N is for
normalization. The approximation (5.27) shows

All′ ≈ −
2π

N ln(ε/2)

m∑
s=1

eiω(θl−θl′ )·zs . (5.30)

If we define
g(z) = (eiθ1·z, · · · , eiθN ·z)t, z ∈ Ω,

where t denotes the transpose, then the formula (5.30) clearly shows that the range of A
is the space spanned by {g(zs) : s = 1, · · · ,m }. Therefore, in order to find the location
zs of cracks, we look for z such that

g(z) ∈ Range(A),

which is considered as the MUSIC characterization of the locations of cracks. The MU-
SIC algorithm is then to plot the imaging function

W (z) :=
1

||(I − P )g(z)||
for z ∈ Ω, (5.31)

where P is the orthogonal projection onto Range(A). The functionW (z) has large peaks
at the locations of the cracks.

It is worth noticing that, in view of (5.30), the direction of the crack (the tangent
vectors to Σs) can not be obtained from the leading-order approximation in (5.21).
Moreover, only the order of magnitude ε, not εs, can be estimated.

One may think that the higher-order terms in (5.21) may lead to an estimate of
the directions of the cracks since they contain tangential derivatives of the solutions. In
what follows, we show that it is the case.

Using such higher-order terms in (5.21), we obtain that∫
∂Ω

(u− U)(x)
∂V

∂ν
(x) dσ(x)

=
m∑
s=1

[
2π

ln(εs/2)

1

1− 2πRωN (0,0)

ln(ε/2)

U(zs)V (zs)− πε2s
∂U

∂Ts
(zs)

∂V

∂Ts
(zs)

]
+O(ε3).
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Therefore, if we choose U and V as in (5.28), it follows that∫
∂Ω

(u− U)(x)
∂V

∂ν
(x) dσ(x)

=
m∑
s=1

[
2π

ln(εs/2)

1

1− 2πRωN (0,0)

ln(ε/2)

− πε2sω2(θ · Ts)(θ′ · Ts)
]
eiω(θ−θ′)·zs +O(ε3).

(5.32)

Suppose for simplicity that m = 1, and let z be the center of the crack. From (5.32),
one can see that A defined in (5.29) is given by

A ≈ − 2π

ln(ε/2)N

1

1− 2πRωN (0,0)

ln(ε/2)

v ⊗ v +
πε2sω

2

N
w ⊗ w, (5.33)

where

v = (eiωθ1·z, · · · , eiωθN ·z)t and w = (θ1 · Teiωθ1·z, · · · , θN · Teiωθ1·z)t. (5.34)

Suppose that N is even. Then, since θ1, · · · , θN are equi-distributed on the unit circle,
we have

w · v = v · w =
N∑
l=1

θl · T = 0.

Therefore, (5.33) shows that A has only two significant singular values (eigenvalues in
this case) given by

τ (1) = − 2π

ln(ε/2)

1

1− 2πRωN (0,0)

ln(ε/2)

, τ (2) = πε2ω2 1

N

N∑
l=1

(θl · T )2, (5.35)

whose normalized eigenvectors are given by v/‖v‖ and w/‖w‖, respectively. Observe
that

∑N
l=1(θl · T )2 ≈ 1/2 regardless of T if N is sufficiently large. In fact, one can easily

see that

lim
N→∞

1

N

N∑
l=1

(θl · T )2 =
1

2
, uniformly in T.

We observe that since the eigenvector w contains information on θj ·T for j = 1, · · · , N ,
it is easy to find T from w.

5.5 Numerical simulations for imaging of small cracks

In this section, results of numerical simulations for imaging of small cracks are presen-
ted. In order to perform the numerical simulation, we choose the homogeneous domain
Ω, which contains small cracks, as a unit disk centered at (0, 0) in R2. Throughout this
section, the length of all cracks is set to 0.02, i.e., ε = 0.01.



140 Asymptotic Imaging of Perfectly Conducting Cracks

Fig. 5.1 – Distribution of singular values of the response A (left) and plots of W (z) for
Σ1 using N = 12 incident waves at the frequency ω = 2π

0.5
. The data set was generated

using (5.32).

Fig. 5.2 – Results for Σ1 with the data set generated by solving forward problems,
without noise.

5.5.1 Imaging of a single small crack

For illustration we choose the following two cracks :

Σ1 = {(x− 0.2, 0.2) : −ε ≤ x ≤ ε},
Σ2 = {Rπ/6(x, 0) : −ε ≤ x ≤ ε},

where Rπ/6 is the rotation by π/6.

For simulation we take the number of directions N = 12 and the wavelength λ =
0.5. The data set of the matrix A in (5.29) is collected in two different ways : by
calculating (5.32) and by solving the forward problem (5.2). Figures 5.1 and 5.2 show
the distributions of the singular values of the response matrix and plots of W (z) defined
in (5.31). Both of them show that the location can be detected pretty accurately

Fig. 5.3 shows the results when we add a noise. A noise is added as follows : for a
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Fig. 5.3 – Results for Σ1 with the data set generated by solving forward problems, with
30% random noise (ξ = 0.3).

Fig. 5.4 – Results for Σ2 with the data set generated using (5.32).

numerical value ξ

unoise(x) = [1 + ξ × (rnd1(−1, 1) + irnd2(−1, 1))]u(x)

where rnd1(−1, 1) and rnd2(−1, 1) are arbitrary real values between −1 and 1. For this
example we take ξ = 0.3. Although the distribution of singular values is quite different
from the noiseless one and a few ghost replicas appear in the image, the location of Σ1

is successfully identified.

Figures 5.4 and 5.5 show results of reconstruction for Σ2. Like Σ1, the location is
well identified.

Tab. 5.1 shows numerical values of reconstructed locations.

5.5.2 Size estimation

In the reconstruction of Σ1 in subsection 5.5.1, the first significant singular value of
the response matrix is 1.451 when the data were collected by solving forward problems,
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Fig. 5.5 – Results for Σ2 with the data set generated by solving forward problems.

Fig. true location reconstructed location
1 (−0.2, 0.2) (−0.1933, 0.2105)
2 (−0.2, 0.2) (−0.1933, 0.2105)
3 (−0.2, 0.2) (−0.1899, 0.2174)
4 (0, 0) (0.00001506, 0.00008568)
5 (0, 0) (0.001378,−0.003054)

Tab. 5.1 – True and reconstructed locations.

and 1.528 when we add noise. In view of (5.30), the first significant singular value is
given by

τ (1) ≈ − 2π

ln(ε/2)
.

Therefore, the estimated ε is 0.0132 in the noiseless case and 0.0164 in the noisy case.
In both cases, the estimated value of ε is close to the actual value, 0.01.

5.5.3 Direction estimation

Set, as before, N = 12. Thus the directions θl are given by

θl =

(
cos

2l

12
π, sin

2l

12
π

)
.

Since
θl · T ≈

w(l)

eiωθl·z
,

where w(l) is the l−component of the second singular vector w, then the direction T
can be recovered by looking at the maximum (or minimal) values of dl := |w(l)|.

Consider first the small crack Σ1. Then by using the dataset generated by solving
forward problem, we find that dl attains its maximal for l = 6 and 12, which shows that
T is parallel to (1, 0)t. If we consider Σ2, then the maximum is attained for l = 1 and
l = 7. See Tab. 5.2.
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l value of dl for Σ1 value of dl for Σ2

1 0.8658 0.9994
2 0.5002 0.8660
3 0.0024 0.5004
4 0.5008 0.0001
5 0.8663 0.5006
6 0.9998 0.8661
7 0.8663 0.9996
8 0.5008 0.8661
9 0.0024 0.5006
10 0.5002 0.0001
11 0.8658 0.5004
12 0.9992 0.8660

Tab. 5.2 – Recovering the directions of the small cracks Σ1 and Σ2.

5.5.4 Imaging of multiple small cracks

We now consider imaging of multiple small cracks. Again two examples of multiple
cracks, Σ(1) and Σ(2), are chosen for illustration as follows :

Σ(1) = Σ
(1)
1 ∪ Σ

(1)
2 := {(x− 0.5, 0) : −ε ≤ x ≤ ε} ∪ {(x+ 0.5, 0) : −ε ≤ x ≤ ε}

Σ(2) = Σ
(2)
1 ∪ Σ

(2)
2 := {(x− 0.5,−0.2) : −ε ≤ x ≤ ε} ∪

{
Rπ/4(x+ 0.5, 0.3) : −ε ≤ x ≤ ε

}
,

where Rπ/4 is the rotation by π/4. It should be noted that cracks, Σ
(j)
1 and Σ

(j)
2 , in

both examples are well-separated. We use N = 20 for the number of directions of the
incident waves and λ = 0.4 for the wave length. The data set for the response matrix
was generated in two different way as in subsection 5.5.1 : by using (5.32) and by solving
forward problems.

Fig. 5.6 and 5.7 are for Σ(1) and Figures 5.8 and 5.9 for Σ(2), without adding noise.
One can see that the locations of multiple cracks are also successfully identified. It is
interesting to observe that unlike the case of Σ(1) where two peaks of W (z) have almost
the same magnitudes,W (z) for Σ(2) has a peak of much smaller magnitude at the rotated
crack (the one on the right) than at the other one. Fig. 5.10 shows results when we add
30% (ξ = 0.3) random noise. The location is well identified even under noise. Tab. 5.3
shows numerical values of reconstructed locations.

5.5.5 Imaging of two closely located cracks

The purpose of numerical experiments in this section is to consider the resolution of
the image. According to the Rayleigh resolution limit, any detail less than one-half of
the wavelength can not be seen. See, for instance, [3].

In order to explore a resolution limit, we consider the following examples :

Σ(3) = {(x− 0.1, 0) : −ε ≤ x ≤ ε} ∪ {(x+ 0.1, 0) : −ε ≤ x ≤ ε} ,
Σ(4) = {(x− 0.05, 0) : −ε ≤ x ≤ ε} ∪ {(x+ 0.05, 0) : −ε ≤ x ≤ ε} .
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Fig. 5.6 – Distribution of singular values of the response matrix A (left) and plots of
W (z) for Σ(1) using N = 20 incidences at the frequency ω = 2π

0.4
, with the data set

generated using (5.32).

Fig. 5.7 – Results for Σ(1) with the data set generated by solving the forward problems.

Fig. 5.8 – Results for Σ(2) with data set generated using (5.32).
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Fig. 5.9 – Results for Σ(2) with data set generated by solving the forward problems,
without noise.

Fig. 5.10 – Results for Σ(2) with data set generated by solving the forward problems,
with noise ξ = 0.3.

Fig. true locations reconstructed locations
6 (−0.5, 0), (0.5, 0) (−0.5023, 0.00846), (0.4946,−0.005384)
7 (−0.5, 0), (0.5, 0) (−0.5023, 0.00846), (0.4946,−0.005384)
8 (−0.5,−0.2), (0.5, 0.3) (−0.4912,−0.1998), (0.5048, 0.3159)
9 (−0.5,−0.2), (0.5, 0.3) (−0.4912,−0.1998), (0.5048, 0.3159)
10 (−0.5,−0.2), (0.5, 0.3) (−0.4912,−0.1998), (0.5048, 0.3159)

11 (on the left) (−0.1, 0), (0.1, 0) (−0.03198,−0.0001345)
11 (on the right) (−0.05, 0), (0.05, 0) (−0.06345,−0.001372), (0.06473, 0.002353)

Tab. 5.3 – True and reconstructed locations.
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Fig. 5.11 – Left : image of Σ(3) with the wavelength λ = 1. Right : image of Σ(4) with
λ = 0.05. The data set was generated by solving the forward problems.

Both Σ(3) and Σ(4) consist of two small cracks, whose distances are 0.2 and 0.1, respec-
tively. We illuminate the medium containing Σ(3) with plane waves of N = 20 directions
and of the wavelength λ = 1, while the medium containing Σ(4) is illuminated with
waves of the wavelength λ = 0.05.

Fig. 5.11 clearly shows that the waves of wavelength 1 can not distinguish two cracks
of distance 0.2 in Σ(3), while the waves of wavelength 0.05 can distinguish two cracks in
Σ(4), whose distance is even shorter than other ones.

5.6 Deformation of an extended crack

We now consider the problem of reconstructing an extended crack Σ which is not
necessarily linear. For that purpose we first derive asymptotic expansion formula for the
perturbation of the solution due to the perturbation of the crack.

Let a, b ∈ R, with a < b, and let X(t) : [a, b]→ R2 be the arc length parametrization
of Σ, namely, X is a C2-function satisfying |X ′(t)| = 1 for all t ∈ [a, b] and

X :=

{
x = X(t), t ∈ [a, b]

}
.

Then X(a) and X(b) are the endpoints. The outward unit normal to Σ, ν(x), is given by
ν(x) = R−π/2X

′(t), where R−π/2 is the rotation by −π/2. Note that the unit tangential
vector at x is given by T (x) = X ′(t) and X ′(t) ⊥ X ′′(t). Set the curvature τ(x) to be
defined by

X ′′(t) = τ(x)ν(x).

Let
X̃(t) = X(t) + εh(t)ν(x) = X(t) + εh(t)R−π/2X

′(t)

be a parametrization of Σε which is a perturbation of Σ. Suppose for the sake of simplicity
that h(a) = h(b) = 0, i.e. the endpoints are fixed.
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By ν̃(x̃), we denote the outward unit normal to Σε at x̃ = x + εh(t)ν(x) ∈ Σε. Let
us now invoke from [14, Section 3.3] the following expansions : ν̃(x̃) can be expanded as

ν̃(x̃) = ν(x)− εh′(t)T (x) +O(ε2), x ∈ Σ. (5.36)

Likewise, we get an expansion for the length element dσε(x̃) :

dσε(x̃) = (1− ετ(x)h(t) +O(ε2)) dσ(x). (5.37)

We also have

H
(1)
0 (ω|x̃− ỹ|) =H

(1)
0 (ω|x− y|)

+ εωH
(1)
0

′
(ω|x− y|)〈x− y, h(t)ν(x)− h(s)ν(y)〉

|x− y|
+O(ε2),

(5.38)

where x = X(t) and y = X(s). The term O(ε2) is uniform in both x and y on Σ.

Set

X (Σ) =

{
ϕ :

∫
Σ

√
|X(b)− x||x−X(a)| |ϕ(x)|2 dσ(x) < +∞

}
,

and

‖ϕ‖χ(Σ) :=

(∫
Σ

√
|X(b)− x||x−X(a)| |ϕ(x)|2 dσ(x)

) 1
2

.

We now introduce SΣ and S(1)
Σ,h, defined for any φ ∈ X (Σ) by

SΣ[φ](x) =
i

4

∫
Σ

H
(1)
0 (ω|x− y|)φ(y) dσ(y),

and

S(1)
Σ,h[φ](x) =

i

4

∫
Σ

[
ωH

(1)
0

′
(ω|x− y|)〈x− y, h(t)ν(x)− h(s)ν(y)〉

|x− y|

−H(1)
0 (ω|x− y|)τ(y)h(s)

]
φ(y) dσ(y).

(5.39)

Let Ψε be the mapping from Σ onto Σε given by

Ψε(x) = x+ εh(t)ν(x), x = X(t).

Then the following lemma is easily derived from (5.37) and (5.38) (see also [14, Section
3.3].

Lemma 5.6 For any φ̃ ∈ X (Σε),∥∥∥(SΣε [φ̃]) ◦Ψε − SΣ[φ]− εS(1)
Σ,h[φ]

∥∥∥
X (Σ)
≤ Cε2‖φ‖X (Σ), (5.40)

where φ := φ̃ ◦Ψε.
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Let us assume that the problem
∆u+ ω2u = 0 in Ω \ Σ,

u = 0 on Σ,

∂u

∂ν
= g ∈ L2(∂Ω) on ∂Ω,

(5.41)

is well-posed, namely, ω2 is not an eigenvalue of the problem. Then, for ε small enough,
the following problem is also well-posed :

∆u+ ω2u = 0 in Ω \ Σε,

u = 0 on Σε,

∂u

∂ν
= g on ∂Ω.

(5.42)

Let UΣ and u be the respective solutions to (5.41) and (5.42). Let Nω
Ω(x, y) be the

Neumann function defined by (5.5) and U be the solution when there is no crack, i.e.,
the solution to (5.4). As before, we have by Green’s formula,

(UΣ − U)(x) =

∫
Σ

Nω
Ω(x, y)φε(y) dσε(ỹ), x ∈ ∂Ω, (5.43)

where φε ∈ X (Σ) is the solution to the integral equation

AΣ[φ](x) :=

∫
Σ

Nω
Ω(x, y)φε(y) dσ(y) = −U(x) on Σ. (5.44)

Likewise, we have

(u− U)(x) =

∫
Σε

Nω
Ω(x, ỹ) φ̃ε(ỹ) dσε(ỹ) on ∂Ω, (5.45)

where φ̃ε ∈ X (Σε) is the solution to∫
Σε

Nω
Ω(x̃, ỹ) φ̃ε(ỹ) dσε(ỹ) = −U(x̃) on Σε. (5.46)

Let us prove that AΣ is invertible on X (Σ). Because of (5.11), one can see that AΣ is
a compact operator on X (Σ). Suppose that AΣ[φ] = 0 on Σ for some φ ∈ X (Σ). Define

v(x) =

∫
Σ

Nω
Ω(x, y)φ(y) dσ(y), x ∈ Ω.

Then v satisfies (5.41) with g = 0 and therefore, v ≡ 0 in Ω. But, φ is equal to the jump
of the normal derivative of v on Σ, and hence φ = 0 on Σ. Thus AΣ is invertible on
X (Σ).

Writing

Nω
Ω(x, y) =

i

4
H

(1)
0 (ω|x− y|) +Rω

N(x, y),
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where Rω
N(x, y) is of class C1,α, 0 < α < 1, one can see that (5.46) can be written as

SΣε [φ̃ε](x̃) +

∫
Σε

Rω
N(x̃, ỹ)φ̃ε(ỹ) dσε(ỹ) = −U(x̃) on Σε.

Since
U(x̃) = U(x) + εh(x)ν(x) · ∇U(x) +O(ε2),

we use Lemma 5.6 to deduce that

φ̃ε = φε ◦Ψε +O(ε2),

where φε satisfies(
SΣ +RΣ + εS(1)

Σ,h + εR(1)

)
[φε](x) = −U(x)− εh(x)ν(x) · ∇U(x) on Σ.

Here the operators RΣ and R(1) are defined by

RΣ[φ](x) =

∫
Σ

Rω
N(x, y)φ(y) dσ(y),

and

R(1)[φ](x) =

∫
Σ

[
− τ(y)h(y)Rω

N(x, y) +
∂Rω

N

∂ν(x)
(x, y)h(x) +

∂Rω
N

∂ν(y)
(x, y)h(y)

]
φ(y) dσ(y).

(5.47)

Put A(1)
Σ = S(1)

Σ,h +R(1). Since SΣ +RΣ = AΣ, one can easily see that

φε = φ0 + εφ1 + · · · , (5.48)

where φ0 and φ1 are the unique solution to
AΣ[φ0] = −U

AΣ[φ1] +A(1)
Σ [φ0] = −h∂U

∂ν
.

(5.49)

By inserting (5.37) and (5.48) into (5.45), we obtain the following theorem, which is
our main result in this section.

Theorem 5.7 Let u and UΣ denote the solutions to (5.42) and (5.41), respectively. For
x ∈ ∂Ω,

(u− UΣ)(x) =ε

∫
Σ

[(
∂Nω

Ω

∂ν(y)
(x, y)h(y)− τ(y)h(y)Nω

Ω(x, y)

)
φ0(y) +Nω

Ω(x, y)φ1(y)

]
dσ(y)

+O(ε2),

where φ0, φ1 ∈ X (Σ) are given by (5.49).
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One can try to express u− UΣ in terms of the Neumann function in the presence of
the crack Σ, that is, the solution to

(∆x + ω2)N ω
Σ,Ω(x, z) = −δz(x) in Ω \ Σ,

N ω
Σ,Ω = 0 on Σ,

∂N ω
Σ,Ω

∂νx
(x, z) = 0 for x ∈ ∂Ω.

Note that, even though such derivation is possible, it would be useless in practice (at
least for optimization problems) since the computation of N ω

Σ,Ω is costly and involved.

Analogously to (5.27), for any f ∈ L2(∂Ω), one can see from Theorem 5.7 that∫
∂Ω

(u− UΣ)(x)f(x) dσ(x)

= ε

∫
Σ

[(
∂V

∂ν
(y)h(y)− τ(y)h(y)V (y)

)
φ0(y) + V (y)φ1(y)

]
dσ(y),

(5.50)

where V is the solution to 
(∆ + ω2)V = 0 in Ω,

∂V

∂ν
= f on ∂Ω.

One shall now express
∫

Σ
V (y)φ1(y) dσ(y) in terms of h. Define W ∈ X (Σ) as the

solution to AΣ[W ] = V on Σ. Using (5.49), one computes∫
Σ

V φ1 dσ =

∫
Σ

WAΣ[φ1] dσ = −
∫

Σ

h
∂U

∂ν
W dσ −

∫
Σ

A(1)
Σ [φ0]W dσ.

Therefore,∫
∂Ω

(u− UΣ)(x)f(x) dσ(x) =ε

∫
Σ

[(
∂V

∂ν
(y)h(y)− τ(y)h(y)V (y)

)
φ0(y)

− h(y)
∂U

∂ν
(y)W (y)−A(1)

Σ [φ0](y)W (y)

]
dσ(y).

(5.51)

5.7 Initial guess for an extended crack

5.7.1 Use of the concept of topological derivative

There are many possible ways to get a good initial guess. One of them is to use the
concept of topological derivative [21]. The topological derivative measures the influence
of creating a small crack at a certain point inside the domain Ω.

We first construct ũ(l)
D and ũ(l)

N as the solutions to{
∆ũ

(l)
D + ω2ũ

(l)
D = 0 in Ω,

ũ
(l)
D = u

(l)
meas on ∂Ω,
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and 
∆ũ

(l)
N + ω2ũ

(l)
N = 0 in Ω,

∂ũ
(l)
N

∂ν
= g(l) on ∂Ω.

Then, using Theorems 5.4 and 5.5 we compute the topological derivative of the functional

J :=
1

2

N∑
l=1

∫
∂Ω

∣∣∣∣∂ũ(l)
D

∂ν
− g(l)

∣∣∣∣2 +

∫
∂Ω

|ũ(l)
N − u

(l)
meas|2.

Suppose that Ω contains a small crack Σ at the point z inside Ω and of size 2ε.
Denote by ũ(l)

D,ε and ũ
(l)
N,ε the solutions of the following problems :

∆ũ
(l)
D,ε + ω2ũ

(l)
D,ε = 0 in Ω \ Σ,

ũ
(l)
D,ε = 0 on Σ,

ũ
(l)
D,ε = u

(l)
meas on ∂Ω,

and 
∆ũ

(l)
N,ε + ω2ũ

(l)
N,ε = 0 in Ω \ Σ,

ũ
(l)
N,ε = 0 on Σ,

∂ũ
(l)
N,ε

∂ν
= g(l) on ∂Ω.

It then follows from Theorems 5.4 and 5.5 that

1

2

N∑
l=1

∫
∂Ω

∣∣∣∣∂ũ(l)
D,ε

∂ν
− g(l)

∣∣∣∣2 +

∫
∂Ω

|ũ(l)
N,ε − u

(l)
meas|2

=
1

2

N∑
l=1

∫
∂Ω

∣∣∣∣∂ũ(l)
D

∂ν
− g(l)

∣∣∣∣2 +

∫
∂Ω

|ũ(l)
N − u

(l)
meas|2 +

2π

ln(ε/2)
dTJ(z) + o

(
1

| ln ε|

)
.

where
dTJ(z) = Re

∑
l

(
− p(l)

D (z)ũ
(l)
D (z) + p

(l)
N (z)ũ

(l)
N (z)

)
, (5.52)

and the adjoint states p(l)
D and p(l)

N are defined as the solutions to
∆p

(l)
D + ω2p

(l)
D = 0 in Ω,

p
(l)
D =

∂ũ
(l)
D

∂ν
− g(l) on ∂Ω,

and 
∆p

(l)
N + ω2p

(l)
N = 0 in Ω,

∂p
(l)
N

∂ν
= ũ

(l)
N − u

(l)
meas on ∂Ω.

The points where the topological derivative is the most negative are expected to be
approximately on Σtrue. This would give an initial guess for Σtrue.
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5.7.2 A MUSIC-type approach

An alternative way of getting a good initial guess is to use a standard MUSIC-type
projection approach. See, for instance, [47, 54].

Let {θ1, · · · , θN} be a set of N unit directions and let

g(l)(x) = iθl · ν(x)eiωθl·x on ∂Ω (5.53)

and
V (l)(x) = e−iωθl·x in Ω

for l = 1, 2, · · · , N. Construct the response matrix Ã = (Ãll′) given by

(Ameas)ll′ =

∫
∂Ω

u
(l)
meas

∂V (l′)

∂ν
dσ −

∫
∂Ω

g(l)V (l′) dσ.

Note that an integration by parts shows that

(Ameas)ll′ = −
∫

Σtrue

[
∂u

(l)
meas
∂ν

]
V (l′) dσ. (5.54)

We want to reconstruct an initial guess for Σtrue from Ameas = ((Ameas)ll′).

We plot the imaging function

W (z) :=
1

||(I − P )g(z)||
for z ∈ Ω,

where P is the orthogonal projection onto the range of the response matrix Ameas.
As shown by the numerical examples, the function W (z) has large peaks at points on
the crack. This can be explained using (5.54). The matrix Ameas describes in fact the
far-field behavior (|y| → +∞, y/|y| = θl′) of

−
∫

Σtrue

[
∂u

(l)
meas
∂ν

]
(x)Γω(x, y) dσ(x),

where Γω(x, y) is the outgoing Green function of the Helmholtz equation. Divide the
crack into segments of size of order half the wavelength. Having in mind the resolution
limit, only one point at each segment will contribute at the image space of the response
matrix Ameas. Each of these points can in principle be imaged using the standard
MUSIC imaging function. The resolution of the image provided by this technique is
of order the half-wavelength. Since the measurements are done at the boundary of Ω,
higher-resolution in imaging the extended crack can be achieved using the optimization
algorithm briefly described in the last section.

5.8 Numerical simulations for imaging extended cracks

In this section, we present results of numerical simulations using the two approaches
we described in the previous subsections to image extended cracks. For simulation, we
choose the homogeneous domain Ω as a unit disk centered at (0, 0) in R2. Here the data
sets are generated by solving forward problems.
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Fig. 5.12 – Image of dTJ(z) when applied frequency is ω = 2π
0.8

. Black colored line is the
true crack.

Fig. 5.13 – Image of dTJ(z) when ω = 2π
0.5

, without noise

5.8.1 Initial guess through the topological derivative

We first implement the method of deriving a good initial guess described in the
previous section. An extended crack chosen for illustration is

Σ(5) =

{(
0.6s, 0.5 cos

sπ

2
+ 0.5 sin

sπ

2
− 0.1 cos

3sπ

2

)
: s ∈ [−1, 1]

}
. (5.55)

The operating wavelengths are 0.8 in Fig. 5.12 and 0.5 in Figures 5.13 and 5.14.

Fig. 5.12 is the plot of values of dTJ(z) for all z ∈ Ω. One can easily notice that
the points where the topological derivative is the most negative value appears in the
neighborhood of Σtrue. A smooth curve connecting most negative values can be taken
as an initial guess. One can notice from Fig. 5.13 that if we increase the frequency of the
waves, then the region of most negative values shrinks and becomes close to the actual
crack, and hence provides a better initial guess. Fig. 5.14 shows the result when we add
30% (ξ = 0.3) noise. The result is still reasonably good, which tells that this method is
robust even under presence of noise.
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Fig. 5.14 – Image of dTJ(z) when ω = 2π
0.5

, with noise ξ = 0.3.

Fig. 5.15 – The distribution of singular values of the Ameas (left) and the plot of W (z)
for Σ(5). N = 24 and λ = 0.6. Without noise.

5.8.2 Simulation of the MUSIC-type algorithm

We now implement the MUSIC-type projection algorithm proposed in the previous
section. We use Σ(5) given in (5.55) as our crack.

In order to obtain a data set of the response matrix Ameas in (5.29), we solve forward
problems for N = 24 incident directions at the wavelength λ = 0.6. Figure 5.15 and Fig.
5.16 show the reconstructed images without noise and with noise, ξ = 0.03, respectively.
With this noise level, the reconstruction is satisfactory. Figure 5.17 is to show what
happens if we increase the wavelength. There the wavelength is 2π and the image is
clearly deteriorated.

We then apply the algorithm for imaging of multiple extended cracks,

Σ(6) = Σ
(6)
1 ∪ Σ

(6)
2 ,
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Fig. 5.16 – Same as Fig. 5.15, with noise ξ = 0.03.

Fig. 5.17 – Same as Fig. 5.15, but λ = 2π.

Fig. 5.18 – The distribution of singular values of Ameas (left) and the plot of W (z) for
Σ(6). N = 24 and λ = 0.5. Without noise.
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Fig. 5.19 – Same as Fig. 5.18, but with noise ξ = 0.05.

Fig. 5.20 – Same as Fig. 5.18, but with λ = 2π.
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where

Σ
(6)
1 = {(s,−0.5(s− 0.2)2 + 0.5) : s ∈ (−0.7, 0.3)} ,

Σ
(6)
2 = {(s, (s− 0.2)3 + (s− 0.2)2)− 0.4 : s ∈ (−0.3, 0.7)} .

The data set of matrix Ameas is collected with N = 24 and λ = 0.5. Fig. 5.18 and
Fig. 5.19 show the reconstructed images of Σ(6) without noise and with noise, ξ = 0.05,
respectively. Fig. 5.20 shows the image when the wavelength is increase to 2π.

5.9 An optimization approach for extended cracks

Let, as before, {θ1, · · · , θN} be a set of N unit directions and let g(l) be given by
(5.53). In this last section, we briefly mention about a new optimal control approach in
order to achieve better reconstruction than the MUSIC-type algorithm.

Let u(l)
meas be the solution to

∆u
(l)
meas + ω2u

(l)
meas = 0 in Ω \ Σtrue,

u
(l)
meas = 0 on Σtrue,

∂u
(l)
meas
∂ν

= g(l) on ∂Ω.

Suppose now that Ω contains a crack Σ̃ away from the boundary. Denote ũ(l) the
solution to 

∆ũ(l) + ω2ũ(l) = 0 in Ω \ Σ̃,

ũ(l) = 0 on Σ̃,

∂ũ(l)

∂ν
= g(l) on ∂Ω.

A standard approach would be to minimize over Σ the functional

1

2

N∑
l=1

||ũ(l) − u(l)
meas||2L2(∂Ω).

In [7], we have suggested a new approach toward inclusion reconstruction which
applies here. In the context of extended crack reconstruction, our approach would be to
minimize over Σ̃ at the step (n+ 1)

J(Σ̃) :=
1

2

N∑
l=1

M∑
j=1

|
∫
∂Ω

(ũ(l) − u(l)
meas)fj|2, (5.56)

where {fj}Mj=1 are chosen as the basis of the image space of a certain operator involving
the crack reconstructed at the step n. The MUSIC-type algorithm we designed in the
last section for obtaining an initial guess corresponds to the particular case of such
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optimization algorithm where the functions fj are freezed and simply chosen to be
plane waves.

The shape derivative dSJ(Σ̃), which measures the sensitivity of shape perturbations,
can be computed using (5.51). The implementation of this optimization algorithm would
be the subject of a forthcoming work.

5.10 Conclusion

In this chapter, we have provided a MUSIC-type algorithm for locating and esti-
mating the size of small perfectly conducting cracks. Our algorithm is based on a new
asymptotic formula that describes the effect of a small crack on the boundary measu-
rements and the construction of a response matrix from these boundary measurements.
This algorithm has also been applied to get a very good initial guess in the case of ex-
tended cracks. Using the concept of topological derivative, a second algorithm has been
tested. To achieve a better reconstruction with higher resolution, an original optimiza-
tion approach has been proposed.
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Conclusion and perspective

The main purpose of this thesis is to retrieve the shape of unknown two-dimensional
cracks (inhomogeneity with small thickness) or screens (with Dirichlet/Neumann type
boundary condition). This thesis is constructed into the following two parts.

In the first part, we have considered the reconstruction of penetrable thin inclusion
(crack).

In chapter 1, we have developed a location search algorithm to find the end-points of
conductivity cracks. This algorithm is very simple and efficient because no forward solver
or iteration processing is needed. Moreover, obtained results show that despite their lack
of theoretical precision this algorithm can be applied to the multiple non-rectangular
cracks.

In chapter 2, we have designed a MUSIC-type algorithm for imaging of two-
dimensional penetrable electromagnetic cracks of arbitrary shape. By examining the
eigenvalue structure of Multi-Static Response matrix at a single time-harmonic fre-
quency, we have successfully obtained an image of cracks via a careful thresholding of
nonzero singular values. Through the several numerical results, we can conclude this
algorithm is fast, effective and stable.

A level set technique is presented in chapter 3 in order to reconstruct the complete
shape of penetrable electromagnetic cracks. In this technique two level set functions
and calculation of the gradient direction is required to represent and evolve cracks,
respectively. With the good initial guess which obtained in the previous chapters, several
numerical results demonstrate that this technique give relatively accurate results and
are sufficient for applying not only connected but also disconnected cracks.

Reconstruction of impenetrable cracks is considered in the second part.

A non-iterative MUSIC-type algorithm is proposed in chapter 4 to retrieve the screen
with Dirichlet/Neumann boundary condition. This algorithm is based on the factoriza-
tion of Multi-Static Response matrix at a single time-harmonic frequency. Through the
experimental results via the same thresholding scheme, we can observe the efficiency of
proposed algorithm.

In chapter 5, asymptotic imaging of narrow and extended cracks with Dirichlet boun-
dary condition is considered. Based on the asymptotic expansion of the boundary per-
turbations due to the small crack, location of a set of small cracks have successfully
retrieved via a MUSIC-type algorithm. Moreover, direction of single small crack is suc-
cessfully recovered from the second singular vector.

We also rigorously derived the asymptotic expansion formula for the boundary per-
turbations due to the shape deformation of the crack. This formula enables us to develop
two different imaging methods for obtaining a good initial guess and successfully de-
monstrated by a several numerical simulations.

In this thesis, we have proposed very useful reconstruction algorithms but they still
requires some improvements. Finally, we mention some possible further developments.
• Rigorous theoretical development of the location search algorithm for the multiple

non-rectangular conductivity cracks is needed.
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• Research for the proper choice of testing functions b and c for imaging of electro-
magnetic cracks in chapter 2 is expected. Improvement of imaging algorithm for
multiple cracks with different material properties is also.
• In the level set method, we assumed all of material properties and thickness of

cracks are known. Development an algorithm which overcomes these assumptions
will be the one of the good improvement. Furthermore, extension to the impene-
trable cracks is also.
• Estimating the normal direction of screens for imaging of screens in chapter 4 is

needed for the fast performance of imaging.
• Implementation of the optimization algorithm introduced in 5 to achieve a better

reconstruction with higher resolution would be a challengeable subject.
• We expect that proposed algorithms herein can be extended to the inhomogeneous

background. For example, reconstruction of cracks buried in the ground.
• Extension to three-dimensional cracks is expected.
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A Appendix

In this appendix, we introduce some useful facts for the reader’s convenience.

A.1 Neumann function

In this part, we state the Neumann function for Laplace operator. A more detailed
description can be found in [12].

Definition A.1 Let Ω be a bounded Lipschitz domain in Rn , n ≥ 2. Let N(x, y) be the
Neumann function for ∆ in Ω corresponding to a Dirac mass at y. That is, N is the
solution to 

∆xN(x, y) = −δy in Ω

∂N(x, y)

∂νx

∣∣∣∣
∂Ω

= − 1

|∂Ω|
for y ∈ Ω∫

∂Ω

N(x, y)dS(x) = 0 for y ∈ Ω.

Note that the Neumann function N(x, y) is defined as a function of x ∈ Ω for each
fixed y ∈ Ω. The operator defined by N(x, y) is the solution operator for the Neumann
problem 

∆U = 0 in Ω

∂U

∂ν
= g on ∂Ω,

(A.1)

namely, the function U defined by

U(x) :=

∫
∂Ω

N(x, y)g(y)dS(y)

is the solution to (A.1) satistying ∫
∂Ω

U(y)dS(y) = 0.

A.2 Identification of simple poles

Our purpose here is to state a method for identification of simple poles in section
1.6 of chapter 1 introduced in [48]. Let f(z) be a meromorphic function of the form

f(z) =
m∑
j=1

βj
z − αj

whose value on the circle |z| = R is known. Let N be an upper bound for the number
of poles of f , which is assumed to be known. For n = 0, 1, · · · , 2N − 1, define

cn :=
1

2πi

∫
|z|=R

znf(z)dz =
m∑
j=1

βjα
n
j .
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This cn can be computed from f(z) on |z| = R. The method of identification of poles from
the knowledge of cn, n = 0, 1, · · · , 2N − 1 is based on the following simple observations.

Lemma A.2 Suppose that the sequence {cn} takes the form

cn =
k∑
j=1

βjα
n
j

for n = 0, 1, · · · . If l1, · · · , lk satisfies the generating equation

cn+k + l1cn+k−1 + · · ·+ lkcn = 0 for n = 0, 1, · · · , k − 1 (A.2)

then α1, α2, · · · , αk are solutions of

zk + l1z
k−1 + · · ·+ lk = 0. (A.3)

The converse is also true. Furthermore, if (A.2) holds, then it holds for all n.

Proof. If α1, α2, · · · , αk are solutions of (A.3), then for all n,

cn+k + l1cn+k−1 + · · ·+ lkcn =
k∑
j=1

βjα
n+k
j + l1

k∑
j=1

βjα
n+k−1
j + · · ·+ lk

k∑
j=1

βjα
n
j

=
k∑
j=1

βjα
n
j

(
αkj + l1α

k−1
j + · · ·+ lk

)
= 0.

(A.4)

Conversely, since cn+k + l1cn+k−1 + · · · + lkcn = 0 for n = 0, 1, · · · , k − 1, it follows
from the identity (A.4) that

k∑
j=1

βjα
n
j

(
αkj + l1α

k−1
j + · · ·+ lk

)
= 0 for n = 0, 1, · · · , k − 1.

Since

det


β1 β2 · · · βk
β1α1 β2α2 · · · βkαk
...

... . . . ...
β1α

k−1
1 β2α

k−1
2 · · · βkα

k−1
k

 = β1β2 · · · βk
∏

1≤i,j≤k

(αj − αi) 6= 0,

we get
αkj + l1α

k−1
j + · · ·+ lk = 0

for j = 1, 2, · · · , k. This completes the proof.
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A.3 The Moore–Penrose generalized inverse

Let K be a bounded operator of a Hilbert space H1 into the Hilbert space H2. Let
K∗ denote the adjoint of K. The Moore–Penrose generalized solution f+ to Kf = g is
defined as follows : f+ is the element with the smallest norm in the set of the minimizers
of ‖Kf − g‖ (if this set is nonempty, i.e., if g ∈ Range(K) + Range(K)⊥). It can be
shown that f+ is the unique solution to the normal equation

K∗Kf = K∗g

in Range(K∗). The linear operator K+ defined by

f+ = K+g for g ∈ Range(K) + Range(K)⊥

is called the Moore–Penrose generalized inverse.

A.4 The singular value decomposition

Let K be a bounded operator of a Hilbert space H1 into the Hilbert space H2. By
the singular value decomposition (SVD) we mean a representation of K in the form

Kf =
∑
j

λj 〈f, fj〉 gj

where {fj}, {gj} are orthonormal systems in H1, H2, respectively, and λj are positive
numbers, the singular values of K. The sum may be finite of infinite. The adjoint of K
is given by

K∗g =
∑
j

λj 〈g, gj〉 fj

and the operators

K∗Kf =
∑
j

λ2
j 〈f, fj〉 fj, KK∗g =

∑
j

λ2
j 〈g, gj〉 gj

are self-adjoint operators in H1, H2, respectively. The spectrum of K∗K, KK∗ consists
of the eigenvalues λ2

j and possibly the eigenvalue 0, whose multiplicity may be infinite.

The Moore–Penrose generalized inverse is given by

K+g =
∑
j

λ−1
j 〈g, gj〉 fj.

Let us review the basic concepts of singular value decomposition of a matrix. Let
Mm,n(C) denote the set of all m × n matrices over C. The set Mn,n(C) is abbreviated
to Mn(C). The spectral theorem to the positive semi-definite matrices KK∗ and K∗K
gives the following singular values decomposition of a matrix K ∈Mm,n(C).

Theorem A.3 (Spectral theorem) Let K ∈ Mm,n(C) be given, and let q =
min {m,n}. There is a matrix S = (λjl) ∈ Mm,n(R) with λjl = 0 for all j 6= l and
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λ11 ≥ λ22 ≥ · · · ≥ λqq ≥ 0, and there are two unitary matrices V ∈ Mm(C) and
W ∈Mn(C) such that

K = V SW ∗.

The numbers {λjj} are nonnegative square roots of the eigenvalues of KK∗, and hence
are uniquely determined. The columns of V are eigenvectors of KK∗ and the columns of
W are eigenvectors of K∗K (arranged in the same order as the corresponding eigenvalues
λ2
jj).

The diagonal entries λjj, j = 1, 2, · · · , q = min {m,n} of S are called the singular
values of K, and the columns of V and the columns W are the (respectively, left and
right) singular vectors of K.

Singular value decomposition has the following desirable computational properties :
(1) The rank of K can be easily determined from its singular value decomposition.

Specifically, rank(K) equals to the number of nonzero singular value of K.
(2) The L2−norm of K is given by

‖K‖2 =

(
q∑
j=1

λ2
jj

)1/2

.

(3) Singular value decomposition is an effective computational tool for finding lover-
rank approximations to a given matrix. Specifically, let p < rank(K). Then the
rank p matrix Kp minimizing ‖K −Kp‖2 is given by

Kp = V SpW
∗,

where the matrix Sp is obtained from S after the singular values λjj, p+1 ≤ j ≤ q,
are set to zero.

A.5 Bessel functions

The Bessel function of the first kind of real order ν is defined by

Jν(x) =
(x

2

)ν +∞∑
s=0

(−x2/4)s

s!Γ(ν + s+ 1)
,

where Γ is the gamma function.

For n ∈ Z, we have the following integral representation

Jn(x) =
1

2π

∫ π

−π
eix sin θ−inθdθ,

i.e., the functions Jn(x) are the Fourier coefficients of eix sin θ. Therefore we can write

eix sin θ =
∑
n∈Z

Jn(x)einθ. (A.5)

By the principle of analytic continuation, (A.5) is valid for all complex θ, refer to [63].
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Fig. A.1 – Bessel functions Jn(x) of the first kind of order n for n = 0, 1, · · · , 5.

For arguments x < ν, the Bessel function look qualitatively like simple powers law,
with the asymptotic form for 0 < x� ν

Jν(x) ∼ 1

Γ(ν + 1)

(x
2

)ν
.

For x > ν, the Bessel function look qualitatively like cosine wave whose amplitude
decays as x−1/2. The asymptotic form for x� ν is

Jν(x) ∼
√

2

πx
cos
(
x− νπ

2
− π

4

)
.

In the transition region where x ∼ ν, the typical amplitude of the Bessel function is

Jν(ν) ∼ 21/3

32/3Γ
(

2
3

)
ν1/3

∼ 0.4473

ν1/3
,

which holds asymptotically for large ν.

A.6 Linear system for numerical simulation

Our purpose here is to sketch a quadrature method for the numerical simulation
in section 4.4.2 of chapter 4. Derivation of the linear system for the multiple cracks is
similar to the single one introduced in [52, Section 2]. So, we introduce the linear system
for the single crack and extend it to multiple ones. We also recommend [60, Chapter 3]
for another numerical solution scheme of the multiple crack case.



A.6 - Linear system for numerical simulation 167

A.6.1 Linear system for single crack

In order to establish a quadrature method for numerical simulation of the single-crack
case, we start from the integral equation (4.8) in section 4.2 of chapter 4

i

4

∫
Γ

H1
0 (k |x− y|)ϕ(y)dy = −u0(x) for x ∈ Γ.

By substituting s = cos t for t ∈ [0, π] into Γ, the formula (4.8) can be transformed into
the following parametric form

1

2π

∫ π

0

H(t, τ)ψ(τ)dτ = g(t) (A.6)

where

ψ(t) := |sin(t)| |z′(cos t)|ϕ(z(cos t))

g(t) := −2u0(z(cos t))
(A.7)

for all t ∈ [0, π] and the kernel H is given by

H(t, τ) :=
π

i
H1

0 (k |z(cos t)− z(cos τ)|) (A.8)

for t 6= τ . The author in [52] has transformed the integral equation (A.6) into an equa-
tion over the interval 2π. From this transformation, (A.6) is equivalent to find an even
2π−periodic function ψ ∈ C(R) solution of

1

4π

∫ 2π

0

H(t, τ)ψ(τ)dτ = g(t) (A.9)

for t ∈ [0, 2π]. From the definition of the Hankel function and the power series of Bessel
and Neumann functions of order zero, the kernel H can be written

H(t, τ) = [1 +H1(t, τ)] ln

(
4

e2
(cos t− cos τ)2

)
+H2(t, τ) (A.10)

where H1 and H2 can be written for t 6= τ ,

H1(t, τ) := J0(k |z(cos t)− z(cos τ)|)− 1

H2(t, τ) := H(t, τ)− [1 +H1(t, τ)] ln

(
4

e2
(cos t− cos τ)2

)
(A.11)

and

H1(t, t) =
∂

∂t
H1(t, t) = 0

H2(t, t) =
π

i
+ 2 ln

(
ke

4
|z′(cos t)|

)
+ 2C

(A.12)

with Euler’s constant C = 0.57721 · · · . By using (A.10), (A.11) and (A.12), integral
equation (A.9) turns into

1

2π

∫ 2π

0

K(t, τ)ψ(τ)dτ = g(t) (A.13)
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with the kernel K

K(t, τ) =

{
1 + sin2

(
t− τ

2

)
K1(t, τ)

}
ln

(
4

e
sin2

(
t− τ

2

))
+K2(t, τ) (A.14)

where K1 and K2 can be written for t 6= τ ,

K1(t, τ) :=
H1(t, τ)

sin2
(
t−τ

2

) , K2(t, τ) :=
1

2
H2(t, τ) (A.15)

and
K1(t, t) = −k2 sin2 t |z′(cos t)|2 . (A.16)

In order to discretize the integral equation (A.13), let us set the equidistant points
tj for a given number n ∈ N (for a partition of interval [0, 2π]) as

tj :=
jπ

n

with j = 0, 1, · · · , 2n − 1. Then, (A.13) can be approximated to the following linear
system

2n−1∑
l=0

{
R|j−l| + F|j−l|K1(tj, tl) +

1

2n
K2(tj, tl)

}
ψ(tl) = g(tj) (A.17)

where K1 and K2 are defined in (A.15) and (A.16) and the coefficients Rj and Fj are
given

Rj := Rj(0) =
1

2n

{
c0 + 2

n−1∑
m=1

cm cos

(
mjπ

n

)
+ (−1)jcn

}

Fj := Fj(0) =
1

2n

{
γ0 + 2

n−1∑
m=1

γm cos

(
mjπ

n

)
+ (−1)jγn

} (A.18)

and the constants cm and γm are

cm := − 1

max(1, |m|)
and γm :=

1

4
(2cm − cm+1 − cm−1). (A.19)

Note that the linear system (A.17) is expressed as an (n+ 1)× (n+ 1)−system due
to the symmetry property of ψ, i.e., ψ satisfies

ψ(tj) = ψ(t2n−j)

for j = 0, 1, · · · , n (see [52]).

By substituting s = cos t for t ∈ [0, π] into Γ, formula (4.11) can be transformed into
the following parametric form

u∞(x̂; θ) = − ei
π
4

√
8πk

∫ π

0

e−ikx̂·z(cos τ)ψ(τ)dτ, x̂ ∈ S1. (A.20)

Hence, after solving the linear system (A.17), the far-field pattern (A.20) can be obtained
by the following trapezoidal rule

u∞(x̂; θ) ≈ − ei
π
4

√
8πk

π

n

n∑
j=0

e−ikx̂·z(cos tj)ψ(tj). (A.21)
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A.6.2 Linear system for multiple cracks

Derivation of the linear system for the multiple cracks is similar to the one for the
single one. As in the previous section, we start from the integral equation

i

4

L∑
j=1

∫
Γ

H1
0 (k |x− y|)ϕj(y)dy = −u0(x) for x ∈ Γ. (A.22)

By substituting s = cos t for t ∈ [0, π] into Γ and carrying out the same computation
for the single crack case, the formula (A.22) can be rewritten as

1

4π

∫ 2π

0

[H1,1(t, τ)ψ1(τ) +H1,2(t, τ)ψ2(τ) + · · ·+H1,L(t, τ)ψL(τ)]dτ = g1(t)

1

4π

∫ 2π

0

[H2,1(t, τ)ψ1(τ) +H2,2(t, τ)ψ2(τ) + · · ·+H2,L(t, τ)ψL(τ)]dτ = g2(t)

...
1

4π

∫ 2π

0

[HL,1(t, τ)ψ1(τ) +HL,2(t, τ)ψ2(τ) + · · ·+HL,L(t, τ)ψL(τ)]dτ = gL(t)

(A.23)

Here, the kernel Hj,l, j, l = 1, 2, · · · , L is given by

Hj,l(t, τ) :=
π

i
H1

0 (k |zj(cos t)− zl(cos τ)|) (A.24)

for t 6= τ . For convenience, we change the formula (A.10), (A.11) and (A.12) as follows :

Hj,l(t, τ) = [1 +H
(j,l)
1 (t, τ)] ln

(
4

e2
(cos t− cos τ)2

)
+H

(j,l)
2 (t, τ) (A.25)

where H(j,l)
1 and H(j,l)

2 can be written for t 6= τ ,

H
(j,l)
1 (t, τ) := J0(k |zj(cos t)− zl(cos τ)|)− 1

H
(j,l)
2 (t, τ) := Hj,l(t, τ)− [1 +H

(j,l)
1 (t, τ)] ln

(
4

e2
(cos t− cos τ)2

) (A.26)

and for j = l,

H
(j,j)
1 (t, t) =

∂

∂t
H

(j,j)
1 (t, t) = 0

H
(j,j)
2 (t, t) =

π

i
+ 2 ln

(
ke

4

∣∣z′j(cos t)
∣∣)+ 2C

(A.27)

with Euler’s constant C = 0.57721 · · · . By using (A.25), (A.26) and (A.27), the integral
equation (A.23) turns into

1

2π

∫ 2π

0

[K1,1(t, τ)ψ1(τ) +K1,2(t, τ)ψ2(τ) + · · ·+K1,L(t, τ)ψL(τ)]dτ = g1(t)

1

2π

∫ 2π

0

[K2,1(t, τ)ψ1(τ) +K2,2(t, τ)ψ2(τ) + · · ·+K2,L(t, τ)ψL(τ)]dτ = g1(t)

...
1

2π

∫ 2π

0

[KL,1(t, τ)ψ1(τ) +KL,2(t, τ)ψ2(τ) + · · ·+KL,L(t, τ)ψL(τ)]dτ = gL(t)

(A.28)
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with the kernel Kj,l

Kj,l(t, τ) =

{
1 + sin2

(
t− τ

2

)
K

(j,l)
1 (t, τ)

}
ln

(
4

e
sin2

(
t− τ

2

))
+K

(j,l)
2 (t, τ) (A.29)

where K(j,l)
1 and K(j,l)

2 can be written for t 6= τ ,

K
(j,l)
1 (t, τ) :=

H
(j,l)
1 (t, τ)

sin2
(
t−τ

2

) , K
(j,l)
2 (t, τ) :=

1

2
H

(j,l)
2 (t, τ) (A.30)

and for j = l,
K

(j,j)
1 (t, t) = −k2 sin2 t

∣∣z′j(cos t)
∣∣2 . (A.31)

In order to discretize the integral equation (A.28), let us set the equidistant points
tj for a given number n ∈ N (for a partition of interval [0, 2π]) as

tj :=
jπ

n

with j = 0, 1, · · · , 2n − 1. Then, (A.28) can be approximated to the following linear
system

2n−1∑
l=0

[A1,1ψ1(tl) + A1,2ψ2(tl) + · · ·+ A1,LψL(tl)] = g1(tj)

2n−1∑
l=0

[A2,1ψ1(tl) + A2,2ψ2(tl) + · · ·+ A2,LψL(tl)] = g2(tj)

...
2n−1∑
l=0

[AL,1ψ1(tl) + AL,2ψ2(tl) + · · ·+ AL,LψL(tl)] = gL(tj)

(A.32)

here Aj,l for j, l = 1, 2, · · · , L is defined as

Aj,l = R|j−l| + F|j−l|K
(j,l)
1 (tj, tl) +

1

2n
K

(j,l)
2 (tj, tl).

Note that the linear system (A.32) is expressed as an L(n + 1) × L(n + 1)−system
due to the symmetry property of ψj, i.e., ψj satisfies

ψj(tl) = ψj(t2n−l)

for j = 1, 2, · · · , L and l = 0, 1, · · · , n (See [52]).

Similarly with the single-crack case, by substituting s = cos t for t ∈ [0, π] into Γ,
the far-field pattern formula can be transformed into the following parametric form

u∞(x̂; θ) = − ei
π
4

√
8πk

L∑
j=1

∫ π

0

e−ikx̂·zj(cos τ)ψj(τ)dτ, x̂ ∈ S1. (A.33)

Hence, after solving the linear system (A.32), the far-field pattern for a multiple crack
(A.33) can be obtained by the following trapezoidal rule

u∞(x̂; θ) ≈ − ei
π
4

√
8πk

π

n

L∑
j=1

n∑
l=0

e−ikx̂·zj(cos tl)ψj(tl). (A.34)
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A.7 Uniqueness result

This is an important result from the theory of the Helmholtz equation. It will help us
prove uniqueness for exterior Helmholtz problems. For its proof, we refer to [34, Lemma
2.11].

Lemma A.4 Let R0 > 0 and BR(0) = {x : |x| < R}. Let u satisfy the Helmholtz equa-
tion

∆u(x) + k2
0u(x) = 0

for |x| > R0. Assume, furthermore, that

lim
R→+∞

∫
∂BR(0)

|u(x)|2 dS(x) = 0.

Then u(x) ≡ 0 for |x| > R0.

Note that, the assertion of this lemma does not hold if k0 is imaginary or k0 = 0.

Now, using Lemma A.4, we can establish the following uniqueness result for the
exterior Helmholtz problem.

Lemma A.5 Suppose n = 2 or 3. Let Ω be a bounded Lipschitz domain in Rn. Let
u ∈ Hloc1(Rn\Ω) satisfy

∆u(x) + k2
0u(x) = 0 in Rn\Ω∣∣∣∣∂u∂r − ik0u

∣∣∣∣ = O
(
r−

n+1
2

)
as r = |x| −→ +∞ uniformly in

x

|x|
u = 0 or

∂u

∂ν
= 0 on ∂Ω.

(A.35)

Then u ≡ 0 in Rn\Ω.

Proof. Let BR(0) = {|x| < R}. For R large enough, Ω ⊂ BR(0). Notice first that by
multiplying ∆u(x) + k2

0u(x) = 0 by u and integrating by parts over BR(0)\Ω we arrive
at

Im

∫
∂BR(0)

u
∂u

∂ν
dS = 0.

But
Im

∫
∂BR(0)

u

(
∂u

∂r
− ik0u

)
dS = −k0

∫
∂BR(0)

|u|2 dx.

Applying the Cauchy-Schwarz inequality,∣∣∣∣Im∫
∂BR(0)

u

(
∂u

∂r
− ik0u

)
dS

∣∣∣∣ ≤ (∫
∂BR(0)

|u|2 dx
)1/2

(∫
∂BR(0)

∣∣∣∣∂u∂r − ik0u

∣∣∣∣2 dS
)1/2

,

and using the radiation condition (A.35) we get∣∣∣∣Im∫
∂BR(0)

u

(
∂u

∂r
− ik0u

)
dS

∣∣∣∣ ≤ C

R

(∫
∂BR(0)

|u|2 dx
)1/2
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for some constant C independent of R. Consequently, we obtain that(∫
∂BR(0)

|u|2 dx
)1/2

≤ C

R
,

which indicates by Rellich’s lemma that u ≡ 0 in R2\BR(0). Hence, by the unique
continuation property for ∆ + k2

0, we can conclude that u ≡ 0 up to the boundary ∂Ω.
This finishes the proof.
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