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English Abstract

Wireless ad hoc networks have recently received significant attention be-
cause of their historical defense and security applications, as well as their
more recent potential commercial applications. Most of the research on ad
hoc networks has focused on higher layer (link, network, or transport) issues,
especially on routing protocols designed to cope with frequent and dynamic
changes in network topology. The theoretical and practical limits of the per-
formance of dense ad hoc networks, recently unveiled in [1,2], revealed the
need for alternative techniques to improve the interference-limited perfor-
mance of dense ad hoc networks.

In this thesis, we address the following issue: how can the link capacity
performance in wireless ad hoc networks be improved through the use of
more advanced physical layer techniques?

We first introduce the physical layer factors that impact the performance
of dense ad hoc networks. In particular, we show how the throughput can
be improved by using directive antennas, or by managing the number and
position of relaying nodes. Then, we turn our attention to ad hoc networks in
which nodes are empowered with cooperative capabilities. We first consider
ad hoc networks with a small number of nodes, and we propose techniques
to improve the spectral efficiency of cooperative strategies. The proposed
cooperative strategies make more efficient use of the wireless resource by
combining orthogonality-relaxation and dirty paper precoding. Finally, ad
hoc networks with a high density of nodes are examined. We introduce coop-
eration in a large ad hoc network through a cooperative-clustering approach.
Using tools from random matrix theory and free probability theory, we ana-
lyze the asymptotic capacity of the system when the node density increases.

This thesis shows that link capacity performance in dense wireless ad hoc
networks can be improved, as long as nodes are empowered with cooperative
capabilities at the physical layer, and cooperative strategies are properly
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designed.



French Abstract

Les réseaux ad hoc sans fil ont recu derniérement une attention considérable
en raison de leurs applications historiques dans le domaine de la défense et
de la sécurité, et de leurs récentes applications commerciales potentielles.
Jusqu’a récemment, la plupart des travaux de recherche sur les réseaux ad
hoc mettaient 'accent sur des problémes aux couches supérieures (liaison,
réseau, transport), en particulier sur la conception de protocoles de routage
robustes aux changements dynamiques et fréquents de topologie. Les limites
théoriques et pratiques des performances des réseaux ad hoc dévoilées récem-
ment [1,2] ont révélé le besoin de techniques alternatives pour améliorer les
performances des réseaux ad hoc denses, dont la principale limitation est due
aux interférences.

Cette thése s’attaque a la problématique suivante : comment améliorer
les performances en termes de capacité de lien dans les réseaux ad hoc sans
fil, en utilisant des techniques plus avancées a la couche physique ?

Dans un premier temps, les facteurs de la couche physique impactant
les performances des réseaux ad hoc denses sont présentés. En particulier,
on montre comment 'utilisation d’antennes directionnelles ou la gestion du
nombre et de la position de nceuds-relais permettent d’améliorer le débit.
Puis I'attention est portée vers les réseaux ad hoc dont les noeuds sont dotés
de capacités de coopération. Les réseaux ad hoc avec un petit nombre de
nceuds coopératifs sont tout d’abord considérés, et des techniques améliorant
I’efficacité spectrale des stratégies de coopération sont proposées. Ces straté-
gies coopératives permettent une meilleure utilisation de la ressource sans
fil grace a la combinaison de la relaxation d’orthogonalité et du précodage
"Dirty Paper". Puis, les réseaux ad hoc a haute densité de nceuds sont ex-
aminés. Dans ces réseaux de grande dimension, la coopération est introduite
a travers une approche de clusters coopératifs. En utilisant des outils de la
théorie des matrices aléatoires et des probabilités libres, la capacité asymp-

il
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totique du réseau est analysée quand la densité de nceuds augmente.

Cette thése montre que la capacité de lien dans les réseaux ad hoc sans
fil denses peut étre améliorée, lorsque les nceuds sont dotés de capacités
de coopération a la couche physique, et les stratégies de coopération sont
efficacement concues.



Contents

English Abstract . . . . . . ... .. .. i
French Abstract . . . . . . . . . . . .. ... ... ... . iii
List of Figures. . . . . . . . . . . . . ... ... ix
Acronyms . . . . . ... xi
Notations . . . . . . . .. . xiii

1 French Summary 1
2 Introduction 21
2.1 Overview and Motivations . . . . . .. ... .. .. .. .... 22
2.1.1 Factors Enhancing Ad Hoc Networks Performance . . . 23

2.1.2  Small Cooperative Networks . . . . . .. .. ... ... 25

2.1.3 Large Cooperative Networks . . . . . . .. ... .. .. 27

2.2 Contributions . . . . . .. ... Lo o 28
221 Chapter 3 . . . . . . ... 28

2.2.2 Chapter4 . . .. .. .. . ... 31

223 Chapterd . . . . . ... 32

2.3 Publications . . . . . ... oo 34

3 Factors Improving Ad Hoc Networks Performance 37
3.1 Imtroduction . . . . . . . ... 38
3.1.1 Antenna Directivity and Beamforming . . . . . .. .. 39

3.1.2 Node Mobility . . . . .. .. ... ... oL 40

3.1.3 Node Positioning . . . . . . . ... ... ... ... 41

3.1.4 Cooperation and Virtual MIMO . . . . ... ... ... 42

3.2 Antenna Directivity impact . . . . . ... ... ... ... 42
3.2.1 Introduction . . . . . . . ... ... 42

3.2.2 System Model . . . . .. ... ... ... ... 44

3.2.3 Performance Analysis . . . . . .. .. ... ... .... 49



Contents

3.2.4 Numerical Results . . .. .. ... ... .. .. ... o1
3.25 Conclusion . . . . .. ... Lo 53
3.3 Node Positioning Impact . . . . .. ... ... ... ... ... o7
3.3.1 Imntroduction . . . . . ... ... ... ... a7
3.3.2 System Model . . . . ... .. ... ... ........ 58
3.3.3 Analysis . . . ... 60
3.3.4 Simulations and Results . . . . . ... ... ... ... 64
3.3.5 Conclusion . . . . .. ... Lo 66
3.4 Conclusion . . . . .. . ... e 69
3.A Proof of CIR expression . . . . .. .. ... .. ... ..... 70
3.B Proof of Proposition 1 . . . . . .. ... ... ... ... ... 71
Cooperation in Small Dimension Networks 73
4.1 Introduction . . . . . . . ... 74
4.1.1 Motivation . . . . . . ... Lo 74
4.1.2 Contribution . . . . ... ... o000 76
4.1.3 Related work . . . . ... ... ... ... .. 81
4.2 System Model . . . . . . .. ..o 83
4.3 Precoding Method . . . .. ... ... ... L. 85
4.3.1 Linear Precoding . . . . . .. ... ... ... .. ... 85
4.3.2 Dirty Paper Precoding . . . . . .. ... .. ... ... 85
4.4 Performance Analysis . . . . . . . ... ... 86
4.4.1 Orthogonal Interference-Free RDF and PDF . . . . . . 86
4.42 Linear NCRDF . .. ... ... ... . ... ...... 87
4.4.3 Dirty Paper NCPDF . . . . . ... ... ... ... .. 88
4.5 Numerical Results . . . . . ... ... ... 0. 89
4.5.1 Average Throuhputs . .. . ... ... ... ... ... 89
4.6 Conclusion . . . . . . . . ... L e 90
Cooperation in Large Dimension Networks 93
5.1 Introduction . . . . . . . ... .. 94
5.1.1 Motivation . . . . . . .. ... 94
5.1.2  Contribution . . . . ... .. ... 98
5.1.3 Related works . . . . ... ... oo 99
5.2 System Model . . . . . . . ... oo 100
5.2.1 Multi-Hop MIMO Relay Network . . . ... ... ... 100
5.2.2  Mutual Information . . . . . . .. ... ... ..., 104

5.3 Asymptotic Mutual Information . . . . . . ... ... ... .. 105



Contents vii

5.4 Optimal Transmission Strategy at Source and Relays . . . . . 107
5.5 Application to MIMO Communication Scenarios . . . . . . . . 109
5.5.1 Uncorrelated Single-Hop MIMO with Statistical CSI
at Source . ... ... 109

5.5.2  Correlated Single-Hop MIMO with Statistical CSI at
SOUICE . . . v v v o e s e e e e 111

5.5.3  Uncorrelated Multi-Hop MIMO with Statistical CSI at
Source and Relays . . . .. ... ... ......... 112

5.5.4 Exponentially Correlated Multi-Hop MIMO with Sta-
tistical CSI at Source and Relays . . . . .. ... ... 113
5.6 Numerical Results. . . . ... ... ... .. ... ....... 118
5.6.1 Uncorrelated Multi-Hop MIMO . . . . ... ... ... 119
5.6.2 One-Sided Exponentially Correlated Multi-Hop MIMO 119
5.7 Conclusion . . . . . . . . ... 120

5.A  Useful results from Random Matrix Theory and Free Proba-
bility Theory . . . . . . . . ... 128
5.A.1 Transforms . .. ... ... .. ... .. ........ 128
5,A2 Lemmas . . . .. . ... . ... ... 128
5.A.3 Proofsof Lemmas. . . . ... ... ... ........ 131
5.B Proof of Theorem 1 . . . . . . . ... ... ... ... ..... 138
5.C Proof of Theorem 2 . . . . . . . .. ... ... ... ...... 146
6 Conclusion and Perspectives 151

Bibliography 155



Contents




List of Figures

1.1
1.2

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
2.9

2.6

Réseaux coopératifs de petites dimensions . . . . . . . .. ..
Réseau de clusters coopératifs multi-sauts . . . . . . ... ..

2D-Network . . . . . . . .
Dynamic blind beamforming with N =3 . . . .. ... .. ..
Transmission between S; and D; . . . . . .. .. ... L.
Comparison of Network Capacities For Different Rotational

SCENATiOS . . . v v v e e e e e
Average Network Capacity versus N . . . . . .. .. ... ...
Average Network Connectivity versus Density . . . . . .. ..
Relaying Clusters . . . . . . .. .. ... ... ... ...
Capacity in function of the number of scatterers . . . . . . ..
Contribution to SNR of scatterers vs. their position . . . . . .

Small dimension cooperative networks . . . . ... ... ...
Orthogonal Strategies . . . . . . . . ... ... ... .. ....
Time Division Channel Allocation . . . . . . . ... ... ...
Combination strategies . . . . . . . . .. ... ... ... ...
Throughputs for RDF and LNC . . . .. ... ... .. ....
Throughputs for PDF and NC-DPC . . . . . .. ... ... ..

Multi-hop Relaying System . . . . . . .. ... ... .. .. ..
Instantaneous Mutual Information, 10 antennas . . . . . . . .
Instantaneous Mutual Information, 100 antennas . . . . . . . .
Instantaneous Mutual Information, SNR=10dB . . . . . . ..
Instantaneous Mutual Information with Exponential Correla-

tions, 10 antennas . . . . . . . . . . . ...
Instantaneous Mutual Information with Exponential Correla-

tions, 100 antennas . . . . . . . . . ... ...

X



List of Figures

5.7 Instantaneous Mutual Information, SNR=10dB . . . ... .. 127



Acronyms

Here are the main acronyms used in this document. The meaning of an
acronym is usually indicated once, when it first occurs in the text.

AF
AODV
ARQ
AWGN
BC
BER
BTS
cC
CDMA
cf.

CF
CIR
CSI
CSIT
DF
DFT
DMT
DPC
DSR
EVD
e.g.
FIR
FPT
i.e.

iid.

Amplify and Forward

Ad-hoc On-Demand Distance Vector Routing
Automatic Repeat Request

Additive White Gaussian Noise
Broadcast Channel

Bit Error Rate

Base Transceiver Station

Coded Cooperation

Code Division Multiple Access

confer

Compress and Forward

Channel Impulse Response

Channel State Information

Channel State Information at Transmitter
Decode and Forward

Discrete Fourier Transform
Diversity-Multiplexing Tradeoff

Dirty Paper Coding

Dynamic Source Protocol

EigenValue Decomposition

exempli gratia

Finite Impulse Response

Free Probability Theory

id est

independent and identically distributed

X1



patl

Acronyms

MAC
MANET
MCN
MIMO
MISO
NAF
NC
OLSR
PDF
RDF
RMT
SINR
SISO
SNR
SOPRANO
STC
SVD
TR
TDMA
ULA
UMTS
UWB
WLAN
WSN
ZRP

Multiple Access Channel

Mobile Ad hoc NETworks

Multi-hop Cellular Network
Multiple-Input Multiple-Output
Multiple-Input Single-Output
Non-orthogonal Amplify and Forward
Network Coding

Optimized Link State Routing Protocol
Parallel Decode and Forward
Repetition Decode and Forward
Random Matrix Theory
Signal-to-Interference-plus-Noise Ratio
Single-Input Single-Output
Signal-to-Noise Ratio

Self-Organizing Packet Radio Networks with Overlay
Space-Time Code

singular value decomposition

Time Reversal

Time Division Multiple Access

Uniform Linear Array

Universal Mobile Telecommunications System
Ultra WideBand

Wireless Local Area Network

Wireless Sensor Network

Zone Routing Protocol



Notations

Here is a list of the main notations and symbols used in this document. We
have tried to keep consistent notations throughout the document, but some
symbols have different definitions depending on when they occur in the text.

General Notations

o =

Set of real numbers
Set of complex numbers

Scalar variable

Vector variable

Matrix variable

identity matrix of size N

Complex conjugate operator

Transpose operator

Hermitian transpose operator

Trace of a matrix

Determinant of a matrix

(i, 7)-th entry of matrix Ay

Eigenvalues of n x n matrix A

Operator norm of matrix A: ||A| £ /max; Ayua (4)
Frobenius norm of matrix A: |Allr = tr(AHFA) =
Zz’,j |ai;|®

Non-commutative matrix product: ®f\;1 A, 2 A A, Ax

Convolution operator
Logarithm in base 2

xiil



xiv Notations

In Logarithm in base e

u(-) Unit-step function: u(z) =0ifz <0;u(x)=1ifz >0

1{-} Indicator function: 1{X}=1if X true; 1{X} =0 if X false

K(m) Complete elliptic integral of the first kind:
K(m) £ [ 7\/%

0 f(n) =o(g(n)) means that lim, % =0

O f(n) = O(g(n)) means that there exists a constant ¢ and an
integer N such that for n > N, |f(n)| < c|g(n)|

w #(n) = w(g(n)) means that g(n) = o(f(n))

Q f(n) = Q(g(n)) means that g(n) = O(f(n)

© f(n) = O(g(n)) means that f(n) = O(g(n)) and g(n) =

Pr{-}
E[]
H(")
Z(5)

O(f(n))

Probability of an event
Statistical expectation
Entropy

Mutual information

Chapter 3: Non-cooperative Networks

{

Complementary integer of i in set {1,2}, e.g. if i = 1,7 =2

Chapter 4: Small Cooperative Networks

fi

precoding function at source 5;

Chapter 5: Large Cooperative Networks

Fa(:)

fal)

Empirical eigenvalue distribution of square matrix A with real
eigenvalues

Probability density function of the eigenvalues of square ma-
trix A with real eigenvalues



Chapter 1

French Summary




2 Chapter 1 French Summary

Introduction et Motivations

Les réseaux ad hoc sont des réseaux sans fil fixes ou mobiles sans infras-
tructure, dans lesquels le transfert d’information repose sur la capacité des
neeuds sans fil & relayer les données les uns pour les autres. Ces réseaux se
distinguent ainsi des réseaux a infrastructure, tels que les réseaux cellulaires
oll une station de base centralise les communications des nceuds sans fil situés
dans une cellule, ou les réseaux sans fil locaux (WLAN) ou un point d’accés
gere les connections entre les nceuds sans fil. Ces réseaux dynamiques ont la
particularité de s’auto-organiser et de pouvoir se déployer avec une grande
flexibilité et autonomie sur des terrains improvisés, les rendant appropriés
pour des systémes de communication de défense et d’urgence. Historique-
ment, les réseaux ad hoc comptent parmi leurs applications le déploiement sur
champs de bataille, les interventions de secours, le déploiement d urgence en
cas de catastrophe naturelle ayant causé la destruction de 'infrastructure de
communication préexistante. Récemment, le développement des réseaux de
capteurs sans fil (WSN) et des WLAN IEEE 802.11 (WiFi) — norme possé-
dant un mode peer-to-peer permettant a des appareils sans fil de se connecter
les uns aux autres — ont encouragé 1’émergence d’idées d’applications com-
merciales des réseaux ad hoc, tels que les réseaux locaux de jeux, les réseaux
mesh communautaires, les réseaux véhiculaires sur voie, ’extension de cou-
verture des réseaux cellulaires a travers des réseaux hybrides (cellulaire-ad
hoc). De nombreuses idées sur les réseaux hybrides, mixant réseaux cellu-
laires et schémas multi-saut, ont d’ailleurs commence & apparaitre [3, Multi-
hop Cellular Network (MCN)], [4, iCAR], [5, Self-Organizing Packet Radio
Networks with Overlay(SOPRANO)|. Réseaux ad hoc et cellulaires furent
combinés dans I'espoir que la mise en commun des avantages des deux sché-
mas permettrait d’étendre la couverture des cellules tout en supportant des
topologies dynamiques [3|, d’augmenter la scalabilité et la robustesse des sys-
témes ad hoc purs, et d’équilibrer la charge dans les réseaux cellulaires [4].
Toutefois, ces travaux traitent essentiellement de problématiques de routage.

Les changements de topologies dynamiques et imprédictibles dans les
réseaux ad hoc ont déclenché des travaux de recherche extensifs sur les
couches hautes, principalement sur les protocoles de routage permettant une
adaptation rapide dans les réseaux ad hoc mobiles (MANETS) extrémement
dynamiques. Traditionnellement, les protocoles de routage dans les MANETS
étaient focalisés sur la minimisation du nombre de sauts, approche qui ne
prend pas en compte la qualité du lien et conduit & des routes de capac-



ité bien moindre que celles des chemins de haute qualité disponibles dans le
réseau [6]. Dans [1], les limites théoriques sur le débit des réseaux ad hoc
furent dévoilées, puis confirmées de maniére pratique par des simulations et
expériences dans [2|. Dans [1], considérant un réseau ad hoc de n noeuds
capable de transmettre a W bits/seconde, et distribués aléatoirement sur un
disque d’aire unitaire, il fut montré que le débit par nceud décroit comme

© <\/7KW) bits/seconde quand le nombre de nceuds n augmente. En effet,
dans les réseaux ad hoc denses, la ressource sans fil doit étre partagée entre les
transmissions concurrentes d’'un grand nombre de noeuds sans fil, et par con-
séquent, les performances sont limitées par l'interférence. Les transmissions
sans fil de chaque nceud doivent donc étre confinées au voisinage du nceud,
requérant donc le multi-saut pour que l'information circule de la source a
la destination. Il en résulte que la plupart des transmissions dans le réseau
transportent des données relayées, ce qui conduit & une diminution impor-
tante du débit total. Cependant, cette décroissance du débit est obtenue sous
des hypotheéses spécifiques sur le mode de transmission & la couche physique:
transmissions point & point multi-saut entre des noeuds sans fil fixes équipés
d’antennes omnidirectionnelles et transmettant leurs signaux indépendam-
ment les uns des autres sans aucune interaction coopérative entre les noeuds.
Sachant que la performance & la couche physique est une borne supérieure
pour les performances aux couches plus hautes, la question suivante se pose
naturellement:
e Est-il possible d’améliorer les performances en termes de capacité de
lien dans les réseaux ad hoc sans fil, en utilisant des techniques plus
avancées a la couche physique ?

e Quels sont les facteurs a la couche physique permettant d’améliorer la
capacité de lien, et quelles sont leurs limites?

Facteurs Améliorant les Performances des Reseaux Ad
Hoc Networks

Il a été montré que plusieurs facteurs a la couche physique permettent d’améliorer
les performances dans les réseaux ad hoc, dont la directivité des antennes,

la mobilité des noeuds , le positionnement des nceuds , la coopération et les
systémes d’antennes multiples (MIMO) virtuels.
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Les Antennes Directionnelles peuvent étre utilisées de maniére adap-
tative pour améliorer la fiabilité des transmissions et diminuer I'interférence
[7-11]|. En effet, si les nceuds ont de I'information sur leur topologie locale,
la formation de faisceaux ou la sectorisation de la puissance de transmission
peuvent étre utilisées pour focaliser la puissance transmise dans la direction
de leur destination. Ainsi, la probabilité de causer de l'interférence a un
récepteur autre que la destinataire souhaité diminue. Néanmoins, la con-
naissance de la position du récepteur est nécessaire au transmetteur pour
pouvoir focaliser le faisceau de transmission dans la bonne direction. Dans
des réseaux a haute mobilité, traquer la position d’un grand nombre de nceuds
requiére un feedback non-négligeable qui augmente 1’overhead du protocole
de transmission [12-14|. Par conséquent, dans les réseaux ad hoc, on consid-
ére en général des antennes omnidirectionnelles, malgré leur impact négatif
sur l'interférence. Le Chapitre 3 traite, entre autres, de la problématique
suivante :

e Est-il possible de tirer bénéfice de la directivité des antennes ou de la
formation de faisceau dans les réseaux ad hoc denses, tout en évitant
la surcharge due au feedback?

La Mobilité des noeuds permet également d’améliorer la capacité des
réseaux ad hoc sans fil [15,16]. En permettant aux nceuds sans fil de se
déplacer, un scaling constant du débit peut étre obtenu quand le nombre de
nceuds augmente. L’idée consiste a exploiter la diversité multi-utilisateurs
par le relayage de paquets dans un réseau dense : une source divise son flux
de paquets entre plusieurs nceuds sans fil mobiles qui vont jouer le role de
relais et livrer le paquet qu’ils transportent dés qu’ils passent & proximité
de la destination. Leur mouvement rend les noeuds relais équivalents a des
nceuds dont les canaux vers la source et vers la destination varient dans le
temps. Le nombre de nceuds dans le réseau étant grand, a chaque instant
la probabilité qu’un nceud relai soit proche de la source et donc regoive un
nouveau paquet a transporter est grande, ainsi que la probabilité qu’un nceud
soit proche de la destination et livre un paquet. Il résulte de la mobilité que
I'interférence dans le réseau est diminuée, que le nombre de sauts qu’un
paquet doit traverser est réduit a deux, et que le débit est considérablement
augmenté. Néanmoins, ce scaling constant du débit dans les réseaux ad hoc
mobiles fut obtenu sous I’hypothése d’applications tolérant de larges délais.
Dans [17], le compromis débit-délai est analysé dans les réseaux mobiles, et



il est montré que le délai requis pour supporter un scaling constant du débit
dépend de la vitesse des nceuds sans fil: le délai augmente quand la vitesse
diminue, ralentissement qui se produit quand le réseau devient de plus en
plus bondé en raison d’une densité croissante. Cette observation souléve la
question de savoir s’il est possible, par d’autres facteurs, d’améliorer le débit
dans les réseaux ad hoc sans un délai de plus en plus élevé.

Le positionnement et le nombre de noeuds relais supportant la com-
munication d’une paire source-destination ont un impact sur la capacité d’un
réseau de relais [18-22]. Lorsqu’une seule paire source-destination dans le
réseau est active, et que tous les autres nceuds relaient les données de la
source, la contribution des relais a la capacité et le scaling de la capac-
ité quand le nombre de nceuds augmente peuvent étre analysés. Dans le
Chapitre 3, les questions suivantes sont examinées :

e Comment la capacité de lien croit-elle avec le nombre de relais aidant
une paire source-destination?

e Quel est I'impact de la topologie du réseau, en particulier de la position
des nceuds relais, sur la capacité de lien?

e Quel est I'impact de I’environnement physique, a travers les réflexions,
les atténuations et délais de propagation... sur la capacité de lien?

La coopération et le MIMO virtuel peuvent également contribuer a
I’amélioration des performances dans les réseaux ad hoc sans fil. Dans les
modéles mentionnés précédemment, on considérait que les nceuds agissaient
indépendamment et la coopération était limitée a une réexpédition passive :
les nceuds n’interagissaient pas, mais pouvaient simplement transférer leur
signal recu. Si des techniques de traitement plus avancées sont envisagées
a la couche physique et les nceuds peuvent coopérer, on peut prévoir que
les performances des réseaux ad hoc seront améliorées. En effet, dans les
systémes de communication point & point, les techniques MIMO permettent,
d’améliorer la fiabilité des communications grace aux gains de diversité spa-
tiale, et d’augmenter 'efficacité spectrale grace aux gains de multiplexage.
Ainsi, lorsqu’on considére un réseau de noeuds sans fil ou les nceuds peu-
vent, coopérer pour transmettre conjointement de 'information, un systéme
MIMO virtuel peut étre construit de maniére distribuée, et la coopération
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peut permettre ’exploitation des gains MIMO. Dans les Chapitres 4 et 5, les
problématiques suivantes sont traitées :

e Comment faut-il concevoir les stratégies de coopération pour améliorer
le débit des réseaux ad hoc, tout en utilisant la ressource sans fil de
maniére efficace?

e Que peut-on dire de la capacité d’un grand réseau coopératif multi-
sauts, ol les noeuds sans fil ont des aptitudes au MIMO virtuel?

Réseaux Coopératifs de Petites Dimensions

Un systéme de communications coopératives est constitué lorsque des nceuds
sans fil distribués interagissent pour transmettre conjointement de I'information.
Plusieurs terminaux radio relayant les signaux les uns des autres forment un
réseau d’antennes virtuel, et leur coopération permet d’exploiter la diversité
spatiale des canaux a évanouissement, qui prend alors le nom de diversité
coopérative. Les stratégies de coopération furent dans un premier temps
congues pour des réseaux de petites dimensions, représentant les briques élé-
mentaires pour la construction de réseaux ad hoc de plus grandes dimensions.
Les réseaux coopératifs de petites dimensions les plus basiques sont :

e le canal a relai (relay channel), c¢f. Fig. 1.1(a) : une paire source-
destination aidée par un relai ;

e le canal a interférence coopératif (cooperative interference channel), cf.
Fig. 1.1(b) : deux paires source-destination coopérant a la transmission
et/ou a la réception.

Une pléthore de stratégies de coopération ont été proposées pour le canal
a relai ou le canal a interférence coopératif [23,24], les plus célébres étant
Amplify and Forward (AF), Decode and Forward (DF) et Compress and
Forward (CF) [25]. La différence entre ces stratégies réside dans le traitement
réalisé au nceud relai avant qu’il ne retransmette (cf. Chapitre 4).

La plupart des stratégies de coopération ont été concues de telle sorte
que la contrainte pratique de semi-duplex soit respectée: un terminal radio
ne peut pas transmettre et recevoir simultanément dans la méme bande de
fréquence, car la puissance du signal recu est trés basse par rapport a la
puissance du signal transmis. Un nceud relai utilise donc des canaux orthog-
onaux pour recevoir un signal de la source, et pour transmettre son signal



S > D
(a) Canal & relai: une source, un relai, une (b) canal & interférence coopératif: deux
destination sources coopérant et deux destinations

Figure 1.1: Réseaux coopératifs de petites dimensions

relayé. Par exemple, dans le canal a relai en Fig. 4.1(a), les transmissions
sont, réparties en deux blocs : dans le premier bloc, la source transmet et
le relai et la destination regoivent ; dans le second block, le relai transmet
son signal relayé et la destination recoit. Dans le cas du canal a interférence
coopératif en Fig. 4.1(b), en général le schéma de transmission a deux blocs
du canal a relai est simplement étendu a un schéma de transmission a quatre
blocs [25] en répétant le schéma & deux blocs deux fois : un premier schéma
a deux blocs pour la transmission de la source S; relayée par Ss, suivi d’un
second schéma a deux blocs pour la transmission de la source Sy relayée
par S;. Non seulement le schéma de transmission coopératif résultant re-
specte la contrainte de semi-duplex, mais il permet également d’éviter toute
interférence. Cependant, bien que I'utilisation de canaux orthogonaux sans
interférence pour les transmissions respectives de la source et du relai sim-
plifie les algorithmes de réception, elle résulte également en une utilisation
inefficace de la bande spectrale. En effet, seule la moitié des degrés de liberté
est utilisée pour la transmission vers chaque destination. Une idée naturelle
pour utiliser les degrés de liberté plus efficacement consisterait donc a relaxer
la contrainte d’orthogonalité, mais un obstacle apparait alors : la relaxation
de la contrainte d’orthogonalité conduirait a l'introduction d’interférences
dans le systéme.

Compte tenu de ces observations, nous examinons dans le Chapitre 4 les
questions suivantes :
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e Peut-on améliorer I'efficacité spectrale des stratégies de coopération en
relaxant la contrainte d’orthogonalité, tout en continuant & respecter
la contrainte de semi-duplex?

e Comment peut-on mitiger l'interférence due a la relaxation de la con-
trainte d’orthogonalité?

Réseaux Coopératifs de Grandes Dimensions

Les lois d’échelle — peu encourageantes — du débit dans les réseaux ad
hoc denses dérivées dans [1] soulévent la question de savoir si les réseaux ad
hoc sont appropriés uniquement pour un petit nombre de nceuds ou pour un
déploiement dans une zone limitée, ou si les communications coopératives
a la couche physique peuvent permettre de déployer les réseaux ad hoc de
maniére viable pour un grand nombre de nceuds . [1| a ainsi ouvert la voie
a des travaux de recherche récents sur les lois d’échelle dans les réseaux ad
hoc ou les nceuds ont des aptitudes MIMO [26-37].

Dans un réseau ad hoc idéal — mais irréaliste, tous les nceuds pourraient
parfaitement coopérer a grande échelle, et la capacité du réseau croitrait
comme dans un grand systéme MIMO parfait : linéairement avec le nom-
bre d’antennes [38]. Une approche plus réaliste, et toutefois pleine de sens,
consiste a grouper les noeuds du réseau en clusters coopératifs : les nceuds ap-
partenant a un cluster coopératif coopérent pour former un réseau d’antennes
virtuel et transmettre ou recevoir conjointement 'information destinée a ou
provenant d’autres clusters. Des communications multi-sauts ont alors lieu
entre les clusters coopératifs, au lieu de simples noeuds comme c’était le cas
dans [1]. Grace a I'approche coopérative, certaines transmissions qui appa-
raissaient comme de l'interférence dans [1| sont maintenant vues comme des
signaux utiles pouvant étre traités conjointement par les nceuds d’un cluster.

Un réseau ad hoc dense est un systéme trés complexe, dont les métriques
de performance impliquent un grand nombre de variables et de paramétres.
Cependant, les simulations extensives ne sont heureusement pas les seuls
moyens de gagner une certaine intuition sur la fagon dont les performances
du systéemes évoluent lorsque ses dimensions augmentent. Récemment, les
théories des matrices aléatoires (RMT) et des probabilités libres (FPT) sont
apparues comme des théories appropriées pour I'analyse et la conception de
systémes de communication complexes, et pour révéler les paramétres perti-
nents impactant leurs performances [39]. En effet, le transfert d’information



dans un systéme de communication peut souvent étre modélisé par une équa-
tion matricielle aléatoire de la forme y = Hx+z, ot X est le vecteur d’entrée,
y le vecteur de sortie, z le vecteur de bruit, et H la matrice de transfert du
systéme. Pour un tel systéme, il s’avere que la plupart des métriques de
performance issues de la théorie de I'information dépendent uniquement des
valeurs et vecteurs propres de la matrice de transfert H. RMT et FPT four-
nissent des résultats utiles sur les valeurs et vecteurs propres de matrices
aléatoires de grandes dimensions, qui peuvent étre appliqués a ’analyse de
systémes de communication de grandes dimensions. La théorie des matrices
aléatoires émergea avec les travaux de Wishart [40], Wigner [41], et Marc¢enko
et Pastur [42], et était historiquement utilisée en physique, avant de I'étre
dans de nombreux autres domaines. Dans les communications sans fil, RMT
fut d’abord utilisée pour analyser les performances des systémes de commu-
nications & antennes multiples, par exemple dans [38,43-45]|, et des systémes
CDMA, par exemple dans [46-48|.

Dans le Chapitre 5, un réseau ad hoc dense ot les nceuds sont groupés en
clusters coopératifs est considéré, et les questions suivantes sont traitées en
utilisant des outils de RMT, FPT et de I'algébre linéaire :

e Quelle est la capacité asymptotique du systéme de clusters coopératifs
quand le nombre de noeuds dans tous les clusters croit?

e Quels sont les paramétres pertinents impactant la capacité du systéme?

e Comment les nceuds dans un cluster coopératif doivent-il traiter et
transmettre coopérativement leurs signaux afin de maximiser la capac-
ité du systéme?

Contributions

Chapitre 3

La contribution du Chapitre 3 est double. La premiére partie traite de
I'impact de la directivité des antennes sur le débit et la connectivité d’un
réseau dense avec un grand nombre de paires source-destination. La seconde
partie analyse I'impact du positionnement et du nombre de noeuds relais
passifs sur la capacité d’un systéme ot un grand nombre de nceuds relais
soutiennent la communication d’une paire source-destination.
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Dans la Section 3.2, un réseau dense de paires source-destination, ou les
sources sont équipées d’antennes directives, est considéré. La premiére con-
tribution de la Section 3.2 est la proposition d’un schéma de formation de
faisceaux dynamique et aveugle, permettant de tirer profit de la directivité
des antennes dans un réseaux décentralisé, tout en évitant le lourd feedback
pour traquer la position des noeuds . Le systéme est dynamique et aveugle
car une source pointe son antenne directive successivement dans toutes les
directions pour viser stirement mais aveuglement sa destination sans con-
naitre sa position exacte. On montre que la directivité rotationnelle a un
impact positif sur la réduction d’interférence, et donc sur la capacité : en
focalisant sa puissance de transmission successivement, dans toutes les direc-
tions, la probabilité qu’une source interfére avec les autres destinations, i.e.
que son signal atteigne une destination non-désirée en méme temps que cette
derniére regoit un signal de sa propre source, est faible en raison de la focali-
sation spatiale et de ’asynchronisme de toutes les transmissions. Néanmoins,
la directivité rotationnelle introduit un délai : lorsqu’une source ne transmet
pas dans la direction de sa destination, du temps et de la puissance sont
gachés. Ces deux effets opposés conduisent & un compromis capacité-délai
lorsqu’on ajuste le nombre de rotations.

La deuxiéme contribution de la Section 3.2 est l'analyse du débit du
réseaux avec le schéma de formation de faisceaux dynamique et aveugle, et
la comparaison au cas classique ot les sources sont équipées d’antennes om-
nidirectionnelles. On montre que lorsque la densité du réseau augmente, le
schéma de formation de faisceaux dynamique et aveugle surpasse les transmis-
sions omnidirectionnelles. En effet, lorsque la densité du réseau augmente,
la principale limitation au débit est due l'interférence et des faisceaux de
transmission plus étroits sont nécessaires pour réduire l'interférence. Cepen-
dant, quand les faisceaux deviennent plus étroits, un nombre plus grand de
rotations de I’antenne source est nécessaire pour couvrir tout 1’espace, ce qui
conduit a un délai accru. Pour une densité de réseau donnée, le compromis
entre réduction d’interférence et augmentation du délai résulte en une largeur
de faisceau optimale et un nombre de rotation optimal maximisant le débit
du réseau.

La troisiéme contribution de la Section 3.2 est la définition d’un nouveau
critére de connectivité lié au débit (throughput-connectivity), critére qui per-
met de prendre en compte 'interférence et 'accés partagé a la ressource sans
fil par les différents nceuds du réseau. Ce critére de connectivité est défini
pour un taux de transmission cible R comme étant la proportion de paires
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dans le réseau auxquelles un débit R peut étre garanti. Pour un débit cible
R, le nombre de rotations et la largeur de faisceau maximisant la connectivité
dépendent de la densité du réseau.

Dans la Section 3.3, un systéme ol une source communique avec une des-
tination avec I’aide d’un réseau dense de relais passifs est examiné. Les relais
sont modélisés comme de simples diffuseurs omnidirectionnels, i.e. des nceuds
passifs sans capacités d’ingénierie qui reflétent simplement de maniére diffuse
I’onde électromagnétique incidente provenant de I’antenne source. La pre-
miére contribution de la Section 3.3 est la formulation d’un modéle prenant
en compte I’environnement physique a travers les réflexions, les atténuations,
les délais et la multiplicité des voies. Il est montré que ce systéeme de relayage
asynchrone peut étre modélisé comme un canal virtuel a voies multiples, ot le
gain de chaque voie résulte de la combinaison des contributions au signal des
relais appartenant a un méme cluster de relayage. Les clusters de relayage
sont définis par la topologie et les propriétés de la transmission, telles que la
bande.

La deuxiéme contribution de la Section 3.3 est la dérivation de la capacité
du systéme et son analyse lorsque le nombre de nceuds relais augmente. Il
s’avere que la capacité sature quand le nombre de nceuds augmente : au-dela
d’un certain nombre de nceuds relais, I'essentiel de la puissance qui pouvait
étre récupérée a la destination grace aux contributions des relais a déja été
collecté — d’ou une saturation, et ’augmentation de la capacité due a des
voies tardives résultant de retransmissions venant de nceuds éloignés devient
négligeable. Attendre les retransmissions provenant de nceuds trés éloignés
de la source et de la destination n’en vaut pas la peine.

La troisiéme contribution de la Section 3.3 est I’évaluation de I'impact
de la position des relais sur leur contribution a la capacité. Des résultats
numeériques montrent que quelques noeuds bien positionnés, a proximité de
la source ou de la destination, conduisent & de meilleures performances qu'un
plus grand nombre de noeuds répartis uniformément entre la source et la des-
tination. Dans les contributions du Chapitre 3, aucune interaction coopéra-
tive entre les nceuds , autre qu’un relayage passif, n’était considérée. Les
contributions des Chapitres 4 et 5 mettent ’accent sur les performances des
réseaux ad hoc ou les nceuds ont des capacités coopératives plus avancées.

Les travaux du Chapitre 3 ont été publiés en partie dans :

e "Improving Ad Hoc Networks Capacity and Connectivity using Dy-
namic Blind Beamforming", N. Fawaz, Z. Beyaztas, M. Debbah, D.
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Gesbert, In Proc. of the 67th IEEE Vehicular Technology Conference,
VTC Spring 2008, May 11-14th 2008, Singapore

e "Capacity and Positioning in Dense Scattering Environments", N. Fawaz,
M. Debbah, D. Gesbert, In Proc. of the 8th IEEE Workshop on Signal
Processing Advances in Wireless Communications, SPAWC 2007, June
17-20th 2007, Helsinki, Finland

e "Capacity of Dense Scattering Environments", N. Fawaz, M. Debbah,
D. Gesbert, In Proc. of IRAMUS Workshop, Jan. 25-26th 2007, Val-
Thorens, FRANCE

Chapitre 4

Dans le chapitre 4, le canal a interférence coopératif est étudié dans le cas
de coopération a la transmission. La premiére contribution du Chapitre 4
est le développement de nouvelles stratégies de coopération plus efficaces
spectralement que les stratégies Decode and Forward classiques. Les straté-
gies proposées relaxent la contrainte d’orthogonalité, tout en préservant la
contrainte de semi-duplex, et permettent a tous les symboles transmis de
bénéficier de la diversité coopérative. Dans les stratégies proposées, la re-
laxation d’orthogonalité est inspirée du codage réseau et est réalisée en per-
mettant & un noeud de combiner les messages provenant de différentes orig-
ines dans un unique signal transmis, avec une allocation de puissance op-
timisée. Les stratégies proposées contrastent avec d’autres stratégies, dites
non-orthogonales, qui relaxent la contrainte d’orthogonalité en permettant
a plusieurs nceuds de transmettre simultanément. De telles stratégies non-
orthogonales ne permettent pas de garantir simultanément le respect de la
contrainte de semi-duplex et le gain de diversité coopérative pour tous les
symboles transmis.

La deuxiéme contribution du Chapitre 4 est l'introduction du codage
Dirty Paper (DPC) dans les stratégies coopératives proposées, afin de mit-
iger I'interférence résultant de la relaxation d’orthogonalité. En effet, chaque
source forme son signal transmis en combinant son propre message avec le
message de 'autre source, chacun des messages combinés étant destiné a un
récepteur différent. Les messages combinés représentent donc de I'interférence
I’'un pour 'autre. Cependant, cette interférence est connue au transmetteur,
et peut donc étre mitigée par un codage Dirty Paper, technique spécialisée
pour la mitigation d’interférence connue a la transmission.
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La troisiéme contribution du Chapitre 4 est I’évaluation, en termes d’efficacite

spectrale, des mérites relatifs des stratégies coopératives proposées par rap-
port & ceux des stratégies coopératives classiquesRepetetion Decode and For-
ward et Parallel Decode and Forward. La comparaison montre que, grace a
une utilisation plus efficace de la bande, les stratégies proposées améliorent
le débit du réseau par rapport aux stratégies classiques.

Comme expliqué ci-dessus, le Chapitre 4 met 'accent sur ’amélioration
de Defficacité spectrale des stratégies coopératives dans des réseaux composés
d’un petit nombre de paires communicantes, tandis que le Chapitre 5 est
focalisé sur les performances du réseau quand le nombre de nceuds coopérant
croit.

Les travaux du Chapitre 4 ont été publiés en partie dans :

e "When Network Coding and Dirty Paper Coding Meet in a Cooperative
Ad Hoc Network", N. Fawaz, D. Gesbert, M. Debbah, in IEEE Trans.
on Wireless Communications, vol. 7, no. 5, May 2008

e "When Network Coding and Dirty Paper Coding Cooperate", N. Fawaz,
D. Gesbert, M. Debbah, In Proc. of the 9th IEEE Winter School on
Coding and Information Theory, March 12-16th 2007, La-Colle-sur-

Loup, France

Chapitre 5

Dans le Chapitre 5, un réseau ad hoc dense constitué d’un grand nombre
de paires source-destination communiquant avec 1’aide d’un grand nombre
de relais est considéré. Les nceuds sont regroupés en trois types de clusters
coopératifs : un cluster source, un cluster destination, plusieurs clusters relai.
Dans chaque cluster coopératif, les nceuds coopérent pour former un réseau
d’antennes virtuel, et interagissent pour recevoir ou transmettre conjointe-
ment de I'information. L’information circule du cluster source au cluster des-
tination en traversant une série de clusters relai intermédiaires. Ce systéme
forme un réseau de relayage MIMO virtuel multi-saut. Le canal a chaque
saut est modélisé par une matrice de canal & évanouissement par bloc cor-
rélée, et le traitement réalisé par chaque cluster est modélisé par une matrice
de précodage. Pour faciliter 'analyse, deux hypothéses simplificatrices sont
faites comme premiére étape vers une analyse future plus compléte : on sup-
pose que les noeuds dans un cluster constituent un réseau d’antennes virtuel
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Figure 1.2: Réseau de clusters coopératifs multi-sauts

parfait, et que les communications entre clusters relai ne sont pas affectées
par du bruit. Cependant, les signaux recus par les nceuds dans le cluster
destination sont altérés par du bruit.

La premiére contribution du Chapitre 5, résumée dans le Théoréme' 1 ci-
dessous, est la dérivation d’une expression explicite de I'information mutuelle
bout-en-bout instantanée asymptotique entre I’entrée au cluster source et la
sortie au cluster destination, quand le nombre de noeuds a tous les niveaux
croit avec un taux fini. En utilisant des outils de la théorie des matrices aléa-
toires et des probabilités libres, on montre que I'information mutuelle instan-
tanée par source converge vers une limite déterministe quand les dimensions
du systéme croissent. On montre que cette expression asymptotique est in-
dépendante de la réalisation du canal et dépend uniquement des statistiques
du canal. En outre, dans le régime asymptotique, la valeur asymptotique
de I'information mutuelle instantanée sert également de valeur asymptotique
pour l'information mutuelle moyenne. De plus, on montre que méme dans
le cas d’'un nombre de nceuds fini, le systéme se comporte comme dans le
régime asymptotique. Cette observation rend la formule asymptotique un
outil puissant pour gagner de l'intuition sur les performances du systéme,
méme lorsque les dimensions ne sont pas infiniment grandes.

Théoréme 1. Pour le systéeme de clusters coopératifs décrit en Section 5.2,
SUpPPoSons que

e [a destination a une connaissance parfaite du canal bout-en-bout Gy

'Le lecteur est renvoyé a la Section 5.2 pour la définition des notations impliquées dans
les Théorémes 1 et 2.
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e e nombre d’antennes a tous les niveaus ko, k1, . . ., ky tend vers l'infini,
tandis que :N — D, 1=0,....,N

o Vi€ {0,...,N}, quand k; tend vers Uinfini, MM, a une distribution
limite des valeurs propres a support compact.

Alors linformation mutuelle par neud source instantanée converge presque
strement vers

N

N
1 i 1
I.=—> pE [log (1+na“h§VAi)] ~- NS m (1.1)
Po =5 Pi Po i
ot any1 = 1 par convention, ho, hy, ..., hy sont les solutions du systéme de
N + 1 équations
N
VA, |
7=0 ai+1

et espérance E[-] dans (1.1) et (1.2) est prise sur A\;, dont la distribution
est la distribution asymptotique des valeurs propres of MM, Fyprg, (A).

La deuxiéme contribution du Chapitre 5, résumée dans le Théoreme 2 ci-
dessous, réside dans la dérivation de la structure des matrices de précodage
optimales a chaque cluster, maximisant 'information mutuelle bout-en-bout
moyenne sous I’hypothése d’une connaissance locale statistique du canal (lo-
cal statistical CST) aux clusters source et relai. Notre analyse montre qu’a
chaque cluster, les vecteurs singuliers a droite de la matrice de précodage
optimale sont alignés avec les vecteurs propres de la matrice de corrélation
de réception du canal au saut précédent, tandis que les vecteurs singuliers
a gauche de la matrice de précodage optimale sont alignés avec les vecteurs
propres de la matrice de corrélation de transmission du canal au saut suivant.

Théoréme 2. Considérons le systéeme de clusters coopératifs décrit en Sec-

. . . H H
tion 5.2. Pouri € {1,..., N}, soient Cy; = U iA i Up et Cry = Ur,iAr,iUm-
les décompositions en valeurs propres des matrices de corrélation de canal
C.i et C, i, 0u Uy, et U, ; sont unitaires et Ay, et A, ; sont diagonales, avec
leurs valeurs propres respectives classées par ordre décroissant. Alors, sous
les hypothéses de connaissance de canal Ag, A, et Aq, les matrices de pré-
codage linéaire optimales, mazrimisant [’information mutuelle moyenne sous
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les contraintes de puissance (5.6) sont données par :

Po=U; 1Ap,
P;=U,; 1 ApU" forie{l,...,N -1}

T

(1.3)

ot Ap, sont des matrices diagonales dont les elements diagonauzr sont réels et
positifs. En d’autres termes, les vecteurs singuliers des matrices de précodage
optimales sont alignés sur les vecteurs propres des matrices de corrélation
du canal. De plus, les vecteurs singuliers des matrices de précodage (1.3)
sont également ceur qui maximisent l’information mutuelle moyenne asymp-
totique. Comme l'information mutuelle moyenne asymptotique a la méme
valeur que l'information mutuelle instantanée asymptotique, les vecteurs sin-
guliers des matrices de précodage (1.3) sont finalement aussi optimauz pour
['information mutuelle instantanée asymptotique.

La troisiéeme contribution du Chapitre 5 est 'analyse de la capacité du
réseau dans plusieurs scenarios de communication, dans les cas de commu-
nication a saut unique ou multi-sauts, et de canaux décorrélés ou corrélés.
Il est montré que les résultats sur la capacité des systéemes MIMO dérivés
précédemment par d’autres auteurs [39, Section 3.3.2|, [39, Theorem 3.7|
peuvent étre retrouvés en appliquant nos résultats sur I'information mutuelle
asymptotique et la structure des précodeurs optimaux au cas de communica-
tions a saut unique. Nous fournissons également I’expression de la capacité
asymptotique dans le cas de communications multi-sauts avec des canaux
décorrélés ou a corrélation exponentielle, et nous montrons que le relayage
coopératif améliore la capacité par nceud source méme lorsque la taille du
réseau augmente.

Les travaux du Chapitre 5 ont été publiés en partie dans :

e "Asymptotic Capacity and Optimal Precoding Strategy of Multi-level
Precode & Forward in Correlated Channels", N. Fawaz, K. Zarifi, M.
Debbah, D. Gesbert, In Proc. of the IEEE Information Theory Work-
shop, ITW 2008, May 5-9th 2008, Porto, Portugal

et ont été soumis en tant que :

e "Asymptotic Capacity and Optimal Precoding in MIMO Multi-Hop
Relay Networks", N. Fawaz, K. Zarifi, M. Debbah, D. Gesbert, submit-
ted to IEEE Trans. on Information Theory, Dec. 2008.
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Conclusion et Perspectives

Dans cette thése, nous avons montré que la capacité de lien dans les réseaux
ad hoc sans fil denses peut étre améliorée, lorsque les noeuds sont dotés de
capacités de coopération a la couche physique, et les stratégies de coopération
sont efficacement concues.

Les travaux de recherche de cette thése peuvent étre poursuivis dans
plusieurs directions. Tout d’abord, les facteurs a la couche physique présen-
tés dans le Chapitre 3 ne sont probablement pas les seuls facteurs permet-
tant d’améliorer la capacité de lien dans les réseaux ad hoc sans fil dense,
en réduisant l'interférence. En effet, le retournement temporel a longtemps
été étudié comme méthode de focalisation d’une onde ultrasonique a la fois
dans le temps et ’espace, et de récents travaux ont commencé a envisager
I’application du retournement temporel aux systémes de communication sans
fil, en particulier aux systémes a ultra large bande. Dans les réseaux ad hoc
denses, la capacité de focalisation du retournement temporel pourrait per-
mettre de mitiger l'interférence et donc améliorer la capacité de lien.

D’autre part, la plupart des protocoles pour réseaux coopératifs mention-
nés dans les Chapitres 4 et 5 ont été concus et analysés dans le régime haut
SNR. Trés peu de travaux ont ciblé le régime bas SNR des réseaux de re-
layage. Dans le régime large bande, alternativement dénommé régime bas
SNR étant donné que la puissance est répartie sur un grand nombre de degrés
de liberté, les performances ne sont pas limitées par l'interférence, mais par
I’énergie. En tirant profit de la combinaison physique de signaux dans un lien
sans fil, le codage réseau analogique apparait comme une approche pertinente
dans le régime bas SNR. Dans ce régime, le codage réseau pourrait surpasser
d’autres approches cherchant essentiellement & éviter 'interférence, dont par
exemple la radio cognitive.

Enfin, I'analyse de la capacité de lien dans un réseau ad hoc coopératif
dense présentée dans le Chapitre 5 repose sur I’hypothése simplificatrice d’une
coopération parfaite a 'intérieur de chaque cluster. Les travaux de recherche
doivent étre poursuivis pour lever cette hypothése simplificatrice, et prendre
en compte le coit de la coopération intra-cluster sur les performances du
réseau, en particulier en termes de connaissance du canal et feedback. De
plus, une topologie particuliére a été considérée dans le Chapitre 5 : les
sources et les destinations pouvaient étre regroupées en un unique cluster
source et un unique cluster destination respectivement. Une analyse plus
compléte devrait fournir la capacité dans le cas de topologies plus générales.



18 Chapter 1 French Summary

Liste des Publications

Les travaux de recherche réalisés durant cette thése ont conduit aux pub-
lications listées ci-dessous.

e Journaux

— "Clip & Forward: Reaching the Min-Cut in Non-Coherent Wide-
band Multipath Fading Relay Channels", N. Fawaz, M. Médard,
in preparation for submission to IEEE Trans. on Information
Theory

— "On the Asymptotic Capacity of Opportunistic Interference Align-
ment MIMO Networks", S. Medina Perlaza, N. Fawaz, S. Lasaulce,
M. Debbah, in preparation

— "Asymptotic Capacity and Optimal Precoding in MIMO Multi-
Hop Relay Networks", N. Fawaz, K. Zarifi, M. Debbah, D. Ges-
bert, submitted to IEEE Trans. on Information Theory, 2008

— "When Network Coding and Dirty Paper Coding Meet in a Co-
operative Ad Hoc Network", N. Fawaz, D. Gesbert, M. Debbah,
in IEEE Trans. on Wireless Communications, vol. 7, no. 5, May

2008

Remarque : Deux papiers journaux n’ont pas encore été soumis, donc
les travaux de recherche correspondants, bien que proches de I’achévement,
n’ont pas été inclus dans ce manuscrit.

e Conférences

— "Improving Ad Hoc Networks Capacity and Connectivity using
Dynamic Blind Beamforming", N. Fawaz, Z. Beyaztas, M. Deb-
bah, D. Gesbert, In Proc. of the 67th IEEE Vehicular Technology
Conference, VT'C Spring 2008, May 11-14th 2008, Singapore

— "Asymptotic Capacity and Optimal Precoding Strategy of Multi-
level Precode & Forward in Correlated Channels", N. Fawaz, K.
Zarifi, M. Debbah, D. Gesbert, In Proc. of the IEEE Information
Theory Workshop, ITW 2008, May 5-9th 2008, Porto, Portugal



19

— "Large system design and analysis of protocols for decode-forward
relay networks", L. Cottatellucci, T. Chan, N. Fawaz, In Proc.
of ICST 1st Workshop on Physics-Inspired Paradigms in Wireless
Communications and Networks, WiOpt/PHYSCOMNET 2008, Mar.
31st -Apr. 4th 2008, Berlin, Germany

— "Capacity and Positioning in Dense Scattering Environments", N.
Fawaz, M. Debbah, D. Gesbert, In Proc. of the 8th IEEE Work-
shop on Signal Processing Advances in Wireless Communications,
SPAWC 2007, June 17-20th 2007, Helsinki, Finland

— "When Network Coding and Dirty Paper Coding Cooperate", N.
Fawaz, D. Gesbert, M. Debbah, In Proc. of the 9th IEEE Winter
School on Coding and Information Theory, March 12-16th 2007,
La-Colle-sur-Loup, France

— "Capacity of Dense Scattering Environments", N. Fawaz, M. Deb-
bah, D. Gesbert, In Proc. of IRAMUS Workshop, Jan. 25-26th
2007, Val-Thorens, FRANCE

e Rapports Techniques

— "Large System Analysis of Relay Networks", L. Cottatellucci, N.
Fawaz, Chapter 5.3.2 in Deliverable DR6.1 of NEWCOM++ Work
Package WPR6, Apr. 2008

— "Network Design and Optimization: Ad-Hoc Network Infrastruc-
ture", N. Fawaz, Chapter 4 in Deliverable D1.3.2 of BIONETS
Work Package WP 1.3, Aug. 2007

— "When Network Coding and Dirty Paper Coding Meet in a Co-
operative Ad Hoc Network", N. Fawaz, D. Gesbert, M. Debbah,
EURECOM Research Report, RR-07-199, Sept. 2006



20

Chapter 1 French Summary




Chapter 2

Introduction

21



22 Chapter 2 Introduction

2.1 Overview and Motivations

Wireless ad hoc networks are flexible decentralized wireless networks where
no fixed infrastructure is present. In contrast to infrastructure-based wireless
networks, such as cellular networks where a base station centralizes commu-
nication of wireless nodes in a cell, or wireless local area networks (WLAN)
where an access point manages the connection between wireless nodes, in-
formation transfer in ad hoc networks relies on the ability of wireless nodes
to relay data for one another. Among the advantages of such networks are
their flexibility, dynamism, autonomy, and self-organization capabilities that
make them suitable for defense and emergency communication systems. In-
deed ad hoc networks can be deployed dynamically on improvised terrains,
and therefore historical applications of ad hoc networks count deployment
in battle fields, rescue interventions, emergency deployment when natural
disasters destroyed the pre-existing communication infrastructure. Recently,
the expansion of Wireless Sensor Networks (WSN) and IEEE 802.11 (WiF1i)
WLAN which possesses a peer-to-peer mode enabling wireless devices to con-
nect with each other, encouraged the emergence of commercial application
ideas of ad hoc networks, e.g. gaming local area networks, community mesh
networks, on-road vehicular networks, and coverage-extension of cellular net-
works through hybrid (cellular-ad hoc) networks. Indeed many ideas on hy-
brid networks, mixing cellular and multi-hop schemes, started emerging such
as [3, Multi-hop Cellular Network (MCN)], [4, iCAR], [5, Self-Organizing
Packet Radio Networks with Overlay(SOPRANO)]|. Ad hoc and cellular net-
works were combined, with the prospects that bringing the advantages of
both schemes together would allow to extend cell coverage while supporting
dynamic topologies [3], to increase the scalability and reliability of pure ad
hoc system, and to balance the load in cellular networks [4]. However those
works focused mainly on routing issues.

The unpredictable and dynamic changes of topology in ad hoc networks
triggered extensive research on high layers, mainly on routing protocols to
provide fast adaptation in highly dynamic mobile ad hoc networks (MANETS).
Traditionally, routing protocols in MANETS were focused on minimizing the
hop-count, approach that did not take into account the link quality and led
to routes with significantly less capacity than high-quality paths available in
the network [6]. In [1] theoretical limits on the throughput of ad hoc networks
were discovered, and were then confirmed practically by simulations and ex-
periments in [2]. In [1], considering an ad hoc network of n nodes capable of
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transmitting at W bits/second, randomly located on a unit-area disk, it was

shown that the throughput per node decreased as © <%) bits/second
when the number of nodes n increased. Indeed in dense ad hoc networks, the
wireless resource needs to be shared between concurrent transmissions of a
large number of wireless nodes, and consequently the performance is limited
by interference. The wireless transmissions of nodes need to be confined to
their neighboring area, leading to multi-hopping for information to flow from
a source to a destination. As a result, most transmissions in the network
carry relayed data, which leads to a dramatic decrease of the total through-
put. However, this scaling of the throughput was obtained under specific
assumptions on the transmission mode at the physical layer: point-to-point
multi-hop transmissions between fixed wireless nodes equipped with omni-
directional antennas and transmitting their signals independently without
any cooperative interaction with other nodes. Knowing that the perfor-
mance at the physical layer upper-bounds the performance at high layers,
the following questions naturally arise:

e Is it possible to improve the link capacity performance in dense ad hoc
networks through the use of more advanced techniques at the physical
layer?

e What are the physical layer factors that can improve the link capacity
performance and what are their limits?

2.1.1 Factors Enhancing Ad Hoc Networks Performance

Several physical layer factors were proven to improve the performance of ad
hoc networks, including antenna directivity, node mobility, node positioning,
cooperation and virtual MIMO (Multiple-Input Multiple-Output).

Directional antennas can be used adaptively to enhance reliability and
decrease interference [7-11]. Indeed, if nodes have information on their local
topology, beamforming or transmission power sectorization can be used to
focus the transmitted power in the direction of their receiver. Therefore the
probability of interfering at non-intended receivers is decreased. Nevertheless
knowledge of the position of the receiver is necessary at the transmitter
in order to focus the transmission beam in the right direction. In high-
mobility networks, tracking the location of a large number of nodes requires
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a non-negligible feedback which increases the transmission protocol overhead
[12-14]. Thus omni-directional antennas are mainly considered in ad hoc
networks in spite of their negative impact on interference. One of the issues
we address in Chapter 3 is the following:

e Is it possible to benefit from antenna directivity or beamforming while
avoiding the feedback load in dense ad hoc networks?

Node mobility was also shown to improve the capacity of wireless ad hoc
networks [15,16]. By allowing wireless nodes to move, a constant scaling of
the throughput can be obtained when the number of nodes increases. The
idea consists in exploiting multi-user diversity through packet relaying in
a dense network: a source splits its packet stream between several mobile
wireless nodes that will act as relays and will deliver the packet they carry
whenever they come close to the intended destination. Through their motion,
mobile relays appear to have time-varying channels to the source and to the
destination. Since the number of nodes in the network is large, at any time
the probability for a relaying node to be close to the source and thus to
obtain a new packet to carry is high, as well as the probability for a relaying
node to be close to the destination and deliver a packet. As a result of
motion, interference in the network is decreased, the number of hops a packet
needs to travel through is reduced to two and the throughput is considerably
increased. However, the constant scaling of the throughput in mobile ad
hoc networks was obtained under the assumption of applications tolerant to
large delays. In [17], the optimal throughput-delay trade-off was analyzed
in mobile networks, and the delay required to sustain a constant scaling of
the throughput was shown to depend on the velocity of wireless nodes: the
delay increases when the velocity decreases, which happens when the network
becomes more and more crowded because of an increasing density. This
observation raises the question whether it is possible, through other factors,
to improve the throughput in ad hoc networks without an increasingly high
delay.

The position and number of relaying nodes supporting the commu-
nication of a source-destination pair have an impact on the capacity of a
relaying network [18-22]. When only one source-destination pair in the net-
work is active, and all other nodes help relaying data from the source, one
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can analyze the contribution of relays to the capacity, and the scaling behav-
ior of the capacity as the number of relaying nodes increases. In Chapter 3,
we address the following questions:

e How does the link capacity grow with the number of relays helping a
source-destination pair?

e What is the impact of the network topology, in particular the position
of relaying nodes, on the link capacity performance?

e What is the impact of the physical environment, through reflections,
propagation attenuation and delays... on the link capacity perfor-
mance?

Cooperation and virtual MIMO can also contribute to performance
improvements in wireless ad hoc networks. In the aforementioned models,
nodes were considered to act independently and cooperation was reduced to
passive forwarding: nodes did not interact, but could simply forward their
received signal. If more advanced processing techniques are allowed at the
physical layer and nodes can cooperate, one can expect the performance of
ad hoc networks to be improved. Indeed, in point-to-point communications,
MIMO techniques allow to improve the reliability of communications thanks
to spatial diversity gains, and to increase the spectral efficiency through mul-
tiplexing gains. When considering a network of wireless nodes and allowing
them to cooperate to jointly transmit information, a virtual MIMO system
can be built in a distributed way, and cooperation can enable the exploitation
of MIMO gains. In Chapters 4 and 5, the following issues are dealt with:

e How can we design cooperative strategies to improve the throughput
in ad hoc networks while making efficient use of the wireless resource?

e What can we say on the capacity of a large multi-hop cooperative
network, where wireless nodes have virtual MIMO capabilities?

2.1.2 Small Cooperative Networks

Cooperative communications occur when distributed wireless nodes interact
to jointly transmit information. Several radio terminals relaying signals for
each other form a virtual antenna array and their cooperation enables the
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exploitation of spatial diversity in fading channels, which is then called co-
operative diversity. Cooperative strategies were first designed for networks
with small dimensions, which represent the building blocks for larger ad hoc
networks. The most basic small cooperative networks are

e the relay channel (cf. Fig. 4.1(a)): one source-destination pair helped
by a relay;

e the cooperative interference channel (cf. Fig. 4.1(b)): two source-
destination pairs cooperating at transmit and/or receive side.

A plethora of cooperative strategies have been proposed for the relay channel
or the cooperative interference channel [23,24], the most famous ones being
Amplify and Forward (AF), Decode and Forward (DF) and Compress and
Forward (CF) [25]. The difference between those strategies lies in the pro-
cessing performed by the relaying node before retransmission (cf. Chapter
4).

Most cooperative strategies have been designed to meet the practical
half-duplex constraint: a radio terminal cannot transmit and receive simul-
taneously in the same frequency band, because the power of the received
signal is very low compared to the power of the transmitted signal. There-
fore, a relaying node uses orthogonal channels respectively to receive a signal
from the source, and to transmit its relayed signal. For example, in the re-
lay channel in Fig. 4.1(a), transmissions are divided into two blocks: in the
first block, the source transmits and the relay and the destination receive; in
the second block, the relay transmits its relayed signal and the destination
receives. In the case of the cooperative interference channel in Fig. 4.1(b),
usually the two-block scheme of the relay channel is simply extended to a
four-block transmission scheme [25] by repeating twice the two-block trans-
mission scheme: a first two-block scheme for the transmission of source S;
relayed by S, followed by a second two-block scheme for the transmission of
source Ss relayed by S7. Not only does the resulting cooperative transmission
scheme meet the half-duplex constraint, but it is also interference-free. How-
ever, although the use of orthogonal interference-free channels for source and
relay transmissions simplifies receivers algorithms, it results in an inefficient
use of the bandwidth. Indeed only half of the degrees of freedom are used for
transmission to each destination. A natural idea to use of the degrees of free-
dom more efficiently would be to relax the orthogonality constraint, but an
obstacle appears straight: relaxing the orthogonality constraint would lead
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to the introduction of interference in the system. Given those observations,
in Chapter 4 we examine the following questions:

e Can we improve the spectral efficiency of cooperative strategies by re-
laxing the orthogonality constraint while still meeting the half-duplex
constraint?

e How can we mitigate the interference due to the relaxation of the or-
thogonality constraint?

2.1.3 Large Cooperative Networks

The unfavorable scaling laws of the throughput in dense ad hoc networks
in [1] raised the question whether ad hoc networks were only suited for small
numbers of nodes or deployment in limited areas, or whether cooperative
communications at the physical layer could allow ad hoc networks to be
sustainably deployed for a large number of nodes. Consequently, [1] paved
the way for recent research works on scaling laws in ad hoc networks where
nodes have cooperative MIMO capabilities [26-37].

In an ideal— but unrealistic— ad hoc network, all nodes would be able to
perfectly cooperate on a large scale and the network capacity would scale like
in a perfect large MIMO system: linearly with the number of antennas [38|.
A more realistic yet meaningful approach consists in grouping nodes in coop-
erative clusters: nodes belonging to a cooperative cluster cooperate to form a
virtual antenna array and jointly transmit or receive information to or from
other clusters. Then multi-hop communications occur between cooperative
clusters, instead of single nodes as considered in [1]. With the cooperative
approach, some of the transmissions that appeared as interference in [1] are
now seen as useful signals that can be jointly processed by the nodes in a
cluster.

A dense ad hoc network is a very complex system, whose performance
metrics involve many variables and parameters. However, simulations are
fortunately not the only way to gain some insight on how the performance of
the system scales when the system dimensions increase. Recently, Random
Matrix Theory (RMT) and Free Probability Theory (FPT) were discovered as
appropriate theories to analyze/design complex communication systems and
to reveal the relevant parameters impacting their performance [39]. Indeed,
the transfer of information in a communication system can often be modeled
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by a random matrix equation of the type y = Hx + z, where x is the input
vector, y is the output vector, z is a noise vector, and H is the transfer matrix
of the system. For such a system, most information-theoretic performance
metrics can be shown to depend only on the eigenvalues and eigenvectors
of the transfer matrix H, and RMT and FPT provide useful results on the
eigenvalues and eigenvectors of random matrices with large dimensions that
can be applied to the analysis of large dimension communication systems.
Random matrix theory emerged with the works of Wishart [40], Wigner
[41], and Marcenko and Pastur [42], and was historically used in physics,
before being applied in many other fields. In wireless communications, RMT
was first used to analyze the performance of communication systems using
multiple antennas, e.g. in [38,43-45|, and CDMA systems, e.g. in [46-48].

In Chapter 5, we consider a dense ad hoc networks where nodes are
grouped in cooperative clusters, and using tools from RMT, FPT and linear
algebra, we address the following questions:

e What is the asymptotic capacity of the cooperative-cluster system when
the number of nodes in all clusters grow large?

e What are the relevant parameters impacting the system capacity?

e How should nodes in a cooperative cluster process and transmit coop-
eratively their wireless signals to maximize the system capacity?

2.2  Contributions

2.2.1 Chapter 3

The contribution of Chapter 3 is twofold. In the first part, we address the
impact of antenna directivity on the throughput and connectivity of a dense
network with a large number of source-destination pairs. In the second part,
we analyze the impact of the position and number of passive relaying nodes
on the capacity of a system where a large number of relaying nodes support
the communication of a source-destination pair.

In Section 3.2, a dense network of source-destination pairs, where sources
are equipped with directional antennas, is considered. The first contribution
of Section 3.2 is the proposition of a dynamic blind beamforming scheme
that allows to benefit from antenna directivity in a decentralized network,
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while avoiding heavy feedback to track the position of nodes. The scheme
is dynamic and blind since a source points its directive antenna successively
in all directions to surely but blindly hit its destination without knowing its
exact position. We show that rotational directivity has a positive impact
on interference reduction, and thus on capacity: by focusing the transmitted
power successively in different directions, the probability of interfering with
other destinations, i.e. hitting a non-intended destination at the same time
it is receiving a signal from its own source, is low because of both spatial
focusing and asynchronism of all communications. However, rotational di-
rectivity introduces some delay: when a source is not beamforming in the
direction of its intended destination, time and power are wasted. These two
opposite effects lead to a capacity-delay trade-off when adjusting the number
of rotations.

The second contribution of Section 3.2 is the analysis of the network
throughput with dynamic blind beamforming, and the comparison to the
classical case where sources are equipped with omni-directional antennas.
We show that when the density of the network increases, our dynamic blind
beamforming scheme outperforms omni-directional transmissions. Indeed,
as the network density increases, the throughput is interference-limited and
narrower transmission beams are necessary to decrease interference. How-
ever, when transmission beams become narrower, a larger number of rota-
tions of the source antenna is necessary to cover the whole space, leading
to an increased delay. For a given network density, the trade-off between
interference-reduction and delay-increase results in an optimal beam-width
and an optimal number of rotations maximizing the throughput of the net-
work.

The third contribution of Section 3.2 is the definition of a new connectivity
criterion, namely throughput-connectivity, that accounts for interference and
for the shared access to the wireless resource by nodes in the network. The
throughput-connectivity with a target rate R is the proportion of pairs in
the network to which a throughput of R can be granted. For a target rate
R, the number of rotations and the beam-width maximizing the connectivity
depend on the network density.

In Section 3.3, we examine a system where a source communicates with
a destination with the help of a dense network of passive relays. Relays
are modeled as dumb omnidirectional scatterers, i.e. passive nodes without
engineering capabilities that simply scatter the incident electromagnetic wave
coming from the source antenna. The first contribution of Section 3.3 is the
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formulation of a model taking into account the physical environment through
reflections, pathloss, delays and multi-path. We show that the asynchronous
relaying system can be modeled as a virtual multi-path channel, where each
path gain results from the combination of signal contributions from relays
belonging to a relaying cluster. Relaying clusters are defined by topology
and transmission properties, such as bandwidth.

The second contribution of Section 3.3 is the derivation of the capacity of
the system and its analysis as the number of relaying nodes increases. It turns
out that capacity saturation occurs when the number of nodes increases:
beyond a certain number of relaying nodes, most of the power that could be
recovered at the destination thanks to relayed contributions has already been
collected— thus a saturation, and the increase in capacity resulting from late
paths due to retransmissions from very far nodes becomes negligible. Waiting
for retransmissions from nodes located very far from source and destination
is not worth.

The third contribution of Section 3.3 is the evaluation of the impact of
the position of relaying nodes on their contribution to capacity. Numerical
results show that a few relaying nodes well located, close to source or desti-
nation, lead to better performances than a larger number of nodes uniformly
distributed between source and destination.

In the contributions of Chapter 3, no cooperative interaction between
nodes, other than passive relaying, was considered. The contributions of
Chapters 4 and 5 focus on the performance of wireless ad hoc networks where
nodes have more advanced cooperation capabilities.

Part of the work in Chapter 3 has been published in:

e "Improving Ad Hoc Networks Capacity and Connectivity using Dy-
namic Blind Beamforming", N. Fawaz, Z. Beyaztas, M. Debbah, D.
Gesbert, In Proc. of the 67th IEEE Vehicular Technology Conference,
VTC Spring 2008, May 11-14th 2008, Singapore

e "Capacity and Positioning in Dense Scattering Environments", N. Fawaz,
M. Debbah, D. Gesbert, In Proc. of the 8th IEEE Workshop on Signal
Processing Advances in Wireless Communications, SPAWC 2007, June
17-20th 2007, Helsinki, Finland

e "Capacity of Dense Scattering Environments", N. Fawaz, M. Debbah,
D. Gesbert, In Proc. of IRAMUS Workshop, Jan. 25-26th 2007, Val-
Thorens, FRANCE
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2.2.2 Chapter 4

In Chapter 4, we study the cooperative interference channel with transmit
cooperation. The first contribution of Chapter 4 is the development of novel
cooperative strategies that are more spectrally efficient than classical De-
code and Forward strategies. The proposed strategies relax the orthogonality
constraint, yet preserve the half-duplex constraint and allow all transmitted
symbols to benefit from cooperative diversity. In the proposed strategies,
the orthogonality-relaxation is inspired from network coding and is achieved
by allowing a transmitting node to combine messages from different origins
in a single transmitted signal, with smart power allocation. The proposed
strategies are in contrast with other strategies, called non-orthogonal strate-
gies, which relax the orthogonality constraint by allowing several nodes to
transmit at the same time. Such non-orthogonal strategies cannot guaranty
that both the half-duplex constraint will be met and all transmitted signals
will benefit from cooperative diversity.

The second contribution of Chapter 4 is the introduction of Dirty Pa-
per precoding in the proposed cooperative strategies, in order to mitigate
the interference resulting from the orthogonality-relaxation. Indeed, each
source forms its transmitted signal by combining its own message with a
message from the other source, each message being intended to a different
destination. Thus the combined messages act as interference for each other.
However the interference is known by the transmitting source, which can mit-
igate it thanks to Dirty Paper Coding, a well-known technique to mitigate
interference known at transmitter.

The third contribution of Chapter 4 is the evaluation of the relative merit
of the proposed cooperative strategies with respect to classical cooperative
strategies, in terms of spectral efficiency. The comparison shows that thanks
to a more efficient use of the bandwidth, the proposed strategies improve the
network throughput with respect to classical Repetition Decode and Forward
and Parallel Decode and Forward strategies.

Chapter 4 laid the emphasis on improving the spectral efficiency of coop-
erative strategies in networks with a small number of communicating pairs.
Chapter 5 focuses on the network performance when the number of cooper-
ating nodes grows large.

Part of the work in Chapter 4 has been published in:

e "When Network Coding and Dirty Paper Coding Meet in a Cooperative
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Ad Hoc Network", N. Fawaz, D. Gesbert, M. Debbah, in IEEE Trans.
on Wireless Communications, vol. 7, no. 5, May 2008

e "When Network Coding and Dirty Paper Coding Cooperate", N. Fawaz,
D. Gesbert, M. Debbah, In Proc. of the 9th IEEE Winter School on
Coding and Information Theory, March 12-16th 2007, La-Colle-sur-
Loup, France

2.2.3 Chapter 5

In Chapter 5, we consider a dense ad hoc network with a large number of
source-destination pairs communicating with the cooperative support of a
large number of relays. Nodes are grouped in three types of cooperative
clusters: source cluster, destination cluster, relaying clusters. In each coop-
erative cluster, nodes cooperate to form a virtual antenna array, and interact
to jointly receive or transmit information. The information flows from the
source cluster to the destination cluster through a series of intermediary re-
laying clusters. This system forms a virtual MIMO multi-hop relay network.
The channel at each hop is modeled by a block-fading correlated channel ma-
trix, and the processing performed by each cluster is model by a precoding
matrix. To ease the analysis, a couple simplifying assumptions are made,
as a first step towards a future more complete analysis: nodes in a cluster
are assumed to form a perfect virtual antenna array, and communications be-
tween relaying clusters is assumed to be non-noisy. However, signals received
by nodes in the destination cluster are assumed to be impaired by noise.
The first contribution of Chapter 5 is the derivation of a closed-form
expression of the asymptotic instantaneous end-to-end mutual information
between the input of the source cluster and the output of the destination clus-
ter, as the number of nodes at all levels grow large with a finite rate. Using
tools from random matrix theory and free probability theory, the instanta-
neous mutual information per source is shown to converge to a deterministic
value as the system dimensions grow large. This asymptotic expression is
shown to be independent from the channel realizations and to only depend
on the channel statistics. Besides, in the asymptotic regime, the asymptotic
value of the instantaneous mutual information is shown to also serve as the
asymptotic value of the average mutual information. Furthermore, we show
that with a finite number of nodes, the system behaves closely to the asymp-
totic regime, making the asymptotic formula a powerful tool to gain insight
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on the system performance even when the dimensions are not infinitely large.

The second contribution of Chapter 5 consists in providing the structure
of the optimal precoding matrices, at each cluster, maximizing the end-to-
end average mutual information under the assumption of local statistical CSI
at source and relaying clusters. Our analysis shows that at each cluster, the
right singular vectors of the optimal precoding matrices are aligned to the
eigenvectors of the receive correlation matrix of the backward channel, while
the left singular vectors of the optimal precoding matrices are aligned to the
eigenvectors of the transmit correlation matrix of the forward channel.

The third contribution of Chapter 5 is the analysis of the network capac-
ity in several communication scenarios in the case of single-hop or multi-hop
communications, and uncorrelated or correlated channels. We show that
results on the capacity of MIMO systems formerly derived by other au-
thors [39, Section 3.3.2|, [39, Theorem 3.7| can be recovered by applying
the aforementioned results on the asymptotic mutual information and the
optimal precoder structure to the case of single-hop communications. We
also provide the expression of the asymptotic capacity in the case of multi-
hop communications with uncorrelated or exponentially correlated channels,
and show that cooperative relaying improves the capacity per source node
even when the network size increases.

The work in Chapter 5 has been published in part in:

e "Asymptotic Capacity and Optimal Precoding Strategy of Multi-level
Precode & Forward in Correlated Channels", N. Fawaz, K. Zarifi, M.
Debbah, D. Gesbert, In Proc. of the IEEE Information Theory Work-
shop, ITW 2008, May 5-9th 2008, Porto, Portugal

and has been submitted as:

e "Asymptotic Capacity and Optimal Precoding in MIMO Multi-Hop
Relay Networks", N. Fawaz, K. Zarifi, M. Debbah, D. Gesbert, submit-
ted to IEEE Trans. on Information Theory, Dec. 2008.

As a conclusion, the link capacity performance in dense wireless ad hoc
networks can be improved, as long as nodes are empowered with cooperative
capabilities at the physical layer, and cooperative strategies are properly
designed.
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2.3 Publications

The research work performed during this thesis led to the publications listed
below.

e Journals

— "Clip & Forward: Reaching the Min-Cut in Non-Coherent Wide-
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Hop Relay Networks", N. Fawaz, K. Zarifi, M. Debbah, D. Ges-
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— "When Network Coding and Dirty Paper Coding Meet in a Co-
operative Ad Hoc Network", N. Fawaz, D. Gesbert, M. Debbah,
in IEEFE Trans. on Wireless Communications, vol. 7, no. 5, May
2008

Note that two journal papers have not yet been submitted, thus the
corresponding research work, though close to completion, could not be
included in this thesis.

e Conferences

— "Improving Ad Hoc Networks Capacity and Connectivity using
Dynamic Blind Beamforming", N. Fawaz, Z. Beyaztas, M. Deb-
bah, D. Gesbert, In Proc. of the 67th IEEE Vehicular Technology
Conference, VT'C Spring 2008, May 11-14th 2008, Singapore

— "Asymptotic Capacity and Optimal Precoding Strategy of Multi-
level Precode & Forward in Correlated Channels", N. Fawaz, K.
Zarifi, M. Debbah, D. Gesbert, In Proc. of the IEEE Information
Theory Workshop, ITW 2008, May 5-9th 2008, Porto, Portugal
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— "Large system design and analysis of protocols for decode-forward
relay networks", L. Cottatellucci, T. Chan, N. Fawaz, In Proc.
of ICST 1st Workshop on Physics-Inspired Paradigms in Wireless
Communications and Networks, WiOpt/PHYSCOMNET 2008, Mar.
31st -Apr. 4th 2008, Berlin, Germany

— "Capacity and Positioning in Dense Scattering Environments", N.
Fawaz, M. Debbah, D. Gesbert, In Proc. of the 8th IEEE Work-
shop on Signal Processing Advances in Wireless Communications,
SPAWC 2007, June 17-20th 2007, Helsinki, Finland

— "When Network Coding and Dirty Paper Coding Cooperate", N.
Fawaz, D. Gesbert, M. Debbah, In Proc. of the 9th IEEE Winter
School on Coding and Information Theory, March 12-16th 2007,
La-Colle-sur-Loup, France

— "Capacity of Dense Scattering Environments", N. Fawaz, M. Deb-
bah, D. Gesbert, In Proc. of IRAMUS Workshop, Jan. 25-26th
2007, Val-Thorens, FRANCE

e Technical Reports

— "Large System Analysis of Relay Networks", L. Cottatellucci, N.
Fawaz, Chapter 5.3.2 in Deliverable DR6.1 of NEWCOM++ Work
Package WPR6, Apr. 2008

— "Network Design and Optimization: Ad-Hoc Network Infrastruc-
ture", N. Fawaz, Chapter 4 in Deliverable D1.3.2 of BIONETS
Work Package WP 1.3, Aug. 2007

— "When Network Coding and Dirty Paper Coding Meet in a Co-
operative Ad Hoc Network", N. Fawaz, D. Gesbert, M. Debbah,
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3.1 Introduction

Wireless ad hoc networks are decentralized communication networks without
a fixed infrastructure or centralized administration, as opposed to cellular
networks for example. In ad hoc networks, wireless nodes are not only in
charge of transmitting their own information, but also responsible for relay-
ing packets from other nodes, to the benefit of the network. These networks
have the particularity to be self-organized, autonomous and flexible systems.
Thus ad hoc networks can be deployed with a great flexibility on improvised
terrains, and are naturally relevant for defense and security applications:
dynamic deployment in battle fields, security and rescue interventions, emer-
gency deployment for example in the case of a natural catastrophe which
destroyed the pre-existing communication infrastructure... Besides historical
military applications of ad hoc networks, ideas of commercial applications
started emerging recently, such as on-road vehicular networks, community
mesh networks, gaming local area networks, hybrid networks where ad hoc
networks would help extending the coverage of cellular networks... The per-
spective of adopting ad hoc networks in commercial applications has been
encouraged by the rapid expansion of IEEE 802.11 (WiFi) networks and
Wireless Sensor Networks (WSN).

On the other hand, the topology of wireless ad hoc networks can evolve
in an unpredictable way and difficulties occur in those wireless networks be-
cause of constraints in energy autonomy, delay, received signal quality in
presence of interference... For long, research on ad hoc networks focused
on high layer— link, network, and transport layers— issues in an extensive
way. In particular, at the network layer, distributed algorithms are neces-
sary to cope with frequent wireless topology changes, that generate frequent
updates of routing tables. As a result, several adaptive routing protocols for
Mobile Ad Hoc NETworks (MANETS) were developed, such as DSR (Dy-
namic Source Protocol) [49], AODV (Ad-hoc On-Demand Distance Vector
Routing) [50], OLSR (Optimized Link State Routing Protocol) [51], ZRP
(Zone Routing Protocol) [52]... Nevertheless, in these works focused on rout-
ing, the physical layer remains unchanged: transmissions at the physical layer
are point-to-point though possibly multi-hop, wireless nodes are treated as
single processing units, and cooperation between nodes is strictly limited to
storing and forward packets.

Recently, theoretical [1| and practical [2] limits to the performance of
ad hoc networks were revealed, and they gave the impression that the per-
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formance of ad hoc networks was doomed to a dramatic decrease when the
density of the network increased. In [1], dense ad hoc networks with n ran-
domly placed nodes, capable of transmitting at a rate W bits/second and
operating in the multi-hop store-and-forward mode, were considered. It was

shown that the throughput per node 7'(n) decreased as © (%) when the

node density increased. This dramatic throughput scaling in dense networks
is due to the need for nodes to concurrently share the wireless channel with
neighboring nodes, thus the performance of such dense ad hoc networks is
interference limited. However, these results were obtained under the assump-
tions that transmissions at the physical layer were point-to-point multi-hop
transmissions between fixed wireless nodes, equipped with omni-directional
antennas, and transmitting their signals independently without any cooper-
ative interaction. Given that observation and given that the performance at
high layers is upper-bounded by the performance at the physical layer, the
following questions naturally arise:

e Is it possible to improve the link capacity performance in dense ad hoc
networks through the use of more advanced techniques at the physical
layer?

e What are the physical layer factors that can improve the link capacity
performance and what are their limits?

Recent works revealed some of the factors improving the performance of ad
hoc networks, including antenna directivity, node mobility, node positioning,
cooperation. We review the aforementioned factors hereunder, and open
the way to our contributions on the impact of antenna directivity and node
positioning in the following sections.

3.1.1 Antenna Directivity and Beamforming

In ad hoc networks, in particular dense thus interference-limited networks,
directional antennas can improve performance when the destination position
is known [7-11|. Indeed, directive antennas have the capability to focus the
transmitted power in a given direction, which has a double positive effect.
First, focusing the power allows to increase the transmission range of a node
or the received power at the destination node, thus to combat pathloss effects.
This is particularly helpful in low-density widely-spread ad hoc networks,
whose performance is known to be power/coverage limited (cf. Section 5.1.1).
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Second, by focusing the transmitted power in a narrow beam, the probability
of a non-intended destination to be in the transmission beam is smaller than
with omni-directional antennas. Thus, the probability to interfere with a
non-intended destination is lower with directional antennas. This is all the
more relevant in dense ad hoc networks, whose performance is limited by
interference (cf. Section 5.1.1).

Nevertheless the use of directive antennas requires the transmitter to have
knowledge of the position of the receiver, in order to focus the transmission
beam in the right direction. In a high-mobility context, the feedback required
for tracking the location of a large number of nodes increases the transmission
protocol overhead [12-14], and thus reduces the useful rate and consequently
leads to considering mainly omnidirectional antennas in ad hoc networks.
The question we address in Section 3.2 is how to benefit from directional
antennas or beamforming while avoiding the feedback load in dense ad hoc
networks.

3.1.2 Node Mobility

Mobility can increase the capacity of wireless ad hoc networks [15,16]. In [15],
a network of n mobile nodes moving in a disk of unit area is considered.
Assuming that node motion processes are mutually independent and have a
stationary ergodic uniform distribution, it is shown that the average long-
term throughput per source-destination pair can have a constant scaling when
the number of nodes increases. The constant scaling is achieved by having a
source split its data stream between many mobile nodes. Each mobile node
carries a different packet from the source, and delivers it to the destination
whenever its trajectory leads it near the destination. Therefore, mobile nodes
appear as nodes with a time-varying channel to the destination, and they
deliver only when their channel quality is good, keeping the number of hops
per packet to two and interference low. Because of the large number of
nodes in the network, the probability that at least one mobile node is near
the destination is high. Thus, mobility allows to exploit a form of multi-user
diversity through packet relaying. In [16] those scaling results were shown to
hold even when the nodes have a more restrictive one-dimensional mobility
pattern. The constant scaling of the throughput obtained thanks to mobility
is far more encouraging than the throughput scaling in fixed networks in [1].

However, the previous throughput-scaling results in [15,16] were obtained
under the loose assumption of delay-tolerant applications. The scaling of the
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delay in fixed and mobile ad hoc networks was analyzed in [17], and the
optimal throughput-delay tradeoff were provided.

e For the fixed network described in [1], the throughput-delay tradeoff
is D(n) = ©(nT'(n)), where D(n) and T'(n) denote the average de-
lay and throughput respectively. For an optimal throughput 7'(n) =

n

; . Fixed dense
ogn

© <ﬁ), the delay increases as D(n) = ©

networks are interference-limited, therefore transmissions are confined
to neighboring nodes to limit interference, resulting in multi-hopping
and high delays.

e For the mobile network in [15], with a throughput scaling as T'(n) =

O(1), the delay scales as D(n)O(\Q{:;)) where v(n) is the velocity of
mobile nodes. By moving, nodes can come close to each other, which
allows to decrease the number of hops per packet to two, i.e. the
use of a single relay per packet and lead to a constant scaling of the
throughput. Nevertheless the speed at which the node moves becomes
the main factor impacting the delay. Node velocity scales down as the
density increases— intuitively, when the density increases, the area is
more crowded and nodes will move slower— thus the delay will increase

as the network becomes denser.

Mobility allows to improve ad hoc networks throughput, but at the cost
of an increasing delay. The question arises to know whether other factors
or techniques could further improve the performance of ad hoc networks,
without requiring an increasingly large delay.

3.1.3 Node Positioning

Considering a source-destination pair in a fixed network, the number and
position of nodes relaying information for the pair has an impact on the
performance of the resulting system [18-22|. The questions we pose in Section
3.3 are:

e How does the link capacity grow with the number of relays helping a
source-destination pair?

e What is the impact of the network topology, in particular the position
of relaying nodes, on the link capacity performance?
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e What is the impact of the physical environment, through reflections,
propagation attenuation and delays... on the link capacity perfor-
mance?

It turns out that when the number of non-noisy relaying nodes increases,
capacity saturation occurs, more or less faster depending on the position of
relaying nodes. Thus having a very large number of relays serving a com-
municating pair is not necessary, only a few well-located relays per pair may
be sufficient. However, those results rely on the assumption that nodes do
not interact, but simply forward their received signal as single isolated units.
In a network with several communicating pairs, helped by several relays, al-
lowing cooperation between nodes and enabling more advanced transmission
techniques may be required for a sustainable scaling of the throughput with
the network density.

3.1.4 Cooperation and Virtual MIMO

In previous models, nodes were considered to act independently and were not
allowed to cooperate actively to transmit information. Cooperative commu-
nications occur when distributed wireless terminals interact to jointly trans-
mit information. When several radio terminals relay signals for each other,
they form a virtual antenna system and their cooperation enables the ex-
ploitation of gains, that are usually the prerogative of MIMO systems, such
as spatial diversity in fading channels and multiplexing. Cooperation leads
to improved performance in wireless networks, and the reader is referred to
Chapters 4 and 5 for a more detailed discussion on cooperative networks and
virtual MIMO.

Our contributions on the impact of antenna directivity and node position-
ing on the performance of ad hoc networks are presented in Sections 3.2 and
3.3 respectively, while our contributions on cooperation and virtual MIMO
span Chapters 4 and 5.

3.2 Antenna Directivity impact

3.2.1 Introduction

In this section, we analyze the impact of antenna directivity on the through-
put and connectivity of a dense network.



3.2 Antenna Directivity impact 43

Contribution

We propose a dynamic blind beamforming scheme which allows to benefit
from antenna directivity in large wireless ad hoc networks while avoiding
heavy feedback to track mobile nodes localization, usually due to mobility
and density. The scheme is dynamic and blind since a source uses a rotating
antenna successively in all directions to surely but blindly hit its destina-
tion without knowing its exact position. If position is known with a certain
accuracy, for example thanks to limited feedback, a source can semi-blindly
form beams in a subset of directions. Rotational directivity has a major im-
pact on interference and thus on capacity: by focusing the transmitted power
successively in different directions, the probability of interfering with other
destinations, i.e. hitting a non-intended destination at the same time it is
receiving a signal from its own source, is low because of both spatial focusing
and asynchronism of all communications. Nevertheless when rotating the
antenna, some time and power is wasted when the source is not beamform-
ing in the direction of its intended destination. These two opposite effects
lead to a capacity-delay trade-off when tuning the number of rotations. We
analyze performance in terms of total network throughput and connectivity
and we show that our scheme can outperform omnidirectional transmissions
in interference-limited dense ad hoc networks both in terms of capacity and
connectivity. The optimal number of rotations, maximizing the network per-
formance, depends on the density of the network and results from a trade-off
between delay and improvements in terms of interference

Related Works

Recently Sharif and Hassibi [53] proposed a random beamforming scheme for
the Multi-user MIMO Broadcast channel in which the transmitter constructs
random beams and transmits to the users with the highest SINRs, fedback
to the transmitter. When the number of users increases, the capacity was
shown to scale as with perfect CSI at the transmitter. Nevertheless this
random beamforming model relies on feedbacks from mobile units to a base
station in a cellular system and the served-destinations are chosen according
to the quality of their link to the base station for a given set of random
beams.

On the other hand Bettstetter et al. [54] showed that random beamform-
ing in ad hoc networks can improve received-power-connectivity: sources send
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random beams in a random direction they chose once and for all at the begin-
ning and any node whose received power from a source is above a threshold
is considered connected to the source. No source and destination are associ-
ated in a communicating pair idea, i.e. a source ignores not only the position
but also the identity of the destinations. Any nodes whose signal reaches a
receiver with a high enough power is considered connected to the receiver,
and that model also ignores interference that occurs when two sources hit a
destination at the same time. The received-power-connectivity criterion does
not take into account interference as an SINR (Signal-to-Interference-plus-
Noise Ratio) criterion would do, nor reliable decoding issues that are usually
illustrated by capacity or BER (Bit Error Rate).

3.2.2 System Model

Consider the 2D-network of M communicating pairs {S;D;}icq1,.. ay uni-
formly distributed over a square of area a? square meters, illustrated in Fig.
3.1. dj; = S;D; denotes the distance between source S; and destination D;.
All nodes are equipped with a single antenna, directional at sources and
omnidirectional at destinations.

At time ¢ = kT, the signal transmitted by source S; is denoted z;(k)
whereas y,(k) represents the signal received by destination D;. The channel
between transmitter S; and receiver D; is represented by hj; which includes
the effects of shadowing and slow flat fading. These channel coefficients
are modeled by independent circularly-symmetric complex gaussian random
variables with zero mean and variance 0]2-“ i.e. Rayleigh fading. z; denotes
the i.i.d circularly-symmetric complex gaussian noise at destination D; , with
zero mean and variance o2.

Each source S; generates a sequence of packets, and each packet consists
of Ny symbols s;(m), m € {0,..., Ny — 1}. These symbols are modeled
by independent identically distributed (i.i.d.) circularly-symmetric complex
gaussian random variables with zero mean.

Sources have the ability to rotate their directional antenna, selecting a
different transmission direction at each time-slot. The duration of a time-slot
is N,T' and corresponds to the transmission of the Ny symbols contained in
a packet. N denotes the number of times a source rotates its directional
antenna to transmit the same packet of Ny symbols repetitively in N time-
slots, pointing at a different direction during each time slot with a beamwidth
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Figure 3.1: 2D-Network

o = %’r N =1 corresponds to the case where source antennas are omnidi-
rectional and transmit a packet of N, symbols only once. After N time-slots,
the source has sent the same packet N times in IV successive directions, cov-
ering the whole 2m-space, like a lighthouse operating in a discrete fashion.
Fig. 3.2.2 illustrate the blind beamforming scheme in a network with M = 3
source-destination pairs and N = 3 rotations. Note that when rotating the
antenna, one cannot switch at the symbol level, but only at the packet level.
Indeed, switching direction at symbol level would create a Doppler shift larger

than the bandwidth of the signal.

Interferers Groups

Consider the communicating pair S;D; and an arbitrary packet. For each
symbol s;(m) in the packet that S; transmits N times, D; receives the symbol
only once, during the time-slot when D; is located in the rotating beam of
S;. Any other source whose beam would cover D; during the time-slot when
D; receives a signal from S; belongs to the group Z; of interferers of D;. A
source whose beam would cover D; in a slot where D; is not receiving any
signal from S; is not an interferer.

In the omnidirectional case N = 1, all other sources are interferers, there-
fore Vi € {1,...,M}, I, = {S;/j # i} contains M — 1 interferers. When
N > 1, rotating the antennas clearly allows to decrease the number of inter-
ferers per destination with respect to the omnidirectional case and the group
of interferers of a destination depends on the network topology and the initial
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Figure 3.2: Dynamic blind beamforming with N = 3
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transmission direction chosen by each source.

When D; receives a signal that does not contain any component coming
from S;, recognized for example thanks to an embedded signature identifying
Si, D; simply discards the received signal. One could argue that in a static
network, when D; recognizes a signal component from S;, it could send a
feedback to S; which would then identify the direction in which to beamform.
But in a high mobility context, tracking D; moving position would lead to
heavy overhead, which our blind dynamic beamforming strategy intends to
avoid.

When D; is in the transmission beam of S; at time ¢ = kT, the received
signal y;(k) at D; is the sum of the signals transmitted by S; and all sources
in Z; filtered by their respective channels, and noise z;(k).

Transmitted Power and Energy

We use the simple ideally-sectorized directional antenna model to describe
the gain pattern, as proposed in [54| Equation (4). As illustrated in Fig. 3.3,
it is assumed that at time ¢, the transmit antenna of S; forms a beam of width
a in the direction «;(t) with a certain gain. «;(0) denotes the initial direction
chosen at random by S; during the first time-slot, then every time-slot, 5;
rotates its antenna anti-clockwise of an angle a to get the new direction.
Thus a;(t) = @;(0) + | 7]

Each source has a power constraint in the continuous time-channel of
Py Joule/s. In the omnidirectional case, P, is transmitted over the whole
27 space with an angular density of power P,/2m, whereas in the directional
case N > 1, P is focused in an angle o = 27 /N leading to the power angular
density at time ¢ in direction 6:

op;
a0

Indeed since a source transmits only in (1/N)" of the space, it can increase
its transmit power in its transmission beam to Fy/a = N FPy/2m and remain
within its average power constraint for the whole space. The power angular
density depends on time since the transmit antenna rotates. On the contrary,
the total power transmitted by source .S; does not depend on time, nor on
the number of rotations N and respects the power constraint by definition:

2 P. a;(t)+a/2 P
P, = 0 L(0,1)00 = 200 = P, (3.2)
o0
6=0 O=a;(t)—a/2 &

10
(0,t) = Eﬂ[ai(t)fa/Q;ai(t)Jra/Q[(e) (3.1)
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Figure 3.3: Transmission between S; and D;
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The transmitted power is by definition P; = %, where ¢; is the energy
transmitted by S;. Since source .S; transmits the same symbol s;(m) in N
time intervals [(nNs +m)T, (nNs +m + 1)T], n € {0,..., N — 1}, the total

transmitted energy for symbol s;(m) is:

N-1 (nNs+m+1)T
ei=>) / Pt = NTP, (3.3)
t

n—0 “ t=(nNs+m)T

Thus in the rotational directional case N > 1, the transmitted energy is N
times greater than in the omnidirectional case, but only part of the trans-
mitted energy will be collected at the destination, during the single time-slot
where the destination is in the transmission beam.

Received Power and Energy

The effective aperture of the omnidirectional antenna at a destination is an
area A, and the associated angular aperture is Af, whereas ¢; represents D;
angular position in polar coordinates in the plane as in figure 3.3. We assume
that the effective aperture A, is small with respect to distances between
nodes, so that the variations of the angular aperture with the position of the
node can be neglected.

The received power Pj;(t) at D; coming from S; depends on time, since
the destination needs to be in the rotating beam to receive power from S;.
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2 r0+5 gp.
Pty = 1 / O 6. 1)06
0

A6

[ojil* P /91*7
= Lio (6)—a/2:00 (1) +a 2 (0)00 3.4
Ty g Hst-orzmars ) .,

hyil? . . )
‘d’T'POTM if 0; is in .S; beam at time ¢
0 otherwise

where % represents the fraction of power that the destination receives from

the beam of width «, due to the finite size of the receive antenna.

S; transmits a total energy ¢; for symbol s;(m) during the N time intervals
[(nNs +m)T, (nNs +m + 1)T], n € {0,..., N — 1}, but D; receives energy
gj; for symbol s;(m) only during the time interval of duration 7" when S;
beamforms in the direction of D;, leading to the expression:

N—1  (nNg+m+1)T Pl 2A0 '
ci— / Pit)ot — 0|dj27Z|T — N (3.5)
o J t=(nNs+m)T Gi
where 6%’”” = %T is the energy received by D, for a symbol s;(m)
ji

transmitted during only once in the omnidirectional case. When N > 1 the
received energy ¢;; for symbol s;(m) at D; is N times greater than in the
omnidirectional case because of the spatial focusing effect of the directional
transmit antenna. Without a loss of generality, we will consider that 7" =1
and simplify expressions in the sequel.

3.2.3 Performance Analysis

In this section, we derive the performance criteria to compare the dynamic
blind beamforming strategy to the omnidirectional transmission in terms of
total network throughput and throughput-based connectivity.
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Total Network Throughput

For a communicating pair S;D;, the mutual information [55] between input
s; and output y; at D;, according to (3.5), is given by:

644
I(si;y) =log | 14+ 0————
0%+ ez, Eij

|hii|2 A0
pN 27rd§i

|hij|2A0
1+ 'OZJ'EL N 2nd;

(3.6)
=log | 1+

where the input SNR is p = Py/0?. Since the source hits its intended desti-
nation only once in N successive rotational trials, the throughput of user ¢
is given by .
where the factor 1/N in front of the log accounts for the waste of time in the
transmission of a symbol.

The total network throughput is given by:

[hiil 226
pN 27rd?i

|hij|2 A0
L+pN Zjeli 2md?;

As previously mentioned, the use of rotating directional antennas allows
to decrease the number of interferers in a group Z; and to focus the power in
a direction, increasing the received power at the destination. But the spatial
focusing also makes an interferer hit a non-intended destination stronger
than in the omnidirectional case. The greater N, the narrower the beam
thus the smaller the number of interferers and the higher the useful received
power, but also the stronger the power of interference and the greater waste
of time, suggesting a trade-off. The positive impact of the dynamic blind
beamforming on the network throughput might not look obvious a priori,
but it is shown in section 5.6.

(3.8)

1 M

Throughput-based Connectivity

Several definitions of connectivity exist, they have in common that two nodes
are said to be connected if some criterion is above a threshold. In [54], connec-
tivity is defined with respect to the level of received power, but this definition
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does not take into account interference. To take into account interference,
an SINR-based definition of connectivity can be considered. Nevertheless in
the case of the dynamic blind beamforming technic we propose, defining the
connectivity in terms of SINR above a threshold would lead to ignore the
waste of time represented by the factor 1/N in the throughput formula. In-
deed, it would be as if a pair was said to be always connected with a certain
SINR, when the pair is actually discontinuously connected, only once every
N time-slots.

The Information-theoretic point of view of connectivity, considering rate
as the criterion to define connectivity, appears to be a more relevant and ap-
propriate definition of connectivity. In particular, the notion of rate threshold
makes sense in a quality-of-service approach, where users have target rates
that need to be satisfied whatever happens. Inspired by [56] and taking into
account the factor 1/N, we define connectivity with target throughput R as
follows: "A pair is connected if the source can communicate with its intended
destination with a throughput at least R".

The network throughput-based connectivity x is defined as the number
of connected pairs divided by the number of pairs in the network, i.e. the
proportion of pairs to which a throughput R can be guaranteed:

{i/1(si:y:) = R}|

K= i (3.9)

3.2.4 Numerical Results

In this section, numerical results are presented to compare the different trans-
mission strategies. Monte-Carlo Simulations of 10,000 different topologies
were performed for different values of input SNR p, load M /N, number of
pairs of nodes M in the network i.e. density. The edge of the area was
a = 100 meters and the case of symmetric networks, i.e. in which the fading
variances are identical ajz-i = 1, was considered.

Total Network Throughput

We first analyze how the rotational directivity impacts the network through-
put. Figures 3.4(b), 3.4(a) and (3.5) illustrate the total network throughput
obtained by averaging the throughput over all generated topologies.

Figure 3.4(a) shows the evolution of the network throughput when the
load increases, for different values of N. The network throughput reaches a
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maximum corresponding to an optimal load, then saturates when the load
of the network increases. Nevertheless a high number of rotations N allows
to support a higher network throughput for a given load and to reach the
saturation level later when the load increases.

Figure 3.4(b) plots the throughput versus the density of the network,
for different values of N at high SNR. A similar behavior as in 3.4(a) -
maximum then saturation - is observed, but the successive intersections of the
curves show that the number of rotations maximizing the network throughput
increases progressively when the density increases. Indeed at low densities,
interference occurring in the network is low and the impact of dynamic blind
beamforming on interference is not high enough to compensate the 1/N factor
in front of the log in expression (3.8). On the contrary, at higher densities,
the network becomes interference limited, omnidirectional transmission is
not optimal anymore and the improvements in SINR via reduction of the
interference thanks to dynamic blind beamforming are important enough to
mitigate the 1/N loss. We would like to point out that although we present
graphs at high SNR only, for the sake of conciseness, the same behavior is
observed in the case of lower input SNR, except that intersections occur at
higher densities.

The gains in total network throughput thanks to dynamic blind beam-
forming for increasing densities are clearly illustrated in figure 3.5, plotting
the network throughput versus the number of rotations N, each curve rep-
resenting a density . The curves at the bottom represent low densities, and
the curves move toward the top of the graph when density increases. Clearly
there exists an optimal N which maximizes the network throughput for each
density, illustrating the trade-off between interference reduction and delay.
Using the optimal N allows to dramatically improve the network sum-rate,
from 30% at M = 60 pairs, up to 70% at very high densities (M = 350) with
respect to omnidirectional transmissions. As the density of the network in-
creases, the optimal N increases indicating that beams need to get narrower,
but not too quickly so that improvements in terms of interference are not
done at the expense of an infinite delay.

In large networks, omnidirectional transmissions are not optimal, and the
use of directional antennas even blindly and dynamically allows to enhance
the network performance.
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Network Connectivity

In terms of network connectivity, a trade-off is illustrated by figure 3.6, which
plots the average connectivity versus the density for different N. Indeed
curves can be grouped in two sets: for 2 < N < 12 connectivity curves
are above the omnidirectional case N = 1 and for N > 36 curves are be-
low. When N increases, connectivity is increased up to a certain point,
then increasing N decreases connectivity. Network connectivity can thus be
improved thanks to dynamic blind beamforming.

3.2.5 Conclusion

We proposed a dynamic blind beamforming technique that allows to benefit
from directional antennas while avoiding the feedback load for localization
tracking in ad hoc networks with a large number of nodes. We analyzed per-
formance in terms of total network throughput and throughput-connectivity
and showed that our scheme can outperform omnidirectional transmissions in
ad hoc networks. Depending on the density of the network, an optimal num-
ber of rotations allows to maximize the network performance. This optimal
number of rotations results from a trade-off between introduction of delay
and reduction of interference. In large ad hoc networks, which are known to
be interference limited, omnidirectional transmissions are not optimal and
the use of directional antennas even blindly and dynamically allows to fight
against interference and to enhance the network performance. Future work
may include analysis of the impact of limited feedback of the positions on the
performance of dynamic blind beamforming in particular in a high mobility
environment.
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Average Capacity vs. Load, RAYLEIGH, high SNR=24 dB
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Average Connectivity vs. density, RAYLEIGH, high SNR=24 dB, Target Rate (8:0.16
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3.3 Node Positioning Impact

3.3.1 Introduction

In this section, we study the impact of the number and the position of nodes
on the capacity of a wireless network.

Contribution

We analyze a system where a dense network of scatterers helps a source to
communicate with a destination and we look at the network from a physi-
cal propagation point of view: relays are modeled as dumb omnidirectional
scatterers, i.e. passive nodes without engineering capabilities that simply
scatter the incident electromagnetic wave coming from the source antenna.
Capacity expressions accounting for physical characteristics of the environ-
ment (topology, frequency band...) are provided and an asymptotic analysis
is performed for an increasing number of scattering nodes. We study how
capacity scales when the number of scattering nodes increases, as well as
the point at which asymptotic regime is reached depending on the nodes
positioning. The capacity is shown to reach a saturation level in the asymp-
totic regime. This saturation is due to the fact that signal contributions
coming from peripheral nodes very far from source and destination do not
lead to much increased performance. Moreover the saturation point depends
on the positioning of scatterers, in particular in wideband systems where
topology impacts capacity in terms of pathloss, delay and multipath. Wait-
ing very long for retransmissions from an infinite number of scatterers is not
worth and a few well located scatterers around source and destination lead to
better performances than more scatterers uniformly distributed on a square
area between source and destination. However saturation is obtained under
the assumption that relaying nodes are passive and do not interact when
transmitting their signals, and the capacity scaling may be different when
considering active relays with virtual MIMO capabilities.

Related Works

In [57], a source and destination both equipped with M antennas communi-
cate with the help of K relays performing amplify and forward. When the
number of relays K grows to infinity, the capacity of the system scales as
C = (M/2)log K + O(1) when CSI is available at relays, while it scales as
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C = (M/2)logsNr + O(1) in the non-coherent setting, i.e. when no CSI
is available at relays. Interestingly, capacity appears to reach a saturation
level in the non-coherent case as with the model considered in this chapter.
Nevertheless, to the best of our knowledge no previous work focused on the
scaling of capacity in dense wideband — thus with high resolution in time
and space — networks of dumb scatterers taking into account topology not
only in terms of pathloss but also of multi-path. Moreover the environment
impact on the scaling laws, through reflections, diffraction effects... has never
been studied in details, although this aspect is used for example in MIMO
communications to create different spatial multiplexing streams, and we went
deeper in the analysis in [18,58].

3.3.2 System Model

We focus on a geometrical network model by considering a finite square
grid of scatterers, equally spaced vertically and horizontally. Source S and
Destination D are located on vertices of the grid separated by a distance d.

Scatterers Clustering

In a wideband system, resolution in time and space are high and propa-
gation delays cannot be neglected as in narrow band systems. Consider a
band-limited input signal with band W and carrier frequency f., and let us
model it as a complex baseband process of band W /2. Using the sampling
theorem, the input signal can be represented as a sampled complex time
process, with samples at sampling rate W = 1/T. We transmit the input
signal in a fading channel. At the output of the channel, given sampling
rate W, differential propagation delays larger than 7" = 1/W seconds can be
discriminated, which corresponds to differential propagation distances larger
than Ay = ¢/W meters. In a wideband system, A\; may be small compared
to the distance between communicating terminals and reflectors, therefore
reflections leading to differential propagation distances larger than A\, will
appear at the destination as multiple paths arriving in different time-slots.
To take into account propagation delays, scatterers are grouped in N, clus-
ters, depending on the time-slot of reception of the scattered wave. Thus a
cluster gathers scatterers whose scattered waves are received by D during the
same interval 7T'.

Considerer a square grid of scatterers spaced by \;/2 = ¢/(2W) vertically
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Figure 3.7: Relaying Clusters

and horizontally, where W is the sampling rate, and Source S and Destination
D located on vertices of the grid separated by a distance dy = mA;/2. The
shortest distance to go from source to destination is the straight path with-
out reflection of length dy and propagation duration 7 = dy/c = (m/2)T.
Cluster Ag contains the straight path from source to destination, as well
as the reflected paths received during the first time-slot 'Sy = [r9, 70 + T'[.
Those paths correspond to waves propagating on a total distance, sum of the
distances from S to the scatterer and from the scatterer to D between d, and
do+T: d¥ a9 ¢ [do, do+ As[. Fori > 1, Cluster A; contains only scattered
waves, such that (d'” + dfnd)) € [do + iXs,dy + (i + 1)As[. Those waves are
received during the i time-slot defined by T'S; = [ro +iT, 7o+ (i +1)T[. For
a scatterer k in cluster ¢, the propagation delay of the scattered wave from S
to D via this scatterer Ry ; will be denoted 75, ; € T'S;. This duration consists
of three parts: 7,; = 79 + 41 + 7 ; with 7 ; € [0, 7. Note that the sampling
rate being W = 1/T, the destination cannot discriminate between the delays
7. € [0,T] of scatterers in the same cluster, thus the destination sees all
reflected paths from scatterers in the same cluster as a single combined path.
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Fig. (3.7) illustrates the clusters in the case of a 13 x 13 grid and a source-
destination distance dy = 4 A\;/2. A cluster is geometrically represented by a
surface bounded by two ellipses whose focus are S and D, and whose equations
are given by d% + d\¥ = dy + i), and d' + dP = dy + (i + D)\,

Power Attenuation

To model the attenuation of propagating waves, the far field propagation
model holding for distances d > 2’\—; will be considered, where \. is the
carrier wavelength. Since f. > W/2, the inequality Ay > A./2 holds and the
far field condition is fulfilled for distances d > A;/2. The power received by
D depends on the path taken by the signal to reach D: one-hop direct path
from S to D without reflection or two-hop-path from S to D via one scatterer.
Multiple reflections before reaching D are not taken into account.

If no reflection occurs, the direct received power [59,60] is

)\2
(4m)? dj

2
2)\0

Py = Prad:Klﬁ rad (310)
0

with P,.q the power transmitted by the source antenna and the constant
Ky =1/(4n).

If one reflection occurs before reaching D, according to the radar equation
[59,60] with omnidirectional antennas, the reflected power received by D is

2 2
/\c S 2 )‘c

(4m)? (@) 4Dy " K (d dD)2

where s is the radar cross section, and Ky = /s/41K; = \/s/(4m)3. Scat-

terers can be seen as very minimalist and dumb wireless nodes with a very
restrictive power constraint. They are minimalist because they do not have
any engineering capabilities, they can only scatter a wave; and their power
constraint is restrictive since the only power available to them for transmis-
sion is the power they collected from the source wirelessly.

P, = Prod (3.11)

3.3.3 Analysis

Signal Expressions in Time Domain

Source S produces a sequence s(t) = 2711\/;01 Sy 0(t —nT) of N complex sym-

bols with power E/[|s,|?] = P,.q at sampling rate W = 1/T (thus an average
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energy € = P,,q/W per symbol) and transmits a linearly modulated signal
with complex envelope x(t) = s(t) * g(t) = 27]:[701 Sp g(t nT) where ¢g(t) is
the pulse shaping filter, satisfying Nyquist’s criterion [ g(¢)g*(t — kT)dt =
dok- We assume hereafter that ¢(t) is the rectangle functlon of amplitude
1/V/T over [0,T[. The received signal at D is the superposition of the signal

coming directly from S and the signals scattered once:

Nepus—

y(t) = Z > arsa(t =) + n'(1) (3.12)

i=0 keA;

where n’(t) is additive white Gaussian noise and coefficients ay; are given by
(3.10) and (3.11):

Ky d<s) cel?ri for (k,i) # (0,0) reflected path

k,i kz

{ K1 639000 for (k,i) = (0,0) direct path
Agi =

i € [0,27] are phase shifts due to propagation and reflections. Phases
can be modeled as independent random variables provided nodes are suffi-
ciently spaced. If the network becomes denser and denser, phases may not
be independent anymore but correlated and should be expressed in function
of optical path differences, which is out of the scope of this section. After
matched-filtering, the received signal becomes:

r(t) = y(t)*g"(=t) + n(t)

= s(t) x g(t) cffz ki 6(t — Tri) +n(t)
i=0 keA;
h(tho)
r(t) = h(t)*s(t — 1) + n(t) (3.13)

where we define the scatterers network equivalent channel by:

clus

h(t) = Z S ki gt — T+ 10) % g7 (—t) (3.14)

=0 keA;

Time shift 75 in equation (3.13) illustrates the minimum propagation delay
corresponding to direct path. D starts receiving signals only 7y seconds after
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S started emitting. The introduction of 7y in the definition of A simplifies
notations since all the delays 74 ; = 70 + T + 75 ; contain .

By sampling at rate W = 1/T, the received sequence is the convolution
between the symbol sequence and the channel impulse response (CIR):

N-1
ro= r(T)=>_ s,h(IT —nT —75) + n(IT) (3.15)
o n=0
= Z thl,n,m/g -+ ny (316)
n=0
Netus
= Z hn Sl—n—m/2 +ny
n=0

The sum in (3.15) is finite and contains only N.,s + 1 non-null terms. In-
deed, as shown in Appendix 3.A, the CIR has finite length N, + 1 and its
coefficients are given by:

7_/
ho = Y arg (1 — %) (3.17)
/
k,
T

keAg

T, ]
h, = Zakl (1——l)—|— Z Ak 11 ( k%—l) ,fOI‘lEl,...,Ndus—l

ke

ke 4

,7_/
_ k"vNclus -1
thlus - : : ak‘vNclus*l ( T

kEAN 1y s—1
This means that the scatterer network is equivalent to a multi-path fading
channel, where each path h; is the combination of contributions from scatter-
ers in clusters [ and [ — 1. Note that the m/2 first samples 79 = ...75,,2-1 = 0
are null because of the minimum propagation delay 7y = m7/2. Under
matrix notation, the system can be reduced to the equation

Ry =Hy Sy + Ny (3.18)

where Ry = [Tm/2, e 7’N+m/271]T, Sy = [307 e SN—1]T, and Ny = [”0, ---anN—l]T
are columns of size N and the channel is represented by the N x N lower



3.3 Node Positioning Impact 63

triangular banded Toeplitz matrix:

[ hy O 0 ]
Hy — | e R (3.19)
: IR 0
0 0 ANy - ho ]y n
Asymptotic analysis for Capacity expression
The capacity of the grid of scatterers is defined [55] as:
C o= lm 2 det (Iy 4+ pHyHY) (3.20)
=l 7 log; det (I + pHyHY -
where p = 5[;;% = 5 is the SNR. Using Toeplitz and circulant matrices

properties, we show in appendix 3.B the following proposition:

Proposition 1. Let { A\ n }rejo,v—1] denote the N-point DF'T (Discrete Fourier
Transform) of the first column of matriz Hy. Then the capacity of the grid
of scatterers is given by

N-1

) w
C = lim F210g2(1+p|)\k,1v|2) (3.21)

N—+o0
k=0

Expressing the average capacity in terms of the network physical char-
acteristics is intricate. Nevertheless Jensen’s inequality allows to give an
upperbound (3.22) to the average capacity C = E,[C] in function of physi-
cal characteristics of the network

32 N (D o)~ 00 o) — 0

A2 )
<1 1 K?Zc y K2Z¢ ‘
< og( +p( I3 + 232 ;} = (d](Cs)d](cd))g

SHfeY

(3.22)
Besides at low SNR p = 5, using Taylor expansion of the log around zero at
order 1 and performing some manipulations of (3.20), that we skip for sake
of conciseness and readability, C' can be written as
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d . d
NP(KA +K2/\3N”2“§ 5 (i + DAs +do — i) — d\")2 + (ixs +do — diS) — di))?
T2 | a2 22

SIS

iy § (di)di )2
(3.23)

Those expressions illustrate the SNR-gain due to scatterers in function of
the topology and the system band. We would like to point out that those
formulas are valid for any topology and are not specific to the grid model,
nor to the \;/2-node spacing.

3.3.4 Simulations and Results

In this section, numerical results illustrate the growth of average capacity
when the number of scatterers increases. We consider a wide band system
with W = 2G Hz and a carrier f. = 2GHz, at SNR p = 10dB, for different
values of distance dy. Scatterers are located on the vertices of a square grid
covering an area of 21)\;/2 x 21),/2. Nevertheless we consider that the line
(SD) does not contain any scatterer, since when three nodes are aligned, one
link among the links S-R, S-D, R-D is blocked.
The number of scatterers is increased in two different ways:

e Centered-Grid Positioning : N, scatterers are uniformly distributed
on the vertices of a grid of size v/N, x /N, centered on the midpoint
I between S and D. Increasing N, corresponds to increasing the edge
of the square grid. The average capacity (3.21) obtained by Monte-
Carlo simulations over many independent channel realizations as well
as Jensen’s upperbound (3.22) are plotted in Fig. (3.8) for the centered
grid positioning.

e Optimal Positioning : Considering a grid 21 x 21, we select the NV,
optimal vertices , i.e. the positions that give the highest capacity for a
given number N, of scatterers. Increasing /N, corresponds to adding a
scatterer at the available vertex which gives the next highest increase
of capacity. Jensen’s upperbound (3.22) only is plotted in this case in
Fig. (3.8).

Fig. (3.8) shows that the passive relaying achieved by scatterers allows
to increase the capacity with respect to the case without scatterers, and that
capacity saturation occurs as the number of scatterers increases. The level
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of saturation corresponds to a 30%-increase in capacity at dy = 3\, and
40%-increase at dy = 5A,. Saturation is due to the following reasons:

e scatterers act as power collectors and forwarders. Indeed, the destina-
tion has a finite size antenna and does not receive all the power that was
radiated omni-directionally by the source antenna. Scatterers help the
destination by collecting part of the energy transmitted by the source
that would be lost otherwise, and radiate it again.

e reflection achieved by scatterers is diffuse, not specular. Consequently
the power collected by a scatterer is reflected in broad range of direc-
tions, which is the reason why the power received at destination after
a reflection on a scatterer R decreases as =~ instead of only —i for

_ (dzdy) (d3)
the direct path.

e the destination, even helped by scatterers, cannot collect more power
than transmitted by the source, which represents a physical constant
upper-bound on the capacity. Given the diffuse-nature of reflection at
scatterers and the consequent power attenuation as m, the desti-
nation will never be able to recover all the power transmitted by the
source. Thus the actual saturation level of the capacity is lower than
the capacity that would be obtained if the destination could collect all

the source power.

e When the number of scatterers increases, the number of scattering
clusters increases and consequently, the length of the channel impulse
response, as well as its delay-spread, increase. Nevertheless, the paths
with the largest delays are due to scatterers located at an increasing
distance from source and destination, and thus with a strong pathloss
attenuation. Signals coming from peripheral nodes very far from source
and destination lead to small contributions. After a certain point, most
of the power that could be recovered at the destination thanks to scat-
terers contributions has already been collected— thus a saturation, and
the increase in capacity resulting from late paths due to retransmissions
from very far nodes is negligible.

Note that allowing a little cooperation between nodes within a cluster [ to
combine coherently their scattered signals would obviously lead to a gain in
capacity, since their scattered powers would add coherently in the path A;



66 Chapter 3 Factors Improving Ad Hoc Networks Performance

and thus increase the path gain. The channel between such a cooperative
cluster and the destination would be similar to a MISO channel and the
coherent combining would provide transmit diversity at the destination.

Fig. 3.9 shows how the contribution to SNR of each scatterer depends on
its position. Scatterers positions affect the capacity not only in terms of path
loss but also of delay, leading to a notable difference between performances
in the centered-grid case and the optimal positioning case. A few scatterers
well located, close to source or destination according to fig. (3.9), lead to
better performances than a large number of scatterers uniformly distributed
between source and destination.

3.3.5 Conclusion

In this contribution, the link capacity in a scattering network is analyzed
from a physical point of view, taking into account characteristics such as
topology and transmission band. Asymptotic analysis shows that capacity
saturates when the size of the network increases and that topology affects
the saturation point, in particular in wide band systems where the impact
of topology on capacity is not only a matter of pathloss but also of delays
that cannot be neglected. Capacity saturation suggests that it is not worth
waiting for infinite retransmissions and that a few well located scatterers
around source and destination lead to better performance than more scat-
terers uniformly distributed on a square area centered between source and
destination.
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Scatterers Contribution to SNR
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3.4 Conclusion

In this Chapter, we presented physical layer factors which can improve the
link capacity performance in wireless ad hoc networks. We showed that in
a dense network of source-destination pairs, the use of directional antennas
even blindly and dynamically allows to fight against interference and to en-
hance the performance in terms of throughput and throughput-connectivity.
Considering a communication between a source and a destination with the
help of a large number of passive relays, we studied the impact of the num-
ber and position of relays on the capacity. It turned out that increasing the
number of passive relaying nodes does not increase the system capacity indef-
initely, but that saturation occurs and that a few well located relays around
source and destination lead to better performance than a larger number of
relaying nodes uniformly distributed.

However, so far, nodes were considered as independent units, which did
not cooperate to jointly transmit information. In next chapters, we turn to
an active cooperation mode, by allowing wireless nodes to interact. In Chap-
ter 4, we consider cooperative systems with small dimensions, as building
blocks for larger cooperative systems, and analyze how cooperative protocols
can be designed to improve the network performance while making an effi-
cient use of the available resource. In Chapter 5, we consider networks with
larger dimensions and see how virtual MIMO affects the capacity when the
dimensions of the network grow large.
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APPENDIX

3.A Proof of CIR expression

In this appendix, the proof of the CIR expression 3.17 is given.
The channel impulse response is defined by the coefficients:

Nclus -

hy = h(IT) = Z Z A ; /g(T — T+ 70)g" (1 — T)dr (3.24)

i=0 keA;

By definition with a rectangle transmitting filter, the integral in (3.24) is
non null for a finite set of values of I, more precisely | € [0, Nys], as shown
hereunder:

/g(T —Thi+70) g (T = 1T)dr = /g(T) g (r + 7_];72‘ (- i)T)dr
- li,ll) 05—t + flg2l)71 Oi—1-1 (3.25)
with T/gﬂ' € [O7T[7 and f(l) and f@) are defined by:

fOI‘ 7 - [O, Nclus — 1] and ]i] € Az’a

1 = [angeerr

- 1-7,/T (3.26)
¢ = [engtr-Terar

= )T (3.27)

Then combining (3.24) and (3.25) leads to the coefficients:

ho = h(()l) = Z a0 flg,l(z (328)

keAo
h = h;l) + hl(3)1 , for I € [1, Nepys — 1]

= Z g f,sl) + Z k-1 f;i?l)fl

kel keN;_1
_ 12 _ 2 : ()
thlus - thlus_l - a'k'vNclus_l ky,Nejys—1

kEAN 1

clus™
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Indeed, A is the superposition of two FIR (Finite Impulse Response) h") and
h?, of length N, — 1, shifted by T with respect to each other. Thus, h is
of length N jys. O

3.B  Proof of Proposition 1

In this section, we provide the proof of the asymptotic capacity expression
(3.21) in Proposition 1. {Hx}nen forms a sequence of banded Toeplitz ma-
trices of order N, + 1 (non null coefficients). We study their asymptotic
behavior, i.e. for N > N, As in [61] we define:

e the circulant matrix Gy associated to Hy:

C by 0 0 Iy, hi T
thlus thlus
Gy = 0 0
: R 0
L O N R T ho 1w

e the sequence {Ay}yey of hermitian matrices Ay = HyHY with non
negative eigenvalues sets {ag v }repo,n—1]

e the sequence {By}yen of hermitian matrices By = Gy G4 with non
negative eigenvalues sets {3y }rejo,n—1]

According to lemma 4.2 in [61], Hy and Gy are asymptotically equiva-
lent, as well as HY and G#. Thus, by theorem 2.1.(3) in [61], their products
are asymptotically equivalent: Ay = HNHﬁ ~ GNG% = By and by theo-
rem 2.1.(6), there are finite constant m and M such that m < oy v, Br.n < M.
In particular Ay and By are nonnegative definite, so 0 < oy n, Bp.nv < M.

The capacity (3.20) can be written:

N—-+o0

N
C = lim Ia kz_ologz(l—i—pak,]v) (3.29)
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From (3.29) we define the function F'(u) = log, (1 + 35z u), continuous on
] _ Wo?

, +oo[ and thus on the interval [0, M] bounding the eigenvalues oy y
and G n. {An}nen and {By }yen being asymptotically equivalent sequences
of hermitian matrices, then Theorem 4 in [61] allows to conclude that

1 N-1 1 N—-1
Ii — F = lim — F 3.30
Wy 2 Flews) = Jin o > F(h) - (330)

and to rewrite the capacity (3.29) as

N—-1

) w
C = lim ~ kZ:O log, (1 + pBk.n) (3.31)

N—+o0

Now Gy is a circulant matrix, thus diagonalizable in the Fourier basis,
leading to the diagonal matrix Cy = Fy Gy Fj\,l = diag(MoNs---s AN—1.N)
and the eigenvalues { A n}repo,n—1) given by the DFT of the first column of
GNi

[AO,Na ey /\N—l,N]T = FN [ho, ceey thlus_l’ O, ceey O],{le)

_j2n(n—1)(v—1)

where Fy = (e N Jnweqi..ny is the N-point DFT matrix. Express-
ing By in function of Cy gives

By=F,' CyC¥§ Fy = Fy'diag(|Monl* - Av_in[P)Fx

so that By n = |Anx|?, which substituted in (3.31) leads (3.21). O
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4.1 Introduction

4.1.1 Motivation

In wireless communications, multi-path propagation leads to channel fad-
ing which can impair communications. Multiple-antenna systems can turn
multi-path fading into a benefit for users, by sending a data stream over inde-
pendent fading channels and recombining the multiple copies properly at the
receiver. Indeed the probability of losing a signal decreases when the num-
ber of independent random fadings it experiences increases: this is know as
spatial diversity. Nevertheless, achieving spatial diversity requires the mul-
tiple antennas to be uncorrelated, thus sufficiently spaced— in the order of
half the wavelength. As an example, UMTS (Universal Mobile Telecommu-
nications System) transmissions occur in the 2GHZ frequency band, which
corresponds to a wavelength of 15 cm, and the antennas need to be spaced
by at least 7.5 cm, which is hard to build in small mobile devices.

When a signal is transmitted wirelessly, the broadcast nature of the wire-
less link allows different wireless terminals to overhear the signal. A natural
idea to exploit spatial diversity is to capitalize on the broadcast nature of the
wireless link, by allowing several terminals to pool their antennas together to
build a distributed multiple antenna systems. Cooperative communications
occur when distributed wireless nodes interact to jointly transmit informa-
tion. Several radio terminals relaying signals for each other form a virtual
antenna array and their cooperation enables the exploitation of spatial di-
versity in fading channels, which is then called cooperative diversity.

The use of distributed antennas allows:

e to provide spatial diversity benefits without the need for physical ar-
rays, though at a loss of spectral efficiency due to the practical half-
duplex mode;

e to largely enhance performance in terms of decreased transmit power
for a given reliability or increased reliability for a given transmit power.

Several cooperative strategies already exist [23,24]. The simplest and
most famous ones exploiting cooperative diversity are Amplify and Forward
(AF), Decode and Forward (DF) and Compress and Forward (CF) [25].
These strategies differ by the processing that the relay performs on its re-
ceived signal before forwarding it:
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e Amplify and Forward (AF): the relay amplifies the noisy signal it re-
ceived, i.e. multiplies its received signal by a constant subject to its
power constraint. The main advantage of AF is the simplicity of the
signal processing operated by the relay, while its main drawback lies in
the amplification and retransmission of noise;

e Decode and Forward (DF): the relay detects and decodes the received
signal according to a given algorithm and re-encodes the information
into its transmitted signals. Several algorithms can be used: repeti-
tion coding (RDF), parallel channel coding (PDF), space-time coding
(STC)..;

e Compress and Forward (CF): the relay forwards a compressed or quan-
tized version of its received symbols.

The performance of the previous cooperative strategies can be further
improved when coupled with the following techniques:

e Selection Relaying: the relay adapts its retransmission according to
the realized value of the fading between source and relay. The relay
forwards its received signal only if the source-relay channel is above a
certain threshold. In the case of AF and CF, selection relaying allows
to avoid forwarding too noisy symbols, while in the case of DF it allows
to avoid forwarding incorrectly decoded symbols.

e Incremental Relaying: In classical ARQ the source retransmits if it re-
ceives a negative acknowledgment via feedback. Incremental relaying
is an extension of ARQ to relay-based communications, where limited
feedback from the destination is exploited: the relay forward its re-
ceived signal only if the destination could not decode. By avoiding
useless repetitions, incremental relaying allows the degrees of freedom
of the channel to be used more efficiently.

Since radio terminals cannot transmit and receive simultaneously in the
same frequency band, most cooperative strategies are based on the half-
duplex mode. When considering the relay channel S-R-D in Fig 4.1(a), with
a source S, a relay R and a destination D, each transmission is divided into
two blocks: in the first block, the source transmits and the relay and the des-
tination receive; in the second block the relay retransmits and the destination
receives.
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S »™ D

(a) Relay channel: one source, one relay, (b) Cooperative Interference Channel:
one destination two cooperating sources and two destina-
tions

Figure 4.1: Small dimension cooperative networks

Now let us consider the four-node network in Fig. 4.1(b) with two sources
S1 and Sy transmitting in a cooperative fashion to two destinations D; and
Dy as in [25|. The previous transmission scheme is repeated twice, first
for the relay channel S; — S5 — D; and second for the relay channel Sy —
S1 — Dy as described in Fig. 4.2 and Fig. 4.3 (b), resulting in a four-block
transmission. The use of orthogonal interference free channels for sources
and relays transmissions simplifies receivers algorithms but results in a loss
of bandwidth. Relaxing the orthogonality constraint may help improving the
spectral efficiency of the network, but it will also lead to the introduction of
interference in the system.

Given those observations, we examine hereafter the following questions:

e Can we improve the spectral efficiency of cooperative strategies by re-
laxing the orthogonality constraint while still meeting the half-duplex
constraint?

e How can we mitigate the interference due to the relaxation of the or-
thogonality constraint?

4.1.2 Contribution

Orthogonality in classical cooperative strategies is two-fold, as illustrated in
Fig. 4.3 (b):
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e inter-device orthogonality: S; and S5 do not transmit signals simul-
taneously. S; and Sy use Time Division Multiple Access (TDMA) to
access the medium in orthogonal subspaces, and thus avoid interfer-
ence. Moreover this orthogonality allows to respect the half-duplex
constraint. Indeed, if S5 transmitted at the same time as Sy, Sy would
not be able to receive the symbols from S;, and thus could not relay
them later.

e intra-device orthogonality: S; transmits different signals— own source
signal and relayed signal— in orthogonal subspaces.

Relaxation of the orthogonality constraint can thus be two-fold, and we dis-
cuss each possibility of relaxing orthogonality hereafter.

Non-Orthogonal strategies relax the inter-device orthogonality: Act-
ing on the first type of orthogonality, inter-device orthogonality, consists in
making two devices access the link at the same time. For example, S; trans-
mits a new message while S5 is relaying a former message from S;. This leads
to cooperative strategies known as non-orthogonal strategies. However, non-
orthogonal strategies cannot both meet the half-duplex constraint and make
all source symbols benefit from cooperative diversity. Indeed if the half-
duplex constraint is met, when S, is relaying a message from S;, S5 cannot
receive at the same time the new message transmitted by S;. Consequently,
half the messages transmitted by S; cannot be relayed. Moreover, the or-
thogonality constraint leads to interference between the signals transmitted
simultaneously.

Combination strategies relax the intra-device orthogonality: Act-
ing on the second type of orthogonality, intra-device orthogonality, consists
in superposing signals from different origins in a single signal transmitted by
a single device. For example, S; produces a signal combining its own message
with a former message received from S5. This leads to strategies that we call
combination strategies, that recall techniques used at the network layer in
order to use efficiently the degrees of freedom of a system, namely Network
Coding (NC).

Indeed, loss of bandwidth issues have been tackled at higher layers thanks
to network coding [62-67|. Packets arriving at a node on any edge of a net-
work are stocked into a single buffer. At each transmission opportunity, an
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Figure 4.3: Time division channel allocations for (a) orthogonal direct
transmissions, (b) usual orthogonal cooperative transmissions (c) proposed
scheme: analog network coding cooperative transmissions

output packet is generated as a random linear combination of packets in
the buffer within "current" generation [68].  Inspired by network coding,
consider a four-node cooperative network using "network precoding" in a
two-block transmission scheme, where in each single block one source simul-
taneously transmits and relays as in Fig. 4.3 (¢) and Fig. 4.4:

e first block: S; sends a single signal f;(s1(n), so(n—1)) which is a func-
tion of both its own message s;(n) and a message so(n — 1) received,
decoded and re-encoded by S; in the second block of previous trans-
mission (repetition of the codeword - RDF - or use of an independent
codeword -PDF), now relayed for Sy. Sy, Dy and D, receive. Since Sy
knows the message in sq(n — 1), it can extract si(n), if it also knows
the mixing function f;.

e second block: S; sends a single signal f5(s2(n),s1(n)) which is a
function of both its own message sy(n) and a message s1(n) received,
decoded and re-encoded by S, in the first block of the current trans-
mission, now relayed for S;. Sy, D; and Dy receive. Since S; knows
the message in s;(n), it can extract so(n), if it also knows fs.

Functions f; and f5 are the network precoding functions which help im-
proving communication in terms of bandwidth. Knowing f; and f5 allows
sources Sy and S to easily cancel interference and extract the message they
will have to relay in next block. But unfortunately, improving the bandwidth
utilization has a cost: the introduction of interference at destinations D; and
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Dy. In the first block, sy(n—1) is intended to Dj as relayed signal and acts as
interference for Dy, which is only interested in s;(n); reciprocally, s;(n), in-
tended to Dy, generates interference for Dy interested in so(n—1). A similar
interference problem occurs in the second block. Nevertheless, interference
is known at transmitter, thus one can design the precoding functions to take
into account this issue. In particular Dirty Paper Coding (DPC) [69], a well-
known coding technique to mitigate interference known at transmitter, may
help NC. We may expect DPC network precoding to help improving band-
width efficiency in a cooperative network as well as mitigating interference,
thus enhancing performance with respect to usual cooperative schemes.

Our main contributions are to bring network coding in the analog domain
at the physical layer, to provide novel cooperative protocols with better spec-
tral efficiency, and to analyze their performance in terms of network through-
put and throughput per node. Thanks to Analog Network Coding combined
with Dirty Paper precoding, the orthogonality constraint is relaxed, allowing
to save time compared to classical DF protocols, and interference resulting
from non-orthogonality is mitigated. As a result, bandwidth resource is used
more efficiently and the spectral efficiency of the system is improved. Anal-
ysis show that our cooperative strategies significantly outperform classical
orthogonal DF protocols [70-72].

4.1.3 Related work

As mentioned in the previous section, non-orthogonal strategies allow sev-
eral devices, sources and relays, to transmit at the same time. In 73] non-
orthogonal Amplify and Forward (NAF) protocols - yet preserving the half-
duplex constraint - are proposed. In NAF, orthogonality constraint is relaxed
by letting a source transmit new symbols when a relay is retransmitting for-
mer symbols it received from the source. NAF turns out to improve perfor-
mances with respect to classical AF. Nevertheless with NAF, because of the
half-duplex constraint, only half of the symbols can be relayed and benefit
from cooperative diversity. In the scheme we proposed, orthogonality be-
tween source and relayed signals is also relaxed, half-duplex preserved, but
all symbols benefit from cooperative transmission.

In combination strategies, several messages from different origins are bun-
dled in a single transmitted signal. In [74] a cooperation strategy was pro-
posed for two transmitters and one destination. Each source transmits both
information of its own and of its partner, orthogonally superposed using or-
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thogonal spreading codes, and this scheme is shown to improve user capacity.
Nevertheless, a common destination is assumed for the cooperating pair, the
half-duplex constraint is not taken into account, and cooperative periods are
divided into two parts: slots where sources transmit only their own signal
and slots where they send a cooperative signal. Our proposed scheme is more
efficient, because no orthogonality constraint is imposed for source and re-
layed signal separation. In [75] coded cooperation (CC) is introduced in a
system with two sources and one destination and is shown to outperform AF
and RDF. However this scheme relies on the frame separation of the source
signal and the relayed signal, leading again to bandwidth loss, and a common
destination is assumed, a particular case of cooperative system.

All these works considered a common destination and did not address
interference mitigation issues arising in multi-source multi-destination co-
operative ad hoc system. In [70-72|, we addressed this issue by proposing
more spectrally efficient cooperative strategies, obtained by both relaxing
the orthogonality constraint and mitigating the consequent interference. Re-
cently [76] studied AF with analog network coding and showed that joint
relaying and network coding can enhance the network throughput.

Introduced in [69], DPC is a well-known coding technique to mitigate in-
terference known at transmitter. DPC was also considered in relay networks,
eg. in [77-80], as joint coding between cooperating pairs, or to mitigate in-
terference at relay. In [77] DPC transmit cooperation scheme suffers from
loss of bandwidth due to the orthogonal cooperation channel used to ex-
change transmit messages between the two sources and whose cost is not
taken into account. In 78], an orthogonal cooperation channel is also used,
and DPC is jointly performed by the two transmitters acting like a MIMO
Broadcast. In [79], a full duplex S-R-D network is considered, in which the
source S sends a signal consisting of two components, one intended to the
relay R and one intended to the destination D. In this relay network, Dirty
Paper precoding is used at source to mitigate the interference caused at the
relay by the second component. On the contrary, in our cooperation scheme,
NC takes care of interference at the relay, whereas DPC is used at source
and at relay to mitigate interference caused at destinations. In [80] DPC is
considered for full-duplex transmit cooperation, with the sources jointly de-
ciding the codewords both will combine in their transmit signals, which needs
some signaling to agree on the codewords, not taken into account in the re-
source expenses. Besides the DPC-ordering is fixed before power allocation
optimization, which impacts the individual rates and makes one destination
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use forward-decoding and the other backward-decoding. On the contrary, as
in [25] we consider a TDMA scheme, but with a time shift between the de-
coding of received signals at destinations, allowing to respect the half-duplex
constraint, while NC allows to maintain a continuous flow of information in-
teresting both destinations. Therefore our strategies are the first to manage
combining the half-duplex constraint in the [25]-fashion and the continuous
transmission of data interesting all destinations in the [80]-way. Moreover
in our schemes, each source chooses its codewords alone, without needing to
know what the other chose and both sources select the best DPC-orderings
as part of the optimization, which they can achieve alone as long as channel
information is available. Finally both destinations can use forward-decoding
and do not to need to wait until the end of a frame of codewords to decode
backward the first codeword sent.

4.2 System Model

To capture the gain resulting from the NC approach, we consider that all
terminals are equipped with a single antenna. Consider the four node network
in fig. 4.1(b). Each source S;, i € {1,2} generates a sequence s;(n), n €
{1,.., N}. These symbols are modeled by independent identically distributed
(i.i.d.) circularly-symmetric complex gaussian random variables, with zero
mean and variance €, = [E[|s;(n)|?]. With a transmission bandwidth W,
there are W complex symbols per second. At time ¢t = k/W | k € IN, the
signal transmitted by .S; is denoted x;(k) whereas yg, (k) and yp, (k) represent
the signals received by source S; and destination D; respectively, with i, j €
{1,2} . Finally f; represents the network coding function performed at S;.
Those functions can be of any kind, not necessarily linear. We first focus on
affine functions fi and then we develop a general network coding approach
... To simplify the analysis and the detection at destinations, we first focus
on functions f; performing a linear operation on symbols s; and s,. Then a
DPC approach is considered and shown to outperform the other strategies.

As described in section 4.1 and Fig. 4.3 (c¢), NC cooperative communica-
tion divides each transmission into two blocks.

e First block at even time indexes k = 2n, signals transmitted by S;
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and received by other terminals are:

z1(2n) = fi(s1(n), s2(n — 1))
Ys,(2n) = hg,s, 1(2n) + 25,(2n)
yp,(2n) = hp,s, ©1(2n) + zp,(2n) , j € {1,2}

e Second block at odd time indexes k = 2n+1, signals transmitted by
S5 and received by other terminals are:

120+ 1) = fo(s1(1), 52(n)
ys,(2n+1) = hgs, z2(2n + 1) + z5,(2n + 1)
yp,(2n+1) = hp,s, v2(2n+ 1) +2p,(2n + 1) , j € {1,2}

The channel between transmitter u € {5y, So} and receiver v € {51, Ss, D1, Do}
is represented by h,, which includes the effects of path-loss, shadowing and
slow flat fading. These channel coefficients are modeled by independent
circularly-symmetric complex gaussian random variables with zero-mean and
variance o2, i.e. Rayleigh fading. z,(k) are i.i.d. circularly-symmetric com-
plex gaussian noises at receivers, with variance o%. Block-fading is assumed:
channel gains are constant during a coherence block, and vary indepen-
dently from one block to another. Each source has a power constraint in
the continuous time-channel of P Joules/s and transmits only half of the
time, both in the orthogonal interference-free cooperation schemes and in
the proposed NC cooperation schemes. Thus the power constraint translates
into P; = E[|z;(n)|?] < 2Z. Since a source transmits only part of the time,
it can increase its transmit power in its transmission block and still meet its
average power constraint for the whole transmission.

Finally, each destination is assumed to have perfect CSI of its two incom-
ing channels from sources, whereas sources are assumed to have knowledge of
the amplitudes of all channels and perfect CSI of the source-source channel.
The knowledge of source-destination channel amplitudes can be obtained at
sources thanks to feedback from destinations (the rate of CSI is usually lower
than the data rate) once destination nodes have determined the channel gains
on their respective incoming links. Note that block-fading is considered and
we assume that CSI is available at transmitting nodes. Thus sources can
perform rate-adaptation: at each block, a transmitter can select a code of
appropriate rate depending on the current block channel condition. This
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variable-rate coding scheme [81] will have an average throughput equal to
the ergodic rate that would be obtained if the channel varied fast enough for
a codeword of infinite length to experience enough independent fading states.

4.3 Precoding Method

4.3.1 Linear Precoding

In Linear Network Coding for RDF, S detects so(n — 1) in the signal trans-
mitted by S5 and re-encodes it using the same codeword. Then S; forms its
transmitted signal x;(n) as a linear combination of its own codeword s;(n)
and the repeated ss(n — 1). The same process happens at Sy. Therefore
function f; can be represented by a matrix F; of size V; x N, i.e. (number
of transmit antennas at source) times (number of symbols on which f; acts).
In the single antenna scenario, F; = [f;1, fi2] is a row of size 2. Transmitted
signals are thus:

x1(2n) = Fy [s1(n), s2(n — 1)]T = fiisi(n) + fiasa(n — 1)
T9(2n + 1) = Fy [s1(n), s2(n)]" = fors1(n) + faas2(n)

In Linear NC cooperation scheme, the power constraint becomes P; =
es||Fyl|3 < 2. We will consider precoding functions such that ||F;||% = 1,
i.e. f; does not increase the power transmitted by source S; but shares it
between the source message and the relayed message.

Remark : orthogonal TDMA transmissions without relaying can be seen
as a particular case of network coding where F; = [1,0] and Fy = [0, 1].
Orthogonal interference-free cooperation [25] is also a particular case of our
scheme where F; = [1,0] and Fy = [1,0] during two blocks, and then Fy =
[0,1] and F; = [0, 1] during the next two blocks.

—_

4.3.2 Dirty Paper Precoding

Since interference resulting from NC approach is known at the transmitter,
more advanced NC functions can include decoding and re-encoding with DPC
of messages intended to different destinations [82]. In Dirty Paper NC for
PDF, S; decodes the message carried by sa(n — 1) and re-encodes it using an
independent Gaussian codebook. More precisely, in order to use dirty paper
coding, S; first orders destinations based on channel knowledge. Then 5
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picks a codeword for the first destination, before choosing a codeword for the
second destination, with full non-causal knowledge of the codeword intended
to first destination. Thus the second destination does not see interference
caused by the codeword for the first destination, whereas the first destination
will see the signal intended to the second destination as interference. The
signal transmitted by S is the sum of the two codewords, with power sharing
across the two codewords taking into account channel knowledge. S, will
proceed the same way in the following block. The ordering of destinations
chosen at each source affects performance. Transmitted signals thus become:

21(2n) = fi1s1(n) + fiash(n — 1)
Ta(2n + 1) = fo181(n) + fas2(n)

where f7 stands for the power allocated by source S; to the codeword in-

tended to destination Dj, and s’ is the independent codeword produced by a
source acting as relay after decoding the message carried by s;. Destinations
are assumed to know the orderings (each source can with a single bit indicate
the ordering it selected).

4.4 Performance Analysis

In this section, the average rates, as well as the network throughput and the
throughput per user are analyzed.

4.4.1 Orthogonal Interference-Free RDF and PDF

For cooperative channels in Fig. 4.3 (b), using RDF the mutual information
between input s; and output yp, at Dy is [25]:

I .
IRDF(Sl; yDl) - 5 mln{ 1Og(]‘ + ;0|h5251|2)7
log (1 + p|hD151|2 + p‘hD152|2)}

(4.1)

where the input SNR is p = ¢,/0? = 2P/(Wc?), and the factor 1/2 is due to
the two channel-uses to send a message. Mutual information Igpr(s2;yp,)
between input s, and output yp, at Do is given similarly. Half the degrees
of freedom are allocated for transmission to a destination - each destination
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is passive half of the time when the signals transmitted do not contain in-
formation intended to that destination- therefore the throughput of the first
user is %]RDF(Sl; yp,) and the total network throughput using RDF is:

1 1
Crpr = QIRDF(SH yp,) + 3 rDF(S2;YD,) (4.2)

Using PDF, mutual information between s; and yp, is [83]:

1 .
Ippr(si;yp,) 25 min{log(1 + plhs,s, ‘2)7
log(l + 10|th51 ‘2> + lOg(l + p‘thsz‘Q)}

Mutual information Ippr(se; yp,) at Dy is also given by a similar formula [83].
The total network throughput of PDF is given by:

(4.3)

1 1
Cppr = §IPDF(51§ yp,) + §IPDF(S2§ Yp,) (4.4)

4.4.2 Linear NC RDF

For our proposed network coding cooperative scheme in Fig. 4.3 (c¢), when
the network coding functions are linear transformations, mutual information
between input s; and output yp, at destination D; can be shown to be:

r .
ILNC(51§ yDl) = 5 mnin {1Og (1 + p|h5251f11|2) )

2
4.5
hosiful s fal ) (4.5)
L+ plhp,s, fi2l> 14 plhp,s, fool?

In the minimum in equation (4.5), the first term represents the maximum
rate at which relay S, can decode the source message s; after canceling the
interference known at the relay (interference is due to the symbol s, the relay
emitted previously), whereas the second term represents the maximum rate
at which destination D; can decode given the transmissions from source S
and relay Ss.

A similar formula gives the mutual information between input s, and
output yp, at destination D, with appropriate changes:

log (1 +p

1.
Inne(S2:yp,) = B min {10g (1 + P|h5152f22|2) )

4.
log (1+ |hDys foo|? p |hpys, frzl? ) (4.6)
L+ plhp,s, forl* 14 plhpys, fu1l?
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In the NC approach, all degrees of freedom are used for transmission
to each destination. No time is wasted from the destination point of view,
thus the throughput of the first user is I;nc(s1;yp,) and the total network
throughput for this strategy is :

Cine = max  Ipne(si;yp,) + Iove(s2;yps) (4.7)
{fij}i,je{l,Q}
|ful® 4 [ o] <1
| far|* 4 [ fa2]® < 1

The optimization problem turns out to be a non-convex problem, both for
Linear NC and for DPC in next section, so that classical convex optimization
techniques cannot be used to find a closed-form expression of the power
allocation scheme. Moreover, because of limitations due to the quality of
the source-relay link, the MAC-BC duality [84] cannot be used to solve the
optimization problem as in non-cooperative systems. Finding the optimal
power allocation scheme between transmitted and relayed signals at each
source is different from BC power allocation problem, because power terms
f? and fZ, appear in the capacity of the links between the two sources, first
terms in the minimums in formulas (4.5), (4.6), (4.8), so that the power
allocation scheme maximizing the sum-rates of the two BC channels between
a source and the two destinations may not be the same as the one maximizing
the sum-rate of the cooperative system.

4.4.3 Dirty Paper NC PDF

The mutual information between a source message and the received signals
at the intended destination depends on the two orderings IIy, Il of desti-
nations for DPC chosen by both sources. Knowing all channel amplitudes,
each source can compute alone the DPC orderings maximizing the network
throughput. Since a relay uses an independent codeword to re-encode the
signal it received from the previous source, the total network throughput for
this cooperation scheme belonging to the family of PDF can be written :

Cppc = max Ippc(si;yp,) + Ippe(S2; yp,)
Iy, Oy, { fij}bijeqi o)
|ful? + [ fie]? < 1
| for]? + [ fo]* < 1
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with :

1 .
Ippc(si;yp,) = B} min {log (1 + p‘hSQSlfll‘Q) )
log(1 + SINRy;) + log(1 + SINRy )} (4.8)
I '
Ippc(s2;yp,) = 2 min {log (1 + P‘h5152f22‘2) )

log(1 + SINRy5) +log(l + SINRy)}

where ST N R;; is the Signal-to-Interference plus Noise ratio resulting from
the signal transmitted by S; at D;:

plhp,s, fi;1* , if S; does DPC in favor of D
i = s, fij|? . .
SIN PR, 5, i if S; does DPC in favor of Dj;

I+plhp;s, fiz1* 2

4.5 Numerical Results

In this section, numerical results are presented to compare the different coop-
eration strategies. Fig. (4.5) and (4.6) illustrate average per user throughput
and total network throughput obtained through Monte Carlo Simulations
(1000 channel realizations), in the case of symmetric networks, i.e. where
the fading variances are identical 02, = 1. Optimal power allocations and
orderings II; were obtained numerically by exhaustive search. Average indi-
vidual throughput and outage probability are the same for both users, since
they are assumed to have the same power constraints and the network is
symmetric.

4.5.1 Average Throuhputs

Fig. (4.5) compares RDF [25] and Linear NC for RDF that we propose, and
shows that our technique based on Linear Network coding performs much
better in terms of per user throughput, thanks to a more efficient use of
spectral resources as well as power resources. Fig. (4.6) plots the per user
throughputs for PDF [25] and our DPC-NC for PDF. Once again, the NC
based strategy enhances performance in terms of individual throughput.
Finally fig. (4.5) and (4.6) also allow to compare the total network
throughput of all techniques, and show neat improvements in the network
performance thanks to NC methods. Thanks to smart power sharing between
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the source and relayed signals, even with repetition coding, and increased
spectral efficiency, Linear NC enhances considerably performance compared
to classical RDF and PDF. Using a more advanced coding technique, DPC,
to mitigate interferences generated at destination by the NC methods leads
to even better results.

4.6 Conclusion

Inspired by network coding, we proposed new cooperative strategies for ad
hoc networks, which improve the spectral efficiency of the cooperative sys-
tem by relaxing the orthogonality constraint, while preserving the practical
half-duplex constraint. The introduction of interference between source and
relayed messages, when considering non-orthogonal transmission scheme, is
mitigated thanks to precoding at transmitter. We presented two precoding
approaches, linear NC with RDF and Dirty-Paper NC with PDF, relevant
technique since the transmitter knows the interference. Thanks to precoding,
linear or Dirty Paper based, the cost of the NC approach - introduction of
interference - is less than the resulting gain in terms of spectral efficiency,
and the performance analysis shows significant improvements in terms of
throughput over classical RDF /PDF cooperative strategies.

Future work may include solving the optimization of the power allocation
and DPC ordering in particular scenarios of relative channel gains, developing
of a selective strategy to circumvent limitations due to the source-relay link,
extending the strategies to multiple-antenna nodes, in particular assessing
how beamforming can improve performance, and last but not least extending
the cooperative strategies to a large network with several source-destination
pairs.
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Per user and Total Network Throughputs vs. SNR for RDF and Linear NC-RDF

—O— Linear NC-RDF Network

—4—— RDF Network
61| —6— Linear NC-RDF Per user| -
—#— RDF Per user

Throughput [b/s/Hz]

SNR [dB]

Figure 4.5: Comparison of Per user and Network Throughputs of classical
RDF and LNC cooperative methods
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Per user and Total Network Throughputs vs. SNR for PDF and DPC-NC-PDF
—O— DPC NC-PDF Network
—+— PDF Network
—&O— DPC NC-PDF Per user
—#— PDF Per user

(&)

w

Throughput [b/s/Hz]
SN

SNR [dB]

Figure 4.6: Comparison of Per user and Network Throughputs of classical
PDF and NC-DPC cooperative methods
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5.1 Introduction

5.1.1 Motivation

When considering a large ad hoc network, where multiple source-destination
pairs communicate simultaneously, the performance scalability with respect
to the number of nodes, size or density of the network is a crucial issue [85].
Due to the increasing interference generated by an increasing number of com-
municating pairs, it may turn out that ad hoc networks are only appropriate
for short range communication systems. In order to avoid the interference-
limited behavior when the network density increases, some hybrid schemes
combining cellular and ad hoc networks have been considered as a convenient,
alternative [3-5]. However, following the development of MIMO systems, an-
other alternative to combat the interference-limited behavior started emerg-
ing: cooperative virtual MIMO networks, where wireless nodes interact to
form a virtual antenna array.

In the following, we first review the performance results of ad hoc net-
works [1,86] without cooperation between nodes. Then, we address the po-
tential gains resulting from the cooperative approach in ad hoc networks.

Interference-limited dense networks

The pioneering work by Gupta and Kumar [1] on the capacity of wireless ad
hoc networks paved the way to many research works on the scaling laws of
large networks. Considering a dense ad hoc network with n nodes capable of
transmitting at W bits/second, located in a disk of unit area, they showed
that the performance of the network was limited by interference and de-
creased dramatically as the density of the network increased. More precisely,
they showed that

e when the n nodes are randomly located, the transport capacity scales as
©(W/n), and the throughput per node scales as © <%) bits/second;

e when the n nodes are optimally placed, and the traffic pattern and
each transmission range are optimally chosen, the throughput per node

w
scales as © (%)

Based on those results, the deployment of very dense ad hoc networks ap-
peared to be not desirable and the authors recommended to consider ad hoc
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networks with a small number of nodes, or networks where nodes communi-
cate via multi-hopping only with nearby nodes. Nevertheless, their analysis
relied on the assumption that transmissions happened in a point-to-point
multi-hop path between a source and its destination and that signals trans-
mitted by different nodes and received simultaneously at a node represented
interference impairing the communication. This assumption modeled each
node as an isolated signal-processing unit, to which all surrounding nodes
were potential interferers, and thus ignored the potential gains that could
arise, at the physical layer, from cooperation between nodes and virtual
MIMO.

Transmission-Range-limited wide networks

In [86], Xie and Kumar considered an ad hoc network where n nodes were
located on a plane with a minimum separation distance between nodes, re-
sulting in network with a fixed density but growing size when the number of
nodes n increased. They showed that under the assumption of equal per-node
power constraints, the transport capacity scaled linearly with the number of
nodes for pathloss exponents greater than 6, and that the linear scaling could
be achieved by decode-and-forward point-to-point multi-hopping, treating
other simultaneous transmissions as interference. Their work initiated a se-
ries of works [87-90], each work improving progressively the range of pathloss
exponents for which a linear scaling of the transport capacity was possible,
until pathloss exponents greater than 4 in [89)].

In networks with a fixed density and an increasing area when the num-
ber of nodes increases, the distance between source and destination tends
to increase. When the pathloss attenuation is fast enough, communica-
tion is impaired less by interference than by the transmission range that
the transmitted power allows to reach. Optimal scaling being possible with
simple multi-hopping, considering more complex transmission scheme may
appear irrelevant. Nevertheless, in the regime of slow pathloss attenuation—
pathloss exponent between 2 and 4 — where interference may play a larger
role as in dense networks, the scaling law of the transport capacity is still an
open problem, and gains at the physical layer may be possible through the
use of more advanced transmission techniques.
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Cooperative virtual MIMO

In a ad hoc network, when distributed wireless nodes interact to jointly
transmit or receive information, they form a virtual antenna array and their
cooperation enables the exploitation of MIMO gains [91]. Indeed, in regular
point-to-point communications, MIMO techniques are known to be able to
improve

e spectral efficiency: a spatial multiplexing gain is provided by the simul-
taneous transmission of independent data streams over different anten-
nas, and results in a linear increase of the capacity with the minimum
number of transmit and receive antennas;

e reliability: a spatial diversity gain is provided by making a data stream
experience several independent fadings, e.g. with Space-Time-Codes.

In a ideal ad hoc network, where all nodes could perfectly cooperate both
at transmission and reception, one could expect the network to behave like
a perfect MIMO system. The total capacity would then grow linearly with
the number of node pairs as in the point-to-point MIMO channel [38]. How-
ever perfect transmit/receive cooperation has a cost, in particular it requires
perfect synchronization between cooperating nodes and extensive channel
knowledge, which is impossible in practice. Making such a perfect coop-
eration assumption over the whole network is unrealistic, yet a reasonable
alternative consist in dividing the network in several cooperative clusters.
Each cluster would gather nodes cooperating in a local area to form a virtual
antenna array and virtual MIMO transmissions would then occur in multi-
ple stages between these cooperative clusters. This approach offers a way
to leverage the broadcasting nature of the wireless link, and differs from [1]
essentially in that simultaneous transmissions are not treated as interference
in a point-to-point communication setting [1|, but as useful signals that are
jointly and cooperatively processed at nodes within a cluster. Note that in
cellular networks, current research efforts to improve the performance of cel-
lular systems suggest a tendency towards clusters of base stations cooperating
to form virtual antenna arrays serving mobile users.

In this chapter, we consider a dense cooperative ad hoc network, where
nodes are grouped in three types of cooperative clusters:

e a source cluster, consisting of source nodes cooperating to form a virtual
transmit antenna array;
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e a destination cluster, gathering destination nodes cooperating to form
a virtual receive antenna array;

e a series of intermediary relaying clusters, between source and destina-
tion clusters, each gathering relay nodes cooperating to form a virtual
relay antenna array.

This system forms a virtual MIMO multi-hop relay network. Deriving the
capacity of such a complex network involves many parameters and variables
and is intricate. Fortunately, random matrix theory and free probability the-
ory provide useful mathematical results on the eigenvalues and eigenvectors
of large random matrices, that can be applied to the field of wireless commu-
nications in order to analyze complex communication systems [39]. Indeed,
the transfer of information in a communication system can often be modeled
by an equation y = Hx + z, where x,y, and z are respectively the input,
output, and noise random vectors, and H is the random transfer matrix
of the system. For such a system, most information-theoretic performance
metrics can be shown to depend only on the eigenvalues and eigenvectors of
the transfer matrix H, therefore RMT and FPT appear relevant theories to
give insight on the scaling behavior of these performance metrics when the
system dimensions increase. Moreover, the self-averaging effect of random
matrices with large dimensions has be shown to be able to reveal the rele-
vant parameters impacting the performance communication schemes. As a
first step towards a future more complete analysis of the performance of ad
hoc networks with cooperative clusters, we start the analysis by making some
simplifying assumptions. We assume that nodes in a cluster can perfectly
exchange information, and that channel knowledge intrinsic to the cluster—
channels between nodes within a cluster— is available at all cluster nodes.
Thus in each cluster, nodes form a perfect virtual antenna array. We also
assume non-noisy communications between relaying clusters. Under those
simplifying assumptions and using tools from random matrix theory and free
probability theory, we address, in this chapter, the following questions:

e What is the asymptotic capacity of the cooperative-cluster system when
the number of nodes in all clusters grow large?

e What are the relevant parameters impacting the system capacity?

e How should nodes in a cooperative cluster process and transmit coop-
eratively their wireless signals to maximize the system capacity?
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5.1.2 Contribution

We consider an N-hop MIMO relay communication system wherein data
transmission from kg source antennas to ky destination antennas is made
possible through N — 1 relay levels, each of which are equipped with k;, ¢ =
1,...,N — 1 antennas. In this transmission chain with N + 1 levels, it is
assumed that each relay receives a faded version of the multi-dimensional
signal transmitted from the previous level and, after precoding, retransmits it
to the next level. We consider the case where all communication links undergo
block Rayleigh flat fading and the fading channels at each hop (between
two adjacent levels) may be correlated while the fading channels of any two
different hops are independent.

Using tools from the free probability theory and assuming that the noise
power at the relay levels, but not at the destination, is negligible, we first
derive a closed-form expression of the asymptotic instantaneous end-to-end
mutual information between the source input and the destination output, as
the number of antennas at all levels k;, ¢ = 1,..., N — 1 grows large. This
asymptotic expression is shown to be independent from the channel realiza-
tions and to only depend on the channel statistics. Therefore, as long as
the statistical properties of the channel matrices at all hops do not change,
the instantaneous mutual information asymptotically converges to the same
deterministic expression for any arbitrary channel realization, with two ma-
jor consequences. First, in the asymptotic regime the mutual information is
not a random variable any more but a deterministic value representing an
achievable rate. This means that when the channel is random but fixed at the
beginning of the transmission block, and the system size is large enough, the
capacity in the sense of Shannon is not zero, on the contrary to the capacity
of small size systems [38, Section 5.1]. Second, given the stationarity of chan-
nel statistical properties, the asymptotic instantaneous mutual information
obtained in the non-ergodic block-fading regime also serves as the asymptotic
value of the average end-to-end mutual information between the source and
the destination. The expression of the asymptotic average mutual informa-
tion is the same as the asymptotic ergodic mutual information that would be
obtained if the channel was an ergodic process. Intuitively, the time-domain
ergodicity is recovered in the spatial domain when the dimensions of the
system grow large.

We also obtain the singular vectors of the optimal precoding matrices
that maximize the average mutual information of the system with a finite
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number of antennas at all levels. It is shown that the singular vectors of
the optimal precoding matrices are also independent from the channel real-
izations and can be determined only using statistical knowledge of channel
matrices at source and relays. The so-obtained singular vectors turn out to
be also optimal in the asymptotic regime of concern. Therefore, combining
asymptotic mutual information expression and optimal precoding singular
vectors will pave the way for future work on optimal power allocation, i.e.
finding the optimal precoding singular values.

Finally, we apply the aforementioned results on the asymptotic mutual
information and the structure of the optimal precoding matrices to several
communications scenarios, with different number of hops, and types of chan-
nel correlation. These examples illustrates the gains resulting from the co-
operative cluster approach and reveal the few relevant parameters impacting
the capacity of cooperative dense ad hoc networks.

5.1.3 Related works

MIMO relay communication systems have recently attracted much attention
due to their potential to substantially improve the signal reception quality,
in particular when the direct communication link between the source and the
destination is not reliable. Due to its major practical importance as well as
its significant technical challenge, deriving the capacity - or bounds on the
capacity - of various relay communication schemes is growing to an entire
field of research. Of particular interest is the derivation of capacity bounds
for systems in which the source, the destination, and the relays are equipped
with multiple antennas. Recent works using random matrix theory and free
probability theory to derive scaling laws in multi-hop MIMO relay networks
with large dimensions (nodes, antennas...) started emerging.

Several works focused on the capacity of two-hop relay networks, such
as [26-31,92|. Assuming fixed channel conditions, lower and upper bounds
on the capacity of the two-hop MIMO relay channel were derived in [26].
In the same paper, bounds on the ergodic capacity were also obtained when
the communication links undergo i.i.d. Rayleigh fading. The capacity of
a two-hop MIMO relay system was studied in [27] in the asymptotic case
where the number of relay nodes K grows large while the number of trans-
mit and receive antennas M remains constant. In this setting, the capacity
was shown to scale as C' = (M/2)log K + O(1) when CSI is available at
relays. The scaling behavior of the capacity in two-hop amplify-and-forward
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(AF) networks was analyzed in [28-30] when the numbers of single-antenna
sources, relays and destinations grow large. The achievable rates of a two-
hop code-division multiple-access (CDMA) decode-and-forward (DF) relay
system were derived in [93] when the numbers of transmit antennas and re-
lays grow large. In [31], an ad hoc network with several source-destination
pairs communicating through multiple AF-relays was studied and an upper-
bound on the asymptotic capacity in the low Signal-to-Noise Ratio (SNR)
regime was obtained in the case where the numbers of source, relay and des-
tination nodes grow large. The scaling behavior of the capacity of a two-hop
MIMO relay channel was also studied in [92] for bi-directional transmissions.
In [94] the optimal relay precoding matrix was derived for a two-hop re-
lay system with perfect knowledge of the source-relay and relay-destination
channel matrices at the relay.

Following the work in [44] on the asymptotic eigenvalue distribution of
concatenated fading channels, several analysis were proposed for more gen-
eral multi-hop relay networks, including [32-37]. In particular, considering
multi-hop MIMO AF networks, the tradeoffs between rate, diversity, and
network size were analyzed in [32], and the diversity-multiplexing tradeoff
(DMT) was derived in [33]. The asymptotic capacity of multi-hop MIMO
AF relay systems was obtained in [34] when all channel links experience
i.i.d. Rayleigh fading while the number of transmit and receive antennas,
as well as the number of relays at each hop go to infinity with the same
rate. Finally, recent works considering cooperative clusters in ad hoc net-
works started emerging [36,37|. In [36] a collaborative scheme was proposed
for networks with n-nodes in the fixed received SNR regime—which includes
dense networks — with a scaling of the per-node throughput in Q(#)
In [37] hierarchical virtual MIMO networks were studied, the scaling laws of
capacity were derived when the network density increases and the proposed
hierarchical protocol was shown to achieve linear scaling of capacity in the
number of single-antenna nodes randomly distributed in an area.

5.2 System Model

5.2.1 Multi-Hop MIMO Relay Network

Consider Fig. 5.1 that shows a multi-hop relaying system with ky source
antennas, ky destination antennas and N — 1 relaying levels. The i—th
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Figure 5.1: Multi-hop Relaying System

relaying level is equipped with k; antennas. We assume that the noise power
is negligible at all relays while at the destination the noise power is such that

Elzz”] = 0’ = 1 (5.1)
U]
where z is the circularly-symmetric zero-mean i.i.d. Gaussian noise vector
at the destination. The simplifying noise-free relay assumption is a first
step towards the future information-theoretic study of the more complex
noisy relay scenario. Note that several other authors have implicitly used
a similar noise-free relay assumption. For instance, in [33| a multi-hop AF
relay network is analyzed and it is proved that the resulting colored noise
at the destination can be well-approximated by white noise in the high SNR
regime. In a multi-hop MIMO relay system, it can be shown that the white-
noise assumption would be equivalent to assuming negligible noise at relays,
but non-negligible noise at the destination.
Throughout the section, we assume that the correlated channel matrix at
hop i € {1,..., N} can be represented by the Kronecker model

H, 2 C/’e,C,” (5.2)

where C, ;, C, ; are respectively the transmit and receive correlation matrices,
©®, are zero-mean i.i.d. Gaussian matrices independent over index i, with
variance of the (k,[)-th entry

Q;

]{71;1

E[|6\)]%) = i=1,...,N (5.3)

where a; = d; p represents the pathloss attenuation with § and d; denoting
the pathloss exponent and the length of the i-th hop respectively. We also
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assume that channels matrices H;, ¢ = 1,..., N remain constant during a
coherence block of length L and vary independently from a coherence block
to another.

Note that the i.i.d. Rayleigh fading channel is obtained from the above
Kronecker model when matrices C;; and C,; are set to identity.

Within a coherence block, the signal transmitted by the kg source anten-
nas at time [ € {0,...,L — 1} is given by the vector xo(l) = Poyo(l — 1),
where P is the source precoding matrix and yj is a zero-mean random vector
with

Elyoyd!] = I, and thus E[xox{!] = PPy (5.4)

Assuming that relays work in full-duplex mode, at time [ € {0,...,L — 1}
the relay at level 7 uses a precoding matrix P; to linearly precode its received
signal y;(l — 1) = H;x;_1(l — 1) and form its transmitted signal

x;(1) = Pyy; (1 —1) i=0,...,N—1 (5.5)

The precoding matrices at source and relays P;, ¢ =0,..., N —1 are subject
to the per-node long-term average power constraints’

tr(Exx/)) <kP; i=0,...,N—1 (5.6)

It should be noticed that choosing diagonal precoding matrices would reduce
the above scheme to the simpler AF relaying strategy.

As can be observed from Fig. 5.1, the signal received at the destination
at time [ is given by

yn(l) = HyPy_Hy_Py_o.. HoP H\Pyyo(l — N) +z

= Gpnyo(l = N) +z (5.7)
'Recall that y; = H;x;_1. The power constraint on x;_1, given by tr(E[x;_1x,]) <
ki_1Pi_1, along with the variance of the elements H;, given by E[|6\)|2] = pi—, are such

that the system is equivalent to a system where random channel elements 9,(:2 would be
i.i.d. with variance a; and the power constraint on the transmitted signal at level ¢ — 1
would be finite and equal to P;_1. That equivalent system, with finite transmit power at
each level, makes sense from a physical point of view and shows that adding antennas,
i.e. increasing the system dimension, does not mean increasing the transmit power from
a physical point of view. Nonetheless, in order to derive the asymptotic instantaneous
mutual information in Section 5.3, using random matrix theory tools, the variance of
random channel elements is required to be normalized by the size of the channel matrix.
That is the reason why the normalized model— channel variance and power constraint—
was adopted.



5.2 System Model 103

where the end-to-end equivalent channel is
Gy = HyPy_ Hy Py,...H,PH/P
= C/vONC, Py iC)y_ Oy 1C)ly_ ... P,C 0,CPy(5.8)
Let us introduce the matrices
M, = C//P,
M, = C/2P.C}  i=1,..,N-1

My = C% (5.9)
Then (5.8) can be rewritten as
GN = MNGNMN—IGN—l R M2®2M1®1M0 (510)

For the sake of clarity, the dimensions of the matrices/vectors involved in
our analysis are given below.

XZICZX:[ yzk‘le Plk’ZXl{IZ
Hi : kfl X ki—l Cr,i : k’z X k’z Ct,i : ki—l X ki—l
Gi:kiin—l Mlk?ZXk’Z

In the sequel, we assume that the channel coherence time is large enough
to consider the non-ergodic case and consequently, time index [ can be
dropped. Finally, we define three channel-knowledge assumptions:

e Assumption Ag, local statistical knowledge at source: the source has
only statistical CSI of its forward channel H;, i.e. the source knows
the transmit correlation matrix C; ;.

e Assumption A,, local statistical knowledge at relay: at the i"* relaying
level, i € {1,..., N — 1}, only statistical CSI of the backward channel
H; and forward channel H,; are available, i.e. relay i knows the receive
correlation matrix C,; and the transmit correlation matrix Cy ;4.

e Assumption Aq, end-to-end perfect knowledge at destination: the des-
tination perfectly knows the end-to-end equivalent channel Gy

Throughout the section, assumption A4 is always made. Assumption Agq is
the single assumption on channel-knowledge necessary to derive the asymp-
totic mutual information in Section 5.3, while the two extra assumptions Ag
and A, are also necessary in Section 5.4 to obtain the singular vectors of the
optimal precoding matrices.
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5.2.2 Mutual Information

Under Assumption Aq, the end-to-end mutual information between channel
input yo and channel output (yy, Gy) is [38]

Z(yo; (yn, Gn)) = Z(yo; yn|GN) + Z(yo; Gn) = Z(yo; yn|GN)
0
= H(yn|Gn) — Hlynlyo, Gn) (5.11)
(2)
H(z
= Eg\ [H(yn|GNn = Gn)] — H(z)

The entropy of the noise vector is known to be H(z) = logdet(7-Lx, ).

Besides, yq is zero-mean with variance E[yoyl| = I ,, thus given Gy, the
received signal y is zero-mean with variance GNG%—l—%IkN. By [38, Lemma
2| the inequality H(yn|Gy = Gy) < logdet(meGyGE + "Lk ) holds, and
the entropy is maximized when equality is met for yy circularly-symmetric
complex Gaussian, which is the case when y is circularly-symmetric com-
plex Gaussian. Therefore in the sequel, yq is considered to be zero-mean
circularly-symmetric complex Gaussian and the mutual information (5.11)
can be rewritten

I(yo; (yNa GN)) = EGN [lOg det(IkN + UGNGg)] (5 12)
= Ecy [Z(yo; yn|Gn = G)]
where Z(yo; yn|Gn = Gn) = logdet(I;, + nGnyGH) is the instantaneous
mutual end-to-end information for a channel realization Gy.
To optimize the system, we are left with finding the precoders P; maxi-
mizing the end-to-end mutual information (5.12) subject to power constraints
(5.6), i.e. obtaining the maximum average end-to-end mutual information

C = max E [logdet(I, +n GyGY)
{Pi/tr(ExixT])<kiPi}icqo,.. .N—1} [ Y N } (5'13)

Note that the non-ergodic regime is considered, therefore (5.12) represents
only an average mutual information over channel realizations, and maximiz-
ing (5.12) does not a priori have the meaning of channel capacity in the
Shannon sense when the system size is finite.
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5.3 Asymptotic Mutual Information

In this section, we consider the instantaneous mutual information per trans-
mit antenna between the source and the destination

1
= . log det (I, + nGyGR) (5.14)
0
and derive its asymptotic value as the number of antennas ko, k1, ..., ky go

to infinity. The following theorem holds.
Theorem 1. For the system described in section 5.2, assume that

e perfect knowledge of the end-to-end channel Gy is available at the des-
tination (Assumption Aq)

o ko, ki,...,kn go to infinity whilef—gﬁpz‘, 1=0,...,N

o Vi € {0,...,N}, as k; goes to infinity, MEM,; has a limit eigenvalue
distribution with a compact support.

Then the instantaneous mutual information per transmit antenna I converges
almost surely to

N
1
I.=—> pE {log (1+n
Po =%

where axy1 = 1 by convention, hg, hy, ..., hy are the solutions of the system
of N + 1 equations

N
< 1
az“thi)] ~ NS T (5.15)
Pi .

N

th = p;E

J=0

KV A,

Qi1

i=0,....N (5.16)

and the expectation E[-] in (5.15) and (5.16) is over \; whose distribution is
given by the asymptotic eigenvalue distribution Fypryg, (\) of MHM,.

The detailed proof of Theorem 1 is presented in Appendix 5.B.
Note that the above expression of the asymptotic instantaneous mutual
information is valid for any arbitrary set of precoding matrices P;, 7 =
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0,...,N—1, such that M# M, has a compactly supported asymptotic eigen-
value distribution when the system dimensions get large.?

Given a set of precoding matrices, it can be observed from (5.15) and
(5.16) that the asymptotic expression is a deterministic value depending
only on channel statistics and not on a particular channel realization. In
other words, for a given set of precoding matrices, as long as the statistical
properties of the channel matrices do not change, the instantaneous mutual
information always converges to the same deterministic achievable rate, re-
gardless of the channel realization. Thus, as the numbers of antennas at
all levels grow large, the instantaneous mutual information is not a random
variable anymore and the precoding matrices maximizing the asymptotic in-
stantaneous mutual information can be found based only on knowledge of
the channel statistics, without requiring any information regarding the in-
stantaneous channel realizations. This further means that when the channel
is random but fixed at the beginning of the transmission and the system size
grows large enough, the capacity in the sense of Shannon is not zero any
more, on the contrary to the capacity of small-size systems [38, Section 5.1].

Moreover, given the stationarity of channel statistical properties, the in-
stantaneous mutual information converges to the same deterministic expres-
sion for any arbitrary channel realization. Therefore, the asymptotic instan-
taneous mutual information (5.15) obtained in the non-ergodic regime also
represents the asymptotic value of the average mutual information, whose
expression is the same as the asymptotic ergodic end-to-end mutual informa-
tion that would be obtained if the channel was an ergodic process.

It should also be mentioned that, according to the experimental results
illustrated in Section 5.6, the system under consideration behaves like in the
asymptotic regime even when it is equipped with a reasonable finite number
of antennas at each level. Therefore, (5.15) can also be efficiently used to

2Recall that Mf{MZ = Cfi/QPf{ Ct7i+1PiC71,7/i2. The power constraints on signals trans-

mitted by the source or relays are not sufficient to guarantee the boundedness of the
eigenvalues of MIH M,. Indeed, as (5.131) shows, in the asymptotic regime the power con-
straints represent constraints on the product of first-order moment of the eigenvalues of
matrices P;C,;PH¥ and MZM;— indeed limg, kiitr(PiC,.ﬂ-Pf) = E[)\Pmcmpf] and
limg, 00 étr(Ct7k+1PkCT,kPkH) = E[Ag] , which a priori does not prevent the eigenvalue
distribution of MIH M; from having a non-bounded support. Thus, the assumption that
matrices MM, have a compactly supported asymptotic eigenvalue distribution is a pri-
ori not an intrinsic property of the system model, and it was necessary to make that
assumption to use Lemma 2 to prove Theorem 1.
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maximize the instantaneous mutual information of a finite-size system.

5.4 Optimal Transmission Strategy at Source
and Relays

In previous section, the asymptotic instantaneous mutual information (5.15),
(5.16) was derived considering arbitrary precoding matrices P;,i € {0,..., N—
1}.

In this section, we analyze the optimal linear precoding strategies P;,i €
{0,..., N — 1} at source and relays that allow to maximize the average mu-
tual information. We characterize the optimal transmit directions, meaning
the singular vectors of the precoding matrices at source and relays, for a
finite-size system i.e. when kg, ki, ..., ky are finite. It turns out that those
transmit direction are also the ones maximizing the asymptotic average mu-
tual information. As explained in Section 5.3, in the asymptotic regime,
the average mutual information and the instantaneous mutual information
have the same asymptotic value, therefore the singular vectors of the pre-
coding matrices maximizing the asymptotic average mutual information are
also optimal for the asymptotic instantaneous mutual information (5.15).

In future work, using the results on the optimal directions of transmission
(singular vectors of P;) and the asymptotic mutual information (5.15)—(5.16),
we intend to work out the optimal power allocation (singular values of P;)
maximizing the asymptotic mutual information (5.15).

The main result of this section is given by the following theorem:

Theorem 2. Consider the system described in Section 5.2. Fori € {1,...,N}
let Cy; = UMAt,iUtIfi and C,,; = UMAT’Z-Uf; be the eigenvalue decomposi-
tions of the correlation matrices C,; and C,;, where Uy ; and U, ; are unitary
and Ay; and A, ; are diagonal, with their respective eigenvalues ordered in
decreasing order. Then, under channel-knowledge assumptions Ag, A, and
Aq, the optimal linear precoding matrices, that mazimize the average mutual
information under power constraints (5.6) can be written

PO = Ut,lAPo

5.17
Pi = Ut7i+1APiU,rI._7IZ- 5 f07”i c {1, e N — 1} ( )

where Ap, are diagonal matrices with non-negative real diagonal elements.
In other words, the singular vectors of the optimal precoding matrices are
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given by the eigenvectors of the channel correlation matrices. Moreover, the
singular vectors of the precoding matrices (5.17) are also the ones which
mazximize the asymptotic average mutual information. Since the asymptotic
average mutual information has the same value as the asymptotic instan-
taneous mutual information, the singular vectors of the precoding matrices
(5.17) are eventually also optimal for the asymptotic instantaneous mutual
information.

For the proof of Theorem 2, the reader is referred to Appendix 5.C.
Theorem 2 means that the transmit directions at source and relays max-
imizing the average mutual information are such that:

e the source should align the eigenvectors of the transmit covariance ma-
trix Q = PoP{ to the eigenvectors of the transmit correlation matrix
C;,1 of the first-hop channel H;, which requires only local statistical
channel knowledge Ag. Note that a similar result was previously ob-
tained in the single-hop MIMO system—without relays— with covari-
ance knowledge at the source in [95] for the single-user case, and in [96]
for the multi-user case.

e relay 7 should align the singular vectors of its precoding matrix P; to
the eigenvectors U, ; of the receive correlation matrix of channel H;,
on the right, and to the eigenvectors U, ; of the transmit correlation
matrix of channel H;,; on the left, which requires only local statistical
knowledge A..

e the problem of optimizing P; can be divided into two decoupled prob-
lems: optimizing the transmit directions—singular vectors— on one
hand, and optimizing the transmit powers—singular values— on the
other hand.

We would like to draw the attention of the reader on the following point:
the proof of this theorem does not rely on the expression of the asymptotic
mutual information given in (5.15) and is independent from Theorem 1. On
the contrary, Theorem 2 is first proved in the non-asymptotic regime for any
system size, i.e. for any set {ki}ie{o,...,N}- The so-obtained singular vectors
of the precoding matrices maximizing the average mutual information are
aligned to the eigenvectors of channel correlation matrices for any system
size, thus the result still holds when the system size increases. Consequently,
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in the asymptotic regime, the singular vectors of the precoding matrices
maximizing the asymptotic average mutual information are also aligned to
the eigenvectors of channel correlation matrices as in (5.17). As explained
in Section 5.3, in the asymptotic regime, instantaneous and average mutual
informations have the same value. Therefore, the singular vectors given in
(5.17) are also the ones maximizing the asymptotic instantaneous mutual
information. Eventually, by combining Theorem 1 and Theorem 2, the ul-
timate objective is to find the optimal precoding matrices maximizing the
asymptotic instantaneous/average mutual information using only statistical
knowledge of the channel at transmitting nodes.

5.5 Application to MIMO Communication Sce-
narios

In this section, Theorem 1 and Theorem 2 are applied to four different com-
munication scenarios. In the first two scenarios, the special case of non-relay
assisted MIMO (N=1) without path-loss (a; = 1) is considered, and we
show how (5.15) boils down to known results for the MIMO channel with or
without correlation. In the third and fourth scenarios, a multi-hop MIMO
system is considered and the asymptotic mutual information is developed in
the uncorrelated and exponential correlation cases respectively.

5.5.1 Uncorrelated Single-Hop MIMO with Statistical
CSI at Source

Consider a simple single-hop uncorrelated MIMO system with the same

number of antennas at source and destination i.e. py = p; = 1, and an
ii.d. Rayleigh fading channel i.e. C,; = C,; = I . Assuming equal
power allocation at source antennas, the source precoder is Py = /Pol.

As M, = C;{QPO = vPol and M; = Ci{f = I, their empirical eigenvalue
distributions are given by

dFMgIMO ()‘)

§ (A —Po) dX
S\ —1)d). (5.18)

Using the distributions in (5.18) to compute the expectations in (5.15)
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yields

N N
1 N N loge
Po ; Pi Po ;:ll (5.19)

= log (1 4+ nhoPo) + log(1 4+ nh1) —loge 1 ho by

where, according to (5.16), hy and h; are the solutions of the system of 2
equations

(5.20)

that are given by

he —
T+ VI AP,
h —1 + vV 1 + 4’/]730
1= .
2n

(5.21)

Inserting the expression of hy and h; (5.21) into (5.19), we obtain

1+ VIF P\ 1 2
IOO:ZIOg( i 2+ 1 °> —425;; <\/1+4n790—1) . (5.22)

It can be observed that the deterministic expression (5.22) depends only
on the system characteristics and is independent from the channel realiza-
tions. Moreover equal power allocation is known to be the capacity-achieving
power allocation for a MIMO i.i.d. Rayleigh channel with statistical CSI at
source |39, Section 3.3.2|, [38]. As such, the asymptotic mutual information
expression obtained in (5.22) also represents the asymptotic capacity of the
system. Finally (5.22) is similar to the expression of the asymptotic capac-
ity per dimension previously derived in [39, Section 3.3.2] for the MIMO
Rayleigh Channel with equal number of transmit and receive antennas and
statistical CSI at the transmitter.
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5.5.2 Correlated Single-Hop MIMO with Statistical CSI
at Source

In this example, we consider the more general case of correlated MIMO chan-
nel with separable correlation: H; = C}"’/f@lc,i/f. The eigenvalue decompo-

sition of Cy ; is
Ci1= Ut,1At,1U£11 (5.23)

where A;; is a diagonal matrix whose diagonal entries are the eigenvalues
of C;; in the non-increasing order and the unitary matrix U;; contains the
corresponding eigenvectors. Let us define the transmit covariance matrix

Q £ E [xoxg ] = PP}/ (5.24)
It has been shown [95] that the capacity-achieving matrix Q* is given by
Q" = Ut,1AQ*U§1 (5.25)

where Aq-« is a diagonal matrix containing the capacity-achieving power al-
location. Using Theorem 1 along with (5.23) and (5.25), it can be readily
shown that the asymptotic capacity per dimension is equal to

1 1
C = Eflog(1 + L Aoho)] + —E[log(1 + nAih1)] — 2 hohy  (5.26)
Po Po Po
where hg and h; are the solutions of the system

Ay
ho =B | —2L
’ [1+77A1h1]

Ao
1+ piOAOhO

(5.27)
hl -

and the expectations are over Ay and A; whose distributions are given by
the asymptotic eigenvalue distributions of A;;Aq+ and C,, respectively. It
should be mentioned that an equivalent expression® was obtained in [39,
Theorem 3.7] for the capacity of the correlated MIMO channel with statistical
CSI at transmitter.

3The small differences between (5.26) and the capacity expression in [39, Theorem 3.7]
are due to different normalization assumptions in [39]. In particular (5.26) is the mutual
information per source antenna while the expression in [39] is the capacity per receive
antenna. The equivalence between [39, Theorem 3.7] and (5.26) is obtained according to
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5.5.3 Uncorrelated Multi-Hop MIMO with Statistical
CSI at Source and Relays

In this example, we consider an uncorrelated multi-hop MIMO system, i.e.
all correlation matrices are equal to identity. Then by Theorem 2 the optimal
precoding matrices should be diagonal. Assuming equal power allocation at
source and relays, the precoding matrices are of the form P; = o;Ij,, where
«; is real positive and chosen to respect the power constraints.

Using the power constraint expression (5.131), it can be shown by induc-
tion on ¢ that the coefficients a; in the uncorrelated case are given by

040:\/770

7)
o i : _ 5.29
o B Vie{l,...,N—1} (5.29)

OéNzl

Then the asymptotic mutual information for the uncorrelated multi-hop
MIMO system with equal power allocation is given by

al pi nhNa; 02 loge N
I, = ~log (1 + M) - N n||h (5.30)
; Po Pi Po Z.ll
where hg, hy,...,hy are the solutions of the system of N 4 1 multivariate

polynomial equations

N
h¥a2a;
Mn=——"- i=0,....N (5.31)
1 nh; a0
j=0 T
Note that the asymptotic mutual information is a deterministic value de-
pending only on a few system characteristics: signal power P;, noise power

1/n, pathloss a;, number of hops NV and ratio of the number of antennas p;.

the following notation equivalence ( { [39]-notation} ~ {(5.26)-notation}):

h h
C ~ pol B~ po SNR ~ Pyn r~= T~ -
Po Po
AR ~ A1, both with distribution given by the eigenvalue distribution of C,.

A
A~ 7)—0 , both with distribution given by the eigenvalue distribution of A;1Aq+/Po

0
(5.28)



5.5 Application to MIMO Communication Scenarios 113

5.5.4 Exponentially Correlated Multi-Hop MIMO with
Statistical CSI at Source and Relays

In this section, the asymptotic mutual information (5.15) is developed in the
case of exponential correlation matrices and precoding matrices with optimal
singular vectors.

Optimal precoding directions: For i € {1,..., N}, the eigenvalue de-
compositions of channel correlation matrices C;; and C,; can be written

H
Ct,i = Ut,iAt,iUt,i

C —U AUt (5.32)

where U,; and U,; are unitary, and A;; and A,; are diagonal with their
respective eigenvalues ordered in decreasing order. Following Theorem 2, we
consider precoding matrices of the form P; = Ut7i+1ApiU§Z-, i.e. the singular
vectors of P; are optimally aligned to the eigenvectors of channel correlation
matrices.

Consequently, we can rewrite matrices M7 M; (5.9) as
M(I){MO = UglA?DOAt,lUm
MM; = U A AL AUy i=1,..., N—1 (5.33)
M%MN = UTI:INAT,NUT,N

Thus, the eigenvalues of matrices MM, are contained in the following di-
agonal matrices

AO - A?DOAt,l
A=A AL A i=1,...,N—1 (5.34)
AN - AT,N

The asymptotic mutual information, given by (5.15) and (5.16), involves
expectations of functions of A; whose distribution is given by the asymptotic
eigenvalue distribution Fygryy, (A) of MHZM;. Equation (5.34) shows that a
function g;(A;) can be written as a function gg(A%, A,y Ativ1), where the
variables A%i, A, ;, and Ay ;1 are respectively characterized by the asymptotic
eigenvalue distributions Fpup (M), Fc,,(A), and Fg, ., (A) of matrices PP,
C,; and C; ;. Therefore expectations in (5.15) and (5.16) can be computed
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using the asymptotic joint distribution of (A%i, Ay, Atigq) instead of the
distribution Fyryy, (A). To simplify notations, we rename the variables as
follows

X=A, Y=A,; Z=MNin (5.35)

Then, the expectation of a function g;(A;) can be written

Elgi (A)] = E[g2(X, Y, 2)] = / / / 0o, 2) (., 2) da dy d=

:///92(x7y72)fX|Y,Z(x‘yaZ) fyiz(ylz) fz(z) dx dy dz
' (5.36)

Exponential Correlation Model: So far, general correlation matrices
were considered. We now introduce the exponential correlation model and
further develop (5.36) for the distributions fy|z(y|z) and fz(z) resulting from
that particular correlation model.

We assume that Level i is equipped with a uniform linear array (ULA)
of length L;, characterized by its antenna spacing l; = L;/k; and its charac-
teristic distances A;; and A, ; proportional to transmit and receive spatial
coherences respectively. Then the receive and transmit correlation matrices
at Level ¢ can respectively be modeled by the following Hermitian Wiener-
class* Toeplitz matrices [97-99):

1 Tryi r?,i ﬁfl |
rr,i 1 . . .
Cr,i = 7"372. el el T rz’i (537)
: . 1y,
i rfffl c TR T 1 -

* A sequence of n x n Toeplitz Matrices Ty, = [tx—;]nxn is said to be in the Wiener class
[61, Section 4.4] if the sequence {tx} of first-column and first-row elements is absolutely
summable, L.e. limy, oo Y pe, [tr| < +o00.

1/’)“7-@

: Ki—1 k -1 —ky _ _ 1
If [rri| <1, then limg, 0o (D o3to T+ Dbk, Tri) = = T = <% and
consequently C,.; is in the Wiener class. C,; is obviously also in the Wiener class if

|Tt,i| < 1.

—n
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_1 ) k}'l'

i+l Tiipr  --- 7"t i+1
Teivr 1 : :
Ciit1 = rt2,i+1 TtQ,iH (5.38)
5 . . 1 Ttit1
L Tf,i‘li 7“t2,i+1 Ttyi+1 ] ki x ks

b
where the antenna correlation at receive (resp. transmit) side r,; = e “ni €
L

[0,1) (resp. 7141 = e B € [0,1)) is an exponential function of antenna
spacing [; and characteristic distance A,; (resp. A;; ) at relaying Level 7.

As K; grows large, the sequence of Toeplitz matrices C, ; of size K; x K; is
fully characterized by the continuous real function f,;, defined for A € [0, 27)
by 61, Section 4.1|

fri(A) = lim E rmejk)‘+ E rfe]k’\
’ K;—+o00 7

k=—(K;—1)
1 Ty e (5.39)
1—rer 1 —r.e
1-— 7"3,1'

- 11— 7, ;6772

We also denote the essential infimum and supremum of f,.; by my, , and My
respectively |61, Section 4.1]. In a similar way, we can define the continuous
real function f;;41 characterizing the sequence of Toeplitz matrices Cy ;1
by replacing r,; in (5.39) by r;;11, and we denote by my, , , and My, . its
essential infimum and supremum respectively.

By Szeg6 Theorem [61, Theorem 9], recalled hereafter in Lemma 6, for any
real function g(-) (resp. h(-)) continuous on [my, ,, My, ] (resp. [my, ..., My, . .]),
we have

[ownwar tm > 00 <k:>>:i/% (Fra(0) dA
ygy y\Yy)ay Ki—to00 Kz k:1g Cri ot 0 g\Jri

1 K; 1 2T
[ a2 tim 23k O 0) =5 [ B iaw) dr
z ' ' k=1

(5.40)
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Assuming that variables Y = A, ; and Z = A, are independent, and
applying Szeg6 Theorem to (5.36), we can write

Bio (4] = | / ([ o tsatelin) de) o) S du s

~~

93(yaz)

-/( o5 w i) o) d:

27
_ / (% /A 05 (fra(N), 2) d)\) f2(2) dz , by Szegd Theorem (5.40)

=0

_ % ;O ( / 05 (Fi(\),2) Fo(2) dz> dx

1 27 2
- (2m)? / / g3 (fri(N), frit1(v)) dXdv , by Szegé Theorem (5.40)
A=0 Jv=0
(5.41)

Equal power allocation over optimal precoding directions: We fur-
ther assume equal power allocation over the optimal directions, i.e. the
singular values of P; are chosen to be all equal: Ap, = a;1,, where «; is real
positive and chosen to respect the power constraint (5.6). Equal power allo-
cation may not be the optimal power allocation scheme, but it is considered
in this example for simplicity.

Using the power constraint expression for general correlation models (5.131)
and considering precoding matrices P; with optimal singular vectors as in
Theorem 2 and equal singular values «, i.e. precoding matrices of the form
P, = Ufi(aiIki)Ut,iH, we can show by induction on 7 that the coefficients o
respecting the power constraints for any correlation model are given by

040:\/7T0

ai:\/ P tr(Ari) ki Vie{l,...,N—1} (542

a;Piy tr(A,;) tr(AiAiq)

OéNzl

Applying the exponential correlation model to (5.42) and making the dimen-
sions of the system grow large, it can be shown that in the asymptotic regime,
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the a; respecting the power constraint for the exponentially correlated system
converge to the same value (5.29) as for the uncorrelated system.

Then X = A}, = o7 is independent from Y and Z, thus fxy z(z|y, z) =
fx(x) = §(x — a?). Consequently,

93(ya 2) = /gg(l‘, Y, 2)6(1' - Oé?) dx = 92(04?, Y, 2) (543)

xT

and (5.41) becomes

B / / 1—r7, 1—1iin A\ d
[gl( 27T =0 92 Z’ 7"7«71'6']'/\‘2’ |1 _ ’rt,i+1ejy|2 v
(5.44)

Asymptotic Mutual Information: Using (5.44) in (5.15) with go(z,y, 2) =
log <1 + n%hﬁv xyz) gives the expression of the asymptotic mutual infor-

mation

a;y105 (1 —7“ 1—r2
I / / log [ 1+ hY¥ ! i —— ol “*.1)2 dX dv
pO A=0 Jv= z|1 _Tr,zej | |1 _Tt,z'+1€]y|

=

loge
-V T,
T

(5.45)

where hg, hy,...,hy are the solutions of the following system of N + 1
hiVAizyz

equations, obtained by using (5.44) in (5.16) with go(z,y,2) = By

N T
H ‘ /2 / h Q4100 (1 —7“ )(1 7",5214_1) d\ d
7 27T A=0 Ju=0 pi|l = rp €32 |1—r“+1eﬂ’|2+nhNaz+1a (L=r2 ) —=7r7,11)

j=0

(5.46)

(with the convention 7,9 = r; y+1 = 0). Using the changes of variables

1—t 2
t = tan A , thus cos(\) = = and d\ = du
2 1+1¢2 1+1¢2
v 1—u? 2du (5:47)
u = tan (—) , thus cos(v) = —— and dv=
2 1+ u? 1+ u?
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and performing some algebraic manipulations that are skipped for the sake
of conciseness, (5.45) and (5.46) can be rewritten

Noop [Tt AVaii102 (1+12) (14w dt  d
eyt [ l%<1+wﬂmﬂnzaww%( ) (+u?) u
t=—o00

i=0 pO7T2 - =—00 Pi (C’IQ“,’L' + t2) (Cii«‘rl + ’LL2) 1 + t2 1 + U’Q
loge N
- N h.
. ng i
(5.48)
where hg, hy, ..., hy are the solutions of the system of N + 1 equations
N
2 hNa; 0?2
[In== e K(m)  (5.49)
0 T \/C o + nhf\’ai+1o¢? \/ 1 + nhﬁvai_Ha?
J= riCti+1 03 CriCtitl i
where K(-) is the complete elliptic integral of the first kind [100], and
1—r
Cri =
T8 1 + T
S L=y
tat+l — T
T Lt (5.50)
Ctit1 nhN a; 1102 Cri nhNa; 102
mo— 1 — < Cri + Pi ) (Ct,i+l + Pi
o 1 nhi'vai+1a12 nhi\raiJﬁlaf
Cr,iCt,it1 + pi Cr,iCti+1 + pi

Those expression show that only a few relevant parameters affect the perfor-
mance of this complex system: signal power P;, noise power 1/, pathloss
a;, number of hops N, ratio of the number of antennas p;, and correlation
ratios ¢,; and ¢ ;.

5.6 Numerical Results

In this section, we present numerical results to validate Theorem 1 and to
show that even for a small number of antennas, the behavior of the system is
close to the behavior in the asymptotic regime, making Theorem 1 a useful
tool for optimization of finite-size systems as well as large networks.
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5.6.1 Uncorrelated Multi-Hop MIMO

The uncorrelated system described in Section 5.5.3.C is first considered.

Fig. 5.2 plots the asymptotic mutual information from Theorem 1 as well
as the instantaneous mutual information obtained for an arbitrary channel
realization (‘experimental’ curves) for a system with 10 antennas at source,
destination and each relay level, and one, two or three hops, the case N =1
hop corresponding to a MIMO channel. Fig. 5.3 plots the same type of
curves, for a system with 100 antennas at each level. The distance between
source and destination d was kept constant when increasing the number of
hops N, and N — 1 relays were inserted between source and destination
with equal spacing d; = d/N between each relaying level. Equal power
allocation, i.e. matrices P; proportional to the identity matrix, as well as non-
correlated channels, i.e. channel correlation matrices all equal to identity, and
pathloss exponent 5 = 2 were considered in these simulations, whose purpose
is mainly to validate the formula in Theorem 1, not to optimize the system.
We would like to point out that plotting the experimental curves for different
channel realizations gave similar results, and that for the sake of clarity and
conciseness, we exhibit the experimental curves only for one realization.

Fig. 5.3 shows the perfect match between the instantaneous mutual in-
formation for an arbitrary channel realization and the asymptotic mutual
information, validating the asymptotic formula for large dimensions of the
network. On the other hand Fig. 5.2 shows that the instantaneous mutual
information of a system with a small number of antennas behaves very closely
to the asymptotic regime, justifying the usefulness of the asymptotic formula
even for optimizing systems with small size.

Finally, Fig. 5.4 plots the asymptotic mutual information for one, two,
and three hops, as well as the value of the instantaneous mutual information
for random channel realizations when the number of antennas at all levels
increases. The concentration of the instantaneous mutual information values
around the asymptotic limit when the system size increases shows the con-
vergence of the instantaneous mutual information towards the asymptotic
limit as the number of antennas grows large at all levels with the same rate.

5.6.2 Omne-Sided Exponentially Correlated Multi-Hop MIMO

Based on the model discussed in Section 5.5.4.D, the one-sided exponentially
correlated system is considered in this section. In the case of one-sided corre-
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lation, e.g. 7,; =0 and r;; > 0 for all i € {0,..., N}, the asymptotic mutual
information (5.51), (5.52) is reduced to

N +00 N 2 2 N
4 W a. 4 1 d 1
Bom 3L [ (1 g D0l L) e ks, T
—o0 i=0

i—p PoT Pi (C%,H—l + u2) 1+ u2
(5.51)
where hg, hy, ..., hy are the solutions of the system of N + 1 equations
N
Jj=0 j \/Ct it1 T nhlj'vai"*'laz? \/ 1 + ﬂhfvai'ﬁ-la? :
’ Pi ci,l+1 pi

One-sided correlation was considered to avoid the involved computation of
the elliptic integral K (m;) in the system of equations (5.52), and therefore
to simplify simulations.

Fig. 5.5 and 5.6 plot the asymptotic mutual information for 10 and 100
antennas at each level respectively, and one, two or three hops, as well as the
instantaneous mutual information obtained for an arbitrary channel realiza-
tion (experimental’ curves). As in the uncorrelated case, the perfect match
of the experimental and asymptotic curves in Fig. 5.6 with 100 antennas val-
idates the asymptotic formula in Theorem 1 in the presence of correlation.
Fig. 5.5 shows that even for a small number of antennas, the system behaves
closely to the asymptotic regime in the correlated case.

Finally, Fig. 5.7 plots the instantaneous mutual information for random
channel realizations against the size of the system and shows its convergence
towards the asymptotic mutual information when the number of antennas
increases. Comparing Fig. 5.7 to the corresponding Fig. 5.4 in the uncorre-
lated case, it appears that convergence towards the asymptotic limit is slower
in the correlated case.

5.7 Conclusion

We studied a MIMO multi-hop relay network, in correlated fading, where re-
lays perform linear precoding on their received signal before retransmission.
On one hand, using free probability theory, we derived a closed-form expres-
sion of the instantaneous end-to-end mutual information in the asymptotic
regime when the number of antennas at all levels grows large. This deter-
ministic expression turned out to depend only on channel statistics and not
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on particular channel realizations, and to also serve as the asymptotic value
of the average end-to-end mutual information. We also showed that multi-
hop networks with finite dimensions behave closely to the asymptotic regime,
even for a small number of antennas, making the asymptotic mutual infor-
mation a powerful tool for optimizing the instantaneous mutual information
of finite-size systems with only statistical knowledge of the channel.

On the other hand, we showed that, for any system size, and a fortiori
in the asymptotic regime, the precoding matrices maximizing the average
mutual information have a particular structure: at each level, the singular
vectors of the optimal precoding matrix must be aligned to the eigenvectors
of the transmit and receive correlation matrices of the backward and forward
channels respectively. Thus, the singular vectors of the optimal precoding
matrices can be determined with only local statistical channel knowledge at
each level.

In the sequel, the analysis will first be extended to the noisy-relay sce-
nario. Then, combining asymptotic mutual information and optimal direc-
tions of transmissions, future work will focus on optimizing the power allo-
cations, i.e. the singular values of the optimal precoding matrices.

Future research directions also include the analysis of the cooperative
clustering effect: given a total number of antennas k; at level 7, instead of
considering that the level consists of a single node equipped with many an-
tennas (k;), we can consider that a level contains n; nodes— sources, relays,
or destinations— with (k;/n;) antennas each. Clustering has a direct impact
on the structure of correlation matrices, which become block-diagonal matri-
ces, where blocks represent the correlation between antennas at a node, while
antennas at different relays sufficiently separated in space are supposed un-
correlated. In the limit of a relaying level containing k; relays equipped with
a single antenna, we fall back to the case of uncorrelated fading with corre-
lation matrices equal to identity. The optimal size of clusters in correlated
fading is expected to depend on the SNR regime. Finally, in the cooperative
cluster setting described in Section 5.1.1, a complete analysis would need
to take into account the cost of cooperation since communication within a
cluster is actually unperfect, and channel estimation errors may occur within
a cluster.
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Instantaneous Mutual Information vs SNR, K = 10 antennas, r =0
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Figure 5.2: Uncorrelated case: Asymptotic Mutual Information and Instanta-
neous Mutual Information versus SNR, with K — 10 antennas, for single-hop

MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs SNR, K = 100 antennas, r =0
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Figure 5.3: Uncorrelated case: Asymptotic Mutual Information and Instanta-
neous Mutual Information versus SNR, with K = 100 antennas, for single-hop
MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs Number Antennas, SNR=10dB, r=0
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Figure 5.4: Uncorrelated case: Asymptotic Mutual Information and Instanta-
neous Mutual Information versus K, at SNR—=10 dB, for single-hop MIMO,
2 hops, and 3 hops
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Instantaneous Mutual Information vs SNR, K = 10 antennas, r = 0.3
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Figure 5.5: One-sided exponential correlation case: Asymptotic Mutual In-
formation and Instantaneous Mutual Information versus SNR, with K = 10
antennas, r=0.3, for single-hop MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs SNR, K = 100 antennas, r = 0.3
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Figure 5.6: One-sided exponential correlation case: Asymptotic Mutual In-
formation and Instantaneous Mutual Information versus SNR, with K = 100
antennas, r=0.3, for single-hop MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs Number Antennas, SNR =10 dB, r=0.3
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Figure 5.7: One-sided exponential correlation case: Asymptotic Mutual In-
formation and Instantaneous Mutual Information versus Ky, at SNR=10
dB, r=0.3, for single-hop MIMO, 2 hops, and 3 hops
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APPENDIX

5.A Useful results from Random Matrix The-
ory and Free Probability Theory

In this appendix, transforms and lemmas used in the proofs of Theorems 1
and 2 are provided, while the proofs of Theorems 1 and 2 are detailed in
Appendices 5.B and 5.C, respectively.

5.A.1 Transforms

Let T be a square matrix of size n with real eigenvalues Ay,..., \,. The
empirical eigenvalue distribution Frp of T is defined by

n

1
Fr(z) & — —\i 5.53
w) 203 utr ) (5.53)
where u(x) is recalled to be the unit-step function. We define the following
transformations [44]

1
Stieltjes transform: Grp(s) = / o SdFT()\) (5.54)
N SA
S-transform:  Sp(z) = : —1; 1Tr}1(z) (5.56)

where T71(T(s)) = s.

5.A.2 Lemmas

We gather here several lemmas used in the proofs of Theorems 1 and 2.
Lemmas 1, 3, 5 and 7 are proved in Appendix 5.A.3, while Lemmas 2, 6, and
4 come from [101], [61], and [102] respectively.
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Lemma 1. Consider an n X p matrix A and a p X n matriz B, such that
their product AB has non-negative real eigenvalues. Denote § = 2. Then

SAB(Z) = E—ESBA (g) (557)

Note that Lemma 1 is a generalized form of expressions formerly derived,
for instance in [103, Eq. (1.2)], [44, Eq. (15)].

Lemma 2 ( [101, Prop. 4.4.9 and 4.4.11|). For n € IN, let p(n) € IN be such

that’%”)ﬁfasnﬁoo. Let

e O(n) be a p(n) x n complex Gaussian random matriz with i.i.d. ele-
ments with variance .

e A(n) be a n x n constant matriz such that sup, [|[A(n)|| < +oo and
(A(n), A(n)) has the limit eigenvalue distribution .

e B(n) be a p(n) x p(n) Hermitian random matriz, independent from
O(n), with an empirical eigenvalue distribution converging almost surely
to a compactly supported probability measure v.

Then, as n — o0,

e the empirical eigenvalue distribution of ©(n)?B(n)O(n) converges al-
most surely to the compound free Poisson distribution m,¢ [101]

o the family ({©(n)“B(n)O(n)}, {A(n), A(n)}) is asymptotically free
almost everywhere.

Thus the limiting eigenvalue distribution of ©(n)B(n)O(n)? A(n)A(n)? is
the free convolution 7, ¢ X pu and its S-transform is

S@B@HAAH (Z) = S@B@H (Z)SAAH (Z) (5.58)

Note that if the elements of @(n) had variance zﬁ instead of =, the
conclusion on asymptotic freeness of ({@(n)7*B(n)®(n)}, {A(n), A(n)})
and equation (5.58) would still hold.
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Lemma 3. Consider an n X p matriz A with zero-mean i.i.d. entries with
variance %. Assume that the dimensions go to infinity while % — (, then

1 1
S (5.59)
Sprals) = & 1 '
ATA a (z+¢)

Lemma 4 ( [102, Theorem H.1.h|). Let A and B be two positive semi-
definite hermitian matrices of size n X n, Aa(i) and A\g(i) their respective
eigenvalues ordered in decreasing order, and Aag(i) the eigenvalues of AB,
then the following inequality holds:

Z)\A /\B(TL—Z—f-l) < tr AB Z/\AB S i/\A(Z))\B(Z) (560)

=1

Lemma 5. Fori € {1,...,N}, let A; be a n; xn;_1 random matriz. Assume
that

e Ay, ..., AN are mutually independent

e n; goes to infinity while —" — G

e as n; goes to infinity, the eigenvalue distribution of A;AH converges
almost surely in distribution to a compactly supported measure v;,

® asny,...,ny go to infinity, the eigenvalue distribution of(®§:N AQ(@LN AHH
converges almost surely in distribution to a measure

Then puy s compactly supported.

Lemma 6 ( |61, Theorem 9]). Let T, be a sequence of Wiener-class Toeplitz
matrices, characterized by the function f(X) with essential infimum my; and
essential supremum My. Let Mg, (1),..., Ar, (n) be the eigenvalues of T,, and
s be any positive integer. Then

1 2m
1 A5 — A)PdA 5.61
ng{}onz B0 =5 [ O (5.61)
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Furthermore, if f(\) is real, or equivalently, the matrices T, are all Hermi-
tian, then for any function g(-) continuous on [my, M|

tin 3760, (0) = 5 [ (7N (5.62)
k=1 0

-----

.....

mean gaussian elements with variance o,

tr ( E [ X){AO AN R{OF A} ] ) = tr(AoA{) [ [ ortr(ALAL)
k=i k=1 k=1 (563)

5.A.3 Proofs of Lemmas

The proofs of Lemmas 1, 3, 5 and 7 are given hereafter.

Proof of Lemma 1

1. Given two complex matrices A of size m x n, and B of size n x m and
the characteristic polynomials Y ag(\) = det(AL, —AB) and yga()\) £
det(AI, — BA) , we first show that

VA e C , A" XAB()\) =\" XBA()\) (564)

For A =0, (5.64) is obviously true.

For A # 0, we recall the block-determinant formula

A B

det{c D

} — det(A) det(D — CA~'B) (5.65)
= det(D) det(A — BD"IC) (5.66)
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and we apply it to the determinant

I, B

A )\,

= det(I,,) det(1,, — AB) = det(I,, — AB) = xaB(})

det [

1
= det(AL,) det(L, — BA) = " det(AL, — BA) = A" "xpa(\
(5.67)
This yields the desired result (5.64)

Now we show that AB and BA have the same non-zero eigenvalues
with the same multiplicities.

Since C is an algebraically-closed field, the characteristic polynomi-
als are splitted. Denoting by A, ..., \x the distinct non-zero roots of
xaB(A), by my,...,my > 0 their multiplicities in yap(A), and my > 0
the multiplicity of 0 as root of yap()) , we can write

xas(A) = A" T =)™ (5.68)

i=1
With similar notations, we can also write
k/
xma(d) = A" [T = x)™ (5.69)
i=1
Using (5.68) and (5.69) in (5.64), we get the polynomial equality

k K
VAeC, XTI =)= Aot TN = M) (5.70)
i=1

i=1
and consequently
mo+n=my+m
k=F (5.71)
X=X and m; =m) ,Vie{l,... k}
This means that AB and BA have the same non-zero eigenvalues with

the same multiplicities, and that the multiplicities of their 0-eigenvalues
are related.
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3. Finally, introducing the assumption that AB (and thus BA) has real
eigenvalues, we show the relation (5.57) on their S-transforms.

Using (5.71), the empirical eigenvalue distributions of AB and BA are

/ Z’:l (5.72)

where u(\) is recalled to be the unit-step function. Thus, recalling
mo +n =my +m, we get

Fan() = = Fea() + (1= =) u() (5.73)

Using (5.73) to compute their respective Stieltjes transforms G(s) =
[ s dF()) leads to

n

GAB(Z) = %GBA(Z) — <1 — E) % (574)
Since T(s) = —1 — tG(2), from (5.74), we get
TAB(S) = %TBA(S) (575)

and finally, using {z = Tagp(s) = 2Tga(s)} & {Tapz) = s =
T (n/—m>} and the definition of the $-transform S(z) 2 Z17-1(z)

yields the desired result

Sxnle) =~ a1 (5.76)

z+ = n/m

This ends the proof of Lemma 1.
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Proof of Lemma 3

Consider an n X p matrix A with zero-mean i.i.d. entries with variance %. It

can be written A = \/aX, where X has zero-mean i.i.d. entries with variance
1

p
Define the matrices Y = al,, and Z = XX”Y = AA". By noting that the

S-transform of Y = al,, is Sa(z) = % and applying [44, Theorem 1|, we get

1
Sxxu(z) = ————
1
(1+¢z) - (5.77)
Saan(z) = Sz(2) = Sxxn (2)5y(z) = 0+¢2) a
Applying Lemma 1 to Saua(z) yields
z4+1 z 1 1
San = Saar | = | =— 5.78
sl = S (2) =4 g o)
This completes the proof of Lemma 5.
[

Proof of Lemma 5

The proof of Lemma 5 is done by induction on N. For N = 1, Lemma 5
obviously holds. Assuming that Lemma 5 holds for N, we now show that it
also holds for N + 1.

We first recall that the eigenvalues of Gramian matrices AA are non-
negative. Thus the support of pyy; is lower-bounded by 0, and we are left
with showing that it is also upper-bounded.

Denoting By = (Q,_y A)(®._y A, we can write

By = Ay ByAY L, (5.79)

For a matrix A, let Aa max denote its largest eigenvalue. The largest
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eigenvalue of By is given by

H
A . X BN+1 X
Bypmax = HAX =7 =
H H
X AN+1BNAN+1 X
x xHx
H H
tr(By Ay xx"Ani)
= max i
x XX
ny
Zk:l A13N(k:) AA%+1XXHAN+1 (k)
< max = , by Lemma / (5.80)
X XX .
ny
< )\ Zk:l )\A%+1XXHAN+1 (k>
S Inmax A
* N ,max XHX
H H
tr(Ay  xx" Ani1)
xHx
H H
xTAnp Ay x

= )\BN ,max 111aX
x

= ABr max IMax
,max
N x xHx

= ABNymaX )\AN_;,_lAg_H,max

To simplify notations, we rename the random variables as follows:

X = ABy,1 max Y = A,y max 7 = /\ANHA%H,maX (5.81)

Then (5.80) can be rewritten
X<YZ (5.82)

Let a > 0, by (5.82) we have
Fx(a) =Pr{X <a} >Pr{YZ < a} = Fyz(a) (5.83)
which still holds for the asymptotic distributions as n4,...,ny41 go to infin-

N
nj—1

ity, while — (;. Denoting the plane region D, = {z,y > 0/zy < a}, we
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can write
Fyz(a) = // Jy,z(y, z)dydz
Y,2€Dg

= // fy(y) fz(2)dydz , by independence of Y and Z
Da

f:;ze aly
- / ( fz(Z)dZ> Fr(y)dy

_ / +°° F, (5) Fo )y

By assumption, the distributions of Ay, A%, and By converge almost
surely to compactly supported measures. Thus, their largest eigenvalues are
asymptotically upper-bounded and the support of the asymptotic distribu-
tions of Y and Z are upper-bounded, i.e.

(5.84)

de, > 0 such that Vy > ¢, , Fy(y)
Jde, > 0 such that Vz > ¢, , Fz(2)

(fy(y) =0)
(fz(z) =0)

Let a > ¢, c;, then for all 0 < y < ¢, we have ¢ > %~ > ¢, and
y

Cy

_ 11 (5.85)

Fy (%) = 1, as the dimensions go to infinity with constant rates. Therefore,

in the asymptotic regime, we have

Fyz(a) = /y : F, (g) Fr(y)dy

_ / Uy ()dy = Fy(c,) =1

=0

(5.86)

Combining (5.83) and (5.86), we get F'y(a) = 1 for a > ¢, c,. Thus, there
exists a constant ¢, such that 0 < ¢, < ¢, ¢, and Vo > ¢, , Fx(z) = 1,
which means that the support of the asymptotic distribution of X is upper-
bounded. As a consequence, the support of the asymptotic eigenvalue dis-
tribution of By, is also upper-bounded. Therefore, the support of pnyq is
upper-bounded, which concludes the proof.

t
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Proof of Lemma 7

The proof of Lemma 7 is done by induction. We first prove that Lemma 7
holds for i = 1. To that purpose, we define the matrix B = A;0; A AYOF AL,
Then

(AL O, A0 AL OIAL)) = (BB = S B, (557)

j=1

The expectation of the j” diagonal element b;; of matrix B is

1 1 O * 1*
Bl = Y Elal) 05 ap a0 600 al )]

A Ay pn ]p

k,l,mmn,p
. 1
—];nm V121V 2 E16)) | since E[6)] 000 = 0364 01,0 (5.58)

1 0
=t Yl P Y lail?
k lm
Thus (5.87) becomes

=01y lal})? Z 1002 = o2tr(A AT ) tr(ApAl) (5.89)
J

which shows that Lemma 7 holds for ¢ = 1.
Now, assuming that Lemma 7 holds for 7 — 1, we show that it also holds
for i. We define the matrix B, = ®,_,{A:O; JA A Q;_ {OF A}

Then
tr(E[B;]) = tr(E[A,©,B, 107 A"])
k1
5.90
= .
The expectation of the j* diagonal element b(-i») of matrix B; is
i (@) (i) p(i=1) p(i)*  (1)*
Eb)) = Z Elagy 03 by, 0507 aj,)]
k,l,m,n
_ 2 (@) )2

:asz\a \ZE i)
k
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where the second 'eql'lality is due to the independence of ®; and B,;_; and to
the fact that E[6\”60\7*] = 626, ,0,,. Thus (5.90) becomes

Im
tr(B[B) = 07 > [af)]* D Blby "] = oFtr(A A tr(E[B; 1))
3.k l

i—1 %
= oltr(A At (AgAl) [ [ ortr(AAf) = tr(AcAl) [ [ ortr(ALAY)
k=1 k=1

(5.92)

which shows that if Lemma 7 holds for ¢ — 1, then it holds for 7.

Therefore Lemma 7 holds for any ¢ > 1, which concludes the proof.
O

5.B  Proof of Theorem 1

In this appendix, after listing the main steps of the proof of Theorem 1, we
provide the detailed proof of each step. Note that the proof of Theorem 1
uses tools from free probability theory introduced in Appendix 5.A.

The proof of Theorem 1 goes through four steps as follows:

1. Obtain Sg,qu(2).

2. Use Sg,qu(2) to find Yg  qu ().
3. Use Tg,qu(2) to obtain dI/dn.
4. Integrate dI/dn to obtain I itself.
e First Step: obtain Sg gu(z)

Theorem 3. As k;,i = 0,..., N go to infinity with the same rate, the S-
transform of Gy G is given by

N
Pi— 1 z
SGNGg(Z) = SM%MN(Z)H a41 (z—i—,o-,l)SMf—lM"‘l (,0'1) (5.93)

i=1
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Proof. The proof is done by induction using Lemmas 1, 3, 2.
First, we prove (5.93) for N = 1. Note that

G,GY =M, 0, MMe M (5.94)
therefore
Sa,ar(z) = Se,Memir e MM, (2) , by Lemma 1
= Se,Momz e (2) S, (2) , by Lemma 2
= ﬁSMOMéJe{{QI (é) »Sfl\/[{-ll\/[1 (Z) 3 by Lemma/ 1
1 1
— Zi+:_10 SMOMé-I ();i) S@{I@l (é) SM{IM1 (Z) 3 by Lemma/ 2
1 1 1
= Z+k10 Smom# | o L - L MM, (2) , by Lemma 3
S C\R/ " TR !
k1
== SM{IM1 (Z) Z_? Z‘:PO SMSIMO (p%) 3 by Lem@%)

Now, we need to prove that if (5.93) holds for N = ¢, it also holds for
N =g+ 1. Note that

GGl =M1, M0, .. M0, MMJO M .. .e/M!e] M/

(5.96)
therefore,

SGq+1G§I+1 (2) - SMq+1...M§I+1 (2)

:S®q+1Mq---M£’®f+1Mf+1Mq+1(Z) , by Lemma 1 (5.97)
The empirical eigenvalue distribution of Wishart matrices ©;0F converges
almost surely to the Marcenko-Pastur law whose support is compact, and
by assumption, for i € {0,..., N + 1} the empirical eigenvalue distribu-
tion of MFM, converges to an asymptotic distribution with a compact
support. Thus, by Lemma 5, the asymptotic eigenvalue distribution of
M,0,...© M/ has a compact support. Therefore Lemma 2 can be ap-
plied to (5.97), leading to:
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n (2) = S@q+1~~~95+1(Z)SM5+1Mq+1(Z) , by Lemma 2

z4+1 z
= H—jSMQHM?@gIH@QH <E> SMfHMqH(Z) , by Lemma 1
k

a+1 kqt1
z+1 z z
= 72 n kq SMq...Mgf (Tq ) S@f+1@q+1 (Tq ) SMQH+1MQ+1(’Z) , by Lemma 2
kqt1 kq41 kq+1
z
ki_
q i—1 kq )
. z+ 1 s z H kq 1 S (kq+1 y
_Z-f- kq MM, kq a; oy ki1 "M M, ki1
kq+1 k’q+1 =1 kq kq k‘q
kq+1
1
e SMH+1Mq+1(Z) , by Lemma 3
a’qul q + kZ q
kq q
kg+1
1 e
zZ+ ki1 z
= E S (2)Fer Sapin, | —— | x
k M. 1 Mg41 My My k
ZA4 - Qg1 z2+1 77 o
q+1 q+1
ki
q i—1
I z
a; 4+ i 1 PMI M ki_1
=1 k’q+1 kq+1
q+1 ki—1 1
_ kgt1 <
- SMqH+1Mq+1 (Z) H a; 2+ ki1 SM{-I_IM'L—I ki1
i=1 kg1 kg+1
q+1 P 1 P
i—1
= SMQH+1Mq+1 (Z) SMzH—lMi—l ( ) . (598)
oy (z+pic1) Pi-1
The proof is complete. O

e Second Step: use Sg,qu(2) to find T¢ gu(z)

Theorem 4. Let us define ayy1 = 1. We have

N
i Tayai(s
TS cu(s) =TT 2= Totons <7N v ’) (5.99)
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Proof. From (5.93) it follows that

z
Jrn 1SGNGH(Z> =

? Pi—1 1 Pz +1 Pil ?
z—l—lSM My (2 H a; z+ z 24+ 1 Smit v | '

v pl 1 Pi— Pi—1 pl_l
(5.100)
Using (5.56) in (5.100), we obtain
N i p
1 1 i—1 1
Tangu(?) = ZNTM el — T (i) (5.101)
i1 9 —
or, equivalently,
1 & pi z
T = — L O = 5.102
GNGR 2(2) ZNg ipq MM (Pz) ( )
with the convention ani1 = 1. Substituting 2 = Tg, gu(s) in (5.102),
Equation (5.99) follows. This completes the proof. O
e Third Step: use Y, gu(2) to obtain dI/dn
Theorem 5. In the asymptotic regime, as ko, k1, ..., knx go to infinity while
ki 5 i =0,..., N, the derivative of the instantaneous mutual information
v P
s given by
dl
h; 5.103
dn ~ po 1H2 H ( )
where hg, hq, ..., hy are the solutions to the followmg set of N + 1 equations
hN A
h; = p,E —Z 1=0,...,N. (5.104)
H a; +1 + nhNA

The expectation in (5.104) is over A; whose probability distribution function
is given by Fypiyg, (A) (convention: anii =1).
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Proof. First, we note that

1
I = k—logdet(l—i—nGNGﬁ)
0

kn

1
= - log [T+ nn(GrGR))
0 =1

kn

1 H

ky 1

kn
= o kx Z log(1+nA(GNGYR))
-1

kn k
= log(1+n)\)dFGJLG%()\)

1
s / log(1 + 7A)dFg vt ()
0

1
B p01n2/1n(1+”)‘>dFGNcg(>\) (5.105)

where Féfj‘; G%()\) is the (non-asymptotic) empirical eigenvalue distribution

of GyGE, that converges almost-surely to the asymptotic empirical eigen-
value distribution Fg NG whose support is compact. Indeed, the empirical
eigenvalue distribution of Wishart matrices ©;0@F converges almost surely to
the Marcenko-Pastur law whose support is compact, and by assumption, for
i €{0,..., N + 1} the empirical eigenvalue distribution of MM, converges
to an asymptotic distribution with a compact support, thus by Lemma 5, the
asymptotic eigenvalue distribution of GyGE has a compact support. The
function log is a continuous function, thus bounded on the compact sup-
port of the asymptotic eigenvalue distribution of G yG%, which enabled the
application of the bounded convergence theorem to obtain the almost-sure
convergence in (5.105).

Due to (5.105) in the asymptotic regime, the derivative of the mutual
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information with respect to 7 is linked to Tq qn(2):

dI 1 A
% dF. A
dn p01n2/1+77)\ GNG%( )
1 —nA
= dF, A
—pon1n2/ = (g Fevet )
1
= ——7T —n). 1
—ponn2 GNGIg( n) (5.106)
Let us denote
t = Yayau(-n) (5.107)
t
9 = YTopun (;> i=0,...,N (5.108)

and, for the sake of simplicity, let & = pgIn2. From (5.106), we have

dI .,
t = —po—>2 5.109
g ( )

Substituting s = —n in (5.99) and using (5.107) and (5.108), it follows that

N
_77tN —
i=0

Pi
Qjt1

gi. (5.110)

Finally, from (5.108) and the very definition of T in (5.55), we obtain

giA .

Substituting (5.109) in (5.110) and (5.111) yields

(=)™ (afl—i)N = ﬂ Pi g, (5.112)

and

iA :

k3
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e

it follows from (5.112) that

Letting

2~
2~

I
a—2 =TT h. (5.115)
dn ;:ll
Using (5.114) and (5.115) in (5.113), we obtain
. tpi -

or, equivalently,

a hVA
th - pi/mdFMfMi(/\)
j=0

ait1
hWVA.
— B | i —0,....N. 5.117
S =R o
This, along with equation (5.115), complete the proof. O

e Fourth Step: integrate dI/dn to obtain I itself

The fourth step leads to our main Theorem 1 that we briefly recall here-
under.

Theorem 6. For the system described in section 5.2, under the assump-

tions listed in Theorem 1, as ko, k1, ..., kn go to infinity while :—; — Piy =
0,...,N the end-to-end instantaneous mutual information per transmit an-

tenna I converges almost surely to

N N

1 i 1

I.=—) pE {log (1 + Hhﬁvl\z‘)] - NEG, [T (5.118)
Po = Pi Po g

where hg, hy, ..., hy are the solutions of the system of N + 1 equations

N
7=0

and where E is over A; with probability distribution given by Fypmyg, (N).

hN A,
L4 phNA;

Qi1

] i=0,...,N (5.119)
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Proof. Proof is accomplished by computing the derivative of I in (5.15)
in terms of n and showing that the derivative matches with (5.103). This
shows that (5.15) is one primitive function of Cg—nw. Since primitive functions
of Cg—nw differ by a constant, the constant was chosen such that the mutual
information (5.15) is null when SNR 7 goes to zero: lim, o I (1) = 0.

We now proceed with computing the derivative of I. If (5.15) holds,
then we have (recall & = pgln 2)

N N
ol =Y pE {m (1 + "‘ZflhgvAi)} ~ N[ (5.120)
i=0 ! i=0
From (5.120) we have
N Ay (B + NohN1h, N N
:ZOpZE ((1+naz+1hNA)) Nth NT] thHh]
1= L Qi+l 1=0 1=0 j=0
J#
Yoo AR N n Aih]
R Ear T A T B
N h/ N
—NHh — Np <Zh—th>
=0 =0 7=0
N h N N N 1 N
D91 DRRYI0 5t 31 (Y ER0 1 CERRTDoE3 1 O
=0 j=0 =0 7=0 =0 =0 7=0
N N
=N+ 0[] -N]]n
j=0 =0
N
=11" (5.121)
j=0

where h; & % and the third line is due to (5.16). Equation (5.103) immedi-
ately follows from (5.121). This completes the proof. O
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5.C Proof of Theorem 2

In this appendix, we provide the proof of Theorem 2. As in the proofs
in [95] for the average mutual information in the single-user MIMO case with
covariance knowledge at source, or in [96] for the average mutual information
in the multi-user MIMO case also with covariance knowledge at source, both
without relaying, or in [94] for the MIMO two-hop relay system with full
CSI at the relay, our proof of Theorem 2 is based on [102, Theorem H.1.h]
recalled in Lemma 4. We extend and develop those proofs here to suit the
MIMO multi-hop relaying model described in Fig. 5.1.

The proof for our system goes through three steps that we detail hereafter:

e Step 1: Use the singular value decomposition (SVD) U,D,V =
A;’éilUgHPiUniAif and show that unitary matrices U; and V; im-
pact the maximization of the average mutual information through the
power constraints only, whereas diagonal matrices D; play a role both
in mutual information expression and in power constraints.

e Step 2: Give the expression of the power constraints in function of
D;, U,, V; and channel correlation matrices only.

e Step 3: Show that the directions minimizing the trace in the power
constraint for all choices of singular values of P;, are the directions
given in Theorem 2.

Before detailing each step, we recall that the maximum average mutual
information is given by

C = max E [logdet(I, +n GyGY)
{Pi/tr(Elxixf ) <kiPi}ticqo,..N—1} [ v N } (5'122)

e Step 1: clarify how the average mutual information depends
on the transmit directions and the transmit powers

Fori e {1,..., N} we define
o] =Ue,U,, (5.123)

Since O; is zero-mean i.i.d. complex Gaussian, thus unitarily invariant, and
U, ,; and U,; are unitary matrices, ®) has the same distribution as ©,;.
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For ¢ € {0,...,N — 1}, we consider the following singular value decom-
position (SVD)

UD, VI = A2 UL PU A (5.124)

where U;, V; are unitary matrices, D; is a real diagonal matrix with non-

negative diagonal elements ordered in non-increasing order of amplitude, and
the convention C, o= U,y = Ai’/oz = I, is used.

We now rewrite the average mutual information in function of matrices
U;, V; and Dy, in order to take the maximization in (5.13) over U;, V; and
D; instead of P;. Using (5.123) and (5.124) the average mutual information
7 can be expressed in function of matrices ®%, U;, V; and D; as

T £ E [logdet(I;, +n GNGY)]
_E [log det(T, + 1 U, nAY2 Oy Uy Dy VI, ©y_,... U D;VI ©, UD VY
VoD{'Ul €1 VDUt . O, Vi DI UL, ©AU)|
(5.125)

©®! being zero-mean i.i.d. complex Gaussian, multiplying it by unitary
matrices does not change its distribution, thus ®7 = VE@®!U,_; is equal in
distribution to @, and the average mutual information can be rewritten

T-F [log det(Iy, +n AY2@%Dy 10}, ... D,0/D,
DIE/HDH . @}’Vfing_l@;’VHAigi)}
1 N
=E [log det(I, + 7 Ay R{O/D;1} QDI 07} AR)
=N i=1

(5.126)

Therefore, the maximum average mutual information can then be written

C = max E
Dianavi

tr(E[x;x"]) < kP;

vie{0,...,N —1}

1 N
log det(L, + 1 Ay Q{O/Di1} Q{DL,0/"} A7)
i=N i=1

(5.127)

Expression (5.126) shows that the average mutual information Z does not
depend on the matrices U; and V;, which determine the transmit directions
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at source and relays, but only on the singular values contained in matrices D;.
Nevertheless, as shown by (5.127), the maximum average mutual information
C depends on the matrices U;, V,—and thus on the transmit directions—
through the power constraints.

e Step 2: give the expression of the power constraints in func-
tion of D,;, U;,V; and channel correlation matrices

We show hereunder that the average power of transmitted signal x; at
i-th relaying level is given by

tr(E[x,x"]) = a;tr(P,C,.,PH) H —tr (Cyps1PrC, P (5.128)

(with the convention: C, o = I, and qo = 1).

Proof. The average power of transmitted signal x; can be written

tr(E[xx/] ®{Ak®k}AOAH ®{®HAH}
with
A, =P,C!/?
Ay =M, =C/2 PCE ke {0, i1} (5.129)
O'2 == @
Pk

(recall the convention: C,, = I, and ay = 1). Applying Lemma 7 to
tr(E{x;x7}) yields
i-1

a a;
tr(Bxix/"]) = tr(CiPoCroPl) ] p * tr(Cyp1 PrC, P k—tr(Picm-P{f)

k1 k—1 i—1
i—1 a
= aitr(PiCmPiH) H k_ktr(ct,k—f—lPkCr,kPkH)

k=0 "k

(5.130)
which concludes the proof. O
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Using (5.128) in the power constraints (5.6), those constraints can be
rewritten as a product of trace-factors:

tr(PoPY) < koPo

i—1
aitr(P,C,.P1) ] %tr(ct,mpkcr,kpf )< kP, Vie{l,...,N—1}
k
k=0

(5.131)

In order to express (5.131) in function of matrices U;, V; and D;, we first
rewrite (5.124) as

P, = U, .A;UDVIA PUl, (5.132)
and inject (5.132) in (5.131) to obtain

tr(P;C,,PH) = tr(Up, 1A, LUDVEAPUR U, A, U,
Ur,z‘A;z‘lﬂviD{{Uf{A;il-i{%UiJrl)

= tr(A; ), UD;U]) (5.133)
tr(Ct7k+1PkCr’kPkH) = tr(DkaH)
— t(D})

where D? = D,;D¥ is a real diagonal matrix with non-negative diagonal
elements ordered in decreasing order. This leads to the following expression
of the power constraints in function of U;, D;

tr(A{ UsD§UY) < koPo
kiP; .
aitr(A; 1, UDIUT) < —— ,Vie{2,...,N -1}
[T 2 tr(D7)

Previously in Step 1, it was shown that matrices V; do not have an impact on
the expression of the average mutual information Z (5.126), and surprisingly
(5.134) now shows that matrices V; do not have an impact on the power
constraints either, only matrices U; and D; do. It should also be noticed
that matrix U; has an impact on the power constraint of the i-th relay only.

(5.134)

e Step 3: give the optimal transmit directions
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To determine the optimal directions of transmission at source, we apply
Lemma 4 to the source power constraint (5.134) tr(A; ] UsD3UY) < koPo
and conclude that for all choices of diagonal elements of DZ, the matrix Uj
that minimizes the trace tr(A; | UyDJUf') is Uy = I;,. Indeed, consider a
matrix Dy and a matrix Uy that meet the constraint tr(A; | UyDZU{) <
koPo. Then by Lemma 4, we have tr(A,{D}) < tr(A;;UDEU{) < kP
Hence, Dy and I, also meet the constraint, which means that the choice
Uy = Iy, is feasible.

Therefore, the source precoder becomes

Py = Uy A, "D VI A, PUR = U, A, *DoVE

(5.135)
= U, Ap, VE!

This recalls the known-result (5.25) in the single-hop MIMO case, where the
optimal precoding covariance matrix at source was shown [95,96| to be

Q* £ E[xox{] = PP} = Ut,lAQ*Ufl (5.136)

Similarly, to determine the optimal direction of transmission at i-th relay-
ing level, we apply Lemma 4 to the i-th power constraint: for all choices of di-
agonal elements of D, the matrix U; that minimizes the trace tr(A; ', U;D?UH)
is U; = I,. This leads to the precoding matrix at level i

P, = U, A, iD,VIAPUE, (5.137)

Now since matrices V;,i € {0,..., N — 1} have an impact neither on the
expression of the average mutual information nor on the power constraints,
they can be chosen to be equal to identity: V; =1,7 € {0,..., N —1} . This
leads to the (non-unique but simple) optimal precoding matrices

Py =Ui1AR

5.138
P; = U1 ApU”, (9:135)
with the diagonal matrices Ap, = A, ZlﬁDZA; 21 /? containing the singular val-
ues of P;.

This completes the proof of Theorem 2. O
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In this thesis, we investigated physical layer techniques to improve the
performance in wireless ad hoc networks. In Chapter 3, we focused on ad hoc
networks, in which wireless nodes do not have advanced cooperative capabil-
ities. We first highlighted the physical layer factors that can enhance the link
capacity performance in dense ad hoc networks. In such interference-limited
networks, the link capacity performance can be improved by using directive
antennas, exploiting wireless nodes mobility, or managing the position and
number of relaying nodes. In a first part, we focused more precisely on the
impact of antenna directivity on the throughput and connectivity of a dense
network of source-destination pairs. We proposed a dynamic blind beam-
forming scheme, that allows to benefit from antenna directivity in wireless
ad hoc networks while avoiding heavy feedback to track the position of nodes.
With the proposed scheme, the optimization of the network performance was
shown to result from a tradeoff between interference-reduction achieved by
using narrower transmission beams, and delay-increase caused by the succes-
sive blind orientations of the directive antenna in several directions to cover
its intended destination without knowing its position. We showed that there
exists an optimal beamwidth and number of antenna rotations that maxi-
mize the throughput and connectivity, and that their optimal values depend
on the network density. In a second part, we considered a communication
system where a source-destination pair communicates with the support of a
dense network of passive relays. We studied the impact of the position and
number of passive relaying nodes on the link capacity. The capacity of the
system turned out to saturate when the number of relaying nodes increased.
Indeed, the largest contributions to capacity resulted from retransmissions
from relaying nodes close to the pair, while contributions of nodes located far
from source or destination became more and more negligible as the network
size increased. A few well located relays around source and destination were
shown to lead to better performance than a larger number of relaying nodes
uniformly distributed. This work also revealed that if cooperation between
relaying nodes was enabled, gains usually obtained in MIMO systems could
be exploited.

In Chapter 4 and 5, we turned our attention to wireless networks, in
which relaying nodes had more advanced cooperative capabilities. In Chap-
ter 4, we focused on cooperative networks with a small number of nodes,
which represent the building blocks for larger networks. We showed that in
classical cooperative strategies, the wireless resource is not efficiently used,
in particular due to the orthogonality-constraint imposed to these strategies.
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We proposed more spectrally efficient cooperative strategies. The proposed
strategies preserved the practical half-duplex assumption, but relaxed the or-
thogonality constraint, by allowing a transmitter to combine messages from
different origins in a single transmitted signal. The introduction of interfer-
ence due to non-orthogonality was mitigated thanks to precoding, in par-
ticular to Dirty Paper Coding. Combined with smart power allocation, our
cooperation strategies allowed to save time, led to a more efficient use of the
bandwidth, and to an improved throughput with respect to classical Decode
and Forward strategies.

Finally, in Chapter 5, we addressed the issue of the link capacity per-
formance in ad hoc networks with a increasing number of communicating
pairs. We proposed a cooperative model for ad hoc networks, in which nodes
are grouped in cooperative clusters, and transmissions occur from a source
cluster to a destination cluster via multi-hopping through intermediate re-
laying clusters. Each cluster was assumed to perform linear precoding on
its received signal before retransmitting. The proposed model lies between
the following two extreme models: on one hand, actual non-cooperative ad
hoc networks, whose performance is known to be interference-limited, and
whose throughput per communicating pair vanishes to zero as the density of
the network increases; on the other hand, ideal fully-cooperative ad hoc net-
works, in which all nodes cooperate perfectly at transmission and reception,
and whose capacity scales linearly with the number of communicating pairs
as in a point-to-point MIMO system. Under the simplifying assumption that
cooperation in the clusters was perfect, and using tools from free probabil-
ity theory, we derived the asymptotic end-to-end mutual information of the
network when the number of nodes in all clusters grew large. The mutual in-
formation per communicating pair was shown to converge to a deterministic
value, depending only on the system characteristics and channel statistics.
We also provided the optimal structure of the linear precoding performed at
each cluster to maximize the system capacity: we showed that the singular
vectors of the optimal precoding matrices should be aligned to the eigenvec-
tors of channel correlation matrices. Finally, we applied the aforementioned
results to several communication scenarios, with different numbers of hops,
and different channel correlation models. These examples allowed to illus-
trate the performance gains resulting from the cooperative-cluster approach
in ad hoc networks.

To conclude, we might say that the physical layer cooperative approach
is a sound approach to improve the link capacity in dense wireless ad hoc
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networks, as long as the cooperative strategies are properly designed to make
an efficient use of the wireless resource.

Future Research Perspectives

We present here several areas and open issues that require further re-
search.

First, the physical layer factors and techniques presented in Chapter 3
may not be the only ones that can improve the link capacity performance
in dense wireless ad hoc networks by reducing interference. Indeed, Time
reversal (TR) has been studied for quite a long time as a method to focus
an ultrasonic wave both in time and space, and recent works started consid-
ering TR in wireless communications systems, in particular for Ultra Wide
Band (UWB) applications. TR focusing capability in dense ad hoc networks
could be used to mitigate interference and thus improve the link capacity
performance.

Second, most works on cooperative networks mentioned in Chapters 4
and 5 were designed for and analyzed in the high SNR regime. Very few
works targeted the low SNR regime of relaying networks. In the wideband
regime, alternatively named low SNR regime since the power is shared over
a large number of degrees of freedom, the performance is not interference-
limited, but energy-limited. Taking advantage from the physical combination
of signals in the wireless link, analog network coding appears as a relevant
approach in the low SNR regime. Analog network coding could outperform
other approaches, including cognitive radio, whose efforts are targeted at
avoiding interference.

Finally, the analysis of the link capacity in a dense cooperative ad hoc
network presented in Chapter 5 relied on the simplifying assumption of per-
fect cooperation within cooperative clusters. Further research is necessary
to remove this simplifying assumption, and to take into account the cost
of cluster cooperation on the network performance, in particular in terms
of channel knowledge and feedback. Moreover, a particular topology was
considered: sources and destinations could be gathered in single source and
destination clusters respectively. A more complete analysis would provide
the capacity in the case of more general network topologies.
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